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PTCP Aim and Scope

Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and chemical
physics and biophysics.

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment:
theory is used to interpret experimental results and may suggest new experiments;
experiment helps to test theoretical predictions and may lead to improved theories.
Theoretical Chemistry (including Physical Chemistry and Chemical Physics) pro-
vides the conceptual and technical background and apparatus for the rationalisation
of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from authors’ initiatives or translations.

The basic theories of physics – classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics
– support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the valence theories, which allow to interpret the structure of molecules, and for
the spectroscopic models employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous
with Theoretical Chemistry: it will, therefore, constitute a major part of this book
series. However, the scope of the series will also include other areas of theoretical
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vi PTCP Aim and Scope

chemistry, such as mathematical chemistry (which involves the use of algebra
and topology in the analysis of molecular structures and reactions); molecular
mechanics, molecular dynamics and chemical thermodynamics, which play an
important role in rationalizing the geometric and electronic structures of molecular
assemblies and polymers, clusters and crystals; surface, interface, solvent and solid-
state effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific
research, based on the exploitation of fast electronic digital computers. Computation
provides a method of investigation which transcends the traditional division between
theory and experiment. Computer-assisted simulation and design may afford a
solution to complex problems which would otherwise be intractable to theoretical
analysis, and may also provide a viable alternative to difficult or costly labora-
tory experiments. Though stemming from Theoretical Chemistry, Computational
Chemistry is a field of research in its own right, which can help to test theoretical
predictions and may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
and to the role of molecules in the biological sciences. Therefore, it involves the
physical basis for geometric and electronic structure, stales of aggregation, physical
and chemical transformations, thermodynamic and kinetic properties, as well as
unusual properties such as extreme flexibility or strong relativistic or quantum-field
effects, extreme conditions such as intense radiation fields or interaction with the
continuum, and the specificity of biochemical reactions.

Theoretical Chemistry has an applied branch – a part of molecular engineering,
which involves the investigation of structure–property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design and
genetic engineering. Relevant properties include conductivity (normal, semi- and
supra-), magnetism (ferro- and ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, biological and pharmaceutical
activities, as well as properties favouring self-assembling mechanisms and combi-
nation properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical and computational chemistry in
their research programmes. It is also intended to provide the graduate student with
a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.



Obituary – W.N. Lipscomb (1919–2011)

On 14 April, 2011, Nobel Laureate William Nunn Lipscomb Jr. passed away at
Mount Auburn Hospital in Cambridge, Massachusetts. He died from pneumonia and
complications from a fall he suffered several weeks earlier. Lipscomb was Abbott
and James Lawrence Professor of Chemistry at Harvard University, Emeritus since
1990.

Lipscomb was born on 9 December, 1919 in Cleveland, Ohio, but his family
moved to Lexington, Kentucky, when he was one year old. His mother taught music
and his father practiced medicine. They “stressed personal responsibility and self
reliance”1 and created a home in which independence was encouraged. A chemistry
kit that was offered him when he was 11 years old kindled Lipscomb’s interest in
science. He “recalled creating ‘evil smells’ using hydrogen sulfide to drive his two
sisters out of his room”2. But it was through a music scholarship (he was a classical
clarinetist) that he entered the University of Kentucky, where he eventually earned
a bachelor of science degree in chemistry in 1941.

As a graduate student at the California Institute of Technology, Lipscomb was
a protégé of Nobel Laureate Linus C. Pauling, whose famous book The Nature of
the Chemical Bond was to revolutionize our understanding of chemistry. Lipscomb
records1 that

Pauling’s course in The Nature of the Chemical Bond was worth attending every year,
because each lecture was new...

In 1946, Lipscomb gained a Ph.D. degree in chemistry from Caltech with a
dissertation in four parts. The first two were entitled: Electron Diffraction Investiga-
tions of Vanadium Tetrachloride, Dimethylketene Dimer, Tetrachloroethylene, and
Trichloroethylene, and: The Crystal Structure of Methylammonium Chloride. Parts

1Process of Discovery (1977): an Autobiographical Sketch, in: Structures and Mechanisms: from
Ashes to Enzymes, G.R. Eaton, D.C. Wiley and O. Jardetzky, ACS Symposium Series, American
Chemical Society, Washington, DC (2002).
2The New York Times, 15 April, 2011.
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viii Obituary – W.N. Lipscomb (1919–2011)

3 and 4 were classified work for W.W.II. His thesis ends with a set of propositions,
the last of which display his sense of humor:

(a) Research and study at the Institute have been unnecessarily hampered by the
present policy of not heating the buildings on weekends.

(b) Manure should not be used as a fertilizer on ground adjacent to the Campus
Coffee Shop.

Before eventually arriving at Harvard, Lipscomb taught at the University of
Minnesota from 1946 to 1959. By 1948, he

had initiated a series of low temperature X-ray diffraction studies, first of small hydrogen
bonded systems, residual entropy problems and small organic molecules [and] later ... [of]
the boron hydrides B5H9, B4H10, B5H11, B6H10, B9H15, and many more related compounds
in later years (50 structures of boron compounds by 1976).

Lipscomb authored two books, both published by W.A. Benjamin Inc.
(New York). The first (1963) was entitled Boron Hydrides. The second (1969),
co-authored with G. Eaton, was on NMR Studies of Boron Hydrides and Related
Compounds. He published over 650 scientific papers between 1942 and 2009. His
citation for the Nobel Prize in chemistry in 1976, “for his studies on the structure
of boranes illuminating problems of chemical bonding”, echoes that of his mentor
Linus Pauling in 1954, “for his research into the nature of the chemical bond and its
application to the elucidation of the structure of complex substances”. It is for his
work on the structure of boron hydrides that Lipscomb is most widely known.

The field of borane chemistry was established by Alfred Stock, who summarized
his work in his Baker Lectures3 at Cornell in 1932. As early as 1927, it had been
recognized that there exist relatively simple compounds which defy classification
within the Lewis-Langmuir-Sidgwick theory of chemical bonding4. A particularly
outstanding anomaly is the simplest hydride of boron, which Stock’s pioneering
work4 established to be the dimer B2H6:

The electronic formulation of the structure of the boron hydrides encounters a number of
difficulties. The ordinary concepts of valence will not suffice to explain their structure; this
is shown by the fact that in the simplest hydride, diborane B2H6, which has 2×3+6 = 12
electrons, as many bonds must be explained as are required for C2H6 which has two more
(2×4+6 = 14) electrons available. Thus it is that any structural theory for these compounds
requires new hypotheses.

Diborane is said to be electron deficient, since it has only 12 valence electrons
and appears to require 14 to form a stable species.

After some years of uncertainty, the structure of diborane was definitively settled
by the infrared studies of Price5 (in 1940–41, Stitt had produced infrared and

3A. Stock, Hydrides of Boron and Silicon, Cornell University Press (1933).
4G.N. Lewis, J. Am. Chem. Soc. 38, 762 (1916); I. Langmuir, J. Am. Chem. Soc. 41, 868,
1543 (1918); N.V. Sidgwick, The Electronic Theory of Valency, Oxford University Press (1927);
L. Pauling, The Nature of the Chemical Bond, Cornell University Press (1939).
5W.C. Price, J. Chem. Phys. 15, 614 (1947); ibid. 16, 894 (1948).
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thermodynamic evidence for the bridge structure of diborane6) and the electron-
diffraction study of Hedberg and Schomaker7. The bridging structure of the
diborane bonding was confirmed by Shoolery8 from the 11B NMR spectrum.

The invariance of the single-determinant closed-shell molecular orbital wave
function under a unitary transformation of the occupied orbitals was exploited
by Longuet-Higgins9 to show that for a minimal basis set the molecular orbitals
involved in the B-H-B bridge could be localized to form two three-centre two-
electron bonds. Lipscomb, W. H. Eberhardt and B. L. Crawford10 demonstrated
how this simple procedure could be extended to higher boron hydrides. Noticing the
similarity of bonding in B2H6 and in the bridge regions of B4H10, B5H9, B5H11,
and B10H14 led Lipscomb to write11:

These ideas suggest that ... the hybridization about boron in many of these higher hydrides is
not greatly different from the hybridization in diborane. In addition, the probable reason for
the predominance of boron triangles is the concentration of bonding electron density more
or less towards the center of the triangle, so that the bridge orbitals (π-orbitals in B2H6) of
the three boron atoms ... overlap. It does seem very likely ... that the outer orbitals of an
atom are not always directed toward the atom to which it is bonded. This property is to be
expected for atoms which are just starting to fill new levels and therefore may be a general
property of metals and intermetallic compounds.

In the early 1960s, Edmiston and Ruedenberg12 placed the localization of
molecular orbitals on a somewhat more objective foundation by transforming to
that basis in which interorbital exchange is a minimum. Lipscomb and coworkers13

found that when applied to diborane this approach indeed leads to localized three-
centre bonds for the B-H-B bridge. Lipscomb recalls1 how the localization of
molecular orbitals

... produced a vivid connection between the highly delocalized symmetry molecular orbitals
and the localized bonds in which chemists believe so strongly.

He also records1:

One disappointment was that the National Science Foundation refused to support the work
started by J. Gerratt and me on spin-coupled wave functions.

Gerratt and Lipscomb introduced spin-coupled wave functions in 196814. The
energy expression for spin-coupled wave functions

6F. Stitt, J. Chem. Phys. 8, 981 (1940); ibid. 9, 780 (1941).
7K. Hedberg and V. Schomaker, J. Am. Chem. Soc. 73, 1482 (1951).
8J. Shoolery, Discuss. Faraday Soc. 19, 215 (1955).
9H.C. Longuet-Higgins and R.P. Bell, J. Chem. Soc. 250 (1943); H.C. Longuet-Higgins, J. Chim.
Phys. 46, 275 (1949); Rev. Chem. Soc. 11, 121 (1957).
10W.H. Eberhardt, B. Crawford and W.N. Lipscomb, J. Chem. Phys. 22, 989 (1954).
11W.N. Lipscomb, J. Chem. Phys. 22, 985 (1954).
12C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963); J. Chem. Phys. 43, 597 (1965).
13E. Switkes, R.M. Stevens, W.N. Lipscomb and M.D. Newton, J. Chem. Phys. 51, 2085 (1969).
14J. Gerratt and W.N. Lipscomb, Proc. Natl. Acad. Sci. U.S. 59, 332 (1968).
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... does not assume any orthogonality whatsoever among the orbitals and, depending upon
which kinds of restrictions are placed upon [them], ... may be made to reduce to the energy
expression for any of the orbital-type wave functions commonly used. Thus, if one specifies
the [orbitals] to be atomic orbitals, then [the energy expression] is the general valence-
bond energy. Other commonly used approximations ... may be embraced by imposing ...
orthogonality restrictions ...

The theory of spin-coupled wave functions was developed by Gerratt et al.15 and
applied to a wide range of molecular systems including diborane16.

Lipscomb also studied the structure and function of large biomolecules. He
wrote1:

My interest in biochemistry goes back to my perusal of medical books in my father’s library
and to the influence of Linus Pauling from 1942 on ....

He used X-ray diffraction methods to determine the three-dimensional structure
of proteins and then analyzed their function. Among the proteins studied by
Lipscomb and coworkers were carboxypeptidase A17, a digestive enzyme, and
aspartate carbamoyltransferase18, an enzyme from E. coli.

Lipscomb was invited to a large number of scientific conferences. In 1986 he
chaired the Honorary Committee of the Congress Molecules in Physics, Chemistry,
and Biology organized by Jean Maruani and Imre Czismadia in Paris, and in 2002
the Fourth International Congress of Theoretical Chemical Physics (ICTCP-IV)
organized by Jean Maruani and Roland Lefebvre in Marly-le-Roi. He enthusiasti-
cally supported the foundation of this bookseries: Progress in Theoretical Chemistry
and Physics, for which he has been an Honorary Editor from the very beginning.
Editor-in-Chief Jean Maruani remembers he could always get his cheerful and
friendly voice on the phone when he needed him.

William Lipscomb will be remembered as a scientist, an educator (three of his
students received the Nobel Prize), and an inspiration to all. He is survived by his
wife, Jean Evans, and three children – including two from an earlier marriage, as
well as by three grandchildren and four great-grandchildren.

Stephen Wilson
Editor-in-Chief of

Progress in Theoretical Chemistry and Physics

15J. Gerratt, Adv. At. Mol. Phys. 7, 141 (1971); J. Gerratt, D.L. Cooper, M. Raimondi and
P.B. Karadakov, in: Handbook of Molecular Physics and Quantum Chemistry, vol. 2, ed. S. Wilson,
P.F. Bernath and R. McWeeny, Wiley (2003).
16S. Wilson and J. Gerratt, Molec. Phys. 30, 765 (1975).
17W.N. Lipscomb, J.A. Hartsuck, G.N. Reeke, Jr., F.A. Quiocho, P.H. Bethge, M.L. Ludwig,
T.A. Steitz, H. Muirhead, J.C. Coppola, Brookhaven Symp. Biol. 21, 24 (1968).
18R.B. Honzatko, J.L. Crawford, H.L. Monaco, J.E. Ladner, B.F.P. Edwards, D.R. Evans,
S.G. Warren, D.C. Wiley, R.C. Ladner, W.N. Lipscomb, J. Mol. Biol. 160, 219 (1983).



Obituary – Matey Mateev (1940–2010)

On July 25, 2010, world-renowned Bulgarian scientist, professor and academician
Matey Dragomirov Mateev died in a car accident. Late on Sunday afternoon, on the
way back to Sofia from his country house, at the foot of Stara Planina Mountain, he
lost control of his vehicle and crashed against a tree. His wife Rumiana, sitting on
the passenger’s seat, died instantly, while Mateev died on the way to the hospital.

Matey Mateev was one of the most prominent Bulgarian physicists, with signi-
ficant achievements in the fields of theoretical, mathematical, and nuclear physics.
He was also known for his ethical and moral values and service to his community. In
Bulgarian circles he was called ‘the noble man of science’. His relatives were former
Sofia physicians, intellectuals and public figures. His father, Pr. Dragomir Mateev,
was also a prominent scientist as well as the Director of the Institute of Physiology
of the Bulgarian Academy of Sciences, and for many years the Rector of the Higher
Institute for Physical Culture (presently National Sports Academy Vassil Levski).

Matey Mateev had a son living in Sofia and a daughter in Barcelona. His tragic
death came a few days after the happiest moment in his life: on July 22, his daughter
gave birth to a girl – and his wife was planning to travel from Sofia to Barcelona to
see her granddaughter, on July 29.

As a tragic coincidence, the funeral service was held on July 29, in the church
St. Sofia – an annex to the cathedral Alexander Nevski. Hundreds of people came
to pay their respects to Matey Mateev and his wife: relatives, friends, colleagues,
public figures in the arts and in the media, members of parliament. Bulgarian pre-
sident Georgi Purvanov sent a letter of condolences to his family, reading: “I was
very grieved to learn about the unexpected death of the outstanding Bulgarian sci-
entist and public figure Matey Mateev. We lost one of our prominent physicists, an
internationally recognized authority, a loved lecturer, and a reputable leader in our
system of science and education”.

Academician Matey Mateev had an beautiful career. Born on April 10, 1940 in
Sofia, he graduated in 1963 from the Faculty of Physics at University St. Kliment
Ohridski, majoring in nuclear physics. Right after his graduation, he began working
as a physicist and later as an assistant professor at the same faculty. In 1967 he won
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a one-year scholarship to the newly-established International Centre for Theoretical
Physics in Trieste, Italy. He came back to Bulgaria and, soon afterwards, left again
to the Joint Institute of Nuclear Physics, where he worked at the Laboratory of
Theoretical Physics from 1971 to 1980, where he defended his Ph.D. dissertation.
He came back to Bulgaria to work as an associate professor and, starting 1984, a full
professor at the Faculty of Physics of Sofia University. In 1996 he was appointed
Head of the Department of Theoretical Physics. During his career he has also been
Dean of the Faculty of Physics and Vice-Rector of Sofia University.

Matey Mateev was loved by his students in physics and, from 1980 onwards, he
lead one of the most attended courses at the Faculty of Physics. A generation of
physicists has matured under his supervision and leadership. He authored over 100
major scientific publications in hot topics in physics.

Matey Mateev was elected a member of the Bulgarian Academy of Sciences in
the Physical Sciences in 2003. As President of the Union of Bulgarian Physicists for
many years, he was a champion for the establishment of a National Foundation for
Fundamental Research. He has also been a Chairman of the Expert Committee for
Physics at the National Science Fund and a Vice-President of the Balkan Physics
Union. Between 1997 and 2003 he was a Chairman of the Committee for Bulgaria’s
Cooperation with the Joint Institute of Nuclear Physics.

In 1999 Matey Mateev became a member of the European Center for Nuclear
Research (CERN) in Switzerland. Bulgaria’s active participation in CERN’s expe-
rimental and theoretical research was one of his major services to science and to his
country. He became a member of the Committee for Bulgaria’s Cooperation with
CERN and of the Board of CERN, where he represented Bulgaria throughout the
period 1999–2000 and was the team leader of Bulgarian scientists invited to work
at the Large Hadron Collider on its activation in CERN.

Matey Mateev has gone all the way up to the top of the scientific and adminis-
trative ladder. Until the democratic changes that occurred in Bulgaria in 1989, he
was the Chairman of the Science Committee at the Council of Ministers. In 1990
he was appointed Deputy Minister (and in 1991 Minister) of Public Education. He
remained in office for three successive terms. It was under his guidance and super-
vision that the Public Education Act was drawn up, as well as texts on education in
Bulgaria’s Constitution, which were adopted by the National Assembly in 1991.

Matey Mateev supported the organization of the Sixth European Workshop on
Quantum Systems in Chemistry and Physics (QSCP-VI) in Sofia in 2001, by Alia
Tadjer and Yavor Delchev, and the first award of the Promising Scientist Price of
CMOA, which he attended at Boyana Palace (the Bulgarian President Residence),
where the protocol of the ceremony was established.

Matey Mateev was Editor-in-Chief of the Bulgarian Journal of Physics, mem-
ber of the Board of Balkan Physics Letters, and member of the Board of Progress
in Theoretical Chemistry and Physics.

In spite of his wide reputation and prestige, Matey Mateev remained a warm-
hearted and broad-minded person. We will always remember him, not only for his
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achievements in research, education, science policy and public service, but also for
his friendly attitude towards colleagues, his overall dedication, and his readiness to
help in any situation.

Rest in peace!

Rossen Pavlov
Senior Scientist at INRNE

Bulgarian Academy of Sciences





Preface

This volume collects 32 selected papers from the scientific contributions presented
at the 15th International Workshop on Quantum Systems in Chemistry and Physics
(QSCP-XV), which was organized by Philip E. Hoggan and held at Magdalene
College, Cambridge, UK, from August 31st to September 5th, 2010. Participants
at QSCP-XV discussed the state of the art, new trends, and the future of methods in
molecular quantum mechanics, and their applications to a wide range of problems
in chemistry, physics, and biology.

Magdalene College was originally founded in 1428 as a hostel to house Bene-
dictine monks coming to Cambridge to study law. Nowadays it houses around 350
undergraduate students and 150 graduate students reading towards Masters or Ph.D
degrees in a diverse range of subjects. The College comprises a similarly diverse
set of architectures from its medieval street frontage through to the modern Cripps
Court – where the scientific sessions took place, which blends modern design with
traditional materials.

The QSCP-XV workshop followed traditions established at previous meetings:

QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy);
QSCP-II, by Stephen Wilson in 1997 at Oxford (England);
QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain);
QSCP-IV, by Jean Maruani in 1999 at Marly-le-Roi (Paris, France);
QSCP-V, by Erkki Brändas in 2000 at Uppsala (Sweden);
QSCP-VI, by Alia Tadjer in 2001 at Sofia (Bulgaria);
QSCP-VII, by Ivan Hubac in 2002 at Bratislava (Slovakia);
QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece);
QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (France);
QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia);
QSCP-XI, by Oleg Vasyutinskii in 2006 near St Petersburg (Russia);
QSCP-XII, by Stephen Wilson in 2007 near Windsor (England);
QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA);
QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Spain).

xv
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Attendance of the Cambridge workshop was a record in the QSCP series: there
were 138 scientists from 32 countries on all five continents.

The lectures presented at QSCP-XV were grouped into the following seven areas
in the field of Quantum Systems in Chemistry and Physics:

1. Concepts and Methods in Quantum Chemistry and Physics;
2. Molecular Structure, Dynamics, and Spectroscopy;
3. Atoms and Molecules in Strong Electric and Magnetic Fields;
4. Condensed Matter; Complexes and Clusters; Surfaces and Interfaces;
5. Molecular and Nano Materials and Electronics;
6. Reactive Collisions and Chemical Reactions;
7. Computational Chemistry, Physics, and Biology.

There were sessions where plenary lectures were given, sessions accommodating
parallel talks, and evening sessions with posters preceded by flash oral presentations.
We are grateful to all plenary speakers and poster presenters for having made this
QSCP-XV workshop a stimulating experience and success.

The breadth and depth of the scientific topics discussed during QSCP-XV are
reflected in the contents of this volume of proceedings in Progress in Theoretical
Chemistry and Physics, which includes five sections:

I. General: 1 paper;
II. Methodologies: 10 papers;

III. Structure: 8 papers;
IV. Dynamics and Quantum Monte-Carlo: 6 papers;
V. Reactivity and Functional Systems: 7 papers;

The details of the Cambridge meeting, including the complete scientific program,
can be obtained on request from pehoggan@yahoo.com.

In addition to the scientific program, the workshop had its fair share of other
cultural activities. One afternoon was devoted to a visit of Cambridge Colleges,
where the participants had a chance to learn about the structure of the University
of Cambridge. There was a dinner preceded by a tremendous organ concert in
the College Chapel. The award ceremony of the CMOA Prize and Medal took
place in Cripps Lecture Hall. The Prize was shared between three of the selected
nominees: Angela Wilson (Denton, TX, USA), Julien Toulouse (Paris, France) and
Robert Vianello (Zagreb, Croatia), while two other nominees (Ioannis Kerkines
– Athens, Greece – and Jeremie Caillat – Paris, France) received a certificate of
nomination. The CMOA Medal was then awarded to Pr Nimrod Moiseyev (Haifa,
Israel). Following an established tradition of QSCP meetings, the venue and period
of the next QSCP workshop was disclosed at the end of the banquet that followed:
Kanazawa, Japan, shortly after the ISTCP-VII congress scheduled in Tokyo, Japan,
in September, 2011.

We are pleased to acknowledge the support given to QSCP-XV by Trinity
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Chapter 1
Time Asymmetry and the Evolution
of Physical Laws

Erkki J. Brändas

Abstract In previous studies we have advocated a retarded-advanced sub-dynamics
that goes beyond standard probabilistic formulations supplying a wide-range of
interpretations. The dilemma of time reversible microscopic physical laws and the
irreversible nature of thermodynamical equations are re-examined from this point
of view. The subjective character of statistical mechanics, i.e. with respect to the
theoretical formulation relative to a given level of description, is reconsidered as
well. A complex symmetric ansatz, incorporating both time reversible and time
irreversible evolutions charts the evolution of the basic laws of nature and reveals
novel orders of organization. Examples are drawn from the self-organizational be-
haviour of complex biological systems as well as background dependent relativistic
structures including Einstein’s laws of relativity and the perihelion movement of
Mercury. A possible solution to the above mentioned conundrum is provided for,
as a consequence of a specific informity rule in combination with a Gödelian like
decoherence code protection. The theory comprises an interesting cosmological
scenario in concert with the second law.

1.1 Introduction

The most recognized dilemma in the theoretical description of physical events is
the problem related to irreversible behaviour and the associated time asymmetry of
entropic increase. In this appraisal lies the more fundamental re-interpretation of
thermodynamics from the viewpoint of statistical mechanics, the choice of initial
probability distributions as well as the emergence of temporal asymmetry from
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perfectly time symmetric microscopic dynamics. This mystery, moreover, carries
over to the cosmological picture, which, regardless of the materialization of modern
Big Bang models, is far from adequately resolved [1].

One radical solution to this puzzle has been offered by I. Prigogine in his
theory of time irreversibility, see e.g. [2] and references therein. Without taking
recourse to any course graining he took irreversibility to be a fundamental fact
due to dynamics alone. However, in speaking of intrinsic irreversibility he did
attract challenging criticism from candid scientists and philosophers alike. The
key to realize the Prigogine causal sub-dynamics and to understand the reduction
of macroscopic laws to microscopic ones lies in a mathematical ingredient, the
star-unitary transformation, which attempts to obtain a symmetry breaking time
evolution of the original probability distribution via apposite semi-group selections.
It is important to recognize that the Liouville formalism applies to both classical
and quantum mechanical formulations and furthermore that the emergence of
irreversibility rests in the coupling between the dynamics of the open dissipative
system and entropic evolution via an explicitly given Lyapunov function.

Although it may be too early to fully evaluate the vision and foresight of Ilya
Prigogine, there have appeared over time various fundamental and also critical
objections to his programme of open dissipative systems. With some risk of
oversimplification one can say that a scientist and a philosopher disagree by and
large in that the former nurtures concept unification, while the latter on the contrary
espouses concept differentiation. Parallel derivations and analogous interpretations
may be construed as unification in one domain and conflation in the other. Both
viewpoints are indisputably important if properly balanced.

Neglecting philosophical critique we bring attention to an alternative derivation
of subdynamics that has its roots in quantum mechanics, viz. the utilization of the
dilation group through a mathematical theorem due to Balslev and Combes [3].
The reformulation of the Nakajima-Zwanzig Generalized Master Equation [4, 5]
within a retarded-advanced formulation made it possible to evaluate the relevant
residue contributions of the projective decompositions of the appropriate resolvent,
i.e. the non-hermitean collision operator etc., via the proper analytic continuation
explicitly defined via the aforementioned theorem [6]. This derives the dissipativity
condition for quantum mechanical systems with an absolutely continuous spectrum
(the situation is a bit more complex in the classical formulation). Another essential
difference, comparing the Prigogine causal dynamics [7] with the present develop-
ment, see e.g. Refs. [6,8], is that the retarded-advanced dynamics allows conversion
into contracted semigroups with the positivity preserving condition (probabilistic
interpretation) relaxed [9]. The latter step is important since it carries with it an
inevitable objective loss of information. Furthermore we have demonstrated that
the present representation via Bloch thermalization empowers microscopic self-
organization through integrated quantum-thermal correlations [10,11]. The resulting
Coherent Dissipative Structure, CDS, provides a rich variation of timescales as
well as being code protected against decoherence, see more details below and also
reference [12].
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With this idea as background we will develop the non-probabilistic formulation
further and generalize its framework incorporating complex biological systems
and most importantly providing an alternative formulation of special and general
relativity. We will demonstrate its significance as regards time irreversibility,
biological organization and the Einstein laws of general relativity. In addition we
will demonstrate its expediency and accuracy by determining the perihelion motion
of Mercury concluding with a possible cosmologic scenario extending and going
beyond popular big bang – inflation type settings particularly demonstrating that
cosmic memory loss provides cosmic sensorship and an objective platform for the
second law.

1.2 Time Evolution, Partitioning Technique
and Associated Dynamics

We will first demonstrate the subtleties involved in the derivations of the proper
dynamical equations. Although the presentation below can, without problem, be ex-
tended to a Liouville formulation we will, for simplicity review the “time reversible”
case of the Schrödinger equation based on the self-adjoint Hamiltonian H. Thus
we write the following causal expressions (h = 2π) of the time-independent and
time-dependent Schrödinger Equation assuming the existence of an absolutely
continuous spectrum σAC

(E−H)ψ(E) = 0;

(
i

∂
∂ t
−H

)
ψ(t) = 0; ψ(t) = e−iHt ψ(0) (1.1)

In passing we adopt the traditional definition of the spectrum, σ, of a general
unbounded (closable) operator H, defined in a complete separable Hilbert space,
characterized according to the standard decomposition theorem, i.e. σP, the pure
point-, σAC the absolutely continuous- and σSC, the singularly continuous part. Note
that molecular Hamiltonians do not contain σSC, so this option is not discussed
here. In Eq. 1.1 above we will particularly investigate the situation when the energy
E belongs to the continuum, i.e. E ∈ σAC, ψ(E), ψ(t) are the time independent
and time dependent wave functions respectively and t is the time parameter. The
two equations above are connected through the Fourier-Laplace transform and we
will explain this formulation in more detail below. Although this outline has been
presented several times by the author, one needs to redevelop some of the main
equations for impending use and conclusions.

It follows that in order to guarantee the existence of the transforms, one has
to define integration paths along suitable complex contours C± by the lines in the
upper/lower complex plane via C± : (±id−∞→ ±id +∞) where d > 0 may be
arbitrary small. Using the well known Heaviside and Dirac delta functions θ (t) and
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δ (t), respectively, we can separate out positive and negative times (with respect to
an arbitrary chosen time t = 0) as related with the relevant contours C± according to

G±(t) =±(−i)θ (±t)e−iHt; G(z) = (z−H)−1 (1.2)

where the retarded-advanced propagators G±(t) and the resolvents G(z±); z± =
Rz± iI z are connected through (R z, I z are the real and imaginary parts of
z = E + iε)

G±(t) =
1

2π

∫

C±
G(z)e−iztdz; G(z) =

+∞∫
−∞

G±(t)eiztdt

{t > 0; I z > 0}
{t < 0; I z < 0} (1.3)

The Fourier-Laplace transform Eq. 1.2 exists under quite general conditions by e.g.
closing the contours C± in the lower and upper complex planes respectively. More
details regarding the specific choice of contours in actual cases can be found in
Refs. [13–15] and references therein. The formal retarded-advanced formulation
corresponding to Eq. 1.1 including the memory terms follows from(

i
∂
∂ t
−H

)
G±(t) = δ (t); ψ±(t) =±iG±(t)ψ±(0)

(
i

∂
∂ t
−H

)
ψ±(t) = ±iδ (t)ψ±(0) (1.4)

and

(z−H)G(z) = I;ψ±(z) =±iG(z)ψ± (0)

(z−H)ψ±(z) = ±iψ±(0) (1.5)

It is usual to normalize the time dependent wavefunction ψ±(t), which means that
ψ(z) obtained from partitioning technique as a result is not. Since we are primarily
interested in the case E ∈ σAC′ we will take the limits I (z)→ ±0, obtaining the
dispersion relations

G(E + iε) = lim
ε→±0

(E + iε−H)−1 = P(E−H)−1± (−i)πδ (E−H) (1.6)

where P is the principal value of the integral.
The goal is now to evaluate full time dependence from available knowledge of the

wave function ϕ at time t = 0, for simplicity we assume that the limits t →±0 are
the same, although this is not a necessary condition in general. Making the choice
O = |φ〉〈φ |φ〉−1 〈φ |;φ = ϕ(0), one obtains (the subspace, defined by the projector
O can easily be extended to additional dimensions)

ψ(0) = ψ+(0) = ψ−(0); Oψ(0) = ϕ(0); Pψ(0) = κ(0); O+P = I (1.7)
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Using familiar operator relations of the time dependent partitioning technique, see
again e.g. Ref. [15] for a recent review, we obtain

O(z−H)−1 = O(z−OH (z)O)−1 (I +HT (z))

H (z) = H +HT(z)H;T (z) = P(z−PHP)−1P (1.8)

As we have pointed out at several instances the present equations are essentially
analogous to the development of suitable master equations in statistical mechanics
[4–7], where the “wavefunction” here plays the role of suitable probability distri-
butions. Note for instance the similarity between the reduced resolvent, based on
H (z), and the collision operator of the Prigogine subdynamics. The eigenvalues of
the latter define the spectral contributions corresponding to the projector that defines
the map of an arbitrary initial distribution onto a kinetic space obeying semigroup
evolution laws, for more details we refer to Ref. [6] and the following section.

Rewriting the inhomogeneous version of the Schrödinger equation, where the
boldface wave vectors below signify added dimensions, one obtains (the poles of
the first line of Eq. 1.8 correspond to eigenvalues below)

(z−H)Ψ(z) = O(z−H (z))Oφ (1.9)

From Eq. 1.9 the formulas of the time-dependent partitioning technique follows
straightforwardly

ϕ±(t) =± i
2π

∫

C±
O(z−H)−1 ψ(0)e−iztdz =± i

2π

∫

C±
ϕ(z)e−iztdz (1.10)

where

ϕ(z) = O(z−H)−1ψ(0) = O(z−OH (z)O)−1 (ϕ(0)+HT(z)κ(0) (1.11)

The equations of motion, restricted to subspace O, is directly obtained from the
convolution theorem of the Fourier-Laplace transform, i.e.(

i
∂
∂ t
−OHO

)
ϕ±(t) = ±iδ (t)ϕ(0)

+OHP

⎧⎨
⎩

t∫
0

(GP(t− τ)PHϕ(τ))±dτ ± iG±P (t)κ(0)

⎫⎬
⎭

(1.12)

with

G±P (t) =±(−i)θ (±t)e−iPHPt =
1

2π

∫

C±
T (z)e−iztdz (1.13)
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and
t∫

0

(GP(t− τ)PHϕ(τ))±dτ =± i
2π

∫

C±
T (z)Hϕ(z)e−iztdz (1.14)

The first term on the right in Eq. 1.12 yields the description of the amplitude ϕ±
evolving according to the Hamiltonian OHO. Furthermore the second term depends
on all times between 0 and t, while the last term evolves the unknown part κ at t = 0
completing the memory at initial time. Sofar no approximations have been set and
no loss of information acquiesced.

Introducing the auxiliary operator G±L (t), through

OH (z±)O =

+∞∫
−∞

G±L (t)e
iz±t dt

and the non-local operator G±(t;0) via

G±(t;0)ϕ(0) =
t∫

0

(GL(t− τ)ϕ(τ))±dτ =± i
2π

∫

C±
OH (z±)Oϕ(z)e−iztdz (1.15)

one gets the more compact expression

(
i

∂
∂ t

ϕ±(t)−G±(t;0)

)
ϕ(0) =±i

[
δ (t)ϕ(0)+OHPG±P (t)κ(0)

]
(1.16)

Note that analogous evolution formulas hold within the subspace P, i.e. with
O and P interchanged. Although any localized wave packet under free evolution
disperses, it is however traditionally recognized that the complete formulation
of an elementary scattering set-up describes a time symmetric process provided
the generator of the evolution commutes with the time reversal operator and the
time-dependent equation imparts time symmetric boundary conditions. Compare
for instance analogous discussions in connection with the electromagnetic field,
obeying Maxwell’s equations, via retarded-, advanced- or symmetric potentials.
Although time symmetric equations may exhibit un-symmetric solutions via specific
initial conditions the fundamental point here concerns the “master evolution equa-
tion” itself. Hence, as already pointed out, we re-emphasize that no approximations
have been admitted and consequently time evolution proceeds without loss of
information.

At this junction it is common to discuss various short time expansions and/or
long time situations, i.e. to consider partitions of relevant time scales. We will
principally mention two interdependent scales, i.e. a global relaxation time τrel and
a local collision time τc. For instance, during τc the amplitude ϕ is not supposed to
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alter very much. Hence one approximates the convolution in Eq. 1.16 for positive
times, i.e.

G+(τc;0)≈ OHO− iτc{OHPHO+ 1/2!(−iτc)OH(PH)2O · ·} (1.17)

The relaxation time τrel obtains from time independent partitioning technique.
Accordingly starting from Eqs. 1.5 and 1.6 one attains the limits

(E−H)ψ±(E) = ±iψ(0)

ψ±(E) = ±i lim
ε→±0

(E + iε−H)−1ψ(0) = lim
ε→±0

+∞∫
−∞

ψ±(t)ei(E+iε)tdt (1.18)

Incidentally we recover the stationary wave, ψc(E), via the causal propagator Gc(t)

ψc(t) = Gc(t)ψ(0) = ψ+(t)+ψ−(t); Gc(t) = e−iHt; (1.19)

and formally

ψc(E) = lim
ε→+0

+∞∫
−∞

ψ+(t)ei(E+iε)tdt+ lim
ε→−0

+∞∫
−∞

ψ−(t)ei(E+iε)t dt =

+∞∫
−∞

ψc(t)e
iEtdt.

Since the relaxation or life time, τrel, is directly related to a “hidden” complex
resonance eigenvalue of Eq. 1.9, or pole of Eq. 1.8, we need to derive and investigate
the dispersion relation for the reduced resolvent T (z), i.e.

lim
ε→±0

T (E + iε) = lim
ε→±0

(E + iε−PHP)−1

= P(E−PHP)−1± (−i)πδ (E−PHP) (1.20)

For instance, in the none-degenerate case one finds by getting the real and imaginary
parts of f (z)

f (z) = 〈φ |H(z)|φ〉 (1.21)

and

f±(E) = fR(E)± (−i) f1(E) (1.22)

with

fR(E) = E + 〈φ |HP(E−PHP)−1H|φ〉
fI(E) = π〈φ |Hδ (E−PHP)H|φ〉 ≥ 0 (1.23)

In the limit ε → ±0, assuming full information for simplicity at the initial time,
t = 0, i.e. κ(0) = 0;φ = ϕ(0) = ψ(0), Eq. 1.9 yields

(E−H)Ψ±(E) =± fI(E)ϕ(0) (1.24)
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keeping in mind that z = E− iε from Eq. 1.23

E = fR(E);ε(E) = f1(E) (1.25)

Note that Eq. 1.25 only gives the resonance approximately. The exact complex
resonance eigenvalue (if it exists, see more on this below) has to be found by
analytical continuation, Eq. 1.9, by e.g. successive iterations until convergence for
each individual resonance eigenvalue. Hence in the first iteration, one gets the
lifetime τrel given by

f1(E) = ε(E) = {2τrel(E)}−1 (1.26)

To find an “uncertainty-like” relation between the two time scales we combine the
expansion Eq. 1.17 with

OH (z)O = OHO+
1
z

{
OHPHO+

1
z

OH(PH)2O · ·
}

and

OH (E± i0)O = OHO+OHPP (E−PHP)−1PHO

±(−i)πOHPδ (E−PHP)PHO

obtaining

τcσ2(E) = ε(E) =
1

2τrel
(1.27)

with σ2 being the variance at E0 = 〈ϕ(0)|H|ϕ(0)〉, i.e.

σ2 = 〈ϕ(0)|HPH|ϕ(0)〉= 〈
ϕ(0)|(H2−〈ϕ(0)|H|ϕ(0)〉2)|ϕ(0)〉 (1.28)

The relations above contain many approximations, e.g. break-up of convolutions,
truncation of various expansions etc., not to mention the assumed existence of a
rigorous analytical continuation into higher order Riemann sheets of the complex
energy plane. Since the original Schrödinger equation, or Liouville equation, as
pointed out, is time reversible and rests on a unitary time evolution, it is obvious that
the present lifetime analysis is contradictory. This is a well-known fact amongst the
practitioners in the field; nevertheless, a lot of physical and chemical interpretations
have been made and found to be meaningful portrayals of fundamental experimental
situations. How come that this still appears to work satisfactorily? In the next section
we will examine the reasons why, as well as develop the necessary mathematical
machinery to rigorously extend resolvent- and propagator domains and examine its
evolutionary consequences.

The object of our description is twofold: first to show that analytic continuation
into the complex plane can be rigorously carried out and secondly to examine
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the end result for the associated time evolution. Not only will we find that time
symmetry is by necessity broken, but also that novel complex structures appear
with fundamental consequences for the validity of the second law as well as giving
further guidelines on a proper self-referential approach to the theory of gravity.

1.3 Non-self-Adjoint Problems and Dissipative Dynamics

Staying within our original focus in the introduction, we recapitulate the current
dilemma, i.e. how to connect, if possible, the exact microscopic time reversible
dynamics, see above, with a time irreversible macroscopic entropic formulation
without making use of any approximations whatsoever. In the present setting one
must ascertain precisely what it takes to go from a stationary- to a quasi-stationary
scenario. To begin with, we return to the practical problem of extracting meaningful
life times out of the exact dynamics presented above and in particular to dwell on
the consequences if any.

The understanding, interpretation and practical tools to approach the problem of
resonances states in quantum chemistry and molecular physics are basically very
well studied. Generally one has either (i) concentrated on the properties of the
stationary time-independent scattering solution (ii) attempted to extract the Gamow
wave by analytic continuation and/or (iii) considered the time-dependent problem
via a suitably prepared reference function or wave-packet. In each case the analysis
prompts different explanations, numerical techniques and understanding, see e.g.
Ref. [15] for a review and more details.

In order to appreciate the significance of this situation, we will portray one of the
most significant and successful approaches to quasi-stationary unstable quantum
states by re-connecting with the previously mentioned theorem due to Balslev
and Combes [3]. The authors derived general spectral theorems of many-body
Schrödinger operators, employing rigorous mathematical properties of so-called
dilatation analytic interactions (with the absence of singularly continuous spectra).
The possibility to “move” or rotate the absolutely continuous spectrum, σAC,
appealed almost instantly and was right away exploited in a variety of quantum
theoretical applications in both quantum chemistry and nuclear physics [16].

The principle idea stems from a suitable change, or scaling, of all the coordinates
in the second order partial differential equation (Schrödinger equation), which if
allowing a complex scale factor, permits outgoing growing exponential solutions,
so-called Gamow waves, to be treated via stable numerical methods without being
forced to leave Hilbert space. Although this trick admits standard usage of alleged
L2 techniques, there is a price, i.e. the emergence of non-self-adjoint operators
which brings about a lot of important consequences to be summarized further below.

The strategy is best illustrated by considering a typical matrix element of a
general quantum mechanical operator W (r) over the basis functions, ϕ(r) and
φ(r), where we write r = r1,r2, . . . rN ; assuming 3N fermionic degrees of freedom.
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Employing the scaling r′ = η3Nr;η = eiϑ (or η = |η |eiϑ ), where the phase ϑ ≤ ϑ0

for some ϑ0 that in general depends on the operator, one finds straightforwardly
∫

ϕ∗(r)W (r)φ(r)dr =
∫

ϕ∗(r′
∗
)W (r′)φ(r′)dr′ (1.29)

or in terms Dirac bra-kets (with ϕ∗(η∗) = ϕ(η))

〈ϕ |W |ϕ〉= 〈ϕ(η∗)|W (η)|φ(η)〉 (1.30)

We assume that the operator W (r) as well as ϕ(r) and φ(r) are properly defined
for the scaling process to be justified. For simplicity we also take the interval of the
radial components of r to be (0,∞). Note that Eq. 1.29 contains the requirement that
the matrix element should be analytic in the parameter η , demanding the complex
conjugate of η in the “bra” side of Eq. 1.30. This is the reason why many complex
scaling treatments in quantum chemistry are implemented using complex symmetric
forms.

In order to appreciate the fine points in this analysis, we therefore return to the
domain issues, i.e. how to define the operator and the basis functions so that the
scaling operation above becomes meaningful. Following Balslev and Combes [3],
we introduce the N-body (molecular) Hamiltonian as H = T +V , where T is
the kinetic energy operator and V is the (dilatation analytic) interaction potential
(expressed as sum of two-body potentials Vij bounded relative Tij = Δij, where the
indices i and j refers to particles i and j respectively). As a first crucial point we
realize that the complex scaling transformation is unbounded, which necessitates a
restriction of the domain of H; note that H is normally bounded from below. Hence
we need to specify the domain D(H) of H as

D(H) = {Φ ∈ h,H Φ ∈ h} (1.31)

where h denotes the well-known Hilbert space. The essential property of a dilatation
analytic operator is that each individual pair potential of the interactionV is bounded
relative the corresponding part of the kinetic energy. Hence the unboundedness is
due to the latter i.e. D(H) = D(T ). With these preliminaries one can prove that the
scaling operator U(ϑ) = exp(iAθ ) is unitary for real ϑ and generated by

A =
1
2

k=N

∑
k=1

[pkxk + xkpk] (1.32)

where xk and pk are coordinate and momentum vectors of the particle k. As a result
we get

U(eϑ )Φ(r) = exp(iAθ )Φ(r) = e
3Nϑ

2 Φ(eϑ r) (1.33)

and with ϑ → iϑ ;η = eiϑ , or more generally η = |η |eiϑ we write

H(η) =U(η)H(1)U−1(η) = η−2 T (1) +V(η) (1.34)
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At this stage it is crucial to emphasize that the formal expression Eq. 1.34 must
be obtained in two steps due to the unboundedness of T and the complex scaling
transformation. First we introduce Ω = {η , |arg(η)| ≤ ϑ0} in agreement what
has been said above, then decompose Ω in its upper and lower parts, partitioned
by the real axis R, where Ω = Ω+ ∪Ω− ∪ R and R = R+ ∪ R− ∪ {0}. To avoid
problems we will exclude the point {0}. The first step consists of the real scaling, i.e.
η ∈ R+, which corresponds to a unitary transformation, followed by an analytical
continuation to η ∈Ω+, corresponding to a similarity, non-unitary operation. Since
this is an important point we will consider the scaling operator U(η);η ∈Ω+ more
exactly by bringing in the dense subset N (Ω)

N (Ω) = {Φ,Φ ∈ h; H(η)Φ ∈ h; U(η) ∈ h; η ∈Ω} (1.35)

as the well-known Nelson’s class of dilatation analytic vectors [17] more specifically
defined as follows. A vector φ ∈ D(A) is an analytic vector of A if the series
expansion of eAϑ φ has a positive radius of absolute convergence, i.e.

∞

∑
n=0

‖ Anφ ‖
n!

ϑ n < ∞

for some ϑ > 0. For our purpose, to be explained below, we introduce the Hilbert
(or Banach) space norm

sup
η∈Ω
‖U(η)φ ‖< ∞;

ϑ0∫
−ϑ0

‖U(η)φ ‖2
L2 dϑ =‖ φ ‖2

N (ϑ0)
(1.36)

To include the kinetic energy operator in our discussion it is natural to request that
the first and second partial derivatives should also satisfy Eq. 1.36 hence introducing

the spaces N (i)
ϑ0

with i = 0, 1, 2 analogously.
With these preliminaries we can now make the precise definition of the self-

adjoint analytic family H(η) as

{
H(η) =U(η)H(η)U−1(η); D(UHU−1) = N 2

ϑ0

H(η) = η−2T (1)+V(η); D(UHU−1)→D(T )
(1.37)

Recapitulating, the first step consists of restricting the Hilbert space to a smaller

domain N (2)
ϑ0

for which the scaling U is defined for all complex η values with its
arguments smaller in absolute value than ϑ0. The second step, after the parameter
ϑ has been made complex (ϑ → iϑ), consists of completing the Nelson class of
dilation analytic vectors to the domain of H or in this case T . Here this means
convergence with respect to the standard L2 norm (for both the functions and its
first and second partial derivatives).
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To appreciate the reason for our painstaking carefulness at this particular stage
we come back to our frequent references to the fundamental dilemma expressed
above and in the introduction. First the theorem of Balslev and Combes provides us
with a rigorous path into the second Riemann sheet of the complex energy plane.
The factor, η−2, appearing in front of the kinetic energy operator T , see Eqs. 1.34
and 1.37, has a simple and natural effect. It means that the absolutely continuous
spectrum of H(η) is rotated in the complex plane with a phase angle equal to −2ϑ .
In this process complex resonance eigenvalues become “exposed” in agreement with
the aforesaid generalized mathematical spectral theorem [3]. However, there is a
small price to be paid, viz, in the process of the analytic continuation the two steps
mentioned above entails a small inevitable loss of information represented by the
restrictions necessary for the definition of the whole analytic family of the operators
H(η). As we will see this will have consequences both for the entropic as well as the
temporal evolution. These results, all the same, guarantee that the approximations
made in the previous section could be meaningful despite our words of warning.

There are in effect two principal consequences that we will examine. Firstly
the spectral generalization [3] in terms of appearing complex poles of the actual
resolvent, with the complex part interpreted essentially as the reciprocal life-time of
the state and secondly the dynamical outcome regarding the time evolution, i.e. the
conversion of an isometry to a contractive semigroup [18].

To appreciate the first generalization, i.e. modifying the projection operator
formulations of Sect. 1.2, the following construal is supplied

T (η ;z) = P(η)(z−P(η)U(η)H(1)U−1(η)P (η))−1 P(η)

O(η) = |φ(η)〉〈φ(η∗) |; P(η) = I−O(η)

〈φ(η∗) |φ (η)〉 = 〈φ(1) |φ(1) 〉= 1 (1.38)

Apart from giving the impression of being a rather formal extension, there are two
important points to consider. First the projectors are oblique, i.e. idempotent

O2(η) = O(η)

but not self-adjoint

O†(η) = O(η∗) = O(η)

Furthermore the present bi-orthogonal construction authorize non-probabilistic
formulations allowing e.g. the possibility of zero norms, viz. from Eq. 1.9 one may
encounter, starting with a none-degenerate eigenvalue, that

〈Ψ (η∗; z∗) |Ψ(η ; z) 〉= 1+Δ(η ; z) = 1− f ′(z) = 0 (1.39)

The emerging singularity is associated with a degeneracy of so-called Jordan-block
type, an abysmal situation in matrix theory; see e.g. Ref. [18] and references therein.
In our case, as we will see, this will actually be a “blessing in disguise.” In passing
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we note that the observed loss of information carries an unexpected increase of
entropy. The occurrence of Jordan blocks, see more below about associated spectral
degeneracies and their interpretations, implies that full information as to the given
state becomes uncertain at the “bifurcation point”, with an associated entropic
increase as a result.

The second consequence regards the dynamics. As already pointed out the step-
wise approach is of basic relevance for the use of dilatation analytic Hamiltonians
as generators of contractive semigroups. The problem of comparing classical and
quantum dynamics and the appropriate choice of so-called Lyapunov converters
were examined in some detail in Ref. [8]. Briefly we will review the implication
as follows. Consider an isometric semigroup, cf. the causal propagator in (1.19),
G(t);t ≥ 0, defined on some Hilbert space h. If there exists a contractive semigroup
S(t);t ≥ 0 and a densely defined closed invertible linear operator Λ, with the domain
D (Λ) and range R (Λ) both dense in h, such that

S(t) = ΛG(t)Λ−1; t ≥ 0 (1.40)

on a dense linear subset of h, then Λ is called a Lyapunov converter. A necessary
condition for the existence of Λ for a given G(t) = e−iHt is that the generator H has a
non-void absolutely continuous spectral part, i.e. σAC =∅. In view of what has been
said above it is natural to ask whether H(η) generates a contractive semi-group, i.e.
that (note that the + -sign in S+ is not a “dagger”)

S+(t,η) =U(η)G(t)U−1(η) = e−iH(η)t ; t ≥ 0 (1.41)

This is indeed true for many types of potentials, but unfortunately not for the case
of the attractive Coulomb interaction. Although the Balslev-Combes theorem for
dilation analytic Hamiltonians guarantee that the modified spectrum lies on the
real axis (bound states) and in a subset of the closed lower complex halfplane,
a further requirement (using the Hille-Yosida theorem) is that the numerical range
must also be contained in the lower part of the complex energy plane. In addition
the 1/r potential is problematic both at the origin and at infinity; see e.g. Ref. [19]
for a detailed treatment of resonance trajectories and spectral concentration for a
short-range perturbation resting on a Coulomb background. Here a resonance in
the continuous spectrum carries typical ground-state properties [20] and allows for
complex curve crossings (Jordan blocks) [21]. Since the long-range Coulomb part
in a many-body system will be screened by the other particles the anomalies of the
Coulomb problem should not be crucial with respect to the isometric-contractive
semi-group conversion in realistic physical systems. For additional discussions on
this point, involving a slightly more general definition in terms of quasi-isometries
see Ref. [8].

Summarizing; the loss of information, i.e. restricting the full unitary time
evolution to an isometry (weak convergence) before the conversion via a suitable
Lyapunov converter to a contractive semi-group (strong convergence) is an objective
process in contrast to the subjective preparation of any initial state involving various



16 E.J. Brändas

levels of course graining. It is also important to realize that the completion of a
dense subset of Hilbert space with respect to the appropriate norm gives different
limits depending on whether it is carried out before or after the conversion, hence
we will speak of an informity rule, i.e. a certain natural loss of information, which
is compatible with broken temporal symmetry.

Finally, on account of the impairment of information loss, it is all the same
important to mention that, in the classical as well as in the quantum case, it is
not enough to conclude that the mere existence of a Lyapunov converter explains
or derives time irreversibility and, in the Liouville formulation, guarantees the
approach to equilibrium [8]. In the next section we will concentrate on the
degenerate state before moving on to the relativistic situation looking for the only
remaining explanation of irreversibility in terms of a formulation involving a spatio-
temporal dependent background.

1.4 The Jordan Block and the Coherent Dissipative Ensemble

As already mentioned the informity rule prompts several consequences one being
the emergence of so-called Jordan blocks or exceptional points. Although belonging
to standard practise in linear algebra formulations we will proffer some extra time
to this concept. In addition to demonstrate its simple nature we will also establish
a simple complex symmetric form not previously obtained, see e.g. Refs. [11, 14,
21, 22]. Let us start with the 2× 2 case, where it is easy to demonstrate that the
Jordan canonical form J and the complex symmetric form Q are unitarily connected
through the transformation B, i.e.

Q = B−1 JB = B† JB (1.42)

where

Q =
1
2

(
1 −i
−i −1

)
; J =

(
0 1
0 0

)
; B =

1√
2

(
1 i
1 −i

)
(1.43)

We note that the squares of Q and J are zero, yet the rank is one. Although these
Jordan forms do not appear in conventional quantum mechanical energy variation
calculations they are not uncommon in extended formulations. For various examples
of the latter instigated in quantum physical situations, we refer to [11] and also to
applications of a new reformulation of the celebrated Gödel(s) theorem(s) in terms
of exceptional points, Ref. [12]. Note that the alternative formulation in terms of an
antisymmetric construction is not anti-hermitean as wrongly indicated in Ref. [12].

As demonstrated, complex symmetric forms are naturally exploited in quantum
chemistry and molecular physics and therefore we need to extend Eqs. 1.42 and
1.43 to general n×n matrices. The mathematical theorem that a triangular matrix is
similar to a complex symmetric form goes back to Gantmacher [23], but the explicit
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form to be used here was first derived by Reid and Brändas [21], see also [22]. Since
every matrix, with distinct eigenvalues, can be brought to diagonal form, the critical
situation under study obtains from the general canonical form Jn(λ ) = λ 1+Jn(0)
where 1 is the n-dimensional unit matrix and λ the n-fold degenerate eigenvalue

Jn(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · 0
0 0 1 · · 0
0 0 0 1 · 0
· · · · · ·
0 0 · · 0 1
0 0 · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.44)

The explicit complex symmetric representation thus becomes, [21, 22]

Q = B−1 JnB;Qkl = exp

{
iπ
n
(k+ l−2)

}(
δkl− 1

n

)
(1.45)

with the similarity (also unitary) transformation matrix B given by

B =
1√
n

⎛
⎜⎜⎜⎜⎜⎝

1 ω ω2 · ωn−1

1 ω3 ω6 · ω3(n−1)

· · · · ·
· · · · ·
1 ω2n−1 ω2(2n−1) · ω(n−1)(2n−1)

⎞
⎟⎟⎟⎟⎟⎠

; ω = e
iπ
n (1.46)

Generalizations to various powers of Jn can easily be found by elementary means
[11,14,22]. Incidentally we note an interesting factorization property of the columns
of B to be further discussed below.

Revisiting the subdynamics formulation referred to earlier, we replace the
Schrödinger equation by the Liouville equation (h = 2π)

i
∂ρ
∂ t

= L̂ρ ; L̂|·〉〈·|= H|·〉〈·|− |·〉〈·|H (1.47)

where ρ is the density matrix (an analogous equation for the classical case appears
with the commutator above being substituted with the Poisson bracket). Thermal-
ization, on the other hand, obtains through the Bloch equation

∂ρ
∂β

= L̂Bρ ; L̂B|·〉〈·|= 1
2
{H|·〉〈·|+ |·〉〈·|H} (1.48)

with the temperature parameter β = (kBT )−1, and T the absolute temperature. The
difference between the properties of the energy superoperator L̂B and the Liouvillian
L̂ generate non-trivial analytic extensions, a somewhat technical yet straightforward
procedure [6, 11, 16].
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To exemplify the generality of our formulation we will consider M = N/2
bosons (or N fermions) described by a set of n ≥ N/2 localized pair functions or
geminals h = h1, h2, . . .hn obtained from appropriate pairing of one-particle basis
spin functions. For simplicity we will briefly overlook the fermionic level. With this
somewhat imprecise model we will demonstrate its portrayal of various interesting
phenomena via the density operator

Γ = ρ =
n

∑
k,l

|hk〉ρkl〈hl |; Tr{ρ}= N
2

(1.49)

to be further examined below, for more details see also Ref. [11]. A general
quantum statistical argument illustrates the model and its quantum content. The
matrix elements ρkl define probabilities for finding particles at site or state k and
transition probabilities for “particles to go” from state k to l. Hence the matrix ρ has
the elements

ρkk = p; ρkl = p(1− p); k = l; p =
N
2n

(1.50)

The associated secular equation reveals a non-degenerate large eigenvalue λL = np−
(n− 1)p2 and a small (n− 1)-degenerate λS = p2. As a result the density operator
now writes

Γ = ρ = λL|g1〉〈g1|+λS

n

∑
k,l=1

|hk〉
(

δkl− 1
n

)
〈hl | (1.51)

or using the transformation |h〉B = |g〉 = |g1,g2, . . .gn〉, Eq. 1.46, a compact
diagonal representation for the degenerate part obtains as

Γ = ρ = λL|g1〉〈g1|+λS

n

∑
k=2

| gk〉〈gk | (1.52)

Although the model has a quantum probabilistic origin it is important to note that we
do not have to incorporate any approximations at this stage. For instance, one may
consider the reduction of a many-body fermionic pure state to an N-representable
two-matrix, with the latter effectively mimicking Eq. 1.52. Since the density matrix
in Eq. 1.52, through its relation to Coleman’s extreme case [24], see also [10],
is essentially N-representable, one might, via appropriate projections, completely
recover the proper information corresponding to the partitioning procedure of
Sect. 1.2.

To proceed we will concentrate on the Bloch equation, i.e. opt for the integration
of thermal- and quantum fluctuations via appropriate incorporation of the temper-
ature T . This is basically a complicated problem, since we are contending with
non-equilibrium systems, yet one might all at once consider constructive interaction
from the environment on our open system. In a few words an open or dissipative
system is: a system in which there exists a flow of entropy due to exchange of
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energy or information with the environment. Additionally we will append, see
below, specifications for a so-called coherent-dissipative structure. In passing we
stress that we do not apply the thermodynamic limit, unless explicitly employed,
and that no subjective loss of knowledge is at all conceded.

Introducing the Lyapunov converter, here the complex scaling operation with the
bi-orthogonal complex symmetric form to be signified by the complex conjugate in
the bra-position in Eq. 1.52, we will assign to our model a complex energy Ek =
Ek− iεk to every site described by the basis function hk. The total energy expression
is given by

E = Tr{H2Γ} (1.53)

where H2 is the reduced Hamiltonian of the ensemble, see e.g. [11]. Without
restriction we can put E = 0. The formal solution of Eq. 1.49 is

ΓT = e−β L̂BΓ

or using the standard factorization property of the exponential superoperator

e−β L̂B Γ = λL

n

∑
k,l

| hk〉eiβ 1
2 (εk+εl)〈hl |+ λS

n

∑
k,l

|hk〉eiβ 1
2 (εk+εl)

(
δkl − 1

n

)
〈hl | (1.54)

As can be proven the assumption that the real part of the energies Ek for each site
can be set equal to zero is commensurate with E = 0. Taking advantage of the usual
relation between the imaginary part of the energy and the time scale

εk =
h

4π τk

one can, from the examination of a simple thermal scattering process [11] derive the
following “quantization condition”, see also derivations in conclusion

β εl = 2π
l− 1

n
; l = 1,2, . . .n (1.55)

From (1.55) we realize that the thermalized matrix in Eq. 1.54 assumes the Jordan
form

ΓT = λL

n

∑
k,l

| hk〉ei π
n (k+l−2)〈hl |+λS

n

∑
k,l

|hk〉ei π
n (k+l−2)

(
δkl− 1

n

)
〈hl | (1.56)

or introducing the canonical basis | h〉B−1 = | f〉 = | f1, f2, . . . f n〉 we obtain the
Dunford formula

ΓT = λL J (n−1) +λS J ; J =
n−1

∑
k=1

| fk〉〈 fk+1|; J (n−1) = | f1〉〈 fn | (1.57)
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From Eq. 1.55 we conclude that the present spatio-temporal structure is very
special acquiring a prolonged survival time or time scale as well as optimum spatial
properties. This defines a so-called coherent dissipative system, CDS, by requiring
additionally (to that of a dissipative system) that (a) they are created or destroyed
by integrated quantum- and thermal correlations (T = 0), (b) they exchange energy
and information with an entangled environment and (c) they can not have a
size smaller than a critical one. Accurate dynamical evolution of such systems
leads to non-exponential decay and the law of microscopic self-organization. We
have furthermore considered unambiguous conditions where matching patterns
survive as well as examined unpredicted organizations and associated emergent
properties. Specifically we have studied anomalies of proton transport in water, ionic
conductance of molten salts, conjectures regarding long-range proton correlations in
DNA and further, quantum correlation effects in high-TC cuprates, see Ref. [11] for
a recent review and discussion.

The spatio-temporal structure, CDS, has been developed as a replica for the
characterization of a living system [12]. This portrait must account for, in addition
to the metabolic process, the genetic function and homeostasis, the protracted
survival of autonomic meta-codes, which assign mappings between genotypic and
phenotypic spaces. Briefly, the modus operandi relate to the transformation B,
Eq. 1.46, which, as emphasized, demonstrates interesting factorizations indicating
that various groups of sites (localizations) are to be correlated. Selecting particular
values of n, we will find all the factors appearing in the vectors of B, the importance
of which follows, since it diagonalizes Γ, while B−1 puts Γ̃ in canonical form.
A simple example of the divisor property is illustrated by n = 6 below, showing√

6B with the first column removed:

(2)
(3) (3)

(6) (2) (6)
(3) (3)

(2)

(1.58)

The present attribute suggests various modes of encoding for the autonomic
assembly involving microscopic self-organization, see e.g. [11,12] for more details.
Note also that the genetic- or more generally, the evolution program is stored via
the transformation B, while the “transfer” is mediated through B−1. If this model is
correct, there is no specific origin of life, since self-referential laws are intrinsic to
the evolution and a fundamental property of our universe.

Summarizing this section, we have found that the informity rule and the
quantization condition Eq. 1.55 lead to entropic growth as the system in a well-
defined quantum state with the entropy S = 0, will increase to S = kB ln{n} in the
CDS structure without any subjective approximations as e.g. statistical deductions
based on the pre-assumed level of descriptions being invoked. Still, we have not
derived or even explained the origin of time irreversibility.
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1.5 General Relativity and the Global Superposition Principle

It is an interesting observation that the degenerate description above with respect
to an instruction-based evolution relates developmental and building matters with
functional issues. This leads us to general questions like the origin of life and
associated cosmological evolution, the theme of the last two sections.

In order to place our theoretical framework in the most general position
with respect to our contradiction, i.e. positing irreversible thermodynamics versus
reversible dynamics, we need to direct our focus towards a relativistically invariant
(or covariant in the general case) theory. It would perhaps be more pertinent to use
the word consistent, since our more general complex symmetric framework, allows
broken symmetry solutions, while relevant symmetries are properly embedded
if necessary. In a previous communication [12], see also [25], we have derived
a Global Superposition Principle that applies to both classical and quantum
mechanical interpretations.

We will not re-derive this formulation, see e.g. [12] and references therein, except
make a brief outline of the main results. Rather than going through the construction
through apposite complex symmetric forms, we will here proceed directly via the
observation that the classical-quantum equations of relativity cf. the Klein-Gordon
equation, is a quadratic form in the actual observables. Considering the non-positive
square root from the simple ansatz of the Hamiltonian H below

H2 = m2
0

(
1 0
0 1

)
; H± =

(
m0 0
0 ±m0

)

H− = H =

(
m0 0
0 −m0

)
=

(
m −iv
−iv −m

)
(1.59)

where Eq. 1.59 stipulates that m2
0 = m2− v2 with the obvious identifications v =

p/c; p (not be confused with the probability p of the previous section) the momen-
tum of a particle of mass m, relative to an inertial system, where m0 is the (non-zero)
rest mass, and finally with c the velocity of light. We have chosen the “negative”
square root in the complex symmetric form above in order to supply an appropriate
frame for our non-stationary description. Note also that velocities and momenta
should in general be represented as operators-vectors.

From the secular equation, based on the complex symmetric matrix H , we
obtain the eigenvalues λ±= ± m0 via the Klein-Gordon-like equation.

λ 2 = m2
0 = m2− v2 = m2− p2c−2. (1.60)

It is natural to introduce the parameter β = p/mc = (“classical particles”) = υ/c,
with υ the velocity of the particle, with Eq. 1.60 yielding the well-known formula

m =
m0√

1−υ2/c2
=

m0√
1−β 2

. (1.61)
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Note that the entities appearing in the matrix, Eq. 1.59, are generally operators,
which compel a formal reading of the relations Eqs. 1.60 and 1.61. Nevertheless,
as we have seen above, we have the machinery to define rather general operator
domains and ranges, which should go with any relevant application. Hence,
irrespective of whether we subscribe to a classical and/or a quantum mechanical
description, our scheme begets biorthogonality, i.e. introducing the general ket-
vectors | m〉 ; | m〉 and | m0〉 ; | m0〉 corresponding to the “abstract states” of a particle
m and its antiparticle m respectively and similarly for m0 and m0, the rest mass in
the interaction free case. The biorthogonal construction ascends from

| m0〉 = c1| m〉+ c2| m〉 ; λ+ = m0

| m0〉 = −c2| m〉+ c1| m〉 ; λ− =−m0

| m〉 = c1|m 0〉− c2|m 0〉
| m〉 = c2|m 0〉+ c1|m 0〉

(1.62)

c1 =

√
1+X

2X
; c2 =−i

√
1−X

2X
; X =

√
1−β 2; c2

1 + c2
2 = 1.

To sum up we note that the present level of formulation does not distinguish
between classical- and quantum mechanics. A further characteristic reveals bi-
orthogonality implying that the coefficients ci are not to be associated with a
probability interpretation, since they obey the rule c2

1 + c2
2 = 1. As emphasized, the

operators in Eq. 1.63 are principally non-self-adjoint and non-normal and hence they
might not commute with each other as well as their own adjoint. The order appearing
in the resulting operator relations therefore has to be respected.

Another actuality arises from the general ket-dependence on the energy and the
momentum, while the conjugate problem, see below, depends entirely on time and
position. Returning to Eqs. 1.59 and 1.60, introducing the well known operator
identifications, (h = 2π and ∇ the gradient operator)

Eop = i
∂
∂ t

;p =−i∇ (1.63)

we identify, from Eq. 1.60, the explicit connection between the present Klein-
Gordon-like equation and Maxwell’s equations for vacuum, i.e. by setting the
determinant of H in Eqs. 1.59 and 1.64 below, equal to zero

∣∣∣∣∣∣∣
i

∂
∂ t

−ipc

−ipc −i
∂
∂ t

∣∣∣∣∣∣∣
=

∂ 2

∂ t2 − c2 ∇2. (1.64)

We can now formally introduce the conjugate operators

τ = Top =−i
∂

∂E
; x = i∇p (1.65)
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and

Hconj =

(
cτ −ix
−ix −cτ

)
(1.66)

from which follows trivially that the eigenvalues τ0, and x0 =
√

x0 ·x0, obtains in
analogy with Eqs. 1.59–1.61, using x = υτ in Eq. (1.66) i.e.

τ =
τ0√

1−υ2/c2
=

τ0√
1−β 2

(1.67)

and

x =
x0√

1−β 2
. (1.68)

In passing we note, despite working within a general complex symmetric frame-
work including biorthogonality, that we have recovered the well-known Lorentz
invariance and that our universal superposition principle applies irrespective of
whether we uphold classical wave propagation, quantum mechanical matter waves
or classical point particles. The present formulation also carries a very important
message with respect to the theme of our present investigation. The conjugate
pair description unequivocally couples the time direction with the selected particle
excitation. Nevertheless the present equations, whether interpreted classically or
quantum mechanically, are not protected against decoherence towards a time
reversible formulation and hence we have not yet succeeded in explaining our
original dilemma. We will not generalize the discussion here to more general
invariances with regard to charge conjugation and the strong parity concept (CPT),
compare also related issues in connection with Kramer’s degeneracy, but it can
be done.

To incorporate gravitational interactions in our conjugate pair operator frame-
work we will attach, to our model in the basis |m, m〉, the interaction

mκ(r) = mμ/r; μ =
G ·M

c2 (1.69)

resulting in the modified Hamiltonian (operator) matrix (m0 = 0)

H =

(
m(1−κ(r)) −iv
−iv −m(1−κ(r))

)
(1.70)

with μ the gravitational radius, G the gravitational constant, M a spherically sym-
metric non-rotating mass distribution (which does not change sign when m→−m)
and v = p/c as in Eq. 1.59. For more details on the fundamental nature of M, and the
emergence of black hole like objects see further below and Refs. [11, 26]. Note that
the operator, κ(r) ≥ 0, depends on the coordinate (or in general operator) r of the
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particle m with “origin” at the center of mass of M. However, x and τ are subject to
the adjoint description to be addressed below, cf. e.g. Eqs. 1.65 and 1.68 and hence
we will, all things considered, return to curved space-time geometry indicative of
classical theories.

In analogy, with Eqs. 1.60–1.63 we obtain

λ 2 = m2 (1−κ(r))2− p2/c2

λ± = ±m0(1−κ(r)); v = p/c (1.71)

with the eigenvalues λ± scaled so that m0 is consistent with the special theory, i.e.

m2
0 = m2− p2/((1−κ(r))2c2)

λ±/(1−κ(r)) =±m0 =±
√

m2− p2/((1−κ(r))2c2)

m = m0/
√

1−β ′2; β ′ ≤ 1; 1 > κ(r)

β ′ = p/(mc(1−κ(r))) = υ/(c(1−κ(r))). (1.72)

The intimate relation to special relativity is displayed by rewriting the operator
matrix (note that κ(r)< 1/2 rather than κ(r)< 1, see below)

Hsp =

(
m −ip′/c

−ip′/c −m

)
; p′ = p(1−κ(r))−1. (1.73)

Assuming that the gravitational source is a spherical black hole-like object at
rest, i.e. that the angular momentum of the non-zero rest-mass particle is a constant
of motion one obtains

mυr = mμc (1.74)

or
υ = κ(r)c = μc/r (1.75)

Note that the simple relations (1.74 and 1.75) above are a bit more involved than
what gives the impression. Although an appropriate rotation by the polar angle ϕ
commutes with the operators m, p and r, it is important to remember that m has a
nonzero eigenvalue, m0, cf. Eq. 1.84 below, which defines the velocity υ according
to Eq. 1.75. Note also that the end result will agree with the covariant form given by
the Schwarzschild gauge as will be examined in what follows.

Above we have postulated the limit velocity c at the limiting distance given
by the gravitational radius μ . Eq. 1.75 serves as a boundary condition for the
operator matrix model. With the replacement υ/c = κ(r), our complex symmetric
representation, reads (given that κ(r)< 1

2 , see below)

H = m

(
(1−κ(r)) −iκ(r)
−iκ(r) −(1−κ(r))

)
→ m

(√
(1−2κ(r)) 0

0 −√(1−2κ(r))

)
.

(1.76)
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While m is not determined by Eq. 1.76, the quotient m/m0 (non-zero rest-mass)
follows from Eqs. 1.71 and 1.72 and the eigenvalues of (1.76), i.e.

m
m0

=
1−κ(r)√
1− 2κ(r)

(1.77)

Equations 1.61, 1.72 and 1.76 invoke the scalings m
√

1−β 2, m
√

1−β ′2, and
m
√

1−2κ(r) respectively. The singularity in Eq. 1.77 at r = 2μ or κ(r) = 1
2 ,

corresponds to a degeneracy of the matrix H = Hdeg consistent with Eqs. 1.70,
1.74 and 1.76, i.e.

Hdeg = m

(
1
2 −i 1

2

−i 1
2 − 1

2

)
→

(
0 m
0 0

)
(1.78)

where the transformation to classical canonical form is accomplished by the unitary
transformation

|m0〉 → |0〉= 1√
2
|m〉− i

1√
2
|m〉 ;

|m̄0〉 →
∣∣0̄〉= 1√

2
|m〉+ i

1√
2
|m〉 . (1.79)

It is remarkable that the exceptional point Eq. 1.79 corresponds to the celebrated
Laplace-Schwarzschild radius r = 2μ = RLS (given that M is confined inside a
sphere with radius RLS). Note that the present result is a universal property of the
present formulation in contrast to the classical “Schwartzschild singularity”, which
depends on the choice of coordinate system. Stated in a different way decoherence
to classical reality might take place for 0 < κ(r)< 1

2 whilst potential quantum like
structures appears inside RLS for 1

2 ≤ κ(r)< 1.
The significance of the point κ(r) = 1

2 has been recently discussed in connec-
tion with Gödel’s celebrated incompleteness theorem, [12], illustrating the self-
referential character of the description. Hence self-referentiability serves as code
protection against decoherence. On the other hand it carries a slight complication in
that we need to discuss the case m0 = 0 separately, i.e. applying the present theory
to the particles of light or photons. This will lead to predictable incongruities in
the operator-conjugate operator structure in comparison with particles with m0 = 0.
Consistency demands a separate gravitational law for zero rest-mass particles. By
means of the specific notation κ0(r) = G0 ·M/(c2r), rewriting Eqs. 1.70–1.72 for
particles with m0 = 0, the first inconsistency reveals that H is singular, i.e. cannot
be diagonalised since

m(1−κ0(r)) = p/c (1.80)

where κ0(r) is to be uniquely defined below, and

H =

(
p/c −ip/c
−ip/c −p/c

)
→

(
0 2p/c
0 0

)
(1.81)
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where one employs the same unitary transformation, see Eq. 1.79. In contradistinc-
tion to m0 = 0 we note that Eqs. 1.80 and 1.81 display, for all r, the triangular
form or in other words an eigenvalue degeneracy with a Segrè characteristic equal
to 2. Consistency therefore adds the requirement, see Eq. 1.82 below, in order
for Eq. 1.81 to be commensurate with the boundary condition Eq. 1.75 and the
eigenvalue relations Eqs. 1.76–1.78. The necessary condition to be added is zero
average momentum; see Eq. 1.80, at the Schwarzschild radius r = 2μ = RLS. Hence
the stipulation of p̄ = 0 at κ(r) = 1/2 leads to G0 = 2G or

κ0(r) = 2κ(r) (1.82)

From Eq. 1.82 follows Einstein’s laws of light deflection, the gravitational redshift
and the time delay [12].

The difference in the limiting behavior at r = 2μ = RLS, for the cases m0 = 0 and
m0 = 0, motivates a separate examination of the conjugate operator formulation.
Generalizing Eqs. 1.63–1.66 to

dHconj =

(
cds 0
0 −cds

)
=

(
cAdτ −iBdx

−iBdx −cAdτ

)
(1.83)

where the modified conjugate operators are introduced via

Eop

√
1− 2κ(r) = Es = i

∂
∂ s

s = −i
∂

∂Es
(1.84)

and with A(r) and B(r) to be decided below, it was proven in Ref. [12] that

dHconj =

(
cdt(1− 2κ(r))1/2 −idr(1−2κ(r))−1/2

−idr(1− 2κ(r))−1/2 −cdt(1−2κ(r))1/2

)
(1.85)

One note that Eq. 1.85 is decoherence protected for the case m0 = 0 since dHconj

is non-diagonal with the determinant equal to zero for all values of r. For m0 = 0
the only singular point is at r = RLS. We also stress that the operator Es replaces
the classical notion of rest-mass. Thus we obtain an invariant |dHconj| = −c2ds2,
which is zero (null-vector) for photons, and the line element expression (in the
spherical case)

− c2ds2 =−c2dt2(1− 2κ(r))+ dr2(1−2κ(r))−1 (1.86)
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Again we note that the present complex symmetric ansatz has generated a covariant
transformation, compatible with the classical Schwartzschild gauge but, as has
been stated recurrently, we have not yet proven or explained the origin of time
irreversibility.

Before ending this section on relativity theory, we reflect on a remark made by
Löwdin [27] regarding the perihelion motion of Mercury. Describing a gravitational
approach within the construction of special relativity, he demonstrated that the
perihelion moved but that the effect was only half the correct value. The problem
here is the fundamental inconsistency between the force-, momentum and the energy
laws, while the discrepancy for so-called normal distances are almost impossible to
observe directly since (1− κ(r)) ≈ 1. However using the present method to the
classical constant of motion

Etot = m(1−κ(r)) (1.87)

we construe from Eq. 1.77 that Etot is singular at κ(r) = 1/2. Hence one needs to
include a perturbation consistent with the boundary condition Eq. 1.75, i.e.

ΔEtot =−mκ(r). (1.88)

With this addition the correct value from general relativity theory is recovered for
the Mercury perihelion move for each rotation of the standard polar angle. Still,
although classical descriptions are essentially right outside the Schwartzschild do-
main, it is nevertheless important to point out that the self-referential property of the
gravitational interaction, resulting in the modified Eqs. 1.87 and 1.88, impinges on
the selected time direction through a uniquely given background dependence. In the
final section we will relate this choice to a cosmological setting that demonstrates
the uni-directedness of evolution, code protection against decoherence, cosmic
sensorship and the absolute validity of the second law.

1.6 Cosmological Scenarios and Conclusions

In order to connect the present formulation with the cosmological problem, we need
to base our development on the key quantity, viz. the emergence of the black-
hole object or M characterized as a spherical mass distribution, which does not
change sign when m→−m, see also previous discussion after Eq. 1.70. As stated in
connection with the density matrix in Eq. 1.52, there is a close relation between the
simple form derived and Yang’s famous concept of ODLRO, Off-Diagonal Long-
Range Order, [28], and Coleman’s notion of an extreme state [24]. For more details
we refer to [10, 11, 16] and the appendix of Ref. [26] as well as references therein.
We will demonstrate that our black hole type entity is analogous to the organization
of ODLRO. In addition we will extend the discussion to a Kerr-type [29] rotating
black hole characterized by its mass and total angular momentum.
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Let us begin with the analogy of ODLRO, i.e. the consideration of a finite number
of fermion- or particle-anti-particle pairs in a vacuum (or particle-like environment,
cf. Cooper pairs in a superconductor) written as

|0〉∧ ∣∣0̄〉= i |m〉∧ |m〉 (1.89)

using Eqs. 1.76, 1.79, 1.81 and 1.84. From the knowledge of the (second order
reduced) density matrix the energy W (not be confused with the operator in Eq. 1.29)
obtains, cf. Eq. 1.53

W = Tr{H12Γ(2)} (1.90)

where H12 is a general two-body potential between the constituents, i.e. the particle-
anti-particle combinations based on the pairing Eq. 1.89. We have also explicitly
denoted the density matrix as Γ(2) to demonstrate its connection with the Coleman
extreme case. Nevertheless the difference between Γ(2) here and Γ in the Sect. 1.4
above is minor, save a missing tail contribution that will not play any role here (this
information can in principle be retrieved so it will not cause additional information
loss). In what remains we can use the basic definitions and their transformation
properties as presented. The following simplifications and relations are easy to
derive, i.e.

W = λL 〈g1|H12|g1〉+λS

n

∑
k=2

〈gk|H12|gk〉 (1.91)

For an “adequately” localised basis h, i.e.

〈hk|H12|hl〉= 〈hk|H12|hk〉δkl (1.92)

one gets for large n

W ≈ N
2

w

w =
1
n

n

∑
k=1

〈hk|H12|hk〉 (1.93)

On the other hand assuming that the pairing is established by one original interaction
with all matrix elements 〈hk|H12|hl〉 = wLS, where wLS < 0 is independent on the
sites k and l, we obtain an enormous energy stabilization. In passing this is indeed a
realistic supposition in connection with ODLRO leading to e.g. coherent phenomena
like e.g. superconductivity. Here this is a somewhat difficult proposition, since
we are not able to describe any localisation centres inside the fundamental radius (cf.
the discussion related to Eq. 1.76 and the appearance of the Schwarzschild radius).
We also have the problem of defining space and time and their conjugate operators
m0 and p. Fortunately we have, as will be seen below, the possibility to characterize
the black hole entity in terms of its mass and angular momentum. The formula
derived in Ref. [26] writes
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W = λL 〈g1|H12|g1〉= N
2

nwLS (1.94)

Although the formula Eq. 1.94 usually obtains from a description of highly
correlated fermionic pairs in an apt spatio-temporal-independent background, we
find a macroscopically large energy lowering, where W above is the product of the
mass M ∝ N/2 and the number, n, of rotational degrees of freedom, i.e. with the
rotational quantum number J≈ n/2. Hence we have obtained, as a result of a unique
fundamental interaction, the possible existence of a quantum mechanical version
of a (fermionic-quasibosonic) black hole. Incidentally, this could not be a charged
black hole, since we will always have an equal amount of particle-antiparticle pairs
in the “condensate”, see e.g. Eqs. 1.79 and 1.89. This realization will also take
care of the comment after Eq. 1.70: “a mass M not changing sign under m→−m”.
Another interesting observation concerns the analysis of the rotational spectrum of
the “black hole” in particular its Jz components and “figure axis rotations”.

A small lesson in quantum chemistry reveals that rotational spectra in non-
relativistic quantum mechanics is very simple yet very informative as regards
molecular types and their transitions, heat capacities etc. For e.g. a symmetric rotor
one obtains trivially in the rigid case

E(J,MJ ,K) = BJ(J+ 1)+ (A−B)K2 (1.95)

with MJ and K specifying the components of the angular momentum along
the laboratory- and the principal molecular axis, respectively, and the rotational
constants given by

A =
h

8π2I‖
; B =

h
8π2I⊥

(1.96)

where I⊥, I‖ are the moments of inertia orthogonal and parallel, respectively, to
the internal figure axis. For an oblate object, i.e. A < B, one finds that the energy
decreases with K2 and for K ≈ J the object rotates mostly around the figure axis.
The degeneracy is 2(2J + 1) except when K = 0. On the other hand when K = 0
the molecule rotates mostly around an axis perpendicular to the symmetry axis.
For A = B, i.e. the spherical rotor, the degeneracy is (2J + 1)2 which significantly
influences its physical properties.

With this simple analogy we will draw some conclusions regarding our black-
hole-like entity obtained above. Comparing the Kerr- [29] and the Schwarzschild
metric one distinguishes two physical surfaces in the former where the metric either
changes sign or becomes singular (spherical coordinate system), i.e.

RKi =
1
2

{
RLS +

√
R2

LS− 4
K2

M2c2

}

RKo =
1
2

{
RLS +

√
R2

LS− 4
K2 cos2 θ

M2c2

}
(1.97)
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where RKi are the inner surface that corresponds to the event horizon, RKo the outer
one that touches the inner surface at the poles of the rotation axis, θ the colatitude
and K the angular momentum along the entity’s principle axis, cf. the analysis of the
symmetric rotor. The space in between is called the ergosphere. It is easy to show
that K/Mc≤ μ ; μ = M/Gc2 so that min{RKi}= 1

2 RLS = μ , with the ring singularity
shrinking to a point in the Schwarzschild case, albeit the quantum analogue of the
cosmic sensorship hypothesis of Penrose, see e.g. [30] holds.

Rather than discussing the significance of these quantities in the classical theory,
we will go back to the fermionic-quasibosonic black-hole system discussed above,
remembering that the energy stabilization Eq. 1.94, emerged from rotational degrees
of freedom only. In order to discuss the exchange of matter and energy with
the system, mimicked as a gigantic non-elastic resonance scattering process, we
will first consider n degrees of freedom modelling baryonic matter waves being
correlated on a so-called relaxation time scale τrel. The scale corresponds to the
average lifetime of the “scattering process” and depends generally on the type
of particles or properties of the units being represented, cf. the Einstein relation
in physical chemistry, which connect transport displacements with the diffusion
constant D. Furthermore we will define a spherically averaged total reaction cross
section denoted by σtot. This area, cf. the surface of the event horizon, should be
consistent with the physical parameters of the model so that on average we will
detect one particle or degree of freedom in the differential solid-angle element
dΩ during the limit time scale τlim given by Heisenberg’s uncertainty relation, i.e.
τlim = h/(2πkBT ). Here kB is Boltzmann’s constant and T the absolute temperature.
Again we emphasize that our goal is not to determine cross section data or evaluating
lifetimes, reaction rates etc. Instead we want to identify consistent relations between
temperatures, sizes of the dissipative structure, time scales, etc. and to utilize this
information as input to our quantum statistical equations.

With the input above we find the consistency relations between incident and
scattered fluxes. The incident flux, i.e. the number of particles or degrees of freedom
per unit area and time is

Ninc =
n

σtotτrel
(1.98)

Our model defines the number, NsdΩ, of particles scattered into dΩ per unit time as

NsdΩ =
dΩ
τlim

=
2πkBT

h
dΩ (1.99)

Hence we find the consistent relations from total cross section given by

σtot =
∫

σ(Ω)dΩ =
∫

Ns

Ninc
dΩ (1.100)

From Eqs. 1.98 to 1.100 we get

n =
8π2kBT

h
τrel (1.101)
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Since σtot cancels out in (1.100), Eq. 1.101 yields the number of correlated degrees
of freedom depending uniquely on the temperature and the relaxation time. This
consistency relation will be used as input to the thermalization formula, see Eq. 1.54,
i.e. we want to study the behavior of the matrix element ρ̂kl = |hk〉

〈
h∗l
∣∣ yielding

(remember the degenerate energy is set to zero)

e−
β
2 H2 ρ̂kle

− β
2 H2 = ei β

2 (εk+εl )ρ̂kl (1.102)

In an interaction free environment the “black-hole rotor” exhibits a very large
degeneracy for each choice of J (and K). The interesting quantum number is K
since it describes the shapes, i.e. “perpendicular rotation”, or spherical shape, for
K = 0 and an oblate, more distorted one, as K grows in magnitude. For K = ±J
the disc-shape is maximum. For a classical oblate top this corresponds to the
lowest energy. However, in our present case we have no electromagnetic fields
present, i.e. no dipoles, quadrupoles etc., which means the absence of standard
rotational selection rules. It is reasonable to assume that every incoming degree
of freedom adds a constant amount of inertia to the system implying that we can
organize the rotational “black-hole” excitation spectrum of the collective cluster of
particles/degrees of freedom harmonically, i.e. with the distance between the levels
being equal, i.e. h(2πτrel)

−1. Hence the (l − 1):th level is given by the angular
frequency τ−1

l , uniquely specified by the harmonic spectrum. Hence one obtains
τrel = (l− 1)τl; l = 2,3, . . . n, and from Eq. 1.55 (note a mistake in the second line
of Eq. (A7) of Ref. [11] even if the end result is correct)

1
2

β (εk + εl) =
h

8πkBT

{
1
τk

+
1
τl

}
=

h
8πkBT τrel

{k+ l−2}

=
π
n
(k+ l− 2); k, l = 1,2,3, . . .n−1 (1.103)

With the insertion of this result in Eqs. 1.54 and 1.57 follows, i.e.

Γ(2)
T = λLJ (n−1) +λSJ ; J =

n−1

∑
k=1

| fk〉〈 fk+1|

However the Jordan form above displays peculiar properties. From the thermalized
density matrix above we find that the energy, see the analogue of Eq. 1.90, is
zero, yet we have an extremely large degeneracy with Segrè characteristic n.
Since “crossing states” refer to rotational degrees of freedom, we see that the
first term above, with the largest weight, concerns transitions between K = −J
and K = J, while the second term displays all the other ones from K = −J via

K =−J+1,−J+2, . . .J–1, J. The eigenvalue of Γ(2)
T is zero corresponding K = 0.

Since the direction of the flux into the black hole is arbitrary, the orthogonal
projection to the (arbitrary) symmetry axis must also be zero. Hence our generalized
quantum state is characterized by the quantum numbers 2J+1 = n; MJ = 0; K = 0,
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i.e. with an enormous rotational energy (large n) but with the rotational z-component
in an arbitrary direction in space equal to zero! Although we are advocating a
quantum mechanical description it is reasonable to expect rotational effects similar
to frame-dragging, see e.g. Ref. [31]. Hence from the perspective of an observer
outside the black hole one would experience its effects all around us, since MJ = 0,
i.e. we would infer to have our cosmological horizon limited by the event horizon
or in other words the cosmological or particle horizon equal to the event horizon.
In this model it is obvious that the big bang singularity disperses as an illusion, yet
effectively persistent

Summarizing the scattering model: we have an incoming flux of matter and
radiation attracted to the “black hole”, exciting the “black-hole” from a lower state
to a higher state, or to a white-hole-like object, getting rid of matter and radiation,
leaving the “target” in a CDS-like state, characterized by its mass M and angular
momentum J. The lower state has low entropy, S≈ 0, (the ground state has of course
zero entropy), while the “excited state” (or rather the CDS structure) + ejected
matter and energy has high entropy. Note that our CDS object is not really a black
or a white hole but rather close quantum analogues.

From the viewpoint of an expelled observer the cosmological- and the event hori-
zon coalesce and hence the process may be considered as an “implosion in reverse”.
This connects the process with inflationary scenarios based on negative energy
pressure. One may offer several consequences and speculations from the model;
see more below, including possible solutions to the “Newton bucket paradox”.
Also, observing that the normalised eigenvalue, λL/n, occurring in Eqs. 1.29–
1.52, assumes its maximum value 0.25 for p = 0.5, indicates that about 25% of
the energy content is expelled as mostly matter-antimatter constituents outside
the cosmological horizon, invisible (dark) matter, while the remainder consists of
essentially “dark energy” as well as some radiation and baryonic matter. Although
the relative amount of the latter is difficult to estimate one deduce from Eq. 1.97 that
it might be proportional to some suitable average of (K/J)2 and thus very small.

The present quantum model of the universe is the very simplest to say the least.
It describes a scattering target with only rotational degrees of freedom, however with
an almost infinite cross section obtained from a high rotational energy state, with
the projection of the angular momentum in any arbitrary direction equal to zero.
Even if simplifying assumptions have been made the theory incorporates elemental
covariance. However, more importantly, there is a self-referential component in
the formulation that generates a new kind of organization, which is protected
against decoherence to time reversible dynamics. This prompts several immediate
consequences, e.g. obvious candidates for dark energy (rotating black-white-hole-
systems), dark matter (outside the particle horizon), the explanation of the galaxy
rotation problem and with the concept of mass related to rotation (negative or
imaginary). One might also speculate whether appearing radiation concentrations
along certain directions and the subsistence of acoustic peaks in the harmonic
analysis of the cosmic microwave background may be established in our model,
since temperature variations are coupled to n or J via Eq. 1.101.
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Irrespective of the soundness of these inferences, it is clear that the overall
model of our universe by way of a gigantic scattering process has certain affinities
with the steady state model, while rotational excitations of the black-hole-system
may mimic a big-bang-like scenario. The capture of baryonic matter by the black-
hole (scattering) system appears to lower the entropy outside the event horizon,
while the forward evolution simultaneously increases it via information loss.
Furthermore the “excitation process” leads to a Coherent-Dissipative Structure,
CDS, with initially low entropy for the target, or S ≈ 0 for the “ground state”
rising to S = kB ln{n}. In addition the “course of action” adds the entropy of the
inflated energy. Thus the scattering process incorporates the informity rule and
the Hawking radiation (see [12] for a derivation within the present framework),
which guarantees that the second law holds absolutely. Since the CDS structure
is code protected from decohering to a time reversible state, our formulation is
fundamentally time irreversible, in concert with Prigogine’s contention. Reflecting
on the time-dependent partitioning technique, it follows that the unknown part
κ(0), see Eq. 1.7, must always be nonzero, although its presence, unlike unitary
evolution, if present, will gradually vanish under proper contractive evolution. Since
the equations in Sect. 1.2 live in symbiosis with time reversible dynamics there are
no contradictions at the level of a fixed spatio-temporal background as long as one
realizes that proper cosmological evolution, by necessity, links the evolution through
an appropriate formulation of the spatio-temporal dependent metric causing cosmic
amnesia. The indirect example of parity violations in weak interactions, which if the
CPT theorem is valid, e.g. seem to support fundamental time irreversible evolution
of our universe.
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Chapter 2
Spatially-Dependent-Mass Schrödinger
Equations with Morse Oscillator
Eigenvalues: Isospectral Potentials
and Factorization Operators

G. Ovando, J.J. Peña, and J. Morales

Abstract In this work an algorithm based on the point canonical transformation
method to convert any general second order differential equation of Sturm-Liouville
type into a Schrödinger-like equation is applied to the position-dependent mass
Schrödinger equation (PDMSE). This algorithm is next applied to find potentials
isospectral to Morse potential and associated to different position-dependent mass
distributions in the PDMSE. Factorization of worked PDMSE are also obtained.

2.1 Introduction

Quantum systems with a position-dependent mass have attracted attention in recent
years due to their relevance in describing the features of many microstructures of
current interest as for example the determination of physical properties in quantum
wells and quantum dots [1], quantum liquids [2], nuclei [3], 3He and metal type
clusters [4] and graded alloys [5]. At this regard, the different analytical and
algebraic approaches used in the study of systems with constant mass such as the Lie
algebraic techniques [6], kinetic energy approach [7], factorization method [8] and
supersymmetric quantum mechanics [9], among many others, have been extended
to the treatment of the position-dependent mass Schrödinger equation (PDMSE). In
the case of the supersymmetric treatment applied to the PDMSE, the point canonical
transformation method (PCTM) has been used extensively [10–15] in the mapping
of the nonconstant mass Schrödinger equation into a standard one. In a similar way,
in thiswork we propose an algorithm to transform a general second order differential
equation of Sturm-Liouville type, into a standard Schrödinger-like equation.
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This approach is applied to the PDMSE with the aim to find the isospectral potentials
associated to different position-dependent mass distributions (PDMD). Although
the proposal is general as it is depicted in Sect. 2.2, we consider explicitly in
Sect. 2.3 the useful application which is the Morse potential model for the standard
Schrodinger equation. Its consequences for different PDMD in the PDMSE are
analyzed, which are the corresponding isospectral potentials, wavefunctions and
factorization operators as it is indicated in each studied case. Beyond the case
considered, the proposal is general and the algorithm can be extended to find exactly
solvable PDMSE that fulfill another specific effective potential models along with
different PDMD that could be useful in the quantum treatment of different systems
in material science and condensed matter physics where spatially-dependent mass
is a point to consider.

2.2 PCTM Applied to the Position-Dependent Mass
Schrödinger Equation

The one-dimensional position-dependent mass Schrodinger equation is given
by [16]

1
2m(x)

ψ ′′n (x)+
(

1
2m(x)

)′
ψ ′n(x)+ (En−V (x))ψn(x) = 0, (2.1)

where the prime denotes derivative respect to the argument, En is the energy
spectra and h̄ = 1. The point canonical transformation method applied to the above
equation has the purpose of reducing it to a constant mass Schrödinger-like equation,
solutions of which are usually easier to find than for the PDMSE. Furthermore, due
to the fact that Eq. 2.1 has the form

P(x) f ′′n (x)+Q(x) f ′n(x)+R(x) fn = 0 (2.2)

provided that P(x) = 1
2m(x) , Q(x) = ( 1

2m(x) )
′ and R(x) = En−V (x), we can extend

the algorithm given by Peña et al. [17] to eliminate the P(x) coefficient. For this
purpose we consider the variable change

x = F(u) = g−1(u), (2.3)

with

g(x) =
∫ x√

2m(t)dt, (2.4)

which imply (
1

2m(x)

)′ d
dx

=
d ln

(
1

2m(F(u))

)
du

d
du

(2.5)
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and

1
2m(x)

d2

dx2 =
d2

du2 +
d ln

√
(2m(F(u))
du

d
du

. (2.6)

Thus, Eq. 2.1 can now be transformed into a constant mass Schrödinger-like
equation

−ϕ ′′n (u)+Veff (u)ϕn(u) = Enφn(u), (2.7)

where ϕn(u) are the corresponding normalized eigenfunctions

ϕn(u) = ψn(F(u))exp

[∫ u
W (t)dt

]
, (2.8)

and Veff (u) is the effective potential given by the Riccati-type equation

Veff (u) =V (F(u))+W2(u)+W ′(u), (2.9)

with

W (u) =
d
du

ln(2m(F(u)))−
1
4 , (2.10)

such that the position-dependent mass distribution in terms of W (u) is

m(x) =
1
2

e−4
∫ g(x)W(t)dt . (2.11)

That is, the PDMSE with potential

V (x) =Veff (g(x))−
(
W 2(g(x))+W ′(g(x))

)
, (2.12)

has eigenvalues En and normalized eigenfunctions

ψn(x) = ϕn(g(x))exp

[
−
∫ g(x)

W (t)dt

]
. (2.13)

Therefore, the applicability of the above algorithm gives rise to various pos-
sibilities depending on the choice of the different elements that characterize the
Riccati-type Eq. 2.9: an ansatz for the equivalent of the Witten superpotential W (u),
a starter V (F(u)), or a proposal for the effective potential Veff (u). In the next
paragraph, as a useful application of the proposed approach we are going to consider
this last choice in the specific case of the Morse potential model for the constant
mass Schrödinger equation.
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2.3 PDMSE with Morse Potential Eigenvalues

To obtain exactly solvable isospectral potentials on the position-dependent mass
problem, let us consider the Morse potential model in the standard Schrodinger-like
relationship of Eq. 2.7 that means to take as effective potential [9, 18]

Veff (u) = A2 +B2e−2αu− 2B
(

A+
α
2

)
e−αu, (2.14)

where A, B, α are parameters usually related by condition A+ α
2 = B =

√
D, being

D the potential’s well depth. In this case, the wavefunctions are

ϕn(u) = Nn

(
2B
α

e−αu
)s−n

e−
B
α e−α u

L2s−2n
n

(
2B
α

e−αu
)
, (2.15)

where s = A
α and Nn =

√
2α(s−n)Γ(n+1)

Γ(2s−n+1) is the normalization constant. Consequently,

the former potential in the PDMSE becomes

V (x) =
[
A2 +B2e−2α u− 2B

(
A+

α
2

)
e−α u− (W 2(u)+W ′(u))

]
u=g(x)

, (2.16)

with Morse energy spectra En = A2− (A− nα)2, and according to Eqs. 2.11 and
2.13, wavefunctions

ψn(x) = ϕn(g(x))
√

g′(x). (2.17)

Besides, due to the fact that constant mass Schrodinger-like equation is factorized
in this case as

[(
− d

du
−A+Be−α u

)(
d
du
−A+Be−α u

)]
ϕn(u) = Enϕn(u), (2.18)

where d
du is given from Eqs. 2.3 and 2.4 by

d
du

= (2m(x))−1/2 d
dx

, (2.19)

and from Eqs. 2.8 and 2.11

ϕn(u) = (2m(x))−1/4ψn(x), (2.20)

the factorization of PDMSE given in Eq. 2.1 becomes

A+(x)A−(x)ψn(x) = En ψn(x), (2.21)
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where the operators are

A±(x) =∓
(
(2m(x))−1/2 d

dx
+W(g(x))

)
−A+Be−αg(x), (2.22)

satisfying the commutation relation

[A−(x), A+(x)] =−2α Be−αg(x). (2.23)

At this point, it is worth to notice that A±(x) are equivalent to the Darboux
transform that relates the partner Hamiltonians H+ and H− by means of

H± = H∓± 2α Be−α g(x). (2.24)

Let us now show the usefulness of the above results by considering a selection
of position-dependent mass distributions leading to new isospectral potentials with
Morse-type eigenvalues.

2.3.1 Inverse Squared Position-Dependent Mass Distribution

We have taken a mass function in the form 2m(x) = (β x)−2 where hereafter β
is a parameter for the mass function. From Eqs. 2.4 and 2.10 one leads to g(x) =
lnx1/β and W (g(x)) = β/2. Consequently, the exactly solvable former potential in
the PDMSE becomes in this case

V (x) = A2 +B2x−2α/β − 2B
(

A+
α
2

)
x−α/β − 1

4
β 2, (2.25)

having eigenfunctions

ψn(x) = Nn(β x)−1/2
(

2B
α

x−α/β
)s−n

e−
B
α x−α/β

L2s−2n
n

(
2B
α

x−α/β
)
. (2.26)

and Morse energy eigenvalues. In order to show the principal features of the
generated solution we have taken the values α = 1, A = 5/2, B = 3 in the Morse
Potential throughout the paper, which correspond to a case of only three eigenstates
(Fig. 2.1).

The potential of Eq. 2.25 is factorized by means of

A±(x) =∓
(

β x
d
dx

+
1
2

β
)
−A+Bx−α/β . (2.27)
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Fig. 2.1 The principal
features of the isospectral
exactly solvable potential
V (x) given in Eq. 2.25 along
with their eigenfunctions and
energy spectra, as well as the
position-dependent mass
distribution. The mass
parameter is β = 1/2

V(x)

2

2ψ

2

1
ψ

2

0
ψ

0 x

0 x

m(x)

2.3.2 A First Rational Position-Dependent Mass Distribution

For the 2m(x) = (1+β 2x2)−1 position-dependent mass distribution one has g(x) =
1
β arcsinh(β x) and

W (g(x)) =
β 2

2
x√

1+β 2x2
. (2.28)

Thus, the exactly solvable isospectral potential in the corresponding PDMSE
is (Fig. 2.2)

V (x) = A2 +B2
(√

1+β 2x2−β x
)2α/β −2B

(
A+

α
2

)

×
(√

1+β 2x2−β x
)α/β − β 2

4
β 2x2 +2
β 2x2 +1

, (2.29)

with eigenfunctions

ψn(x) = Nn(1+β 2x2)−1/4
(

2B
α

(
√

1+β 2x2−β x)α/β
)s−n

×e−
B
α (
√

1+β 2x2−β x)α/β
L2s−2n

n

(
2B
α

(
√

1+β 2x2−β x)α/β
)
. (2.30)

The factorization operators for the PDMSE with potentials given in Eq. 2.29 are

A± =∓
(
(1+β 2x2)1/2 d

dx
+

β 2

2
x√

1+β 2x2

)
−A+B

(√
1+β 2x2−β x

)α/β
.

(2.31)
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Fig. 2.2 Similarly to the
above case, the exactly
solvable potential of Eq. 2.29,
their eigenfunctions and
energy spectra, as well as the
corresponding
position-dependent mass
distribution. The mass
parameter is β = 1

V(x)

2

2
ψ

2

1ψ

2

0ψ
x

x

m(x)

0

0

2.3.3 Exponential Position-Dependent Mass Distribution

Let us consider now 2m(x) = (1+ eβ x)2 which, after taking properly the integration
constant gives g(x) = 1

β (e
β x +β x−β) and

W (g(x)) =− β eβ x

2(eβ x + 1)2
. (2.32)

In consequence, for this exponential position-dependent mass distribution, the
corresponding isospectral potential is given by

V (x) = A2 +B2e−2 α
β (eβ x+β x−β )−2B

(
A+

α
2

)

×e−
α
β (eβ x+β x−β)− β 2

4
eβ x 3eβ x−2

(eβ x +1)4
, (2.33)

with eigenfunctions

ψn(x) = Nn(1+ eβ x)1/2
(

2B
α

e
−α

β
(
eβ x +β x−β

))s−n

×e−
B
α e
−α

β
(
eβ x +β x−β

)
L2s−2n

n

(
2B
α

e
− α

β (eβ x+β x−β)
)
, (2.34)

which are shown in Fig. 2.3. Similarly to the above cases, the factorization operators
are now given by

A± =∓
(

1

1+ eβ x

d
dx
− β eβ x

2(eβ x + 1)2

)
−A+Be−

α
β (eβ x+β x−β )

. (2.35)
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Fig. 2.3 The exactly solvable
potential given in Eq. 2.33 for
a exponential-type
position-dependent mass.
The mass parameter is β = 1

V(x)
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2
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2

0ψ
x

x
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0
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2.3.4 Step-Like Position-Dependent Mass Distribution

As it can be seen at the right down corner of Fig. 2.4, the position-dependent
mass distribution

2m(x) =
exp(2β x)

cosh2(β x)
, (2.36)

behaves as a step-like function. It is possible to define a point transformation with
range in the interval (−xe,∞)

g(x) =
1
β

(
ln

(
exp(2β x)+ 1

exp(β xe)

))
. (2.37)

With this definition one has W (g(x)) = −β exp(−2β x)/2. and the isospectral
singular potential of the PDMSE will be

V (x) = A2 +B2 e−2α(x−xe)

(2coshβ x)2α/β − 2B
(

A+
α
2

)

× e−α(x−xe)

(2coshβ x)α/β −
1
2

β 2e−2β x
(

1+
3
2

e−2β x
)
, (2.38)

with eigenfunctions

ψn(x) = Nn
eβ x/2

cosh1/2 β x

(
2B
α

e−α(x−xe)

(2coshβ x)α/β

)s−n

×e
− B

α
e−α(x−xe )

(2coshβ x)α/β L2s−2n
n

(
2B
α

e−α(x−xe)

(2coshβ x)α/β

)
, (2.39)
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Fig. 2.4 Case of a
exponential type position
dependent mass that tends
to zero in the negative x
direction showing that the
potential diverges towards
minus infinity V(x)

2

2ψ

2

1ψ

2

0ψ
x

x

m(x)

0

0

Figure 2.4 shows that in this case m(x) decrease faster than e−4β |x| in the−x axis and
the potential breaks towards −∞. The corresponding factorization of the PDMSE
comes from the operators

A± =∓
(

e−β x coshβ x
d
dx
− β

2
e−2β x

)
−A+B

e−α(x−xe)

(2coshβ x)α/β . (2.40)

2.3.5 Powered Position-Dependent Mass Distribution

In this case one has the positive function 2m(x) = x2β which leads to

g(x) =
xβ+1

β + 1
, (2.41)

where the value of β will assure that the interval (−∞,∞) be the range of this
function. Then W (g(x)) = −β x−β−1/2 and consequently, for the powered m(x)
the isospectral potential becomes

V (x) = A2 +B2e
− 2α

β+1 xβ+1
− 2B

(
A+

α
2

)
e
− α

β+1 xβ+1
− 1

4x2β+2
β (3β +2),

(2.42)

with eigenfunctions

ψn(x) = Nnxβ/2
(

2B
α

e
− α

β+1 xβ+1
)s−n

e−
B
α e
− α

β+1 xβ+1

L2s−2n
n

(
2B
α

e
− α

β+1 xβ+1
)
, (2.43)
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Fig. 2.5 The potential and
the eigenfunctions in the case
of the mass 2m(x) = x2β V(x)
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0ψ
x

x

m(x)

0

0

and factorization operators

A± =∓
(

x−β d
dx
− β

2
x−β−1

)
−A+Be

− α
β+1xβ+1

. (2.44)

Figure 2.5 displays the potential of Eq. 2.43 and their eigenfunctions considering
β = 2. We remark that if m(x) reaches the zero value it causes the break of the
potential toward −∞.

2.3.6 Increasingly Mass Values

We have selected 2m(x) = cos−2(β x) to show a case where the mass values increase
quickly. We have

g(x) =
1
β

ln

(
1+ sin(β x)

cos(β x)

)
. (2.45)

Which leads to W (g(x)) =−β sin(β x)/2, the isospectral potential is

V (x) = A2 +B2
(

cosβ x
1+ sinβ x

)2α/β
−2B

(
A+

α
2

)

×
(

cosβ x
1+ sinβ x

)α/β
− β 2

4
(1−3cos2 β x). (2.46)
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Fig. 2.6 The potential and
the eigenfunctions in the case
of the position dependent
mass 2m(x) = cos−2(β x) V(x)
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The factorization operators are

A± =∓
(

cos(β x)
d
dx
− 1

2
β sinβ x

)
−A+B

(
cosβ x

1+ sinβ x

)α/β
. (2.47)

And the eigenfunctions

ψn(x) =
Nn

cos1/2 β x

(
2B
α

(
cosβ x

1+ sinβ x

)α/β
)s−n

×e
− B

α

(
cosβ x

1+sinβ x

)α/β

L2s−2n
n

(
2B
α

(
cosβ x

1+ sinβ x

)α/β
)
, (2.48)

whose behavior is shown in Fig. 2.6. It should be pointed out, that wavefunctions
ϕn(u) should tend to zero in the frontier faster than (2m(x))−1/4 to assure that ψn(x)
satisfy the boundary conditions. This is not the case for ψ2(x) .

2.3.7 A Second Rational-Type Position-Dependent
Mass Distribution

The last two cases we show are missing of the anomalies studied in the three
previous cases, both are of rational type. Let us consider first (Fig. 2.7)

m(x) =
1

2β 2

(
x2 +β
x2 + 1

)2

β = 0, (2.49)
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Fig. 2.7 Exactly solvable
potential for the position
dependent mass distribution
of Eq. 2.49
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2

1ψ

2

0ψ
x

x

m(x)

0

0

which has been used as model of solvability [19–21]. In this case one has g(x) =
(x+(β −1) arctanx)/β , W (g(x)) = β (β − 1)x/(x2 +β)2, and the corresponding
exactly solvable isospectral potential is given by

V (x) = A2 +B2e−
2α
β (x+(β−1) arctan x)

−2B
(

A+
α
2

)
e

α
β (x+(β−1) arctan x)

−β 2(β − 1)
(x2 +β)4 (β + 2x2β −4x2−3x4), (2.50)

with eigenfunctions

ψn(x) = Nn
1√
β

√
x2 +β
x2 + 1

(
2B
α

e
− α

β (x+(β−1) arctan x)
)s−n

×e−
B
α e
− α

β (x+(β−1) arctanx)

L2s−2n
n

(
2B
α

e
− α

β (x+(β−1) arctanx)
)
, (2.51)

and factorization operators

A± =∓
(

β
x2 + 1
x2 +β

d
dx

+
β (β − 1)x
(x2 +β)2

)
−A+Be

− α
β (x+(β−1) arctan x)

. (2.52)
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2.3.8 A Third Rational-Type Position-Dependent
Mass Distribution

In this case is taken the mass function

m(x) =
1

2(β x+ 1)2 , x >− 1
β
, β = 0. (2.53)

Which, in the case β = α has been used to identify a Coulomb type potential; see
reference [22]. The change of variable is g(x) = (ln(β x+1))/β , which will have the
range (−∞,∞) provided x > − 1

β is taken. Thus W (g(x)) = β/2 allow to calculate
the potential

V (x) = A2 +B2(β x+ 1)
− 2α

β − 2B
(

A+
α
2

)
(β x+1)

−α
β − 1

4
β 2, (2.54)

the eigenfunctions

ψn(x) = Nn
1√

β x+ 1

(
2B
α

(β x+ 1)
−α

β
)s−n

×e−
B
α (β x+ 1)

−α
β

L2s−2n
n

(
2B
α

(β x+1)
−α

β
)
, (2.55)

and the factorization operators

A± =∓
(
(β x+ 1)

d
dx

+
1
2

β
)
−A+B(β x+1)

−α
β . (2.56)

In Fig. 2.8 is displayed the potential of Eq. 2.54 and their eigenfunctions considering
β = 1/3.

Fig. 2.8 Exactly solvable
potential for the position
dependent mass distribution
of Eq. 2.53
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x
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2.4 Concluding Remarks

The purpose of this work has been to find exactly solvable potentials for Schrödinger
equations with a position-dependent mass distribution. In the search of such a
goal, it was proposed an approach to find the isospectral potentials that correspond
to a specific position-dependent mass distributions and effective potential. This
approach is based on a point canonical and a gauge transformation applied to a
general PDMSE in order to convert it into a standard Schrödinger-like equation. As
a useful application of the method we have considered the special case of the Morse
potential model as effective potential in order to find the exactly solvable isospectral
potentials and their factorization operators in the case of some models of PDMD.
That is, in all cases considered as examples the potentials are isospectral allowing
Morse eigenvalues. Furthermore, it has been pointed out that the proposal is general
and can be used in the search of those exactly solvable isospectral potentials
involved in a PDMSE for other effective potential models and PDMD, which in
turn could be useful in the quantum chemical treatment in materials science.

Acknowledgments This work was partially supported by the projects UAM-A-CBI-2232001,
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Chapter 3
Relativistic Theory of Cooperative
Muon – γ-Nuclear Processes: Negative Muon
Capture and Metastable Nucleus Discharge

Alexander V. Glushkov, Olga Yu. Khetselius, and Andrey A. Svinarenko

Abstract We present a new consistent energy approach to calculation of the
cross-section for the negative muon capture by an atom, based on the relativistic
many-body perturbation (PT) theory. The calculation results for cross-section of the
μ− capture by He atom are listed. It is presented a generalized energy approach
in the relativistic theory of discharge of a metastable nucleus with emission of γ
quantum and further muon conversion, which initiates this discharge. The numerical
calculation of the corresponding probabilities is firstly carried out for the scandium
nucleus (A= 49, N= 21) with using the Dirac-Woods-Saxon model. The theoretical
and experimental studying the muon-γ-nuclear interaction effects opens prospects
for nuclear quantum optics, probing the structural features of a nucleus and muon
spectroscopy in atomic and molecular physics.

3.1 Introduction

Methods for influencing the radioactive decay rate have been sought from early
years of Nuclear physics. Nuclear transmutation (i.e. change in the nuclear charge)
induced by nuclear reactions are often accompanied by a redistribution of the
electrons, muons (mesons in the hadronic atoms) around the final transmuted
nucleus. Muonic atoms have always been useful tools for nuclear spectroscopy
employing atomic-physics techniques. Muonic atoms also play an important role
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as catalysts for nuclear fusion. It should be also mentioned the growing im-
portance of muon spectroscopy in molecular physics. Electrons, muons (other
particles such as kaons, pions etc.) originally in the ground state of the tar-
get atom can be excited reversibly either to the bound or continuum states.
The elementary cooperative e-,n-β-,γ-nuclear processes in atoms and molecules
were considered in the pioneering papers by Migdal (1941), Levinger (1953),
Schwartz (1953), Carlson et al. (1968), Kaplan et al. (1973–1975), Gol’dansky-
Letokhov-Ivanov (1974–1981), Freedman (1974), Law-Campbell (1975), Martin-
Cohen (1975), Isozumi et al. (1977), Mukouama et al. (1978), Batkin-Smirnov
(1980), Law-Suzuki (1982), Intemann (1983), Wauters-Vaeck (1997) et al. [1–16].
In this context, the known Mössbauer, Szilard-Chalmers and other cooperative
effects should be mentioned [9]. The elementary cooperative electron α-nuclear
processes were considered in the papers by Levinger (1953), Hansen (1974),
Watson (1975), Law (1977), Anholt-Amundsen (1982), Mukoyama-Ito (1988) et al.
[10, 17–22]. The consistent relativistic theory of the cooperative electron γ-nuclear
processes in atoms and molecules is developed in Refs. [19–22]. With appearance of
the intensive neutron pencils, laser sources studying the γ−μ-nuclear interactions is
of a great importance [4–6, 16]. The rapid progress in laser technology even opens
prospects for nuclear quantum optics via direct laser-nucleus coupling [19–26]. It is
known that a negative muon μ− captured by a metastable nucleus may accelerate a
discharge of the latter by many orders of magnitude [18–22]. A principal possibility
of storage of the significant quantities of the metastable nuclei in the nuclear
technology processes and their concentrating by chemical and laser methods leads
to problem of governing their decay velocity [5, 19, 22]. The μ-atom system differs
advantageously of the usual atom; the relation rn/ra (rn is a radius of a nucleus
and ra is a radius of an atom) can vary in the wide limits in dependence upon the
nuclear charge. Because of the large muon mass and the correspondingly small
Bohr radius, the muonic wave function has a large overlap with the nucleus and
thus effectively probes its structural features, such as finite size, deformation,
polarization etc. For a certain relation between the energy range of the nuclear
and muonic levels a discharge of the metastable nucleus may be followed by the
ejection of a muon, which may then participate in the discharge of other nuclei. The
estimates of probabilities for discharge of a nucleus with emission of γ quantum
and further muon or electron conversion are presented in ref. [19, 22]. Despite the
relatively long history, studying processes of the muon-atom and muon-nucleus
interactions hitherto remains very actual and complicated problem. One could
remind the known difficulties of the corresponding experiment. On the other hand,
theoretical estimates in different models differ significantly [1–4, 22]. According
to Mann & Rose, the μ capture occurs mainly at the energies of E ∼ 10κeV,
but according to Baker, muons survive till thermal energies [2]. In many papers
different authors predicted the μ capture energies in the range from a few dozens
to thousands eV. The standard theoretical approach to problem bases on the known
Born approximation with the plane or disturbed wave functions and the hydrogen-
like functions for the discrete states. In papers by Vogel et al. and Leon-Miller
the well-known Fermi-Teller model is used (the atomic electrons are treated as an
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electron gas and a muon is classically described) [2–4]. In paper by Cherepkov
and Chernysheva [2] the Hartree-Fock (HF) method is used to calculate the cross-
sections of the capture, elastic and inelastic scattering of the negative μ on the
He atom. In recent years more advanced approaches using the fermion molecular
dynamics method are used to solve the scattering and capture problem [4, 5]. The
Kravtsov-Mikhailov model [4] describes transition of a muon from the excited
muonic hydrogen to the helium based on quasimolecular concept. The series of
papers by Ponomarev et al. on treating the muonic nuclear catalysis use ideas of
Alvarets et al. [5]. More sophisticated methods of the relativistic (QED) PT should
be used for correct treating the muon capture effects by multielectron atoms (nuclei).
We present here a new consistent energy approach to calculation of the cross-
section of the negative muon capture by atoms, using relativistic many-body PT
[27–35]. The numerical results calculationals for the cross-section of the μ− capture
by the He atom are listed. Relativistic theory of discharge of a metastable nucleus
with emission of γ quantum and further μ− conversion is presented. The numerical
calculation is firstly carried out for scandium nucleus (A = 49, N = 21) with using
the Dirac-Woods-Saxon model.

3.2 Relativistic Energy Approach to the Muon-Atom
Interaction

3.2.1 General Formalism

In atomic theory, a convenient field procedure is known for calculating the energy
shifts ΔE of the degenerate states. Secular matrix M diagonalization is used.
In constructing M, the Gell-Mann and Low adiabatic formula for ΔE is used.
A similar approach, using this formula with the QED scattering matrix, is applicable
in the relativistic theory [27–31]. In contrast to the non-relativistic case, the secular
matrix elements are already complex in the PT second order (first order of the inter-
electron interaction). Their imaginary parts relate to radiation decay (transition)
probability. The total energy shift of the state is usually presented as follows:

ΔE = ReΔE + i ImΔE, (3.1a)

Im ΔE =−Γ/2, (3.1b)

where Γ is interpreted as the level width, and the decay possibility P= Γ. The whole
calculation of energies and decay probabilities of a non-degenerate excited state
is reduced to calculation and diagonalization of the complex matrix M. To start
with the Gell-Mann and Low formula it is necessary to choose the PT zero-
order approximation. Usually, the one-electron Hamiltonian is used, with a central
potential that can be treated as a bare potential in the formally exact QED PT.
There are many well-known attempts to find the fundamental optimization principle
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for construction of the bare one-electron Hamiltonian (for free atom or atom in a
field) or (what is the same) for the set of the one-quasiparticle (QP) functions, which
represent such a Hamiltonian [27, 36–42].

Here we consider closed electron shell atoms (ions). For example, the ground
state 1s2 of the He atom or He-like ion. Note that we operate in the relativistic
approximation, though the non-relativistic approach is suitable for light atoms
(H or He). As the bare potential, one usually includes the electric nuclear potential
VN and some parameterized screening potential VC. The parameters of the bare
potential may be chosen to generate the accurate eigen-energies of all two-QP states.
In the PT second order the energy shift is expressed in terms of the two-QP matrix
elements [27–30]:

V (1,2;4,3) =
√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 +1)(−1) j1+ j2+ j3+ j4+m1+m2

×∑
λ ,ν

(−1)ν
[

j1..... j3...λ
m1.−m3..ν

][
j2..... j4...λ
m2.−m4..ν

]
QQul

λ (3.2)

Here QQul
λ is corresponding to the Coulomb inter-particle interaction:

QQul
λ = {Rλ (1243)Sλ(1243)+Rλ(1̃243̃)Sλ (1̃243̃)

+Rλ (12̃4̃3)Sλ (12̃4̃3)+Rλ(1̃2̃4̃3̃)Sλ (1̃2̃4̃3̃)}, (3.3)

where Rλ (1,2;4,3) is the radial integral of the Coulomb inter-QP interaction with
large radial Dirac components; the tilde denotes a small Dirac component; Sλ is the
angular multiplier (see details in Refs. [27–35]). To calculate all necessary matrix
elements one must have the 1QP relativistic functions. Further we briefly outline the
main idea using, as an example, the negative muon capture by He atom:

(
(1s)2 [JiMi], εμ

in

)
→ (

1sεl, εμ
nl

)
.

Here Ji is the total angular moment of the initial target state; indices εμ
in and εμ

fk are
the incident and discrete state energies, respectively to the incident and captured
muons. Further it is convenient to use the second quantization representation.
In particular, the initial state of the system “atom plus free muon” can be written
as a+μ

in Φ0 state. The final state is that of an atom with the discrete state electron,
removed electron and captured muon; in further |I > represents one-particle (1QP)
state, and |F > represents the three-quasiparticle (3QP) state. The imaginary
(scattering) part of the energy shift ImΔE in the atomic PT second order (fourth
order of the QED PT) is as follows [27, 31]:

ImΔE = πG(εiv,εie,εμ
in,ε

μ
fk), (3.4)
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where indices e,v are corresponding to atomic electrons and G is a definite squired
combination of the two-QP matrix elements (2). The value σ =−2ImΔE represents
the capture cross-section if the incident muon eigen-function is normalized by the
unit flow condition. The different normalization conditions are used for the incident
and captured state QP wave functions. The details of the whole numerical procedure
of calculation of the cross-sections can be found in Refs. [27–35].

3.2.2 The Dirac-Kohn-Sham Relativistic Wave Functions

Usually, a multielectron atom is defined by a relativistic Dirac Hamiltonian a.u.:

H = ∑
i

h(ri)+∑
i> j

V (rir j). (3.5)

Here, h(r) is one-particle Dirac Hamiltonian for electron in a field of the finite
size nucleus and V is potential of the inter-electron interaction. In order to take
into account the retarding effect and magnetic interaction in the lowest order on
parameter α2 (α is the fine structure constant) one could write [27, 28]:

V (rir j) = exp(iωijrij) · (1−αiα j)

rij
, (3.6)

where ωij is the transition frequency; αi,α j are the Dirac matrices. The Dirac
equation potential includes the electric and polarization potentials of a nucleus and
exchange-correlation potential. The Kohn-Sham (KS) exchange potential is [36]:

V KS
X (r) =−(1/π)[3π2ρ(r)]1/3. (3.7)

In the local density approximation the relativistic potential is as follows:

VX [ρ(r),r] =
δEX [ρ(r)]

δρ(r)
, (3.8)

where EX [ρ(r)] is the exchange energy of the multielectron system corresponding
to the homogeneous density ρ(r), which is obtained from a Hamiltonian having
a transverse vector potential describing the photons. In this theory the exchange
potential is [37]:

VX [ρ(r),r] =V KS
X (r) ·

{
3
2

ln
[β +(β 2 +1)1/2]

β (β 2 +1)1/2
− 1

2

}
, (3.9)

where

β = [3π2ρ(r)]1/3/c. (3.10)
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The corresponding correlation functional is [20, 37]:

VC[ρ(r),r] =−0.0333 ·b · ln[1+18.3768 ·ρ(r)1/3], (3.11)

where b is the optimization parameter (see details in Refs. [20, 27, 32]). Earlier it
has been shown [27–32] that an adequate description of the atomic characteristics
requires using an optimized base of the wave functions. In Ref. [27] a new ab
initio optimization procedure is proposed. It is reduced to minimization of the gauge
dependent multielectron contribution ImδEninv of the lowest QED PT corrections to
the radiation widths of atomic levels. In the fourth order of QED PT (the second
order of the atomic PT) there appear the diagrams, whose contribution to the
ImδEninv accounts for correlation effects. This contribution is determined by the
electromagnetic potential gauge (the gauge dependent contribution). All the gauge
dependent terms are multielectron by their nature (the known example of the gauge
dependence is difference of the oscillator strength values calculated with using the
“length” and “velocity” transition operator forms). The dependent contribution to
imaginary part of the electron energy is obtained after involved calculation, as
follows [27]:

ImδEninv(α−s|b) = −C
e2

4π

∫ ∫ ∫ ∫
dr1dr2dr3dr4 ∑

n> f ,m≤ f

(
1

ωmn+ωαs
+

1
ωmn−ωαs

)

×Ψ+
α (r1)Ψ+

m (r2)Ψ+
s (r4)Ψ+

n (r3) · [(1−α1α2)/r12]

·{[α3α4− (α3n34)(α4n34)]/r34× sin[ωαn(r12 + r34)]

+[1+(α3n34)(α4n34)]ωαncos[ωαn(r12 + r34)]}
×Ψm(r3)Ψα(r4)Ψn(r2)Ψs(r1). (3.12)

Here, C is the gauge constant, f is the boundary of the closed shells; n ≥ f
indicating the vacant band and the upper continuum electron states; m≤ f indicates
the finite number of states in the atomic core and the states of a negative contin-
uum (accounting for the electron vacuum polarization). The minimization of the
functional ImδEninv leads to the Dirac-Kohn-Sham-like equations for the electron
density that are numerically solved. Finally an optimal set of the 1QP functions
results. In concrete calculation it is sufficient to use the simplified procedure, which
is reduced to the functional minimization using the variation of the correlation
potential parameter b in Eq. 3.11 [20, 32]. The Dirac equations for the radial
functions F and G (the large and small Dirac components respectively) are:

∂F
∂ r

+(1+ χ)
F
r
− (ε +m−V)G = 0, (3.13a)

∂G
∂ r

+(1− χ)
G
r
+(ε−m−V)F = 0, (3.13b)
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where χ is the quantum number. At large χ the functions F and G vary rapidly at the
origin. This creates difficulties in numerical integration of the equations in the region
r → 0. To prevent the integration step from becoming too small it is convenient
to turn to new functions isolating the main power dependence: f = Fr1−|χ |, g =
Gr1−|χ |, γ = (χ2− (αZ)2)1/2. The Dirac equations are transformed as follows:

f ′ =−(χ + |χ |) f/r−αZVg− (αZEnχ +2/αZ)g, (3.14a)

g′ = (χ −|χ |)g/r−αZVf +αZEnχ f . (3.14b)

Here Enχ is one-electron energy without the rest energy. The boundary values are
defined by the first terms of the Taylor expansion:

g =
(
V (0)−Enχ

)
rαZ/(2χ +1); f = 1 (3.15a)

f =
(
V (0)−Enχ− 2/α2Z2)αZ; g = 1. (3.15b)

The condition f ,g → 0 at r → ∞ determines the Enχ state quantified energies.
Normalization of radial functions f and g give behaviour for large r as follows:

gx(r)→ r−1[(E + 1)/E]1/2sin(pr+ δχ), (3.16a)

fx(r)→ r−1(χ/|χ |)[(E− 1)/E]1/2cos(pr+ δχ). (3.16b)

The system of Eqs. 3.14a and 3.14b are numerically solved by the Runge-Kutta
method (‘Superatom’ package is used [19–22, 27–35]). Our theory takes into
account the nuclear (finite size etc.) and radiative effects if necessary (heavy isotope)
etc. (see details in Refs. [33, 34, 43, 44]).

3.2.3 Capture of Negative Muons by Helium Atom

The results of calculation of the cross-section for the negative muon capture by atom
of He are shown in Figs. 3.1–3.4. The scheme includes 2103 points till distance
25aB (aB is the Bohr radius). The main contribution to the capture cross-section is
provided by transitions with the moment l = 0− 3.

First we studied the behaviour of curves of the μ− capture cross-section in
dependence on the principal quantum number n with summation on the orbital
moments l for several values of the muon initial energy. In whole our curves are
lying a little higher than the corresponding curves of Refs. [1–3]. The analysis shows
that for the incident μ energies 16 and 50 eV the capture cross-section begins to
decrease for all n with growth of the l number (l > 10). The states with large l
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Fig. 3.1 The calculated
dependences of the Auger
capture cross-section (solid
line – E = 50eV; dotted line
– E = 20eV) on orbital
number l for different n
values for incident μ−
energies 20, 50 eV
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Fig. 3.2 The capture
cross-sections in dependence
on the orbital number l after
summation on the n number
(digits in figure – the muon
energies in eV)
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for the muon energies (lower or higher in comparison with the atomic ionization
potential value) are populated less probably than in a case of the μ− energy of
the ionization potential order. In Fig. 3.1 we present the calculated dependences of
the Auger capture cross-section on the orbital number l for different n values for the
incident μ energies of 20 and 50 eV. In Fig. 3.2 we present the calculated capture
cross-section in the dependence on the l number after summation on n. In Fig. 3.3
we present the Auger capture cross-sections in dependence on the principal quantum
number after summation on all orbital moment values. In Fig. 3.4 we present the
calculated total capture cross-section in terms of energy (with summation on all
n, l): our data (the Auger capture cross-section) – curve 7 (elastic and inelastic
scattering cross-sections) – curves 2,3. In figure we also present the results by
Copenman and Rogova in the Born approximation with using the hydrogen-like
wave functions (curve 5) and the HF data by Cherepkov-Chernysheva (curve 1), the
inelastic scattering cross-section by Rosenberg (curve 4), the transport cross-section
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Fig. 3.3 The calculated
Auger capture cross-section
in dependence upon the
principal quantum number n
after summation on all orbital
moment values for different
muon energies (the digits in
figure – the muon energies
in eV)
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(x symbol) [2,3,32]. The analysis of the results shows that our data are in physically
reasonable agreement with the HF data by Cherepkov-Chernysheva and Rosenberg.
But, there is an essential difference of the Mann-Rose and Bayer data [1–3]. The
relativistic corrections were to found to be small here, but a calculation for a
heavy systems (atoms, nuclei) requires a proper treatment for both relativistic and
correlation effects.

3.3 Relativistic Theory of Metastable Nucleus Discharge
During Negative Muon Capture

3.3.1 General Formalism

For simplicity, we consider the model of a nucleus as the 1-QP system [19, 22].
Further we suppose that a nucleus consists off a twice-magic core and a single
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Fig. 3.5 Feynman diagrams corresponding to different channels of a decay (see text)

proton and single muon, which move in the nuclear core field. The proton and muon
interact through the Coulomb potential. This interaction will be accounted for in
the first order of the atomic PT or in the second order of the QED PT [22]. Surely
a majority of the known excited nuclear states have the multi-body character and
it is hardly possible to describe their structure within the one-QP model [45–47].
Nevertheless, the studied effects of the muon-proton interaction are not covered
by the one-particle model. It is possible to consider a dynamical interaction of
two particles through the core too. It accounts for finite core mass. However, this
interaction may decrease a multipolarity of the nuclear transition only by unity.
Strongly forbidden transitions of high multipolarity are of a great interest.

We calculate the decay probabilities to different channels of the system, which
consists of the proton (in an excited state ΦN1 J1) and muon (in the ground state Ψ μ

1s).
Three channels should be taken into account:

(i) a radiative purely nuclear 2 j -poled transition (probability P1);
(ii) a non-radiative decay, when proton transits to the ground state and the muon

leaves a nucleus with energy: E =ΔE p
N1J1
−Ei

μ ; ΔE p
N1J1

is the energy of nuclear
transition; Ei

μ is a bond energy of muon in the 1s state (probability P2);
(iii) transition of a proton to the ground state with excitation of muon and emission

of γ-quantum with energy hω = ΔE p
N1J1
−ΔEμ

nl (probability P3).

Feynman diagrams, corresponding to different muon-nuclear decay channels, are
shown in Fig. 3.5. Diagram A (Fig. 3.1) corresponds to the first channel (i), diagram
B – to the second channel (ii) and diagrams C1 and C2 – to the third channel (iii).

The thin line on the diagrams (Fig. 3.5) corresponds to the muon state, the
bold line – to the proton state. The initial and final states of proton and muon
are designated by indices on the lines. The dashed line with the index j means
the Coulomb interaction between muon and proton with an exchange of the 2j-pole
quanta. The wavy line corresponds to operator of the radiative dipole transition. This
effect is due to the muon-proton interaction. The diagram A (Fig. 3.1) has the zeroth
order on the muon-proton interaction; other diagrams (Fig. 3.1) are first order. The
probability of purely radiative nuclear 2j – pole transition is defined by convention
(rn = 510−13 cm) [45]:

P1 = 2 ·1020 · j+ 1
j[(2j+ 1)!!]2

(
3

j+ 3

)2(ΔE[MeV ]

40

)2 j+1

(3.17)
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(standard notation). Diagrams C1 and C2 (Fig. 3.5) account for an effect of the QP
interaction on the initial state. Surely there are other versions of these diagrams, but
their contribution to probabilities of the decay processes is significantly less than
contributions of the diagrams C1 and C2 [19, 22].

Within the relativistic energy approach [21,22,26] the total probability is divided
into the sum of the partial contributions, connected with decay to the definite final
states of a system. These contributions are equal to the corresponding transition
probabilities (Pi). E.g., if ΔE p

N1J1
> Ei

μ the probability determination reduces to
relativistic calculation of probability for two-QP system autoionization decay. An
imaginary excited state energy in the lowest QED PT order is written: [21, 22]:

ImΔE = e2Imi lim
∫ ∫

d4x1d4x2 exp [γ (t1 + t2)]{D(rc1t1 ,rc2t2) .

< ΦI |( jcv (x1) jcv (x2))|ΦI >+D(rp1t1 ,rp2t2)

< ΦI
∣∣( jpv (x1) jpv (x2))

∣∣ΦI >++D
(
rμ1t1 ,rμ2t2

)
< ΦI

∣∣( jμv (x1) jμv (x2)
)∣∣ΦI > (3.18)

Here D(r1t1,r2t2) is the photon propagator; jcv, jpv, jμv are the 4-dimensional com-
ponents of a current operator for the particles: core, proton, muon; x = (rc,rp,rμ , t)
is the four-dimensional space-time coordinate of the particles, respectively; γ is an
adiabatic parameter.

Further one should use the exact electrodynamic expression for the photon
propagator. Below we are limited by the lowest order of the QED PT, i.e. the next
QED corrections to ImΔE will not be considered. Finally, the imaginary part of
energy of the excited state can be represented as a sum of the corresponding QP
contributions [22]:

ImΔE = ImEc + ImEp + ImEμ ,

ImEa = −Z2
a/4π ∑

F

∫ ∫
drc1drc2

∫ ∫
drp1drp2

∫ ∫
drμ1drμ2

Φ∗1(1)Φ
∗
F(2)Ta(1,2)ΦF (1)Φ1(2),

Ta(1,2) =
exp(wIF ra12)

ra12
(1−α1α2), (3.19)

Here ra12 = |ra1− ra2|; Φc,Φp,Φe are the second quantization operators of field of
the core particles, proton and muon. Sum on F means the summation on the final
states of a system.

Consider a case, for excitation energy of a nucleus ΔE p of more than the ioniza-
tion energy of the muon-atomic system Ei

μ . The value P3� P2, as P3 has an addi-
tional small parameter upon interaction with an electromagnetic field. Calculation of
the probability P2 can be reduced to calculation of probability of the autoionization
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Table 3.1 Probabilities
(s−1) of the radiative 2j-pole
nuclear transition P1, muon
conversion Pμ

2 and electron
conversion Pe

2 for ΔE pΔ ≈ ΔEμ
i

(unit of energy 1MeV, Z = 20)

J P1 Pμ
2 Pe

2

1 4.71014E3 1.31016 1.71010E−0,5

2 5.2109E5 1.71016 5.8105E0,5

3 3.9104E7 3.31015 9.210◦E1,5

4 2.610−1E9 4.91014 8.410−5E2,5

5 4.210−7E11 5.71013 5.410−10E3,5

6 2.910−12E13 5.61012 2.310−15E4,5

decay of the two-QP system state, i.e. P2 = 2ImΔE/h̄, where ImΔE is defined by
Eq. 3.19. In Table 3.1 we present the values of probabilities of the electron (Pe

2 ) and
muon (Pμ

2 ) conversion and 2j-pole (P1) nuclear transition (for Ca; Z = 20).
The results show that the following relationships between corresponding proba-

bilities hold: Pμ
2 � P1 � Pe

2 . The relation Pμ
2 /P1 > Pμ

2 /Pe
2 increases very quickly

with growth of the transition multipolarity. Indeed, it is qualitatively corresponding
to the estimates [19]. For example, for J = 1 the estimate by Letokhov-Ivanov gives
the following values: P1 = 4,01014E3,Pμ

2 = 1016,Pe
2 = 1,31010E−0,5. So, when

ΔE p > Ei
μ , a reaction of the periodic muon capture by the metastable nucleus occurs

with further muon conversion. The opposite case ΔE p < Ei
μ corresponds to muon

capture in the lowest 1s state (the resonant effect and a nucleus is a trap for muons)
[22]. Further we present numerical results of different decay probabilities for given
states of the nucleus 49

21Sc28 with using two versions of the model nuclear potentials,
including the well-known Dirac-Woods-Saxon model [45].

3.3.2 Numerical Calculation for the Nucleus 49
21Sc28

The nucleus of 49
21Sc28 contains a single proton above the twice magic core 49

20Ca28.
The scheme of the corresponding energy levels for this nucleus is presented in
Fig. 3.6. The transitions of proton and muon on the first and second stages are noted
by the solid and dotted lines.

The level p1/2 is connected with the ground level f7/2 by the E4 transition
and with the low-lying level p3/2 by the E2 transition. The levels p3/2 and f7/2
are connected by the E2 transition. One could consider also magnetic transitions
between these levels. The life-time for the isolated nucleus in the excited state is of
order 10−11 s. We use two different approaches to modelling the proton motion in a
field of a nuclear core. The first model corresponds to the well-known Dirac-Wood-
Saxon model [45]. Another approach uses the Bloumkvist-Wahlborn potential [46]
(see also Refs. [22,47]). In the latter, a proton moves in an effective field of the core:

V − 25 · f (l, j) ·V ′/r (3.20)
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Fig. 3.6 Schemes of energy levels of proton (the left part of the figure) and muon (the right part
of the figure) in 49

21Sc28. Transitions of proton and muon on the first and second stages are noted by
the solid and dotted lines
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Fig. 3.7 Nuclear potential: (a) – the Bloumkvist-Wahlborn potential; (b) – the Woods-Saxon
potential (see text)

where the self-nuclear part of the interaction V is as follows (Fig. 3.7a):

V0− a[r4/4− r3(R1 +R2)/3+ r2R1R2/2], .....r < R2

0, ....................................................................r > R2 (3.21)

This potential is more suitable in the numerical calculation because it does not lead
to divergence (under r→ 0) of the spin-orbit interaction−25 f (l, j)V ′/r.

So, it differs advantageously from the well-known Woods-Saxon potential (see
below). The electric core potential is given as potential of the charged sphere (the
upper sign is for proton and the down sign – for muon):

U(r) =±Ze2
{

3/(2R)− r2/(2R)3,r < R
1/r, ........................r > R

}
(3.22)
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The parameters are calculated from the fitting condition for the experimental and
theoretical energies of the ground and first excited states. For the values V0 =−47.6,
R1 == 2, R2 = 7.65, R = 4.75 it has been obtained for the proton states: E( f 7/2) =
−9.62, E(p3/2) = −6.53, E(p1/2) = −5.24 and for the muon states: E(1s) =
−1.05, E(2s) = −0.272E(2p) = −0.281 (the units of energy 1 MeV and length
units 10−13 cm are used). To calculate the corresponding integrals in the formula
(32) (33), we use the technique, described in Refs. [27–29]. In the relativistic
Dirac-Woods-Saxon model the wave functions are defined by solution of the Dirac
equations with the Woods-Saxon potential (see below):

[α · p+VWS(r)+β (M+ SWS(r)]ψ0
nkm = ε0

nkmψ0
nkm (3.23)

{
[ε0

nkm,ψ
0
nkm(r,s, t)];ε0

nkm>< 0;n = 0,1,2, ...;k =±1,±2, ...
}

The Woods-Saxon potential is defined as follows (see Fig. 3.7b):

VWS(r) =

{
V0[1+ exp{(r−R0)/a0}]−1,r < Rmax

∞, ......................................,r > Rmax

}
(3.24)

where the parameters V0, a0, R0 are fitting using the levels energies as above said.
It should be noted that in the last years the relativistic mean field model with using
the Dirac-Woods-Saxon orbital set is developed too [21, 46]. Generally speaking,
here any relativistic mean field model, the nuclear density functional or HF theory
with the density dependent forces can be used [45–48]. We present numerical data
(calculation with two nuclear potentials) for the scandium nucleus. The probabilities
of the muon-atomic decay (in s−1) for a most interesting nuclear transitions are:

(i) for the Bloumkvist-Wahlborn potential [22]:

P2(p1/2−p3/2) = 3,93 ·1015,P2(p1/2− f7/2) = 3,15 ·1012,

P2(p3/2− f7/2) = 8,83 ·1014,

(ii) for the Woods-Saxon potential:

P2(p1/2−p3/2) = 3.87 ·1015,P2(p1/2− f7/2) = 3,09 ·1012,

P2(p3/2− f7/2) = 8.75 ·1014.

