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Preface

The International Workshop on Complex Networks CompleNet (www.complenet.
org) was initially proposed in 2008, and the first workshop took place in 2009 in
Catania. The initiative was the result of efforts from researchers from the
(i) BioComplex Laboratory in the Department of Computer Sciences at Florida
Institute of Technology, USA, and the (ii) Dipartimento di Ingegneria Informatica e
delle Telecomunicazioni, Universit di Catania, Italy. CompleNet aims at bringing
together researchers and practitioners working on complex networks or related
areas. In the past two decades, we have indeed witnessed an exponential increase in
the number of publications in this field. From Biology to Computer Science, from
Economics to Social Systems, Complex Networks are becoming pervasive in many
fields of science. It is this interdisciplinary nature of complex networks that
CompleNet aims at addressing. CompleNet 2018 was the ninth event in the series
and was hosted at Northeastern University in Boston, MA, from March 5–8, 2018.

This book includes the peer-reviewed list of works presented at CompleNet
2018. We received an unprecedented 222 submissions from 36 countries around the
world. Each submission was reviewed by at least three members of the Program
Committee. Acceptance was judged based on the relevance to the symposium
themes, clarity of presentation, originality and accuracy of results, and proposed
solutions. After the review process, 13 full papers and 15 short papers were selected
to be included in this book. The 26 contributions in this book address many topics
related to complex networks and have been organized in five major groups:
(1) Theory of complex networks, (2) Graph Embeddings, (3) Network Dynamics,
(4) Network Science Applications, (5) Human Behavior and Social Networks. We
would like to thank the Program Committee members for their work in promoting
the event and refereeing submissions. We are grateful to our speakers: Aaron
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Clauset, Kayle De La Haye, James Evans, Jon Kleinberg, David Lazer, Yelena
Mejova, J. P. Onnela, Sam Scarpino, Olaf Sporns, Jessika Trancik, Milena
Tsvetkova, Fernada B. Viégas, and Martin Wattenberg; their presentation is one
of the reasons CompleNet 2018 was such a success.

Boston, MA, USA Sean Cornelius
Kate Coronges

Bruno Gonçalves
Roberta Sinatra

Alessandro Vespignani
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On the Eccentricity Function in Graphs

Hend Alrasheed

Abstract Given a graph G = (V, E), the eccentricity of a vertex u is the distance
from u to a vertex farthest from u. The set of vertices that minimizes the maximum
distance to every other vertex (has minimum eccentricity) constitutes the center of
the graph. The minimum eccentricity value represents the graph’s radius. The eccen-
tricity function of a graph can be unimodal or non-unimodal. A graph with unimodal
eccentricity function has the property that the eccentricity of every vertex equals
its distance to the center plus the radius. A graph with non-unimodal eccentricity
function lacks this property. In this work, we characterize each type of eccentric-
ity function and study the impact of each type on the intersection of shortest paths
among distant vertex pairs with the center. A shortest path intersects the center if it
includes at least one vertex that belongs to the center. In particular, we show that if
the eccentricity function is unimodal, all shortest paths among distant vertex pairs
intersect the graph’s center. We also discuss when those paths do not intersect the
center in graphs with non-unimodal eccentricity functions.

1 Introduction

Research shows that in many real-world networks, traffic tends to concentrate on a
subset of densely connected vertices (known as the core) that is also central to the
network [1, 5, 12]. While the definition of which vertices are core varies, there are
multiple centrality measures that are commonly used to assist core identification.
First, one or more centrality measures are used to rank vertices according to their
importance. Then, vertices of higher ranks are included in the core [2, 5]. Some
of the centrality measures are the closeness, the betweenness, and the eccentricity
centrality. The eccentricity of a vertex u in a given unweighted graph is themaximum
distance (number of edges) from u to any other vertex in the graph. The eccentricity
centrality determines the center as the vertex (or vertices) that minimizes the maxi-
mum distance. The importance of those central vertices in applications is due to their

H. Alrasheed (B)
Department of Computer Science, Kent State University, Kent, OH 44242, USA
e-mail: halrashe@kent.edu

© Springer International Publishing AG 2018
S. Cornelius et al. (eds.), Complex Networks IX, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-319-73198-8_1
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4 H. Alrasheed

role as organizational hubs. Generally, distant vertices communicate faster through
such intermediate vertices [2]. This work is motivated by systems in which infor-
mation is being sent between distant vertices (people, locations, etc.) and must pass
through a central vertex (where the information is processed) before the transmission
is completed.

Let d(u, v) denote the distance between vertices u and v in a connected,
unweighted, and undirected graphG = (V, E). For a vertex u, we define F(u) as the
set of vertices at maximum distance from u. The eccentricity ecc(u) is the distance
from u to a vertex v ∈ F(u). Theminimumandmaximumeccentricities represent the
graph’s radius rad(G) and diameter diam(G). The vertices with minimum eccen-
tricity constitute the center C(G). A path of length k − 1 from vertex u0 to vertex
uk is a sequence of adjacent vertices u0, u1, . . . , uk and a shortest path from u0 to
uk , denoted by ρ(u0, uk), is a path that minimizes this length.

By definition, the values of the eccentricities represent the distances among ver-
tices (vertices with smaller eccentricities are closer to other vertices). However,
eccentricity values also provide some insight into the distances between vertices
and the center of the graph. Based on this observation, the eccentricity function can
be described as either unimodal or non-unimodal. A graph with unimodal eccentric-
ity function has the property that ecc(u) = d(u,C(G)) + rad(G) for every vertex
u. A graph with non-unimodal eccentricity function lacks this property. In this work,
we characterize the unimodality of the eccentricity function in graphs based on the
monotonicity of the shortest paths that connect noncentral vertices in a graph to its
center. We also study the impact of unimodality on the intersection of shortest paths
among distant vertex pairs with the center (a shortest path intersects the center if
it includes at least one vertex that belongs to the center). A vertex pair (u, v) is a
distant vertex pair if v ∈ F(u) and in this case, we say that ρ(u, v) is a long shortest
path. In particular, we show that if the eccentricity function is unimodal, all shortest
paths among distant pairs intersect the center. We also discuss when those paths do
not intersect the center in graphs with non-unimodal eccentricity functions. Finally,
we examine the eccentricity functions of a set of real-world networks.

2 Eccentricity, Locality, and Monotonicity

Let G = (V, E) be a connected, unweighted, and undirected graph with eccentricity
function ecc(u) defined for every vertex and let C(G) be its center. In this work, we
use two kinds of vertex layering (both related to vertex eccentricities).

Graph eccentricity layering. The eccentricity layering EL(G) partitions the ver-
tex set V into layers �r (G), r = 0, 1, . . . based on their eccentricities. Each layer
r includes all vertices with eccentricities r = ecc(G) − rad(G), i.e., �r (G) = {u ∈
V : ecc(u) − rad(G) = r}. Here, r represents the index of the layer. Note that ver-
tices located at the outermost layer have eccentricities equal to the graph’s diameter.
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Distance-to-center layering. The distance-to-center layering DC(G) partitions the
vertex set V into layers ζr (G), r = 0, 1, . . . based on their distances to C(G).
Each layer r includes all vertices at distance r from C(G), i.e., ζr (G) = {u ∈ V :
d(u,C(G)) = r}. Here, r represents the index of the layer.

The possible difference between the two layerings of a noncentral vertex is pro-
vided in the following proposition.

Proposition 1 For a vertex u ∈ V \C(G), where u ∈ �r (G) of the graph eccentricity
layering, the distance between u and the center d(u,C(G)) is bounded as follows.
r ≤ d(u,C(G)) ≤ rad(G), r ≥ 1.

The upper bound follows from the fact that the maximum distance between u and
the center cannot exceed the graph’s radius. The importance of this observation is
in the lower bound. If vertex u ∈ �1(G), then 1 ≤ d(u,C(G)),≤ rad(G), if vertex
u ∈ �2(G), then 2 ≤ d(u,C(G)),≤ rad(G), and so on. Note that the lower bound
increases with the layer which results in a decrease of the distance between the vertex
and the center. That is, the smaller the eccentricity of a vertex, the more distant it can
be from the center.

Let N (u) be the neighborhood of a vertex u (N (u) = {v ∈ V : uv ∈ E}) and
degree(u) = |N (u)| be the degree of u. We define the locality of a noncentral vertex
u, denoted as loc(u), according to the eccentricities of its neighbors as loc(u) =
min{d(u, v) : v ∈ V and ecc(u) = ecc(v) + 1}.

The difference between the eccentricities of any pair of adjacent vertices is always
≤1. The locality decides the number of hops between u and a closest vertex v such
that the eccentricity of v is strictly smaller than the eccentricity of u. We assign
the locality of any u ∈ C(G) a value of one since a vertex with less eccentricity
does not exist. In Fig. 1a, loc(a) = 1 since a has a neighbor vertex (c) with smaller
eccentricity. loc(u) = 2 and loc(w) = 3 because a vertex with smaller eccentricity
is at distance two and three, respectively.

Remark 1 loc(u) ≤ rad(G) for any vertex u ∈ V .

The next remark, which follows Proposition1, sets bounds on the value of the
locality of a vertex based on its eccentricity.

Remark 2 For a vertex u ∈ V \C(G), where u ∈ �r (G) of the graph eccentricity
layering, the locality of u is bounded as follows. 1 ≤ loc(u) ≤ rad(G) − r + 1 for
any integer r , 1 ≤ r ≤ rad(G).

That is, the smaller the eccentricity of a given vertex, the higher can be its local-
ity. For example, consider a graph G with rad(G) �= diam(G) and two vertices
u with ecc(u) = rad(G) + 1 and v with ecc(v) = diam(G). It may be the case
that u and v have equal distances to the center. Next, we describe the monotonic-
ity of shortest paths that connect noncentral vertices to the center with respect
to the eccentricities of their vertices. A shortest path ρ(u, v) = (w0, w1, . . . , wi ),
w0 = u and wi = v, that connect a noncentral vertex u to a vertex v ∈ C(G)

(ecc(u) > ecc(v)), is monotonically decreasing if ecc(wi ) > ecc(wi+1) ∀ wi ∈
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Fig. 1 a A graph with non-unimodal eccentricity function. b Distance-to-center layering of the
graph in a. c List of vertices, their eccentricities, distances to the center, localities, and error values

ρ(u, v), 1 ≤ i ≤ d(u, v) − 1, monotonically nonincreasing if ecc(wi ) ≥ ecc(wi+1)

∀ wi ∈ ρ(u, v), 1 ≤ i ≤ d(u, v) − 1, or non-monotonic if wi ∈ ρ(u, v) such that
ecc(wi ) < ecc(wi+1)where 1 ≤ i ≤ d(u, v) − 1. A vertex has amonotonically non-
increasing path if no other monotonically decreasing path exists. Similarly, a vertex
has a non-monotonic path if no other monotonically decreasing or monotonically
nonincreasing paths exist.

3 Unimodality of the Eccentricity Function and the Center

The vertices of a graph G = (V, E) can be partitioned into two subsets: C(G) and
G\C(G) corresponding to the subsets of central and noncentral vertices, respectively.
According to the eccentricities of the vertices on the shortest paths that connect non-
central vertices to the center, the eccentricity function of a graph can be described as
unimodal or non-unimodal. The eccentricity function is unimodal if the eccentricities
along the shortest paths that connect noncentral vertices to the center are monotoni-
cally decreasing. Because of the unimodality, the local minimum (a vertex with local
minimum eccentricity) and the global minimum (the graph’s center) coincide, i.e.,
no local centers exist in the graph. Some standard classes of graphs have unimodal
eccentricity functions. Those include trees, complete graphs, and block graphs.

Definition 1 Given a graph G = (V, E), its eccentricity function is unimodal if
for every vertex u ∈ V \C(G), there exists at least one vertex v ∈ N (u) such that
ecc(u) = ecc(v) + 1.

The eccentricity function is non-unimodal if at least one of the shortest paths
that connect noncentral vertices to the center is monotonically nonincreasing or non-
monotonic. This causes the existence of local centers. A vertex can be considered a
local center if no other vertex with less eccentricity exists within its neighborhood.
That is, if it has locality greater than one. See Fig. 1.

A. Unimodality and distances to the graph’s center. Here, we analyze the impact
of the unimodality of the eccentricity function on the distances between a vertex and
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the center and the eccentricity of that vertex. Mainly, we show that if the eccentricity
function is unimodal, then all vertices with equal eccentricities have equal distances
to the center of the graph. This is not necessarily true for graphs with non-unimodal
eccentricity functions. Given a graph G = (V, E) with unimodal eccentricity func-
tion, the relationship between the eccentricity of a vertex u, its distance to the center,
and the graph radius satisfies:

Lemma 1 ([4]) If the eccentricity function of a given graphG = (V, E) is unimodal,
then ecc(u) = d(u,C(G)) + rad(G) for every vertex u ∈ V .

It follows from Lemma1 that for a graph with unimodal eccentricity function, its
eccentricity layering and distance-to-center layering return equal partitioning for the
vertex set. That is, all vertices with equal eccentricities have the same distance to
the center of the graph. The relationship in Lemma1 can be generalized (to include
graphs with non-unimodal eccentricity functions) as follows.

Proposition 2 Let G = (V, E) be a graph. For every vertex u ∈ V , ecc(u) ≤
d(u,C(G)) + rad(G).