For both potentials the presented values are significantly higher that the corre-
sponding non-relativistic estimates of Refs. [19,32]. For example, according to [19]:
P2(p1/2–p3/2) = 3.3 ·1015. If a muon-atomic system is in the initial state p1/2, than
the cascade discharge occurs with an ejection of the muon on the first stage and the
γ quantum emission on the second stage.

To consider a case when the second channel is closed and the third channel is
opened, let us suppose that E p(p1/2)–E p(p3/2) = 0.92MeV (Fig. 3.6). The nuclear
transition energy is not sufficient to provide transition of the muon to the continuum
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state. However, it is sufficient for the excitation to the 2p state. It is important to note
here that this energy is not lying in the resonant range. The diagram C1 (see Fig. 3.5)
describes the proton transition p1/2–p3/2 with the virtual excitation of muon to states
of the series nd and with emitting γ quantum of the following energy:

hw = E p(p1/2)+Em(1s)−E p(p3/2)−Em(2p).

Further the dipole transition 2p− 1s can occur. The calculated value for the
probability of this transition is P3 = 1.9 ·1013 s−1. It should be noted that the value
P3 is more than the probability value for the radiation transition p1/2–p3/2 and
the probability value for the transition p1/2– f7/2. The transition p3/2– f7/2 occurs
during∼ 10−15 s without emission, but with the ejection of a muon.

3.4 Concluding Remarks and Future Perspectives

We have presented a new relativistic approach to calculation of the cross-section of
the negative μ capture by atoms and a consistent relativistic theory of discharge of a
metastable nucleus with emission of γ quantum and further muon conversion, which
initiates this discharge. The approaches are based upon the relativistic many-body
PT theory, energy approach and the shell nuclear models. The calculation results
are presented for the μ−-He system and Sc nucleus. The experimental possibilities
of search of the metastable nucleus discharge effect have been discussed in Refs.
[2–5, 22, 48] and require a choice of the special type nuclei (a target). Probability
of the μ− capture by the excited nucleus must be comparable or being more than
a probability of the capture by other (non-excited) nuclei of a target. As result, the
target must be prepared as the excited nuclei concentrate with the minimal size of
order or more than the free μ running length l in relation to a capture by a nucleus.
The condition for fewest excited nuclei in a target is Nmin > l3n0, where n0 is a
density of the target atoms. For initial μ slowing to energies of 0.1–0.3MeV, the free
running length is∼ 0.1cm. The required number of metastable nuclei is Nmin > 1019

for the density n0 = 1022 cm−3. The radioactivity of such a target is R = Nmin/T ,
where T is the decay time. For example, for T = 100 days one can get the estimate
R∼ 103Ci(1Ci = 3.7 ·1010 decays per sec).

In conclusion, note that further development of electron-μ-nuclear spectroscopy
of atoms (nuclei) is of a great theoretical and practical interest. The development of
new approaches [2–6,21–23] to studying the cooperative e-,μ− γ-nuclear processes
promises the rapid progress in our understanding of the nuclear decay. Such an
approach is useful, providing perspective for developing advanced nuclear models,
search for new cooperative effects on the boundary of atomic and nuclear physics,
carrying out new methods for treating (by muonic chemistry tools) the spatial
structure of molecular orbitals, studying the chemical bond nature and checking
various models in quantum chemistry and solids physics [3–8, 18–23, 49].

Finally, availability of more exact data on the μ-nucleus and μ-atom interactions
is important in astrophysics, studying substance transformation in the Universe,
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testing the Standard Model etc. [6, 21, 49, 50]]. e-μ-γ-nuclear spectroscopy of
atoms (molecules) opens new prospects in combining nuclear physics and quan-
tum chemistry (atomic physics). These possibilities are strengthened by quickly
developed nuclear quantum optics [19–26]. Superintense lasers (raser or even
graser) field may provide a definite measurement of the change in the dynamics
of the nuclear processes, including the muon capture (and/or γ-, β-, α-decay)
[18–26, 48, 50].
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Part III
Atoms and Molecules with
Exponential-Type Orbitals



Chapter 4
Two-Range Addition Theorem for Coulomb
Sturmians

Daniel H. Gebremedhin and Charles A. Weatherford

Abstract A new compact two-range addition theorem for Coulomb Sturmians is
presented. This theorem has been derived by breaking up the exponential-type
orbitals into convenient elementary functions: the Yukawa potential (e−αr/r) and
“evenly-loaded solid harmonics,” (r2ν+lY m

l (r̂) for which translation formulas are
available. The resulting two-range translation formula for the exponential orbital is
presented and used to construct a new addition theorem for the Coulomb Sturmians.

4.1 Introduction

Exponential type orbitals (ETO) are the natural choice for the basis set in atomic and
molecular electronic structure calculations. The resulting multicenter integrals (for
molecules) are notoriously difficult to accurately evaluate. One of the fundamental
reasons is the lack of a compact and rapidly convergent addition theorem (ADT) for
ETOs.

ADTs for many of the exponential-type functions have been extensively studied
and are generally given in non-terminating two-range forms, which, according to
Weniger [1], result from the lack of analyticity at the origin. For non-exponential
functions such as the regular solid spherical harmonics [1], terminating single-range
addition theorems are available. The irregular solid harmonics have a double-range
non-terminating addition theorem [1]. For function f (r + r′) where r and r′ are
vectors in real three dimensional space, the ADTs expand f in terms of two
functions with arguments r< and r> such that r< (r>) is which of r and r′ that
is lesser (greater) in magnitude. Direct numerical tests of such translations (see for
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Fig. 4.1 Number of terms needed for Laplace expansion in order to calculate |R+ r|−1 to within
10−12 accuracy. Two cases are shown where one of the two radii, R, is fixed to R = 2 & R =
6. Number of maximum terms was set to be 160. We can see that convergence improves as the
radial separation of the two vectors increases (Angular variables were chosen at random and held
constant)

example Eq. 4.10 where r = r>+ r<) reveal that the convergence of the expansions
deteriorate as |r>−r<| decreases and vice versa (See Fig. 4.1). This behavior is also
exhibited by multicenter integrals. ADTs are mainly used as a tool for separation
of variables in integrals whenever the integrands involve two or more centers – the
ADTs converge better if the relative radial separation of the centers is relatively
large.

Coulomb Sturmians (CSs) are an exponential-type complete set of basis func-
tions which satisfy a Sturm–Liouville equation [2]. The main objective of the
present work is to derive an ADT for the Slater-type orbitals (STOs), which are
the fundamental ETO, and thereby for the CSs, which are a linear combination of
STOs. The expression for the two-center overlap integral is then worked out for the
CSs as an illustration and numerical results and conclusions are presented.

4.2 Translation of Coulomb Sturmians

For a position vector r in three dimensional coordinate space, the following notation
is used:

r≡ r1 + r2, r ≡ |r|, r1 < r2, r̂ ≡ r
r
. (4.1)

The main topic of the paper is to give a compact addition theorem for the CS:

Ψnlm(α,r) = Nnl(2α)3/2(2αr)le−αrL2l+1
n−l−1(2αr)Y m

l (r̂) (4.2)

where Y is spherical harmonics and L is associated Laguerre polynomial explicitly
given by:

Lk
n(x) =

n

∑
μ=0

σ k
μ,nxμ (4.3)
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with the coefficients, σ , and normalization constants, N:

σ k
μ,n =

(−1)μ(n+ k)!
(n− μ)!(k+ μ)!μ!

Nnl =

√
(n− l−1)!
2n(n+ l)!

(4.4)

where x! is factorial function of x. From Eqs. 4.2 and 4.3, we can see that the CSs
are finite superposition of Slater-type orbitals (STOs) and it is for these STOs that
we will work out the addition theorems. The unnormalized STO’s are divided into
two types according to their powers of r and are defined as:0

Φνlm(α,r)≡ e−αr

r
Yνlm(r) & Φ̄νlm(α,r)≡ e−αr

r
Ȳνlm(r) (4.5)

where Y and Ȳ are termed (by us), “evenly- and, oddly-loaded spherical harmon-
ics” and are respectively

Yνlm(r)≡ r2ν+lY m
l (r̂) & Ȳνlm(r)≡ r2ν+l+1Y m

l (r̂). (4.6)

Here, ν , unlike n, l & m, is not a quantum number but a dummy non-negative integer.
We will now derive a two-range ADT for the two types of orbitals defined in Eq. 4.5
by further breaking them up into convenient components. Two-range ADTs are
more naturally expressed in terms of bipolar spherical harmonics, X , defined as [3]:

XLM
l1l2 (r̂1, r̂2) =

l1

∑
m1=−l1

CLM
l1m1l2(M−m1)

Y m1
l1

(r̂1)Y
M−m1
l2

(r̂2) (4.7)

where C is Clebsch-Gordan coefficient. Coordinate interchange in the X ’s results in
sign change according to:

XLM
l1l2 (r̂1, r̂2) = (−1)l1+l2−LXLM

l2l1 (r̂2, r̂1). (4.8)

One of the basic ADTs we will use is to that of Yukawa potential. The equation
is commonly known as Gegenbauer addition theorem and is given by:

e−αr

r
= 4π

∞

∑
l=0

ωl fl(α,r1,r2)X
00
ll (r̂1, r̂2) (4.9)

where ωl ≡
√

2l + 1, fl(α,r1,r2) ≡ α îl(αr1)k̂l(αr2) and î & k̂ are spherical
modified Bessel functions of the first and second kind respectively [4].

This is the fundamental expansion we are going to build upon and in our opinion,
this is the best that can be done in terms of an ADT for the function e−αr

r (Yukawa
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potential). The famous Laplace expansion (Coulomb potential addition theorem)
has a similar form to Eq. 4.9:

1
r
=

4π
r2

∞

∑
l=0

1
ωl

(
r1

r2

)l

X00
ll (r̂1, r̂2). (4.10)

The evenly-loaded solid spherical harmonics have a terminating two-range ADT
given by:

Yνlm(r) = γνl r
2ν+l
2

ν+l

∑
l1=0

l2max

∑
l2=|l1−l|

C l
l1l2

Xlm
l1l2

(r̂1, r̂2)
2ν+l−l2

∑
q=l1,2

(
r1

r2

)q/
Ql1l2

νlq (4.11)

where

• l2max ≡ min(l1 + l,2ν + l− l1) with (l1 + l2 + l) even

• γνl ≡ 4π(2ν)!!(2ν + 2l+ 1)!!

• C l
l1l2
≡
√

(2l1+1)(2l2+1)
4π(2l+1) Cl0

l10l20

• Ql1l2
νlq ≡ (2ν + l+ l2− q+ 1)!!(2ν+ l− q− l2)!!(q+ l1+1)!!(q− l1)!!

and x!! is double factorial function of x. A direct product of Eqs. 4.9 and 4.11 gives:

Φνlm(α,r) = 4πγνlr
2ν+l
2

∞

∑
l0=0

ωl0 fl0(α,r1,r2)X
00
l0l0

(r̂1, r̂2)

ν+l

∑
l1=0

l2max

∑
l2=|l1−l|

C l
l1l2

Xlm
l1l2

(r̂1, r̂2)
2ν+l−l2

∑
q=l1,2

(
r1

r2

)q/
Ql1l2

νlq (4.12)

The above equation can be further simplified to give the ADT for the Φ’s:

Φνlm(α,r) = 4πγνlr
2ν+l
2

∞

∑
l0=0

ωl0 fl0(α,r1,r2)
ν+l

∑
l1=0

l2max

∑
l2=|l1−l|

C l
l1l2

2ν+l−l2

∑
q=l1,2

(
r1

r2

)q/
Ql1l2

νlq

l0+l1

∑
l′1=|l0−l1|

l′2max

∑
l′2=l′2min

B
l′1l′2l
l0l1l2

Xlm
l′1l′2

(r̂1, r̂2) (4.13)

where for the sum on l′1, we have an additional symmetry requirement that
(l0 + l1 + l′1) be even. l′2min ≡ max(|l2− l0|, |l− l′1|), l′2max ≡ min(l2 + l0, l + l′1) with
(l0 + l2 + l′2) even. B is a coefficient for combination of two bipolar harmonics
given as:

B
l′1l′2l
l0l1l2

=
(−1)l0+l2+l′1+l

4π
√
(2l0 + 1)(2l1 + 1)(2l2 +1)C

l′10
l00l10C

l′20
l00l20

(
l′2 l2 l0
l1 l′1 l

)

(4.14)
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where the term in bracket is a 6j symbol. Equation 4.12 is a sometimes useful form
although (4.13) is more compact.

To derive an ADT for the Φ̄’s in a similar fashion, we might want to look for an
expansion for the Ȳ ’s. Such a translation, given below, exists and is a structurally
similar expression to that of the Eq. 4.11, but for one major difference – it has an
open sum.

Ȳνlm(r)=γ̄νl r
2ν+l+1
2

∞

∑
l2=0

l2+l

∑
l1=|l2−l|

C̄ l
l1l2

(
r1

r2

)l1
Xlm

l1l2
(r̂1, r̂2)

2ν+l+l2−l1+2

∑
q=0,2

(
r1

r2

)q/
Q̄l1l2

νlq

(4.15)
where

• γ̄νl ≡ 4π(−1)l(2ν + 1)!!(2ν + 2l+ 2)!!

• C̄ l
l1l2
≡ (−1)l1+l2

√
(2l1+1)(2l2+1)

4π(2l+1) Cl0
l10l20

• Q̄l1l2
νlq ≡ (2ν + l+ l2− q− l1+ 2)!!(2ν + l− q− l1− l2 +1)!!(q+2l1+1)!!q!!

Employing the above equation would clearly result in double open sums on the
ADT for the Φ̄ , which would render it to be computationally very costly. Instead,
we rearrange the second equation in (4.5) as Φ̄νlm(α,r) ≡ e−αrYνlm(r), and
seek an ADT for the exponential function. This is elegantly derived by a simple
parametric differentiation with respect to α on both sides of Eq. 4.9. Using the
recurrence relation of the spherical modified Bessel functions and their derivatives,
and after some simplification, we get the equation given below for the first
time here:

e−αr = 4π
∞

∑
l=0

ωl
[

f (+)
l (α,r1,r2)− f (−)l (α,r1,r2)

]
X00

ll (r̂1, r̂2) (4.16)

where f (+)
l (α,r1,r2)≡ (αr2)îl(αr1)k̂l+1(αr2) and f (−)l (α,r1,r2)≡ (αr1)îl−1(αr1)

k̂l(αr2). Comparison of Eqs. 4.16 and 4.9 reveals that a mere replacement of

fl0(α,r1,r2) by
[

f (+)
l0

(α,r1,r2)− f (−)l0
(α,r1,r2)

]
in Eq. 4.13 gives the required ADT

for the Φ̄’s. We find it notationally convenient to express this as:

Φ̄νlm(α,r) = Φ(+)
νlm(α,r)−Φ(−)

νlm(α,r) (4.17)

where, this time, the expressions for each of Φ(+)
νlm(α,r) and Φ(−)

νlm(α,r) are exactly
similar to the right hand side of (4.13), except for the replacement of fl0(α,r1,r2)

by f (+)
l0

(α,r1,r2) and f (−)l0
(α,r1,r2) respectively. We have managed to expand the

ETO e−αrYνlm(r) with only one open sum and this is the main result reported in
this work.
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Finally, expressing the Ψ ’s in terms of the STOs Φ and Φ̄ completes the addition
theorem for the CS functions:

Ψnlm(α,r) = Nnl(2α)l+3/2

[�(n−l−1)/2�
∑
ν=0

σ2l+1
2ν,n−l−1(2α)2νΦ̄νlm(α,r)

+
�(n−l)/2�

∑
ν=1

σ2l+1
2ν−1,n−l−1(2α)2ν−1Φνlm(α,r)

]
(4.18)

where �x� is floor function of x. The above ADT has been constructed by breaking
up the CS in such a way that, only the “best available” expansions are used. As far as
the two-range (with point-wise convergence) translation of the CSs for physically
useful internuclear radial distances is concerned, we posit that our formula is the
best that can be done in terms of accuracy and compactness. The striking similarity
of the forms of Φ , Φ(+) & Φ(−) is an added convenience for their applications in
multicenter molecular integrals and related studies.

For the sake of completeness, multiplying the above equation by n
α and switching

Φ & Φ̄ results in an ADT for the reduced CS, S, defined as:

Snlm(α,r) =
n

αr
Ψnlm(α,r) (4.19)

They satisfy the orthonormality relation:

〈Sn′l′m′(α,r)|Ψnlm(α,r)〉= δn′nδl′lδm′m. (4.20)

4.3 Two-Center Overlap Integrals – Numerical Example

4.3.1 Calculations

We have applied the ADT (Eq. 4.18) to the calculation of a two-center overlap
integral of CSs. To this end, let us introduce a new notation, so that, 0 ≤ rA ≤
rB ≤ ∞ and A ≡ r + rA with analogous definition for vector B. We would also
interchangeably use j ≡ (nlm) j ≡ n jl jm j. Then, the two-center overlap integral
between two CS is:

Vjk(α,β ,rA,rB)≡
∫

Ψ∗j (α,A)Ψk(β ,B)d3r. (4.21)

In passing, we comment that neither of the two translation vectors for the two centers
in the above integral can be safely set to zero due to the irregularity of the k̂’s at the
origin.

V is first expressed in terms of nine different overlap integrals between the three
expansions Φ , Φ(+) and Φ(−). The resulting overlap integrals are further divided
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over three ranges in radius: namely, [0, rA], [rA, rB] & [rB, ∞). Hence, a total of
3× 9 = 27 unique integrals has to be calculated. All of the 27 integrals will have
one open sum. The basic integrals needed are

Λ N
l1l2

(α,β ,r1,r2) ≡
∫ r2

r1

îl1(α,r)îl2 (β ,r)r
N dr

Ω N
l1l2

(α,β ,r1,r2) ≡
∫ r2

r1

îl1(α,r)k̂l2 (β ,r)r
N dr

Γ N
l1l2

(α,β ,r1,r2) ≡
∫ r2

r1

k̂l1(α,r)k̂l2(β ,r)r
N dr

Θ LML′M′
ll1l′l′1lc

(r̂A, r̂B, r̂C) ≡
∫

X∗LM
ll1 (r̂, r̂A)X

L′M′
l′l′1

(r̂, r̂B)X
00
lclc(r̂, r̂C)dr̂. (4.22)

The importance of accurately calculating the above four integrals cannot be
overstated. The accuracy of the first three integrals is heavily dependent upon a
judicious choice of a representation for the spherical modified Bessel function
among the ones that are available on the literature. When the upper integration limit,
r2, is infinite (this only occurs on the third equation of (4.22)), we used the following
terminating sum representation of the k̂’s:

k̂l(x) =
e−x

x

l

∑
j=0

(l + j)!
(2 j)!!(l− j)!

x− j (4.23)

This leads to the exponential integral and an efficient numerical algorithm has
already been provided for them [5]. When r2 is finite, however, the exponential
function presents a numerically unstable expression for the respective integrals, so
we rather have to use a purely polynomial representation of the two Bessel functions.
Such an expansion, a highly convergent one, already exists for the î’s:

îl(x) = xl
∞

∑
j=0

x2 j

(2 j)!!(2l + 2 j+1)!!
(4.24)

And for the k̂’s, the following identity is useful

k̂l(x) = (−1)l[î−(l+1)(x)− îl(x)] x = 0 (4.25)

In this way, all of the above four integrals can be numerically evaluated accurately
even for very high quantum numbers. To give an example, we give below the
resulting formula for one of the 27 integrals:
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∫
dr̂
∫ rA

0
dr r2Φ∗j (α ,A)Φk(β ,B) = (4π)2(αβ )γ(νl)j

γ(νl)k
rA

2νj+lj rB
2νk+lk

×
∞

∑
l0j=0

ωl0j
k̂l0 j

(αrA)∑
l1 j

∑
l2 j

C
l j

(l1l2) j ∑
q j

[
Q
(l1l2) j

(νlq) j
rA

q j

]−1

×∑
l1
′
j

∑
l2
′
j

B
(l′1l′2l) j

(l0l1l2) j ∑
l1k

l1k+l1
′
j

∑
l0k=|l1k−l1

′
j |

ωl0k
k̂l0k

(β rB)

×∑
l2k

C lk
(l1l2)k

Θ (lm) j(lm)k

(l1
′l2 ′) j(l1l2)kl0k

(r̂A, r̂B, r̂B)

×∑
qk

Λ q j+qk+2
l0 j l0k

(α ,β ,0,rA)

/[
Q(l1l2)k
(νlq)k

rB
qk

]
(4.26)

The sum on l0k has an additional symmetry requirement that (l1k + l1
′
j + l0k) be

even. The summation limits for the rest of the sums can be inferred from Eqs. 4.12
and/or 4.13. Note that the form of Eq. 4.13 was used for the bra side & Eq. 4.12 was
used for the ket side of the above integral, so that we could easily recognize where
one of the open sums of the orbitals terminates. Thanks to the similarities of the
ADTs for both ETO’s, the remaining 26 integrals fall into the same pattern and can
be worked out rather straightforwardly.

4.3.2 Numerical Example

To give a numerical example, let α = β = 1.0, rA = (1.0, 2π
5 , π

6 ) & rB =

(2.0, 3π
5 , 7π

6 ). Table 4.1 shows the convergence of the integral V for j = (3,2,1) &
k = (2,1,0). ε determines the size of the added term on the open sum compared to
one. For a variable x j that accumulates on the open sums, the code fragment would
look like:

x j← x j + t

if (|t/x j| ≤ ε) then exit (open loop)

This way of numerically terminating the open loops gives us better control of the
accuracy used to evaluate the integrals than, for example, terminating all 27 integrals
on a fixed number of the loop count. δ is the relative error with respect to the last
row and it is interesting to note how consistent it is with the anticipated accuracy, ε .
Table 4.2 shows values of the same integral for different quantum numbers for ε =
1.0×10−16. A fortran 95 serial code has been written for numerically calculating V
and the CPU times shown are from a 4 GB, 2.6 GHz Intel Core 2 Duo macbook pro
laptop.
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Table 4.1 Relative Convergence for V(3,2,1)(2,1,0)(1.0,1.0,rA,rB)

Real part Imaginary part δreal δimag εa
CPU
time(sec)

−0.59873949437907303 0.34568240825421820 1.06 1.06 1.0E-01 2.032E-03
−0.29515476803702206 0.17040768477877541 1.40E-02 1.40E-02 1.0E-02 0.202
−0.29103936033692773 0.16803165303530088 1.78E-04 1.78E-04 1.0E-03 0.315
−0.29101610142056444 0.16801822449367737 2.58E-04 2.58E-04 1.0E-04 0.463
−0.29109857012531110 0.16806583782256260 2.58E-05 2.58E-05 1.0E-05 0.633
−0.29109047967150004 0.16806116679687697 1.97E-06 1.97E-06 1.0E-06 0.879
−0.29109112968151762 0.16806154208033555 2.66E-07 2.66E-07 1.0E-07 1.160
−0.29109104169200689 0.16806149127956788 3.64E-08 3.64E-08 1.0E-08 1.501
−0.29109105247787853 0.16806149750679378 6.64E-10 6.64E-10 1.0E-09 1.893
−0.29109105233626992 0.16806149742503609 1.77E-10 1.77E-10 1.0E-10 2.364
−0.29109105227864435 0.16806149739176596 2.09E-11 2.09E-11 1.0E-11 2.849
−0.29109105228522064 0.16806149739556273 1.67E-12 1.67E-12 1.0E-12 3.447
−0.29109105228465826 0.16806149739523804 2.62E-13 2.62E-13 1.0E-13 4.126
−0.29109105228474391 0.16806149739528750 3.26E-14 3.27E-14 1.0E-14 4.825
−0.29109105228473481 0.16806149739528223 1.34E-15 1.32E-15 1.0E-15 5.699
−0.29109105228473442 0.16806149739528201 0.00E+00 0.00E+00 1.0E-16 6.553
a
Strictly speaking, ε was calculated with respect to the absolute value, but in this particular case,

the real and imaginary part happened to be of the same order of magnitude, hence,both converged
at a similar rate

Table 4.2 Numerical values for Vjk(1.0,1.0,rA,rB) for ε = 1.0×10−16

(nlm) j (nlm)k Real part Imaginary part CPU time(sec)

1, 0, 0 1, 0, 0 0.34850947857504333 2.23342113801633579E-22 0.200
2, 0, 0 2, 0, 0 0.61735964776149899 5.49395794007445780E-19 1.053
2, 0, 0 2, 1, 0 0.11077236162560267 −1.39457735123553977E-20 1.527
2, 1, 0 2, 0, 0 −0.11077236162559734 −1.25792472295851408E-18 1.774
2, 1, 0 2, 1, 0 0.40809499372155028 1.68240824753530884E-20 2.542
2, 1, 1 2, 1, 0 0.11289934515219595 −6.51824673149524469E-02 2.650
2, 1, 0 2, 1, 1 0.11289934515219550 6.51824673149525441E-02 2.661
3, 0, 0 3, 0, 0 0.57895248073483607 2.14237420820933209E-19 6.506
3, 1, 0 3, 0, 0 −4.84528149260349261E-02 −1.98399696407086199E-18 10.265
3, 0, 0 3, 1, 0 4.84528149260701202E-02 1.65984230188867265E-18 7.900
3, 2, 1 3, 2, 1 0.26286186227813135 −5.23498551681719911E-17 14.322
3, 2, 0 3, 2, 0 0.33380515163527102 3.27871802188479513E-18 14.505
3, 2, −1 3, 2, −1 0.26286186227813230 5.13533725770497534E-17 14.344
3, 2, 1 2, 1, 0 −0.29109105228473442 0.16806149739528201 6.557

4.4 One-Center Overlap Integrals

The integral V can also be done by inserting a decomposition of unity (using Dirac’s
notation),

1 = ∑
i
|Ψi(β ,r)〉〈Si(β ,r)| (4.27)
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so that, V is expressed in terms of two one-center overlap integrals as:

Vjk(α,β ,rA,rB) = ∑
i

〈Ψj(α,A)|Ψi(β ,r)〉〈Si(β ,r)|Ψk(β ,B)〉. (4.28)

All such one-center overlap integrals, will terminate using our new ADT. We
have checked that the above equation numerically converges to the results shown on
Table 4.2 as the size of the expansion increases. The second integral in Eq. 4.28 is
particularly familiar – it is the famous Shibuya–Wulfman integral [2,6,7], which has
a finite form in terms of the 9j symbols [7,8]. We not only have come up with a new
way of calculating it, but also generalized it to all four combinations of one-center
overlaps between Ψ & S and different screening parameters.

4.5 Conclusions

A new efficient two-range, point-wise convergent ADT for the CSs and the STOs,
that is attractive both in notation and convergence, has been given. The numerical
application given are the basic one- and two-center overlap integrals, which
demonstrates its value as a first choice ADT for STOs in any relevant applications.

For the more complicated three- and four-center integrals, direct substitution
of the Laplace expansion (Eq. 4.10), will clearly result in a multiple open sum
expressions such that, numerical calculations will be computationally too slow to
be of any realistic usage. However, the Poisson equation technique [9,10] will avoid
several of the open sums and allow for the efficient calculation of the three- and
four-center integrals. Using these techniques, the calculation of the three- and four-
center integrals is under investigation.
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Chapter 5
Why Specific ETOs are Advantageous
for NMR and Molecular Interactions

Philip E. Hoggan and Ahmed Bouferguène

Abstract This paper advocates use of the atomic orbitals which have direct phys-
ical interpretation, i.e., Coulomb Sturmians and hydrogen-like orbitals. They are
exponential type orbitals (ETOs). Their radial nodes are shown to be essential in
obtaining accurate local energy for Quantum Monte Carlo, molecular interactions
a nuclear and shielding tensors for NMR work. The NMR work builds on a 2003
French PhD and many numerical results were published by 2007. The improvements
in this paper are noteworthy, the key being the actual basis function choice.
Until 2008, their products on different atoms were difficult to manipulate for the
evaluation of two-electron integrals. Coulomb resolutions provide an excellent
approximation that reduces these integrals to a sum of one-electron overlap-like
integral products that each involve orbitals on at most two centers. Such two-center
integrals are separable in prolate spheroidal co-ordinates. They are thus readily
evaluated. Only these integrals need to be re-evaluated to change basis functions. In
this paper, a review of more recent applications to ETOs of a particularly convenient
Coulomb resolution in QMC work is illustrated.

5.1 Introduction

The criteria for choice between gaussian and exponential basis sets for molecules
do not seem obvious at present. In fact, it appears to be constructive to regard them
as being complementary, depending on the specific physical property required from
molecular electronic structure calculations.
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The present work describes a breakthrough in two-electron integral calculations,
as a result of Coulomb operator resolutions. This is particularly significant in that
it eliminates the arduous orbital translations which were necessary until now for
exponential type orbitals. The bottleneck has been eliminated from evaluation of
three- and four- center integrals over Slater type orbitals and related basis functions.

The two-center integrals are replaced by sums of overlap-like one-electron
integrals. This implies a speed-up for all basis sets, including gaussians. The im-
provement is most spectacular for exponential type orbitals. A change of basis
set is also facilitated as only these one-electron integrals need to be changed.
The gaussian and exponential type orbital basis sets are, therefore interchangeable in
a given program. The timings of exponential type orbital calculations are no longer
significantly greater than for a gaussian basis, when a given accuracy is sought for
molecular electronic properties.

Atomic orbitals are physically meaningful one-electron atom eigenfunctions for
the Schrödinger equation. This gives well-known analytical expressions: hydrogen-
like orbitals.

Boundary conditions allow the principal quantum number n to be identified as the
order of the polynomial factor in the radial variable. It must therefore be positive and
finite. It is also defined such that n− l− l is greater than or equal to 0. This gives the
number of zeros of the polynomial (radial nodes). Here, l = 0 or a positive integer,
which defines the angular factor of the orbital. (i.e., a spherical harmonic, or, more
rarely, its Cartesian equivalent) The number n gives the energy of the one-electron
atomic bound states. Frequently, basis set studies focus on the radial factor.

Certain physical properties, such as NMR shielding tensor calculations directly
involve the nuclear cusp and correct treatment of radial nodes, which indicates that
basis sets such as Coulomb Sturmians are better suited to their evaluation than
gaussians [4, 16, 33].

There is also evidence to suggest that CI expansions converge in smaller
exponential basis sets compared to gaussians [22,72]. Benchmark overlap similarity
work is available [5, 12]

5.2 Wave-Function Quality

To test wave-function quality, the following quantity must be smooth.
It is, to varying degrees, in different basis sets.

−1/2
∇ρ(r)
ρ(r)

Atomic positions must give cusps. The importance for stable and accurate kinetic
energy terms, particularly in DFT.

Much molecular quantum chemistry is carried out using gaussian basis sets and
they are indeed convenient and lead to rapid calculations. The essential advantage
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was the simple product theorem for gaussians on two different atomic centers.
This allows all the two-electron integrals, including three- and four- center terms to
be expressed as single-center two-electron integrals. The corresponding relationship
for exponential type orbitals generally led to infinite sums and the time required,
particularly for four-center integrals could become prohibitive.

Recent work by Gill has, nevertheless, been used to speed up all three and four
center integral evaluation, regardless of basis using the resolution of the Coulomb
operator [27, 35, 66]. This reduces the three- and four- center two-electron integrals
to a sum of products of overlap-like (one-electron) integrals, basically two-centered.
This algorithm was coded in a Slater type orbital (STO) basis within the framework
of the STOP package [8] (in fortran) during summer 2008. Note, however, that
other exponential or gaussian basis sets can readily be used. The set of one-
electron overlap-like auxiliary integrals is the only calculation that needs to be
re-done. They may be re-evaluated for the basis set that the user selects for a
given application. This procedure makes the approach highly versatile. A modular
or object oriented program is available to do this efficiently [35, 47, 48].

The layout is as follows: the review begins with a brief recap of basis sets
and programming strategy in the next two sections. Atom pairs are the physical
entity used for integral evaluation, both in the Poisson equation technique and
the Coulomb resolution. A case study of molecular interaction by Quantum
Monte Carlo simulation, using ETOs is followed by accurate NMR chemical shift
evaluation.

5.3 Basis Sets

Although the majority of electronic quantum chemistry uses gaussian expansions of
atomic orbitals [10, 11], the present work uses exponential type orbital (ETO) basis
sets which satisfy Kato’s conditions for atomic orbitals: they possess a cusp at the
nucleus and decay exponentially at long distances from it [39]. It updates work since
1970 and detailed elsewhere [3, 6, 15, 18, 28, 31, 42, 51, 52, 57, 60, 62].

Two types of ETO are considered here: Slater type orbitals (STOs) [58, 59]
and Coulomb Sturmians and their generalisation, which may be written as a finite
combination thereof [69]. Otherwise, STOs may be treated as multiple zeta basis
functions in a similar way to the approach used with gaussian functions.

Many exponential type functions exist [69]. Preferential use of Sturmian and
related functions with similar radial nodes is discussed [35].

Coulomb Sturmians have the advantage of constituting a complete set without
continuum states because they are eigenfunctions of a Sturm-Liouville equation
involving the nuclear attraction potential i.e., the differential equation below.

∇2
rS

m
nl (β ,r) =

[
β 2− 2β n

r

]
S m

nl (β ,r).
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The exponential factor of Coulomb Sturmians; e−β r has an arbitrary screening
parameter β . In the special case when β = ζ /n with n the principal quantum
number and ζ the Slater exponent, we obtain hydrogen-like functions, which do not
span the same space and require inclusion of continuum states to form a complete
set [69]. Hydrogen-like functions are, however well known as atomic orbitals: the
radial factor contains the associated Laguerre polynomial of order 2l+1 with suffix
n− l−1 and the exponential e−ζ r/n as indicated above. The angular factor is just a
spherical harmonic of order l. These functions are ortho-normal. The optimal values
of the β parameters may be determined analytically by setting up secular equations
which make use of the fact that the Sturmian eigenfunctions also orthogonalise the
nuclear attraction potential, as developed by Avery [2].

∫
S m

nl (r,θ ,φ)S
m′

n′ l′(r,θ ,φ)
dr
r

= δnn′ll′mm′ .

These functions are further generalised by varying α from the Coulomb Sturmian
value of 1. In such a case, the basis remains ortho-normal and othogonalises a/rα .
This eliminates the r2 term, arising for quadrupole moments when α = −2, thus
confirming the very recent numerics by Guseinov’s group [29]. Similarly, it would
be expected that α = −1 ETOs would constitute the optimal basis for magnetic
dipole integrals of NMR shielding. Furthermore, a negative value of α will not
modify the number of radial nodes: the functions will simply breath.

Recently, a physical interpretation of α was given by Guseinov. It is shown that
the Lorentz friction of electrodynamics gives rise to an additional potential term in
the Schrödinger equation for atoms. Interestingly, this term is zero when α = 1,
so that this special case reduces to the Coulomb potential and the Sturm Liouville
equation defining Coulomb Sturmians is simply obtained. Otherwise, an additional
term, depending on orbital angular momentum, represents the ‘drag’ on the electron
by moving within the field of the nucleus (Guseinov submitted to JTCC 2010).

Definitions: the generalised exponential functions constitute finite complete
orthonormal sets. Their expression is as follows:

χnlm(r) =
[
(−1)√

2n

]α
NnlL

2l+2−α
n−l−1−α (2ζ r) rle−ζ rY m

l (θ ,φ) (5.1)

Here, N is the normalisation constant previously obtained for Coulomb Stur-
mians, L is the associated Laguerre polynomial of order 2l + 2− α with suffix
n− l−1−α (recall that α = 1 defines the Coulomb Sturmians.

Define a variable including the screening constant:

x = 2ζ r

Subsequently, rewriting the norm as N(α)nl and introducing p = 2l +2−α and
q = n+ l + 1−α gives the simplified expression for the generalised orthonormal
basis sets of ETO, used by Guseinov.

χnlm(x) = N(α)nlL
p
q (x)rle−x/2Y m

l (θ ,φ) (5.2)
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In past applications, no obvious advantage has been evidenced for the func-
tions with negative α indices over the well-known Slater type orbitals, Coulomb
Sturmians (α = 1) or Shull–Loewdin functions (α = 0). In fact, the infinite series
arising when Hartree–Fock two-electron integrals that do not possess closed forms
(three and four center terms) are evaluated converge much more slowly when the
negative α functions are used. This has recently also proven to be the case of a set of
electric field integrals [73]. This paper records the precedent of electric quadrupole
integrals, already published by Guseinov’s colleagues, where the negative α basis
converges as well as (if not better than) the STO [29] and presents a new application
to the dipole integrals in the NMR experimental setup.

The investigations are extended to comparisons with previous work on the
nuclear dipole integrals that are so important to the evaluation of nuclear shielding
tensors and NMR chemical shifts. Furthermore, these nuclear magnetic dipole
integrals are closely related to the one-electron nuclear attraction integral, required
in all Hartree–Fock and DFT work.

In the case of electric quadrupole integrals, accounting for the Lorenz drag and
the r2 orthogonalisation in these integrals, favor the α = −2 ETO basis functions,
as predicted graphically from numerical results in [29]. In an analagous manner,
the dipole term in the perturbative treatment of NMR Shielding tensors favors the
use of α = −1 ETO eigenfunction basis sets, as illustrated in the Results tables of
the present work.

Alternative ETOs would be Slater type orbitals and B-functions with their simple
Fourier transforms. Strictly, they should be combined as linear combinations to form
hydrogen-like or, better, Sturmian basis sets prior to use.

STOs allow us to use routines from the STOP package [8] directly, whereas
Coulomb Sturmians still require some coding. The relationship to STOs is used to
carry out calculations over Coulomb Sturmian basis with STOP until the complete
Sturmian code is available. The present state-of-the-art algorithms require at most
twice as long per integral than GTO codes but the CI converges with fewer functions
and the integrals may be evaluated after gaussian expansion or expressed as overlaps
to obtain speed up [68].

After a suitably accurate electron density has been obtained for the optimized
geometry over a Coulomb Sturmian basis set, the second order perturbation defining
the nuclear shielding tensor should be evaluated in a Coupled perturbed Hartree
Fock scheme.

The integrals involved may conveniently be evaluated using B-functions with
linear combinations giving the Coulomb Sturmians.

S m
nl (r) = (2α)3/2 22l+1

2l + 1)!!

n−l−1

∑
l=0

(−n+ l+1)t (n+ l+1)t

t!(l +3/2)t
Bm

t+1,l(r)

The techniques exploit properties of Fourier transforms of the integrand.
Note that either HF or DFT can serve as zero order for the present nuclear

shielding tensor calculation over ETOs.
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A full ab initio B-function code including nuclear shielding tensor work is
expected to be complete shortly.

Some tests show that Slater type orbitals (STO) or B-functions (BTO) are less
adequate basis functions that Coulomb Sturmians, because only the Sturmians
possess the correct nuclear cusp and radial behavior.

5.4 Two-Center Integrals and Inter-Molecular Interactions

Asymptotic Coulomb and exchange integral decay is 1/R and exponentially.
The short range form involves powers of R as a factor of exponentials [50].
The total energy obtained for the isolated H2 molecule in a quadruple-s basis

is−1.1284436 Ha as compared to a Hartree–Fock limit estimate of−1.1336296Ha.
Nevertheless, the Van der Waals well, observed at 6.4 a.u. with a depth of
0.057 kcal/mol is quite reasonably reproduced [32].

Dimer geometry: rectangular and planar. Distance between two hydrogen atoms
of neighboring molecules: 6 a.u. Largest two-center integral between molecules:
4.162864 · 10−5. (Note that this alone justifies the expression dimer-the geometry
corresponds to two almost completely separate molecules, however, the method is
applicable in any geometry).

5.4.1 Intermolecular Interaction for ETOs: A Case Study

Exponentially decaying orbital are required for accurate representation of the atom-
atom interactions involved in molecular adsorption on a solid surface. The present
application involves CO adsorption on copper. This modifies the carbon partial
charge so that it becomes the seat of nucleophilic attack.

The plane wave basis used as the basis for 2-D periodic solid wave-functions
is approximated by localised B-splines, that can also describe the exponential type
orbitals of the molecules.

The Cu (001) surface is exposed. This truncation of the bulk lattice, as well
as adsorption, leads to drastic changes in electronic correlation. They are not
adequately taken into account by density-functional theory (DFT). A method is
required that gives almost all the electronic correlation. The ideal choice is the
quantum Monte Carlo (QMC) approach. In variational quantum Monte Carlo
(VMC) correlation is taken into account by using a trial many-electron wave
function that is an explicit function of inter-particle distances. Free parameters in
the trial wave function are optimised by minimising the energy expectation value
in accordance with the variational principle. The trial wave functions that used in
this work are of Slater–Jastrow form, consisting of Slater determinants of orbitals
taken from Hartree–Fock or DFT codes, multiplied by a so-called Jastrow factor
that includes electron pair and three-body (two-electron and nucleus) terms.
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A second, more accurate step, takes the optimised Jastrow factor as data
and carries out a diffusion quantum Monte Carlo (DMC) calculation, based on
transforming the time-dependent Schrödinger equation to a diffusion problem in
imaginary time. An ensemble in configuration space is propagated to obtain a highly
accurate ground state.

Carbon monoxide adsorption was considered in a preliminary DMC study
showing preferential bridged adsorption.

The QMC calculations will be carried out using CASINO. This shows good
linear scaling up to at least 100,000 processors.

5.5 Methods

5.5.1 Defining the Model System

Physically, a slab of copper is defined and oriented to expose the (100) surface,
perpendicular to the z-axis. This surface was shown to be active towards oxidation
and CO adsorption in previous DFT (Density Functional Theory) work on the
molecule-metal surface interface, at the Pascal Institute [43, 46]. It was also shown
to re-arrange its geometry to a certain extent to minimise energy and this nano-
structuring was intimately related to the presence of the adsorbed oxygen or CO
whilst generating specific adsorption sites [30].

In this work, the copper lattice is truncated by a planar surface initially. The wave-
function is generated on a plane-wave basis, in the first Brillouin zone of reciprocal
space, using the Monkhorst-Pack grid of k-points. The PBE GGA functional is
chosen (the Perdew Burke Ernzerhof functional, from 1996 works within the
Generalised Gradient Approximation (GGA) where the energy is a functional of the
density and its gradients [45], because of its non-empirical nature, thus enabling
ab initio DFT calculations to be carried out. In order to reduce the number of
active electrons (to 54 per super-cell, for a two-mesh thick slab), the data-bank of
pseudo-potentials pre-calculated over grids of k-points from the Fritz Haber Institute
is used [30]. An argon core is used for copper, restricting the active electrons to 11
per atom.

5.5.2 Generating the Trial Wave-Function

The trial wave-function is generated as plane-wave output from a DFT-PBE
calculation carried out using the ABINIT freeware (see www.abinit.org) [34].

www.abinit.org
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5.5.3 Variation Monte Carlo

This input is then used for the CASINO programme which is a Quantum Monte
Carlo code adapted to solid state work. It is converted into a B-spline basis, which
has negligible influence on the accuracy and speeds up the Quantum Monte Carlo
calculations considerably. These are cubic splines limited to radius 2 (i.e., f (u) = 0
if r = |u| ≥ 2) of the form:

f (u) = 1− 3/2u2+ 3/4|u|3. r ≥ 0, r ≤ 1 (5.3)

f (u) = 1/4(2−|u|)3. r ≥ 1, r ≤ 2 (5.4)

for all three axes. See [1].
A preliminary Variational Monte Carlo (VMC) calculation is carried out in order

to generate several thousand configurations (instantaneous points in the direct space
of the electrons) e.g., 5,000–10,000 configurations/core. VMC is driven by energy
minimisation.

Electron correlation is introduced via a Jastrow factor which can be optimised by
Variational Monte Carlo methods.

This optimisation procedure generates a correlation.data file containing the
optimised numerical parameters for the electron–electron and electron pair-nuclear
contributions to the Jastrow factor.

A final VMC calculation generates the initial configurations required for the
Diffusion Monte Carlo step (DMC) also 5,000–10,000 per core, typically.

5.5.4 Diffusion Monte Carlo

Linear scaling tests and memory requirement (memory sharing of a little less than
2Mo by four cores for the present application) adapting CASINO specifically on
Bluegene were completed successfully.

5.6 Application

5.6.1 Adsorption of Carbon Monoxide on Copper Surfaces

Quantum Monte Carlo (QMC) simulations are used to describe small molecules
adsorbed on a Cu(001) surface. The surface presents 2-D periodicity and the
molecules interact with both the surface and each other.

Carbon monoxide (CO) adsorption was considered. The strong bonding within
this molecule is weakened by interactions with the surface, making the molecule
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easier to attack by nucleophilic molecules. The carbon monoxide molecule is
polarised by its adsorbtion on the surface (gaseous CO has a negatively charged
carbon, whereas once adsorbed it can present the typical partial positive charge of
a carbonyl carbon which is the site of nucleophilic attack). Investigation of this
phenomenon is followed by a study of reaction dynamics with the hydride as model
nucleophile before protonation.

Removal of toxic carbon monoxide molecules is a typical depollution reaction,
of interest in catalytic exhausts. Furthermore, the reaction with water is of industrial
importance in producing clean fuels (hydrogen gas) in a sustainable process.,
whereas that with hydrogen, via hydride attack and addition of the H+ counter-ion
produces formaldehyde. Formaldehyde, i.e., H2CO is a valuable molecule for
organic synthesis and solvation.

5.6.2 Adsorbed CO with Ionised H2: Hydride Model Nucleophile

To follow the model reaction, with adsorbed CO under nucleophilic attack from a
hydride (H–) ion, the set of geometries for CO approaching a Cu(100) surface is
obtained by DFT plane-wave calculations using the PBE functional.

Initially, the interaction is repulsive: the partial negative charge on carbon closer
to the surface than the oxygen repels mobile electrons, causing repulsion with
positive charges induced at the metal surface. Closer to the surface, the carbon
acquires a partial positive charge and the system reaches an equilibrium, after some
electron transfer to the metal (about 0.1e) and a slight stabilisation occurs.

As seen from previous work, hydrogen is dissociated at the surface and remains
available by diffusion [30, 46].

Examining the electron distribution indicates that the gas-phase mechanism is of
free-radical type: H.+CO→ HCO. and, since the hydrogen radical comes from
(e.g., photo-induced) homolytic fission of H2, the reaction terminates by radical
addition:

HCO.+H.→ H2CO

A similar reaction is already the subject of study by kinetic Monte Carlo
techniques (kMC) on Ni(100), where it has been observed experimentally. Here,
the aim is selectively to produce formaldehyde in an addition reaction.

This work is conducted with A Bouferguène, using a model surface and kMC
techniques to study the kinetics of the following reaction (manuscript in press: Int.
J. Mod. Phys. C 2011):

H2→ H +H +CO→ HCHO.

Note, however, that the H2 bond is known to participate in ring-systems, in
which the energy difference between atom-centered radical and ionic species is zero.
A good DMC value for the total H2 energy is −1.07757 a.u. [64].
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Fig. 5.1 Stretched surface H2 giving hydride ion as model nucleophile to attack adsorbed CO

Charge transfer to the Cu(100) surface is necessary to polarise the CO molecule,
adsorb it and give it the “organic” carbonyl carbon, with partial positive charge.
Energy criteria suggest a concerted mechanism, with the H2 bond stretching and
also being polarised, in the vicinity of the co-adsorbed CO. This will inevitably lead
to partial charges, since the energetic cost of forming a hydride ion is prohibitive.
Nevertheless, this species is a model nucleophile and it is to be expected that
a hydride species, with partial negative charge would rapidly form the HCO−
intermediate. Since this intermediate is so much stabler on the Cu(100) surface than
HCO., it is assumed that the rate limiting step is the initial concerted bond-stretch
and charge re-arrangement (shown in the scheme and Fig. 5.1 below):

H2 +CO→ H+−−H−+Cδ+O→ HCO−+H+

All the molecules involved have near-Hartree–Fock-limit wave functions available
from the STOP (QCPE 667) [8] code using basis sets due to I. Ema [23], which are
triple-zeta STOs with one d and one f orbital on O and C. The works on water and
CO2 are referenced below, and those on diatomics are unpublished tests [14, 54].
An extensive QMC study showing improvements obtained using STO was recently
carried out on Bluegene calculators [63].

The geometry of reaction intermediates and transition states, provided by
DFT/plane-wave calculation may be used as input geometry to QMC/blip basis set
calculations.

Preliminary results have successfully shown the initial repulsion and de-
stabilisation of CO adsorbed on the Cu (100) surface. Skin depth effects are limited
to a two-layer copper slab, with periodic boundary conditions in two dimensions.
The CO molecule transfers electronic charge to the surface and subsequently
presents a partial positive charge on the carbon atom, near the copper surface.
This has then be shown to provide a site for nucleophilic attack by the hydride ion
(H–). This adsorbed reaction has been compared to its gas-phase counterpart and
shown to have a lower activation barrier. All these systems require a DMC fixed
node calculation to obtain sufficiently low QMC variance energies to argue reliably
the case for a surface catalyst effect. Other nucleophiles are now being considered.

As a result, we advocate the use of plane-wave or blip [1] basis sets because they
are easy to manipulate numerically and increase in number to improve accuracy.
They are exponential type atomic orbitals with complex exponents. They may be
used to represent the analytical orbitals over a numerical grid to arbitrary accuracy.
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5.6.3 ABINIT Adsorbtion Calculations

Complete CO adsorption calculations were carried out using a slab with six layers of
copper at the bulk geometry, oriented to expose the Cu(001) surface perpendicular to
the z-axis, and periodic within the slab. Co-ordinates of the molecule were allowed
to vary around a distance of 6 a.u. from the C and O atoms to the surface (i.e., little
overlap). This slab size has been shown to be the smallest that adequately converges
the physical properties under investigation in DFT-PBE studies. CO coverage was
one molecule per face.

The molecules were systematically polarised by the presence of the surface, with
the bond length increasing by about one third during geometry optimisations.

Copper atoms are modeled using argon core Troullier-Martins pseudopotentials
generated using the utility provided by FHI Berlin [46].

The other atoms also use this type of pseudopotential for the 1s cores.
The system size is thus about N = 4×11+2= 46 in all for the CO+H2 adsorbed

system.
An 8 × 8 × 1 Monkhorst-Pack grid converges the surface-formation and

adsorption energies to better than micro Hartree accuracy in DFT work. In QMC
work, the cells need to be limited, to a single k point, or at most a 2× 2× 1 grid.
This limitation is not too severe for the properties sought. A high kinetic-energy
cutoff of 60 a.u. is required for micro Hartree accuracy.

These DFT calculations take 20–30 core hours on a local PC grid (32 cores).
DFT is inadequate because the optimal orientation and adsorption energy for CO

vary with the choice of (exchange-correlation) functional. In particular, there is no
guarantee of which leads to an improvement, LDA included.

A 2-D periodic system in a plane-wave basis is adopted. This approach can be
initialised with a trial wave function generated by the ABINIT code. Some test
calculations on CO have been successfully completed, suggesting a very stringent
error margin should be used (corresponding to interactions involving a pair of weak
bonds at a total of 0.2–0.4 eV). A tolerable error margin (about 5% of the smallest
interactions involved) for this is 15 meV.

5.6.4 The Need for QMC and Its Originality

This rather modest number of carefully selected electrons allows an accurate wave-
function representation of the complex system involved, thus lending itself to the
use of QMC to account accurately for electron correlation. To our knowledge, this
is the first time that QMC will have been used to study a reaction taking place on a
surface.

Since the software shows linear scaling within the memory requirements of
Bluegene, runs on 2048 cores have become routine.
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5.6.5 Preliminary Results

In fact, preliminary QMC runs have shown that the “atop” mode of mono-dentate
adsorption is at 1.43 eV and the bi-dentate, bridged state at 1.55 eV. These appear to
be significant differences and the values should be distinguished, both led to dipole
reversal for CO (cf plane-wave DFT calculations).

Energetics:

HCO. (gas phase)−22.022551238664+/− 0.0075780 a.u.

CO (gas phase) −21.489665250511+/− 0.0003418 a.u.

Gas phase barrier: 86.2 kJ/mol.

Note that this assumes a collision occurs in the gas phase. The collision dynamics
has not been investigated here. In the adsorbed phase, the molecules may be
physisorbed and consequently fixed in the vicinity of the surface. Reagent molecule
co-adsorption is considered, in which the model nucleophile and CO are adsorbed
at the surface and close to each other. This is by no means unlikely, since CO tends
to adsorb strongly at temperatures up to a few hundred K, whereas the hydrogen
atoms diffuse readily. See [30].Below the DMC standard error (se) are considered.

Clean 2-D periodic slab exposing Cu(100) two unit mesh thick: −204.8894
se 0.00187.
Slab with co-adsorbed hydrogen and CO: −227.440789886210+/− 0.006013
Stabilisation, compared to HCO.+H. (gas phase): 75.5 kJ/mol.
Barrier height, compared to H2 +CO (gas phase): 40.0 kJ/mol (min).

Therefore, some evidence has been accumulated for the Cu(100) surface stabil-
ising activated species and thus acting as a heterogeneous catalyst. The key issue
is that gas phase CO is inert towards nucleophiles (but may react by a radical
pathway) and that the rate limiting step appears to be concerted H2 bond stretch,
accompanying the hydride attack on the adsorbed CO carbon, that is closer to the
surface than the oxygen and thereby acquires a partial positive charge.

These steps are all reversible and more evidence is required regarding the
transition state energy and structures.

Therefore, more extensive work is required, both on setting up the pseudo-
potentials and above all on DMC simulations for Cu(100) slabs as large as resources
will allow and carried out for the time required to obtain variance compatible with
differentiating these values that are only about 0.15 eV apart. This would appear
to be the smallest significant energy difference in the process, as the addition of
hydrogen-bearing molecules will result in weak interactions of the same order of
magnitude.

The implementation of plane-wave and blip basis sets in the CASINO program
simply requires it to read output from, e.g., ABINIT. Hence ABINIT is the obvious
choice for these applications.
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5.7 Numerical Methods and Algorithms Used

Two QMC methods are used: variational quantum Monte Carlo and diffusion
quantum Monte Carlo (VMC and DMC). In the VMC method, the expectation
value of a quantum mechanical operator is taken with respect to a trial many-body
wave function. The integration is performed using a Monte Carlo method, with the
Metropolis algorithm being used to sample electronic configurations distributed as
the square of the trial wave function. Free parameters in the trial wave function can
be optimised by minimising the energy expectation value in accordance with the
variational principle. In the DMC method the ground-state component of the trial
wave function is projected out by solving the Schrödinger equation (SE) in imagi-
nary time. This is accomplished by noting that the imaginary-time SE is a diffusion
equation in the 3N-dimensional space of electron coordinates, with the potential
energy acting as a source/sink term. The imaginary-time SE can therefore be solved
by a combination of diffusion and branching/dying processes. The introduction of
importance sampling using the trial wave function transforms the problem into one
involving drift as well as diffusion, but greatly reduces the population fluctuations
due to the branching/dying process. The Fermionic antisymmetry of the wave
function has to be maintained by constraining the nodal surface to equal that of
the trial wave function. Reference [24] provides an overview of the VMC and DMC
methods.

The VMC and DMC methods are implemented in the CASINO code [44] (version
3.0), with which we intend to carry out this project. CASINO is written in Fortran 95
and parallelised using MPI with a master/slave program model. CASINO has been
in existence for more than thirteen years and has been used on a wide variety of
high-performance computer platforms. There are 360 registered users of the code.
CASINO requires only the MPI library.

In these calculations, our trial wave function will be of Slater–Jastrow form. The
Slater determinants will contain orbitals taken from density functional theory (DFT)
calculations. The Jastrow factor is an explicit function of electron–electron distance,
enabling a highly accurate and compact description of electron correlation. The
Jastrow factor consists of polynomial expansions in electron–electron separation,
electron–nucleus separation, in which the polynomial expansion coefficients are
optimisable parameters [21]. These parameters were determined by minimising the
VMC energy.

The DMC method will then be used to determine a highly accurate value for the
ground-state energy. The computational effort required by the DMC calculations is
very much greater than that required by the preliminary DFT or VMC calculations,
dominating contribution to the computational effort involved.

By calculating DMC energies for various DFT-generated atomic configurations,
the height of the energy barriers were obtained, for a model reaction taking place on
the copper surface. The physics underpinning the chemical process of catalysis was
described.
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The initial interaction energy from DFT work is 0.1 a.u., i.e., 2.7 eV, but
differences as low as 0.1–0.2 eV may be significant, corresponding to weak
(hydrogen bonding or polarisation) interactions. This is the value retained as thresh-
old for significant energy differences to be resolved by QMC.

The statistical error bar Δ on the QMC total energy must be small compared with
the energy difference to be resolved. Assuming the cost of the equilibration phase of
a QMC calculation is negligible, the statistical error bar falls off as 1/

√
T , where T

is the computational effort in core-hours. The computational cost to achieve a given
error bar increases as N3 [24]. Hence the error bar in eV can be estimated as

Δ = c
√

N3/T , (5.5)

The pre-factor c in Eq. 5.5 was determined from DMC studies of copper clus-
ters [37], giving c = 0.00126.

The orbitals were initialised using DFT in a plane-wave basis, then re-represent
them in a blip (B-spline) basis for the QMC calculations, in order to improve the
system-size scaling of QMC [1]. The blip coefficients and plane-wave coefficients
are related by a Fourier transform. The number of blip coefficients is usually
somewhat larger than the number of non-zero plane-wave coefficients, in order to
make the blip grid finer in real space.

5.7.1 The NMR Nuclear Shielding Tensor

More complete work is referred to here and the present description is a brief
summary [19, 20, 38]. In NMR, the nuclear shielding tensor is a second order
perturbation energy correction, for derivatives with respect to the nuclear dipole
moment and the external field.

The perturbed Fock matrix element when including the effect of the external
field contains both one and two electron terms. In this example, we focus on the one
electron terms.

The purpose of the present section is to give a case study of one of the
contributing energy integrals involving the dipole 1/r3

N operator.
In the applied magnetic field, the question of gauge invariance must be resolved.

A method of circumventing the problem was devised by Ditchfield using the London
GIAO [41]. These Gauge Including Atomic Orbitals reduce to STO for zero field
and contain the required phase factor otherwise [19, 20, 67].

The integrals were evaluated for GTO at zero field and nuclear shielding tensor
or chemical shifts have been available since Gaussian 72 based on this pioneering
work [31] and distributed to academics by QCPE. It is nevertheless important that
users input the appropriate structure in order to obtain accurate chemical shifts
corresponding to the species studied and note that for work in solution (or in solids)
some structural changes may occur.
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Define the nuclear shielding tensor as a second order energy perturbation:

σN
αβ =

[
∂ 2 〈0 |H (μN ,B0)|0〉

∂ μN,α ∂B0, β

]
μN =0, B0 =0

(5.6)

with μN the nuclear dipole moment of nucleus N and B0 the external field. |0〉 is a
closed shell ground state Slater determinant. α and β stand for cartesian coordinates.

A coupled Hartree–Fock treatment of the above equation leads to [19, 20, 61]:

σN
αβ = Tr

[
P(0,1)

β h(1,0)α +P(0)h(1,1)αβ

]
(5.7)

where P(0) and P(0,1)
β are the density matrix of zero order and first order with

respect to the external magnetic field, h(1,0)α is the core Hamiltonian of the first order

with respect to nuclear dipole moment and h(1,1)αβ is the second order one-electron
Hamiltonian with respect to the nuclear moment μα and the external field Bβ . The
non-zero orders in (5.7) involve integrals which are absent from ab initio Hartree–
Fock calculations. In this work, we focus our attention on integrals involving 1/r3

N
in their operator. These integrals appearing in the second order expression for the
approximate perturbed Hamiltonian:

h(1,1)μν,αβ =
μ0

4π
e2

2me

〈
χμ

∣∣∣∣rν · rNδαβ − rν,α rN,β

r3
N

+
(Rμν ∧ r)β (rN ∧∇)α

r3
N

∣∣∣∣χν

〉
(5.8)

The integral which we have chosen to investigate in detail within the Fourier
transform approach, is the three-center one electron integral:

I =

〈
χμ

∣∣∣∣rν · rNδαβ − rν,αrN,β

r3
N

∣∣∣∣χν

〉
(5.9)

here rN is the instantaneous position of the electron with respect to the nuclei N.
Analytical treatment: [67]
The algorithm is available in Fortran, within the STOP (Slater Type Orbital

Package) set of programs, at the coupled perturbed Hartree–Fock level with the
ETOs expanded in Slater type orbitals.

DFT coding proves more accurate for NMR chemical shifts because it accounts
for the majority of the electron correlation energy. In this case, the ETOs are fitted
to large Gaussian expansions, following the algorithm in [49] and Gaussian 03 is
subsequently used.

5.7.1.1 Application

The 15N chemical shifts measured for a set of benzothiazoles are evaluated with
the above expressions. These molecules possess a ring nitrogen and have been
studied previously in our group [67]. The measurements were made in natural
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Fig. 5.2 Tautomerism protonating the nitrogen investigated by NMR

Table 5.1 Numerical values of chemical shifts for tautomer structures

Molecule Substituent a b c

BT:benzothiazole: No X −72.5 −71.8 −61.4
OBT: X=O −238.8 −238.9 −133.3
OHOBT: X=O; Y=OH −240.4 −239.9 −135.3
ABT: X=NH −153.1 −152.1 −131.6
OHABT: X=NH; Y=OH −153.1 −153.6 −132.3
MBT: X=S −199.6 −199.9 −79.9
OHMBT: X=S; Y=OH −205.5 −205.5 −83.2
MTB: X=N(CH3)CONHCH3 −124.0 −125.4 −141.0

abundance. The intensity of signals due to the nitrogen must be amplified by a 2-D
NMR technique involving cross-polarization to benefit from the intensity of proton
resonances coupled to that of the 15N in the molecule.

The in vivo NMR benefited from measurements by B. Combourieu: these
molecules are metabolized by bacteria and researchers in the group try to follow the
pathway by NMR. Since such studies are very difficult to do, we tried calculating
some chemical shifts accurately from structures to assign them (see [67]).

The Y substituent, generally a hydroxide was found to be in the position indicated
(for mechanistic reasons, it is the only accessible and stabilised position for ring
hydroxylation which has been found to take place in vivo after experiments in our
group).

In solution, these molecules undergo a tautomeric equilibrium reaction trans-
ferring a proton towards this nitrogen as shown in the figure below (also used for
nomenclature; P=protonated on resonating nitrogen) (Fig. 5.2).

NDDO-PM3 fitted STO molecular-site calculations on unprotonated tautomers
(b). When the Gaussian03/PBE 6−311++G(2d,p) calculation (c) differs substan-
tially from the measured value (a) (ppm/CH3NO2) that the resonating nitrogen is
mostly protonated. This serves as a guideline for ab initio structures studied for
these equilibria (Table 5.1).

The above results prompted use of a structure, protonated on the resonating
N, (denoted P) to obtain the zero-order wave-function, in all cases apart from
benzothiazole (BT) and ABT. Below, the same cases are treated in the DFT work.

Note that the basis sets including hydrogen-like orbitals perform better than
the STO basis sets that in turn improve upon dense-core Gaussian basis sets
[6−311++G(2d,p)].
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Table 5.2 Numerical values for DFT calculations
Molecule Substituent a–c a–b a–d a–e a–f
BT:benzothiazole: No X 1.3 8.3 11.1 1.2 2.8
POBT: X=O 4.6 11.7 20.0 3.8 5.3
POHOBT: X=O; Y=OH 4.5 7.4 14.9 2.9 5.2
ABT: X=NH 1.1 3.8 21.5 0.9 3.1
OHABT: X=NH; Y=OH 4.5 10.1 20.8 2.8 6.1
PMBT: X=S 3.0 11.2 21.2 2.1 4.5
POHMBT: X=S; Y=OH 2.5 10.1 18.8 1.7 4.8

Basis sets augmented with hydrogen-like orbitals are within 5 ppm of the
experimental values (measured within 2 ppm) for the discrete solvated model.
This model explicitly includes several deuterated methanol molecules to cater
for the specific hydrogen bonding interactions.

Next, examining the generalised basis sets, compare b, c, d, and f with the
measured chemical shifts and evaluate the difference in ppm. Differences between
calculated and observed 15N chemical shifts for commercial benzothiazoles and
some metabolites (in ppm).

a-Measured values with respect to nitromethane standard in deuterated methanol
solvent (B. Combourieu in [67]) error bars of 2 ppm.

b-Coupled perturbed STO.
c-Gaussian [25] with hydrogen-like AOs (c.f. Coulomb Sturmians α = 1).
d-Gaussian [25].
e-Generalised ETO α =−1.
f-Generalised ETO α =−2.
Note. b through f involve solvation models, detailed below (Table 5.2).
a Measured chemical shift for ring nitrogen.
b STO: DFT PBE 6−311++G(2d,p) calculations with two discrete CD3OD

molecules on OH, NH, and SH (one on N, O, S) for minimal total energy.
c Gaussian 2003 as (b) with hydrogen-like orbital DFT PBE aug-6.311G**(2d, p)

calculations.
d Gaussian 2003 DFT PBE 6−311++G(2d,p) calculations.
The content of this table is original and based on the previous work of the

author [35] i.e., geometries are re-optimized from the co-ordinates of [35].

5.8 Conclusions

The scientific promise in studying a reaction at the copper (001) surface that
removes toxic carbon monoxide using water as reagent and produces hydrogen as
clean fuel is significant in providing the theory for a model catalyst which should be
helpful in designing its industrial counterpart.

For NMR work, it is essential to use a basis set which comprises orbitals with the
correct nuclear cusp behavior. This implies a non-zero value of the function at the
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origin for spherically symmetric cases and satisfying Kato’s conditions. Hydrogen-
like atomic orbital basis sets therefore perform better than Slater type orbitals which
are an improvement upon Gaussians.

The NDDO-PM3 molecular site approach has the advantage of rapidity.
Calculations take about a minute instead of 50–75 h on the IBM-44P-270.
They cannot be systematically improved, however once the site Slater exponents
have been fitted. Note that the 2s Slater exponent fluctuates wildly in fits, providing
further evidence that shielding must be of the form (2-r) for the 2s ETO.

Fundamental work on orbital translation (see previous contribution) is also
in progress to speed up these calculations within the test-bed of the STOP
programmes [53].

The interplay of these discrete molecule solvent models and accurate in vivo
NMR measurements is satisfactory, in that the structures postulated give calculated
chemical shifts to similar accuracy as obtained for experimental values (on the order
2 ppm). It should be stressed that energy minimization in this case does evidence
directional hydrogen bonds but can lead to several possible solvent geometries.

It is a remarkable gain in simplicity that the Coulomb operator resolution [66]
now enables the exponential type orbital translations to be completely avoided,
although some mathematical structure has been emerging in the BCLFs used to
translate Slater type orbitals [74] and even more in the Shibuya–Wulfman matrix
used to translate Coulomb Sturmians.
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Chapter 6
Progress in Hylleraas-CI Calculations on Boron

Marı́a Belén RUIZ

Abstract Preliminary results on Hylleraas-Configuration Interaction calculations
of the boron atom ground state are presented. The wave function consists of
a 954 term Configuration Interaction part and 192 configurations including all
interelectronic distances. An energy value of −24.64815076a.u. was been obtained
with a minimal orbital basis [4s3p2d]. Calculations with more configurations
are in progress. Correct description of the electronic cusp is important, as dis-
cussed and the most recent benchmark calculations in the field are concisely re-
viewed. The computational techniques for matrix element evaluation are described.
Those employed for the B atom can be readily used for C and N atoms, and
further for the highly accurate calculation of the nonrelativistic energy of second
row elements.

6.1 Introduction

After Egil Hylleraas [26] proposed (in 1929) the He atom wave function, including
the interelectronic coordinate r12, in the following decades one of the goals has
been to improve it and extend it to determine energies and properties of ground and
excited states of light atoms and small molecules with the highest possible accuracy.
Hylleraas pointed out: “It is then quite clear for me, that here if the extreme limit
of capability in these calculations would be achieved, the exact treatment of more
difficult systems would be hopeless. (...) I have finally succeeded to find a method,
that for helium leads to the desired results and hopefully will prove to be fruitful
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also for other problems.” In this work we shall show that the Hylleraas method can
be successfully extended to the calculations of atoms with five and more electrons.
Concretely, this can be done using a variant of the Hylleraas method, the Hylleraas-
Configuration Interaction method [59, 60, 71], which is a hybrid of two methods:
that Hylleraas and the Configuration Interaction method (CI).

The CI wave function, which is of great importance in quantum mechanical
calculations of the electron structure of atoms and molecules, has well-known
shortcomings, like the fact that the wave function does not fulfill the electronic cusp
condition [29]: (

1
Ψ

∂Ψ
∂ rij

)
rij=0

=
1
2
. (6.1)

This is because the CI wave function does not contain linear odd powers of the
interelectronic coordinate rij. Note that the CI wave function does contain terms
r2

ij, r4
ij, · · · r2n

ij which are formed by combination of angular orbitals p, d, f of the
one-electron basis, for instance:

p(1)p(2) ≡ s(1)s(2)r2
12 [17, 61]. Although the presence of the even powers r2n

ij
explains the accuracy of the full-CI wave functions, its form is responsible for the
extremely slow convergence of the CI method to the exact solution. Odd powers of
rij are significant energetically [69]. They are equivalent to an infinite expansion of
one-electron orbitals. It can be demonstrated using the addition theorem of spherical
harmonics that:

s(1)s(2)r12 ≡ s(1)s(2)+ p(1)p(2)+ d(1)d(2)+ f (1) f (2)+ · · · (6.2)

In the CI wave function higher and higher angular terms included attempt to
represent the term rij c.f. Taylor expansion [69]. The energy improvement when
increasing the quantum number l obeys an asymptotic formula proportional to
(l + 1/2)−4 for two-electron systems [24], and in general for a larger number of
electrons [35,56]. Therefore, the correct description of the electron cusp is of utmost
importance for the convergence of the energy by the different methods and, therefore
the feasibility of achieving highly accurate energy results with existing computer
resources and in a reasonable computer time.

The improvement of Hylleraas-type wave functions has continued over the years,
represented among others by calculations of James and Coolidge [27], Frankowski
and Pekeris [20]. The past two decades saw a ‘Renaissance’of Hylleraas-type meth-
ods, with numerous benchmark calculations on light atoms and small molecules.
This progress has been accelerated by the recent developments in computer
technology, the use of high precision arithmetic [3], and the appearance of algebraic
programs like Maple [37], which permits one to work with complicated algebraic
expressions with no human error. Nowadays the field of highly accurate calculations
is in continuous development. For example, we briefly mention here the latest
benchmark calculations on light atoms and small molecules.

For the He atom and two-electron systems the Hylleraas wave function has been
recently improved including logarithmic terms by Schwartz and Nakatsuji et al.
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The nonrelativistic energies obtained for the ground [42, 57] and excited states [43]
have more than 40 decimal digits of accuracy (these results are essentially exact for
practical purposes, beyond what can be obtained experimentally). Note that highly
accurate computational data is used together with experimental data, to determine
fundamental physical constants, e.g., the fine structure constant α , or the lamb shift
in He atom (CODATA) [41]. Also highly accurate energy results are needed e.g.,
to calculate electron affinities and ionization potentials. A beautiful example is the
calculation of the ionization energy of lithium atom [30], where the leading terms
are the nonrelativistic energies. Data for highly ionized levels of atoms and ions is
very scarce. The calculation of anions is specially difficult because the odd electron
is weakly bound. Other possible applications of highly accurate wave functions
are the calculation of the energy levels of atoms and small molecules confined in
cavities [2], interesting for their application to several problems of modern Physics
and Chemistry, and the calculation of the transition probabilities during β -decay of
light atoms [21], relevant in Nuclear Physics and Nuclear Medicine.

Recently, impressive calculations using Hylleraas wave functions have been done
for the H2 molecule by the Hylleraas method [44, 63], the Iterative Complement
Iteration (ICI) [36], and Explicitly Correlated Gaussian (ECG) [12] methods.
Few molecules have yet been calculated using Hylleraas-type wave functions:
HeH+ and some other species [72] using the Hylleraas method, the helium dimer
He2 interaction energy [46] and the ground state of the BH molecule [7], both using
the ECG method.

The Hy-CI method was applied in 1976 to LiH molecule by Clary [14] using
elliptical STOs. For two-center molecules the three-electron and four-electron
integrals occurring in the Hy-CI method have been developed by Budzinski [8].
Clementi et al. extended the Hy-CI method to molecules using Gaussian orbitals
[45], and applied it to the calculation of H3. For a review on molecular methods
using Slater orbitals and their history, see Refs. [25, 51].

The electronic structure of light atoms e.g., Li and Be have been investigated
using the Hylleraas, Hy-CI and ECG methods by several authors. For instance, the
Li atom has been recently determined beyond nanohartree accuracy (>1.10−9 a.u.)
[47] using the Hylleraas approach1 and the Hy-CI methods [64]. The best CI
calculation on the Li atom using Slater orbitals needs 2.6 million configurations.
The Be atom is currently the subject of investigations, now better than one tenth of
a microhartree accuracy (<0.1·10−6 a.u.) has been achieved using the ECG [66]
and the Hy-CI methods [65]. This quest for high-accuracy requires a profound

1In the Hylleraas (Hy) method all rij may be included simultaneously into a configuration. This
method converges faster to the exact solution, but it has been applied only for N ≤ 4 electrons with
the restriction of single and double-linked products of rij [10]. The integrals for Hy double-linked
wave functions are very complex [31]. For a N ≥ 5 electrons the Hy method would lead to the
many-electron integrals, which are yet to be solved in general.
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knowledge in the construction of wave functions, which will be helpful to calculate
with relative ease larger systems.

In the years 2009, 2010 two highly accurate calculations on the B atom have
been reported using the CI and ECG methods. A huge selected CI calculation with
L-S eigenfunctions, carried out by Bunge [1, 9] with the following set of orbitals
[24s23p22d21f20g19h18i17k16l15m14n13o12 q11r10t9u8v7w6x5y4z] and about
12 million selected configurations, has led to the energy −24.6538373a.u. which
is ≈1·10−4 a.u. accurate. The immense dimension of the matrix is treated using a
“CI by parts” dividing the space into subspaces. The CI calculations were extremely
fast, of the order of hours/day.

The second calculation on B atom by Adamowicz et al. [7] was done using
the ECG method with 2000 configurations, and led to the energy −24.65384 a.u.
(<0.1·10−4 a.u.). The reported computational time was immense, about 1 year of
continuous calculation using parallelization and energy gradients, due to the large
number of non-linear parameters (30,000) to be optimized.

For comparison, using the r12-MR-CI method the value −24.65379 a.u.,
(also <0.1·10−4 a.u. accurate) [23] was obtained with a very large basis of
Gaussian orbitals. The ab initio result from the Diffusion Monte Carlo method
is −24.65357(3)a.u. [6]. The estimated nonrelativistic energy using theoretical
and experimental data is −24.65391 a.u. [13]. The mentioned calculations are less
accurate than a microhartree. The relativistic energy value including mass and
Darwin corrections is estimated to be: −24.659758a.u.

The carbon atom has been recently calculated employing the ECG method thanks
to the use of analytical energy gradients [58]. Although neon atom was calculated
by Clary and Handy using the Hy-CI method [15], for N and larger atoms the most
accurate calculations have been obtained using the R12 [34] and F12 methods [32].

In this paper we present some preliminary Hy-CI calculations on the B atom
using all interelectronic distances and only some of all possible configurations.
In the next sections the techniques used for the calculation of the matrix ele-
ments, construction of the configurations and exponent optimization are treated.
These techniques can be readily extended to the C and N atoms. We shall apply
the Hy-CI method to the B atom and show that the preliminary calculations are very
promising, because a small number of configurations is needed to obtain an accurate
energy result compared with other methods which need millions of configurations.
Work is in progress to add all types of configurations into the wave function.

6.2 Theory

The Hylleraas-Configuration Interaction wave function [59, 60, 71] may be written:

Ψ =
N

∑
p=1

CpΦp, Φp = Ô(L̂2) ˆA φpχ , (6.3)
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where Φp are symmetry adapted configurations, N is the number of configurations
and the constants Cp are determined variationally. The operator Ô(L̂2) projects over
the appropriate space, so that every configuration is an eigenfunction of the square
of the angular momentum operator L̂2. ˆA is the antisymmetrization operator, and χ
is the spin eigenfunction. In the case of the B atom:

χ = [(αβ −β α)(αβ −β α)α]. (6.4)

The spatial part of the basis functions are Hartree products of Slater orbitals:

φp = rν
ij

n

∏
k=1

φk(rk,θk,ϕk). (6.5)

The terms rν
ij are effectively reduced to ν = 0,1 since all higher terms can be

expressed as a product of rij times a polynomial in ri,r j and angular functions.
The basis functions φp, are products of s-, p- and d-Slater orbitals. For simplicity,

we do not consider higher angular momentum orbitals. These can be added later if
necessary to obtain higher accuracy. We use unnormalized complex Slater orbitals
for which the exponents are adjustable parameters, defined as:

φ(r) = rn−1e−αrY m
l (θ ,φ). (6.6)

The spherical harmonics with Condon and Shortley phase [16, p. 52] are given by:

Y m
l (θ ,φ) = (−1)m

[
2l+ 1

4π
(l−m)!
(l +m)!

]1/2

Pm
l (cosθ )eimφ , (6.7)

where Pm
l (cosθ ) are the associated Legendre functions. The spherical harmonics

and associated Legendre functions used throughout this work are written explicitly
in [67, p. 14]. Using the complex spherical harmonics we have constructed a set of
configurations of P symmetry, which have shown to be important in CI calculations
[53]. The ground state configuration is ssssp and the configurations following an
energetic order are ssppp, sspds, ssspd, ssdd p. Additional configurations rotating
the orbitals are ppssp, psspp, spdss, pdsss, ddssp, dssd p. Combinations of inner-
shell configurations S(pp), S(dd) with P(sp) and P(pd) lead to the configurations
ppppp, ppdd p, dd ppp, ppspd, ddspd, and dddd p, which may be important at the
micro- and nano-hartree level of accuracy. The number of configurations grows very
fast when adding the ten rij factors.
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The Hamiltonian in Hylleraas coordinates may be written [50]2:

Ĥ = −1
2

n

∑
i=1

∂ 2

∂ r2
i

−
n

∑
i=1

1
ri

∂
∂ ri
−

n

∑
i=1

Z
ri
−

n

∑
i< j

∂ 2

∂ r2
i j

−
n

∑
i< j

2
ri j

∂
∂ ri j

+
n

∑
i< j

1
ri j

−1
2

n

∑
i= j

r2
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j

riri j

∂ 2
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− 1

2
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n

∑
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−
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r j
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∂ 2
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. (6.8)

The kinetic energy operator has been separated into several radial and angular
parts. For any atomic number two- and three-electron kinetic-energy integrals
occur. This operator has the advantage that for the case of three-electron kinetic
integrals the expansion of ri j into r< and r> is avoided, and therefore no three-
electron auxiliary W integrals are needed. This fact saves not only calculations
but also memory space. Only the easily computed two-electron auxiliary integrals
V (n,m;α,β ) are needed.

The angular momentum operator can be extracted from Eq. 6.8:

n

∑
i=1

1

r2
i

L̂2
i =−

1
2

n

∑
i=1

1

r2
i

∂ 2

∂θ 2
i

− 1
2

n

∑
i=1

1

r2
i sin2 θi

∂ 2

∂ϕ2
i

− 1
2

n

∑
i=1

cotθi

r2
i

∂
∂θi

, (6.9)

and its eigenvalue equation used:

L2
i φi = li(li + 1)φi, (6.10)

with li the angular quantum number of the orbital φi. In the case of Hy-CI wave
functions the term ∂ 2/(∂ ri j∂ rik) containing derivatives with respect to two ri j

vanishes. The Be wave function used by Kleindienst et al. [10] contained this term
in the so-called double-linked Hy-CI calculations.

From the variational principle one obtains the matrix eigenvalue problem:

(H−ES)C = 0, (6.11)

2This formula has been derived independently by the author and by Barrois et al. [4, 40] (some
angular terms are written differently but they are equivalent, the derivations are different). A similar
formula was also proposed by Walsh and Borowitz [68], but it was incomplete.
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where the matrix elements are:

Hkl =

∫
ΦkHΦldτ, Skl =

∫
ΦkΦldτ. (6.12)

The occurring integrals in Hy-CI calculations are: two-electron type3:

〈r12〉, 〈r2
12〉,

〈
1

r12

〉
,

〈r12〉〈r34〉, 〈r12〉
〈

1
r34

〉
, (6.13)

three-electron type:

〈
r12r13

〉
,

〈
r2

12r13

〉
,

〈
r12

r13

〉
,

〈
r12r13

r23

〉
(6.14)

the first three cases after direct integration over both one ri j and one electron are
reduced to a linear combination of two-electron integrals [48]. Only the so-called
triangle integral 〈r12r13/r23〉 has not been treated by us and we use a very efficient
subroutine from Sims and Hagstrom [62]. The four-electron integrals occurring for
any atomic number are of three types:

〈
r12r13

r14

〉
,

〈
r12r13

r34

〉 〈
r12r34

r23

〉
. (6.15)

All four-electron integrals have been evaluated using the method of direct inte-
gration over one interelectronic coordinate and one electron [49] leading to linear
combinations of three-electron ones. And these lead to linear combinations of two-
electron ones. The two-electron integrals are calculated in terms of the auxiliary
two-electron integrals V (m,n;α,β ), defined:

V (m,n;α,β ) =
∫ ∞

0
rm

1 e−αr1dr1

∫ ∞

r1

rn
2e−β r2dr2 , (6.16)

For a review on the calculation of all cases of V (m,n;α,β ) integrals, see Ref. [48]
and references therein. The subroutine for the triangle integral 〈r12r13/r23〉 does
require three-electron auxiliary integrals W ( f ,g,h;α,β ,γ). In our program the W
integrals are computed directly when needed (without constructing tables) using a
very fast and stable subroutine from Sims and Hagstrom described in Ref. [62].

3The notation e.g., 〈r12r13/r14〉 represents the integral where the left and right hand orbitals of
electrons 1,2, 3 and 4 are involved: 〈φ (r1)φ (r2)φ (r3)φ (r4)|r12r13/r14|φ (r1)φ (r2)φ (r3)φ (r4)〉.
The indices of the actual integrals can be interchanged to write them in these forms.
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Therefore only two-electron integrals, as in the case of the CI method, and
triangle integrals have to be computed. This fact will be extremely helpful when
extending the application of Hy-CI method to larger systems. In our code, the
same computer memory is needed for CI and Hy-CI calculations. Note, that in the
Hylleraas-CI method for any electron number no higher order integrals than four-
electron ones appear.

6.3 Computational Aspects

We have developed a Hy-CI computer program for the B atom in Fortran 90,
working with quadruple precision (about 30 decimal digits of accuracy), which
permits us to calculate more than 5,000 configurations in sequential form, using only
a two-processor work station. We are convinced that the structure of this program
is a very good approach to a future general Hy-CI program. The program is based
on a CI program for B atom with L-S configurations of Slater-type orbitals [53].
The structure of the new Hy-CI program part is based on the recognition of whether
an interelectronic distance ri j, and which interelectronic distance ri j , appears on the
right hand side of a matrix element. We have set the antisymmetrization operator
(note that it is quasi-idempotent) on the left hand side of the matrix elements,
and we perform a loop over all generated permutations on the left. Note that CI
configurations do not contain any ri j-term, this is taken into account globally in
the program. Due to the permutations generated by the antisymmetrization operator
we may find any ri j (or none) on the left hand side of the matrix elements, the
program performs a loop with if-statements over all possible ri j (in case of B there
are 10) on the left. Once the ri j that appear on left and right parts of the matrix
elements are identified, the indices of the ri j together with the type of operator
lead to connections of indices which are translated into graphs and every graph
corresponds to a given type of integral or product of integrals, which are computed
by calls to the corresponding functions. The matrix elements have been derived from
the Hamiltonian in Hylleraas coordinates Eq. 6.8. The program is divided into two
major subroutines, one which computes the one-electron operators (overlap, kinetic
and potential energy operators) leading to one- two- and three-electron integrals
and the other which computes the two-electron repulsion integrals which lead to
products of 2 two-electron integrals, to three-electron integrals, products of three-
and two-electron integrals, and to four-electron integrals. There are N! permutations,
N being the number of electrons. In addition, N must be multiplied by the number
of primitives of the spin eigenfunction. The spin functions are also computed using
loops over the number of spin primitives.

Note that the program permutes the interelectronic distances (antisymmetrization)
and during the construction of the matrix elements identifies which interelectronic
distance acts on the left and on the right, calling the appropriate integral subroutine.
As in our CI program, we use an automatic generation of the permutations of 2–6
electrons for atoms, ions, and molecules [52], combined with the necessary spin
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functions, performing also the “spin integration” [11]. The extension of the Hy-CI
computer program from 6 to 7,8 electron systems needs only minor changes in the
structure of the program.

In atom/ions with N = 5 due to the presence of angular orbitals in the wave
function, L− S there are many kinds of configurations to be constructed, whose
contribution to the nonrelativistic energy is important. In particular, the ground
states of B and C atoms are of P-symmetry. The Hy-CI program is general for any
type of orbital, although in Hy-CI we use unnormalized s-, p- and d-orbitals.

The Hy-CI program is still under development and future steps will be to add
several subroutines to account for configurations containing simultaneously angular
orbitals (li > 0) and interelectronic coordinates ri j. These contributions originate
from terms in the Hamiltonian Eq. 6.8 containing ∂ 2/∂θi∂ ri j and ∂ 2/∂φi∂ ri j . This
work is in progress.

6.4 Calculations

We have performed preliminary calculations on the ground 2P state of boron atom,
using a set of s-, p-, and d-Slater orbitals. Higher angular momentum orbitals could
also be used. We plan, in future, to add f -orbitals. We have used a set of three
exponents, considering double occupancy of the orbitals, which were optimized
for the Hy-CI wave function: α = 5.47575, β = 1.469125 and γ = 1.17595.
These exponents are used for all configurations. Further optimization of the orbital
exponents using more configurations is planned.

In order to observe the energy effect of configurations containing ri j , we show
in Table 6.1, the energy contribution in μ-hartrees of the first Hy-CI configurations
1s1s2s2s2pri j and 1s2s2s3s2pri j. The correlated configurations of s-type have a pre-
dominant role, they pick up most correlation energy. The r12 configuration improves
the energy by about 100 millihartrees, followed by r13 with about 50 millihartrees
contribution. The next configurations are r34 and r35 with contributions larger than
1 millihartree. Note that due to the symmetry and double occupancy of the orbitals,
some configurations are equivalent and therefore do not both separately contribute
to the energy, for instance E(1s2s2s2s2pr13)=E(1s2s2s2s2pr14). Here, a second
type of configuration 1s2s2s3s2p where all electrons are different is used. Then all
configurations including ri j contribute.

The structure of the calculations is the following: first a selected CI calculation
(configurations which contributed less than 1 ·10−6 a.u. have been eliminated), then
configurations containing ri j are added. For a basis4 n = 4 and some configurations
from n = 5 we have obtained the energy value −24.641886656a.u. using 954
configurations. This result is better than that of Schaefer and Harris−24.639194 a.u.
[55] who also employed a selected CI with Slater orbitals. Our CI result agrees with

4n = 3 stands for the orbital set: 1s,2s,3s,2p,3p,3d and the notation [3s2p1d].
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Table 6.1 Effect on the energy of the first Hy-CI configurations in the
calculations on the 2P ground state of boron atom

Conf. Wave function E(a.u.) Virial Ediff in μh

1 1s1s2s2s2p −24.3945 2842 −1.88614
2 1s1s2s2s2pr12 −24.4937 3920 −1.94976 −99210.8
3 1s1s2s2s2pr13 −24.5398 5132 −1.97943 −46112.1
4 1s1s2s2s2pr14 −24.5398 5132 −1.97943 0.0
5 1s1s2s2p2sr15 −24.5398 7159 −1.97948 −20.3
6 1s1s2s2s2pr23 −24.5398 7159 −1.97948 0.0
7 1s1s2s2s2pr24 −24.5398 7159 −1.97948 0.0
8 1s1s2s2p2sr25 −24.5398 7159 −1.97948 0.0
9 1s1s2s2s2pr34 −24.5659 5970 −1.97844 −26088.1
10 1s1s2s2p2sr35 −24.5660 0326 −1.97830 −43.6
11 1s1s2p2s2sr45 −24.5660 0326 −1.97830 0.0
12 1s2s2s3s2p −24.5701 2584 −1.99796 −4122.6
13 1s2s2s3s2pr12 −24.5704 1459 −1.99878 −288.7
14 1s2s2s3s2pr13 −24.5705 3553 −1.99881 −120.9
15 1s2s2s3s2pr14 −24.5705 7212 −1.99888 −36.6
16 1s2s2s3p2sr15 −24.5707 0461 −1.99890 −132.5
17 1s2s2s3s2pr23 −24.5715 7357 −1.99880 −868.9
18 1s2s2s3s2pr24 −24.5716 0635 −1.99883 −32.8
19 1s2s2s3p2sr25 −24.5716 1502 −1.99882 −8.7
20 1s2s2s3s2pr34 −24.5729 1963 −2.00094 −1304.6
21 1s2s2s3p2sr35 −24.5740 3579 −2.00050 −1116.2
22 1s2s2p3s2sr45 −24.5740 4953 −2.00049 −13.7

Orbital exponents K-shell: 4.914, L-shell: sL = pL = 1.48025 and sL′ =
pL′ = 1.206375. Configurations 4,6–8,11 are equivalent to previous
configurations and do not contribute to the energy

the value of Froese Fischer −24.64046977 a.u. for n = 5 using the MC-HF method
[19]. More details of the CI calculation can be found in Ref. [53].

Configurations including ri j terms have been added to the CI wave function.
These first Hy-CI type configurations are ssssp, or its permutations, with a basis
[4s4p] orbitals. In Table 6.2 we show intermediate Hy-CI results on the ground state
of B atom which are very promising: using 1146 configurations and a small basis
[4s3p2d] we obtained an energy of −24.64814427a.u. We can compare this result
with the CI ones using Slater and Gaussian orbitals, respectively, using the same
computer code, computer and basis set, see Table 6.3. The CI with Slater orbitals
and 2066 configurations leads to −24.6410472a.u., and the CI using Gaussian
orbitals with comparable basis set cc-pTVZ needs 21.5 million configurations
yielding−24.645585a.u. [38]. The comparison shows that the Hy-CI wave function
converges much faster. We can also compare with the CI calculation of Almora
and Bunge [1] with 13 million configurations leading to −24.6538 a.u. According
to the pattern of convergence the Hy-CI needs a small number of configurations.
This is due to the inclusion of ri j into the wave function. Comparing with the ECG
calculation of Bubin et al. [7], our Hy-CI calculations are performed in a reasonable
amount of computer time, because no continuous optimizations are needed, other



6 Progress in Hylleraas-CI Calculations on Boron 113

Table 6.2 Hylleraas-Configuration Interaction (Hy-CI) calculations on the 2P ground
state of boron atom using a wave function with s-, p- and d-orbitals. Configurations are
filtered and kept when their contribution > 1.0×10−6 a.u

Conf. Wave function N Ntot E(a.u.) Ediff in μh

ssssp 1:5s 1:5s 1:5s 1:5s 2:5p 205 205 −24.5521 6835
sssps 1:5s 1:5s 1:5s 2:5p 1:5s 127 332 −24.5552 1161 −3043
spsss 1:5s 2:5p 1:5s 1:5s 1:5s 74 406 −24.5556 4742 −436
ssppp 1:5s 1:5s 2:5p 2:5p 2:5p 149 555 −24.5918 5267 −36205
ppssp 2:5p 2:5p 1:5s 1:5s 2:5p 72 627 −24.6148 1880 −22966
sppsp 1:5s 2:5p 2:5p 1:5s 2:5p 28 655 −24.6167 9454 −1976
ppppp 2:5p 2:5p 2:5p 2:5p 2:5p 2 657 −24.6177 2748 −933
ssspd 1:5s 1:5s 1:5s 2:5p 3:5d 121 778 −24.6309 4026 −13213
sssdp 1:5s 1:5s 1:5s 3:5d 2:5p 36 814 −24.6377 6821 −6828
sspds 1:5s 1:5s 2:5p 3:5d 1:5s 26 840 −24.6378 2704 −59
pdsss 2:5p 3:5d 1:5s 1:5s 1:5s 32 872 −24.6384 3562 −609
spsds 1:5s 2:5p 1:5s 3:5d 1:5s 19 891 −24.6390 1796 −582
sdssp 1:5s 3:5s 1:5s 1:5s 2:5p 8 899 −24.6390 3370 −16
ssddp 1:5s 1:5s 3:5d 3:5d 2:5p 10 909 −24.6411 3144 −2098
sspdd 1:5s 1:5s 2:5p 3:5d 3:5d 5 914 −24.6411 5589 −24
sdsdp 1:5s 3:5d 1:5s 3:5d 2:5p 17 931 −24.6414 2490 −269
sppdp 1:4s 2:4p 2:4p 3:4d 2:4p 2 933 −24.6414 4000 −15
spppd 1:4s 2:4p 2:4p 2:4p 3:4d 2 935 −24.6414 5975 −20
ppsdp 2:4p 2:4p 1:4s 3:4d 2:4p 1 936 −24.6414 6453 −5
ppspd 2:4p 2:4p 1:4s 2:4p 3:4d 8 944 −24.6417 8394 −319
pppdd 2:4p 2:4p 2:4p 3:4d 3:4d 1 945 −24.6417 9721 −14
ddppp 3:4d 3:4d 2:4p 2:4p 2:4p 3 948 −24.6418 8434 −87
ppddp 2:4d 2:4d 3:4p 3:4p 2:4p 3 951 −24.6418 8635 −2
ddddp 3:4d 3:4d 3:4d 3:4d 2:4p 3 954 −24.6418 8666 0
ssssp r12 1s 1s 2s 2s 2p 1 955 −24.6464 6510 −4578
ssssp r13 1s 1s 2s 2s 2p 1 956 −24.6467 5150 −286
ssssp r15 1s 1s 2s 2s 2p 1 957 −24.6467 5158 0
ssssp r34 1s 1s 2s 2s 2p 1 958 −24.6474 4083 −689
sssps r35 1s 1s 2s 2s 2p 1 959 −24.6474 4415 −3
ssssp ∑ri j 1:3s 1:3s 2:3s 2:3s 2:3p 199 1158 −24.6481 4522 −703

Orbital exponents K-shell: sK = pK = 5.47575, L-shell: sL = pL = 1.469125 and sL′ =
pL′ = 1.17595. The virial factor 2.0001 is almost constant during the calculation. The
notation 1:5s means groups of configurations builded with 1s,2s,3s,4s,5s orbitals

than an initial optimization of the orbital exponents to treat ground or excited state
using a smaller basis set.

Our next steps are to add more configurations and to select them using the
Brown formula [5]. Now the selection has been done comparing the energy
difference between the N and N-1 dimensional basis calculations. Other possible
improvements will be to include f-orbitals at the end of the wave function expansion,
and to use different exponents for different orbitals. For very large wave function
expansions major changes in the program are needed, e.g., parallelization. Since
the number of configurations increases rapidly we have used symmetry adapted
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Jö

ns
so

n
an

d
Fr

oe
se

Fi
sc

he
r

(1
99

4)
[2

8]
[8

s7
p6

d5
f4

g3
h2

i1
k]

7,
09

6
−2

4.
65

10
09

M
C

-C
I

G
T

O
M

ey
er

et
al

.(
19

95
)

[3
9]

[1
5s

10
p7

d6
f4

g]
1.

5
m

il
l.

−2
4.

65
18

1
M

R
-C

I
N

um
.

Jö
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configurations or functions (SAF) which are linear combinations of five-electron
basis functions being eigenfunctions of the L-operator. The use of SAF saves
memory space and computer time.

The program will be used for the calculation of the final state probabilities 10B in
ground and various excited states necessary to obtain the probabilities of formation
of the He, Li ions during the boron nuclear reaction in the Boron Neutron Capture
Therapy (BNCT), and to the study of the β -decay process of B atom to C+ ion.

6.5 Conclusions

We have done and are currently extending the first up-to-date genuine Hy-CI
calculations for the boron atom, showing that such calculations are possible.
The methods, techniques and programs developed here can be adapted in a
straightforward fashion to treat the C and N atoms and further to the second row
elements of the periodic table. Therefore, from the computational point of view,
calculations on the second row of elements are possible using the Hy-CI method.
From the theoretical point of view this is also the case, since all necessary integrals
have been analytically evaluated for atoms with N ≥ 5.

In view of the short expansion of the Hy-CI wave function compared with other
methods it is shown that the Hy-CI method is a very powerful one. When all kinds
of configuration including all the different interelectronic distances are added to the
present wave function, the final results are expected to be improved.
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Chapter 7
Structural and Electronic Properties of Po under
Hydrostatic Pressure

A. Rubio-Ponce, J. Morales, and D. Olguı́n

Abstract Although Polonium (Po) is the only element of the periodic table that
has a simple cubic (sc) crystal structure at ambient pressure, it is one of the least-
studied elements, and its phase diagram is still unknown. Thus, with the aim to
contribute to the study of the Po phase diagram, we present in this work theoretical
calculations focused on determining the structural and electronic properties of Po
under hydrostatic pressure. For that purpose, our theoretical study considers the sc
structure as well as the hypothetical rhombohedral (r), body-centered cubic (bcc)
and face-centered cubic (fcc) crystal structures. The calculations were performed
using the full potential linearized augmented plane wave (FLAPW) method by
using the local density approximation (LDA) for the exchange-correlation energy
and by including the spin-orbit coupling to take into account relativistic effects. The
total energy results were fitted to the third-order Birch-Murnaghan equation of state
(EOS) for pressures up to 100 GPa. Consequently, the energy results, along with the
enthalpy findings, indicate that phase transitions follow the sequence sc→ r→ bcc
→ fcc at pressure values of 2.47, 5.75, and 70.27 GPa, respectively. These results are
consistent with the fact that the hydrostatic pressure induces a change in the atomic
distance and in the orbital hybridization that leads to different crystal structures.
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7.1 Introduction

Polonium (Po) is a radioactive element that was discovered in 1898 by Marie
Skłodowska-Curie and Pierre Curie. Po is used in brushes to remove dust from
photographic films and to avoid charge static accumulation produced by several
processes, such as the rolling of paper, wire, and sheet metal. In addition, Po has
been alloyed with beryllium to be used as a neutron source. All these and other
applications depend on Po’s structural properties. Po is the only element of the
periodic table that adopts the simple cubic (sc) structure at ambient pressure (a few
other elements such as Ca-III and As-II present the sc, but only at high pressure
[1]), and this structure has a low atomic packing factor and is rare in nature. The
first experimental studies of Po’s crystal structure, by using electron diffraction,
were reported in 1936 by Rollier et al. [2]. Several years later, Beamer and Maxwell
[3, 4] and Sando and Lange [5] reported on their X-ray diffraction experiments on
metallic Po. From these reports, we know that Po exhibits two structural phases: the
α phase (α-Po), which has the sc structure [O1

h(Pm3m)], a = 3.345(2) Å [4], and
the β phase (β -Po), stable above 77(9)◦C, which has the rhombohedral (r) structure
[D5

3d(R3m)], a = 3.359(1) Å, and α = 98.22(5)◦.
To date, Po is one of the least-studied elements, and its phase diagram is

unknown. Po is located in the VIA column of the periodic table and has an atomic
number equal to 84 and the following electronic distribution: [Xe] 4 f 145d106s26p4.
The first theoretical study on Po was focused on explaining its existence as the only
element of the periodic table with the sc structure. Using the pseudopotential band
method, Kraig et al. [6] showed that the sc structure has the lowest total energy
and, therefore, that this structure is preferred by Po instead of the hypothetical
face-centered cubic structure (fcc) or body-centered cubic structure (bcc). They
argued that the large s-p splitting would produce the stable sc structure. In addition,
Lach-hab et al. [7] performed a structural study for Po using the tight-binding (TB)
approach; the parameters were fitted to the semirelativistic results obtained from the
full-potential linearized augmented plane wave (FLAPW) method. They also found
that the most stable structure is the sc; their calculations were done both with and
without spin-orbit (SO) interaction because for solids with a large atomic number,
such as lanthanides, actinides, and elements of layer six, the relativistic effects are
very important. In fact, Min et al. [8] found that the sc structure of Po is due to
strong SO interaction. Legut et al. [9,10] using the FLAPW method within the local
density approximation (LDA) and the gradient generalized approximation (GGA),
including relativistic effects and analyzing the impact of different relativistic terms
on the structural properties, concluded that the stability of the sc structure of Po
is due to the relativistic mass-velocity and Darwin terms. They also predicted that
the sc structure of Po becomes unstable when the hydrostatic pressure is increased
above 3 GPa.

With the aim of contributing to the study of the Po phase diagram, we discuss in
this paper the structural and electronic properties of Po under hydrostatic pressure.
We consider the sc structure and the r, bcc, and fcc as hypothetical crystal structures
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for pressures up to 100 GPa. The rest of the paper is organized as follows: Sect. 7.2
summarizes the computational details. Section 7.3 shows our results. Finally,
Sect. 7.4 shows our conclusions.

7.2 Computational Details

The structural and electronic properties of Po have been obtained by using the
FLAPW method as implemented in the WIEN2k package [11]. In our study, we
have used the LDA correction for the exchange-correlation part of the total energy
[12], and we have included the SO coupling as well. To minimize the total energy,
we have used the next variational parameters, the plane-wave expansion parameter
RmtKmax = 9.0 (where Rmt is the muffin tin radius and Kmax is the plane wave
cutoff), while the energy cutoff parameter was Gmax = 14. The convergence criterion
corresponds to the energy difference less than 10−5 Ry in all cases.

In our study, we have considered the sc crystal structure (Pm3m = O1
h, space

group 221) and three other hypothetical crystal structures: the r (R3̄m = D5
3d ,

space group 166), the bcc (Im3m = O9
h, space group 229), and the fcc (Fm3m = O5

h,
space group 225). In the full, irreducible part of the first Brillouin zone (FBZ), the
number of k-points used was 816 for sc, fcc, and bcc, and for the r structure, the
number of k-points used was 2,736.

7.3 Results

The structural bulk modulus and lattice parameters are obtained by fitting the total
energy of each primitive cell to the third-order Birch-Murnaghan equation of state
(EOS) [13], which reads

P =
3
2

B0

(
η

7
3 −η

5
3

)(
1− 3

4

(
4−B′0

)(
η

2
3 −1

))
, (7.1)

where η = (V0/V), V0 is the volume at zero pressure. Using as a reference the
total energy of the sc phase, Fig. 7.1 shows the total energy differences (ΔE) for
the proposed hypothetical structures without considering SO coupling. As can be
observed, the sc phase has the lowest energy. With respect to the sc curve, the
minimum of the energy curve for the hypothetical crystal structures r, bcc, and fcc
is located at 12.667 meV, 198.194 meV, and 278.236 meV, respectively.

Similarly to the above mentioned case, Fig. 7.2 displays the ΔE curves obtained,
including the SO interaction. As previously mentioned, the sc phase has the lowest
energy, but the energy difference between the sc and r structures decreases by 4.3%
(12.123 meV), whereas between sc and bcc, the energy difference decreases by
38.1% (122.614 meV) and between sc and fcc around the 15.5% (235.038 meV).
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Fig. 7.1 (Color online) Total energy difference of α-Po as compared with the proposed hypo-
thetical structures. The calculations were performed within the LDA correction, and here no SO
coupling is considered

Fig. 7.2 (Color online) Total energy difference for α-Po as compared with the proposed hypothet-
ical structures obtained by including SO coupling in the calculations
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Table 7.1 Experimental and
theoretical data found in the
literature for the lattice
parameter (a), bulk moduli
(B0) and pressure derivative
bulk modulus (B′0) of α-Po

a(Å) B0 (GPa) B′0 Ref.

Exp. 3.345(2) [4]
3.359(1) [5]

LDA 3.28 56 [6]
3.34 44 [7]
3.277 57.1 [10]
3.335 39.45 4.89 [14]
3.272 59.93 4.32 This work

LDA + SO 3.334 42.3 [10]
3.323 47.35 4.59 This work

GGA 3.356 46.9 [10]
GGA + SO 3.34 [8]

3.411 40.1 [10]
TB 3.26 59 [7]
TB +SO 3.29 51 [7]

From these graphs, we can conclude that the SO interaction is not necessary to
stabilize the α-Po phase. Our calculations confirm the interpretation of Legut et al.
[9] that the scalar relativistic terms are sufficient to stabilize the simple cubic phase.

Our calculated structural parameters for Po are in good agreement with known
experimental and recent theoretical data [4–10,14,15]; see Table 7.1. By considering
SO coupling, for α-Po, our calculated bulk modulus (B0) and first derivative of the
bulk modulus (B′0) are 47.35 GPa and 4.59, respectively, while the lattice parameter
is a = 3.323 Å. On the other hand, the corresponding values without SO coupling
are B0 = 59.93 GPa, B′0 = 4.32, and a = 3.272 Å. That is, the bulk modulus, which
is related to the lattice constant value, decreases when SO is included. As can be
seen, the calculated values for the lattice parameter, with the exception of those
calculated using GGA and GGA + SO [10], are smaller than the experimental data.
Unfortunately, there are no experimental data for the elastic properties, bulk, and
Shear and Young’s modulus to compare to our findings. Lach-hab et al. [7] claim
that the experimental bulk modulus of sc Po is 26 GPa; however, they do not provide
any reference for it. On the other hand, our bulk modulus result is consistent with
other theoretical calculations.

In order to analyze the influence of the SO interaction on the electronic properties
of Po, we compare the calculated electronic band structure with and without SO
coupling. Figure 7.3 shows the Po electronic band structure along high-symmetry
directions in the FBZ of the sc structure. The energy values have been uniformly
shifted to set the Fermi level (EF ) at zero energy. Solid lines show the calculations
including SO coupling, and dashed lines show the calculations without SO. In that
figure, it is easy to see the effect of SO; when SO interaction is included, some
valence bands do not cross the EF , these bands have mainly the 6p character.
Another interesting effect is the splitting of bands placed around −30 eV. These
bands give origin to two new bands with a gap of 3.4 eV; the bands are shown at the
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Fig. 7.3 (Color online)
Electronic band structure for
α-Po. Here we show our
results with SO coupling
(solid line) and without SO
coupling (dashed line)

a

b

Fig. 7.4 (Color online) Comparison of the calculated DOS without SO coupling (upper panel)
and including the SO coupling (lower panel). Note the induced band splitting for the lower states
(around −30.0 eV) due to the SO coupling, which is around 3.4 eV

bottom of Fig. 7.3. These results are also shown in Fig. 7.4, in which we compare
the calculated density of states (DOS) for both theoretical calculations, with and
without SO coupling.
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Fig. 7.5 (Color online) Total
and partial contributions to
the calculated DOS. The
splitting of the lower bands
occurs on the d orbital states,
panel d

a

b

c

d

e

The partial contributions of the s, p, d, and f states of Po to the total DOS,
including the SO coupling, are shown in Fig. 7.5. Figure 7.5a shows the total DOS.
For energies around −12 eV, Fig. 7.5b shows that the main contribution to these
energies is from the 6s orbitals. Due to the SO coupling, the band width of these
states decreases from 4.40 to 4.04 eV. Figure 7.5c presents the contribution of the 6p
orbitals, and these states are located around the EF . It appears that the SO coupling
does not change the shape of s-p hybridization. Consequently, we conclude that Po
can be classified as a p-type element. The states around −30 eV are derived mainly
from the 5d orbitals, and are shown in Fig. 7.5d. Above the EF we found the 4 f
orbitals, as it is shown in Fig. 7.5e.

Finally, with the aim of finding possible phase transitions between the different
crystal structures considered in this work, we have calculated the enthalpy (H =
E + pV ) relative to the sc structure in the range from 0 to 100 GPa. According
to our results, the phase transition sequence is given by sc → r → bcc → fcc,
that corresponds to pressure values of 2.47, 5.75, and 70.27 GPa, respectively (see
Fig. 7.6). These values are in agreement with the results of Legut et al. [10]. They
claim that when the pressure increases, Po loses its sc structure and becomes
rhombohedral in the interval of 1–3 GPa. It turns out that, to the best of our
knowledge, experimental information on phase transition as function of the pressure
is not available.
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Fig. 7.6 (Color online) Enthalpy difference vs. pressure for the different Po structures. The cross
line at 2.47, 5.75, and 70.27 GPa indicates the phase transition

7.4 Conclusions

From total energy calculations, we have found that α-Po has the lowest energy with
respect to r, bcc, and fcc structures. Our calculated lattice parameter, a = 3.323 Å,
has been found to be in good agreement with recent theoretical data. The bulk
modulus B0 and its first pressure derivative B′0 were found to be equal to 47.35 GPa
and 4.59, respectively. Our results show that both LDA and LDA + SO calculations
predict that, in comparison with the r, bcc, or fcc structures, Po has the sc structure as
the stable phase. In addition, we can conclude that the SO coupling is not necessary
to stabilize the α-Po structure. However, we found that the SO coupling should be
included to properly describe the Po electronic band structure. Finally, according to
our results, it becomes clear that there is a sequence for the phase transition as a
function of the pressure: sc→ r→ bcc→ fcc, from low to high pressure.
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Chapter 8
Complexity Analysis of the Hydrogenic
Spectrum in Strong Fields

R. González-Férez, J.S. Dehesa, and K.D. Sen

Abstract The hydrogenic spectrum in strong parallel magnetic and electric fields is
studied here. The statistical shape complexity measure is used for the identification
and characterization of the most distinctive spectroscopic features of complex
systems caused by slowly varying perturbations, the so-called avoided crossings.
This is illustrated for some pairs of hydrogenic levels in presence of strong magnetic
and electric fields. It is found that the LMC shape complexities of the two states
involved in an avoided crossing are mutual mirror images with respect to the axis at
the critical magnetic field strength giving rise to the avoided crossing. This is a clear
manifestation of the information-theoretic character exchange taking place between
the two quantum states involved in the crossing.

8.1 Introduction

The avoided crossings between a pair of neighboring levels with the same symmetry
[1] are the most distinctive non-linear signatures of the spectra of numerous
physical systems which play a significant role from both scientific and technological
points of view. They are characteristic of the chaotic region of the spectrum of
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the hydrogen atom in strong electric and magnetic fields. They also appear in
the electronic spectra of anisotropic two-electron quantum dots as the condition
defining the spatial confinement changes from a nano-ring to nano-wire [2]. In
the rovibrational spectra of polar dimers in homogeneous static electric fields,
the avoided crossings lead to strongly distorted and asymmetric molecular states
including well pronounced localization effects of their probability density [3].
Recently, a Stückelberg interferometer with ultracold Cs2 molecules has been
developed by means of weak avoided crossings, which are used as beam splitter
for molecular states, providing a full control on the interferometer dynamics [4].
An efficient experimental scheme based on Zeeman tuning of molecular states
towards the avoided level crossing has been devised to transfer molecules within
the neighboring levels [5].

An avoided crossing is characterized by (a) an energy repulsion, and (b) an
information-theoretic character exchange between the associated pair of quantum
mechanical states. The former provides a mechanism for state reordering with
energy under the slowly varying external perturbation (e.g. when a magnetic field
changes adiabatically). The latter can be identified and characterized by means of
information-theoretic measures of the probability densities corresponding to the two
states involved in the crossing. This has been shown by means of the Shannon
entropy [6, 7] and the Fisher information [8], which manifest sharp extrema and
crossing behaviors, respectively, through this highly irregular region.

The complexity measures (See, e.g. [9–14]) have been recently shown to describe
and characterize the non-uniformity of the quantum-mechanical probability density
of the energy levels of physical systems (so, the internal disorder of the system at
those energies) in a better way that a single information-theoretic element such as
the Shannon entropy and the Fisher information. This is because they are defined
in terms of the product of two complementary information-theoretic measures
representing the global and local characteristics of the probability distribution.
Consequently, such complexity measures may be used to disentangle and high-
light the irregularities of the probability densities most distinctively. Moreover,
they reflect the intuitive notion of disorder in the sense that they vanish for
the two extreme probability distributions associated to perfect order (Dirac-like
delta distribution) and maximum disorder (uniform distribution). Among all the
composite complexity measures, the so-called LMC (López-Ruiz-Mancini-Calbet)
shape complexity [9, 10, 15] occupies a special position because it satisfies the
invariance properties under coordinate scaling, translation and replication. The
LMC shape complexity of the energy level characterized by the normalized-to-unity
quantum-mechanical density ρ(r) is defined by

C ≡C[ρ ]≡ D[ρ ]exp(S[ρ ]) (8.1)

where
S[ρ ] =−

∫
ρ(r) logρ(r)dr (8.2)
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denotes de Shannon entropy of the system [16], which measures the bulk spreading
of the charge cloud, and

D[ρ ] =
∫
[ρ(r)]2dr (8.3)

is the averaging density or disequilibrium of the system which gives the quadratic
distance to the equilibrium or most probable state [17–19], at times experimentaly
amenable [20].

In this paper we study the avoided crossing phenomenon by means of the
shape complexity of the two quantum states involved in it. We note here that
this physical quantity is determined not by the energy eigenvalue but by the
eigenfunction ψ(r) of the Hamiltonian since ρ(r)= |ψ(r)|2. So, we are not so much
interested in the repulsion of the two energy levels (although we will show it for
completeness) but rather in locating the information-theoretic character exchange
between the corresponding quantum eigenfunctions which is revealed by the LMC
shape complexity. This will be illustrated by the detailed numerical analysis of the
avoided crossings of the (3p0,3d0) and (5p0,5d0) of hydrogen atom in the presence
of a combination of intense parallel electric and magnetic fields.

We believe that the present analysis of the avoided crossings of levels through the
statistical complexity measure, C, introduces a novel theoretical tool based on the
electron density integrals exclusively, rather than those which are usually derived
from the quantum mechanical expectation values. The density based analysis offers
the future possibilities of evaluating such crossings under the influence of the
spatial confinement by the changes in the electron probability distribution brought
about, e.g., by an additional hard or soft external potential, including the ultra-high
magnetic fields.

8.2 Methodology for Hydrogenic Applications

In this section, we consider as a prototype system the hydrogen atom exposed to a
combination of parallel magnetic and electric fields, and numerically analyze some
avoided crossings appearing in the corresponding spectrum. Atomic units will be
used throughout, unless stated otherwise. The Hamiltonian of the hydrogen atom in
the presence of uniform magnetic B and electric F fields, both oriented along the
z-axis, is given by

H =− 1
2r2

∂
∂ r

r2 ∂
∂ r

+
1

2r2 L2(θ ,φ)− 1
r
+

B2

2
r2 sin2 θ +Fr cosθ , (8.4)

where spherical coordinates have been used and L2(θ ,φ) denotes the squared
angular momentum. The magnetic field strength B is measured in units of B0 =
2α2m2

e c2

h̄e ≈ 4.701 · 105 T , and the electric field strength F in units of F0 =
α3m2

e c3

eh̄ ≈
5.142 · 1011V/m. Note that we have neglected the relativistic corrections [21], and
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the spin-orbit coupling [22]. Besides, the motion of the nucleus is not explicitly
considered because in strong magnetic fields its effect may be accounted for by a
constant shift in the energy which is exact for parallel fields [23]. In addition we
have disregarded in the Hamiltonian (8.4) the paramagnetic term B ·Lz, where Lz is
the z-component of the angular momentum.

In the presence of a magnetic field, parallel to the z-axis, the magnetic quantum
number and the z-axis parity are good quantum numbers, while in an additional
electric field only the azimuthal symmetry remains. Nevertheless, we will label the
field-dressed states with the corresponding field-free hydrogenic quantum numbers
n, l and m for reasons of simplicity, and to facilitate the physical discussion later
on. Furthermore, only m = 0 states are considered. The computational approach
to solve the non-integrable two-dimensional equation of motion associated to the
Hamiltonian (8.4), is based in a combination of the finite element method for the
radial coordinate and the discrete variable technique for the angular one, together
with a Krylov type diagonalization technique [24].

8.3 Main Results

In this section, we interpret the numerical results on the avoided crossings between
the pairs of hydrogenic states (3p0,3d0) and (5p0,5d0) in the presence of intense
electric and magnetic fields. We first consider the pair of states 3p0 and 3d0 of the
hydrogen atom. Figures 8.1a and b show the corresponding ionization energies and
shape complexities (SCs, in short), respectively, as the magnetic field strength varies
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Fig. 8.1 Color online. The ionization energies (a) and shape complexities (b) of the states 3p0
(dashed line) and 3d0 (solid line), of the hydrogen atom in parallel electric and magnetic fields
as a function of the magnetic field strength. The electric field was fixed to F = 1.946× 10−6 a.u.
Besides the results for vanishing electric field have been also included for the 3p0 (dotted-dashed
line) and 3d0 (dotted line) levels
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over the range 0.087a.u.− 0.08825a.u. and the electric field strength F = 1.946×
10−6 a.u. For the sake of completeness, the vanishing electric field results have been
also included. For F = 0, these states have different z-parity, and their energies cross
for a certain magnetic field strength Bc (see Fig. 8.1a). Indeed, the energy of the 3d0

level monotonically decreases as the magnetic field is enhanced, while the behavior
of the 3p0 energy is just the opposite. These two levels do not interact between each
other, and the SCs keep constant in the magnetic field range (see Fig. 8.1b). Their
difference ΔCs =Cs

3p0
−Cs

3d0
is always negative, which indicates that the electronic

cloud of the 3p0 state is more confined.
The presence of the electric field breaks the degeneracy of this pair, hence they

have the same symmetry and due to the Wigner-non-crossing rule [1] an avoided
crossing is formed between them. Their ionization energies present the typical
behavior of this non-linear phenomenon. They approach each other with increasing
magnetic field, until they come close and strongly interact, splitting apart thereafter.
The minimal energetic spacing ΔE = |E3p0 − E3d0 | = 3.35× 10−5 a.u. occurs at
the field strength Bc = 8.760038× 10−2 a.u. Far away from the strongly interacting
region the behavior of the energies resemble the F = 0 results.

Before taking up the specific discussion on our results, let us highlight that the
existence of extremum points in the SC is a consequence of the confinement effects
brought about by the presence of external fields. This is in line with the recent
finding of Patil et al. [25], who show for some specific constrained Coulomb poten-
tials that the simplest composite uncertainty measure, the Heisenberg uncertainty
product, of the electron density presents an extremum located at a critical position
which scales as the reciprocal value of the potential strength.

We shall now analyze in detail the interesting structure observed for the SCs
of the two states involved in this avoided crossing. Both quantities as a function
of B have similar behaviors. They present a double-hump structure with a mirror
symmetry with respect to (the axis located at) the critical value Bc. Even more,
they are very different from their electric-field-free values. Indeed both quantities
are no more constant but they show up two maxima, what illustrates the strong
interaction taking place between these levels in this irregular region. The SCs
increase as the magnetic field strength is augmented, pass through a first maximum,
and with a further enhancement of the magnetic field they achieve a pronounced
minimum, followed by a second maximum, and finally they decrease thereafter.
In particular, their difference, ΔCs = Cs

3p0
−Cs

3d0
, changes its sign several times

and there are three B values at which both SCs are equal. Indeed, the SCs cross at
Bc = 8.760044×10−2 a.u., being their difference ΔCs = 6.29×10−6 a.u., which is
very close to the critical B-value for the minimal energetic spacing. The SC minimal
values are equal for both states, Cs

3p0
=Cs

3d0
= 1.7380, and are located at symmetric

positions with respect to the critical magnetic field value Bc, i.e., they shifted to the
left B = Bc + 1.569× 10−5 a.u. and to the right B = Bc− 1.566× 10−5 a.u. for the
3p0 and 3d0 states, respectively. The first hump of Cs

3d0
and the second one of Cs

3p0
,

also have a very similar value (Cs
3d0

= 1.8856, Cs
3p0

= 1.8867), and are shifted to

the left by 1.6706× 10−4 a.u. and to the right by 1.6632× 10−4 a.u., respectively.
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Fig. 8.2 Color online. The ionization energies (a) and shape complexities (b) of the states 5p0
(dashed line) and 5d0 (solid line), of the hydrogen atom in parallel electric and magnetic fields as
a function of the magnetic field strength. The electric field was fixed to F = 10−7 a.u. Besides the
results for vanishing electric field have been also included for the 5p0 (dotted-dashed line) and 5d0
(dotted line) levels

In a similar way, the second maxima of Cs
3p0

and the first one of Cs
3d0

are located

at B = Bc +1.1591× 10−4 a.u. and B = BC− 1.1566×10−4 a.u., respectively, with
Cs

3p0
= 1.8766 and Cs

3d0
= 1.8762.

Analogous studies were done for other pairs of hydrogenic states with higher
principal quantum numbers, and similar results were obtained. Let us now discuss
the avoided crossing between the levels 5p0 and 5d0 of the hydrogen atom in
parallel magnetic and electric fields. The corresponding ionization energies and SCs
are presented in Figs. 8.2a and b, respectively, as a function of the magnetic field
strength, within the range 0.013975a.u.≤ B≤ 0.01405a.u. and with F = 10−7 a.u.
The electric field-free results are also shown in the same figures. Even such a
weak electric field breaks the degeneracy of this pair, and a very narrow avoided
crossing is formed. The minimal energetic spacing between the levels is ΔE =
|E5p0−E5d0 |= 7.054×10−6 a.u. at the critical field value Bc = 1.400888×10−2 a.u.
Both energies approach the corresponding electric field-free results as we move
away from the non-linear region.

For F = 0, the SCs of both states smoothly increase as the magnetic field is en-
hanced, showing that the confinement of the electronic clouds does not experiment
large variations over the considered range of magnetic field strengths. The SC
difference ΔCs =Cs

5p0
−Cs

5d0
is always positive, indicating the higher confinement

of the 5p0 state. Again, the electric field induces drastic changes on the SCs. As
in the previous example, they are characterized by a double-hump structure and the
specular symmetry with respect to the critical value Bc = 1.40088×10−2 a.u., where
the SC difference is ΔCs = 1.08× 10−4 a.u. As the magnetic field is tuned through
this highly irregular region, ΔCs changes its sign three times and finally, for B > Bc

we encounter that ΔCs > 0. These features indicate that together with a strong
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coupling and interaction between both states, the electronic clouds get significantly
affected in the avoided crossing region and the 5d0 level is now confined more
strongly.

8.4 Conclusions

The phenomenon of avoided crossing between a pair of quantum states is charac-
terized by the repulsion of the two energy eigenvalues and the character exchange
of the corresponding eigenfunctions. In this paper we emphasize the latter char-
acterization as revealed by the statistical shape complexity. This has been done
by numerically analyzing two avoided crossings appearing in the spectrum of the
hydrogen atom in the presence of a combination of intense parallel electric and
magnetic fields. The main conclusions derived in this work can be summarized as
follows. First, the shape complexities of the quantum-mechanical states involved
in an avoided crossing (a) show up a double-hump structure because of the
confinement provoked by the external fields and (b) present a mirror symmetry
with respect to the axis located at the critical magnetic field strength which has
given rise to this highly irregular phenomenon. Moreover, the state with stronger
(weaker) confinement get less (more) confined in going through that region. This
confinement exchange of the two energy levels involved in the avoided crossing
seems to indicate that in order to understand the enormous complexity of the whole
spectrum of a hydrogenic system in presence of external fields, it is useful to study
the statistical complexity measure of the quantum wavefunctions rather than the
redistribution of the corresponding eigenenergies. In this sense, it would be very
instructive to analyze the LMC shape complexity of the eigenfunctions in both
the position and momentum space representations. Second, the minimal energetic
spacing of the levels occurs at the same magnetic field strength at which the two
hydrogenic states involved in the avoided crossing have equal shape complexities.

Following an analysis similar to that performed by Patil et al. [25] for composite
information measures it can be shown that under external fields the shape com-
plexity is expressed as a product of the functions of two independent parameters
s1 = BZ−2 and s2 = FZ−3. Such a study reveals the presence of extrema in the
shape complexity as a function of the two external fields. The specific nature and
the number of extrema can be obtained only if the functional form is known for
a given electronic state which is not obtained through the dimensional analysis.
The accurate numerical results presented here should be useful in the exploration
of the analytic form of shape complexity of the np0 and nd0 states in presence
of the external fields. We note here that while the general product form of shape
complexity is independent of the relative orientation of the two fields, the specific
form could depend on orientation. In view of this, it would be interesting to carry out
numerical investigations similar to those presented here for a few arbitrarily fixed
orientations of the external fields.
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Chapter 9
Atomic Density Functions: Atomic Physics
Calculations Analyzed with Methods from
Quantum Chemistry

Alex Borgoo, Michel R. Godefroid, and Paul Geerlings

Abstract This contribution reviews a selection of findings on atomic density
functions and discusses ways for reading chemical information from them. First
an expression for the density function for atoms in the multi-configuration Hartree–
Fock scheme is established. The spherical harmonic content of the density function
and ways to restore the spherical symmetry in a general open-shell case are treated.
The evaluation of the density function is illustrated in a few examples. In the
second part of the paper, atomic density functions are analyzed using quantum
similarity measures. The comparison of atomic density functions is shown to be
useful to obtain physical and chemical information. Finally, concepts from infor-
mation theory are introduced and adopted for the comparison of density functions.
In particular, based on the Kullback–Leibler form, a functional is constructed that
reveals the periodicity in Mendeleev’s table. Finally a quantum similarity measure
is constructed, based on the integrand of the Kullback–Leibler expression and the
periodicity is regained in a different way.

9.1 Introduction

Density Functional Theory (DFT) plays a prominent role in present day investiga-
tions of the electronic structure of atoms and molecules. Within DFT the electron
density function plays a central role as it caries all the information to describe the
investigated system. The idea that all physical and chemical information is contained
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in the density incited the present authors to try and recover some of this information.
Although the proof of the Hohenberg–Kohn theorems [1], which guarantee the
presence of all physical information in the density function, is generally said to be
disarmingly simple, it does not provide a method to get to the relevant information.
The continued search for improved energy functionals is the most evident example
to illustrate the challenge researchers are confronted with.

In recent years, the present authors have developed an interest in obtaining
chemical information from atonic density functions. The application of concepts
from quantum chemistry shows that some particular aspects of physical and
chemical interest can be read from the density functions. In particular the com-
parison of density functions using quantum similarity measures or functionals from
information theory plays an important role. The original goal of the work was to
find a way of regaining the periodicity in Mendeleev’s table through the comparison
of density functions.

The purpose of this contribution is to give an overview of the results which center
around the atomic density function and the recovery of the periodicity. Since all the
calculations are based on atomic density functions, it is appropriate to revisit the
construction of these densities in some depth. First a workable definition of the
density function is established in the framework of the multi-configuration Hartree–
Fock method (MCHF) [2] and the spherical harmonic content of the density function
is discussed. A spherical density function is established in a natural way, by using
spherical tensor operators. The proposed expression can be evaluated for any multi-
configuration state function corresponding to an atom in a particular well-defined
state and a recently developed extension of the MCHF code [3] is used for that
purpose. Three illustrative examples are given. In the next section relativistic density
functions for the relativistic Dirac–Hartree–Fock method [4] are defined. The latter
will be used for a thorough analysis of the influence of relativistic effects on electron
density functions later on in this paper.

The analysis of atomic density functions can be furthered by comparing them in
pairs. Specifically, the use of quantum similarity measures and indices as defined
by Carbó [5] has shown that particular influences on the density functions can be
estimated in this way. Here this feature is demonstrated by reviewing three case
studies: (1) the LS-term dependence of Hartree–Fock densities, (2) the comparison
of atoms throughout the periodic table [6], and (3) the quantitative evaluation of the
influence of relativistic effects, via a comparison of non-relativistic Hartree–Fock
densities with Dirac–Hartree–Fock relativistic densities [7].

In the final part of this contribution, information theory is introduced. After a
brief revision of the relevant concepts, a functional based on the Kullback–Leibler
measure [8] is constructed for the investigation of atomic density functions through-
out Mendeleev’s table. Since the quantum similarity does not reveal the expected
periodic patterns, it is significant to show that it is actually possible to regain
the periodicity by constructing an appropriate functional [6]. By considering the
integrand of the Kullback–Leibler measure and comparing it locally for two atoms,
a quantum similarity measure can be constructed which does reveal periodic
patterns [7].
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9.2 The Multi-configuration Many-Electron Wave Function

The total energy which results from the Hartree–Fock equations is due to electrons
moving independently in an averaged, central potential. Any improvements to the
energy (still in the context of the non-relativistic Schrödinger equation) are said
to be due to correlation effects as a direct consequence of the electron–electron
interaction. In fact it is common to define the correlation energy as

ECORR = EEXACT−EHF , (9.1)

where EEXACT is the exact non-relativistic energy and EHF the energy due to the
solutions of the corresponding Hartree–Fock equations.

A particularly natural way to improve the Hartree–Fock energy – i.e., include
correlation energy – is by departing from the single-configuration approximation. In
Hartree–Fock calculations a rigid orbital picture is assumed, where electrons have
a fixed place in a given electron configuration. By allowing electrons to occupy
different orbitals and allowing several electron configurations, the variational
approach can be applied on a significantly larger set of trial wave functions.

In the multi-configuration Hartree–Fock (MCHF) approach, the N-electron wave
function ΨαLSMLMS is a linear combination of M configuration state functions
(CSFs) ΦαiLSMLMS which are eigenfunctions of the total angular momentum L2, the
spin momentum S2 and their projections Lz and Sz, with eigenvalues h̄2L(L + 1),
h̄2S(S+1), h̄ML and h̄MS, respectively

ΨαLSMLMS(x1, · · ·xN) =
M

∑
i=1

ci Φ(αiLSMLMS;x1, · · ·xN), (9.2)

with
M

∑
i=1
|ci|2 = 1. (9.3)

The mixing coefficients {ci} and the radial functions {Rnili(r)}, constituting the
one-electron basis, are solutions of the multi-configuration Hartree–Fock method
in the MCHF approach. For a given set of orbitals, the mixing coefficients may
also be the solution of the configuration interaction (CI) problem. The relativistic
corrections can be taken into account by diagonalizing the Breit–Pauli Hamiltonian
[9] in the LSJ-coupled CSF basis to get the intermediate coupling eigenvectors

ΨαJM(x1, · · ·xN) =
M

∑
i=1

ai Φ(αiLiSiJM;x1, · · ·xN), (9.4)

with
M

∑
i=1

|ai|2 = 1. (9.5)
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In the MCHF approach, the trial wave functions are of the form (9.2) and the
energy expression for a given state becomes

E(αLS) =
M

∑
i

M

∑
j

c∗i c jHi j, (9.6)

where

Hi j ≡ 〈ΦαiLSMLMS |H|Φα jLSMLMS〉=∑
ab

qi j
abIab + ∑

abcd;k

vi j
abcd;kRk(ab,cd), (9.7)

where a ≡ (nala) and b ≡ (nblb) and the sums run over all occupied orbitals in the
respective configuration i and j.

In the MCHF context the variational principle is applied to the energy functional
in Eq. 9.6. A stationary solution is obtained by minimizing the energy with respect to
variations in the radial wave functions Pnl(r)≡ rRnl(r) satisfying the orthonormality
conditions

Nnl,n′l ≡
∫ ∞

0
Pnl(r)Pn′l(r) dr = δnn′ (9.8)

and
M

∑
i=1

c2
i = 1. (9.9)

The energy expression (9.6) can be written in matrix notation

E(αLS) = CtHC, (9.10)

where H ≡ (Hi j), C is the column matrix of the expansion coefficients and Ct its
transpose.

This gives the eigenvalue problem for the expansion coefficients

HC = CE. (9.11)

To obtain a self consistent field solution to the MCHF problem, two optimizations
need to be performed i.e., one for the variation of the one-electron radial orbitals
{Pnl(r)} in the wave function and one for the expansion coefficients. This can
be done by consecutively iterating, first the orbital optimization followed by the
coefficient optimization.

9.3 On the Symmetry of the Density Function

In the first part of this paragraph we review the study of the spherical harmonic
content of the density function for atoms in a well defined state (9.2) or (9.4).
The spherical density functions, which reveal the familiar shell structure, are
discussed and illustrative examples are given.
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9.3.1 The Non-Spherical Density Function

The so-called “generalized density function” [10] or the “first order reduced density
matrix” [11] is a special case of the reduced density matrix [10, 12]

γ1(x1,x′1) = N
∫

Ψ (x1,x2, . . . ,xN)Ψ∗(x′1,x2, . . . ,xN) dx2 . . .dxN , (9.12)

where Ψ(x1,x2, . . . ,xN) is the total wave function of an N electron system and
Ψ∗(x1,x2, . . . ,xN) is its complex conjugate. The spin-less total electron density
function ρ(r) is defined as the first order reduced density matrix, integrated over
the spin and evaluated for x1 = x′1

ρ(r1) =

∫
γ1(x1,x1) dσ1. (9.13)

This electron density function is normalized to the number of electrons of the system

∫
ρ(r) dr =

∫
ρ(r) r2 sinϑ drdϑdϕ = N. (9.14)

As discussed in [11], the single particle density function can be calculated by
evaluating the expectation value of the δ (r) operator,

ρ(r) =
∫

Ψ(x1,x2, . . . ,xN) δ (r)Ψ∗(x1,x2, . . . ,xN) dx1dx2 . . .dxN , (9.15)

where δ (r) probes the presence of electrons at a particular point in space and can
be written as the one-electron first-quantization operator

δ (r) =
N

∑
i=1

δ (r− ri) . (9.16)

The exact spin-less total electron density function (9.15) evaluated for an eigenstate
with well-defined quantum numbers (LSMLMS)

ρ(r)LSMLMS = ∑
lm

Ylm(ϑ ,ϕ)
1
r2 〈ΨαLSMLMS |

N

∑
i=1

δ (r− ri) Y ∗lm(ϑi,ϕi)|ΨαLSMLMS 〉,
(9.17)

becomes

ρ(r)LSMLMS =
L

∑
l=0

ρ(r)LSMLMS
2l Y2l 0(ϑ ,ϕ), (9.18)
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where

ρ(r)LSMLMS
2l =

1
r2 (−1)L−ML

(
L 2l L
−ML 0 ML

)

×〈ΨαLS‖
N

∑
i=1

δ (r− ri) Y ∗2l(ϑi,ϕi)‖ΨαLS〉. (9.19)

This result, which can be found by applying the Wigner–Eckart theorem [13],
recovers Fertig and Kohn’s analysis [14] for the density corresponding to a well-
defined (LSMLMS) eigenstate of the Schrödinger equation. The spherical harmonic
components in the density are limited to l-even contributions, because the bra and
the ket need to be of the same parity π = (−1)∑i li .

In this paper, the authors observed that the self-consistent field densities obtained
via the Hartree and Hartree–Fock methods generally violate the specific finite
spherical harmonic content of ρ(r)LSMLMS . They also mention that this exact
form can be obtained by spherically averaging the effective potential, yielding
single-particle states with good angular momentum quantum numbers. The atomic
structure software package ATSP2K [2] applies this approach, as was done in the
original atomic Hartree–Fock theory [15–17]. This implies two things: (1) the
density function ρ(r)LSMLMS calculated from any multiconfiguration wave function
of the form (9.2), is not a priori spherically symmetric, (2) this density function will
contain all spherical harmonic components (up to 2L) as long as the one-electron
orbital active set spanning the configuration space is l-rich enough.

The density function can also be expressed in second quantization [10]. Intro-
ducing the notation q≡ nqlqmlqmsq for spin-orbitals, expression (9.12) becomes

γ1(x1,x′1) = ∑
pq

Dpq ψ∗p(x
′
1)ψq(x1), (9.20)

where Dpq are elements of the density matrix which are given by

Dpq ≡ 〈Ψ |a†
paq|Ψ 〉 . (9.21)

The sum in Eq. 9.20 runs over all possible pairs of quartets of quantum numbers p
and q. The spin-less density function (9.13) calculated from ρ(r) = 〈Ψ |δ̂ (r)|Ψ 〉,
using the second quantized form of the operator

δ̂ (r) ≡∑
pq

a†
paq δmsp ,msq

〈ψp(r′)| 1
r2 sin ϑ

δ (r− r′) δ (ϑ −ϑ ′) δ (ϕ−ϕ ′)|ψq(r′)〉

= ∑
pq

a†
paq δmsp ,msq

R∗nplp
(r)Y ∗lpmlp

(ϑ ,ϕ)Rnqlq(r)Ylqmlq
(ϑ ,ϕ), (9.22)
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yields

ρ(r) = ∑
pq

Dpq δmsp ,msq
R∗nplp

(r)Y ∗lpmlp
(ϑ ,ϕ)Rnqlq(r)Ylqmlq

(ϑ ,ϕ). (9.23)

To illustrate the spherical harmonics content of the density in the Hartree–
Fock approximation, consider the atomic term 1s22p2( 3P)3d 4F for which the
(ML,MS) = (+3,+3/2) subspace reduces to a single Slater determinant

ΨαLSMLMS = Φ(1s22p2( 3P)3d 4F+3,+3/2) = |1s1s2p+12p03d+2|. (9.24)

When evaluating (9.23), all non-zero Dpq-values appear on the diagonal (p = q),
yielding

ρ(r)
4F+3,+3/2 = |ψ1s(r)|2 + |ψ1s(r)|2 + |ψ2p+1(r)|2 + |ψ2p0(r)|2 + |ψ3d+2(r)|2.

(9.25)

This density has a clear non-spherical angular dependence. However, referring
to [18]

W ‖JM(ϑ)≡ |YJM(ϑ ,ϕ)|2 =
J

∑
n=0

bn(J,M) P2n(cosϑ) =
J

∑
n=0

b′n(J,M) Y2n 0(ϑ ,ϕ)

(9.26)

one recovers the even Legendre polynomial content of the density, although not
reaching the (2L = 6) limit Y6 0(ϑ ,ϕ) of the exact density (9.18). This limit will
be attained when extending the one-electron orbital active set to higher angular
momentum values for building a correlated wave function.

As discussed in detail in [3], contributions to the density function corresponding
to (p = q) can appear through off-diagonal matrix elements in the CSF basis. These
contributions will be present for parity conserving single electron excitations of the
type |l1q〉 → |l2q〉.

The “offending” spherical harmonic contributions described by Fertig and Kohn
[14] do not occur in the MCHF calculation of the density function, whatever the
maximum l-value of the orbital active space [3].

9.3.2 The Spherical Density Function

A spherically symmetric density function can be obtained for an arbitrary CSF
ΦαLSMLMS by averaging the (2L+ 1)(2S+ 1) magnetic components of the spin-less
density function

ρ(r)LS ≡ 1
(2L+ 1)(2S+ 1) ∑

MLMS

ρ(r)LSMLMS , (9.27)
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where ρ(r)LSMLMS is constructed according to Eq. 9.23

ρ(r)LSMLMS = ∑
pq
〈ΦαLSMLMS |a†

paq|ΦαLSMLMS 〉 δmsp ,msq
ψ∗p(r)ψq(r). (9.28)

Applying Eqs. 9.27 and 9.28 for the atomic term 1s22p2( 3P)3d 4F considered in
the previous section, we simply get

ρ(r)
4F =

1
4πr2

{
2P2

1s(r)+ 2P2
2p(r)+P2

3d(r)
}
, (9.29)

which is, in contrast to Eq. 9.25, obviously spherically symmetric. The sum over
(ML,MS) performed in (9.27) guarantees, for any nl-subshell, the presence of all
necessary components {Ylml | ml = −l, . . .+ l} with the same weight factor, which
permits the application of Unsöld’s theorem [19]

+l

∑
ml=−l

|Ylml (ϑ ,ϕ)|2 = 2l+1
4π

(9.30)

and yields the spherical symmetry. This result is valid for any single CSF

ρ(r)LS =
1

4πr2 ∑
nl

qnlP
2
nl(r), (9.31)

where qnl is the occupation number of nl-subshell. Its sphericity explicitly appears
by rewriting (9.31) as

ρ(r) = ρ(r) |Y00(ϑ ,ϕ)|2 = D(r)
r2 |Y00(ϑ ,ϕ)|2, (9.32)

with

ρ(r)≡ 1
r2 ∑

nl

qnlP
2
nl(r), (9.33)

and
D(r)≡ r2ρ(r) = ∑

nl

qnlP
2
nl(r) = ∑

nl

qnl r2R2
nl(r). (9.34)

The radial distribution function D(r) represents the probability of finding an
electron between the distances r and r + dr from the nucleus, regardless of
directionThis radial density function reveals the atomic shell structure when plotted
as function of r. Its integration over r gives the total number of electrons of the
system ∫ ∞

0
D(r) dr =

∫ ∞

0
r2ρ(r) dr = ∑

nl

qnl = N. (9.35)
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Where above the spherical symmetry of the average density (9.27) is demon-
strated for a single CSF thanks to Unsöld’s theorem, it can be demonstrated in the
general case by combining (9.27), (9.18) and the 3- j sum rule [13]

∑
ML

(−1)L−ML

(
L k L
−ML 0 ML

)
= (2k+1)1/2 δk,0 (9.36)

for each k = 2l contribution (9.19). However, the radial density ρ(r) will be more
complicated than (9.33), involving mixed contributions of the type Pn′l(r)Pnl(r) =
r2Rn′l(r)Rnl(r), as developed below.