In a graph with non-unimodal eccentricity function, the eccentricity layering and
the distance-to-center layering provide different partitions for the vertex set. Consider
a set of vertices with equal eccentricities. Vertices with locality = 1 are closer to the
center compared to vertices with locality > 1. For example, in Fig. 1a, both vertices
a and z have eccentricity 4; however, d(a,C(G)) = 1 and d(z,C(G)) = 2. Note
that loc(a) = 1 and loc(z) = 2. Moreover, The difference between the eccentricity
layering and the distance-to-center layering of a vertex u is either due to the locality
of u or the locality of some vertex on a shortest path from u to C(G). For example,
for vertex m in Fig. 1a, ecc(m) �= d(m,C(G)) + rad(G) even though loc(m) = 1.
This is because vertex u ∈ ρ(m,C(G)) has loc(u) > 1.

Since vertex locality is a local measure (within the vertex neighborhood), we
extend it to include the localities of all vertices along a shortest path from a vertex
to the center. Let u ∈ G\C(G) be a vertex and c ∈ C(G) be a closest vertex in the
graph’s center to u and ρ(u, c) = w1, w2, . . . , w j , where w1 = u and w j = c be a
path between vertices u and c. The error between the distance-to-center layering
and the eccentricity layering for a vertex u denoted by μ(u) is defined as μ(u) =
d(u,C(G)) + rad(G) − ecc(u).

In Fig. 1a, μ(h) = 0, μ(g) = 1, and μ(y) = 2. Every vertex u in a graph with
unimodal eccentricity function has error μ(u) = 0. The value of the error has the
following bound.

Remark 3 For any graph G = (V, E), μ(u) ≤ rad(G) − 1.

Proposition 3 Let G = (V, E) be a graph and EL(G) be its eccentricity layering.
For a vertex u ∈ V \C(G) and u ∈ �r (G), μ(u) ≤ rad(G) − r for any integer r ,
1 ≤ r ≤ rad(G).
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That is, ifμ(u) = rad(G) − k,where 1 ≤ k ≤ rad(G), then rad(G) < ecc(u) ≤
rad + k. That is, the larger the eccentricity of a vertex, the smaller error it can have.

B. Unimodality, long shortest paths, and the graph’s center. Let the interval
I (u, v) includes all vertices on the shortest paths between u and v, i.e., I (u, v) =
{w ∈ V : d(u, w) + d(w, v) = d(u, v)}. A shortest path ρ(u, v) intersects (passes)
a subset W if there is at least one vertex w ∈ W such that w ∈ I (u, v). Here, we
analyze the intersection of shortest paths with the center. Mainly, we show that if
the eccentricity function of a graph is unimodal, then there is at least one shortest
path between a vertex u and a vertex v at most distant from u such that ρ(u, v)

intersects the graph’s center (Lemma2). Moreover, we show that if the eccentricity
function is non-unimodal, a shortest path between a vertex u and its most distant
vertex v does not intersect the center if (1) Vertex u has error μ(u) > 0 and ecc(v) >

ecc(u) (Lemma3) or (2)Vertex u has error μ(u) > 0, ecc(v) ≥ ecc(u), and μ(v) ≥ 1
(Remark 5). That is, both u and v are far from center.

Lemma 2 Let G = (V, E) be a graph with unimodal eccentricity function. For any
vertex u ∈ V \C(G) and a vertex v ∈ F(u), I (u, v) ∩ C(G) �= ∅.
Proof Let c ∈ C(G). Because of the unimodality, ecc(u) = d(u, c)) + rad(G). By
triangle inequality d(u, v) ≤ d(u, c) + d(c, v). Since v ∈ F(u), ecc(u) = d(u, v),
and rad(G) ≤ d(v, c) ≤ rad(G). Thus, c ∈ ρ(u, v).

Remark 4 Let G = (V, E) be a graph with non-unimodal eccentricity function. For
any vertex u ∈ V \C(G)with μ(u) = 0 and a vertex v ∈ F(u), I (u, v) ∩ C(G) �= ∅.

In Fig. 1a, vertices with error (μ) of zero have a long shortest path that intersects
the center such as ρ(h, l).

Lemma 3 Let G = (V, E) be a graph with non-unimodal eccentricity function,
u ∈ V \C(G) be a vertex with μ(u) = rad(G) − k, 1 ≤ k < rad(G), and let v be a
vertex v ∈ F(u) with ecc(v) > rad(G) + k. Then I (u, v) ∩ C(G) = ∅.
Proof Let c be a central vertex. Using the error, the distance d(u, c) is d(u, c) =
ecc(u) + μ(u) − rad(G). Similarly, d(v, c) = ecc(v) + μ(v) − rad(G). Since v ∈
F(u), d(u, v) = ecc(u). Assume by contradiction that c ∈ I (u, v). Then d(u, v) =
d(u, c) + d(c, v) = ecc(u) + μ(u) − rad(G) + d(c, v) = ecc(u) − k + ecc(v) +
μ(v) − rad(G) > ecc(u).

Remark 5 From Lemma3, we conclude that if μ(u) = rad(G) − k, 1 ≤ k <

rad(G), then for a vertex v ∈ F(u) with ecc(v) ≥ rad(G) + k and μ(v) ≥ 1,
I (u, v) ∩ C(G) = ∅.

Lemma3 considers vertices that are far from the center because of the error of one
vertex and the eccentricity of the other. For example, in Fig. 1a, consider the interval
I (z,m). I (z,m) ∩ C(G) = ∅ since μ(z) = 1 and ecc(m) = 5.
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4 Experiments on Real-World Networks

We examine the eccentricity functions of a broad set of real-world networks (see
Table1). All networks are undirected and unweighted. In Table1, we report the size
of the center of each network and the number of vertices of locality 1, 2, and ≥3.
It is clear from Table1 that the majority of vertices have small localities in general
and a locality of 1 in particular. Also, the US-AIRLINES network has unimodal
eccentricity function.

In Table2, we show the locations of vertices with higher localities (locality > 1)
with respect to the graph eccentricity layering. Note that vertices in layer 0 are central
vertices, vertices in layer 1 are vertices with eccentricities equal to rad(G) + 1, and
so on. Table2 shows that the vertices of locality > 1 generally concentrate in lower
layers (vertices with small eccentricities) and mostly in layer 1. A closer look at
those vertices reveals that the higher their localities, the smaller their eccentricities
are. For example, in the DUTCH-ELITE network, the maximum locality is 5, and
all vertices with locality of 5 belong to layer 1.

To see the impact of vertices of higher locality on the shortest paths, we compare
the number of vertices of locality = 1 and locality > 1 with the values of the error
(μ) of each vertex. Vertices of locality> 1 have an error value μ ≥ 1. A vertex u with
loc(u) = 1 will have μ(u) = 0 if no other vertex of higher locality exists in a shortest
path from u to the center. Generally, if a graph has x number of vertices of locality>

1 and x number of vertices with error > 1, then all vertices of locality = 1 have their
eccentricities equal to their layers (they have the same index in both the eccentricity
and the distance-to-center layerings). In other words, no vertices of locality> 1 exist
in a shortest path from those vertices to the center. For our real-world networks, we
compare the number of vertices of locality= 1, locality> 1, and error> 0 in Table3.
For the POWER-GRID network, even though only about 1% of vertices have locality
> 1, 54% of the vertices have error > 1. This indicates that the majority of vertices
include other vertices of locality > 1 in their shortest paths to the center. The last
column in Table3 shows how many of the shortest paths that connect distant vertex
pairs intersect the center in each network. All long shortest paths intersect the center
of the network with unimodal eccentricity function. Networks with high maximum
locality (such as the DUTCH-ELITE and Facebook networks) have generally fewer
long shortest paths that pass the graph’s center.

We also differentiate between two types of vertices with locality> 1: (A) vertices
with locality > 1 and with at least one neighbor with equal eccentricity and (B)
vertices with locality > 1 and with all neighbors with greater eccentricities. This
is important for investigating the monotonicity of the shortest paths that connect
noncentral vertices to the center.Vertices of type Bwill naturally have non-monotonic
paths to the center. The question is what effect do they have on the monotonicity of
the shortest paths of other vertices? In our set of networks, the networks with vertices
of type B are the PPI, DUTCH-ELITE, POWER-GRID, and GNUTELLA networks
with 0.05, 3, 0.3, and 0.1% of their vertices are of this type. Close inspection of the
monotonicity of the shortest paths that connect noncentral vertices to the center shows
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Table 2 Distribution of vertices with loc > 1 over the layers of the eccentricity layering. For each
layer, number of vertices with loc > 1/total number of vertices

Network |V | No. of
vertices with
loc > 1

Layer

1 2 ≥3

US- Airlines 332 0 0/24 0/250 0/57

PPI 1458 48 65/366 8/533 5/511

Dutch- Elite 3621 119 60/74 49/687 10/2857

Facebook 4039 49 49/112 0/2579 0/1347

Power- Grid 4941 39 0/2 0/3 16/4935

AS- GRAPH- 3 5357 145 122/1816 23/2766 0/765

ROUTEVIEW 10515 76 54/1102 21/7212 1/2199

HOMO-PI 16635 143 141/7002 2/8843 0/655

GNUTELLA 26498 3027 1579/1934 1448/13021 0/11542

EMAIL-ENRON 33696 136 135/12210 1/17051 0/4187

SLASHDOT 77360 8369 7978/9694 391/53665 0/14000

ITDK 190914 6521 3312/9967 2624/51939 528/128853

Table 3 Max locality and error in each network. Last column: % of distant pairs with at least one
shortest path that passes C(G)

Network Max
locality

Max error μ % of ver w
loc = 1

% of ver w
loc > 1

% of ver w
μ ≥ 1

% of sh ρ
pass C(G)

US- Airlines 1 0 100 0 0 100

PPI 4 3 94 ≈5 25 92

Dutch- Elite 5 4 97 3 64 36

Facebook 3 2 98 ≈2 48 53

Power- Grid 5 4 99 0.7 54 58

AS- GRAPH- 3 2 1 97 2.7 6 100

ROUTEVIEW 2 2 99.3 0.7 8 96

HOMO-PI 2 1 99 1 1.3 99

GNUTELLA 4 3 88.6 11.4 70 62

EMAIL-
ENRON

2 1 99.6 0.4 1.14 99

SLASHDOT 3 2 89.2 10.8 67.7 33

ITDK 3 2 96.6 3.41 21.3 91.6

that only those four networks have non-monotonic paths to the center. Moreover,
those vertices affect the monotonicity of the shortest paths of other vertices in the
DUTCH-ELITE, POWER-GRID, and GNUTELLA networks. See Table4.
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Table 4 Effect of vertex locality on the monotonicity of shortest paths to C(G). % loc > 1=: % of
ver with loc> 1 and with at least one neighbor of equal ecc; % loc > 1>: % of ver with loc> 1 and
with all neighbors of greater ecc; % dec, % n-inc, and % non: percent of ver with monotonically
decreasing, monotonically nonincreasing, and non-monotonic shortest paths to C(G) respectively

Network % loc = 1 %
loc > 1=

%
loc > 1>

% dec % n-inc % non

PPI 94 4.7 0.3 75 24.6 0.4

Dutch- Elite 97 0 3 36 0 64

POWER-GRID 99 0.7 0.3 46 38 16

GNUTELLA 88.6 11.3 0.1 30 64 6

5 Concluding Remarks

In systems with situations where information is exchanged between distant vertices
and is expected to pass a central vertex, the center can be considered as its core
set (the set through which all traffic passes). This set is sufficient if the graph has
a unimodal eccentricity function. However, when the eccentricity function is non-
unimodal, some long shortest paths may not pass the center. Therefore, more vertices
need to be added to the core set. We believe the implications of our results are as
follows. First, the unimodality of the eccentricity function can be used to identify the
core vertices. Second, it can aid in designing networks with some desired properties
by engineering the eccentricity function.
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Density Decompositions of Networks

Glencora Borradaile, Theresa Migler and Gordon Wilfong

Abstract We introduce a new topological descriptor of a network called the density
decomposition which is a partition of the nodes of a network into regions of uniform
density. The decomposition we define is unique in the sense that a given network has
exactly one density decomposition. The number of nodes in each partition defines a
density distribution which, we find, is measurably similar to the degree distribution
of given real networks (social, internet, etc.) and measurably dissimilar in synthetic
networks (preferential attachment, small world, etc.).

1 Introduction

A better understanding of the topological properties of real networks can be advan-
tageous for two major reasons. First, knowing that a network has certain properties,
e.g., bounded degree or planarity, can sometimes allow for the design of more effi-
cient algorithms for extracting information about the network or for the design of
more efficient distributed protocols to run on the network. Second, it can lead to
methods for synthesizing artificial networks that more correctly match the properties
of real networks thus allowing for more accurate predictions of future growth of the
network and more accurate simulations of distributed protocols running on such a
network.

We show that networks decompose naturally into regions of uniform density, a
density decomposition. The decomposition we define is unique in the sense that a
given network has exactly one density decomposition. The number of nodes in each
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region defines a distribution of the nodes according to the density of the region to
which they belong, that is, a density distribution (Sect. 2). Although density is closely
related to degree, we find that the density distribution of a particular network is not
necessarily similar to the degree distribution of that network. For example, in many
synthetic networks, such as those generated by popular network models (e.g., prefer-
ential attachment and small worlds), the density distribution is very different from the
degree distribution (Sect. 3.1). On the other hand, for all of the real networks (social,
internet, etc.) in our data set, the density and degree distributions are measurably
similar (Sect. 3). Similar conclusions can be drawn using the notion of k-cores [31],
but this suffers from some drawbacks which we discuss in Sect. 2.3.