Instead of obtaining a spherically symmetric density function by averaging
the magnetic components ρ(r)LSMLMS through Eq. 9.27, one can build a radial
density operator associated to the function (9.34) which is spin- and angular-
independent, i.e., independent of the spin (σ ) and angular (ϑ ,ϕ) variables. Adopting
the methodology used by Helgaker et al. [11] for defining the spin-less density
operator, we write a general first quantization spin-free radial operator

f =
N

∑
i=1

f (ri) (9.37)

in second quantization as

f̂ = ∑
pq

fpq a†
paq, (9.38)

where fpq is the one-electron integral

fpq =

∫
ψ∗p(x) f (r)ψq(x)r2 sinϑdrdϑdϕdσ . (9.39)

Applying this formalism to the radial density operator

δ (r)≡
N

∑
i=1

δ (r− ri) , (9.40)

and using the spin-orbital factorization for both p and q quartets, we obtain the
second quantization form

δ̂ (r) = ∑
pq

dpq(r)a†
paq, (9.41)

with

dpq(r) = δlplq δmlp mlq
δmsp msq

R∗nplp
(r)Rnqlq(r)r

2, (9.42)
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where the Kronecker delta arises from the orthonormality property of the spherical
harmonics and spin functions. With real radial one-electron functions, the operator
(9.41) becomes

δ̂ (r) = ∑
n′,l′,m′l ,m′s,n,l,ml ,ms,

δl′l δm′l ml
δm′sms a†

n′l′m′l m′s
anlmlms Rn′l′(r)Rnl(r)r

2 (9.43)

= ∑
n′,n

∑
l,ml ,ms

a†
n′lml ms

anlml ms Rn′l(r)Rnl(r)r
2. (9.44)

Its expectation value provides the radial density function D(r) = r2ρ(r) = 4πr2ρ(r)
defined by (9.32) and (9.34).

Building the coupled tensor of ranks (00) from the [2(2l+1)] components of the
creation and annihilation operators [20]

(
a†

n′lanl

)(00)

00
=− 1√

2(2l+ 1)
∑

ml ms

a†
n′lml ms

anlmlms , (9.45)

the operator (9.43) becomes

δ̂ (r) =−∑
l

√
2(2l + 1)∑

n′,n

(
a†

n′lanl

)(00)

00
Rn′l(r)Rnl(r)r

2. (9.46)

The expectation value of this operator provides the spherical density function for
any atomic state. Note that, in contrast to (9.28), the tensorial ranks (00) garantee
the diagonal character in L,S,ML and MS, thanks to Wigner–Eckart theorem

〈αLSMLMS|T (00)
00 |α ′L′S′M′LM′S〉 = (−1)L+S−ML−MS

×
(

L 0 L′

−ML 0 M′L

)(
S 0 S′

−MS 0 M′S

)

×〈αLS‖T (00)‖α ′L′S′〉. (9.47)

Moreover, the ML/MS independence emerges from the special 3 j-symbol

(
j 0 j′

−m j 0 m′j

)
= (−1) j−m(2 j+ 1)−1/2δ j j′δmjm′j . (9.48)

In other words, where the non-spherical components are washed out by the
averaging process (9.27), they simply do not exist and will never appear for the
density calculated from (9.46), for any (ML,MS) magnetic component.
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The radial distribution function D(r) ≡ r2ρ(r) can be calculated from the
expectation value of the operator (9.46), using the wave function (9.2) or (9.4).
In the most general case (expansion (9.4)), using the (LS)J-coupled form of the
excitation operator, (

a†
n′lanl

)(00)0

0
=
(

a†
n′lanl

)(00)

00
, (9.49)

one obtains

〈ΨαJM|δ̂ (r)|ΨαJM〉= (−1)J−M
(

J 0 J
−M 0 M

)
〈ΨαJ‖F̂ (00)0

ρ ‖ΨαJ〉 (9.50)

with

F̂(00)0
ρ ,0 = −∑

l=1

√
2(2l+ 1) ∑

n,n′

(
a†

n′lanl

)(00)0

0
Iρ
(
n′l,nl

)
, (9.51)

and
Iρ
(
n′l,nl

)
(r) ≡ Rn′l(r)Rnl(r)r

2. (9.52)

The diagonal reduced matrix element (RME) evaluated with the Breit–Pauli eigen-
vector (9.4) has the following form

〈ΨαJ‖F̂(00)0
ρ ‖ΨαJ〉= ∑

i, j

a∗i a j 〈Φ(αiLiSiJ)‖F̂(00)0
ρ ‖Φ(α jL jS jJ)〉 (9.53)

where the RME in the (LS)J coupled basis reduces to

〈Φ(αiLiSiJM)‖F̂ (00)0
ρ ‖Φ(α jL jS jJM)〉

=

√
2J+ 1

(2Li + 1)(2Si+ 1)
δLi ,Lj δSi,S j

×〈Φ(αiLiSi)‖F̂(00)
ρ ‖Φ(α jL jS j)〉 (9.54)

and

F̂ (00)
ρ ,00 = −∑

l=1

√
2(2l+ 1) ∑

n,n′

(
a†

n′lanl

)(00)

00
Iρ
(
n′l,nl

)
. (9.55)

From a comparison of the operator (9.55) with the non-relativistic one-body
Hamiltonian operator (see Eq. A5 of [21]), one observes that the angular coefficients
of the radial functions Iρ (n′l,nl)(r) are identical to those of the one-electron
Hamiltonian radial integrals In′l,nl , as anticipated from McWeeny analysis [10].
These angular coefficients can be derived by working out the matrix elements of

a one–particle scalar operator F̂(00)
ρ between configuration state functions with u

open shells, as explicitly derived by Gaigalas et al. [22].
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9.4 Three Tangible Examples

First the evaluation of the density function and the influence of correlation effects
is illustrated by plotting in Fig. 9.1 the radial density distribution D(r) = r2ρ(r) for
a CAS-MCHF wave function of the beryllium ground state (Be 1s22s2 1S), using
a n = 9 orbital active set. In the same figure, the Hartree–Fock radial density is
compared with the one obtained with two correlation models: (1) the n = 2 CAS-
MCHF expansion, largely dominated by the near-degeneracy mixing associated to
the Layzer complex 1s2{2s2+2p2} and (2) the n= 9 CAS-MCHF. From the plotted
results we notice that the density of the n = 2 calculation already contains the
major correlation effects, compared to the n = 9 calculation. Indeed, the density
does not seem to change a lot by going from the n = 2 to the n = 9 orbital basis,
the valence double excitation 1s22p2 contributing for 9.7% of the wave function.
From the energy point of view however, this observation is somewhat surprising
(see Table 9.1): the correlation energy associated to the n = 2 CAS-MCHF solution
“only” represents 47% of the n = 9 correlation energy.

Fig. 9.1 Density of 1S Be ground state for different CAS-MCHF wave function as compared to
Hartree–Fock (HF). Density differences have been scaled by a factor 100

Table 9.1 Total energy for
the ground state of Be with
different correlation models

Model Energy (a.u.) Correlation energy (a.u.)

HF −14.573 023
n = 2-CAS −14.616 856 En=2

corr = En=2−EHF = 0.043 832
n = 9-CAS −14.667 013 En=9

corr = En=9−EHF = 0.093 986
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Fig. 9.2 Comparison of the 3P0, 3P1 and 3P2 radial density functions for O4+. Density differences
have been scaled by a factor 10,000

Table 9.2 Total energy
for 2s2p 3Po

J fine-structure
levels of O4+

Model Energy (a.u.) Energy difference (a.u.)

1s22s2p 3Po
0 −68.032 086

3Po
1 −68.031 473 E( 3P1− 3P0) = 0.000 613

3Po
2 −68.030 102 E( 3P2− 3P1) = 0.001 370

As a second example, we illustrate the influence of relativistic effects – in the
Breit–Pauli approximation – on the density function of the Be-like O4+ atom, by
comparing the densities of the fine-structure states 1s22s2p 3P◦0 , 3P◦1 and 3P◦2 . From
the plots in Fig. 9.2 and the data given in Table 9.2 we observe that the largest
energy difference corresponds to the largest difference in density function. More
bound is the level, higher is the electron density in the inner region. The influence
of relativistic effects on the density function will be discussed thoroughly below.

Finally a third example is given that is relevant when studying the electron
affinities, as it is often interesting to investigate the differential correlation effects
between the negative ion and the neutral system [23]. Figure 9.3 displays the density
functions D(r) of both the [Ne]3s23p4 3P ground state of neutral Sulphur (S) and
the [Ne]3s23p5 2P◦ ground state of the negative ion S−, evaluated with elaborate
correlation models [23], together with their difference ΔD(r). The latter integrates
to unity and reveals that the “extra” electron resides in the valence area.
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Fig. 9.3 S and S− density functions. Density differences have been scaled by a factor 30

9.5 Relativistic Density Functions

9.5.1 Relativistic Multi-configuration Wave Functions

In the relativistic scheme, the atomic wave function is, in the most general case, a
combination of configuration state functions

|πJMJ〉= ∑
ν

cν |νπJMJ〉, (9.56)

eigenfunction of the inversion operator I, the total angular momentum J2 and its
projection Jz. ν denotes all the necessary information for specifying the relativistic
configuration unambiguously. The CSFs are built on the one-electron Dirac four-
spinor

ψi(r) =
1
r

(
Pi(r)χ μi

κi (Ω)

iQi(r)χ
μi−κi

(Ω)

)
, (9.57)

where χ μi
κi (Ω) is a two-dimensional vector harmonic. It has the property

that Kψi(r) = κψi(r) where K = β (σ · L + 1). The large {P(r)} and small
{Q(r)} components are solutions of a set of coupled integro-differential
equations (9.62) [24]. The mixing coefficients {cν} are obtained by diagonalizing
the matrix of the no-pair Hamiltonian containing the magnetic and retardation terms
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[25]. The two coupled variational problems are solved iteratively. For a complete
discussion on relativistic atomic structure we refer to [26].

It is to be noted that the relativistic scheme rapidly becomes more complicated
than the corresponding non-relativistic one. For example, if the ground term of
Carbon atom is described, in the non-relativistic one-configuration Hartree–Fock
approximation, by a single CSF |1s22s22p2 3P〉, the relativistic equivalent implies
the specification of the J-value. For J = 0 corresponding to the ground level of
Carbon, the following two-configuration description becomes necessary

|“1s22s22p2”(J = 0)〉= c1|1s22s2(2p∗)2(J = 0)〉+ c2|1s22s22p2(J = 0)〉, (9.58)

implicitly taking into account the relativistic mixing of the two LS-terms
(1S and 3P) arising from the 2p2 configuration and belonging to the J = 0 subspace.
p∗ and p in expression (9.58) correspond to the j-values, j = 1/2 (κ = +1) and
j = 3/2 (κ =−2), respectively.

9.5.2 Multi-configuration Dirac–Hartree–Fock Equations

For the calculations of relativistic density functions we used a multi-configuration
Dirac–Fock approach (MCDF), which can be thought of as a relativistic version
of the MCHF method. The MCDF approach implemented in the MDF/GME
program [4, 27] calculates approximate solutions to the Dirac equation with the
effective Dirac–Breit Hamiltonian [27]

HDB(r1,r2, . . . ,rN) =
N

∑
i=1

hD(ri)+∑
i< j

hB(ri,r j), (9.59)

with

hD(ri) = c α ·p+ c2(β − 1)Vi(r) (9.60)

and

hB(ri,r j) =
1
ri j
− α i ·α j

ri j
cos(ωi jri j)+ (α ·∇)i (α ·∇) j

cos(ωi jri j)−1

ω2
i jri j

. (9.61)

The total Hamiltonian contains three types of contributions: the one-electron
Dirac Hamiltonion, the Coulomb repulsion and the Breit interaction. These
contributions, which appear in the energy expression, give rise to radial integrals,
which need to be calculated for the two component wave function. We will simply
state the MCDF equations, which can be obtained by applying the variational
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principle to the energy expression, for variations in the expansion coefficients ci in
Eq. 9.56 and both the large and the small components of the radial wave function.
The coefficients ci can be determined from the diagonalization of a Hamiltonian
matrix and the radial components can be optimized by solving the coupled integro-
differential equations, here given for the orbital A

[
d
dr +

κA
r − 2

α +αVA(r)

− 2
α +αVA(r)

d
dr +

κA
r

](
PA(r)

QA(r)

)
=α ∑

B
εAB

(
QB(r)

−PB(r)

)
+

(
XQA(r)

−XPA(r)

)
,

(9.62)

where the summation over B contains only the contributions for κA = κB, where VA

is the sum of the nuclear and the direct Coulomb potentials and where XPA contains
all the two electron integrals, except the instantaneous direct Coulomb repulsion.
With the Lagrangian parameters εAB the orthonormality constraint

∫
{PA(r)PB(r)+QA(r)QB(r)} dr = δκAκBδnAnB , (9.63)

is enforced.

9.5.3 Relativistic Density Functions

For the purpose of quantifying the relativistic effects on the electron density
functions, which are discussed later on in this contribution, we evaluate Dirac–Fock
density functions, using a point nucleus approximation. In this section we describe
how density functions can be obtained.

By averaging the sublevel densities

ρ(r) =
1

(2J+ 1)

+J

∑
MJ=−J

ρJMJ (r), (9.64)

the total electron density becomes spherical for any open-shell system, as found in
the non-relativistic scheme (see Sect. 9.3.2) and can be calculated from

ρ(r) =
1

4π ∑
nκ

P2
nκ(r)+Q2

nκ(r)
r2 qnκ , (9.65)

where qnκ is the occupation number of the relativistic subshell (nκ). Expres-
sion (9.65) can be considered as the relativistic version of Eq. 9.27.
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9.6 Analyzing Atomic Densities: Concepts from Quantum
Chemistry

9.6.1 The Shape Function

In the context of information theory (cf. Sect. 9.8) the shape function, defined as the
density per particle

σ(r) =
ρ(r)

N
, (9.66)

where N is the number of electrons, given by

N =
∫

ρ(r)dr , (9.67)

plays a role as carrier of information. In particular, the shape function is employed
as a probability distribution which describes an atom or a molecule.

The shape function first came to the scene of quantum chemistry in 1983 with
the work of Parr and Bartolotti [28]. Although the shape function had appeared
before in another context, it is due to Parr and Bartolotti’s work that the quantity
owes its name. Just as for the density function, the shape function can be shown
to determine the external potential v(r) and the number of electrons N [29] and
so completely determines the system. The Kato cusp condition [30] leads to the
nuclear charges and the relationship between the logarithmic derivative of the shape
function and the ionization potential determines the number of electrons [29]. On
this basis a Wilson-like argument has been constructed [31] (similar to the original
DFT), confirming the shape function “as carrier of information” [32]. Relationships
between the shape function and concepts from conceptual DFT were established.
In [33] a slightly different perspective is given on the fundamental nature of the
shape function.

9.6.2 Quantum Similarity

In chemistry the similarity of molecules plays a central role. Indeed, comparable
molecules, usually molecules with a similar shape, are expected to show similar
chemical properties and reactivity patterns. Specifically, there chemical behavior is
expected to be similar [34]. The concept of functional groups is extensively used
in organic chemistry [35], through which certain properties are transferable (to a
certain extent) from one molecule to another, and the intense QSAR investigations in
pharmaceutical chemistry [36] are illustrations of the attempts to master and exploit
similarity in structure, physicochemical properties and reactivity of molecular
systems.
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Remarkably, the question of quantifying similarity within a quantum mechanical
framework has been addressed relatively late, in the early 1980s. The pioneering
work of Carbó and co-workers [5,37] led to a series of quantum similarity measures
(QSM) and indices (QSI). These were essentially based on the electron density
distribution of the two quantum objects (in casu molecules) to be compared. The
link between similarity analysis and DFT [38, 39] built on the electron density as
the basic carrier of information, and pervading quantum chemical literature at that
time, is striking.

The last 15 years witnessed a multitude of studies on various aspects of
quantum similarity of molecules (the use of different separation operators [37],
the replacement of the density by more appropriate reactivity oriented functions
[38, 39] within the context of conceptual DFT [40], the treatment of enantiomers
[31, 41–43]). With the exception of two papers by Carbó and co-workers, the study
of isolated atoms remained surprisingly unexplored. In the first paper [44] atomic
self-similarity was studied, whereas the second one [45] contains a relatively short
study on atomic and nuclear similarity, leading to the conclusion that atoms bear the
highest resemblance to their neighbors in the Periodic Table.

The work discussed below is situated in the context of a mathematically rigorous
theory of quantum similarity measures (QSM) and quantum similarity indices (QSI)
as developed by Carbó [5, 37]. Following Carbó, we define the similarity of two
atoms (a and b) as a QSM

Zab(Ω) =

∫
ρa(r)Ω(r,r′)ρb(r

′) drdr′, (9.68)

where Ω(r1,r2) is a positive definite operator. Renormalization to

SIΩ =
Zab(Ω)√

Zaa(Ω)
√

Zbb(Ω)
, (9.69)

yields a QSI SIΩ with values comprised between 0 and 1.
The two most successful choices for the separation operator Ω(r,r′) are the

Dirac-delta δ (r,r′) and the Coulomb repulsion 1
|r−r′| . The first is known to reflect

comparison of geometrical shape of molecules, whereas the second is said to reflect
the charge concentrations [44].

9.7 Analyzing Atomic Densities: Some Examples

In the previous sections the calculation of the density function was discussed and
a methodology for comparing them was introduced. In this section a quantitative
analysis of atomic density functions is made. It seemed interesting to employ
concepts from molecular similarity studies (cf. Sect. 9.6.2), as well developed
in quantum chemistry and chemical reactivity studies. Here molecular quantum
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similarity measures will be applied in a straightforward fashion to investigate (1) the
LS-dependence of the electron density function in a Hartree–Fock approximation,
(2) the density functions of the atoms in their ground state, throughout the periodic
table, based on the density function alone, and (3) a quantization of relativistic
effects by comparing density functions from Hartree–Fock and Dirac–Hartree–Fock
models.

9.7.1 On the LS-term Dependence of Atomic Electron
Density Functions

From the developments on the density function in Sect. 9.3.2 it is clear that the
LS-dependent restricted Hartree–Fock approximation yields LS-dependent Hartree–
Fock equations for atoms with open sub shells. In Hartree–Fock this dependence
can be traced back to the term-dependency of the coulomb interaction. In the
single incomplete shell case, corresponding to the ground state configurations we
are interested in for the present study, the term dependency is usually fairly small.
Froese-Fischer compared mean radii of the radial functions [17]. The differences
in 〈r〉 for the outer orbitals between the values obtained from a Hartree–Fock
calculation on the lowest term and those for the average energy of the configuration
are of the order of 1–5%. Although the LS-dependency does not show up explicitly
in the direct and exchange potentials of the closed-subshell radial Hartree–Fock
equations, the closed-subshell radial functions are ultimately LS-dependent through
the coupling between the orbitals in the HF equations to be solved in the iterative
procedure, but these relaxation effects turn out to be even smaller.

As explicitly indicated through (9.31) the density built from the one-electron
radial functions could therefore be LS-dependent but this issue has not yet been
investigated quantitatively. Combining the term-dependent densities ρA = ραALASA

and ρB = ραBLBSB for the same atom in the same electronic ground state configu-
ration, but possibly different states (and adopting the Dirac δ -function for Ω ) for
evaluating the quantum similarity measure ZAB of (9.68), the similarity matrix can
be constructed according to (9.69). Its matrix elements have been estimated for
the np2 configuration of Carbon (n = 2) and Silicon (n = 3) [6]. As expected, the
deviation of the off-diagonal elements from 1 is very small, the HF orbitals for the
different terms 3P, 1D and 1S being highly similar, although not identical.

9.7.2 A Study of the Periodic Table

As a first step to the recovery of the periodic patterns in Mendeleev’s table, Carbó’s
quantum similarity index (9.69) was used, with the Dirac-δ as separation operator.
In this case the expression (9.69) reduces to an expression for shape functions (9.66).
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Fig. 9.4 Quantum similarity indices for noble gases, using the Dirac-delta function as separation
operator

For the evaluation of the QSI in expression (9.69), we used atomic density
functions of atoms in their ground state e.g., corresponding to the lowest energy
term. As elaborated in Sect. 9.3.2 the involvement of all degenerate magnetic
components allows to construct a spherical density function. For the density
functions in this study, we limited ourselves to the Hartree–Fock approximation
where no correlation effects are involved and the state functions are built with
one CSF.

In Fig. 9.4 we extract, as a case study from the complete atom QSI-matrix, the
relevant information for the noble gases. Here the similarities were calculated using
the Dirac delta function as separation operator. From these data it is clear that the
similarity indices are higher, the closer the atoms are in the periodic table (smallest
ΔZ, Z being the atomic number). The tendency noticed by Robert and Carbó in
[45] is regained in the present study at a more sophisticated level. It can hence be
concluded that the QSI involving ρ(r) and evaluated with δ (r− r′) as separation
operator Ω , does not generate periodicity.

The discussion of the work on the retrieval of periodicity is continued below
in Sects. 9.9.1 and 9.9.2, where concepts from information theory are employed to
construct a functional which quantifies the difference between two density functions
in a different way.
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9.7.3 On the Influence of Relativistic Effects

In this section we investigate the importance of relativistic effects for the electron
density functions of atoms. From the relativistic effects on total energies one can
infer these effects have implications for the electron densities. The effect of relativity
on atomic wave function has been studied in the pioneering work of Burke and
Grant [46] who presented graphs and tables to show the order of magnitude of
corrections to the hydrogenic charge distributions for Z = 80. The relative changes
in the binding energies and expectation values of r due to relativistic effects are
known from the comparison of the results obtained by solving both the Schrödinger
and Dirac equations for the same Coulomb potential. The contraction of the ns-
orbitals is a well known example of these relativistic effects. But as pointed
out by Desclaux in his “Tour historique” [47], for a many-electron system, the
self-consistent field effects change this simple picture quite significantly. Indeed,
contrary to the single electron solution of the Dirac equation showing mainly the
mass variation with velocity, a Dirac–Fock calculation includes the changes in the
spatial charge distribution of the electrons induced by the self-consistent field.

We first illustrate the difference of the radial density functions D(r) defined as
(see also expression (9.34))

D(r)≡ 4πr2ρ(r), (9.70)

calculated in the Hartree–Fock (HF) and Dirac–Fock (DF) approximations for the
ground state 6p2 3P0 of Pb I (Z = 82) according to Eqs. 9.65 and 9.70, respectively.
These are plotted in Fig. 9.5, which shows the global relativistic contraction of the
shell structure.

Employing the framework of QSI to compare non-relativistic Hartree–Fock
electron density functions ρ HF(r) with relativistic Dirac–Fock electron density
functions ρ DF(r) for a given atom, the influence of relativistic effects on the total
density functions of atoms can be quantified via the QSI defined as

ZHF, DF(δ ) =
∫

ρ HF(r)δ (r− r′)ρ DF(r′) drdr′ (9.71)

SIδ =
ZHF, DF(δ )√

ZHF, DF(δ )
√

ZHF, DF(δ )
, (9.72)

where δ is the Dirac-δ operator.
In Fig. 9.6 we supply the QSI between atomic densities obtained from numerical

Hartree–Fock calculation and those obtained from numerical Dirac–Fock calcula-
tions, for all atoms of the periodic table.

The results show practically no relativistic effects on the electron densities for
the first periods, the influence becoming comparatively large for heavy atoms.
To illustrate the evolution through the table the numerical results of the carbon
group elements are highlighted in the graph in Fig. 9.6. From the graph it is also
noticeable that the relativistic effects rapidly gain importance for atoms heavier than
Pb (Z = 86).



160 A. Borgoo et al.

Fig. 9.5 DF and HF density distributions D(r) = 4πr2ρ(r) for the neutral Pb atom (Z = 82). The
contraction of the first shells is clearly visible

Fig. 9.6 Similarity of non-relativistic Hartree–Fock with relativistic Dirac–Fock atomic density
functions with highlighted results for the C group atoms (C, Si, Ge, Sn, Pb)
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9.8 Analyzing Atomic Densities: Concepts
from Information Theory

Nowadays density functional theory (DFT) is the most widely used tool in quantum
chemistry. Its relatively low computational cost and the attractive way in which
chemical reactivity can be investigated made it a good alternative to traditional wave
function based approaches. DFT is based on the Hohenberg–Kohn theorems [1].
In other words an atom’s or a molecule’s energy – and in fact any other physical
property – can be determined by evaluating a density functional. However, the
construction of some functionals corresponding to certain physical property, has
proven very difficult. Moreover, to the present day no general and systematic way
for constructing such functionals has been established. Although energy functionals,
which are accurate enough for numerous practical purposes, have been around
for some time now, the complicated rationale and the everlasting search for even
more accurate energy functionals are proof of the difficulties encountered when
constructing such functionals. In the domain of conceptual DFT, where chemical
reactivity is investigated, a scheme for the construction of functionals, based on
derivatives of the energy with respect to the number of electrons and/or the external
potential, has proven very successful [40, 48]. Inspiration for the construction
of chemically interesting functionals has also come from information theory and
statistical mathematics. The functionals used for analyzing probability distributions
have been successfully applied to investigate electron density functions of atoms and
molecules. In this chapter we introduce those functionals and discuss several studies
where they have been applied to construct chemically interesting functionals.

Shannon is generally recognized as one of the founding fathers of information
theory. He defined a measure for the amount of information in a message and
based on that, he developed a mathematical theory of communication. His theory
of communication is concerned with the amount of information in a message rather
than the information itself or the semantics. It is based on the idea that – from the
physical point of view – the message itself is irrelevant, but its size is an objective
quantity. Shannon saw his measure of information as a measure of uncertainty and
referred to it as an entropy. Since Shannon’s seminal publication in 1948 [49],
information theory became a very useful quantitative theory for dealing with
problems of transmission of information and his ideas found many applications in
a remarkable number of scientific fields. The fundamental character of information,
as defined by Shannon, is strengthened by the work of Jaynes [50,51], who showed
that it is possible to develop a statistical mechanics on the basis of the principle of
maximum entropy.

In the literature the terms entropy and information are frequently interchanged.
Arih Ben-Naim, the author of “Farewell to Entropy: Statistical Thermodynamics
Based on Information” [52] insists on going one step further and motivates “not only
to use the principle of maximum entropy in predicting the probability distribution
[which is used in statistical physics], but to replace altogether the concept of entropy
with the more suitable information.” In his opinion “this would replace an essentially
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meaningless term [entropy] with an actual objective, interpretable physical quantity
[information].” We do not intend to participate in this discussion at this time,
since the present chapter is not concerned with the development of information
theory itself, but rather with an investigation of the applicability of some concepts,
borrowed from information theory, in a quantum chemical context. The interested
reader can find an abundance of treatments on information theory itself and its
applications to statistical physics and thermodynamics in the literature.

Information theoretical concepts found their way into chemistry during the
seventies. They were introduced to investigate experimental and computed energy
distributions from molecular collision experiments. The purpose of the information
theoretical approach was to measure the significance of theoretical models and
conversely to decide which parameters should be investigated to gain the best
insight into the actual distribution. For an overview of this approach to molecular
reaction dynamics, we refer to Levine’s work [53]. Although the investigated
energy distributions have little relation with electronic wave functions and density
functions, the same ideas and concepts found their way to quantum chemistry
and the chemical reactivity studies which are an important study field of it.
Most probably this is stimulated by the fact that atoms and molecules can be
described by their density function, which is ultimately a probability distribution.
The first applications of information theoretical concepts in quantum chemistry,
can be found in the literature of the early eighties. The pioneering work of Sears
et al. [54] quickly lead to more novel ideas and publications. Since then, many
applications of information theoretical concepts to investigate wave functions and
density functions, have been reported. In [55] Gadre gives a detailed review of the
original ideas behind and the literature on “Information Theoretical Approaches to
Quantum Chemistry.” To motivate our work in this field we paraphrase the author’s
concluding sentence:

Thus it is felt that the information theoretical principles will continue to serve as powerful
guidelines for predictive and interpretive purposes in quantum chemistry.

The initial idea in our approach was to construct a density functional, which
reveals chemical and physical properties of atoms, since the periodicity of the Table
is one of the most important and basic cornerstones of chemistry. Its recovery
on the basis of the electron density alone can be considered a significant result.
In an information theoretical context, the periodicity revealing functional can be
interpreted as a quantification of the amount of information in a given atom’s density
function, missing from the density function of the noble gas atom which precedes
it in the periodic table. The results indicate that information theory offers a method
for the construction of density functionals with chemical interest and based on this
we continued along the same lines and investigated if more chemically interesting
information functionals could be constructed.

In the same spirit, the concept of complexity has been taken under consideration
for the investigation of electron density functions. Complexity has appeared in many
fields of scientific inquiry e.g., physics, statistics, biology, computer science and
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economics [56]. At present there does not exist a general definition which quantifies
complexity, however several attempts have been made. For us, one of these stands
out due to its functional form and its link with information theory.

Throughout this chapter it becomes clear that different information and complex-
ity measures can be used to distinguish electron density functions. Their evaluation
and interpretation for atomic and molecular density functions gradually gives us
a better understanding of how the density function carries physical and chemical
information. This exploration of the density function using information measures
teaches us to read this information.

Before going into more details about our research several concepts should be
formally introduced. For our research, which deals with applications of functional
measures to atomic and molecular density functions, a brief discussion of these
measures should suffice. The theoretical sections are followed by an in depth
discussion of our results. In the concluding section we formulate general remarks
and some perspectives.

9.8.1 Shannon’s Measure: An Axiomatic Definition

In 1948 Shannon constructed his information measure – also referred to as
“entropy” – for probability distributions according to a set of characterizing
axioms [49]. A subsequent work showed that, to obtain the desired characterization,
Shannon’s original four axioms should be completed with a fifth one [57]. Different
equivalent sets of axioms exist which yield Shannon’s information measure. The
original axioms, with the necessary fifth, can be found in [58]. Here we state the set
of axioms described by Kinchin [55, 59].

For a stochastic event with a set of n possible outcomes (called the event space)
{A1,A2, . . . ,An} where the associated probability distribution P = {P1,P2, . . . ,Pn}
with Pi ≥ 0 for all i and ∑n

i=1 Pi = 1, the measure S should satisfy:

1. The entropy functional S is a continuous functional of P
2. The entropy is maximal when P is the uniform distribution i.e., Pi = 1/n
3. The entropy of independent schemes are additive i.e., S(PA+PB) = S(PA)+S(PB)

(a weaker condition for dependent schemes exists)
4. Adding any number of impossible events to the event space does not change the

entropy i.e., S(P1,P2, . . . ,Pn,0,0, . . . ,0) = S(P1,P2, . . . ,Pn).

It can be proven [59] that these axioms suffice to uniquely characterize Shannon’s
entropy functional

S =−k∑
i

Pi logPi, (9.73)

with k a positive constant. The sum runs over the event space i.e., the entire
probability distribution. In physics, expression (9.73) also defines the entropy of
a given macro-state, where the sum runs over all micro-states and where Pi is the
probability corresponding to the i-th micro-state. The uniform distribution possesses
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the largest entropy indicating that the measure can be considered as a measure of
randomness or uncertainty, or alternatively, it indicates the presence of information.

When Shannon made the straightforward generalization for continuous probabil-
ity distributions P(x)

S[P(x)] =−k
∫

P(x) logP(x) dx, (9.74)

he noticed that the obtained functional depends on the choice of the coordinates.
This is easily demonstrated for an arbitrary coordinate transformation y = g(x), by
employing the transformation rule for the probability distribution p(x)

q(y) = p(x)J−1 (9.75)

and the integrandum
dy = Jdx, (9.76)

where J is the Jacobian of the coordinate transformation and J−1 its inverse. The
entropy hence becomes

∫
q(y) log(q(y)) dy =

∫
p(x) log(p(x)J−1) dx, (9.77)

where the residual J−1 inhibits the invariance of the entropy. Although Shannon’s
definition lacks invariance and although it is not always positive, it generally
performs very well. Moreover, its fundamental character is emphasized by Jaynes’s
maximum entropy principle, which permits the construction of statistical physics,
based on the concept of information [50,51]. In the last decade several investigations
of the Shannon entropy in a quantum chemical context have been reported. Those
relevant to our research are discussed in more detail below.

9.8.2 Kullback–Leibler Missing Information

Kullback–Leibler’s information deficiency was introduced in 1951 as a generaliza-
tion of Shannon’s information entropy [8]. For a continuous probability distribution
P(x), relative to the reference distribution P0(x), it is given by

ΔS[P(x)|P0(x)] =
∫

P(x) log
P(x)
P0(x)

dx. (9.78)

As can easily be seen from expression (9.77), the introduction of a reference
probability distribution P0(x) yields a measure independent of the choice of the
coordinate system. The Kullback–Leibler functional quantifies the amount of
information which discriminates P(x) from P0(x). In other words, it quantifies the
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distinguishability of the two probability distributions. Sometimes it can be useful
to see ΔS[P(x)|P0(x)] as the distance in information from P0 to P, although strictly
speaking the lack of symmetry under exchange of P(x) and P0(x) makes it a directed
divergence.

Kullback–Leibler’s measure is an attractive quantity from a conceptual and
formal point of view. It satisfies the important properties positivity, additivity,
invariance, respectively:

1. ΔS[P(x)|P0(x)]≥ 0
2. ΔS[P(x,y)|P0(x,y)] = ΔS[P(x)|P0(x)] + ΔS[P(y)|P0(y)] for independent events

i.e., P(x,y) = P(x)P(y)
3. ΔS[P(y)|P0(y)] = ΔS[P(x)|P0(x)] if y = f (x).

Besides the lack of symmetry, the Kullback–Leibler functional has other formal
limitations e.g., it is not bound, nor is it always well defined. In [60] the lack of these
properties was addressed and the Jensen–Shannon divergence was introduced as a
symmetrized version of Kullback–Leibler’s functional. In [61] the Jensen–Shannon
distribution was first proposed as a measure of distinguishability of two quantum
states. Chatzisavvas et al. investigated the quantity for atomic density functions [62].

For our investigation of atomic and molecular density functions, as carrier
of physical and chemical information, we constructed functionals based on the
definition of information measures. In Sect. 9.9.1 below, the research is discussed
in depth.

9.9 Examples from Information Theory

9.9.1 Reading Chemical Information from the Atomic
Density Functions

This section contains a detailed description of our research on the recovery of the
periodicity of Mendeleev’s Table. The novelty in this study is that we managed
to generate the chemical periodicity of Mendeleev’s table in a natural way, by
constructing and evaluating a density functional. As discussed before in Sect. 9.7.2,
the comparison of atomic density functions on the basis of a quantum similarity
index (using the δ (r1− r2) operator), masks the periodic patterns in Mendeleev’s
table. On the other hand, the importance of the periodicity, as one of the workhorses
in chemistry, can hardly be underestimated. Due to the Hohenberg-Kohn theorems,
the electron density can be considered as the basic carrier of information, although,
for many properties it is unknown how to extract the relevant information from the
density function. This prompted us to investigate whether the information measures,
which gained a widespread attention by the quantum chemical community, could be
used to help extract chemical information from atomic density functions in general
and help to regain chemical periodicity in particular.
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Fig. 9.7 Kullback–Leibler information (9.79) versus Z for atomic densities with the noble gas of
the previous row as reference

Tempted by the interpretation of the Kullback–Leibler expression (9.78) as
a tool to distinguish two probability distributions, the possibility of using it to
compare atomic density functions is explored. To make a physically motivated
choice of the reference density P0(x) we consider the construction of Sanderson’s
electronegativity scale [63], which is based on the compactness of the electron
cloud. Sanderson introduced a hypothetical noble gas atom with an average density
scaled by the number of electrons. This gives us the argument to use renormalized
noble gas densities as reference in expression (9.78). This gives us the quantity

ΔSρ
A ≡ ΔS[ρA(r)|ρ0(r)] =

∫
ρA(r) log

σA(r)
σ0(r)

dr, (9.79)

where ρA(r) and σA(r) are the density and shape function of the investigated system
and σ0(r) the shape function of the noble gas atom preceding atom A in Mendeleev’s
table. The evaluation of this expression for atoms He through Xe shows a clear
periodic pattern, as can be seen in Fig. 9.7.

Reducing the above expression to one that is based on shape functions only,
leads to

ΔSσ
A ≡ ΔS[σA(r)|σ0(r)] =

∫
σA(r) log

σA(r)
σ0(r)

dr (9.80)

and its evolution is shown in Fig. 9.8. The periodicity is clearly present and this
with the fact that the distance between points in a given period is decreasing
gradually from first to fourth row is in agreement with the evolution of many
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Fig. 9.8 Kullback–Leibler information (Eq. 9.80) versus Z for atomic shape functions with the
noble gas of the previous row as reference

chemical properties throughout the periodic table. One hereby regains one of the
basic characteristics of the Periodic Table namely that the evolution in (many)
properties through a given period slows down when going down in the Table. The
decrease in slope of the four curves is a further illustration.

9.9.2 Information Theoretical QSI

Continuing the search for periodic patterns based on similarity measures, as
introduced in Sect. 9.7 and motivated by the results obtained in an information
theoretical framework in Sect. 9.9.1, we will now combine the ideas from both
efforts and construct an information theoretical similarity measure.

For the construction of the functional in the above section, the choice to set the
reference (the prior) density to that of a hypothetical noble gas atom, in analogy to
Sanderson’s electronegativity scale, was motivated and the particular choice lead to
results which could be interpreted chemically. Following these findings one can see
that it would be interesting to compare the information entropy, evaluated locally as

ΔSρ
A(r)≡ ρA(r) log

ρA(r)
NA
N0

ρ0(r)
, (9.81)
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for two atoms by use of a QSM, which can be constructed straightforwardly, by
considering the overlap integral (with Dirac-δ as separation operator) of the local
information entropies of two atoms A and B

ZAB(δ ) =
∫

ρA(r) log
ρA(r)

NA
N0

ρ0(r)
ρB(r) log

ρB(r)
NB
N0′

ρ0′(r)
dr. (9.82)

A QSI can be defined by normalizing the QSM as before, via expression (9.69).
The QSM and the normalized QSI give a quantitative way of studying the
resemblance in the information carried by the valence electrons of two atoms. The
obtained QSI trivially simplifies to a shape based expression

SI(δ ) =

∫
ΔSσ

A (r)ΔSσ
B (r)dr√∫

ΔSσ
A (r)ΔSσ

A (r)dr
√∫

ΔSσ
B (r)ΔSσ

B (r)dr
. (9.83)

To illustrate the results we select the QSI (9.83) with the top atoms of each col-
umn as prior. Formulated in terms of Kullback–Leibler information discrimination
the following is evaluated. For instance, when we want to investigate the distance
of the atoms Al, Si, S and Cl from the N-column (group Va), we consider the
information theory based QSI in expression (9.83), where the reference densities
ρ0 and ρ0′ are set to ρN , ρA to ρAl, ρSi, ρP, etc., respectively and ρB to ρP, i.e., we
compare the information contained in the shape function of N to determine that of
P, with its information on the shape function of Al, Si, S, Cl. Due to the construction
a 1. is yielded for the element P and the other values for the elements to the left
and to the right of the N-column decrease, as shown in Fig. 9.9. This pattern is
followed for the periods 3 up to 6, taking As, Sb and Bi as reference, with decreasing
difference along a given period in accordance with the results above. Note that the
difference from 1. remains small, due to the effect of the renormalization used to
obtain the QSI.

9.10 General Conclusion

Results on the investigation of atomic density functions are reviewed. First, ways
for calculating the density of atoms in a well-defined state are discussed, with
particular attention for the spherical symmetry. It follows that the density function
of an arbitrary open shell atom is not a priori spherically symmetric. A workable
definition for density functions within the multi-configuration Hartree–Fock frame-
work is established. By evaluating the obtained definition, particular influences on
the density function are illustrated. A brief overview of the calculation of density
functions within the relativistic Dirac–Hartree–Fock scheme is given as well.
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Fig. 9.9 Results of the information theory based QSI with the atom on top of the column as prior.
The symbol in the legend indicates the period of the investigated atom and the nuclear charge
Z-axis indicates the column of the investigated atom (For example Ga can be found as a square
Z = 5)

After discussing the definition of atomic density functions, quantum similarity
measures are introduced and three case studies illustrate that specific influences
on the density function of electron correlation and relativity can be quantified
in this way. Although no periodic patterns were found in Mendeleev’s table, the
methodology is particularly successful for quantifying the influence of relativistic
effects on the density function.

In the final part the application of concepts from information theory is reviewed.
After covering the necessary theoretical background a particular form of the
Kullback–Liebler information measure is adopted and employed to define a func-
tional for the investigation of density functions throughout Mendeleev’s Table. The
evaluation of the constructed functional reveals clear periodic patterns, which are
even further improved when the shape function is employed instead of the density
functions. These results clearly demonstrate that it is possible to retrieve chemically
interesting information from the density function. Moreover the results indicate that
the shape function further simplifies the density function without loosing essential
information. The latter point of view is extensively treated in [64], where the authors
elaborately discuss “information carriers” such as the wave function, the reduced
density matrix, the electron density function and the shape function.
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Chapter 10
Understanding Maximum Probability Domains
with Simple Models

Osvaldo Mafra Lopes Jr., Benoı̂t Braı̈da, Mauro Causà, and Andreas Savin

Abstract The paper presents maximum probability domains (MPDs). These are
regions of the three dimensional space for which the probability to find a given
number of electrons is maximal. In order to clarify issues hidden by numerical
uncertainties, some simple models are used. They show that MPDs reproduce
features which one would expect using chemical intuition. For a given number
of electrons, there can be several solutions, corresponding to different chemical
situations (e.g. different bonds). Some of them can be equivalent, by symmetry.
Symmetry can produce, however, alternative solutions. The models show that MPDs
do not exactly partition space, and they can also be formed by disjoint subdomains.
Finally, an example shows that a partition of space, as provided by loge theory, can
lead to situations difficult to deal with, not present for MPDs.

10.1 Introduction

In the last few years a method was explored which allows to analyze electronic
wave functions by describing the regions of space for which the probability to
find a given number of electrons, ν , is maximal [1–11]. When ν = 2, it relates to
Lewis’ concept of electron pairs and provides thus a connection between quantum
mechanics and the traditional way of thinking of chemists. This paper summarizes
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its main features, and illustrates them by using simple quantum mechanical models.
These allow to clarify some features which may be blurred by numerical issues in
realistic situations.

10.2 Method

10.2.1 Maximal Probability Domains

For a system in the state described by the wave function Ψ , the probability to find ν
and only ν electrons out of N in a three-dimensional region Ω is given by

pν(Ω) =

(
N
ν

)∫
Ω

dx1...dxν

∫
Ω̄

dxν+1...dxN |Ψ (x1, ...,xN)|2 (10.1)

where Ω̄ is the complement of Ω , R3 \Ω , and the binomial coefficient is added
to take into account electron indistinguishability. A maximal probability domain,
MPD, is a region of space maximizing pν(Ω). It will be denoted by Ων .

Please notice that pν is not restricted to ground states, and that Ω can be formed
of disjoint subdomains.

The computation of pν , Eq. 10.1, is less difficult as it may seem, at least for
certain forms of the wave function. In particular, for a single Slater determinant,
one first computes the overlaps of all occupied orbitals over the regions Ω ,

Si j(Ω) =
∫

Ω
φi(x)φ j(x)dx (10.2)

Next, the eigenvalues of the matrix with elements Si j are obtained. From them, the
probabilities are quickly computed for all ν , with a recursive formula [3].

The presently running programs use a grid of small cubes. To represent a spatial
domain Ω , a collection of such cubes is used. The procedure to optimize Ω is the
following. We first start by guessing a domain, either in a trivial way, like using a
larger cube (union of small unit cubes) located in the region of interest, or by using
ELF basins [12, 13], produced, e.g., with the TopMod program [14]. In the present
version of the MPD program, two optimization algorithms are available. In one of
them, small cubes are randomly added or deleted, the step being accepted when
the probability of the new domain is increased. This algorithm was already used
and described in more detail in Ref. [15]. The other algorithm which can be used,
takes advantage of the availability of shape derivatives, as described in Ref. [3]. The
derivative indicates whether one should add or delete small cubes on the surface of
the domain in order to increase the probability.
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Programs to provide MPDs now available can use single determinant wave
functions from calculations produced by the Gaussian suite of programs [16] for
molecules, or by Crystal-98 [17] for periodic systems. MPDs can be produced also
with correlated wave functions, via a Quantum Monte Carlo program, cf. [10, 15].
Probabilities can be computed for multi-determinant wave functions [18], but the
optimization of Ω is not implemented yet.

10.2.2 Similarities and Differences

For a well-localized pair of electrons, MPDs provide regions of space which
resemble the regions where orbitals can be localized. Notice, however, that localized
orbitals extend to infinity, while the MPDs extend over a given region of space. In
this respect, they resemble the basins showing up in the Quantum Theory of Atoms
in Molecules [19], or in the Electron Localization Function (ELF) approach [12,13].
For single Slater determinants, in the ideal limiting case of strictly localized (non-
overlapping) orbitals, the localization domain of the orbitals, the ELF basins, and
the MPDs become identical [20].

The expression for the probability pν may remind of the ν-particle reduced
density matrices. The latter are obtained, however, by integrating xν+1, ...,xN over
the whole space, not just over Ω̄ . In particular, p1(Ω) is not equal to the integral of
the one-particle density over the region Ω ,

∫
Ω

ρ(x1)dx1 = N
∫

Ω
dx1

∫
dx2...dxN |Ψ(x1, ...,xN)|2 (10.3)

The latter is, in fact, not the probability to find one particle in Ω , but the
average number of particles in Ω [1], the population of Ω . For example, for
the dissociated hydrogen molecule in its electronic ground state, the probability
to find one electron in the half-space containing one of the protons is equal
to 1, as is the population. For the ionic excited state, H+...H− ↔H−...H+, the
probability to find one electron in one half-space is zero, while the population is
still one.

With population analysis, and also with the valence bond approach, a reference
space of atomic functions is defined. Such a space is absent when defining the MPDs
as the search is carried out in three-dimensional space.

MPDs remind of Daudel’s loges [21,22] which also use pν(Ω). There, the idea is
to partition molecular space into domains, called “loges”, and look for all different
possibilities to distribute electrons into them. After some initial trials it was decided
to minimize the missing information function,

H(x1, ..,xM) =−∑
k

P(xk) ln(P(xk)) (10.4)
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as the criterion to determine the partition. In the definition of H, an event xk is
a given distribution of electrons in the loges, P(xk) is the probability to have
such a distribution, and the sum goes over all possible distribution of electrons in
the loges.1

10.2.3 Models

We will treat below some non-interacting particle models for which the exact
solution of the Schrödinger equation is known, because it is possible to compute
pν(Ω) for these systems with arbitrary accuracy, e.g., with Mathematica [23]. More
details about the models can be found in the appendix.

In order to have a significance for chemistry, we will assume that particles are
fermions. Thus, although non-interacting, the particles are not independent, as they
have to obey the Pauli principle. Please notice that this holds for same-spin particles,
while particles with opposite spin are independent in these models.

In the following, we will sometimes consider situations where only particles of
a given spin are present. For N particles of one spin, the probabilities can be related
to those for N pairs of fermions of opposite spin. This can be easily seen, by writing
the wave function as a product of a Slater determinant for α spin with one for β
spin (see, e.g. [24]). This product yields the same expectation values as the Slater
determinant written with all spin-orbitals, for both spins. Equation 10.1 yields for
the probability of finding να and νβ electrons in Ω the product of the probabilities
computed for each spin individually, for να , and νβ , respectively. When we consider
the restricted Hartree-Fock closed shell form, we obtain the same terms for each
spin. Thus, one finds the same Ω when maximizing the probability of finding
να and νβ electrons as when one maximizes the probability of finding να or νβ
electrons only.

10.3 Results

10.3.1 Experience with MPDs

Up to now, experience has shown that MPD correspond to regions to which a
chemist would associate bonds, or cores, or lone pairs (see, e.g. [10]). In this
respect, when a single Lewis picture is sufficient, Ωνs resemble images produced
by other tools, e.g., ELF basins [12, 13]. For example, for the MgO crystal, when

1The basis of the logarithm is arbitrary; we have chosen in this paper the natural logarithm, and
not the binary logarithm, as usually done.
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Fig. 10.1 Ω10 solutions for
the MgO crystal: Mg2+, top,
and O2−, bottom

maximizing p10, it yields two solutions, one corresponding to Mg2+ and another
to O2−, see Fig. 10.1. In fact, it was noticed that the results are slightly closer
to chemical intuition than with ELF. For example, with MPDs, the population of
atomic shells is closer to the integer numbers one intuitively expects than it is with
ELF basins [1].
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Fig. 10.2 p1([x1,x2]) for three same-spin fermions in a box. The dots mark the maxima

10.3.2 MPDs Are not Unique

In general, there can be several MPDs, Ων , for a given ν . We just mentioned
(cf. Fig. 10.1) that maximizing p10 can yield two physically relevant solutions,
one corresponding to Mg2+, and another corresponding to O2−. This is physically
motivated, and is not a limitation of MPDs. From the practical viewpoint, it means
that the program searching for Ων can yield several solutions, typically by using
different starting guesses.

An accurate calculation showing multiple solutions can be produced for three
same-spin particles in a box of unit length. The probability to find one particle in the
interval between x1 and x2, p([x1,x2]), is shown in Fig. 10.2. There are two maxima
corresponding to symmetrically arranged Ω , given by the intervals [0,0.35], at the
left of the box, and [0.65,1], at the right of the box. There is a third Ω between them.
It is no surprise that the values for p1 are different for the Ω1 at the borders of the
box (≈0.84) and in the center of the box (≈0.75). The lower value for the central
Ω1 can be understood by the existence of two penetrable walls for this MPD, while
there is only one for the terminal Ω1s.

The example above also shows that there are solutions which are equivalent, the
Ω1 corresponding to the left is equivalent to that on the right border of the box. The
origin of this equivalence, is the symmetry of the box. It reminds of the equivalence
of localized orbitals [25]: a symmetry operation can transform one localized orbital
into another. In a molecule, such equivalent MPDs are common. For example, in
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Fig. 10.3 The two lone pair
Ω2s in the H2O molecule

the water molecule, there is a MPD corresponding to one of the lone pairs, that is
equivalent to another one, corresponding to the other lone pair, cf. Fig. 10.3.

However, symmetry operations can also produce physically reasonable, equiv-
alent solutions, but not transform one chemically relevant unit (like a bond)
into another. In certain situations, there may be an infinite number of equivalent
solutions. Take, for example, three same-spin particles in a ring. There is a solution
corresponding to θ between 0 and≈ 2π/3. Of course, there are two more solutions,
one corresponding to roughly [2π/3,4π/3], and another one for roughly [4π/3,2π ].
These are produced from the first domain by threefold rotations. However, the
ring is invariant to rotations by an arbitrary angle. Thus, besides the chemically
understandable existence of threefold solutions, one can find an infinity of Ω1, as
produced by a rotation by an arbitrary angle: p1 ≈ 0.68 does not change when the
lower and the upper limit of the interval is displaced by the same arbitrary constant.

A similar result is obtained for acetylene. There is a solution corresponding to
one of the banana bonds, see Fig. 10.4. There are two more MPDs, corresponding to
the other two banana bonds. One can generate, however, infinitely many new Ω1, by
rotating the previous Ω1s around the internuclear axis. Please notice that the three
Ω produced by the rotation about a threefold axis are essentially non-overlapping.
One can see the rotation by an arbitrary angle as the arbitrariness in the choice of
the set of three banana bonds.

Sometimes, there only is a finite number of supplementary solutions dictated by
symmetry. Let us consider the case of three protons at infinite separation, occupying
the vertices of an equilateral triangle. Let us put two electrons of the same spin into
this system. One of the degenerate wave functions of the system is given by the
Slater determinant:

Φa =

∣∣∣∣ 1√
3
(χa + χb + χc)

1√
6
(2χa− χb− χc)

∣∣∣∣ (10.5)

It can also be written as:

Φa =
1√
2
(|χaχb|+ |χaχc|) (10.6)
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Fig. 10.4 Two views of an
Ω2 corresponding to one of
the three banana bonds in
acetylene

From the latter formulation, one can immediately see that for this wave function, one
has p1 = 1 when Ω1 contains either the space associated to one proton, Ha, or that
for two of them, Hb and Hc, cf. Fig. 10.5. One has a system H...H+

2 . This separation
can be done, of course, also by isolating Hb, or Hc. These solutions can be obtained
by a rotation along the threefold axis. Notice that there are three solutions, but as
there are only two electrons of same spin these solutions overlap significantly, and
do not form a partition of space, as it is given by H...H+

2 . Symmetry thus provides
alternative chemically equivalent solutions.

A similar situation has been noticed for the Si2H2 molecule, in D2h symmetry
(bent acetylene structure) [10]. One also obtains MPDs corresponding to banana
bonds. By the bending, however, the C∞ axis which was present in acetylene is not
present anymore, so that an arbitrary rotation around the Si-Si axis does not produce
an equivalent solution. The molecule still has inversion symmetry. By inversion,
the arrangement of the three banana bond like MPDs, in the � arrangement, are
transformed into one having a� arrangement.
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Fig. 10.5 Two choices leading to Ω1 with p1 = 1 for three protons and two same-spin electrons

10.3.3 MPDs do not Always Provide an Exact Partition of Space

In the ground state of two non-interacting same-spin fermions in a one-dimensional
box, Ω1 corresponds to exactly one half of the box. The two solutions for Ω1

thus provide a partition of the box. In general, however, MPDs do not necessarily
provide an exact partition of space. For example, small overlaps were noticed in
some molecular calculations (CH+

5 or FHF− [10]). However, the discretization by
small cubes, and numerical noise left a question mark with this statement. In order
to clarify whether MPDs necessarily provide a partition of space, we consider now
a model, for which we can state with certitude that MPDs do not provide a partition
of space. We choose again the example of the three non-interacting fermions of
the same spin in a one-dimensional box. The Ω1s are given by: 0 ≤ x ≤ 0.3547,
0.3572≤ x≤ 0.6428, and 0.6453≤ x≤ 1. Small regions 0.3547 < x < 0.3572 and
0.6428 < x < 0.6453 have not been attributed. Similarly, for the three electrons on
a ring, Ω1 is not delimited by 0 and exactly 2π/3; the upper limit is ≈2.06 < 2π/3.
With the present accuracy of our programs, such small effects could not yet be
detected with certainty in molecular or crystalline systems.

10.3.4 MPDs can be Disjoint in Space

We have seen that for the ground state of two same-spin non-interacting fermions
in a box, the Ω1 correspond to half of the box, with p1 ≈ 0.86. In the excited states,
this is not the case anymore. For example, if one fermion is excited from the n = 2
to the n = 3 state, there is a solution for Ω1, x ∈ [0.32,0.62] with p1 ≈ 0.88. There
is another solution for Ω1, with the same p1, for the rest of the box, x ∈ [0,0.32]∪
[0.62,1]. For it, a description with a single basin is not possible. This is a situation
that does not correspond to the classical image of localized electrons, but shows
nevertheless a high probability. Such a situation can appear in resonating systems
(when several Lewis structures are needed).
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Fig. 10.6 Missing information function H for loges defined by the intervals [0,x], (x,1− x), [1−
x,1], as a function of x

10.3.5 MPDs and Loges

In this section we will highlight some differences between MPDs and loges. Let us
consider again the system of three same-spin non-interacting particles in a box. We
define the loges by the intervals [0,x], (x,1− x), [1− x,1]. The missing information
function H, Eq. 10.4, depends on x, see Fig. 10.6. H presents a minimum, for x ≈
0.3565, close to the value obtained by maximizing p1. This is a local minimum, and
there are two other, lower minima. The first one, at x = 0 is trivial. It corresponds to
making the border loges vanish, keeping only the central loge. It is a minimum of H,
as the probability of finding all three electrons in the whole box is equal to 1. This
situation can be easily identified and discarded. There is another minimum, however,
for x = 1/2 taking a lower value than for the physically interesting minimum. It is
the case where the central box vanishes, and only the distributions where there is no
electron in the central box contribute to H. Please notice that taking x < 1/2, but
close to this value, the central loge has not vanished yet, but H takes a low value.
Thus, it is not easy to detect such a situation when minimizing H.

10.4 Conclusions

In order to better understand the maximum probability domains (the region of space
maximizing the probability to find a given number of electrons in it), we studied
some simple model systems.

Electronic systems well described by a single Lewis structure produce MPDs
which correspond roughly to a partition of space which permits an association to
bonds, lone pairs, or cores. However, our models have shown that this partition is
not strict. A further point is that symmetry can produce alternative solutions.
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The model calculations have proven that MPDs formed by disjoint subdomains
can exist.

It was shown that using the missing information function, as it is done in loge
theory, can produce unwanted results.

10.5 Appendix: Detailed Description of the Models

Let us now describe the simple models used in this paper. The first one is that of
non-interacting particles in a one-dimensional box. We will choose the box to have
unit length, and the orbitals are given by:

ϕn(x) =
√

2sin(nπx) (10.7)

The overlaps for Ω defined by the interval [x1,x2] is given by

Si j([x1,x2]) =

∫ x2

x1

ϕi(x)ϕ j(x)dx (10.8)

and easily computed and diagonalized, yielding the eigenvalues λi. For two fermions
of the same spin the probability to find one electron in this interval is given by [3]

p1([x1,x2]) = λ1 +λ2−2λ1λ2 (10.9)

A slightly more complicated expression is obtained for three particles of the
same spin.

For particles in a ring, the orbitals are given by

ϕk(θ ) =
1√
2π

eikθ (10.10)

for θ between 0 and 2π .
For three infinitely distant hydrogen atoms, with the nuclei on the vertices of an

equilateral triangle, the orbitals are:

ϕ1 =
1√
3
(χa + χb + χc)

ϕ2 =
1√
6
(2χa− χb− χc)

ϕ3 =
1√
6
(−χa + 2χb− χc)

ϕ4 =
1√
6
(−χa− χb +2χb) (10.11)
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where only two of ϕ2,ϕ3,ϕ4 are linearly independent. Please notice that S(Ω) is
simplified as all products between the functions centered on different atoms are
vanishing.
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Chapter 11
Density Scaling for Excited States

Á. Nagy

Abstract The theory for a single excited state based on Kato’s theorem is revisited.
Density scaling proposed by Chan and Handy is used to construct a Kohn-Sham
scheme with a scaled density. It is shown that there exists a value of the scaling factor
for which the correlation energy disappears. Generalized OPM and KLI methods
incorporating correlation are proposed. A ζKLI method as simple as the original
KLI method is presented for excited states.

11.1 Introduction

Density functional theory [1] in its original form is a ground-state theory which
is valid for the lowest-energy state in each symmetry class [2, 3]. It was, however,
applied to excited states as well, starting with the transition state method of Slater
[4]. The first rigorous generalization for excited states was proposed by Theophilou
[5]. The variational principle for excited states was studied by Perdew and Levy [6]
and Lieb [7]. Formalisms for excited states were also provided by Fritsche [8] and
English et al. [9]. Gross, Oliveira and Kohn [10] worked out the theory of unequally
weighted ensembles of excited states. Relativistic generalization of this formalism
was also done [11]. A theory of excited states was presented utilizing Görling-
Levy perturbation theory [12, 13] and a quasi-local-density approximation [14] was
proposed. Coordinate scaling and adiabatic connection were studied [15, 16]. (For
reviews of excited-state theories see [17, 18].) The optimized potential method was
generalized to ensembles [19–24].

The ensemble theory has the disadvantage that one has to calculate all the
ensemble energies lying under the given ensemble energy to obtain the desired
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excitation energy. It is especially inconvenient to use it if one is interested in highly
excited states. That is why it is important to extend density functional theory to a
single excited state. Two theories for a single excited state [25, 26, 28, 29] exist.
A non-variational theory [25–27] based on Kato’s theorem and a variational density
functional theory [28, 29]. In this paper the non-variational theory is extended and
combined with density scaling [30, 31].

Density scaling was proposed by Chan and Handy [32]. In density scaling the
density n(r) is changed to ζn(r). It is shown that there exist a value of the scaling
factor for which the correlation energy disappears. The optimized potential method
(OPM) [60] and the Krieger-Li-Iafrate (KLI) [61] approach are generalized to
incorporate correlation. In this paper only a non-degenerate excited state is treated.

Section 11.2 presents the non-variational theory. In Sect. 11.3 Kohn-Sham-like
equations are obtained through adiabatic connection. Density scaling is applied
to obtain a generalized Kohn-Sham scheme in Sect. 11.4. The optimized potential
and the KLI methods are generalized in Sect. 11.5. The last section is devoted to
illustrative examples and discussion.

We mention that there are other noteworthy single excited-state theories: the
stationary-principle theory of Görling [33], the formalism of Sahni [34] or the local
scaling approach of Ludena and Kryachko [35]. Beyond the time-independent the-
ories mentioned above the time-dependent density functional theory [36] provides
an alternative (see e.g. [37]).

11.2 Non-variational Theory for a Single Excited State

The consequence of the Hohenberg-Kohn theorem is that the ground-state electron
density determines all molecular properties. E. Bright Wilson [38] noticed that
Kato’s theorem [39, 40] provides an explicit procedure for constructing the Hamil-
tonian of a Coulomb system from the electron density:

Zβ =− 1
2n̄(r)

∂ n̄(r)
∂ r

∣∣∣∣
r=Rβ

. (11.1)

Here n̄ denotes the angular average of the density n and the right-hand side is
evaluated at the position of nucleus β . From Eq. 11.1, the cusps of the density show
us where the nuclei are (Rβ ) and what are their atomic numbers Zβ . The integral of
the density provides the number of electrons:

N =
∫

n(r)dr. (11.2)

Therefore one can readily obtain the Hamiltonian from the density and then
determine every property of the system by solving the Schrödinger equation. One



11 Density Scaling for Excited States 187

has to emphasize, however, that this argument holds only for Coulomb systems.
By contrast, the density functional theory formulated by Hohenberg and Kohn is
valid for any local external potential.

Kato’s theorem is valid not only for the ground state but also for the excited
states. Consequently, if the density ni of the i-th excited state is known, the
Hamiltonian Ĥ is also in principle known and its eigenvalue problem

ĤΨk = EkΨk (k = 0,1, ..., i, ...) (11.3)

can be solved, where

Ĥ = T̂ + V̂ + V̂ee. (11.4)

T̂ =
N

∑
j=1

(
−1

2
∇2

j

)
, (11.5)

V̂ee =
N−1

∑
k=1

N

∑
j=k+1

1
|rk− r j| (11.6)

and

V̂ =
N

∑
k=1

M

∑
J=1

−ZJ

|rk−RJ| (11.7)

are the kinetic energy, the electron-electron energy and the electron-nuclear energy
operators, respectively.

We emphasize that there are certain special cases, where Eq. 11.1 does not
provide the atomic number. The simplest example is the 2p excited state of the
hydrogen atom, where the density

n2p(r) = cr2e−Zr (11.8)

and the derivative of the density are zero at the nucleus. Though Kato’s theorem
(11.1) is valid in this case, too, it does not provide the atomic number. Similar
cases occur in other highly excited atoms, ions or molecules, for which the spherical
average of the derivative of the wave function is zero at a nucleus, that is where we
have no s-electrons.

Pack and Brown [41] derived cusp relations for the wave functions of these
systems. The corresponding cusp relations for the density [42,43] were also derived.
Let us define

ηl(r) =
n̄(r)
r2l , (11.9)
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where l is the smallest integer for which ηl is not zero at the nucleus. The
corresponding cusp relations for the density are

∂η l(r)
∂ r

∣∣∣∣
r=0

=− 2Z
l+ 1

η l(0). (11.10)

For the example of a one-electron atom in the 2p state, Eq. 11.9 leads to

η2p(r) =
n2p

r2l = ce−Zr (11.11)

and the cusp relation has the form:

− 2Zη2p(0) = 2η ′2p(0). (11.12)

So we can again readily obtain the atomic number from the electron density. Other
useful cusp relations have also been derived [44, 45]. There are several other works
concerning the cusp of the density [46–55].

11.3 Kohn-Sham-Like Equations

Making use of adiabatic connection [2, 56] Kohn-Sham-like equations can be
derived. We suppose the existence of a continuous path between the interacting and
the non-interacting systems. The density ni of the i-th electron state is the same
along the path.

Ĥα
i Ψα

k = Eα
k Ψ α

k , (11.13)

where

Ĥα
i = T̂ +αV̂ee + V̂ α

i . (11.14)

The subscript i denotes that the density of the given excited state is supposed to be
the same for any value of the coupling constant α . α = 1 corresponds to the fully
interacting case, while α = 0 gives the non-interacting system:

Ĥ0
i Ψ0

k = E0
kΨ0

k . (11.15)

For α = 1 the Hamiltonian Ĥα
i is independent of i. For any other value of α

the ‘adiabatic’ Hamiltonian depends on i and we have different Hamiltonians for
different excited states. Thus the non-interacting Hamiltonian (α = 0) is different for
different excited states. If there are several ‘external’ potentials V α=0 leading to the
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same density ni we select that potential for which the non-interacting kinetic energy
is closest to the interacting one. It is important to emphasize that this procedure only
works for the Coulomb case.

To apply the Kohn-Sham-like equations (11.15) one has to find an approximation
to the potential of the non-interacting system. The optimized potential method [60]
can be generalized for a single excited state, too. It was shown [25] that because
the energy is stationary at the true wave function, the energy is stationary at the
true potential. This is the consequence of the well-known fact that, when the energy
is considered to be a functional of the wave function, the only stationary points of
E[Ψ ] are those associated with the eigenvalues/eigenvectors of the Hamiltonian

δE
δΨk

= 0 (k = 1, ..., i, ...). (11.16)

The density ni of a given excited state determines the Hamiltonian and via
adiabatic connection the non-interacting effective potential V α=0

i . Therefore we can
consider the total energy as a functional of the non-interacting effective potential:

E[Ψi] = E[Ψi[V
0
i ]]. (11.17)

Utilizing Eq. 11.16 we obtain

δE

δV 0
i

=

∫ δE
δΨi

δΨi

δV 0
i

+ c.c.= 0. (11.18)

So an optimized effective potential can be found for the given excited state.
The KLI approximation to the optimized effective potential can also be derived
straightforwardly [25].

Exchange identities utilizing the principle of adiabatic connection and coordinate
scaling and a generalized ‘Koopmans’ theorem’ were derived and the excited-state
effective potential was constructed [57]. The differential virial theorem was also
derived for a single excited state [58].

11.4 Density Scaling for a Single Excited State

Now, the density scaling is applied to obtain a Kohn-Sham scheme with a scaled
density. Here, we suppose a non-degenerate excited state. Extension to degenerate
excited states will be detailed elsewhere. Consider a non-interacting system with
excited state density nζ i(r) = ni(r)/ζ , where ζ = N/Nζ is a positive number. In the
present theory we suppose that ζ is larger but close to 1. If the original real system
has N-electrons

∫
ni(r)dr = N, (11.19)
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the Kohn-Sham system with the scaled density has Nζ -electrons:

∫
nζ i(r)dr = Nζ . (11.20)

N is always integer, but Nζ is generally non-integer. Therefore, the Kohn-Sham-like
equations will differ from the ones corresponding to the N-electron Kohn-Sham
system (11.15). To construct another Kohn-Sham system we define the density

nζ i = (1− q)ni+ qnion, (11.21)

where

q = N−Nζ = N(1− 1/ζ ). (11.22)

We consider only that case for which q is a small positive number: q << 1. The
second term in Eq. 11.21 corresponds to the density of the ion that is obtained after
ionization. It is the ground state of the non-interacting N−1-electron system if we
consider an excitation where the electron is excited from the highest occupied level
to a highest state. It can be an excited state of the non-interacting N − 1-electron
system in other cases. The Kohn-Sham system is a non-interacting system with the
scaled density nζ i. The non-interacting kinetic energy can be constructed from the
non-interacting wave function Ψ0

i of the original ‘Kohn-Sham’ system (Eq. 11.15)
and the non-interacting wave function Ψ 0

ion of the ion:

T 0
ζ [ni] = ζ

[
(1− q)〈Ψ0

i |T̂ |Ψ0
i 〉+ q〈Ψ0

ion|T̂ ion|Ψ 0
ion〉

]
. (11.23)

The Kohn-Sham equations with the scaled density have the form

[
−1

2
∇2 + vζKSi(r)

]
uζ i, j = εζ i, juζ i, j, (11.24)

where the scaled Kohn-Sham density has the form

nζ i(r) =
M

∑
j

λζ i, j|uζ i, j(r)|2. (11.25)

λζ i, j are the occupation numbers and M is the largest integer for which λζ i, j = 0.
uζ i, j are the scaled Kohn-Sham orbitals. The non-interacting kinetic energy takes
the form

T 0
ζ [ni] = ζ

M

∑
j

λζ i, j〈uζ i, j|−
1
2

∇2|uζ i, j〉. (11.26)
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In the original theory the exchange-correlation energy Exci[ni] is defined by the
total energy expression

E[ni] = T 0[ni]+ J[ni]+Exci[ni]+
∫

ni(r)v(r)dr, (11.27)

where

J[ni] =
1
2

∫
ni(r1)ni(r2)

|r1− r2| dr1dr2 (11.28)

is the classical Coulomb energy and v is the external potential.
Similarly, in this Kohn-Sham theory with the scaled density the exchange-

correlation energy Eζxc[ni] is defined by the total energy expression

E[ni] = T 0
ζ [ni]+ J[ni]+Eζxci[ni]+

∫
ni(r)v(r)dr. (11.29)

A comparison of Eqs. 11.27 and 11.29 leads to the important relation

T 0[ni]+Exci[ni] = T 0
ζ [ni]+Eζxci[ni]. (11.30)

Obviously, T 0
ζ=1 = T 0. The relationship between T 0

ζ and T 0 derived by Chan and
Handy [32] is valid for the excited state

Tζ [ni]
0 = ζT 0[nζ i]. (11.31)

Now, we define the correlation energy as follows:

Eζci[ni] = 〈Ψi|T̂ + V̂ee|Ψi〉
−[(1− q)〈Ψ0

i |ζ T̂ + ζ 2V̂ee|Ψ0
i 〉+ q〈Ψ0

ion|ζ T̂ ion + ζ 2V̂ ion
ee |Ψ0

ion〉]. (11.32)

Theorem 11.1. There exists a parameter ζi for which the correlation energy
disappears: Eζci = 0.

Proof. If ζi = 1, Eζci is equal to the correlation energy Eci of the original theory.
Consider a small change in ζi and notice that from the definition (11.32) follows
that Eζci is almost quadratic in ζ . Eζci = 0 means that

ζ 2[(1−q)〈Ψ0
i |V̂ee|Ψ0

i 〉+ q〈Ψ0
ion|V̂ ion

ee |Ψ 0
ion〉]+ ζ [(1−q)〈Ψ0

i |T̂ |Ψ0
i 〉

+q〈Ψ0
ion|T̂ ion|Ψ0

ion〉]−〈Ψi|T̂ + V̂ee|Ψi〉= 0. (11.33)
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This equation has solutions as

[(1−q)〈Ψ0
i |T̂ |Ψ0

i 〉+ q〈Ψ0
ion|T̂ ion|Ψ0

ion〉]2 +4[(1−q)〈Ψ0
i |V̂ee|Ψ0

i 〉
+q〈Ψ0

ion|V̂ ion
ee |Ψ0

ion〉]〈Ψi|T̂ + V̂ee|Ψi〉> 0. (11.34)

Consequently, there exist a value of ζ for which Eζci = 0. Note that Eq. 11.33 has
two solutions, however, the other solution is not close to 1. Moreover it can even be
negative and thus physically not acceptable.

11.5 The ζ OPM and ζ KLI Methods for a Single Excited State

In order to perform calculations one needs explicit expressions for the functionals.
In the ground-state theory, exchange can be treated exactly (or very accurately) via
the optimized potential method [60] (or KLI method [61]). Now, these methods are
combined with density scaling for a single excited state.

In the optimized potential method the following problem is solved: find the
potential such that when it is given a small variation, the energy of the system
remains stationary:

δE
δV

= 0. (11.35)

From the fact the energy is stationary at the true wave function follows that the
energy is stationary at the true potential. It is well-known that considering the energy
as a functional of the wave function E[Ψ ], the eigenvalues of the Hamiltonian are
stationary points of E

δE
δΨk

= 0 (k = 1, ..., i, ...), (11.36)

and only the eigenvalues are stationary points.
As we emphasized above from the density of a given excited state ni one can

obtain the Hamiltonian, the eigenvalues and eigenfunctions and through adiabatic
connection the Kohn-Sham potential V α=0

i and certainly the solution of the Kohn-
Sham equations leads to the density ni:

ni→ Ĥ→ Ek,Ψk (k = 1, ..., i, ...)→ viKS→ ni. (11.37)

For the scaled density we also have

nζ i→ Ĥ→ Ek,Ψk (k = 1, ..., i, ...)→ vζ iKS→ nζ i. (11.38)
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Thus, we can consider the total energy as a functional of the Kohn-Sham potential:

E[Ψi] = E[Ψi[vζ iKS]]. (11.39)

Making use of Eq. 11.16 we obtain

δE

δV 0
ζ i

=

∫ δE
δΨi

δΨi

δV 0
ζ i

+ c.c.= 0. (11.40)

Thus, from the fact that the energy is stationary at the true wave function follows
that the energy is stationary at the true potential. (We mention in passing that there
is a condition of this sort in the Levy-Nagy theory [28]. It is also one of the key
results in the potential functional theory of Yang et al. [59]).

However, as the energy is only stationary and not minimum at the true density it
is difficult to find adequate approximations. The Kohn-Sham wave function should
be orthogonal to the exact Kohn-Sham wave function(s) of the lower state(s). Since
the exact Kohn-Sham wave functions are not known, one is satisfied if approximate
orthogonality with respect to the approximate lower Kohn-Sham wave function(s)
is assured.

In the ground-state theory exchange can be treated exactly via the optimized
potential method [60]. This method has been generalized for excited states [19, 25]
and extension for the scaled density is straightforward. To find the optimized
potential is very tedious even in the ground-state. However, Krieger, Li and
Iafrate [61] introduced a very accurate approximation. This method can be readily
generalized to excited states [19,25]. An extension to the scaled density is presented
here using an alternative derivation of the KLI approximation [62].

Both the OPM and KLI methods can be applied when the total energy is known
as a functional of the one-electron orbitals. Let us consider the exchange-only case.
The exchange energy is known. The expression is the same as the Hartree-Fock
one, but contains the Kohn-Sham orbitals. As we have just shown above for a
certain critical value of scaling factor ζ the correlation energy disappears. Using
the stationary principle the first variation of the total energy with respect to the one-
electron orbitals leads to Hartree-Fock-like equations:

−1
2

∇2ψζ i, j(r)+
(
v(r)+vζJi(r)

)
ψζ i, j(r)−

∫
dr′wζ i(r,r

′)ψζ i, j(r
′)=εζ i, jψζ i, j(r),

(11.41)

where v is the external potential and vζJi is the classical Coulomb potential:

vζJi(r) =
∫

dr′ni(r′)/|r− r′|. (11.42)
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The total electron density ni can be expressed with the Hartree-Fock like spinorbitals
ψζ i, j:

ni(r) = ζ ∑
j

λζ i, j|ψζ i, j(r)|2, (11.43)

while the exchange kernel wζ i(r,r
′) takes the form

wζ i(r,r
′) = ∑

j

λζ i, jψ∗ζ i, j(r
′)ψζ i, j(r)/|r− r′|. (11.44)

After multiplying Eq. 11.41 by ζλζ i, jψ∗ζ i, j and summing for all orbitals we obtain

− 1
2 ∑

j

λζ i, jψ∗ζ i, j∇
2ψζ i, j +(v+ vζJi+ vζSi)ni = ζ ∑

j

λζ i, jεζ i, j |ψζ i, j|2 ; (11.45)

where vζSi is the Slater potential:

vζSi(r) =
ζ

ni(r)
∑

j
ψ∗ζ i, j(r)vζxi, j(r)ψζ i, j(r) (11.46)

and vζxi, j is the Hartree-Fock-like exchange potential

vζxi, j(r)ψζ i, j(r) =−
∫

dr′w(r,r′)ψζ i, j(r
′), (11.47)

Now the Kohn-Sham equations (11.24) are multiplied by ζλζ i, ju
∗
ζ i, j and summed

for all orbitals

− 1
2 ∑

j
λζ i, ju

∗
ζ i, j∇

2uζ i, j + vζKSini = ζ ∑
j

λζ i, jεζ i, j|uζ i, j|2 . (11.48)

Now we consider the case when both Eqs. 11.43 and 11.25 provide the same excited-
state density ni. Moreover, it is supposed that the Hartree-Fock-like orbitals ψζ i, j
can be approximated by the scaled Kohn-Sham orbitals uζ i, j. Then comparing
Eqs. 11.45 and 11.48 we obtain the generalized ζKLI approximation for the Kohn-
Sham potential:

vζKSi = v+ vζJi + vζxi , (11.49)

where

vζxi = vζSi +
ζ
ni

∑
j
〈uζ i, j|λζ i, jvζxi− vζxi, j|uζ i, j〉|uζ i, j|2 , (11.50)



11 Density Scaling for Excited States 195

Table 11.1 The values of ζc

and qc for which the ζ KLI
and experimental total
energies are equal for the
ground and some excited
states of the Li atom

Configuration ζc qc

1s22s 1.00961 0.02856
1s22p 1.00939 0.02791
1s23s 1.00871 0.02590
1s23p 1.00881 0.02621

Table 11.2 The values of ζc

and qc for which the ζ KLI
and experimental total
energies are equal for the
ground and some excited
states of the Na atom

Configuration ζc qc

1s22s22p63s 1.00407 0.04454
1s22s22p63p 1.00398 0.04364
1s22s22p64s 1.00393 0.04308
1s22s22p64p 1.00392 0.04295

For ζ = 1 Eq. 11.49 gives the original KLI exchange potential. As we used
Hartree-Fock like expression we obtained only the exchange. The results above are
valid for any value of ζ . We search that ζc for which the correlation energy disap-
pears. For that value of ζ the ζKLI method provides a very simple approximation
that includes correlation.

11.6 Illustrative Examples and Discussion

As an illustration the ground- and some excited state-energies of Li and Na atoms
have been calculated using the ζKLI method. The value ζc for which the ζKLI
and experimental energies [63] are equal has been determined. Tables 11.1 and 11.2
present these values ζc. ζ > 1 means that the scaled number of electrons Nζ is
smaller than the true electron number N. The difference qc = N−Nζ is also shown
in the Tables. The values of ζc and qc for the ground- and excited states are not the
same but their difference is small.

The ζKLI method is as simple as the original KLI method. But it contains
correlation as well. The ζKLI method is not exact, because Eζc,i[ni] = 0 is valid only
for a single density and the functional derivative, that is, the correlation potential is
not zero.
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Chapter 12
Finite Element Method in Density Functional
Theory Electronic Structure Calculations
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Ondřej Šipr, and Jiřı́ Plešek

Abstract We summarize an ab-initio real-space approach to electronic structure
calculations based on the finite-element method. This approach brings a new
quality to solving Kohn Sham equations, calculating electronic states, total energy,
Hellmann–Feynman forces and material properties particularly for non-crystalline,
non-periodic structures. Precise, fully non-local, environment-reflecting real-space
ab-initio pseudopotentials increase the efficiency by treating the core-electrons
separately, without imposing any kind of frozen-core approximation. Contrary to
the variety of well established k-space methods that are based on Bloch’s theorem
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and applicable to periodic structures, we don’t assume periodicity in any respect.
The main asset of the present approach is the efficient combination of an excellent
convergence control of standard, universal basis of industrially proved finite-
element method and high precision of ab-initio pseudopotentials with applicability
not restricted to periodic environment.

12.1 Introduction

For understanding and predicting material properties such as density, elasticity,
magnetization or hardness from first principles quantum mechanical calculations,
a reliable and efficient tool for electronic structure calculations is necessary. The
reciprocal space methods, to which most attention has been dedicated so far, are very
powerful and sophisticated but by their nature are suitable mostly for crystals. For
systems without translational symmetry such as metallic clusters, defects, quantum
dots, adsorbates and nanocrystals, use of real-space methods is more promising.

We introduce new ab-initio real-space method based on (1) density functional
theory, (2) finite element method, and (3) environment-reflecting pseudopotentials.
It opens various ways for further development and applications: restricted periodic
boundary conditions in a desired sub-region or in a requisite direction (e.g. for non-
periodic objects with bonds to periodic surroundings), adaptive finite-element mesh
and basis playing the role of variational parameters (hp-adaptivity) and various
approaches to Hellman-Feynman forces and sensitivity analysis for structural
optimizations and molecular dynamics.

The present method focuses on solving Kohn Sham equations and calculating
electronic states, total energy and material properties of non-crystalline, non-
periodic structures. Contrary to the variety of well established k-space methods that
are based on Bloch’s theorem and applicable to periodic structures, we don’t assume
periodicity in any respect. Precise ab-initio environment-reflecting pseudopotentials
proven within the plane wave approach are connected with real space finite-element
basis in the present approach. The main expected asset of the present approach is
the combination of efficiency and high precision of ab-initio pseudopotentials with
universal applicability, universal basis and excellent convergence control of finite-
element method not restricted to periodic environment.

In the next sections, we give a general overview how the Density Functional
Theory is applied to electronic structure calculations within the framework of
the finite-element method. We show how to incorporate pseudopotentials into the
equations, explaining some technical difficulties that had to be solved and sorting
all the ideas out and presenting them in a fashion applicable to our problem.

12.2 Density Functional Theory and Pseudopotentials

Using the approach described e.g. in [3, 6–8, 10] and [1], i.e. making use of the
Hohenberg-Kohn theorem and applying the ab-initio pseudopotential approach, the
many-particle Schödinger equation is decomposed into the Kohn–Sham equations
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(
−1

2
∇2 +VH(r)+Vxc(r)+ V̂(r)

)
ψi(r) = εiψ(r) (12.1)

which yield the orbitals ψi that reproduce the density n(r) of the original interacting
system. The core electrons, separated from valence electrons, are represented by a
non-local Hermitian operator V̂ together with nuclear charge. The density is formed
by the sum over the occupied single-electron states in a system of N electron

n(r) =
N

∑
i
|ψi(r)|2 (12.2)

and VH is the electrostatic potential obtained as a solution to the Poisson equation

VH(r) =
1
2

∫
n(r′)
|r− r′|d

3r′. (12.3)

All the non-electrostatic interactions are represented by the exchange-correlation
potential term Vxc(r) = δExc[n]/δn(r), where Exc is the exchange and correlation
energy.

Kohn–Sham equations are solved within the iterative scheme described e.g. in
[4] and [9].

12.2.1 Semilocal and Separable Potentials

The pseudopotential having the form

V̂ =Vloc(ρ)+∑
lm

|lm〉Vl(ρ)〈lm| , (12.4)

usually denoted as semilocal l−dependent, is a general hermitian operator in the
spherically symmetric problem (i.e. V̂ = R−1V̂R) and it is radially local. This form
is general, i.e. any such operator can be written in the form (12.4). Equivalently, in
the r representation:

V (r,r′) = 〈r|V̂ |r′〉=Vloc(ρ)δ (r− r′)+
δ (ρ−ρ ′)

ρ2 ∑
lm

Ylm(r̂)Vl(ρ)Y ∗lm(r̂
′)

The first term doesn’t cause a problem. Let’s denote the second term (which is
semilocal) simply by v:

v = ∑
lm

|lm〉Vl(ρ)〈lm|

Let’s choose a complete but otherwise arbitrary set of functions |φi〉 (they contain
both a radial and an angular dependence) and define a matrix U by the equation
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∑
j

Ui j 〈φ j|v|φk〉= δik

then (|ψ〉= |φk〉αk):

v |ψ〉= ∑
ik

v |φi〉δikαk = ∑
i jk

v |φi〉Ui j 〈φ j |v|φk〉αk = ∑
i j

v |φi〉Ui j 〈φ j |v|ψ〉

So any Hermitian operator (including v) can be transformed exactly into the
following form

v = ∑
i j

v |φi〉Ui j 〈φ j |v (12.5)

We diagonalize the matrix U by choosing such functions |φ̄i〉 for which the matrix
〈φ̄ j|v|φ̄k〉 (and hence the corresponding matrix U) is equal to identity. We can find
such functions for example using the Gram–Schmidt orthogonalization procedure
on |φi〉 with a norm 〈 f |v|g〉 (for functions f and g), more on that later. Then

v = ∑
i

v |φ̄i〉 1

〈φ̄i|v|φ̄i〉
〈φ̄i|v = ∑

i

v |φ̄i〉 〈φ̄i|v (12.6)

We could take any |φi〉 and orthogonalize them. But because we have v in the form of
(12.4), we will be using |φi〉 in the form |φi〉= |Rnl〉 |lm〉, because it turns out we will
only need to orthogonalize the radial parts. The first term in (12.6) then corresponds
to the KB [5] potential. Taking more terms leads to more accurate results without
ghost states.

Let’s look at the orthogonalization. We start with the wavefunctions:

|φi〉= |Rnl〉 |lm〉

where Rnl(ρ) = 〈ρ |Rnl〉 and i goes over all possible triplets (nlm).
We can also relate the i and n, l, m using this formula

inlm =
n−1

∑
k=1

k2 +

(
l−1

∑
k=0

(2k+ 1)

)
+(l+m+ 1) =

(n−1)n(2n−1)
6

+ l(l +1)+m+1

The operator v acts on these |φi〉 like this

〈r|v|φi〉= 〈r|v|Rnl〉 |lm〉= 〈r̂| 〈ρ |Vl(ρ)|Rnl〉 |lm〉=Vl(ρ)Rnl(ρ)Ylm(r̂)

Now we need to construct new orthogonal set of functions |φ̄i〉 satisfying

〈φ̄i|v|φ̄ j〉= δi j
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This can be done using several methods, we chose the Gram–Schmidt orthogonal-
ization procedure, which works according to the following scheme:

|φ̃1〉 = 1
1√〈φ1|v|φ1〉

|φ1〉 ; |φ̄1〉= 1√
〈φ̃1|v|φ̃1〉

|φ̃1〉

|φ̃2〉 =
(
1−|φ̄1〉 〈φ̄1|v

) 1√〈φ2|v|φ2〉
|φ2〉 ; |φ̄2〉= 1√

〈φ̃2|v|φ̃2〉
|φ̃2〉

|φ̃3〉 =
(
1−|φ̄1〉 〈φ̄1|v−|φ̄2〉〈φ̄2|v

) 1√〈φ3|v|φ3〉
|φ3〉 ; |φ̄3〉= 1√

〈φ̃3|v|φ̃3〉
|φ̃3〉

. . .

We can verify by a direct calculation that this procedure ensures

〈φ̄i|v|φ̄ j〉= δi j

It may be useful to compute the normalization factors explicitly:

〈φ̃1|v|φ̃1〉 = 1

〈φ̃2|v|φ̃2〉 = 1− 〈φ2|v|φ̄1〉 〈φ̄1|v|φ2〉
〈φ2|v|φ2〉

〈φ̃3|v|φ̃3〉 = 1− 〈φ3|v|φ̄1〉 〈φ̄1|v|φ3〉+ 〈φ3|v|φ̄2〉 〈φ̄2|v|φ3〉
〈φ3|v|φ3〉

...

we can also write down a first few orthogonal vectors explicitly:

|φ̄1〉 = |φ1〉√〈φ1|v|φ1〉

|φ̄2〉 = |φ2〉〈φ1|v|φ1〉− |φ1〉 〈φ1|v|φ2〉√
(〈φ1|v|φ1〉〈φ2|v|φ2〉− 〈φ2|v|φ1〉 〈φ1|v|φ2〉)〈φ1|v|φ1〉 〈φ2|v|φ2〉

Now the crucial observation is

〈lm| 〈Rnl |v|Rn′l′ 〉 |l′m′〉= 〈Rnl |Vl(ρ)|Rn′l′ 〉δll′δmm′

which means that 〈φi|v|φ j〉 = 0 if |φi〉 and |φ j〉 have different l or m. In other
words |φi〉 and |φ j〉 for different |lm〉 are already orthogonal. Thus the G-S
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orthogonalization procedure only makes the Rnl orthogonal for the same |lm〉. To
get explicit expressions for |φ̄i〉, we simply use the formulas above and get:

|φi〉= |Rnl〉 |lm〉 → |φ̄i〉= |R̄nl〉 |lm〉

where we have constructed new |R̄nl〉 from original |Rnl〉:

|R̄10〉 = |R10〉√〈R10|V0|R10〉

|R̄20〉 = |R20〉− |R̄10〉〈R̄10|V0|R20〉√
. . .

|R̄21〉 = |R21〉√〈R21|V1|R21〉

|R̄30〉 = |R30〉− |R̄10〉〈R̄10|V0|R30〉− |R̄20〉 〈R̄20|V0|R30〉√
. . .

|R̄31〉 = |R31〉− |R̄21〉〈R̄21|V1|R31〉√
. . .

|R̄32〉 = |R32〉√〈R32|V1|R32〉

|R̄40〉 = |R40〉− |R̄10〉〈R̄10|V0|R40〉− |R̄20〉 〈R̄20|V0|R40〉− |R̄30〉〈R̄30|V0|R40〉√
. . .

|R̄41〉 = |R41〉− |R̄21〉〈R̄21|V1|R41〉− |R̄31〉 〈R̄31|V1|R41〉√
. . .

. . .

We have constructed new |R̄nl〉 from |Rnl〉 which obey

〈R̄nl |Vl |R̄n′l〉= δnn′ (12.7)

so for every Vl , we construct |R̄nl〉 for n = l + 1, l +2, · · · . Let’s continue:

v |φ̄i〉=Vl(ρ) |R̄nl〉 |lm〉

and finally we arrive at the separable form of the l dependent pseudopotential

v = ∑
i

v |φ̄i〉 〈φ̄i|v = ∑
l,i

Vl(ρ) |R̄nl〉 |lm〉〈lm| 〈R̄nl |Vl(ρ) (12.8)
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To have some explicit formula, let’s write how the separable potential acts on a
wavefunction:

(vψ)(r) = 〈r|v|ψ〉= ∑
i
〈r̂|lm〉 〈ρ |Vl(ρ)|R̄nl〉〈R̄nl |Vl(ρ)〈lm|ψ〉

= ∑
i

Ylm(r̂)R̄nl(ρ)Vl(ρ)
∫

R̄nl(ρ ′)Vl(ρ ′)
∫

Y ∗lm(r̂
′)ψ(r′)dΩ ′ ρ ′2dρ ′

= ∑
i

Ylm(r̂)R̄nl(ρ)Vl(ρ)
∫

R̄nl(ρ ′)Vl(ρ ′)Y ∗lm(r̂
′)ψ(r′)d3r′ (12.9)

denoting r̂ and ρ the angular and radial component of r.
To have some insight on what we are actually doing: we are making the local

potential Vl nonlocal using:

Vl =
∞

∑
n=l+1

Vl |R̄nl〉 〈R̄nl |Vl (12.10)

where

〈R̄nl |Vl|R̄n′l〉= δnn′

or in r representation:

Vl(ρ)ψ(ρ r̂) = ∑
n

Vl(ρ)R̄nl(ρ)
∫

R̄nl(ρ ′)Vl(ρ ′)ψ(ρ ′r̂)ρ ′2dρ ′

which is useful when computing integrals of this type

Vi j =
∫

φi(ρ)Vlφ j(ρ)ρ2d3ρ = 〈i|Vl | j〉= ∑
n
〈i|Vl |R̄nl〉 〈R̄nl |Vl| j〉

〈i|Vl |R̄nl〉=
∫

φi(ρ)Vl(ρ)R̄nl(ρ)ρ2dρ

because the integral on the left hand side actually represents N2 integrals, where
N is the number of basis vectors |φi〉. The sum on the right hand side however
only represents K ·N integrals, where K is the number of terms taken into account
in (12.10). Of course taking only finite number of terms in (12.10) is only an
approximation to V̂l. In our case, we don’t need these 1D integrals (which can
be easily computed directly, because Vl is local and the basis functions φi are
nonzero only around a node in the mesh, which means that the matrix Vi j is sparse),
but 3D integrals, where angular parts of V are nonlocal and radial part is local
(so the matrix Vi j is dense), so the above procedure is the only way how to proceed,
because we decompose the matrix Vi j into the sum of matrices in the form pi p∗j ,
which can easily be handled and solved.
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The scheme for the separation described above works for any functions Rnl(ρ).
Because of the form of the expansion (12.10) however, we will use Rnl from
one atomic calculation. We need to approximate Vl by as few terms as possible,
so imagine how the Vl(ρ) acts on the lowest radial function in the l subspace,
which is |Rl+1;l〉 and we see that all the terms in (12.10) except the first one
Vl |R̄l+1;l〉〈R̄l+1;l |Vl give zero, because they are orthogonal to |Rl+1;l〉. For the
function |Rl+2;l〉 all the terms except the first two are zero, because 〈R̄nl |V0|Rl+2;l〉 =
0 only for n = l + 1 or n = l + 2 (because the vectors |Rl+1;l〉 and |Rl+2;l〉 span the
same subspace as |R̄l+1;l〉 and |R̄l+2;l〉 and using (12.7)). For functions, which are a
little different from all |Rnl〉 (n > l), we won’t generally get precise results taking
any (finite) number of terms in (12.10), but the higher terms should give smaller and
smaller corrections.

The described method is general, the only drawback is that if we don’t take
functions |Rnl〉 which are similar to the solution, we need to take a more terms
in (12.10), resulting in more matrices of the form pi p∗j .

12.2.2 Environment-Reflecting (Environment-Adaptive,
All-Electron) Pseudopotentials

The difference with respect to what has been described above consists in the atomic
calculation: instead of the asymptotically vanishing wave functions, the boundary
conditions reflecting the actual charge distribution in a given material are taken
into account. The initial step of all-electron pseudopotential generating procedure
provides an all-electron atomic calculation where the valence states are treated
selfconsistently with the calculation in a given surrounding. The charge density
corresponding to valence radial atomic wavefunctions RE,l(r) matches the partial
charge density in a solid by the logarithmic derivative at the cut-off radius RC,

d
dr

ln

(
r2
∣∣∣Rat

Eval,l ,l
(r)
∣∣∣2
)∣∣∣∣

r=RC

=
d
dr

ln
(
r2ρ sps

l (r)
)∣∣∣∣

r=RC

, (12.11)

where the partial charge density in a solid ρ sps
l (r) is evaluated by summing over all

occupied states,

ρ sps
l (r) = ∑

k,n

l

∑
m=−l

1
4πr2

∫
SPH

dΩdΩ ′

ψ∗k,n(rn̂)Ylm(n̂)Y ∗lm(n̂
′)ψk,n(rn̂′), (12.12)

where ψk,n denotes the crystal pseudo-wavefunction with k as the vector of the first
Brillouin zone and a band index n. For a non-periodic environment, the sum over k,n
is simply replaced by the sum over occupied states indexed in any appropriate way.
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Fig. 12.1 DFT
selfoconsistent scheme, with
environment-adaptive
pseudopotentials

initial , V PS
l

V = VH [ ] + Vxc [ ] + V PS
l

Hψ = Eψ

= |ψi |2

converged to selfconsistency?

1

no

yes

{ψi} → new core, new V PS
l

2

The boundary condition of Eq. 12.11 replaces the standard condition for the
wavefunctions to be normalizable and determines the eigenvalue El . The normal-
ization condition for the valence atomic-like radial wavefunctions is

∫ RC

0

∣∣∣Rat
Eval,l ,l

(r)
∣∣∣2 r2dr =

∫ RC

0
ρ sps

l (r)r2dr. (12.13)

Using the results of the selfconsistent atomic-like calculation with the boundary
conditions of the solid, we apply the phase-shift technique for the construction
of pseudopotentials. By varying the screened pseudopotential, this technique min-
imizes a functional assembled from a set of conditions to be satisfied by the
pseudopotential. The common condition requiring the continuous augmentation
of the pseudo-wave-function at the cut-off radius RC is transformed into a condition
for the generalized phase-shift that depends on the energy monotonously, which
ensures the numerical stability and gives the name to the technique.

Each component V scr
l (r) of the screened pseudopotential is constructed in such

a way that the following conditions for V scr
l (r) and for each corresponding pair of

pseudo-wave-functions (in the case of two energy windows) are fulfilled.

1. At r = RC the potential V scr
l (r) matches the all-electron potential V at(r) up to the

second derivative
2. At r = RC the radial pseudo-wavefunctions Rps

En,l ,l
(r) match the corresponding

atomic-like radial functions by their values and first derivatives
3. The correct energy derivative of the pseudo-wavefunction is ensured by the

norm-conserving condition

More about the all-electron pseudopotential technique can be found in [10]
(Fig. 12.1).
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12.3 Finite Element Method

This chapter explains FEM and gives concrete formulas which are needed in the
calculation.

12.3.1 Weak Formulation of the Schrödinger Equation

One particle Schrödinger equation is

(
− h̄2

2m
∇2 +V

)
ψ = Eψ .

We multiply both sides by a test function v

−
(

h̄2

2m
∇2ψ

)
v = (E−V)ψv ,

and integrate over the whole volume we are interested in

∫
−
(

h̄2

2m
∇2ψ

)
vdV =

∫
(E−V)ψvdV, (12.14)

and using the vector identity

−(∇2ψ)
)

v = ∇ψ ·∇v−∇ · ((∇ψ)v) ,

we rewrite the left hand side of (12.14)

∫
h̄2

2m
∇ψ ·∇vdV =

∫
(E−V)ψvdV +

∫
h̄2

2m
∇ · ((∇ψ)v) dV,

now we apply Gauss Theorem

∫
h̄2

2m
∇ψ ·∇vdV =

∫
(E−V)ψvdV +

∮
h̄2

2m
(∇ψ)v ·ndS ,

and rewriting ∇ψ ·n≡ dψ
dn

∫
h̄2

2m
∇ψ ·∇vdV +

∫
vVψ dV =

∫
EψvdV +

∮
h̄2

2m
dψ
dn

vdS , (12.15)

which is the weak formulation. The problem reads: find a function ψ such that
(12.15) holds for every v.
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The boundary condition of all functions is that they disappear at the boundary
(infinity) and have zero normal derivative there. That follows from the physical
requirement of normalizability of the wave function.

12.3.2 Finite Elements

We choose a basis φi and substitute φi for v and expand ψ = ∑q jφ j

(∫
h̄2

2m
∇φ j ·∇φi dV +

∫
φiV φ j dV

)
q j =

(∫
Eφ jφi dV

)
q j +

∮
h̄2

2m
dψ
dn

φi dS,

(12.16)

which can be written in a matrix form

(Ki j +Vi j)q j = EMi jq j +Fi ,

where

Vi j =

∫
φiVφ j dV,

Mi j =

∫
φiφ j dV,

Ki j =
h̄2

2m

∫
∇φi ·∇φ j dV,

Fi =
h̄2

2m

∮
dψ
dn

φi dS.

Usually we set Fi = 0.
We decompose the domain into elements and compute the integrals as the sum

over elements. For example:

Ki j = ∑
E∈elements

KE
i j

where KE
i j is the integral over one element only

KE
i j =

∫
h̄2

2m
∇φ j ·∇φi dV E ≈

Nq−1

∑
q=0

h̄2

2m
∇φi(xq) ·∇φ j(xq)wq|detJ(x̂q)| .

The integral is computed numerically using a Gauss integration: xq are Gauss points
(there are Nq of them), wq is the weight of each point, and the Jacobian |detJ(x̂q)|
is there because we are actually computing the integral on the reference element
instead in the real space.
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The surface integrals are computed similarly, but in our case they are all zero, as
the normal derivative of the wave function is zero at the boundary.

The actual assembly is a little more complex (you need to loop over all elements,
calculate the integrals above and put the numbers to the correct place in the global
matrix), but the above sketch should make the main idea clear.

As to the concrete form (shape) of the basis (shapefunctions) – it is well-known
that quadratic elements are generally more precise than linear, and that cubes are
generally more precise compared to tetrahedra. However, in practise, that needs
to be tried on a case by case basis, also depending on the mesh. Our code can
work with both linear and quadratic elements and with tetrahedra, cubes, prisms and
pyramids.

12.3.3 Pseudopotentials Formulation

There are no problems with other matrix elements in (12.16) except

Vi j =

∫
φi(r)Vφ j(r)d3r =

∫
〈i|r〉〈r|V̂ | j〉d3r = 〈i|V̂ | j〉

where
V̂ =Vloc(ρ)+∑

nlm

Vl(ρ) |R̄nl〉 |lm〉〈lm| 〈R̄nl |Vl(ρ)

so

Vi j = 〈i|Vloc(ρ)| j〉+ 〈i|∑
nlm

Vl(ρ) |R̄nl〉 |lm〉 〈lm| 〈R̄nl |Vl(ρ) | j〉 =V loc
i j +∑

nlm

pi p
∗
j

where the complex vector pi is given by

p(nlm)
i = 〈i|lm〉Vl(ρ) |R̄nl〉=

∫
〈i|r〉〈r̂|lm〉 〈ρ |Vl(ρ)|R̄nl〉d3r

=

∫
φi(r)Ylm(r̂)Vl(ρ)R̄nl(ρ)d3r

and
V loc

i j =

∫
φi(r)Vloc(ρ)φ j(r)d3r

and Ylm(r̂), R̄nl(ρ) and Vl(ρ) are given functions. Noticing that

∑
m

pi p
∗
j =

∫
φi(r)Ylm(r̂)Vl(ρ)R̄nl(ρ)d3r

∫
φ j(r′)Y ∗lm(r̂

′)Vl(ρ ′)R̄nl(ρ ′)d3r′

=

∫ ∫
Ylm(r̂)Y

∗
lm(r̂

′)Vl(ρ)R̄nl(ρ)φi(r)φ j(r′)Vl(ρ ′)R̄nl(ρ ′)d3rd3r′
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and so we get

∑
m

pi p
∗
j =

∫ ∫
4π

2l+ 1
Pl(r̂ · r̂′)Vl(ρ)R̄nl(ρ)φi(r)φ j(r′)Vl(ρ ′)R̄nl(ρ ′)d3rd3r′

which is a real number, thus ∑nlm pi p∗j is also a real number, which means that we
can calculate with only the real parts of the matrix pi p∗j , because the imaginary parts
cancels out in the result:

∑
nlm

pi p
∗
j = ℜ

(
∑
nlm

pi p
∗
j

)
= ∑

nlm

ℜ(pi p
∗
j).

12.3.4 Separable Potential – More General View

In Sect. 12.2.1 we described a particular way of converting the potential into the
separable form, using a direct product of V -orthogonalized atomic radial functions
and spherical harmonics as V -orthonormal basis. In real calculations, we never use
the complete infinite basis. Therefore, creating a separable potential form always
represents some kind of linearization. This fact is independent of the previous
potential generating procedure: It concerns not only pseudopotentials, but also e.g.
a Projector Augmented Waves (PAW) [2]. In this section we present a more general
view on the separable potential and we discuss how to make the linearization more
precise via improving the finite V -orthonormal basis (consisting of just a few terms,
in practice).

Separable potential with incomplete radial basis is, in fact, a projection of V to
the subspace generated by chosen radial projector functions. For each dimension
of the subspace there is an energy window, i.e. some neighborhood of the energy
for which the corresponding radial projector function has been generated, where the
potential acts on a trial function with a given accuracy. Our aim is to enhance the
precision by extending the energy window.

We enrich the radial basis with energy derivatives of radial functions

ṘEl(ρ) =
∂

∂E
RE,l , (12.17)

similarly as in the Full-Potential Linearized Augmented Plane Wave (FLAPW)
method. In the case of environment-reflecting pseudopotentials, it requires to
calculate the energy derivative in the neighborhood of the condition for the
logarithmic derivative of Eq. 12.11. The radial basis, therefore, is obtained by means
of Vl-orthogonalization procedure of the set of pairs

{
Rnl , ṘEl

}
.
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Let’s now consider an alternative notation for separable pseudopotential

V =∑
i

ci |ξi〉ci 〈ξi| (12.18)

In our previously used notation, the coefficients ci are hidden in the more general
matrix U (see Eq. 12.5):

Ui,i = c2
i Ui, j = 0 for i = j (12.19)

The matrix U was eliminated from equations (see the text before Eq. 12.6) by using
Gram–Schmidt orthonormalization. This orthonormalization can be performed in
R supposing that the operator V is positive definite and that the norm 〈ξi|V |ξ j〉
exists. If we keep the norm of radial projectors fixed and just V -ortogonalize the
basis (and so diagonalize U), we obtain the solution also for non-positive definite
pseudopotential. Using the coefficients

di =Ui,i = 〈α l
i |Vl |α l

i 〉
−1

(12.20)

as variation coefficients and optimizing them to match the all-electron calculation
via the logarithmic derivatives, we get an additional tool for improving accuracy.

Using the basis α l
i derived from

{
Rnl, ṘEl

}
with rigid norm, we can write the

operator Vl as

Vl = ∑
i

((
Vlα l

i

)
⊗Ylm

)
dl

i

((
Vlα l

i

)
⊗Ylm

)+
(12.21)

and reintroduce Eq. 12.9 in the form

〈
ψ Vlψ ′

〉
= (12.22)

∑
l

〈
ψ

(
Vl⊗

l

∑
m=−l

YlmY+
lm

)
ψ ′
〉

= (12.23)

〈
ψ ∑

l

(
∑

i

(
Vlα l

i

)
dl

i

(
Vlα l

i

)+⊗ l

∑
m=−l

YlmY+
lm

)
ψ ′
〉

= (12.24)

∑
l,i,m

dl
i

〈
ψ

((
Vlα l

i

)
dl

i

(
Vlα l

i

)+⊗YlmY+
lm

)
ψ ′
〉
= (12.25)

∑
l,i,m

dl
i

〈
ψ

(
Vlα l

i ⊗Ylm

)((
Vlα l

i

)+⊗Y+
lm

)
ψ ′
〉
= (12.26)

∑
l,i,m

dl
i

〈(
Vlα l

i ⊗Ylm

)+
ψ

(
Vlα l

i ⊗Ylm

)+
ψ ′
〉

(12.27)
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By that, we get a general separable potential form defined by coefficients dl
i and

by vectors ϑilm

ϑilm =Vlα l
i ⊗Ylm (12.28)

in the form

Vl = ∑
i,l,m

dl
i ϑilm(ϑilm)

+ (12.29)

For finite-element discretization we have just to perform numeric integration of

∫
element

Vlα l
i Ylmφ j dV =

∫∫∫
element

Vl(r)α l
i (r)Ylm(θ ,ϕ)φ j(r,θ ,ϕ) dr dθ dϕ (12.30)

for each α l
i over each element φ j of finite-element basis in spherical coordinates

with respect to the center of each atom.

12.3.5 Eigenvalue Problem

A correction of the matrix Am×m in a form A + UU+, where U is a matrix of the
shape n×m, is usually denoted as rank-n-update.

Applying the previously derived relations, we can write the Kohn–Sham equa-
tions as a sum of sparse matrices with the same pattern plus the rank-n-update
(omitting the variation coefficients dl

ni for the moment)

⎛
⎜⎜⎝K +Vh +Vxc +Vloc+

N

∑
n=0

max(l)
(n)

∑
l=0

max(i)
(l,n)

∑
i=0

l

∑
m=−l

ϑni
lm
(ϑni

lm
)+

⎞
⎟⎟⎠ q̄ = εMq̄ (12.31)

and so, in the matrix notation of rank-n-update:

(
KV +UU+

)
q̄ = λ Mq̄ (12.32)

To employ preconditioning for solving the rank-n-update eigenvalue problem,
we can take advantage of the knowledge how the rank-n-update has been obtained.
Taking into account that

Vl =∑dl
i (Vα l

i )(V α l
i )

+ (12.33)
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V−1
l can be constructed as

V−1
l = ∑dl

i α
l
i (α

l
i )

+ (12.34)

This fact can be easily shown from the orthogonality of the basis. For a vector
u = ∑

j
a jα l

j it holds

∑
i

(
dl

i α l
i

(
α l

i

)+)
Vlu = ∑

i

(
dl

i α l
i

(
α l

i

)+)
∑

j
a jVlα l

j

= ∑
i, j

(
dl

i α
l
i

(
α l

i

)+)
a jVlα l

j = ∑
i, j

dl
i α

l
i

(
a j

〈
α l

i |Vl |α l
j

〉)

= ∑
j

dl
jα

l
j
a j

dl
j

= ∑
j

a jα l
j = u (12.35)

Since Vl are short-range potentials, ϑnilm have non-zero values only in those finite
elements located near enough to the corresponding atomic center. This fact can be
employed for optimization. The vectors can be treated as sparse by means of the
pairs (index,value). Since each set of vectors have the same pattern, this form can be
made even more efficient by means of the structure (index,{values}). By choosing
convenient order of finite elements according to the pertinence to atomic centers,
additional optimization could be performed, but, in this case, the benefit would
hardly balance the higher computational costs in finite-element mesh generation.

12.3.5.1 Real Spherical Harmonics

Since the angular basis of Ylm serves just for projecting to l-subspaces and since for
any kind of atomic-like radial calculations (including the Environment-Reflecting
Pseudopotentials and Projector Augmented Waves) the wavefunctions and all the
quantities can be considered real, we can reach considerable simplification by using
real spherical harmonics YR

lm instead of Ylm so that all the vectors for rank-n update
also remain real:

YR

�m =

⎧⎪⎪⎨
⎪⎪⎩

Y 0
� if m = 0
1√
2

(
Y m
� +(−1)mY−m

�

)
=
√

2N(�,m)P
m
� (cosθ )cosmϕ if m > 0

1
i
√

2

(
Y−m
� − (−1)mY m

�

)
=
√

2N(�,m)P
−m
� (cosθ )sin mϕ if m < 0.

(12.36)

where Pm
l are associated Legendere polynomials.

For the real separable potentials U , it holds U+ =UT , which brings considerable
simplification at some points (Figs. 12.2, 12.3 and 12.4).
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Fig. 12.2 Charge density of two-atom nitrogen molecule in finite elements; let’s note that the error
is O(h6), where h is the mesh spacing

Fig. 12.3 Hartree and XC potentials

12.4 Conclusion

We introduced a method to solve Kohn Sham equations and to calculate electronic
states and other properties of non-crystalline, non-periodic structures with fully
non-local real-space environment-reflecting ab-initio pseudopotentials using finite
elements, together with some preliminary results of our program. We believe this
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Ps001

Ps003

Ps004

Ps002

Fig. 12.4 Wave functions of two-atom nitrogen molecule

new approach could yield some new interesting results in electronic structure
calculations. The main asset of the present approach is the combination of efficiency
and high precision of ab-initio pseudopotentials with universal applicability, univer-
sal basis and excellent convergence control of finite-element method not restricted
to periodic environment.
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Chapter 13
Shifts in Excitation Energies Induced
by Hydrogen Bonding: A Comparison
of the Embedding and Supermolecular
Time-Dependent Density Functional Theory
Calculations with the Equation-of-Motion
Coupled-Cluster Results

Georgios Fradelos, Jesse J. Lutz, Tomasz A. Wesołowski, Piotr Piecuch,
and Marta Włoch

Abstract Shifts in the π → π∗ excitation energy of the cis-7-hydroxyquinoline
chromophore induced by hydrogen bonding with small molecules, obtained with
the frozen-density embedding theory (FDET), are compared with the results of the
high-level equation-of-motion coupled-cluster (EOMCC) calculations with singles,
doubles, and noniterative triples, which provide the reference ab initio data, the
supermolecular time-dependent density functional theory (TDDFT) calculations,
and the available experimental data. It is demonstrated that the spectral shifts result-
ing from the FDET calculations employing nonrelaxed environment densities and
their EOMCC counterparts are in excellent agreement with one another, whereas
the analogous shifts obtained with the supermolecular TDDFT approach do not
agree with the EOMCC reference data. Among the discussed issues are the effects
of higher-order correlations on the excitation energies and complexation-induced
excitation energy shifts resulting from the EOMCC calculations, and the choice of
the approximants that represent the nonadditive kinetic energy contributions to the
embedding potential of FDET.
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13.1 Introduction

Noncovalent interactions, such as hydrogen bonds, can qualitatively affect the
electronic structure and properties of molecules embedded in molecular environ-
ments. Among such properties, electronic excitation energies are of particular
interest because of the wide use of organic chromophores as probes in various
environments [1–4]. Typically, hydrogen bonding results in shifts in the positions
of absorption and emission bands anywhere between a few hundred and about
3,000 cm−1 [5]. This means that if one is to use computer modeling for interpre-
tation of experimental data, the errors of the calculated shifts must be very small, on
the order of 100 cm−1 or less.

Unfortunately, the brute force application of the conventional supermolecular
approach to evaluate the excitation energy shifts induced by hydrogen bonding with
environment molecules, in which one determines the shift as a difference of two
large numbers representing the excitation energy for a given electronic transition
in the complex and the analogous excitation energy characterizing the isolated
chromophore, encounters several challenges. For example, the supermolecular
approach relies on the ability of a given electronic structure method to provide an
accurate and well-balanced description of excitation energies in systems that have
different sizes, which in the specific case of spectral shifts induced by complexation
are the total system consisting of the chromophore and environment molecules and
the system representing the isolated chromophore. In great many cases, particularly
when the low-level quantum-chemistry methods are exploited and larger molecules
are examined, this condition is difficult to satisfy. Ab initio methods based on
the equation-of-motion (EOM) [6–10] or linear-response [11–16] coupled-cluster
(CC) [17–22] theories (cf. Refs. [23–25] for selected reviews), including, among
several schemes proposed to date, the basic EOMCC approach with singles and
doubles (EOMCCSD) [7–9] and the so-called δ -CR-EOMCC(2,3) method, which
represents a suitably modified variant of the completely renormalized (CR) EOMCC
theory with singles, doubles, and noniterative triples based on the CR-CC(2,3)
[26–28] and CR-EOMCC(2,3) [29–31] approximations and which is used in the
present work to provide the reference data, or the related EOMCCSD(2)T [32]
and EOMCCSD(T̃) [33] approaches, satisfy this condition, since they provide an
accurate and systematically improvable description of the electronic excitations
in molecular systems and satisfy the key property of size-intensivity [16, 34], but
their applicability is limited to smaller molecular problems due to the CPU steps
that typically scale as N 6 −N 7 with the system size N . Significant advances
have been made in recent years toward extending the EOMCC and response CC
methods to larger molecules through code parallelization and the use of local
correlation methodologies [35–38], combined, in analogy to QM/MM techniques,
with molecular mechanics [39–43], but none of the resulting approaches is as
practical, as far as computer costs are concerned, as methods based on the time-
dependent density functional theory (TDDFT) [44]. Unfortunately, the existing
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TDDFT approaches, although applicable to large molecular systems due to low
computer costs, are not always accurate enough to guarantee a robust description
of the complexation-induced spectral shifts in weakly bound complexes when the
supermolecular approach is employed due to their difficulties with describing dis-
persion and charge-transfer interactions, and other intrinsic errors. It is, for example,
unclear if the existing practical implementations of the TDDFT methodology satisfy
the aforementioned condition of size intensivity, which is critical for obtaining
a well-balanced description of electronic excitations in molecules that differ in
size, and accurate values of the spectral shifts. In a size-intensive approach, the
vertical excitation energy of a noninteracting system A+B, in which fragment A is
excited, is the same as that obtained for the isolated system A. The aforementioned
EOMCCSD, δ -CR-EOMCC(2,3), EOMCCSD(2)T , and EOMCCSD(T̃) methods
are size intensive, but, based on the results presented in this study, the widely used
TDDFT approximations may violate this property.

Methods employing the embedding strategy, including those based on the frozen-
density embedding theory (FDET) [45–48] that interests us in this work, provide
an alternative to the supermolecular approach for evaluating the excitation energy
shifts. In all embedding methods, of both empirical (e.g., QM/MM) and FDET
types, the effect of the environment on the molecular properties of interest is not
treated explicitly, but, rather, through the use of the suitably designed embedding
potential. Thus, instead of solving the electronic Schrödinger equation for the total
(NA +NB)-electron system AB consisting of the NA-electron molecule A and NB-
electron environment B, i.e.,

Ĥ(AB)|Ψ (AB)〉= E(AB)|Ψ (AB)〉, (13.1)

where Ĥ(AB) is the Hamiltonian of the total system AB, and the electronic
Schrödinger equation for the isolated molecule A,

Ĥ(A)|Ψ (A)〉= E(A)|Ψ (A)〉, (13.2)

where Ĥ(A) is the Hamiltonian of molecule A in the absence of environment, and
then calculating the shift in an observable of interest associated with an operator Ô
by forming the difference of the expectation values of Ô computed for systems AB
and A that have different numbers of electrons,

Δ
〈
Ô
〉
=
〈

Ψ (AB)|Ô|Ψ (AB)
〉
−
〈

Ψ (A)|Ô|Ψ (A)
〉
, (13.3)

as one does in supermolecular calculations, one solves two eigenvalue problems
characterized by the same number of electrons, namely, Eq. 13.2 and

[
Ĥ(A) + V̂ (A)

emb

]
|Ψ (A)

emb〉= E(A)
emb|Ψ (A)

emb〉, (13.4)
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where |Ψ (A)
emb〉 is the auxiliary NA-electron wavefunction describing the effective state

of molecule A in the presence of environment B and V̂ (A)
emb = ∑NA

i=1 vemb(ri) is the
suitable embedding operator defined in terms of the effective one-electron potential
vemb(r). As a result, the complexation-induced shift in an observable represented by
the Ô operator is evaluated in the embedding strategy as

Δ〈Ô〉=
〈

Ψ (A)
emb|Ô|Ψ (A)

emb

〉
−
〈

Ψ (A)|Ô|Ψ (A)
〉
, (13.5)

i.e., by using the many-electron wavefunctions |Ψ (A)〉 and |Ψ (A)
emb〉 that represent

two different physical states of system A corresponding to the same number of
electrons, the state of the isolated molecule A and the state of A embedded in
the environment B. This has two advantages over the conventional supermolecular
approach. First, the embedding strategy does not require the explicit consideration
of the total (NA +NB)-electron system consisting of the complex of the molecule
of interest and its environment, which leads to a significant cost reduction in the
computer effort, particularly in applications involving larger environments. Indeed,
it has already been demonstrated that FDET can be applied in large-scale multi-scale
molecular simulations [46, 49–51]. Second, by determining the complexation-

induced shift Δ〈Ô〉 using the wavefunctions |Ψ (A)〉 and |Ψ (A)
emb〉 that correspond to

the same number of electrons, the errors due to approximations used to solve the
NA-electron problems represented by Eqs. 13.2 and 13.4 largely cancel out as we do
not have to be concerned about the possible dependence of the error in the calculated
Δ〈Ô〉 value on the system size. In the calculations of the shifts in excitation energies
using the size-intensive EOMCC methods, one does not have to worry about it
either, but the supermolecular EOMCC approach requires an explicit consideration
of the (NA +NB)-electron system consisting of the chromophore and environment,
which may lead to a significant cost increase when NB is larger. By representing
systems A and AB as two quantum-mechanical states of A with a fixed number of
electrons NA that correspond to the state of the isolated molecule A and the state of
A perturbed by the environment B, we can effectively enforce the condition of size
intensivity of excitation energies in the embedding approaches.

Clearly, the accuracy of the complexation-induced shifts obtained in the embed-

ding calculations largely depends on the quality of the embedding operator V̂ (A)
emb.

Thus, when compared with the supermolecular approach, the challenge is moved
from assuring the cancellation of errors in approximate solutions of two Schrödinger
equations for systems that differ in the number of electrons to developing the

appropriate form of V̂ (A)
emb that can accurately describe the state of the chromophore

in the weakly bound complex with environment. According to the FDET formalism

[45–48], the embedding operator V̂ (A)
emb can be represented in terms of a local

potential vemb(r) (orbital-free embedding potential), which is determined by the
pair of electron densities, ρA describing the embedded system A and constructed

using the |Ψ (A)
emb〉 wavefunction, and ρB representing the electron density of the

environment B. Unfortunately, except for a small number of analytically solvable
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problems [52], the precise dependence of vemb(r) on ρA and ρB is not known.
Only its electrostatic component is known exactly. The nonelectrostatic component,
which arises from the nonadditivity of the density functionals for the exchange-
correlation and kinetic energies, must be approximated or reconstructed, either
analytically (if possible) [52] or numerically [53–55]. In the case of hydrogen-
bonded environments that interest us in this work, the electrostatic component of
the exact embedding potential is expected to dominate and the overall accuracy of
the environment-induced changes of the electronic structure of embedded species
should be quite high. Indeed, a number of earlier studies [56, 57] demonstrate
that the currently known approximants to the relevant functional representations
of vemb(r) in terms of ρA and ρB are adequate. Still, it is instructive to examine
how the FDET results depend on the approximants that are used to represent the
nonelectrostatic components of vemb(r), such as the nonadditive kinetic energy
potential.

Our previous studies of the methodological and practical aspects of the FDET
approach have largely focused on the analytically solvable model systems and
direct comparisons with experiment. The exactly solvable model systems are
certainly important, since they may provide useful information about the analytic
dependence of the embedding potential vemb(r) on densities ρA and ρB, but one
has to keep in mind that real molecular systems may be quite different from such
models. A comparison with the experimental data is clearly the final goal of any
computational technique, and the FDET approach is no different in this regard, but
we also have to remember that experiments have their own error bars and their
interpretation may require the incorporation of physical effects that are not included
in the purely electronic structure calculations. For these reasons, the present study
chooses an alternative way of examining the performance of the FDET methodology
in which we make a direct comparison of the benchmark results obtained in the
high-level, wavefunction-based EOMCC calculations, using the aforementioned
size-intensive modification of the CR-EOMCC(2,3) method [29–31], designated as
δ -CR-EOMCC(2,3), with those produced by the embedding-theory-based FDET
approach [45–48] and the supermolecular TDDFT methodology. In order to ad-
dress this objective, we first obtain the δ -CR-EOMCC(2,3)-based shifts in the
vertical excitation energy corresponding to the π → π∗ transition in the cis-7-
hydroxyquinoline (cis-7HQ) chromophore, induced by formation of hydrogen-
bonded complexes with eight different environments defined by the water, ammonia,
methanol, and formic acid molecules, and their aggregates consisting of up to three
molecules, for which, as demonstrated in this study, reliable EOMCC data can
be obtained and which were previously examined using the laser resonant two-
photon UV spectroscopy [5, 57]. Then, we use the resulting EOMCC reference
shift values to assess the quality of the analogous spectral shifts obtained in the
FDET and supermolecular TDDFT calculations. By having access to the highly
accurate reference EOMCC data, we can explore various aspects of the FDET
methodology and approximations imposed within. One such aspect is the possible
dependence of the shifts in the excitation energy of cis-7HQ induced by the
complexation with hydrogen-bonded molecules on the approximations used for one
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of the nonelectrostatic components of the embedding potential vemb(r) resulting
from the nonadditivity of density functionals for the kinetic energy. We examine this
issue by performing two sets of the FDET calculations, one in which the nonadditive
kinetic energy potential entering the definition of vemb(r) is approximated using
the generalized gradient approximation (GGA97) [58], and another one in which
the nonadditive kinetic energy component of vemb(r) is approximated with the
help of the recently developed NDSD approximant [59] that incorporates the exact
conditions relevant for the proper behavior of this component of vemb(r) in the
vicinity of nuclei. Other aspects of the FDET considerations, such as the role of
approximations that are used to define the exchange-correlation potentials in the
FDET (and supermolecular TDDFT) calculations, the usefulness of the monomer vs
supermolecular basis expansions in the FDET calculations, the basis set dependence
of the FDET results, and the effect of the form of the electronic density of the
environment on the FDET results, will be discussed elsewhere [60].

Although our main goal is a direct comparison of the embedding-theory-
based FDET and supermolecular TDDFT results with the high-level ab initio
EOMCC data, which demonstrates the advantages of the FDET approach over the
supermolecular TDDFT methodology in a realistic application, a comparison of the
calculated shifts with the corresponding experimental data [5, 57] is discussed as
well. The gas-phase complexes of the cis-7HQ chromophore are of great interest,
since some of them, particularly the larger ones, can be regarded as models of
proton-transferring systems in biomolecular systems [1, 61].

13.2 Methods

This section describes the electronic structure methods used in the present study.
Since the supermolecular TDDFT approach is an established methodology, we focus
on the FDET and EOMCC schemes exploited in our calculations.

13.2.1 Frozen-Density Embedding Theory

The FDET formalism [45–48, 52, 56, 59] (cf., also, Refs. [62–66]), provides
basic equations for the variational treatment of a quantum-mechanical subsystem
embedded in a given electronic density. In order to introduce the FDET-based
computational methods for describing the molecular system A embedded in the
environment B created by some other molecule(s), one introduces two types of
electronic densities to represent the total system AB. The first one is the density
of the subsystem A defined by embedded molecule(s), ρA(r), which is typically
represented using one the following auxiliary quantities: (1) the occupied orbitals

of a noninteracting reference system {φ (A)
i (r), i = 1, . . . ,NA} [45], (2) the occupied
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and unoccupied orbitals of a noninteracting reference system [56], (3) the interacting
wavefunction [47], or (4) the one-particle density matrix [48]. The second one is the
density of the subsystem B describing the environment, ρB(r), which is fixed for
a given electronic problem (“frozen density”). The optimum density ρA(r) of the
system A embedded in the environment B, represented by the fixed density ρB(r)
satisfying

∫
ρB(r)dr = NB, (13.6)

is obtained by performing the following constrained search:

E(A)
emb[ρB] = min

ρ≥ρB
EHK [ρ ] = min

ρA
EHK [ρA +ρB], (13.7)

subject to the conditions
∫

ρ(r)dr = NA +NB (13.8)

and ∫
ρA(r)dr = NA, (13.9)

where EHK [ρ ] in Eq. 13.7 is the usual Hohenberg-Kohn energy functional.
In practice, the search for the optimum density ρA, defined by Eq. 13.7, is

performed by exploiting the Kohn-Sham formulation [67] of DFT [68] to solve
Eq. 13.4, in which Ĥ(A) is the environment-free Hamiltonian of the isolated system

A and V̂ (A)
emb = ∑NA

i=1 vemb(ri) is the potential energy operator describing the effect
of environment B on system A, where v̂emb(r) has the form of a local, orbital-
free, embedding potential veff

emb(r), determined by the pair of densities ρA(r) and

ρB(r) and designated by veff
emb[ρA,ρB;r]. As shown in our earlier work [45, 47, 48],

the relationship between veff
emb[ρA,ρB;r] and densities ρA(r) and ρB(r) depends on

the quantum-mechanical descriptors that are used as the auxiliary quantities for
representing ρA(r). If we use the orbitals of a noninteracting reference system,
the wavefunction of the full configuration interaction (CI) form, or the one-particle
density matrix as the descriptors to define ρA(r), the local, orbital-free, embedding
potential veff

emb[ρA,ρB;r] can be given the following form:

veff
emb[ρA,ρB;r] = vB

ext(r)+
∫ ρB(r′)
|r′ − r|dr′+ vnad

xc [ρA,ρB](r)+ vnad
t [ρA,ρB](r),

(13.10)

where

vnad
xc [ρA,ρB](r) =

δExc [ρ ]
δρ

∣∣∣∣
ρ=ρA+ρB

− δExc [ρ ]
δρ

∣∣∣∣
ρ=ρA

(13.11)
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and

vnad
t [ρA,ρB](r) =

δTs [ρ ]
δρ

∣∣∣∣
ρ=ρA+ρB

− δTs [ρ ]
δρ

∣∣∣∣
ρ=ρA

. (13.12)

As one can see, veff
emb[ρA,ρB;r] involves the external and Coulomb potentials due to

the environment B, and the vnad
xc [ρA,ρB](r) and vnad

t [ρA,ρB](r) components that arise
from the nonadditivities of the exchange-correlation and kinetic energy functionals
of the Kohn-Sham DFT, Exc[ρ ] and Ts[ρ ], respectively.

Once veff
emb[ρA,ρB;r] is defined, as in Eq. 13.10, and if we use a noninteracting

reference system to conduct the constrained search given by Eq. 13.7, the orbitals

φ (A)
i , i = 1, . . . ,NA, of the system A embedded in the environment B are determined

by solving the Kohn-Sham-like equations (cf. Eqs. 20 and 21 in Ref. [45])

[
−1

2
∇2 + veff

KS[ρA;r]+ veff
emb[ρA,ρB;r]

]
φ (A)

i = ε(A)i φ (A)
i , (13.13)

where veff
KS[ρA;r] is the usual expression for the potential of the Kohn-Sham DFT for

the isolated system A. After obtaining the orbitals φ (A)
i and the corresponding orbital

energies ε(A)i , we calculate the ground- and excited-state energies and properties
other than energy, which in this case describe the system A embedded in the
environment B, in a usual manner, using standard algorithms of DFT or TDDFT.

It may be worth mentioning that there are two other approaches related to FDET
that aim at the description of a system consisting of subsystems, including the
situation of a molecule embedded in an environment which interests us here, namely,
the subsystem formulation of DFT (SDFT) [69, 70] and the recently developed
partition DFT (PDFT) [71]. There are, however, differences between the SDFT
and PDFT methods on the one hand and the FDET formalism on the other hand.
Indeed, in the exact limit, both SDFT and PDFT lead to the exact ground-state
electronic density and energy of the total system under investigation, providing an
alternative to the conventional supermolecular Kohn-Sham framework. This should
be contrasted with FDET, which does not target the exact ground-state electronic
density of the total system AB, but, rather, the density of subsystem A that minimizes
the Hohenberg-Kohn energy functional of the total system, EHK [ρA + ρB], using
a fixed form of the environment density ρB given in advance in the presence of
constraints, as in Eqs. 13.6–13.9. Thus, FDET may lead to the same total ground-
state density as SDFT, Kohn-Sham DFT, or PDFT, but only when the specific set
of additional assumptions and constraints is employed [46]. Otherwise, it can only
give the upper bound to the exact ground-state energy of the total system AB,

E(A)
emb[ρB] ≥ E(AB) (see Refs. [45–48, 60] and references cited therein for further

information).
The effectiveness of FDET methods based on Eq. 13.13, with veff

emb[ρA,ρB;r]
determined using Eq. 13.10, in the calculations of changes in the electronic structure
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due to the interactions between the embedded system and its environment was
demonstrated in a number of applications, including excitation energies [56,57,72],
ESR hyperfine coupling constants [73, 74], ligand-field splittings of f -levels in
lanthanide impurities [75], NMR shieldings [76], and multipole moments and
frequency dependent polarizabilities [72]. Based on these positive experiences, the
FDET approach is expected to provide accurate values of the complexation-induced
shifts in the vertical excitation energy corresponding to the π→ π∗ transition in the
cis-7HQ chromophore, and the present study demonstrates that this is indeed the
case by comparing the FDET and δ -CR-EOMCC(2,3)-based EOMCC results.

13.2.2 Equation-of-Motion Coupled-Cluster Calculations

The basic idea of the EOMCC theory is the following wavefunction ansatz for the
excited-state wavefunctions |Ψμ〉 [6–9] (cf. Refs. [10, 23, 25, 30] for reviews):

|Ψμ〉= Rμ |Ψ0〉, (13.14)

where the linear excitation operator Rμ generates |Ψμ〉 from the CC ground state

|Ψ0〉= eT |Φ〉, (13.15)

with T representing the cluster operator and |Φ〉 the reference determinant [in all of
the EOMCC calculations discussed in this work, the restricted Hartree-Fock (RHF)
configuration]. Throughout this paper, we use a convention in which we allow
index μ in Eq. 13.14 to become zero by defining the μ = 0 operator Rμ as a unit
operator, Rμ=0 = 1, so that we can incorporate the ground- and excited-state cases
corresponding to μ = 0 and μ > 0, respectively, within a single set of formulas.

The cluster operator T in Eq. 13.15 is typically obtained by truncating the
corresponding many-body expansion

T =
N

∑
n=1

Tn, (13.16)

where

Tn = ∑
i1<···<in,a1<···<an

ti1...in
a1...an

aa1 · · ·aanain · · ·ai1 (13.17)

is the n-body component of T and N is the number of correlated electrons in
a system, at some, preferably low, excitation level M < N, and by solving the
nonlinear system of equations for cluster amplitudes ti1...in

a1...an with n ≤ M, which
define the truncated form of T , designated as T (M), that results from projecting
the electronic Schrödinger equation on the excited determinants |Φa1...an

i1...in
〉 which
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correspond to the many-body components Tn included in T (M). Once T and the
corresponding ground-state CC energy E0 are determined, one obtains the many-
body components

Rμ,n = ∑
i1<···<in,a1<···<an

ri1...in
μ,a1...an aa1 · · ·aanain · · ·ai1 (13.18)

of the linear excitation operator

Rμ = rμ,0 1+
N

∑
n=0

Rμ,n, (13.19)

which is usually truncated at the same excitation level M as T , and the corresponding
vertical excitation energies

ωμ = Eμ −E0, (13.20)

by diagonalizing the similarity-transformed Hamiltonian H̄(M) = e−T (M)
HeT (M)

in
the subspace of the N-electron Hilbert space spanned by the excited determinants
|Φa1...an

i1...in
〉 that correspond to the many-body components Rμ,n included in Rμ .

The basic EOMCCSD approach [7–9], in which M = 2, so that T ≈ T (2) =

T1 + T2 and Rμ ≈ R(2)
μ = rμ,0 1+ Rμ,1 +Rμ,2 (in general, R(M)

μ designates the Rμ
operator truncated at the M-body component Rμ,M), in which one diagonalizes the

similarity-transformed Hamiltonian of CCSD, H̄(2) = e−T (2)
HeT (2)

, in the space
spanned by singly and doubly excited determinants, |Φa

i 〉 and |Φab
i j 〉, respectively,

and its linear-response CCSD counterpart [15,16] have been successful in describing
excited states dominated by one-electron transitions, but this success does not extend
to the more complicated excited states, such as those characterized by a significant
two-electron excitation nature (cf. Refs. [29–31, 77–83] for examples). There also
are cases of excited states dominated by one-electron transitions, particularly when
larger molecular systems are examined, where the EOMCCSD theory level is not
sufficiently accurate, producing errors in the computed excitation energies on the
order of 0.3–0.5 eV [84, 85]. Thus, particularly in the context of this study, where
the molecular systems of interest are not small and where we expect the EOMCC
theory to provide accurate reference data for the FDET and TDDFT calculations
of the relatively small spectral shifts induced by the formation of weakly bound
complexes, it is important to examine if the EOMCC results used by us as a
reference are reasonably well converged with respect to the truncations in the T and
Rμ operators. Ideally, one would like to perform the full EOMCCSDT (EOMCC
with singles, doubles, and triples) calculations [86–88] and compare them with the
corresponding EOMCCSD results to examine this. Unfortunately, it is not possible
to carry out the full EOMCCSDT calculations for the cis-7HQ system and its
complexes investigated in this work due to a steep increase of the CPU time and
storage requirements characterizing the EOMCCSDT approach that scale as n3

on5
u

and ∼n3
on3

u with the numbers of occupied and unoccupied orbitals, no and nu,
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respectively, as compared to the n2
on4

u CPU time and∼n2
on2

u storage requirements of
EOMCCSD. One has to resort to an approximate treatment of triple excitations in
the EOMCC theory that replaces the prohibitively expensive iterative CPU steps of
full EOMCCSDT that scale as N 8 with the system size N to the more manageable,
N 6−N 7, steps.

A large number of approximate EOMCCSDT approaches and their linear-
response analogs have been developed to date [29–33, 77–79, 81, 82, 86, 87, 89–96].
The noniterative EOMCC methods, in which one adds corrections due to triples
to the EOMCCSD energies, such as, for example, EOM-CCSD(2)T [32], CCSDR3
[92,93], EOMCCSD(T̃) [33], CR-EOMCCSD(T) [77,78,81,82], N-EOMCCSD(T)
[96], and CR-EOMCC(2,3) [29–31], are particularly promising, since they repre-
sent computational black boxes similar to those of the widely used ground-state
CCSD(T) approach [97] and its CCSD[T] predecessor [98], or their CR-CCSD(T)
[77, 78, 99, 100], CR-CC(2,3) [26–28], CCSD(2)T [90, 101–103], and CCSD(T)Λ
[104–106] analogs (cf. Refs. [107, 108] for related work). All of the above
methods greatly reduce the computer costs of full EOMCCSDT calculations,
while improving the EOMCCSD results. For example, the aforementioned EOM-
CCSD(2)T, CCSDR3, EOMCCSD(T̃), CR-EOMCCSD(T), N-EOMCCSD(T), and
CR-EOMCC(2,3) approaches are characterized by the iterative n2

on4
u steps of EOM-

CCSD and the noniterative n3
on4

u steps needed to construct the triples corrections
to the EOMCCSD energies, while eliminating the need for storing the ∼n3

on3
u

triply excited amplitudes defining the T and Rμ operators. This makes these
methods applicable to much larger problems than those that can be handled by full
EOMCCSDT, including the complexes of cis-7HQ examined in the present study.

As mentioned in the Introduction, our focus in this work is on the size-
intensive modification of the CR-EOMCC(2,3) method of Refs. [29–31], defining
the δ -CR-EOMCC(2,3) approach. The CR-EOMCC(2,3) scheme and the un-
derlying ground-state CR-CC(2,3) approximation [26–28] are examples of the
renormalized CC/EOMCC schemes, which are based on the idea of adding the
a posteriori, noniterative, and state-specific corrections δμ due to higher-order
excitations, neglected in the conventional CC/EOMCC calculations defined by some
truncation level M, such as CCSD or EOMCCSD, to the corresponding CC/EOMCC
energies. The formal basis for deriving the computationally tractable expressions for
corrections δμ is provided by the moment expansions which describe the differences
between the full CI and CC/EOMCC energies [26, 27, 77–79, 99, 100, 109–112].

If we are interested in correcting the energies E(M)
μ obtained in the CC/EOMCC

calculations truncated at M-tuple excitations, the CC/EOMCC moments that enter
the expressions for the corresponding corrections δμ are defined as projections of
the CC/EOMCC equations with T and Rμ truncated at the M-body components TM

and Rμ,M , respectively, on the excited determinants |Φa1...an
i1...in

〉 with n > M that are
disregarded in the conventional CC/EOMCC calculations, i.e.,

Mi1...in
μ,a1...an(M) =

〈
Φa1...an

i1...in

∣∣∣(H̄(M)R(M)
μ

)∣∣∣Φ〉
. (13.21)
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All of the resulting moment expansions of the corrections δμ that define the
differences between the full CI energies Eμ and the corresponding CC/EOMCC

energies E(M)
μ , developed to date [26,27,77–79,99,100,109–112], can be written as

δμ ≡ Eμ −E(M)
μ =

Nμ ,M

∑
n=M+1

∑
i1<···<in,a1<···<an

�a1...an
μ,i1...in M

i1...in
μ,a1...an(M), (13.22)

where Nμ,M represents the highest value of the many-body rank n for which

Mi1...in
μ,a1...an(M) is still nonzero (in the CCSD/EOMCCSD M = 2 case, Nμ,M is 6

when μ = 0 and 8 when μ > 0). The only essential difference between various ap-
proximations based on Eq. 13.22 is in the way one handles the �a1...an

μ,i1...in coefficients.
Equation 13.22 can be obtained by considering the asymmetric energy expression

[26, 27, 77–79, 100, 109] Ẽμ = 〈Ψ̃μ |HR(M)
μ eT (M) |Φ〉/〈Ψ̃μ |R(M)

μ eT (M) |Φ〉, which gives
the exact, full CI, energy Eμ , independent of the truncation level M in T (M) and

R(M)
μ , if 〈Ψ̃μ | is the full CI bra state 〈Ψμ |. When 〈Ψμ | is represented as 〈Φ|Lμ e−T (M)

,

where Lμ is a suitably defined deexcitation operator satisfying 〈Φ|Lμ R(M)
μ |Φ〉= 1,

the �a1...an
μ,i1...in coefficients in Eq. 13.22 have a meaning of amplitudes defining Lμ

[26, 27]. In that case, the asymmetric energy expression Ẽμ gives the formula for

the exact energy in the form Eμ = 〈Φ|Lμ H̄(M)R(M)
μ |Φ〉, which becomes equivalent

to the conventional CC energy functional [25] (used, for example, to derive the
CCSD(T)Λ approach [104–106]) when μ = 0 and M = N, and which directly leads

to Eq. 13.22 for the δμ correction after subtracting the CC/EOMCC energy E(M)
μ

from Eμ and performing straightforward analysis [26, 27].
In the specific case of the CR-EOMCC(2,3) approach that interests us here,

which corresponds to setting M in Eq. 13.22 at 2 and considering only the n = 3
term in the resulting moment expansion for δμ , one calculates the energies of the
ground and excited states as

Eμ = E(CCSD)
μ + ∑

i< j<k,a<b<c

�abc
μ,i jk M

ijk
μ,abc(2), (13.23)

where E(CCSD)
μ ≡ E(2)

μ are the CCSD (μ = 0) and EOMCCSD (μ > 0) energies,

M
i jk
μ,abc(2) are the moments of the CCSD/EOMCCSD equations corresponding

to triple excitations, which are defined by Eq. 13.21 in which M = 2, and �abc
μ,i jk

are the deexcitation amplitudes that one can calculate using the quasi-perturbative
expressions presented in Refs. [29, 31]. The �abc

μ,i jk amplitudes used in the CR-
EOMCC(2,3) considerations are expressed in terms of the one- and two-body
components of the deexcitation operator defining the left eigenstate of EOM-
CCSD [9], and the one-body, two-body, and – in the full implementation of CR-
EOMCC(2,3) defining variant D of it designated as CR-EOMCC(2,3),D – selected
three-body components of the similarity-transformed Hamiltonian of CCSD, H̄(2).
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In particular, the one-, two-, and three-body components of H̄(2) enter the Epstein-
Nesbet-like denominator for triple excitations which defines the �abc

μ,i jk amplitudes
in the CR-EOMCC(2,3),D approach. In variant A of CR-EOMCC(2,3), abbrevi-
ated as CR-EOMCC(2,3),A and equivalent to the EOM-CC(2)PT(2) method of
Ref. [90], one replaces the Epstein-Nesbet-like denominator defining the �abc

μ,i jk

amplitudes, which in variant D of CR-EOMCC(2,3) is calculated as [ω(CCSD)
μ −

(〈Φabc
i jk |H̄(2)

1 |Φabc
i jk 〉+ 〈Φabc

i jk |H̄(2)
2 |Φabc

i jk 〉+ 〈Φabc
i jk |H̄(2)

3 |Φabc
i jk 〉)], where ω(CCSD)

μ is the

EOMCCSD excitation energy and H̄(2)
n is the n-body component of H̄(2), by the

simplified form of it which represents the Møller-Plesset-like denominator for

triple excitations, [ω(CCSD)
μ − (εa + εb + εc− εi− ε j− εk)]. The differences between

variants A and D are substantial, in favor of CR-EOMCC(2,3),D, when the excited
states of interest are dominated by two-electron transitions. When the excited states
of interest are dominated by one-electron transitions, as is the case in the present
work, where we examine the π → π∗ excitations in cis-7HQ and its complexes, the
CR-EOMCC(2,3),A and CR-EOMCC(2,3),D approaches provide similar results (cf.
Sect. 13.3.1). We refer the reader to the original Refs. [29, 31] for further details of
the CR-EOMCC(2,3) approach and its variants A–D.

We now explain how to obtain the desired size-intensive δ -CR-EOMCC(2,3)
results within the CR-EOMCC(2,3) framework. As demonstrated in Refs. [31, 32],
although the ground-state CR-CC(2,3),D method and its CR-CC(2,3),A coun-
terpart, which is equivalent to the CCSD(2)T approach of Ref. [101], are size
extensive, being perfectly suited for examining weakly bound complexes involving
larger molecules [113, 114], such as those studied in this work, their excited
state CR-EOMCC(2,3),D and CR-EOMCC(2,3),A [or EOM-CC(2)PT(2)] analogs
violate the property of size intensivity discussed in the Introduction and satisfied
by EOMCCSD [16, 34]. Although the departure from strict size intensivity in the
CR-EOMCC calculations of vertical and adiabatic excitation energies is in many
cases of minor significance when compared to other sources of errors [82], this
may be a more serious issue when examining the shifts in the excitation energy
due to formation of weakly bound complexes. The lack of size intensivity of the
CR-EOMCC(2,3) and EOM-CC(2)PT(2) approaches can be traced back to the
presence of the contribution

βμ = ∑
i< j<k,a<b<c

(
rμ,0 �

abc
μ,i jk− �abc

0,i jk

)
Mi jk

0,abc(2) (13.24)

in the corresponding vertical excitation energies

ω(CR-EOMCC(2,3))
μ = E(CR-EOMCC(2,3))

μ −E(CR-CC(2,3))
0 , (13.25)

which is, as shown in Ref. [32], size extensive (cf. the E(T0)
p − E(T 0)

0 term in
Eq. 17 of Ref. [32]; see, also, Ref. [31] for additional remarks). Indeed, using the
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above equations for the CR-EOMCC(2,3) energies, particularly Eq. 13.23, we can

decompose the CR-EOMCC(2,3) excitation energy ω(CR-EOMCC(2,3))
μ and its EOM-

CC(2)PT(2) analog as follows [31, 32]:

ω(CR-EOMCC(2,3))
μ = ω(CCSD)

μ +αμ +βμ . (13.26)

Here, ω(CCSD)
μ is the vertical excitation energy of EOMCCSD,

αμ = ∑
i< j<k,a<b<c

�abc
μ,i jk M̃

i jk
μ,abc(2), (13.27)

with M̃i jk
μ,abc(2) = 〈Φabc

i jk |H̄(2)(Rμ,1 + Rμ,2)|Φ〉 representing the contribution to

the triply excited moment Mi jk
μ,abc(2) of EOMCCSD due to the one- and two-

body components of R(2)
μ , and βμ is defined by Eq. 13.24. Since the EOMCCSD

approach is size intensive and, as shown in Ref. [32], the αμ term, Eq. 13.27,

is size intensive as well (cf. the E(T 1)
p + E(T2)

p contribution in Eq. 17 of Ref.

[32]), the [ω(CCSD)
μ + αμ(2,3)] part of the CR-EOMCC(2,3) excitation energy

ω(CR-EOMCC(2,3))
μ is a size-intensive quantity. Unfortunately, the βμ term defined by

Eq. 13.24, being a size-extensive contribution, grows with the system size [31, 32],

destroying the size intensivity of ω(CR-EOMCC(2,3))
μ . In order to address this concern,

in this work we have implemented the rigorously size-intensive variant of CR-
EOMCC(2,3), designated as δ -CR-EOMCC(2,3), by neglecting the problematic
βμ term in Eq. 13.26 and redefining the vertical excitation energy in the following
manner [31, 32]:

ω(δ-CR-EOMCC(2,3))
μ = ω(CCSD)

μ +αμ , (13.28)

with αμ given by Eq. 13.27. The δ -CR-EOMCC(2,3) method provides a size-
intensive description of the excitation energies and, by defining the total energy Eμ
of a given electronic state μ as a sum of the size-extensive ground-state CR-CC(2,3)

energy and size-intensive excitation energy ω(δ-CR-EOMCC(2,3))
μ , Eq. 13.28, so that

Eμ = E(CR-CC(2,3))
0 +ω(δ-CR-EOMCC(2,3))

μ

= E(CCSD)
μ + ∑

i< j<k,a<b<c

�abc
0,i jkM

i jk
0,abc(2)+ ∑

i< j<k,a<b<c

�abc
μ,i jk M̃

i jk
μ,abc(2),

(13.29)

the size-extensive description of state μ , assuming that the electronic excitation
in AB is localized on either A or in B, but not on both fragments simultaneously
(cf. Refs. [16, 34, 82] for a detailed analysis). As in the case of CR-EOMCC(2,3),

we can distinguish between the full variant D of ω(δ-CR-EOMCC(2,3))
μ , designated as

δ -CR-EOMCC(2,3),D, and its various approximations, including variant A. The
δ -CR-EOMCC(2,3),A method is equivalent to the EOMCCSD(2)T approach of
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Ref. [32] and, if we limit ourselves to the vertical excitation energies only, to the
EOMCCSD(T̃) approach of Ref. [33]. The latter connection is worth commenting
on. The EOMCCSD(T̃) method of Ref. [33] and its various EOMCCSD(T)-like
analogs [33, 91] are based on the idea of directly correcting the EOMCCSD
excitation energies rather than determining the total energies first and forming the
excitation energies afterwards, as described above. This has an advantage in the
fact that the resulting triples corrections, such as those defining EOMCCSD(T̃),
are immediately size intensive. Unfortunately, they are not robust enough in
applications involving excited-state potential energy surfaces along bond breaking
coordinates (see, e.g., Ref. [81]). The CR-EOMCC(2,3) approach, which is used
to design the δ -CR-EOMCC(2,3) method, and its CR-EOMCCSD(T) predecessor
[77, 78, 81], as well as their EOM-CC(2)PT(2)-based analogs [32], in which one
corrects the total CCSD and EOMCCSD energies first and computes the excitation
energies later, are very useful in calculations of ground- and excited-state potential
energy surfaces (see Refs. [78, 81]; cf., also, Ref. [32]), but one has to take extra
steps to eliminate terms violating the property of size intensivity that cannot be
ignored in applications reported in this work. As shown in Sect. 13.3.1, the size-
intensivity-corrected δ -CR-EOMCC(2,3),A and δ -CR-EOMCC(2,3),D methods
provide very similar π → π∗ excitation energies in the cis-7HQ chromophore and
its complexes, which also are in good agreement with the experimental data reported
in Refs. [5, 57].

13.2.3 The Remaining Computational Details

In order to examine the performance of the FDET approach and to demonstrate
its advantages when compared with the supermolecular TDDFT calculations, both
benchmarked against the high-level EOMCC data, we have investigated the shifts
Δωπ→π∗ in the vertical excitation energy ωπ→π∗ corresponding to the lowest π→ π∗
transition in the cis-7HQ chromophore induced by the formation of hydrogen-
bonded complexes shown in Fig. 13.1. The eight complexes considered in this
study, which were examined experimentally using the laser resonant two-photon
UV spectroscopy [5, 57], include the cis-7HQ · · ·B systems, where B represents
one of the following environments: a single water molecule, a single ammonia
molecule, a water dimer, a single molecule of methanol, a single molecule of formic
acid, a trimer consisting of ammonia and two water molecules, a trimer consisting
of ammonia, water, and ammonia, and a trimer consisting of two ammonia and
one water molecules (cf. Fig. 13.1). For each cis-7HQ · · ·B complex and for each
electronic structure approach used in this study, the corresponding environment-
induced shift Δωπ→π∗ was determined as a difference between the value of ωπ→π∗
characterizing the complex and that obtained for the isolated cis-7HQ molecule.
The relevant nuclear geometries of the cis-7HQ · · ·B and cis-7HQ systems were
optimized in the second-order Møller-Plesset perturbation theory (MP2) [115]
calculations employing the aug-cc-pVTZ basis set [116, 117], using the analytic
MP2 gradients available in Gaussian(R) 03 [118]. As in all other post-Hartree-Fock
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Fig. 13.1 The
hydrogen-bonded complexes
of the cis-7HQ molecule
examined in the present study

cis-7HQ···H2O cis-7HQ···NH3

cis-7HQ···(H2O)2 cis-7HQ···CH3OH

cis-7HQ···HCOOH cis-7HQ···(NH3-H2O-H2O)

cis-7HQ···(NH3-H2O-NH3) cis-7HQ···(NH3-NH3-H2O)

wavefunction calculations discussed in this paper, the core molecular orbitals (MOs)
correlating with the 1s shells of the C, N, and O atoms were frozen in these
optimizations.

Once the nuclear geometries of the cis-7HQ and cis-7HQ · · ·B systems were ob-
tained, we performed the desired FDET and supermolecular TDDFT and EOMCC
calculations of the vertical excitation energies Δωπ→π∗ and the complexation-
induced shifts Δωπ→π∗ . First, in order to establish the reference EOMCC values
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of the environment-induced shifts Δωπ→π∗ , we carried out a series of EOMCCSD
calculations for the cis-7HQ, 7HQ · · ·H2O, and 7HQ · · ·NH3 systems using five
different basis sets, including 6-31+G(d) [119–121], 6-311+G(d) [121, 122], aug-
cc-pVDZ [116, 117], and the [5s3p2d/3s2p] basis of Sadlej [123], designated
as POL, followed by the complete set of EOMCCSD and δ -CR-EOMCC(2,3)
computations using the largest basis sets we could afford for all eight cis-7HQ · · ·B
complexes investigated in this work, which were 6-311+G(d) in the EOMCCSD
case and 6-31+G(d) in the case of the δ -CR-EOMCC(2,3) approach. The main
objective of these initial calculations was to determine the stability of the final
EOMCC values of the Δωπ→π∗ shifts recommended for the use in benchmarking
the FDET and supermolecular TDDFT data with respect to the basis set choice
and the role of the higher-order correlation effects neglected in EOMCCSD,
but included in δ -CR-EOMCC(2,3). All of the EOMCC calculations reported
in this work were carried out with the programs developed at Michigan State
University described, for example, in Refs. [26, 31, 81, 82], that form part of the
GAMESS package [124, 125]. In order to obtain the final δ -CR-EOMCC(2,3)
results, as defined by Eqs. 13.28 and 13.29, we modified the previously developed
[26, 31] CR-CC(2,3)/CR-EOMCC(2,3) GAMESS routines in a suitable manner.
The corresponding ground-state CCSD calculations, which precede the determi-
nation of the left CCSD and right and left EOMCCSD eigenstates that enter the
formulas for the triples corrections of δ -CR-EOMCC(2,3) and the steps needed
to compute the triples corrections of the ground-state CR-CC(2,3) and excited-
state CR-EOMCC(2,3) and δ -CR-EOMCC(2,3) approaches, were performed with
the routines described in Ref. [126], which form part of GAMESS as well. The
RHF orbitals were employed throughout and, as pointed out above, the core MOs
that correlate with the 1s shells of the nonhydrogen atoms were frozen in the
CCSD, EOMCCSD, and δ -CR-EOMCC(2,3) calculations. The CCSD/EOMCCSD
energies were converged to 10−7 Hartree. Further details of the EOMCC computer
codes and algorithms exploited in this work can be found in Refs. [26, 31, 81, 82].

Once the reference EOMCC data were established, we moved to the FDET
and supermolecular TDDFT calculations, which were performed using the linear-
response TDDFT routines available in the ADF2009.01 code [127]. The FDET
calculations followed the protocol described in Ref. [56], in which the occupied
and unoccupied orbitals of the embedded chromophore that are obtained by solving
the Kohn-Sham-like system defined by Eq. 13.13 are subsequently used within the
linear-response TDDFT framework [44] to obtain excitation energies. All of the
FDET and supermolecular TDDFT calculations were performed using the STO
ATZ2P basis set [127], which is a STO-type triple-zeta basis with two sets of polar-
ization functions, augmented with one set of diffuse s-STO and p-STO functions. As
shown in a separate study [60], the results of the FDET and supermolecular TDDFT
calculations using the STO ATZ2P basis set can be viewed as converged with
respect to the basis set choice. Because of the small energy differences that define
the spectral shifts examined in this work, we used tight convergence criteria when
solving the Kohn-Sham and linear-response TDDFT equations (10−10 Hartree).
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The environment density ρB used in the FDET calculations reported in this work
was nonrelaxed, i.e., we used the ground-state electronic density of the environment
obtained by solving the conventional Kohn-Sham equations for the environment
molecules in the absence of the chromophore. Moreover, we exploited the so-called
monomer-expansion FDET technique, in which the orbitals of the chromophore
A embedded in B and the corresponding density ρA are represented using the
atomic centers of A, whereas the environment density ρB and the corresponding
orbitals of B are represented using the atomic centers of B (see Refs. [58, 128] for
further information). The monomer-expansion FDET technique using nonrelaxed
ρB, which is the recommended variant of FDET for the type of applications reported
in this work, relies on the approximation, referred to as the Neglect of Dynamic
Response of the Environment (NDRE), in which we assume that the dynamic
response of the whole system AB to the process of electronic excitation is limited
to chromophore A and that the coupling between the excitations in the embedded
system and in its environment can be neglected. The NDRE approximation and the
monomer-expansion-based FDET approach that results from it are very effective in
eliminating spurious electronic excitations involving the environment [50]. The ef-
fect of the relaxation of the electronic density of the environment ρB in the presence
of the chromophore A and the usefulness of the monomer vs supermolecular basis
expansions in the FDET calculations will be discussed in a separate study [60].

In both the FDET and supermolecular TDDFT calculations, we used the
SAOP scheme [129] to approximate the relevant exchange-correlation potential
contributions. To examine the possible dependence of the complexation-induced
shifts in the excitation energy of the cis-7HQ chromophore on the approximations
exploited for one of the nonelectrostatic components of the embedding potential
veff

emb[ρA,ρB;r], Eq. 13.10, used in the FDET calculations, resulting from the nonad-
ditivity of density functionals for the kinetic energy, the nonadditive kinetic energy
potential vnad

t [ρA,ρB](r), Eq. 13.12, that forms part of veff
emb[ρA,ρB;r] was determined

using two different approximations, namely, GGA97 [58] and NDSD [59]. Let
us recall that the latter approximant incorporates the exact conditions that are
relevant for the proper behavior of vnad

t [ρA,ρB](r) in the vicinity of nuclei. The
nonadditive exchange-correlation component of veff

emb[ρA,ρB;r], represented by the
vnad

xc [ρA,ρB](r) potential, Eq. 13.11, was approximated using the Perdew-Wang
(PW91) functional [130]. Other treatments of the exchange-correlation contribu-
tions in FDET and supermolecular TDDFT calculations for the cis-7HQ system
and its hydrogen-bonded complexes will be examined elsewhere [60], where we
will show that the spectral shifts obtained with the nonrelaxed FDET approach are
almost insensitive to the choice of functionals used in the calculations.

13.3 Results and Discussion

The results of our FDET, supermolecular TDDFT, and EOMCC calculations for
the shifts in the vertical excitation energy ωπ→π∗ corresponding to the lowest
π → π∗ transition in the cis-7HQ chromophore induced by the formation of the
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eight complexes shown in Fig. 13.1 are summarized in Tables 13.1 and 13.2,
and Fig. 13.2. We begin our discussion with the analysis of the EOMCCSD and
δ -CR-EOMCC(2,3) calculations aimed at establishing the reference EOMCC
values.

13.3.1 Reference EOMCC Results

In order to determine the level of EOMCC theory that would be suitable for serving
as a reference for the FDET and supermolecular TDDFT calculations, we first
examine the dependence of the environment-induced shifts Δωπ→π∗ resulting from
the EOMCCSD calculations on the basis set. We first compare the EOMCCSD
results for the two smallest complexes, 7HQ · · ·H2O and 7HQ · · ·NH3, for which
we could afford the largest number of computations, including the 6-31+G(d),
6-311+G(d), aug-cc-pVDZ, and POL basis sets. The results in Table 13.1 indicate
that although the vertical excitation energies ωπ→π∗ in the bare cis-7HQ system and
its complexes with the water and ammonia molecules vary with the basis set (for
the four basis sets tested here by as much as about 600 cm−1), the environment-
induced shifts Δωπ→π∗ are almost insensitive to the basis set choice. Although we
could not perform a similarly thorough analysis for the remaining six complexes
due to prohibitive computer costs of the EOMCCSD calculations with the aug-
cc-pVDZ and POL basis sets, we were able to obtain the EOMCCSD ωπ→π∗
and Δωπ→π∗ values for all eight complexes examined in this study using the 6-
31+G(d) and 6-311+G(d) bases. As shown in Table 13.1, the differences between the
EOMCCSD/6-31+G(d) and EOMCCSD/6-311+G(d) values of the Δωπ→π∗ shifts
remain small for all complexes of interest, ranging from 8 cm−1 in the 7HQ · · ·NH3

case to 43 cm−1 in the case of 7HQ · · ·(H2O)2, or 1–3%. We conclude that the
choice of the basis set, although important for obtaining the converged ωπ→π∗
values, is of almost no importance when the environment-induced shifts Δωπ→π∗
are considered.

Although the EOMCCSD approach is known to provide an accurate description
of excited states dominated by one-electron transitions, such as the π → π∗
transition in cis-7HQ and its complexes, there have been cases of similar states
reported in the literature, where the EOMCCSD level has not been sufficient to
obtain high-quality results [84,85]. Moreover, the small energy differences defining
the environment-induced shifts Δωπ→π∗ may be sensitive to the higher-order
correlation effects neglected in the EOMCCSD calculations. For these reasons, we
also examined the effect of triple excitations on the ωπ→π∗ and Δωπ→π∗ values
by performing the δ -CR-EOMCC(2,3) calculations with the 6-31+G(d) basis set.
As shown in Table 13.1, triple excitations have a significant effect on the vertical
excitation energies ωπ→π∗ , reducing the 4,000–5,000cm−1 differences between the
EOMCCSD and experimental data to no more than about 800 cm−1, when the
δ -CR-EOMCC(2,3),A/6-31+G(d) calculations are performed, and no more than
about 500 cm−1 when the δ -CR-EOMCC(2,3),D/6-31+G(d) approach is employed,
while bringing the Δωπ→π∗ values closer to the experimentally observed shifts
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Table 13.2 A comparison of the environment-induced shifts Δωπ→π∗ (in cm−1) of the vertical
excitation energy corresponding to the lowest π → π∗ transition in the cis-7HQ chromophore
that result from the monomer-expansion-based FDET calculations employing the nonrelaxed
environment densities ρB, the PW91 approximant for the nonadditive exchange-correlation
contribution vnad

xc [ρA,ρB](r) to the embedding potential veff
emb[ρA,ρB;r], and the GGA97 and NDSD

approximants for the nonadditive kinetic energy contribution vnad
t [ρA,ρB](r) to veff

emb[ρA,ρB;r], with
the results of the supermolecular TDDFT calculations (all using the SAOP approximant for the
exchange-correlation potential and the STO ATZ2P basis set) and the reference EOMCC,A data

Supermolecular FDET

Environment EOMCC,A TDDFT GGA97 NDSD

H2O −562 −944 −645 −669
NH3 −820 −1222 −816 −849
2H2O −1446 −2280 −1624 −1648
CH3OH −396 −805 −454 −439
HCOOH −743 −1569 −972 −952
NH3–H2O–H2O −1969 −2838 −1863 −1876
NH3–H2O–NH3 −1780 −2594 −1791 −1811
NH3–NH3–H2O −2055 −2899 −1890 −1931
Aver. dev. from EOMCC,A 0 −673 −36 −51
Aver. abs. dev. from EOMCC,A 0 673 104 105

when compared with the EOMCCSD data. Although the differences between the
δ -CR-EOMCC(2,3) and EOMCCSD values of the environment-induced shifts
Δωπ→π∗ resulting from the calculations with the 6-31+G(d) basis set do not exceed
15–16% of the EOMCCSD values, triples corrections improve the EOMCCSD
results and, as such, are useful for generating the reference EOMCC data.

It would be great if we could perform the δ -CR-EOMCC(2,3) calculations using
basis sets larger than 6-31+G(d), such as 6-311+G(d), but the hydrogen-bonded
complexes of cis-7HQ examined in this study are too large for performing such
calculations on our computers. In the absence of the δ -CR-EOMCC(2,3) larger
basis set data and considering the fact that the triples corrections to the Δωπ→π∗
shifts are relatively small when compared to their EOMCCSD values, we have
decided to combine the EOMCCSD/6-311+G(d) results with the triples corrections
to the EOMCCSD energies extracted from the δ -CR-EOMCC(2,3),X /6-31+G(d)
(X = A, D) calculations, using the formula

ωπ→π∗(EOMCC,X) = ωπ→π∗(EOMCCSD/6-311+G(d))

+[ωπ→π∗(δ -CR-EOMCC(2,3),X /6-31+G(d))

− ωπ→π∗(EOMCCSD/6-31+G(d))] , (13.30)

where X = A or D. As shown in Table 13.1, the resulting composite EOMCC,A and
EOMCC,D approaches provide vertical excitation energies ωπ→π∗ that are in ex-
cellent agreement with the experimental excitation energies, while offering further
improvements in the environment-induced shifts Δωπ→π∗ when compared with the
EOMCCSD/6-311+G(d) and δ -CR-EOMCC(2,3)/6-31+G(d) calculations. Indeed,
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Fig. 13.2 A comparison of the environment-induced shifts Δωπ→π∗ of the vertical excitation en-
ergy corresponding to the lowest π→ π∗ transition in the cis-7HQ chromophore and resulting from
the monomer-expansion-based FDET/GGA97 and FDET/NDSD calculations with nonrelaxed-
ρB, and the supermolecular TDDFT calculations (all using the STO ATZ2P basis set), with the
reference supermolecular EOMCC,A data and the experimental shifts in the origin of the S0→ S1
absorption band induced by complex formation [5]

the EOMCC,A approach, which adds the triples correction extracted from the
δ -CR-EOMCC(2,3),A/6-31+G(d) calculation to the EOMCCSD/6-311+G(d) en-
ergy, gives errors in the calculated excitation energies ωπ→π∗ relative to experiment
that range between 147 cm−1 in the case of the bare cis-7HQ system and 668 cm−1

in the case of the 7HQ · · · (NH3-H2O-H2O) complex, never exceeding 2% of the
experimental excitation energies. The EOMCC,D approach, which adds the triples
correction obtained in the δ -CR-EOMCC(2,3),D/6-31+G(d) calculation to the
EOMCCSD/6-311+G(d) energy, gives errors in the calculated ωπ→π∗ values relative
to experiment that range between 17 cm−1 in the case of the 7HQ · · ·(H2O)2 com-
plex and 361 cm−1 for 7HQ · · · (NH3-H2O-H2O), or no more than 1% of the experi-
mental values. These results should be compared to the much larger differences be-
tween the EOMCCSD/6-311+G(d) and experimental excitation energies that range
between 14 and 17%. The complexation-induced spectral shifts Δωπ→π∗ resulting
from the EOMCC,A and EOMCC,D calculations agree with their experimental
counterparts to within 5–27% or 15% on average in the case of EOMCC,A and
10–37% or 22% on average in the EOMCC,D case. In other words, the EOMCC,D
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approach, while bringing the excitation energies ωπ→π∗ to a much closer agreement
with experiment than the EOMCCSD/6-311+G(d) calculations, does not offer im-
provements in the calculated Δωπ→π∗ values. The composite EOMCC,A approach
provides additional small improvements in the calculated Δωπ→π∗ shifts, reducing
the 7–33% errors relative to experiment resulting from the EOMCCSD/6-311+G(d)
calculations to 5–27%. Based on these observations, we consider the EOMCC,A
values of the spectral shifts Δωπ→π∗ as the theoretical reference values for assessing
the quality of the FDET and supermolecular TDDFT calculations, although the use
of EOMCC,D would not change any of our main conclusions. Clearly, a comparison
of the purely electronic EOMCC and experimental data discussed above has
limitations, since we would have to investigate the effect of nuclear motion on the
EOMCCSD and δ -CR-EOMCC(2,3) excitation energies and use basis sets larger
than 6-31+G(d) in the δ -CR-EOMCC(2,3) calculations to make more definitive
statements. We believe, however, that the EOMCC,A results obtained by com-
bining the EOMCCSD/6-311+G(d) excitation energies with the triples corrections
extracted from the δ -CR-EOMCC(2,3),A/6-31+G(d) calculations, as in Eq. 13.30,
are of sufficiently high quality to allow us to assess the quality of the FDET and
supermolecular TDDFT results in applications involving the environment-induced
spectral shifts in complexes of cis-7HQ, which are discussed next.

13.3.2 A Comparison of the Excitation Energy Shifts
From the FDET and Supermolecular TDDFT
Calculations with the Reference EOMCC Data

In agreement with the experimental data reported in Ref. [5], the excitation
energy shifts Δωπ→π∗ for the hydrogen-bonded 7HQ · · ·B complexes investigated
in this work resulting from the EOMCC calculations are always negative and
the magnitude of Δωπ→π∗ correlates, to a large extent, with the size of the
hydrogen-bonded environment B in the cis-7HQ · · ·B complex (see Table 13.1).
In particular, according to the reference EOMCC,A calculations, the shifts in the
vertical excitation energy ωπ→π∗ corresponding to the lowest π → π∗ transition
in the cis-7HQ chromophore vary from (−396)–(−820)cm−1 in the case of the
smaller 7HQ · · ·B complexes involving the CH3OH, H2O, HCOOH, and NH3

monomers, through −1,446 cm−1 in the case of the 7HQ · · · (H2O)2 complex, to
(−1,780)–(−2,055)cm−1 in the case of the largest 7HQ · · ·B systems involving the
(NH3−H2O−NH3), (NH3−H2O−H2O), and (NH3−NH3−H2O) trimers. It is
interesting to examine how well the FDET and supermolecular TDDFT calculations
reproduce these data.

As shown in Table 13.2 and Fig. 13.2, the overall agreement of the monomer-
expansion-based FDET/ATZ2P data employing the nonrelaxed environment den-
sities ρB with the reference EOMCC,A results is excellent, independent of the ap-
proximant used to determine the nonadditive kinetic energy potential vnad

t [ρA,ρB](r)
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that forms part of the embedding potential veff
emb[ρA,ρB;r]. The absolute values

of the deviations between the Δωπ→π∗ values resulting from the FDET calcu-
lations employing the GGA97 approximant to represent vnad

t [ρA,ρB](r) and the
corresponding supermolecular EOMCC,A calculations range from 4 cm−1 in the
case of the 7HQ · · ·NH3 complex, where the EOMCC,A shift is −820 cm−1, to
229 cm−1 in the case of the 7HQ · · ·HCOOH system, where the EOMCC,A result
for Δωπ→π∗ is −743 cm−1. The mean signed and unsigned errors in the FDET
results for the environment-induced shifts Δωπ→π∗ obtained with the vnad

t [ρA,ρB](r)
potential approximated with GGA97 relative to the EOMCC,A reference data are
−36 and 104 cm−1, respectively, or 11%, if we average the individual relative
errors. The use of the NDSD approximant to represent vnad

t [ρA,ρB](r) has virtually
no effect on the FDET Δωπ→π∗ values, producing errors relative to EOMCC,A
that range, in absolute value, between 29 cm−1 for the 7HQ · · ·NH3 complex and
209 cm−1 for the 7HQ · · ·HCOOH system, or the mean signed and unsigned errors
of −51 and 105 cm−1, respectively (again, 11%, if we average the individual
relative errors). Based on the analysis of the EOMCCSD and δ -CR-EOMCC(2,3)
calculations presented in Sect. 13.3.1, the deviations between the nonrelaxed,
monomer-expansion-based FDET/ATZ2P and reference EOMCC,A data shown in
Table 13.2 and Fig. 13.2 are well within the accuracy of the EOMCC calculations,
independent of the approximant used to represent the nonadditive kinetic energy
potential vnad

t [ρA,ρB](r).
The performance of the FDET method has to be contrasted with the super-

molecular TDDFT calculations, which are a lot less accurate than their FDET
counterparts, when both types of calculations are compared with the reference
EOMCC,A Δωπ→π∗ values. Indeed, as shown in Table 13.2 (see, also, Fig. 13.2),
the differences between the Δωπ→π∗ shift values obtained in the supermolecular
TDDFT calculations using the STO ATZ2P basis set and their reference EOMCC,A
counterparts range, in absolute value, from 382 cm−1 in the case of the 7HQ · · ·H2O
complex, where the EOMCC,A shift is −562 cm−1, to 869 cm−1 in the case
of the 7HQ · · · (NH3-H2O-H2O) system, where the EOMCC,A Δωπ→π∗ value is
−1,969 cm−1. The mean unsigned error in the supermolecular TDDFT/ATZ2P
values of the Δωπ→π∗ shifts relative to EOMCC,A is 673 cm−1 or, if we average the
individual relative errors, 65%. Obviously, these are much larger differences when
compared with the corresponding nonrelaxed, monomer-expansion-based FDET
calculations that give the 4–229 cm−1 deviations from the EOMCC,A data when the
GGA97 approximant is used to represent the nonadditive kinetic energy potential
vnad

t [ρA,ρB](r) and the 29–209 cm−1 deviations from the EOMCC,A Δωπ→π∗
values when the NDSD approximant is employed to construct vnad

t [ρA,ρB](r).
The 65% average relative error characterizing the Δωπ→π∗ shift values resulting
from the supermolecular TDDFT/ATZ2P calculations is six times larger than the
analogous error characterizing the FDET calculations. Based on the analysis of
the EOMCC calculations presented in Sect. 13.3.1, the differences between the
supermolecular TDDFT and reference EOMCC,A data are well outside the accuracy
of the EOMCC calculations for the Δωπ→π∗ shifts, indicating the poor performance
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of the supermolecular TDDFT approach. Unlike in the FDET case, the differences
between the supermolecular TDDFT and EOMCC,A Δωπ→π∗ values increase with
the size of the environment bound to the cis-7HQ chromophore. This indicates the
difficulties with obtaining the balanced description of excitation energies in systems
that have different sizes in the supermolecular TDDFT calculations, which are not
present in the FDET and EOMCC calculations. Based on our numerical results, it is
not entirely unlikely that the supermolecular TDDFT approach is not size intensive.
All of the EOMCC approximations employed in this work, including the composite
EOMCC,A approach, are rigorously size intensive. The FDET methodology offers
a size intensive description of the complexation-induced spectral shifts by design.

13.3.3 A Comparison of the FDET and Supermolecular TDDFT
Excitation Energy Shifts with the Experimental Data

Finally, it is instructive to comment on the quality of the shifts resulting from
the FDET and supermolecular TDDFT calculations in the context of the available
experimental information [5]. In analogy to the EOMCC,A results discussed in
Sect. 13.3.1, a comparison of the purely electronic FDET or supermolecular TDDFT
and experimental data has limitations, since one cannot measure vertical excitation
energies obtained in the FDET and supermolecular TDDFT calculations in a
direct manner. The experimental shifts reported in Ref. [5] correspond to the
complexation-induced shifts in the position of the 00

0 π → π∗ absorption band
in the cis-7HQ chromophore. Thus, although the experimental shifts obtained in
Ref. [5] are closely related to the theoretical shifts obtained in this study, the
two types of quantities differ because of the following factors: (1) the geometry
relaxation in the excited states of the cis-7HQ and cis-7HQ · · ·B systems when
compared to the corresponding ground electronic states, and (2) the MP2/aug-cc-
pVTZ geometries of cis-7HQ and its complexes employed in this work, although
probably reasonable, are not the experimental geometries. All of these factors
certainly contribute to the deviations between the theoretical shifts calculated in
this study and their experimental counterparts reported in Ref. [5]. On the other
hand, the careful EOMCC calculations reported in this work which, as pointed out
in Sect. 13.3.1, closely follow the experimental excitation energies corresponding to
the lowest π→ π∗ transition in the cis-7HQ and cis-7HQ · · ·B systems, particularly
when the EOMCC,A and EOMCC,D approaches corrected for triple excitations
are employed, indicate that the above factors, although important, lead to a
relatively small overall effect. It is, therefore, interesting to compare our FDET and
supermolecular TDDFT results for the excitation energy shifts Δωπ→π∗ , given in
Table 13.2, with the experimentally derived shifts reported in Ref. [5] and listed in
Table 13.1.

This comparison is shown in Fig. 13.2. As one can see by inspecting Tables
13.1 and 13.2, and Fig. 13.2, the Δωπ→π∗ values obtained in the nonrelaxed,
monomer-expansion-based FDET/ATZ2P calculations are in good agreement with
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the shifts in the experimental UV absorption spectra. The mean unsigned error in
the Δωπ→π∗ values resulting from the FDET calculations employing the GGA97
approximant to represent the nonadditive kinetic energy potential vnad

t [ρA,ρB](r),
relative to the spectral shifts observed in experiment, is 222 cm−1, in excellent
agreement with the EOMCC,A approach which gives 244 cm−1. The analogous
mean unsigned error resulting from the FDET calculations employing the NDSD ap-
proximant to represent vnad

t [ρA,ρB](r) is very similar (216 cm−1). For comparison,
the mean unsigned error in the Δωπ→π∗ values resulting from the supermolecular
TDDFT/ATZ2P calculations, relative to the experimental spectral shifts, is twice as
large (429 cm−1), demonstrating once again the advantages of the embedding vs
supermolecular strategy within the TDDFT framework. It is very encouraging to
observe that the FDET approach, which can be applied to large molecular systems,
is capable of providing shifts in the excitation energy corresponding to the lowest
π → π∗ transition in the cis-7HQ system due to formation of hydrogen-bonded
complexes that can compete with the results of the considerably more expensive
EOMCC calculations and that are a lot better than the supermolecular TDDFT
results.

13.4 Summary and Concluding Remarks

We used the embedding FDET approach to determine the shifts in the excitation
energy corresponding to the lowest π → π∗ transition in cis-7-hydroxyquinoline
(cis-7HQ), induced by the formation of hydrogen-bonded complexes of cis-7HQ
with a number of small molecules, and compared the resulting shift values with
the reference EOMCC data and the analogous shifts obtained in the conventional
supermolecular TDDFT calculations. The main difference between the embedding
strategy exploited in the FDET formalism and the conventional supermolecular ap-
proach is in the fact that in the former case one evaluates the excitation energy shifts
induced by the interactions of the chromophore with its molecular environment
as the differences of the excitation energies of the same many-electron system,
representing the chromophore fragment with two different effective potentials,
whereas in the latter case one has to perform calculations for two systems that
differ in the number of electrons, the complex formed by the chromophore and its
molecular environment and the isolated chromophore.

By considering eight complexes of cis-7HQ with up to three small hydrogen-
bonded molecules, we demonstrated that the spectral shifts resulting from the
FDET calculations with the nonrelaxed environment densities are in excellent
agreement with the reference EOMCC data obtained in the size-intensive EOMCC
calculations with singles, doubles, and noniterative triples, whereas the analogous
shifts obtained with the supermolecular TDDFT approach are far from those
obtained with EOMCC. The nonrelaxed FDET calculations provide shifts that agree
with their EOMCC analogs to within about 100 cm−1 or 10% on average, where
the absolute values of the excitation energy shifts in the complexes of cis-7HQ
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examined in this study resulting from the EOMCC calculations range between about
500 and 2,000 cm−1. As shown in the present study, the accuracy of the FDET
shift calculations employing nonrelaxed environment densities is on the order of the
accuracy of the high-level EOMCC calculations. This should be contrasted with the
excitation energy shifts obtained with the supermolecular TDDFT approach, which
differ from the reference EOMCC values by about 700 cm−1 or 65% on average and
which are well outside the accuracy of the EOMCC calculations. We demonstrated
that none of the above findings are affected by the type of approximant used to
represent the non-additive kinetic energy potential vnad

t [ρA,ρB](r) that forms part of
the local, orbital-free, embedding potential veff

emb[ρA,ρB;r] employed in the FDET
calculations. Two such approximants, GGA97 and NDSD, were examined, giving
the virtually identical FDET spectral shift values.

Although the main focus of the present study was the comparison of the FDET
and supermolecular TDDFT results for the complexation-induced shifts in the
excitation energy corresponding to the lowest π→ π∗ transition in cis-7HQ with the
EOMCC data, we also compared the FDET, supermolecular TDDFT, and reference
EOMCC shift values with the experimental shifts reported in Ref. [5]. Although
such a comparison has limitations due to the neglect of the effect of nuclear
motion on photoabsorption spectra in purely electronic calculations performed in
this work, the spectral shifts obtained with the FDET approach using nonrelaxed
environment densities and those obtained with the EOMCC methodology agree with
the experimental shifts quite well, whereas the supermolecular TDDFT calculations
produce very large errors. This reinforces the superiority of the FDET strategy when
compared with the conventional supermolecular TDDFT approach in applications
involving complexation-induced spectral shifts.
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Chapter 14
Multiparticle Distribution of Fermi Gas System
in Any Dimension

Shigenori Tanaka

Abstract The multiparticle distribution functions and density matrices for ideal
Fermi gas system in the ground state are calculated for any spatial dimension.
The results are expressed as determinant forms, in which a correlation kernel
plays a vital role. The expression obtained for the one-dimensional Fermi gas is
essentially equivalent to that observed for the eigenvalue distribution of random
unitary matrices, and thus to that conjectured for the distribution of the non-trivial
zeros of the Riemann zeta function. Their implications are discussed briefly.

14.1 Introduction

The distribution and correlation functions of fermion systems have long been
studied theoretically since the birth of quantum mechanics. In 1933, Wigner and
Seitz [1] derived an expression for the pair distribution function in the three-
dimensional free fermion system, which provided a deep insight into the structure of
interparticle correlations in Fermi systems. Most of theoreticians and experimenters,
however, are usually interested only in the pair correlations, probably because
detailed investigations concerning the higher-order, many-body correlations are
formidable tasks in experiments, theories and simulations. As seen below in this
article, we nevertheless find that systematic studies on many-body distribution
functions sometimes yield useful and interesting information about the equivalence
of underlying mathematical structures between the Fermi and other seemingly
different systems.

We hereafter consider the noninteracting, ideal Fermi gas system in any dimen-
sion d with the particle number N and the volume V (taken to be unity for notational
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simplicity) in the ground state (at zero temperature). We investigate the n-particle
distribution function defined by

g(n) (R1,R2, · · · ,Rn) =

〈
1

Nn

N

∑
i1,i2,··· ,in=1

δ (R1− ri1)δ (R2− ri2) · · ·× δ (Rn− rin)

〉

(14.1)

in the limit of N → ∞. Here ri refers to the spatial coordinate of the i-th Fermi
particle and δ (r) represents the Dirac delta function; 〈 〉means the statistical average
over the ground-state ensemble. In the following we consider the case that all the
coordinates R j (1≤ j ≤ n ≤ N) in the distribution function are different from each
other. Further, for simplicity, we confine ourselves to the case of the spin-polarized
(ferromagnetic) system, while the extension to the spin-unpolarized (paramagnetic)
system is straightforward.

The expression for the pair (n = 2) distribution function in three (d = 3)
dimension is well known [1, 2]. However, the general one for any n and d is
much less known. Interestingly, the distribution of Fermi particles in one (d = 1)
dimension has a mathematical structure similar to those found for the eigenvalues
of the random matrices [3–5] and for the zeros of the Riemann zeta function [6,7], as
shown below. In the following Sects. 14.2 and 14.3, explicit expressions for the pair
and ternary distribution functions of the ideal Fermi gas system in any dimension
are derived. We then find an expression for the n-particle distribution function
as a determinant form in Sect. 14.4. Another representation for the multiparticle
distribution for finite N is given in terms of density matrix in Sect. 14.5. The explicit
formula for correlation kernel which plays an essential role for the description
of the multiparticle correlations in the Fermi system is derived in Sect. 14.6. The
relationship with the theories for the random matrices and the Riemann zeta function
is addressed in Sect. 14.7.

14.2 Pair Distribution Function

First, we calculate the pair distribution function,

g(2) (R1,R2) =

〈
1

N2

N

∑
i, j=1

δ (R1− ri)δ (R2− r j)

〉
, (14.2)

for the ideal Fermi gas. Here, introducing rA =R1−R2 and rB = R2−R1, we make
a symmetrization as

δ (R1− ri)δ (R2− r j)−→ δ (rA + r j− ri)δ (rB + ri− r j) . (14.3)
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A symmetrized distribution function is then written as

f (2) (rA,rB) =

〈
1

N2

N

∑
i, j=1

δ (rA + r j− ri)δ (rB + ri− r j)

〉
. (14.4)

Fourier transformation from the variables rA and rB to k1 and k2 gives a two-
body structure factor as

S(2) (k1,k2) =

∫
drA

∫
drB exp(−ik1 · rA− ik2 · rB) f (2) (rA,rB)

=
1

N2

〈
N

∑
i, j=1

exp [−ik1 · (ri− r j)− ik2 · (r j− ri)]

〉

=
1

N2

〈
N

∑
i=1

exp [−i(k1−k2) · ri]
N

∑
j=1

exp [−i(k2−k1) · r j]

〉
. (14.5)

In order to calculate the structure factor in the wavenumber space, we consider a
density fluctuation operator [2],

ρ (r) =
N

∑
i=1

δ (r− ri) , (14.6)

and its Fourier transform,

ρk =
∫

drexp(−ik · r)ρ (r) =
N

∑
i=1

exp(−ik · ri) , (14.7)

with a relation,

ρ (r) = ∑
k

ρk exp(ik · r) . (14.8)

Here, for the dimension d, the summation over k is represented by

∑
k
=

1
(2π)d

∫
dk, (14.9)

and the volume V is taken to be unity in this article. The two-body structure factor
is thus given by

S(2) (k1,k2) =
1

N2 〈ρk1−k2ρk2−k1〉 . (14.10)
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To proceed further, we consider the representation of second quantization [2].
The density fluctuation operator is expressed in terms of the creation operator c†

k
and the annihilation operator ck as

ρk = ∑
p

c†
p−kcp, (14.11)

where these operators satisfy the following anticommutation relations:

{
ck,c

†
p
}
= ckc†

p + c†
pck = δk,p, (14.12)

{ck,cp}= 0, (14.13){
c†

k,c
†
p

}
= 0, (14.14)

with the spin variables being omitted. The product of the density fluctuation
operators in Eq. 14.10 is then given by

ρk1−k2 ρk2−k1 = ∑
p

c†
p−k1+k2

cp ∑
q

c†
q+k1−k2

cq

= −∑
p,q

c†
p−k1+k2

c†
q+k1−k2

cpcq +∑
q

c†
qcq. (14.15)

Accounting for the ground state of the noninteracting fermion system, the
occupation number density in the wavenumber space,

nk =
〈

c†
kck

〉
, (14.16)

is expressed as

nk = θ (kF−|k|) , (14.17)

using the step function, θ (x), where kF refers to the Fermi wavenumber. This
occupation number density satisfies the normalization condition,

∑
k

nk = 〈ρ0〉= N. (14.18)

We thus have the two-body structure factor as

S(2) (k1,k2) =− 1
N2

〈
∑
p,q

c†
p−k1+k2

c†
q+k1−k2

cpcq

〉
+

1
N
. (14.19)
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We first consider the case of k1 = k2. The first term on the right-hand side in
Eq. 14.19 survives when p = q+k1−k2, and we thus find

S(2) (k1,k2) =− 1
N2 ∑

p
np+k1np+k2 +

1
N
. (14.20)

On the other hand, when k1 = k2, S(2) (k1,k2) = 1. Hence, the structure factor is
expressed by

S(2) (k1,k2) =
1
N

(
1− 1

N ∑
p

np+k1 np+k2

)
(1− δk1,k2)+ δk1,k2 . (14.21)

To make the inverse Fourier transformation of Eq. 14.21, we note a convolution
formula for the following Fourier-transform pair functions,

Fi (k) =
∫

drexp(−ik · r) fi (r) (14.22)

and
fi (r) = ∑

k
exp(ik · r)Fi (k) . (14.23)

A formula,

∑
k1,k2,··· ,kn

exp(ik1 · r1 + ik2 · r2 + · · ·+ ikn · rn)

×∑
k0

F1 (k0 +k1)F2 (k0 +k2) · · ·×Fn (k0 +kn)

= δ (r1 + r2 + · · ·+ rn) f1 (r1) f2 (r2) · · ·× fn (rn) , (14.24)

can be proved easily. We then obtain an explicit form for the symmetrized
distribution function as

f (2) (rA,rB) = ∑
k1

∑
k2

exp(ik1 · rA + ik2 · rB)S(2) (k1,k2)

=

[
1− 1

N2 ñ(rA) ñ(rB)

]
δ (rA + rB)+

1
N

δ (rA)δ (rB) , (14.25)

where ñ(r) is given by

ñ(r) = ∑
k

nk exp(ik · r) . (14.26)
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Here, in passing, we calculate an explicit form of ñ(r) for the three dimensional
case (d = 3). The Fermi wavenumber and ñ(r) are then given by

kF = (6π2N)1/3 (14.27)

and

ñ(r) =
1

(2π)3

∫
dkexp(ik · r)nk

=
3N

(kFr)3 (sinkFr− kFr coskFr) . (14.28)

By defining the correlation kernel as

K (r) =
1
N

ñ(r) =
1
N ∑

k
exp(ik · r)nk, (14.29)

we find

K (r) =
3

(kFr)3 (sinkFr− kFr coskFr) =
3

kFr
j1(kFr), (14.30)

where j1(z) is the spherical Bessel function of order one.
Thus, we obtain the expression for the symmetrized distribution function as

f (2) (rA,rB) = [1−K (rA)K (rB)]δ (rA + rB)+
1
N

δ (rA)δ (rB) . (14.31)

The second term on the right-hand side in this expression refers to a singular
part which represents the correlation of a particle with itself; it should therefore
be neglected when R1 = R2 and N → ∞. Further, eliminating the δ (rA + rB)
factor which comes from the symmetrization (Eq. 14.3) for rA = R1 − R2 and
rB = R2−R1, we finally find an expression for the pair distribution function as

g(2) (R1,R2) = 1−K (R1−R2)K (R2−R1) . (14.32)

The result for d = 3 with Eq. 14.30 is well known [1, 2, 8].

14.3 Ternary Distribution Function

Next, we calculate the ternary distribution function,

g(3) (R1,R2,R3) =

〈
1

N3

N

∑
i, j,k=1

δ (R1− ri)δ (R2− r j)δ (Rn− rk)

〉
. (14.33)
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Again, after introducing rA =R1−R2, rB =R2−R3 and rC =R3−R1, and making
a symmetrization,

δ (R1−ri)δ (R2−r j)δ (R3−rk)−→ δ (rA+r j−ri)δ (rB + rk− r j)δ (rC+ri−rk) ,
(14.34)

we start with an expression for three-body distribution function as

f (3) (rA,rB,rC) =

〈
1

N3

N

∑
i, j,k=1

δ (rA + r j− ri)δ (rB + rk− r j)δ (rC + ri− rk)

〉
.

(14.35)

Carrying out the Fourier transformation from the variables rA, rB and rC to k1,
k2 and k3, the three-body structure factor is expressed by the density fluctuation
operators as

S(3) (k1,k2,k3)

=

∫
drA

∫
drB

∫
drC exp(−ik1 · rA− ik2 · rB− ik3 · rC) f (3) (rA,rB,rC)

=
1

N3

〈
N

∑
i=1

exp [−i(k1−k3) · ri]
N

∑
j=1

exp [−i(k2−k1) · r j]
N

∑
k=1

exp [−i(k3−k2) · rk]

〉

=
1

N3

〈
ρk1−k3 ρk2−k1 ρk3−k2

〉
. (14.36)

The product of the density fluctuation operators is then expressed in terms of the
creation and annihilation operators as

ρk1−k3ρk2−k1ρk3−k2

= − ∑
p,q,l

c†
p+k1−k2

c†
q+k2−k3

c†
l+k3−k1

cpcqcl

−∑
p,q

(
c†

p+k1−k2
c†

q+k2−k1
cpcq+c†

p+k2−k3
c†

q+k3−k2
cpcq+c†

p+k3−k1
c†

q+k1−k3
cpcq

)

+∑
p

c†
pcp, (14.37)

using the anticommutation relations (14.12)–(14.14).
It is noted for the ground state of fermions that the terms for q = l+ k3− k1

and l = p+k1−k2, or for q = p+k1−k2 and p = l+k3−k1 survive in the first
summation of Eq. 14.37 when all the wavenumber vectors k1, k2 and k3 are different
from each other. Analogous rules apply for the second summation of Eq. 14.37 as
well. Thus, in this case the structure factor is written as
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S(3) (k1,k2,k3) =
1

N3 ∑
p

(
np+k1np+k2np+k3 + np−k1np−k2np−k3

)

− 1
N3 ∑

p

(
np+k1np+k2 + np+k2np+k3 +np+k3np+k1

)
+

1
N2 ,

(14.38)

using the occupation number density nk. Next, when two wavenumber vectors of
k1, k2 and k3 are identical, the three-body structure factor is given by

S(3) (k1,k2,k3) =
1
N

(
1− 1

N ∑
p

np+k3np+k1

)
δk1,k2

+
1
N

(
1− 1

N ∑
p

np+k1np+k2

)
δk2,k3

+
1
N

(
1− 1

N ∑
p

np+k2np+k3

)
δk3,k1 . (14.39)

Finally, in the case of k1 = k2 = k3, the structure factor is expressed as

S(3) (k1,k2,k3) = δk1,k2δk1,k3 . (14.40)

By the inverse Fourier transformation with the aid of Eq. 14.24, the three-body
distribution function is thus given by

f (3) (rA,rB,rC) = ∑
k1

∑
k2

∑
k3

exp(ik1 · rA + ik2 · rB + ik3 · rC)S(3) (k1,k2,k3)

= G(rA,rB,rC)δ (rA + rB + rC)+O(1/N) (14.41)

with

G(rA,rB,rC) = 1−K (rA)K (−rA)−K (rB)K (−rB)−K (rC)K (−rC)

+K (rA)K (rB)K (rC)+K (−rA)K (−rB)K (−rC) . (14.42)

In Eq. 14.41, the singular terms associated with the self-correlation are included
in the higher-order contributions with respect to 1/N. Removing the irrelevant
δ (rA + rB + rC) factor that is ascribed to the symmetrization of coordinates, we
find the form of the ternary distribution function of ideal Fermi gas as

g(3) (R1,R2,R3)

= 1−K (R1−R2)K (R2−R1)−K (R2−R3)K (R3−R2)

−K (R3−R1)K (R1−R3)+K (R1−R2)K (R2−R3)K (R3−R1)

+K (R2−R1)K (R3−R2)K (R1−R3) . (14.43)
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14.4 Multiparticle Distribution Functions

By inspection of Eqs. 14.32 and 14.43, it is conjectured that the n-particle distribu-
tion function of ideal Fermi gas has a determinant form as

g(n) (R1,R2, · · · ,Rn) = detK(n). (14.44)

Here, K(n) is an n×n matrix whose component (i, j = 1,2, · · · ,n) is expressed as

K(n) = (Ki j) , (14.45)

Ki j = K (Ri−R j) , (14.46)

and
Kii = lim

Ri→R j
K (Ri−R j) = 1, (14.47)

using the correlation kernel (Eq. 14.29). In the following, it is shown that this
conjecture is actually the case in the limit of N→ ∞.

In order to prove the formula (Eq. 14.44), we consider the N-body wave function
of ideal Fermi gas in the ground state as a Slater determinant [1, 2, 8],

|0〉= 1√
N!

detA. (14.48)

The component of the matrix is given by

A = (ai j) (14.49)

and
ai j = exp(−iki · r j) , (14.50)

where i, j = 1,2, · · · ,N and the wavenumber vectors ki (i= 1,2, · · · ,N) fill the Fermi
sphere with the radius of kF. The adjoint wave function is then introduced as

〈0| = 1√
N!

detA† (14.51)

with
A† =

(
a†

i j

)
(14.52)

and
a†

i j = exp(ik j · ri) . (14.53)

The normalization condition,

∫
dr1 · · ·drN 〈0|0〉= 1, (14.54)
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is shown by noting the relation,

detAT = detA, (14.55)

for the transposed matrix AT and the definition of the determinant,

detA = ∑
P(N)

[
sgnP(N)

]
a1p1a2p2 · · ·× aN pN , (14.56)

where

P(N) =

(
1 2 · · · N
p1 p2 · · · pN

)
(14.57)

means the permutations of order N and

sgnP(N) =

{
+1, for even permutation
−1, for odd permutation

(14.58)

is their signature.
Next, we note a relation,

〈0|0〉= 1
N!

detA† detA =
1

N!
det

(
A†A

)
, (14.59)

where the component of the product of matrices is given by

(
A†A

)
i j =

N

∑
k=1

a†
ikak j =

N

∑
k=1

exp(ikk · ri)exp(−ikk · r j) =
N

∑
k=1

exp [ikk · (ri− r j)] .

(14.60)
Then, N-body distribution function of N-particle Fermi gas system can be calculated
as

g(N) (R1,R2, · · · ,RN)

=

〈
1

NN

N

∑
i1,i2,··· ,iN=1

δ (R1− ri1)δ (R2− ri2) · · ·× δ (RN− riN )

〉

=

∫
dr1 · · ·drN

1
N! ∑

P(N)

[
sgnP(N)

] N

∑
k1=1

exp
[
ikk1 · (r1− rp1)

]

×
N

∑
k2=1

exp
[
ikk2 · (r2− rp2)

]

· · ·×
N

∑
kN=1

exp
[
ikkN · (rN− rpN )

] 1
NN

N

∑
i1,i2,··· ,iN=1

δ (R1− ri1)δ (R2− ri2)

· · ·× δ (RN − riN )
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= ∑
P(N)

[
sgnP(N)

]
K1p1K2p2 · · ·×KN pN

= detK(N) (14.61)

when all the coordinates Ri are different from each other.
Now, let us assume that Eq. 14.44 holds for the case of n-particle distribution

function. The (n− 1)-particle distribution function is then calculated as

g(n−1) (R1,R2, · · · ,Rn−1) =
N

N− (n− 1)

∫
dRn g(n) (R1,R2, · · · ,Rn)

=
N

N− (n− 1)

∫
dRn ∑

P(n)

[
sgnP(n)

]
K1p1K2p2 · · ·×Knpn

(14.62)

with the permutations of order n,

P(n) =

(
1 2 · · · n
p1 p2 · · · pn

)
, (14.63)

where the denominator N−(n−1) in Eq. 14.62 comes from [N−(n−1)]!/(N−n)!.
The right-hand side of Eq. 14.62 can be calculated by considering the following

three cases: First, in the case of pn = n, it is expressed as

N
N− (n− 1)

∫
dRn ∑

P(n−1)

[
sgnP(n−1)

]
K1p1K2p2 · · ·×Kn−1,pn−1Knn

=
N

N− (n− 1) ∑
P(n−1)

[
sgnP(n−1)

]
K1p1K2p2 · · ·×Kn−1,pn−1

=
N

N− (n− 1)
detK(n−1). (14.64)

Next, in the case of pn = n, we focus on a part,
(

m n
n pn

)
, (14.65)

in the permutation P(n). The number of ways of choosing m is n− 1, and we
consider the case of m = n− 1 without the loss of generality. When pn = n− 1
in the transposition (Eq. 14.65), the right-hand side of Eq. 14.62 gives

− N(n−1)
N− (n−1)

∫
dRn ∑

P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2Kn−1,nKn,n−1

=− N(n−1)
N− (n− 1) ∑

P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2



260 S. Tanaka

×
∫

dRn
1

N2

N

∑
k1=1

exp
[
ikk1 · (Rn−1−Rn)

] N

∑
k2=1

exp
[
ikk2 · (Rn−Rn−1)

]

=− N(n−1)
N− (n− 1) ∑

P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2×

1
N

=− n−1
N− (n− 1) ∑

P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2

=− n−1
N− (n− 1) ∑

P
(n−1)
a

[
sgnP(n−1)

a

]
K1p1K2p2 · · ·×Kn−2,pn−2Kn−1,n−1. (14.66)

In Eq. 14.66, P(n−1)
a means the permutations of order n− 1 under the constraint of

pn→ pn−1 = n−1. On the other hand, when pn = n−1 (and pn = n) in Eq. 14.65,
the right-hand side of Eq. 14.62 gives

N(n−1)
N− (n−1)

∫
dRn ∑

P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2Kn−1,nKn,pn

=
N(n−1)

N− (n−1) ∑
P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2

×
∫

dRn
1

N2

N

∑
k1=1

exp
[
ikk1 · (Rn−1−Rn)

] N

∑
k2=1

exp
[
ikk2 · (Rn−Rpn)

]

=
N(n−1)

N− (n−1) ∑
P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2

× 1
N2

N

∑
k1=1

exp
[
ikk1 · (Rn−1−Rpn)

]

=
n−1

N− (n−1) ∑
P(n−2)

[
sgnP(n−2)

]
K1p1K2p2 · · ·×Kn−2,pn−2Kn−1,pn

=− n−1
N− (n−1) ∑

P(n−1)
b

[
sgnP(n−1)

b

]
K1p1K2p2 · · ·×Kn−2,pn−2Kn−1,pn−1 . (14.67)

In Eq. 14.67, P(n−1)
b means the permutations of order n− 1 under the constraint of

pn→ pn−1 = n−1.
Summing up the contributions of Eqs. 14.64, 14.66 and 14.67, we obtain

g(n−1) (R1,R2, · · · ,Rn−1) =

[
N

N− (n− 1)
− n−1

N− (n−1)

]
detK(n−1)

= detK(n−1). (14.68)
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We can thus show that Eq. 14.44 holds also for the (n− 1)-particle distribution
function. Considering also the case of N-particle distribution function, Eq. 14.61,
we see that Eq. 14.44 holds for 2≤ n≤ N. The case of n = 1 is trivial.

14.5 Description by Density Matrices

In this section we consider the N-body density matrix [8] for the Fermi system
expressed in terms of the product of the Slater determinants with the plane waves
[1, 2, 8] as

ρ (N) (r1,r2, · · · ,rN)

=
1

N! ∑
P(N)

[
sgnP(N)

]
exp(ik1 · rp1 + ik2 · rp2 + · · ·+ ikN · rpN )

× ∑
P′(N)

[
sgnP′(N)

]
exp

(
−ik1 · rp′1− ik2 · rp′2−·· ·− ikN · rp′N

)

=
1

N! ∑
P(N)

[
sgnP(N)

]
exp(ikp1 · r1 + ikp2 · r2 + · · ·+ ikpN · rN)

× ∑
P′(N)

[
sgnP′(N)

]
exp

(
−ikp′1 · r1− ikp′2 · r2−·· ·− ikp′N · rN

)
, (14.69)

where ri and ki refer to the spatial coordinates and the wavenumber vectors,
respectively. The density matrix given by Eq. 14.69 satisfies the normalization
condition as

∫
dr1 · · ·drNρ (N) (r1,r2, · · · ,rN) =

1
N! ∑

P(N)

[
sgnP(N)

]2
= 1. (14.70)

Here, noting the identities for N×N matrices such as Eqs. 14.55 and 14.59,
we find

ρ (N) (r1,r2, · · · ,rN) =
NN

N! ∑
P(N)

[
sgnP(N)

]
K1p1K2p2 · · ·×KN pN

=
NN

N!
detK(N), (14.71)

where

K(N) = (Ki j) (14.72)
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is an N×N matrix whose components are

Ki j =
1
N

N

∑
k=1

exp [ikk · (ri− r j)] (14.73)

for 1≤ i, j ≤ N.
The n-body (1≤ n≤ N) density matrix [8] is then given by

ρ (n) (r1,r2, · · · ,rn) =

∫
drn+1 · · ·drNρ (N) (r1,r2, · · · ,rN)

=
(N− n)!

N!
Nn ∑

P(n)

[
sgnP(n)

]
K1p1K2p2 · · ·×Knpn

=
(N− n)!

N!
Nn detK(n) (14.74)

with an n× n matrix K(n), as in Sect. 14.4. It is noted that the relations above hold
for finite N and that the prefactor in front of detK(n) in Eq. 14.74 becomes unity for
finite n and N→ ∞.

14.6 Correlation Kernel

Here we derive an explicit expression for the correlation kernel, Eq. 14.29, in
any dimension d, which represents Eq. 14.73 in the limit of infinite N. Since the
occupation number density satisfies the normalization condition, Eq. 14.18, the
Fermi wavenumber kF is given by

1
(2π)d Vd (kF) = N, (14.75)

where
Vd (kF) =Cdkd

F (14.76)

with

Cd =
πd/2

Γ
(

d
2 + 1

) (14.77)

is the volume of the d-dimensional sphere with the radius of kF; Γ (s) is the gamma
function [9, 10]. The Fermi wavenumber is thus expressed as

kF = 2
√

π
[

Γ
(

d
2
+ 1

)
N

]1/d

, (14.78)
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where it is noted that we employ the convention of V = 1, so that N represents the
number density.

By choosing the direction of r in parallel with the d-th component of the
wavenumber vector k, the correlation kernel is expressed as

K (r) =
1

N(2π)d

∫ 1

−1
dt kF exp(ikFrt)Vd−1

(
kF

√
1− t2

)

=
Cd−1kd

F

N(2π)d

∫ 1

−1
dt exp(ikFrt)

(
1− t2) d−1

2 (14.79)

with r = |r|. Then, employing Poisson’s formula [9, 10],

∫ 1

−1
dt exp(izt)

(
1− t2)ν− 1

2 =

√
πΓ

(
ν + 1

2

)
(z/2)ν Jν(z), (14.80)

we find an explicit expression for the correlation kernel as

K (r;ν) = Γ (ν + 1)

(
2

kFr

)ν
Jν (kFr) (14.81)

with ν = d/2, where Jν(z) is the Bessel function of the first kind of order ν [9, 10].
It is remarked that, though Eq. 14.81 has been derived for integral values of spatial
dimension d, K(r;ν) may be regarded as a continuous function of the auxiliary
order variable ν , which follows from its series representation [9, 10].

Let us here consider the case of d = 1 and ν = 1/2. We then find

K(r) = Γ
(

3
2

)(
2

kFr

)1/2

J1/2 (kFr)

= j0 (kFr)

=
sinkFr

kFr
, (14.82)

where

jn(z) =

(
π
2z

)1/2

Jn+ 1
2
(z) (14.83)

is the spherical Bessel function of the first kind of order n [9, 10]. Recalling
Eq. 14.44, this correlation structure is essentially the same as that for the eigenvalues
of random matrices in the Gaussian unitary ensemble [3–5]. Interestingly, it has
been known that this type of correlation structure may hold also for the distribution
of zeros in the Riemann zeta function [6].
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14.7 Similarity to Random Matrices and the Riemann Zeros

In the preceding sections we have shown that the n-particle distribution function of
ideal Fermi gas is expressed in terms of a simple determinant form (Eq. 14.44). A
very analogous finding has long been known in the theory for random matrix which
was initially introduced to describe the statistical distribution of nuclear energy
levels [11]. Let us represent the eigenvalues of random unitary matrices U(N) as
exp(iθ j) with 1≤ j ≤ N and θ j ∈R. For unfolded eigenphases defined by

φ j = θ j
N
2π

, (14.84)

Dyson[3–5] showed in the limit of N → ∞ that the n-point correlation function is
expressed by

R(n) (φ1, · · · ,φn) = det [S (φ j−φk)] j,k=1,··· ,n (14.85)

with

S(x) =
sinπx

πx
(14.86)

and 1≤ n≤ N. The expression (Eq. 14.85) apparently has a mathematical structure
essentially equivalent to Eq. 14.44 in the one-dimensional (d = 1) case, Eq. 14.82,
of ideal Fermi gas system.

Interestingly, it has been known that this type of correlation structure holds
also for the distribution of zeros in the Riemann zeta function. The Riemann zeta
function [12] for complex variable s is defined by

ζ (s) =
∞

∑
n=1

1
ns = ∏

p

(
1− p−s)−1

(14.87)

for Re s > 1, where n and p mean the natural numbers and the prime numbers,
respectively. After the analytic continuation over the whole complex plane, the ζ (s)
has non-trivial zeros in the critical strip, 0 < Re s < 1, and the Riemann hypothesis
states that all of them lie on the critical line Re s = 1/2; that is,

ζ
(

1
2
+ it

)
= 0 (14.88)

has non-trivial solutions only when t = t j ∈R.
The mean density of the non-trivial zeros of ζ (s) increases logarithmically with

height t up to the critical line. We then define unfolded zeros by

wj =
t j

2π
log

t j

2π
. (14.89)
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Montgomery [6] showed, assuming the Riemann hypothesis, that the pair correlation
function of the unfolded zeros for j→ ∞ has a form,

R(2)(w) = 1−
(

sinπw
πw

)2

, (14.90)

under a restriction on the correlation range, which is identical to that in the
random matrix theory, Eq. 14.85, for n = 2. He also conjectured that this form
applies without the restriction on the correlation range. This conjecture has been
supported through substantial numerical calculations [13]. Further, the analysis
by Montgomery was generalized for all the n-point correlations by Rudnick and
Sarnak [14]. In addition, Bogomolny and Keating [15, 16] showed that the n-point
correlation function of the Riemann zeros is equivalent to the corresponding
result in the random matrix theory for the Gaussian unitary ensemble in an
appropriate asymptotic limit with the aid of Hardy-Littlewood prime-correlation
conjecture [17].

Thus, it is currently believed that the structure of distribution of the Riemann
zeros is mathematically analogous to that of the eigenvalues of random matrices.
This conjecture has activated many studies to investigate the mathematical structure
of the zeta function in the light of that of the random matrices. For example, the
connections between the random matrix theory and the theory for L-functions,
which can be regarded as a broader class of functions including the zeta function,
have been extensively studied [7, 18]. Further, their relationships with quantum
chaos have also been discussed [19]. In the present analysis, on the other hand,
an intimate analogy between the distribution function of ideal Fermi gas system
and that in the random matrix theory has been demonstrated, especially in the
one-dimensional (d = 1) case. Accordingly, further investigations on the Fermi gas
systems and their extensions would be expected to provide more insights into the
random matrices and the zeta functions, and vice versa. As for the extensions of the
studies on the one-dimensional ideal Fermi gas in the ground state, those to other
dimensions as addressed above are remarked first. Other examples would include
the extensions to finite temperatures or excited states, the introduction of particle
interactions, and the consideration of finite N systems.

14.8 Concluding Remarks

In this article we have addressed a general expression for the multiparticle dis-
tribution functions of ideal Fermi gas in the ground state. The expression is of
a determinant form for any spatial dimension, and has a mathematical structure
similar to that for the correlation function of the eigenvalues of random unitary
matrices, especially in the one-dimensional case. Noting intimate relationships
between the random matrix theory and the Riemann hypothesis, the present
observation may provide deeper insights into the underlying mathematical structure
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that connects these analogous subjects. Further studies on the correlation properties
of fermion systems would thus be expected to play important roles, not only for their
own, but also for the deeper understandings of the statistical properties of number-
theoretical zeta-related functions and random matrices.

Thus, it has been revealed that a correlation structure similar to those observed
in the eigenvalues of the random unitary matrices and in the Riemann zeros is
embedded in the Fermi gas system as well. The case of ν = d/2→ 1/2 in the Fermi
gas system gives a special correlation structure already discussed in the random
matrix and zeta function theories. Therefore, the behaviors of the multiparticle
correlations of the Fermi gas system with the correlation kernel K (r;ν) at and
around ν = 1/2 may provide useful information about the random matrices and the
zeta function by regarding K (r;ν) as a continuous function of ν . Another challenge,
which would be more ambitious, is to look for a family of functions or matrices
whose zero or eigenvalue distributions are described by the correlation functions
given by Eqs. 14.44 and 14.81 for arbitrary values of ν .
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Chapter 15
Hierarchical Effective-Mode Approach
for Extended Molecular Systems
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Abstract Photoinduced processes in extended molecular systems are often ultrafast
and involve strong electron-vibration (vibronic) coupling effects which necessitate
a non-perturbative treatment. In the approach presented here, high-dimensional
vibrational subspaces are expressed in terms of effective modes, and hierarchical
chains of such modes which sequentially resolve the dynamics as a function of
time. This permits introducing systematic reduction procedures, both for discretized
vibrational distributions and for continuous distributions characterized by spectral
densities. In the latter case, a sequence of spectral densities is obtained from a
Mori/Rubin-type continued fraction representation. The approach is suitable to
describe nonadiabatic processes at conical intersections, excitation energy transfer
in molecular aggregates, and related transport phenomena that can be described by
generalized spin-boson models.
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15.1 Introduction

Photoinduced processes in extended molecular systems often necessitate a quantum
dynamical treatment based upon the explicit representation of a number of relevant
vibrational (phonon) degrees of freedom evolving on coupled potential energy
surfaces. This applies to molecule-solvent complexes, biological systems like
chromophore-protein complexes, natural and artificial light-harvesting systems,
organic materials like semiconducting polymers, and various other molecular
assemblies. Many of the relevant photoinduced processes are ultrafast, as a result
of nonadiabatic interactions by which electronically excited states decay non-
radiatively. These processes often involve conical intersection topologies [1–4],
which play a landmark role in the photochemistry of polyatomic molecular systems.

In line with the quantum dynamical nature of the photoinduced processes,
recent experimental observations have provided compelling evidence that quantum
coherence plays an important role even in high-dimensional, extended molecular
assemblies, and in solvent or protein environments. In particular, ultrafast en-
ergy transport, i.e., excitation energy transfer (EET) in biological light-harvesting
systems [5] and semiconducting polymer materials [6] has been shown to conserve
excitonic coherence, rather than involving a Förster type hopping [7, 8] between
neighboring sites. Contrary to the conventional assumption that environment-
induced decoherence sets in within several tens of femtoseconds [9], long-lived
coherences have been observed on a time scale of a picosecond [5, 6]. Conjectures
have been made regarding the possible role of correlated environmental fluctuations
in generating these long-lived coherences [10, 11].

From a system-bath theory perspective, the systems of interest fall into a
markedly non-Markovian regime [12,13], since the coupling between the electronic
and vibrational degrees of freedom is strong and the environment is neither static
nor rapidly fluctuating (Markovian). Instead, photoexcitation of the subsystem,
or chromophore, induces a nonequilibrium response of the environment that is
interleaved with the subsystem evolution, thus generating a dynamical evolution in
the high-dimensional system-plus-environment space. In view of this, it is not clear
a priori how to systematically construct a reduced dynamical description including
the effect of the vibrational (phonon) modes on the electronic subsystem.

Over the past decade, various theoretical approaches and simulation tech-
niques have been developed to tackle photoinduced dynamics in high-dimensional
molecular systems. Broadly, two types of approaches can be distinguished: First,
approaches which rely on quantum dynamical calculations in conjunction with
model Hamiltonians of vibronic coupling type [14–17], or generalized spin-boson
models [12, 13, 18]. Here, the phonon modes are either treated explicitly or are
(partially) integrated out by a reduced dynamics procedure. The relevant model
Hamiltonians are generally parametrized using electronic structure calculations.
The second type of approach relates to an explicit, on-the-fly treatment of the
electronic structure and dynamics of the high-dimensional, supermolecular system
[19–21]. Here, the dynamics is often approximated by classical trajectory ensembles
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or Gaussian wavepackets [22–24]. The main strength of the first approach is
its accurate description of the underlying quantum dynamics, at the expense of
approximate potential surfaces, while the strength of the second approach lies in
the more accurate treatment of the electronic structure properties.

The approach which is described in the present paper focuses on an explicit but
reduced-dimensional representation of the dynamical problem. Our starting point
is a class of generalized spin-boson models including a (large) number of degrees
of freedom which can be treated within a linear vibronic coupling (LVC) approx-
imation [1]. Using this model, we seek to extract a set of effective environmental
modes which are generated by suitable coordinate transformations [25, 26]. The
modes in question are collective coordinates which are constructed in such a way
that they capture (1) the effects of the system-environment interaction on short time
scales, and beyond this, provide (2) a general procedure by which chains of effective
environmental modes are generated which unravel the dynamics as a function of
time. The effective modes in question can be interpreted as generalized Brownian
oscillator modes [27, 28], and the effective-mode chains are related to Mori chains
[29–31] known from statistical mechanics. If the environment is effectively infinite-
dimensional, the irreversible nature of the dynamics is maintained by a Markovian
closure of the truncated chain representation.

The effective-mode construction can thus be employed both for a discrete set
of vibrational modes (e.g., in a polyatomic molecule) and for typical system-bath
type situations where the spectrum of bath modes is dense. In the latter case, the
environment and its coupling to the electronic subsystem are entirely characterized
by a spectral density. Approximate spectral densities can be constructed from few
effective modes, representing a simplified realization of the true environmental
spectral density that is designed to give a faithful representation of the dynamics
on short time scales [32, 33]. Thus, even a highly structured, multi-peaked spectral
density can be reduced to an effective, simplified spectral density on ultrafast
time scales. Importantly, the procedure converges, as has recently been shown in
Ref. [34].

In the present contribution, the effective-mode decomposition of spectral den-
sities is demonstrated for the case of oligomers of poly-phenylene-vinylene (PPV)
type. Here, the relevant spectral density is constructed from a classical-statistical
correlation function that is in turn obtained from molecular dynamics (MD)
simulations. Together with the effective-mode decomposition, this provides a
practicable procedure for characterizing and reducing spectral densities within the
high-temperature limit.

Overall, the present approach provides an alternative to other hierarchical
schemes which seek to unravel the effects of a non-Markovian environment, see,
e.g., Refs. [35–37]. The distinguishing feature of the present development is that
its starting point is a coordinate transformation which facilitates the subsequent
dynamical treatment.

The remainder of this contribution is organized as follows. Section 15.2 in-
troduces the effective mode transformation techniques of Refs. [25, 26, 38], based
upon a discretized version of a general LVC model. Section 15.3 focuses upon the
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parallel continued fraction development for spectral densities [32, 34, 39]. Finally,
Sect. 15.4 demonstrates the convergence, in the time domain, of the effective-mode
decomposition, and Sect. 15.5 concludes.

15.2 Effective-Mode Transformations

In this section, a general model Hamiltonian is introduced which is of LVC type
for a subset of bath coordinates (Sect. 15.2.1). This Hamiltonian is subsequently
transformed to the effective-mode representation mentioned above (Sects. 15.2.2
and 15.2.3). The development is presented in a system-bath theory setting, since
this facilitates the transition to Sect. 15.3 where we focus upon a description of the
vibrational distribution in terms of bath spectral densities.

15.2.1 Generalized Spin-Boson Models

We consider a class of generalized spin-boson models, assuming that a system-bath
partitioning is appropriate to describe the high-dimensional system of interest,

Ĥ = ĤS + ĤSB + ĤB (15.1)

where the system Hamiltonian ĤS takes the general form,

ĤS = V̂Δ +
NS

∑
i=1

1
2

p̂2
S,i +

ω2
S,i

2
x̂2

S,i

+

Nξ

∑
ξ=1

Nξ

∑
ξ ′<ξ

v̂S,ξ ξ ′(x̂S,1, . . . , x̂S,NS)(|ξ 〉〈ξ ′|+ |ξ ′〉〈ξ |) (15.2)

where V̂Δ is an offset and the {|ξ 〉} define a discretized representation for Nξ states,
e.g., of the electronic subspace, while the coordinates x̂S = {x̂S,1, . . . , x̂S,NS} refer
to a subset of vibrational modes which are associated with the system part. In the
present discussion, mass-weighted coordinates are employed as in Refs. [32,39]; see
Refs. [25, 26, 40–42] for a complementary development using mass-and-frequency
weighted coordinates.

The system-bath coupling is restricted to a form which is linear in the bath
coordinates x̂B = {x̂B,1, . . . , x̂B,NB} and involves the discretized system operators,

ĤSB =
NB

∑
i

Nξ

∑
ξ ξ ′

ci,ξ ξ ′ x̂B,i (|ξ 〉〈ξ ′|+ |ξ ′〉〈ξ |) (15.3)
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Thus, no direct coordinate couplings between the system and bath subspaces appear
at this point.

Finally, the bath Hamiltonian ĤB represents the zeroth-order Hamiltonian for NB

environmental modes,

ĤB =
NB

∑
i=1

(
1
2

p̂2
B,i +

ω2
B,i

2
x̂2

B,i

)
(15.4)

The Hamiltonian equations 15.1–15.4 is applicable to various processes character-
istic of molecular systems, including the dynamics at conical intersections (CoIn’s)
[1–4] and excitation energy transfer (EET) processes [5,6,8]. Its simplest realization
corresponds to a single system operator, in which case the classical spin-boson
Hamiltonian [12, 18] is obtained, where the bath coordinates couple to the energy
gap operator σ̂z = |α〉〈α|− |β 〉〈β | of a two-level system (TLS).

The model Hamiltonian described above is thus of LVC type for the bath part,
while the potentials pertaining to the system coordinates can take an anharmonic,
non-separable form, see Eq. 15.2. For example, in the context of CoIn’s, the system
coordinates could be described by a quadratic coupling model whereas a (large)
number of bath coordinates are approximated by the LVC form, as illustrated in the
example of Sect. 15.4.

15.2.2 Effective-Mode Construction

The LVC model employed for the bath subspace allows one to introduce coordinate
transformations by which a set of effective, or collective modes are extracted that
act as generalized reaction coordinates for the dynamics. As shown in Refs. [25,26],
Neff = Nξ (Nξ +1)/2 such coordinates can be defined for an Nξ -state system. Thus,
three effective modes are introduced for an electronic two-level system, six effective
modes for a three-level system etc., for an arbitrary number of phonon modes that
couple to the subsystem according to the LVC model. The subset of effective modes
entirely determine the short-time dynamics, if the initial excitation is localized in
the system subspace [26]. In order to capture the dynamics on longer time scales,
chains of such effective modes can be introduced [38, 43]. These transformations,
which are summarized below, will be shown to yield a unique perspective on high-
dimensional dynamics in extended systems.

From the interaction Hamiltonian equation (15.3), we note that the NB bath
modes produce cumulative effects by their coupling to the discretized subsystem.
This suggests that the interaction Hamiltonian can be formally re-written in terms
of a set of collective coordinates X̂ ′B,ξ ξ ′ = 1/C′ξ ξ ′∑

NB
i ci,ξ ξ ′ x̂B,i, such that

ĤSB = ∑
ξ ξ ′

C′ξ ξ ′ X̂
′
B,ξ ξ ′ (|ξ 〉〈ξ ′|+ |ξ ′〉〈ξ |) (15.5)
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This definition corresponds to introducing Brownian-oscillator modes, in keeping
with the transformation introduced, e.g., in Ref. [28]. However, in the case where
several subsystem operators are present, these modes are not generally orthogonal
on the space defined by the original bath coordinates {x̂B}. One therefore has to
introduce an orthogonalization procedure [25,26] leading to a set of Neff orthogonal
modes {X̂B,i}. With these, the interaction Hamiltonian takes the final form

ĤSB =
Neff

∑
i

∑
ξ ξ ′

Ci,ξ ξ ′ X̂B,i (|ξ 〉〈ξ ′|+ |ξ ′〉〈ξ |) (15.6)

This expression is formally the same as the one of the original system-bath
coupling, Eq. 15.3, except that the system-bath interaction is entirely absorbed
by Neff effective modes. Depending on the orthogonalization procedure, different
couplings can result [44].

15.2.3 Residual Bath Subspace: Stars, Chains,
and Truncated Chains

The introduction of a set of effective modes {X̂B,i} is the first step in defining
an overall orthogonal transformation which leaves the subsystem coordinates {x̂S}
unaffected while transforming the bath coordinates,

X̂B = Tx̂B (15.7)

As a result, one obtains the bath Hamiltonian in the following form,

ĤB =
NB

∑
i=1

(
1
2

P̂2
B,i +

Ω 2
B,i

2
X̂2

B,i

)
+

NB

∑
i, j=1, j>i

di jX̂B,iX̂B, j (15.8)

where bilinear coupling terms now appear in the bath subspace. The new frequencies
ΩB,i and couplings di j result from the coordinate transformation introduced above,
such that Ω 2

B,i = ∑NB
j=1 ω2

B, jt
2
ji and di j = ∑NB

k=1 ω2
k tkitk j, where t ji are the elements of

the transformation matrix T.
The transformed interaction Hamiltonian ĤSB of Eq. 15.6 and the bath Hamil-

tonian of Eq. 15.8 define the system-bath Hamiltonian in the new coordinates. The
subsystem part, comprising the electronic subspace and possibly a subset of strongly
coupled vibrational modes, has remained unchanged.

In the new coordinates, the bath Hamiltonian takes a hierarchical form: The
effective modes {X̂B,i} couple directly to the electronic subsystem, while the
remaining (residual) NB −Neff bath modes couple in turn to the effective modes.
The new bath Hamiltonian ĤB of Eq. 15.8 can thus be split as follows:

ĤB = Ĥeff
B + Ĥeff-res

B + Ĥres
B (15.9)
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d = d = d =

Fig. 15.1 Schematic illustration of the coupling patterns within the residual-mode subspace, as
described in Sect. 15.2.3. The number of effective modes is Neff = 3 in the present example. Left:
Star type pattern, with a diagonal form of the {di j} matrix in the residual (NB−Neff)-dimensional
subspace; middle: chain type configuration with a band-diagonal form; right: truncated chain
pattern which re-introduces the star pattern at a higher order of the chain

with the effective (eff) Neff-mode bath portion

Ĥeff
B =

Neff

∑
i=1

(
1
2

P̂2
B,i+

Ω 2
B,i

2
X̂2

B,i

)
+

Neff

∑
i, j=1

di jX̂B,iX̂B, j (15.10)

the effective-residual (eff-res) mode interaction

Ĥeff-res
B =

Neff

∑
i=1

NB

∑
j=Neff+1

di jX̂B,iX̂B, j (15.11)

and a definition analogous to Eq. 15.10 for the residual (res) Hamiltonian Ĥres
B

comprising the (NB−Neff) remaining bath modes.
Since the orthogonal transformations leading to the form Eq. 15.9 of the trans-

formed Hamiltonian are not unique, several construction schemes are possible
[26, 32]. We have explored the following schemes in our recent work:

• Star-type configuration of the residual bath (see Fig. 15.1, left panel). Here,
all residual bath modes are coupled to the Neff-dimensional effective-mode
subspace, while the bilinear coupling matrix {di j} is diagonalized in the subspace
of residual bath modes {Neff + 1, . . . ,NB}

• Chain-type configuration of the residual bath (see Fig. 15.1, center panel). In this
scheme, the bilinear coupling matrix is cast into a band-diagonal form, such
that only the first layer of the residual bath is coupled to the effective-mode
subspace. We have referred to this model as a hierarchical electron-phonon (HEP)
model [38]

• Truncated chain-type configuration of the residual bath (see Fig. 15.1, right
panel). This variant again employs the band-diagonal construction of the chain
model, but is terminated at a given order M by a star construction as described
above, now taken to represent a Markovian closure acting on the end of the chain
[32]. This model mimicks the Markovian closure which naturally terminates the
chain as shown in the next section.

Figure 15.1 illustrates these three construction schemes for the residual bath.
Various applications based upon these schemes can be found in Refs. [38, 41, 45].
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15.3 Effective-Mode Decomposition of Spectral Densities

Against the background of the effective-mode transformation introduced above, we
now address the system-bath perspective more systematically, by recasting the chain
development in terms of spectral densities defining the system-bath interaction.

15.3.1 Mori/Rubin Type Continued Fractions

If the frequency distribution of the bath modes is dense, it is natural to characterize
the influence of the bath on the subsystem in terms of a spectral density, or its
discretized representation. In the case where the bath modes couple only to one of
the subsystem operators, for instance

ĤSB =
NB

∑
i=1

cB,i x̂B,iσ̂z ≡ DX̂B,1σ̂z (15.12)

the definition of the spectral density corresponds to the form known for the spin-
boson Hamiltonian [12, 13, 18],

J(ω) =
NB

∑
i=1

c2
B,i

ωB, i
δ (ω−ωB,i) (15.13)

This spectral density characterizes a bath that induces energy gap fluctuations in the
TLS subsystem.

For the more general form of the system-bath coupling Eq. 15.3 where the bath
modes couple to the (ξ ξ ′) subsystem components, spectral densities are defined
component-wise. Furthermore, if the bath modes couple simultaneously to several
subsystem operators, we will refer to a correlated bath. The subsystem variables
then do not experience independent fluctuations, and this is reflected in the definition
of the spectral densities which involve cross-correlated contributions.

As a result of the transformation from the original Hamiltonian equations 15.1–
15.4 to the effective-mode Hamiltonian equations 15.6–15.11, the spectral density
has to be re-written in terms of the transformed quantities. As shown in Ref. [32],
J(ω) then takes a continued fraction form which is close to the results obtained in
Mori theory [29–31] or the Rubin model [12, 46].

15.3.1.1 Spectral Densities for Truncated Chains

In the simplest case of the spin-boson Hamiltonian (i.e., with a single subsystem
operator such that Neff=1), the spectral density takes the following continued-
fraction form [32]

J(M)(ω) =− lim
ε→0+

Im L(M)(ω + iε) (15.14)
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where L(M) is a Heisenberg-domain propagator,

L̂(M)(z) =−z2− D2

Ω 2
1 − z2− d2

1,2

Ω 2
2 − z2−·· · d2

M−2,M−1

Ω 2
M−1− z2− d2

M−1,M

Ω 2
M− z2− iγz

(15.15)

The order M corresponds to the number of modes which are included in the chain.
The final chain member is then taken to undergo Markovian (Ohmic) dissipation
with a friction coefficient γ .

According to Eqs. 15.14–15.15, Mth order truncated effective-mode chains trans-
late to a series of approximate, coarse-grained spectral densities that are explored
by the subsystem as a function of time [32, 33].

15.3.1.2 Residual Spectral Densities: Convergence

From the above, the question arises whether the Markovian termination of the
chain becomes exact at some order M. In Ref. [34], this question has been posed
in a complementary fashion, by analyzing the properties of the residual spectral
densities Jres

M ; these represent the spectral densities acting upon the end of the
Mth-order chains, which are constituted by the remaining NB −M modes, for
NB → ∞. If the residual spectral densities tend towards an Ohmic (Markovian)
form for a given order M, the representation of Eqs. 15.14–15.15 will be exact,
and the effective-mode series can be considered converged. If this limit can always
be identified, the procedure provides a universal approach to decomposing non-
Markovian environments.

Following Ref. [34], it can be shown that this is actually the case, i.e., con-
vergence is guaranteed under very general conditions. The proof is based on the
definition of the residual spectral densities in terms of their Cauchy transform [34],

Jres
M (ω) = lim

ε→0+
Im WM(ω + iε) (15.16)

where the WM obey the following one-term recurrence relation,

WM+1(z) = Ω 2
M+1− z2− d2

M,M+1

WM(z)
(15.17)

The limiting condition of this recurrence relation yields a (quasi-)Ohmic Rubin
spectral density [34].

Effective-mode chain representations of the bath thus converge rigorously, in
that the residual bath converges to an Ohmic spectral density. This result will be
illustrated in the next section for a realistic spectral density.
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Fig. 15.2 Spectral density of S1-S0 energy gap fluctuations in a PPV oligomer (panel (a)) [47],
and decomposition of the spectral density in terms of an effective-mode chain (panel (b)). Panels
(c) and (d) illustrate the sequence of residual spectral densities Jres

M which converge towards a
quasi-Ohmic form (with cutoff)

15.3.2 Spectral Density Decomposition: Poly-phenylene Vinylene

Figure 15.2 illustrates the effective-mode decomposition of a spectral density J(ω)
for a spin-boson type system (Neff = 1) which was obtained from classical molecular
dynamics (MD) simulations [47]. The latter were combined with the construction of
semi-empirical ground-state (S0) and excited-state (S1) potential energy surfaces for
poly-phenylene-vinylene (PPV) oligomers, in line with Ref. [48]. The time-evolving
energy gap ΔE(t) = ES1(r(t))−ES0(r(t)) was recorded along an excited-state (S1)
trajectory of 5 ps duration, yielding the real-valued correlation function [47]

Ccl(t) = 〈ΔE(0)ΔE(t)〉 (15.18)

In the high-temperature limit, the spectral density can be computed as follows from
Eq. 15.18 [27],

J(ω) =
ω

2kBT
C̃cl(ω) (15.19)
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where C̃cl(ω) is the Fourier transform of Ccl(t). An exponential damping factor
with a time constant τ = 0.1 ps was introduced, yielding the spectral density of
Fig. 15.2a. This spectral density is strongly peaked in the region around 1,500 cm−1,
corresponding to high-frequency stretching and bond-length alternation modes.
These modes are known to have a dominant effect in modulating the excited vs.
ground state energy gap [38, 48].

The remaining panels of Fig. 15.2 illustrate the effective-mode decomposition
of the spectral density of Fig. 15.2a. Panel b shows that a series of high-frequency
modes are sequentially extracted from the spectral density, with frequencies and
couplings which remain almost constant with increasing orders of the effective-
mode chain.

Panels c and d illustrate the sequence of residual spectral densities Jres
M , which

clearly tend towards an Ohmic spectral density (with cut-off) as the order of the
effective-mode decomposition increases. The cutoff frequency ωR has to be larger
than any frequency of interest (i.e., J(ω) ∼ 0 for ω > ωR); here, we have chosen
ωR = 4,000 cm−1. The quasi-Ohmic spectral density towards which the successive
Jres

M ’s converge coincides with the spectral density generated by the Rubin chain
model [12, 34, 39] with mode frequency ωR/

√
2. The convergence of the sequence

towards the Rubin limit follows from the limiting behavior Ω 2
n/Dn→ 2 that can be

inferred from Fig. 15.2b.
In the case reported here, a chain with M = 10–15 modes should be able

to accurately capture bath memory effects on the system dynamics, for times
t ≤ τP ∝ M, where τP is the Poincaré recurrence time of the chain. If the relevant
system dynamics lasts longer, a Markovian closure acting on the last member of the
chain (with γ =ωR/2) provides a reasonably good approximation valid for all times.

15.4 Effective-Mode Dynamics

In this section, the effective-mode approach is illustrated in the time domain.
Following Ref. [39], we consider a tuning mode bath that is coupled to a 4-
mode subsystem model of the S2-S1 conical intersection in pyrazine, described
within the second-order model of Raab et al. [49]. In keeping with the general
form of the Hamiltonian presented in Sect. 15.2.1, a linear vibronic coupling
approximation is thus only made for the bath part. A continuous reference spectral
density – similar to the one addressed in the previous section – is constructed by
a Lorentzian convolution procedure from an NB = 20 tuning mode distribution
obtained in Ref. [50] as a weighted random ensemble. Following the continued-
fraction construction described above, a sequence of approximate spectral densities
J(M), M = 1,2,3, are then generated which in turn result in several approximate
realizations of the dynamics. The M-th order spectral densities are re-discretized,
here again for NB = 20 bath modes.
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Fig. 15.3 (a) Time dependence of the S2 state (diabatic) population for successive
4(system)+20(bath)-mode models based on the lowest-order bath spectral densities J(M), M =
1,2,3, as well as the reference spectral density of Ref. [39]. The 4-mode (system) dynamics is
also shown for comparison (slowly decaying trace). (b) Time dependence of the wavepacket
autocorrelation function, |〈ψ(0)|ψ(t)〉|. At the level of the M = 3 approximation, the dynamics
is indistinguishable from the reference dynamics (Adapted from Ref. [39])

Wavepacket calculations at T = 0 K were carried out for the combined 4-mode
subsystem plus 20-mode bath, using the multiconfiguration time-dependent Hartree
(MCTDH) method [51–53]. The explicit representation of all bath modes is not
a necessity (and, in fact, the general method is designed so as to treat only
the effective modes explicitly); however, an explicit wavepacket dynamics for all
modes is convenient to demonstrate the convergence of the procedure for a zero-
temperature system. In Refs. [32, 33], we have shown that explicit calculations for
high-dimensional system-plus-bath wavefunctions are in excellent agreement with
reduced density matrix calculations.

Initial conditions for the wavepacket calculations correspond to the Franck-
Condon geometry, and the effective-mode expansion is defined with respect to this
reference geometry. Figure 15.3 shows the time-dependent diabatic S2 populations
and autocorrelation functions |C(t)|= |〈ψ(0)|ψ(t)〉| generated from the successive
spectral density approximants J(M)(ω), M = 1, . . . ,3. All orders agree over the
shortest time scale (∼5 fs), and the orders M = 2,3 are found to be very close over
the complete observation interval. The M = 3 result is virtually indistinguishable
from the result obtained for the reference spectral density and can be consid-
ered converged.
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As discussed in Ref. [39], time-domain convergence is often found to be more
rapid than the frequency-domain convergence of the spectral densities as discussed
in the preceding section. In the present example, the dynamics is well converged for
M = 3 while the corresponding spectral density is still approximate as compared
with the reference spectral density [39].

15.5 Conclusions

Photoinduced dynamics in extended molecular systems often fall into a short-time
regime where inertial, coherent effects dominate and the many-particle dissipative
dynamics has not yet set in. This generally precludes the use of standard system-
bath approaches and necessitates an explicit dynamical treatment of the combined
subsystem-plus-environment supermolecular system. The powerful QM/MM based
simulation techniques that have been developed over recent years for the explicit
simulation of photochemical processes in chromophore-solvent and chromophore-
protein complexes, as well as extended systems like semiconducting polymers and
various types of molecular aggregates have made great strides in this direction
[19–21, 54]. Even so, the need for complementary reduced-dimensional models and
dynamical interpretations persists. In the present contribution, we have presented
such a complementary perspective.

Starting from an LVC model representing the system-environment interaction,
the present approach identifies a set of Nξ (Nξ +1)/2 effective modes which describe
the collective environmental effects in an Nξ -state system [25, 26]. Beyond the
identification of the set of modes that predominate on the shortest time scale, further
transformations are introduced by which chains of residual modes are created that
successively unravel the dynamics [38, 43]. As shown above, this construction has
proven useful, e.g., in the analysis of photoinduced dynamics in extended systems
like semiconducting polymers [40, 55]. For this type of system, where distinct
high-frequency vs. low-frequency phonon branches exist, one can further envisage
alternative transformations by which effective modes are assigned to each phonon
branch separately [56, 57].

Even the approximation where the residual bath is disregarded altogether can
give good results in certain cases, e.g., for the short-time evolution at conical
intersections [25, 45]. In general, convergence depends on the coupling strength
between successive orders of the effective mode hierarchy.

Based upon the effective-mode construction, a systematic approximation proce-
dure for the environment can be formulated in terms of a series of coarse-grained
spectral densities [32, 33]. These spectral densities are generated from successive
orders of a truncated chain model with Markovian closure. Analytical expressions
can be given in terms of Mori type continued fractions. Assuming that an – a priori
arbitrarily complicated – reference spectral density can be obtained independently,
e.g., from experiments or classical simulations, one can thus (1) extract those
features of the spectral density that determine the interaction with the subsystem
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on successive time scales, and (2) carry out reduced-dimensional simulations which
are in exact agreement with the complete system-bath dynamics up to a certain time.
Typically, quantum dynamical simulations will be carried out for the subsystem
degrees of freedom augmented by the environment’s effective modes, while the
remaining modes are treated by a master equation [33]. Importantly, this procedure
has been shown to converge rigorously, in that the residual spectral densities
resulting from the chain development converge towards a (quasi-)Ohmic form [34].

In certain cases, diagonal interactions which give rise to energy gap fluctuations
dominate. The tuning-mode models that were addressed in Sects. 15.3.2 and 15.4
are adapted to this case. Solute-solvent interactions can often be mapped upon
such a model as well, such that the picture of a solvent coordinate [58–60] can
be accommodated within the present class of models, even if the actual microscopic
interactions cannot be described at the level of a harmonic oscillator bath.

We expect the effective-mode models described here to be versatile tools that can
predict general trends, and that can be used in conjunction with microscopic infor-
mation provided from other sources, i.e., spectral densities, energy gap correlation
functions, and possibly cross-correlation functions. Further, model parametrizations
could be provided by QM/MM type simulations, and the model-based dynamics
could be employed to analyse the wealth of microscopic information provided by
such simulations. Such complementary strategies would bridge the gap between
system-bath theory approaches and explicit multi-dimensional simulations for
ultrafast photochemical processes in various types of environments.
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Chapter 16
Short-Time Dynamics Through Conical
Intersections in Macrosystems: Quadratic
Coupling Extension
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Abstract We present an approach based on the quadratic vibronic coupling
(QVC) Hamiltonian [New J Chem 17:7–29,1993] and the effective-mode formalism
[Phys Rev Lett 94:113003, 2005] for the short-time dynamics through conical
intersections in complex molecular systems. Within this scheme the nuclear degrees
of freedom of the whole system are split as system modes and as environment
modes. To describe the short-time dynamics in the macrosystem precisely, only
three effective environmental modes together with the system’s modes are needed.
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Based on this decomposition, in the cumulant expansion of the autocorrelation
function, the exact cumulants are recovered up to the second order. To demonstrate
the capability of our method and for comparison with other results, the pyrazine
molecule is chosen as a numerical example.

16.1 Introduction

Conical intersections (CIs) between electronic potential energy surfaces play a key
mechanistic role in nonadiabatic molecular processes [1–4]. In this case the nuclear
and electronic motions can couple and the energy exchange between the electrons
and nuclei may become significant. In several important cases like dissociation,
proton transfer, isomerization processes of polyatomic molecules or radiationless
deactivation of the excited state systems [5, 6] the CIs can provide very efficient
channels for ultrafast interstate crossing on the femtosecond time scale.

The nonadiabatic coupling terms (NACT) couple the different electronic states
and may become the largest possible (as is well known from the Hellman-Feynman
theorem) in the vicinity of the CIs [1, 3]. Therefore, approaching the CIs, the
NACT become singular and provide the source for numerous phenomena that are
considered as topological effects and lead to several interesting subjects, including
the Longuet-Higgins or Berry phase [7,8], the open-path phase and the quantization
feature of the NACTs and so forth. CIs can be evolved between different electronic
states starting from triatomic systems to truly large polyatomic molecules. Several
important books, review articles and publications have demonstrated the existence
and relevance of such intersections in recent years [1–4, 9–11].

The nonadiabatic dynamics through conical intersections are inherently quan-
tum mechanical, involving strong mixing of several electronic states by nuclear
displacements. Early attempts to treat the dynamics at CIs were based on the
Landau-Zener-Stückelberg approach [12]. In parallel and later exact time-dependent
quantum wave packet methods have been employed to explore the dynamics through
conical intersections [13, 14]. Kuppermann et al. performed systematic calculations
for H3 to explore the geometric phase effect [15, 16]. Schinke and coworkers
performed many calculations of the photodissociation dynamics of small molecules,
which showed pretty good agreement with the experimental observations [17].
Although these approaches are quite accurate, they can only handle systems with
very limited number of nuclear degrees of freedom (about 5–6 modes). A quite
different approach to treat the multidimensional quantum dynamics through conical
intersections is to apply the multi-configuration time-dependent Hartree (MCTDH)
method [18–20]. This method is the only one at present which can treat the multi-
mode quantum dynamics of polyatomic systems with controllable accuracy up to
20–30 modes.

In 2005 Cederbaum and collaborators published [21] an important study to
describe the short-time dynamics through conical intersections in macrosystems. In
this three-effective mode model all the modes of the macrosystem were decomposed
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into a system part and an environment part, and then, using an orthogonal transfor-
mation, a new scheme was proposed to decompose further the environment modes.
As a result only three effective modes from the environment were obtained, which
together with the system modes govern the short time dynamics in macrosystems
[22, 23]. This method permits to undertake quantum dynamical calculations with
reasonable accuracy on a short time scale for conical intersection situations,
describing the effect of the environment with only three effective modes instead
of treating all environmental modes explicitly. Later on they suggested a further
step along this line by the construction of additional effective modes, which allow
to describe accurately the intermediate-time dynamics [24–26]. An alternative
approach to achieve another possible extension of this effective mode model has
been developed and successfully applied by I. Burghardt and coworkers [27–31] too.

As the three effective mode model starts from the linear vibronic coupling
Hamiltonian (LVC) [9] it may also have some relevance to generalize it and start
from the quadratic vibronic coupling Hamiltonian (QVC) to obtain the appropriate
quadratically extended (three)-effective mode equations. The motivation for this
work has arisen that, in addition to the numerous applications of the LVC model,
some other works in which the QVC model is used are also available [32, 35].
Our aim is to proceed along this direction. Following [21], we set up the QVC
three-effective mode Hamiltonian and, using it for the pyrazine molecule we can
calculate the autocorrelation function, the spectrum and the diabatic populations.
The obtained results can be compared to those calculated by the LVC three-effective
mode method.

The present article contains the following sections: In Sect. 16.2 the three-
effective mode model is developed for the quadratically extended case and analyzed.
In Sect. 16.3, the numerical results for the pyrazine molecule are presented and
discussed. Conclusions are given in the final section.

16.2 Theory

In the first part of this section the effective mode formalism based upon the
QVC Hamiltonian will be presented. Then, the impact of the outcome of this
decomposition of the environment Hamiltonian on observable properties like the
molecular spectrum will be discussed.

16.2.1 The Hamiltonian

Let us start with the Hamiltonian for an N-mode system described by the quadratic
vibronic coupling model. For a two state conical intersection in the diabatic
representation it has the form

H(QVC) =

(
E1 0
0 E2

)
+

N

∑
k=1

Hk +
1
2

N

∑
k,l=1

Hk,l (16.1)
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where

Hk =
ωk

2

(
p2

k + x2
k

)
1+

(
κ (1,1)

k xk κ (1,2)
k xk

κ (2,1)
k xk κ (2,2)

k xk

)
(16.2)

and

Hk,l =

(
γ(1,1)kl xkxl γ(1,2)kl xkxl

γ(2,1)kl xkxl γ(2,2)kl xkxl

)
. (16.3)

Here xk is the coordinate for the kth vibrational mode, pk is the canonical
momentum, and 1 is the 2 × 2 unit matrix. Mass- and frequency-weighted coordi-
nates are used here, as well as atomic units (h̄= 1). Each individual Hamiltonian Hk

consists of three different parts: The first one is a harmonic 0th-order Hamiltonian
with frequency ωk, the second term represents the linear elements which couple the
two electronic states, while the third contribution contains the quadratic and bilinear
terms. The quantities κ i,i

k , γ i,i
k,l and κ i, j

k , γ i, j
k,l (i = j) are the intrastate and interstate

coupling constants, respectively.
Next, we decompose the Hamiltonian equation (16.1) into a “system” Hamilto-

nian HSystem and a “bath” Hamiltonian HBath

H = HSystem +HBath (16.4)

where

HSystem =

(
E1 0
0 E2

)
+HS

(
y1,y2, · · · ,yNS

)
(16.5)

and

HBath =
NB

∑
k=1

ωk

2

(
p2

k + x2
k

)
1+

NB

∑
k=1

(
κ (1,1)

k xk κ (1,2)
k xk

κ (2,1)
k xk κ (2,2)

k xk

)

+
1
2

NB

∑
k,l=1

(
γ(1,1)kl xkxl γ(1,2)kl xkxl

γ(2,1)kl xkxl γ(2,2)kl xkxl

)
(16.6)

The separation of the full Hamiltonian can be arbitrary. If the system is a single
large molecule then one may collect the most relevant modes into HSystem, and the
remaining ones form HBath. However, if our system is a small molecule embedded
in an environment, the partition is obvious.

16.2.2 Effective Modes for the Environment

In Refs. [22, 25] the effective mode approach developed for the case of the LVC
Hamiltonian was presented and discussed in very detailed form. In what follows, we
start from the Hamiltonian HBath (Eq. 16.6) obtained from the QVC approximation
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and use exactly the same type of orthogonal transformations as before. To obtain the
QVC effective-mode Hamiltonian we repeat the same derivation.

Having the operator HBath we can split it further into two parts. To this end it is
useful to introduce a unitary transformation of the bath modes which decomposes
HBath into Heff and VBath components

HBath = Heff +VBath. (16.7)

Within this separation the sum of the (HSystem and Heff ) Hamiltonians,

H
′
= HSystem +Heff (16.8)

governs the short-time dynamics of the system, while the remaining part VBath

plays a role only at longer times. As in Refs. [22, 25] the Heff operator
is built up only from three (effective) modes, which couple the two elec-

tronic states. Now we can consider the elements ∑NB
k=1 κ (1,1)

k xk = κ̄ (1,1)X̃1,

∑NB
k=1 κ (1,2)

k xk = ∑NB
k=1 κ (2,1)

k xk = κ̄ (1,2)X̃2, and ∑NB
k=1 κ (2,2)

k xk = κ̄ (2,2)X̃3 appearing

in HBath as effective modes. Here κ̄ (1,1) ≡
√

∑NB
k=1 κ (1,1)

k

2
, κ̄ (1,2) ≡

√
∑NB

k=1 κ (1,2)
k

2
,

and κ̄ (2,2) ≡
√

∑NB
k=1 κ (2,2)

k

2
are the effective coupling constants [22, 25]. These

modes are, however, neither orthogonal to each other nor of physical relevance.
Nevertheless these terms can be expressed as linear combination of three orthogonal
modes. They may be constructed as follows [22, 25]

(X1,X2,X3)
T = U3×3

(
X̃1, X̃2, X̃3

)T
=U3×3V3×NB (x1,x2, · · · ,xNB)

T

= T3×NB (x1,x2, · · · ,xNB)
T (16.9)

Here the X1, X2 and X3 vectors are normalized and orthogonal to each other and
U3×3 is a matrix which orthogonalizes the modes X̃l , l = 1, 2, 3. Combining this
matrix U3×3 with the matrix V3×NB one can obtain the T3×NB transformation matrix
(U−1

3×3 = V3×NBT T
3×NB

) between the initial environmental modes and corresponding
orthonormalized ones. The V3×NB transformation matrix gives the connection
between the initial environmental modes and the intermediate normalized ones(
X̃1, X̃2, X̃3

)T
=V3×NB (x1,x2, · · · ,xNB)

T . Where

V3×NB =

⎛
⎜⎜⎝

κ (1,1)
1 /κ̄ (1,1) · · · κ (1,1)

NB
/κ̄ (1,1)

κ (1,2)
1 /κ̄ (1,2) · · · κ (1,2)

NB
/κ̄ (1,2)

κ (2,2)
1 /κ̄ (2,2) · · · κ (2,2)

NB
/κ̄ (2,2)

⎞
⎟⎟⎠ . (16.10)

By applying the transformation T3×NB to the original modes of the environment,

the terms ∑NB
k=1 κ (i, j)

k xk and 1
2 ∑NB

k,l=1 γ(i, j)kl xkxl of HBath(Eq. 16.6) can be expressed as

NB

∑
k=1

κ (i, j)
k xk = κ̄ (i, j)

3

∑
k=1

K(i, j)
k Xk (16.11)



290 G.J. Halász et al.

1
2

NB

∑
k,l=1

γ(i, j)kl xkxl =
NB

∑
k=1

d(i, j)
kk

2
X2

k +
NB

∑
k,l=1;k<l

d(i, j)
kl XkXl (16.12)

with the coefficients K(i, j)
k and d(i, j)

kl given by

K(i, j)
k ≡

NB

∑
l=1

κ (i, j)
l

κ̄ (1,1)
tkl and d(i, j)

kl ≡
NB

∑
m,m′=1

γ(i, j)mm′ tkmtlm′ (16.13)

where the tkl are the elements of the matrix T3×NB .
Now we are ready to derive the effective Hamiltonian envisaged in Eq. 16.7. For

the sake of completeness we also give the form of the operator VBath . The results
are

H(i, j)
eff = E

(i, j)
eff +H(i, j)

A +H(i, j)
B +H(i, j)

C +H(i, j)
D +H(i, j)

E

V (i, j)
Bath = E

(i, j)
Bath +H(i, j)

b +H(i, j)
c +H(i, j)

d +H(i, j)
e (i, j = 1,2) (16.14)

The explicit formulas for the different terms of the operators H(i, j)
eff and V (i, j)

Bath are
listed below

E
(i,i)
eff ≡ ∑3

k=1

(
1
2 Ωk +

1
4 d(i,i)

kk

)
E

(i,i)
Bath ≡ ∑NB

k=4

(
1
2 Ωk +

1
4 d(i,i)

kk

)
E

(1,2)
eff ≡ E

(2,1)
1 ≡ ∑3

k=1
1
4 d(1,2)

kk E
(1,2)
Bath ≡ E

(2,1)
r1 ≡ ∑NB

k=4
1
4 d(1,2)

kk

H(i, j)
A ≡ κ (i, j) ∑3

k=1 K(i, j)
k Xk

(
H(i, j)

a ≡ 0
)

H(i,i)
B ≡ ∑3

k=1
1
2 Ωk

(
P2

k +X2
k − 1

)
H(i,i)

b ≡ ∑NB
k=4

1
2 Ωk

(
P2

k +X2
k −1

)
H(i,i)
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i, j = 1,2 (16.15)

where κ̄ (i, j) (i, j = 1,2) are the effective coupling constants, and

dkl ≡
NB

∑
m=1

ωmtkmtlm Ωk = dkk =
NB

∑
m=1

ωmt2
km d(i, j)

kl =
NB

∑
m,m′=1

γ(i, j)mm′ tkmtlm′ . (16.16)

As can be seen from Eq. 16.15 above, only three modes contribute to Heff . The
remaining NB − 3 modes (NB is the number of bath modes) of the environment
appear in VBath. In the numerical calculations we will (completely) neglect VBath,
because this part of the Hamiltonian does not couple directly to the electronic
subsystem.
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16.2.3 Cumulants and Short-Time Dynamics
in the Quadratic Extension

Having the explicit form for the QVC Hamiltonian Heff we are able to study the
short-time dynamics through a conical intersection in a macrosystem. At this stage
we make contact with the autocorrelation function [36] and with the spectra which
can be experimentally measured. The autocorrelation function is

P(t) =< 0|exp(−iHt)|0 > (16.17)

and represents the overlap between the initial wave function and the wave function at
time t after excitation from the noninteracting electronic ground state to the coupled
electronic states. The resulting spectral intensity distribution P(E) is the Fourier
transform of the autocorrelation function. As is known, the short-time dynamics is
controlled by the first few cumulants [37]. These are related to the autocorrelation
function as they are the coefficients of an expansion of ln[P(t)] at t = 0. Due to the
above mentioned relation between the P(t) and P(E) functions, cumulants are re-
lated to observable features of the spectrum. Namely, the zeroth and first cumulants
give the total intensity and the center of gravity of the spectrum, respectively. The
second and third orders describe the width and major asymmetry of it.

In Refs. [22–25], it was proved that H
′

resulting from the decomposition of the
LVC Hamiltonian as

H = HSystem +HBath = HSystem +Heff +VBath = H
′
+VBath (16.18)

reproduces the cumulants of the total Hamiltonian H up to third order. It means, that
using either the H or the “effective” H

′
operators in the dynamical calculations one

obtains the same results for those properties of the spectra which are related to the
first four cumulants.

Based on this reasoning we have performed a similar analysis for the case of
our quadratic extension. As a result we could prove the equality of the moments
only up to second order [38]. One has to emphasize, that in the former case the
results obtained by using the LVC Hamiltonian H

′
were compared to those obtained

from the LVC Hamiltonian H. Correspondingly, in the present case, we compare
the cumulants to the QVC Hamiltonians H

′
and H. It should be recognized, that

generally the QVC Hamiltonian H is more accurate than the LVC Hamiltonian, as
it provide a better description of the actual electronic potential energy surfaces.

16.3 Numerical Results and Discussion

To test the performance of the QVC effective-mode scheme, one has to find a numer-
ically solvable sample system. For this purpose we choose the pyrazine molecule as
an example. In the decomposition of H = HSystem +HBath, and HBath = Heff +VBath
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we put all the 24 modes of the molecule into the HBath operator. In this situation the
number of system modes is zero (NS = 0), and only three effective modes describe
the short-time dynamics in this system.

In our computational work, on which the following numerical analysis is based,
the multiconfiguration time-dependent Hartree (MCTDH) method is used [18–20].
This method is, the only one at present, which can propagate the multidimensional
wave packet and treat the multi-mode quantum dynamics of polyatomic systems
with controllable accuracy up to 20–30 modes.

In the actual calculations, we will present autocorrelation functions, (photoelec-
tron) spectra and diabatic populations. The autocorrelation is calculated according
to Eq. 16.17. The photoelectron spectrum is given by a Fourier transform of the
autocorrelation function obtained from a long propagation in real time. To compute
the diabatic population we use the formula

PSF(t) =< ψSF(t)|ψSF(t)>, (16.19)

where PSF(t) corresponds to the population or probability of being on the ground
(SF = G) or excited (SF = E) state diabatic surface. Here ψSF is the diabatic
nuclear wave function for the ground (SF = G) or excited (SF = E) electronic
state, respectively.

Four kinds of computations were performed and are compared to each other. (A)
An exact calculation (based on the QVC Hamiltonian) taking into account all the
24 modes of pyrazine. This calculation has already been presented in [32]. (B) A
calculation where the LVC Hamiltonian was used. In this case, due to symmetry
reasons only six vibrational modes are relevant. Using different parameters, and
including four of these six modes, similar work has also been done [33, 34]. (C) A
calculation using the effective mode scheme based on the LVC Hamiltonian. Here
only three effective modes were chosen to describe the short-time dynamics [26].
(D) Calculations with our method (effective mode formalism based on the QVC
Hamiltonian) described in the present paper taking again into account three effective
modes. These modes of course are different from those ones used in (C) as they
come from different Hamiltonians.

Figure 16.1 displays the autocorrelation function up to 50 fs for the four
calculations listed above, which we abbreviate as the 24-mode, 6-mode, 3(LVC)-
mode, and 3(QVC)-mode cases, respectively. Comparing the curves one notices
that three of them corresponding to the 24-mode, 6-mode, and 3(QVC)-mode, are
in excellent agreement up to 20 fs. The 3(LVC)-mode curve differs from these after
10 fs. Then, around 20 fs these three curves deviate from each other and a recurrence
occurs between (∼20–40 fs) for each of the four functions. This recurrence is the
smallest for the 24-mode curve and the largest for the two 3(LVC, QVC)-mode
one. The 6-mode curve goes in the middle within this interval. The two “3(LVC,
QVC)-mode” recurrences have similar magnitude but they are shifted to each other
by ∼5–6 fs. At longer times, after 45 fs the three curves (except for the 3(LVC)-
mode) go again roughly together and only the 3(LVC)-mode differs from them. We
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Fig. 16.1 The autocorrelation functions for the pyrazine molecule. Solid line: exact 24-mode
result. Dashed line: result for the linear vibronic coupling model (6-mode). Dotted line: result
for the three effective mode model. Dashdotted line: result for our quadratically extended three
effective mode approach

conclude that although the shape of the 3(LVC)-mode and 3(QVC)-mode curves
are very similar and they are only shifted to each other by ∼5–6 fs, the first 20 fs the
present approach is much better. Practically, it very accurately reproduces the result
of the exact short-time dynamics of the 24-mode calculation.

In Fig. 16.2(A–D) we present the spectra as a function of energy for all four cases.
In Fig. 16.2A we show the exact 24-mode result and for the sake of comparison the
remaining Fig. 16.2(B–D) also display this curve. It was already mentioned in the
theory section that the 3(QVC)-mode model reproduces the zeroth- to second-order
cumulants of the molecule, connected to observable properties of the spectrum in
such experiments. These are the total intensity, the position of the maximum and
the with of the spectrum. Due to the absence of theoretical proof concerning the
“conservation” of the third cumulant, which is related to the major asymmetry of
the spectra, we can not discuss this feature with certainty. As expected the spectra
obtained by the 6-mode model (see Fig. 16.2B) is most similar to the exact one.
However the global shape of the exact spectrum is more or less reproduced by
our 3(QVC)-mode formulas too. Some oscillations appear in particular within the
(0–0.3 eV) interval, but the picture is definitely closer to the exact one than that
obtained by the 3(LVC)-mode approach. Apart from these oscillations one can see
that the position of the maximum, the width and even the main asymmetry of the
spectrum are satisfactorily reproduced by our present method.

The last bundle of figures shows the diabatic populations. Each panel on
Fig. 16.3 shows the diabatic lower and diabatic upper states for one particular
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Fig. 16.2 The spectra for the pyrazine molecule. The damping parameter is 30 fs. All panels
display the result for the exact 24-mode model (with dotted lines in the background). Panel A: result
(dotted line) for the exact 24-mode model. Panel B: result (solid line) for the linear vibronic
coupling model (6-mode). Panel C: result (solid line) for the three effective mode model. Panel
D: result (solid line) for our quadratically extended three effective mode approach

case among the four investigated ones. It is now noticed that there is practically
no difference between the curves up to 4 fs. At longer times, some effect can be
seen. The oscillation “frequency” of the population functions for the three other
situations are more or less the same, but definitely smaller than that produced by the
3(QVC)-mode. If we compare the exact result (panel A) with that of 3(QVC)-mode
(panel D), we see an overall good agreement concerning the shape of the functions,
but the values of them are shifted to each other quite significantly. Moreover, the
functions in the 24-mode, and 6-mode pictures are smoother than those obtained by
the two effective-mode models. For this latter case, there is additionally a highly
structured shape of the diabatic population functions too.
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Fig. 16.3 The diabatic-state populations for the pyrazine as a function of time. Panel A: the
population for the lower state (solid line) and for the upper state (dotted line) using the exact
24-mode model. Panel B: the population for the lower state (solid line) and for the upper state
(dotted line) using the linear vibronic coupling model (6-mode). Panel C: the population for the
lower state (solid line) and for the upper state (dotted line) using the three effective mode approach.
Panel D: the population for the lower state (solid line) and for the upper state (dotted line) using
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16.4 Conclusions

A formalism, based on the QVC Hamiltonian is developed and used to describe
the short-time dynamics of large molecules or molecule-environment systems for
a conical intersection situation. Our method might be considered as one possible
extension of the earlier three effective-mode model based on the LVC Hamiltonian.
In both schemes, the macrosystem is decomposed into system modes and an
environment. It is demonstrated that the short-time dynamics of the full system can
reasonably be described using the system modes, augmented by only three effective
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modes. These effective coordinates can be obtained from the environmental modes
by applying a suitable orthogonal transformation.

It is known that the short-time dynamics is controlled by the first few cumulants.
In a cumulant expansion of the autocorrelation function, we recover the exact
cumulants up to the second order. It means that the zeroth-, first-, and second-order
cumulants of H, Eq. 16.1, and those of H

′
(Eq. 16.8), are identical. This provides a

guarantee that using the operator H
′

in the calculations, the intensity, the center of
gravity and the width of the spectrum can be reproduced reasonably well. We note,
however, that this kind of “conservation” of the cumulants are fulfilled up to third
order when concerning the LVC three-effectiv mode decomposition.

As a sample system we used the pyrazine molecule. Fortunately, we could use
the MCTDH method to compute the dynamics of all the 24 modes, thus providing
numerically exact results for comparison. Four different kinds of computations were
performed and compared to each other. Based on these results we conclude that our
QVC three-effective mode scheme well reproduces the short-time dynamics and
the overall shape of the spectra. In particular, the autocorrelation function is more
accurate up to the first 20 fs, compared to that obtained by the LVC three-effective
mode approach.
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Chapter 17
Theoretical Methods for Nonadiabatic
Dynamics “on the fly” in Complex Systems
and its Control by Laser Fields

Roland Mitrić, Jens Petersen, Ute Werner, and Vlasta Bonačić-Koutecký

Abstract We present a general theoretical approach for the simulation and control
of ultrafast processes in complex molecular systems. It is based on the combination
of quantum chemical nonadiabatic dynamics “on the fly” with the Wigner distri-
bution approach for simulation and control of laser-induced ultrafast processes.
Specifically, we have developed a procedure for the nonadiabatic dynamics in
the framework of time-dependent density functional theory using localized basis
sets, which is applicable to a large class of molecules and clusters. This has
been combined with our general approach for the simulation of time-resolved
photoelectron spectra that represents a powerful tool to identify the mechanism of
nonadiabatic processes, which has been illustrated on the example of ultrafast pho-
todynamics of furan. Furthermore, we present our “field-induced surface hopping”
(FISH) method which allows to include laser fields directly into the nonadiabatic
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molecular dynamics simulations and thus to realistically model their influence on
ultrafast processes. On the example of optimal dynamic discrimination of two
almost identical flavin molecules we demonstrate that experimentally optimized
laser fields can be directly used in the framework of the FISH method to reveal
the dynamical processes behind the optimal control.

17.1 Introduction

The challenge for the theory in the field of ultrafast dynamics is two-fold: The
appropriate description of nonadiabatic processes due to the breakdown of the
Born-Oppenheimer approximation in the vicinity of conical intersections or avoided
crossings, and the simulation of time-resolved spectroscopic signals allowing
for the interpretation of experimental observables. The full quantum mechanical
treatment of nuclear dynamics is severely limited to small systems or models with
reduced dimensionality since it requires the precalculation of global potential energy
surfaces (PES). In contrast, this is not necessary for more approximate methods
based on the propagation of classical trajectories which can be carried out “on
the fly” and thus offer a convenient alternative. The basic idea of the molecular
dynamics (MD) “on the fly” [1] is to compute the forces acting on the nuclei
from the electronic structure calculations only when they are needed during the
propagation. This is in particular advantageous for systems which do not contain
“chromophore-type” subunits and thus no separation in active and passive degrees
of freedom is possible.

The conceptual framework for the – semiclassical simulation of ultrafast spectro-
scopic observables is provided by the Wigner representation of quantum mechanics
[2, 3]. Specifically, for the ultrafast pump-probe spectroscopy using classical
trajectories, methods based on the semiclassical limit of the Liouville-von Neu-
mann equation for the time evolution of the vibronic density matrix have been
developed [4–8]. Our approach [4, 6–8] is related to the Liouville space theory of
nonlinear spectroscopy developed by Mukamel et al. [9]. It is characterized by the
ability to approximately describe quantum phenomena such as optical transitions
by averaging over the ensemble of classical trajectories. Moreover, quantum correc-
tions for the nuclear dynamics can be introduced in a systematic manner, e.g. in the
framework of the “entangled trajectory method” [10,11]. Alternatively, these effects
can be also accounted for in the framework of the multiple spawning method [12].
In general, trajectory-based methods require drastically less computational effort
than full quantum mechanical calculations and provide physical insight in ultrafast
processes. Additionally, they can be combined directly with quantum chemistry
methods for the electronic structure calculations.

In this context, one of the most efficient approaches is based on mixed quantum-
classical dynamics in which the nonadiabatic effects are simulated using Tully’s
surface hopping (TSH) method [13, 14]. It is applicable to a large variety of
systems ranging from isolated molecules and clusters to complex nanostructures
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interacting with different environments. In the TSH method classical trajectories are
propagated in different electronic states and exhibit stochastic transitions between
the states according to quantum mechanical hopping probabilities. The necessary
ingredients for TSH simulations are forces in ground and excited electronic states
as well as nonadiabatic couplings. These can be calculated using the whole spectrum
of methods for the electronic structure, such as ab initio “frozen ionic bond”
approximation [4], ab-initio configuration interaction (CI) [15], restricted open-shell
Kohn-Sham density functional theory (DFT) [16], linear response time-dependent
density functional theory (TDDFT) [17–23] as well as semiempirical methods [24–
27]. In addition, recently the applications have been extended to the mixed quantum
mechanical-molecular mechanical (QM/MM) methods allowing to treat complex
systems such as photoactive proteins [28–32] or chromophores interacting with the
environment [33].

A further important aspect in the field of ultrafast science is the introduction of
electric laser fields into molecular dynamics. This opens the perspective for control-
ling molecular processes by shaped laser pulses and allows for new applications in
which the light is used as photonic catalyst in chemical reactions [34,35]. The idea to
control the selectivity of product formation in a chemical reaction using ultrashort
pulses is based on exploitation of the coherence properties of laser radiation due
to quantum mechanical interference effects. For this, either the proper choice of the
pulse phase or of time duration and delay between the pump and the probe (or dump)
step can be employed. Pioneering conceptual work [36–40] was followed by studies
using variationally optimized electric fields, [41, 42] allowing to address further
application aspects [42–47]. Technological progress due to fs-pulse shapers allowed
manipulation of ultrashort laser pulses [48–52]. Finally, closed-loop learning control
(CLL) was introduced by Judson and Rabitz [53]. The first experimental realizations
of this approach [54, 55] opened the possibility to apply optimal control to more
complex systems.

In order to establish the connection of the experimentally optimized pulse shapes
with the underlying dynamical processes as well as between theoretically and
experimentally optimized pulses, developments of theoretical methods are needed
which allow for the design of interpretable laser pulses for complex systems. To
avoid the obstacle of precalculating multidimensional PES, ab-initio adiabatic and
in particular nonadiabatic MD “on the fly” is particularly suitable provided that
an accurate description of the electronic structure is feasible [56]. In addition, this
approach offers the advantages that the MD “on the fly” can be applied to relatively
complex systems and can be also directly connected with different procedures for
optimal control [56–58]. Moreover, as recently proposed by us, it is particularly
convenient to introduce the field directly in the nonadiabatic dynamics which can
be then optimized as desired [59].

In this contribution we present the development of theoretical methods for the
simulation of nonadiabatic dynamics and its manipulation by laser fields in complex
systems accounting for all degrees of freedom. Therefore, we will first describe
nonadiabatic dynamics “on the fly” in the frame of TDDFT in Sect. 17.2 and then
the procedure for the simulation of time-resolved photoelectron spectra (TRPES)
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based on the nonadiabatic dynamics in Sect. 17.3. The application of our theoretical
approach will be illustrated on the ultrafast photodynamics of furan and compared
with the experimental TRPES in Sect. 17.4. Furan is a fundamental five membered
aromatic heterocycle serving as a structural unit in various biological substances.
Then, in Sect. 17.5 we introduce the field-induced surface hopping method (FISH)
which is based on the combination of quantum electronic state population dynamics
with classical nuclear dynamics carried out “on the fly”. FISH opens the possibility
of broad applications for simulation of spectroscopic observables as well as to
control dynamics employing shaped laser fields. The scope of the FISH method will
be illustrated in Sect. 17.6 on the optimal dynamic discrimination (ODD) [60, 61]
of the two molecules flavin mononucleotide (FMN) and riboflavin (RBF), which
exhibit almost identical spectroscopical features [62,63]. The selective identification
of target molecules in the presence of a structurally and spectroscopically similar
background by optimally shaped laser fields opens prospects for new applications
in multiple areas of science and engineering. Finally, conclusions and outlook will
be given in Sect. 17.7.

17.2 Nonadiabatic Dynamics “on the Fly” in the Framework
of Time-Dependent Density Functional Theory (TDDFT)

The TDDFT represents an efficient generally applicable method for the treatment
of the optical properties in complex systems whose performance and accuracy
have been steadily improved [64, 65]. Due to this fact, a variety of approaches
for performing TDDFT-based nonadiabatic dynamics simulations “on the fly” have
been developed and successfully applied in recent years [16–18, 20–23]. TDDFT is
still one of the most practical means to address a large class of problems if for the
chosen system no description of long-range charge transfer transitions, dispersion
interaction and multireference character is needed. Moreover, recent developments
of new functionals promise to substantially improve the description of long-range
charge transfer transitions [66–70]. In connection with nonadiabatic processes, the
ability of linear response TDDFT to describe conical intersections between excited
states and the ground state has been critically examined in the literature [22].
The conclusion has been made that while the topology of the S1–S0 crossing region
may be not exact, this does not substantially influence the relaxation pathways
and photochemistry of the studied examples. Successful applications of TDDFT
nonadiabatic dynamics steadily grow and have already significantly contributed
towards understanding of the mechanisms of photochemical processes in complex
systems [17–19,22,71] and have also been verified by comparison with experimental
data [19, 72].

In this section we briefly outline our formulation of the nonadiabatic dynamics in
the framework of TDDFT using localized Gaussian basis sets combined with Tully’s
surface hopping (TSH) method [13]. Within the TSH procedure, nonadiabatic
processes are simulated by propagating ensembles of classical trajectories parallel
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to the solution of the time-dependent Schrödinger equation which determines the
quantum-mechanical electronic state populations. For this purpose, along each
classical trajectory an electronic wavefunction |Ψ(r;R(t))〉 is defined in terms of
the adiabatic electronic state wavefunctions according to:

|Ψ(r;R(t))〉= ∑
K

CK(t) |ΨK(r;R(t))〉 , (17.1)

where |ΨK(r;R(t))〉 represents the wavefunction for the electronic state K while
the CK(t) are the time-dependent expansion coefficients. The time evolution of the
expansion coefficients for a given trajectory can be obtained by numerical solution
of the time-dependent Schrödinger equation:

ih̄ĊK(t) = EK(R(t))CK(t)− ih̄∑
I

CI(t)

〈
ΨK(r;R(t))

∣∣∣∣∂ΨI(r;R(t))
∂ t

〉
(17.2)

where the bracket in the second term corresponds to the nonadiabatic coupling DKI

between the states I and K, which can be approximately calculated using the finite
difference approximation for the time derivative [73]:

DKI

(
R
(

t +
Δ t
2

))
≈ 1

2Δ t
(〈ΨK(r;R(t)) |ΨI(r;R(t +Δ t)) 〉

− 〈ΨK(r;R(t +Δ t)) |ΨI(r;R(t)) 〉) (17.3)

where Δ t is the timestep used for the integration of the classical Newton’s equations
of motion.

The numerical solution of the Eq. 17.2, obtained e.g. using the fourth order
Runge-Kutta procedure, provides the time-dependent electronic state coefficients
CK(t) which can be used to define the hopping probabilities that are needed for the
electronic state switching procedure in the frame of the TSH approach. The hopping
probabilities PI→K for switching from state I to state K can be either calculated after
each nuclear dynamics time step Δ t or, alternatively, after each of the much smaller
time steps Δτ used for the integration of the electronic Schrödinger equation (17.2),
as recently introduced by us [18].

In the latter case, the hopping probability is defined as:

PI→K(τ) =−2
Δτ[Re(C∗K(τ)CI(τ)DKI(τ))]

CI(τ)C∗I (τ)
. (17.4)

An alternative procedure for calculating the hopping probabilities can be also
based only on the occupations of the electronic states, represented by diagonal
density matrix elements ρII =C∗I (t)CI(t) and ρKK =C∗K(t)CK(t) [74, 75].

The probability for hopping from state I to state K can then be defined as:

PI→K =Θ(−ρ̇II)Θ(ρ̇KK)
−ρ̇II

ρII

ρ̇KK

∑L Θ(ρ̇LL)ρ̇LL
Δ t (17.5)



304 R. Mitrić et al.

This probability is nonzero only if the population of the Ith state is decreasing
and the population of the Kth state is increasing, which is represented by the Θ
function. The summation in the denominator is performed over all states L whose
population is also growing. It should be pointed out that this equation requires only
the calculation of the hopping probabilities at each nuclear time step due to the fact
that populations generally vary more slowly than the coherences C∗K(τ)CI(τ) which
are employed in Eq. 17.4. This is particularly useful in the context of field-driven
multistate dynamics during which the laser field is varying very fast as it will be
shown in Sect. 17.6.

The necessary ingredients for performing TSH simulations are the forces (energy
gradients) in the ground and excited electronic states as well as the nonadiabatic
couplings DKI(R(t + Δ

2 )). While the calculation of excited state forces in the
framework of TDDFT is already a standard procedure available in many commonly
used quantum chemical program packages, the procedure for the calculation of
nonadiabatic couplings in the framework of linear response TDDFT has been
developed only recently using plane wave basis sets by Röthlisberger et al. [21–23],
as well as using localized Gaussian basis sets by us [17, 18]. In the following after
introducing the representation of the electronic wave function within the Kohn-
Sham linear response method, we briefly outline our approach for the calculation
of the nonadiabatic couplings using localized Gaussian basis sets.

In order to calculate nonadiabatic couplings in the framework of the TDDFT
method a representation of the wavefunction based on Kohn-Sham (KS) orbitals is
required. Since in the linear response TDDFT method the time-dependent electron
density contains only contributions of single excitations from the manifold of
occupied to virtual KS orbitals, a natural ansatz for the excited state electronic
wavefunction is the configuration interaction singles (CIS)-like expansion:

|ΨK(r;R(t))〉= ∑
i,a

cK
i,a

∣∣ΦCSF
i,a (r;R(t))

〉
. (17.6)

where |ΦCSF
i,a (r;R(t))〉 represents a singlet spin adapted configuration state function

(CSF) defined as:

∣∣ΦCSF
i,a (r;R(t))

〉
=

1√
2

(∣∣∣Φaβ
iα (r;R(t))

〉
+
∣∣∣Φaα

iβ (r;R(t))
〉)

, (17.7)

where |Φaβ
iα (r;R(t))〉 and |Φaα

iβ (r;R(t))〉 are Slater determinants in which one elec-
tron has been promoted from the occupied orbital φi to the virtual orbital φa with spin
α or β , respectively. This ansatz can be used to calculate the nonadiabatic coupling
as described below, but more generally, it can provide the expectation values of any
observable of interest, e.g. transition dipole moments between excited states as we
have shown in Ref. [19]. In the context of nonadiabatic dynamics the accuracy of
this representation of the wavefunction has been previously demonstrated in our
work on pyrazine [17, 19] and benzylideneaniline [18]. The expansion coefficients



17 Nonadiabatic Dynamics in Complex Systems 305

cK
i,a in Eq. 17.6 are determined by requiring that the wavefunction in Eq. 17.6 gives

rise to the same density response as the one obtained by the linear response TDDFT
procedure. Their precise connection to the TDDFT eigenvectors has been shown in
Ref. [18].

The electronic structure of isolated molecular systems is most naturally described
by using Gaussian type atomic orbitals (AO’s) as basis functions in contrast to plane
waves, which represent the natural choice in extended periodic systems. Here we
present the approach for the calculation of the nonadiabatic couplings using KS
orbitals expanded in terms of localized Gaussian atomic basis sets. This formulation
is particularly convenient since it can be coupled with commonly used quantum
chemical DFT codes.

In order to calculate the nonadiabatic couplings according to the discrete
approximation given by Eq. 17.3 the overlap between two CI wavefunctions at times
t and t +Δ t along the nuclear trajectory R(t) is needed:

〈ΨK(r;R(t)) |ΨI(r;R(t +Δ t)) 〉
= ∑

ia
∑
i′a′

c∗Ki,acI
i′,a′

〈
ΦCSF

i,a (r;R(t))
∣∣∣ΦCSF

i′ ,a′ (r;R(t +Δ t))
〉

(17.8)

The overlap of the CSF’s in Eq. 17.8 can be reduced to the overlap of singly
excited Slater determinants using Eq. 17.7, which can be further decomposed to the
overlap of spatial KS orbitals φi(t) and φ ′i′(t +Δ t) as described in Refs. [17, 18].
The spatial KS orbitals can be expressed in terms of atomic basis functions bk(R(t))
according to:

φi(t) =
n

∑
k=1

cik(t) bk(R(t)) (17.9)

with the molecular orbital (MO) coefficients cik(t). This leads to the final expression
for the overlap integral of two spatial KS orbitals at times t and t +Δ t:

〈
φi(t)

∣∣∣φ ′j′(t +Δ t)
〉
=

n

∑
k=1

n

∑
m=1

cik(t)c
′
jm(t +Δ t)

〈
bk(R(t))

∣∣b′m(R(t +Δ t))
〉
.

(17.10)

It should be noticed that since the two sets of basis functions bk(R(t)) and
b′m(R(t + Δ t)) are centered at different positions R(t) and R(t + Δ t) they do
not form an orthonormal basis set. Therefore, in order to calculate nonadiabatic
couplings along each classical trajectory the overlap integrals between moving basis
functions are calculated at successive nuclear time steps and the KS MO coefficients
and linear response eigenvectors are utilized to transform the overlap integrals.
In order to eliminate possible random phase variations of the nonadiabatic coupling,
the phases of the CI-like wavefunction coefficients (cf. Eq. 17.6) and of the Kohn-
Sham orbital coefficients (cf. Eq. 17.9) are aligned in each nuclear timestep to the
phases of the previous step.
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17.3 Simulation of Time-Resolved Photoelectron
Spectra (TRPES)

The time-resolved photoelectron spectroscopy represents a powerful approach for
interrogation of nonadiabatic processes. The basic principle of this technique in-
volves the creation of a coherent superposition of the ground and excited electronic
states of the studied system by an ultrashort laser pulse. This gives rise to a
wavepacket in the excited electronic states whose time evolution is subsequently
probed through the photoionization by a time-delayed ultrashort probe pulse.
The kinetic energy and angular distribution of the released photoelectrons reflect
therefore the character of the electronic state which has been ionized. Since during
the excited state dynamics this character can change, e.g. due to the passage through
a conical intersection, the above-mentioned observables offer a sensitive probe for
the nonadiabatic transitions [76].