1.1 Related Work

We obtain the density decomposition of a given undirected network by first orienting
the edges of this network in an egalitarian1 manner. Then, we partition the nodes
based on their indegree and connectivity in this orientation.

Fair orientations have been studied frequently in the past. These orientations are
motivated bymany problems.One suchmotivating problem is the following telecom-
munications network problem: Source–sink pairs (si , ti ) are linked by a directed si -
to-ti path ci (called a circuit). When an edge of the network fails, all circuits using
that edge fail and must be rerouted. For each failed circuit, the responsibility for
finding an alternate path is assigned to either the source or sink corresponding to that
circuit. To limit the rerouting load of any vertex, it is desirable to minimize the maxi-
mum number of circuits for which any vertex is responsible. Venkateswaran models
this problem with an undirected graph whose vertices are the sources and sinks and
whose edges are the circuits. He assigns the responsibility of a circuit’s potential
failure by orienting the edge to either the source or the sink of this circuit. Minimiz-
ing the maximum number of circuits for which any vertex is responsible can thus
be achieved by finding an orientation that minimizes the maximum indegree of any
vertex. Venkateswaran shows how to find such an orientation [33]. Asahiro, Miyano,
Ono, and Zenmyo consider the edge-weighted version of this problem [2]. They give
a combinatorial {wmax

wmin
, (2 − ε)}-approximation algorithm where wmax and wmin are

the maximum andminimumweights of edges, respectively, and ε is a constant which
depends on the input [2]. Klostermeyer considers the problem of reorienting edges
(rather thanwhole paths) so as to create graphswith given properties, such as strongly
connected graphs and acyclic graphs [20]. De Fraysseix and de Mendez show that
they can find an indegree assignment of the vertices, given particular properties [11].
Biedl, Chan, Ganjali, Hajiaghayi, and Wood give a 13

8 -approximation algorithm for
finding an ordering of the vertices such that for each vertex v, the neighbors of v

are as evenly distributed to the right and left of v as possible [8]. For the purpose of

1An egalitarian orientation is one in which the indegrees of the nodes are as balanced as possible
as allowed by the topology of the network.
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deadlock prevention [35], Wittorff describes a heuristic for finding an acyclic orien-
tation that minimizes the sum over all vertices of the function δ(v) choose 2, where
δ(v) is the indegree of vertex v. This objective function is motivated by a problem
concerned with resolving deadlocks in communications networks [36].

In our work, we show that the density decomposition can isolate the densest
subgraph. The densest subgraph problem has been studied a great deal. Goldberg
gives an algorithm to find the densest subgraph in polynomial time using network
flow techniques [17]. There is a 2-approximation for this problem that runs in linear
time [10].As a consequence of our decomposition,wefind a subgraph that has density
no less than the density of the densest subgraph less one. There are algorithms to
find dense subgraphs in the streaming model [4, 16]. There are algorithms that find
all densest subgraphs in a graph (there could be many such subgraphs) [30].

We consider many varied real networks in our study of the density decomposition.
We find our results to be consistent across biological, technical, and social networks.

2 The Density Decomposition

In order to obtain the density decomposition of a given undirected network, we first
orient the edges of this network in an egalitarian manner. Then, we partition the
nodes based on their indegree and connectivity in this orientation.

The following procedure, the Path- Reversal algorithm, finds an egalitarian
orientation [9]. A reversible path is a directed path from a node v to a node u such
that the indegree of v, δ(v), is at least greater than the indegree of u plus one:
δ(v) > δ(u) + 1

Arbitrarily orient the edges of the network.
While there is a reversible path

reverse this path.

Since we are only reversing paths between nodes with differences in indegree of at
least 2, this procedure converges; the running time of this algorithm is quadratic [9].
The orientation resulting from this procedure suggests a hierarchical decomposition
of its nodes:

Let k be the maximum indegree in an egalitarian orientation.
Ring k (Rk) contains all nodes of indegree k and all nodes that reach them.
Iteratively, given Rk, Rk−1, . . . , and Ri+1, Ri contains all the remaining nodes

with indegree i along with all the remaining nodes that reach them.

By the termination condition of the above procedure, only nodes of indegree k or
k − 1 are in Rk . Further, nodes in Ri must have indegree i or i − 1. By this definition,
an edge between a node in Ri and a node in R j is directed from Ri to R j when i > j
and all the isolated nodes are in R0. The running time to give this decomposition is
bounded by the running time to find an egalitarian orientation, O(|E |2).
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Density can be defined in two ways: either as the ratio of number of edges to
number of nodes ( |E |

|V | ) or as the ratio of number of edges to total number of possible

edges ( 2|E |
|V |(|V |−1) ). In this discussion, we use the former definition. This definition of

density is closely related to node degree (the number of edges adjacent to a given
node): the density of a network is equal to half the average total degree.

We identify a set S of nodes in a graph by merging all the nodes in S into a
single node s and removing any self-loops (corresponding to edges of the graph both
of whose endpoints were in S). Our partition Rk, Rk−1, . . . , R0 induces regions of
uniform density in the following sense:

Density Property For any i = 0, . . . , k, identifying the nodes in ∪ j>i R j and delet-
ing the nodes in ∪ j<i R j leave a network G whose density is in
the range (i − 1, i] (for |Ri | sufficiently large).

In particular, Rk isolates a densest region in the network. Consider the network
Gi formed by identifying the nodes ∪ j>i R j and deleting the nodes in ∪ j<i R j ; this
network has one node (resulting from identifying the nodes ∪ j>i R j ) of indegree 0
and |Ri | nodes of indegree i of i − 1, at least one of which must have indegree i .
Therefore, for any i , the density of Gi is at most i and density at least

(|Ri | − 1)(i − 1) + i

|Ri | + 1
|Ri |�i−−−→ i − 1.

In Sect. 2.1, we observe that this relationship between density and this decompo-
sition is much stronger.

2.1 Density and the Density Decomposition

In this section, we discuss the following three properties:

PropertyD1 The density of a densest subnetwork is at most k. That is, there is no
denser region R j for j > k.

PropertyD2 The density decomposition of a network is unique and does not depend
on the starting orientation.

PropertyD3 Every densest subnetwork contains only nodes of Rk .

These properties allow us to unequivocally describe the density structure of
a network. We summarize the density decomposition by the density distribution:
(|R0|, |R1|, . . . |Rk−1|, |Rk |), i.e., the number of nodes in each region of uniform
density. We will refer to a node in Ri as having density rank i .

The subnetwork of a networkG induced by a subset S of the nodes ofG is defined
as the set of nodes S and the subset of edges of G whose endpoints are both in S;
we denote this by G[S]. First, we will note that both the densest subnetwork and the
subnetwork induced by the nodes of highest rank have density between k − 1 and k.
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Recall that k is the maximum indegree of a node in an egalitarian orientation of G
and that Ri is the set of nodes in the i th ring of the density decomposition. We will
refer to Rk as the densest ring.

We use the following two lemmas to prove Property D1.

Lemma 1 The density of the subnetwork induced by the nodes in Rk is in the range
(k − 1, k].

We could prove Lemma 1 directly with a simple counting argument on the inde-
grees of nodes in Rk or by using a network flow construction similar to Goldberg’s
and the max flow-min cut theorem [17].

Lemma 2 The density of a densest subnetwork is in the range (k − 1, k].
The upper bound given in Lemma 2 may be proven directly by using a counting

argument for the indegrees of vertices in an egalitarian orientation of the densest
subnetwork or by using the relationship between the density of the maximum density
subgraph and the psuedoarboricity [21].

This upper bound proves Property D1 of the density decomposition. Property D1
has been proven in another context. It follows from a theorem of Frank and Gyár-
fás [13] that if � is the maximum outdegree in an orientation that minimizes the
maximum outdegree then the density of the network, d, is such that �d� ≤ �.

Corollary 1 The subgraph induced by the nodes of Rk is at least as dense as the
density of the densest subgraph less one.

Note that the partition of the rings does not rely on the initial orientation, or, more
strongly, nodes are uniquely partitioned into rings, giving Property D2.

Theorem 1 The density decomposition is unique.

We can prove this by noting that the maximum indegree of two egalitarian orien-
tations for a given network is the same [2, 9, 33]. For a contradiction, we consider
two different egalitarian orientations of the same graph that yield two distinct density
decompositions. We then compare corresponding rings in each orientation and find
that they are, in fact, the same.

The following theorem relies on the fact that the density decomposition is unique
and proves Property D3.

Theorem 2 The densest subnetwork of a network G is induced by a subset of the
nodes in the densest ring of G.

We could prove Theorem 2 directly by comparing the density of the subgraph
induced by the vertices in the densest subgraph intersected with the vertices in Rk

and the density of the densest subgraph. Or we could use integer parameterized max
flow techniques [2, 14].

Note that there are indeed cases where the densest subgraph is induced by a strict
subset of nodes in the top ring. For example, consider the graph, G, consisting of K3

and K4 with a single edge connecting the two cliques. K4 is the densest subgraph in
G, however all of G is contained in the top ring (R2).
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2.2 Interpretation of Density Rank

We can interpret orientations as assigning responsibility: if an edge is oriented from
node a to node b, we can view node b as being responsible for that connection. Indeed
several allocation problems are modeled this way [2, 3, 9, 18, 33]. Put another way,
we can view a node as wishing to shirk as many of its duties (modeled by incident
edges) by assigning these duties to its neighbors (by orienting the linking edge away
from itself). Of course, every node wishes to shirk as many of its duties as possible.
However, the topology of the network may prevent a node from shirking too many
of its duties. In fact, the egalitarian orientation is the assignment in which every node
is allowed to simultaneously shirk as many duties as allowed by the topology of the
network. For example, consider two situations in which a node has degree 7, in the
first situation, a is the center of the star network with eight nodes, in the second
situation, b is a node in the clique on eight nodes. Although nodes a and b both have
degree 7, in the star network a can shirk all of its duties, but in the clique network b
can only shirk half of its duties. There is a clear difference between these two cases
that is captured by the density rank of a and b that is not captured by the degree of
a and b. For example, if these were coauthorship networks, the star network may
represent a network in which author a only coauthors papers with authors who never
work with anyone else whereas the clique network shows that author b coauthors
with authors who also collaborate with others. One may surmise that the work of
author b is more reliable or respected than the work of author a.

Theorem 3 For a clique on n nodes, there is an orientation where each node has
indegree either �n/2	 or �n/2	 − 1.

A proof for Theorem 3 can be given by construction of such an egalitarian orien-
tation or by using a nonlinear programming approach [27].

2.3 Relationship to k-Cores

A k-core of a network is the maximal subnetwork whose nodes all have degree at
least k [31]. A k-core is found by repeatedly deleting nodes of degree less than
k while possible. For increasing values of k, the k-cores form a nesting hierarchy
(akin to our density decomposition) of subnetworks H0, H1, . . . , Hp where Hi is
an i-core and p is the smallest integer such that G has an empty (p + 1)-core. For
networks generated by the Gn,p model, most nodes are in the p-core [24, 28] For
the preferential attachment model, all nodes except the initial nodes belong to the
c-core, where c is the number of edges connecting to each new node [1].

These observations are similar to thosewe find for the density distribution (Sect. 3)
and many of the observations we make regarding the similarity of the degree and
density distributions of real networks also hold for k-core decompositions [25]. How-
ever, the local definition of cores (depending only on the degree of a node) provides
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Fig. 1 In the AS network nodes represent autonomous systems and two autonomous systems are
connected if there is a routing agreement between them [38] (44,729 nodes and 170,735 edges). In
the PHYS network, nodes represent condensed matter physicists and two physicists are connected
if they have at least one coauthored paper [26] (40,421 nodes and 175,692 edges). In the DBLP
network, nodes represent computer scientists and two computer scientists are connected if they have
at least one coauthored paper [37] (317,080 nodes and 1,049,866 edges). The (truncated) normalized
density and degree distributions are displayed. The degree distributions have long diminishing tails.
AS 2013 has 67 non-empty rings, but rings 31 through 66 contain less than 1.5% of the nodes;
ring 67 contains 0.75% of the nodes. DBLP has 4 non-empty rings denser than ring 30 that are
disconnected; rings 32, 40, 52, and 58 contain 0.02, 0.01, 0.03, and 0.04% of the nodes, respectively

a much looser connection to density than the density decomposition, as we make
formal in Lemma 3.

The density of the top core may be less then the density of the top ring. Also,
there are graphs for which the densest subgraph is not contained in the top core.

Lemma 3 Givenacoredecomposition H0, H1, . . . , Hk of anetwork, the subnetwork
formed by identifying the nodes in ∪ j>i Hj and deleting the nodes in ∪ j<i Hj has
density in the range [ i2 , i) for |Hi | sufficiently large.

3 The Similarity of Degree and Density Distributions

The normalized density ρ and degree δ distributions for three networks (AS 2013,
PHYS 2005, and DBLP) are given in Fig. 1, illustrating the similarity of the distri-
butions. We quantify the similarity between the density and degree distributions of
these networks using the Bhattacharyya coefficient, β [7]. For two normalized p and
q, the Bhattacharyya coefficient is:
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β(p,q) =
∑

i

√
pi · qi .

β(p,q) ∈ [0, 1] for normalized, positive distributions; β(p,q) = 0 if and only if p
and q are disjoint; β(p,q) = 1 if and only if p = q. We denote the Bhattacharyya
coefficient comparing the normalized density ρ and degree δ distributions, β(ρ, δ)

for a network G by βρδ(G). Specifically,

βρδ(G) = β(ρ, δ) =
∑

i

√
ρi · δi ,

where ρi is the fraction of nodes in the i th ring of the density decomposition of G
and δi is the fraction of nodes of total degree i in G; we take ρi = 0 for i > k where
k is the maximum ring index. Refer to Fig. 2. For all the networks in our data set,
βρδ > 0.78. Note that if we exclude the Gnutella and Amazon networks, βρδ > 0.9.
We point out that the other networks are self-determining in that each relationship is
determined by at least one of the parties involved. On the other hand, the Gnutella
network is highly structured and designed and theAmazon network is a is a one-mode
projection of the buyer-product network (which is in turn self-determining).

Perhaps this is not surprising, given the close relationship between density and
degree; one may posit that the density distribution ρ simply bins the degree distribu-
tion δ. However, note that a node’s degree is its total degree in the undirected graph,
whereas a node’s rank is within one of its indegree in an egalitarian orientation. Since
the total indegree to be shared amongst all the nodes is half the total degree of the
network, we might assume that, if the density distribution is a binning of the degree
distribution, the density rank of a node of degree d would be roughly d/2. That is, we
may expect that the density distribution is halved in range and doubled in magnitude
(ρi ≈ 2δ2i ). If this is the case, then

β(ρ, δ) ≈
∑

d

√
ρiδi ≈

∑

d

√
2δdδ2d .

If we additionally assume that our network has a power-law degree distribution such
as δx ∝ 1/x3,

β(ρ, δ) ≈
∫ ∞

1

√
2

x3

(
2

2

(2x)3

)
dx = 0.5

(after normalizing the distributions and using a continuous approximation of β).
Even with these idealized assumptions, this does not come close to explaining βρδ

being in excess of 0.78 for the networks in our data set. Further, for many synthetic
networks βρδ is small, as we discuss in the next section. We note that this separation
between similarities of density and degree distributions for the empirical networks
and synthetic networks can be illustrated with almost any divergence or similarity
measure for a pair of distributions.
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Fig. 2 Similarity (βρδ) of density and degree distributions for nine diverse networks.We introduced
AS, PHYS, and DBLP in Fig. 1. In the EMAIL network, nodes represent Enron email addresses
and two addresses are connected if there has been at least one email exchanged between them [19]
(36,692 nodes and 183,831 edges). In the TRUST network, nodes represent www.epinions.com
members and two members are connected if one trusts the other [32] (75,879 nodes and 405,740
edges). In the SDOT network, nodes represent www.slashdot.org members and two members are
connected if they are friends or foes [23] (82,168 nodes and 504, 230 edges). In the WIKI network,
nodes represent www.wikipedia.org users and two users are connected if one has voted for the other
to be in an administrative role [22] (7,115 nodes and 103,689 edges). In the Amazon network, nodes
represent products and two products are connected if they are frequently purchased together [37]
(334,863 nodes and 925,872 edges). In the Gnutella network, nodes represent network hosts and
two hosts are connected if they share files [29] (22,687 nodes and 54,704 edges). EMAIL, TRUST,
and WIKI are naturally directed networks. For these networks, we ignore direction and study the
underlying undirected networks. Notice that both the Amazon and Gnutella networks are highly
structured. It is not surprising that these networks would have a weaker connection between the
density and degree distributions

3.1 The Dissimilarity of Degree and Density Distributions
of Random Networks

In contrast to themeasurably similar degree anddensity distributions of real networks,
the degree and density distributions aremeasurably dissimilar for networks produced
by many common random network models; including the preferential attachment
(PA) model of Barabasi and Albert [6] and the small world (SW) model of Watts and
Strogatz [34]. We use β̃ρδ(M) to denote the Bhattacharyya coefficient comparing the
expected degree and density distributions of a network generated by a model M .

Preferential attachment networks. In the PA model, a small number, n0, of nodes
seed the network and nodes are added iteratively, each attaching to a fixed number,
c, of existing nodes. Consider the orientation where each added edge is directed
toward the newly added node; in the resulting orientation, all but the n0 seed nodes

www.epinions.com
www.slashdot.org
www.wikipedia.org
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have indegree c and the maximum indegree is c. At most cn0 path reversals will
make this orientation egalitarian, and, since cn0 is typically very small compared
to n (the total number of nodes), most of the nodes will remain in the densest ring
Rc. Therefore, PA networks have nearly trivial density distributions: ρc ≈ 1. On
the other hand, the expected fraction of degree c nodes is 2/(c + 2) [5]. Therefore
β̃ρδ(PA) ≈ √

2/(c + 2).

Small-world networks. A small-world network is one generated from a d-regular net-
work by reconnecting (uniformly at random) at least one endpoint of every edge with
some probability. For probabilities close to 0, a network generated in this way is close
to d-regular; for probabilities close to 1, a network generated this way approaches
one generated by the random-network model (Gn,p) of Erdös and Rényi [12]. In the
first extreme, β̃ρδ(SW ) = 0 (Lemma 4 below) because all the nodes have the same
degree and the same rank. As the reconnection probability increases, nodes are not
very likely to change rank while the degree distribution spreads slightly. In the sec-
ond extreme, the highest rank of a node is �c/2	 + 1 [15] and, using an observation
of the expected size of the densest subnetwork,2 with high probability nearly all the
nodes have this rank. It follows that

β̃ρδ(Gn,p) ≈
√

cc/2

e−c(c/2)! ,

which approaches 0 very quickly as c grows. We verified this experimentally finding
that β̃ρδ(Gn,p) < 0.5 for c ≥ 5.

Lemma 4 For d ≥ 3, βρδ(G) = 0 for any d-regular network G with d ≥ 3.

We can prove Lemma 4 by showing that ρd = 0 since δd = 1 for regular networks.

4 Conclusion

We have introduced the density decomposition and summarized the decomposition
with the density distribution. We found that the hierarchy of vertices within this
decomposition is partitioned according to the density of the induced subgraphs. We
found that the density and degree distributions are remarkably similar in real graphs
and dissimilar in synthetic networks. In further work, we plan to use the density
distribution to build more realistic random graph models. For more details, a full
version of the paper may be found on arxiv.

2E-mail exchange between Glencora Borradaile and Abbas Mehrabian.
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Fast Streaming Small Graph
Canonization

Pedro Paredes and Pedro Ribeiro

Abstract In this paper, we introduce the streaming graph canonization problem.
Its goal is finding a canonical representation of a sequence of graphs in a stream.
Our model of a stream fixes the graph’s vertices and allows for fully dynamic edge
changes,meaning it permits both addition and removal of edges.Our focus is on small
graphs, since small graph isomorphism is an important primitive of many subgraph-
based metrics, like motif analysis or frequent subgraph mining. We present an effi-
cient data structure to approach this problem, namely a graph isomorphism discrete
finite automaton and showcase its efficiency when compared to a non-streaming-
aware method that simply recomputes the isomorphism information from scratch in
each iteration.

1 Introduction

The Graph Isomorphism problem (GI) consists in finding a bijection between the
vertex sets of two graphs that preserve the vertex adjacency or state that one does
not exist. It is a widely studied problem in several domains. Its theoretical interest
arises from the fact that GI is trivially in NP but is still unknown whether it is NP-
Complete or in P, even though it is considered unlikely that GI is NP-Complete
[5]. Recently, the upper bound on the complexity was improved to quasipolynomial
time [2].

From a practical point of view, it is used as a primitive for several methods that
tackle different problems, like frequent subgraph discovery [11], networkmotif anal-
ysis [16], and graph matching [6]. As such, efficient practical methods that compute
isomorphism information were developed [9, 14] based on several heuristics. One
of the most well-known algorithms is called nauty, an exponential algorithm that
performs exceptionally well in most inputs.
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The Graph Canonization problem (GC) is a variant of GI that consists of finding
a canonical labeling (also called a canon) for a graph such that all isomorphic graphs
have the same canon and that if two graphs are not isomorphic they have different
canons. Solving GC implies solving GI, since after knowing the canonical labels of
two graphs determining if they are isomorphic is simply checking if the two labels
are equal. However, in general, GI is not known to be equivalent to GC [1]. The
most common practical approach toGI is by solvingGC [14], since it is better suited
for most applications where a set of graphs needs to be partitioned into isomorphic
classes.

The previous discussion focuses on algorithms and problems which are static,
meaning the input graph or structure is fixed. However, there is an interest in studying
graph problems on a dynamic or streaming environment, that is, where the input
graph is changing. There are multiple models of streaming graphs [13], that allow
for either edge addition, deletion, or both. Particularly in the graph mining realm,
there has been an increasing interest in studying dynamic graphs problems, namely,
by introducing or altering knownmetrics to suit temporal graphs (graphswhere edges
have timestamps that represent intervals of time where they are active) [7, 10, 15].

In this paper, we present a new problem that approaches the graph isomorphism
problem in a dynamic environment. This formulation considers a streamed graph as
a set of operations that add or remove edges in each iteration and it is required to
calculate a canonical representation for each intermediate graph. Additionally, we
focus on solving this problem for small graphs, that is, undirected graphs that have
around 10 vertices or directed graphs that have around 6 vertices. Even though this
apparently reduces the applicability of the introduced problem, it is important to
note that many graph mining techniques focus on small graphs, like network motif
analysis [16] or frequent subgraph mining [11]. In Sect. 4.3, we present a small case
study that shows the applicability of the problem and apply it to practical complex
networks.

Our main contribution is an algorithm that solves this problem in an efficient way,
when compared to a simpler non-streaming-aware approach that fully recomputes
isomorphism in each iteration. This algorithm is based on a data structure that resem-
bles a discrete finite automaton that represents the full isomorphism class space. The
method is agnostic in terms of the type of graph, meaning it is generic to work with
multiple graph types (undirected, directed, vertex and edge colored, multigraphs,
and more), however, in this paper, we only focus on simple undirected and directed
graphs.

2 Preliminaries

A network or graph G is a pair (V (G), E(G)), where V (G) is a set of vertices and
E(G) a set of edges, represented by pairs (a, b)where a, b ∈ V (G). We assume that
the graph is simple (no multiple edges or self-loops) an labeled so that every vertex
of a graph G is assigned a distinct integer from 1 to |V (G)|. We denote the label of
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a vertex v by L(v). For a given graph G, we write V (G) = {v1, v2, . . . , v|V (G)|} to
denote a vertex set where L(vi ) = i . Graph equality between two graphs G and H
is observed if, assuming both L(gi ) = i, gi ∈ V (G) and L(hi ) = i, hi ∈ V (H), we
have (gi , g j ) ∈ E(G) ⇔ (hi , h j ) ∈ E(H).

A permutation π is an element of the symmetric group Sn , with its usual composi-
tion operation ◦. We denote the image of an integer x under the permutation π by πx .
For a permutation π, we denote by π the inverse of π, such that π ◦ π = 1, where 1
is the identity permutation. A transposition is a permutation that only swaps two ele-
ments and fixes all others. Given a graph G with vertex set V (G) = {v1, v2, . . .} and
a permutation π, we denote byGπ the graph with vertex set V (Gπ) = {vπ1 , vπ2 , . . .},
meaning we permute the labels. To simplify notation, for a vertex v of a graph
G with label i and a permutation π, we write πv to denote the vertex in Gπ with
label πi .

Two graphs G1 and G2 are said isomorphic if there is a permutation π such that
Gπ

1 = G2, we denote this by G1
∼= G2. The isomorphism graph class of a graph G is

the equivalence class ofG in the relation of isomorphismof graphs.Anautomorphism
of a graph G is a permutation π such that Gπ = G. We define Aut(G) as the set of
automorphisms of G. The orbits of a graph G are the equivalence classes of vertices
of G under the action of automorphisms, this means two vertices u, v have the same
orbit if there is π ∈ Aut(G) such that πu = v or πv = u. A canonical function is
a function C that, given a graph G, C(G) ∼= G and for any π ∈ Aut(G) we have
C(Gπ) = C(G).

A graph changing operation of cardinality n is a pair (x1, x2), where x1 and
x2 are integers between 1 and n. The application of a graph changing operation
Δ = (x1, x2) of cardinality n over a graph G with |V (G)| = n is the graph G ′ =
GΔ with the same vertex set of G, where, if v, u ∈ V (G) are such that L(v) = x1
and L(u) = x2: if (v, u) /∈ E(G) then E(G ′) = E(G) ∪ {(v, u)}; if (v, u) ∈ E(G)

then E(G ′) = E(G) \ {(v, u)}. Thus, the application of a graph changing operation
(x1, x2) is equivalent to toggling on or off the edge between the two vertices with
labels x1 and x2. A graph stream S of cardinality n is a sequence of graph changing
operations with the same cardinality. We call the size of a stream |S| to the number of
elements in S. The application of a graph stream S = [Δ1,Δ2, . . .] with cardinality
n over a graph G with |V (G)| = n is a sequence of graphs [G,GΔ1,GΔ1Δ2, . . .],
denoted by S(G). For a given stream S over a graph G, if we are only interested in
every other k graph, meaning S(G)1, S(G)1+k , S(G)1+2k, . . ., we say the stream S
has step k.