Our method for the simulation of TRPES pump-probe signals in the frame of
the Wigner distribution approach [6,56] is based on the propagation of an ensemble
of classical trajectories “on the fly”. For weak electric fields of Gaussian form, a
perturbation theory expression for the final quantum state populations leads to an
analytical formula for the pump-probe signal. This approach provides a general
tool for simulation of ultrafast processes and femtosecond signals in complex
systems, involving both adiabatic and nonadiabatic dynamics [56]. However, for the
simulation of TRPES a modification has to be introduced which takes into account
that a part of the probe-pulse energy Epr changes into the photoelectron kinetic
energy (PKE). Furthermore, the vibrational states of the ionized system can be also
taken into account as discussed in Ref. [77]. The photoionization process produces
photoelectrons with kinetic energies E ranging from zero up to the maximal value
of PKEmax = Epr− IP(tD), where IP is the ionization potential. The intensity of the
photoelectrons at a particular PKE is proportional to the electronic transition dipole
moments μik between the bound state i and the ionized continuum state k as well
as to the Franck-Condon (FC) factors Fik,ν between the neutral and the individual
cationic vibrational states. The TRPES signal at the time delay tD in the frame of
the Wigner distribution approach assumes then the following analytic form:

STRPES(tD,E) ∼
∫ ∫

dq0dp0

∫ ∞

0
dτ1 exp

{
−(τ1−tD)

2

σ2
pu+σ2

pr

}
∑
i,k

|μik(q(τ1;q0,p0),E)|2

×
∫ ∞

0
dEk,νFik,ν exp

{
−σ2

pr

h̄2

[
Epr−Vik(q(τ1;q0,p0))−Ek,v−E

]2

}

×exp

{
−σ2

pu

h̄2 [Epu−Vi0(q0)]
2

}
P00(q0,p0) (17.11)



17 Nonadiabatic Dynamics in Complex Systems 307

Since in our classical simulation the FC factors are not available, we have
assigned them a constant value for the whole PKE interval [0,PKEmax] [56, 78].
Therefore the integration over the vibrational levels Ek,ν of the ionized system can
be performed analytically. This approximate treatment is verified by comparison
with experimental TRPES signals [79]. In the above expression σpu (σpr) and
Epu = h̄ωpu (Epr = h̄ωpr) are the pulse durations and excitation energies for
the pump and probe step with time delay tD. Vki(q1(τ1;q0,p0)) labels the time-
dependent energy gap between the electronic state i in which the dynamics takes
place and the ionized electronic state k that is used for probing. Both are obtained
from the ab initio MD “on the fly” [56]. The initial coordinates and momenta q0 and
p0 needed for the dynamics simulation can be sampled from a canonical Wigner
distribution for all normal modes at the given temperature according to:

P00(q0,p0) =
N

∏
i=1

αi

π h̄
exp

[
− αi

h̄ωi
(p2

i0 +ω2
i q2

i0)

]
, (17.12)

where ωi represents the frequency of the i’th normal mode and αi = tanh(h̄ωi/2kbT )
[56]. Vi0(q0) are the excitation energies of the initial ensemble. The signal is
calculated by averaging over the whole initial distribution P00(q0,p0) given by
the ensemble of trajectories. Notice, that expression (17.11) is valid under the
assumption of weak electric fields due to the perturbation theory treatment [6, 56].

The simulation of the TRPES thus involves three steps: (1) The ensemble
of initial conditions is generated by sampling the Wigner distribution function
corresponding to the canonical ensemble at the given temperature. (2) The ensemble
of trajectories is propagated using nonadiabatic MD “on the fly”. (3) The TRPES is
calculated by averaging over the ensemble of trajectories employing the analytical
expression (17.11).

17.4 Application of the Nonadiabatic Dynamics “on the fly”
for the Simulation of Ultrafast Observables of Furan:
Comparison with Experiment

The simulation of ultrafast observables such as TRPES allows to make direct
comparison with experimental data and thus to reveal the dynamical processes
involved in the excited state relaxation and their time scales. Moreover, the new
methods for simulation of ultrafast processes challenge also the development of
novel experimental techniques with increasing resolution.

We wish to show that ultrafast time-resolved photoelectron imaging (TR-PEI)
together with nonadiabatic ab initio dynamics “on the fly” accounting for all degrees
of freedom allows to elucidate precisely the photophysics and photochemistry
of furan. Our theoretical simulation of photoionization is based on the methods
described in Sects. 17.2 and 17.3. The theoretical analysis is focused on the time-
dependent photoelectron signal intensity and PKE distribution. The complementary
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Fig. 17.1 Comparison of the theoretical thermally broadened absorption spectrum of furan (red)
for the first S1[

1A2(π3s)]← S0(
1A1) and second S2[

1B2(ππ∗)]← S0(
1A1) excited state obtained

from 240 structures sampled from the thermal ensemble at T= 300 K with the measured absorption
spectrum at room temperature (blue). The discrete absorption lines for each member of the
ensemble were convoluted with a Lorentzian function with a width of 0.1 eV and added together.
The equilibrium structure of furan in the neutral ground state as well as the dominant excitations
of the transitions to the S1 (π3s) and S2 (ππ∗) states are also shown

experimental data have been obtained by TR-PEI with an unprecedented time
resolution of 22 fs [79] using sub-20 fs pulses at 260 and 200 nm generated by the
multi-colour filamentation method [80, 81]. The combination of the experimental
findings with the theoretical simulations reveals ultrafast deactivation of excited
furan through internal conversion from S2 over S1 to the ground state [79].

The simulations have been performed in a manifold consisting of the ground
and the three lowest excited states. The energies, gradients as well as nonadiabatic
couplings needed to carry out the nonadiabatic dynamics have been calculated “on
the fly” using the hybrid PBE0 functional [82] combined with the 6-311G**++
basis set [83] containing also diffuse functions. This level of theory for electronic
structure describes accurately the stationary absorption properties and is suitable
for performing the dynamics simulations as discussed in Ref. [79]. Notice that
recently the accuracy of the TDDFT method for the description of nonadiabatic
dynamics in heterocyclic organic molecules has been validated against the highly
correlated multireference ab initio methods on the example of the pyrrole molecule
[84]. For the further computational details cf. Ref. [79] Based on the nonadiabatic
MD trajectories, the TRPES signal was calculated according to Eq. 17.11, assuming
a constant value for the transition dipole moments μik in the whole energy range.

The experimental photoabsorption spectrum of furan vapour at room temperature
as well as our TDDFT absorption spectrum simulated also at room temperature are
shown in Fig. 17.1. The good agreement between experiment and theory allows
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Fig. 17.2 Time-dependent ionization energy IE calculated along 240 nonadiabatic trajectories
for (a) the cationic ground state D0 and (b) the cationic first excited state D1. The red line at
4.7 eV indicates the experimental probe pulse energy. Reprinted with permission from Ref. [79].
Copyright 2010, American Institute of Physics

for straightforward assignment of the transitions. The strong absorption feature
between 5.8 and 6.2 eV is caused by the S2[

1B2(ππ∗)]← S0(
1A1) transition. The

weak feature in the low energy part (5.6–6.0 eV) of the absorption spectrum is due
to the S1[

1A2(π3s)] ← S0(
1A1) transition involving the Rydberg 3s state, which

is in agreement with previous work [85, 86]. Since both the oscillator strength of
this state and the overlap with the pump pulse spectrum peaked at 6.2 eV are very
small we expect that the dominant excitation occurs to the S2 state which overlaps
well with the pump pulse spectrum. This state is thus used as the starting point for
the nonadiabatic dynamics simulations discussed below. The probe pulse (260 nm,
4.7 eV) has no overlap with the UV absorption spectrum of furan. Since the sum of
the pump (6.2 eV) and probe (4.7 eV) photon energies is 10.9 eV, it is energetically
possible to ionize furan at equilibrium geometry to two cation states, D0 (ionization
energy, IE= 8.9 eV [87]) and D1 (IE= 10.3 eV [88]) by (1+1’) resonance-enhanced
multiphoton ionization.

The nature of the ionization process can be determined from the calculated
time-dependent ionization energies between the current excited state in which the
dynamics takes place, and the cationic D0 and D1 states as shown in Fig. 17.2. It can
be seen that at very short time <10 fs both cationic states are accessible by the
experimental probe pulse, but after t >10 fs the only energetically possible transition
occurs to the D0 state. After the ensemble of trajectories returns to the ground state
S0 no cationic states are accessible anymore, therefore, no photoionization occurs.
This is clearly evidenced by the simulated TRPES shown in Fig. 17.3a which reflects
ultrafast deactivation of furan by the decreasing intensity of the signals in the time
regime between 10 and 100 fs. The calculated photoelectron intensities at selected
PKEs presented in Fig. 17.3c show an increase of the signals for decreasing PKEs,
exhibiting maxima at short time delays which are shifting to longer time delays for
lower PKE values. This is in agreement with the experimental findings presented
in Fig. 17.3b and d, which were obtained by photoelectron imaging spectroscopy
with a time resolution of 22 fs [79]. It should be noticed that for very short time
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Fig. 17.3 (a) Simulated TRPES of furan. (b) Experimental TRPES obtained from pump-probe
photoelectron imaging spectroscopy of furan. (c) Time evolution of theoretically obtained pho-
toelectron intensities at selected PKE values. (d) Time-evolution of experimental photoelectron
intensities at selected PKEs

delays our simulation provides only qualitative results for TRPES, since we excite
S2 instantaneously and do not consider the overlap between pump and probe pulses.

The agreement between simulated and measured TRPES in the low energy
regime as evidenced by Fig. 17.3 allows for complete assignment of the underlying
ultrafast processes to the measured features. For most trajectories, the transition
from S2 to S1 occurs at very short times, resulting in a lifetime of the adiabatic
S2 state of 9.2 fs, as can be seen from the time-dependent adiabatic populations
shown in Fig. 17.4a. The S2 population is almost completely transferred into the
S1 state after 20 fs. The lifetime of the adiabatic S1 state is ∼60 fs, and return to
the ground state is completed after 140 fs (cf. Fig. 17.4a) which is also reflected
in the decrease of TRPES signal intensities. Despite the very fast S2–S1 transition,
the π −π∗ diabatic character remains largely preserved, such that transition to the
ground state occurs mostly directly from the π − π∗ state. This is illustrated in
Fig. 17.4b which shows diabatic state populations obtained by decomposing the
adiabatic populations in terms of the diabatic characters of the involved states. As
can be seen, the diabatic π − 3s Rydberg state is only weakly populated during the
simulation. Although the theoretically obtained lifetime of the S1 state of ∼60 fs is
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Fig. 17.4 Time-dependent (a) calculated adiabatic and (b) approximate diabatic populations of
the ground and two excited states of furan. The characters of the adiabatic states (S0, S1 and S2) as
well as the diabatic states (S0, π−π∗ and π-3s) are given. The lifetime τ = 9.2 fs of the adiabatic
S2 state was determined by exponential fit (dashed line) (Reprinted with permission from Ref. [79],
Copyright 2010, American Institute of Physics)

longer than the experimental value of 29 fs [79], the theory correctly predicts the
trends for timescales of internal conversions: short for S2–S1 (∼9 fs) and longer
for S1–S0 (∼60 fs). Analysis of the nonadiabatic MD trajectories reveals that the
geometric relaxation in excited states takes place within the C–O–C subunit [79]
and the main channel after returning to the ground state leads to formation of
hot furan (I), as also illustrated in Fig. 17.5. Two other possible minor channels
involving breaking of the C–O bond and leading to formation of 2,3-butadienal
(II) and cyclopropen-3-carbaldehyde (III) are reached with very low probability (cf.
Fig. 17.5) at later times after the transition to the ground state. Thus, bond breaking
occurs sequentially in the ground state.

In summary, time-resolved photoelectron imaging spectroscopy with the very
high time-resolution of 22 fs using two-colour deep UV pulses and ab initio nonadi-
abatic dynamics simulations have for the first time revealed the ultrafast deactivation
processes from S2 to S0 state in furan. Joint theoretical and experimental results
represent a general approach for investigation of ultrafast photochemical reactions,
allowing to identify the fingerprints of the character of electronic states with an
unprecedented precision.

17.5 Field-Induced Surface-Hopping Method (FISH)
for Simulation and Control of Ultrafast Photodynamics

The simulation of laser-induced dynamical phenomena provides a basis for a
deeper understanding of molecular processes under the influence of light. This is
particularly interesting in the context of optimal control by shaped laser pulses.

In order to address complex systems, semiclassical methods in which the nuclear
degrees of freedom can be treated efficiently have been developed in the frame of the
Wigner distribution approach [56–58]. However, since the interaction with the laser
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Fig. 17.5 Schematic representation of the photodynamics of furan obtained from nonadiabatic
dynamics. The S2/S1 and S1/S0 internal conversions and the corresponding time scales are shown
in red while the products in the ground state are indicated by black arrows (main product bold
arrow, other two products thin arrows). The minor channels have energies of 1.2 (II) and 2.1 eV
(III) above the main channel (I)

field has been described using perturbation theory these methods are limited only
to processes in relatively weak fields. For this reason, new theoretical approaches
for the simulation of dynamics driven by moderately strong laser fields (below the
multielectron ionization limit) are particularly desirable. Such fields open a rich
variety of pathways for the control of ultrafast dynamics in complex systems.

Therefore, we present here our semiclassical “Field-Induced Surface Hopping”
(FISH) method [59] for the simulation and control of the laser-driven coupled
electron-nuclear dynamics in complex molecular systems including all degrees of
freedom. It is based on the combination of quantum electronic state population
dynamics with classical nuclear dynamics carried out “on the fly”. The idea of the
method is to propagate independent trajectories in the manifold of adiabatic elec-
tronic states and allow them to switch between the states under the influence of the
laser field. The switching probabilities are calculated fully quantum mechanically.
The application of our FISH method will be illustrated in Sect. 17.6 on the example
of optimal dynamic discrimination (ODD) of two almost identical flavin molecules.

The starting point for the description of laser-driven multistate dynamics is the
semiclassical limit of the Liouville-von Neumann (LvN) equation for the quantum
mechanical density operator ρ̂ ,

ih̄ ˙̂ρ = [Ĥ0− μ · E(t), ρ̂ ]. (17.13)
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Ĥ0 represents the field-free nuclear Hamiltonian for a molecular system with several
electronic states in the Born-Oppenheimer approximation, and the interaction with
the laser field E(t) is described using the dipole approximation. The semiclassical
limit can be straightforwardly derived in the framework of the Wigner phase space
representation [2, 3] of quantum mechanics. The equations of motion for the phase
space representation of the density matrix elements involving an arbitrary number
of electronic states then read:

ρ̇ii = {Hi,ρii}− 2
h̄ ∑

j

Im(μ i j · E(t)ρ ji) (17.14)

ρ̇i j = −iωi jρi j +
i
h̄

μ i j · E(t)(ρ j j−ρii)+
i
h̄ ∑

k =i, j

(
μ ik · E(t)ρk j− μk j · E(t)ρik

)

(17.15)

where the diagonal elements ρii determine the quantum mechanical state popula-
tions and the off-diagonal elements ρi j describe the coherence. The curly braces
denote the Poisson brackets, Hi are the Hamiltonian functions for the respective
electronic state i. The quantity ωi j is the energy gap and μ i j the transition dipole
moment between the electronic states i and j.

In order to connect Eqs. 17.14–17.15 with classical molecular dynamics “on the
fly” the diagonal density matrix elements ρii(q,p, t) which are functions of the coor-
dinates q and momenta p can be represented by independent trajectories propagated
in the ground and excited electronic states, respectively. Thus, employing a number
of Ntra j trajectories, ρii(q,p, t) can be represented by a swarm of time-dependent δ
functions

ρii(q,p, t) =
1

Ntra j
∑
k

θ k
i (t)δ (q−qi

k(t;q0,p0))δ (p−pi
k(t;q0,p0)) (17.16)

where (qi
k,p

i
k) signifies a trajectory propagated in the electronic state i and the

parameter θ k
i (t) is one if the trajectory k resides in the state i and zero otherwise

[56]. The population transfer between the electronic states is achieved by a process
in which the trajectories are allowed to switch between the states. This procedure is
related to Tully’s surface hopping method [13] for field-free nonadiabatic transitions
in molecular systems. However, in our case the coupling between the states is
induced by the applied laser field. The probabilities for switching the electronic
state can be calculated according to Eq. 17.5 given in Sect. 17.2.

The simulation of the laser-induced dynamics in the framework of our FISH
method using the above derived approach is performed in the following three
steps:

1. We generate initial conditions for an ensemble of trajectories by sampling e.g.
the canonical Wigner distribution function (cf. Eq. 17.12) or a long classical
trajectory in the electronic ground state.
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2. Along each trajectory R(t) which is propagated in the framework of MD “on
the fly”, we calculate the density matrix elements ρi j by numerical integration.
If the initial electronic state is a pure state as it is in our case, the set of
equations 17.14–17.15 is equivalent to the time-dependent Schrödinger equation
in the representation of adiabatic electronic states:

ih̄ċi(t) = Ei(R(t))ci(t)−∑
j

μ i j(R(t)) · E(t)c j(t) (17.17)

where ci(t) are the expansion coefficients of the electronic wavefunction from
which the density matrix elements can be calculated as ρi j = c∗i c j.

If the intrinsic nonadiabatic coupling Di j of the electronic states (cf. Eq. 17.3)
also has to be taken into account, the Eq. 17.17 can be generalized to

ih̄ċi(t) = Ei(R(t))ci(t)−∑
j
[μ i j(R(t)) · E(t)+ ih̄Di j(R(t))]c j(t). (17.18)

In this way, after the duration of the applied field is over, field free multistate
nonadiabatic dynamics can be further carried out. The Eqs. 17.17 or 17.18 are
solved numerically using e.g. the fourth order Runge-Kutta procedure.

The nuclear trajectories R(t) are obtained by solution of Newton’s equations
of motion where the necessary forces are obtained from the energy gradients in
the actual electronic state in which the trajectory is propagated.

In contrast to field-free nonadiabatic dynamics, in the presence of electric
fields the energy of a molecular system is not conserved due to the interaction
with the field. Therefore, when exposed to a long intense laser pulse, molecules
can accumulate energy and eventually get heated, which for isolated molecules
can finally lead to fragmentation. However, if the molecule is interacting with an
environment such as solution, the excess thermal energy can be dissipated. For
approximate inclusion of these effects dissipative Langevin dynamics instead of
Newtonian dynamics can be employed. The solution of the Newton or Langevin
equations of motion provides continuous nuclear trajectories which reside in
different electronic states according to the quantum mechanical occupation
probabilities given by ρii.

3. In order to determine in which electronic state the trajectory is propagated we
calculate the hopping probabilities under the influence of the field and decide
if the trajectory is allowed to change the electronic state by using a random
number generator. For a general number of states the hopping probability can
be calculated according to Eq. 17.5.

Notice that while the trajectories jump between the electronic states at a given
time, all density matrix elements are propagated continuously over the entire time
according to Eqs. 17.14–17.15, or alternatively either Eq. 17.17 or 17.18. Although
the individual trajectory is allowed to jump, the fraction of trajectories in a given
state, which represents ρii as an ensemble average, is also a continuous function of
time. The phase of the electronic wavefunction is preserved and our procedure gives
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rise to the full quantum mechanical coherent state population, therefore being able
to mimic laser-induced processes such as coherent Rabi oscillations between the
electronic states [59].

Our semiclassical FISH method is a valuable tool for the simulation of ultrafast
laser-driven coupled electron-nuclear dynamics involving several electronically
excited states in complex molecular systems. It can be applied to simulate spec-
troscopic observables [77] as well as to control the dynamics employing shaped
laser fields and thus to steer molecular processes. Since the laser field enters the
equations for population dynamics directly, the combination with the optimal con-
trol theory is straightforward. The electric field can be iteratively optimized using
e.g. evolutionary algorithms [58, 89] as it has been illustrated in Ref. [59]. For the
propagation of classical trajectories the whole spectrum of methods ranging from
empirical force fields, semiempirical to ab initio quantum chemical methods can
be employed. Moreover, in addition to isolated systems in the gas phase, molecular
systems interacting with different environments such as solvent, bioenvironment,
surfaces or metallic nanostructures can be also treated. The FISH method allows
not only to obtain optimized pulses but also to analyze their shapes on the basis of
molecular dynamics “on the fly”. In this way the comparison between theoretically
optimized laser fields with those obtained from experiments, e.g. using the CLL
procedure, allows to assign the underlying processes to the specific forms of the
pulses. By this means the inversion problem can be addressed and important parts
of the PES could be constructed. Altogether, the FISH method opens new avenues
to perform the optimization of laser pulses for different exciting applications as it
will be illustrated in Sect. 17.6.

17.6 Application of the FISH Method for the Optimal
Dynamic Discrimination

We wish to reveal the mechanism for the optimal dynamic discrimination between
the very similar biochromophores riboflavin (RBF) and flavin mononucleotide
(FMN) using optimally shaped laser fields. Our FISH simulations utilize exper-
imentally optimized laser fields and show that the fluorescence depletion ratio
between two molecules can be manipulated with such fields, eventually achieving
discrimination between them. Moreover, these results validate for the first time the
experimental optimal control technique applied on complex systems [63].

The general concept of the optimal dynamic discrimination (ODD) has been
recently proposed by Rabitz and Wolf et al. [60, 61]. The idea of the ODD relies
on a theoretical analysis which has shown that quantum systems differing even
infinitesimally may be distinguished by means of their dynamics when a suitably
shaped ultrafast control field is applied. In the case of the two similar flavins
(differing only by replacement of H by PO(OH)2 in the side chain) the controlled
depletion of the fluorescence signal has been used as a discriminating observable
[62]. The schematic representation of the discrimination process is presented in
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Fig. 17.6 Schematic illustration of the discrimination of FMN and RBF by fluorescence depletion.
Excitation with a shaped UV laser pulse leads to transition from S0 to S1 state, as indicated by the
light grey arrow. After a time-delay Δt during which dynamical processes take place, an unshaped
IR pulse is applied. In the case of FMN (left part of the figure), this leads to transitions to higher
excited states where irreversible processes such as ionization can occur (dark arrow), consequently
the fluorescence gets depleted (crossed dark arrow). For RBF (right part of the figure), excitation
to higher states is less favorable (crossed dark arrow), and fluorescence will remain stronger than
in FMN (dark arrow). With differently shaped UV pulses, also the reverse situation is possible

Fig. 17.6. In general, a shaped ultraviolet (UV) pulse excites both molecules to the
S1 state and induces ultrafast dynamics which can follow slightly different pathways
in both molecules. After a specified time delay Δ t a second unshaped infrared
(IR) pulse excites the molecule further to higher excited states and can induce
dissipative processes such as ionization which lead to irreversible depopulation of
the S1 state, and thus to depletion of the fluorescence signal in one of the species
(cf. left part of Fig. 17.6) and not in the other one (cf. right part of Fig. 17.6). Since
for both molecules depletion can be minimized and maximized independently, the
total fluorescence yield can be used to quantitatively determine the amounts of
both species [62]. Although in this study only flavins have been considered, the
results should be broadly applicable to control systems whose static spectra show
essentially indistinguishable features. In particular, this should allow in the future
for the selective identification of target molecules in the presence of structurally and
spectroscopically similar background. This is an important issue in multiple areas of
science and engineering. Our FISH method offers a unique opportunity not only to
perform multistate dynamics “on the fly” and to optimize the laser pulses but also to
apply directly the experimentally optimized pulses and thus to reveal the processes
which enable discrimination of similar chromophores.

Our simulation of ODD between RBF and FMN is based on FISH dynamics
“on the fly” in the ground and the nine lowest excited singlet states (S0–S9)
under the influence of the experimentally optimized laser fields. We describe the
electronic structure using the semiempirical PM3 CI method [90] and calculate
the nonadiabatic couplings and transition dipole moments between all electronic
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states using the method of Thiel et al. [91, 92] The nuclear dynamics is performed
employing the Langevin equation in order to approximately account for dissipative
effects of the water environment present in the experiment [93]. Along the nuclear
trajectories, the time-dependent Schrödinger equation (17.18) is integrated and the
hopping probabilities are obtained from the electronic state populations according to
Eq. 17.5. The shaped UV laser fields with a central wavelength of 400 nm employed
in the simulation are reconstructed from the experimental spectral amplitudes An,
phases φn and frequencies ωn [62] according to E(t) = ∑n An exp [i(ωnt +φn)]. The
pulses obtained in this way have a duration of∼5 ps and a maximum amplitude of∼
6 ·1011 W cm−2. The unshaped IR probe pulse with a wavelength of 800 nm has a
maximum amplitude of ∼3 ·1012 W cm−2 and a Gaussian envelope with a width of
100 fs (cf. Fig. 17.8).

The irreversible processes such as ionization, which lead to fluorescence deple-
tion, are approximately introduced in Eq. 17.18 by adding an imaginary component
iΓ to the energy of the highest excited state S9 which lies close to the experimentally
determined ionization limit in water [94]. In this way irreversible population decay
from the S9 state is introduced. Subsequently, the time-dependent coefficients along
the trajectories are recalculated and the hopping from the S9 state to the ionized
state is accounted for. Thus, an ionized population Pion is obtained by averaging
over all trajectories, which can be used as a measure for the decrease of the excited
state population and thus for fluorescence depletion. In the experiment, the latter is
quantified by the fluorescence intensities after application of the UV pulse alone,
F(UV), and application of both the UV and IR pulses, F(UV + IR), according
to Dexp = [F(UV )−F(UV + IR)]/F(UV ). In order to calculate the equivalent
depletion signal from our ionized populations Pion, we determine the fluorescence
depletion D as

D =
Pion(UV + IR)−Pion(UV )

1−Pion(UV )

For further computational details see Ref. [59, 74].
The RBF and FMN molecules represent particularly challenging systems for the

optical discrimination since they have nearly identical stationary absorption and
fluorescence spectra. The electronic spectroscopy of flavins is primarily associated
with their common chromophore π − π∗ type transitions at 400 nm localized on
the isoalloxazine ring and is influenced only very slightly by the terminal chemical
moieties (H versus PO(OH)2) on the side chains. The optimal UV pulses allowing
for discrimination have been obtained experimentally by closed-loop optimization
of the fluorescence depletion ratio of FMN over RBF and vice versa. Specifically,
the maximization of the FMN over RBF ratio yielded a shaped UV/IR pulse
pair (termed pulse 1 in the following) that leads to distinguishable fluorescence
depletions values of 12.6% for RBF and 16.4% for FMN (cf. Fig. 17.7a). Oppositely,
minimization of the FMN over RBF ratio has yielded a second pulse pair (pulse 2)
that achieves approximately the same level of discrimination but reverses the
ordering of the depletion signals (cf. Fig. 17.7b). In contrast, the excitation with
an unshaped UV component leads to indistinguishable fluorescence depletion
signals of 26% for RBF and FMN as also shown in Fig. 17.7. In order to
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Fig. 17.7 Absolute experimental RBF and FMN depletion signals for optimized UV pulse shapes
for maximizing (a) and minimizing (b) the ratio D(FMN)/D(RBF). Reprinted with permission
from Roth et al. [62]. Copyright 2009 by the American Physical Society. The time delay for the IR
pulse is 500 fs. Absolute depletions induced by the transform-limited pulse for both RBF (black)
and FMN (grey) are statistically equivalent at 26%. Optimal pulses pull apart the RBF and FMN
distributions to achieve discrimination between the two molecules

Fig. 17.8 (a) Upper panel: Temporal structure of the shaped pulse 1 for maximization of
D(FMN)/D(RBF) (blue) and of the unshaped IR probe pulse (red). Middle panel: Time-dependent
populations of the electronic states S0 (black), S1 (red), and S2–S9 (orange) in RBF driven by the
pulses shown in the upper panel. Lower panel: Time-dependent populations of the electronic states
S0 (black), S1 (red), and S2–S9 (orange) in FMN driven by the pulses shown in the upper panel.
(b) The same as (a), but for pulse 2

discover the processes responsible for ODD of RBF and FMN, these experimen-
tally optimized pulses for maximization and minimization of the depletion ratios
[62] (pulses 1 and 2, respectively) have been used in our FISH simulations. The
population dynamics induced by both pulses in RBF and FMN is shown in Fig. 17.8
together with the temporal pulse structure. Both pulses 1 and 2 lead to a smaller
population of the higher excited states (S2−9) in RBF compared to FMN before the
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Fig. 17.9 Upper panel: Temporal structure of pulse 1 for maximization (left) and of pulse 2 for
minimization (right) of the depletion ratio D(FMN)/D(RBF). Middle panel: Ionized populations
Pion of RBF (black) and FMN (red) due to pulse 1 (left) and pulse 2 (right). Lower panel:
Fluorescence depletion D of RBF (black) and FMN (red) due to pulse 1 (left) and pulse 2 (right)
(Reprinted from Ref. [63]. Copyright 2010 by the American Physical Society)

IR component has been applied. After the IR pulse, the S2−9 population raises for
both pulses and both molecules. Although transient differences in the excited state
populations are present during the pulses, the population returns in all cases from
the higher excited states to the S1 state after the pulses have ceased, if no irreversible
processes such as ionization from these states are taken into account. Therefore, in
order to describe fluorescence depletion the irreversible population decay from the
higher excited states is modeled by adding an imaginary component to the energy of
highest excited state S9 as described above. The value of the imaginary component
has been calibrated such that with an unshaped UV pulse both molecules exhibit
identical depletion ratios. The ionized state populations Pion obtained in this way
are shown in Fig. 17.9. It can be seen that the IR subpulse is mainly responsible for
the ionization, which in the case of RBF sets in at about+0.5 ps. Although for FMN,
there is some ionization at earlier times, the main part of the ionized population is
also generated at about +0.5 ps. The ionization yield of RBF is lower for pulse
1 than for pulse 2, whereas the reversed effect is found for FMN, proving that
the shaped laser fields can selectively and independently modulate the ionization
efficiency. The fluorescence depletion D (cf. lower part of Fig. 17.9) relies upon the
relative decrease of the excited state population (S1–S9) due to both the UV and
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Fig. 17.10 Left: Average transition dipole moments for S1 → S2–S9 transitions for the dynamics
driven by pulse 1 (a) and 2 (b) for FMN (red) and RBF (black). The average is performed over the
states S2–S9 and over the ensemble of trajectories. Right: Selected averaged ground state normal
mode displacements for RBF (c) and FMN (d) induced by pulse 1 (black) and pulse 2 (red)

IR pulses compared to the UV pulse alone. It is initiated for both pulses and both
molecules by the IR subpulse at +0.5 ps. For pulse 1, D is systematically larger
for FMN than for RBF, whereas for pulse 2 after 1 ps it becomes larger for RBF
than for FMN. The final depletion ratios D(FMN)/D(RBF) after the pulses have
ceased are calculated to be 1.4 for pulse 1 and 0.4 for pulse 2. These values are in
good agreement with the experimental ODD values of 1.3 for pulse 1 and 0.7 for
pulse 2 [62], thus confirming the experimental optical discrimination between FMN
and RBF.

Our simulations offer a unique opportunity not only to reproduce the experi-
mental findings but to gain an insight into the mechanism of dynamical processes
responsible for discrimination. The fluorescence depletion is directly related to
the ionization yield, which depends on the efficiency of populating excited states
above S1. Therefore the averaged transition dipole moments between S1 and the
higher excited states along the trajectories driven by the optimal laser fields have
been calculated. It can be seen from Fig. 17.10a that pulse 1 induces dynamical
pathways which exhibit systematically larger transition dipole moments for FMN
than for RBF, indicating the stronger ionization and accordingly stronger depletion
of fluorescence in FMN. In contrast, for pulse 2 (cf. Fig. 17.10b) at times after
+0.5 ps this behavior is reversed leading to higher transition dipole moments for
RBF, and thus in this case the fluorescence depletion should become stronger in
RBF. These findings are consistent with the ionization yields presented in Fig. 17.9.

In order to establish the connection between higher transition dipole moments
and the structural changes during the dynamics the averaged time-dependent normal
mode displacements along the trajectories have been analyzed. In general, the
conformational differences induced by the discriminating pulses are localized
mainly in the polar side chains of both molecules. In Fig. 17.10c and d one prototype
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Fig. 17.11 Schematic illustration of the optimal dynamic discrimination by shaped laser fields on
the example of shaped pulse 1 maximizing the FMN/RBF fluorescence depletion ratio (Reprinted
from Ref. [63]. Copyright 2010 by the American Physical Society)

low-frequency normal mode of each molecule exhibiting large displacements
induced by pulses 1 and 2 is shown. The pulse 1 invokes smaller deviations
for the normal coordinate Q2 in RBF and larger deviations after 0 ps for Q2 in
FMN compared to pulse 2. Thus, the excitation of low-frequency normal modes
leads to conformations which have systematically higher or lower transition dipole
moments to higher excited states leading to ionization, depending on which of two
discriminating pulses is acting. Since RBF and FMN only differ in the side chain,
differences in the dynamical behavior are expected to occur here due to the interplay
between the effect of the heavy phosphorus atom in FMN and the differences of the
vibrational density of states in both molecules.

In summary, the discrimination mechanism can be depicted as shown in
Fig. 17.11: UV excitation of the molecule induces dynamical processes in excited
states which mainly affect low-frequency tail vibrational modes. The discriminating
pulse efficiently drives one of the molecules to regions of the PES where the
transition dipole moments to higher excited states are large, such that the ionization
and thus the fluorescence depletion are enhanced (pulse 1 for FMN). The same
pulse acting on the other molecule (RBF, cf. right part of Fig. 17.11) suppresses
the ionization (depletion of fluorescence) by keeping it in regions of the PES
with lower transition dipole moments. Thus, in general, the shaped pulses can
take advantage of minute differences in vibrational dynamics and exploit them
to manipulate observables such as transition dipoles allowing for the selective
molecular discrimination. This mechanism represents a general feature that can be
exploited for the discrimination between similar molecules and offers a promising
tool for using optimally shaped laser pulses in bioanalytical applications, thus
increasing the selectivity beyond the current capability.
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17.7 Conclusions and Outlook

We have presented a general theoretical approach for the simulation and control
of ultrafast processes in complex molecular systems. Our methodological develop-
ments are based on the combination of quantum chemical nonadiabatic dynamics
“on the fly” with the Wigner distribution approach for simulation and control of
laser-induced ultrafast processes. Specifically, we have developed an approach for
the nonadiabatic dynamics in the framework of TDDFT using localized basis sets,
which is applicable to a large class of molecules and clusters.

Furthermore, the FISH method is introduced, allowing to include laser fields
directly into the nonadiabatic molecular dynamics simulations and thus to realis-
tically model their influence on ultrafast processes. In particular, this approach can
be combined with genetic algorithms allowing to design shaped laser pulses which
can drive a variety of processes.

The applications of our approaches have been illustrated on selected examples
which serve to demonstrate their scope as well as the ability to accurately simulate
experimental ultrafast observables and to assign them to underlying dynamical
processes. In particular, a general approach for the simulation of TRPES has
been developed, representing a powerful tool to identify nonadiabatic processes.
Moreover, we have demonstrated for the first time that in the framework of the
FISH method experimentally optimized laser fields can be directly used to reveal
dynamical processes behind the optimal control. In addition, the FISH method
combined with the optimal control theory allows to predict forms of laser fields
capable to steer molecular dynamics in complex systems such as large molecules
and nanosystems in different environments. Altogether, our approaches based on
the classical molecular dynamics accounting for electronic transitions induced
by both nonadiabatic effects as well as by light open new avenues for studying
femtochemistry of attractive molecular and nano-systems which were not accessible
earlier due to their complexity.
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119:737
86. Gromov EV, Tromifov AB, Vitkovskaya NM, Köppel H, Schirmer J, Meyer HD, Cederbaum
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Chapter 18
A Survey on Reptation Quantum Monte Carlo

Wai Kong Yuen and Stuart M. Rothstein

Abstract We review the conceptual and mathematical foundations of reptation
quantum Monte Carlo and its variants, placing them in the context of other path
integral-based methods and the commonly-used diffusion Monte Carlo method. We
describe quantum Monte Carlo sampling from the pure distribution, and strategies
to improve the efficiency of this sampling. This is followed by a compilation of
applications to electronic structure problems and to those in condensed matter
physics. We conclude by reflecting on potential improvements of quantum Monte
Carlo algorithms and how they will evolve with developments in high performance
computing.

18.1 Introduction

Quantum Monte Carlo methods are among the most powerful tools for the treatment
of the electron gas, atoms and molecules, including weakly-interacting systems,
bio-molecules and solids, in addition to bose systems such as doped clusters
and quantum gases (recent overview [1]). The most widely used quantum Monte
Carlo algorithm is diffusion Monte Carlo (DMC; [2, 3]), used in over 800 articles
published since 1987. Applications are to ground states energies for systems as large
as transition metal systems and free base porphyrin [4–8], but due to the following
inherent limitation, applications to other important physical properties are somewhat
sparse.
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Diffusion Monte Carlo samples from the mixed distribution, ΨΦ , where Ψ is an
inputted wave function and Φ is the unknown, exact wave function [9]. Sampling
from this distribution allows for an accurate evaluation of the energy, albeit one
biased by the incorrect exchange nodes introduced to the sampling by Ψ , which
are kept fixed. This is the so-called “fixed-node” approximation [10]. However,
in principle, expectation values for properties represented by operators that do
not commute with the Hamiltonian are not accurate. Experimentally important
properties of molecules, such as electrical and magnetic response properties, are
represented by non-commutative operators. To accurately estimate these properties
it is essential to use a method to sample from the pure electron distribution,
Φ2. Various “pure” methods have been proposed to indirectly ameliorate the Ψ -
contamination bias in the density: descendent counting and averaging quantities
with statistical weights ∝ Ψ/Φ , but with loss of precision and population-control
bias: Refs. [11, 12] and [13, 14], respectively.

Reptation quantum Monte Carlo (RQMC) [15, 16] allows pure sampling to be
done directly, albeit in common with DMC, with a bias introduced by the time-
step (large, but controllable in DMC; e.g. [17]) and the fixed-node approach (small,
but not controllable; e.g. [18]). Property estimation in this manner is free from
population-control bias that plagues calculation of properties in diffusion Monte
Carlo (e.g. [19]). Inverse Laplace transforms of the imaginary time correlation
functions allow simulation of dynamic structure factors and other properties of
physical interest.

In RQMC a configuration (set of m-electron coordinates) of the system is
propagated in imaginary time for L + 1 iterations by using a drift and diffusion
process, thereby forming a “reptile”, X , containing L+ 1 electron configurations.
(Here, and below, we are assuming that the electronic Schroedinger equation is
being simulated in imaginary time.) Once we have the reptile, new configurations
are added to X by further propagation in imaginary time. But in order to keep the
length of the reptile constant by removing, say, l iterations from the original reptile’s
head (tail), we will add l new ones to its tail (head). The new reptile is denoted as
Y . If we assume that microscopic reversibility holds during the configurations’ time
evolution, the quantity that decides if the propagation X → Y is accepted or refused
is given by a Metropolis decision.

These Metropolis-accepted or -rejected moves are taken in the distant past or far
future in imaginary time, and ensure that the Markov chain converges to its target
distribution. The algorithm’s failure to meet the assumed criterion of microscopic
reversibility causes the time-step bias to accumulate at the middle of the reptile,
where the desired pure distribution is being sampled. Therefore, RQMC variants
were introduced to avoid these difficulties [20–24].

This review article is divided into two major sections, the first of which details
the theoretical basis of RQMC (Sect. 18.2). Initially we describe quantum Monte
Carlo sampling from the pure distribution Φ2 and mixed distribution ΦΨ , showing
that the RQMC approach to sample from the pure distribution rests on Metropolis-
Hastings (MH; [25, 26]) sampling, as does the variational path integral (VPI; [27])
method. As already mentioned, RQMC proposes reptation-type “moves” while
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those in VPI are based on other strategies. This leads us to sections that provide
an intuitive justification for RQMC sampling and its variants: “bounced” versions
[28, 29] and some that have been proposed by us [20–24].

The other major section is devoted to applications of RQMC variants and the
original RQMC algorithm in chemistry and physics (Sect. 18.3). Therein we sum-
marize calculations on electronic structure and on various properties of importance
in condensed matter physics. The article concludes with our reflections on future
developments (Sect. 18.4).

18.2 Reptation Quantum Monte Carlo: Theory

18.2.1 Sampling from the Pure and Mixed Distributions

Reptation quantum Monte Carlo (RQMC; [15]) and variational path integral (VPI;
[27]), also known as path integral ground state (PIGS; [30]) methods are concep-
tually similar alternatives to more traditional methods such as variational Monte
Carlo (VMC; [31]) and diffusion Monte Carlo (DMC; [2]). The fundamental idea
behind both methods is to generate samples of paths from a probability distribution
Π that describes the imaginary time evolution of the electronic configurations.
A proper choice of Π allows one to sample from both the pure distribution and
mixed distribution at different locations of the path. While VPI typically depends on
more generic sampling techniques, RQMC uses a more intuitive “reptation” process
based on drift and diffusion moves, with the paths being referred to as “reptiles”.
Formally, let x ∈ R3m denote the three dimensional positions of the m electrons in
a given quantum system at an instant of the imaginary time. These configurations
are linked together to form a reptile X = x0x1...xL ∈ R3m(L+1) of length L (with
L+1 configurations), based on the drift and diffusion moves described by the time-
discretized Langevin diffusion equation

x′ = x+ τ
∇Ψ (x)
Ψ(x)

+
√

τχ (18.1)

whereΨ is the inputted importance sampling wave function, τ is the size of the time-
step in the discretization, and χ ∈ R3m is a 3m-dimensional standard normal variate.
While both VMC and DMC linked the configurations together through (18.1) only,
RQMC and VPI also include the accumulated branching factor e−S(X) in the link,
where

S(X) = τ
(

1
2

Eloc(x0)+Eloc(x1)+ ...+Eloc(xL−1)+
1
2

Eloc(xL)

)
(18.2)

is the sum of local energies

Eloc(xi) =
ĤΨ(xi)

Ψ (xi)
(18.3)
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accumulated over the reptile X . Mathematically, samples of reptiles are generated
from the probability distribution

Π(X) ∝ Ψ2(x0)G(x0→ x1)...G(xL−1→ xL)exp(−S(X)) (18.4)

where

G(x→ x′) = (2πτ)−3m/2 exp

[
−
(

x′ − x− τ
∇Ψ(x)
Ψ (x)

)2

/(2τ)

]
(18.5)

is the Green’s function of the drift and diffusion moves [2]. The inclusion of the
branching factor yields the pure distribution Φ2 at the middle of the reptile (xL/2)
and the mixed distribution ΨΦ at both its head and tail (x0 and xL), providing the
estimations of energy (sampling at the head and tail) and various physical properties
represented by operators that commute with the position operator (sampling at the
middle).

18.2.2 Metropolis-Hastings Sampling from Π

Due to the high dimension and the complexity of Π , it is important to find an
implementable and efficient sampling method to obtain reliable estimations. It is
standard to use a Markov chain Monte Carlo (MCMC) method, in which a Markov
chain is constructed on the space of reptiles (R3m(L+1)) with stationary distribution
Π . Under some regularity conditions, the chain converges to Π and consequently,
the reptiles simulated from the chain can be treated as an approximate sample from
Π . Samples of the pure and mixed distributions are then “extracted” from the middle
and head/tail configurations of the reptiles to compute Monte Carlo estimates of
various physical properties.

Both RQMC and VPI are based on the Metropolis-Hastings (MH; [25, 26])
algorithm, one of the most popular MCMC algorithms. Given the current state of
the algorithm at X ∈ R3m(L+1), a trial move to Y ∈ R3m(L+1) is proposed with a
predetermined density W (X → Y ). The move is accepted with probability

A(X → Y ) = min

{
1,

Π(Y )W (Y → X)

Π(X)W (X → Y )

}
, (18.6)

otherwise the algorithm remains at state X . Such a choice of A guarantees the de-
tailed balance, which implies that Π is the stationary distribution of the underlying
Markov chain. Based on the theory of general state space Markov chain, W can be
arbitrary but must be chosen so that the chain is irreducible (i.e. able to explore
the whole reptile space R3m(L+1)) and aperiodic (which is always satisfied since our
proposed move has a density) to ensure convergence to Π (see e.g. [32]).
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While theoretical convergence is easy to establish, in practice, it is not clear how
many moves are required to obtain a good enough approximate distribution of Π .
For example, a random walk type uniform proposal density W is already enough
to guarantee convergence to Π . However, due to the high correlations among
the configurations, the algorithm is likely too sensitive to the random walk size
and not moving efficiently in the whole reptile space R3m(L+1), even after a very
large number of iterations. Even worse, sometimes the algorithm may seem to
have converged but the reality is that it is only exploring regions near a few local
maximums of Π(X). These factors contribute to unreliable estimates, particular in
high dimensional problems. Theoretically, it is well-known that to achieve optimal
efficiency, the covariance matrix of W should match that of Π , which is typically
unknown [33]. Therefore, it is far from trivial to propose good moves.

A simple generalization of MH is to consider a mixture of lower dimensional
trial moves W1, ...,Wk in each iteration instead of one move per iteration. Here, Wi

are chosen so that only a small number of configurations in X are being moved
and/or follow some specific strategies (e.g., multilevel sampling with bisection
methods [27]) to improve the chance of proposing a good move. This is essentially
the main ingredient of VPI. While their strategies perform reasonably well in some
problems, the choice of Wi still requires much experimentation.

18.2.3 The Original Reptation Quantum Monte Carlo Algorithm

Baroni and Moroni [15] proposed RQMC that takes advantage of the evolution of
the configurations in the imaginary time. An intuitive justification of this approach
can be based on the fact that the density Π(X) is the product of two factors:
Πs(X) ≡Ψ2(x0)G(x0 → x1)...G(xL−1 → xL) and exp(−S(X)). This leads to two
important observations. First, the factor Πs(X) is completely determined by the
time-discretized Langevin diffusion equation in (18.1), so that each configuration
xi has the stationary density Ψ 2(xi). Therefore, it is straightforward to sample from
Πs using simple drift and diffusion moves as in VMC and DMC. Second, although
the additional factor of exp(−S(X)) makes it impossible to sample directly from
Π , we can make the following intuitive interpretation: a sample reptile X from
the density Π(X) can be treated as a sample from Πs(X) that has a large value of
exp(−S(X)).

The first observation suggests that a good proposed move in MH from reptiles
X to Y should somehow linked them together using simple drift and diffusion
moves. The most natural way to do this is to add l(≤ L) consecutive configurations
generated by these moves. Such an addition also means that we must first remove
some configurations from X to keep Y in the reptile space R3m(L+1). In addition,
such removal should cause minimal disturbance to the links among xi’s, described
by (18.1). The simplest way to accomplish this is to remove only from the “head”
or “tail” of X . The second observation suggests that the number of configurations
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removed must be controlled so that Y is still “close” enough to X to maintain a large
enough value of exp(−S(Y )), or the proposed move is likely to be rejected.

Taking into account of all these suggestions and the detailed balance, we describe
the proposed move from X = x0x1...xL to Y = y0y1...yL in the basic version of
RQMC as follows. With probability 1/2, l configurations from the head of X is
removed (the head chop), and l new configurations are added to tail of X based on
(18.1) to form a new reptile Y . With probability 1/2, l configurations from the tail
of X is removed (the tail chop), and l new configurations are added to head of X to
form Y . Formally, the proposal density is given by

W (X → Y ) =
1
2

W h(X → Y )+
1
2

Wt(X → Y ) (18.7)

where W h is the head chop proposal density, given by

W h(X → Y ) = G0(yL−l → yL−l+1)G0(yL−l+1→ yL−l+2)...G0(yL−1→ yL) (18.8)

whenever y0 = xl , y1 = xl+1,..., yL−l = xL and 0 otherwise, and Wt is the tail chop
proposal density, given by

Wt(X → Y ) = G(yl → yl−1)G(yl−1→ yl−2)...G(y1→ y0) (18.9)

whenever yl = x0, y1+1 = x1,..., yL = xL−l and 0 otherwise. Furthermore, if we
assume that the propagator G satisfies the micro-reversibility condition, i.e.

Ψ2(x)G(x→ x′) =Ψ 2(x′)G(x′ → x), (18.10)

the acceptance probability in (18.6) simplifies to

A(X → Y ) = min

{
1,

e−S(Y )

e−S(X)

}
. (18.11)

We denote this algorithm by RQMC-MH. The description of this version is slightly
different from the original RQMC in [15], but they are essentially equivalent
[20, 23].

In the basic version of RQMC-MH, the chop size l is fixed. If l is too small,
most of the moves are accepted but it will take a large number of iterations for
the updated configurations to be “translated” to the middle of the reptiles, where
the pure distribution is located. This is analogous to “shaking” the reptile and only
making changes on the head and tail without actually update much of the middle
configuration, which is most important. In this situation, we are only exploring
a few regions near local maximums of Π . On the other hand, if l is too large,
very few moves are accepted, although only a few accepted moves are enough to
update the whole reptile. In this case, the chain is able to reach many regions in
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the reptile space, but it is not exploring within each region. Therefore, the optimal
chop size should be somewhere between the two extremes and it is usually chosen
by minimizing the correlation times of interested quantities in trial runs. It is also
possible to randomized the choice of l at each iteration, as proposed in the original
RQMC, to make sure that the algorithm will propose both small and large moves.
Another alternative is to use “bounced” moves, in which the algorithm continues
in the same direction if the previous move in that direction was accepted [28, 29].
These techniques improve the speed of the chain and hence the sampling efficiency
of the algorithm.

18.2.4 Variants of Reptation Quantum Monte Carlo

While the choice of a good proposal density is essential to improve the sampling
efficiency of the algorithm, another approach to improve RQMC is to study the
“quality” of the target distribution Π . In fact, to obtain good estimates of some
properties, it is important to sample reptiles from Π for large value of L. One
problem of RQMC is that the propagator G only satisfies the micro-reversibility
(18.10) as τ → 0. In practice, to obtain good estimates, sampling of Π must be
done for very large L. Therefore, even a small violation of (18.10) at each time-step
accumulates to a significant error in the middle configuration of the reptile – the
so-called time-step bias.

Yuen et al. [20] proposed the removal of assumption (18.10) to improve the
estimations. Consequently, the acceptance probability depends also on the trial wave
function Ψ and the propagator G explicitly, and no longer takes the simple form
(18.11). Since then, a few other variants of RQMC have been proposed to address
the time-step bias. These variants are all based on various kinds of adjustments made
to the target density Π .

These adjustments can be explained by considering the following two densities:

Π̂(X) ∝ G(x1→ x0)...G(xL/2→ xL/2−1)Ψ2(xL/2)G(xL/2→ xL/2+1)

...G(xL−1→ xL)exp(−S(X)), (18.12)

and

Π̃(X) ∝ Ψ2(xL)G(x1→ x0)...G(xL→ xL−1)exp(−S(X)), (18.13)

Obviously, under assumption (18.10), we have Π = Π̂ = Π̃ . Therefore, the MH
algorithm for all three densities are identical with acceptance probability given by
(18.11). However, once the assumption is dropped, some terms in the calculation of
acceptance probabilities in (18.6) cannot be canceled. The placing of Ψ2 at strategic
locations in the reptile means that the Metropolis decision needs to be adjusted
accordingly. All the variants proposed, which we outline below, take advantage of
specific properties of the chosen target densities.
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18.2.4.1 Middle Adjusted Reptation Quantum Monte Carlo (RQMC-MI)

Since our main interest is to sample from the pure distribution, it is natural to
locate the factor Ψ2 at the middle of the reptile by choosing Π̂ in (18.12) as our
target density. To understand how this adjustment improves the quality of Π , first
observe that without the factor e−S(X), all the configurations in the reptile have the
same stationary densityΨ 2(x) under assumption (18.10). Therefore, this adjustment
ensures that the density of the pure distribution at the middle has the “correct” factor
Ψ2(xL/2). As a comparison, the use of the original Π means that this factor is now
approximated by Ψ2(x0)G(x0 → x1), ...,G(xL/2−1 → xL/2), incurring unnecessary
time-step bias error at the middle. In RQMC-MI, the acceptance probability (18.6)
simplifies to

Ah
MI(X →Y ) = min

(
1,

Ψ 2(xL/2+l)G(xL/2+1→ xL/2) . . .G(xL/2+l → xL/2+l−1)e
−S(Y )

Ψ 2(xL/2)G(xL/2→ xL/2+1) . . .G(xL/2+l−1→ xL/2+l )e−S(X)

)

(18.14)

when a head chop occurs; and to

At
MI(X →Y ) = min

(
1,

Ψ 2(xL/2−l)G(xL/2−1→ xL/2) . . .G(xL/2−l → xL/2−l+1)e
−S(Y )

Ψ 2(xL/2)G(xL/2→ xL/2−1) . . .G(xL/2−l+1→ xL/2−l )e−S(X)

)

(18.15)

when a tail chop occurs. Note that in the Metropolis decision, the functional values
of Ψ2 at the middles of both X and Y , and the Green’s functional values near the
middle are included.

18.2.4.2 Head Adjusted Reptation Quantum Monte Carlo (RQMC-HE)

Similarly, if our main interest is to sample from the mixed distribution at the head,
we choose the original Π as our target density [24]. In RQMC-HE, the head chop
and tail chop acceptance probabilities are given by

Ah
HE(X → Y ) = min

(
1,

Ψ2(xl)G(x1→ x0)...G(xl → xl−1)e−S(Y )

Ψ 2(x0)G(x0→ x1)...G(xl−1→ xl)e−S(X)

)
(18.16)

and

At
HE(X → Y ) = min

(
1,

Ψ2(y0)G(y0→ y1)...G(yl−1→ yl)e−S(Y)

Ψ2(yl)G(y1→ y0)...G(yl → yl−1)e−S(X)

)
(18.17)

respectively. This adjustment includes the values of the wave function and the
Green’s function near the head of both X and Y .
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18.2.4.3 Head-Tail Adjusted Reptation Quantum Monte Carlo (RQMC-HT)

In both RQMC-MI and RQMC-HE, the adjustments are reflected in the functional
values near the locations of corresponding designated configurations, the middle
and head locations, respectively. A closer examination reveals that for the tail
chop in RQMC-HE, we can make another interpretation: the Metropolis decision
(At

HE(X → Y )) essentially depends only on the added configurations (except the
original head of X ). This motivates the consideration of a slightly different kind
of adjustment that improves the quality of the added configurations, which can
be accomplished by modifying RQMC-HE as follows. When a head chop occurs,
we use the target density Π̃ in calculating the acceptance probability, which
simplifies to

Ah
HT (X → Y ) = min

(
1,

Ψ2(yL)G(yL→ yL−1)...G(yL−l+1→ yL−l)e−S(Y)

Ψ2(yL−l)G(yL−1→ yL)...G(yL−l → yL−l+1)e−S(X)

)
.

(18.18)

When a tail chop occurs, Π is used as in RQMC-HE, which gives At
HT = At

HE . Not
only does this algorithm (RQMC-HT; [22]) improve the quality of all the added
configurations, it is also symmetric about the middle of the reptile, a property that
is lacking in RQMC-HE. This symmetry also indirectly affects the quality of the
pure distribution at the middle of the reptile in a positive way. Intuitively, since all
the configurations are linked together by drift and diffusion moves, a reptile which
has good properties at both ends should automatically have good properties at the
middle.

18.3 Applications of Reptation Quantum Monte Carlo

18.3.1 Variants of Reptation Quantum Monte Carlo

Given that the pure density is sampled at the middle of the reptile, RQMC-MI
(Sect. 18.2.4.1) was the first variant to be developed and tested [20]. (In that
work RQMC-MI was denoted as RQMC-NC.) To provide a proof in principle,
the application was to ground-state hydrogen atom, where moments of the electron
density were calculated for variational densities of crude and good quality. Values
for 〈r〉,〈r2〉,〈r3〉, and 〈1/r〉 were found to agree within statistical error to the
analytical determinations for the exact density. The time-step bias for RQMC-MI
was under better control than for RQMC-MH, the approach equivalent to that of
Baroni and Moroni’s original RQMC algorithm.

RQMC-MI and RQMC-MH were employed along with a variety of
quantum Monte Carlo approaches to sample the pure density for ground-
state dihydrogen [21]. RQMC-MI exhibited the smallest integrated absolute
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error in the simulated electron-nuclear and electron-electron distributions, closely
followed by RQMC-MH. The closest competitor was fixed-node diffusion Monte
Carlo with detailed balance and descendent counting [11, 12].

Shortly thereafter RQMC-HT (Sect. 18.2.4.3) was developed and tested against
RQMC-MI and RQMC-MH for the energy and several interelectronic properties
of LiH: 〈rm

12〉 (m=−1,1,2); 〈um
c 〉 (m=−1,1,2); and 〈um

z 〉 (m=1,2) [22]. Here
RQMC-HT estimated the ground-state energy with less time-step bias, and thus
more efficiently, than did RQMC-MI and RQMC-MH. The accuracy and precision
of the interelectronic properties were not adversely affected by implementing
RQMC-HT.

The most-recently developed variant was RQMC-HE (Sect. 18.2.4.2). For the
ground state of water molecule, its performance was tested against all the others:
RQMC-HT, RQMC-MI, and RQMC-MH [24]. Similar in spirit to Ref. [20], trial
densities ranging in quality from crude (single-ζ and double-ζ , SZ and DZ)
to high-quality (double-ζ and triple-ζ with polarization; DZP and TZP) were
employed. The energy and the following one-electron properties were calculated
and compared with experiment and CBS/FCI results: dipole moment, components
of the quadrupole and octopole moment tensors, diamagnetic shielding at the nuclei,
spherically-averaged diamagnetic susceptibility, and electric field gradient tensors.

As was the case for LiH, RQMC-HT outperformed the others, but to a much
lesser extent as the quality of the importance sampling wave function improved.
These results suggest that the simplest algorithm, RQMC-MH, is the optimal choice
when given importance sampling functions of the highest quality.

18.3.2 Original Reptation Quantum Monte Carlo Algorithm

18.3.2.1 Electronic Structure Calculations

RQMC (Sect. 18.2.3) was utilized in a study of transition metal oxides (ScO, TiO,
VO, CrO, and MnO): their energetics and dipole moments [34,35]. Despite excellent
agreement of the energetics with experiment, the dipole moments of these molecules
significantly differed from experiment. After determining the errors associated
with the pseudopotential approximation and the breakdown of the Hellmann-
Feynman theorem to be small, the authors focused on the fixed-node error and
the localization approximation employed in density functional theory. A multi-
determinantal guiding function (better nodes) for TiO leads to an improved dipole
moment, consistent with CCSD(T), but still somewhat larger than the value reported
by experiment.

RQMC and diffusion Monte Carlo were employed to calculate the potential
energy curve of helium dimer from a single-determinantal wave function with
a large basis set (19s9p8d/8s7p6d) and a three-body-Jastrow factor [36]. This
van der Waals system presents well-known challenges both to experimentalists
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and theorists. They found very accurate results from both quantum Monte Carlo
approaches, but RQMC generally gave more accurate interaction energies and
smaller error bars.

RQMC was employed in calculations of benzene-dyhydrogen complex, another
challenging van der Waals system [37]. Here the objective was to analyze the
electron density and reduced density gradient calculated from density functional
theory to quantify the role of exchange in the exchange-correlation approximation
for describing non-bonded interactions. A single determinant of Kohn-Sham orbitals
multiplied by a two-body Jastrow function was used for the importance sampling in
RQMC, in addition to pseudo-potentials to describe the core electrons. The densities
generated from a variety of functionals were negligibly different from that of
RQMC, except for that generated using the local density approximation. Similarly
the reduced density gradients quantitatively agreed with RQMC. The authors found
that enhancing the exchange energy density where there is a large reduced density
gradient (i.e.; non-bonded regions) is crucial for an accurate description of weak
interactions.

18.3.2.2 Condensed Matter Physics

RQMC plays a central role in the so-called “coupled electron-ion Monte Carlo”
[CEIMC] approach to systems of many electrons and ions within the Born-
Oppenheimer approximation, applied to high pressure hydrogen. Here one samples
the ionic degrees of freedom by a Metropolis decision at inverse temperature
β = (kBT )−1, where the difference between the Born-Oppenheimer energies
of proton state S and trial state S′ is computed by RQMC [28, 38–40]. The
electronic degrees of freedom are sampled from the RQMC probability distributions
for the electron configurations at the current and proposed nuclear positions:
(Π(s;S)+Π(s;S′)). To improve the efficiency of RQMC sampling, by increasing
the number of accepted moves, a “bounce” algorithm was proposed whereby the
growth direction of the Markov chain is maintained until reversal upon a rejected
move [28]. In an application to high pressure hydrogen, simulation results were
obtained for the equation of state over a wide range of the phase diagram, and the
energy parameterized as a function of temperature and pressure [41].

One of the first applications of RQMC was to the rotational dynamics of
carbonyl sulfide (OCS) molecules solvated in helium clusters, for cluster sizes
(N = 3,10) [42]. This and related work, described shortly, rest on the absorption
spectrum given by the Fourier transform of the reptilian imaginary time electric
dipole correlation function. Similarly, the optical activity is extracted from the
autocorrelation of the molecular orientation vector. This work by Moroni and co-
workers and/or Boroini and co-workers was closely followed by several other
investigations of rotational dynamics in doped clusters, summarized as follows:

• One was an investigation of CO solvated in small helium clusters, for cluster
sizes (N) up to 30 [43]. Here binding energies were calculated and related to the
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change in helium density with N; in addition to positions and spectral weights
of rotational and infrared lines as a function of N. The propensity of He atoms
to cluster on a side of the molecule decreased with N until the first solvation
shell was completed, and then increased while the second shell was being built.
This longitudinal asymmetry is a necessary condition for the doubling lines in
the rotational spectrum.

• Similarly, RQMC calculations were performed on the pure rotational spectra of
CO2 solvated in helium clusters: for cluster sizes up to 17 [44]. Analysis of the
excitation energies yielded rotational constants and distortion constants, and the
agreement with experiment of the former was almost perfect. The latter quantities
were generally smaller than experimentally observed, but the general trend with
cluster size and its very large value relative to carbonyl sulfide (OCS) and nitrous
oxide (N2O) – doped He clusters (see below) was reproduced. Comparing density
profiles for CO2-HeN clusters, for sizes N = 5 and 6, with their analogs for OCS
and N2O doping was interpreted by the so-called donut model: the first five atoms
fill an equatorial ring around the dopant and the sixth orients towards its poles,
leaving the density in the ring essentially unchanged. This interpretation was also
supported by trends in the incremental binding energy per added helium atom.

• A similar study of rotational constants and incremental binding energies using
RQMC was performed on nitrous oxide (N2O) – doped He clusters for cluster
sizes (N) 3–20, 25, and 30 [45]. As the RQMC calculations are at 0 K, PIMC for
Boltzmann statistics was used to introduce finite temperature to assess the role of
exchange effects, helping to understand the rotational dynamics for small cluster
sizes. The calculations were based on a multilevel bisection algorithm [27]
that incorporated all degrees of freedom of the complex. Evidence of exchange
effects was provided for a decoupling between N2O motion, with some He atoms
attached to the impurity, and the rest of the helium, as well as the related turn-
around of the effective rotational constant at N = 8.

• Another publication considered the rotational spectrum of CO solvated in para−
(H2)N clusters, for cluster sizes (N) 2–17 [46]. Here R(0) transitions and their
spectral weights were assigned up to N = 9 for b-type series (free molecule
rotations) and N = 14 for a-type series (end-over-end rotations). As was the
case for CO-HeN , there was a decreasing tendency of the hydrogen molecules
to dynamically cluster on one side of the CO molecular axis as completion of the
first solvation shell was approached. Theory and experiment agreed well, except
that theory tended to overestimate the b-type energies.

• This work was followed-up by a publication on simulation of quantum melting
in hydrogen clusters [47]. Here a multipole dynamic correlation criterion was
introduced and calculated within RQMC to discriminate between melting and
freezing behavior of quantum clusters. The focus was on small clusters of para-
hydrogen molecules for cluster sizes near N = 13. Despite their similar geometric
structures, para−(H2)13 behaves like a superfluid, while CO@para−(H2)12 has
a rigid, crystalline behavior.

• Superfluity was also observed in the rotational spectrum of cyanoacetylene
(HCCCN) solvated in helium clusters for size ranges N = 1–18 and 25–31 [48].
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The rotational energies were computed by RQMC allowing an assignment of
R(0) transitions from N > 6 and R(1) for all N > 1. Oscillatory behavior of the
rotational transition frequencies for N > 6 suggested the onset of superfluity.
In addition, PIMC results suggest that after completion of the first solvation shell
at N = 9, exchanges between helium atoms in the first and second shell become
dominant, as proposed in previous literature [46].

• Returning now to CO doped clusters, the RQMC method was used to calculate
the ground-state energy, structural properties, and imaginary time correlation
functions of CO@HeN , from which an inverse Laplace transform extracts
the rotational energies [49]. The vibrational shift, which describes difference
between rotational ground-state energies of the cluster where the helium atoms
are interacting with the molecule in its vibrational ground-state and first excited-
state, was calculated from perturbation theory, as well as radial density profiles
for various cluster sizes, N ≤ 100. Rotational energies for a-type and b-type
transitions (see above) were reported for 12C16O, 13C16O, 12C18O, and 13C18O
for N ≤ 20 and for N ≤ 11, respectively. The a-type R(0) transitions for 12C16O
for N > 15 and their changes upon isotopic substitution to 13C18O for N ≤ 20
were compared with experiment. General agreement was good, especially for
small cluster sizes.

• Several of the above-described publications extracted rotational spectra from in-
verse Laplace transforms of imaginary-time autocorrelation functions, quantities
readily calculated with RQMC. The utility of defining a larger set of corre-
lation functions, so-called “symmetry-adapted imaginary-time autocorrelation
functions” was explored in a recent paper [50]. Computational efficiency in the
calculation of weak spectral features was demonstrated by a study of He-CO
binary complex. Some preliminary results of an analysis of a recently observed
satellite band in the IR spectrum of CO2 doped He clusters were presented.

RQMC was used to generate distribution functions for the two-dimensional elec-
tron gas [51]. Considered were the spin-summed and spin-resolved pair distribution
functions, in addition to the spin-resolved potential energy for a range of electron
densities and polarization.

RQMC is an important tool in the study of quantum gases. Calculations were
performed on one-dimensional dipolar quantum gases. This is a system of N atoms,
with linear density n, and permanent dipoles considered to be arranged parallel to
each other, resulting in purely repulsive interactions. RQMC used in combination
with bosonization techniques provided a unifying theory for the crossover physics
for this system, from the low-density, so-called “Tonks-Girardeau” regime to the
high-density classical, quasiordered state [52]. Analysis of the static structure factor
being consistent with Luttinger-liquid theory provided firm evidence for Luttinger-
liquid behavior in the entire cross-over region. Simulations were done for up to
N = 200 bosons placed in a square box with periodic boundary conditions. The
thermodynamic energy per particle was presented as an analytical function of nr0,
where r0 is the effective Bohr radius of the gas molecules [53]. Furthermore, by
using the equation of state for the homogeneous dipolar gas, the same authors
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calculated excitation modes when the gas is confined in a harmonic trap [54]. The
most recent paper in this series reports the low-energy spectrum from dynamic
density-density correlation functions obtained from RQMC [55]. This simulation
data together with arguments based on the uncertainty-principle proves the absence
of long-range order in this strongly correlated system, again confirming that the
dipolar gas is in a Luttinger-liquid state.

Quantum dimers provide models for anti-ferromagnets. Using a combination of
continuous-time lattice diffusion Monte Carlo [56] and RQMC, the square lattice
quantum dimer model for lattice sizes up to 48×48 sites was investigated to estimate
the location of the columnar to plaquette phase transition [57]. The former phase
has no parallel dimers, while the latter one has sets of plaquettes with parallel
dimers continuously changing orientation. The author found significant finite-size
corrections to scaling for the plaquette phase and liquid phase.

This approach was generalized and improved by adaptation of directed updates
[28], to reduce the correlation time in path sampling, and a worm algorithm to
sample expectation values of off-diagonal observables [29]. In addition, a strategy
was introduced to improve upon the fixed-node approximation; see Sect. 18.4.
Applications included the one-dimensional Heisenberg model and the fermionic
Hubbard model.

18.4 Future Directions

Each of the above-described pure sampling algorithms rests on the fixed-node
approximation [10], where the simulated density is biased by the incorrect exchange
nodes of the importance sampling function, Ψ . It is beyond the scope of this review
to summarize the several attempts to understand the fermion nodes, aimed towards
algorithms which go beyond the fixed-node approximation: [58–67]. To date none
of these efforts have lead to a host of applications to realistic systems. Therefore,
the exchange-node problem remains an active area of path integral Monte Carlo
research; e.g. [29], to our knowledge the most recent one. In another vein, a quantum
Monte Carlo method that is based on random walks in Slater determinant space is a
recent development [68,69], albeit without an upper bound to the energy and having
population control bias, similar to that of diffusion Monte Carlo.

Quantum Monte Carlo algorithms run in parallel on modern computers and
are naturally scalable to a large number of processors. There is no question that
calculations will be performed on realistic systems as these algorithms are improved
in parallel with ongoing advances in high performance computing technology,
such as the emergence of petascale computers. There already exists a quantum
Monte Carlo package (QMCPACK; [70]) designed to take advantage of multi-
core processors and Graphics Processing Units. This and related developments are
described in [71].
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Chapter 19
Quantum Monte Carlo Calculations
of Electronic Excitation Energies: The Case
of the Singlet n→π∗ (CO) Transition in Acrolein

Julien Toulouse, Michel Caffarel, Peter Reinhardt, Philip E. Hoggan,
and C.J. Umrigar

Abstract We report state-of-the-art quantum Monte Carlo calculations of the
singlet n→ π∗ (CO) vertical excitation energy in the acrolein molecule, extending
the recent study of Bouabça et al. [J Chem Phys 130:114107, 2009]. We investigate
the effect of using a Slater basis set instead of a Gaussian basis set, and of using
state-average versus state-specific complete-active-space (CAS) wave functions,
with or without reoptimization of the coefficients of the configuration state functions
(CSFs) and of the orbitals in variational Monte Carlo (VMC). It is found that, with
the Slater basis set used here, both state-average and state-specific CAS(6,5) wave
functions give an accurate excitation energy in diffusion Monte Carlo (DMC), with
or without reoptimization of the CSF and orbital coefficients in the presence of the
Jastrow factor. In contrast, the CAS(2,2) wave functions require reoptimization of
the CSF and orbital coefficients to give a good DMC excitation energy. Our best
estimates of the vertical excitation energy are between 3.86 and 3.89 eV.
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19.1 Introduction

Quantum Monte Carlo (QMC) methods (see, e.g., Refs. [1–3]) constitute an
alternative to standard quantum chemistry approaches for accurate calculations of
the electronic structure of atoms, molecules and solids. The two most commonly
used variants, variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC),
use a flexible trial wave function, generally consisting for atoms and molecules of
a Jastrow factor multiplied by a short expansion in configuration state functions
(CSFs), each consisting of a linear combination of Slater determinants. Although
VMC and DMC have mostly been used for computing ground-state energies,
excitation energies have been calculated as well (see, e.g., Refs. [4–15]).

The simplest QMC calculations of excited states have been performed without
reoptimizing the determinantal part of the wave function in the presence of the
Jastrow factor. It has recently become possible to optimize in VMC both the
Jastrow and determinantal parameters for excited states, either in a state-specific or
a state-average approach [6, 7, 9, 10, 12, 14, 15]. Although this leads to very reliable
excitation energies, reoptimization of the orbitals in VMC can be too costly for
large systems.

In this context, Bouabça et al. [13] studied how to obtain a reliable excitation
energy in QMC for the singlet n → π∗ (CO) vertical transition in the acrolein
molecule without reoptimization of the determinantal part of the wave function.
The acrolein molecule is the simplest member of the unsaturated aldehyde family
whose photochemistry is of great interest. They showed that a good DMC excitation
energy can be obtained by using non-reoptimized complete-active-space (CAS)
wave functions if two conditions are fulfilled: (a) The wave functions come from a
state-average multiconfiguration self-consistent-field (MCSCF) calculation (using
the same molecular orbitals for the two states is indeed expected to improve
the compensation of errors due to the fixed-node approximation in the excitation
energy), and (b) a sufficiently large active space including all chemically relevant
molecular orbitals for the excitation process is used. In comparison, all the small
CAS wave functions and the large state-specific CAS wave functions (coming
from two separate MCSCF calculations) were found to lead to quite unreliable
DMC excitation energies, with a strong dependence on the size of the basis set.
These results were obtained using standard all-electron QMC calculations with
Gaussian basis sets, with orbitals appropriately modified near the nuclei to enforce
the electron-nucleus cusp condition, in the same spirit as in Ref. [16].

In this work, we extend the study of Bouabça et al. by testing the use of a Slater
basis set and the effect of reoptimization of the determinantal part of the wave
function in VMC. The use of Slater basis functions is motivated by the observation
that they are capable of correctly reproducing the electron-nucleus cusp condition as
well as having the correct exponential decay at large distances. In contrast, Gaussian
basis functions have no cusp at the nucleus and a too rapid decay at large distances.
As regards the effect of reoptimization, conclusions about the validity of using
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non-reoptimized CAS wave functions are drawn. The paper is organized as follows.
In Sect. 19.2, we explain the methodology used. In Sect. 19.3, we present and discuss
our results. Finally, Sect. 19.4 summarizes our conclusions.

19.2 Methodology

We are concerned with the vertical electronic transition in the acrolein (or propenal)
molecule, CH2=CH–CHO (symmetry group Cs), from the spin-singlet ground
state (symmetry A′) to the first spin-singlet excited state (A′′). This transition is
identified as the excitation of an electron from the lone pair (n) of the oxygen to the
antibonding π∗ orbital of the CO moiety. We use the s-trans experimental geometry
of Ref. [17], obtained by microwave spectroscopy in the gas phase (Fig. 19.1).

We use Jastrow-Slater wave functions parametrized as [18, 19]

|Ψ(p)〉= Ĵ(α)eκ̂(κ)
NCSF

∑
I=1

cI|CI〉, (19.1)

where Ĵ(α) is a Jastrow factor operator, eκ̂(κ) is the orbital rotation operator and
|CI〉 are CSFs. Each CSF is a symmetry-adapted linear combination of Slater
determinants of single-particle orbitals which are expanded in Slater basis functions.
The parameters p = (α,c,κ) that are optimized are the Jastrow parameters α , the
CSF coefficients c and the orbital rotation parameters κ . The exponents of the basis
functions are kept fixed in this work. We use a Jastrow factor consisting of the
exponential of the sum of electron-nucleus, electron-electron, and electron-electron-
nucleus terms, written as systematic polynomial and Padé expansions [20] (see also
Refs. [21, 22]).

For each state, we start by generating standard restricted Hartree-Fock (RHF),
and state-average and state-specific MCSCF wave functions with a complete
active space generated by distributing N valence electrons in M valence orbitals
[CAS(N,M)], using the quantum chemistry program GAMESS [23]. As in Ref. [13],
we consider a minimal CAS(2,2) active space containing the two molecular orbitals
n (A′) and π∗CO (A′′) involved in the excitation, and a larger CAS(6,5) active
space containing the five molecular orbitals that are expected to be chemically

Fig. 19.1 Schematic
representation of the singlet
n→ π∗ excitation in the CO
moiety of the acrolein
molecule

π *

C C

C O

H

H

H

H

n



346 J. Toulouse et al.

Table 19.1 Ground-state energy E0, first excited-state energy E1, and
vertical excitation energy E1 − E0 for the singlet n → π∗ transition in
the acrolein molecule at the experimental geometry calculated in DMC
with different time steps τ using the VB1 Slater basis set and a state-
specific Jastrow-Slater CAS(6,5) wave function with Jastrow, CSF and
orbital parameters optimized by energy minimization in VMC

τ (hartree−1) E0 (hartree) E1 (hartree) E1−E0(eV)

0.01 −191.8734(4) −191.7312(4) 3.87(2)
0.005 −191.8753(4) −191.7319(4) 3.90(2)
0.0025 −191.8762(4) −191.7330(4) 3.90(2)
0.001 −191.8769(3) −191.7350(3) 3.86(1)

relevant: πCO (A′′), n (A′), πCC (A′′), π∗CO (A′′), π∗CC (A′′). Note that, since the
two states have different symmetries, the purpose behind using the state-average
procedure is not the usual one of avoiding a variational collapse of the excited
state onto the ground state, but rather to possibly improve the compensation of
errors in the excitation energy by using the same molecular orbitals for the two
states. We use the triple-zeta quality VB1 Slater basis of Ema et al. [24]. For C
and O, this basis contains two 1s, three 2s, three 2p and one 3d sets of functions;
for H, it contains three 1s and one 2p sets of functions. Each Slater function is
actually approximated by a fit to ten Gaussian functions [25–27] in GAMESS. These
wave functions are then multiplied by the Jastrow factor, imposing the electron-
electron cusp condition, and QMC calculations are performed with the program
CHAMP [28] using the true Slater basis set rather than its Gaussian expansion.
The wave function parameters are optimized with the linear energy minimization
method in VMC [18, 19, 29], using an accelerated Metropolis algorithm [30, 31].
Two levels of optimization are tested: optimization of only the Jastrow factor
while keeping the CSF and orbital parameters at their RHF or MCSCF values,
and simultaneous optimization of the Jastrow, CSF and orbital parameters. For
all wave functions, even the state-average ones, we always optimize a separate
Jastrow factor for each state, rather than a common Jastrow factor for the two
states. Although the electron-nucleus cusp condition is not enforced during the
optimization in our current implementation, the orbitals obtained from Slater basis
functions usually nearly satisfy the cusp condition. Once the trial wave functions
have been optimized, we perform DMC calculations within the short-time and fixed-
node (FN) approximations (see, e.g., Refs. [32–36]). We use an efficient DMC
algorithm with very small time-step errors [37]. For a given trial wave function,
the evolution of the ground- and excited-state total DMC energies and of the
corresponding excitation energy when the imaginary time step τ is decreased from
0.01 to 0.001 hartree−1 is shown in Table 19.1. While the time-step bias is clearly
seen for the total energies, it largely cancels out for the excitation energy for all
the time steps tested here and cannot be resolved within the statistical uncertainty.
In the following, we always use an imaginary time step of τ = 0.001 hartree−1.
Note that the Jastrow factor does not change the nodes of the wave function, and
therefore it has no direct effect on the fixed-node DMC total energy (aside from of
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course the time-step bias and the population-control bias). Improving the trial wave
function by optimization of the Jastrow factor is nevertheless important for DMC
calculations in order to reduce the fluctuations and to make the time-step error very
small and the population-control bias negligible. Of course, when the Jastrow factor
is optimized together with the CSF and/or orbital parameters, then it has an indirect
effect through those parameters on the nodes of the wave function.

19.3 Results and Discussion

Table 19.2 reports the ground-state energy E0, the first excited-state energy E1, and
the excitation energy E1 − E0 calculated by different methods. Since the excited
state is a spin-singlet open-shell state, it cannot be described by a restricted single-
determinant wave function; however, we report single-determinant results for the
ground state for comparison of total energies. We take our best estimates of the
vertical excitation energy to be those obtained with the CAS(6,5) wave functions
in DMC. They range from 3.86 to 3.89 eV, depending whether a state-average or
state-specific approach is used and whether the determinantal part of the wave
function is reoptimized in QMC. Previously reported calculations include (a) time-
dependent density-functional theory (TDDFT): 3.66 eV [38] and 3.78 eV [39]; (b)
complete-active-space second-order perturbation theory (CASPT2): 3.63 eV [38],
3.69 eV [40], and 3.77 eV [41]; (c) multireference configuration interaction:
3.85 eV [42]; (d) different variants of coupled cluster: 3.83 eV [43], 3.93 eV [39],
3.75 eV [39]. The most recent experimental estimate is 3.69 eV, which corresponds
to the maximum in the UV absorption band in gas phase and which is in agreement
with previous experimental data [44–47]. Beside different treatment of electron
correlation, the discrepancies between these values may be due to the high
sensitivity of the excitation energy to the C=C and C=O bond lengths [39].
Moreover, the comparison with experiment relies on the approximation that the
vertical excitation energy corresponds to the maximum of the broad UV absorption
band. In view of all these data, a safe estimate range for the exact vertical excitation
energy is from about 3.60 to 3.90 eV.

Even without reoptimization of the CSF and orbital coefficients, our state-
specific Jastrow-Slater CAS(6,5) wave functions give a DMC excitation energy,
3.88(2) eV, as accurate as the one obtained with the fully optimized wave functions,
even though the total energies E0 and E1 are about 20 mhartree higher. Also, our
non-reoptimized state-average Jastrow-Slater CAS(6,5) wave functions give an
essentially identical DMC excitation energy of 3.89(2) eV. This agrees well with
the DMC result of Bouabça et al. [13], 3.86(7) eV, obtained with non-reoptimized
state-average Jastrow-Slater CAS(6,5) wave functions with a Gaussian basis set.

Thus it appears possible to obtain an accurate excitation energy using non-
reoptimized state-specific CAS(6,5) wave functions in DMC. This is different from
what was observed in Ref. [13] where state-specific CAS(6,5) wave functions
were found to give unreliable excitation energies. The difference is that we use
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Table 19.2 Ground-state energy E0, first excited-state energy E1, and vertical excitation energy
E1−E0 for the singlet n→ π∗ transition in the acrolein molecule at the experimental geometry
calculated by different methods using the VB1 Slater basis set

E0 (hartree) E1 (hartree) E1−E0(eV)

RHF −190.83430261
MCSCF CAS(2,2) SA −190.82258836 −190.68568203 3.73
MCSCF CAS(2,2) SS −190.83891553 −190.71709289 3.31
MCSCF CAS(6,5) SA −190.88736483 −190.74691372 3.82
MCSCF CAS(6,5) SS −190.89520291 −190.75181511 3.90

VMC JSD [J] −191.7107(5)
VMC JSD [J+o] −191.7636(5)
VMC JCAS(2,2) SA [J] −191.7121(5) −191.5619(5) 4.09(2)
VMC JCAS(2,2) SS [J] −191.7099(5) −191.5652(5) 3.94(2)
VMC JCAS(2,2) SS [J+c+o] −191.7643(5) −191.6247(5) 3.80(2)
VMC JCAS(6,5) SA [J] −191.7182(5) −191.5747(5) 3.90(2)
VMC JCAS(6,5) SS [J] −191.7221(5) −191.5776(5) 3.93(2)
VMC JCAS(6,5) SS [J+c+o] −191.7795(5) −191.6342(5) 3.95(2)

DMC JSD [J] −191.8613(4)
DMC JSD [J+o] −191.8698(3)
DMC JCAS(2,2) SA [J] −191.8608(5) −191.7133(5) 4.01(2)
DMC JCAS(2,2) SS [J] −191.8606(4) −191.7113(4) 4.06(2)
DMC JCAS(2,2) SS [J+c+o] −191.8700(3) −191.7293(3) 3.83(1)
DMC JCAS(6,5) SA [J] −191.8568(5) −191.7138(5) 3.89(2)
DMC JCAS(6,5) SS [J] −191.8585(4) −191.7160(4) 3.88(2)
DMC JCAS(6,5) SS [J+c+o] −191.8769(3) −191.7350(3) 3.86(1)

DMC JCAS(6,5) SA [J]a −191.8504(20) −191.7086(23) 3.86(7)

Experimental estimateb 3.69

The QMC calculations are done with Jastrow-Slater wave functions using a single determinant
(JSD), or a state-average (SA) or state-specific (SS) complete-active-space multideterminant
expansion (JCAS). The lists of parameters optimized by energy minimization in VMC are indicated
within square brackets: Jastrow (J), CSF coefficients (c), and orbitals (o). For comparison, the DMC
results of Ref. [13] obtained with state-average CAS(6,5) wave functions and a Gaussian basis set
are also shown
a QMC calculations with a Gaussian basis, Ref. [13]
b Maximum in the UV absorption band in gas phase, Ref. [39]

here a Slater basis set rather than the Gaussian basis set employed in Ref. [13]. Even
though the Gaussian basis contains more basis functions than the VB1 Slater basis,
it gives a higher DMC energy for both states and tends to favor one state over the
other in state-specific calculations. This example shows the importance of using a
well-balanced basis set in state-specific calculations, even in DMC.

We comment now on the results obtained with the CAS(2,2) wave functions.
The state-specific MCSCF CAS(2,2) excitation energy, 3.31 eV, is a strong under-
estimate. The corresponding VMC and DMC state-specific calculations without
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reoptimization of the CSF and orbital coefficients, give slightly overestimated
excitation energies, 3.94(2) and 4.06(2) eV, respectively. Whereas the state-average
MCSCF CAS(2,2) calculation gives a much better excitation energy, 3.73 eV,
compared to the state-specific MCSCF calculation, the non-reoptimized state-
average CAS(2,2) wave functions do not seem to improve the excitation energies
in VMC and DMC. In fact, they give a worse VMC excitation energy of 4.09(2) eV,
and a DMC excitation energy of 4.01(2) eV which is not significantly better than
with the non-reoptimized state-specific wave functions.

The excitation energies obtained from the CAS(6,5) wave functions depend
very little on whether (a) they are calculated in MCSCF, VMC or DMC, (b) the
state-average or the state-specific approach is employed, and (c) the CSF and
orbital coefficients are reoptimized or not in the presence of the Jastrow factor.
In contrast, the excitation energies obtained from CAS(2,2) wave functions do
depend on all of the above and, in particular the reoptimization of the CSF and
orbital coefficients in the presence of the Jastrow factor significantly improves the
VMC and DMC excitation energies, to 3.80(2) and 3.83(1) eV, respectively. The
importance of reoptimizing in VMC the CAS(2,2) expansions but not the CAS(6,5)
expansions suggests that the Jastrow factor includes important correlation effects
that are present in CAS(6,5) but not in CAS(2,2).

Finally, we note that without reoptimization of the determinantal part of the wave
functions, the ground-state VMC and DMC energies can actually increase when
going from a single-determinant wave function to a CAS(2,2) or CAS(6,5) wave
function. This behavior has been observed in other systems as well, e.g. in C2 and
Si2 [29]. Of course, if the CSF and orbital coefficients are reoptimized in VMC,
then the VMC total energies must decrease monotonically upon increasing the
number of CSFs. In practice, it is found that the DMC total energies also decrease
monotonically although there is in principle no guarantee that optimization in VMC
necessarily improves the nodes of the wave function.

19.4 Conclusion

In this work, we have extended the study of Bouabça et al. [13] on how to obtain
a reliable excitation energy in QMC for the singlet n→ π∗ (CO) vertical transition
in the acrolein molecule. We have tested the use of a Slater basis set and the effect
of reoptimization of the determinantal part of the wave function in VMC and of the
corresponding changes in the nodal structure in fixed-node DMC. Putting together
the conclusions of the study of Bouabça et al. and the present one, we can summarize
the findings on acrolein as follows:

(a) It is possible to obtain an accurate DMC excitation energy with non-reoptimized
CAS wave functions, provided that a sufficiently large chemically relevant
active space is used. In the case of too small an active space, reoptimization of
the CSF and orbital coefficients in the presence of the Jastrow factor appears to
be necessary in order to get a good DMC excitation energy.
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(b) When using Gaussian basis sets of low or intermediate quality, reliable
DMC excitation energies could be obtained only by using state-average wave
functions (i.e., with the same molecular orbitals for the two states). In contrast,
when using a good quality Slater basis set such as the VB1 basis, state-specific
wave functions were found to also give reliable DMC excitation energies. Thus,
this provides some support for using Slater, rather than Gaussian, basis sets in
all-electron QMC calculations. Note that other authors also advocate the use of
Slater basis sets in all-electron QMC calculations (see, e.g., Refs. [48–50]).

It remains to check whether these conclusions are generally true for other
systems. It would be indeed desirable for calculations on large molecular systems
if accurate DMC excitation energies could be obtained with state-specific or state-
average CAS expansions without the need of an expensive reoptimization of the
determinantal part of the wave functions in QMC.
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Chapter 20
Analysis of the Charge Transfer Mechanism
in Ion-Molecule Collisions
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Abstract The collision of C2+ ions on a series of molecular targets, OH, CO and
HF is investigated in relation with indirect processes in the action of radiations
with the biological medium. The charge transfer cross sections are determined
with regard to the orientation of the projectile towards the molecular target,
and consideration of the vibration of the diatomics during the collision process.
Correlations may be pointed out between the non-adiabatic interactions and the
charge transfer cross sections and general rules for the corresponding mechanism
are proposed.
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20.1 Introduction

Experimental and theoretical investigations on collisions between ions and molec-
ular [1–7] or even biomolecular targets [8–13] have been developed recently in
relation with possible direct or indirect processes occurring in the irradiation
of the biological medium. Effectively, important damage induced by interaction
of ionizing radiations with biological tissues is due to the secondary particles,
low-energy electrons, radicals or singly and multiply charged ions, generated along
the track after interaction of the radiation with the biological medium [14]. The
analysis of such mechanisms at the molecular level is of preponderant importance
in order to provide detailed information on the different processes occurring during
the collision, as charge transfer between the projectile ion and the molecule or
fragmentation dynamics after removal of electrons from the target.

In that sense, we have investigated a series of ion-diatomic collision systems in
order to analyze the charge transfer mechanism and, if possible, establish a number
of general rules for these reactions. Effectively, in indirect processes where ions
are not interacting directly with biomolecules, but with the environment, generally
the water solvent, very reactive species may be produced, as for example the OH
radical by action of ions with the water molecules. Such species may induce severe
damage to the biological environment and indirect processes have been shown to be
determinant for the physiological point of view [15].

In order to have a better understanding of the mechanism, we have performed
a comparative analysis for the collision of the C2+ projectile with different targets,
differing one to another by one atom. We have studied first of all the C2+ +OH
collision system, and compared its mechanism to the C2+ + CO and C2+ + HF
reactions [5–7]. Our attention has been focused on two main points: the anisotropy
of the charge transfer with regard to the orientation of the projectile towards
the target and the influence of the vibration of the diatomic molecule during
the collision. All along this work, a detailed analysis of the mechanism of the
charge transfer in relation with the non-adiabatic interactions between the different
molecular states involved in the process has been performed [16]. The molecular
calculations were carried out using ab initio quantum chemistry methods followed
by a semi-classical collision treatment in the keV laboratory energy range.

20.2 Theoretical Treatment

20.2.1 Molecular Calculations

The geometry is described using the internal Jacobi coordinates {R,r,θ} with the
origin at the centre of mass of the target molecule, as defined in Fig. 20.1.

The diatomic molecule corresponds respectively to AB = OH, OC and FH for
the collision of the C2+ ion on OH, CO and HF diatomic targets, such as, in the
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Fig. 20.1 Internal Jacobi
coordinates
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linear approach, the collision of the C2+ ion towards the more electronegative
atom, oxygen or fluorine, would correspond to an angle θ = 180◦. The molec-
ular calculations were performed by means of the MOLPRO suite of ab initio
programs [17]. The molecular orbitals have been optimized at the state-average
Complete Active Space Self Consistent Field (CASSCF) level with Multi Reference
Configuration Interaction (MRCI) calculations using the correlation-consistent basis
sets of Dunning [18]. The active space includes all valence electrons distributed
among n = 2, 3 orbitals for carbon, oxygen and fluorine and the 1s orbital for
hydrogen. The 1s orbitals of carbon, oxygen and fluorine were frozen in the
calculation. The equilibrium geometry req of the ground state of each diatomic
molecule has been optimized at the MRCI level of theory and lead to vertical
ionization potentials in good agreement with experimental and previous theoretical
values [5–7]. We have performed calculations for different geometries r around
the equilibrium distance in order to take account of the vibration effect during the
collision process. The anisotropy of the charge transfer has been investigated by
performing a series of calculations for different orientations of the projectile towards
the molecular target corresponding to specific values of the angle θ, about every 20◦,
from θ = 0◦ to θ = 180◦. In that case, the diatomic targets have been considered at
equilibrium. The molecular calculations have been performed in the C2v symmetry
group in linear geometries, and using the Cs symmetry group for non-linear ones
taking the plane of the molecular system as plane of symmetry. Spin-orbit coupling
being negligible in the energy range of interest, we assume electron spin to be
conserved in the collision process.

The charge transfer process is driven mainly by non-adiabatic interactions in the
vicinity of the avoided crossings [19] and radial coupling matrix elements between
all pairs of states of the same symmetry have been calculated by means of the finite
difference technique:

gKL(R) = 〈ψK |∂/∂R|ψL〉= lim
Δ→0

1
Δ
〈ψK(R)|ψL(R+Δ)〉,

with the parameter Δ = 0.0012 a.u. previously tested [20].The rotational coupling
matrix elements 〈ψK(R)|iLy|ψL(R)〉 between states of angular moment ΔΛ = ±1
have been calculated directly from the quadrupole moment tensor with the centre of
mass of the system at origin of electronic coordinates.
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Fig. 20.2 (a) Potential energy curves for the 1Σ+ (full line) and 1Π (broken line) states of the
C2+ +HF molecular system at equilibrium rHF = 1.738368 a.u., θ = 160◦. 1, C+(1s22s22p)2P+
HF+ (2Π); 2, C+(1s22s22p)2P + HF+(2Σ+); 3, C2+(1s22s2)1S + HF(1Σ+) entry channel.
(b) Radial coupling matrix elements between 1Σ+ states of the C2+ +HF molecular system at
equilibrium, θ = 160◦ . Same labels as in Fig. 20.2a

The molecular calculations have been performed for the different collision
systems taking account of all the exit channels which may be correlated
with the ground state entry channel, respectively C2+(1s22s2)1S + OH(2Π),
C2+(1s22s2)1S+ CO(1Σ+), and C2+(1s22s2)1S+HF(1Σ+). As an example, we de-
tail the different molecular states involved in the C2+(1s22s2)1S+ HF(1Σ+) charge
transfer system. Taking account of the 1Σ+ symmetry of the C2+(1s22s2)1S +
HF(1Σ+) entry channel, three 1Σ+ states and two 1Π states have to be considered
in this process with regard to the different excited states of HF+ and spin
considerations:

C2+(1s22s2)1S+HF(1Σ+) 1Σ+

C+(1s22s22p)2P+HF+(2Σ+) 1Σ+,1 Π
C+(1s22s22p)2P+HF+(2Π) 1Σ+, 1Π

The potential energy curves for the equilibrium distance, associated radial and
rotational coupling matrix elements between 1Σ+ and 1Π states have been calculated
in the [2.0–14.0] a.u. internuclear distance range. The main features are presented
in Fig. 20.2a, b for an orientation angle θ = 160◦ and the equilibrium rHF distance.
Two avoided crossings are clearly visualized on the 1Σ+ potential energy curves,
one between the entry channel and the 21Σ+{C+(1s22s22p)2P+HF+(2Σ+)} exit
channel around 6. a.u. and another one, at shorter distance range around R = 4. a.u.,
between the 21Σ+ and 11Σ+{C+(1s22s22p)2P + HF+(2Π)} exit channels. Peaks
may be observed for the radial coupling matrix elements in correspondence to
these avoided crossings, as shown on Fig. 20.2b. The radial coupling rad23 exhibits
besides a sharp peak at short range corresponding to an interaction in the repulsive
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part of the potential energy curve. Such an interaction would certainly be considered
as quasi-diabatic in the collision treatment [21, 22]. The radial coupling matrix
elements between 1Π states have not been presented as no significant avoided
crossing may be observed in the distance range of interest. Of course, the potential
energy curves and couplings are depending on the geometry of the collision system,
in particular on the orientation angle θ and the rHF distance. This may be relied
directly to the anisotropy of the process and the vibration of the diatomic target and
will be detailed in further chapters.

20.2.2 Collision Dynamics

The collision dynamics has been performed by means of the EIKONX code [23]
in the keV laboratory energy range where semi-classical approaches may be used
with a good accuracy. In such charge transfer processes, electronic transitions can
be assumed to occur so fast that vibration and rotation motions may be neglected
during the collision. We can thus use the sudden approximation hypothesis and
determine the partial and total cross sections considering the internuclear distance of
the molecular target fixed in a given geometry. This approach is, of course, relatively
crude but it is widely used in the field of ion-molecule collisions and has shown its
efficiency in the keV energy range we are dealing with [24]. Such a treatment has
been performed for different orientations θ and different r distances, for the collision
of C2+ on the diatomic targets CO and HF taking account of all the transitions driven
by radial and rotational couplings. The C2++OH collision system being extremely
complex, the transitions driven by rotational coupling matrix elements have been
analyzed with regard to the collision energy [6]. Translation effects have not been
included in this study. However, the origin of coordinates has been chosen in order
to expect accurate enough values of total cross sections in the [1−75] keV collision
energy range we are dealing with [25].

The partial and total cross sections between the different states involved in the
charge transfer process are presented in Fig. 20.3 for the C2+(1s22s2)1S+ HF(1Σ+)
system at equilibrium and corresponding to the orientation θ = 160◦, detailed
in previous paragraph. At low collision energies, the process is driven
mainly by the radial coupling rad23 between the entry channel and the
22Σ+{C+(1s22s22p)2P + HF+(2Σ+)} level. It is characterized by a low-energy
bump on the corresponding partial cross section sec32 which may be observed
also on the total charge transfer cross section. At higher collision energies, this
non-adiabatic interaction becomes less efficient, and the process is more likely
driven by the radial coupling rad12 with increase of the corresponding sec31 partial
cross section on the 11Σ+{C+(1s22s22p)2P+HF+(2Π)} charge transfer channel.
Besides, an important rotational effect may be pointed out at higher collision
energies, with a significant increase of the secpi32 partial cross section. Such
remarks may be extended to the different geometries of the charge transfer system,
considering the variation of the cross sections taking account of the evolution of the
different radial coupling matrix elements. This could lead to interesting correlations
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Fig. 20.3 Total and partial charge transfer cross sections for the C2+ +HF system at equilibrium
rHF = 1.738368 a.u., θ = 160◦ ; sectot, total cross section; sec32, partial cross section on
1Σ+{C+(1s22s22p)2P + HF+(2Σ+)}; secpi32, partial cross section on 1Π{C+(1s22s22p)2P +
HF+(2Σ+)}; sec31, partial cross section on 1Σ+{C+(1s22s22p)2P+HF+(2Π)}; secpi31, partial
cross section on 1Π{C+(1s22s22p)2P+HF+(2Π)}

between non-adiabatic interactions at the vicinity of avoided crossings and the
observable cross sections. The analysis is deepened by comparison of similar
collision systems as general behaviours could be established; we have considered
the collision of C2+ on HF, OH and CO targets in order to extract more general
rules regarding the anisotropy of the process and the vibration effect.

20.3 Vibration Effect

A complete treatment has been performed for the different collision systems for a
series of values of the vibration coordinate r around the equilibrium distance in the
linear approach. The main features can be exhibited by discussing the results on the
C2++OH and C2++HF collision systems.

As shown on Fig. 20.4, the C2+ +OH charge transfer process involves a very
great number of molecular states, very close in energy, and leads to intricate molecu-
lar calculations. However, the interaction between the entry channel 2B1{C2+(2P)+
OH(2Π)} and the 2B1{C+(2P) + OH+(1Π)} exit channel is strong and can be
considered to mainly drive the process. A very straightforward correlation can
be established between the charge transfer cross sections and the corresponding
g78 radial coupling matrix element. Effectively, as displayed in Fig. 20.5a, b, a
regular increase is observed for the total cross sections in correspondence with the
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regular increase of the g78 radial coupling around the equilibrium distance, between
rOH = 2.0 a.u. and rOH = 1.7 a.u.. On the contrary, for very constraint geometries,
corresponding to a very short rOH distance, a completely different behaviour is
observed for the charge transfer cross section. The collision of C2+ ions with OH
appears to present a two-step mechanism with first a relaxation of the system before
the effective charge transfer process could occur, leading to a more regular variation
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of the cross sections at higher energies. Such behaviour can be correlated to the very
sharp g78 radial coupling showing a strong increase of the non-adiabatic interaction.

Similar correlations between non-adiabatic effect and charge transfer cross
sections may be established for the collision of C2+ ions on HF. However, in
that case, the analysis is more complex as several non-adiabatic interactions may
interfere and the concomitant evolution of several radial coupling matrix elements
has to be taken into account.

The radial coupling matrix elements and charge transfer cross sections for
different rHF values are presented respectively in Fig. 20.6 a, b. As in the previous
C2++OH collision system, the cross sections show a regular increase when the
vibration coordinate rHF is reduced from 2.0 to 1.5 a.u. around the equilibrium
distance, in agreement with the increase of the radial coupling matrix element
rad23 between the entry channel and the 21Σ+ level. On the other hand, the
radial coupling rad12 between 11Σ+ and 21Σ+ exit channels decreases with
the rHF vibration coordinate corresponding to a smoother interaction at shorter
rHF distances. The non-adiabatic interaction between the entry channel and the
21Σ+{C+(1s22s22p)2P + HF+(2Σ+)} level is thus clearly the driving step in
the charge transfer process. It may be relied to the low-energy bump observed on
the sec32 partial cross section (Fig. 20.3) which increases for shorter rHF values [7].
The non-adiabatic interaction with the lower 11Σ+{C+(1s22s22p)2P+HF+(2Π)}
charge transfer channel may be more likely relied to the smooth high energy bump
observed in charge transfer cross sections. At variance with the previous case, no
specific behaviour is exhibited at very constrained HF geometry and a first relaxation
process is not expected in the collision of C2+ with the HF target.



20 Analysis of the Charge Transfer Mechanism in Ion-Molecule Collisions 363

20.4 Anisotropic Effect

The orientation of the projectile towards the molecular target has also been studied
in detail for the series of charge transfer systems. It may be developed on the
C2+ + CO and C2+ + HF collisions. The calculations have been performed for
specific values of the θ angle, from linear to perpendicular orientations. As exhibited
previously for the vibration effect, a significant correlation can be established
between non-adiabatic interactions and charge transfer cross sections. For the
C2+ +CO collision system, seven states have to be taken into account with regard
to the different excited levels of CO+ and consideration of radial and rotational
couplings. They are displayed in Fig. 20.7 in the linear geometry.

Radial couplings and charge transfer cross sections are displayed in Fig. 20.8a, b.
The most important interaction corresponds to the g34 radial coupling between
the entry channel and the 31Σ+{C+(1s22s22p)2P + CO+(B2Σ+)} exit channel.
A significant evolution is exhibited for the different orientations and correlations
may be evidenced between this radial coupling and the charge transfer cross
sections. Effectively, the charge transfer appears clearly more favourable in the
linear direction towards the oxygen atom (θ= 180◦) where the radial coupling g34 is
highest. On the contrary, the perpendicular orientation is markedly unfavoured with
cross sections about six times lower, in agreement with a very low radial coupling
matrix element g34. The correlation however is not symmetrical, the decrease of
cross sections from θ = 180◦ to 90◦ is regular, but the process appears globally less
favourable on the carbon side.
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The radial couplings and cross sections presented in Fig. 20.9a, b clearly drive
the same conclusions for the C2++HF collision system. The collision towards the
fluorine atom in the linear approach (θ = 180◦) is particularly efficient. Globally
speaking, the charge transfer process is favoured in the linear geometry and clearly
less efficient in the perpendicular one. As a general rule, we can assess that in
collisions on hetero-nuclear molecular targets, the charge transfer is favoured in a
collinear approach towards the most electronegative atom, fluorine or oxygen pref-
erentially than hydrogen for HF and OH, or carbon in the case of the CO molecular
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target. As previously stated, correlations between charge transfer efficiency and
non-adiabatic interactions may also be established for this system. Two avoided
crossings are involved presently for the C2+ +HF collision system, the avoided
crossing between the entry channel and the 21Σ+{C+(1s22s22p)2P+HF+(2Σ+)}
level corresponding to the radial coupling rad23, and the avoided crossing between
the 21Σ+ and 11Σ+{C+(1s22s22p)2P+HF+(2Π)} exit channels characterised by
the radial coupling rad12. Both of them are maximum for the linear geometry
towards fluorine (θ= 180◦) and decrease significantly for perpendicular orientation.
The radial coupling rad23 remains anyway not negligible at θ = 90◦. It is globally
smoother for collisions on the hydrogen side, as observed for the CO target on the
carbon side. The radial coupling rad12 is less sensitive to this preferred orientation.
It is almost symmetric for both sides of the collision and significantly sharper in
both collinear orientations.

The present analysis may be supported by looking at the evolution of the charge
transfer cross section with regard to the θ angle, for given collision velocities
displayed in Fig. 20.10. The conclusions depend a bit on the collision energy, but
the perpendicular orientation is always shown to be strongly unfavourable whatever
the collision velocity and the side of fluorine, the most electronegative atom, leads
clearly to a more efficient charge transfer process.

20.5 Concluding Remarks

This paper presents a theoretical treatment of charge transfer processes induced
by collision of the C2+ projectile ions on a series of diatomic molecules, OH,
CO and HF. An interesting insight into the mechanism of the charge transfer
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process has been exhibited, with regard to the behaviour of the collision system
in different orientations, as well as for different values of the vibration coordinate.
The collision process is highly anisotropic: the charge transfer is favoured in the
linear approach with collision of the C2+ ion towards the more electronegative
atom, and, on the contrary, very significantly non-favoured in the perpendicular
approach. Correlations may be driven between the partial cross section values and
the non-adiabatic interactions shown by the molecular system, in particular when
the charge transfer process is clearly driven by one non-adiabatic interaction. Such
an approach could be extended to more complicated targets.
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Chapter 21
Recombination by Electron Capture
in the Interstellar Medium

M.C. Bacchus-Montabonel and D. Talbi

Abstract Rate constants for charge transfer processes in the interstellar medium
are calculated using ab-initio molecular calculations. Two important reactions are
presented: the recombination of Si2+ and Si3+ ions with atomic hydrogen and
helium which is critical in determining the fractional abundances of silicon ions, and
the C++S→ C+S+ reaction, fundamental in both carbon and sulphur chemistry.

21.1 Introduction

A quantitative analysis of the emission-line spectra of ionized astronomical objects
requires reliable data on the microscopic ionization and recombination processes
involved. Recombination may occur either by radiative capture or by charge transfer
from neutral species. The charge transfer recombination process with atomic
hydrogen or helium is particularly important in astrophysical plasmas for many
multiply-charged ions, whose emission lines are used to provide direct information
of the ionization structure of astronomical objects [1–8]. For some doubly and triply
charged ions, electron capture can lead directly to the formation of ground states and
thus may induce rapid ionization via the inverse charge transfer process. This is the
case for the Si2+(1S)+H(2S) and Si3+(2S)+He(1S) reactions which are critical
in determining the fractional abundances of silicon ions [9–11]. The charge transfer
C+ + S reaction plays also a determinant role in the formation of sulphur bearing
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molecules [12], for instance in the abundance of H2CS in the dense interstellar
clouds. It is crucial in the chemistry of the photon dominated regions (PDR’s) of
the interstellar medium [13, 14] and allows the enhancement of the ionic carbon
chemistry at the origin of the formation of the complex carbon molecules observed
in the PDR’s.

These examples present a significative overview of charge transfer in space
chemistry. We thus report a complete ab-initio treatment of the Si2+(1S) +H(2S)
and Si3+(2S)+He(1S) reactions as well as new calculations of the C+(2s22p)2P+
S(3s23p4)3P process and its reverse C + S+ reaction in order to provide an in-
terpretation of the mechanisms involved and determine the corresponding rate
coefficients at different temperatures which are crucial data in the modellisation
of the interstellar medium.

21.2 Theoretical Treatment

21.2.1 Molecular Calculations

The potential energy curves have been calculated by means of ab-initio methods.
For the Si2+ +H and Si3+ +He collision systems, MCSCF/CI calculations have
been performed using the CIPSI algorithm [15]. A non-local pseudopotential was
used to represent the core electrons of the silicon atom [16] and 9s7p2d basis
of Gaussian functions have been optimized on Si2+(3s2)1S, Si2+(3s3p)2P and
Si3+(3s)2S from the basis sets of McLean and Chandler [17]. Previously used 4s1p
and 5s3p basis have been used for helium and hydrogen atoms [18,19]. This basis of
atomic functions may be compared to the larger coupled-cluster polarized valence
triple zeta and augmented quadruple zeta basis sets of Dunning [20] with errors of
the order 10−4 a.u. on Hartree-Fock energies. Special care was taken to construct
sets of determinants providing the same level of accuracy over the whole distance
range. For the CS+ molecular system, potential energy curves have been carried out
using the MOLPRO suite of ab-initio programs [21] at the state average CASSCF-
MRCI level of theory. The active space includes the n = 2 orbitals for carbon and
n = 3 orbitals for sulphur. The ECP10sdf relativistic pseudo-potential has been used
to describe the 10 core-electrons of sulphur [22] with the correlation-consistent aug-
cc-pVQZ basis sets of Dunning [20] for all atoms. The spin-orbit effects may be
neglected in the collision energy range of interest so doublet and quartet manifolds
can be considered separately.

The charge transfer process is driven mainly by non-adiabatic interactions in
the vicinity of avoided crossings [23,24]. The corresponding radial coupling matrix
elements between all pairs of states of the same symmetry were calculated by means
of the finite difference technique:

gKL(R) = 〈ψK |∂/∂R |ψL〉 = lim
Δ→0

1
Δ
〈ψK(R)| ψL(R+Δ)〉 ,
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with the parameter Δ = 0.0012 a.u. previously tested [25]. For reasons of numerical
accuracy, we performed a three-point numerical differentiation using calculations
at R+Δ and R–Δ for a very large number of interatomic distances in the avoided-
crossing region.

The rotational coupling matrix elements 〈ψK |iLy|ψL〉 between Σ−Π molecular
states were determined directly from the quadrupole moment tensor which allows
the consideration of translation effects in the collision dynamics [26]. In the
approximation of the common translation factor [27], the radial and rotational
coupling matrix elements between states ψK and ψL may indeed be transformed
respectively into:

〈ψK |∂/∂R− (εK− εL)z
2/2R|ψL〉,

〈ψK |iLy +(εK− εL)zx|ψL〉,

where εK and εL are the electronic energies of states ψK and ψL and z2 and zx are
the component of the quadrupole moment tensor.

21.2.2 Collision Dynamics

The collision dynamics was treated in the eV energy range by a semi-classical
approach using the EIKONXS program [28] in the case of the Si2++H and C++S
reactions. Both radial and rotational coupling matrix elements were taken into
account, as well as translation effects, although they are expected to be low at these
energies. For the Si3++He collision system, a quantum mechanical approach was
preferred. Allowance for translation effects was made by introducing appropriate
reaction coordinates [6,29] which induce a modification of the radial and rotational
matrix elements similar in form to those resulting of the application of the common
translation factor method [27]. The rate constants k(T) were calculated by averaging
the cross sections σ(E) over a Maxwellian velocity distribution at temperature T.

21.3 The Si2++H and Si3++He Collision Systems

Both systems, Si2+ +H and Si3+ + He, present the characteristic to lead to the
ground state Si(q−1)+ ion by recombination from the Siq+ ion with, respectively,
the hydrogen or helium atom and thus induce a rapid reverse ionization process.
The charge exchange recombination of Si2+ ions with atomic hydrogen

Si2+(3s2)1S+H(1s)2S→ Si+(3s23p)2P+H+
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Fig. 21.1 (a) Adiabatic potential energy curves for the 2Σ+ (full lines) and 2Π (dashed
lines) states of the collision system Si2+ + H. (1) 2Σ+,2 Π{Si+(3s23p)2P + H+}. (2) 2Σ+

{Si2+(3s2)1S + H(1s)}, entry channel. (b) Adiabatic potential energy curves for the
2Σ+ (full lines) and 2Π (dashed lines) states of the collision system Si3+ +He. (1) 2Σ+{Si2+

(3s2)1S+He+(1s). (2) 2Σ+{Si3+(3s) 2S + He}, ground entry channel. (3) 2Σ+,2 Π
{Si2+ (3s3p)3P+He+}. (4) 2Σ+,2 Π{Si2+(3s3p)1P+He+}. (5) 2Σ+,2 Π{Si3+(3p)2P + He},
metastable entry channel

is a relatively simple collision system where only three molecular states are
involved, the 2Σ+ entry channel and the 2Σ+ and 2Π states correlated to the one-
electron capture channel {Si+(3s23p)2P+H+}. Such potentials are displayed in
Fig. 21.1a and present a sharp avoided crossing around R = 10.5 a.u. corresponding
to a peaked radial coupling matrix element, 2.47 a.u. high.

The Si3+(3s)2S+He collision system is also a simple molecular system

Si3+(3s)2S+He(1s2)1S→ Si2+(3s2)1S+He+(1s)2S,

but, for a complete treatment of the process, we have to take into account
simultaneously the charge transfer from the metastable Si3+(3p) ion as molecular
states are close in energy and can interact. We have thus to consider also the reaction

Si3+(3p)2P+He(1s2)1S→ Si2+(3s3p)1,3P+He+(1s)2S

which involves 2Σ+ and 2Π levels. The potential energy curves are presented
in Fig. 21.1b. The ground state Si3+(3s)2S +He entry channel leads to a simple
electron capture process. The potential energy curves present a pronounced
avoided crossing around R = 6.0a.u. with the {Si2+(3s2)1S + He+(1s)2S} exit
channel. A very sharp avoided crossing may also be observed around R = 7.0
a.u. between the metastable entry channels 2Σ+,2Π {Si3+(3p)2P+He(1s2)1S} and
the {Si2+(3s3p)1P + He+(1s)2S} in 2Σ+ and 2Π symmetries and a smoother
one, around R = 5.0 a.u., between the {Si2+(3s3p)1P + He+(1s)2S} and
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Fig. 21.2 (a) Rate coefficients (10−9 cm3 s−1) for the charge transfer recombination processes
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[33]. From Si3+(3p), (yellow) this work; (light blue) [35]

{Si2+(3s3p)3P + He+(1s)2S}2Σ+ and 2Π exit channels. At shorter internuclear
distance, around R = 3.2 a.u., an important avoided crossing between the
2Σ+{Si2+(3s3p)3P+He+(1s)2S} level and the ground state entry channel may also
be pointed out.

The collision dynamics has been performed for both systems. The rate coeffi-
cients for the Si2+(3s2)1S+H system are presented in Fig. 21.2a and compared to
the SCVB ab-initio calculation of Clarke et al. [30] with radial coupling only, as well
as with the close-coupling approach of Gargaud et al. [31] using model potentials,
and the Landau-Zener analysis of Bates and Moiseiwitsch [32]. The different results
are in globally good agreement. As already noticed by Clarke et al. [30], their
quantal close-coupling approach differs slightly from the results of Gargaud et al.
[31] and Bates and Moiseiwitsch [32]. On the contrary, they are in good agreement
at high temperatures with the present ones using a semi-classical method, exhibiting,
of course, some discrepancies at lower temperatures related to trajectory effects
which are not considered in our theoretical approach. The Fig. 21.2a displays also
the results for the electron capture from the Si2+(3s3p)3P◦ metastable ion

Si2+(3s3p)3P◦+H(1s)2S→ Si+(3s3p2)2D+H+

→ Si+(3s23p)2P◦+H+

determined by Clarke et al. [30] to be two orders of magnitude lower than the capture
by the ground state ion. Such process appears non determinant and so has not been
taken into account in our calculation.
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Table 21.1 Rate coefficients
for charge transfer and
ionization processes in
the Si3++He collision
(in 10−9 cm3 s−1)

T(K) kCT kCT [34] kion kion [34]

500 0.08 -
1,000 0.10 0.17 -
2,000 0.15 -
3,000 0.21 0.39 -
5,000 0.33 -
10,000 0.62 0.96 0.00002 0.00003
20,000 1.14 0.0065
30,000 1.58 2.00 0.05 0.07
40,000 1.97 0.15
50,000 2.31 0.29
100,000 3.60 1.28 1.21

For the Si3+ +He system, the coupling equations were solved simultaneously
for all the levels involved in the charge transfer process from both the ground state
and the excited entry channels. The rate coefficients are displayed in Fig. 21.2b and
compared to the ion-trap experiment of Fang and Kwong [33]. For the capture
process from the ground state Si3+(3s), a global agreement is observed between
the Landau-Zener calculations [34], the present ab-initio treatment and the ab-initio
calculations of Stancil et al. [35] with almost the same variation of rate constants
with temperature. Nevertheless, all theoretical results provide rate coefficients lower
than the experimental point of Fang and Kwong [33]. On the contrary, the rate
coefficients calculated for the capture from the metastable Si3+(3p) ion are of the
same order of magnitude than the experimental point. Some uncertainty on the
temperature of the trap have to be considered, however, we could suggest certainly
the presence of excited Si3+(3p) in the experiment.

At typical astrophysical temperatures, only the ground state Si3+(3s) is signifi-
cantly populated and the charge transfer process leads to the ground Si2+(3s2) level.
The rate constant for the reverse ionization process kion may be determined easily
by means of the microreversibility relation from the corresponding charge transfer
rate constant kCT :

kion = gexp

(
−ΔE

kT

)
kCT ,

where g is the ratio of the statistical weights of initial and final states (g = 1), and
ΔE is the energy gain of the charge transfer reaction. The ionization rate coefficients
are presented in Table 21.1. They reach significant values for temperatures above
3× 104 K, they are rapidly negligible for lower temperatures with regard to the
exponential factor. They are in good agreement with the previous calculation of
Butler and Dalgarno [34].
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21.4 The C++S Collision System

The C+ + S charge transfer is a determinant reaction for both carbon and sul-
phur chemistry. The rate constant generally considered for this process is 1.5×
10−9 cm3 s−1 [36] between 10 and 41,000 K, but it remains uncertain for such
a large temperature domain and detailed calculations have to be performed. At
low temperatures where the process takes place, the different species may be in
their ground state. With regard to the correlation diagram, only two molecular
states {C+(2s22p)2P + S(3s23p4)3P} and {C(2s22p2)3P + S+(3s23p3)4S} would
thus have to be considered in the charge transfer reaction.

Correlation diagram

Configuration Molecular states Asymptotic energy (eV) [37]

C(2s22p2)1S + S+(3s23p3)4S 4Σ 2.68
C+(2s22p)2P + S(3s23p4)1D 2Σ,2Π,2Δ,2F 2.04
C(2s22p2)3P + S+(3s23p3)2D 2,4Σ,2,4Π,2,4Δ,2,4F 1.86
C(2s22p2)1D + S+(3s23p3)4S 4Σ,4 Π,4 Δ 1.26
C+(2s22p)2P + S(3s23p4)3P 2,4Σ,2,4Π,2,4Δ 0.92
C(2s22p2)3P + S+(3s23p3)4S 2,4,6Σ,2,4,6Π 0.0

Such two-channel process is presented in Fig. 21.3a for the doublet states.
However, a strong interaction with the higher {C(2s22p2)1D+ S+(3s23p3)4S} is
pointed out for the quartet manifold as shown on Fig. 21.3b and three levels have to
be taken into account for this spin multiplicity.
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Fig. 21.3 (a) Adiabatic potential energy curves for the Σ (full lines) and Π (dashed lines)
states of the doublet manifold of the CS+ molecular system. (1) {C(2s22p2)3P+S+(3s23p3)4S}.
(2) {C+(2s22p)2P+S(3s23p4)3P} entry channel. (b) Adiabatic potential energy curves for the Σ
(full lines) and Π (dashed lines) states of the quartet manifold of the CS+ molecular system. (1)
and (2), same labels as in Fig. 21.3a. (3) {C(2s22p2)1D+S+(3s23p3)4S}
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Fig. 21.4 (a) Radial coupling matrix elements between Σ (rad12, red line) and Π (radp12,
blue line) states of the doublet manifold of the CS+ molecular system. (1) {C(2s22p2)3P +
S+(3s23p3)4S}. (2) {C+(2s22p)2P + S(3s23p4)3P} entry channel. (b) Radial coupling matrix
elements between Σ (rad12, red line) and Π (radp12, radp23, blue lines) states of the quartet man-
ifold of the CS+ molecular system. (1) and (2), same labels as in Fig. 21.4a. (3) {C(2s22p2)1D+
S+(3s23p3)4S}

The 2Σ and 2Π potentials present a smooth avoided crossing around R = 5 a.u.,
in agreement with the previous calculations of Larsson [38] and Honjou [39]. The
corresponding radial coupling matrix elements are drawn in Fig. 21.4a. They show
smooth peaks around R = 5 a.u., respectively, 0.823 a.u. and 0.459 a.u. high for
2Σ and 2Π states as well as a sharp radial coupling, 6.475 a.u. high, at R = 1.8
a.u. in the repulsive part of the potential energy curves between the 2Π states.
For the quartet manifold, a similar smooth avoided crossing is observed for the
4Σ potential energy curves. But a strong interaction between the 4Π entry channel
and the upper 4Π{C(2s22p2)1D+ S+(3s23p3)4S} level is exhibited around R = 4
a.u. and three 4Π states have to be considered in the calculation. Such interaction
is not observed between the 4Σ levels and only the two lowest 4Σ levels have
been taken into account. The corresponding radial coupling matrix elements are
presented in Fig. 21.4b. A smooth peak, 0.915 a.u. high is observed for the radial
coupling between the 4Σ states, relatively similar to the interaction between 2Σ
levels. However, the radial coupling between the 4Π entry channel and the upper
4Π{C(2s22p2)1D+S+(3s23p3)4S} level reaches up to 10.093 a.u. in absolute value
and may be determinant in the collision treatment. An extremely sharp radial
coupling matrix element between the two lowest 4Π levels is also exhibited at short
range. It could certainly be considered as quasi-diabatic in the collision dynamics.
The Δ states correlated by means of rotational coupling have not been considered in
the calculation and the sextuplet states cannot be involved in the process, since there
are no states of equivalent spin correlating to any higher asymptotic limits.
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Fig. 21.5 Partial and total
cross sections for the CS+

molecular system: doublet
manifold (red, dashed line);
quartet manifold (red, dotted
line); total cross section (blue,
solid line)
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The collision dynamics has been performed for the direct reaction C+(2s22p)2P+
S(3s23p4)3P→ C(2s22p2)3P+ S+(3s23p3)4S for a wide range of collision veloc-
ities, in particular at low velocities where trajectory effects should be considered
and results have to be considered as qualitative. As expected, the sharp peaks
presented by the radial coupling matrix elements radp12 at short range appear as
quasi-diabatic in the dynamical treatment. This is the case, of course for the 4Π
states, where radp12 is extremely sharp, but also for the corresponding coupling
between 2Π states. As spin-orbit effects may be neglected in the collision energy
range of interest, calculations have been performed separately for doublet and
quartet manifolds. With consideration of statistical weights between Σ and Π states,
the cross sections for doublet and quartet manifolds is expressed from the cross
sections σΣ and σΠ for Σ and Π states respectively:

2,4σ = 1/3σΣ + 2/3σΠ.

The total cross section is then:

σtot = 1/32σ+ 2/34σ

with regard to the statistical weights between doublet and quartet manifolds. They
are presented in Fig. 21.5. The quartet states provide the main contribution to the
total cross section at low collision energies and the consideration of the upper
4Π{C(2s22p2)1D + S+(3s23p3)4S} level is necessary for an accurate description
of the system.

The rate constants for the direct reaction C+(2s22p)2P + S(3s23p4)3P →
C(2s22p2)3P + S+(3s23p3)4S are presented in Table 21.2 together with the rate
coefficients for the reverse process deduced, as in previous paragraph, from
the symmetry properties of the S-matrix. In that case, the degeneracy is g = 3
with regard to the multiplicity of initial and final states and the energy gain is
ΔE = 0.92eV.
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Table 21.2 Rate coefficients for the C+ +S and reverse reaction (in 10−9 cm3 s−1)

T(K) C+(2P)+S(3P)→ C(3P)+S+(4S) C(3P)+S+(4S)→ C+(2P)+S(3P)

500 0.018 –
1,000 0.038 0.0000026
5,000 0.072 0.026
10,000 0.073 0.075
50,000 0.13 0.31
100,000 0.20 0.55

The rate constants for the direct reaction are small, about 7.2× 10−11 cm3s−1

at 5,000 K. Such a value is significantly lower than the suggested one 1.5×
10−9 cm3 s−1 given in the UMIST data base [36] for the 10–41,000 K temperature
range. However, the variation of the calculated rate coefficients is relatively weak
in a wide temperature domain and a value of about 1× 10−10 cm3 s−1 may be
assumed in the 5,000–50,000K temperature range with a reasonable accuracy. This
result is in global accordance with the constant value considered in astrophysical
models; the usual value seems anyway to be overestimated by about a power of
10. The total rate constant for the reverse process C(3P) + S+(4S) reaches the
value 2.6×10−11 cm3 s−1 at 5,000 K but, as previously noticed, it becomes rapidly
negligible for lower temperatures with the exponential factor.

21.5 Conclusion

This study provides reasonably accurate rate constants for charge transfer processes
important to model the interstellar medium. The Si2++H and Si3++He reactions
are rather efficient charge transfer processes with rate constants of the order of
10−9 cm3 s−1. On the contrary, the C++S→ C+S+ charge transfer and its reverse
reaction appear to be less efficient, with a rate constant an order of magnitude lower
than the one used in the astrochemical model. It might be wise to test the effect of
a lower rate coefficient in the chemistry of carbon and sulphur in the interstellar
medium. It is important to outline the importance of the 4Π{C(2s22p2)1D +
S+(3s23p3)4S} level in the mechanism. This state is determinant for the efficiency
of the reaction and has to be considered in order to have an accurate description of
the collision system.
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Chapter 22
Systematic Exploration of Chemical Structures
and Reaction Pathways on the Quantum
Chemical Potential Energy Surface by Means
of the Anharmonic Downward Distortion
Following Method

Koichi Ohno and Yuto Osada†

Abstract Anharmonic downward distortion (ADD) of potential energy surfaces
has been used for automated global reaction route mapping of a given chemical
formula of BCNOS. It is demonstrated that the ADD following method gives not
only the larger numbers (122) of equilibrium structures (EQ) than those (103) of the
earlier method by a stochastic approach but also the entire reaction pathways via 430
transition structures (TS) connecting the discovered EQ as well as 155 dissociation
channels, 60 via TS and 95 without TS. Interesting propensities were found for
chemical preference of isomeric structures and their dissociated fragments as well
as characteristic reaction pathways, such as a fragment rotation mechanism.

22.1 Introduction

It has been a primitive but difficult problem to elucidate entire reaction channels for
a given chemical composition of a chemical formula This problem includes several
fundamental questions, what kinds of chemical species (isomers) are producible
from a given chemical formula, how the isomers can be converted one another, and
how they are decomposed into smaller species or conversely how they are made
of smaller species. These questions are of great significance to discover unknown
reaction channels and chemical species.
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The above fundamental questions can be solved in principle theoretically from
mathematical properties of the potential energy surface (PES) [1, 2].

1. An individual equilibrium structure (EQ) on PES corresponds to a chemical
species.

2. A first-order saddle point on PES, a maximum along only one direction and a
minimum for all other perpendicular directions, is called a transition structure
(TS), which connects the reactant with the product via minimum energy paths or
intrinsic reaction coordinates (IRC) [3].

3. A valley leading to fragment species is denoted as a dissociation channel (DC).

The above questions for diatomic systems are trivial. In the case of three-atom
systems, there are several isomers in general, but all isomers as well as all reaction
channels can be studied easily. However, for four-atom systems such as H2CO
a full theoretical search of possible chemical species and reaction channels had
long been eluded. In 1996 Bondensgård and Jensen first reported a global map of
all isomers and reaction channels for H2CO based on quantum chemical PES at
the level of HF/STO-3G [4]. The global reaction route map for H2CO was also
reported by Quapp and coworkers in 1998 [5]. Because of considerably heavy
computational demands for the global reaction route mapping (GRRM), a full search
of all transition structures of systems with more than four atoms was seemed to be
impossible [1].

The major obstacle for performing GRRM was the time-consuming quantum
chemical sampling processes of PES, which requires 3×1010 years of computation
time even for a five-atom system (N = 5) with very rough samplings of 100 grid
points in each directions of 3N-6 = 9 variables, if the samplings are taken at
conventional regular grids [6]. Similarly Mote Carlo samplings cannot avoid the
difficulties. Such sampling methods inevitably include huge numbers of useless
points far from EQ and TS on the PES.

The most efficient way of quantum chemical samplings on PES can be made,
if samplings are confined around reaction pathways. The numbers of EQ and TS
are finite, and their connections are also in the limited area along the reaction
coordinates with essentially one dimensional nature which can be described by
small numbers of sampling points. Downhill walks from TS toward EQ or DC along
reaction pathways on PES can easily be made by conventional methods, such as the
steepest decent method [1]. On the other hand for uphill walks from EQ toward TS
or DC along reaction pathways on PES without any intuition, no algorithm has been
reported before the anharmonic downward distortion (ADD) following [7].

The common feature of reaction channels from an EQ point can be summarized
as ADD, as indicated by arrows in Fig. 22.1. On going toward DC, the potential
energy curve becomes flattened over the long distance. The presence of another EQ
leads to TS. Such propensities due to the existence of another EQ or DC affect
the local properties of potentials around an EQ, which necessarily appear as ADD.
It follows that ADD around an EQ point can be considered as a “compass” of the
chemical reaction [7–9].
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Fig. 22.1 Common features of potential energy curves for chemical reactions on going from an
equilibrium structure (EQ) toward a dissociation channel (DC) or another equilibrium structure
(EQ) via a transition structure (TS). Anharmonic downward distortion (denoted by thick solid
arrow) of the real potential from the harmonic potential (shown by dotted line) indicates the
direction of the chemical reactions toward DC or TS. A curve for a soft mode is also shown for a
multi-dimensional case

Here, one should note that ADD means neither a gentle curvature nor a soft
potential. Soft vibrations such as internal rotation and bending motion hardly break
chemical bonds. The “anharmonic” downward distortion is the essential characteris-
tics indicating directions of chemical reactions. If one follows the lowest energy part
or the softest part on the PES, one cannot follow ADD to be diverted considerably
from the right reaction channels. To avoid the softest part, scaled normal coordinates
have been used in the scaled hypersphere search (SHS) technique [7–9].

By noting ADD, a novel method for finding reaction pathways around EQ has
been established as a general uphill walking method for GRRM [7–9]. The funda-
mental questions for each chemical formula listed above can now be solved by the
GRRM method. The GRRM method using the SHS technique based on the ADD
following [7, 8] has been successfully applied to small molecules [7–23], clusters
[24–28], and large molecules [29–32].

As long as locating one EQ, the conventional geometry optimization technique
in quantum chemical packages can easily be used to obtain an EQ starting from
any geometry. The structure of so searched EQ, however, crucially depends on
the choice of the initial geometry. Thus, for locating all possible EQ based on the
geometry optimization technique, a tremendous number of initial structures should
be introduced in a stochastic way [33–35].

In the present paper, the GRRM method was applied to a five-atom system of
B, C, N, O, and S (BCNOS), for which an automated stochastic search procedure
had been made for locating all possible minima [35]. It is interesting to check the
performance of the GRRM method for finding all possible structures and reaction
pathways for the benchmark system of (BCNOS). It seems also worthy to investigate
(a) structural propensities of (BCNOS), (b) fragment distributions in the dissociated
products of (BCNOS), and (c) their reaction channels for syntheses.
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22.2 Global Reaction Route Mapping

The GRRM method based on the ADD following can be used to elucidate for a given
chemical formula all possible chemical species and reaction channels among them.
The GRRM method does not require any information or intuition beforehand. Thus,
unknown reaction channels and chemical species can be discovered automatically
by the use of the GRRM method.

22.2.1 The GRRM Procedures

Since details of the GRRM procedures were reported previously [6–9], only outlines
of the GRRM method are described here.

1. At first, normal coordinates are determined at an EQ point.
2. Around the EQ, PES is expanded in terms of scaled normal coordinates defined

by qi = λ 1/2
i Qi, where Qi is a normal coordinate with a respective eigenvalue λi.

3. Reaction path points are determined as energy minima on a scaled hypersphere
with a center at the EQ.

4. Using several sizes of hypersphere, one can obtain series of points for the
reaction pathways around the EQ.

5. Indication of a TS region can be recognized as change of signs of first order
derivatives along the reaction path. Location of each TS can be determined
precisely by a conventional technique [36, 37].

6. Asymptotic behavior separating a fragment from the remaining part indicates a
DC. Searched DC in the uphill walking is denoted as upward DC (UDC), which
is found without TS. On the other hand for the downhill walking, searched DC
is denoted as downward DC (DDC), which is found via TS.

7. After arriving at TS, a conventional downhill technique [38] is used to reach
an EQ or DC. During this procedure, the IRC determined from each TS toward
both sides.

8. Structures of newly found TS, and EQ are compared with those of already found
ones. New ones are numbered successively as TSn and EQn, where the initial
EQ is denoted as EQ0. This numbering is temporary during the search. In the
finally obtained global reaction route map, renumbering of EQ is made so that
energies increase with the numbers starting from 0.

9. After those procedures (1)–(8) starting from EQ0 are finished, normal coordi-
nate calculations corresponding to the process (1) are performed for EQ1. Then,
next processes from (2) – (8) are repeated around EQ1 to discover successively
TS, EQ, or DC (UDC, DDC). These cyclic procedures should be repeated for
every new EQ, until no unprocessed EQ remains. All reaction channels via TS
are confirmed as IRC during the above cyclic procedures.
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Fig. 22.2 Searched connections around the most stable structure (EQ0). Equilibrium structures
(EQn) are numbered from the lowest n = 0 so that their energies may increase with the number n.
Transition structures (TSn) are numbered according to the increasing numbering of the connected
EQ. DDC is a downward dissociation channel via TS

10. Entire reaction path connections are discovered one after another in a system-
atic way by the above procedures to yield a global reaction route map for a
given chemical composition automatically.

22.2.2 Automated Search for (BCNOS) by the GRRM Method

Quantum chemical calculations of PES were carried out at DFT B3LYP/6-31G∗ by
Gaussian03 [39], for comparison with the earlier study by the kick method [35].
Although searched results are sometimes depend on the choice of the level of
calculations, the employed level in this study is moderately reasonable in view
of our recent experiences in GRRM calculations [6–32]. Zero-point energy (ZPE)
correction can be made, but in the following it is disregarded, since ZPE corrections
are not necessarily important to consider the performance of the GRRM.

The GRRM procedures for the lowest singlet electronic states of (BCNOS)
automatically yielded 122 EQ and 430 TS. Searched EQs (EQn) are numbered from
the most stable EQ0, the global minimum with the lowest energy. Then, TSs are
numbered around each EQn, starting from EQ0, EQ1, EQ2, and so on. Figure 22.2
shows searched connections around EQ0, and Fig. 22.3 shows searched connections
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Fig. 22.3 Searched connections around the secondly stable structure (EQ1). UDC is an upward
DC without TS. For other notations, see captions in Fig. 22.2

Table 22.1 List of linear
structures

EQn Atoms Relative Energy/kJ mol−1

EQ0 SCNBO 0
EQ1 SBNCO 14.4
EQ4 SNCBO 178.9
EQ9 SNBCO 312.7
EQ10 SBCNO 324.1
EQ12 SOBCN 369.0
EQ14 SOBNC 395.4
EQ17 SCBNO 455.8
EQ24 SCOBN 525.6
EQ32 SNBOC 580.6
EQ66 SCBON 718.4
EQ71 SOCBN 732.5

around EQ1. As can be seen in these Figures, each TSn is numbered systematically
according to increasing numbers of connected EQ.

Our data handling program automatically classifies searched EQs into different
symmetry species; among 122 searched EQs, 12 for C∞v (linear), 80 for Cs (planar),
and 30 for C1 (nonplanar). The linear structures are listed in Table 22.1, where
relative energies are shown with respect to the energy of EQ0. Searched connections
among the lowest ten EQs (EQ0–EQ9) are shown in Fig. 22.4. The global minimum
(EQ0) is a linear structure of SCNBO, which was confirmed to be also the global
minimum at the level of cc-pVTZ/CCSD. The next one (EQ1) is a linear SBNCO,
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Fig. 22.4 Searched connections among the lowest ten equilibrium structures (EQ0–EQ9) for a
five-atom system of B, C, N, O, and S. Illustrations produced by JMOL are given for EQ0–EQ9. In
this map, paths connecting to the same EQ are omitted, and only the lower energy path is retained,
if there are different connections for a pair of EQs. As for the numbering of EQ and TS, see text.
Relative energies with respect to EQ0 are labeled in kJ/mol

then NCSBO with a bent at S (EQ2), NCOBS with a bent at O (EQ3), and a linear
SNCBO (EQ4), which all agree with those reported by the kick method [35].

The total searched EQ number of 122 in our results apparently exceeds the
reported number of 103 by the kick method [35]. Unfortunately, we cannot compare
our results with the earlier one in detail, since precise structures were not reported
in the earlier work. Nevertheless, the nearly 18% larger number of searched EQs in
this work indicates the satisfactory performance of the GRRM method. Although
the kick method seems to be incomprehensive, it may also be useful to find many
possible structures automatically.

The GRRM procedures also gave many “dissociated” structures denoted as DDC
or UDC. Table 22.2 lists the dissociation channels, in which dissociated fragments
are shown as X+Y. For dissociation into fragments of a single-atom and four atoms
(1+ 4), constituent four atoms are shown in parentheses, where the order should
be disregarded. For dissociation into fragments of 2+ 3, three atoms are classified
into ring structures or chain structures with a significant ordering. The numbers of
classified types are shown for both DDC and UDC. The totals are 60 for DDC and
95 for UDC, respectively.
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Table 22.2 List of
dissociation channels (DC)

Dissociated fragments DDC UDC

B+(CNOS) 0 21
C+(BNOS) 0 11
N+(BCOS) 0 9
O+(BCNS) 0 21
S+(BCNO) 0 15
BC+NOS 0 0
BC+NSO 0 0
BC+ONS 0 1
BN+ ring−COS 0 1
BN+COS 0 1
BN+CSO 1 1
BN+SCO 2 0
BO+CNS 0 1
BO+CSN 0 0
BO+NCS 0 1
BS+CNO 0 1
BS+CON 0 0
BS+NCO 1 0
CN+BOS 0 2
CN+BSO 0 2
CN+OBS 0 1
CO+ ring−BNS 2 0
CO+BNS 5 0
CO+BSN 1 0
CO+NBS 12 0
CS+ ring−BNO 4 0
CS+BNO 2 0
CS+BON 3 0
CS+NBO 4 0
NO+ ring−BCS 2 0
NO+BCS 18 0
NO+BSC 0 0
NO+CBS 3 0
NS+BCO 1 1
NS+BOC 0 0
NS+OBC 1 0
OS+BCN 0 2
OS+BNC 3 2
OS+CBN 0 1

Total 60 95

Downward DC via TS is denoted as DDC,
upward DC without TS is denoted as UDC

The total number of reaction channels was found to be 955; 800 for EQ-TS,
95 for EQ-UDC, and 60 for TS-DDC. The average number of reaction channels
around one EQ was found to be 7.3. Although numbers of reaction channels are
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Fig. 22.5 Reaction pathways around a pentagonal ring structure of (O)-N-S-B-C-(O) (EQ95). Rel-
ative energies with respect to the most stable structure (EQ0) are labelled in kJ/mol. A dissociation
channel (DDC33) into NO and SCB indicates a direct synthetic route to the ring isomer (EQ95)
from two simple molecules

larger for stable isomers as can be seen in Figs. 22.1 and 22.2, in some isomers with
the higher energies reaction channels become a few. Around a ring isomer of EQ95,
only four reaction channels were found, as can be seen in Fig. 22.5. It is of note that
EQ95 (O)-N-S-B-C-(O) is the only one pentagonal structure for this system. In this
notation (O)-N-S-B-C-(O) for a ring structure, parenthesized symbols indicate the
same atom.

22.3 Discussion

22.3.1 Chemical Structures of Searched Isomers

The number of topologically independent structures for five different atoms was
suggested to be 577 altogether in the earlier work [35]. Among them, only 103 were
really found to be stable structures by the kick method [35]. The present work gave
122 equilibrium structures, which is also much fewer than 577. It follows that really
effective structures are much less than those imagined.

The number of possible permutations for five-atom linear chain structures with
five different atoms is 5!/2 = 60. The present results gave 47 chain structures,
among which purely linear ones with a symmetry of C∞v were found to be only
12 (Table 22.1). The most stable one is SCNBO, and the next is SBNCO. Both of
these include S and O atoms at the ends as well as N atom in the middle. It is
interesting to note the chemical preference in the linear isomers listed in Table 22.1,
as summarized as follows.
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1. All linear isomers contain S atom at one end.
2. All linear isomers does not contain B atom at an end.
3. All possible types of 3! = 6 appear for isomers with S at an end and B in the

middle, but much less for those with N or C in the middle.
4. All possible types of 3! = 6 appear for isomers with S and O at ends, but much

less for those with N or C at an end.
5. Relatively more stable linear isomers contain O atom at an end.