2.1 Problem Definition

Now that we are armed with the appropriate set of tools, we can define the problem
we aim to solve in this paper. We first define the static version of our problem in
Definition1. This problem is essentially providing a graph canonization function C .
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Definition 1 In the static canonization problem, we are given a graph G and are
asked to provide a canonical representation of G, such that for any π ∈ Aut(G), Gπ

has the same representation.

This problem is a known problem and will be used as a primitive in this paper.
We use nauty [14] in our method as the solver of this problem. However, note that
any method that returns the canon of a graph could be used instead.

We now give the dynamic version of the above problem, which is the focus of this
paper, and is included in Definition2.

Definition 2 In the dynamic canonization problem, we are given a graph G with n
vertices and a graph stream S of cardinality n, andwe are asked to provide a canonical
representation for each graph in S(G).

Note that, with this formulation, we fix the number of vertices and only vary the
edge set. It is also important to note that we focus on small graphs, as stated in the
introduction.

3 Proposed Method

Our method explores the dimension of the total number of graphs of a certain size
to build a data structure that compresses the relationship between their topologies.
This data structure is analogous to a deterministic finite automaton (a finite-state
machine), where each node represents a different graph and transitions represent
additions or deletions of edges. The result is an algorithm which solves the dynamic
canonization problem in an online fashion. We will first describe how the automaton
works and how to use it, thenwe followupwith how to build the automaton efficiently.
To avoid ambiguities, we use “node” and “transition” to refer to properties of the
automaton and “vertex” and “edge” to refer to properties of the graphs represented
by the automaton.

3.1 The Automaton

As mentioned above, we use a data structure that is analogous to an automaton to
support our algorithm. This will be used as we iterate through each graph in S(G) to
follow the isomorphism graph class.

The node set of the automaton represents the different isomorphism graph classes
of a fixed number of vertices n. For each different class, we fix one label function and
associate to it a single node of the automaton. This equates to fixing a permutation
per isomorphism class and using it as a canonical labeling. For each node, there is
one transition coming out of it per possible pair of two vertices of the underlying
graph. Each one of this transitions represents an edge toggle, meaning an addition
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Fig. 1 An automaton representing undirected size 3 graphs

or removal of an edge to the represented graph, which depend on whether the two
vertices of this transition are connected or not on the represented graph. Thus, the
destination of each transition is the node whose isomorphism graph class is the one
of the altered graph. We portray a pictorial representation of this object in Fig. 1.

Since every change between two consequent graphs in S(G) is described by a
single pair of vertices, it is natural to use the described automaton to follow the
isomorphism graph class of each graph by walking through the automaton. On each
step, we use the transition which is associated with the pair of vertices on the current
graph changing operation. Initially, the automaton starts on the node that represents
the empty graph with n vertices. To find the node that represents G, we build G by
following all transitions that represent the pairs of vertices on each edge of the graph,
in any order. Subsequently, each graph changing operation results in following one
transition.

However, this is not enough to actually apply the automaton, since the order of
vertices that was fixed on a certain node may not be the same as the one the current
graph we are considering from S(G). Thus, we keep a permutation πp that tells us
how to change the order of vertices of the current graph in order to have the same
graph as the one the current node represents. If we think about labels, let Gc be the
current graph and Gn be the graph represented by the current node (by definition we
haveGc

∼= Gn), πp has the following property: L(Gc) ◦ πp = L(Gn), since the label
function works like a permutation from vertices to indices and taking ◦ as regular
permutation composition.

To accommodate this change, we also need to update how the transitions work,
since after following a transition the relation between the current graph and the graph
represented by the current node may change. Thus, we associate a permutation with
each transition that informs on how to update πp. If the permutation for a certain
transition is P , then the new π′

p is obtained by π′
p = πp ◦ P . Initially, πp is set to the

identity permutation, since the initial node represents the empty graph (where every
permutation is valid). Note that in Fig. 1, the permutations were omitted for brevity.

The resulting automaton represents all different graphs of size n and can be used
to keep track of the canonical representation of a graph after a vertex pair change by
following a transition and composing a permutation. If we are applying a change of
vertex pair (a, b), we follow the transition related to (πa

p,π
b
p), since we always work

on top of the representation the automaton gives.
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3.2 Building the Automaton

Now that we have described how the automaton works and how to use it, we will
specify how to build it. There are two important aspects here that heavily influence the
complexity of the building process, but also the complexity of using the automaton.
The first is how to fix the graph each node represents. The second is when to build
the automaton, since we can pre-build it or build it as we process the graph stream.
We will answer the first question through the following explanation and also point
out why it is a relevant question. Regarding the second, we will first describe an
on-the-fly method and then a method that pre-builds the automaton but leads to a
more efficient automaton.

On-the-fly Method In order to fix a canonical order for each node, we use the
representation nauty provides. Our method to dynamically build the automaton is
based on following the supposed transitions as the stream is processed. Whenever
we find ourselves on a nonexisting node, we run nauty to know where we should
be and either create a new node or point the transition to the correct destination.
Additionally, we fill the transition permutations accordingly.

The only node we pre-build is the node that represents the empty graph. After-
wards, we will process each new vertex pair (a, b). Let ap = πa

p and bp = πb
p. On

processing a new pair, we first check if the transition of (ap, bp) was already cre-
ated. If not, we first run nauty on the transformed graph, that is, if G is the current
graph after adding or removing the edge induced by (a, b), we do so on G ′ where
L(G ′) = L(G) ◦ πp, meaning the graph from the current node altered by the pair
(ap, bp). We do so because nauty not only returns the canonical adjacency matrix
that we will use to represent the automaton node, but also a permutation P that
transforms the graph represented by the canonical adjacency matrix into G ′. We can
then create a new transition by (ap, bp) from the current node C to the new node
N (found with nauty) with permutation P , since this permutation transforms the
graph on C with added vertex pair (ap, bp) into the graph on N , which is the same
that nauty returns.

This was implicit in the previous paragraph, but we also need a bookkeeping
mechanism to store the node representations, so as to avert having a duplicated node
representing the same graph class. This can be done using a dictionary data struc-
ture that maps canonical representations, as obtained through nauty, to automaton
nodes (if they exist). Since the graph representation is fixed by the nauty canonical
representation, the method described in the previous paragraph is exactly the same
whether the destination node (N , in the previous paragraph’s notation) has to be
created or not. If the node is missing, we simply create a new node and feed it to the
bookkeeping dictionary.

When processing a change (a, b), let P be the permutation nauty returns, C be
the initial automaton node and N the destination node. Since P transforms graphs
in the C representation to the N representation, the converse is also true, that is, P
transforms graphs in the N representation to C . Thus, we can use this information to
right away fill another transition, P , from N to C . However, since the representation
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changed, the vertex edge associated with this transition is not (ap, bp) but rather

(P
ap

, P
bp

), since this is the corresponding edge pair in N .
It is important to note that the real temporal bottleneck of using this automaton

lies on the application step rather than the building step, as we will observe in Sect. 4.
Thismeans that the advantage of using a dynamic buildingmethod is only observable
if the full automaton is impossible to be generated. For example, if we are applying
the method in an instance graph with a high number of vertices, and a low total
number of different graph types in the stream, using the dynamic building method
we only build a partial automaton.

Consequently, it is useful to optimize the automaton underlying representation
and methodology if this improves the runtime of applying, even if it worsens the
building procedure. With this in mind, we can compress the permutations associated
with each transition in order to avoid iterating n integers. By observing the different
canonical representations given by nauty, one can observe that they are fairly
regular, meaning that often if two graphs differ by a single edge, their adjacency
matrix only differs in one (or two, in the undirected case) entries. This implies that
the permutation associated with the transition between the two is simple, often either
the identity or a single transposition. Thus, we can compress these cases to a special
representation that instead of composing a permutation with πp, either does nothing
or simply swaps two entries of πp. We will see a detailed analysis of the effect of this
in Sect. 4, but theoretically this would lower the complexity of following a transition.

Pre-buildingMethod There are not many points to improve related to the on-the-fly
building process, since this method does the bare minimum to know where each
transition leads to. Consequently, our pre-building method works very similarly, but
it does a depth-first search on the automaton in the beginning, generating all possible
nodes and transitions. However, the advantage of doing a method that precomputes
the automaton is that it is easier to fix a different representation of graphs per node,
since there is no need to follow the canonical representation given by nauty (or to
have one that works regardless of the order with which we build the automaton). This
is important since changing the underlying representation changes the permutations
associated with each edge and this has a direct effect on their compressibility and
thusly on the runtime.

It is easy to prove that composing a permutation to the graph of each node does
not change the correctness of the algorithm, as long as we update the transitions
accordingly, sincewe are simply projecting the automaton to a different space.Hence,
it is easy to change the underlying representation of each node by composing a
permutation to the permutation nauty returns during the “create new transition”
procedure, as long as we compose the same permutation to each transition coming
into the same node. In practice, we are simply changing the representation to one
that better suits our goals.

All that is left is to choose which permutations to compose with. Instead of
focusingon individual permutations, one candetermine the underlying representation
and choose the permutation that generates this representation. To choose a represen-
tation, we can choose the order under which we initially traverse the automaton to
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Fig. 2 A partial automaton representing undirected size 4 graphs

pre-build it and use the first graph to touch a each node as its representation. To
implement this, the permutation we compose with each node is simply P (borrowing
from the previous subsection’s notation), where we fix the permutation P obtained
on the first time we visit that node (which is when we actually create the node). This
results in choosing the identity permutation as the permutation from C to N on the
first visit to the node.

Different orders were tested, with the goal of increasing the percentage of transi-
tions whose permutation was either the identity permutation or a single transposition.
It would be possible to implement an optimization algorithm here, like a local search
algorithm, that would repeatedly perturb the traversal order. Although, this would
be computationally heavy and would probably not yield much better results than a
simply greedy approach. Consequently, we chose an altered edge lexicographical
order, that is, we first follow all pairs that create edges before any pair that removes
edges and we break ties choosing the lexicographical first transition vertex pairs. We
tested different approaches, but this one yielded the better results.

Note that for graphswith four ormore vertices, it is impossible to build an automa-
ton where each transition permutation is either the identity permutation or a single
transposition. This is equivalent to saying that the graphs in two adjacent automa-
ton nodes differ by at most one edge. To prove the impossibility premise, we will
assume that it is possible to build an automaton for four vertex undirected graphs.
Consider Fig. 2, which represents a partially constructed automaton for four vertex
graphs. We omit the multiple transitions between nodes and simply fix each node’s
graph representation and show the relationships between nodes (where one or more
transitions would be present). In this example, there is a mismatch between node
G and H , since their graph’s adjacency matrices differ by more than an edge. We
can show that this example is “canonical”, meaning that all possible automata for
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four vertex graphs are equivalent to this example, but here we omit the formal proof
because of space constraints.

4 Analysis

4.1 Theoretical Analysis

First of all, a note on the automaton’s general behavior. Let Gn denote the set of
different graphs with n vertices (note this is an agnostic analysis, since it works for
both undirected and directed graphs). Let En be the maximum number of edges for
a graph with n vertices, that is, En = n2 for directed graphs and En = n(n + 1) 12
for undirected graphs. Since the automaton has one node per different isomorphic
graph and each node has a transition per possible pair of vertices, it has |Gn| nodes
and |Gn|En transitions. These pose as the main bottleneck of the automaton method,
since they are directly relatedwithmemory usage, where each node holds a canonical
label and each transition a permutation and destination node. Since Gn grows rapidly
with n, this method is only appropriate to small graphs, depending on the available
memory.

For the base building on-the-fly method, we run nauty once per transition pair
(since we build a transition and its reverse per nauty call), thus we call it |Gn|En

1
2

times. To follow a transition of the automaton, if it exists, it is necessary to compose
a permutation, which takes at most O(n) time for a graph with n vertices. This is
true if we have the default representation, if the permutation to compose with can be
compressed, then the time needed is only O(1).

4.2 Empirical Analysis

This analysis is based on our implementation of the described method in C++, which
is publicly available.1 Our C++ code is compiled with GCC 4.8.3, and runs on
a single core of an AMD Opteron(tm) with 2.30GHz under Fedora 20, with 4GB
of RAM. Here, we focus on two main themes: namely the compressibility of the
transition permutations and the runtime of using the automaton versus using a simpler
base approach, namely recalculating the isomorphism class for every instance using
nauty.

We define two notions of compressibility: C0 is the zero compressibility of an
automaton, meaning the percentage of transition permutations that are the identity
permutation; C1 is the one compressibility of an automaton, meaning the percent-
age of transition permutations that are either a single transposition or the identity
permutation. In Table1, we show C0 and C1 values for some automata of different

1https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism.

https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism
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Table 1 Values of C0 and C1 for different automata and build methods

On-the-fly Pre-build

Undirected Directed Undirected Directed

C0 (%) C1 (%) C0 (%) C1 (%) C0 (%) C1 (%) C0 (%) C1 (%)

3 25 75 31 73 33 78 34 69

4 18 52 25 62 24 53 29 56

5 14 39 20 53 20 44 26 46

6 12 29 – – 15 30 – –

7 9 21 – – 11 22 – –

8 6 15 – – 11 19 – –

sizes, both undirected and directed, for the two buildingmethods.We omit the results
pertaining to automata that were too memory intensive to compute (directed sizes 6,
7 and 8).

It is clear that the pre-build method achieves better compressibilities, specially
C0 compressibilities, which are more critical in terms of runtime. If we discount
the building time, which is slightly higher for the pre-build method (but constant),
in general, this results in a speedup of up to 2 times, for most input graph streams.
However, the increased building time means that for higher vertex numbers (from
8 up), the runtime advantage only becomes noticeable for larger stream sizes. This
result was obtained empirically using the graph streams used in the analysis of the
following paragraphs.

To compare the temporal behavior of our method with the base nauty recom-
putation method, we generated several synthetic networks, with different goals and
variants. Here, we use the version using the on-the-fly building method. We selected
13 graph streams descriptions with different properties and, for each one, studied the
runtime of our method and the base recomputation method for several stream sizes.
We summarize them in Table2, where the step k is the number of graph changing
operations between each canonization request, that is, we are only interested on the
canonization of every other k element of S(G), as we defined previously.

The following list summarizes each model used to generate graph streams:

• ER Model, is based on the Erdos-Rényi [4] random graph model, where each
graph changing operation is chosen uniformly at random from all the possible
vertex pairs. Its directed version, the D-ER Model is analogous.

• PRModel, is based on a preferential attachment rule for networks [3] where each
vertex pair is chosen as a graph changing operation depending on the degree of
each of its vertices. Its directed version, the D-PR Model is analogous.

• SWAPModel, simulates edge swapping operations, with each 4 contiguous graph
changing operation representing a swapping of two edges (chosen uniformly at ran-
dom). It has a stepof 4becauseweare only interested in the graphs after each swap.

To study each one, we generated multiple streams with increasing sizes, from 104

to 107 and observed the runtime of both methods. We plot the results of that analysis
in Fig. 3 (note that the X-axis is in logarithmic scale). The top left figure pertains to
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Table 2 Graphs used for the experimental analysis

Designation Direction |V (G)| Origin Step

ER-6, ER-7,
ER-8

Undirected 6, 7, 8 ER Model 1

PR-6, PR-7,
PR-8

Undirected 6, 7, 8 PR Model 1

SW-5, SW-6,
SW-7

Undirected 5, 6, 7 SWAP Model 4

dER-4, dER-5 Directed 4, 5 D-ER Model 1

dPR-4, dPR-5 Directed 4, 5 D-PR Model 1
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Fig. 3 Comparison of our method (solid lines and prefix O-) versus the base method (dashed lines
and prefix B-) for multiple streams

the undirected models, the top right figure directed models, the bottom left figure
contains all streams based on the SWAPmodel, and the bottom right figure represents
a growing step experiment that will be further explained below.

It is noticeable that ourmethodgreatly outperforms the basemethodon all streams.
Furthermore, the asymptotic behavior of our method suggests that for even greater
stream sizes the benefit will increase. The same applies to the speedups obtained. For
the unit step streams, the speedup grew approximately linearly from about 1 up to 15
times. For the SWAP model, the speedup was more stable, varying between 2.7 and
3.1. It is also interesting to note that our method had very similar results for different
streammodels with the same number of vertices, whereas the base method was much
more input dependant, which shows that our method is agnostic to the input source.
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In the bottom left figure, regarding the SWAP model, it is interesting to note that
even though there is a step of 4, our method still maintains a good speedup when
comparing to the base method. Note that the higher the step the worse is the benefit
of our method, since the base method only performs computation when it is required
to return a canonical label whereas our method has to update the automaton after
each change.

There is a clear tipping point observable in the data,which represents theminimum
stream size for which it is more beneficial to use our method instead of the base
method. For the top-left figure, it appears to be around 105. This value is related
to the automaton size and with the number of times that the method needs to run
nauty in the building time. We can extrapolate from here and estimate for different
streams sizes and different inputs (evenwith a number of vertices higher thanmemory
restrictions would allow) and estimate how good our method is going to be in relation
to the base method.

Building on this tipping point argument, the bottom-right figure shows a growing
step experiment.We used theERmodel to generate various networkswith six vertices
and artificially vary the step from 1 to 6 (each integer in the figure legend indicates
the step of that measure). It is important to point out that for all different steps, our
method outperformed the base method, with decreasing speedups. Additionally, as
we increase the step, the mentioned tipping point of efficiency also increases. Further
similar experiments indicate that there is always a tipping point when the step is of
the order ofO(n), which means our method is useful as long as the average number
of edge modifications between required canonical labels is in the order of the number
of vertices.

4.3 Case Study

To further show the usefulness of our method, we present a brief case study problem
and present a solution based on our method. Recently, there have been many con-
tributions to the study of network motif and subgraph counting analysis in temporal
graphs, as stated in Sect. 1. Here, we present a problem formulation that is inserted
in this trend.

Let a G be a temporal graph with edges changing. We want to analyze how
patterns evolve in this network and for that we will focus on how a determined
induced subgraph of G in a certain timestamp evolves through time. Thus, given two
graph types H1 and H2 (with the same number of vertices, and possibly the same),
we want to know the percentage of times that a set of nodes in a certain timestamp
in G is isomorphic to H1 and in a future timestamp isomorphic to H2. If we do this
for all possible graphs H1 and H2 of a certain size n, then we get a Markov chain of
temporal subgraph transitions that can be used as a fingerprint of the network and
be further used for multiple graph mining tasks. This technique is similar to what
was done in [7], but here only patterns of at most three vertices were studied, and to
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Table 3 Graphs used for the case study

Designation Name Direction |V (G)| |S(G)| Origin

email email-eu-core Directed 986 332,334 Communication [12]

college college-msg Directed 1,899 20,296 Communication [12]

infectious infectious Undirected 410 17,298 Social [8]

arxiv arxiv-hep-th Undirected 22,908 2,673,133 Coauthorship [12]

Table 4 Runtimes, in seconds, for the case study analysis

Using the base method Using our method

email college infectious arxiv email college infectious arxiv

3 10.86 8.81 8.33 32.81 6.62 5.08 3.19 31.52

4 22.55 17.12 17.81 66.72 10.73 8.62 4.98 60.48

5 34.45 30.01 34.36 113.95 16.24 13.34 8.56 98.74

what was done in [15], but here this was done in a edge-oriented fashion and with a
slightly different formulation.

Doing a complete search of all possible patterns and transitions is possible, but
very heavy, even for a relatively small network. Because of that, we only consider
connected induced subgraphs and we propose an approximated approach to this
problem. We will first sample a single-connected induced subgraph H from G in
any timestamp. We then follow the vertex set of H through time in G. To do so, we
use our automaton to first represent H and then follow the edge changes. We fix a
time step δ, such that whenever δ units of time have passed, we record the current
isomorphism class and add a transition on the Markov chain table from the previous
class to the current one. By doing so, we can follow the isomorphism information
of that particular vertex set throughout the whole lifetime of G. If we repeat this
procedure enough times, we have effectively sampled a portion of the temporal
transition space.

Since our goal is not to provide a graph mining method to the stated problem but
to showcase a possible usage of our automaton, here we will not discuss this method
much further. We implemented a basic version of this approach and ran it using both
the base method and our method as the underlying isomorphism tool. To compare
their runtimes, we ran them on a small set of complex networks with 1,000,000
samples, which we list in Table3. The runtimes obtained for multiple subgraph size
n are shown in Table4. These runtimes include the time for sampling and performing
other supporting computation, which lowers the speedup in relation to what was seen
in Sect. 4.

5 Conclusion

In this paper, we introduced a new problem consisting of computing graph isomor-
phism on a fully dynamic streaming environment, supporting edge insertion and
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deletion. We presented an efficient algorithm that tackles this problem using a data
structure similar to a discrete finite automaton to represent the full space of differ-
ent isomorphism classes. Compared to a simple non-streaming-aware approach of
recomputing the solution for each iteration of the stream, the automaton method and
its variations obtained a much better performance, with speedups increasing with the
stream size. We also briefly studied the applicability of our method, studying how
the stream parameters (ex: the stream size and the stream step) vary while keeping
the usefulness of our method in relation to the simpler approach, and we have shown
a possible application.
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Silhouette for the Evaluation of
Community Structures in Multiplex
Networks

Alessia Amelio and Andrea Tagarelli

Abstract This paper focuses on the silhouette as validity criterion for community
structures in networks, with emphasis on multiplex networks. We propose a versatile
definition of the silhouette, by generalizing it to encompass different scenarios of
proximity between entities in a network, where the distance notion can be geodesic-
based or homophily-oriented. To the best of our knowledge,we are the first to propose
this twofold perspective on the silhouette and its extension to deal with multiplex
networks. We also define an approximate variant of the multiplex silhouette to speed
up its computation on large networks, based on the exploitation of central nodes
to be regarded as community representatives. Experimental results performed on
benchmark real-world network datasets have revealed that the proposed multiplex
silhouette is positively correlatedwith its approximate version,while the latter proved
to be much faster in terms of execution time.

1 Introduction

Internal validity criteria for assessing a community structure in a network assume that
the community structure should satisfy certain inner requirements of quality based
on topological properties of the network graph [23]. Such requirements typically
involve the use of notions defined on the connectivity internal to a community and
on the connectivity external to a community, or according to a configuration model,
such as for modularity [16].

It should be noted that internal validity criteria for community structures are often
designed to focus on quality requirements based on the degree distribution of nodes
according to their assignments to communities. One aspect that is scarcely consid-
ered in our opinion is the affinity between nodes. Nevertheless, this is particularly
important inmany network scenarios, especially those related to social environments,
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in order to explain the tendency of individuals to associate and bond with similar oth-
ers; this is known as homophily, which is central in the modeling of social influence
phenomena.

Research on data cluster analysis has provided a number of clustering quality
criteria that depend on the use of a distance or similarity measure to capture affinity
among the data objects w.r.t. their assignments to clusters. In this regard, one par-
ticularly meaningful of such measures is the silhouette coefficient [18]. Given a set
of clusters, for every object the silhouette determines how similar it is to its own
cluster in relation to how similar the object is to other clusters. In network analysis,
the silhouette can also be applied to assess the node memberships to communities,
where the notion of distance typically corresponds to the length of (shortest) paths
between any two nodes [12, 13].

In this paper, we focus on the silhouette coefficient for the evaluation of commu-
nity structures.We propose a versatile definition of the silhouette by generalizing it to
encompass different scenarios of proximity between entities in a network, where the
distance notion can be geodesic-based or homophily-oriented. This twofold perspec-
tive on silhouette has not been considered in the study of complex network systems.
In this regard, our main contribution in this paper is the definition of silhouette for
multiplex networks, for which we also propose an approximation to deal with well-
known efficiency issues in silhouette. Indeed, to avoid the quadratic computation in
the number of nodes, our proposed approximation of multiplex silhouette considers
only distances between one node inside a community and the representatives of the
other communities.

Experimental results conducted on real-world multiplex networks have provided
interesting remarks on the use of multiplex silhouette and its comparison with the
approximate variant, as well as with other quality criteria such as local clustering
coefficient and modularity. In the rest of this paper, Sect. 2 discusses internal validity
criteria for community detection. Section3 introduces the proposed silhouette for
multiplex networks. Sections4 and 5 present evaluation methodology and results.
Finally, Sect. 6 concludes the paper.

2 Related Work

One convenient way to organizemeasures falling into the category of internal validity
criteria is by distinguishing them at (i) graph-level, (ii) community-level, and (iii)
vertex-level [8].

Graph-level measures compute a score directly for the whole network. Two mea-
sures belonging to this category are surprise [1] and significance [21]. Community-
level measures apply to each community of the network. They include conductance
and cut-ratio, which account for the normalized external connectivity of a com-
munity. Other measures consider the ratio between the internal community degree
and external community degree (separability), all possible edges between nodes in
the community (density), or the diameter of the community (compactness) [7]. A



Silhouette for the Evaluation of Community Structures in Multiplex Networks 43

remarkable mention needs to be made for the modularity measure, which captures
the deviation between the actual connectivity of a community and the expected one
based on a configuration model [16]. Several extensions of the modularity have been
defined, including modularity for directed and weighted networks [5] and for over-
lapping community structures [17]. Finally, vertex-level measures apply to each node
of the network. They include the local clustering coefficient of a node [22], based on
the node neighbors’ connections, and the permanence, based on the number of inter-
nal node community edges vs. the number of maximum edges to a single external
community [6]. A few measures are also available for the evaluation of commu-
nity structures in multiplex networks. These include the multislice modularity [15],
the multilayer modularity [2], the cross-layer edge clustering coefficient [4], and
the redundancy [3]. Note that all of the aforementioned measures do not explicitly
consider any concept of affinity between nodes according to their memberships to
communities.

3 Multiplex Silhouette

Let GL = (VL, EL,V,L) be amultilayer network graph, where V is a set of entities
and L = {L1, . . . , L�} is a set of layers. Each layer represents a specific type of
relation between entity nodes. Let VL ⊆ V × L be the set containing the entity-layer
combinations, i.e., the occurrences of each entity in the layers. EL ⊆ VL × VL is the
set of undirected links connecting the entity-layer elements. For every Li ∈ L, we
define Vi = {v ∈ V | (v, Li ) ∈ VL} ⊆ V as the set of nodes in the graph of Li , and
Ei ⊆ Vi × Vi as the set of edges in Li . Each entity must be present in at least one
layer, but each layer is not required to contain all elements of V . In this work, we
consider the special case of multiplex networks, such that the interlayer links only
connect the same entity in different layers.