It should also be noted that S or O atom inside tends to bend chain structures,
because of its nonlinear valency with two single bonds. This tendency is stronger
for S than O, as can be seen in the above feature (1). Bent structures can be found
in Fig. 22.4; EQ2 and EQ7 with S in the middle, and EQ3 with O in the middle.

The number of possible ring structures for five different atoms is 4!/2 = 12.
Among these, only one case of (O)-N-S-B-C-(O) EQ95 in Fig. 22.5 could be found
as a chemically stable isomer with a pentagonal ring. The energy of EQ95 is very
high at 885.9 kJ/mol.

Although the number of isomers composed of a single triangle with a chain of
three atoms like EQ8 O-B-(C)-N-S-(C) in Fig. 22.4 is simply expected to be 60
as suggested in earlier work, 31 EQ structures were really obtained in the present
study. Among them, 21 are planar (Cs) and the remaining 10 are nonplanar (C1).
Their energies widely range from 178.9 kJ/mol (EQ8, Cs) to 1108. 2 kJ/mol (C-B-
(N)-S-O-(N), EQ116, Cs).

The number of isomers composed of a single tetragonal ring with an appendix of
a single atom like B-(C)-O-N-S-(C) EQ101 in Fig. 22.5 has also been expected to
be 60, but really searched structures were only seven; EQ82, EQ94, EQ100, EQ101,
EQ108, and EQ120, whose structure can be expressed as B-(N)-O-S-C-(N), B-(C)-
S-O-N-(C), B-(N)-O-S-C-(N), B-(C)-O-N-S-(C), B-(N)-S-C-O-(N), C-(B)-N-O-S-
(B), and N-(O)-C-S-B-(O), respectively. It is of note that in five cases among seven
B is located at an appendix. Tetragonal rings seem to be rather unstable, since the
energies are in the higher region between 800 and 1,200 kJ/mol in comparison with
the lower energy isomers (0–300 kJ/mol) shown in Fig. 22.4 and the linear isomers
(0–730 kJ/mol) listed in Table 22.1.

22.3.2 Dissociation Channels Producing Fragments

Interesting chemical preference can also be noted for dissociation channels listed
in Table 22.2, which includes all of 1+ 4 and 2+ 3 fragmentation channels. DDC
denotes downward dissociation via TS, whereas UDC denotes upward dissociation
from EQ.

As for 1 + 4 fragmentation, many channels were found for UDC, though no
channels were found for DDC. The number of UDC for ejection of B (21) or O
(21) or S (15) is larger than the number of simple permutations of four-different-
atom chains of 4!/2 = 12. Some structures of four atoms were found to be cyclic.
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There were spatially different dissociation channels even for the same combination
of fragments. For example, fragmentation into S+OBCN shows two independent
channels with dissociation energies of ca. 490 kJ/mol, one is a channel releasing
S atom from the O end of the OBCN moiety, and the other is a channel releasing
S atom from the N end of the OBCN. Less numbers of UDC for ejection of C (11)
and N (9) may be due to relatively firm chemical bonds by C and N atoms.

Concerning 2 + 3 fragmentation, both DDC and UDC were found. These
channels are interesting, because opposite directions forming five-atom structures
can be considered as synthetic routes of the five-atom isomers without byproducts
from a combination of a diatomic molecule and a triatomic molecule.

All possible ten types of diatomics, BC, BN, BO, BS, CN, CO, CS, NO, NS, and
SO, appear in the 2+ 3 channels, but their distribution for DDC and UDC are very
much different. There are no channels yielding BC, BO, or CN for DDC, whereas
there are no channels producing CO, CS, or NO for UDC. In other words, BC, BO,
and CN are directly released without activation energies, and CO, CS, and NO are
released only via TS. The other four types of BN, BS, NS, and SO can be released
via both ways with or without TS.

Correspondingly, all possible ten combinations of three atoms were found in the
2+ 3 channels, but five isomers, NOS, NSO, CSN, BSC, and BOC could not be
obtained in either DDC or UDC.

22.3.3 Reaction Pathways and Synthetic Routes

Global reaction route mapping gives us the entire reaction channels around all EQs,
which shows us connections among isomers as well as dissociation channels, as can
be seen in Figs. 22.2 and 22.3.

As for very stable two linear isomers SCNBO (EQ0) and SBNCO (EQ1),
there are direct connections via TS0 anTS1. Since these connections correspond
to exchange processes of remote S and O atoms attached to both ends of the BNC
fragment, these two reaction routes require high energy barriers of 695.8 kJ/mol
(TS0) and 723.2 kJ/mol (TS1), respectively. If one looks at the global reaction route
map carefully, one may find out more preferable routes with lower energy barriers.
Such routes between EQ0 and EQ1 can be found in Fig. 22.4; (Route 1) EQ0-TS2-
EQ2-TS54-EQ3-TS28-EQ1 has the highest barrier of 446.8 kJ/mol at TS54, and
(Route 2) EQ0-TS2-EQ2-TS58-EQ7-TS69-EQ3-TS28-EQ1 has the highest barrier
of 497.3 kJ/mol at TS69. These two indirect routes have much lower barriers than the
direct routes between EQ0 and EQ1 via TS0 (695.8 kJ/mol) or TS1 (723.2 kJ/mol).
Another indirect route via TS89 (505.0 kJ/mol) lower than the direct one may also
be found in Fig. 22.4, although it is a very long series of reaction pathways.

It is interesting to note the mechanism of these more preferable indirect
reaction routes. Output data of GRRM procedures contain all reaction pathways
in detail. Although we cannot describe them here, interesting characteristics can be
summarized as follows.
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Chain of five atoms ABCDE can be divided into AB and CDE. Initially, B and
C are connected. When the bonding between B and C is weakened, one of the two
fragments can migrate around the other moiety. If AB migrates around CDE keeping
a weak bonding at B, then an intermediate with a T shape can be formed with a
connection between B and D. Further migration of AB toward the other end of CDE
with keeping a weak bonding at B yields a bonding between B and E to result in
a formation of ABEDC. This consecutive procedure is a migration of AB around
CDE with B as an adhesive site. Alternatively, one may consider this procedure as
a rotation of CDE keeping a weak bonding with B in AB. This fragment rotation
mechanism can be schematically shown as follows.

C
AB• CDE→ AB • D→ AB•EDC

E

The above Route 1 can be explained as follows.

SCNBO (EQ0)→ OB•NCS→ OB•SCN→ OBSCN (EQ2)

→ OBS•CN→ SBO•CN→ SBOCN (EQ3)

→ SB•OCN→ SB•NCO→ SBNCO (EQ1)

In the case of Route 2, CN moiety rotates between EQ2 and EQ7, and double
rotation occurs between EQ7 and EQ3.

SCNBO (EQ0)→ OB•NCS→ OB•SCN→ OBSCN (EQ2)

→ OBS•CN→ OBS•NC→ OBSNC(EQ7)

→ OBS•NC→ SBO•CN→ SBOCN (EQ3)

→ SB•OCN→ SB•NCO→ SBNCO (EQ1)

Figure 22.5 shows four types of synthetic routes for the pentagonal ring structure of
(O)-N-S-B-C-(O) EQ95.

1. Ring-closing reaction from a chain: EQ74→ TS341→ EQ95
2. Ring expansion from a tetragonal ring: EQ101→ TS384→ EQ95
3. Ring expansion from a trigonal ring: EQ15→ TS187→ EQ95
4. Ring-closing reaction of 2+ 3: DDC33→ TS385→ EQ95

The route (1) starts from slightly bent chain of SBCON, and activated bending
motion may make a new bond between S and N atoms to lead to the pentagonal
form via TS341 with a barrier height of ca. 200 kJ/mol. The route (2) includes a
bond transfer of CS into BS to lead to a ring expansion from four to five, which has
the lowest barrier height of ca. 17 kJ/mol. The route (3) is a ring expansion from
three to five; the BN bond in the trigonal ring opens to produce a new NO bond
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yields the pentagonal ring, which has a high barrier height of ca. 493 kJ/mol, since
the starting structure of EQ15 is rather more stable than other starting compounds.
The route (4) is a purely synthetic route from small species of NO and SCB; This
2+ 3 cyclization reaction is not so simple as it seems. In the initial step, O in NO
adheres on to the middle part of SCB moiety to produce TS385 with new bonds of
CO and SB as NO-(C)-S-B-(C). Then, CS bond opens to make a new bond between
N and S to yield a pentagonal ring of (O)-N-S-B-C-(O) that is EQ 95. This 2+ 3
cyclization reaction needs an activation energy of ca. 146 kJ/mol.

Synthetic routes of a five-atom system composed of B, C, N, O, and S, can be
designed in many ways by using dissociation channels listed in Table 22.2. By using
UDC in the opposite way, this system can be produced via a 1+4 addition without
activation energies. When a diatomic molecule and respective three atomic parts are
available, a 2+3 addition reaction can be used to produce an isomer of BCNOS.

Since GRRM procedures yield spatial pathways for all reaction channels, one
may design efficient reaction processes; in a 1+4 addition reaction, the best position
on the target where the atom should approach can be elucidated, and in a 2 + 3
addition reaction, the best contact points and orientations of two reactants can be
anticipated. If one can control orientation of molecules as well as directions of
projectiles, spatial reaction pathways should be studied in detail, for which the
GRRM method will provide valuable data.

22.4 Conclusions

Automated exploration of reaction channels on potential energy surfaces has
become possible by the SHS method, in which ADD of the potential indicates the
direction of chemical reactions. ADD can thus be used as a ‘compass’ to discover
unknown chemistry played by atoms. GRRM procedures provide possible EQ and
connections between them as well as dissociation channels into smaller species.

The present application of the GRRM method to a five atom system of BCNOS
has given 120 EQs which are larger than the earlier record of 103 structures by a
stochastic approach. Furthermore, the GRRM method gave 430 reaction channels
going through TS as well as 60 DDC via TS and 95 UDC without TS. Searched
results were found to be very much different from the expected numbers of classified
types in the earlier work, and many interesting propensities of chemical preference
were discovered.
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Chapter 23
Neutral Hydrolysis of Methyl Formate from Ab
initio Potentials and Molecular Dynamics
Simulation

S. Tolosa Arroyo, A. Hidalgo Garcia, and J.A. Sansón Martı́n

Abstract A study of chemical reactions in solution by means of molecular
dynamics simulation and with solute-solvent interaction potentials derived from
ab initio quantum calculations is realized in this work. We apply the procedure
to the case of the neutral hydrolysis of methyl formate, HCOOCH3 + 3 H2O →
HCOOH+CH3OH+ 2 H2O in aqueous solution, via concerted and water-assisted
mechanisms. We used the solvent fluctuation as reaction coordinate, and the free-
energy curves for the calculation of the activation energies. The result for this
hydrolysis reaction in aqueous solution, assisted by three water molecules, is in
agreement with the available experimental information. In particular our study gives
values of ΔG ==22.40kcal/mol, close to the activation barrier experimental of
25.9 kcal/mol, and improving significantly the value found in another similar study
using the PCM model.

23.1 Introduction

The hydrolysis of carboxylic esters (RCOOR’) is one of the most intensively studied
classes of chemical reaction due to its interest in chemistry, biology, and industrial
processes [1]. Methyl formate (HCOOCH3) is the simplest of these esters, and has
found major applications. Due to its small size, this ester has been employed as
a test case in both experimental and theoretical investigations. The reaction in a
neutral aqueous medium [2], studied in the present work, leads to the formation
of formic acid and methanol via different pathways. Since most hydrogen transfers
occur in aqueous solution, one must consider the role of water molecules in this
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Scheme 23.1 Concerted mechanisms for the hydrolysis of methyl formate

transfer, since water can act not only as a solvent but also as a catalyst by donating
both hydrogen H+ and hydroxyl OH− ions in an assisted mechanism.

Although the mechanism of gas phase neutral hydrolysis of this compound
is known, much uncertainty on details of the reaction in the condensed phase
remains. There are some mechanisms by which this reaction can proceed in an
aqueous medium. In this work we study a concerted mechanism in which there
is a nucleophilic attack of the hydroxyl OH− ion from a water molecule on the
ester’s carbonyl carbon, while the hydrogen H+ ion attacks the methoxy oxygen,
electrophilically, via a transition state TS before forming the methanol and formic
acid products. This concerted mechanism can be assisted by some water molecules.

When the reaction is assisted by two or three water molecules, the water
molecules involved in the transition states give more flexible structures of six-
membered rings. This structure make the mechanism assisted by three water
molecules the most favorable one. The participation of more than three molecules of
water in the reaction mechanism is not usually considered since the extra molecules
are not directly involved in the reaction.

Kallies and Mitzner [2] studied this neutral hydrolysis reaction in gas and
solution phases, but using the PCM model [3] to estimate the energies of the
different structures present in the mechanisms. These authors analyze the lowering
of the activation barrier when one or several water molecules are involved in the
reaction mechanism, finding values that are higher than experiment. Their study
was performed at a BLYP/6-31G∗ calculation level using the SCI-PCM model,
and showed that the activation barrier can be lowered by some kcal/mol as the
number of molecules increases from one to three in the two mechanisms they
considered (Scheme 23.1).

Although there have been various studies of this reaction in an alkaline medium,
the absence of work on the neutral hydrolysis using a discrete model to describe
the solvent makes its study of particular interest. In the present work, we show
how the calculation method and the model used for the solvent can affect the value
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of this process activation barrier in a neutral medium, and describe the reaction
by the concerted water-assisted mechanisms. One must bear in mind that the
thermodynamic study of hydrolysis reactions can lead to different results depending
on the type of calculation used.

Continuing in the line of our studies of chemical reactivity in solution using the
MD/ESIE method [4], in the present work we apply our methodology to methyl
formate hydrolysis in aqueous solution. We show how the results are improved
when the solvent is not described as a continuum but as a discrete system formed
by numerous water molecules interacting with the solutes (reactant and transition
state). The method differs from that used by other workers [5] in that it uses
potentials with interaction parameters obtained from ab initio calculations, and free-
energy curves are used to calculate the activation energy.

The aim of the present study was to show that the form of free-energy curves
obtained via the MD/ESIE with ab initio potentials and a discrete solvent model is
a reasonable option within the present limitations of MD simulations. The specific
objectives were: (a) to apply the methodology based on free-energy curves to this
hydrolysis reaction to provide values of its activation free energies in solution; (b) to
compare our MD results using free-energy curves with results in the literature using
other methods to study reactions in solution; and (c) to show the need to use large
basis sets and ab initio solute-solvent potentials to construct free-energy curves.

23.2 Formalism and Calculation Details

About a thousand values of the SCF and MP2 solute-solvent interaction energy Usw

were calculated with the 6-311++G∗∗ basis [6]. In order to try to appropriately
describe the attractive, repulsive, and long-range interactions, the grid of points was
generated by placing the water molecule at different positions rij relative to the
solute. The 6-311++G∗∗ basis set used contains polarization and diffuse functions
for all of the atoms in order to improve the description of the outermost orbitals, and
hence of the reactant and transition state energies and geometries.

The solute-solvent interaction is described by a Lennard-Jones (12-6-1) potential
function. The net charges on each solute atom qs

i were obtained with the ESIE
procedure [7], fitting the values of the Coulomb component of the interaction energy,
using the variational scheme of Morokuma and co-workers [8].

The Lennard-Jones parameters were obtained in a similar way to qs
i , the energies

used in the fits were those that describe the exchange (EX) and polarization (PL)
components of the interaction energy at the SCF level, and the dispersion (DIS)
component related to the MP2 correlation energy [7].

To construct curves of the free energy G, we used as reaction coordinate the sol-
vent fluctuation, i.e. the difference in the interaction energy of a given set of solvent
molecules in the presence of the reactant and transition state structures [9], for which
one only needs the potential function that suitably describes this interaction.
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Thus, to obtain the free-energy curve GR associated with the reactant simulation
one can use the differences in the solute-water interaction energies, (Usw), between
the diabatic states of the solute in its reactant (R) and transition state (TS) structures
for a broad set of configurations of solvent molecules around the solute in a
molecular dynamics simulation of the reactant solvation:

ΔER =UR(W,SR)−UR(W,STS), (23.1)

where UR(W, SR) denotes the solute-solvent interaction USW,R, at the reactant
structure SR and the solvent configuration W .

Transition state solvation is simulated likewise and the ΔETS values with respect
to the other system result, considering the same direction in all the cases, i.e. the
difference between the reactant, R, and transition state, TS, ΔETS = UTS(W,SR)−
UTS(W,STS).

The difference ΔEs fluctuates during the s simulation, and its values are collected
as a histogram of the number of times that a particular value Δe of the macroscopic
variable ΔES appears in the simulation. The probability Ps(Δe) of finding the
system in a given configuration can be expressed in terms of the delta function δ
described in previous works [4, 10] and of the number of equally spaced steps Ns in
the simulation:

PS(Δe) =

N
∑

i=1
δ (ΔES(ti)−Δe)

NS
. (23.2)

This allows us to compute the free energy GS(Δe):

GS(Δe) =−kBT lnPS(Δe). (23.3)

The values of free energy obtained presents some dispersion, so it is advisable to
make a search for the polynomial function that best fits these free energies Gs, and
the result is plotted. In all cases, the separation between the two minima, when the
GR curve intersects the GTS curve at its lowest point Δeeq

TS = ΔeTS,eq
R , is calculated as

ΔG# = Geq
TS−Geq

R = a(Δeeq
TS−Δeeq

R )+ b(Δeeq
TS−Δeeq

R )2 + c(Δeeq
TS−Δeeq

R )3 + · · ·
(23.4)

with Δeeq
R and Δeeq

TS being the most probable values of ΔE in the free-energy curves
GR and GTS, respectively, and a,b, and c are the coefficients of the polynomial fit to
the curve GR [4].

Finally, some details of the simulations merit mention. Molecular dynamics
simulations of an NVT ensemble of a solute molecule in an aqueous environment
represented by about 200 water molecules were carried out at 298 K using the
AMBER program [11]. The time considered for the simulations was 2,000 ps with
time steps of 0.1 fs. The first 1,000 ps were used to ensure that equilibrium was
reached completely, and the last 1,000 ps were to store the configurations of the
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water molecules required for the determination of the thermodynamic properties
studied in this work. Those water molecules initially located at distances less than
1.6 Å from any solute atom were eliminated from the simulations. Long-range
electrostatic interactions were treated by the Ewald method [12], and the solutes
were kept rigid using the shake algorithm [13]. A cut-off of 7 Å was applied to
the water-water interactions to simplify the calculations, and periodic boundary
conditions were imposed to describe the liquid state. The grid of points used to fit the
interaction potential to the Lennard-Jones 12-6-1 function was obtained with SCF
and MP2 energies using the Gaussian/98 package [14], and the decomposition of the
interaction energies was performed with the Gamess program [15]. The calculations
were made on a QS16-2500C-X64Q QuantumCube multiprocessor computer at
Extremadura University.

23.3 Results and Discussion

23.3.1 Reactant and Transition State Structures

Ground state geometries of the reactant and transition states in solution (see
Fig. 23.1) were optimized at the MP2 level with the 6-311++G∗∗ basis [6] starting
from standard geometries and using the PCM model. The transition state structure
was confirmed by observing that there was one negative eigenvalue, of 1,256cm−1

for the transition state, in the Hessian matrix corresponding to movement along the
reaction path (see direction of the arrows on transition state structure in Fig. 23.1), in
good agreement with the wavenumber of the imaginary vibration obtained by other
workers [2].

In the concerted mechanism assisted by three water molecules, the reaction takes
place when the oxygen of a water molecule attacks nucleophilically the carbonyl
carbon, and there is a simultaneous proton transfer from a second water to the
oxygen of the methoxy group, forming a six-membered ring when a hydrogen is
transferred from the first to the second water molecule (Fig. 23.1). The third water
molecule forms hydrogen bonds with the ester and with the first water molecule,
with a second six-member ring appearing in this transition structure. In this process
the O2-C1 distance undergoes a significant increase from 1.34 Å in the reactant to
1.62 Å in the transition state that facilitates their subsequent rupture to yield the
products, and the H2w-O2w bond involved in the link with the ester increases its
length relative to the value of 0.98 Å present in isolated water. The C1-O2-C2 and
O1-C1-O2 angles decrease relative to the reactant structure when the transition state
is formed, and the O1-C1-O2-C2 dihedral angle increases to 25.06◦ in the transition
structure, moving away from the planarity observed in the reactant. These results
are in agreement with those of Kallies and Mitzner for this transition structure [2].
In the next section we used these geometries to make the Molecular Dynamics
Simulations in order to obtain the activation energy.
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Fig. 23.1 Reactant and
transition state geometries
in solution
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23.3.2 Energies

Table 23.1 lists the results for the activation free energies obtained for the hydrolysis
of methyl formate in solution, using different methods and the mechanisms de-
scribed in this work. Our MD results were obtained from the free-energy curves GR

and GTS shown in Fig. 23.2, which were constructed from reactant and transition
state simulations using ab initio potentials.
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Table 23.1 Activation free
energies (kcal/mol) for
methyl formate hydrolysis

Method Concerted

Solution/SCI-PCMa 48.05
Solution/PCMb 55.81
Solution/MDc 22.40
Experimentald 25.90
a
Values obtained by Kallies and
Mitzner, Ref. [2]

b
Value obtained in this work using
the SCFVAC and radii=Pauling
parameters in the PCM model

c
Values obtained in this work using
free-energy curves from ab initio
potentials and MD simulations

d
Experimental value obtained by
Guthrie, Ref. [16]
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Fig. 23.2 R, TS free-energy curves

In considering the activation energy, different situations need to be taken into
account. The activation barrier ΔG may be considerably lowered as a result of
the choice of solvent model used in the calculations and the basis set employed.
Thus, the energy barrier in the solution is increased from 48.05 to 55.81 kcal/mol
by considering the PCM solvation method instead of the SCI-PCM method used by
Kallies and Mitzner [2], using the same level of calculation. In Table 23.1, we can
also observe an important reduction in the energy barrier by considering the solvent
as discrete instead of continuum, so the energy barrier is lowered to a value of
22.40 kcal/mol.

The positions of the minima of GR and GTS, together with the polynomial
functions for all the curves given in Fig. 23.2, yielded values of 22.40 kcal/mol for
the activation energy via the concerted mechanisms, using the Eq. 23.4. Our MD
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result would seem to agree better with experimental studies of esters in pure
water which for this system give a value of 25.9 kcal/mol [16]. This good result
is obtained by using a complete basis set containing polarization and diffuses
functions, including the dispersion component of the interaction energy in the
potential function, i.e. MP2/6-311++G∗∗ level.

Finally, the equation k = kBT
h e−

ΔG
RT in transition state theory gives values of

the rate constant using these activation barriers of 2.310−4s−1 for the concerted
mechanisms, which is in better agreement with the value found for the hydrolysis
of this ester in a neutral medium (k = 4.6 · 10−9s−1 [16]) that with the values of
5.5 ·10−24s−1 from the Kallies and Mitzner’s studies [2].

In sum, the free-energy curves of the species involved in the reaction provide
a good description of the thermodynamics of methyl formate hydrolysis in an
aqueous medium. These curves, which are constructed on the basis of the solute-
solvent interaction energies with the solvent fluctuation being chosen as reaction
coordinate, respond acceptably to the activation barrier of this process. Also, to
obtain reasonable results for this reaction in solution one must take into account
a mechanism that includes the assistance of various water molecules. It was
also observed that the activation barrier depends appreciably on other factors,
in particular, the basis set used to describe the systems, the components of the
interaction energy used in the fits of the potential functions, and the procedure
employed to construct and move the curves.

Acknowledgments This research was sponsored by the Consejerı́a de Infraestructuras y Desar-
rollo Tecnológico de la Junta de Extremadura (Project GR10036).
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Chapter 24
Radial Coupling and Adiabatic Correction
for the LiRb Molecule

I. Jendoubi, H. Berriche, H. Ben Ouada, and F.X. Gadea

Abstract The radial couplings between the adiabatic states dissociating into
Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d)+Li(2s, 2p), Li+ +Rb− and Li− +Rb+ deter-
mined from accurate diabatic and adiabatic previous data for the LiRb molecule.
The accuracy of adiabatic and diabatic results is shown by a comparison with
previous ab initio calculations and experimental results. To evaluate the radial
couplings we have used two methods which are numerical differentiation of
the rotation matrix connecting the diabatic and adiabatic representations and the
Hellmann-Feynman expression. The first and second derivatives present many
peaks, associated to neutral-neutral and ionic-neutral crossings in the diabatic
representation. These peaks can be interpreted from the diabatic potential energy
curves. The radial coupling is then used to determine the adiabatic correction
for several electronic states of LiRb molecule. This correction is about 100cm−1

for some electronic states around particular distances related to avoided cross-
ings and peaks of the second derivative. It is added to the Born-Oppenheimer
potential energy curves to estimate the change in spectroscopic constants, which
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is significant mainly for the higher excited states. The vibrational levels are
evaluated using corrected and uncorrected potential energies to determine the
vibronic shift for the 1Σ+ and 3Σ+ states. This shift, which is the difference between
the adiabatic levels and the corrected ones, has been determined for 20 singlet and
triplet Σ+ states. A shift of order 10cm−1 for some vibrational levels is observed,
which shows the breakdown of the Born-Oppenheimer approximation.

24.1 Introduction

The current development of laser cooling and trapping of radioactive atoms has
opened a new research domain in molecular dynamics and molecular spectroscopy.
Great theoretical and experimental effort is currently motivated by possible appli-
cations e.g.; Bose-Einstein condensation, manipulation and controlling of ultracold
molecules by photoassociation [1–5]. Alkali dimers thereby synthesized requires
good knowledge of their electronic structure. Conversely, real time photodisso-
ciation experiments were done for alkali dimers that can be used to locate the
crossings and coupling between the electronic states. This inspires much theoretical
work [6–9] including quantum dynamics investigation [10].

The LiRb molecule has been extensively studied by experimental and theoretical
groups [11–22]. We cite for example the work of Igel-Mann et al. [11] devoted
to homonuclear and heteronuclear alkali dimers XY (X,Y = Li towards Cs). They
have determined the spectroscopic constants for the ground state of almost all these
systems. On the other hand, Urban et al. [12] have calculated the dipole moment
and dipole polarizabilities of a series of alkali metal atoms including Li, Na, K
and Rb. Recently, Korek et al. [13] have calculated the LiRb molecule ab initio,
where they determined the potential energy curves for 28 electronic states. They
have derived the spectroscopic constants (Te, Re, ωe, Be) of 7, 5 and 2 states of,
respectively, 1,3Σ+, 1,3Π, 1,3Δ symmetries. More recently, the same group of Korek
et al. [14] have calculated the potential energy for the 58 lowest electronic states
including the spin orbit effect within the range of 3.0–34.0 a.u. of the internuclear
distance R. A detailed comparison between their results and ours was presented
previously [15, 16]. In fact, the accurate adiabatic and diabatic states results appear
as extended abstract [16] for the 1Σ+ symmetry and in a full paper [15]. The
spectroscopic constants (Re, De, Te, ωe and Be) were derived and compared to
available theoretical studies. Good agreement was found for the ground and first
excited 1,3Σ+ states with previous work. This paper focuses on the use of both
adiabtic and diabatic results obtained for LiRb to evaluate non adiabatic effects such
as the radial couplings, the adiabatic correction and vibronic shift. In this context,
we propose a dynamcsl study on LiRb molecule. The first and second derivatives
neglected in the Born-Oppenheimer approximation, which are the source of many
physical phenomena [17–29] such as predissociation [27], are determined for the
first time for LiRb. Several authors have studied dynamics for the HeH+, LiH,
NaH, KH, RbH and CsH molecules [30–37]. They have used numerical methods
or analytical expressions.
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Therefore, this work follows our previous study on LiRb molecule where
adiabatic and diabatic results were presented. Here, the aim is to use the diabatiza-
tion procedure for extensive evaluation of nonadiabatic interaction using the rotation
matrix connecting the adiabatic and diabatic representations. The radial coupling
is computed between neighbouring adiabatic 1,3Σ+ states and interpreted from the
diabatic curves features. On the other hand, the radial coupling is used to determine
the adiabatic correction and estimate the vibronic shift. The paper is organized as
follows. In Sect. 24.2, a summary of the ab initio calculation and the numerical
method based on the Hellman-Feynman expression is presented. The results and
discussion are presented in Sect. 24.3, which is divided into five parts: diabatic and
adiabatic results, radial coupling (first and second derivatives), adiabatic correction,
spectroscopic constants, vibrational energy spacing and shift. Concluding remarks
form Sect. 24.4.

24.2 Method of Calculation

The Born-Oppenheimer approximation plays a central role in molecular
calculations; however there are a wide variety of problems where it breaks
down. This is the case when several electronic states dynamically interact, as
in conical intersections or at avoided crossings. In most cases, two equivalent
representations can be adopted for the theoretical treatment of dynamics studies.
These representations are adiabatic, where the radial coupling causes the non-
adiabatic transitions, and the diabatic representation where the same role is impurted
to the electronic coupling. The diabatization method, the results of which are used
here, is based on effective Hamiltonian theory combined with an effective overlap
matrix. Effective Hamiltonian theory is used in an unusual way [38–40] where the
diabatic states lie in the target space and are linear combinations of the adiabatic
states, allowing for variational properties of the effective Hamiltonian operator
[38,41,42]. The diabatisation method was tested first for the CsH molecule [36,37]
and applied later for the LiH, NaH, KH and RbH systems [32–36]. Recently, this
same procedure was applied with care for alkali mixed dimers in our group for
LiCs, LiRb, and NaCs [16, 43, 44].

24.2.1 First Derivative

As in ref. [33], we have evaluated the radial coupling according to two methods
by making the hypothesis that the residual coupling in the diabatic basis is zero.
Denoting the adiabatic states by |ψi〉(with

|ψi〉= ∑
k

Cki|φk〉
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associated energy Ei), the diabatic states by |φk〉 and the unitary matrix connecting
the two sets by C(Cki = 〈φk|ψi〉)
(i) Numerical differentiation of the rotation matrix

〈
ψi

∣∣∣∣ ∂
∂R

∣∣∣∣ψ j

〉
= ∑

α
Ciα

∂Cα j

∂R

Or in matrix notation

=

〈
C+ ∂C

∂R

〉
ij

(ii) Hellmann-Feynman expression

〈
ψi

∣∣∣∣ ∂
∂R

∣∣∣∣ψ j

〉
= (E j−Ei)

−1
〈

ψi

∣∣∣∣∂H
∂R

∣∣∣∣ψ j

〉

= (E j−Ei)
−1
〈

C+ ∂H
∂R

C

〉
ij

Where the electronic Hamiltonian is assumed known in and restricted to the
diabatic basis,

Hkl = 〈φk|Hel|φl〉〈
∂H
∂R

〉
kl
=

〈
φk

∣∣∣∣∂Hel

∂R

∣∣∣∣φl

〉
=

∂Hkl

∂R

As expected, both methods here give identical results. In both cases the
matrix elements Hij were interpolated by cubic splines in the first step and
we determined the C matrix by diagonalization at all distances required by
the three-point numerical differentiation. Interpolation of the rotation matrix C
leads to numerical instability due to the loss of unitarity and should be avoided.
It was demonstrated that the evaluation of the radial coupling is more stable and
preferred by the Hellman-Feynman method.

24.2.2 Second Derivative

The second term not considered in the Born-Oppenheimer approximation is the
second derivative. It is often neglected in the calculation of nonradiative lifetimes.
The knowledge of the diabatic and adiabatic representations, as well as the rotation
matrix, readily gives estimates of the second derivative matrix elements. It was
shown for LiH [28, 29] that this second term is not negligible compared to the first
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derivative and has a significant effect on the nonradiative lifetimes. Deriving the
rotational matrix C and use of closure give:

dC
dR

=
d

dR

〈
ψ
∣∣∣∣ d
dR

∣∣∣∣ψ
〉

=

〈
d

dR
ψ | d

dR
ψ
〉
+

〈
ψ
∣∣∣∣ d2

dR2

∣∣∣∣ψ
〉

=

〈
d

dR
ψ |ψ

〉〈
ψ
∣∣∣∣ d
dR

ψ
〉
+

〈
ψ
∣∣∣∣ d2

dR2

∣∣∣∣ψ
〉

= C+C+

〈
ψ
∣∣∣∣ d2

dR2

∣∣∣∣ψ
〉

Since C is an anti-hermitian matrix (C+ = −C) the second derivative can be easily
expressed from the first and second derivatives:

〈
ψ
∣∣∣∣d

2C

dR2

∣∣∣∣ψ
〉
=C2 +

dC
dR

24.3 Results and Discussion

24.3.1 Diabatic and Adiabatic Potentials

The accurate adiabatic and diabatic results beyond the Born-Oppenheimer approxi-
mation are partially in [16] for the 1Σ+ symmetry and later for all symmetries [15].
Their features, physical and chemical interests have been demonstrated and analysed
in details. For a better understanding of the potential curve features and interactions,
the dipole moment function was evaluated and related to the avoided crossings in
the adiabatic representation and to the real crossings in the diabatic one. They are
reproduced here in Figs. 24.1–24.4 for, respectively, the 1Σ+ adiabatic, 1Σ+ dia-
batic, 3Σ+ adiabatic and 3Σ+ diabatic states. The adiabatic potential energy curves
and the resulting spectroscopic constants (Re, De, Te, ωe and Be) were compared
previously to the available theoretical data and has shown excellent agreement. In
this study, these spectroscopic properties will be recalculated by introducing the
adiabatic correction and a new comparison will be made with available studies.
The diabatic results, obtained for LiRb for the first time, are based on an effective
Hamiltonian theory and overlap matrix. The determination of the diabatic states
is founded on the condition that the wavefunction derivative is zero. It is difficult
to satisfy this condition, except approximately, which corresponds to so-called
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Fig. 24.1 LiRb adiabatic potential energy curves for the 1–10 1Σ+ states

quasi-diabatic states. This diabatization procedure has proved in the past to produce
vanishingly small residual nonadiabatic couplings for the CsH [38, 42] molecule.
This is a severe test since other usual methods lead to a residual coupling of the
order of 10−1 a.u. [38]. This method was applied successfully later for the LiH,
NaH, KH and RbH systems. Recently, the same diabatisation approach was applied
for the first time for a mixed alkali diatomic molecule LiCs, by Mabrouk et al. [43].
The diabatic 1Σ+ curves are plotted in Fig. 24.2. Note that the ionic curve noted D1,
which is associated to the Li−Rb+ ionic state, crosses all the neutral ones at different
distances. These crossings occur with the electronic states named D2−10 dissociating
into Li(2s)+Rb(5s), Li(2s)+Rb(5p), Li(2p)+Rb(5s), Li(2s)+Rb(4d), Li(2s)+
Rb(6s), Li(2s)+Rb(6p), Li(2s)+Rb(5d) and Li(2s)+Rb(7s) states at internuclear
distance around 10.66, 16.17, 16.70, 24.16, 26.48, 44.77, 72.34 and 91.36 a.u. In-
spection of the coupling magnitude corroborates the conclusion that these crossings
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Fig. 24.2 LiRb diabatic potential energy curves for the 1Σ+ states

are less and less avoided as the ionic curve asymptotically encounters higher-
energy Rydbergs at increasing internuclear distances. In fact, the real crossings in
the diabatic representation are transformed into avoided crossings in the adiabatic
one. Figure 24.4 presents the first ten diabatic potential energy curves for the 3Σ+

symmetry related to the adiabatic ones. They are also determined here for the first
time. Similar crossings are detected for the triplet states. For example, the curve D1

crosses the D3, D4, D5, D6, D7, D8, D9 and D10 diabatic states at 13.3, 13.7, 18.5,
19.4, 22.5, 24.9, 26.1 and 28.3 a.u, respectively. The crossings for the triplet states
occur at shorter distance than those observed for singlets.



412 I. Jendoubi et al.

Fig. 24.3 LiRb adiabatic potential energy curves for the 1–10 3Σ+ states

24.3.2 First and Second Derivative

The procedure used to evaluate the radial coupling between the 1,3Σ+ states
for the LiRb molecule is based on the accurate adiabatic and diabatic data as
explained in the previous section. In Fig. 24.5, we present the first derivative radial
coupling (〈ψi| ∂

∂R |ψ j〉, |i− j| = 1) between neighbour adiabatic 1Σ+ states. The
other radial couplings with |i− j| = 1 are much smaller and they are not reported.
The first derivative presents many peaks, related to ionic-neutral and neutral-neutral
couplings. This term, neglected in the Born-Oppenheimer approximation, will help
us to study some new things and to find a correlation between the peaks of the radial
coupling and the diabatic and adiabatic curves. Note that the 1–2 coupling is greater
at short range, it presents a maximum at 8 a.u. and approaches zero at long range.
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Fig. 24.4 LiRb diabatic potential energy curves for the 3Σ+ states

This maximum reflects the avoided crossing between the related adiabatic states and
a real crossing between the ionic diabatic curve named D1 and the neutral one named
D2 at closed distance to that of the maximum. The 2–3 radial coupling has a unique
form with a minimum and two maxima. They are associated with two neutral-neutral
crossings between the state D3 dissociating into Li(2s)+Rb(5p) and the states D2

and D4 dissociating, respectively, into Li(2s) +Rb(5s) and Li(2p) +Rb(5s) and
to another crossing between the ionic state D1 with D3. The 3–4 coupling has an
intense peak at 9.5 a.u. and another small one at 16 a.u. The former, at short range,
corresponds to the crossing between two neutral states D2 and D4 and or D3 and
D4 in the diabatic representation, while the small one at long range is connected
to the neutral-ionic crossing between the curves associated to Li(2s)+Rb(5s) and
Li−+ Rb+. The short and intermediate distance intense peaks for the 4–5, 5–6,
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Fig. 24.5 First derivative between (〈ψi| ∂
∂R |ψ j〉 |i− j|= 1) 1Σ+ states of LiRb

6–7, 7–8, 8–9 and 9–10 couplings are due to the neutral-neutral and neutral-ionic
crossings between the potential energy curves in the diabatic representation. The
second ionic state is Li+Rb−. These peaks can also be explained by the avoided
crossings between neighboring adiabatic states. Other peaks can appear at longer
range, due to crossings between the first ionic D1(Li−Rb+) and higher neutral states.

The calculation of the second derivative, here, has no serious complications. We
used the formalism described, based on the knowledge of the first derivative and
the rotation matrix. As expected, this quantity is as large as the first derivative.
This term multiplied by 1

2μ corresponds to an energy correction omitted
in the Born-Oppenheimer approximation, which contributes to the so-called
adiabatic correction. Other lesser corrections [42], resulting from the radial
dependence of the derivative of the electronic energy in the diabatic representation
can be evaluated using the Virial theorem. The second derivative is not negligible
and it will consequently contribute to the nonradiative lifetime. We display in



24 Radial Coupling and Adiabatic Correction for the LiRb Molecule 415

Fig. 24.6 Second derivative between neighbour (〈ψi| ∂ 2

∂R2 |ψ j〉, |i− j|= 1) 1Σ+ states of LiRb

Fig. 24.6 the second derivative radial coupling between neighboring 1Σ+ adiabatic
states: (〈

ψi

∣∣∣∣ ∂ 2

∂R2

∣∣∣∣ψ j

〉
, |i− j|= 1

)

It presents many peaks which can be also related to neutral-neutral and ionic-neutral
crossings in the diabatic representation. Furthermore, such coupling disappears
at internuclear distances corresponding to avoided crossings in the adiabatic
representation.
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Fig. 24.7 First derivative between neighbour 3Σ+ states of LiRb

The radial couplings (〈ψi| ∂
∂R |ψ j〉, 〈ψi| ∂ 2

∂R2 |ψ j〉, |i− j| = 1) between the 3Σ+

adiabatic neighboring states are reported in Figs. 24.7 and 24.8. The i-j first and
second derivative radial couplings for the triplet states are very similar in shape to
they previous ones; however their positions are related to avoided and real crossing
between related adiabatic and diabatic states. Since the radial coupling is known to
be very sensitive to the details of the adiabatic wave functions, this has established
a correlation between the peaks of the radial coupling and the diabatic curves.
These peaks are related to the avoided crossings between adiabatic curves and real
crossings between diabatic curves. In fact, the diabatic representation has helped
us to understand the origin of the short range peaks (not readily explained by
adiabatic curves).
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Fig. 24.8 Second derivative between neighbour 3Σ+ states of LiRb

24.3.3 Adiabatic Correction

The Born-Oppenheimer approximation is generally a good one and is used in most
molecular problems. However, it breaks down in many cases such as in avoided
crossing regions, where transitions between potential energy surfaces can occur.
The neglected interactions in this approximation are responsible for many physical
processes of interest e.g.; predissociation, collisions or radiationless transitions. It
is still possible to use this approximation if we take into account the neglected
terms. The first theoretical calculation of the adiabatic correction was performed
for the H+

2 molecule [45] in 1941. For the heteronuclear molecules, the first
theoretical calculation of the adiabatic correction for the HeH+ molecule [30, 31]
with two electrons, then for more complex systems such as LiH, KH, RbH and CsH
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Fig. 24.9 The adiabatic correction for the 1–10 1Σ+ states of LiRb

molecules [32–37]. Most of these theoretical calculations are based on analytical
and numerical derivation of the resulting ab initio electronic wavefunctions. How-
ever, in our study the adiabatic correction is evaluated in a simple way using the
produced data in both adiabatic and diabatic representations.

We present in Fig. 24.9 the adiabatic correction for the 1Σ+ states. This correction
for the ground state, X 1Σ+, is very small, less than 1cm−1. However, it presents two
peaks and then vanishes at large intenuclear distance as the electronic wavefunction
no longer depends on internuclear distance. This very small adiabatic correction can
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Fig. 24.10 The adiabatic correction for the 1–10 3Σ+ states of LiRb

be explained by the large avoided crossings between the ground and the first excited
states. The adiabatic correction for the 21Σ+ state is also small as it does not exceed
1.5cm−1 located around its equilibrium distance. The 31Σ+ state has two peaks,
one at short range and the other one at longer internuclear distance. For the intense
peak, the correction is around 6cm−1 located at 9.5 a.u. For higher excited states,
the correction becomes much more larger than the previous states, the adiabatic
correction is about 30cm−1 for the 4 and 51Σ+ states, 50cm−1 for 7 and 81Σ+

states, and 60cm−1 for the 9 and 101Σ+ states.
Figure 24.10 presents the adiabatic correction for the 3Σ+ states. Note that

this correction is greater than that found for the singlet states. It is of order
10cm−1 for the 1–53Σ+ states. However, it exceeds 100 of cm−1 for the 6–103Σ+

states. The largest corrections are located at short and intermediate distances
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close to the equilibrium distances, which affect all spectroscopic constants and the
vibrational energy levels. It is important to mention that the peaks positions of
the adiabatic correction, which shows the region where this correction is large,
are shifted to longer distances for higher excited states as the avoided crossings
occur at larger internuclear distance. In addition, this correction is larger for
such excited states as the crossings are much less avoided and potential energy
curves are very close.

24.3.4 Spectroscopic Constants

Tables 24.1 and 24.2 give our spectroscopic constants (Re = equilibrium distance,
De = well depth, Te = vertical transition energy, ωe = vibration frequency and
Be = rotational constant) for the 20 singlet and triplet states. In addition, a
comparison with our previous calculation without adiabatic correction and the
available theoretical works is presented. Our results, especially for the ground state
(X1Σ+), are compared with those of Korek et al. [13], Igel-Mann et al. [11] and
Urban and Sadlej [12]. Their equilibrium distances Re for this state are, respectively,
3.430, 3.450 and 3.497 Å. These values are in good agreement with our equilibrium
distance Re = 3.428Å which differs from our previous value, [15] by only 0.001 Å.
This is due to the small adiabatic correction found for the ground state. Our
equilibrium distance for the 21Σ+, 13Σ+, 23Σ+ and 33Σ+ excited states are also
in good agreement with the work of Korek et al. [13]. The same good agreement is
observed for well depth and for ωe and Be spectroscopic constants. For example, our
well depths for the 21Σ+, 31Σ+, 13Σ+ and 23Σ+ states are 7,053, 3,494, 276 and
3,969cm−1, respectively. They are very close to the values of 7,057, 3,516, 280 and
3,977cm−1 extracted from Korek et al. [46] on their web site. We also note good
agreement for the other singlet and triplet Σ+ states, especially, for the equilibrium
distance, well depth and vertical transition energy, which are also extracted from the
potential energy data [46].

Our spectroscopic constants are re-evaluated including the adiabatic correction.
The shift in equilibrium distance for the ground state is about 10−3 Å which is of
same order for many electronic states of small adiabatic correction. However, the
shift for several excited 1,3Σ+ states becomes larger, as does the adiabatic correction.
For example, the change in the equilibrium distance for the 51Σ+ state, is equal to
0.069 Å for the first minimum and to 0.02310−2 Å for the second one. A change is
also observed for the well depth which is shifted by few to tens of cm−1 for the
singlet and triplet Σ+ states. The change in the De is 11cm−1 for the ground state
and several tens of cm−1 for the higher excited states, which exhibit minima at large
internuclear distance. For example, De for the 71Σ+ and 101Σ+ states are modified
by 88 and 85cm−1. The same is observed for the vertical transition energy shifted
by few to tens of cm−1. The vibration frequency and the rotational constant are
also changed due to the adiabatic correction. Similar changes in the spectroscopic
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Table 24.1 Spectroscopic constants of the ground and excited 1Σ+ states of the LiRb molecule

State Re(Å) De(cm−1) Te(cm−1) ωe(cm−1) Be(cm−1) Ref.

X 1 ∑+ 3.427 5,957 191.30 0.226 This work
3.428 5,968 196.02 0.223 [15]
3.43 5,959a 194.0 0.220 [13]
3.45 195.0 [11]
3.497 [12]

(2) 1 ∑+ 4.132 7,044 11,650 119.66 0.153 This work
4.137 7,053 11,654 118.78 0.153 [15]
4.138 7,057a 11,639 119.6 0.152 [13]

(3) 1 ∑+ 4.243 3,485 17,377 111.67 0.145 This work
4.243 3,494 17,382 114.24 0.145 [15]
4.257 3,516a 17,348 113.00 0.144 [13]

(4) 1 ∑+ 7.672 3,998 21,324 40.83 0.044 This work
7.671 3,998 21,326 41.27 0.044 [15]
7.629a 3,995a 21,318a 41.68a 0.044a [46]

(5) 1 ∑+

First min 4.031 3,316 22,743 206.78 0.162 This work
3.962 3,360 22,702 211.81 0.167 [15]
3.952a 3,372a 22,688a 212.27a 0.167a [46]

Second min 11.88 595 25,463 15.17 0.018 This work
11.650 598 25,473 13.10 0.019 [15]
11.687a 595a 25,465a 14.70a 0.019a [46]

(6) 1 ∑+

First min 4.021 4,433 25,323 134.22 0.162 This work
4.021 4,438 25,330 132.28 0.162 [15]
4.026a 4,434a 25,325a 132.34a 0.162a [46]

Second min 12.645 3,501 26,255 20.98 0.016 This work
12.666 3,502 26,266 22.38 0.016 [15]
12.624a 3,498a 26,260a 21.66a 0.016a [46]

(7) 1 ∑+

First min 4.328 4,517 27,150 98.81 0.140 This work
4.301 4,535 27,143 98.04 0.141 [15]
4.306a 4,509a 27,159a 103.52a 0.141a [46]

Second min 21.65 1,891 29,794 11.28 0.002 This work
21.470 1,979 29,700 11.10 0.005 [15]
22.269a 1,910a 29,758a 8.70a 0.002a [46]

(8) 1 ∑+ 4.118 3,845 27,867 133.06 0.153 This work
4.116 3,803 27,874 137.00 0.154 [15]

(9) 1 ∑+ 3.947 3,966 28,356 142.67 0.168 This work
3.947 907 28,362 141.10 0.168 [15]

(10)1 ∑+

First min 4.021 3,669 29,500 133.54 0.162 This work
4.021 3,668 29,512 134.67 0.162 [15]

Second min 5.635 2,669 30,500 115.04 0.082 This work
5.772 2,754 30,426 119.09 0.078 [15]

aThese values are extracted from their potential energy curves available in their web site [46]
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Table 24.2 Spectroscopic constants of the 1–10 3Σ+ states of the LiRb molecule

State Re(Å) De(cm−1) Te(cm−1) ωe(cm−1) Be(cm−1) Ref

(1) 3 ∑+ 5.214 273 5,696 42.12 0.095 This work
5.126 276 5,693 40.13 0.098 [15]
5.216 280a 5,678 41.20 0.100 [13]

(2) 3 ∑+ 4.058 3,963 14,742 129.66 0.153 This work
4.058 3,969 14,737 128.63 0.159 [15]
4.064 3,977a 14,719 129.90 0.157 [13]

(3) 3 ∑+ 3.904 364 20,516 136.60 0.171 This work
3.904 362 20,513 136.61 0.171 [15]
3.915a 365a 20,499a 136.46a 0.171a [46]

(4)3 ∑+

First min 4.137 1,526 23,798 117.83 0.153 This work
4.137 1,527 23,797 117.85 0.153 [15]
4.142a 1,529a 23,784a 117.50a 0.153a [46]

Second min 5.444 1,968 23,356 107.55 0.089 This work
5.433 1,983 23,340 109.58 0.088 [15]
5.433a 1,997a 23,317a 109.44a 0.088a [46]

(5) 3 ∑+ 4.681 1,960 24,108 216.07 0.120 This work
4.740 1,964 24,106 215.11 0.116 [15]
4.671a 1,959a 24,101a 215.93a 0.120a [46]

(6) 3 ∑+

First min 4.365 3,569 26,200 176.23 0.137 This work
4.343 3,598 26,170 175.31 0.139 [15]
4.344a 3,596a 26,162a 175.65a 0.139a [46]

Second min 9.560 444 29,325 19.63 0.028 This work
9.560 444 29,324 19.35 0.028 [15]
9.560a 433a 29,325a 19.36a 0.028a [46]

(7) 3 ∑+ 4.058 4,365 27,313 131.33 0.159 This work
4.063 4,372 27,306 130.50 0.159 [15]
4.063a 4,355a 27,314a 128.02a 0.159a [46]

(8) 3 ∑+ 3.994 4,233 28,037 152.56 0.164 This work
3.989 4,243 28,026 147.88 0.165 [15]

(9) 3 ∑+

First min 4.037 4,089 29,092 133.15 0.160 This work
4.037 4,093 29,087 132.91 0.160 [15]

Second min 10.070 4,089 32,277 36.38 0.025 This work
10.555 4,093 32,272 36.87 0.023 [15]

(10) 3 ∑+

First min 3.936 3,621 29,991 147.77 0.169 This work
3.936 628 29,984 146.90 0.169 [15]

Second min 7.809 960 32,652 32.60 0.044 This work
7.798 961 32,650 34.41 0.045 [15]

aThese values are extracted from their potential energy curves available in their web site
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constants for the 3Σ+ symmetry are observed. This shows that the spectroscopic
constants are affected by the adiabatic correction, especially for excited states,
which is not surprising as the correction for these states is more significant.

24.3.5 Vibrational Energy Levels and Shift

The vibrational shift is defined as the difference between the corrected and the
adiabatic levels. The vibrational energy levels have been calculated using the
adiabatic and the corrected potential energy curves for 1–101Σ+ and 1–103Σ+

electronic states of the LiRb molecule. These vibrational energy levels have been
numerically obtained using the Numerov method in which the wavefunctions have
been propagated for 30,000 points by cubic interpolation and by taking Rmax =
100a.u and μ = 6.4196amu. In Table 24.3 we report the vibrational energy level
spacing (Ev–Ev−1), respectively, for the 11,3Σ+, 21,3Σ+, 31,3Σ+ and 41,3Σ+ states.
To our knowledge, the vibrational level spacing for LiRb are determined here for
the first time. Note that we obtain a large number of vibrational levels for the higher
excited states, due to their large potential wells. Precisely, for the 21,3Σ+ and 41,3Σ+

states we obtained, respectively, nv = 77,63,107 and 49 vibrational energy levels.
The large numbers should be related to the wide wells and to the long range R−4

attractive wing of the potential curves. In Figs. 24.11 and 24.12, we present the
vibrational shift for the 1Σ+ and 3Σ+ states, respectively. There is a small shift for
the energy levels associated to the ground state with a maximum at v = 23. The shift
for the 1Σ+ higher excited states is more larger i.e. several cm−1 for 21Σ+ and 41Σ+

states and of few tens of cm−1 for 31Σ+, 51Σ+, 7–101Σ+ states. The vibrational
shift for the 61Σ+ state is insignificant, except for the vibrational level v = 14 which
is displaced by more than 20cm−1 due to the adiabatic correction. The vibrational
shift for the 3Σ+ states is much greater than the singlet states as it reaches several
tens of cm−1. Note that the displacement in some vibrational levels for the 4, 5, and
83Σ+ states is about 100cm−1.

24.4 Conclusion

In this paper, the radial coupling and the adiabatic correction for the 1–101,3Σ+

electronic states of the LiRb molecule are presented, here, for the first time. We
used accurate adiabatic and diabatic ab initio results determined previously [15] for
the 1–101,3Σ+ states. To our best knowledge, no diabatic potential energy curves
have been published for the LiRb molecule. To determine the radial coupling matrix
elements, which correspond to the first and the second derivative, a computationally
efficient method was use, based on a numerical differentiation of the rotation matrix
connecting the diabatic and the adiabatic representations. The radial coupling (First
and Second derivative) is known to be very sensitive to the details of the adiabatic
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Table 24.3 Vibrational level spacings Ev–Ev−1 (in cm−1) of the 1,3Σ+ symmetry

υ X 1Σ+ 2 1Σ+ 3 1Σ+ 4 1Σ+ 1 3Σ+ 2 3Σ+ 3 3Σ+ 4 3Σ+

0
1 192.373 118.083 112.429 40.506 36.887 128.036 133.834 106.898
2 192.488 116.525 111.607 39.962 33.859 126.084 130.766 103.617
3 188.422 115.637 110.766 39.035 31.19 124.177 102.837 98.969
4 183.527 114.05 109.959 37.667 28.114 122.285 96.837 92.897
5 177.091 112.871 109.161 35.715 24.975 120.444 90.381 58.533
6 171.601 111.899 108.315 32.864 21.901 118.494 85.440 27.728
7 167.189 110.636 107.406 28.261 18.901 116.468 81.397 75.066
8 160.52 109.794 106.391 23.027 15.911 114.335 73.907 15.465
9 292.37 109.392 105.27 22.843 13.036 112.155 72.213 60.685
10 258.337 108.332 104.117 25.45 10.293 110.094 70.340 45.186
11 206.633 106.165 102.947 27.421 7.749 108.204 68.295 42.874
12 225.292 103.839 101.704 28.999 5.379 106.335 66.075 53.365
13 232.786 102.351 100.403 30.197 3.372 104.267 63.699 48.488
14 237.579 101.722 99.058 31.26 1.95 102.229 61.290 48.785
15 239.46 101.665 97.624 32.28 0.996 100.263 58.837 50.474
16 234.226 101.52 96.138 33.237 0.393 98.154 56.462 49.325
17 229.533 100.196 94.582 34.115 0.024 96.141 54.085 48.182
18 221.821 97.23 92.967 34.855 94.039 51.783 47.923
19 214.313 95.362 91.274 35.603 91.961 49.502 47.311
20 204.081 93.375 89.475 36.306 89.846 47.313 46.238
21 194.997 90.975 87.64 36.94 87.724 45.141 45.17
22 175.968 88.233 85.672 37.492 85.57 43.044 44.195
23 169.127 85.714 83.66 38.033 83.418 40.965 43.258
24 297.258 82.878 81.519 38.554 81.215 38.968 42.179
25 245.475 79.722 79.309 39.007 79.027 36.969 40.991
26 103.783 136.911 77.003 39.412 76.797 34.971 39.786
27 90.42 62.109 74.57 39.803 74.558 33.012 38.627
28 78.58 204.906 72.087 40.142 72.275 31.075 37.457
29 67.497 113.34 69.534 40.434 69.982 29.091 36.229
30 56.278 117.502 66.9 40.644 67.678 27.113 34.94
31 46.19 123.003 64.289 40.82 65.354 25.102 33.62
32 36.375 127.074 61.673 40.883 62.989 23.097 32.249
33 27.253 129.94 59.124 40.789 60.622 21.024 30.888
34 19.503 126.824 56.719 40.537 58.23 18.915 29.457
35 13.42 130.207 54.391 40.014 55.838 16.740 27.973
36 8.01 131.346 52.183 39.242 53.395 14.748 26.449
37 5.176 133.18 50.02 38.435 50.978 12.529 24.819
38 2.916 134.582 47.813 38.111 48.515 10.120 23.159
39 1.438 136.528 45.31 38.518 46.061 8.338 21.398
40 0.732 265.069 42.346 39.317 43.604 6.366 19.567
41 131.622 38.424 40.032 41.125 4.475 17.637
42 127.924 40.471 38.677 2.565 15.652
43 125.922 40.685 36.236 1.383 13.814
44 127.06 40.796 33.801 11.551

(continued)
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Table 24.3 (continued)

υ X 1Σ+ 2 1Σ+ 3 1Σ+ 4 1Σ+ 1 3Σ+ 2 3Σ+ 3 3Σ+ 4 3Σ+

45 124.407 40.924 31.407 9.374
46 120.871 41.102 29.034 7.809
47 118.351 41.329 26.653 5.549
48 115.54 41.568 24.359 3.893
49 113.474 41.773 22.082 2.265
50 109.591 41.932 19.817 0.878
51 104.981 42.038 17.592
52 100.849 42.126 15.412
53 96.808 42.21 13.382
54 92.705 42.306 11.449
55 86.884 42.383 9.264
56 81.04 42.472 7.857
57 75.32 42.539 6.173
58 70.601 42.581 4.654
59 64.679 42.613 3.314
60 58.925 42.633 2.233
61 53.416 42.645 1.485
62 47.088 42.64 0.714
63 41.709 42.641 0.312
64 35.616 42.632
65 29.981 42.613
66 25.535 42.581
67 20.605 42.518
68 16.312 42.432
69 12.482 42.313
70 9.414 42.14
71 7.884 41.942
72 5.143 41.773
73 3.532 41.716
74 2.453 41.827
75 1.523 42.026
76 0.586 42.098
77 0.293 41.874
78 41.439
79 41.25
80 41.615
81 42.008
82 41.561
83 40.248
84 39.747
85 40.826
86 41.264
87 39.76
88 38.709
89 39.923

(continued)
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Table 24.3 (continued)

υ X 1Σ+ 2 1Σ+ 3 1Σ+ 4 1Σ+ 1 3Σ+ 2 3Σ+ 3 3Σ+ 4 3Σ+

90 39.926
91 38.011
92 38.168
93 38.738
94 36.776
95 36.156
96 34.99
97 31.078
98 30.991
99 32.265
100 34.609
101 32.395
102 23.642
103 21.208
104 14.491
105 9.748
106 4.354
107 1.792

wavefunctions, this correspondence confirms the results themselves renewed valid-
itation of the diabatization procedure we used. We observed many peaks related
to ionic-neutral crossings in the diabatic representation. In addition, we observe
some intense peaks related to the neutral-neutral crossings and interactions between
diabatic states. As well as its physical interest, the radial coupling is used to
determine the adiabatic correction. This term has been evaluated for all 1–101,3Σ+

states. It varies from some cm−1 to a few hundred cm−1 for higher excited
such as the 7 3Σ+ where it reached 150cm−1. The large correction observed
for many excited states re-emphasizees the breakdown of the Born-Oppenheimer
approximation, especially around the avoided crossings.

The spectroscopic constants of the 1–101,3Σ+ adiabatic states including adiabatic
correction are determined and compared with the available theoretical work [11–13]
and our previous calculation without. Using the corrected energy, the spectro-
scopic constants for these states are recalculated. Note that these spectroscopic
constants (Re, De, Te, ωe and Be) are changed by the adiabatic correction. Very
good agreement is observed for them in the 1,3Σ+ states with the theoretical work
of Korek et al. [13]. The adiabatic correction is also used to calculate the shift in
the vibrational energy levels, which is the difference between the corrected and the
adiabatic levels for all studied states of 1,3Σ+ symmetries. The spacing between the
energy levels is determined for all studied states and presented here for the first
time. The shift, difference between corrected and adiabatic energy levels, has been
evaluated. A 50cm−1 shift is observed for some vibrational levels showing again
the breakdown of the Born-Oppenheimer approximation. In the future, attempts
to gain new insight from these data, may establish a correlation between the
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Fig. 24.11 The vibrational shift for the 1–10 1Σ+ states of LiRb
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Fig. 24.12 The vibrational shift for the 1–10 3Σ+ states of LiRb

radial couplings and the adiabatic curves, like predissociation and collisions or
radiationless transitions. The accurate adiabatic potential energy, radial coupling
and adiabatic correction is available for interested researchers.
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37. Zrafi W, Oujia B, Gadéa FX (2006) J Phys B Atom Mol Opt Phys 39:1
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Part VII
Complex Systems, Solids, Biophysics



Chapter 25
Theoretical Studies on Metal-Containing
Artificial DNA Bases

Toru Matsui, Hideaki Miyachi, and Yasuteru Shigeta

Abstract We have studied two topics about (i) the structural stabilities and
electronic structures of metal-ion containing artificial DNA bases and (ii) conduc-
tivity of them. Before proceeding to the main topics, we have shown that a van
der Waals corrected density functional method gives the stacking interaction, which
agrees well with the reference value obtained by accurate methods in both cases for
stacking two bases and two base pairs. We also investigated an origin of structural
stability and electronic properties of several metal ion containing artificial DNA
bases including chalcogen-substituted compounds. We estimated current-voltage
characteristics of stacked natural and metal-containing artificial DNA bases by the
scattering theory based on the non-equilibrium Green’s function method. We found
that the current-voltage characteristics dramatically change by capturing metal ion
in the artificial DNA bases.

25.1 Introduction

Since the discovery of the double helix structure by Watson and Crick, DNA
has been the most important substance in molecular biology. DNA consists of
base, sugar, and phosphoric acid. There are four kinds of base in natural DNA,
adenine (A), cytosine (C), guanine (G), and thymine (T) as shown in Scheme 25.1.
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Scheme 25.1 The chemical structures of base pair (GC and AT pair), where the broken lines mean
the hydrogen bonding

From the view of chemistry, DNA is one of the most remarkable examples
for self-assembled materials existing in nature. There are two kinds of interaction,
which stabilizes the whole structures of DNA base pairs. These interactions are the
driving force of the self-assemble structure, which leads to beautiful double strand.
One is the hydrogen bond, where an adenine-thymine (AT) and a guanine-cytosine
(GC) base pair have two and three hydrogen bonds per pair, respectively. The hydro-
gen bonding energy is estimated as 13–17kcal/mol for AT pair, 25–28kcal/mol for
GC pair, respectively [1]. The second is a base stacking interaction caused by π−π
interaction between the base pairs. This type of interaction mainly originates from
the van der Waals (vdW) forces. According to accurate computation, this energy
would be estimated as 10–16 kcal/mol between base pairs [2]. Although this energy
is a little weaker than hydrogen bonding energy between bases, it is enough to form
a stacked structure inside the strand.

DNA, which is the most fundamental material in biology, is also focused on the
field in nano-science because of these electric properties. DNA would be a candidate
for nano-size conductors, because electrons can move through π −π stacking like
in graphite. Moreover it is easy to imagine that DNA is one of the most available
macromolecules taken from gene. The question whether DNA is conductive or
not is hot topic all over the world. Many experiments and theoretical simulations
have been performed for the purpose of understanding the conductivity of DNA.
However, there are many papers with different conclusions: e.g. DNA cannot be
conductive [3] or DNA is semi-conductive [4] or DNA is highly conductive [5] even
superconductive as metals [6]. The reason why there exist experiments that DNA
exhibit conductive is often explained by a hole transfer originated from guanine
triplet [7]. In this case, guanine has been oxidized because guanine has h+ so
that GC pair has got to have positive charge. In addition, Giese and his coworker
proposed that the oxidized guanine should lose its charge through the proton-transfer
reaction between N1 (G) and N3 (C) [8]. Nevertheless recent experiments reveal that
the conductivity of DNA strongly depends on the length, environments (solvent and
solute ions), sequence, and so on. These facts indicate that the more sophisticated
modification should be introduced to increase conductivity of DNA. One of the
possible approaches is the metal binding to the DNA.
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There were two patterns of interaction between metal complex and DNA duplex.
One is the major groove binding. Metal cation attacks the major groove of DNA.
The other type is called metal complexed DNA (M-DNA) [9]. For instance, a
cisplatin, which is known as an antitumor drug, distorts the structure of the B-DNA
by 90◦ [10, 11]. In this case, Pt(II) of the cislatin prefers to bind to N7 of a guanine
to that of an adenine. Similar to the platinum complexes, many metal complexes
containing metal ions such as Ni(II), Zn(II), and Mg(II) bind to N7 of the guanine
[12–15]. In M-DNA, a zinc complex binds between a guanine and a cytosine
(an adenine and a thymine), where the metal complex has a bridge structure.

New type of metal binding like artificial DNA has been taken much attention
by many researchers. The artificial DNA consists of the analog of the DNA base
(sometimes accompanied with metal cation), sugar and phosphoric acid. Artificial
DNA can connect to the natural DNA so that it is possible to array metal cations in
artificial DNA duplex by self-assemble. Moreover, in 2006, Miyake et al. succeeded
in making Hg(II) binded to a thymine-thymine (T–T) mismatch, which resulted in
a [T–Hg(II)–T] complex [16].

Quantum chemistry has an advantage of the computation for electronic structure
so that it is appropriate to use the quantum chemical methods in order to understand
the metal-DNA systems. Nevertheless, calculation methods of electronic structure
of macromolecules also have many problems to be solved. For example, the
computational cost is critical limitation. Density functional theory (DFT) enables us
to compute rather large molecules, which consists of more than 100 atoms. While
standard DFT has many defects, e.g., lack of the weak interaction such as dispersion
forces, lack of consideration of the exchange in long-range region. To remedy them,
Tsuneda and his coworkers have developed the long-range corrected (LC) scheme
[17] combined with the correction of dispersion forces proposed by Anderson,
Langreth and Lindqvist (hereafter we denote this correction as “ALL functional”)
[18, 19]. This method reproduces the reference value obtained by the high level ab
initio calculation from the view of stacking energy and hydrogen bonding energy.
However, no other test but benchmark set had been tried so that the application with
the method toward understanding electronic structure of DNA and related systems
is needed.

This review aims to understand the properties of artificial metal-DNA complexes
from the view of theoretical chemistry. In Sect. 25.2, we introduce computational
method to evaluate the stacking energy between base pairs by means of the DFT-
based method and show the benchmark test for usefulness of the ALL functional
with LC scheme [20]. In Sect. 25.3, we focused on the metal-containing artificial
DNA and will discuss the structure of it by using of ALL functional with LC scheme
and stability by a polarizable continuum model (PCM) [21, 22]. In Sect. 25.4, we
investigated the electron conductivity of natural and artificial DNAs with simple
model [23], which had been proposed by Luo et al. [24]. Finally, general conclusion
is given in Sect. 25.5.



436 T. Matsui et al.

25.2 Theoretical Background

In general, quantum chemical investigation of the DNA bases in more than two base
pairs requires highly accurate methods, because the system contains not only the
hydrogen bonding interactions, but also the vdW interactions.

Florian et al. [25] computed the relative “solvation” free energies of mutation
by using the molecular dynamics (MD) simulations to DNA decamer, which are in
good agreement with experimental data. However, MD simulations use an empirical
parameter to compute the vdW interaction, and the energy of electrons cannot be
described in MD simulations. In order to give deeper understandings for stacked
base pairs, it is important to compute the vdW interactions within the first principle
methods.

In particular, electron correlation effects are crucial to describe the vdW
interaction. To account for the electron correlation effects, density functional theory
(DFT) is widely used. As the former interaction is mainly caused by electrostatic
interaction between the base pairs, it is sufficient to describe it with the hybrid DFT
methods. On the other hand, it is rather difficult to describe the latter interaction by
means of the standard hybrid DFT because of the lack of the weak dispersion force.
The latter interaction is so weak that the post Hartree–Fock (HF) theories such as
the second order of Møller–Presset perturbation theory (MP2) and coupled-cluster
method (CC) are at least required to describe it qualitatively. In 2004, Hobza et al.
estimated accurate interaction energies between stacked bases by using MP2 based
on the resolution of identity method (RI-MP2), with complete basis set (CBS)
corrections [1, 2].

However, the post-HF methods are limited to systems consisting of a few bases,
because the costs of the MP2 and CCSD(T) scale as O(N5) and O(N7) with N
(the number of basis functions), respectively. The less costly computation method is
necessary to calculate electronic structures of molecules larger than two base pairs.
Therefore one cannot investigate assembles of DNA bases by means of standard
ab initio based method. It is desirable to utilize DFT for tackle with such large
systems.

Recently, a new class of DFTs has attracted much attention for computing larger-
scale molecules. To begin with the studies by Elstner’s group [26] for the dispersion
interaction in DFT, several groups proposed DFT with a dispersion correction
to estimate the stacking energy [27–29]. Our coworkers have also developed
a DFT-based method including the dispersion correction [30–32]. The method
combines the long-range corrected (LC) DFT [17,33] with the Anderson–Langreth–
Lundqvist (ALL) vdW functionals [18]. We have also showed that the Becke 88
(exchange functional) and one parameter progressive functional (OP) (correlation
functional) combined with LC scheme (we call this method “LC-BOP”)+ALL
functional reproduced the results by post SCF method proposed by Hobza et al.
The computational cost of the method scales as O(N4), like the conventional hybrid
DFT methods. The ALL functional would be useful to investigate the effects of the
stacking interactions on PT reactions as it gives dispersion correction accurately
enough to reproduce the post SCF results with low cost.
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25.2.1 Calculation of van der Waals Interaction Within LC-DFT

We here show the efficiency of the LC-DFT+ALL method to estimate interaction
energies between two base pairs for the natural WC double strand structures
by comparing several theoretical methods including the highly accurate ab initio
method.

25.2.1.1 Computational Details

We performed the benchmark calculations of DFT+ALL methods in order to
assess applicability. We used the CCst, GCst, and GGst proposed in JSCH-
benchmark sets [34], where the most accurate computations were performed with
approximated CCSD(T)/CBS-limit level of theory. We compared these references
with the results of DFT+ALL methods in several basis sets. Pople-type basis sets
(6-31G,6-31G(d,p),6-31++G(d,p),6-311+G(d,p),6-311++G(df,pd) were used
for this benchmark. We estimated the stacking energy between C (or G) and C (or
G). By means of in the conventional DFT, HF, and MP2 methods, we estimated the
stacking energy E int defined as

E int = E tot− (EB1 +EB2)+ECP, (25.1)

where EB1 and EB2 denote the energy of the base 1 and the base 2 (G or C). ECP is
a basis set superposition error (BSSE) obtained by the Boys–Bernardi counterpoise
(CP) method [35]. In order to compare the results obtained by the conventional
methods with those of the present DFT+ALL methods, we here denote the corrected
energy Ecorrected obtained by adding the ALL energy functional as

Ecorrected = E int +EALL, (25.2)

where EALL represents the energy contribution from the ALL functional. We ex-
amined HF, MP2, B3LYP, LC-BOP, HF+ALL, B3LYP+ALL, and LC-BOP+ALL.
To compare with the result of the reference value, we divided the results into two
groups, where one is obtained by standard DFT and HF and the other is by ALL-
corrected DFT and HF. We used modified version of GAUSSIAN03 [36] for single
point calculations.

25.2.1.2 Benchmark Test

JSCH Benchmark Set

Table 25.1 lists the results of the benchmark test. The reference values obtained
by the CCSD (T)/CBS-limit are −10.02kcal/mol(CCst),−10.60kcal/mol(GCst)
and −12.67kcal/mol(GGst). HF and standard DFT cannot describe the stacking
energy even qualitatively. On the other hand, our hybrid functional (LC-BOP+ALL)
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Table 25.1 Benchmark of DFT+ALL in JSCH benchmark set (kcal/mol)

DGa DG(d,p)a DG++(d,p)a TG++(d,p)b TG ++(df, pd)b

CCst: Reference value: CBS(RI-MP2): −11.00 kcal/mol CBS(T): −10.02 kcal/mol
HF −2.01 −0.95 −1.53 −1.42 −1.41

B3LYP −0.96 −0.27 −1.35 −1.29 −1.28
LC-BOP −3.74 −2.80 −4.12 −4.08 −4.11
MP2c −4.18 −5.87 −8.19 −8.39 −8.76
HF+ALL −7.00 −5.94 −7.14 −7.41 −7.46
B3LYP+ALL −5.94 −5.26 −7.12 −7.37 −7.47
LC-BOP+ALL −8.71 −7.79 −9.80 −10.13 −10.25

GCst: Reference value CBS(RI-MP2): −12.00 kcal/mol CBS(T): −10.60 kcal/mol

HF −0.50 −0.10 −0.41 −0.44 −0.44
B3LYP −0.87 −0.46 −1.14 −1.18 −1.18
LC-BOP −3.37 −2.85 −3.76 −3.81 −3.85
MP2c −4.64 −6.79 −8.80 −9.22 −9.63
HF+ALL −6.05 −5.65 −6.67 −7.14 −7.25
B3LYP+ALL −6.40 −6.00 −7.65 −8.01 −8.16
LC-BOP+ALL −8.89 −8.38 −10.15 −10.61 −10.65

GGst: Reference value CBS(RI-MP2): −14.80 kcal/mol CBS(T): −12.67 kcal/mol

HF 0.17 0.65 0.02 −0.04 −0.11
B3LYP 0.05 0.41 −0.64 −0.67 −0.73
LC-BOP −3.10 −2.50 −3.84 −3.87 −3.98
MP2c −5.56 −8.19 −11.04 −11.48 −11.95
HF+ALL −6.68 −6.17 −8.15 −8.15 −8.38
B3LYP+ALL −6.76 −6.37 −9.09 −9.09 −9.13
LC-BOP+ALL −9.90 −9.27 −12.10 −12.26 −12.33
aDG and DG++ mean Pople-type 6-31G and 6-31++G, respectively
bTG++ denotes 6-311++G
cWe used frozen-core (FC) MP2 methods

well reproduces the results of reference values (see GCst in Table 25.1 especially).
Note that the stacking energy obtained by LC-BOP+ALL is more negative than that
of MP2 in the case of Pople-type basis sets. In general, MP2 tends to overestimate
the vdW interaction. In this benchmark, MP2 considerably underestimate the
stacking energy compared to the reference values (see the reference value of CBS
(RI-MP2) in Table 25.1) because we used small basis sets.

We next discuss the dependence of basis function. The stacking energy without
considering the effects of diffuse function is far from the reference value. Moreover,
basis function 6-31G (d, p) gives the worst results in all basis sets. It may be
important to consider the balance between polarization and diffuse in computing
the stacking interaction with DFT+ALL method. Little change is found between
6-31++G (d, p) and 6-311++G (d, p) for all methods. This result indicates whether
the basis function is double zeta or triple zeta has almost nothing to do with
the stacking energy. The energy difference is not changed considerably between
6-311++G (d, p) and 6-311++G (df, pd) in all methods. Generally speaking, on
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Table 25.2 Benchmark of 2
base pairs stacking interaction
with LC-BOP/6-31++G(d,p)
level calculation (kcal/mol)

E int Ecorrected Refa

GC 0/3.25 3.7 −13.2 −15.8
CG 0/3.19 −0.4 −17.0 −17.3
GG 0/3.36 5.1 −10.6 −11.2
GA 10/3.15 5.7 −10.9 −12.9
AG 8/3.19 3.3 −13.0 −12.5
TG 0/3.19 1.5 −14.8 −15.1
GT 10/3.15 5.8 −11.1 −13.4
AT 10/3.26 4.6 −11.6 −13.3
TA 8/3.16 3.7 −12.5 −12.8
AA 0/3.24 4.5 −11.9 13.1
AA 20/3.05 4.1 −13.6 −14.7
aThe reference value is taken from ref [37]

the other hand, MP2 method depends strongly on the size of the basis functions
in estimating the π − π stacking. To compare Ecorrected with the E int, the value
of EALL does not strongly depend on the functional. These facts mean that the
DFT+ALL method is advantageous over the other post HF methods such as MP2,
since the present method is applicable to larger systems, which cannot be calculated
by the post SCF methods.

Benchmark for 2 Base Pairs

In 2006, Šponer and his co-worker suggested the stacking energy between base pairs
in 11 cases [37]. Their results are also based on the high level ab inito computation
so that the reference value is reliable for benchmark.

We estimated the stacking energy between the CG pair and the GC pair (or two
GC pairs), where the structure is taken from the higher layer of the optimized four
base pairs model. The stacking energy E int is estimated by

E int = E tot− (EB1B′1 +EB2B′2)+ECP, (25.3)

where E tot is the total energy of the whole structure and EB1B′1 and EB2B′2 denote the
energies of the base pair 1 and the base pair 2 (e.g., the CG or GC pair). Table 25.2
lists the results in the level of LC-BOP+ALL/6-31++G (d, p) and reference value.
The notations of molecule are the same as the reference 9. We performed the single
point calculation (which is available in the supporting information of their paper).
The difference between computed value and the reference value is not more than
2.5kcal/mol in every case. In the case of CG 0/3.19 and TA 8/3.16, the value of
Ecorrected agrees well with the reference value. Judging from these results, we again
found that LC-BOP+ALL has the validity of investigating the interaction energy
between base pairs.
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25.2.2 Summary of Sect. 25.2

LC-BOP+ALL method gives the stacking interaction, which agrees well with the
reference value obtained by accurate methods in both cases for stacking two bases
and staking two base pairs. We have been able to reproduce the reference value
with a medium-sized basis set such as 6-31++G(d,p). Our method is expected
to describe weak interactions such as vdW interaction and hydrogen bonding in
molecules of a larger scale with reasonable accuracy, because the computational
costs required for the DFT with the ALL functional correction are much lower than
those for the post-Hartree Fock methods.

25.3 Structure and Properties of Metal-Containing
Artificial DNA

25.3.1 Cu-Containing Artificial DNA

Recently, an artificial DNA, which consists of a DNA-like base sugar, and phospho-
ric acids, has taken much attention [38]. The artificial DNA has a selectivity of metal
ions, which are captured by DNA-like bases, so that the metal ions could be arrayed
hierarchically. In fact, many artificial DNAs with various metal ions have been
synthesized and reported [39–41]. In 2004, Tanaka succeeded in arraying five [H–
Cu(II)–H] (H: hydroxypyridone) into a DNA duplex [42,43]. Although details of the
structure by NMR or X-ray experiments have not yet been available, they revealed
that the distance between the copper ions are 3.7±0.1Å with electron paramagnetic
resonance (EPR) experiments at 1.5 K. Since the available structural information by
the experiments is limited, the computational chemistry might contribute to get a
deep understanding of the structure of the artificial DNA.

In this artificial DNA, it is obvious that metal-ligand interaction (in the case of
[H–Cu(II)–H], the interaction between Cu(II) and O−) takes over the hydrogen
bonding interaction between two Hs as an intra-base pair interaction. However, what
kind of interaction works as the inter-base pair interaction to form a stable structure
has not been clear. In spite of the repulsive Coulomb interaction among the copper
ions and ligands, the copper containing artificial DNA is as stable as the natural
B-DNA. Some experimental groups suggested that the spin-spin interactions among
the metal ions should play an important role in the inter-base pair interaction. Since
the order of spin-spin interaction is usually too small in comparison with a chemical
bond, it is natural to assume that the inter-base pair interaction in the artificial DNA
is the same as that in the natural B-DNA. Nevertheless, this possibility has not been
explored for the artificial DNA yet.

Here we treat the two stacked [H–Cu(II)–H] in order to investigate a possible
stable structure of them and an origin of the EPR signal.
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Fig. 25.1 (a) [H–Cu(II)–H] dimer used for calculation (b) Model of (a), where M represents
metal cation and r means the distance between copper ions

25.3.1.1 Computational Details

Here we considered cis-type of Cu(II) coordinating hydroxypiridones referred as
[H–Cu(II)–H] in the following. In the actual calculation, we replace the backbone
molecules (deoxyribose-5′-phosphate (dP)) by hydrogen atoms or methyl groups
for simplicity, and then we optimized the geometry of one artificial base pair
[H–Cu(II)–H], which have planar structure like the base pairs in the natural B-DNA.

We next evaluated the stacking energy between the base pairs. It is difficult to
optimize geometries of two base pairs, because no stable structure of two base
pairs is found due to a lack of dispersion forces when one adopts the ordinary
DFT and because it costs too much to compute gradients by means of the DFT
with the vdW correction. Therefore, in order to get the potential energy surface, we
performed the single point calculations by using the DFT with the vdW correction
by fixing the distance between copper ions. In the calculation of two base pairs of
[H–Cu(II)–H], the upper base is vertically located and twisted by 36◦ like the bases
in the natural DNA base pair (see Fig. 25.1). In order to estimate the interaction
energy, we adopted the same method explained in previous section. Basis sets used
here are 6-311+G (d) for the copper atom and 6-31++G (d, p) for the other atoms.
Throughout this section, we used a modified version of the GAUSSIAN03 program
package [36].

25.3.1.2 Verification of Several Models

In order to confirm the appropriateness of the models for the artificial DNA, we
first verify the model dependence of the inter-base pair interaction. We adopt
three models, (a) a hydrogen atom model (dP=H) and (b) a methyl group model
(dP=CH3) (c) real model (dP=5′-deoxyribose) (Fig. 25.2). These models are often
used in the analyses of the inter-base pair interaction between the bases in the natural
B-DNA, where it is known that the backbone molecules do not contribute much to
the stability of the duplex structure. We here also make the same assumption for the
artificial DNA.
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Fig. 25.2 The optimized structures of [H–Cu(II)–H], where (a) dP=H (hydrogen atom),
(b) dP=CH3 (methyl group) and (c) dP=backbone (5′-deoxyribose), respectively

Table 25.3 Important
structural parameters taken
from optimized geometries
of [H-Cu(II)-H] and NBO
charge and Mulliken spin
on Cu atom

dP=H dP=CH3 dP=backbone

r(Cu–O) 1.94 1.94 1.94
r(CuO−) 1.90 1.91 1.90
θ (O–Cu–O−) 85.0 85.0 84.9
r(N–N) 9.86 9.90 9.91
α (NBO charge) 0.368 0.368 0.368
β (NBO charge) 1.066 1.066 1.066
Total 1.434 1.434 1.434
Mulliken Spin of Cu(II) 0.683 0.682 0.679

In order to understand the model dependency, we optimized one base pair with
the backbone molecule replaced by some models. In this paragraph, we focused
on the interaction between the base pairs so that the geometrical parameters of the
Cu(II) and its surrounding oxygen atoms play an important role. Therefore, it is
necessary to understand the geometry around them. Table 25.3 lists the optimized
geometries in each model. There are not so remarkable changes in all models except
the distance between nitrogen atoms. Table 25.3 also lists the natural bond orbital
(NBO) charge for each spin and the total Mulliken spin of copper atom. Again
no significant change is observed in all models. From these results, it is found that
property and geometry around Cu atom do not depend on the model (the kind of dP)
in 1 base pair. Therefore we used the hydrogen model and methyl model in further
researches.
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Fig. 25.3 The interaction energy between (a) hydrogen atom model (dP=H) and (b) methyl group
model (dP=CH3). In the figure, Int E of LC-BOP is obtained by Eint and LC-BOP+ALL is
obtained by E total

int

25.3.1.3 Interaction Energy Between Two Metal-Containing Base Pairs

Figure 25.3 shows the interaction energy between the hydrogen atom model and the
methyl group model. Without the vdW correction, the interaction energy decreases
as r becomes larger. The interaction seems to be repulsive over whole region
mainly due to the repulsive Coulomb interaction between the bases, and no local
minimum is found. With the vdW correction, on the other hand, the interaction
energy becomes negative and [H–Cu(II)–H] planes attract each other. Moreover, the
local minimum of the interaction energy was found around to be 3.55–3.65 Å. Thus,
it is necessary to include the effect of the vdW interaction to form the DNA-like
structure. Next, we discuss the difference of the stacking energy of (a) hydrogen
atom model (dP=H) and (b) the methyl group model (dP=CH3). The stacking
energy of the methyl group model is 1.5–2kcal/mol larger than that of the hydrogen
atom model. The EvdW of the methyl group model is larger than that of the hydrogen
atom model due to the pseudo π electron delocalization in the methyl group model.

In 2002, Tanaka and his coworkers synthesized a base pair, [H–H], which does
not have Cu(II) [44]. Here we compared [H–H] with the trans-[H–Cu(II)–H] in
relation to the stacking energy. Hereafter we omit trans for simplicity. [H–H] is
described as Scheme 25.2. We here adopt the methyl group model (dP=CH3).
[H–H] is stable because of the two hydrogen bonds similar to those in the adenine-
thymine (AT) base pair. Therefore, we here consider [H–H] dimer as the analog
of the AT base pair dimer. Šponer computed interaction energy between base pairs
with high level ab initio calculation such as CCSD (T) [34, 37]. It is difficult to
evaluate the stacking energy of the present system by the same quality, because the
system of interest is too large. In order to check the reliability of the present method
and understand how much is the error caused by constraint of whole structures, we
evaluate the stacking energy of two AT pairs by using the LC-BOP+ALL method.
We used the same structure of two AT pairs (which is available in the supporting
information of their paper), where the r value fixed at 3.60 Å. Table 25.4 summarizes
the results of the stacking energy. LC-BOP+ALL method agrees with the result of
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Scheme 25.2 Chemical structural formula of hydroxypyridone (H), mercaptopyridone (M) and
hydroxypyridinethione (S). In reference [49], charlcogen atom X is set to sulfur

Table 25.4 Stacking energy at r = 3.60Å (in kcal/mol)

Eint EvdW Etotal
int

[H –Cu(II)– H ] (r = 3.60Å), dP=CH3 7.4 −16.6 −9.2
[H–H] (r = 3.60Å), dP=CH3 7.7 −16.9 −9.3
2 AT base pairs 4.1 −17.6 −13.6a

aThe reference value is −14.7kcal/mol

CCSD(T) for the two AT pairs. The stacking energy of [H–H] is smaller than that
of the natural B-DNA by 4.3kcal/mol. This energy difference originates from E int,
which can be explained by [H–Cu(II)–H], is not optimized. On the other hand, the
dispersion correction EvdW is almost same in all cases. Judging from these results,
we have revealed that the chemical origin of the structural stability of [H–Cu(II)–H]
is similar to that of [H–H] and of course that of the AT pair, which is mainly due to
the vdW interaction in spite of the proposal by Tanaka et al.

25.3.1.4 Singlet-Triplet Energy Gap

According to the results of Tanaka et al., the spin state among Cu(II) ions is
ferromagnetic. This fact is the ground of the existence of the spin-spin coupling.
Due to the spin-spin coupling, the spin state of the [H–Cu(II)–H] dimer should be
the triplet, which is observed in the EPR experiment. Although we have assumed
that the spin state is the triplet in this study so far, the singlet and triplet states are
very close to each other as shown below. Figure 25.4 shows the difference between
singlet and triplet from the view of spin density and electron density. Judging from
the spin density, we found that the spin concentrates on Cu(II) and its surroundings.
In this case, singlet state also has spin density, which the spin of copper cation in
one [H–Cu(II)–H] is opposite to that of the other [H–Cu(II)–H]. On the other hand,
no change is found in electron densities as shown in Fig. 25.4.

We discuss here the energy gap between singlet and triplet with open shell DFT
with the vdW correction and possibility of the spin state observed inthe actual
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Fig. 25.4 The difference between triplet state and singlet state

experiments. According to the J-model proposed by Yamaguchi and his co-workers
[45], the spin-spin interaction coupling term Jab can be estimated by following
formula,

Jab =
ELS−EHS

< S2>HS−< S2>LS
(25.4)

In this case, the whole system is anti-ferromagnetic when Jab < 0 and is ferromag-
netic when Jab > 0. This model reproduces well the experimental data [46].

Table 25.5 lists the energies of the singlet and triplet states for [H–Cu(II)–H].
From the table, the energy differences between the triplet and singlet states are no
more than kBT = 2(K), and spin-spin interaction are about −1cm−1 in every case.
The vdW correction does not change these tendencies so that it is difficult to find the
remarkable singlet-triplet energy gap. The modeling of the backbone molecule (dP)
is not a problem, because the backbone molecules are too far from Cu(II) to affect
the spin state. These tendencies do not change with the other theoretical method (e.g.
Hartee-Fock, MP2 or with other basis sets). Since the singlet-triplet energy gap is
quite small, the singlet and triplet states should mix due to thermal excitations. If we
assume the Boltzmann distribution of two spin states, there exists the triplet state for
[H–Cu(II)–H] dimer even at 1.5 K, for example the distribution of the singlet and
triplet species is about 7:3 for kBT = 1.35(K), whose triplet state signal may be
observed in the actual experiment. Thus the present calculation does not contradict
to the experimental evidence and we propose that singlet state exist as well as triplet
state. Our researches have revealed that spin of copper atom in [H–Cu(II)–H] exists
independently because the distance between copper atoms is too large to interact
each other [47]. The same is true in the case of [(salen base)–Cu(II)–(salen base)]
[48, 49]. More modification would be needed in order to let artificial DNA have
magnetic properties.
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Table 25.5 The energy difference between singlet and triplet and spin-spin coupling of
[H–Cu(II)–H]

Singlet (a.u.) Triplet (a.u.) Difference (K) Jab (cm−1)

Hyd/Gas LC-BOP −5025.600 450 −5025.600 445 1.65 −1.7
EvdW −0.023 097 −0.023 097 0.00 0.0

Met/Gas LC-BOP −5182.316 655 −5182.316 650 1.70 −1.6
EvdW −0.026 314 −0.026 314 0.00 0.0

Hyd/PCM LC-BOP −5025.709 254 −5025.709 250 1.40 −1.5
EvdW −0.021 998 −0.021 998 0.00 0.0

Met/PCM LC-BOP −5182.398 660 −5182.398 656 1.35 −1.5
EvdW −0.025 882 −0.025 882 0.00 0.0

25.3.2 Chalcogen Substitution for Metal-Containing
Artificial DNA

As discussed before, the spin-spin interaction is not important for stacking of
[H–Cu(II)–H]. This indicates low-spin metal such as Ni(II) and Pd(II) can be
a candidate for array of metal ions in DNA duplex. The metal which has low
ionization tendency and takes square-planar configuration is seemed to be applicable
for arrayed metal-ion in DNA duplex. In 1999, Tanaka and his co-workers suggested
artificial DNA, which contains palladium complex and platinum complex [38]. In
2008, Takezawa reported newly artificial DNA, which allows soft transition metal
cation such as Ni(II), Pd(II), and Pt(II) to array in DNA duplex with a programmable
manner [50]. In their paper, nickel and palladium cations were captured by
mercaptopyridone (M) and platinum cation was captured by hydroxypyridinethione
(S). The chemical structural formula of H, M, and S are shown in Scheme 25.2.
These captions are explained by hard-soft acid base (HSAB) rule. It is interesting
to investigate the chalcogen atom dependencies. If one uses selenium atom, pKa

becomes much smaller than one uses sulfur atom. The major topic of this section
is metal-selectivity and chalcogen atom dependency from the view of quantum
chemistry.

25.3.2.1 Computational Details and Model Compounds

Hereafter, we refer M(II) as metal cation and X as chalcogen atom. We simplified
reactivity by considering only the energy difference between reactant and product.
We adopted methyl model (dP=CH3). X=S is synthesized in experiment in the
case of [M–Pd(II)–M], [M–Ni(II)–M] and [S–Pt(II)–S]. We then examined X=Se
in order to understand the dependency of chalcogen atoms. In this section, we used
Becke 3 hybrid functional. As a basis function, we chose Def2-QZVP [51] for metal
atoms because only this basis set has a polarization and diffuse function and is
available for Pd(II) and Pt(II) atoms. We used 6-31++G (d, p) for the other atoms.
We adopted polarizable continuum model (PCM) method for two reasons. One is
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Table 25.6 Important structural parameters taken from optimized geometries in metal
cation containing artificial DNA

H (X=O) M (X=S) M (X=Se) S (X=S) S (X=Se)

Ni(II) r(Ni–O) 1.88 1.88 1.88 1.88 1.88
r(Ni–X) 1.88 2.25 2.36 2.24 2.35
θ (X–Ni–O) 87.4 89.0 89.2 88.9 89.0
r(N–N) 9.96 10.54 10.68 10.31 10.39

Cu(II) r(Cu–O) 1.94 1.97 1.97 1.95 1.96
r(Cu–X) 1.97 2.32 2.44 2.33 2.44
θ (X–Cu–O) 85.2 87.2 87.5 86.9 87.2
r(N–N) 10.10 10.67 10.82 10.45 10.54

Zn(II) r(Zn–O) 2.01 2.12 2.13 2.06 2.07
r(Zn–X) 2.07 2.36 2.46 2.40 2.50
θ (X–Zn–O) 82.7 85.1 85.5 84.8 85.3
r(N–N) 10.26 10.85 11.00 10.63 10.74

Pd(II) r(Pd–O) 2.02 2.02 2.02 2.02 2.02
r(Pd–X) 2.02 2.35 2.46 2.35 2.45
θ (X–Pd–O) 83.4 86.0 86.5 85.8 86.3
r(N–N) 10.23 10.76 10.91 10.56 10.64

Pt(II) r(Pt–O) 2.03 2.03 2.03 2.03 2.03
r(Pt–X) 2.03 2.35 2.45 2.34 2.44
θ (X–Pt–O) 82.5 85.7 86.4 85.5 86.2
r(N–N) 10.27 10.77 10.91 10.57 10.65

r denotes distance (in Å) and θ denotes the bond-angle (in degree)

that this reaction occurs in aqueous phase. The other is that a metal cation cannot be
stable in gas phase. If we computed energy difference between reactant and product
in gas phase, we could obtain even [H–Zn(II)–H] which cannot be stable in fact.

25.3.2.2 Metal Cations and Chalcogen Substitution

We chose Cu(II), Ni(II), Pd(II), and Pt(II) cations as a candidate metal for artificial
DNA. As a reference we picked up Zn(II) cation, which cannot take square planar
coordination actually. Table 25.6 lists the optimized geometries in each molecule.
The distance M-O is not so changed by chalcogen in all metals. Especially in zinc
cation, the distance is estimated larger than that in copper or nickel.

It indicates that M=Zn(II) is not stable in these structures The order of distance
between nitrogen atoms is M (X=Se), M (X=S), S (X=Se), S (X=S) and H. Except
for Zn(II), the largest value is 10.91 Å in [M–Pt(II)–M]. This distance is larger than
that of natural DNA so that bond length between nitrogen atoms may affect the
whole structure.

To estimate formation energy, we assumed the reaction 2H (or M,S)+M(II)→
[H–M(II)–H]+2H+. We compared the reaction energy as following formula.

G = G(H−M(II)−H)+ 2Gp−{2G(H)+G(M(II))} (25.5)
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Table 25.7 Gibbs free energy (in 298.15 K) comparison of metal-cation con-
taining artificial DNA (in kcal/mol)

Ni(II) Cu(II) Zn(II) Pd(II) Pt(II)

H(X=O) −19.6(◦) −61.1(∗) 66.9(×) −2.3(�) 23.5(×)
M(X=S) −27.4(◦) −68.4(◦) 62.0(×) −22.0(∗) 0.5(�)
M(X=Se) −48.0(◦) −96.3(◦) 40.2(×) −43.7(◦) −22.0(◦)
S(X= S) −44.6(∗) −92.0(◦) 45.8(×) −41.6(∗) −18.2(∗)
S(X= Se) −54.2(◦) −101.0(◦) 34.2(×) −50.4(◦) −23.8(◦)
Marks in parentheses indicates the speculated possibility for the formation of
metal ion containing artificial DNA (◦ denotes “Supposed to be available”, � de-
notes “Depends on its condition” and × denotes “Supposed to be unavailable”,
respectively. On the other hand ∗ denotes experimentally synthetized one)

where Gp denotes the energy of proton (H+). This reaction occurs in aqueous
solution so that it is natural to consider two protons are dissociated as H3O+ ion.
Therefore, we estimated Gp as the energy difference between H2O and H3O+.

Gp = G(H3O+)−G(H2O) (25.6)

Note here the reaction energy G is just an index parameter for stability of complex.
In order to consider the stability in solution, we have to consider Gibbs energy. In
principle, Gibbs energy can be obtained from a statistical partition function within
a harmonic approximation, where one needs to compute vibrational frequencies.
According to the Florian’s work [25], dynamical effects adopting an explicit water
model should be included to compute the solvation Gibbs energy in aqueous
solution accurately, whereas our computation does not include the internal entropies
in each compound. In this study, we assumed that the errors of Gibbs free energies
would be cancelled out. Since the results agreed well with the experimental facts
shown later, this assumption seems to be reasonable.

Table 25.7 list results of formation free energy. As expected, all the complexes
that consist of Zn(II) are not stable. It is obvious that Zn(II) cannot make the
artificial DNA in square planar configuration. The complexes, which contain Cu(II),
are so stable that any complex would be synthesized. The difference between
Ni(II) and Pd(II) is not so remarkable except for the case in X=O. Therefore, the
tendency of metal mediate base pairing is not so changed whether the metal cation
is Ni(II) or Pd(II). Table 25.7 also summarizes speculated possibilities of metal
mediated base pairing for artificial DNA. Similarly, [H–Pt(II)–H] is not so stable
that these structures cannot be synthesized, which can be understood by HSAB
theory. The other structures are stable enough to be a candidate for metal-mediated
base pairing. This selection rule of chalcogen atom is important in synthesizing
complex especially in platinum atom. In particular, if selenium atom can be used,
[M–Pt(II)–M] would be available.
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Fig. 25.5 Computed UV-Vis spectra of (a) [S–Ni(II)–S], (b) [S–Pd(II)–S], and (c) [S–Pt(II)–S]

25.3.2.3 UV-Vis Spectra of Newly Developed Artificial DNA

In order to confirm the existence of metal-mediated pairing, we have to compute the
UV-Vis spectra, whose experimental data are available. In this section, we computed
UV-Vis spectra by means of time-dependent (TD) DFT within implicit solvent by
using PCM. In describing the UV-Vis spectra, we let the peak have a Gaussian
type function with half-width 0.2eV. Figure 25.5 shows both the experimental and
theoretical results. Like the experimental data, the decrease of peak around 350 nm.
From the Fig. 25.5b, the peak around 450 nm was observed, which corresponds
to the peak around 415 nm in Fig. 25.5a. Judging from Table 25.8, it is true
that we have specified the character of peak but the wavelength of the peak is
not discussed quantitatively in [S–Pt(II)–S]. There are two possibilities of error
in the wavelength of peak in [S–Pt(II)–S]; (1) defect of electron core potential
(ECP) (2) not considering relativistic effect. These effects will be considered in
further studies.

Figure 25.6 shows the molecular orbital, which mainly concerns with the exci-
tation with large oscillator strength. Excitation of [S–2H+–S] which does not have
metal cation is dominated by π−π∗ transition. In the case of [S–M(II)–S] (M=Ni,



450 T. Matsui et al.

Table 25.8 Absorbance wavelength ω of computed peak, which is con-
cerned with the π −π∗ or d-π∗ excitation in [S–M(II)–S] (in nm), and a
difference in excitation energy between Se and S, i.e. Δω = (ωSe−ωS)

Without metals Ni(II) Pd(II) Pt(II)

X=S 352 400 (402) 407 (397) 456 (413)
X=Se 367 416 422 471
Δω 15 16 15 15

Numbers in parenthesis are experimental data

Without metals

[S-Ni(II)-S]

[S-Pd(II)-S]

[S-Pt(II)-S]

HOMO LUMO+1

LUMO+1

LUMO+1

LUMO

HOMO

HOMO

HOMO

Fig. 25.6 Molecular orbitals concerned with the π − π∗ and d− π∗ excitation in each complex.
[S–S] denotes hydroxypyridinethione dimer without metal cation

Pd, Pt), the same characters were found in the molecular orbital in S. On the other
hand, the d function in the metal cation in HOMO almost disappears in the excited
state (LUMO+1 or LUMO) so that d− π∗ transition identified as metal-to-ligand
charge transfer (MLCT) was found in [S-M(II)-S] (M=Ni, Pd, Pt). Judging from
the results of Table 25.8, the red shift from 350 nm in [S-2H+-S] to 400–450 nm
in [S–M(II)–S] can be explained by the effect of MLCT. The same tendency was
found in the case of selenium. Especially, 4p functions of Se atom concerns with
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the π − π∗ transition so that a systematic red shift by about 15 nm was caused by
replacement of 3p orbitals by 4p orbitals in substituting the charlcogen atoms. This
change does not depend on nether the sort of the metal ion nor existence of the
metalion.

25.3.3 Summary of Sect. 25.3

In order to investigate an origin of structural stability of a Cu(II)-containing artificial
DNA, we evaluated the stacking energy between [H–Cu(II)–H] (H: hydroxypyri-
done) dimer by means of DFT+ALL method. The calculated distance between two
Cu(II) is about 3.6 Å, which agrees well with the experimental data. Evaluated
stacking energy is about 8–10kcal/mol, which is slightly smaller than that of
two base pairs in a natural B-DNA. This tendency does not change in [H–H],
which does not contain Cu(II). These results indicate that the vdW interaction
dominates the inter-base-pair interaction over spin-spin interaction, in contrast to
a conjecture by an experimental group. According to the results by the open-
shell DFT, antiferromagnetic (singlet) and ferromagnetic (triplet) states are almost
degenerated when the two bases are vertically located and both bases have a planar
structure as found in the B-DNA.

We also evaluated the stability and UV-vis spectra of [S–M(II)–S] (M=Ni, Pd,
and Pt) (S: hydroxypyridinethione) using (TD) DFT. We calculated the formation
energies of modified bases with possible combinations of chalcogen atoms and
metal cations. The results confirmed that [H–Ni(II)–H] (H: hydroxypyridone),
[H–Cu(II)–H], and [S–Cu(II)–S] would form stable metal-base pairing; on the other
hand, [H–Zn(II)–H], [S–Zn(II)–S], and [H–Pt(II)–H] would not. We predicted UV-
vis excitations at 400–410 nm, mainly dominated by a d-π∗ transition accompanied
by a π−π∗ transition in [S–M(II)–S], where a metal-to-ligand charge transfer shifts
the peak of S (without metal cations).

25.4 Conductivity of Metal-Containing Artificial DNA

Chemical modification of DNA base pairing is one of the strategies to conductive
DNA. It is well known that mutation of DNA such as base mismatch pair
affects its conductivity [52]. Therefore, it is expected that proton-transfer reaction
between base pairs also concerns with the conductivity. Rak’s group investigated
the influence of proton transfer to electron coupling in the two base pairs [53, 54].
On the other hand, the I-V characterization has not yet been investigated in these
systems. The other strategy for conductive DNA is metal complex binding to DNA.

Originated from Mujica et al. [55], many theoretical studies have been reported
for electronic transport properties in molecular device for benzenedithiol and DNA
[56–58]. On the other hand, quantitative discussion for the conductance of molecular
device needs much computational resources as well as quantum chemistry.
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Here we investigate the conductivity of the artificial DNAs and compare the
results with those of the natural DNAs by means of he scattering Green’s function
theory. In the following we briefly summarize the theory and apply it to the model
DNA systems.

25.4.1 Theoretical Background

The molecular system supposed to be considered contains too many atoms to treat
with quantitative manner. To understand the I −V characteristics in theoretical
chemistry is needed for conductivities of larger molecules. In 2002, Luo et al.
succeeded in computing the current and conductivity of molecular wire such as
benzendithiol with simple model based on theoretical chemistry [24]. This method
uses the overlap matrix of model molecules and sulfur atoms and the probabilities
that electron exists in the sulfur atoms in LUMO. This is also applicable for larger
molecule such as DNA. Here we review the essence of the method and apply it to
the natural and artificial DNAs.

25.4.1.1 Theoretical Background for I-V Characteristics Calculation

We summarized theoretical description for I-V curve of molecular junction pro-
posed by Luo et al. Based on the scattering Green’s function theory, matrix element
T is expressed by a function of energy Ei (energy at which scattering process is
observed) as following.

T (Ei) = γ1sγDN ∑
η

<1|η><η |N>

Z− εn
(25.7)

In the above equation, a parameter z is complex variable z = Ei + iΓi. Therefore,
absolute value of T (Ei) is

|T (Ei)|2 = γ2
1Sγ2

DN ∑
η

|<1|η>|2|<η |N>|2
(Ei− εn)2 +Γ2

η
, (25.8)

where < 1|η >, < η|N > is the overlap between sulfur atom and extended molecule
in each orbital. εη is the orbital energy. Here we restrict to use the oribitals from
HOMO-9 to LUMO+9. γ1S,γDN represents coupling element. Γη denotes escape
rate given by Fermi’s golden rule, i.e.,

Γη = γ1S<1|η>+ γDN<η |N> (25.9)
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Coupling constant γ1S and γDN is obtained by

γ1S =VSLd1L

γDN =VSLdNL (25.10)

L refers to LUMO. The interaction energy VSL is approximated as

V 2
SL = (ΔEHL−ΔE0

SL)ΔE0
SL/2, (25.11)

where ΔEHL is HOMO-LUMO gap of extended molecule, ΔE0
SL the difference

between LUMO of bare molecule and HOMO of gold cluster. di,S means the
expansion coefficients of wave function of the S atoms, i.e.

d2
1L = ∑

i
c2

1i

/
∑
a.i

c2
ai. (25.12)

Using the linear response theory, iSD is obtained by

iSD =
emkBT

2π2h̄3 ∑
η

∞∫
eVD

dEq|T (Eq)|2η

×
[

ln

{
1+ exp

(
E f + eVD−Eq

kBT

)}
− ln

{
1+ exp

(
E f −Eq

kBT

)}]
(25.13)

E f is Fermi energy of the system. We set the Fermi energy as the middle of HOMO-
LUMO. T means temperature of system. To obtain the total current, we have to
consider area of the contact. To summarize the results, total current ISD is obtained
by following factor.

ISD = iSD×π
(

9π h̄3

4

)
· 1

2mE f
(25.14)

In this model calculation, the current depends strongly on the overlap between sulfur
atoms around frontier orbitals and the coupling constant in LUMO.

25.4.2 I-V Characteristics for Natural and Artificial DNA Bases

We assumed that sulfur atom connects to hollow site of (111) orientation of gold
clusters. Therefore, an extended molecule includes three gold atoms on each side.
Geometries of bare molecule (in this case, base pair+sulfur atoms) were optimized
by B3LYP. The basis set is chosen as LanL2DZ for metal atoms and 6-31 G (d) in
geometry optimization and 6-31+G (d) in single point calculation for other atoms.
Throughout this section, we used GAUSSIAN 03 program package [36].
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Fig. 25.7 Computed I-V characteristics of (a) AT and (b) GC pair monomer

Table 25.9 Distance between N9 (A or G) and N1 (T or C), coupling constant and site-
orbital orverlap matrix elements of each molecule, where Eη is the orbital energy (in eV)

AT GC

N9−N1 (Å) 8.96 9.04
Ef (eV) 4.61 4.60
Γ1S (eV) 0.006 0.003
γDN (eV) 0.075 0.134

Eη <1|η> <η|N> Eη <1|η> <η|N>

HOMO−3 −7.15 0.017 0.895 −7.19 0.783 0.016
HOMO−2 −6.66 0.082 0.024 −6.05 0.049 0.005
HOMO−1 −5.43 0.133 −0.033 −5.51 0.000 0.443
HOMO −5.41 −0.009 −0.449 −5.28 0.123 0.001
LUMO −3.81 0.000 0.012 −3.91 0.000 0.011
LUMO+1 −3.76 0.082 −0.002 −3.70 0.002 0.105
LUMO+2 −3.60 0.197 −0.001 −3.62 0.091 0.000
LUMO+3 −3.57 0.003 −0.112 −3.47 0.211 0.003
LUMO+4 −2.13 0.023 0.967 −2.12 0.005 0.980
LUMO+5 −2.01 0.889 0.051 −1.99 0.000 0.125

25.4.2.1 In Plane I-V Characteristics of One Base Pair

Computed currents of a single base pair are shown in Fig. 25.7. In all cases, the
current is not more than 1.0 nA. Table 25.9 lists the coupling constant and site-orbital
matrix elements. Around Fermi energy, either <1|η> or <η|N> is almost 0 so that
the transparent matrix element is also approximated to zero. Coupling constants
are so small that these molecules cannot be conductive. In qualitatively, hydrogen
bonding is not effective for electron carrier.
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Fig. 25.8 The molecular modeling for I-V curve of CG/GC, where (a) electrodes connect to N9
of guanine (b) electrodes connect to N1 of cytosine. (c) I-V characteristics for system (a) and (b)

It is said that guanine has the lowest ionization potential among four bases.
Therefore, guanine is the most unlikely to be negative (electron-carrier) so that the
current of GC pair is less than that of AT pair. Through a proton transfer reaction,
the current in 5 V changed slightly due to the change of hydrogen bonding length
(see Table 25.9), which leads to the change of distance between N9 (G or A) and N1

(C or T).

25.4.2.2 Stacking Two Base Pairs

Next, we consider stacked GC pairs. We consider two patterns for gold electrode
connection. In the former, the electrode is connected to N9 of guanine. On the
other hand, in the latter, the electrode is connected to N1 of cytosine as shown in
Fig. 25.8c also show the results for current-voltage characteristics of each molecule.
High conductivity is observed in the case of 2 base pairs. If the electron pass contains
π−π stacking, the current increases greatly. According to the experimental results,
1,4-benzene-dithiol is estimated to be 0.3μA when voltage is set to 5 V [59]. This
implies that these molecules are more conductive than 1,4-benzene-dithiol. The
current of CG/GC for the electrode that connects to N9 of guanine is larger than
that to N1 of cytosine. For example Table 25.10 lists the coupling constant and
site-orbital orverlap matrix elements of each molecule. When electrodes connect to
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Table 25.10 Coupling constant and site-orbital orverlap matrix elements of each
molecule, where Eη is the orbital energy (in eV)

Connected to cytosine

CG/GC C+G−/G−C+

Ef(eV) 4.77 4.51
γ1S (eV) 0.078 0.026
γDN(eV) 0.133 0.131

Eη <1|η> <η|N> Eη <1|η> <η|N>

HOMO−3 −6.11 0.001 0.029 −5.96 0.008 0.003
HOMO−2 −6.09 0.009 0.016 −5.93 0.001 0.000
HOMO−1 −5.61 0.471 0.018 −5.34 0.040 0.156
HOMO −5.61 0.086 0.100 −5.26 0.247 0.033
LUMO −3.94 0.065 0.015 −3.75 0.130 0.416
LUMO+1 −3.94 0.005 0.170 −3.69 0.703 0.108
LUMO+2 −3.79 0.043 0.012 −3.53 0.090 0.228
LUMO+3 −3.79 0.052 0.009 −3.47 0.356 0.003
LUMO+4 −2.03 0.892 0.006 −2.10 0.068 0.909
LUMO+5 −2.02 0.917 0.009 −2.03 0.242 0.188

guanine side, the apparent difference between CG/GC and C+G−/G−C+ appears
in coupling constant. Especially, the coupling constant γ1L of CG/GC is ten times
larger than that of C+G−/G−C+, which leads to 100 times difference in transition
matrix element.

When electrodes connect to cytosine side, on the other hand, both coupling
constant and the overlap around Fermi energy have large value so that the
currents in 5 V are large in both CG/GC and C+G−/G−C+. In qualitatively, the
G- of C+G−/G−C+ cannot take electron because guanine has already had a
negative charge.

To summarize these discussions, DNA is conductive if the electrodes are directly
connected to bases. Moreover the current greatly depends on which atom is
connected to the electrode.

25.4.2.3 Metal-Containing Artificial DNA Bases

Next, we applied this model to the artificial DNA. We have already computed
[H–Cu(II)–H]. In this section, we examined the I-V curve characteristic of
[H–M(II)–H] (M=Ni, Pd) dimer in order to understand the difference between
[H–H] (without metal cation) and [H–M(II)–H]. we set the distance between metal
cations to 3.70 Å as the experimental data in [H–Cu(II)–H].

Figure 25.9 and Table 25.11 show the results for the artificial DNAs. The
current in 5 V of [H–H] is so small that artificial DNA works as insurant without
metal cations because γ1S is almost 0. On the other hand, [H–M(II)–H] shows
the conductive properties. The current, which begins to increase rapidly, appears
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Table 25.11 Coupling constant and site-orbital overlap matrix elements of each molecule, where
Eη is the orbital energy (in eV)

[H–H] [H–Ni(II)–H] [H–Pd(II)–H]

Ef (eV) 4.47 4.43 4.43
γ1S (eV) 6.09×10−6 0.020 0.024
γDN (eV) 0.035 0.024 0.027

Eη <1|η> <η|N> Eη <1|η> <η|N> Eη <1|η> <η|N>

HOMO−3 −5.41 0.241 0.017 −5.34 0.165 0.018 −5.32 0.197 0.012
HOMO−2 −5.40 0.056 0.073 −5.31 0.168 0.022 −5.28 0.206 0.051
HOMO−1 −5.13 0.635 0.029 −5.20 0.268 0.108 −5.20 0.239 0.103
HOMO −5.09 0.583 0.045 −5.14 0.265 0.141 −5.13 0.240 0.138
LUMO −3.85 0.001 0.129 −3.72 0.069 0.036 −3.73 0.071 0.038
LUMO+1 −3.68 0.231 0.004 −3.72 0.073 0.036 −3.73 0.076 0.039
LUMO+2 −3.66 0.028 0.080 −3.56 0.131 0.021 −3.57 0.128 0.013
LUMO+3 −3.54 0.224 0.010 −3.54 0.126 0.017 −3.55 0.125 0.008
LUMO+4 −2.23 0.013 0.977 −2.06 0.132 0.817 −2.08 0.136 0.816
LUMO+5 −2.01 0.998 0.006 −2.05 0.128 0.821 −2.07 0.139 0.819

around 1.5 V for palladium, around 2.0 V for nickel, which can be explained by
HOMO-LUMO gap. As a result, the current in 5 V is estimated as 0.25μA and
0.31μA for [H–Ni(II)–H] and [H–Pd(II)–H], respectively. Although this value is
less than that of CG/GC (2 base pairs of natural DNA), [H–M(II)–H] does not
depend on the connection to the electrodes. Our results clearly indicates that the
metal coordination much enhances the intra base current in comparison with [H–H]
(without metal cation) and natural bases as shown in previous paragraph. Therefore
the metal-containing artificial DNA is one of good candidates for good conductor.
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25.4.3 Summary of Sect. 25.4

We investigate the current-voltage (I−V ) characteristics between adjacent bases
in both natural and artificial DNAs, i.e. hydroxypyridone (H) with Cu(II), Ni(II),
and Pd(II) ions, using an elastic scattering Green’s function method together with
a density functional theory. We have found that the magnitude of the current
of [H–M(II)–H] complex tends to become larger than that of the natural DNA
and the artificial DNA without metal ions. Natural DNA cannot be conductive
only in one base pair, but conductive in more than two base pairs due to the
effect of π −π stacking. The current of natural DNA changes whether electrodes
connect to guanine or cytosine. In the case of artificial DNA, the current increases
dramatically by the metal mediation. Especially, artificial DNA does not depend on
the connection so that we will be able to obtain stable and high current. Therefore,
the artificial DNA will be used for newly conductive nano-material.

25.5 Conclusions

We have studied two topics about (i) the structural stabilities and electronic
structures of metal-ion containing artificial DNA bases and (ii) conductivity of
them. In the Sect. 25.2, before proceeding the main topics, we have shown that
the LC-BOP+ALL method gives the stacking interaction, which agrees well with
the reference value obtained by accurate methods in both cases for stacking two
bases and two base pairs. We have been able to reproduce the reference value with
a medium-sized basis set such as 6-31++G(d,p). This fact is quite important for
the investigation of newly developed artificial DNA, whose structures were not
available.

In Sect. 25.3, we investigated an origin of structural stability of the Cu(II)-
containing artificial DNA. We first confirmed appropriateness of our model system
and evaluated the stacking energy between [H–Cu(II)–H] (H: hydroxypyridone)
dimer by means of DFT+ALL. The calculated distance between two Cu(II) is about
3.6 Å, which agrees well with the experimental data. Evaluated stacking energy
is about 8–10kcal/mol, which is slight smaller than that of two base pairs in a
natural B-DNA. This tendency does not change in [H–H]. These results indicate
that the vdW interaction dominates the inter-base pair interaction over spin-spin
interaction in contrast to a conjecture by an experimental group. According to the
results by the open shell DFT, antiferromagnetic (singlet) and ferromagnetic (triplet)
states are almost degenerated when the two bases are vertically located and both
bases have a planer structure as found in the B-DNA. We also considered the metal
ion and chalcogen substitution effects on the hydroxypridone artificial DNA bases.
Our calculation results were in good agreement with the experimental facts and
suggested a new variety of artificial DNA base, which contains Se atom.
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In Sect. 25.4, we computed current-voltage characteristics of stacking natural and
artificial DNA bases by the scattering theory based on the NEGF. The current is not
observed if the electron path contains only hydrogen bonding such as 1 base pair.
The current becomes larger if the electron path contains π −π stacking molecule.
On the other hand, the current changes dramatically whether the electrode connects
to guanine or cytosine. In the case of artificial DNA, remarkable change for electron
conductivity will be observed in the metal-mediated base pairing.

This review would help deep understanding of properties of several metal-
containing artificial DNAs, i.e. structural properties, electronic and magnetic be-
havior, the UV-Vis spectra from the view of theoretical chemistry. According
to the result of computed UV-Vis spectrum, artificial DNA can really exist be-
cause computed UV-Vis spectra agree well with the observed spectra. However,
metal-containing artificial DNA has many challenges in present. For example,
the magnetic properties are not available because high and low spin states are
degenerating in room temperature. We expect salen base pair with manganese
cation proposed by Carell et al. would be a good molecular magnetic. The electron
conductivity would increase if we could find other artificial DNA, which has strong
base pair interaction. The review also explored a possibility of the conductivity of
metal-DNA complex. Especially, [H–Cu(II)–H] is observed in triplet states so that
we will have to make it possible to apply NEGF theory to open shell systems. Both
directions are needed for further understanding of nano-material science.
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Chapter 26
Systematic Derivation and Testing of AMBER
Force Field Parameters for Fatty Ethers
from Quantum Mechanical Calculations

M. Velinova, Y. Tsoneva, Ph. Shushkov, A. Ivanova, and A. Tadjer

Abstract Nontoxic drug delivery systems for efficient trans-membrane transport
are central in the successful therapy of a number of diseases. Appropriate building
blocks of reversible drug-carrying micelles are water-soluble surfactants, e.g.
pentaethylene glycol monododecyl ether (C12E5). The present study aims to derive
from first principles calculations and to test molecular mechanics parameters for
such ethers to be used in subsequent all-atom simulations of micelle formation.
Two monomers and one dimer with two different types of periphery, which are
short-chain prototypes of the amphiphilic surfactant C12E5, are used as model
systems. The geometry of low-energy conformers is obtained from conformational
analysis with a modified OPLS force field and optimized at PBE and MP2 levels,
with aug-cc-pVTZ basis sets in vacuum and in implicit solvent. The quantum-
chemical calculations provide detailed information on the structural flexibility of
the surfactant models and can be used as reference for MD simulations. Weak
dependence of the parameters sought on the length of the oligomers and higher
sensitivity to the type of periphery is found. Validation of the derived molecular
mechanics parameters is carried out through comparison of the density, molecular
volume, enthalpy of solvation and vaporization obtained from molecular dynamics
simulations (Amber99/NPT/300 K) of diethyl ether to the existing experimental
data. The two theoretical approaches yield similar results both at molecular level
and as secondary thermodynamic output. Moreover, the derived set of molecular
mechanics parameters is consistent with experiment and can be used for extensive
molecular dynamics simulations of larger CxEy surfactant assemblies.
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26.1 Introduction

The cell membrane is largely resistant to most current chemotherapeutics and to
all alien proteins and DNA; therefore, use of the endocytic pathway for intra-
cellular transfer seems unfeasible. The design of reliable, effective and risk-free
artificial systems for transport across the cell membrane will pave the way to new
pharmaceutical approaches for treatment of presently incurable diseases. Suitable
candidates for such systems are micelles formed by ethers of oligo (ethyleneglycols)
and fatty alcohols (CxEy) with controllable hydrophilic-hydrophobic balance. There
is evidence that at very low concentrations the surfactant molecules preserve
the self-assembly aptitude, especially in the subsurfacial layer [1]. This property,
together with the lipid compatibility of oligo(ethyleneglycol) ethers, suggests that
CxEy systems could be used as molecular reversible nanotransporters across the
biomembranes.

The well-known nonionic surfactant C12E5 (Fig. 26.1) is used as a model drug
delivery system in many studies. Balogh and Pedersen [2] have investigated with
small-angle X-ray scattering the effect of adding a drug (lidocaine) to such a system.
The surfactant system has been studied previously, amongst others, by Olsson and
co-workers [3]. Therefore, SANS, NMR and light scattering data for drug-free
C12E5 micelles are now available. In order to understand how the C12E5 micelles
hold drugs, transport them in the bloodstream and release them in the target tissues,
it is very important to clarify the structure of the micelles. Recently, molecular
dynamics (MD) simulations have emerged as a powerful tool for investigating the
static and dynamic structure of micelles. In order to apply them to CxEy systems,
we need a molecular mechanics (MM) model of C12E5, which can be derived
from ab initio estimates of the electronic and structural characteristics of smaller
model systems allowing extraction of force field parameters for the target surfactant.
The main problem is the parameterization of the head which contains ethylene
glycol units. Also, poly (ethylene glycol), PEG, is one of the most widely used
polymers in biotechnology and industry related to life-sciences [4]. The accurate
knowledge of the structure and thermodynamic properties of PEG-based materials
is of immense importance for most of the existing applications and, even more,
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Fig. 26.1 Structural chemical formula of a CxEy fatty ether (top) and the models studied (bottom)
with their notations used in the text
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for the development of new ones. Ethylene glycol and PEG-containing molecules
exhibit highly complex inter- and intra-molecular interactions, since they comprise
both non-polar (i.e. –CH2–) and polar (i.e. –O–) groups. Furthermore, the lowest-
energy conformers have at least one torsion angle (-O–C–C–O–) corresponding to
a gauche conformation, unlike many other polymer molecules where the all-trans
conformation is that of lowest energy. This gauche-effect is also present in PEG
oligomers [5].

Considerable effort has been devoted to the development of atomistic force
fields that account accurately for such phenomena. Smith et al. developed a force
field for PEG based on detailed ab initio calculations and used subsequently in
molecular dynamics simulations of HO–(CH2CH2O)12–H [6]. Neyertz et al. [7]
studied the crystalline region of poly (ethylene oxide) using MD simulations, while
Lin et al. [8] employed MD to study the structural and dynamical properties of the
amorphous regions of poly (ethylene oxide). Again Smith and co-workers developed
a quantum-chemistry-based (MP2) force field for 1,2-dimethoxyethane (DME) and
PEO in aqueous solution [9, 10] using several water models [11] They concluded
that for dilute (water-rich) solutions, static and dynamic properties depend only
weakly on the water model employed. Recently [12], they reported a MD study
of the influence of hydrogen bonding and polar interactions on hydration and con-
formations of a PEO oligomer (H–[CH2–O–CH2]12–H) and 1, 2-dimethoxyethane
in dilute aqueous solutions.

Despite the extensive study of PEO and PEG, relatively little work has been done
so far on its oligomers. This study focuses on PEG oligomers and derivation of force
field parameters for them to be applied to systems such as C12E5.

26.2 Models and Computational Procedure

The present study focuses on the theoretical treatment of the monomers of poly
(ethyleneoxide) (PEO) and poly (ethylene glycol) (PEG) with two types of
periphery: CH3-terminated (M(CH3)) and OH-capped (M(OH)). A dimer with
alkyl periphery is also modeled. These short-chained oligomers are regarded as
minimalistic prototypes of the hydrophilic portion of the water-soluble amphiphilic
surfactant C12E5. The selected molecular models are chosen in order to aid the
elucidation of the dependence of the ether fragment MM parameters on the length
and periphery of the oligomer chain. The effect of a polar medium (water) is
investigated as another factor influencing the ether molecules behaviour in solution.

The molecular simulations were performed according to the computational
protocol illustrated in Fig. 26.2. In order to find the possible stable conformers
of the monomers and the dimer, exhaustive conformational analysis with simul-
taneous variation of all torsion angles between non-hydrogen atoms was carried
out employing a version of the OPLS force field [13] with modified ether group
parameters [14]. The conformational search was performed both in vacuum and
in explicit aqueous medium using the TIP3P water model [15]. The accumulated
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Fig. 26.2 Computational scheme followed in the derivation and validation of force field
parameters

sets of conformations were examined and all conformers differing substantially
(by more than 15◦) in any of the torsion angles underwent geometry optimization.
The latter was done with the gradient-corrected DFT functional PBE [16] and with
the MP2 method [17] using the basis set aug-cc-pVTZ [18] in both approaches.
The selected basis set is acknowledged as sufficiently large to ensure high precision
of a variety of molecular characteristics, such as geometry, vibrational frequencies,
and relative stability of the conformers. The implicit solvent model PCM [19] was
applied whenever the geometry was optimized in aqueous medium. Energy minima
of all optimized structures were checked by frequency analysis.

The torsional barriers for rotation about C–O bonds were quantified solely from
MP2 calculations, since the accurate estimate of such energy differences requires
explicit account of the electron correlation.

The electrostatic potential of the optimized molecules was generated with HF/6-
31G∗ as recommended by the developers of AMBER95 [20] and used further on
for obtaining the RESP charges. The latter were generated by multi-conformational
fitting [20]. All calculations were done both in vacuum and water.

The force field parameters for simulation of amphiphilic fatty oligoethers
obtained from the quantum mechanics calculations were tested by comparing a
computed set of thermodynamic properties with available experimental data. In
the current study the validity of the parameters was demonstrated with atomistic
MD simulations of diethyl ether (M(CH3)) in gas and liquid phase and in aqueous
solution. The gas phase was represented by one molecule M(CH3) in vacuum. The
liquid was modeled with 144 molecules of diethyl ether randomly distributed in a
cubic periodic box. The dimensions of the box were chosen to ensure mass density
of the liquid close to the experimental value at the same temperature – 0.714g/cm3.
The solution comprised one M(CH3) molecule immersed in a sufficient amount of
water. Both the liquid and the solution were simulated by placing the repeating
units in periodic boundary conditions. All simulations were performed with the
force field parm 99 [21] appended with the derived MM parameters for the ether
fragment in NPT ensemble at 300 K and 1 atm for the periodic calculations. The
Berendsen method [22] was applied for the temperature and pressure couplings.
MD trajectories were run utilizing the minimized structure as a starting input and the
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particle mesh Ewald (PME) [23] algorithm was used for evaluating the long-range
electrostatic terms. The van der Waals interactions were truncated at a spherical
cutoff of 1.0 nm (5.0 nm for the isolated molecule in vacuum) and compensated
with long-range corrections. The time-step was 2 fs, and the simulation was 5 ns
long. The equilibration and data production periods were generally greater than
1 ns and 4 ns, respectively. To prove that the stage of thermodynamic equilibrium
was reached, the total energy, temperature, and pressure were calculated during
the simulation (Fig. S1). The MD data revealed that these three characteristics
oscillated moderately around a constant mean value, indicating that our samplings
were statistically significant.

The water models used were TIP3P and TIP4P [15]. The molecular volume, mass
density of the pure liquid, enthalpy of vaporization and enthalpy of solvation of
diethyl ether were calculated to validate the force field parameter set. The trajectory
was sampled by extracting frames every 200 fs for statistical analysis. The mean
value variations were quantified by means of standard deviations.

The conformational search was performed with the module implemented in
Hyperchem 7 [24]; the geometry optimization, frequency analysis, and torsional
barriers scan were done with the program suite Gaussian 09 [25]; the RESP atomic
charges were evaluated with the corresponding subroutine in the package Amber 8
[26]. The MD simulations were carried out with Amber 8.

26.3 Conformational Analysis

The number of structurally distinct low-energy conformations obtained from the
conformational analysis and the number of the different structures after the sub-
sequent geometry optimization with PBE/aug-cc-pVTZ in vacuum and in water
are summarized in Table 26.1. The optimization with the MP2 method yields the
same number of dissimilar conformers as the minimization with the DFT functional.
Results from the conformational analysis reveal that both the periphery type and the
presence of polar solvent influence the conformational flexibility of the molecules.
The hydroxyl periphery allows more freedom of rotation about the skeletal C–O
bonds. As expected, the molecules terminated by hydrophobic alkyl groups possess

Table 26.1 Number of structurally differing low-energy
conformers found by the conformational search with OPLS
and number of the dissimilar isomers after their geometry
optimization with PBE/aug-cc-pVTZ in vacuum and water

Vacuum Water

Molecule OPLS PBE OPLS PBE

M(CH3) 4 3 3 1
M(OH) 35 22 53 38
D(CH3) 55 26 36 10
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Fig. 26.3 Lowest-energy structures after PBE/aug-cc-pVTZ optimization of M(CH3) and M(OH)
in vacuum. T and G denote the trans- and gauche-conformations with regard to the two ether
bonds, respectively. The symbols G and G′ correspond to positions of the methyl/hydroxyl groups
on the same or on opposite sides of the C–O–C plane

Fig. 26.4 Lowest-energy structures obtained from PBE/aug-cc-pVTZ geometry optimization of
D(CH3) in vacuum

more stable isomers in vacuum. In contrast, the set of stable structures with hydroxyl
periphery becomes much larger in water.

Geometry optimization reduces the number of isomers found during confor-
mational analysis but nevertheless a sizeable conformational diversity is retained,
particularly for the dimer and the OH-terminated monomer. As in the conforma-
tional analysis, more optimized structures with alkyl periphery are stable in vacuum,
while for the monomer with hydroxyl periphery the number of conformers stable in
water is greater.

Comparing the structures obtained after energy minimization of the investigated
systems with those found by the conformational search, one observes certain dif-
ferences in the geometry (Figs. 26.3 and 26.4). The trans-conformation of the ether
fragment is preferred both in the conformational analysis and after the geometry
optimization for the monomers in vacuum. This finding is supported by several
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Table 26.2 Values of the torsion angles C–O–C–C (Θ1,Θ2), their population and energy differ-
ence (ΔE [kcal/mol]) between the lowest-energy conformer and the respective structure in the
same series found after PBE/aug-cc-pVTZ geometry optimization in vacuum and water of the Ex
monomers; populations derived from analysis of gas-phase electron diffraction experiments [32]

Vacuum Water

M(CH3) M(OH) M(CH3) M(OH)

Conformer Population ΔE Θ1 Θ2 ΔE Θ1 Θ2 ΔE Θ1 Θ2 ΔE Θ1 Θ2

TT 0.69 0 180 180 0 180 180 – – – 0 180 180
TG 0.26 1.466 176 73 1.250 174 68 0 174 74 0.082 174 63
GG’ 0.5 2.838 63 −63 3.359 −82 73 – – – 1.371 −62 70
GG – – – 2.079 72 63 – – – 0.422 64 66

studies of diethyl ether, M(CH3), with IR [27–29] and Raman [30,31] spectroscopy.
The normal coordinate analysis of the vibrational spectrum of M(CH3) shows that
only the TT conformer exists in the solid state [27], whereas in gas and liquid phase
at least two more conformers (TG and GG) are registered [27, 28, 31]. Figure 26.3
presents the lowest-energy M(CH3) conformers after PBE/aug-cc-pVTZ optimiza-
tion in vacuum, which are in excellent agreement with the experimentally observed
structures.

The results in Table 26.2 reveal that the TT conformer with dihedral angles
C–O–C–C of 180◦ is the most stable, followed by the TG one. The least stable
structure is GG’, where the two methylene groups are in antiperiplanar alignment
with respect to the ether group plane. Based on IR absorption intensity temperature
dependence, Wieser et al. [28] estimated the enthalpy difference between TT and
TG as 1.1 kcal/mol. This agrees well with the result obtained in this study.

The fourth experimentally established structure GG is not found in the simu-
lations of M(CH3), whereas for M(OH) it turns out to be even stabler than GG’.
It can be anticipated that the stability of this isomer is rooted in the possibility of
intramolecular hydrogen bond formation between a hydrogen atom from one of the
hydroxyl groups with an oxygen atom from the other.

In implicit aqueous solvent we find only one conformer for M(CH3), which
features just one gauche-orientation. In contrast, M(OH) retains the conformational
diversity, which most probably is due to various feasible interactions of the
hydrophilic hydroxyl periphery with the polar water environment.

The energetically favorable isomers described above, however, do not exhaust the
possible spatial orientations of studied molecules. In all cases the conformational
assortment accumulated in the conformational search contracts upon geometry
optimization but sizeable conformational variety is preserved. This is particularly
prominent for M(OH) in water, where about 40 structures fall within an energy
window of ∼6kcal/mol, and for D(CH3) in vacuum, for which about 30 isomers
differ in energy by less than 3 kcal/mol. (Table S1).

Switching from DFT to MP2 has no effect on the conformational preference of
the optimized molecules and their order of stability (Tables S2, S3, S4 and S5).
Consequently, the two methods reproduce the conformational behavior for the
molecules studied with negligible numerical differences in estimated parameters.
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Table 26.3 Values of the torsion angles C–O–C–C (Θ1 to Θ4), their population and energy
difference (ΔE [kcal/mol]) between the lowest-energy conformer and the respective structure in the
same series found after PBE/aug-cc-pVTZ geometry optimization of the dimer of Ex in vacuum
and water; populations derived from analysis of gas-phase electron diffraction experiments [32]

D(CH3) vacuum D(CH3) water

Conformer Population ΔE Θ1 Θ2 Θ3 Θ4 ΔE Θ1 Θ2 Θ3 Θ4

TGT 0.23 0 179 84 176 172 0 177 79 173 165
TTT 0.13 0.178 180 180 180 180 0.671 179 177 179 176
TGG’ 0.08 0.591 174 85 −75 −62 1.103 173 44 −74 −61
TGG 0.53 1.371 172 88 75 178 1.648 174 89 77 176
TTG 0.03 1.387 179 172 73 174 1.860 177 173 83 172

The geometry optimization modifies all the low-energy conformers of the dimer
(Tables S4 and S5). Both inner and peripheral torsion angles change and even
in vacuum there is already one gauche-orientation in the most stable conformer
(Fig. 26.4). D(CH3) has two important torsion angles C-C-O-C and O-C-C-O,
which are present in the target oligomer too, and the correct parametrization of these
torsions is vital for reliable simulation of CxEy. The conformers energies and pop-
ulations of the dimer in gas and liquid phase and in solution were studied in detail
experimentally [32–36] and theoretically [9, 11, 12, 37, 38] in order to gain deeper
understanding of the behavior of such molecules. The experiment provides evidence
that five principle conformers dominate in gas and liquid phase– TTT, TGT, TTG,
TGG and TGG’. Our calculations match well this result. The nomenclature used
by the experimentalists for the angles C–O–C–C, O–C–C–O and C–C–O–C is kept
here as well but the torsions Θ1, Θ2, Θ3 and Θ4 discussed by us do not include
O–C–C–O, since it has been parametrized already in the force field AMBER95.
In Fig. 26.4 (Table S4) are shown the lowest-energy conformers obtained after
PBE/aug-cc-pVTZ (MP2) optimization of D(CH3) in vacuum. It is visible that the
dimer exhibits marked gauche-effect, as the gauche conformation has unusually
high population (Table 26.3), which has been registered experimentally [39], too.
This class of molecules is a typical example of the gauche-effect – the polar
substituents give preference to the gauche- rather than to the trans-conformation
of the C–C bond. In ethers and polyethers this behavior is termed oxygen gauche-
effect.

A comparison between the geometry of the dimers optimized in vacuum and in
water makes clear that the number of gauche-kinks in water increases.

The analysis of solution experiments is complicated by the fact that the gauche
conformer population is enhanced by interactions with strongly polar solvents
such as water. Andersson and Karlstromg [40] estimate that water stabilizes the
TGT versus the TTT conformer by 1.0–1.5 kcal/mol. Inomata and Abelo [41]
used recently gas-phase NMR measurements as a source of structural information
on D(CH3). They reproduced the gas-phase NMR data using a RIS (Rotational
Isomeric State) model where the TGT conformation is preferred over the TTT
conformation by 0.4 kcal/mol. This minor energy difference requires a very careful
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Fig. 26.5 Distribution of the torsion angles C–C–O–C and C–O–C–C in the PBE/aug-cc-pVTZ
optimized D(CH3) and M(OH) structures in vacuum (left) and water (right)

choice of computational protocol. Both methods employed in this study repro-
duce the experimental results with satisfactory accuracy (Tables 26.3, S4, S5).
Juxtaposition of the energies of the most favorable conformers in vacuum and in
water indicates that all molecules studied are more stable in polar medium. This
is an expected result because all the compounds are water-soluble. For the species
with alkyl periphery we observed a correlation between the energy raise and the
number of gauche-bends of the torsions C–C–O–C in the respective molecule of a
series: in all cases the energy grows with the increase of gauche-twists. However, in
the dimer, where two angles of this type exist, no dependence between the energy
and the mutual position (i.e., adjacent or disjoint) of the two gauche-orientations
can be outlined in the set of stable isomers. No more than two gauche-turns are
found for the dimer in vacuum, whereas in water a group of structures with three
gauche-bends is witnessed. This indicates a tendency towards stabilization of the
more compact geometry of these molecules in water. For M(OH) such dependence
of the energy on the number of gauche-kinks can not be established. Concluding
briefly, in water the ether molecules exist in a comparatively compact form and the
molecular periphery is decisive for achieving such geometries.

Figure 26.5 illustrates the torsion angles distribution in vacuum and in water
of the optimized dimers, D(CH3), and monomers, M(OH). The data prove that
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Table 26.4 Mean values and standard deviations of the bond lengths l0 (C–O) and valence
angles α0 (C–O–C) obtained after PBE and MP2 geometry optimization with the basis set
aug-cc-pVTZ in vacuum and in water, compared to experiment [43]

MP2/aug-cc-pVTZ PBE/aug-cc-pVTZ

l0(C–O), Å α0(C–O–C), deg l0(C–O), Å α0(C–O–C), deg

Vacuum 1.420 ±0.003 112.540 ±0.815 1.427 ±0.004 113.110 ±0.788
Water 1.425 ±0.001 112.710 ±0.005 1.431 ±0.002 113.090 ±0.008
Exp. 1.411 112

in all cases the antiperiplanar orientations are the most numerous. The abundance
of gauche-conformations increases in water. Interestingly, they have fairly broad
distributions spanning a range of about 30◦. The mean value of the gauche-angle
is shifted to absolute values greater than the typical for alkanes ±0◦. Another
peculiarity is that both M(OH) and D(CH3) allow population of angles around
±120◦, albeit occasionally. The summarized picture shows population of the entire
conformational space, which implies comparatively low rotational barriers (see next
section).

In addition to the overall shape of the monomers and the dimer, the particular
structural parameters for implementation in the force field are analyzed, namely:
the C–O bonds, C–O–C valence angles, and C–C–O–C dihedrals. Averaged values
of the first two quantities for each conformer set are collected in Table 26.4.

26.4 Parameters of the Force Field

We aim at deriving parameters for ethers that are compatible with the AMBER force
field. The potential energy function used in AMBER is:
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(26.1)

The five terms in Eq. 26.1 compute the energies of bond stretching, angle bending,
torsion angles deformation, and non-bonded van der Waals (vdW) and electrostatic
interactions, respectively. Detailed explanation of the parameters in the above
equation can be found elsewhere [42]. In this study, we derive all parameters for
the ether group (except for vdW, adopted directly from AMBER).
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26.4.1 Bonded Parameters: Stretches and Bends

Table 26.4 contains the mean values and the standard deviations of the bond lengths
l(C–O) and the valence angles α (C–O–C) obtained after averaging of the respective
results yielded by PBE and MP2 geometry optimization of the studied model
systems. Experimental data [43] are provided for reference as well. Apparently, the
PBE/aug-cc-pVTZ optimization provides longer bonds than the empirical findings
but the computed valence angles match very well the measured ones. The MP2/aug-
cc-pVTZ minimization gives results closer to experiment than the DFT functional;
yet the bond lengths are still overestimated.

Upon introduction of the aqueous environment minor extension of bond lengths
occurs, while valence angles rest unaffected. Interestingly, the mean values of the
bond lengths in the molecules with different periphery are essentially identical. The
valence angles of the CH3-terminated models remain insignificantly larger but in
overall the parameters of the models with the two peripheries converge in water.