We are given a community structure C = {C1, . . . ,Ck} over GL. If we denote
with distL(·, ·) the distance between any two nodes in V that are connected in layer
L , the average distance between any node v ∈ V and all objects belonging to its
community C is defined as:

D(v|C,L) = 1

|C |
∑

u∈C

∑

L∈L
distL(u, v) (1)

whereas the minimum over the values of average distance between v and all nodes
in communities different from C is:

ND(v|C,L) = min
C ′∈C,C ′ �=C

1

|C ′|
∑

u∈C ′

∑

L∈L
distL(u, v) (2)

We define the multiplex silhouette of v ∈ V as:



44 A. Amelio and A. Tagarelli

MSil(v) = ND(v|C,L) − D(v|C,L)

max{ND(v|C,L), D(v|C,L)} . (3)

In order to specify the distance function distL(·, ·), we consider two perspectives:
(i) geodesic-based and (ii) homophily-oriented. As previously discussed, the former
has been already considered in the literature, which corresponds to the computation
of the shortest path between two nodes in the graph of layer L; the latter perspective,
although originally captured in our previous recent work [19], has not been widely
studied so far.

We devise a notion of homophily-oriented distance by resorting to any similar-
ity measure that can express the topological affinity of two nodes in a layer graph
according to their commonality in terms of their respective neighbors. Formally,
given a layer L ∈ L and any two nodes u, v ∈ V , we choose for distL(u, v) the
generic form as f(NL(u), NL(v)), where f denotes a function proportional to the
similarity of the two node sets NL(u), NL(v), with NL(x) = {y ∈ V|(y, x) ∈ EL}
as the set of neighbors of a node x in layer L . To specify the above function,
one reasonable choice is a Jaccard coefficient based distance, whereby similarity
between two nodes is evaluated proportionally to the number of neighbors in com-
mon, i.e., distL(u, v) = 1 − |NL (u)∩NL (v)|

|NL (u)∪NL (v)| . An alternative is cosine similarity based
distance, whereby the proportionality of shared neighborhood would be smoothed
to favor unbalanced neighborhoods to be compared; in this case, we will define
distL(u, v) = 1 − |NL (u)∩NL (v)|√|NL (u)||NL (v)| . Other functions can surely be based on cliques or
other substructures. Note that, by exploiting (3) and averaging over all nodes in a
community and over all nodes in the multiplex graph, we can compute a multiplex
community silhouette and a global silhouette, respectively.

Approximate multiplex silhouette. Our proposed multiplex silhouette inherits
an efficiency issue from the basic silhouette, since it requires a pairwise compar-
ison between nodes in the communities. To overcome this limitation, we identify
one representative for every community, and compute the multiplex silhouette more
efficiently by only considering distances between one node inside a community and
the representatives of the other communities.

Let us denote with r(C) the node in V that is representative of community C ∈ C.
The simplest definition of r(C) according to graph centrality theory is based on the
degree of node, which leads to r(C) = argmaxu∈Cdeg(u), with deg(u) denoting the
total degree of u in the multiplex graph, i.e., deg(u) = |{x ∈ V|(u, x) ∈ EL}|. In
the case of multiple nodes in C having the maximum degree, r(C) is chosen as the
node with the maximum neighborhood degree, where a node’s neighborhood degree
is computed as the sum of the degrees of the nodes’s neighbors. It should be noted
however that any (reasonably efficient) centrality measure can in principle be used
to define r(C) in alternative to degree centrality.

The computation of community representatives enables the following modifica-
tions in (1):

D(v|C,L) =
∑

L∈L
distL(r(C), v) (4)
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ND(v|C,L) = min
C ′∈C,C ′ �=C

∑

L∈L
distL(r(C

′), v). (5)

We hereinafter refer to the multiplex silhouette defined in terms of (4) and (5) as
centrality-based multiplex silhouette, denoted as cb-MSil.

4 Evaluation Methodology

Datasets. We used six real-world multiplex networks for our evaluation, which are
among the most frequently used in recent, relevant studies in multiplex/multilayer
community detection: AUCS [14], EU-Airlines [14], FAO-Trade [10], London trans-
port [24], FriendFeed-Twitter-YouTube (FF-TW-YT ) [11], 7thGraders (VC-Graders)
[24]. Table1 summarizes main characteristics of the evaluation networks, where the
average coverage of the node set is 1/|L|∑L∈L(|VL |/|V|), and the average coverage
of edge set is 1/|L| ∑L∈L(|EL |/∑

L ′ |EL ′ |).
Community detection methods. We selected three well-known methods that

are representative of the direct approaches and the aggregation-based approaches
for community detection in multiplex networks: Generalized Louvain (GL) [15],
Multiplex Infomap (M-Infomap) [9], andPrincipalModularityMaximization (PMM)
[20].

Experimental setting and goals. Our proposed multiplex silhouette MSil and
its approximate variant cb-MSil were evaluated using both the shortest path and
the Jaccard coefficient based distances. For each dataset and method, we compared
the global values MSil and cb-MSil in terms of absolute difference as well as in
terms of execution time. Moreover, we analyzed the correlation between the node
distributions of MSil and cb-MSil. Also at vertex-level, we analyzed the correlation
of each of the silhouette measures with the local internal clustering coefficient [22],
whereas at community-level, we analyzed the correlation of the two silhouette with
the multilayer modularity proposed in [19].

Table 1 Main features of real-world multiplex network datasets used in our evaluation

#entities (|V|) #edges #layers (�) Node set
coverage

Edge set
coverage

AUCS 61 620 5 0.73 0.20

EU-Air 417 3588 37 0.13 0.03

FAO-Trade 214 318346 364 0.53 0.003

#entities (|V|) #edges #layers (�) Node set
coverage

Edge set
coverage

FF-TW-YT 6407 74836 3 0.58 0.33

London 369 441 3 0.36 0.33

VC-Graders 29 518 3 1.00 0.33
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As concerns the community detectionmethods, we used the default setting for GL
and M-Infomap. We varied the number k of communities required as input in PMM,
from 5 to 100 (with increments of 5), and finally selected the value corresponding to
the highest modularity.

5 Results

Table2 shows the global values of MSil and cb-MSil equipped with the Jaccard dis-
tance, computed on the community structures obtained byGL, PMM, andM-Infomap
on the various networks. One result from the table is the evidence of low values of
silhouette obtained by the methods in most cases, especially when the shortest path
distance is employed. This is partly expected since silhouette generally behaves as
a tough criterion of validity, but also because community detection methods are
not designed to optimize their solutions according to criteria that meet silhouette
requirements. Also, it can be noted how the employment of the geodesic-based versus
homophily-oriented distance notions in the silhouette can actually lead to different
behaviors of the methods.

Besides the above remarks, one important finding for our study is that the absolute
difference (Δ) between the multiplex silhouette and its centrality-based variant is in
general quite small, in particular below 0.1 in 13 out of 18 cases (with Jaccard) and
8 out of 12 cases (with shortest path). Overall, this would indicate that cb-MSil is a
good approximation of MSil. In addition, looking at the efficiency results, cb-MSil
always outperforms MSil — as shown in Fig. 1, cb-MSil obtained a percentage

Table 2 Global values ofMSil and cb-MSil equippedwith Jaccard distance (top) andwith shortest
path distance (bottom). Symbol Δ denotes |MSil − cb-MSil|

GL PMM M-Infomap

MSil cb-MSil Δ MSil cb-MSil Δ MSil cb-MSil Δ

AUCS 0.20 0.03 0.17 0.09 0.04 0.05 −0.13 −0.11 0.02

EU-Air 0.05 −0.01 0.06 −0.16 −0.01 0.15 −0.19 −0.02 0.17

FAO-Trade 0.05 0.02 0.03 0.01 −0.00 0.01 −0.1 −0.1 0

FF-TW-YT −0.09 −0.08 0.01 −0.00 −0.01 0.01 −0.08 −0.08 0

London 0.04 −0.00 0.04 0.11 −0.01 0.12 −0.001 −0.001 0

VC-Graders 0.19 0.12 0.07 0.23 0.16 0.07 0.13 −0.18 0.31

GL PMM M-Infomap

MSil cb-MSil Δ MSil cb-MSil Δ MSil cb-MSil Δ

AUCS −0.22 −0.27 0.05 0.18 0.16 0.02 −0.31 −0.30 0.01

EU-Air −0.19 −0.16 0.03 −0.06 −0.05 0.01 0.53 0.50 0.03

London −0.34 0.06 0.4 −0.09 −0.03 0.06 0.29 0.45 0.16

VC-Graders 0.26 0.18 0.08 0.28 0.17 0.11 0.09 −0.15 0.24
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(a) AUCS (b) FF-TW-YT (c) FAO-Trade

Fig. 1 Execution time (in seconds) of MSil (lighter bars) and cb-MSil (darker bars) with Jaccard
distance

Table 3 Correlation of MSil vs. cb-MSil, local clustering coefficient (cc), and multilayer modu-
larity (Q).MSil and cb-MSil are equipped with Jaccard (upper table) or with shortest path distance
(bottom table)

GL PMM M-Infomap

cb-MSil cc Q cb-MSil cc Q cb-MSil cc Q

AUCS 0.44 0.53 0.48 0.67 0.51 −1 0.62 −0.55 −0.72

EU-Air 0.05 0.02 −0.31 0.09 0.29 −0.71 0.62 0.05 −1

FAO-Trade 0.14 −0.13 −0.41 0.16 0.70 −0.65 1 0.00 1

FF-TW-YT 0.86 −0.01 −0.10 0.50 0.22 −0.48 0.56 −0.12 −0.13

London 0.49 0.00 0.68 0.12 0.37 −0.46 0.92 0.04 −1

VC-Graders 0.26 −0.01 −1 −0.29 0.001 1 0.62 −0.50 −0.48

GL PMM M-Infomap

cb-MSil cc Q cb-MSil cc Q cb-MSil cc Q

AUCS 0.58 0.16 −0.67 0.10 −0.02 1 0.51 −0.49 −0.86

EU-Air −0.26 0.06 −0.23 −0.41 −0.22 0.79 −0.005 0.02 1

London −0.14 0.00 −0.91 −0.02 −0.02 −0.16 0.84 0.01 1

VC-Graders 0.33 −0.27 −1 0.57 −0.29 −1 0.54 −0.36 −0.36

decrease of execution time of 75%onFF-TW-YT, above 67%onAUCS (allmethods)
and on FAO-Trade.

More insights can be gained by analyzing the correlation between node distri-
butions of the various criteria, as reported in Tables3–4. Considering MSil versus
cb-MSil with homophily-oriented distance (i.e., Jaccard distance), they exhibit quite
a good correlation, which is on average 0.38 for GL, 0.21 for PMM, and 0.72 for
M-Infomap (Table3). Also, MSil tends to be negatively correlated with multilayer
modularity in most cases, while it could be positively correlated with the local clus-
tering coefficient (e.g., in PMM solutions).

When the shortest path distance is used, the two multiplex silhouettes have a
more varying correlation, which could be positive or negative depending on the
network (Table3). Again, correlation is quite negative between MSil and multilayer
modularity and more negative between MSil and the local clustering coefficient for
PMM than in the case of Jaccard distance.
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Table 4 Correlation of MSil with Jaccard distance vs. MSil with shortest path distance, and of
cb-MSil with Jaccard distance vs. cb-MSil with shortest path distance

AUCS EU-Air London VC-Graders

MSil cb-MSil MSil cb-MSil MSil cb-MSil MSil cb-MSil

GL 0.62 0.14 −0.07 0.13 −0.10 0.32 0.71 −0.36

PMM 0.19 0.47 −0.28 0.02 −0.02 −0.00 0.34 −0.49

M-Infomap 0.51 0.43 −0.64 −0.29 0.25 0.18 0.90 0.56

Comparing MSil when equipped with Jaccard and with shortest path distance
(Table4), we observe that they can be positively correlated in social multiplex net-
works, like AUCS and VC-Graders, while the measures tend to be negatively cor-
related in transport networks. This would suggest that for social environments, the
multiplex silhouette is robust to the choice of distance notion, as the shortest path
between individuals can provide indicators of homophily that would be consistent
with those provided by a neighbor-overlap-based distance. By contrast, in transport
networks, the two notions of distance lead to different effects in determining the
silhouette of community memberships of nodes.

6 Conclusion

We proposed a definition of silhouette for community structures in multiplex net-
works, which considers geodesic-based as well as homophily-oriented notions to
determine the affinity of nodes according to their community memberships. We also
defined an efficient variant of the multiplex silhouette, based on degree centrality, to
identify community representatives that are exploited to speed up the computation of
the quality measure on large networks. As future work, we plan to investigate alter-
native layer-aggregation schemes for the definition of multiplex silhouette criteria,
and alternative centrality-based approximations of the multiplex silhouette.
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Abstract The discrete version of the Ollivier-Ricci (OR) curvature, applicable to
networks, has recently found utility in diverse fields. OR curvature requires solving
an optimal mass transport problem for each edge, which can be computationally
expensive for large and/or dense networks. We propose two alternative proxies of
curvature to OR that are motivated by the Jaccard index and are demonstrably less
computationally intensive. Jaccard curvature (JC) is a simple shift and scaling of
the Jaccard index that captures the overlap of edge node neighborhoods. General-
ized Jaccard curvature (gJC) captures the shortest path distances in a mass exchange
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problem. We study the goodness of approximation between the proposed curvatures
and an alternative metric, Forman-Ricci curvature, with OR curvature for several
network models and real networks. Our results suggest that the gJC exhibits a rea-
sonably good fit to the OR curvature for a wide range of networks, while the JC is
shown to be a good proxy only for certain scenarios.