Detailed analysis of the computed geometries in both media show that the C–O
bond lengths vary within 0.011 Å and the C–O–C valence angles – within 1.49◦.
These minor amplitudes demonstrate the very weak sensitivity of these bond lengths
and angle magnitudes to the inter- and intramolecular environment. Least impact
has the chain length. The role of the conformation in these two parameters is also
immaterial, considering the small standard deviations. This signifies that the force
field parameters can be obtained by means of averaging over the entire data set,
irrespective of molecular size or periphery.

Other quantities needed for the parametrization of the bond-stretching and the
angle-bending potentials are the respective force constants. These are obtained from
the frequency analysis of the investigated molecules. The averaged characteristic
frequencies of C–O stretching and C–O–C bending together with the corresponding
force constants based on computations of the M(CH3) conformers in vacuum and
water are presented in Table 26.5.

Table 26.5 Mean vibrational frequencies and force constants with standard deviations for the
C–O bond stretching and the C–O–C angle bending, obtained from PBE and MP2 geometry
optimization of M(CH3) in vacuum and water; experimental values [43] are shown for comparison

MP2/aug-cc-pVTZ

ν(C–O) [cm−1] kb(C–O) [kcal/mol.Å2] ν (C–O–C) [cm−1] ka(C–O–C) [kcal/mol.rad2]

Vacuum 1081.00±22.82 239.29±10.21 467.00±33.21 72.50±12.26
Water 1054.00±0.25 227.36±0.22 504.00±0.35 87.40±0.35

PBE/aug-cc-pVTZ

Vacuum 1085.00±29.52 240.76±15.86 451.00±26.25 66.83±10.50
Water 1083.00±0.31 239.83±0.39 487.00±0.24 79.74±0.54
Exp. 1120 1150 – – –
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Both methods yield analogous results for the vibrational frequencies and force
constants. The C–O bond stretching for all the molecules lies in the range
1000–1150cm−1, which coincides with the experimentally identified range of ether
bond vibration. The C–O–C bending is computed at lower frequency, in line with the
quantitative relationship between stretching and bending deformations. It should be
noted that in the dimer the bending can not be observed as an individual vibration
but is always mixed with a torsional deformation, the letter being prevalent. An
asymmetric stretching is registered in M(CH3), which is split into two bands in
D(CH3) and even in three bands in M(OH) because the vibrations of the two
terminal C–O bonds occur at different frequencies (Table S6).

Replacing the vacuum with aqueous medium the stretching frequency decreases.
Analysis of this frequency in the dimer (where the statistical data set is larger)
reveals that its dependence on the molecular conformation is not significant.
A frequency of 1120cm−1 is measured experimentally for the C–O stretching of
diethyl ether in gas phase [43]. The results obtained here with the two computational
approaches are lower than the experimentally established value, which is most
probably related to the larger bond lengths estimated theoretically.

Regarding the force field parametrization, force constants based on averaging
of the inner bonds should be taken, as the latter resemble to a greater extent their
analogs in species with longer chains.

26.4.2 Bonded Parameters: Torsion Angles

In order to set the torsion potentials Vn in Eq. 26.1, we need the energy profile of
rotation about the C–O bond. Thus, the next step is the simulation of these energy
barriers. For the purpose, a scan of the potential energy surface upon stepwise
variation of each torsion angle Θ1 and Θ2 (Figs. 26.3 and 26.4) with increment of
15◦ in the range − 180÷ 180◦ is performed. The C–C–O–C angles which could be
varied in M(CH3) and M(OH) are symmetrically equivalent but in D(CH3) there are
two dihedral angles with dissimilar atomic surrounding – outer (Θ1) and inner (Θ2).
Therefore, separate energy profiles for Θ1 and Θ2 are generated. Figure 26.6 shows
the energy variation upon change of all considered dihedrals. The rotations are
simulated with the MP2 method starting from of the PBE/aug-cc-pVTZ optimized
geometries of the most stable conformers in each series. The absence of structural
relaxation at fixed values of the dihedral angle allows the monitoring of energy
changes invoked solely by the respective rotation.

The similarity of the profiles presented in Fig. 26.6 is the most striking impres-
sion one gets when looking at them. In all cases the curves are symmetric with
respect to 0◦ with a deeper minimum at 180◦ and two shallower ones at ±90◦. The
anti-gauche transition passes through energy maxima at ±120◦, and the eclipsed
conformation has the highest energy. The barriers of the two transitions differ
substantially in energy, the anti-gauche one being characterized by a smaller energy
change, which is in keeping with the expectations from spatial standpoint.
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Fig. 26.6 MP2/aug-cc-pVTZ total energy profiles upon variation of selected C–C–O–C dihedral
angles in the molecules with alkyl and hydroxyl periphery in vacuum; V2 denotes the anti- gauche
barrier, V3 stands for transition from gauche to eclipsed conformation

The heights of the energy barriers respond very little to specific environments
within or around the molecule. The effect of the chain length is again the weakest.
In M(CH3) and D(CH3) the variation of Θ1 requires 2.7 kcal/mol for transition to
the gauche isomer and about 13 kcal/mol to adopt the eclipsed form. The gauche-
orientation of the inner angle Θ2 in D(CH3) proceeds through a slightly lower
barrier at the expense of the gauche-eclipsed transition energy which increases by
ca. 3 kcal/mol. Both barriers decrease insignificantly in water (Fig. S2).

The periphery type has no effect on the energy profiles of rotation about
the C–C–O–C dihedrals (Fig. 26.6), since M(OH) features identical positions of
the extrema. The anti-gauche barrier remains about 2 kcal/mol and the transition to
the eclipsed stereoisomer costs∼2kcal/mol less compared to its analog in D(CH3).
The polar medium has practically no effect on the barrier heights which lower
slightly in water (Fig. S2). The comparatively low anti-gauche barriers indicate that
a minimal energy input can trigger interconversion between the two conformations.

The comparison of the averaged estimates of the rotational barriers (Table 26.6)
with experimental data (2.6 kcal/mol) for the dimethyl ether obtained from rota-
tional spectra [44] outlines the excellent consensus, which is a trustworthy validation
of the chosen theoretical approach.
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Table 26.6 Average torsion parameters for rotation around
the ether bond; V2 denotes the energy barrier for anti-gauche
transition and V3– the energy required for rotation from
gauche to eclipsed form

MP2/aug-cc-pVTZ

V2[kcal/mol] V3[kcal/mol]

Vacuum 2.464 13.467
Water 2.001 15.506
Exp. [44] 2.6 –

From molecular mechanistic point of view, the computed torsional profiles are
sufficiently invariant with respect to the molecular environment and could be utilized
for generation of torsional parameters for the rotation about the C-O bond in ethers.

26.4.3 Nonbonded Parameters: Electrostatic Interactions

Another important ingredient of the force field is the parametrized atomic charges
necessary for estimation of the electrostatic interactions. The mean RESP atomic
charges obtained from the multiconformational fit of the electrostatic potential of
the studied molecules in vacuum and in water are collected in Fig. 26.7.

The computed values of the atomic charges correspond fully to the qualitative
prognosis. The carbon atoms adjacent to ether and hydroxyl oxygen bear positive
charge, while those from the peripheral methyl groups are negative. Much higher
electron density is centered at oxygen atoms, the ether ones being less negative than
the hydroxyl.

The quantitative differences stem from different sources. The effect of the
water medium is expressed in the more pronounced polarization of M(CH3) and
depolarization of M(OH). For D(CH3) such correlation can not be outlined: in water
part of the molecule becomes more polarized whereas in the remaining fragment the
atomic charges of opposite sign tend to convergence. One reason for such behavior
might be the substantially different sizes of conformer sets used for atomic charges
fit in the two media.

The RESP charges which were implemented in the force field are provided in
Table S7.

With chain extension from monomer to dimer a surprising asymmetry in the
charges of the methylene carbons occurs. While the carbons in the –CH2– groups
closer to the chain ends retain values greater than 0.2, those of the inner carbons
decrease noticeably. Moreover, the carbon charges of two adjacent inner methylene
groups (D(CH3)) differ in magnitude, albeit not as much as the charges of an inner
and an outer C-atom in M(OH) do. This is evidence that the conformational diversity
has impact on the electrostatic potential in the core part of the dimers which is
reflected in their atomic charges.
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Fig. 26.7 RESP atomic charges of the non-hydrogen atoms obtained from fitting of the HF/6-
31G* electrostatic potential generated in vacuum (top) and in water (bottom)

Table 26.7 Mean values and standard deviations of the mass density, enthalpy of vaporization
(ΔHvap), enthalpy of solvation (ΔHsol), and molecular volume of diethyl ether obtained from MD
simulations with the two sets of parameters derived from PBE and MP2 quantum mechanical
calculations; experimental estimates [43, 45] are provided where available

Density
[g/cm3]

ΔHvap

[kJ/mol]

ΔHsol [kJ/mol] Molecular volume [Å
3
]

TIP3P TIP4P TIP3P TIP4P

MP2 0.717±0.035 20.07±1.25 −16.96±2.36 −19.78±1.89 162.98±5.01 151.38±2.07
PBE 0.716±0.034 20.18±0.46 −17.83±1.57 −21.97±2.51 167.71±0.62 154.81±1.84
Exp. 0.714 26 −26 148

26.5 Validation of the Derived Force Field Parameters

Table 26.7 contains the calculated and the experimental values of the characteristics
used for validation of the derived parameters.

26.5.1 Molecular Volume

The motivation in using NPT dynamics to calculate volume changes via this
approach is to mimic photo-thermal experiments that also determine molecular
volume changes on nanosecond timescales with similar precision [46, 47].



476 M. Velinova et al.

Fig. 26.8 Mass density of liquid diethyl ether as a function of the simulation time

The values in Table 26.7 show the obvious overestimation of the molecular
volume obtained with both parameter sets compared to the experimental quantity
[43], the MP2-based result being closer to the empirical one. A possible reason
for the overvalued volume may be the larger bond lengths employed as structural
parameters. Of the two water models utilized, TIP4P renders the better outcome.

26.5.2 Density

The time evolution of the density obtained from MD simulation is presented in
Fig. 26.8. The mean values resulting from the two parameter sets are 0.717 and
0.716g/cm3 for the MP2 and PBE derived sets, respectively, and are in excellent
agreement with the experimental measurement – 0.714g/cm3 [43].

Figure 26.8 and Table 26.7 show that the fluctuations of mass density during the
MD simulations are negligible which demonstrates the stability of the system and
the reliability of both parameter sets for the description of such models.

26.5.3 Torsion Angles – Population Analysis

Another exceedingly important validation step for emphatically flexible molecules
is to test whether steric parameters derived by averaging the characteristics
of a diverse conformational set are capable of reproducing the flexibility of species
from the studied series at the MD level. Due to the unusual behavior of the torsion
angles in this class of compounds (the pronounced gauche-effect), it is necessary to
generate the probability distribution of the parametrized dihedral angle C–O–C–C
and the symmetric C–C–O–C in the MD simulation of diethyl ether in liquid phase
in order to check the performance of the modified force field.
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Fig. 26.9 Probability distributions of the dihedrals C–O–C–C (left) and C–C–O–C (right) of
M(CH3) obtained from a 5 ns MD simulation

Comparing Figs. 26.5 and 26.9 one easily sees the similarity between the MD
statistics and the quantum mechanical calculations. In both approaches the anti-
orientation is the most populated with sizeable presence of gauche-bends. The
reproduction of the torsion angle distribution by the MD simulation supports the
applicability of the derived parameters.

26.5.4 Enthalpy of Vaporization

The enthalpy of vaporization of one molecule from the liquid could be calculated
according to the following expression [47]:

HVAP = EG−L +RT (26.2)

This equation is based on the assumption that the gas phase may be treated as
ideal gas and the volume of the liquid is negligible compared to that of the vapor.
EG−L represents the difference in the total energies of the gas (EG) and the liquid
(EL) phase. The estimate of EG is based on the MD non-periodic simulation of
one M(CH3) molecule in vacuum and the value of EL is extracted from the MD
simulation of the molecular liquid in periodic boundary conditions. The enthalpy
of vaporization results obtained with the two parameter sets derived with different
quantum mechanical methods (PBE and MP2) together with the experimentally
assessed value are presented in Table 26.7. The two theoretical estimates are
essentially identical. Comparison between theory and experiment is acceptable but
needs improvement. More satisfying results would provide probably simulations of
more realistic systems, e.g. the gas phase may be modeled more sophisticatedly.
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26.5.5 Enthalpy of Solvation

Using the Hess law, the enthalpy of solvation can be represented as:

ΔHSOL = ESYS− (EG +EWAT) (26.3)

In this expression ESYS is the total energy of the system built of one molecule diethyl
ether and sufficient water molecules to mimic a solution. Once again, two water
models are employed (TIP3P and TIP4P). The remaining terms in Eq. 26.3 are: EG–
average total energy (MD) of one molecule in vacuum; EWAT – mean total energy
(MD) from the simulation of the solvent without solute. The computational results
and the experimental value can be found in Table 26.7. As for the other estimates,
the PBE method and the TIP4P water model agree better with experiment.

26.6 Summary

This study comprises a theoretical investigation of all possible stable conformers
of two monomers and a dimer containing alkyl-bound ether fragments simulated
with two quantum chemical methods. Basic structural parameters, characteristic
vibrational frequencies and atomic electron density distribution are evaluated.
Rotation barriers about the ether bond are estimated. The mean values of these
quantities averaged over the entire conformer ensemble are supplemented to the
parameters of the molecular mechanics force field AMBER and tested by several
molecular dynamics simulations of one of the model systems – diethyl ether.

The good agreement of the parameters computed with the quantum mechanical
methods (MP2/aug-cc-pVTZ and PBE/aug-cc-pVTZ), compared both to each other
and to the available experimental data, indicate that the molecular geometry of ether-
group containing molecules, hence, their properties, have been described reliably
using quantum chemistry. The structural parameters and the vibrational frequencies
exhibit remarkable invariance to modification of the molecular medium allowing the
set of assessed descriptors to be used successfully for molecular mechanics ether
fragment parametrization in alkyl tail oligoethers.

Analysis of the obtained RESP charges shows that the charge set generated for
the dimer should be used for simulation of longer oligomers. Moreover, the values
generated in vacuum would be more adequate for implementation in AMBER,
since the additional effects of polarization/depolarization should be accounted for
by means of direct interactions with the explicit solvent molecules the charges of
which are also based on gas phase calculations

The tests of the two sets of MP2- and PBE-derived parameters validate their
applicability for simulation of systems from the class of CxEy as they reproduce
with satisfactory accuracy the basic thermodynamic characteristics of the model
molecules.
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Chapter 27
Anti-adiabatic State: Ground Electronic State of
Superconductors

Pavol Baňacký

Abstract Based on the non-adiabatic ab initio theory of complex electronic ground
states, treating electronic structure as explicitly dependent on nuclear dynamics,
i.e. on instantaneous nuclear coordinates Q and momenta P, it has been shown
that electron-phonon coupling in superconductors induces temperature-dependent
electronic structure instability related to analytic critical point (ACP) fluctuation of
bands across the Fermi level (FL). As ACP approaches FL, the adiabatic chemical
potential μad is substantially reduced to μantad(μad � μantad < h̄ω) and the
adiabatic Born-Oppenheimer approximation is violated. Due to the effect of nuclear
dynamics, the system is stabilized as an antiadiabatic state of broken symmetry with
a gap in its one-particle spectrum. Distorted nuclear structure, which is related to nu-
clei in the phonon mode r inducing transition to an anti-adiabatic state, has fluxional
character. Geometric degeneracy of the antiadiabatic ground state enables formation
of mobile bipolarons that can move over lattice in external electric potential as
super-carriers without dissipation. Thermodynamic properties in the anti-adiabatic
state correspond to thermodynamics of superconductors. It has been shown that
Cooper-pair formation is not the primary reason for transition into superconducting
state, but it is a consequence of anti-adiabatic state formation and represents correc-
tion to electron correlation energy. As illustrative examples, results of application of
anti-adiabatic theory in study of superconductors MgB2, YB6, YBa2Cu3O7, Nb3Ge
and corresponding (non superconducting) analogues are presented.
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27.1 Introductory Remarks to Theory of Superconductivity

Superconductivity, an amazing physical phenomenon was discovered nearly
100 years ago by Kamerlingh Onnes [1]. In spite of enormous attention which
has been paid to this effect over a century, the microscopic mechanism of
superconducting state transition remains unclear and represents an open challenge
for theory.

Until the discovery of high-temperature superconductivity of cuprates by
Bednorz and Muller in 1986 [2] and synthesis of first 90 K superconductor [3]
in 1987, understanding of microscopic mechanism of superconducting (SC) state
transition formulated within the BCS theory in 1957 [4] was generally accepted
as a firm theoretical basis behind the physics of this phenomenon. The idea of
Cooper-pair formation, i.e. formation of boson-like particles in momentum space,
which are stable in a thin layer above the Fermi level and drive the system into more
stable – superconducting state, is crucial in this case. Sufficient condition of pair
formation is a weak, but attractive interaction between electrons. The possibility
of effective attractive electron-electron (e-e) interactions was derived by Fröhlich
[5, 6] as a consequence of electron-phonon (e-p) interactions.

The range of validity of the BCS theory for e-p interactions has been specified
by Migdal [7] and Eliashberg [8]. It can be interpreted as Migdal’s theorem and
Eliashberg’s restriction (ME approximation). The first is related to the validity of
the condition ωλ/EF� 1 and the latter restricts the validity only for λ ≤ 1, where
λ is e-p coupling strength and ω and EF are characteristic phonon and electron
energy scales, respectively. Expressed explicitly, BCS-like theories are valid only
for adiabatic systems that obey the adiabatic Born–Oppenheimer approximation
(BOA), ω/EF� 1.

For conventional (low-temperature) superconductors, the BCS theory within
the ME approximation (i.e. weak coupling regime) is an excellent extension of
standard metal theory. In order to interpret high critical temperature and ensure pair
condensation in case of high-temperature cuprates, other interaction mechanisms
besides e-p interactions have been advocated (see e.g. [9–11]). Since copper, a
transition metal with a partly-filled d-shell when chemically bound, is a central atom
of high-Tc cuprates (formal charge +2 is usually considered), it is quite natural that
attention has been focused on strong electron correlations (in standard Coulomb –
repulsive e-e interactions), magnetic interactions and/or spin fluctuation effects.
At present, the effect of Coulomb repulsion is usually incorporated via Coulomb
pseudopotential μ∗ and critical temperature is calculated according to the McMillan
formula [12].

The e-p interactions, taken as responsible for electron pairing, driving transition
into a superconducting state for classical low-Tc superconductors, have almost been
abandoned and considered inappropriate to high-Tc cuprates [see e.g. 10]. Some
aspects of d – wave superconductivity can be described by strongly correlated
electron models e.g. Hubbard – like or t – J models (e.g. [9, 13–16]), even without
explicit e-p interactions. The underlying leitmotiv in electron correlation treatments
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is understanding the phase diagram of high-Tc cuprates, i.e. the doping process.
Introduction of charge carriers (holes or electrons) into the parent anti-feromagnetic
insulator that causes transition to superconductor (or metal) has been generally
accepted to be a universal feature of high-Tc cuprates and believed to be intimately
related to superconductivity mechanisms. Bell-like shaped dependence of Tc on
hole doping in the doping range 0.05 ≤ x < 0.27 for family of high-Tc cuprates
is well known (see e.g. [17] and references therein). With the exception of YBCO
(x = 0.05), the optimal hole doping with maximal Tc is x ≈ 0.16. The electron
doping is usually less favorable, but either hole or electron doping can induce
superconductivity.

Doubtless, charge doping has perceptible impact on e-e interactions and in-
fluences, to some extent, subtler spin interactions. An open question is if these
interactions represent the key factor behind the physics leading to a superconducting
state transition upon doping? One must thus realize that like Tc, the lattice
parameters and, very importantly, lattice dynamics is strongly influenced by doping.
For instance, dependence of Tc on lattice parameter a in case of Hg-based cuprates
follows similar dependence as Tc on hole doping [18]. Although the isotope effect
coefficient α for optimally doped cuprates is tiny (i.e. α ≈ 0.05, an exception is
optimally doped YBCO with α ≈ 0.8), doping in underdoped as well in overdoped
regions for O-isotope effect throughout the cuprate family results in huge changes
of isotope effect coefficient α, (e.g. α ≈ 1 for underdoped LSCO) [17–19]. It is
important experimental evidence that doping induces major changes in lattice
dynamics, in particular for CuO2 layers. It implies both electron and nuclear degrees
of freedom are involved which guides theory.

The results of high-resolution ARPES [20,21] of a large family of different high-
Tc cuprates show that besides doping, an abrupt decrease in electron velocity near
Fermi level, at about 50–80 meV in nodal direction, is the other feature common
to high-Tc cuprates. The kink in nodal direction is temperature independent. More
importantly for microscopic theory of superconductivity, seems to be the formation
of a temperature-dependent kink on the momentum distribution curve (dispersion
renormalization) close to Fermi level (∼ 60meV) in off-nodal direction at transition
to superconducting state. It has been reported for Bi2212 [22–25]. Recently,
presence of the kink in off-nodal direction has been observed at VUV ARPES study
with sub-meV resolution of optimally doped untwined YBCO in superconducting
state [26].

Formation of the off-nodal kink, has been ascribed by the authors [22] to coupling
of electrons to bosonic excitations, preferably they consider a magnetic resonance
mode such as observed in some inelastic neutron scattering experiments. The incon-
sistency in this interpretation has been pointed by Z-X. Shen and coworkers [23,25].
The main arguments are [25]: (a) magnetic resonance has not yet been observed by
neutron scattering in such heavily doped cuprates, and (b) magnetic resonance has
little spectral weight and may be too weak to cause the effect seen by ARPES.
They agree, however, with the authors [22] that the renormalization effect seen by
ARPES in cuprates may indeed be related directly to the microscopic mechanism
of superconductivity. The authors [23, 25], instead of magnetic resonance mode,
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ascribe dispersion renormalization to coupling with phonon mode, in particular
with B1g-buckling mode of CuO2 plane. The temperature dependence of dispersion
renormalization they attribute to the DOS enhancement due to SC-gap opening and
to the thermal broadening of the phonon self-energy in normal state.

These results along with those of neutron scattering [27, 28] indicate that for
high-Tc cuprates the e-p coupling has to be considered as a crucial element of
microscopic mechanism of SC state transition. For cuprates, the role of phonons
at superconducting state transition must not be overlooked. As soon as a low-
Fermi energy situation occurs (ω ≤ EF ) one can expect major contribution of
non-adiabatic vertex corrections at the SC state transition. It is beyond the standard
ME approximation and this problem has been studied within the non-adiabatic
theory of superconductivity [29a, b, c]. On the other hand, as the ARPES results
indicate, electron kinetic energy is decreased and proper treatment of e-e Coulomb
interactions is essential. The competition between Coulomb vs. e-p interactions
has been intensively studied within the Holstein – Hubbard models [30–34] as
both interactions are short-range. The results are unsatisfactory, since heavy-mass
polarons are formed that yield low values of Tc. It has been improved within
the Frohlich – Coulomb model [35] that introduces long-range repulsion between
charge-carriers and also long-range e-p interactions. The results show that there
is a narrow window of parameters of Coulomb repulsion Vc and e-p interactions
EP(Vc/EP), resulting in the light-mass bipolaron formation. In this case, using
bipolaron theory of superconductivity [36 a,b,c] their coherent motion represents
supercarriers and high Tc may result.

McMillan’s formula (a very good approximation for Tc of elementary metals
and their alloys [37]), is often used for calculation of critical temperature of high-Tc

superconductors within the BCS-generic framework. It has been shown [38] that
in the strong-coupling regime λ � 1, Tc can be as large as kBTc = h̄ωλ 1/2/2π.
However, there is problem with correct estimation of the Coulomb pseudopotential
μ∗ and with unrealistically large values of λ that would match high experimental
Tc of novel superconductors. It has to be stressed, however, that strong coupling
regime λ > 1 violates adiabatic condition ω/EF � 1 of the ME approximation,
which is behind the derivation of the McMillan formula.

Moreover, new classes of superconductor, e.g. cuprates, fullerides and MgB2 are
systems that are rather pseudo-adiabatic with a high adiabatic ratio ω/EF < 1 [39],
in contrast to elementary metals where adiabatic condition ω/EF � 1 is satisfied.
This situation indicates the role of non-adiabatic contributions at calculation of e-p
interactions within the BOA, an effect that is beyond the standard ME approach.
As mentioned above, formulation of the nonadiabatic theory of superconductivity by
Pietronero and coworkers [29a, b, c, 40a, b], which accounts for vertex corrections
and cross phonon scattering (beyond ME approximation), has solved this nontrivial
problem by generalization of Eliashberg equations. The theory, which is non-
perturbative in λ and perturbative in λ ωD/EF , has been applied to simulation and
interpretation of different aspects of high-Tc superconductivity [41 a– e] . Basically,
it accounts for non-adiabatic effects in a quasi-adiabatic state ω/EF ≤ 1 and is able
to simulate various properties of high-Tc superconductors, including high-values of



27 Anti-adiabatic State: Ground Electronic State of Superconductors 485

Tc, already for moderate e-p coupling, λ ≈ 1. Moreover, it has also been shown
that increased electron correlation is an important factor which makes corrections
to vertex function positive, which is crucial for increasing Tc.

Nonetheless, sophisticated treatment of high-Tc superconductivity within the
non-adiabatic theory faces serious problem related to possibility of polaron collapse
of the band and bipolaron formation. According to bipolaron theory of Alexandrov
[36a–c, 39, 42–44], polaron collapse occurs already at λ ≈ 0.5 for uncorrelated
polarons and even at a smaller value for a bare e-p coupling in strongly correlated
systems. For ω/EF ≤ 1, or λ ≥ 1 and for ω/EF ≥ 1 at any small value λ << 1, the
nonadiabatic polaron theory has been shown to be basically exact [44]. Bipolarons
can be simultaneously small and light in a suitable range of Coulomb repulsion
and e-p interaction [45]. These results have important physical consequences. There
are serious arguments that effect of polaron collapse cannot be covered through
calculation of vertex corrections due to translation symmetry breaking and mainly,
polaron collapse changes possible mechanism of pair formation, i.e. instead of BCS
scenario with Cooper pair formation in momentum space, the BEC with mobile
bipolarons (charged bosons) in real space becomes operative.

Discovery of superconductivity in a simple compound MgB2 at 40 K [46] has
been very surprising and has started a new revitalization of superconductivity
research in 2001. Besides the many interesting aspects, discovery of MgB2 super-
conductivity is crucial for general theoretical understanding of SC state transition
on microscopic level. It is related to band structure (BS) fluctuation and dramatic
changes of BS topology due to e-p coupling.

The σ bands split by coupling to E2g mode in MgB2 has been reported [47]
already in 2001 but, with exception of possible impact of anharmonicity [48], no
special attention has been paid to this effect. Superconductivity in MgB2 has been
straightforwardly interpreted [49] shortly after the discovery as a standard BCS-
like, even of intermediate-strong coupling physics. For clumped nuclear equilibrium
geometry, the BS is of adiabatic metal-like character. The Eσ

F of σ band electrons
(chemical potential μ) is relatively small,≈0.4eV, but still large enough comparing
to vibration energy of E2g phonon mode (ω2g ≈ 0.07eV). Though the adiabatic
ratio ω/EF ≈ 0.15 is sizable, it is small enough to interpret superconductivity
within the adiabatic BCS-generic framework. It is supposed that nonadiabatic
effects, anharmonic contributions and/or Coulomb interactions within generalized
Eliashberg approach should be important in this case, however. On the other hand,
the value of e-p coupling, λ ≈ 0.7, indicates that polaron collapse can be expected
and superconductivity should be of nonadiabatic bipolaron character rather than the
BCS-like.

Nevertheless, things are even more complicated. It has been shown [50, 51] that
the analytic critical point (ACP – maximum, minimum or saddle point of dispersion,
in case of MgB2 it is maximum) of the σ band at Γ point crosses Fermi level (FL) at
vibration displacement ≈0.016A◦/B-atom, i.e. with amplitude ≈0.032A◦, which
is smaller than root-mean square (rms) displacement (≈0.036A◦) for zero-point
vibration energy in E2g mode. Thus, in vibrations when ACP approaches FL for
distances less than ±ω, the adiabatic Born-Oppenheimer approximation (BOA) is
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not valid. Here, the Fermi energy (Eσ
F -chemical potential μ) of σ band electrons

close to the Γ point is less than E2g mode vibration energy Eσ
F < ω2g. When the

ACP of the band touches Fermi level, the Fermi energy is basically reduced to zero,
Eσ

F → 0.
Moreover, shift of the ACP substantially increases the density of states (DOS)

at FL, nσ (EF) = (∂ε0
σ/∂k)−1

EF
, and induces corresponding decrease of effec-

tive electron velocity (∂ε0
σ/∂k)EF of fluctuating band in this region of k-space.

Physically, it represents the system transition from adiabatic ω ≤ EF to a truly
non-adiabatic ω > EF , or even to a strongly anti-adiabatic state with ω � EF .
This effect has crucial theoretical impact. Not only is the ME approximation not
valid (impossible to calculate non-adiabatic vertex corrections which represent off-
diagonal corrections to the adiabatic ground state), but the adiabatic BOA itself does
not hold.

The BOA is a crucial approximation of theoretical molecular as well as of solid
state physics. It facilitates many-body problems.

In the BOA, the motion of the electrons is a function of the instantaneous
nuclear coordinates Q, but is independent of the instantaneous nuclear momenta P.
Usually, and in solid state physics basically always, only parametric dependence
is considered – i.e. nuclear coordinates are just parameters to solve electronic
problems within the clamped nuclei Hamiltonian. Nuclear coordinate-dependence,
when explicitly treated, modifies nuclear potential energy by diagonal BO correction
(DBOC) that reflects an influence of small nuclear displacements from equilibrium
positions and corrects the electronic energy for clamped nuclei. The DBOC enters
the potential energy term of nuclear motion (conserving nuclear kinetic energy term)
and hence modifies vibration frequencies. The off-diagonal terms of the nuclear part
of system Hamiltonian that mix electronic and nuclear motion through the nuclear
kinetic energy operator term are neglected and it enables independent diagonal-
ization of electronic and nuclear motion (adiabatic approximation). Neglecting the
off-diagonal terms is justified only if these are very small, i.e. if the energy scales
of electron and nuclear motion are very different and when adiabatic condition
holds, i.e. ω/E� 1. If necessary, small contribution of the off-diagonal terms can
be calculated by perturbation methods as so called nonadiabatic correction to the
adiabatic ground state.

Superconductors seem to be substantially different, at least in the case of MgB2.
There is considerable reduction of electron kinetic energy, which for antiadiabatic
state results even for dominance of nuclear dynamics (ω >> EF ) in part of k-space.
In such a case, it is necessary to study electronic motion as explicitly dependent on
the operators of instantaneous nuclear coordinates Q as well as on the operators of
instantaneous nuclear momenta P. It is a new aspect for many-body theory.

The electronic theory of solids has been developed assuming the adiabatic BOA.
Thus naturally different theoretical – microscopic treatments of superconductivity
based on model Hamiltonians, which focus on one or the other type of interaction
mechanism, implicitly assume validity of the BOA and it is very seldom that
possible BOA breakdown at transition to SC state is raised. The “nonadiabatic”
effects in relation to electronic structure is commonly used for contributions of
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the off-diagonal matrix elements of interaction Hamiltonian (e.g. e-p coupling,
e-e correlations,..) to the adiabatic ground state electronic energy calculated in
second and higher orders of perturbation theory and excludes the true nonadiabatic –
antiadiabatic situation, ω > EF .

In this connection, a lot of important questions arise, e.g.:

• How to treat the antiadiabatic state?
• Can a system be stable in an antiadiabatic state?
• Are the physical properties of the system in antiadiabatic state different from

those in an adiabatic state?
• What is the driving force for adiabatic ↔ antiadiabatic state transition, i.e.

which type of interaction mechanism triggers this type of transition and what
are necessary conditions?

• How relevant is the adiabatic ↔ antiadiabatic state transition for SC state
transition in MgB2?

• Is the adiabatic ↔ antiadiabatic state transition an accidental effect at SC state
transition which is present only in MgB2, or an inherent physical mechanism in
other superconductors?

• Is the adiabatic↔ antiadiabatic state transition relevant for high, as well as for
low-temperature superconductors?

• Phonons or strong electron correlations?
• What is the condensate nature – Cooper pairs or bipolarons?
• Is there any relation of the adiabatic ↔ antiadiabatic state transition to Cooper

pairs formation?
• Cooper pairs or correction to electron correlation energy?

Theoretical aspects related to the above problems have been elaborated and
discussed in detail in the “Ab initio theory of complex electronic ground state
of superconductors”, published recently [52a, b]. The main theoretical point is a
generalization of the BOA by sequence of canonical – base function transforma-
tions. This formalism is equivalent to our original one, based on quasi-particle
transformation treatment [53]. The final electronic wave function is explicitly
dependent on nuclear coordinates Q and nuclear momenta P. Emerging new quasi-
particles, i.e. nonadiabatic fermions, are explicitly dependent on nuclear dynamics.
As a result, the effect of nuclear dynamics can be calculated as corrections to the
clamped nuclei ground state electronic energy, the one-particle spectrum and the
two-particle term, i.e. to the electron correlation energy1.

1To avoid confusion, it should be stressed that telectron correlation energy as used in this paper
stands for improvement of e-e interaction term contribution beyond the Hartree-Fock (HF) level,
Ecorr = Eexact −EHF(Eexact < EHF), as it can be calculated e.g. by (1/r)-perturbation theory in 2nd

and higher orders, or by configurations interaction method. In condensed matter physics, electron
correlation usually stands for an account for Coulomb e-e interaction at least on Hartree or HF
level. On the HF level not only repulsive e-e term is present (like on Hartree level where spin
is not considered at all), but also exchange term (fermion Coulomb-hole only for electrons with
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It has been shown that due to e-p interactions, which drive the system from
an adiabatic to antiadiabatic state, adiabatic symmetry is broken and system is
stabilized in the antiadiabatic state at distorted geometry with respect to the adiabatic
equilibrium high symmetry structure. Stabilization is due to participation of nuclear
kinetic energy term, i.e. nuclear dynamics (P-dependence) which is absent in
the adiabatic state within the BOA. The antiadiabatic ground state at distorted
geometry is geometrically degenerate with fluxional nuclear configuration in the
phonon modes that drive the system into this state. It has been shown that as
long as it remains in an antiadiabatic state, nonadiabatic polaron – renormalized
phonon interactions are zero in well defined k-region of reciprocal space. Along
with geometric degeneracy of the antiadiabatic state it enables formation of mobile
bipolarons (as polarized inter-site charge density distribution) that can move over
lattice in external electric potential as super-carriers without dissipation. Moreover,
it has been shown that due to e-p interactions at transition into antiadiabatic
state, k-dependent gap in one-electron spectrum has been opened. Gap opening
is related to the shift of the original adiabatic Hartree-Fock orbital energies
and to the k-dependent change of density of states of particular band(s) at the
Fermi level. The shift of orbital energies determines the one-particle spectrum
uniquely (also thermodynamic properties). It has been shown that the resulting one-
particle spectrum yields all thermodynamic properties that are characteristic of the
superconducting state, i.e. temperature dependence of the gap, specific heat, entropy,
free energy and critical magnetic field. The k-dependent change of the density of
states at the Fermi level in transition from adiabatic (non-superconductive) into
antiadiabatic state (superconductive) can be experimentally verified by ARPES or
tunneling spectroscopy (spectral weight transfer at cooling superconductor from
above Tc down to temperatures below Tc).

Results of the ab initio theory of the antiadiabatic state have shown that the
Fröhlich’s effective attractive e-e interaction term represents correction to electron
correlation energy in transition from adiabatic into antiadiabatic state due to e-p
interactions. Analysis of this term has shown that increased electron correlation is
a consequence of stabilization of the system in superconducting electronic ground
state, but not the reason of its formation.

In the present article, the key points of the antiadiabatic theory are demonstrated
at study of real superconductive compounds (MgB2, YB6, YBa2Cu3O7, Nb3Ge)
and the crucial antiadiabatic effects are shown to be absent in corresponding non-
superconductive structural analogues (AlB2, CaB6, YBa2Cu3O6, Nb3Sb). An in-
terested reader can find details of the theory in [52a, b, 53] or in recent review
paper [54].

parallel spins). Correlation energy improves unbalanced treatment of e-e interaction for electrons
with parallel and antiparalel spins on HF level.
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27.2 Electronic Structure Instability – Transition
to the Antiadiabatic State

27.2.1 Preliminaries

Crystal structures of the studied compounds are different. The MgB2 crystallizes in
hexagonal structure (hP3, P6mmm, #191; AlB2 ω-type) – Fig. 27.1a. Cubic structure
(cP7, Pm3m, #221- CaB6 type) is characteristic for YB6 – Fig. 27.1b. The family of
high-temperature cuprate superconductors is represented by YBCO (YBa2Cu3O7)
with orthorhombic structure (oP14, Pmmm, #47, chain oxygen is in b-direction
and vacancy in a-direction) – Fig. 27.1c. The family of classical low-temperature
superconductors represents Nb3Ge – superconductor with the highest Tc of this class
of materials (A15 compounds – cP8, Pm3n, #223- Cr3Si type) – Fig. 27.1d.

The band structures have been calculated by a computer code; Solid 2000.
The code is based on the Hartree-Fock SCF method for infinite 3D-periodic cyclic
cluster [55] with the quasi-relativistic INDO Hamiltonian [56]. Based on the results

Fig. 27.1 Crystallographic cells of (a) MgB2, (b) YB6, (c) YBa2Cu3O7 and (d) Nb3Ge with
arrows indicating Nb atom vibration in Γ1,2 phonon mode
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of atomic Dirac-Fock calculations [57], the INDO version used in the SOLID
package is parameterized for nearly all elements of the Periodic table of the
elements. Incorporating the INDO Hamiltonian into the cyclic cluster method (with
Born-von Karman boundary conditions) for electronic band structure calculations
has many advantages and some drawbacks as well. The method is inconvenient for
strong ionic crystals but it yields good results for intermediate ionic and covalent
systems. The main disadvantage is overestimation of the total bandwidth. On the
other hand, it yields satisfactory results for properties related to electrons at the
Fermi level (frontier-orbital properties) and for equilibrium geometries [58–60].

In practical calculations, the basic cluster of the dimension (Na ×Nb ×Nc),
is generated by corresponding translations of the unit cell in the directions of
crystallographic axes, a (Na), b (Nb), c (Nc). On the basic cluster, the Born-von
Karman boundary conditions are imposed and an “infinite” – 3D-periodic cyclic
cluster structure is generated in calculation of matrix elements. In particular, the
band structure calculations have been performed for the basic clusters 11× 11× 7
for MgB2, 9×9×9 for YB6, 5×5×5 for YBa2Cu3O7 and 11×11×11 for Nb3Ge.
The scaling parameter 1.2 (1.0 for Nb3Ge) has been used in calculations of the one-
electron off-diagonal two-center matrix elements of the Hamiltonian (β-“hopping”
integrals). The basic cluster of a given size generates a grid of (Na×Nb×Nc) points
in k-space. The HF-SCF procedure is performed for each k-point of the grid with the
INDO Hamiltonian matrix elements that obey the boundary conditions of the cyclic
cluster [55]. The Pyykko-Lohr quasi-relativistic basis set of the valence electron
atomic orbitals (s,p-AO for Mg, B, Ba, O, Ge and s, p, d-AO for Cu, Y, Nb) has been
used. The number of STO-type functions is unambiguously determined by that of
valence AOs in atoms comprising the basic cluster. In general, the precision of the
results of band structure calculation increases with increasing dimension of the basic
cluster. It has been shown [55, 58–60], however, that there is an effect of saturation,
a bulk limit beyond which the effect of increasing dimension on e.g. total electronic
energy, orbital energies, HOMO-LUMO difference. . . , is negligible. In practice,
the dimension of the basic cluster and parameter selection (e.g. for calculation
of β integrals) is a matter of compromise between computational efficiency and
convergence of calculated electronic properties and equilibrium geometry to some
reference or experimental data. Note, however, that the basic efficiency and accuracy
are restricted by the INDO parameterization.

27.2.2 Band Structures

In Fig. 27.2a, c, e, g(figures: left), are band structures (BS) of the studied compounds
at equilibrium geometries. All the band structures are of adiabatic metal-like
character with a relatively low density of states at the FL (indicated by a dashed
line). Coupling to the respective phonon mode(s) in particular compounds seem-
ingly does not change the metal-like character of BS. In all cases, however,
e-p coupling induces BS fluctuation (see the pictures on the right), which is
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Fig. 27.2 Band structures of MgB2 (a, b), YB6 (c, d), YBa2Cu3O7 (e, f), Nb3Ge (g, h). Pictures
on the left (a, c, e, g,) correspond to equilibrium high-symmetry structures. On the right: band
structures (b, d, f, h) at distorted geometry with atom displacements in the respective phonon
modes

characteristic by fluctuation of the analytic critical point (ACP) of some band across
FL (cf. a-b, c-d, e-f, g-h).

In particular, for MgB2 coupling to the E2g phonon mode (in-plane stretching
vibration of B-B) results in splitting of σ bands (px, py electrons of B atoms in
a-b plane) in Γ point of the first Brillouin zone (BZ) – Fig. 27.2b. Related to band
topology, the analytic critical point (ACP, maximum) of σ bands islocated at the
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Γ point and, for a displacement ≈0.016A◦/B-atom out of equilibrium position,
the ACP crosses FL. This means periodic fluctuation of the BS between topologies
2a↔ 2b in coupling to vibration in the E2g mode.

The situation is similar for YB6. In this case, BS fluctuation is related to the T2g

mode (valence vibration of B atoms in the basal a-b plane of B-octahedron). At the
displacement ≈0.017 A◦/B-atom out of equilibrium position, the ACP (saddle
point) of the band with dominance of B-p and Y-d electrons crosses FL in the M
point and the BS fluctuates between topologies 2c↔ 2d.

In the case of YBa2Cu3O7, the BS fluctuation is associated with coupling to
three modes, Ag, B2g, B3g, with the apical O(4) and CuO-plane O(2), O(3) atom
displacements. At displacements ≈0.031A◦ of apical O(4) in the Ag mode and
≈0.022A◦ of O(2) and O(3) in the B2g, B3g modes, the ACP (saddle point) of
one of the Cu-O plane (d-pσ) band in Y point crosses FL and undergoes periodic
fluctuation between topologies 2e↔ 2f.

The situation for Nb3Ge is presented in Fig. 27.2g, h. Coupling to Γ12 phonon
mode (out-of phase vibration of Nb atoms in two perpendicular chains – see
Fig. 27.1d, displacement ≈0.025A◦/Nb atom) induces fluctuation of ACP (max-
imum) of Nb(dx2−y2 ,dz2)-bands at the R point across the FL, cf. the topology
2g↔ 2h.

In all cases presented in Fig. 27.2a–h, showing superconducting compounds, the
band ACP crosses FL at a displacement which is less than the root-mean square
(rms) displacement for zero-point vibration energy in respective phonon mode. This
means, however, that in vibrations where the ACP approaches FL at a distance less
than ±ω, the Fermi energy EF (chemical potential μ) of the electrons in the band
close to the point where ACP crosses FL is less than the vibration energy of the
corresponding phonon mode, EF < ω. In these circumstances the adiabatic BOA is
not valid and standard adiabatic theories cannot be applied. Moreover, shift of the
ACP much increases the density of states (DOS) at FL, nσ (EF) = (∂ε0

σ/∂k)−1
EF

, and
induces a corresponding decrease in the effective electron velocity (∂ε0

σ/∂k)EF of
the fluctuating band in this region of k-space. Under these circumstances, the system
is in the intrinsic nonadiabatic state, or even in the antiadiabatic state, EF � ω, and
electronic motion depends on nuclear coordinates Q and is influenced by nuclear
dynamics – momenta P.

Instability of the electronic structure at e-p coupling is absent in respective non-
superconductive analogues, such as XB2 (X ≡ Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta,
Cr, Mo, W, Mn,..), CaB6, YBa2Cu3O6 and Nb3Sb. As an illustration, in Fig. 27.3
are band structures of these compounds at equilibrium high-symmetry structure
(Fig. 27.3a, c, e, g) and at distorted geometry (Fig. 27.3b, d, f, h) with the same
displacements in respective phonon modes as those in the case of corresponding
superconductors at the transition in the antiadiabatic state.

In spite that for XB2 compounds; coupling to the E2g mode induces splitting of
σ bands in the Γ point, the systems remain stable in the adiabatic state. For these
systems, the ACP of the σ band does not fluctuate across FL. In Fig. 27.3 are band
structures of AlB2 at equilibrium high-symmetry structure (3a) and at distorted
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Fig. 27.3 Band structure of AlB2, CaB6, YBa2Cu3O6, and Nb3Sb at equilibrium geometry (a, c,
e, g) and at distorted geometry (b, d, f, h)

geometry (3b) with the same B-atom displacements in the E2g phonon mode as in the
case of MgB2 in transition to a superconducting state. In spite of σ bands splitting
and nearly the same value of the e-p interaction strength (the calculated mean value
is ū ≈ 1.01 eV/u.cell) as that of MgB2 (ū ≈ 0.98 eV/u.cell), AlB2 remains in e-p
coupling in the adiabatic state as a non-superconductive compound. In this case, BS
fluctuation (bands splitting in e-p coupling) does not decrease chemical potential.
It remains in e-p coupling still larger than the vibration energy (μad > h̄ω) and,
consequently, there is no driving force for transition into the antiadiabatic state.
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In the case of deoxygenated YBCO that is without the chain oxygen
[61] – YBa2Cu3O6 (in contrast to the superconducting YBa2Cu3O7) a combination
of electron coupling to the Ag, B2g and B3g phonon modes leaves band structure
without substantial change (Fig. 27.3e–f). In the case of YBa2Cu3O7, the ACP
(SP-saddle point) at Y point fluctuates across FL (see Fig. 27.2e–f), which yields
substantial reduction of chemical potential→ μantiad < h̄ω . For YBa2Cu3O6 the SP
does not fluctuate across FL and chemical potential remains larger than the phonon
energy spectrum, μad > h̄ω , and the system remains in the adiabatic state.

The CaB6 is an insulator and coupling to the T2g mode does not change this
property – BS topology remains at e-p coupling without change (Fig. 27.3c–d).

The alloy Nb3Sb of A15 class is non superconductive [62]. Metal-like character
of Nb3Sb and topology of BS remains without significant change at e-p coupling to
Γ12 phonon mode of Nb atoms vibration –Fig. 27.3g, h.

27.2.3 Nonadiabatic Effects Induced by Transition
into Antiadiabatic State

27.2.3.1 Formation of Antiadiabatic Ground State and Gap Opening

The main part of the effect of nuclear kinetic energy on electronic motion can be
derived as diagonal correction by sequential Q,P-dependent base transformations
[52] (or quasi-particle transformation [53]). This is a generalization of adiabatic
Q-dependent transformation which yields the well-known adiabatic diagonal BO
correction (DBOC) [63, 64]. Due to diagonal approximation with factorized form
of total wave function, Ψ0(r,Q,P) = Φ0(r,Q,P).X0(Q,P), the standard clamped
nuclear Hamiltonian treatment can be used and the Q,P-effect is calculated in
the form of corrections to the electronic ground-state energy (zero-particle term
correction), corrections to orbital energies (one-particle term corrections) and two-
particle term corrections (correction to the electron correlation energy).

The correction to the electronic ground-state energy in the k-space representation
due to interaction of pair of states mediated by the phonon mode r can be written
as [52–54],

ΔE0
(na) = 2 ∑

ϕRk

∑
ϕSk′

εk′,max∫
0

nεk′ (1− fε0k′)dε0
k′

εkmax∫
εk,min

fε0k

∣∣ur
k−k′

∣∣2nεk

h̄ωr(
ε0

k − ε0
k′
)2− (h̄ωr)

2
dε0

k ,ϕRk = ϕSk′ (27.1)

In general, all bands of 1st BZ of multiband system are covered. Coupling is of
inter-band character, while ε0

k < εF ; ε0
k′ > εF .
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Fig. 27.4 Calculated dispersion of d-pσ band in ΓY direction with the kink formation indicated
by the arrow (a) and increase of the d-pσ band DOS when ACP approaches FL (b) for YBa2Cu3O7

Fermi-Dirac populations fε0k, fε0k′ make correction (27.1) temperature-
dependent. Term ur

k−k′ stands for matrix element of e-p coupling and nεk,nεk,

are DOS of interacting bands at ε0
k′ and ε0

k . For adiabatic systems, such as metals,
this correction is positive and negligibly small (DBOC). Only for systems in the
antiadiabatic state the correction is negative and its absolute value depends on
the magnitudes of ur

k−k′ and nεk,nεk, at displacement for FL crossing. At the
moment when ACP approach FL, the system not only undergoes transition to the
antiadiabatic state but DOS of the fluctuating band is considerably increased at FL.

For all the studied systems at 0 K, the ΔE0
(na) (which covers the effect of

nuclear momenta) prevails in absolute value the electronic energy increase
ΔEcr = Ed,cr−Eeq at nuclear displacements Rd,cr when ACP crosses FL as
calculated for clumped nuclear adiabatic structures. For instance in case of
YBa2Cu3O7, calculated [65] increase at Rd,cr is ΔEcr = +170meV/unitcell,
but correction to the total energy due to e-p coupling in antiadiabatic state is
ΔE0

(na) = −204meV/unitcell. The net effect of symmetry lowering (distortion)
is the fermionic ground state energy stabilization. It means that due to effective
nonadiabatic e-p coupling, the distorted structure for the specified displacements is
by (−204+ 170) = −34meV/unitcell more stable than undistorted – equilibrium
structure on the BOA level. Under these circumstances, the system is stabilized in
the antiadiabatic electronic ground state at broken symmetry with respect to the
adiabatic equilibrium high-symmetry structure.

It can be identified by ARPES as a kink formation in the momentum distribution
curve at FL, i.e. as band curvature at ACP when approaching FL – see the calculated
results for YBa2Cu3O7, (Fig. 27.4).

Due to translation symmetry of the lattice, the resulting antiadiabatic electronic
ground state is degenerate when distorted, with a fluxional nuclear configuration
in a given phonon mode(s) – see, e.g., Fig. 2 in Ref [50], or Fig. 27.6 below.
The ground state energy is the same for different positions of the atoms involved
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(in phonon modes which drive the system into this state) in motion over circumfer-
ences of flux circles with radii equal to characteristic displacements ΔRcr =
|Req−Rd,cr| for FL crossing.

In transition to the antiadiabatic state, k-dependent gap Δk(T ) in quasi-continuum
of adiabatic one-electron spectrum is opened. The gap opening is related to shift
ΔεPk of the original adiabatic orbital energies ε0

Pk, εPk = ε0
Pk + ΔεPk, and to the

k-dependent change of DOS of particular band(s) at Fermi level. Shifts of orbital
energies in band ϕP(k) has the form [52–54],

Δε(Pk′) = ∑
Rk′1>kF

∣∣∣uk′−k′1
∣∣∣2(1− fε0k′1

) h̄ωk′−k′1(
ε0

k′ − ε0
k′1

)2−
(

h̄ωk′−k′1

)2

− ∑
Sk<kF

∣∣∣uk−k′
∣∣∣2 fε0k

h̄ωk−k′(
ε0

k′ − ε0
k

)2− (h̄ωk−k′)
2

(27.2)

for k′ > kF , and

Δε(Pk) = ∑
Rk′1>kF

|uk−k′1 |2(1− fε0k′1
)

h̄ωk−k′1(
ε0

k − ε0
k′1

)2−
(

h̄ωk−k′1

)2

− ∑
Sk1<kF

|uk−k1 |2 fε0k
h̄ωk−k1(

ε0
k − εk110

)2− (h̄ωk−k1

)2
(27.3)

for k ≤ kF .
Replacement of discrete summation by integration, ∑ . . .→ ∫

n(εk), introduces
DOS n(εk) into Eqs. 27.2 and 27.3, which is of crucial importance in relation
to fluctuating band – see Fig. 27.4b. For corrected DOS n(εk), which is the
consequence of shift Δεk of orbital energies, the following relation can be derived;

n(εk) =
∣∣1+(∂ (Δεk)/∂ε0

k )
∣∣−1

n0(ε0
k ) (27.4)

Term n0(ε0
k ) stands for uncorrected DOS of the original adiabatic states of particular

band,
n0(ε0

k ) =
∣∣(∂ε0

k /∂k
)∣∣−1

(27.5)

Close to the k-point where the original band, which interacts with fluctuating band,
intersects FL, the occupied states near FL are shifted downward below FL and
unoccupied states are shifted upward – above FL. The gap is identified as the
energy between peaks in the corrected DOS above FL (half-gap) and below FL.
The formation of peaks is related to the spectral weight transfer that is observed by
ARPES or tunneling spectroscopy in cooling below Tc.
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Fig. 27.5 Calculated (0 K) DOS in antiadiabatic state and gap formation near k point where
particular bands intersect FL. The DOS are for YBCO in Y-Γ (a), X-Γ (b) direction, MgB2 (c),
YB6 (d), and Nb3Ge (e)

For the studied compounds, the calculated corrected DOS of particular band(s)
with gap opening are in Fig. 27.5. In particular, YBa2Cu3O7 exhibits an asym-
metric gap in two directions: O1-pσ band gap is Δb(0) ≈ 35.7meV in the Γ−Y
direction (5a) and Δa(0) ≈ 24.2meV is in the Γ−X direction (5b). The calculated
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asymmetry, i.e. the ratio (Δa(0)/Δb(0))theor ≈ 0.68 is very close to the experimental
value (≈0.66) that has been recorded [66] for untwined YBa2Cu3O7.

Two gaps, in σ and π band, are opened in Γ−K(M) directions of MgB2 – (5c):
Δσ (0)/2≈ 7.6meV and Δπ(0)/2≈ 2.2meV. The result simulates tunneling spectra
at positive bias voltage and calculated half-gaps are in a very good agreement with
experimental high-precision measurements [67, 68].

A small gap opens on pd-band in the Γ−X direction of YB6 – (4d): Δpd(0)/2≈
2.2meV.

In case of Nb3Ge, we are not familiar with tunneling or ARPES spectra.
However, recent results of point-contact spectroscopy obtained for superconductor
of the same A15 group – Nb3Sn(Tc = 18.1K) [69], indicate that this system could
be of two-gap character. Respective half-gaps are; Δ1/2 ≈ 3.92meV and much
smaller gap is Δ2/2≈ 0.85meV. Our calculation for Nb3Ge(Tc = 23.2K) is shown
in Fig. 27.5e. Calculated DOS is also of two-gap character. The half gaps are;
Δ1/2 ≈ 4.15meV and much smaller gap is Δ2/2 ≈ 1.7meV. The gaps are opened
in M-R direction of 1st BZ.

It should be stressed that this result is the first theoretical prediction of two-gap
character for some superconductor of A15 family.

27.2.3.2 Critical Temperature Tc of Antiadiabatic State Transition

The corrections to orbital energies (2, 3) and to the ground state energy (1) are
temperature dependent and decrease with increasing T. At a critical value Tc, the
gap in one-particle spectrum [52–54],

Δ(T ) = Δ(0)tgh[Δ(T )/4kBT ] (27.6)

as Δ(0) at 0 K, disappears – i.e. Δ(Tc)= 0 (continuum of states is established at FL).
At these circumstances holds |ΔE0

(na)(Tc)| ≤ ΔEd,cr and the system undergoes
transition from the antiadiabatic into adiabatic state, which is stable for equilibrium
high-symmetry structure above Tc. With respect to Δ(0), a simple approximate
relation follows from Eq. 27.6,

Tc = Δ(0)/4kB (27.7)

Calculated values of critical temperature for the set of studied compounds are
presented in Table 27.1. As it can be seen, the values of Tc for transition into
antiadiabatic state are in a good agreement with corresponding experimental values
of Tc for superconducting state transition of particular compounds [3, 47, 70].

It should be noticed, however, that while there is a general consensus about
importance of the e-p coupling to the Ag, B2g, B3g and E2g phonon modes in
case of YBa2Cu3O7 and MgB2 in transition to superconducting state, the situation
with YB6 is rather controversial. Recent studies [71, 72] advocate importance
of e-p coupling to low-frequency (8–10 meV) phonon modes of Y-vibration for
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Table 27.1 Calculated values of critical
temperature for transition into antiadia-
batic state (Tc-theor) and experimental
values of critical temperature for transition
into superconducting state (Tc-exp)

Compound Tc-theor Tc-exp

MgB2 44 K 39.5 K
YB6 12.2 K 8–10 K
YBa2Cu3O7 103.5 K 92–94 K
Nb3Ge 24 K 23.2 K

superconducting coupling. It is associated with overall value of dimensionless e-
p coupling constant λ for calculation of Tc according to McMillan formula. For
medium-strong coupling λ ∼ 1− 1.4 and Coulomb pseudopotential μ∗ ∼ 0.1−
0.2, the experimental Tc ∼ 6.2 – 9 K is reproduced. In these circumstances, low-
frequency Y- vibrations contribute by 84% to the overall value of λ. Our results
show that coupling to Y-vibration does not induce the adiabatic-antiadiabatic state
transition. This transition is connected to B-vibrations, in particular to T2g mode.
The value of dimensionless constant λ related to T2g mode coupling, calculated
in our study is, λT2g ∼ 0.1. This value is in full agreement with decomposition of
Eliashberg spectral function on contributions from the particular phonon modes in
YB6 calculated by Schell et al. [73]. The overall value of λ ∼ 0.48 that accounts
for nonlocal corrections on e-p coupling in the modes where B-octahedrons move
as a whole is dominated by high-frequency (30–90 meV) B-vibrations. The authors
[73] made conclusion that in transition to superconducting state in YB6, the B-
vibration phonon modes are essential. The conclusion is based on the fact that within
McMillan formula, a small increase in overall λ∼ 0.48 can reproduce experimental
Tc. In the present work, it is shown that in spite of the fact that coupling to T2g mode
is weak (uk−k′ ∼ 0.1eV), transition in superconducting state and relatively high-
value of Tc can be reached due to enormous increase of DOS of the fluctuating band
in M point at FL, from the adiabatic value 0.06 states/eV to the value 1.09 states/eV
at transition into antiadiabatic state.

27.2.3.3 Formation of Mobile Bipolarons in Real Space

From the theory of the antiadiabatic ground state [52a, b] follows that instead
of Cooper pairs, formation of mobile bipolarons arise naturally as a result of
translation symmetry breakdown at the antiadiabatic level. Bipolarons are formed
as polarized inter-site charge density distribution, mobile on the lattice without
dissipation due to degeneracy (fluxional structure) of the antiadiabatic ground state
at distorted nuclearconfigurations. Formation of polarized inter-site charge density
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distribution at transition from adiabatic into antiadiabatic state is reflected by
corresponding change of the wave function.For spinorbital (crystal orbital – band)
ϕR(k) holds [52]a,

|ϕS(x,Q,P)〉 = a+S (x,Q,P)|0〉=
(

ā+S −∑
rR

cr
SRQ̄rā+R −∑

�
r R

�c
r
SRP�

r
ā+R

+O(Q̄2, Q̄P,P2)
)
|0〉= |ϕS(x,0,0)〉−∑

rR
cr

SRQ̄r|ϕR(x,0,0)〉

−∑
�
r R

�
c

r
SRP̄�

r
|ϕR(x,0,0)〉+ ...... (27.8)

Expansion coefficients in (27.8) are coefficients of adiabatic Q-dependent canonical
transformation cr

PQ and of non-adiabatic P-dependent canonical transformation ĉr
PQ,

cr
SR =

∂cSR(Q)

∂Qr
; ĉr

SR =
∂ ĉSR(P)

∂Pr
(27.8a)

Approximate solution [53] yields the following analytical forms,

cr
SR = ur

SR

(
ε0

S − ε0
R

)
(h̄ωr)2− (ε0

S − ε0
R

)2 ; S = R (27.8b)

ĉr
SR = ur

SR
h̄ωr

(h̄ωr)2− (ε0
S − ε0

R

)2 ; S = R (27.8c)

Bear in mind that for solids in reciprocal (quasi-momentum) space, the orbital
energies are k-dependent, i.e. ε0

S ≡ ε0
S (k)≡ ε0

S,k.

At transition into antiadiabatic state (|ε0
S (kc)− ε0

F |Req±Q� h̄ωr), coefficients
cr

RS of Q-dependent transformation matrix (27.8b) become negligibly small and
absolutely dominant for modulation of crude-adiabatic wave function are in this
case coefficients ĉr

RSof P-dependent transformation matrix (27.8c). For simplicity,
let us consider that transition into antiadiabatic state is driven by coupling to a
phonon mode r with stretching vibration of two atoms (e.g. B-B in E2g mode of
MgB2, valence T2g mode vibration of B-B atoms in basal a-b plane of B-octahedron
in YB6, vibration motion of O2, O3 in Cu-O planes – B2g, B3g modes of YBCO,
or Γ12 phonon mode vibration of Nb-Nb atoms in chains of Nb3Ge in a-b, a-c
or b-c plane). Let m1 and m2 are equilibrium site positions of involved nuclei on
crude-adiabatic level and d1 and d2 are nuclear displacements at which crossing
into antiadiabatic state occurs. At these circumstances the original crude-adiabatic
wave function ϕ0

k (x,0,0), which corresponds to fluctuating crystal orbital (band)
that crosses FL at e-p coupling, is changed in a following way,
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ϕk(x,Q,P) ∝

⎛
⎜⎝1+∑

q
u|q|

h̄ωq

(h̄ωq)2−
(

ε0
k − ε0

k+q

)2

×
(

P1eiq.[x−(m1−d1)] +P2eiq.[x−(m2+d2)]
)⎞⎟⎠ϕ0

k (x,0,0) (27.9)

In (27.9), site approximation for momentum has been used, i.e. Pq ∝
(sign.q)∑

m
Pmeiq.m.

In the antiadiabatic state, for particular k and proper q values, nonadiabatic
prefactors under summation symbol in (27.9) can be large. The prefactors, i.e. coef-
ficients of P-dependent transformation matrix (27.8c), reflect influence of nuclear
kinetic energy on electronic structure. At the dominance of these contributions
(antiadiabatic state), strong increase in localization of charge density appears at
distorted site-positions for x equal to (m1 − d1) and (m2 + d2). It induces (or
increases) inter-site polarization of charge density distribution.

Schematic drawing illustrating these aspects in case of Nb3Ge is presented in
Fig. 27.6. The Γ12 phonon mode covers out-of phase stretching vibration of two
perpendicular Nb chains in two planes – see Fig. 27.1d. For simplicity, drawing
of only a single chain of Nb atoms in a plane (e.g. b-c plane) is sketched
in Fig. 27.6. For equilibrium high-symmetry structure (Req) on the crude-adiabatic
level, the highest electron density is localized at equilibrium position of Nb atoms
in a chain – Fig. 27.6a. For distorted nuclear geometry (Rd,cr) in the Γ12 mode,
electron density is polarized and the highest value is shifted into the inter-site
positions– bipolarons are formed. The Fig. 27.6b corresponds to compression period
in stretching vibration of Nb1-Nb2 which induces increase of Nb1-Nb2 inter-site
electron density and decreases of Nb2-Nb3 electron density. For an expansion
period, Fig. 27.6c, situation is opposite. Inter-site electron density is decreased for
Nb1-Nb2 and increased for Nb2-Nb3. On the lattice scale, increase and decrease of
electron density is periodic. On the adiabatic level, alternation of electron density is
bound to vibrations at equilibrium nuclear positions (Fig. 27.6a–c).

As already mentioned, in the antiadiabatic state, ground state total electronic
energy of system is degenerate. Distorted nuclear structure, related to a pair of nuclei
in the phonon mode r (Γ12 phonon mode in case of Nb3Ge), which induces transition
into antiadiabatic state has fluxional character. There exist an infinite number of
different – distorted configurations of this couple of nuclei in the phonon mode r and
all these configurations, due to translation symmetry of the lattice, have the same
ground state energy (Fig. 27.6b–e). Position of the involved displaced couple of
nuclei is on the circumference of the flux circles with the centers at Req (equilibrium
on crude-adiabatic level) with radii equal to ΔRcr = |Req−Rd,cr|. The Rd,cr is
distorted geometry at which ACP approaches FL and system undergoes transition
from adiabatic into antiadiabatic state. Diameters of flux circles are dcr = 2ΔRcr.
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a-lattice parameter
a

b

c

d

e

dcr 
_ diameter of flux circle in antiadiabatic state

Fig. 27.6 Schematic drawing of vibration periods and electron density in Nb-chain of A15
superconductors (Nb3Ge, Nb3Al,) Equilibrium geometry characterizes the line (a). Lines (b)
and (c) represent compression and expansion period in vibration mode. The circles depict
circumferences of flux-circles of degenerate antiadiabatic ground state. Lines (d), (e) represents
cooperative transversal positions of Nb atoms at circumferential motion in antiadiabatic state –
see text

Due to the geometric degeneracy of the ground state energy, the involved atoms
can move over circumferences of the flux circles (Fig. 27.6b–e) without the energy
dissipation.

The dissipation-less motion of the couple of nuclei implies, however, that e-p
coupling of involved phonon mode and electrons of corresponding band has to
be zero.

We have shown [74] that in the antiadiabatic state (h̄ωq/|ε0
k − ε0

k−q| → ∞) this
aspect is fulfilled, i.e.

H ′〈e−p〉0(antad.state)→ 0 (27.10)
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It means that for electrons which satisfy condition of extreme nonadiabaticity
(antiadiabaticity with respect to interacting phonon mode r in particular direction of
reciprocal lattice where the gap in one-electron spectrum has been opened), the elec-
tron (nonadiabatic polaron)-renormalized phonon interaction energy equals zero.
Expressed explicitly, in the presence of external electric potential, dissipation-less
motion of relevant valence band electrons (holes) on the lattice scale can be induced
at the Fermi level (electric resistance ρ = 0). At the same time, the motion of nuclei
remains bound to circumferential revolution over distorted, energetically equivalent,
configurations. The electrons move in a form of itinerant-mobile bipolarons, i.e. as
a polarized cloud of inter-site charge density distribution– sequence b, d, e, f, b,
d, e, f. in Fig. 27.6. For temperature increase, thermal excitations of valence band
electrons to conduction band induce sudden transition from the antiadiabatic state
to adiabatic state at T = Tc, i.e. |ΔE0

(na)(Rd)| ≤ ΔEd(Rd) holds and the system is
stabilized at equilibrium Req as it is characteristic for adiabatic structure.

In the adiabatic state, properties of the electrons are in sharp contrast with
the properties of electrons in antiadiabatic state. The electrons are more or less
tightly bound to respective nuclei and their motion is restricted to vibration at
adiabatic equilibrium nuclear positions in a valence band and motion of electrons
in conducting band is restricted by scattering with interacting phonon modes. It
corresponds to situation at T > Tc.

For extreme adiabatic limit: h̄ωq/|ε0
k − ε0

k−q| → 0, it has been shown [74] that for
e-p interaction energy holds,

H ′〈e−p〉0(ad.state)→∑
qk

|uq|2 1(
ε0

k − ε0
k−q

) ≥ 0 (27.11)

Expression (27.11) represents basically energy of standard adiabatic polarons
(small, self-trapped) that contributes to the total energy.

In Fig. 27.7, iso-density lines of highest electron density calculated for Nb3Al on
crude-adiabatic level by computer code SOLID2000 [55] are shown.

It represents cut of electron density in b-c plane of Nb3Al crystal structure for
3× 3 segments at different period of Nb atoms vibration in Γ12 phonon mode –
Fig. 27.7a–f. The light spots correspond to regions of lowest electron density –
positions of Al atoms. Situation for equilibrium nuclear configuration represents
Fig. 27.7a with electron density localized at Nb atoms positions. Violet regions
represent higher electron density which is dominated by contribution of dx2−y2 and
dz2 AOs of Nb atoms. Iso-density lines encircle regions of highest electron density.
Vibration of Nb atoms induces inter-site localization (compression and expansion
period of vibration) – Fig. 27.7b, d and delocalization – Fig. 27.7c, e for transverse
positions of Nb atoms in flux circles. It should be stressed that the figures correspond
to electron density on crude-adiabatic level. Account for antiadiabatic situation
increases substantially inter-site polarization due to contribution of the second –
inter-site term with crucial antiadiabatic prefactor in Eq. 27.9.
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Fig. 27.7 Calculated iso-density lines of highest electron density (cut in b-c plane) at equilibrium
nuclear geometry Req of Nb3Al (a) and at the distorted geometry Rd,cr of Nb atoms in Γ12 phonon
mode when nonadiabatic e-p interactions trigger transition into antiadiabatic state and inter-sites
polarization is induced. Figures (b–f) represents different geometrical positions of Nb atoms on
the circumferences of the flux circles
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27.3 Discussion and Conclusion

Experimental results are always crucial for any theory which aims to formulate
basic physics behind observed phenomenon or property. However, an experiment
always cover much wider variety of different influences which have impact on
results of experimental observation than any theory can account for, mainly if
theory is formulated on microscopic level and some unnecessary approximations
and assumptions are usually incorporated. On the other hand, interpretation of
many experimental results is based on particular theoretical model. This is also
the case of ARPES experiments at reconstruction of Fermi surface for electronic
structure determination of high-Tc cuprates. Interpretation of experimental results
is based on band structure calculated for particular compound. Methods of band
structure calculations are always approximate, with different level of sophistication.
Calculated band structure, mainly its topology at FL, is a kind of reference frame
for assignment of particular dispersion of energy distribution curve (EDC) or
momentum distribution curve (MDC) to particular band of studied compound at
interpretation of ARPES. This is in direct relation with theoretical understanding of
crucial aspects of SC-state transition in general.

In case of high-Tc cuprates, the crucial is considered to be the order parameter,
i.e. symmetry of superconducting gap which should be of (dx2−y2) symmetry. Within
a simple orbital model consideration of CuO2 plane in square lattice configuration,
this symmetry is accepted to simulate a-b plane superconductivity of cuprates.

In this sense, unexpected results have been published recently [26]. The high-
resolution (sub-meV) ARPES with VUV laser as a light source for optimally
doped untwined YBCO reveals that in superconducting state, gap is opened in one-
particle spectrum. The momentum dependence is very interesting, however. Like
for other cuprates, strong band renormalization (kink formation at≈60meV) in off-
nodal direction has been observed. The gap is opened in off-nodal (Γ-X and Γ-Y)
directions with top of the dispersion at ≈20meV below FL. In contrast to [66, 75],
the results of [26] do not indicate presence of a/b asymmetry. What is surprising,
however, is the finding that gap remains finite also in nodal Γ-S direction, with
top of dispersion at ≈12meV below FL. Presence of finite “nodeless” gap (i.e. in
nodal direction) sharply contradicts accepted ideas of cuprates as superconductors
of (dx2−y2) symmetry. In normal state (100 K), the gap is closed in both, off-nodal
and nodal directions.

The order parameter of (dx2−y2) symmetry, assumes gap opening in a band
with dominant contribution of Cu-based (dx2−y2) orbital. In layered cuprates, it
corresponds to (dx2−y2 − pσ) bands of CuO2 planes. Respected band structure
calculation for YBCO is the DFT-based LDA published by Andersen et al. [76],
to which the authors [26] refer. Inspection of BS in [76] reveals, however, that Cu2-
O2O3- planes bands do not intersect FL in off-nodal Γ-X nor in Γ-Y direction, but
the bands intersect FL in nodal Γ-S direction and in S –Y and S –X directions. It
is an indication that experimentally detected gap [26], which is opened in off-nodal
(Γ-X and Γ-Y) directions and also in nodal Γ-S direction, are not bands of CuO2

planes.
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In spite that there is a general agreement among different DFT-based band struc-
ture calculations in overall character of band structure for particular cuprate, there
are small, but important differences in details concerning topology of some bands at
FL. In particular for YBCO, DFT-based all-electron band structure calculation [77]
using the FLAPW method yields important differences in topology of Cu-O chain-
derived (d-pσ ) band. In contrast to band structure [76] where the band intersects FL
in S-X, Γ-Y and Γ-S directions, the BS [77] yields for Cu-O chain band intersections
with FL in Γ-X, Γ-Y and Γ-S directions, respectively. Calculated Cu-O chain band
topology [77] is in an excellent agreement with experimental electron-positron
momentum density in optimally doped untwined YBCO detected [78] by 2D-
angular correlation of electron-positron annihilation radiation (ACAR) technique. It
should be stressed that ACAR is particularly sensitive for study of Cu-O chain Fermi
sheets in YBCO. The character of ACAR, as experimentally detected, was predicted
theoretically [79], and besides intersection of FL in Γ-X, Γ-Y directions, prediction
has also been for FL intersection in Γ-T, Γ-U directions by Cu-O chain band.

With respect to topology of Cu-O chain band, as discussed above, this band
should be the best candidate to be considered for gap opening in both, off-nodal
(Γ-X, Γ-Y) and nodal (Γ-S) directions as seen in the ARPES results for YBCO
[26]. One should stress, however, that also in case of gap opening in Cu-O chain
band, expected (dx2−y2) symmetry is lost. More over, the authors [26] attribute
the effects seen in the ARPES to bands of Cu-O2 planes and declare that in the
spectra dispersion of Cu-O chain band is not present. There are a lot of experimental
peculiarities of ARPES experiments with YBCO (twinning / untwining, surface
states, CuO-chain problems, spectral dependence on light-source energy. . . .), so it
is difficult for me to make any comment about assignment of particular EDC/MDC
to CuO2 plane or Cu-O chain bands as done by the authors [26].

Nonetheless, an interpretation of the effects seen in the discussed ARPES from
the stand-point of antiadiabatic theory should be of interest. The basic aspects
concerning YBCO has been predicted [65] and shortly mentioned also in this paper.
One should start with topology of the band structure2 (Fig. 27.2e–f), in particular
with dispersion of Cu-O chain band at FL. It can be seen that dispersion of this
band at FL corresponds qualitatively to Cu-O chain band dispersion as it has been
calculated by FLAPW method [77] and to its experimental character as seen at FL
by ACAR method [78].

Coupling to Ag, B2g, B3g phonon modes induces fluctuation (Fig. 27.2e ↔ f,
this paper) of the ACP (inflex point) of Cu-O2 plane (dx2−y2 − pσ) band at Y
point across the FL. In the moment when the ACP approaches FL from the
bonding side, strong renormalization of dispersion of this band (kink formation)
could be seen by ARPES in off-nodal Y-Γ direction (Fig. 27.4a, this paper) at

2It should be stressed that HF-SCF method with semiempirical INDO Hamiltonian used at band
structure calculation [55] overestimates bonding character and consequently band-width, which
means that high-energy effects can hardly be studied, but for low-energy physics (like gap opening,
kink formation,. . . ) the method is reliable enough at least in a qualitative way.
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about k ≈ 0.41/3.82 ≈ 0.1A−1 (cf. with Fig. 2a(c) in [26]). At this situation,
there is dramatic decrease of effective electron velocity and chemical potential
(μad � μantiad < h̄ω), while DOS is increased (Fig. 27.4b, this paper) at FL and
system undergoes transition into antiadiabatic state. Influence of nuclear dynamics
on electronic structure is now significant–according to antiadiabatic theory of e-p
coupling as presented in this paper. System is stabilized in antiadiabatic state at
distorted nuclear configuration Rd,cr and gap is opened in one-particle spectrum.
The gap (Sect. 27.2.3.1 – Fig. 27.5a, b, this paper) is opened only in the Cu-
O chain (d-pσ ) band, in off-nodal directions Γ-X and Γ-Y (kΓY ≈ 0.053A−1,
kΓX ≈ 0.016A−1) and also in nodal Γ-S direction. The half-gaps in the off-nodal
directions are ΔΓY/2,≈ 22meV, ΔΓX/2,≈ 15meV and gap in the nodal direction is
expected to be ΔΓS /2 ≈ 15meV (cf. with Figs. 1, 7 and 8 in [26]). In contrast to
[26], antiadiabatic theory yields a/b- gap asymmetry, which is in good agreement
with other experimental results [66, 75]. At temperatures T > Tc, the gaps extinct.
It should be manifested by disappearing of peaks on EDC (MDC) at FL in the
ARPES spectra (see Fig. 8e in [26]). In this situation, the adiabatic DOS, with
quasi-continuum of states at FL, is established and system is in adiabatic – non-
superconductive state.

It should be mentioned that considerably smaller gap (ΔΓT/U ≈ 5meV) has been
predicted [65] to be opened also in Γ-T/U directions. The prediction is related to
the topology of the Cu-O chain (d-pσ ) band in these directions (Figs. 10 and 11
in [65]). Theoretical calculation of the electron-positron momentum density [79]
confirms this character of Cu-O chain topology. It is obvious that symmetry of the
Cu-O chain band gap is not of (dx2−y2) character. Symmetry of the gap is, in my
opinion, the matter of band structure topology at FL, which is far more complicated
than the one emerging from simple model of CuO2 plane confined in a square lattice.
It is a complex mater of crystal structure and chemical composition of particular
cuprate. It should be reminded that YBCO is the only high-Tc cuprate with Cu-O
chain in its structure. The gap opening in Cu-O chain band does not mean, however,
that superconductivity in YBCO is realized in Cu-O chains. Superconductivity is
realized by bipolaron mechanism in Cu-O2 planes, no matter if gap symmetry is
(dx2−y2) or any other (antiadiabatic theory, see also [65]).

Based on the ab initio theory of complex electronic ground state of super-
conductors, it can be concluded that e-p coupling in superconductors induces
the temperature-dependent electronic structure instability related to fluctuation of
analytic critical point (ACP – maximum, minimum or saddle point of dispersion)
of some band across FL, which results in breakdown of the adiabatic BOA.
When ACP approaches FL, chemical potential μad is substantially reduced to
μantiad(μad� μantiad < h̄ω). Under these circumstances the system is stabilized,
due to the effect of nuclear dynamics, in the antiadiabatic state at broken symmetry
with a gap in one-particle spectrum. Distorted nuclear structure, which is related to
couple of nuclei in the phonon mode r that induces transition into antiadiabatic
state, has fluxional character. It has been shown that until system remains in
antiadiabatic state, nonadiabatic polaron – renormalized phonon interactions are
zero in well defined k-region of reciprocal lattice. Along with geometric degeneracy
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of the antiadiabatic ground state it enables formation of mobile bipolarons (in a
form of polarized inter-site charge density distribution in real space) that can move
over lattice in external electric potential as supercarriers without dissipation. With
increasing T, the stabilization effect of nuclear kinetic energy to the electronic
ground state energy decreases and at critical temperature Tc the gap(s) extinct and
system is stabilized in the adiabatic metal-like state with a continuum of states at
FL, which is characteristic by high-symmetry structure.

As it has been shown by analysis of e-p interaction Hamiltonian [52–54], an
effective attractive e-e interaction, that is the basis of Cooper’s pair formation, is
in fact the correction to electron correlation energy at transition from adiabatic into
antiadiabatic ground electronic state. In this respect, increased electron correlation
is not the primary reason for transition into superconducting state, but it is a
consequence of antiadiabatic state formation which is stabilized by nonadiabatic
e-p interactions at broken translation symmetry. It has also been shown [52–54] that
thermodynamic properties of system in the antiadiabatic state correspond to that of
superconducting state.
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Chem 84:157
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Chapter 28
Centre-of-Mass Separation in Quantum
Mechanics: Implications for the Many-Body
Treatment in Quantum Chemistry and Solid
State Physics

Michal Svrček

Abstract We address the question to what extent the centre-of-mass (COM)
separation can change our view of the many-body problem in quantum chemistry
and solid-state physics. We show that the many-body treatment based on the
electron-vibrational Hamiltonian is fundamentally inconsistent with the Born-
Handy ansatz so that such a treatment can never fully account for the COM problem.
The Born-Oppenheimer (B-O) approximation reveals a secret: it is the limiting
case where the degrees of freedom can be treated classically. Beyond the B-O
approximation they are in principle inseparable. The (unique) covariant description
of all the equations, with respect to the individual degrees of freedom, leads to new
types of interactions: in addition to the known vibronic (electron-phonon) ones
the rotonic (electron-roton) and translonic (electron-translon) interactions arise.
We have proved that as a result of the COM problem only the hypervibrations
(hyperphonons, i.e. phonons+ rotons+ translons) have a general physical meaning
in molecules and crystals; nevertheless, the use of pure vibrations (phonons) is a
justified procedure only for so-called adiabatic systems. This state of affairs calls for
a total revision of our contemporary view of general non-adiabatic effects, especially
in connection with the Jahn-Teller effect and in formulating better approaches to
superconductivity. Although the vibronic coupling is primarily responsible for the
removal of the electron (quasi-) degeneracies the explanation of symmetry breaking
and the formation of molecular and crystallic structures, rotonic and translonic
couplings are necessary.
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28.1 Introduction

As it is well known proper many body methods including Feynman diagrammatic
techniques, developed in elementary particle physics, were transferred to solid-state
physics many years ago. The introduction to quantum chemistry followed later,
but only on the electronic level. So the question then appears: Is it possible to
formulate the full quantum chemical electron-vibrational Hamiltonian in a second
quantization formalism? The answer is negative. In fact the author did spend
many years attempting to construct ideal representations by means of appropriate
quasiparticle transformations (cf. equivalent Fröhlich type unitary transformations),
but all variants, being either adiabatic- or nonadiabatic representations, did indeed
fail. The reason lies actually on a deeper level than one would initially imagine.

The main scientific disciplines of quantum chemistry and solid-state physics
were developed by way of a mathematical simplification or approximation of the
Schrödinger equation, known as the Born-Oppenheimer (B-O) approximation [1].
It does not only give the basis of almost all quantum chemical calculations, but
it also provides the very concept of molecular structure [2]. There are two main
contemporary trends in quantum chemistry that put a question mark over the B-O
approximation and its role in the definition of (molecular) structure: theories based
on the incorporation of the centre-of-mass (COM) problem and applications in
connection with the Jahn-Teller (J-T) effect.

There is no problem to include the COM problem in atomic calculations but its
molecular implementation is very complicated. Monkhorst [3] did propose a simple
model of molecular atoms for this purpose. The practical advantage of this approach,
however was limited to the smallest molecules, is described in later works of Cafiero
and Adamowitz [4], which were based on Monkhorst’s ideas quoting: “We have
the analogue of the nucleus with the heavy particle at the center of the internal
coordinate system, and we have the analogues of electrons in the internal particles.
The main difference between this model and an atom is that the internal particles
in an atom are all electrons and in the “molecular atom” or “atomic molecule”
the internal particles may be both electrons and nuclei (or, as we should more
correctly say, pseudoparticles resembling the electron and the nuclei). Formally this
difference manifests itself in the effective masses of the pseudoparticles and in the
way the permutational symmetry is implemented in the wave function” [4].

This article contains an interesting note about the structure: “While molecular
structure is a central concept in chemistry and physics, it should be remembered
that for an isolated gas phase molecule in field-free space the most information that
can be acquired is the average values of structural parameters (i.e., bond distances
and angles). This point becomes apparent when molecular calculations are done
without the B-O approximation – an almost universal approximation in quantum
chemistry. While this approximation is extremely useful and has largely defined the
terminology of modern spectroscopy, it also hides some simple quantum mechanical
truths about the systems we study.”
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Moreover, the very limited applicability of the COM separation is not the
only one problem; another difficulty arises from the introduction of the degrees
of freedom for molecules, which are absent in atoms. Therefore Kutzelnigg [5]
writes: “The adiabatic approximation with COM separation is good for atoms,
because it takes care that the electrons participate in the COM motion. However,
it is unbalanced for molecules, because it favours the COM motion with respect to
other motions dominated by the nuclei, such as rotation and vibration, where the
participation of the electrons is less trivial anyway than in the COM motion. The
partial participation of the electrons in these motions is ignored in the adiabatic
approximation both with and without COM separation.”

The statement above is the reason why Kutzelnigg finally prefers the more
pragmatic Born-Handy ansatz [6] proving its full equivalency with the COM
separation: “Handy and co-workers have never claimed to have invented the ansatz
referred to here as the “Born-Handy ansatz”, but they certainly convinced a large
audience that this ansatz is of enormous practical value, even if it has not been
completely obvious why it leads to correct results. Handy and co-workers realized
that the difficulties with the traditional approach come from the separation of the
COM motion (and the need to define internal coordinates after this separation has
been made). They therefore decided to renounce the separation.”

This is without doubt a significant improvement since the application of the Born-
Handy ansatz as a full replacement of the COM separation is not restricted by the
size of the system under investigation. However, its applicability is unfortunately
limited to adiabatic systems only. The Born-Handy formulation yields only the
adiabatic corrections to the B-O results. Beyond this approach we enter the enig-
matic region, which is usually denoted as the break-down of B-O approximation.
Therefore our main goal is here to find an extension of the “Born-Handy formula”,
which is valid both in the adiabatic limit as well as beyond.

The most important consequence of the breakdown of the B-O approximation is
indisputably the Jahn-Teller (J-T) effect [7], where the structure defined on the basis
of this approximation does not in fact hold. The important role of the J-T effect is
emphasized in Bersuker’s book [8]: “Moreover, since the J-T effect has been shown
to be the only source of spontaneous distortion of high-symmetry configurations,
we come to the conclusion that the J-T effect is a unique mechanism of all the
symmetry breakings in condensed matter.” It is of course well known that problems
related to the definition of crystallic structure in solid-state physics are mostly
ignored assuming only BO structures. Nevertheless it is often criticised by scientists
dedicated to studies of the J-T effect. For instance the proper understanding of
superconductors should be evidently based on a solution of the non-adiabatic
problem but the impact on the crystallic structure is neither reflected in the Fröhlich
Hamiltonian [9, 10] nor in the BCS theory [11].

Bersuker writes in connection with the implications of the J-T effect on the
superconductivity problem: “An illustration of the JT approach to electron–phonon
coupling in solids may be found in the modern attempts to explain the origin
of high-temperature superconductivity (HTSC). Experimental data show that the
electron–phonon interaction is essential in this phenomenon.” And continues “The
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existing BCS theory of superconductivity takes into account the electron–phonon
interaction “in general” as an interaction of the electrons with the “bath of phonons”
without detailed analysis of the local aspects of this interaction leading to the J-T
effect. For broad-band metals with widely delocalized electrons the J-T electron–
phonon coupling is weak and the J-T effect may be ignored. This is why the
BCS theory explains the origin of superconductivity at low temperatures without
taking into account the J-T effect. For narrower bands (which are characteristic
of systems with HTSC) the J-T effect becomes significant, and the application of
the achievements of the J-T effect theory to the HTSC problem seems to be most
appropriate. This is indeed the subject of most current attempts to treat the HTSC
yielding reasonable (reassuring) results.”

At this stage the J-T approach to superconductivity is still problematic for
basically two reasons: first, the J-T approach is not formulated in the many-body
form as is the Fröhlich Hamiltonian, and second, this approach is ignorant with
respect to the COM problem. Note, however, that the Fröhlich Hamiltonian and
all theories based on it, including the BCS formulation, also suffer from the same
omission.

Summarizing it is now desirable to find a unifying way incorporating both
trends – the Born-Handy alternative of the COM separation and the J-T approach.
However, this seems at first sight to be difficult requirement, because the Born-
Handy formula accounts for the COM problem but it is only valid within the
adiabatic limit. On the other hand, the J-T approach respects non-adiabaticity but
does not comply with the COM problem.

As will be demonstrated here, this goal can be achieved through a revision
of our previous understanding of the proper many-body second quantization
formalism and by returning to the old question, i.e. “what will form molecular and
crystalline structures when the B-O approximation breaks down?” Moreover, this
reformulation will hopefully fulfil the views of many contemporary scientists: It
will confirm the suggestion, due to Löwdin, that electron quasidegeneracies are not
natural, and, the controversial idea, owing to Fröhlich, that superconductivity has
to have a one-particle origin. Although the Fröhlich Hamiltonian was successfully
incorporated in the BCS theory, Fröhlich did not accept this two-particle theory from
the reasons mentioned above.

In the original development of quantum mechanics the belief in the Schrödinger
equation, as applied to any number of nuclei and electrons, was simply that the
calculation of molecular- and crystalline structure proceeded in a similar fashion as
the calculation of the dynamics of complex objects by means of Newton mechanics.
These “boring automatic applications of the Schrödinger equation” caused an
outflow of many prominent scientists into other branches, e.g. nuclear physics,
elementary particle physics, and later solid-state physics, with the field of quantum
chemistry being “underestimated” for many years, rather than forming a platform
(paradigmatic background) for true-many body treatments. Applications to systems
slightly beyond the hydrogen atom, the simplest molecules, e.g. the hydrogen
molecule played a decisive role in this development.
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Solid-state physicists, on the other hand, got inspiration from the quantum
field treatment of electron-photon interactions, and by “jumping over” nuclei,
atoms, molecules, transferred these ideas into the field of solid-state condensed
matter physics in the sophisticated form of a many-body treatment based on the
electron-phonon interaction, in spite of the fact that its limits of validity were never
investigated, particularly with respect to the COM problem.

The fundamentals of the approach to be presented here were already obtained
in the authors PhD thesis in 1986 [12] and in an unpublished work from 1988
[13]. In full analogy with the solid-state electron-phonon interaction development, a
similar apparatus for quantum chemistry was built utilizing the second quantization
quasiparticle concept of the electron-vibrational Hamiltonian. This was a more
complex operation than first anticipated. The formulation proceeded stepwise,
i.e. first the crude representation, then the adiabatic, and finally the nonadiabatic
one. As later recognized, quasiparticle transformations that leads to individual
representations were in fact nothing but the full quantum chemistry equivalent of
Fröhlich transformation used in solid-state physics.

Most of the equations and concepts, developed here, were subsequently pub-
lished in a series of papers [14–21]. However, some very essential ingredients were
missing in the original formulation, namely the inclusion of the COM problem. In
particular, in the works [14–17] on the molecular adiabatic corrections were derived
without correctly including the Born-Handy ansatz. Similarly, the concept of
superconductivity, presented in [18–21], was restricted in the sense that the solution
of Fröhlich’s equation for the ground state assumed the structural instability, while
the most important term – the trigger responsible for this structural instability – was
missing. It goes without saying that these deficiencies must be remedied before a full
picture of a truly COM compatible many-body treatment of nuclei and electrons on
the same footing can emerge.

Therefore the author was confused when Biskupič, in 1998, during numerical
tests performed on H2, HD and D2, using equations of the original aforementioned
formulation, gave only a 20% contribution of the total groundstate adiabatic
correction in comparison with the results of standard methods based on the Born-
Handy formula [22]. Rather than being a bug in the program it was soon evident
that this was a shortcoming of our theory. The first remedy was to convert the
Born-Handy formula in a form compatible with the Coupled Perturbed Hartree-
Fock (CPHF) [23,24] method just as the previous theory was expressed in the CPHF
form, the step carried out in order to be able to make direct comparisons with the
Born-Handy ansatz.

One learns directly that the converted Born-Handy formula leads to a curiosity,
viz. the hydrogen molecule does not move and does not rotate. Nevertheless the
final Born-Handy formula contains contributions from vibrational as well as from
translational and rotational degrees of freedom in contrast to our previous theory,
based on the quantization of the electron-vibrational Hamiltonian, which contained
solely the contributions from the vibrational degrees. As it will be shown below,
this understanding has a profound significance for all systems and phenomena
beyond the Born-Oppenheimer approximation. Moreover, the interpretation of the
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degrees of freedom in quantum mechanics will be discussed in detail and it will
be demonstrated that the presented improved theory gives these degrees quite a
different meaning compared to those of classical mechanics.

In this work we will emphasize those steps, which improves our previous
approach where the COM problem was ignored. By summarizing the conversion
of the Born-Handy ansatz to the CPHF compatible form [22], we will continue with
a presentation of the consequences of this result for correct quantizations of the
total Hamiltonian. This will be accompanied with a rederivation of the Born-Handy
formula from the newly developed theory, and it will be shown to be of significance
for the Jahn-Teller effect, for conductors, and for superconductors as well.

28.2 Conversion of the Born-Handy Formula in the CPHF
Compatible Form

Let us start with the Born-Handy ansatz [6] for the groundstate electron wave-
function ψ0(

−→
R ) where

−→
R represents nuclear coordinates. The adiabatic correction

ΔE0 to the groundstate is expressed as a mean value of the nuclear kinetic
operator TN [22],

ΔE0 =
〈

ψ0(
−→
R )
∣∣∣TN

∣∣∣ψ0(
−→
R )
〉

R0

= ∑
iα

h̄2

2Mi

〈
∂ψ0(

−→
R )

∂Riα

∣∣∣∣∣
∂ψ0

(−→
R
)

∂Riα

〉
R0

(28.1)

where after the integration per parts indexes i denote nuclei, α Cartesian coordinates
and Mi nuclear mass. In the adiabatic case the N-electron function ψ0(

−→
R ) can be

expanded as a single Slater determinant though the one-electron functions ϕI(
−→
R ):

ψ0(
−→
R ) =

1√
N!

∥∥∥∥∥
N

∏
I

ϕI(
−→
R )

∥∥∥∥∥ (28.2)

In this whole work we will use the following notation for spinorbitals: I, J, K, L –
occupied; A, B, C, D – virtual (unoccupied); P, Q, R, S – arbitrary ones. Substituting
(28.2) for ψ0(

−→
R ) in (28.1) we get:

ΔE0 = ∑
iα

h̄2

2Mi

(
∑

I

〈
∂ ϕI

∂ Riα

∣∣∣∣∣
∂ ϕI

∂ Riα

〉
R0

− ∑
I =J

〈
ϕJ

∣∣∣∣ ∂ ϕJ

∂ Riα

〉 〈
∂ ϕI

∂ Riα
ϕI

〉
R0

−∑
I =J

〈
ϕJ

∣∣∣∣ ∂ ϕI

∂ Riα

〉 〈
∂ ϕI

∂ Riα
ϕJ

〉
R0

)

(28.3)
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The function ϕP(
−→
R ) can be expanded through the nuclear coordinates dependent

coefficients cPQ(
−→
R ) and the orthonormal set of one-electron wavefunctions defined

in the equilibrium position R0.

ϕP(
−→
R ) = ∑

Q

cPQ(
−→
R )ϕQ(R0) (28.4)

The Eq. 28.3 now reads:

ΔE0 = ∑
iα

h̄2

2Mi

(
∑
QI

∣∣ciα
QI

∣∣2−∑
I =J

ciα
JJ ciα∗

II −∑
I =J

∣∣ciα
IJ

∣∣2
)

(28.5)

where indices iα are related to first derivatives. Using the calibration for the diagonal
coefficients in accordance with the CPHF formulation [22–24]

ciα
II = 0 (28.6)

we arrive the very simple CPHF form of Born-Handy formula for the groundstate:

ΔE0 = ∑
AIiα

h̄2

2Mi
|ciα

AI|2 (28.7)

This is the expression based on real coordinates Riα . But the analogical expression
based on normal ones Qr will be much more interesting. Therefore we introduce,
again in accordance with the CPHF formulation, the expansion coefficients cr

PQ.

cr
PQ = ∑

iα
ciα

PQ
∂Riα
∂Qr

= ∑
iα

ciα
PQαr

iα (28.8)

In order to substitute for ciα
PQ in (28.7), we need to know the inverse matrix β r

ia. Since
it holds

α+β = I (28.9)

(28.7) can be rewritten as

ΔE0 = ∑
AIrsiα

h̄2

2Mi
cr

AIc
s ∗
AI β r ∗

iα β s
ia (28.10)

It is important to note, that the summation in (28.10) must be performed over all
degrees of freedom, i.e. 3N, including 2 or 3 rotational and 3 translational ones!
From the equiparticle theorem we know that the potential as well as the kinetic
energy, standardly defined in accordance with the CPHF theory, contribute the same
values – the halves of vibrational energy. But whereas diagonalizing the potential
energy we get 3N – 5 or 3N – 6 nonzero values for vibrational modes and 5 or 6
zero values, the same procedure applied on the kinetic energy gives us 3N nonzero
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values, aside the vibrational modes we have 2 or 3 nonzero values for rotational
modes and 3 nonzero values for translational ones.

α+Epotα =

{
1
2

h̄ω ,0,0

}
(28.11)

β+Ekinβ =

{
1
2

h̄ω ,ρ ,τ
}
= ∑

iα

h̄2

4Mi
βiα∗βiα (28.12)

With the help of (28.12) we can simplify the term inside of the Eq. 28.10,

∑
iα

h̄2

2Mi
β r∗

iα β s
iα =

{
h̄ωr|r∈V ,2ρr| r∈R,2τr|r∈T

}
δrs (28.13)

where ωr represent the vibrational frequencies, whereas the ρr and τr represent the
quanta of energy of the rotational and vibrational modes, extracted from the same
secular equation for the kinetic energy (28.12) as the vibrational frequencies.

ΔE0 = 2∑
AI

(
∑
r∈V

1
2

h̄ωr+ ∑
r∈R

ρr+ ∑
r∈T

τr

)
|cr

AI|2 (28.14)

The final form of the Born-Handy formula consists of three terms: The first one
represents the electron-vibrational interaction. I will not present the numerical
details for H2, HD and D2 molecules here, it can be found in our previous work.
The most important result here is that the electron-vibrational Hamiltonian is
totally inadequate for the description of the adiabatic correction to the molecular
groundstates; its contribution differs almost in one decimal place from the real
values acquired from the Born-Handy formula. In the case of concrete examples –
H2, HD and D2 molecules – the first term contributes only with ca 20% of the total
value. The dominant rest – 80% of the total contribution – depends of the electron-
translational and electron-rotational interaction [22]. This interesting effect occurs
on the one-particle level, and it justifies the use of one-determinant expansion of
the wave function (28.2). Of course, we can calculate the corrections beyond the
Hartree-Fock approximation by means of many-body perturbation theory, as it was
done in our work [22], but at this moment it is irrelevant to further considerations.

The Born-Handy ansatz [6] was verified on simple molecular systems many
times in the last years [25–27], and especially interesting is the comparison of this
simple pragmatic ansatz with the rigorous methods based on the separation of the
centre-of-mass motion where one gets rather complicated expressions in terms of
relative coordinates in a molecule-fixed frame. Kutzelnigg proved the validity of
the Born-Handy ansatz by means of centre-of-mass analysis [5]. We can now ask:
what happens in the case of the break-down of the adiabatic approximation? If the
adiabatic case, beyond the B-O approximation, is a general centre-of-mass problem,
then so is the break-down case much more the same problem. But where is there
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any reference to the centre-of-mass problem in the literature on e.g. the Jahn-Teller
effect or superconductivity?

Centre-of-mass methods are generally based on the introduction of relative
coordinates and relative effective masses and are hence very complicated. Their
applicability in the case of the break-down of the adiabatic approximation is
therefore questionable to say the least. Looking at the CPHF reformulation (28.14)
we must agree that this equation is in contrast very simple. Equation 28.14
bounds together the 3N–6(5) vibration modes with 3(2) rotation and 3 translation
ones. Therefore the new theory must be strictly built on the covariant notation
regarding the individual degrees of freedom. They will be denoted 3N-dimensional
hypervibrations in quantum chemistry and hyperphonons in solid-state physics.

Simultaneous use of the canonical transformations and introduction of degrees of
freedom is unbalanced [5] and just this is a reason why rigorous methods eliminate
their introduction at all [3, 4]. Nevertheless, if we insist on the introduction of
degrees of freedom, we need to find an alternative to canonical transformations.
To solve the COM problem on the many-body level therefore means to solve the
compatibility problem of the many-body treatment with the Born-Handy ansatz,
where the degrees of freedom are inseparable and have only a relative meaning.

28.3 Reconstruction of the Total Hamiltonian in the Second
Quantization Formalism

In the beginning of this topic we pointed out some remarks about the cross-platform
notation used in this paper. As one can see in the previous chapter we have used
expansion coefficients cPQ of the one-electron wavefunctions and eigenvectors
αr

iα/β r
iα of the secular equations for the potential/kinetic oscillator energy defined

on the set of complex numbers. In quantum chemistry this is often irrelevant, all the
mentioned coefficients may be real, but in solid-state physics the complex number
notation is necessary. In a similar way we will use the cross-platform notation for
coordinate and momentum oscillator operators, namely Br = br + b+�

r
and B̃r =

br−b+�
r
. For systems that allow the real number solution of wavefunctions (quantum

chemistry) it simply holds r =
�
r . For system with translational symmetry where

the conservation of quasimomentum holds (solid-state physics), the solution has
complex number form, so that the meaning of spinorbitals P and vibrational modes
r and ř after the transition in quasimomentum notation is: P→ k,σ ,r→ q, r̆ →−q.
Since two modes with opposite sign of quasimomentum have the same energy, we
assume that for any vibrational mode r there exists corresponding mode r̆ fulfilling
the identity ωr = ω�

r
.
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The Born-Oppenheimer approximation leads in the final stage to the system of
independent harmonic oscillators. The B-O vibrational Hamiltonian HBO reads

HBO = ∑
r∈V

h̄ωr

(
b+r br +

1
2

)
=

1
4 ∑

r∈V

h̄ωr(B
+
r Br + B̃+

r B̃r) (28.15)

where r represents only the vibrational modes.
First we proceed to the introduction of hypervibrational modes. In accordance

with secular equations (28.11) and (28.12) we get the following second quantization
form for the potential and kinetic energies:

Epot =
1
4 ∑

r∈V

h̄ωrB
+
r Br (28.16)

Ekin =
1
4

(
∑
r∈V

h̄ωr+2 ∑
r∈R

ρr+2 ∑
r∈T

τr

)
B̃+

r B̃r (28.17)

Let us denote the hypervibrational Hamiltonian as HB.

HB = Ekin(B̃)+Epot(B) (28.18)

In order to get the covariant form of the Hamiltonian HB, we will define the
hypervibrational double-vector:

ω =

(
ωr

ω̃r

)
=

(
ωr 0 0
ωr

2
h̄ ρr

2
h̄ τr

)
(28.19)

This notation leads to the fully covariant expression for the Hamiltonian HB with
respect of all 3N hypervibrational modes.

HB =
1
4 ∑

r
(h̄ωrB

+
r Br + h̄ω̃rB̃

+
r B̃r) (28.20)

The essential problem of the Born-Oppenheimer approximation lies in the fact, that
initially the electronic states are quantized whereas the motion of nuclei remains in
classical form. Then the transition from the Cartesian to the normal coordinates is
carried out on the basis of Newton mechanics, and finally the nuclear motion
is quantized as the system of independent harmonic oscillators. This procedure
represents the hierarchical type of quantization, which is a complete contradiction
of the fundamental requirement of the second quantization procedure of the total
Hamiltonian that must be simultaneous.

If we would try to find an ontological interpretation of the Born-Oppenheimer
hierarchical type of quantization, surely the concept of quantization of atomic
centers would be more adequate description than the concept of quantization of
nuclei motion. The question arises how to retrace the simultaneous quantization
of the unit system of electrons and nuclei. The author solved this problem in his
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PhD thesis for the quantization of electron-vibrational Hamiltonian. Now a revised
version will be presented for the complete electron-hypervibrational Hamiltonian
which corrects the original version which totally failed during comparison tests with
the results of the Born-Handy ansatz.

We cannot obviously start with the B-O approximation of moving electrons,
following the motion of nuclei, but rather with the crude representation, i.e. the
representation of fixed nuclear positions. The general form of the nonrelativistic
Hamiltonian for any molecular and crystal system can be written in the form

H = TN(
¯̃B)+ENN(B̄)+∑

PQ

hPQ(B̄) ā+P āQ +
1
2 ∑

PQRS

v0
PQRSā+P ā+QāSāR (28.21)

where TN stands for kinetic energy of nuclei and ENN for the potential energy of
nuclei interactions. One-electron matrix elements hPQ comprise electron kinetic
energy and electron-nuclear interaction. The term v0

PQRS represents two-electron
interaction matrix elements. The operators marked with the bar are operators of
“original” quasiparticles (electrons and hyperphonons) in the crude representation.
The terms ENN and hPQ are defined through their Taylor expansion (see Eqs. 28.97–
28.100 in Appendix 1 for details)

ENN(B̄) =
∞

∑
n=0

E(n)
NN(B̄) (28.22)

hPQ(B̄) = h0
PQ +

∞

∑
n=1

u(n)PQ(B̄) (28.23)

where h0
PQ is one-electron term for fixed (equilibrium) nuclear coordinates and

uPQ(B̄) =

〈
P

∣∣∣∣∣∑i

−Zie2

|r−Ri|

∣∣∣∣∣Q
〉

(28.24)

in terms of the second quantization represents the matrix elements of electron-
hypervibrational interaction. We assume in (28.22 and 28.23) that the sums are
convergent. It is important to emphasize that the operators B̄ and ¯̃B in (28.21) refer
to the whole set of hypervibrations.

The potential energy of the nuclear motion is defined through the quadratic part
of internuclear potential plus some additive term representing the selfconsistent
influence of electron-nuclear potential

Epot = E(2)
NN(B̄)+V (2)

N (B̄) (28.25)

In the adiabatic limit the values of V (2)
N can be evaluated simply through the coupled

perturbed Hartree-Fock method and the kinetic energy Ekin is identical with the
kinetic energy of nuclei TN . Now the crucial step is coming: At the case when the



522 M. Svrček

adiabatic approximation is not valid it is necessary to incorporate the new additive
kinetic term originating from the kinetic energy of electrons. The resulting kinetic
energy of the system has the form

Ekin = TN(
¯̃B)+W (2)

N ( ¯̃B) (28.26)

The total Hamiltonian (28.21) can be now divided into two parts

H = HA +HB (28.27)

Where the first part HA reads

HA = ENN(B̄)−E(2)
NN(B̄)−V (2)

N (B̄)−W (2)
N ( ¯̃B)+∑

PQ

hPQ(B̄) ā+P āQ

+
1
2 ∑

PQRS

v0
PQRSā+P ā+QāSāR (28.28)

and the second part HB has the same form as (28.18)

HB =
1
4 ∑

r
(h̄ωrB̄+

r B̄+
r h̄ω̃r

¯̃B+
r

¯̃Br) (28.29)

The final electron-hypervibrational Hamiltonian in the second quantization formal-
ism has now the form

H = ENN(B̄)−E(2)
NN(B̄)−V (2)

N (B̄)−W (2)
N ( ¯̃B)+∑

PQ

hPQ(B̄)ā
+
P āQ

+
1
2 ∑

PQRS

v0
PQRSā+P ā+QāSāR +

1
4 ∑

r

(
h̄ωrB̄+

r B̄r + h̄ω̃r
¯̃B+

r
¯̃Br

)
(28.30)

It is necessary to notice that the crude representation (28.30) is the first and the
last one where the quantization of nuclear motion can be accomplished by means
of classical Newton mechanical separations of the degrees of freedom. All other
representations will mix the vibrational, rotational and translational modes, and they
will not be separable any more.

28.4 Unitary Transformations Applied
to the Electron-Hypervibrational Hamiltonian

Our aim is now to find the most general group of quasiparticle transformations for
the electron fermion and the hypervibration boson operators, binding individual
representations of the total Hamiltonian. The author in his thesis on this topic
[12] proposed two transformations – the first of the adiabatic type, dependent on
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nuclear coordinates Q, and the second of nonadiabatic type, dependent on the
nuclear momenta P. When tried later to apply the results to solid-state physics, it
was recognized that our transformations, applied to individual fermion and boson
operators, were identical with the well-known Fröhlich transformation [10], applied
to the whole Hamiltonian

H ′ = e−S(Q,P)HeS(Q,P) (28.31)

namely with its decomposed part

H ′ = e−S2(P)e−S1(Q)HeS1(Q)eS2(P) (28.32)

Although both expressions (28.31) and (28.32) are equivalent, they differ a some-
what in the individual orders of the Taylor expansion, since coordinate and
momentum operators do not commute. This difference is not significant here but the
latter one is more convenient due to the symmetric properties of the final expressions
and it will be discussed hereafter.

The Fröhlich transformation is essential and it was applied to the superconduc-
tivity problem but it has not since been used in quantum chemistry problems.

Unfortunately Fröhlich could not know that the electron-phonon interaction
was not the true interaction model and applied his transformation to the wrong
Hamiltonian. Since the author did not initially involved the COM problem into the
consideration, he made the same mistake as Fröhlich in all previous works referred
to [12–20] with the aforesaid negative consequences for the later comparison tests
[22] with the Born-Handy ansatz. Therefore we now present the solution which
correctly incorporates all 3N degrees of freedom, unified under the conception of
electron-hyperphonon interaction.

The advantage of the quasiparticle transformations lies in the fact that they are
more transparent than the global transformation of the whole Hamiltonian. The first
transformation in (28.32) with generator S1 is equivalent to the adiabatic quasiparti-
cle transformation from the crude into the adiabatic representation, defined through
new quasiparticles in adiabatic representation with double bar

āP = ∑
Q

cPQ( ¯̄B) ¯̄aQ (28.33)

b̄r =
¯̄br +∑

PQ

drPQ(
¯̄B) ¯̄a+P ¯̄aQ (28.34)

Analogous equations hold for the creation operators. The operators cPQ(
¯̄B) and

drPQ( ¯̄B) are defined trough their Taylor expansions and are limited through the
unitarity conditions

∑
R

cPRc+QR = δPQ (28.35)

drPQ = ∑
R

c+RP[
¯̄br,cRQ] (28.36)



524 M. Svrček

The second transformation with generator S2 is equivalent to the nonadiabatic
transformation from the adiabatic representation into the final one, which we shall
call “general”, i.e. the representation that involves the adiabatic case as well as the
nonadiabatic one. This representation is defined through new quasiparticles denoted
simply without bar

¯̄aP = ∑
Q

c̃PQ(B̃)aQ (28.37)

¯̄br = br +∑
PQ

d̃rPQ(B̃)a
+
P aQ (28.38)

where the operators c̃PQ(B̃) and d̃rPQ(B̃) are defined through their Taylor expansions
and are limited through the unitarity conditions

∑
R

c̃PRc̃+QR = δPQ (28.39)

d̃rPQ = ∑
R

c̃+RP[br, c̃RQ] (28.40)

For the Taylor expansion of both adiabatic and nonadiabatic unitarity conditions see
Eqs. 28.101–28.104 in Appendix 1.

The form of the transformed Hamiltonian is very complex and the individual
terms are put into Appendix 2. We demonstrate now only the main steps of treatment
of the transformed Hamiltonian in the general representation.

At the first stage we will apply the Wick’s theorem, as it is standardly defined in
quantum chemistry, i.e. with respect to Fermi vacuum. For one-fermion terms the
Wick’s theorem results in

∑
PQ

λPQa+P aQ = ∑
PQ

λPQN[a+P aQ]+∑
I

λII (28.41)

and for two-fermion terms

∑
PQRS

μPQRSa+P a+QaSaR = ∑
PQRS

μPQRSN[a+P a+QaSaR]

+ ∑
PQI

(μPIQI + μIPIQ− μPIIQ− μIPQI)N[a+P aQ]+∑
IJ
(μIJIJ − μIJJI) (28.42)

Analogous relations hold for three-fermion terms, which also occur in the trans-
formed Hamiltonian. After complex application of the Wick’s theorem on all
fermion operators we get the normal form of the Hamiltonian in the general
representation.
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At the second stage we perform the very well known Moller-Plesset splitting [28]
of the final Hamiltonian, i.e. the diagonalization of one-fermion terms in the normal
form according to the formula

∑
PQ

λPQN[a+P aQ]→∑
P

ΛPN[a+P aP] (28.43)

First we obtain the well-known Hartree-Fock equation

f 0
PQ = h0

PQ +∑
I

(v0
PIQI − v0

PIIQ) = ε0
PδPQ (28.44)

Diagonalization of the terms which contain boson operators in the first order gives
us equations for the first order coefficients of the unknown operators c and c̃ of
quasiparticle transformations (28.33) and (28.37)

ur
PQ +

(
ε0

P− ε0
Q

)
cr

PQ +∑
AI

[(
v0

PIQA− v0
PIAQ

)
cr

AI−
(
v0

PAQI− v0
PAIQ

)
cr

IA

]− h̄ωrc̃
r
PQ

= εr
PδPQ cr

PP = 0 (28.45)(
ε0

P− ε0
Q

)
c̃r

PQ +∑
AI

[
(v0

PIQA− v0
PIAQ)c̃

r
AI−

(
v0

PAQI− v0
PAIQ

)
c̃r

IA

]− h̄ω̃rc
r
PQ

= ε̃r
PδPQ c̃r

PP = 0 (28.46)

with the simplest chosen calibration for the diagonal terms.
Finally the set of equations in the second order of the Taylor expansion results

in the ab-initio selfconsistent equations for hypervibrational frequencies ω and ω̃ ,
namely for unknown potential and kinetic matrix elements (28.25) and (28.26)

V rs
N = ∑

I

urs
II +∑

AI

[(ur
IA + h̄ωrc̃r

IA)c
s
AI +(us

IA + h̄ωsc̃
s
IA)c

r
AI] (28.47)

W rs
N = 2h̄ω̃r ∑

AI

cr
AIc̃

s
IA (28.48)

We can look at Eqs. 28.45–28.48 as the generalization of the CPHF [23, 24]
equations for the case of general representation, i.e. including the cases of break-
down of the B-O approximation. We shall call them COM CPHF equations.

In the adiabatic limit where the coefficients c̃ equal zero we get

ur
PQ +

(
ε0

P− ε0
Q

)
cr

PQ +∑
AI

[(
v0

PIQA− v0
PIAQ

)
cr

AI−
(
v0

PAQI− v0
PAIQ

)
cr

IA

]

= εr
PδPQ;cr

PP = 0 (28.49)

V rs
N = ∑

I
urs

II +∑
AI

(ur
IAcs

AI +us
IAcr

AI) (28.50)
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Adiabatic limit supposes that the vibrational frequencies ω are much smaller than
the difference Δε0 between the first unoccupied and last occupied orbital. If we
estimate the ratio c̃/c from Eqs. 28.45 and 28.46) we can find out that the proportion
holds

c̃∼ c
ω

Δε0 (28.51)

It means that the accuracy of adiabatic Eqs. 28.49 and 28.50 is limited up to the first
order of the ratio ω/Δε0. The adiabatic representation still links vibrations, rotations
and translations into one set of nonseparable hypervibrations.

Now we can proceed from the adiabatic limit to the B-O limit. In both approxima-
tions the same Eqs. 28.49 and 28.50 hold. The only but remarkable difference is the
classical concept of the separation of degrees of freedom in the latter one. It means
that the coefficients r, s in these equations represent only the normal vibrational
modes. And besides in this simplified form the Eqs. 28.49 and 28.50 are exactly
identical with the standard Pople’s CPHF equations [23,24] after the formal rewrite
from the fixed basis of atomic orbitals into the moving one, following the motion of
nuclei. Since this is only a numerical problem, which does not affect the core of this
topic, we only refer to preceding works [12, 17].

28.5 Derivation of the Extended Born-Handy Ansatz
from the General Representation

Let us proceed to the fermion part of the general Hamiltonian, particularly the
fermion part difference ΔHF between the general Hamiltonian and the original crude
one

HF = HF(0) +ΔHF (28.52)

The Hamiltonian HF(0) consists of three well-known parts

HF(0) = H0
F(0) +H ′F(0) +H ′′F(0) (28.53)

where

H0
F(0) = E0 = E0

NN +E0
SCF = E0

NN +∑
I

h0
II +

1
2 ∑

IJ
(v0

IJIJ − v0
IJJI) (28.54)

contains the SCF energy of unperturbed electronic system and the nuclear potential
energy,

H ′F(0) = ∑
P

ε0
PN[a+P aP] (28.55)
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is one-electron spectrum as a result of diagonalization (28.44) and

H ′′F(0) =
1
2 ∑

PQRS

v0
PQRSN[a+P a+QaSaR] (28.56)

represents two-electron Coulomb interaction in a normal product form.
The most interesting is the Hamiltonian ΔHF consisting of four parts. As one

can see in Appendix 3 the transformations produce also the three-fermion terms.
Because they are irrelevant for further considerations we limit the study only to the
three important parts:

ΔHF = ΔH0
F +ΔH ′F +ΔH ′′F (28.57)

For the correction to the ground state energy we get

ΔH0
F = ΔE0 = ∑

AI r

(
h̄ω̃r|cr

AI|2− h̄ωr|c̃r
AI|2

)
(28.58)

The one-particle correction ΔH ′F is more complex and therefore we select only that
terms which are decisive for excitation mechanism

ΔH ′F = ∑
PQr

[
h̄ω̃r

(
∑
A

cr
PAcr∗

QA−∑
I

cr
PIc

r∗
QI

)
− h̄ωr

(
∑
A

c̃r
PAc̃r∗

QA−∑
I

c̃r
PIc̃

r∗
QI

)]

N[a+P aQ]+ ∑
PRr

[(
ε0

P− ε0
R

)(|cr
PR|2 + |c̃r

PR|2
)−2h̄ω̃rRe(c̃r

PRcr∗
PR)

]
N[a+P aP]

(28.59)

The first part (28.59) is of a pure one-fermion origin and in the complete derivation
(see Appendix 3) has a non-diagonal form. The second part is not of a pure one-
fermion origin. It is a vacuum value of type 〈0|BrBs|0〉 and/or 〈0|B̃rB̃s|0〉 of the
mixed fermion-boson terms, where the bosonic part is of the quadratic form of
coordinate and/or momentum operators.

In a similar way we select from the correction ΔH ′′F only the dominant term

ΔH ′′F = ∑
PQRSr

(h̄ω̃rcr
PRcr∗

SQ− h̄ωrc̃
r
PRc̃r∗

SQ)N[a+P a+QaSaR] (28.60)

If we proceed from the general to the adiabatic representation with zero c̃ coef-
ficients we obtain exactly the Born-Handy ansatz (28.14) from the first principle
derivation:

ΔE0(ad) = ∑
AI r

h̄ω̃r|cr
AI|2 (28.61)

Moreover, this expression is fully covariant with respect to all degrees of freedom,
i.e. vibrations, rotations and translations.
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Whereas the Born-Handy formula holds only in the framework of adiabatic
approximation, the Eq. 28.58 is quite general and holds in the whole scale ω/Δε0

including the non-adiabatic cases where the B-O approximation is broken. We
denote it the generalized or extended Born-Handy formula. It is highly significant
because, as we will see further, it defines the molecular and crystallic structure.

For a deeper insight into the properties of the extended Born-Handy formula
we demonstrate its simple solution neglecting the two-electron terms. Then the
Eqs. 28.45 and 28.46 have the analytical solution for the coefficients c and c̃:

cr
PQ = ur

PQ

ε0
P− ε0

Q

(h̄ωr)2− (ε0
P− ε0

Q)
2

(28.62)

c̃r
PQ = ur

PQ
h̄ω̃r

(h̄ωr)2− (ε0
P− ε0

Q)
2

(28.63)

so that the extended Born-Handy formula can be expressed only by means of the
matrix elements of electron-hypervibrational (electron-hyperphonon) interaction,
one-electron energies and hypervibrational (hyperphonon) frequencies.

ΔE0 = ∑
AI r

|ur
AI|2

h̄ω̃r

(ε0
A− ε0

I )
2− (h̄ωr)2

(28.64)

Rewriting this equation in the form of the sum of vibrational, rotational and
translational parts, we obtain

ΔE0 = ∑
AI,r∈V

|ur
AI|2

h̄ωr

(ε0
A− ε0

I )
2− (h̄ωr)2

+2 ∑
AI,r∈R

|ur
AI|2

ρr

(ε0
A− ε0

I )
2
+ 2 ∑

AI,r∈T

|ur
AI|2

τr

(ε0
A− ε0

I )
2

(28.65)

and so we have separate expressions for electron-vibrational (electron-phonon),
electron-rotational (electron-roton) and electron-translational (electron-translon)
contributions of the extended Born-Handy formula. In a full analogy with phonons –
quasiparticles generated by the nuclear vibrations – we introduce similar quasi-
particles for the nuclear rotations and translations, calling them simply rotons and
translons.

In the case of adiabatic approximation where the inequality h̄ωr� ε0
A−ε0

I holds
the Eq. 28.65 represents only a small correction to the energy of groundstate. But
what about the non-adiabatic case? In the electron-phonon part of (28.65) there
is a possible singularity when h̄ωr ≈ ε0

A − ε0
I . This case should affect the arising

singularities in Eqs. 28.62 and 28.63 for the coefficients c and c̃. Fortunately this
theory is fully selfconsistent and the extreme values of these coefficients should
affect backward the frequencies ωr defined through the Eqs. 28.47 and 28.48 so
that the system has its own self-defense against such type of singularities, at least
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in molecules where the number of vibrational modes is finite. In crystals with
infinite number of vibrational modes the integration valuer principal is used which
eliminates this type of singularities.

The last two parts – electron-roton and electron-translon – of the Eq. 28.65
have singularities in the case of groundstate electron degeneracies. There are only
two ways how to avoid them. Either all matrix elements ur

AI for the degenerate
states A and I and for rotational and translational modes have to equal zero, or
the whole system has to change its structural arrangement in order to remove the
degeneracy. The new equilibrium position of the nuclei naturally somehow increase
the selfconsistent energy given by Eq. 28.54 but on the other hand the final energy of
the ground state can be still smaller due to the first part of (28.65) which is negative
in the case when both inequalities hold: ε0

A− ε0
I > 0 and ε0

A− ε0
I < h̄ωr.

Now we can summarize previous considerations: In the case of the break down
of the B-O approximation the electron-roton and electron-translon parts of the
extended Born-Handy formula play the role of the trigger inducing a structural
instability in the system. These parts are a direct consequence of the introduction
of centre-of-mass problem into focus. They are responsible for the formation of
molecular and crystallic structure. On the other hand, the electron-phonon part
plays the role of a stabilizer of a new equilibrium position corresponding with new
nuclear displacements. Therefore it is responsible for the formation of molecular
and crystalline electronic structure.

28.6 Jahn-Teller Effect

The Jahn-Teller (J-T) effect is a direct consequence of the breakdown of the B-O
approximation. At first this effect was studied only in a qualitative way on the basis
of the group theory [7]. Nowadays there exist many extensive monographies dealing
with the exact solutions of simple models where two degenerate or quasidegenerate
levels are usually coupled with one or two vibrational modes [29, 30].

The J-T effect deals with molecular distortions due to electronically degenerate
ground states. The J-T theorem was formulated as a statement: “For non-linear
molecular entities in a geometry described by a point symmetry group possessing
degenerate irreducible representations there always exists at least one non-totally
symmetric vibration that makes electronically degenerate states unstable at this
geometry. The nuclei are displaced to new equilibrium positions of lower symmetry
causing a splitting of the originally degenerate states.”

There were only a few articles devoted to the J-T effect in the 1930s before the
World War II. Then the period of stagnation lasted almost two decades. Bersuker in
his book [8] describes the reason:

Among other things Van Vleck [31] wrote that “it is a great merit of the J-T effect
that it disappears when not needed.” This declaration reflects the situation when
there was very poor understanding of what observable effects should be expected
as a consequence of the J-T theorem. The point is that the simplified formulation of
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the consequences of the J-T theorem as “spontaneous distortion” is incomplete and
therefore inaccurate, and may lead to misunderstanding. In fact, there are several
(or an infinite number of) equivalent directions of distortion, and the system may
resonate between them (the dynamic J-T effect). It does not necessarily lead to
observable nuclear configuration distortion, and this explains why such distortions
often cannot be observed directly. Even in 1960 Low in his book [32] stated that
“it is a property of the J-T effect that whenever one tries to find it, it eludes
measurements.”

Theoretical methods of the calculation of the J-T effect started to be developed
in the 1950s, after the first experimental confirmations appeared. These methods are
based on perturbation theory, in which the influence of the nuclear displacements
via electron–vibrational (vibronic) interactions is considered as a perturbation to
the degenerate states, and moreover, they are considered to be the proof of the J-T
theorem.

Let us focus on the origin of the principal idea of the J-T effect. Before its
final formulation by Jahn and Teller, first the Teller’s student Renner [33] was
inspired with the von Neumann–Wigner theorem about crossing electronic terms
[34]: “Electronic states of a diatomic molecule do not cross, unless permitted by
symmetry”. Only if the states have different symmetry, they can cross.

Looking more carefully on the von Neumann-Wigner and the J-T theorems
we can see significant differences: Whereas the first one is connected with the
dissociation processes in molecules and the question of crossing or non-crossing
potential curves, the second one concerns the rigid molecules and the question
of their equilibrium nuclear positions. The J-T effect was formulated prematurely
without the exact knowledge what forms the molecular structure and what the
break down of B-O approximation really means. Two important factors were never
incorporated in the J-T effect: the Fröhlich transformation and the centre-of-mass
problem. These two factors are so profound that the J-T effect will never be
satisfactorily explained without them.

After inclusion of the COM separation into our considerations, we can immedi-
ately recognize, from the Eq. 28.65, that vibronic coupling is really not responsible
for the J-T effect; rather we find that the authentic J-T trigger is represented by
electron-translational (translonic) and electron-rotational (rotonic) couplings.

Nowadays there are many attempts to implement the J-T effect into the problem
of superconductivity. But first something specific related to superconductivity has
to be implemented into the J-T effect, viz. the Fröhlich transformation. Fröhlich did
propose his transformation [10] almost 20 years after the first formulation of the
J-T effect [33]. Unfortunately, this transformation is mostly known in solid-state
physics (and moreover used exclusively in the superconductivity problem) and after
more than a half of century it has not been integrated in the domain of quantum
chemistry. It is very important for several reasons first in the explanation of the
hypervibronic coupling mechanism in the J-T effect. It further takes into account
not only the dependence of electronic states on the nuclear coordinates, as it is usual
in the adiabatic case, but also on the nuclear momenta, which is inherent in the non-
adiabatic one. This type of transformation leads to new fermion quasiparticles that
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are able to describe the non-adiabatic case on the one-determinantal level, so that no
secular problem with the crossing degenerate states arises as it is standardly used in
the J-T calculations.

As we can see from the Eq. 28.65, after the translonic and rotonic coupling
evokes the structural change, and therefore the small changes of the unperturbed
energies ε0, too, the vibronic coupling stabilizes the system in this new position.
Let us look at the one-particle corrections Δε to these new unperturbed energies
ε0. For illustration we show only the diagonal corrections from the Eq. 28.59 in
an analytical form after the neglecting of two-electron terms. Substituting from
Eqs. 28.62 and 28.63 into (28.59) we get:

ΔH ′F = ∑
P

ΔεPN[a+P aP]

= ∑
Pr

h̄ω̃r

(
∑

A =P

|ur
PA|2

(ε0
P− ε0

A)
2− (h̄ωr)2

−∑
I =P

|ur
PI|2

(ε0
P− ε0

I )
2− (h̄ωr)2

)
N[a+P aP]

(28.66)

In order to have a better comparison of equations for one-electron energies (28.59),
(28.66) and those for corrections to the ground state (28.58), (28.64) we introduce a
symmetrical matrix Ω [13, 19].

ΩPQ = ∑
r

(
h̄ω̃r|cr

PQ|2− h̄ωr|c̃r
PQ|2

)
= ∑

r
|ur

PQ|2
h̄ω̃r

(ε0
P− ε0

Q)
2− (h̄ωr)2

ΩPQ = ΩQP; ΩPP = 0 (28.67)

After the substitution of (28.67) into the aforementioned equations we get

ΔE0 = ∑
AI

ΩAI (28.68)

ΔεP = ∑
A

ΩPA−∑
I

ΩPI (28.69)

Let us demonstrate the solution of the extended Born-Handy formula on an example
of J-T effect with two degenerate electronic states. First rotonic and translonic
coupling split them, so we obtain in a closed shell case one occupied orbital and
one unoccupied (virtual) orbital with the unperturbed energies ε0

o and ε0
u . Then the

system finds its new equilibrium position via the vibronic coupling with the minimal
value of the total energy. Therefore we have

ΔE0 = 2Ωuo < 0 (28.70)

and consequently the following relations hold

Δεo = Ωuo < 0; Δεu =−Ωuo > 0 (28.71)
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We have proved, in this way, that the J-T one-electron energy splitting is a direct
consequence of the solution of the extended Born-Handy formula.

The above-mentioned considerations have very important consequences. They
imply that the extended Born-Handy formula, derived from the first principles, is
the factual master equation for the explanation as well as for the calculation of the
J-T effect. This effect was, however, discovered too soon without proper quantum
mechanical knowledge. The inspiration given by the von Neumann-Wigner theorem
was “out of the depth” in connection with this problem, and it could at most result
in group theory formulations of the J-T effect. Since the Fröhlich transformation,
accounted for the influence of nuclear momenta on the electronic states, and the
center-of-mass problem, leading to the critical solution in the case of degenerate
electronic states, were not taken into account, the J-T effect was falsely justified
by the way of vibronic coupling. The authentic trigger of the J-T effect is not the
vibronic, but rotonic and translonic coupling.

It is therefore necessary to reformulate the J-T effect, and not only in a version
for molecules, but for both – molecules and crystals. The ontological statement
emanating from the extended Born-Handy formula (28.65) is essential; all other
considerations regarding the symmetrical properties of molecules and crystal,
and of electronic states and vibration – rotation – translation modes follow as
a consequence of the properties of this formula. Here is a new version of the
reformulated J-T theorem:

Molecular and crystalline entities in the geometry of electronically degenerate
ground states are unstable at this geometry except for the case when all matrix
elements of electron-rotational and electron-translational interaction are equal zero.

28.7 Conductivity

Let us now focus on the case when all matrix elements of electron-rotational and
electron-translational interaction equal zero. Then the system geometry of elec-
tronically degenerate ground state survives. This is exactly the case of conductors
in solid-state physics. The electron-hypervibrational problem reduces to a simple
classical electron-vibrational one. Equation 28.65 has then the form:

ΔE0 = ∑
AI,r∈V

|ur
AI|2

h̄ωr

(ε0
A− ε0

I )
2− (h̄ωr)2

(28.72)

The question arises, how to achieve the nullification of all electron-rotational and
electron-translational terms ur

AI in (28.65). If we try to find the solution in the form
of the Bloch functions (which fully reflect the symmetry of the crystal), then since
rotons and translons have zero quasimomentum values and virtual and occupied
states A and I correspond to different quasimomentum values k and k’, naturally the
above mentioned requirement for ur

AI is fulfilled.
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Now we can rewrite the Eq. 28.72 in solid-state notation (r→ q; I → k,σ with
the occupation factor fk; A→ k’,σ ’ with the occupation factor 1− fk′ ; ε0

I → ε0
k ;

ε0
A→ ε0

k′ ; ur
AI → uq

k′k = uk′-k = uq).

ΔE0 = 2 ∑
k,k′;k=k′

|uk′-k|2 fk(1− fk′)
h̄ωk′-k

(ε0
k′ − ε0

k)
2− (h̄ωk′-k)2

(28.73)

This formula was derived by Fröhlich by means of the second order perturbation
theory [9] and rederived by means of the unitary transformation [10]. Fröhlich in his
derivations started with the generally accepted Hamiltonian in solid-state physics:

H = ∑
k,σ

εka+k,σ ak,σ +∑
q

h̄ωq

(
b+q bq +

1
2

)
+ ∑

k,q,σ
uq (bq +b+−q

)
a+k+q,σ ak,σ

(28.74)

Here we stop to point out that just the Eq. 28.74 is the crucial problem. It
involves only the electron-phonon terms and not the electron-hyperphonon ones
which are necessary for the explanation of superconductors. This equation can
be a good starting point for insulators, semiconductors and conductors, but never
for superconductors. Fröhlich first believed that through the optimalization of
occupation factors fk in (28.73) he gets some decrease of the total energy and tried to
interpret this new state as the state of superconductors, but later recognized that this
solution leads to no experimentally detected gap. Although his transformations were
unique and brilliant, they were unfortunately applied to the wrong Hamiltonian.
Without knowing it, Fröhlich derived in his Eq. 28.73 exactly the correlation energy
to the ground state of conductors.

After bypassing the trigger in (28.65), on one hand the crystal remains in the
adiabatic state, but on the other the electrons from the last occupied (conducting)
band are not part of the rigid system any more, they are quasi free and interact with
the lattice only via the electron-phonon interaction without the backward influence
on the lattice symmetry and nuclear displacements. The whole system is divided
in two subsystems, the adiabatic “core” consisting of nuclei and electron valence
bands, and the quasi free conducting electrons.

Therefore the Eq. 28.74 describes the crude representation with the energies of
these two subsystems and the interaction terms between them. Justification of its use
for conductors is not given a priori but as a consequence of the abnormal solution
of the extended Born-Handy formula, which bypasses the trigger initiating the J-T
effect, so that the general electron-hyperphonon problem can be reduced to the
simple electron-phonon case. The explanation of conductivity is not at all so simple
as it is universally believed. The COM problem plays here an important role and
the conductivity represents only one possible solution of this problem. Fortunately,
since this solution of the COM problem fully justifies the validity of the Hamiltonian
(28.74) for conductors, all equations derived for them remain valid even though the
COM problem was not included into the consideration.
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Let us proceed to the one-electron corrections (28.59) when the electron-
hypervibrational problem reduces to the electron-vibrational one. Since conductors
have no gap, the one-particle derivation is more sensitive and we have to take into
account also the second part of (28.59) which does not depend on the electron
distribution defined by occupation factors as the first part but is exactly valid in
the present form only for the vibrational vacuum.

The substitution for c and c̃ in (28.62) and (28.63) gives us

ΔH ′F = ∑
P,r∈V

(
∑

A =P

|ur
PA|2

ε0
P− ε0

A− h̄ωr
+ ∑

I =P

|ur
PI|2

ε0
P− ε0

I + h̄ωr

)
N[a+P aP]

= ∑
P,r∈V

(
∑

R =P

|ur
PR|2

1

ε0
P− ε0

R− h̄ωr
− 2 ∑

I =P

|ur
PI|2

h̄ωr

(ε0
A− ε0

I )
2− (h̄ωr)2

)
N[a+P aP]

(28.75)

and in the solid-state notation (r→ q;P→ k,σ ,R→ k-q,σ , I → k-q,σ with the
occupation factor fk-q)

ΔH ′F = ∑
k,q,σ ; q=0

|uq|2 1

ε0
k − ε0

k−q− h̄ωq
N[a+k,σ ak,σ ]

−2 ∑
k,q,σ ; q=0

|uq|2 fk−q
h̄ωq

(ε0
k − ε0

k−q)
2− (h̄ωq)2

N[a+k,σ ak,σ ] (28.76)

The electron energies ε0
k with the corrections (28.76) represent the well-known

quasiparticles – polarons that were originally derived on the basis of Lee-Low-
Pines transformation [35]. Now it is clear how the polarons can be directly derived
from the general representation as a special solution of the COM problem where
the trigger inducing the structural instability is bypassed. Whereas the first part of
(28.76) concerns only individual polarons, the general representation yields also
the second part of the corrections (28.76), which must be added to the polaron
energies. Put differently, every polaron “feels” an effective field of other polarons,
ergo, dressed polarons are created.

28.8 Fröhlich Hamiltonian and the BCS Theory

We will discuss now the two-particle term (28.60) for conductors. Again, the
electron-hyperphonon problem reduces to the electron-phonon one, so after sub-
stitution for c and c̃ in (28.62) and (28.63) we get:

ΔH′′F = ∑
PQRSr P=R,Q =S

ur
PRur∗

SQ

h̄ωr

[(
ε0

P− ε0
R

)(
ε0

S−ε0
Q

)
− (h̄ωr)

2
]

[(
ε0

P−ε0
R

)2−(h̄ωr)
2
][(

ε0
S−ε0

Q

)2− (h̄ωr)
2
]N

[
a+P a+QaSaR

]

(28.77)
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In solid-state notation this term reads (r→ q;P→ k+q,σ ,Q→ k’,σ ’;R→ k,σ ,
S→ k’+q,σ ’):

ΔH ′′ = ∑
k,k′,q,σ ,σ ′ q=0

|uq|2 h̄ωq

[(
ε0

k+q− ε0
k

)(
ε0

k′+q− ε0
k′
)
− (h̄ωq)

2
]

[(
ε0

k+q− ε0
k

)2− (h̄ωq)
2
][(

ε0
k′+q− ε0

k′
)2− (h̄ωq)

2
]

N
[
a+k+q,σ a+k′,σ ′ak′+q,σ ′ak,σ

]
(28.78)

When Fröhlich was unsuccessful with his derivation of the ground state energy
correction (28.73), regarding the desired gap measured in superconductors, he
declared in the last sentence of his second famous paper [10] that the theoretical
treatment of superconductivity effects has to wait for the development of new meth-
ods for dealing with two-particle effective interaction, based on his transformation.
He published it as a challenge that somehow by means of the true many-body
treatment, going beyond the Hartree-Fock approximation, the expected gap could be
achieved. He derived the following two-particle expression, known as the Fröhlich
Hamiltonian:

ΔH ′′F(Fr) = ∑
k,k′ ,q,σ ,σ ′ q=0

|uq|2 h̄ωq(
ε0

k+q− ε0
k

)2− (h̄ωq)
2

a+k+q,σ a+k′,σ ′a
+
k′+q,σ ′ak,σ

(28.79)

Comparing the Eqs. 28.78 and 28.79, we can see that they are different in two
details. Our derivation contains the normal product of the creation and annihilation
operators; therefore it is the two-particle correction to the one-particle solution
represented by selfconsistent polarons (28.76). Fröhlich Hamiltonian does not
contain the normal product; it refers directly to electron corrections. But this detail
is not important.

The more interesting fact is the difference in the terms containing the electron and
vibrational energies caused by application of various transformations (28.31) and
(28.32). The first remarkable consequence of this fact is the symmetrical relation
between indices k and k’ in (28.78) that is not fulfilled in the expression (28.79).
Wagner was the first who pointed out this problem in the Fröhlich’s expression and
therefore proposed the effective two-electron interaction gained on the basis of pure
adiabatic transformation with the generator S1(Q) [36]. Later Lenz and Wegner [37]
analysed in details the ambiguity of the form of the Fröhlich Hamiltonian by means
of the continuous unitary transformations.

This ambiguity problem is also reflected in the reduced form of both Hamiltonian
(28.78) and (28.79), used in the BCS theory [11]. Whereas our form of the reduced
Hamiltonian is fully attractive,

ΔHred =−2 ∑
k,k′;k=k′

|uk′−k|2 h̄ωk′−k[(ε0
k′ − ε0

k)
2 +(h̄ωk′−k)

2]

[(ε0
k′ − ε0

k)
2− (h̄ωk′−k)2]2

a+k′↑a
+
−k′↓a−k↓ak↑

(28.80)
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Fröhlich’s reduced Hamiltonian

ΔHred(Fr) = 2 ∑
k,k′;k=k′

|uk′−k|2 h̄ωk′−k

(ε0
k′ − ε0

k)
2− (h̄ωk′−k)2

a+k′↑a
+
−k′↓a−k↓ak↑ (28.81)

has both attractive and repulsive parts.
Although the problem of the correct derivation of the Fröhlich Hamiltonian has

been thoroughly discussed in the past, the much more important problem of the
possibility of the creation of an energy gap by means of an effective attractive two-
electron interaction was never re-examined, in spite of the fact that Fröhlich, who
first derived this effective two-electron Hamiltonian finally never accepted the two-
particle Cooper-pair based theory and claimed that the superconductivity has to be
of one-particle origin.

We have studied the influence of two-particle interaction on the removing
the degeneracy in continuous spectrum [21] and our results are surprising: This
degeneracy can never be removed by a two-particle mechanism. The two-particle
mechanism can only decrease the total energy but does not open any gap. It
represents only the correlation energy. The detailed analysis was performed in our
previous paper [21].

The most important argument against the explanation of supeconductivity on
the basis of the effective two-electron Hamiltonian follows from the article [22]
where Biskupič with his numerical test on H2, HD and D2 molecules confirmed that
the Fröhlich based transformations contribute only with ca 20% of the total value
of the adiabatic correlation energy. The error due to the neglecting of the COM
problem is 400% whereas the error of the Hatree-Fock approach is only ca 7%.
This fact implies our most important objection: The role of the COM problem in
non-adiabatic cases, as e.g. superconductivity, is much more emergent than the two-
particle treatment beyond the Hartree-Fock approach. The true many-body has to
be primarily build on the electron-hyperphonon mechanism, and this consequently
disqualifies the Fröhlich Hamiltonian and all theories build on it, including the BCS
one. They cannot lead to any gap since they describe only the correlation energy of
conductors.

28.9 State of Superconductivity

Whereas the extended Born-Handy formula (28.65) has a unique solution for small
systems (molecules), for the large systems (solids) its solution is ambiguous. We
have shown that the solution via bypassing the trigger leads to conductors. Now
we will deal with another solution with an active trigger causing the change of the
system geometry and removing the electron degeneracy.

Let us consider the conductor with the half-filled conducting band. Rotonic and
translonic coupling first splits the initial lattice into two sublattices, so that the new
arising system indicates only the half symmetry in respect to the initial one. This
implies the splitting of the initial band into two new bands, overlapping on the
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unperturbed level. We denote the unperturbed energies of the lower valence band
as ε0

v,k, and those of the higher conducting band as ε0
c,k. In a similar way we get

twice as many hyperphonon branches – innerband with acoustical branches, and
interband containing only the optical branches, but moreover rotons and translons.
We denote the frequencies of the former set as ωa,q and the frequencies of the latter
set as ωo,q. Finally the vibronic coupling via the optical phonon modes stabilizes
the whole system in this new configuration. After the rewriting of the Eq. 28.65 in
solid- state notation (r→ o,q; I→ v,k,σ ;A→ c,k’,σ ’;ε0

I → ε0
v,k;ε0

A→ ε0
c,k′ ;ur

AI→
uq

k′k = uk′−k = uq) we get

ΔE0 = 2 ∑
k,k′
|uk′−k|2 h̄ωo,k′−k

(ε0
c,k′ − ε0

v,k)
2− (h̄ωo,k′−k)2

+4 ∑
k,r∈R

|ur|2 ρr

(ε0
c,k− ε0

v,k)
2
+ 4 ∑

k,r∈T

|ur|2 τr

(ε0
c,k− ε0

v,k)
2

(28.82)

Note that Eq. 28.82 totally differs from the (28.73) for conductors, which was
derived by Fröhlich. His equation could never describe superconductors since it
supposes only the B-O level of structure typical of conductors. On the other hand,
the Eq. 28.82 fully respects the J-T splitting of bands. All unperturbed energies ε0

v,k

and ε0
c,k with the same quasimomentum k have to differ in some small nonzero

values. Instead of Cooper pairing of two electrons with opposite quasimomenta
and spins, as it is stated in the BCS theory, we obtain the pairing between
occupied valence and unoccupied conducting band electronic states with the same
quasimomenta and spins, i.e. the coherent process over the whole crystal. This
leads to a configuration with the single-valued occupancy of states: they are
either occupied and belong to the valence band, or are unoccupied and belong
to the conducting band. It seams that it is a similar solution, which is typical of
insulators or semiconductors. On the contrary, the Fröhlich Eq. 28.73 leads to partial
occupancy of states and is optimized with respect to the occupation factors, which
is typical of conductors, whereas in the Eq. 28.82 the only optimized parameter is
the J-T displacement of the former sublattice with respect to the latter one.

Now we have to answer the question whether the optimalization process of the
ground state energy (28.82) is able to open an energy gap. The diagonal form of the
J-T one-particle excitation expression (28.66) is fully justified in solid-state physics
where the translational symmetry is supposed. Since we have two bands, in solid-
state notation the one-particle Hamiltonian (28.66) reads

ΔH ′F = ∑
k,σ

(Δεv,k +Δεc,k)N[a+k,σ ak,σ ] (28.83)

so that we have two sets of one-particle corrections, one set for valence band
electronic corrections and the latter set for conducting ones.
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Δεv,k = ∑
q=0

|uq|2
(

h̄ωo,q

(ε0
v,k− ε0

c,k−q)
2− (h̄ωo,q)2

− h̄ωa,q

(ε0
v,k− ε0

v,k−q)
2− (h̄ωa,q)2

)

+2 ∑
r∈R
|ur|2 ρr

(ε0
v,k− ε0

c,k)
2
+ 2 ∑

r∈T
|ur|2 τr

(ε0
v,k− ε0

c,k)
2

(28.84)

Δεc,k = −∑
q=0

|uq|2
(

h̄ωo,q

(ε0
c,k− ε0

v,k−q)
2− (h̄ωo,q)2

− h̄ωa,q

(ε0
c,k− ε0

c,k−q)
2− (h̄ωa,q)2

)

−2 ∑
r∈R
|ur|2 ρr

(ε0
c,k− ε0

v,k)
2
− 2 ∑

r∈T
|ur|2 τr

(ε0
c,k− ε0

v,k)
2

(28.85)

We can take notice of innerband frequencies ωa,q that are not involved in the
ground state energy equation but are present in one-particle correction terms. These
terms are the same as those in the reduced Fröhlich’s Hamiltonian (28.81), i.e. the
denominators of them can achieve both positive and negative values. On the other
hand the terms with interband optical frequencies ωo,q are optimized by means
of the Eq. 28.82, therefore the negative denominators will be prevailing. This will
result in negative values of Δεv,k and positive values of Δεc,k. Of course, from the
general form of the Eqs. 28.84 and 28.85 we cannot uniquely predicate the existence
of a gap. Not all conductors become necessary superconductors at absolute zero.
It depends on many factors but the most important factor is the bandwidth. It is
apparent from (28.84) and (28.85) that the narrow bands (high TC superconductors)
result in greater gaps than broad bands (low TC superconductors).

The most important fact is that the Eqs. 28.84 and 28.85 for the superconducting
gap and entirely unlike polaron equations (28.76) for conductors are two different
solutions of one common Eq. 28.59, as well as the ground state Eqs. 28.82 for
superconductors and (28.73) for conductors are two solutions of one extended Born-
Handy formula (28.58). This strongly contradicts the BCS theory, which seems to
be “a better ground state” for conductors.

The privileged position of the extended Born-Handy formula can be seen also in
the derivation of the main thermodynamical properties of superconductors. We need
not know anything specific about superconductors; the pure assumption of the J-T
like solution of this formula is sufficient.

Let us start with the temperature dependent form of the Eq. 28.69 [13, 19].

ΔεP(T ) = ∑
A(T)

ΩPA−∑
I(T )

ΩPI = ∑
Q

ΩPQ(1−2 fQ(T )) (28.86)

Fermions in the general representation naturally obey the Fermi-Dirac statistics and
therefore the occupation probability for the state Q is given by the well-known
expression

fQ(T ) =
1

e
εQ(T )−μ

kT +1
(28.87)
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where εQ is the energy of the fermion state Q (i.e. ε0
Q +ΔεQ). Then the Eq. 28.86

can be rewritten after substitution from the expression (28.87) as:

ΔεP(T ) = ∑
Q

ΩPQtgh
εQ(T )− μ

2kT
(28.88)

In order to get a reasonable analytical result let us adopt a simplified model where
for any virtual state we suppose (in solids this corresponds to an ideal narrow band
case):

εA(T )− μ = Δε(T ) (28.89)

and for any occupied state:

εI(T )− μ =−Δε(T ) (28.90)

Then (28.88) has the form

ΔεP(T ) = ΔεP(0)tgh
Δε(T )

2kT
(28.91)

Further we omit the index P according to the simplifying conditions (28.89) and
(28.90) and will search for the critical temperature Tc at which the energy gap
vanishes. Because the energy gap Δ0 at the zero temperature is given as:

Δ0 = 2Δε(0) (28.92)

we finally get the ratio between the energy gap and the critical temperature

Δ0

kTc
= 4 (28.93)

For comparison, in the BCS theory this ratio is 3,52. In relative values both
the BCS and our dependence of the energy gap on the temperature are exactly
the same (i.e. the dependences of Δ/Δ0 on T/Tc). The study of other physical
properties, such as specific heat, is published in our previous paper [19]. Let us note
that the Eq. 28.93 was derived without any specific requirements for the detailed
mechanism of superconductivity in comparison with the BCS theory. It reflects the
thermodynamical properties of non-adiabatic systems in a more general form, solely
as a consequence of the solution of the extended Born-Handy formula.

As it was mentioned above, the Eq. 28.82 leads to the ground state, which
is distinctive of insulators and semiconductors. How superconductors differ from
them? There is one important difference: classical insulators are based on the
structure defined by means of the B-O approximation, i.e. the structure with only one
real ground state corresponding to the uniquely defined geometry for the minimum
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total energy of the system. On the other hand, the Eq. 28.82 is based on the J-T
splitting of the original lattice of the conducting state into two sublattices. This
splitting is never single-valued but there always exist several (or an infinite number)
of equivalent directions of distortion. Therefore we can define superconductors as
multigroundstate insulators with several equivalent ground states that correspond to
different nuclear positions – Jahn-Teller equivalent configurations.

28.10 Effect of Superconductivity

We shall distinguish two fundamental attributes of superconductivity – the state of
superconductivity and the effect of superconductivity – that lead to two comple-
mentary descriptions of superconductors. On one side the state of superconductivity
is characterized by the state of a conducting material, which, after the Jahn-Teller
condensation, becomes an insulator with several equivalent ground states. The state
of superconductivity determines all statical properties of superconductors: energy
gap, its temperature dependence, specific heat, density of states near the Fermi
surface etc. On the other side the effect of superconductivity determines all dy-
namical properties of superconductors: supercurrent, Meissner effect, quantization
of magnetic flux, etc. We shall devote in this section just to the problem of effect of
superconductivity.

The fact that the superconductor cannot be defined unambiguously on the mi-
croscopical level, i.e. that it is characterized by the occurrence of several equivalent
groundstates, implies the possibility of spontaneous transition from one ground state
into another one. This process, known as the dynamic J-T effect, represents a new
degree of freedom of the whole system, which is orthogonal to other degrees of
freedom and is also independent on them. It means that this new degree of freedom
is quite nondissipative. The transition process has a cooperative long range order
property, i.e. the sublattices cannot be deformed (otherwise the conception of two
bands would be disturbed) and can only move one with respect to the other. Because
the transition from one state into another is conditioned by the overcoming of the
potential barrier between two neighbouring ground states we shall speak about
the tunnelling process. In this respect we can find a quantum chemical analogy –
molecules with two ground states (right torque and left torque). There is also a
spontaneous tunnelling transition from one configuration to the other one.

The effect of superconductivity is therefore caused by nuclear microflows
through equivalent ground states. There is a question if this nuclear motion
and the lattice symmetry lowering can be detectable. Because all the equivalent
ground states are symmetrically localized around the symmetrical central point
(i.e. the point corresponding to the ground state of material above Tc) there are
the same probabilities of the occurrence of the system in each of these states. The
resulting effect is therefore symmetrical. The experimentally measured nuclear form
factors indicate the rotational ellipsoids originating from the vibrational degrees of



28 Centre-of-Mass Separation in Quantum Mechanics... 541

freedom. There is a possibility that this new nondissipative “rotational” degree of
freedom is hidden in the abovementioned rotational ellipsoids. According to our
theory the rotational ellipsoids would be enhanced at the phase transition below Tc.
And indeed, the recent investigation of structure and superconducting properties of
Nb3Sn (Tc = 18.5K) by X-ray diffraction [38] fully confirms the theory presented
here. On the studied low-Tc compound Nb3Sn, where the Jahn-Teller effect at the
transition from the normal to superconducting state has not been assumed before, a
discontinuous increase of the isotopic Debye temperature factors of niobium and tin
has been observed in the temperature dependence at cooling near to Tc. Maybe the
finer experiments show in future some changes in formfactor values of further low-
and high-Tc superconductors near the critical temperature.

We have mentioned the state of superconductivity formed by means of the
pairing between occupied valence and unoccupied conducting band electronic
states with the same quasimomenta and spins, as a consequence of the electron-
translon and electron-roton interaction. This is the first pairing process relating to
superconductivity. Then we have mentioned the effect of superconductivity caused
by the dynamic J-T effect, which on the crystal level with translational symmetry
induces the temporary pairing of the neighbouring nuclei. This is the second pairing
process. Now the question arises, what is the origin of the superconducting flow of
electrons.

It is clear that the dynamic J-T effect affects not only nuclear positions but
also the electron distributions. Due to the translational symmetry in crystals this
dynamic J-T effect has two levels: on the former level the tunnelling process occurs
between the equivalent ground states, causing the movement of two sublattices, and
on the latter level the tunnelling process arises between the electron distributions.
Therefore we shall speak about the double-level dynamic J-T effect. Whereas the
tunnelling of nuclei is limited within the meaning of “there and back”, the tunnelling
of electron distributions has more abilities – “there and back”, “only backwards”,
and “only forwards”. Since the electron distribution of superconductors – multi-
ground-state insulators – is always of the closed shell form, the minimum tunnelling
electron distribution consists of two electrons with the same quasimomenta and the
opposite spins. And this is the third pairing process, which explains the supercurrent
with the minimum charge 2e. Since the double-level dynamic J-T effect was
never investigated before, there is no experience how to treat it exactly. We only
know that both levels of this double-level effect induce two new nondissipative
degrees of freedom: the former degree for the tunnelling of nuclei (two sublattices)
and the latter one for the tunnelling of two-electron pairs. From the preliminary
considerations we can only estimate the maximum supercurrent velocity of each
electron (i.e. the velocity in the “only forwards” mode). If we denote the frequency
of the nuclei relating to the former new degree of freedom as ωN and the original full
symmetry (i.e. before the J-T splitting) lattice constant as a, the maximum velocity
vmax will be defined as

vmax =
ωN

2π
a (28.94)
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Let us note that only both electrons from each electron pair have to tunnel with
the same velocity but the velocities of various pairs are not correlated.

The existence of the latter new degree of freedom has the most important
consequence in a fact that the quasimomenta of the tunnelling electron pairs belong
to some orthogonal space relating to that one, in which the quasimomenta of elec-
trons in the valence and conducting bands of superconductors – multi-ground-state
insulators are defined. Therefore the quasimomenta of the tunnelling pairs cannot
be expressed via the k-space any more, but we have to introduce the orthogonal l-
space. Each electron from the pair defined via the “statical” quasimomentum k and
spin ±σ moves then as a de Broglie wave with the quasimomentum lk. The values
of lk are only limited by the maximal value

lk ∈ 〈−lmax, lmax〉 (28.95)

where the maximal value of lmax can be expressed by means of the Eq. 28.94:

lmax =
pmax

h̄
=

m
h̄

vmax =
mωN

h
a (28.96)

Thus, we have shown that the simple Cooper pair based mechanism cannot explain
the origin of superconductivity and that three different pairing mechanisms are
necessary to its full understanding. The first and initiating pairing mechanism is
related only to electronic states and not to real particles. This type of pairing
is responsible for the state of superconductors alias multi-ground-state insulators.
Since the excitation mechanism is one-particle, the whole theory describing the state
of superconductivity has to be indispensably one-particle. On the other hand, the
double-level dynamic J-T effect induces two new nondissipative degrees of freedom
accompanying with the pairing of real particles during the tunnelling process –
temporary pairing of neighbouring nuclei and the pairing of two electrons with the
same quasimomenta and opposite spins. This is the final effect o superconductivity
described on two-particle basis.

The above-mentioned conclusions influence the concept of correspondence be-
tween macrostates and microstates. It is commonly believed that any macrostate of
superconductor with a certain value of supercurrent corresponds to one appropriate
microstate described by a certain value of charge carrier quasimomentum. Accord-
ing to our theory the macrostate with zero supercurrent corresponds to several
microstates, i.e. microscopical configurations representing equivalent ground states,
and any other macrostate with nonzero supercurrent corresponds to a certain
transition process between these microscopical configurations.

Further we mention the conception of two phases: superconducting and con-
ducting. This conception originates from the phenomenological idea of parallel
coexistence of two phase components – superconducting (x) and conducting (1−x).
It is motivated by the classical thermodynamics where in a similar way e.g. the
coexistence of liquid and gaseous phases of the same matter is described. This
macroscopical phenomenological conception was later incorporated in microscopi-
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cal theories. So, in compliance with the BCS theory, the Cooper-paired electrons
representing the superconducting phase coexist with free non-paired electrons
representing the conducting phase in a parallel way. On the contrary to this our
theory considers these two phases to be not parallel but orthogonal in the ontological
sense. What does this important difference mean?

In the two-particle theories based on the Cooper pair idea two different entities
are identified: the entity responsible for the condensation and excitation mechanism
leading to the gap formation and the entity responsible for the transfer of super-
current. Cooper pairs are the Bose condensation, which decay into free conducting
electrons through the excitation mechanism, and simultaneously they are carriers of
superconducting current.

In our theory we sharply distinguish these two entities. The former one corre-
sponds to the one-electron J-T excitations. The condensation process represents the
creation of the multi-ground-state insulator with fully occupied valence band and
empty conducting band. The excitation mechanism is one-particle in principle. The
conducting phase of the superconductor in this sense resembles the conductance
of thermally excited insulator (semiconductor). The condensation and excitation
mechanism is a subject of investigation of the state of superconductivity.

The latter entity corresponds to the tunnelling of two-electron distributions (in
the delocalised terminology) or double occupied binding orbitals (in the localised
terminology), which are the carriers of the supercurrent. By this process one
set of paired nuclei decays and another one arises. The tunnelling process is
two-particle in principle, is connected with two new nondissipative degrees of
freedom, one for sublattices and one for paired electrons, and is orthogonal with
respect to the electron-hyperphonon interaction mechanism, which is responsible
for the one-particle gap formation. The phenomenological nature of the carriers
of the supercurrent is the further subject of the investigation of the effect of
superconductivity.

28.11 Conclusion

The main goal of this work was the implementation of the COM problem into
the many-body treatment. The many years experience with the inconvenience of
the direct COM separation on the molecular level and its consequent replacement
with the Born-Handy ansatz as a full equivalent was taken into account. It was
shown that the many-body treatment based on the electron-vibrational Hamiltonian
is fundamentally inconsistent with the Born-Handy ansatz so that such a treatment
can never respect the COM problem.

The only way-out insists in the requirement, to take into account the whole
electron-vibration-rotation-translationalHamiltonian. It means, that the total Hamil-
tonian in the crude representation, expressed in the second quantization formalism,
has explicitly to contain not only the vibrational energy quanta, but also the
rotational and translational ones, which originate from the kinetic secular matrix.
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We shall call these new quasiparticles – rotational and translational quanta – as
rotons and translons, in a full analogy with phonons in solid-state physics. This is the
background of the true many-body treatment in quantum chemistry and solid-state
physics, which we shall call COM many-body theory. It leads to a revised concept
of degrees of freedom, which are inseparable and have only a relative meaning.

The quasiparticle transformations, binding individual representations of the total
Hamiltonian, are then the generalization of the original Fröhlich transformations in
such a way that they contain, besides the electron-vibrational (vibronic or electron-
phonon) interaction, additionally the electron-rotational (rotonic or electron-roton)
and the electron-translational (translonic or electron-translon) interactions. In order
to achieve a unique covariant description of all equations with respect to individual
degrees of freedom, we have introduced the concept of hypervibrations (hyper-
phonons), i.e. vibrations + rotations + translations together, and the consequent
concept of electron-hypervibrational (hypervibronic or electron-hyperphonon) in-
teraction. We have proved that due to the COM problem only the hypervibrations
(hyperphonons) have true physical meaning in molecules and crystals; nevertheless,
the use of pure vibrations (phonons) is justified only in the adiabatic systems, i.e.
the case when electron energies are much greater than the vibrational ones. This
fact calls for a total revision and reformulation of our contemporary knowledge of
all non-adiabatic systems.

The most important equation, derived in this work, is the extended Born-Handy
formula, valid in the adiabatic limit as well as in the case of break down of the
B-O approximation. Since due to the many-body formulation the extended Born-
Handy formula can be expressed in the CPHF compatible form, the extended
CPHF equations, describing the non-adiabatic systems, will immediately follow
from the presented theory. We shall call them COM CPHF equations. Whereas in the
adiabatic limit the extended Born-Handy formula represents only small corrections
to the system total energy, in non-adiabatic systems it plays three important roles:
(1) removes the electron degeneracies, (2) is responsible for the symmetry breaking,
and (3) forms the molecular and crystalline structure.

The first role – removal of electron degeneracies – is fulfilled via the vibronic
coupling. The second role – the symmetry breaking – is caused by the rotonic and
translonic coupling. Finally the third role – forming of structure – is a result of
optimalization where all three types of coupling participate. Only in the adiabatic
limit the forming of molecular and crystallic structure reduces to the standard one,
defined by the B-O approximation. Moreover, at finite temperatures the extended
Born-Handy formula plays yet another role: it defines all thermodynamic properties
of the non-adiabatic systems, as was demonstrated on the derivation of the critical
temperature of superconductors.

Since the J-T effect was always studied without the inclusion of the COM
problem, only vibronic coupling was taken into account, and therefore the symmetry
breaking and forming of structure were misunderstood. The trigger causing the
system instability has the origin in rotonic and translonic coupling. It is necessary
to reformulate the J-T theorem in a new way. One possible formulation is proposed
here: “Molecular and crystallic entities in a geometry of electronically degenerate
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ground state are unstable at this geometry except the case when all matrix elements
of electron-rotational and electron-translational interaction equal to zero.”

As was mentioned in the introduction, modern attempts to explain HTSC by
means of the J-T approach operate with the term “strong vibronic coupling” in
order to advocate the presence of the J-T effect. On the other hand they allow
for the BCS theory applied to LTSC where only “week vibronic coupling” occurs,
which means that the J-T effect may be ignored. However, after the inclusion of
the COM problem we have come to the conclusion that the question of strong or
week vibronic coupling is absolutely irrelevant for the applicability of the J-T effect.
Only symmetry breaking, stimulated by rotonic and translonic couplings, acting as
a trigger, plays a decisive role. Either the trigger is bypassed, and then the crystal
remains in conducting state; or it is switched on and the J-T effect is active, and this
leads to the superconducting state.

It is a fundamental problem in solid-state physics, that due to a misleading
many-body treatment the true nature of the crystalline structure beyond the B-O
approximation was never revealed. This is the reason why the BCS theory, in spite
of the fact that Fröhlich was critical to it and disregarded it, survives more than a
half of century up till now. The BCS theory is based on the naive belief that the
structure of superconductors is the same as the structure of conductors, i.e. that it
is defined through the B-O approximation. As we have shown in our previous work
[21], there is no mechanism, which could split the degenerate electronic spectrum
of conductors and open an energy gap at the adiabatic level.

Fröhlich applied the unitary transformation on the Hamiltonian describing
conductors, but his attempt to remove the degeneracy failed. Then he proposed
the “true” many body treatment. Bardeen with Cooper and Schrieffer continued
to fulfil Fröhlich’s idea, and with the full multiconfiguration method used on the
Fröhlich-transformed Hamiltonian, they attempted to remove the degeneracy. After
2-years of intensive work they had no positive solution. At the last moment Bardeen
accepted the trial function proposed by Schrieffer, inconsistent with the particle
conservation law, and leading to the concept of the Cooper pair based theory, known
as BCS. Nevertheless, the solid-state Hamiltonian does not contain information of
superconductivity, so that Fröhlich as well as Bardeen in fact only calculated the
correlation energy of conductors.

Since quantum field many body techniques are not directly transferable into
quantum chemistry dealing with small molecular systems, they are not fully
transferable into the solid-state physics dealing with great systems (crystals) either.
As it was explained in detail in this work, only the COM many-body formulation
is applicable in non-adiabatic cases. For non-adiabatic crystals the state of conduc-
tivity and superconductivity are two possible solutions of the extended Born-Handy
formula. This is a quite different view from that using only the classical many body
(without COM). The non-adiabatic treatment of crystals leads always to the splitting
into two subsystems. In the case of conductors the first subsystem is the “adiabatic
core” consisting of nuclei and all valence bands, and the second subsystem is the
“fluid” of quasi-free conducting electrons. The explanation of conductors on the
basis of a COM true many-body treatment is not so simple as in the case of the
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classical many body theory. Whereas for the classical many body the conducting
state is a real ground state (and superconductors are something like a “better ground
state” after the Bose condensation of Cooper pairs), the COM many body presents
the conducting state as an abnormal solution of the extended Born-Handy formula,
as some excited state, representing the crystal analogy of ionized molecular systems
where the ionized electrons are not the part of the molecular “ion core” as well. In
other words, the conductors “fling away” one set of electrons so that the rest –
the “core”, consisting of nuclei and valence bands, is not degenerate any more
and is therefore adiabatic with the well-defined structure on the basis of the B-O
approximation. The “off-cast” electrons are not the integral part of the adiabatic
“core” anymore, but still belong to the system and interact with the “core” via the
standard electron-phonon interaction.

In spite of the fact that the effective Hamiltonian of the type adiabatic core +
electronic fluid + electron-phonon interaction between them describes conductors
correctly, the origin of conductivity was misunderstood, and consequently, the
theory superconductivity was misinterpreted as well. The state of superconductivity
is not a “better ground state” as the BCS theory explains it, but the real ground
state, and moreover, the multi ground state due to the J-T effect. This is the
only difference between superconductors and insulators: whereas the latter are
occupying a simple ground state, the former are of multi ground state character.
The electron-phonon mechanism can never describe superconductivity; we need the
complete COM many body, i.e. the electron-hyperphonon mechanism. The rotonic
a translonic coupling splits the system into two subsystems – two sublattices, causes
the symmetry lowering, defines new non-adiabatic structure, and creates the pairs
from all occupied valence and unoccupied conducting band electronic states with
the same quasimomenta and spins, with the cooperative behaviour over the whole
crystal. This is only a pairing of states and not of real particles; therefore the theory
of superconductivity is one-particle in principle, as Fröhlich demanded. Finally the
vibronic coupling via the optical phonon modes stabilizes the whole system in this
new configuration and opens an energy gap. No set of electrons is “flung away” as
in the case of conductors, all electrons are located due the symmetry lowering in the
fully occupied valence bands, exactly as in the case of insulators.

We shall distinguish two fundamental attributes of superconductivity – the state
and the effect of superconductivity – that lead to two complementary descriptions of
superconductors. On one side the state of superconductivity is characterized by the
state of a conducting material, which, after the Jahn-Teller condensation, becomes
an insulator with several equivalent ground states. The state of superconductivity
determines all statical properties of superconductors: energy gap, its temperature
dependence, specific heat, density of states near the Fermi surface etc. On the
other side the effect of superconductivity determines all dynamical properties of
superconductors: supercurrent, Meissner effect, quantization of magnetic flux, etc.
Whereas the state of superconductivity is of one-particle nature, the effect is two-
particle in principle. This is a rather subtle relationship since behind this result lies
the precise conditions for the onset of Yang’s Off-Diagonal Long-Range Order,
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ODLRO [39]. The multi ground state character of superconductors leads to the
double-level dynamic J-T effect, which induces two new nondissipative degrees
of freedom accompanying with the pairing of real particles during the tunnelling
process – temporary pairing of neighbouring nuclei and the pairing of two electrons
with the same quasimomenta and opposite spins. The new electronic degree of
freedom implies a new quasimomentum space orthogonal to the one where the
electrons are described in the state of superconductor – multi ground state insulator.
This is the final effect of superconductivity described on two-particle basis, which
explains the supercurrent with the minimum charge 2e.

Appendices

Appendix 1

We present here some useful relations for the expansions of Eqs. 28.21–28.24 only
up to the second order of the Taylor expansion since we will not take the anharmonic
terms into account in this paper. Maybe the following relations are trivial but it is
worth to mention them due to the cross-platform notation.

h0
PQ = h0∗

QP v0
PQRS = v0

QPSR = v0 ∗
SRQP = v0 ∗

RSPQ (28.97)
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Let us suppose that for every spinorbital X there exists a unique spinorbital X̂ so
that the following symmetrical relations hold:

h0
PQ = h0

Q̂P̂
v0

PQRS = v0
R̂ŜP̂Q̂

ur
PQ = ur

Q̂P̂
(28.100)

In quantum chemistry where the real wave functions are used and the identity
X = X̂ is supposed, the Eqs. 28.100 hold trivially. In solid-state theory where the
assignment X → k,σ and X̂ →−k,±σ (k is the electron quasimomentum and σ is
the spin) is done, these equations lead to the well-known symmetrical relations.

In a similar way, we can expand up to the second order the unitary conditions
(28.35 and 28.36) of the adiabatic transformation
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and the unitary conditions (28.39) and (28.40) for the nonadiabatic transformation
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Appendix 2

The terms of the electron-hypervibrational Hamiltonian up to the second order of
Taylor expansion in the general representation are presented here in details. The

notation Hn(k,l)
X is used where X denotes the terms originating from transformation

of the part A or B of the crude Hamiltonian, n represents the power of the Taylor
expansion, k the power of the coordinate operator Br and l the power of the
momentum operator B̃r.
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H1(0,1)
B =−∑

PQr

h̄ω̃rd 0
�
r PQ

B̃ra
+
P aQ (28.114)

H2(2,0)
B = 0 (28.115)

H2(0,2)
B =− ∑

PQRrs

h̄ω̃r

(
d0
�
r PR

c̃s
RQ− d0

�
r RQ

c̃
�
s
∗

RP

)
B̃rB̃sa

+
P aQ (28.116)

H2(1,1)
B =

1
2 ∑

PQrs

(
h̄ωrd̃

s
�
r PQ
− h̄ω̃sd

r
�
s PQ

)(
BrB̃s + B̃sBr

)
a+P aQ (28.117)

H2(0,0)
B = ∑

PQRr

(
h̄ωrd̃

0
�
r PR

d̃0
rRQ− h̄ω̃rd0

�
r PR

d0
rRQ

)
a+P aQ

+ ∑
PQRSr

(
h̄ωrd̃0

�
r PR

d̃0
rQS− h̄ω̃rd0

�
r PR

d0
rQS

)
a+P a+QaSaR

(28.118)

Appendix 3

Here is the detailed derivation of the fermion part of the Hamiltonian in the
general representation. ΔHF from the Eq. 28.52 can be expressed as a sum of two
contributions

ΔHF = ΔH[F] +ΔH〈F〉 (28.119)

where ΔH[F] is of a pure fermion origin, i.e. the part that is invariant against boson
(hypervibrational) excitations, and ΔH〈F〉 represents the effective part dependent on
boson excitations. We take into account only the boson vacuum mean values:

〈0|Br|0〉= 〈0|B̃r|0〉= 〈0|BrB̃s + B̃sBr|0〉= 0 (28.120)

〈0|BrBs|0〉=−〈0|B̃rB̃s|0〉= δ
r
�
s

(28.121)

If we introduce the discrete particle-hole occupation factors

h(A) = 0,h(I) = 1, p(A) = 1, p(I) = 0 (28.122)

and a simplifying notation for the adiabatic derivatives νr
PQRS of the coulomb

interaction ν0
PQRS

νr
PQRS = ∑

T

(
ν0

PQTScr
TR +ν0

PQRTcr
TS−ν0

TQRScr
PT −ν0

PTRScr
QT

)
(28.123)
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we finally get the individual contributions for one- and two-fermion terms. The
surprising fact is the occurrence of three-fermion term, in spite of the fact the crude
representation contains only one- and two-electron terms.

ΔH ′F = ∑
PQr

[
h̄ω̃r

(
∑
A

cr
PAcr∗
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I

cr
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r∗
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ΔH ′′′[F] =−2 ∑
PQRSTUV r

(v0
PQVTcr

VS− v0
VQSTcr

PV)c̃
r∗
URN[a+P a+Qa+R aUaT aS] (28.126)

H ′〈F〉 =
1
2 ∑

Pr
ur

�
r

PPN[a+P aP]+ ∑
PRr

[
(ε0

P− ε0
R)(|cr

PR|2 + |c̃r
PR|2)−2h̄ω̃rRe(c̃r

PRcr∗
PR)

]
N[a+P aP]

+ ∑
PAIr

{
∑
R

[
(ν0

PRPA−ν0
PRAP)(c

r
IRcr∗

IA + c̃r
IRc̃r∗

IA)− (ν0
PRPI −ν0

PRIP)(c
r
ARcr∗

AI + c̃r
ARc̃r∗

AI)
]

+
1
2

[
(ν0

PIPA−ν0
PIAP)(c

r
�
r

AI − c̃r
�
r

AI )− (ν0
PAPI −ν0

PAIP)(c
r
�
r

IA − c̃r
�
r

IA )
]}

N[a+P aP]

(28.127)
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22. Svrček M, Baňacký P, Biskupič S, Noga J, Pelikán P, Zajac A (1999) Chem Phys Lett 299:151
23. Gerratt J, Mills JM (1968) J Chem Phys 49:1719–1730
24. Pople JA, Raghavachari K, Schlegel HB, Binkley JS (1979) Int J Quant Chem Symp 13:225
25. Kołos W, Wolniewicz W (1964) J Chem Phys 41:3663
26. Wolniewicz W (1993) J Chem Phys 99:1851
27. Kleinman LI, Wolfsberg M (1974) J Chem Phys 60:4749
28. Moller C, Plesset MS (1934) Phys Rev 46:618, Sosa
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Chapter 29
Delocalization Effects in Pristine and Oxidized
Graphene Substrates

Dmitry Yu. Zubarev, Xiaoqing You, Michael Frenklach,
and William A. Lester, Jr.

Abstract It is natural to consider graphene as a polyaromatic hydrocarbon
(PAH). This name suggests that delocalized bonding should be a useful concept
if one aims to gain insights into structure-property relationships in graphene.
Aromatic/antiaromatic nature of small PAH can be established in a straightforward
manner according to a multitude of techniques such as Clar’s rules and various
measures of aromaticity. Large PAHs that are considered as realistic models
of graphene can raise challenges to the aforementioned approaches due to the
cost of associated calculations and conceptual difficulties. There is an apparent
need for systematic studies of local and global delocalization phenomena in
graphene. The present account summarizes some of the recent findings that consider
certain properties of pristine and oxidized graphene substrates in the context of
formation of Mobius or Huckel aromatic systems. Emergence of anti-ferromagnetic
diradical states, relative stability of PAH oxyradicals, and onset of patterns of
local aromaticity are discussed. Robustness of several popular approaches to
characterization of delocalization effects is assessed. The harmonic oscillator model
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of aromaticity (HOMA) is shown to be extremely suitable for investigation of large
substrates. The described results suggest that further studies of peculiarities of
delocalization effects in PAHs can lead to substantial progress in development of
models appealing to chemical intuition and capturing the most relevant aspects of
the electronic structure of graphene.

29.1 Introduction

Graphene is a quasi two-dimensional material with honeycomb structure that can
be seen as a result of conjugation of benzene-like fragments. Unique properties
of graphene are widely recognized. The potential of this material for emergent
technologies stimulates both experimental and theoretical research efforts world-
wide [1–3]. Much interest is attracted to peculiarities of the electronic structure
of graphene. This topic is pertinent to many issues of fundamental and applied
relevance [4–18]. One of important tasks of electronic structure studies is to discern
the role of edges of finite-size graphene substrates in the formation of unusual
electronic states and in rendering their chemical activity. Theoretical studies and
computational modeling are of great help especially in cases when it is hard
to collect experimental data or to conduct experiments in a reproducible and
controllable manner. Polyaromatic hydrocarbons (PAH) usually serve as models of
graphene because they have the same structure as the interior. The chemical nature
of pure graphene edges [19–22] is a subject of ongoing research but in systematic
model studies it is reasonable to consider saturated, i.e., hydrogenated edges of
PAHs. Computational studies of large substrates can be demanding up to the point of
being infeasible if very accurate theoretical approaches are invoked. Consideration
of small PAHs is more attractive in this regard but might be inadequate because the
number of atoms forming the edge is comparable to the number of atoms forming
the interior. As a result, the role of edges could be exaggerated.

Numerous studies have been performed to identify the nature of the electronic
ground states of molecules related to graphene. Predictions were made that linear
polyacenes with more than eight rings have triplet ground states [23] and later that
oligoacenes longer than hexacene are diradical singlet in their ground state [24].
It was demonstrated [25] that the ground states of linear acenes and polyacenes
with more than seven rings are antiferromagnetic but are not necessarily diradical.
The major contribution of the zigzag edges to the localization of the spin-polarized
states was shown along with the growth of magnetization with the size of the
acene. The electronic properties of graphene nanoribbons with varying widths
have been extensively studied computationally [26–28] and experimentally [29,30].
Both wide graphene ribbons and large rectangular PAHs were reported to have
antiferromagnetic ground states [25, 31]. Computational studies showed [32, 33]
that no zero-energy states exist in finite-length zigzag nanoribbons and that trigonal
zigzag nanodisks have degenerate zero-energy states and show ferromagnetism.
Energy gaps of graphene nanoribbons with zigzag or armchair edges were found to
decrease with the width of the systems increasing [28]. Rectangular PAHs exhibiting
both armchair and zigzag edges were extensively studied to identify the smallest
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system yielding spin-polarization [34]. It was found that at least three consecutive
units long at zigzag edges yields spin polarization if the width is 1 nm or wider. High
level ab initio studies showed the possibility of stable high spin states of coronene
and corannulene [35] and singlet polyradical states of long acenes [36].

Among many reactions of PAHs their oxidation becomes important in the view
of the connection to oxidation of fossil fuels and formation of soot [37]. The
latter is a hazardous substance and there is urgency in studies of its oxidative
destruction. Experimental studies of oxidative resistance of soot are complicated
because it is difficult to control soot composition which is not well determined
and is dependent on many experimental factors [38–42]. Past theoretical studies of
soot oxidation have focused on the model cases of oxidation reactions of one-ring
aromatics [43–46] and oxygen chemisorption at selective sites of two- and three-
ring aromatics [47–50]. PAHs constitute fundamental structural moieties of many
other carbonaceous materials such as graphite, char, carbon black, fullerenes, carbon
nanotubes, and, most recently, graphene sheets. Therefore, studies of oxidation of
PAHs can contribute to development of technology of chemical modification of
graphene especially in the context of improvement of efficiency of battery anodes
and design of novel semi-conducting materials.

The present review summarizes some of the recent results obtained in theoretical
studies of pristine and oxidized graphene substrates. It shows that global and local
delocalization effects can be seen as a common grounds for explanation of certain
peculiar properties of these systems. In the former case it leads to a rationale
for the origin of stabilization of diradical singlet states and in the latter case it
provides a very simple and intuitive perspective on relative stability of oxyradicals
formed. Before discussing these findings in details, it is useful to overview pertinent
approaches to the assessment of aromaticity.

29.2 Aromaticity Measures

Aromaticity is associated with delocalization of bonds and like the concept of
a chemical bond itself, it is ill-defined. Various properties of molecules can be
used to construct measures of aromaticity [51–53]. Rigorous approaches estimating
energy of the resonance stabilization are computationally expensive. A magnetic-
property-based criterion of aromaticity called nuclear-independent chemical shift
index (NICS) is a widely accepted measure of local aromatic character of a molecule
[54]. NICS characterizes magnetic shielding within a ring structure and is usually
calculated at the geometric center of the ring and at some displacement above the
ring. Its performance along with alternative techniques has been reviewed recently
[55]. For anti-aromatic, non-aromatic, and aromatic systems NICS takes values from
positive, to zero, to negative, respectively. Both closed- and open-shell systems
can be treated [56]. In case of planar rings the out-of-plane component of the
NICS tensor (NICSzz) has advantage over the total NICS [57]. Recent studies of
small aromatic, anti-aromatic, and non-aromatic organic molecules demonstrated
that NICSzz is equal to the z-component of the induced magnetic field [58].
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The harmonic oscillator model of aromaticity [59] assesses the amount of
stabilization or destabilization in a benzene-like ring from the deviation of inter-
atomic distances from the perfect carbon-carbon bonds of benzene. It is defined by,

HOMA = 1− a
n

N

∑
i=1

(rCC− rCC−benzene)
2 (29.1)

where a was chosen to be 257.7 so that HOMA = 0 for a Kekule form of benzene
and HOMA = 1 for the aromatic form of benzene, n is the number of bond lengths
in the ring, rCC is the carbon-carbon bond length in the system under consideration,
and rCC-benzene is set to the experimental carbon-carbon bond length of benzene.
Deviation of HOMA from 1 is a signature of deviation of aromatic character of
the ring from that of benzene. Global aromaticity of a molecule can be assessed as
a sum of HOMA for individual rings [60–62]. It has been shown for polyacenes
that HOMA and NICS give similar results regarding global and local aromaticity,
but NICS tends to overestimate the latter [63, 64]. Also, additional computational
efforts are required in order to assess NICS. They can be substantial in the case
of large systems, e.g. pertinent to graphene chemistry, whereas HOMA can be
readily obtained from the equilibrium geometry. It has been noted that energetic
and magnetic criteria of aromaticity need not be consistent with each other.

Both NICS and HOMA are suitable for quantitative studies of delocalization
effects. There are also qualitative approaches, such as Huckel electron counting
rules and Clar’s sextet model [65] that lead to the assignment of aromaticity or
antiaromaticity. Local aromatic fragments can be identified from bonding analysis
if patterns of bonds are found that are similar to the prototypical organic aromatic
systems. For example, adaptive natural density partitioning (AdNDP) [66, 67] can
be used to separate bonding objects with a high degree of localization of electron
pairs, such as lone pairs and two center-two electron bonds, from delocalized
bonding objects, e.g., π-orbitals of benzene. It was shown previously for PAHs [67]
that AdNDP and Clar’s sextet assignment are in agreement only if the electronic
structure of the molecule can be described using a single Clar structure. In case of
resonance of Clar structures, there is no direct correspondence between these two
approaches.

There are over 50 various criteria proposed and used to make a judgment about
aromatic character of molecular systems (see, for example, Ref. [55] and references
therein). This large number is due to a conceptual difficulty of defining aromaticity.
Aromaticity manifests itself in many properties, including energetic, magnetic,
structural, and chemical, so each can give rise to a separate aromaticity index.
Typically, one seeks a consistency between several measures and a balance between
their conceptual rigor and computational feasibility. These considerations led to
choosing HOMA and NICSzz in the study of linear PAHs and HOMA only in the
study of larger two-dimensional PAHs. Only qualitative approaches, i.e. electron
counting and orbital symmetry analysis, were used in the study of PAH diradicals.
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29.3 Delocalization and Diradical States of Graphene
Substrates

Insights into formation of diradical states in graphene substrates were gained in
a study combining a perfect-pairing approximation to the coupled-cluster theory
(PP-CC) and density functional theory (DFT) calculations using hybrid functional
and generalized gradient approximation (GGA) [68]. Three rectangular PAHs were
considered (Fig. 29.1). The substrates display both zigzag and arm-chair edges
and can be seen as four, five, and six rows of linear acenes containing four,
five, and six rings, respectively. The stoichiometric formula for these substrates
is C2(nanz +na +nz)H2(na + nz + 1), where na, nz = 4,5,6, so that the substrates
C48H18, C70H22, and C96H26 are designated “4a4z”, “5a5z”, and “6a6z”. The first
and the third systems belong to C2h point-group, the second is of C2v symmetry.

DFT calculations provided relative energies of the spin-states of interest which
included closed-shell singlets, diradical open-shell singlets, and triplets. PP-CC cal-
culations were used to obtain occupation numbers of alpha and beta orbitals, which
were used to assess diradical character of each substrate. Results of the calculations
are summarized in Table 29.1. DFT cannot really resolve which state is lower in
energy. One sees that 4a4z closed- and open-shell singlets are effectively degenerate,
the 5z5a and 6z6a open-shell singlet and triplet are effectively degenerate. At the
PP-CC level 4a4z is not a diradical; 6a6z is; 5a5z – is in between.

Additional information about the nature of diradical open-shell singlet states
can be extracted from PP-CC calculations. As an active space approach, PP-CC
accounts for the contribution of additional electron configurations that becomes
significant when strong electron correlation effects are encountered in systems
with small energy gaps between occupied and virtual orbital spaces. The Boys
localization procedure that precedes PP-CC computations shows clear difference
between the structure of molecular orbitals of the substrates with noticeable and
negligible diradical character. Only well-localized orbitals are produced in the case
of 4a4z substrate. Both 5a5z and 6a6z substrates have one delocalized orbital
remaining after localization. This delocalized orbital is in fact the highest occupied
molecular orbital (HOMO) of the PP-CC calculations and it is the one involved in

Fig. 29.1 Geometries of (a) 4a4z PAHs, (b) 5a5z PAHs, and (c) 6a6z PAHs
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Table 29.1 Relative energies and diradical character of 4a4z, 5a5z, and
6a6z graphene patches

Erel, kcal/mol Erel, kcal/mol γa
0

Spin State B3LYP PW91 PP–CC

“4a4z” C48H18

S = 0, <S2>= 0.0 0.26 0.00
S = 1, <S2>= 2.1 6.61 9.10
S = 0, <S2>= 0.3 0.00 0.01
“5a5z” C70H22

S = 0, <S2>= 0.0 8.10 1.60
S = 1, <S2>= 2.1 0.20 0.80
S = 0, <S2>= 1.1 0.00 0.00 0.53
“6a6z” C96H26

S = 0, <S2>= 0.0 15.27 4.50
S = 1, <S2>= 2.1 0.54 0.20
S = 0, <S2>= 1.3 0.00 0.00 0.91

For detailed discussion of the computational methodology and references
see Ref. [67]
adiradical character calculated from PP–CC orbital occupation numbers

Fig. 29.2 (a) Isosurfaces of orbitals involved in formation of singlet diradical states of 5a5z and
6a6z in PP-CC calculations; wavy lines show sites of sign inversion; (b) isosurfaces of the spin
density and diagrams of Kohn-Sham singly occupied levels of the singlet diradical states of a 5a5z
and 6a6z substrates from plane wave DFT calculations

the formation of the diradical due to the strong electron correlation with the lowest
unoccupied molecular orbital (LUMO) (Fig. 29.2a).

It is established that in addition to Huckel aromaticity which is an extra
stabilization of a molecule due to delocalized bonding involving 4N+ 2 electrons,
there is also Mobius aromaticity [69, 70]. The latter is associated with 4N electrons
involved in delocalized bonding in molecules that exhibit similarity between the
nodal structure of their molecular orbitals and orbitals of Heilbronner’s polyenes
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with Mobius twist [71]. Mobius strip topology is not a prerequisite of Mobius
aromaticity. The 4N electron counting rule is due to a peculiar structure of an
orbital energy diagram where doubly degenerate orbitals are not preceded by a
non-degenerate completely bonding orbital as in the case of Huckel aromaticity.
Alternatively, the number of out-of-phase overlaps in orbitals contributing to delo-
calized bonding can be considered [69, 70]. It is important to keep in mind that the
counting rules are applied to electrons and orbitals contributing to delocalized bonds
which have to be separated from the localized bonding objects. Among the three
substrates considered, 4a4z does not have a globally delocalized bonding component
because all of its orbitals can be localized. Globally delocalized bonding exists in
5a5z and 6a6z and is rendered by their HOMOs that remain delocalized after the
localization procedure. Formation of diradical states in 5a5z and 6a6z is, therefore,
due to the orbitals contributing to delocalized bonding, i.e., HOMO and a strongly
correlated LUMO. In diradical states, these orbitals become singly occupied and
degenerate with the orbital energy diagram of Mobius type (Fig. 29.2b). Analysis of
out-of-phase overlap shows an odd number with sites of sign inversion (Fig. 29.2a),
consistent with the structure of a Mobius orbital array [69, 70]. Therefore, provided
the open-shell singlet states of 5a5z and 6a6z are multiconfigurational, these systems
should be considered as multi-configurational Mobius aromatic.

29.4 Local Aromaticity and Stability of Graphene Oxyradicals

Studies of stability of oxyradicals of various PAHs have been performed in order to
characterize the role of edges in graphene oxidation and the influence of the oxidized
edge on the electronic structure of the interior [72, 73]. Theoretical approaches
ranging from second order Moeller-Plesset perturbation theory (MP2) to GGA and
hybrid DFT to semi-empirical PM6 method were used. Treatment of large substrates
is challenging for any ab initio method except for GGA. It is also risky to rely on
a single theoretical framework, so semi-empirical studies should be considered as
viable alternatives to DFT. Detailed discussion of the computational methodology
and references can be found in Refs. [72] and [73]. Analysis of the delocalization
effects pertinent to the topic of the present contribution has been performed using
AdNDP, NICS, and HOMA in the case of linear substrates and HOMA in the case
of rectangular substrates.

29.4.1 Linear Substrates

Schematic representation of bonding in the pentacene molecule and its oxyradicals
is based on the results of AdNDP analysis (Fig. 29.3) [72]. Oxyradicals II-V
are open-shell systems so the analysis was performed separately for α- and
β-components of the electron density and results superimposed.
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Fig. 29.3 Schematic representation of chemical bonding in systems I – V. For the open shell
systems II – V the bonds found simultaneously in α- and β-spaces are depicted as regular nc-
2e bonds. Non-coinciding nc-1e bonds from α- and β-spaces are superimposed (α are dashed lines
on the interior, β – on the exterior). Oxygen lone-pairs and 2c-2e CH σ-bonds are omitted

Both hybrid DFT (B3LYP) and MP2 calculations showed higher stability of
oxyradicals with O bound by “interior” rings. Standard Gibbs free energies of
pentacene oxyradicals II-V were calculated to assess their thermodynamic stability
as a function of temperature (Fig. 29.4). The temperature dependencies indicate
that below 1000 K the relative thermodynamic stability of II-V is the same as the
ordering of their relative energies at both B3LYP and MP2 levels of theory, i.e., is
in the order: II > III > IV > V. Above 1000 K oxyradical II becomes less stable
than III due to the larger entropy of III and increasing contribution of the entropy
contribution to the Gibbs free energy with temperature.

The relative stability of four pentacene oxyradicals can be related to the
strength of delocalization effects in their π-electron systems. The quantitative
(NICS, HOMA) and qualitative (AdNDP) approaches agree in their assessment
of local aromaticity of the rings of pentacene and its oxyradicals (Fig. 29.3 and
Table 29.2). When O binds to a particular ring forming a double bond it destroys
local π-aromaticity and renders the ring non-aromatic. Furthermore, it excludes the
ring from the globally delocalized π-bonding system and leads to a fragmentation of
the latter. Two separated locally π-aromatic fragments are formed in II and III and
only one in IV and V, hence the higher stability of the former two. The patterns
of conjugation in the remaining rings is another factor. Orthobenzoquinone-like
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Fig. 29.4 Standard Gibbs free energy of pentacene oxyradicals relative to that of pentacene
oxyradical II as a function of temperature at B3LYP/6-311G(d,p) level of theory

conjugation revealed in IV should have higher stability than the parabenzoquinone-
like conjugation in V (Fig. 29.3). The role of π-delocalization in oxyradicals for
their stability can be clearly seen from the nearly linear dependence of the relative
energies of II-V and their cumulative HOMA (Fig. 29.5). Cumulative HOMA of a
PAH is calculated as sums of HOMA of each individual ring under the assumption of
the additive nature of global aromaticity of a PAH with respect to local aromaticity
of its benzene-like rings. In the view of fragmentation of the globally delocalized
π-bonding in oxyradicals, their relative energies are additive with respect to the
stabilization energy of independent locally aromatic fragments. This is the reason
for the simple correlation between relative energies and cumulative HOMA.

29.4.2 Rectangular Substrates

From the investigation of the linear PAH as a model of a zigzag graphene
edge in reaction with O70 it was concluded that the relative stability of linear
oxyradicals is controlled by fragmentation of the delocalized π-electron system
and formation of locally aromatic fragments. Fragmentation is the only viable
option for the rearrangement of π-bonds in linear PAHs. Two-dimensional substrates
should be more flexible in accommodating changes in their electronic structure
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Table 29.2 Assessment of local aromaticity: values of HOMA and NICSzz indices for structures
I – V and prototypical aromatic benzene and naphthalene molecules

Ring i Ring ii Ring iii Ring iv Ring v

Structure HOMA NICSa
zz HOMA NICSa

zz HOMA NICSa
zz HOMA NICSa

zz HOMA NICSa
zz

I 0.49 −4 0.57 −17 0.59 −22 0.57 −17 0.49 −4
−13 −27 −31 −27 −13
−21 −33 −37 −33 −21

II 0.77 −7 0.71 −1 −0.17 25 0.71 −1 0.77 −7
−16 −11 17 −11 −16
−24 −20 4 −20 −24

III 0.89 −3 −0.12 24 0.57 2 0.69 −10 0.67 −7
−12 16 −7 −19 −16
−20 3 −17 −27 −24

IV 0.10 19 0.51 2 0.60 −9 0.65 −15 0.59 −6
12 −7 −19 −24 −15

0 −17 −27 −31 −23
V 0.03 16 0.43 10 0.58 −3 0.67 −11 0.63 −7

8 1 −12 −21 −15
−3 −10 −21 −28 −23

Benzene 0.99 −14
−23
−29

Naphthalene 0.79 −13 0.79 −13
−22 −22
−29 −29

a Three NICSzz values are calculated at 0.0 Å, 0.5 Å, and 1.0 Å above the ring, yielding NICS(0.0),
NICS(0.5) and NICS(1), respectively
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of theory) plotted against cumulative HOMA. The straight line reflects nearly linear dependence
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Fig. 29.6 Structures of two-dimensional PAH substrates used to form oxyradicals. Roman
numerals label position of oxygen in corresponding oxyradicals. Arabic numerals label six-atomic
rings

due to oxidation. Measures of local aromaticity should be informative and robust
tools in the assessment of such changes. Considering the size of the substrates
of interest, HOMA is perceived as the optimal choice as it does not require
any quantum chemical computations beyond geometry optimization and readily
provides information about local and global localization.

Analysis of stability of two families of oxyradicals formed from two-dimensional
substrates (Fig. 29.6) has been performed at GGA DFT and semi-empirical PM6
levels of theory [73] to ascertain whether the previously observed relationship



564 D.Yu. Zubarev et al.

between local aromaticity and relative stability of linear PAH oxyradicals holds for
two-dimensional substrates. The substrates are designated according to the size and
the shape of the edges. Two types of substrates are investigated, 5ZmZ and 5ZnA,
where Z stands for “zigzag”, A for “armchair”, m = 2–5 and n = 3–5. Therefore,
5Z3A is a substrate of rectangular shape with five rings along the zigzag edge and
three rings along the armchair edge. Position of oxygen in the edge is used to label
different oxyradicals formed from the same substrate (Fig. 29.6).

As a double C-O bond is formed instead of a single C-H bond in the edge
of a substrate molecule the respective C cannot contribute to the π-system in
the corresponding ring rendering the latter antiaromatic. Therefore, oxidation
triggers rearrangements in the π-bonding framework throughout the entire molecule.
Following the analysis performed in the study of pentacene oxyradicals, cumulative
HOMA was used to quantify delocalization effects in 5ZmZ and 5ZnA families of
oxyradicals. Relative energies of oxyradicals are plotted against cumulative HOMA
in Fig. 29.7. The linear trend appears to persist. Certain peculiarities are noticeable,
though. First, cumulative HOMA of oxyradicals varies noticeably with position of
O in the edge at the PM6 level. These pronounced changes suggest strong influence
of edge oxidation on the aromaticity of the entire oxyradical. DFT trends are
steeper, showing that cumulative HOMA does not depend strongly on the position
of oxidation. Second, outliers are encountered at the PM6 level of theory. Isomers
I-5Z2Z and I-5Z3A (Figs. 29.6 and 29.7) have the highest relative energy and the
lowest HOMA, which is consistent with the generally observed trend. Isomer I of
the rest of the substrates has an anomalously high HOMA which is inconsistent with
its high relative energy. Isomers VI-5Z5Z and VII-5Z5A exhibit similar anomaly.
Weak involvement of the respective rings in global π-delocalization is a plausible
explanation of these results. The relative stability would be due to other factors
such as structural strains and stabilization of the unpaired electron. For example, in
I-5Z(3,4,5)A and I-5Z(4,5)Z, ring 1 is indeed antiaromatic, but its HOMA value
is consistently higher than the HOMA of oxidized rings in other oxyradicals. This
can be seen as a consequence of incomplete relaxation of C-C bonds leading to
structural strain.

Another way to look at the rearrangements of bonds and change of local
aromaticity is to compute the change of local HOMA of oxyradicals relative to
the substrate and to each other (see detailed discussion in Ref. [73]). At both levels
of theory, the ring interacting with O becomes anti-aromatic. DFT shows uniformly
high values of local HOMA (above 0.5) and, respectively, appreciable degree of
delocalization, in the remaining rings. Therefore, the loss of aromaticity by an
oxidized ring appears to be a local effect which does not significantly affect other
rings. PM6 shows drastic changes of local aromaticity from ring to ring in each
substrate. It also shows significant redistribution of aromatic fragments as a response
to oxidation of different rings. Upon oxidation HOMA variations of individual rings
at the DFT level are typically by an order of magnitude smaller than those at the PM6
level. For this reason, PM6 results reveal more clearly patterns of local aromaticity
in the oxyradicals studied and, therefore, will be discussed further in greater details.
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Fig. 29.7 Relative energy of 5ZmZ (m = 2–5) and 5ZnA (n = 3–5) oxyradicals, plotted against
cumulative HOMA: red squares – PM6, blue triangles – DFT; roman numbers label the isomers
according to the position of oxygen along the edge (see Fig. 29.6)
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Fig. 29.8 An example of HOMA pattern classes in 5Z5Z and 5Z5A substrates and corresponding
oxyradicals (PM6 level). HOMA is represented by color changing from blue for HOMA = 0.0, to
white for HOMA = 0.5, to red HOMA = 1.0. Black solid dot marks oxygen position

Further inspection shows that the oxidation at the edge leads to three classes of
local aromaticity patterns. Oxyradicals of 5Z5Z and 5Z5A substrates at Fig. 29.8
illustrate this finding. The one, “checker-board-like”, is related to the Clar structure
of coronene with highly aromatic disjoint rings (Fig. 29.8, left panel: III; right panel:
I, II, III, IV, and X), and another resembles a resonance of Clar structures leading to
cycles of six weakly aromatic rings (Fig. 29.8, left panel: I, II, and VI; right panel: V,
VI, and IX), hence the designations “Clar coronene” and “superaromatic coronene”.
Aromaticity of a considerable number of oxyradicals (Fig. 29.8, left panel: IV and
V; right panel: VIII and XI) is in the “intermittent” regime which can be seen as
a mixture of the two forms. It remains to be seen if these three types of patterns
are general and emerge in other graphene-based systems. Their formation does not
seem to be affected by the nature of the substrate edges in the present case, so the
assumption of generality is plausible.

29.5 Conclusions

Investigation of the nature of the diradical open-shell singlet states in a family of
rectangular PAHs exemplifies relevance of delocalization effects and the concept of
aromaticity to theoretical studies of electronic structure of graphene. It showed that
diradical states are formed in the substrates that have a globally delocalized com-
ponent in their bonding framework. This delocalized component bears the signature
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of Mobius aromaticity. Given the multiconfigurational nature of open-shell singlet
states, PAH diradicals can be classified as multiconfigurational Mobius aromatic.

The interplay between local aromaticity of benzene-like rings of graphene
substrates and the global aromaticity of the latter has led to a simple explanation
of the trends in relative stability of two families of linear and two-dimensional
PAH oxyradicals. For any substrate, oxidation leads to the loss of aromaticity by
the corresponding ring and eliminates its contribution to inter-ring conjugation. As
a result, the relative stability of linear oxyradicals is controlled by fragmentation
of the globally delocalized π-electron system. It mainly depends on the nature
and the amount of locally π-aromatic fragments formed. Relative energies of
linear oxyradicals show linear dependency of the cumulative HOMA aromaticity
measure. This linear trend is essentially preserved in oxyradicals of two-dimensional
substrates. No fragmentation but rather rearrangement of the pattern of local
aromaticity occurs upon oxidation in the edge. It appears to lead to three classes
of local aromaticity patterns. The first class is checker-board-like. It is related to
the Clar structure of coronene with highly aromatic disjoint rings. The second class
resembles a resonance of Clar structures leading to cycles of six weakly aromatic
rings, hence the designations “Clar coronene” and “superaromatic coronene”. Also,
there is an “intermittent” class which can be seen as a mixture of the previous
two. It remains to be seen if these three types of patterns are of general relevance
and emerge in other graphene-based systems. Their formation does not seem to
be affected by the nature of the substrate edges in the present research, so the
assumption of generality is plausible. This shows, that a very local event, such as
oxidation of the edge, has a strongly non-local effect on the entire framework of
C–C bonds.

Computational studies of graphene and related systems are naturally focused
on obtaining accurate quantitative data. In order to rationalize huge amount of
quantitative information and place it in the context of chemical theory it is important
to utilize and further develop chemically relevant models and concepts that are
covered by the term “chemical bonding”. Aromaticity is an extremely powerful
example of a qualitative model with explanatory and predictive power. The results
discussed in the present contribution show that indeed it can be fruitfully applied in
the study of graphene. To date, results of a mostly descriptive nature are obtained.
There is a confidence that they can be further extended to yield simple predictive
models appealing to chemical intuition.
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Chapter 30
20-Nanogold Au20(Td) and Low-Energy Hollow
Cages: Void Reactivity

E.S. Kryachko and F. Remacle

Abstract Five 20-nanogold low-energy hollow cages are identified at the density
functional level by performing a computational search on the corresponding poten-
tial energy surfaces in the different charge states. Their structures and stabilities
are investigated and compared with the tetrahedral ground-state and space-filled
cluster Au20(Td). Special attention is devoted to the bifunctional reactivity of the
studied Au20 hollow cages: the outer, exo-reactivity and the inner, void reactivity.
The void reactivity results in endohedrality, i.e. in the existence of @-fullerenes
of gold. We analyze the general features of the voids of the reported 20-nanogold
fullerenes. The values of ionization potentials and electronaffinities, the molecular
electrostatic potential and HOMO and LUMO patterns are invoked for this purpose
and compared with those of C60 that has a similar void size. This is on the one hand.
On the other, as already known in the literature, the space-filled Au20(Td) reveals
a perfect confinement for some guest atoms. The mechanism of the formation of
void of Au20(Td) that enables to trap a guest is illustrated by using a guest gold
atom which is repelled by the so called ‘interior’ atoms of Au20(Td). The computed
repulsion energy provides a rough estimate of the energy needed to form a void
inside this cluster.
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30.1 Introduction

The discovery, in the 1980s, of the buckyball C60 and larger fullerenes [1] which
possess a spatially closed inner and void space or, in other words, have the shape
of a hollow cage led in the following decades to the identification of ‘endohedral’
or @-fullerenes whose voids trap guest heteroatoms, ions, and molecules [2–4]
and whose number continues to grow every year. One of the first among them
was La@C60 [2]. These @-fullerenes exhibit rather unusual features, primarily
in their stability and reactivity. Nowadays, many endohedral C60-fullerenes have
been synthesized and characterized, both experimentally and theoretically. These
mainly host or confine atoms of metals, alkali-metals in particular [4, 5], and of
noble gases due the strong electron affinity EA(C60) = 2.65−2.69 eV [6] – trapping
of molecules, though, have been reported to a lesser extent. Among the molecules
which can be trapped in fullerenes’ voids are polar diatomic molecules, such as
LiF and LiH – which often increase their stability [4 a]. Moreover, the stability
can be con controlled, as was, for example, with LiF@C60, via manipulation with
hydrogens exo-attached to the external side of C60 [4b].

The concept of endohedrality was naturally extended from carbon to other
chemical elements, giving thus rise to similar fullerene-like structures or hollow
cages, or shortly, ‘fullercages’ [7]. There was also gold, the noblest atom, that
is well known for its bulky chemical inertness [8, 9], gross catalytic activity [10]
and color [11] in nano-dimensions, and strong relativistic effects [12]. The latter
are strikingly manifested in a quite unusual shape of gold clusters AuN that turns
to be preferentially three-dimensional (3D) when the cluster size N is larger than
nine [13].

Generally speaking, any 3D molecular shape can either be space-filled, compact,
or can admit the existence of some void, emptiness, partial ‘no-pair direct bonding’,
in some sense [14], that results in a sort of fullerene-like or hollow cage shape
[15–18]. The definition of “fullerene likeness” relies on that of fullerene two
versions of which exist in the literature. According to the IUPAC definition [19 a]:
“Fullerenes are defined as polyhedral closed cages made up entirely of n three-
coordinate carbon atoms and having 12 pentagonal and (n/2−10) hexagonal faces,
where n≥ 20. Other polyhedral closed cages made up entirely of n three-coordinate
carbon atoms shall be known as quasi-fullerenes.” The CAS defines [19b] fullerenes
as “the even-numbered, closed spheroidal structures of 20 or more carbon atoms, in
which every atom is bonded to three other atoms.” Mathematically (see e.g.[19c]),
fullerene is a convex simple 3D-polytope with the maximum δ3 where δ3 is the total
number of inner diagonals, that is, segments that join two vertices of polytope and
that exist, except for their ends, within the polytope relative interior. By another
definition, a given cluster is a hollow cage if it has, in addition to its outer space,
a spatially closed inner void space which diameter – also called void diameter (see
Ref. [20] for the definition) – exceeds double van der Waals radii. For gold, it is
equal to 3.32 Å. It is obviously that a void of any hollow cage is separated from a
cage’s outer space by at least a single-atom layer.
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A void may enable to accommodate some heteroatom or molecule – a dopant,
speaking generally, – which size plays a decisive role in a stable incarcera-
tion. In general, gold cage clusters can be partitioned into two classes [21]: (i)
shell-like or oblate flat cages, such as for instance the anionic clusters Au−15a,
Au−15b, Au−15d, Au−16c, and Au−17c considered in [22], and (ii) spherical-like hollow
cages – depending on whether the Au-Au lines (inner diagonals), which connect
the gold atoms through the cage’s void, range within 3– ∼ 5Å or exceed 5Å. The
shell-like flat cages therefore enable to accommodate a small heteroatom, such as
the hydrogen, without major structural distortions. This is a typical example of
confinement. This is e.g. the lowest-energy neutral cage Au15 reported in [23].
Does it mean that a type of cage is a function of charge state or, speaking in
general, whether a shape, space-filled or hollow, can be charge-state dependent?
Other examples of shell-like flat cages are the cages AuN=16−19, derived from the
ground-state tetrahedral gold cluster Au20(Td) by removing 4, 3, 2, and 1 vertex
atoms [23b]. In contrast, the spherical-like hollow cages can be doped by a larger
atom, such as gold, for instance.

Historically, golden fullerenes AuN begun with Au12(Ih) [24] which was pre-
dicted in 2002 and have since been spread out to Au14,16,18 [22, 25, 26], Au20

[25, 27, 28], Au24−28 [29], Au32(Ih) [30], Au38−56 [31–34], and nowadays reached
Au72(I) [35]. Au20 is a magic gold cluster whose ground state on the potential
energy surface (PES) is a tetrahedral space-filled structure Au20(Td) in the charge
states Z = 0, ±1. Though it by many features resembles the hollow cage C60 [27]
(for recent works see [36]): for instance, its external diameter reaches approximately
0.7 nm – that is, Au20(Td) is of the same nanometer size as C60, Au20(Td) has no
void. In contrast, the ground-state structure Au32(Ih) is a golden fullerene. Pursuing
this motif, the hollow cages Au38, Au42, Au44, and Au56 are less stable than their
space-filled counter partners.

However, it seems quite inessential, immaterial, even irrelevant, from the view-
point of endohedrality, to differentiate gold clusters into space-filled or hollow
cages. Why? As demonstrated for the first time by Molina and Hammer [37], the
space-filled cluster Au20(Td) enables, contrary to the common point of view, to
trap the dopant atoms X = H, Li, K, and Na+, thus resulting in the endohedral
golden fullerenes X@Au20 with endo-binding energies equal to −0.85, −0.41,
−1.39, and −0.59eV, respectively. Note that more accurate endo-binding ener-
gies of H@Au20(Td) and Li@Au20(Td) are correspondingly equal to −0.53 and
−2.49eV [38]. What is the mechanism behind this phenomenon, the phenomenon
of transforming a space-filled structure to a hollow cage under doping? Why doping
enables to create a void in a space-filled structure gold cluster? Is there any sort of
selectivity implying that some dopants make a void, whereas the others do not? In
some sense, this makes Au20(Td) and C60 even more alike. Speaking generally, in
what are the inner voids of golden fullerenes similar to those of fullerenes? This
question turns out to be reformulated as: Are there any fundamental properties
of the chemical reactivity of molecular cages that lead to atom encapsulation? To
be rigorous, herein, the chemical reactivity is broadly defined as a capability of
a given molecular species to form chemical bonding patterns while interacting or
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Fig. 30.1 The tetrahedral space-filled structure I≡ Au20(Td) in the charge state Z = 0

contacting with other atoms, ions, or molecules. Therefore, a molecular hollow cage
endows two kinds of chemical reactivity: the inner or void, or endo-reactivity that
characterizes a capability of a hollow cage to bind within its void – indicated by @;
the outer or exo-reactivity that characterizes a capability of a hollow cage to bind in
its outer space – indicated hereafter by &. Do the hollow cages exhibit such features
which are not achievable by their space-filled counterparts and which endow them
with the ability to trap atoms? These questions are addressed in the present work
by invoking the example of the 20-nanogold Au20 in different charge states since
N = 20 is definitely a benchmark, magic number for gold.

The present work is composed of five Sections. The computational methodology
is outlined in the next Sect. 30.2. In Sect. 30.4, we thoroughly examine the general
properties of low-energy hollow cages in the different charge states Z and compare
them with the tetrahedral space-filled structure I≡Au20(Td) which is shown, for the
reason of completeness and closeness of the present work, in Fig. 30.1 and which,
in the charge states Z = 0, ±1, occupies the ground electronic state. Section 30.4.1
focuses on the concept of void reactivity of the studied cages in terms of the
molecular electrostatic potential. Section 30.4.2 ends with general discussion.

30.2 Computational Methodology

All computations of gold clusters were carried out with the DF potentials B3LYP,
BP86, and PW91PW91 (PW91 for short) in conjunction with the energy-consistent
19-(5s25p65d106s) valence electron relativistic effective core potential (RECP) of
the Los Alamos double-zeta type LANL2DZ [39]. The GAUSSIAN 03 package
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of quantum chemical programs [40] was used throughout the present work.
All geometrical optimizations were carried out with the keywords “Tight” and
“Int=UltraFine”. The harmonic vibrational frequencies and concomitant zero-point
energies (ZPE) were calculated in order to locate the energy-minimum structures
and to distinguish them from the saddles. Enthalpies and entropies, which are also
reported in the present work, were obtained from the partition functions calculated
at room temperature (298 K) by means of using the Boltzmann’s thermostatistics
and the rigid-rotor-harmonic-oscillator approximation.

30.3 20-Nanogold Hollow Cages in Various Charge
States: Basic Features

Applying the aforementioned computational methodology, we have studied the low-
energy section of the PES of 20-nanogold where five hollow cages II-VI, located
closer to the ground-state Au20(Td) in the neutral charge state, have been identified.
The neutral and Z-charged cages II-VI with Z = 0, ±1, −2 are definitively
minima on the 20-gold PESs with real harmonic vibrational frequencies only. For
Z = 0, they all fall within 9–175cm−1. Their basic properties are summarized in
Tables 30.1–30.5. In the charge state Z = 0, these cages of Au20 are characterized
by external diameters of ca. 0.8–1.2 nm, which are slightly larger that, 0.7 nm, of
C60 (see Figs. 30.2–30.6). These cages are essentially hollow in the neutral state
with void diameters of ∼4.5–7.0Å.

Structurally, cage II resembles a helix. III exhibits a bilayer motif via forming
by two planar Au10(D2h) clusters twisted w. r. t. one another by a dihedral angle of
33.1◦ and bonded to each other by means of 20 additional metallic bonds. Due to
this quite specific bilayer shape, synthesis of cage III might be accessible. The
specific binding energy, Ebinding∗, that defines the energy of the formation of cage
III from two Au10(D2h) monomers in the 0-charge state is, according to Table 30.2,
strongly DF-dependent: e.g., the B3LYP estimate of −2.34eV is the lowest, by the
absolute value, among the reported, whereas the PW91 yields the highest one equal
to−4.34eV. Comparing to the Au10(D2h) monomer, the cage formation downshifts
the HOMO by 0.7–0.8eV, narrows the HOMO-LUMO energy gap, and increases
the electron affinity by 0.85 eV. In terms of bonding patterns, the cage formation is
performed due to appearance of new inter-monomeric, “glue” bonds which arise
only between 3-coordinated atoms, so that in the dimeric cluster, they become
5-coordinated. Cage III therefore relies on 52 bonds in the 0-charge state.

Comparing to cage II, III is less stable in the neutral charge state and corre-
spondingly placed above the former by approximately 0.05(-PW91;0.11–BP86,
0.37–B3LYP)eV (see Tables 30.1 and 30.2). The last: due to its double-layer
structural motif, cage III is anticipated to be aromatic. According to Table 30.2, its
NICS(0) [43] at the cage center is equal to −14.7ppm that is rather close to that of
Au20(Td). Being neutral, the hollow Au20 isomers are closed-shell structures which,
as reported in Tables 30.1–30.5, are highly stable w. r. t. the atomization channel
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Cage II

Fig. 30.2 The golden hollow cage II in the neutral charge state Z = 0. Cage II resembles a helix
with the void diameter of∼5.9Å. Its external diameter is ∼1.2nm. Selected bond lengths are given
in Å (reading from top to bottom: B3LYP, BP86, and PW91 DF potentials). The B3LYP Mulliken
charges of some gold atoms are indicated by superscripts. Gold atoms of cage II are partitioned
into the following three groups: two vertex 3-coordinated atoms, Au4

−0.37 and Au8
−0.37 (cf.: four

in Au20(Td)), whose distance define the external diameter of cage II; two vertex 4-coordinated
atoms, Au12

−0.32 and Au20
−0.32; two edge 5-coordinated atoms, Au10

−0.32 and Au18
−0.32; and

14 face-centered 6-coordinated atoms (cf.: twelve in Au20(Td) together with four 9-coordinated),
that in total yields 54 Au-Au bonds of the bond lengths ∈ (2.7Å,3.0Å), that is by 6 less than of
Au20(Td). As follows from Table 30.1, the energetic ‘cost’ of such, say, ‘less bonding’ amounts to
1.5–1.6eV. Let also notice a low polarity of II comprising of 0.5–0.7D

AuII-VI
20 ⇒ 20Au. This stability is corroborated by high absolute values,∼33–34eV,

of the corresponding energies, −ΔEf, and enthalpies,−ΔHf, of formation, despite a
large entropy effect. The latter increases the Gibbs free energies, ΔF298

f , of formation
at T = 298K and correspondingly lowers the cages’ stabilities by 6–7eV, but they
still remain strongly bound.

Mappings of Au20(Td) and the cages II−VI onto different charge states results
in the following B3LYP stability patterns (in eV):
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Fig. 30.3 Left panel: The nonpolar golden hollow cage III in the neutral charge state Z = 0.
The void diameter of the cage III is approximately equal to 0.84 nm, i. e. it slightly exceeds
that of Au20(Td). As readily seen in this Figure, III is composed of the two planar Au10(D2h)
clusters colored correspondingly in yellow (light in b/w) and brown (correspondingly dark). The
angle between the longest diagonals Au5−Au9 and Au3−Au12, each of which connects the two
vertex gold atoms mostly separated from each other, amounts to 33.1◦. Selected bond lengths are
given in Å (reading from top to bottom: B3LYP, BP86, and PW91 DF potentials). The B3LYP
Mulliken charges of some gold atoms are indicated by superscripts. Right panel: The nonpolar
Au10(D2h) cluster. Its εHOMO = −6.33,−6.11,−5.99eV;εLUMO = −4.07,−4.75,−4.62eV; and
Δ = 2.27,1.36,1.37eV are respectively obtained at the B3LYP, BP86, and PW91 computational
levels. The selected bond lengths (in Å) correspond to the B3LYP one. The B3LYP Mulliken
charges are shown for some gold atoms

Z = 0 : Au20
0(Td)

0.81
< V0 0.18

< VI0 0.43
< IV0

0.06≤ II0 0.37
< III0

Z = −1 : Au20
−1(Td)

0.48
< V−1 0.11

< II−1
0.04≤ VI−1

0.05≤ III−1 = IV−1

Z = +1 : Au+1
20 (Td)

0.37
< V+1 0.03≤ VI+1 0.26

< IV+1 0.16
< II+1 0.17

< III+1

Z = −2 : II−2 = VI−2
0.05≤ I−2 0.26

< V−2 0.08
< III−1 = IV−2

where the quantity above the sign indicates the difference in stability of the left-side
structure over the right-side one. The change of the cage properties under the charge
alternation is presented in Tables 30.1–30.5.

The neutral cages II-VI are energetically placed within 0.8–1.85eV relative to
the ground-state cluster AuZ=0

20 (Td). On the other hand, on the cationic sheet of the
20-gold PES, V+1 becomes closer to Au +1

20 (Td) by 0.37 eV. The gap of 0.48 eV
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Cage IV
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Fig. 30.4 The golden hollow cage IV in the neutral charge state Z = 0. Cage IV is characterized
by a void diameter, R(Au9−Au16), of 5.5Å. Its external diameter associated with R(Au3−Au12)
amounts to 0.98 nm. Selected bond lengths are given in Å (reading from top to bottom: B3LYP,
BP86, and PW91 DF potentials). The B3LYP Mulliken charges of some gold atoms are indicated
by superscripts

separates Au +1
20 (Td) from these anionic cages. Both energy gaps can likely be

achievable in experiments.
The dianionic Z=−2 charge state is different – as already mentioned in [36b,38],

due to Coulomb repulsion, Au−2
20 (Td) evolves, as seen in Fig. 30.7, to a void shape

structure. Au−2
20 (Td) shares the very bottom of the dianionic 20-gold PES with II−2,

also displayed in Fig. 30.7, though actually (within the DFT computational error)
the latter lies slightly below Au−2

20 (Td) by ∼0.05eV. Therefore, cage II could be
easily detected experimentally, at least in the dianionic charge state. Relative to the
asymptote comprising of 18Au+2Au−, II−2 is essentially stable that is manifested
by ΔEf = −34.32eV and a Gibbs free energy ΔF298

f = −27.56eV at the B3LYP
computational level.

The HOMO and LUMO eigenvalues and the corresponding HOMO-LUMO
gap, Δ, the first adiabatic electron affinities (EA1) and ionization potentials (IE1)
are the key features that determine chemical reactivity. For cages II-VI, they are
presented in Tables 30.1–30.5. The HOMO’s energies are ca. 0.4–0.9 eV higher the
HOMO of Au20(Td). Cages III and IV exhibit rather narrow gaps, Δ ≈ 0.4eV
(BP86 and PW91), compared to Au20(Td), which are however comparable with
Δ of Au42(Ih). On the contrary, the HOMO-LUMO gap of the cage V is twice
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Cage V in Charge States Z = 0, + 1, -1, and -2

Neutral Cation V+1 Anion V-1 Dianion V-2

V0

Fig. 30.5 Cage V in different charge states Z = 0, +1, −1 and −2 where it is placed above
AuZ

20(Td) by 0.81, 0.48, 0.37, and 0.26 eV, correspondingly. For Z= 0,±1, VZ is the closest hollow
cage, among the known ones in the literature, to the ground-state structure. It is readily seen in this
Figure that the void enlarges from the neutral charge state to the anionic and dianionic ones (see
Table 30.4). In the anionic state, V−1 is quite symmetric. Unlike the Z = −1 charge state, the
neutral cage V0 is far from being symmetric and is directly linked to a quasi symmetric structure
that is actually the first-order saddle V0

TS . The latter lies energetically close – by only 0.052 eV – to
V0. V0

TS is practically nonpolar: its total dipole moment is only 0.05 D. As the transition structure,
V0

TS has a single imaginary frequency of 8 i cm−1. Interestingly, V0
TS arises either under encaging

LiF into cage II or cage V that both result in the endohedral complex LiF@V0
pre−TS where the cage

V0
pre−TS is energetically close to V0

TS. The standard Pople’s basis set 6− 311++G(d,p) is used
for the non-gold atoms

Cage VI in Charge States Z = 0, +1, -1, and -2

Neutral VI0 Cation VI+1 Anion VI-1 Dianion VI-2

Fig. 30.6 Cage VI in different charge states. The cage VI0 was obtained by choosing the hollow
cage Au16 [26], which is shown in the left-top insert, adding perpendicularly one atom of gold to
each of its four hexagon faces with a central gold atom, and relaxing the resultant geometry. For
Z =−2, VI−2 coincides with II−2

wider, that is, reaches approximately the same width as in the larger cages,
such as e.g. Au24, Au27, and Au28. The EA1 of the studied cages are signif-
icantly large, ∈ (3.776eV–II;2.925eV–VI ≈ 2.930eV–V), thus exceeding the
EAB3LYP

1 (Au20(Td))= 2.606eV (notice that EA1(C60)= 2.57eV) by ca. 0.5–1.2 eV.
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Cage II-2Cage I-2

Au1

Au2
Au3

Au8

Au12

Au4

Fig. 30.7 The golden hollow cage clusters I−2 and II−2 in the dianionic charge state Z = −2. I−2

is characterized by the B3LYP distances R(Au1–Au2) =R(Au2–Au3) = 7.863 and R(Au1–Au3) =
10.517Å. Its void diameter is equal to ∼5.3Å. The structure of the II−2 is character-
ized by the B3LYP distances R(Au4–Au8) = 10.157, R(Au4–Au12) = R(Au8–Au20) = 8.116,
R(Au4–Au20) = R(Au8–Au12) = 7.198, and R(Au1–Au16) = 4.932Å

Actually, these EA1 get closer to the EA1 of Au16 that is about 4 eV, and hence, by
analogy with Au−16, these cages are not likely to easily bind molecular oxygen.

The IE1 of III, IV, and V are lower – ∈ (6.963eV–V;6.539eV–III)– compared
to IEPW91

1 of Au20(Td)= 7.34eV and IEB3LYP
1 (Au20(Td)) = 7.398eV. Summarizing:

EA: Au0
20(Td)< V = VI < IV < II < III and, on contrary,IE1: Au0

20(Td)> V >
VI > II > IV > III.

Altogether, the above distinctions between the studied hollow cages II− IV
and the space-filled cluster Au20(Td) allow us to conclude that the reactivities of
these cages are drastically different from that of Au20(Td). Yet another indicator
of the reactivity of a given molecule or cluster is the chemical hardness η that
is approximately defined as a half of the difference between the IE1 and EA1,
viz., η ≈ (IE1–EA1)/2. Within this reactivity scale, IV with lowest hardness,
ηB3LYP(IV) = 1.38eV, is more reactive than both III and V, with II being more
reactive than cage V: ηB3LYP(IV)< ηB3LYP(III) = 1.57eV< ηB3LYP(V) = 1.65eV.
All cages are more reactive than Au20(Td), characterized by ηB3LYP(Au20(Td)) =
2.40eV.

By analogy with the concept of the vertical electron detachment energy, let us
define the vertical hole detachment energy, VHDE, of complex X as the total energy
difference between the cationic and neutral systems, both taken, without the ZPE,
in the equilibrium geometry of cation. The VHDEs of cages II-IV are given in
Tables 30.1–30.3.
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30.4 Void Reactivity of 20-Nanogold Cages: Few Approaches
for Measuring

According to a rather broad definition, the chemical reactivity of molecule or
molecular cluster is its capability to form, while interacting or contacting with
other atoms, ions, or molecules, some chemical bonding patterns. These bonding
patterns are established between the atoms of interacting molecules which are
typically placed in the outer space of each interacting partner. In this sense cages
are different – by definition, they possess atoms which are assumed to be capable to
form chemical bonds with molecules from the outer space as well as from the inner
one (inside a cage, in voids), i.e. with those which are encapsulated or confined
within a cage. This implies a bifunctionality of the chemical reactivity – the exo- and
endo-reactivity – of some atoms which constitute cages and thus suggests potential
routes to control both chemical reactivities.

The traditional approach to measure the reactivity of a given molecule or
molecular cluster consists in estimating its ionization energy and the electron affinity
that govern the electron transfer which, according to the Sanderson’s principle [44],
is the integrable part of the formation of chemical bonds when this molecule or
cluster is brought into contact with the other one. The ionization energies and
electron affinities of cages II-VI are discussed in Sect. 30.4. They indicate how
a given cage reorganizes either upon removal or upon addition of an electron.
They are, however, global characteristics of cage that cannot be partitioned into
those, which may be solely ascribed either to the outer or to the void reactivity, to
differentiate the reactivity of hollow cages as cages II-VI and to predict what either
each of them or both are. Obviously, the chemical hardness is global too.

The void regions of the cages II-VI are in fact spatially confined areas which can
accommodate some dopant(s). A remarkable feature of these cages is that they all
have only one-atom-layer that separates the void from the outer surface and may thus
facilitate the direct control of the outer reactivity from the inner one. A typical point
of view that often prevails is that the void reactivity of a cage is a direct consequence
of the spatial confinement, i.e., the dopant feels the cage’s boundary, and therefore,
the size of dopant plays a decisive role for a stable encapsulation. Put in other words,
if the size of the void is of the same order of magnitude or comparable with that of
the dopant, one may anticipate that doping is stable. Obviously, doping influences
the outer reactivity.

On the one hand, it is well known that the patterns of the molecular orbitals, par-
ticularly of the HOMO and LUMO, and the concept of the molecular electrostatic
potential (MEP) [45, 46] are crucial for an understanding of chemical reactivity.
For example, the buckyball fullerene C60 exhibits two different behaviors of the
MEP [47]. It is positive in the entire void region, where C60 is capable to encage
atoms, ions, and some molecules, and the positive part of the MEP reaches the outer
central regions of the pentagon rings. On the contrary, the MEP is negative in the
outer region and most negative at the midpoints of the bonds linking two hexagonal
rings.
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30.4.1 HOMO and LUMO Patterns

The patterns of the HOMOs and LUMOs of cages II, III, and IV are shown in
Figs. 30.8 and 30.9. The HOMO of II is mainly composed of: (i) the 6s AOs of the
‘top’ and ‘bottom’ gold atoms Au−0.37

4 and Au−0.37
8 where the superscript indicates

the Mulliken charge; (ii) the 6p AOs of Au−0.06
1 , Au−0.01

3 , Au−0.01
7 , Au0.38

13 , and
Au−0.08

14 , and largely of Au0.62
5 and Au0.62

15 ; and (iii) the 5d AOs localized on Au3,
Au5, Au7, Au14, and Au15. The latter two AOs partly protrude into the void of
cage II where a hole can therefore partially appear under the ionization. In this
sense, the void of cage II can be treated as a polarizable ‘sphere’, by analogy with
the C60 cage [46]. In contrast, the LUMO of cage II lies substantially ‘outdoors’,
in the outer space, thus emphasizing that the electron attachment may primarily
contributes to the outer reactivity of cage II. This LUMO is mainly composed of
the 6s AOs localized on almost all gold atoms, except Au3, Au5−7, Au1, Au16−18,
and Au20, and 6p AOs on Au2,3, Au5,7, Au11,13, and Au15,20. A small part of the
LUMO, determined by the 5d AOs of Au3, Au7, Au8, Au12, and Au17, is however
placed within the void.

The shapes of the HOMO and LUMO of cage III are rather spectacular.
They are mostly composed of AOs Au1,7,14,16

0.75(6px
0.19), Au2,8,13,15

−0.25(6s0.21),
Au3,5,9,12

−0.45(6s0.48), and the 6-folded Au17,18,19,20
0.41(6py

0.115d−2
0.14) for the

HOMO and Au1,7,14,16(6s0.436py
0.14), Au4,6,10,11(6s0.22) and Au17,18,19,20(6py

0.16)
for the LUMO. The HOMO and LUMO are mostly localized in the outer space
around the Au3,5,9,12 and Au1,4,6,7,10,11,14,16, respectively. Juxtaposing the HOMO
and LUMO of cage III in Fig. 30.8, one readily concludes that the void portion of
its HOMO is larger than the LUMO one.

In addition, the HOMO− 2–HOMO− 4 of cage III which, due to their 5p and
5d AOs, that are largely localized in its void region are displayed in Fig. 30.9. Since
these HOMO-2 – HOMO-4 lie within 0.8–1.6 eV from the HOMO, they participate
in the first – at least, HOMO-2 – and second ionization processes of cage III. These
are therefore the processes where the void reactivity of cage III can be detected.
Distinguishably different are the HOMO and LUMO of cage IV. The outer part of its
HOMO is sharply localized on the opposite vertex gold atoms Au−0.40

3 (6s0.62) and
Au−0.45

12 (6s0.68). The rest of the HOMO lies in the void. Its LUMO is considerably
localized on the side vertex atoms outward.

30.4.2 Molecular Electrostatic Potential Patterns

The MEPs of the cages II, III, and IV are shown in Fig. 30.10 for the different
charge states Z = 0, ±1, and −2, where, for the latter, the MEP of I−2 is added for
comparison, bearing in mind Fig. 30.7. It is seen in this figure that the MEPs of the
cages’ outer space are nonnegative – that is indicated by blue regions converging
to the green ones. The void MEP of cage II is of both signs: negative is shown in



30 20-Nanogold Au20(Td) and Low-Energy Hollow Cages: Void Reactivity 589

Fig. 30.8 The HOMOs and LUMOs of cages II-IV: (a) and (b) plot the HOMO and LUMO of
cage II, respectively; (c) and (d) the HOMO and LUMO of cage III; and (e) and (f) plot the HOMO
and LUMO of cage IV
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Fig. 30.9 The HOMO-2 (a), HOMO-3 (b), and HOMO-4 (c) of cage III. Their orbital eigenvalues
are correspondingly equal to −6.29, −6.42, and −7.06eV
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Fig. 30.10 The B3LYP MEPs of the cages II, III, and V which are mapped either from
−0.01(red) to +0.01(blue)|e|/(4πε0a0) for the Z = 0 charge state or from −0.1(red) to
+0.1(blue)|e|/(4πε0a0) for the Z=±1 and−2 (including, as the reference, the MEP of the hollow

cage I−2) charge states onto 0.001|e| · Å−3
isosurface of the one-electron density ρ(r)
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red, as e.g. in the neighborhood of Au1 and Au5, and positive, in blue, as e.g. in a
small and deep ‘pocket’ in the neighborhood of Au17. Hence, the latter may confine
some atom.

The MEP of III is positive outside and takes both signs in the void. In Fig. 30.10,
there exists a pair of symmetric negative MEP regions in the neighborhood of Au12,
Au14, Au20, and Au3, Au7, and Au19. And there are the other two regions, close to
Au13, Au17, and Au10, Au18, which are positive. This implies the existence of two
different ‘pockets’ for trapping. For cage IV, in addition, there appear a ‘pocket’
with a slightly negative charge in the center of the MEP and the essentially positive
surface which is mapped on the ρ(r) = 0.004 isocontour. Therefore, the MEPs of
II, III and IV definitely demonstrate a capability of their voids to trap neutral, as
well as both, positively and negatively, charged atomic and molecular guests.

30.4.3 Endohedrality: Space-Filled Au20(Td) vs. Au20
Hollow Cages

Due to a space-filled shape of the ground-state structure Au20(Td) on the neutral
20-gold PES, the latter is seemingly not able to confine any guest atom or molecule.
This is not consistent with the existence of some endohedral fullerenes X@Au20(Td)
that was computationally proven in [37,38]. Actually, there is no contradiction. True,
any hollow cage enables to trap, by the definition, a guest. It may however happen
that the interaction of a space-filled cluster with a guest is so strong that the latter
pushes aside the cluster interior, creates there a void and becomes trapped therein.
We illustrate this statement ad absurdum, in some sense.

Let consider in Fig. 30.11 two stable structures, both composed of 21 gold
atoms and both initially chosen as endohedral: the left-hand one as Au@AuII

20
and the right-hand as Au@Au20(Td). That is, in the other words, one gold atom
was initially trapped either in the void of the hollow cage AuII

20 or inside the
space-filled Au20(Td), where it substitutes the atom of Li in the endo-fullerene
Li@Au20(Td) discussed in Introduction. As a result of optimization, the former
remains endohedral, i.e. as Au@AuII

20, where the trapped gold atom Au+5.29, ca.
+5 positively charged according to its Mulliken charge, forms nine void bonds with
AuII

20 via transferring its nearly five electrons to the latter cluster. This encaging
gains the energy of 1.645 eV. In contrast, the latter structure converts to the exo-
bonded Au&Au20(Td), implying that the interior of Au20(Td) repels the guest gold
atom to the outer space where it becomes bonded by three bonds. This effect
of repulsion of Au by the Au20(Td) interior is naturally anticipated because the
energy that is needed to distort the interior of Au20(Td), roughly estimated from the
frequencies of the Au-Au bonds forming it and being equal to ∼90–100cm−1, is
approximately the same as the energy of interaction between the initially trapped
gold atom and those atoms of Au20(Td). That is why this atom was repelled and
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Au@Au20
II Au&Au20(Td)

Fig. 30.11 Left: The endohedral golden fullerene Au@AuII
20, formed by trapping of the guest gold

atom (blue circle) in the void of cage II. The trapped atom Au+5.29 bears a Mulliken charge of
+5.29 that implies that the nine void bonds it forms with AuII

20 by means of electron transfer to
cage II which becomes negatively charged. The bond lengths fall within {2.90, 3.05} Å. Au@AuII

20
is slightly polar, of 0.74 D. Right: The exo-bonded Au&Au20(Td). Its dipole moment is equal to
0.25 D. The exo-bonding includes three Au-Au bonds with bond lengths of 2.85Å. The energy gap
Δ = 1.714 and 2.017 eV for spin-up and spin-down electrons

the resultant structure is Au&Au20(Td) with three exo-bonds, characterized by the
binding energy of −1.149eV, that is less than Au@AuII

20, though it is placed below
the latter by 1.030 eV.

30.5 Summary and Conclusions

Due to their exceptional reactivity, gold nano-particles in all their diverse size,
shape, and charge state are currently at the forefront of theoretical and experimental
nanoscience. The gold hollow cages – golden fullerenes – turn out to be interesting
systems with bifunctional reactivity–the void and the outer ones which can be
manipulated by doping. Obviously, manipulation with reactivity does actually
demand a way or ways to measure it. Unfortunately, this problem has not been
rigorously and consistently formulated so far and that is why remains not well-
defined.

In the present work, we have identified five 20-nanogold low-energy hollow
cages at the BP86, B3LYP, and PW91PW91 density functional levels by a detailed
examination of the 20-nanogold PESs in the different charge states and their
thorough comparison. As primarily thought, the PES search was performed in two
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directions. One is to build hollow cages in the neutral charge state directly, from
blocks, such as 10-nanogold Au10, and to investigate their stability and closeness, in
energy, to the ground-state tetrahedron Au20(Td). This way the hollow cage III has
been created. The other is to proceed to the dianionic PES, which is experimentally
accessible (see [38] and references therein), and to search it for the ground state –
this direction was explored in [38] and it was resulted in the hollow cage II. It
then appeared that under the vertical electron detachment (VED), the reorganization
energy of cage III becomes negative: ΔEreorg

B3LYP(III|VED) = −0.17eV, either
implying a collapse of void or an existence of a new stable isomer that must lie
on the neutral PES below cage III. The latter was actually the case that gives rise to
the cage IV which, as neutral, is placed below cage III by 2.5–3.6kcal ·mol−1. On
the anionic PES, cages III and IV coincide with each other. The origin of cage V
is outlined in the legend to Fig. 30.5 as implying the stable endohedral cage under
encaging LiF into cage II. The history of appearance of the last cage VI is described
in the legend to Fig. 30.6 and in [26]. All these cages are stable in the charge states
Z = 0, ±1, and −2 since, according to Tables 30.1–30.5, their owest modes are
strictly positive.

In the present work, we have suggested few different approaches to measure
the void reactivity of 20-nanogold cages: on the one hand, these are ionization
energy and electron affinity, which are definitely the global characteristics, and on
the other, the local, such as the HOMO and LUMO, and the MEP. All of them
have been compared with C60. It has been demonstrated that the MEP, which
patterns of the studied hollow cages look quite different from that of C60, is useful
to assess the electrostatic nature of possible dopants. We thus anticipate that this
concept might be rather useful in designing golden fullerene-type nanomaterials
with the tailored void and doping-controlled properties. It is definitely useful for
metal M@Au−1

N golden fullerenes where metal atom is inside the anionic cage and
where the bonding scenario is largely governed by the MEP since the metal – cage
interaction is dominantly ionic (see [48] and references therein) and determines the
metal position.

It has also been fully answered the question why the space-filled cluster Au20(Td)
enables to trap guest atoms [48], answered in a manner that makes the partition
of a 3D golden shape either in a space-filled or hollow one rather smeared, quite
inapplicable or even ill-defined. The reason of that is rather simple – it lies in a
relative softness of its ‘interior’ bonds, which stretches fall within the interval of
{90cm−1, 100cm−1}. This softness has been probed by the guest atom of gold.
Since its interaction with these bonds of Au20(Td) is of approximately the same
magnitude as the bond dissociation energies, the guest gold atom is repelled by the
‘interior’ and becomes exo-bonded. The situation between the hollow cage II of
Au20 and the guest gold atom is different: the latter is naturally trapped in a void
and forms therein nine rather strong void bonds.
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Chapter 31
A Theoretical Study of Complexes of Crown
Ethers with Substituted Ammonium Cations

Demeter Tzeli, Ioannis D. Petsalakis, and Giannoula Theodorakopoulos

Abstract The electronic and geometric structures of the complexes of dibenzo-
18-crown-6 ether and of dibenzo-18-crown-6 ether of fulleroN-methylpyrrolidine
with diphenylammonium cation, Ph2NH+

2 , and its derivative with π-extended
tetrathiafulvalene, π-exTTF, were investigated by employing density functional
theory. We calculate geometries, complexation energies and some absorption
spectra of the lowest energetic minima of the above complexes in the gas phase
as well as in CHCl3 solvent. The complexation energies, corrected for basis set
superposition error reach up to 2.2 eV in the gas phase and up to 1.3 eV in the
CHCl3 solvent, at the M06-2X/6-31G(d,p) level of theory. In the complexes, the
cations and the crown ethers are deformed to maximize the number of the hydrogen
bonds. The presence of fulleroN-methylpyrrolidine, attached to the crown ethers,
increases the complexation energies by up to 0.2 eV due to additional interactions.
The complex of fullerene crown ethers with a π-exTTF derivative of Ph2NH+

2
presents charge transfer transitions in the absorption spectrum and may serve as
candidate for organic photovoltaics.

31.1 Introduction

There is great interest in the study of crown ethers since their discovery [1, 2]
because they are highly adaptable hosts for a large number of guests [3–5].
The complexation of crown ethers with many guests, both neutral [4] and cationic
[3,6] and their high degree of selectivity have been investigated both experimentally
and theoretically [3, 4, 6, 7]. The conformations of the crown ethers, the size of the
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guest, the nature of the intermolecular interactions and in solution the solvating
ability of the solvent with respect to the cation and the complex determine the
strength of their binding with various species and its specificity. As a result they
are used in many diverse fields such as in catalysis, in enantiomer resolution, in
membrane separation of cationic species etc. [8].

Moreover, supra-molecular systems involving crown ethers, fullerene and π-
extended systems have been achieved that can mimic the photosynthetic process
[9–14]. The fullerene C60 has been used successfully as an electron acceptor in the
construction of model photosynthetic systems [9], the π-extended systems, such
as porphyrins [12], phthalocyanines [13], π-extended tetrathiafulvalene (π-exTTF)
derivatives [9, 10], which are utilized as electron donors, while the crown ethers act
as a bridge between the electron donor and acceptor. In the absorption spectrum
of the complexes, the absorption maxima are associated experimentally and theo-
retically with the formation of charge-transfer states [14–16]. Consequently, these
supramolecular systems have potential for applications in photonic, photocatalytic,
and molecular optoelectronic gates and devices [9–14]. As a result, the study of the
conformations and the complexation behavior of crown ethers and their derivatives
are motivated both by scientific curiosity regarding the specificity of their binding
and by potential technological applications.

The present work is a continuation of our previous studies on the electronic
and geometric structures of four crown ethers and their complexes with
(CH3)xNH+

4−x, x = 0 − 4 in the gas phase and in CHCl3 solvent [7] and on
the complexes of the dibenzo-18-crown-6 ether of fullero-N-methylpyrrolidine
with a π-exTTF derivative [16]. In the present work a theoretical study on the
complexes of dibenzo-18-crown-6 ether and of dibenzo-18-crown-6 ether of
fullero-N-methylpyrrolidine with the diphenylammonium cation, Ph2NH+

2 , were
investigated by employing density functional theory. In what follows, we describe
the computational approach in Sect. 31.2, we discuss our results in Sect. 31.3, and
we summarize our findings in Sect. 31.4.

31.2 Computational Approach

We used the density functional theory, at the M06-2X/6-31G(d,p) level of theory,
to study the electronic and geometric structures of the complexes of dibenzo-18-
crown-6 ether and of dibenzo-18-crown-6 ether of fullero-N-methylpyrrolidine with
diphenylammonium cation, Ph2NH+

2 . M06-2X [17] is a hybrid meta exchange cor-
relation functional, a highly-nonlocal functional with double the amount of nonlocal
exchange and is recommended for the study of non-covalent interactions [18],
such as the present interactions. The decision to employ this functional was based
on the conclusions of our previous studies about the applicability of the B3LYP,
M05-2X, M06-2X, MPWBIK and B2PLYP-D functionals in conjunction with three
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Fig. 31.1 Ph2NH+
2 : the lowest isomers of the diphenylammonium cation; 18: dibenzo-18-

crown-6 ether (top and side view); 18A and 18B: the lowest isomers of the dibenzo-18-crown-6
ether of fullero-N-methylpyrrolidine; BSSE corrected energy differences from the most stable
structure are shown in the gas phase (in CHCl3 solvent) at the M06-2X/6-31G(d,p) level of theory

basis sets on complexes of crown ethers with (CH3)xNH+
4−x, x = 0−4 [7] and the

applicability of the B3LYP, CAM-B3LYP, M06-HF and M06-2X on the benzene
dimer and the fullerene-benzene system [16] and on complexes of fullerene crown
ethers with a π-exTTF derivative [16]. We concluded that the M06-2X functional
in conjunction with the 6-31G(d,p) basis set [19] is a good choice for complexes
having both hydrogen bonds and very weak vdW interactions (dispersion forces
between nonpolar species) such as interactions between phenyl groups or between
phenyl group and C60 [16].

In the present study, we calculated two energetically degenerate minima of the
diphenylammonium cation, i.e., Ph2NH+

2 −1 and Ph2NH+
2 −2, see Fig. 31.1. The

lowest minimum of the dibenzo-18-crown-6 ether, 18, is given in Fig. 31.1. while
the second lowest minimum lies 0.16 eV above the global minimum [7]. The two
lowest isomers, 18A and 18B, of the dibenzo-18-crown-6 ether of fullero-N-
methylpyrrolidine are practically degenerate and differ in the direction of the crown
ether, namely up (A) or down (B) with respect to fullero-N-methylpyrrolidine, [7]
see Fig. 31.1.

Different isomers of the complexes of Ph2NH+
2 −1 and Ph2NH+

2 −2 with 18
and 18A or 18B were determined and optimized. The full optimization of these
structures led to two and eight low-lying energy minima of the complexes of cations
with the crown ether 18 and the fullerene crown ether 18A or 18B in the gas phase,
respectively, see Figs. 31.2 and 31.3. A derivative of the Ph2NH+

2 −1 isomer was
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18.Ph2NH2
+ -1: 0(0) eV 18.Ph2NH2

+ -2: 0.11(0.14) 

Fig. 31.2 The energetically lowest conformers of the 18 ·Ph2NH+
2 complex, i.e., complex of

dibenzo-18-crown-6 ether with diphenylammonium cation; BSSE corrected energy differences
from the most stable structure are shown in the gas phase (in CHCl3 solvent) at the M06-2X/6-
31G(d,p) level of theory

obtained when the H1 atom was substituted with a π-exTTF through a C≡C group,
see Fig. 31.4. The energetically lowest complexes of T with 18A and 18B, i.e.,
18A ·T and 18B ·T are depicted in Fig. 31.4. For the calculation of their absorption
spectra of the two calculated complexes, 50 singlet-spin excited electronic states
have been calculated by Time Dependent DFT (TDDFT) calculations [20]. It was
necessary to include a large number of excited states, about 50 excited states, in
order to reach the T absorbing states because there are many fullerene excited states
at lower excitation energies [16].

Single point calculations at the gas phase optimum geometry of all structures
have been carried out in CHCl3 solvent. As we showed in our previous study on the
complexation of the present crown ethers and others with (CH3)xNH+

4−x, x = 0−4
cations, full optimization in CHCl3 solvent of the optimum gas phase geometry
of the complexes results only in a slight change in geometry and an increase of
the complexation energy by less than 0.02 eV [7]. Thus, we did not carry out full
optimization in CHCl3 solvent. The calculations in the solvent were carried out
employing the polarizable continuum model [21]. This model is divided into a
solute part lying inside a cavity, surrounded by the solvent part represented as a
structureless material characterized by its macroscopic properties, i.e., dielectric
constant and solvent radius. This method reproduces well solvent effects [22, 23].

For all minima determined, the complexation energy (CEu) and the corrected
values with respect to the basis set superposition error (CE) in the gas phase and
in CHCl3 solvent (CEsol) were calculated. The basis set superposition error (BSSE)
corrections were made using the counterpoise procedure [24] since such corrections
are especially important for van der Waals (vdW) systems [25,26] which is the case
of the complexes calculated here.

All calculations were performed using the Gaussian 09 program package [27].
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Fig. 31.3 The energetically lowest conformers of the 18A ·Ph2NH+
2 and 18B ·Ph2NH+

2
complexes. Gas phase (CHCl3 solvent) BSSE corrected energy differences from the most stable
structure are shown at the M06-2X/6-31G(d,p) level of theory
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Fig. 31.4 Minimum structures of the T cation (π-exTTF derivative of diphenylammonium cation)
and 18A ·T and 18B ·T complexes of 18A and 18B with T. BSSE corrected energy differences
from the most stable structure are shown in the gas phase (in CHCl3 solvent) at the M06-2X/6-
31G(d,p) level of theory

31.3 Results and Discussion

Two energetically degenerate minima of the diphenylammonium cation, i.e.,
Ph2NH+

2 −1 and Ph2NH+
2 −2, have been identified, see Fig. 31.1. Ph2NH+

2 −2
results from Ph2NH+

2 −1 when the H of the CH2 group and the phenyl group
exchange positions. Calculating the frequencies, we find that both isomers are true
minima.

In the present study 10 low energy supramolecular complexes have been
identified; two minima of the complex of 18 with Ph2NH+

2 , i.e., 18 ·Ph2NH+
2 −1

and 18 ·Ph2NH+
2 −2, four minima of the complex of 18A with Ph2NH+

2 , i.e.,
18A ·Ph2NH+

2 −1, −2,−3, and −4, and four minima of the complex of 18B
with Ph2NH+

2 , i.e., 18B ·Ph2NH+
2 −1, −2,−3, and −4, see Figs. 31.2 and 31.3.

The last number in the name of the complexes specifies the energy rank of
the 18 ·Ph2NH+

2 ,18A ·Ph2NH+
2 , and 18B ·Ph2NH+

2 species at the M06-2X/6-
31G(d,p) level of theory after taking into account the BSSE correction. The vdW
bond distances of the complexes are given in Table 31.1 and the complexation
energies, CE, in Table 31.2.
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Table 31.1 Van der Waals bond distances R(Å) of the complexes of the 18, 18A, and 18B crown
ethers with ammonium cations at the M06-2X/6-31G(d,p) level of theory

Complex RHN...O RHC ...Oa RHC...Ob Rph...phc Rph...Fd RHC...phe

18 ·Ph2NH+
2 −1 1.969, 1.917 2.473, 2.559 2.419,

2.403
3.710 2.468

18 ·Ph2NH+
2 −2 1.838, 2.242 2.153, 2.292/

2.402f
2.615 3.747 2.863,

2.899
18A ·Ph2NH+

2 −1 1.821, 1.845 2.316 2.330 3.569
18A ·Ph2NH+

2 −2 1.754, 2.545 2.089, 2.175 2.592,
2.658

2.920

18A ·Ph2NH+
2 −3 1.944, 2.055/2.056f 2.588 2.332,

2.673
3.695 2.415,

3.063
18A ·Ph2NH+

2 −4 1.759, 2.301 2.290, 2.109 2.496 3.712,
3.911

3.284

18B ·Ph2NH+
2 −1 1.853, 1.930/2.523f 2.126 2.678 3.574 3.345 2.504,

2.941
18B ·Ph2NH+

2 −2 1.952, 2.079/2.366f 2.188, 2.615 2.396 2.367,
2.396

18B ·Ph2NH+
2 −3 2.140/2.326f

1.916/2.258f
2.291, 2.403/

2.418f
2.444,

2.627
18B ·Ph2NH+

2 −4 1.671, 1.713 2.040,
2.241,
2.543

3.728 3.123 2.250

aHC atoms of the CH2 groups
bHC atoms of phenyl groups
cDistance between the two centers of the phenyl groups
dDistance between the center of a phenyl group and the nearest C atoms of fullerene
eDistance between the HC atoms of the CH2or phenyl groups and the center of phenyl group
f One H atom interacts with two O atoms

31.3.1 18·Ph2NH+
2 Complexes

The two lowest minima of the complex of 18 with Ph2NH+
2 were obtained from

the complexation of 18 with each of the energetically degenerate minima of
the diphenylammonium cation, i.e., Ph2NH+

2 −1 and Ph2NH+
2 −2. However, the

Ph2NH+
2 −1 cation interacts more strongly with the 18 crown ether than with the

Ph2NH+
2 −2 species, by 0.1 eV both in the gas phase and in CHCl3 solvent, showing

some selectivity of the crown ether. The CE(CEsol) of the 18 ·Ph2NH+
2 −1 is 1.97

(1.17) eV, see Table 31.2.
Different types of van der Waals interactions are observed in the complexes.

Hydrogen bonds formed between the ammonium HN atoms and the crown ether
O atoms. The strongest H...

N O bonds in complexes of dibenzo-18-crown-6 ether with
ammonium cation have a CE of 0.9 eV per bond [7] and bond distances of 1.8 Å.
The H atoms of the methylene and/or the phenyl group interact with the O atoms of
ethers. The weakest interactions observed are between H atoms and phenyl groups
as well as between two phenyl groups. In addition, the interactions are not always 1
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Table 31.2 Complexation
Energies CE(eV) in the gas
phase and in CHCl3 solvent,
CEsol, of the complexes of the
18, 18A, and 18B crown
ethers with ammonium
cations at the
M06-2X/6-31G(d,p) level
of theory

Complex CEa
u CEb CEb

sol

18 ·Ph2NH+
2 −1 2.36 1.97 1.17

18 ·Ph2NH+
2 −2 2.22 1.86 1.04

18A ·Ph2NH+
2 −1 2.43 2.05 1.23

18A ·Ph2NH+
2 −2 2.15 1.80 0.97

18A ·Ph2NH+
2 −3 2.16 1.78 1.00

18A ·Ph2NH+
2 −4 2.15 1.77 1.01

18B ·Ph2NH+
2 −1 2.73 2.21 1.31

18B ·Ph2NH+
2 −2 2.57 2.17 1.31

18B ·Ph2NH+
2 −3 2.28 1.89 1.03

18B ·Ph2NH+
2 −4 2.12 1.67 0.93

18A ·Tc 2.40 2.02 1.27
18B ·Tc 2.50 1.99 1.18
aBSSE uncorrected values
bBSSE corrected values
cReference [16]

to 1 and in many cases one H atom interacts with two O atoms. All vdW distances
are given in Table 31.1.

31.3.2 18A ·Ph2NH+
2 and 18B·Ph2NH+

2 Complexes

Eight low lying minima of the complex of dibenzo-18-crown-6 ether of fullero-
N-methylpyrrolidine with the Ph2NH+

2 cation, four with the 18A isomer of crown
ether and four with the 18B isomer have been determined, see Fig. 31.3. The 18B
isomer forms the most stable structures, because the cation can be captured between
fullerene and crown ether and additional vdW bonds formed can further stabilize
the complex. The complexation energies of minima range from 2.21 to 1.67 eV in
the gas phase and from 1.31 to 0.93 eV in CHCl3 solvent at the M06-2X/6-31G(d,p)
level of theory, see Table 31.2. It is worth noting that the BSSE corrections are up to
0.5 eV, however, the relative stability of the structures does not change.

In all eight minima, hydrogen bonds are formed between the HN atoms, which
are attached to the N atoms, and the O atoms of the crown ethers with bond distances
ranging from 1.7 to 2.5 Å. Additional vdW bonds between the HC atoms of the CH2

or phenyl groups and the O atoms of the crown ether are formed, and the distances
range from 2.0 to 2.7 Å. The above three types of interactions are not always 1 to 1
and one H atom can interact with two O atoms, see Table 31.2. Moreover, π-stacking
interactions between phenyl groups are formed in all cases with the exception
of 18B ·Ph2NH+

2 −2 and 18B ·Ph2NH+
2 −3, with distances of 3.6–3.9 Å, while

interactions between C60 and phenyl group appear only in 18B ·Ph2NH+
2 −1 and

18B ·Ph2NH+
2 −4, with distances of 3.3 and 3.1 Å, respectively. Finally, hydrogen

vdW interactions between H atoms and phenyl groups are formed in all cases with
the exception of 18A ·Ph2NH+

2 −1 and 18B ·Ph2NH+
2 −3.
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The two lowest minima are the 18B ·Ph2NH+
2 −1 and 18B ·Ph2NH+

2 −2 isomers
and they contain the Ph2NH+

2 −2 isomer of the cation, but it is deformed and
twisted, respectively. These minima are further stabilized by the existence of the
fullerene, see above. Without the fullerene, the structures are not stable minima.
Further optimization of these structures lead to significant change of the complex-
ation in both isomers and finally lead to the 18 ·Ph2NH+

2 −2 complex. The CE
values of 18B ·Ph2NH+

2 −1 and 18B ·Ph2NH+
2 −2 are CE(CEsol) = 2.21(1.31)

and 2.17(1.31) eV, respectively. In CHCl3 solvent, the minima are energetically
indistinguishable.

The third lowest minimum is formed by the 18A isomer, 18A ·Ph2NH+
2 −1.

It consists of the Ph2NH+
2 −1 minimum and the crown ether is deformed with

respect to the free 18 crown ether. However, even though the fullerene does not
interact with the cation as in the above cases, without the fullerene this structure is
not stable. The CE values are CE(CEsol) = 2.05(1.23)eV.

In the remaining five isomers, the Ph2NH+
2 −1 minimum is included in both

18A ·Ph2NH+
2 −3 and 18B ·Ph2NH+

2 −4, while in the last isomer the Ph2NH+
2 −1

cation is deformed. The Ph2NH+
2 −2 minimum is part of 18A ·Ph2NH+

2 −2 and
18A ·Ph2NH+

2 −4. Finally, the 18B ·Ph2NH+
2 −3 isomer does not include any stable

minimum of the Ph2NH+
2 cation.

The two lowest minima 18 ·Ph2NH+
2 −1 and 18 ·Ph2NH+

2 −2 of the complex
of the 18 crown ether are part of the 18A ·Ph2NH+

2 −3 or 18B ·Ph2NH+
2 −4 and

18A ·Ph2NH+
2 −4, respectively and not of the two lowest minima of the complex of

the fullerene crown ether, i.e., 18B ·Ph2NH+
2 −1 and 18B ·Ph2NH+

2 −2. Comparing
the CE values of the 18 ·Ph2NH+

2 −1 and 18A ·Ph2NH+
2 −3, which differ only in

the existence of the fullerene, the first one has a CE value larger by 0.2 eV than the
second one. However, the existence of the fullerene causes another minimum to be
the global one, as mentioned above, which is more stable by 0.2 eV than the global
18 ·Ph2NH+

2 −1 minimum of the complex of the 18 crown ether.

31.3.3 18A·T and 18B·T Complexes

Substituting the H1 atom of the Ph2NH+
2 −1 isomer with a π-exTTF through

a C≡C group, the T cation is obtained, see Fig. 31.4. The energetically lowest
complexes of T with 18A and 18B, i.e., 18A ·T and 18B ·T, [16] are depicted also
in Fig. 31.4 These two minima correspond to 18A ·Ph2NH+

2 −1 and to a slightly
deformed 18B ·Ph2NH+

2 −3, respectively. Again, the lowest in energy 18B ·T does
not correspond to the lowest minimum 18B ·Ph2NH+

2 −1. Moreover, in 18B ·T
additional interactions are formed between the fullerene and the π-exTTF of T.
The CE(CEsol) values of 18A ·T and 18B ·T are 2.02(1.27) and 1.99(1.18) eV,
respectively.

The 18A ·T and 18B ·T isomers form a dyad each consisting of an electron
donor (fullerene), an electron acceptor (π-exTTF of T) and a crown ether as a
bridge between them. Their absorption spectra are given in Fig. 31.5. The spectrum
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Fig. 31.5 Absorption spectrum of 18A ·T and 18B ·T at the M06-2X/6-31G(d,p) level of theory

of 18A ·T presents three major features at about 400, 340, and 290 nm which
correspond to transitions from the T cation also to T. However, charge transfer
transitions from T to the fullerene are observed very close to the T→ T transitions.
On the other hand, the absorption spectrum of 18B ·T presents also three major
absorption peaks at about 390, 330, and a double peak around 300 nm with smaller
oscillator strengths. The first and the second major peaks correspond to transition
from T to T/fullerene, i.e., the excited orbital has electron density in both T and
fullerene species. That happens because the fullerene interacts with the π-exTTF
of T, see Fig. 31.5. We can label these transitions as charge transfer transitions.
The last double peak corresponds to transitions from T to fullerene, namely charge
transfer transitions. Moreover, the absorption spectra of five other isomers of 18A ·T
and 18B ·T complexes are similar to spectrum of 18A ·T and the use of the
CAM-B3LYP functional leads to similar major absorption peaks, transitions and
conclusions [16]. Thus, the studied complex may serve as a candidate for molecular
optoelectronics applications.

31.4 Remarks and Conclusions

The complexes of dibenzo-18-crown-6 ether and of dibenzo-18-crown-6 ether of
fullero-N-methylpyrrolidine with the diphenylammonium cation, Ph2NH+

2 , and its
derivative with π-extended tetrathiafulvalene, π-exTTF, were investigated by em-
ploying density functional theory. We calculated geometries, complexation energies
and some absorption spectra of the lowest energetic minima of the above complexes
in the gas phase as well as in CHCl3 solvent. A summary of our main results
follows:

1. The complexation energies, corrected for basis set superposition error, reach up
to 2.2 eV in the gas phase and up to 1.3 eV in the CHCl3 solvent, at the M06-
2X/6-31G(d,p) level of theory.

2. The minima of the cations and of the crown ethers are deformed to maximize
the number of the hydrogen bonds formed and present the largest complexation
energies. Bonds are formed between the H atom of ammonium, of the methylene
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and/or the phenyl group and the O atoms of ethers. Moreover, π-stacking
interactions arise between two phenyl groups or phenyl group with fullerene.

3. The presence of fullero-N-methylpyrrolidine, attached to the crown ether, results
in minima, where the cation is captured between fullerene and crown ether.
Additional interactions that can further stabilize the complex are formed.

4. The attachment of the fullero-N-methylpyrrolidine to the dibenzo-18-crown-6
ether or the attachment of π-exTTF to Ph2NH+

2 cation changes the complexation
of the global minimum. As a result, it is not safe to suppose that the attachment
of a group even if it is away from the complexation area will not change the type
of the global minimum complex.

5. The complex of fullerene crown ethers with a π-exTTF derivative of Ph2NH+
2

presents charge transfer transitions in its absorption spectrum and may have
potential for applications in organic photovoltaics and molecular electronic
devices.
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Dorsselaer A, Herschbach H, Leize E, Albrecht-Gary A-M, Trabolsi A, Elhabiri M (2006)
C R Chimie 9:1022

13. D’Souza F, Chitta R, Sandanayaka ASD, Subbaiyan NK, D’Souza L, Araki Y, Ito O (2007) J
Am Chem Soc 129:15865

14. D’Souza F, Maligaspe E, Sandanayaka ASD, Subbaiyan NK, Karr PA, Hasobe T, Ito O (2009)
J Phys Chem A 113:8478
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Chapter 32
A Review of Bonding in Dendrimers
and Nano-Tubes

M.A. Whitehead, Ashok Kakkar, Theo van de Ven, Rami Hourani,
Elizabeth Ladd, Ye Tian, and Tom Lazzara

Abstract Geometric characterization of two 1,3,5-triethynylbenzene (TEB) based
dendrimers containing tin and platinum linking agents, and a 3,5- dihydroxy-
benzylalcohol (DHBA) based dendrimer containing a siloxane linking used the
Semi-Empirical (PM3) Molecular Orbital Method and the Density Functional
Theory Method (DFT). The theoretical results showed the increased rigidity of the
backbone going from DHBA Silicon, Si, structure to TEB Tin, Sn, structure to TEB
Platinum, Pt, dendrimer makes the dendrimer structure less globular, more planar
and elongated.

The self-assembly of poly(styrene-alt-dimethyl-N,N-propylamide) (SMI) poly-
mers into nanotubes was studied by PM3. Ordered polymer self-assembly re-
sulted from π-stackingof styrenes and van der Waals interactions between the
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maleimide chains. Every styrene, and half of the maleimide chains, in a racemo-
di-isotactic SMI polymer form π-stacks and chain-chain pairs with neighboring
racemo-di-isotactic polymer. Racemo-di-isotactic polymers in bent associations
form a minimum-energy nanotube structure. Nanorods were observed experimen-
tally with diameters of 5 nm.

32.1 Introduction

Dendrimers are an important class of macromolecules whose unique properties led
to applications in a wide-range of areas [1–5]. These unique properties include a
hyper branched mono-disperse structure where higher generations often contain
well defined internal cavities. A two dimensional representation of a dendrimer is
in Fig. 32.1 [6]. Key structural features include the core unit, and linking agents, the
branching groups, the monomer repeat unit building block, and surface terminal
groups. Each part of the dendrimer can be independently varied to tailor the
properties of the final product. Dendrimers are synthesized using highly controlled
reaction sequences through either convergent or divergent synthesis. If prepared
convergently individual dendrons are first synthesized and then attached to the core
unit: in divergent techniques the entire structure is grown outwards from the core
unit [6].

As each layer of dendrons is added the generation number of the dendrimer
increases, as well as the globularity of its structure [6].

The structure and properties of three specific first generation dendrimers, are in
Fig. 32.2. Structures (b) and (c) are both based on 1,3,5-triethynylbenzene (TEB),
used as both core unit and building block. The structures differ only in the metal
unit as a linking agent, dendrimer (c) employs a platinum, Pt, unit, while dendrimer
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Fig. 32.1 Example of a dendrimers structure in 2Dimensions [1]
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Fig. 32.2 Optimized structures of the dendrimers of interest having (a) Si (b) Sn and (c) Pt linking
units

Scheme 32.1 Synthesis of TEB based tin and platinum dendrimers [7]

(b) is tin, Sn, based. The synthesis of dendrimers (b) and (c), are both prepared
through the divergent methodology, Scheme 32.1. [7].

The dendrimer in Fig. 32.2a uses a 3,5-dihydroxybenzylalcohol (DHBA) unit as
a core and building block and a siloxane linking agent. The synthesis performed in
a divergent manner is Scheme 32.2. [8].

Determining the three-dimensional structures of dendrimers is important.
Altering the metal linking agent and the building blocks of a dendrimer affect
the size and shape of the dendrimer. A detailed investigation of the properties of
three different dendrimers containing differing metal linking agents and building
blocks (Fig. 32.2), is reported, using Semi-Empirical PM3method and DFT, which
makes the ground state electronic properties of a system dependent on the Electron
Density of the system. [9].
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Scheme 32.2 Synthesis of DHBA based siloxane dendrimer [8]

32.2 Theoretical Methods

The large increase in size of each dendrimer generation needs a theoretical model
capable of geometric characterization of such large molecules. Therefore the
Molecular Mechanics Method with the MM+ Force Field was used. Geometry
optimization used the Polak-Ribiere Conjugate Gradient, set to terminate at an
RMS gradient of 0.01kcalÅ

−1
mol−1. The Semi-Empirical (PM3) [10], was then

used with the Gaussian98 program [11]. Semi-Empirical optimizations were carried
out under standard convergence criteria (maxforce = 4.5× 0−4 Hartrees bohr−1;
RMS force = 3.0×10−4 Hartrees Bohr−1; maxdisplacement = 1.8×10−3 Å; RMS
displacement = 1.2× 10−3 Å) [12, 13]. The structure of the Platinum dendrimer
could not be optimized using PM3 because the Platinum atom is not parametrized.
Consequently the Density Functional Theory (DFT) (B3LYP) [14] was used with a
LANL2DZ [15] basis set to optimize this structure. All the structures were also
optimized using DFT to ensure that structures optimized using PM3 and DFT
models can be directly compared. This was proven by comparing bond lengths and
angles as well as overall diameter of the structures which showed the DFT results
comparable to the PM3 in the overall structure of the Tin or siloxane dendrimers.
Therefore it can be assumed that the DFT optimized structure of the platinum
dendrimer is similar to what would have been obtained if a PM3 calculation could
have been performed. This was later checked with a PM6 calculation having Pt in
the basis set. The various conformations were explored by varying the torsional axes
to discover the Minimum Global Energy Conformation [16], which was conformed
both by the Gaussian98 program as well as the use of the Tree-Branch Method [17].
The Tin and siloxane dendrimers were then re-optimized using the DFT model,
again with the help of the Gaussian98 program.
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The association between SMI polymers was modelled using SMI hexamers.
Linear associations between SMI polymers were previously studied. New additional
calculations on bent associations were found and compared to previous results.
Semi-empirical PM3 calculations were used as above. The stabilization energy
and stacking geometry of the styrenes agree with results for similar systems. All
calculations were performed using the Gaussian 03 program.

32.3 Results and Discussion

The Bond Lengths and Angles of one of the dendrons on each of the structures was
measured, Tables 32.1–32.3. Because the arms are degenerate only the bond lengths
and angles of one dendron on each structure need be measured. In the siloxane
dendrimer even though there is an extra CH2 group on one of the dendrons because
a different core molecule is used, the arms still remain effectively degenerate [12].
The numbers assigned to the atoms of each dendron are shown below in Fig. 32.2.

From the Bond Angles and Lengths in Tables 32.2 and 32.3 it is clear that the
DFT calculations do not significantly alter the overall structure of the Tin or siloxane
dendrimers. This data supports our assumption that the DFT optimized structure of
the Platinum dendrimer correlates with what would have been obtained if it had been
possible to perform PM3 calculations. The subsequent PM6 calculations proved this
assumption correct.

Table 32.1 Bond lengths and angles for platinum dendrimer

Bond lengths Bond angles

Atoms Bond Length (A) Bond Angle (◦)
0-1 C–C 1.439 0-1-2 179.9
1-2 C≡ C 1.240 1-2-3 179.9
2-3 C–Pt 2.019 2-3-4 88.1
3-4 Pt–P 2.367 2-3-5 89.8
3-5 Pt–P 2.367 2-3-6 179.8
3-6 Pt–C 2.014 3-6-7 180.0
6-7 C≡ C 1.240 6-7-8 180.0
7-8 C–C(aromatic) 1.436 7-8-9 120.7
8-9 C–C(aromatic) 1.417 8-9-10 121.0
9-10 C–C(aromatic) 1.413 9-10-11 119.7
10-11 C–C(aromatic) 1.413 10-11-12 120.1
11-12 C–C(aromatic) 1.413 11-12-13 119.7
12-13 C–C(aromatic) 1.413 12-13-8 121.0
13-8 C–C(aromatic) 1.417 10-14-15 180.0
10-14 C–C 1.438 9-10-14 120.2
14-15 C≡ C 1.224 11-12-16 120.1
12-16 C–C 1.438 12-16-17 180.0
16-17 C≡ C 1.224
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Table 32.2 Bond lengths and angles for tin dendrimer

Bond lengths Bond angles

PM3 DFT PM3 DFT

Atoms Bond Length (A) Bond Angle (◦)
0-1 C–C 1.418 1.437 0-1-2 180.0 179.8
1-2 C≡ C 1.199 1.234 1-2-3 179.8 179.4
2-3 C–Sn 2.007 2.081 2-3-4 109.3 109.1
3-4 C–Sn 2.092 2.129 2-3-5 109.3 109.3
3-5 C–Sn 2.093 2.129 2-3-6 107.7 106.6
3-6 C–Sn 2.007 2.084 3-6-7 179.7 179.5
6-7 C≡ 1.199 1.234 6-7-8 180.0 179.7
7-8 C–C (aromatic) 1.418 1.437 7-8-9 119.8 120.4
8-9 C–C (aromatic) 1.398 1.414 7-8-13 119.7 120.2
9-10 C–C (aromatic) 1.398 1.413 8-9-10 119.5 120.6
10-11 C–C (aromatic) 1.398 1.413 9-10-11 120.5 119.5
11-12 C–C (aromatic) 1.398 1.413 10-11-12 119.5 120.4
12-13 C–C (aromatic) 1.398 1.413 11-12-13 120.5 119.6
13-8 C–C (aromatic) 1.398 1.414 9-10-14 119.7 120.2
10-14 C–C 1.418 1.437 10-14-15 180.0 180.0
14-15 C≡ C 1.192 1.224 11-12-16 119.7 120.2
12-16 C–C 1.418 1.437 12-16-17 180.0 180.0
16-17 C≡ C 1.192 1.223

Table 32.3 Bond lengths and angles for siloxane dendrimer

Bond lengths Bond angles

Length (A) Angle (◦)
Atoms Bond type PM3 DFT Bond PM3 DFT

0-1 C–O 1.353 1.383 0-1-2 123.9 137.4
1-2 O–Si 1.709 1.720 1-2-3 115.0 111.5
2-3 Si–C 1.891 1.873 1-2-4 102.3 109.0
2-4 Si–C 1.895 1.881 1-2-5 109.1 103.2
2-5 O–Si 1.706 1.700 2-5-6 119.6 128.9
5-6 C–O 1.392 1.451 5-6-7 112.7 113.0
6-7 C–C 1.511 1.523 6-7-8 120.0 119.3
7-8 C–C (aromatic) 1.392 1.411 6-7-12 119.5 120.3
8-9 C–C (aromatic) 1.402 1.408 7-8-9 119.3 119.4
9-10 C–C (aromatic) 1.399 1.404 8-9-10 121.5 121.2
10-11 C–C (aromatic) 1.400 1.406 9-10-11 117.9 118.4
11-12 C–C (aromatic) 1.400 1.406 10-11-12 121.4 121.5
12-7 C–C (aromatic) 1.396 1.405 8-9-13 116.0 122.5
9-13 C–O 1.368 1.402 10-9-13 122.5 116.3
11-14 C–O 1.368 1.400 12-11-14 122.8 116.7

10-11-14 115.8 121.8
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Table 32.4 Diameters Dendrimer Optimization model Diameter range (Å)

Tin PM3 21.9–22.0
DFT 22.0–22.4

Silicon PM3 16.1–19.2
DFT 13.7–17.4

Platinum DFT 26.7–30.0

Fig. 32.3 Numbers assigned to the atoms of each non-degenerate dendron to facilitate the
report of bond lengths and angles, shown in Table 32.1 for dendrimers with (a) Si (b) Sn and
(c) Pt linking units

The diameters of each of the dendrimers was also measured, this data is in
Table 32.4. Because these structures are not perfectly spherical, multiple diameters
were measured for each structure and a range of values is presented.

The values presented for the PM3 optimized siloxane [12] Si and Tin [7] Sn
dendrimers have previously been reported.

The relatively narrow range of diameters of the Tin dendrimer is caused by its
more regular, globular shape compared to the other two structures. This is caused
by both the tetrahedral geometry enforced by the Tin centre, as well as the rigidity
of the TEB backbone. The tetrahedral shape enforced by the Tin, moiety causes it to
be more globular than the Platinum dendrimer as the arms fold back on themselves
in a Turbine Shape, where the Square Planar arrangement caused by the Platinum
centre leads to a more spread out planar conformation, shown by the side views
of the dendrimers, Fig. 32.3. The rigidity of the TEB backbone gives the Tin, and
Platinum dendrimers a more rigid and regular shape unlike Silicon dendrimer. Also,
the third arm in the Silicon dendrimer which contains an extra CH2 group further
decreases the regularity. Although all three structures should be about the same size
the Platinum dendrimer is clearly the most elongated, as evidenced by its larger
diameter, Table 32.4. This is caused by both the rigid square planar geometry caused
by the Platinum centre, as well as the rigidity of the TEB backbone, both of which
prevent the arms of this dendrimer from folding back.

The PM3 method gave the Delocalized Molecular Orbitals (DLMO) of the
Tin and siloxane dendrimers. Those for the siloxane dendrimer have previously
been reported [12] and will not be discussed here. The three Degenerate Highest
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Fig. 32.4 Side views of dendrimers with (a) Si (b) Sn and (c) Pt linking units

Fig. 32.5 The Highest Occupied Molecular Orbitals (HOMO) of the tin dendrimer along with
their numbers and energies

Occupied Molecular Orbitals (HOMO) of the Sn structure are shown in Fig. 32.4.
The Degeneracy of these three Valence Orbitals shows the equal reactivity of each
arm of the dendrimer.

32.4 Interactions Between SMI Polymers

Ithas been shown [18–24], that the methods used predict π bonding correctly for
many different molecular structures, in the gas phase and when hydrated. The
theoretical predictions were proved by experiment. π-Stacking interactions between
styrenes and the van der Waals forces between maleimide chains cause SMI polymer
aggregation. Racemo-di-isotactic SMI polymers have an ordered distribution of
styrenes along a main axis, with maleimide chains at 70◦ to the styrenes. In contrast,
atactic polymers structures are not periodic, preventing ordered association [25]
Two possible association conformations occur: head-to-tail in which the polymers
are in identical orientation and head-to-head where they are in opposite orientation
[25]. SMI polymers can join with different association angles, and three limiting
geometries exist: when there is no rotation between polymers (linear association)
and two limiting cases if the rotation is ±60◦ (bent associations). Association
distances and stabilizaion energies have been previously calculated for the linear
associations 2 and 5 using a series of constrained optimizations, followed by
relaxing the system [25]. Here, the associations 1, 3, and 4 = 6 are calculated using
the methods for 2 (Fig. 32.6).
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Fig. 32.6 (a) Lateral and cross-section view of a racemo-di-isotactic SMI polymer [25] (hydro-
gens removed for clarity). (b) The six associations studied: 2, 5 are linear and 1, 3, 4, 5 are bent
associations. Associations 4 and 6 are equivalent, and associations 2 and 5 have been studied
previously [25]

Evaluating the energy as a function of inter-phenyl distance (r′) allows compar-
ison of the six associations (Fig. 32.7). The average r′ is between 4.2 Å and 5.5 Å.
The bent associations 1, 3, 4, and 6 are the most stable, with 20 kJ/mol of stabiliza-
tion energy for each π-stacking monomer pair (for two hexamers, there are three
π-stacking pairs). Figure 32.6 summarizes the PM3 results obtained when the con-
straints are released. The stabilization energy from π-stacking was previously de-
termined by the same type of calculation on the linear association complexes 2 and
5 [25]. Chain-chain interactions are negligible for linear associations, and the sta-
bilization energy represents only π-stacking: 13 kJ/mol per π-stack. The increased
stabilization energy for bent associations compare to linear ones comes from chain-
chain stabilizing van der Waals interactions between the maleimide chains, and this
contributes about 7 kJ/mol per monomer pair. Both π-stacking and van der Waals
interactions are present in bent associations and produce more stable complexes
than linear ones. If maleimide chains are shorter, the stabilization energy for bent
associations does not change much compared to linear ones. Complexes with no
chain-chain interactions would become insensitive to changes in association angles.

32.5 Nanotubes from Self-assembled SMI Polymers

Associating more than two hexamers (500 atoms) was built up from smaller units.
The optimal inter-phenyl distances and association angles for the most stable
bent associations were used to build larger complexes. The inter-phenyl distance
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Fig. 32.7 Stabilization energy as a function of r′ for the different associations. The stabilization
energies are given for two hexamers and therefore for three π-stacking SMI styrene pairs

is about 5 Å with association angles of 60◦. The bent association (1, 3, 4 = 6) have
equivalent energies, are equally probable, and give polymer sheets, from combining
bent associations and grown by addition of racemo-di-isotactic polymers. When the
sheets grow, non-associated peripheral styrenes remain. The system is more stable
when additional π-stacks form between peripheral styrenes. The curvature forms a
closed tube because the bent associations already form a 60◦ angle. In a closed loop,
the hydrophobic styrenes and half of the maleimide chains are no longer in contact
with the hydrophilic solvent, but interact with a more hydrophobic environment
inside the nanotube walls. A closed octagonal structure consisting of eight SMI
polymers forms a short polymer nano-tube segment. Figure 32.8 shows an SMI
nano-tube from eight polymers in the head-to-head conformation. The inter-phenyl
distances and association angles of the optimized values were used to build the 3-
dimensional nano-tube. Using different periphery atoms as reference points gave an
outer diameter of 4.8±0.2nm and an inner diameter of 1.7±0.2nm. An equivalent
structure is also possible for SMI polymers associating in a head-to-tail conforma-
tion and a mixture of the two conformations. Stabilization energies, inter-phenyl
distances, and association angles are comparable between head-to-head and head-
to-tail conformations. The nano-tube forms with racemo-di-isotactic polymers.

Polymers are polydisperse, and π-stacking is rarely perfect between associated
polymers, the short closed segment can have protruding polymers. These ends
offer nucleation points where addition of further racemo-di-isotactic polymers can
occur. The nanotube linear growth is illustrated in Fig. 32.9. SMI nanotubes are
not expected to associate in bundles, as was the case for SMA nanotubes, but to
give individual rods. The styrenes π-stack inside the walls of the nanotubes and are
unavailable for further interaction between nanotubes. Unfavorable solvent-styrene
interactions are decreased, and favorable hydrophobic styrene-styrene and chain-
chain interactions are increased in polar solvents such as water unlike SMA [26].
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60°
van der Waals radii

row of
π-stacking

styrene
monomers

(1.7±0.2) nm

(4.8±0.2) nm

Fig. 32.8 SMI nanotube (cross section, perpendicular to association plane): (top) the nanotube
has an octagonal shape, made from eight racemo-di-isotactic SMI polymers in the head-to-head
conformation; (bottom) SMI nanotube shown with van der Waals radii

Fig. 32.9 Proposed linear growth mechanism for SMI nanotubes. SMI polymers self-assemble
at the edges of an initially closed structure, and the addition makes the nanotube grow in length
(arrows) (lighter shade atoms are further behind the plane of view)
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32.6 Conclusions

Theoretical calculations using the Semi-Empirical Parameterization Model 3 (PM3
and PM6) Molecular Orbital Theory and the Density Functional Theory (DFT)
proved useful to compare dendrimers with different metal linking centres and
organic building blocks. The structure optimizations showed how the overall shape
of the dendrimers change when the backbone is varied. The dendrimer which
employed a Platinum linking unit was shown to be a rigid planar structure, while
that containing Tin was more turbine shaped. However both of these structures
have much more inflexible conformations than the Silicon dendrimer, because of the
increased rigidity of the TEB backbone compared to DHBA. This is caused by the
triple bonds in the TEB structure. The optimized structures also gave insight about
the size of the dendrimers which ranged from 21.9 Å to 22.4 Å for the Tin dendrimer,
13.7–19.2 Å for silicon dendrimer and 26.7–30.0 Å for the Platinum structure. The
increasing rigidity of the backbone in going from the DHBA Silicon structure to the
TEB Tin structure and finally to the TEB Platinum dendrimer decreases the number
of permutations in the angle at which the arms attach to the core and restricts the
possible conformations to more spread out structures. It is clear that as the rigidity of
the backbone is increased, the dendrimer structure becomes less globular and more
planar and elongated.

Association between racemo-di-isotactic SMI polymers was investigated theo-
retically and gave rod-shaped aggregates. The bent associations are more stable
because of van der Waals interactions between maleimide chains. Multiple bent
associations form a minimum-energy nanotube structure. Although only the self-
assembly of relatively long maleimide chains has been studied here, the conclusions
apply to other styrene and maleimide copolymers because removing the maleimide
chains does not affect the overall geometry of the polymer [25]. Additionally, the
chemical structure of maleimide chains can modify the van der Waals interaction.

This study shows that by functionalizing SMA the size of the styrene-based
alternating copolymer nanotubes can be changed. The shape of SMI nanotubes
remains octagonal, the outer diameter increases from 4.4 to 4.8 nm, the inner
diameter decreases from 2.0 to 1.7 nm, and aggregation between SMI nanotubes
is not possible. In the sample studied, a very small fraction of the SMI actually
self-assembled in nanotubes because polymer chirality occurs randomly, and only
a low percentage is actually racemo-di-isotactic. Synthesis of racemo-di- isotactic
SMI and their derivatives would be very interesting, if achievable [27].
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van der Waals (vdW), 88, 336, 337, 434,

436–440, 443, 444, 451, 458, 465, 470,
572, 601, 602, 604–606, 619, 621, 622
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Wave function optimization, 56, 95, 347
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