1 Introduction

Various notions of curvature in differential geometry, which measure the curves or
bends of tensors on the surface of manifolds [3, 5], have recently been interpreted
on graphs and applied to the study of networks [2, 4, 7, 12, 15]. Ollivier-Ricci
curvature seems a promising new metric for networks as it has recently been applied
to distinguish between cancerous and noncancerous cells [18], to indicate fragility
in stock markets [19], and in explaining congestion in wireless networks [22].

The Ollivier-Ricci curvature of a pair of vertices is defined based on the optimal
mass transport between their associated mass distributions. When the pairs being
considered are restricted to adjacent vertices, Ollivier-Ricci curvature can be viewed
as an edge centrality metric, like betweenness or random-walk measures. Informally,
positive curvature implies that the neighbors of the two nodes are close (perhaps over-
lapping or shared); zero (or near-zero) curvature implies that the nodes are locally
embeddable in a flat surface (as in a grid or regular lattice); while negative curva-
ture implies that the neighbors of the two nodes are further apart. Unfortunately,
computing the Ollivier-Ricci curvature can incur high-computational complexity in
high-degree and large networks as solving the transport problem, in the worst case,
scales with the quartic of the degree (see Table2) or, in practice, scales with the
product of the two nodes’ degrees [14]. This motivates the desire for a less computa-
tionally intensive approximation. Jost and Liu [6] demonstrated the significance of
overlapping neighborhoods in the Ollivier-Ricci curvature of edges in the formula-
tion of a bound involving the clustering coefficient [23]. Hence, it seems reasonable
to build a metric that aims to approximate Ollivier-Ricci from the sets of common
and separate neighbors of the nodes in an edge.

Inspired by the Jaccard index, we derive a new curvature metric approximating
the Ollivier-Ricci graph curvature metric. The Jaccard index has previously found
utility in networks, e.g., as a measure of similarity between nodes [10]. Moreover,
the Jaccard index naturally captures the overlapping neighborhood feature found in
positively curved edges in a simplistic manner. The notion of set comparison as a
curvature metric leads to a more general linear approximation function of Ollivier-
Ricci formulated from classes of sets of each node’s neighbors that effectively solves
amass exchange problem. The complexity of this newmetric is significantly less than
that for Ollivier-Ricci. For random graphs, we find that our new metric shares many
asymptotic properties of the Ollivier-Ricci curvature [1]. Moreover, comparisons
of the Jaccard-inspired curvature with Ollivier-Ricci seem more favorable than the
alternative Forman-Ricci curvature metric [2, 20, 21].
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2 Curvature Metrics

We first present two adaptations of Ricci curvature to graphs—Ollivier-Ricci curva-
ture [6, 11, 15] and Forman-Ricci curvature [2, 20]. Then, we introduce a new graph
curvature metric, which is intuitively similar to Ollivier-Ricci curvature but requires
less computational complexity.

Ollivier-Ricci curvature: Consider an undirected graph G = (V,E) on n nodes,
i.e., |V | = n, with no self-loops. For an edge (i, j) ∈ E, the Ollivier-Ricci (OR) cur-
vaturemetric is defined as κ(i, j) = 1 − W (mi, mj), whereW (mi, mj) is theWasser-
stein distance (see [15] for more details) or optimal mass transport cost between the
two probability measures mi and mj. For each vertex i, the probability measure mi

is set as mi(j) = 1
di
, if i ∼ j, and 0 otherwise; where i ∼ j implies an edge between

i and j. The probability measure mi shown above distributes a unit weight to all
neighbors of i uniformly as in [6, 18]. A more general assignment distributes a mass
α to node i and 1 − α uniformly among the neighbors of i [11, 14]. But for the
distribution considered in this work (α = 0), the Ollivier-Ricci curvature for each
edge is bounded as −2 < κ < 1.

Forman-Ricci curvature: Forman discretized the classical Ricci curvature for
a broad class of geometric objects, the CW complexes [2]. This was applied to
undirected networks by Sreejith et al. [20], and we use that definition. The Forman
curvature for an edge e = (i, j) is given by

F(e) = we

⎛
⎝wi

we
+ wj

we
−

∑
e�∈ei\e

wi√
wewe�

−
∑

e�∈ej\e

wj√
wewe�

⎞
⎠ , (1)

where we is a weight associated with edge e, wi is a weight associated with vertex i,
and ei \ e denotes the set of edges incident on vertices i excluding the edge e.

For an unweighted graph, two weighting schemes were proposed [20, 21]. The
first sets all the node and edge weights to 1, and the second weights the edges by 1
and the nodes by their degree. We implemented both the weighting schemes, and did
not find a significant difference in terms of their correlations with the Ollivier-Ricci
curvature. The results shown in Sect. 4 follow the second weighting scheme, where
the original expression in (1) reduces to

F(e) = 4 − di − dj. (2)

Other, more involved, weighting schemes have also been proposed [24], but are not
considered in this work.

Jaccard Curvatures: As mentioned previously, calculating Ollivier-Ricci curva-
ture can be costly because it involves solving an optimal mass transport problem, or
equivalently a linear program [14], for each edge. Especially for large graphs, with
high values of maximum degree, calculating OR curvature for all the edges can be
prohibitively costly (see Sect. 3). To address this, we introduce an approximation to
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the OR curvature, which would not require solving the optimal mass transport prob-
lem. Toward this end, we revisit the intuition of OR curvature—An edge has positive
curvature if the neighborhoods of the two concerned nodes are closer to each other
compared to the nodes themselves, zero curvature if the neighborhoods are at the
same distance, and negative curvature if the neighborhoods are farther apart. A simple
heuristic would be to measure the fraction of common nodes between the neighbor-
hoods of the two concerned nodes. This is related to Jaccard’s coefficient, which was
introduced in network analysis as a similarity measure between nodes [10].

For an edge (i, j), the set of common neighbors of the nodes i and j is given by
C (i, j) = Ni ∩ Nj,whereNk is the neighbor set of node k.We letC(i, j) = |C (i, j)|.
We also define the set of separate neighbors between i and j asS (i, j) = (

Ni ∪ Nj
) \

C (i, j), with S(i, j) = |S (i, j)|. We define the union of the neighbor sets of i and j
as N (i, j), i.e.,N (i, j) = C (i, j) ∪ S (i, j), with N (i, j) = |N (i, j)|.

Jaccard’s coefficient is defined as the ratio between the intersection of neighbor-
hoods of the two nodes to their union, i.e., J (i, j) = C(i, j)/N (i, j). It is evident that
the metric J (i, j) will be closer to 1 if there are more common nodes, and closer to 0
otherwise. However, the range of this metric will be between 0 and 1, as opposed to
OR curvature which takes the range (−2, 1). We can scale and shift the Jaccard coef-
ficient so that our desired Jaccard curvature metric for an edge, JC(i, j), approaches
a value of 1 when J (i, j) is close to 1 and approaches −2 when J (i, j) = 0,

JC(i, j) = 1 − 3S(i, j)

N (i, j)
= −2 + 3J (i, j). (3)

See Fig. 1 for an illustrative example. The above expression could be interpreted as
subtracting the influence of separate neighbors, with S(i, j) being the total number
of separate neighbors and the denominator N (i, j) being the cardinality of the union
of the neighbor sets of i and j.

Computing Jaccard curvature is very cheap because it only requires the knowledge
of the size of neighborhoods of the two relevant nodes and the common nodes in
those neighborhood sets. However, since the Jaccard curvature partitions the set of
neighbors into common and separate vertices, the granularities of OR curvature are
lost to a great extent. This is best demonstrated by considering edges in canonical
graphs. In a complete graph, the OR curvature of each edge will be close to 1, and
the Jaccard curvature will be exactly 1. For an edge connecting high-degree nodes in
a tree, the OR curvature will be close to −2 and the Jaccard curvature will be exactly
−2. However, on a grid or a line, the OR curvature of the edges will be 0, while the
Jaccard curvature will still be −2, because there are no common nodes. Clearly, the
Jaccard curvature metric should have a more positive value in a grid compared to that
on a tree, if we are to obtain a better approximation of the OR curvature. To address
this, we now define a generalized version of the Jaccard curvature metric to take into
account nodes that are not common, yet closer than 3 hops apart. Note that, nodes
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Fig. 1 For the edge (1, 2), C (1, 2) = {3} and S (i, j) = {1, 2, 4, 5, 6}. So, from (3), the Jaccard
curvature is JC(1, 2) = 1 − 3×5

6 = − 3
2 . Since S

(1)
1 = {4}, S (1)

2 = {5}, S (2)
1 = {6} (node 6 is 2

hops from a neighbor of node 2, i.e. node 3), and all other expressions are zero, then from (5), the
generalized Jaccard curvature is gJC(1, 2) = 1 − 1+1+2

6 − 2 · 1
6 = 0. In comparison, the Ollivier-

Riccci curvature OR(1, 2) = 1
4 , and Forman curvature is −3

cannot be more than 3 hops apart because there always exists a 3 hop path between
them through the edge whose curvature is being computed.

Define Ni(i, j) as the exclusive neighbors of i with respect to the edge (i, j),
i.e.,Ni(i, j) = {k ∈ V \ {j} | (i, k) ∈ E}. Let d(u, v) denote the shortest path length
between nodes u and v. Let the set of separate nodes be partitioned into the fol-
lowing sets S (r)

i = {k ∈ Ni(i, j) | min�∈N j(i,j) d(k, �) = r}, with S(r)
i = |S (r)

i |, for
r = 1, 2, 3. In other words, S (r)

i is the set of neighbors of i that have shortest path
distance of r from the set of exclusive neighbors of j. If Nj(i, j) = ∅, then we set
S (1)

i = Ni(i, j). Since Ollivier-Ricci curvature includes the nodes of the edge itself,
we include i and j in the generalized Jaccard (gJC) metric. Therefore, for an edge
(i, j) ∈ E, the generalized Jaccard metric is defined by

gJC(i, j) = α + β
C(i, j)

N (i, j)
+ γ

S(1)
i + S(1)

j + 2

N (i, j)
+ δ

S(2)
i + S(2)

j

N (i, j)
+ ζ

S(3)
i + S(3)

j

N (i, j)
,

(4)

where the parameters α, β, γ , δ and ζ need to be determined. Since, i /∈ S (1)
j and

j /∈ S (1)
i , we arrive at the gJC metric by including the two nodes separately in (4).

The parameters are determined by considering several cases from canonical graphs.
In a k-complete graph, we would like the generalized Jaccard metric to have a

maximum value close to 1, so as to approximate the OR curvature which approaches
1 as k gets large. Therefore we require, as C(i, j)/N (i, j) → 1, then gJC(i, j) → 1,
which leads toα + β = 1. Similarly, for edges in a d -dimensional grid, wewould like
the generalized Jaccard metric to have a value close to 0 as d gets large. This requires
that as d → ∞ and (S(1)

i + S(1)
j + 2)/N (i, j) → 1, then gJC(i, j) → 0,which leads

to α + γ = 0. This would best approximate the OR curvature which has a value of
0 for d -dimensional grids. For edges in a tree connecting nodes with degree d , we
would like the generalized Jaccard metric to have a value close to a minimum value
of −2, approximating the OR curvature which itself approaches −2 as d gets large.
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This requires that as d → ∞ and (S(3)
i + S(3)

j )/N (i, j) → 1, then gJC(i, j) → −2
which leads to α + ζ = −2.We set, α = 1, β = 0, γ = −1, ζ = −3, which satisfies
the aforementioned requirements. Furthermore, we enforce γ > δ > ζ so that the
effect of S (2) on the edge curvature falls between that of S (1) and S (3). Setting
δ = (γ + ζ )/2 = −2, we obtain

gJC(i, j) = 1 − S(1)
i + S(1)

j + 2

N (i, j)
− 2

S(2)
i + S(2)

j

N (i, j)
− 3

S(3)
i + S(3)

j

N (i, j)
; (5)

see Fig. 1 for an illustrative example.
It can be shown that the generalized Jaccard expression in (5) is related to the

solution of the optimal mass exchange problem between neighborhoods of the two
concerned nodes, where the mass distribution at the source is predetermined and
fixed and the destination mass distribution is kept flexible, with the constraint that
mass from a neighbor of one node needs to be transported to any neighbor of the
other node and vice versa (see [16] for further details).

3 Theoretical Results

Study on random graphs: We state results for the behavior of Jaccard and gener-
alized Jaccard curvature of edge (i, j), denoted JCn(i, j) and gJCn(i, j) respectively,
on a sequence of Erdos–Renyi graphs {G1,G2, . . .}.
Theorem 1 Let {G1,G2, . . .} be a sequence of Erdos–Renyi graphs. As n → ∞ and
for all (i, j) ∈ E, we have the following results.

a. For pn → p, E
[
JCn(i, j)

] → 5p−4
2−p .

b. For pn → 0, E
[
JCn(i, j)

] → −2.

Theorem 2 Let {G1,G2, . . .} be a sequence of Erdos–Renyi graphs. As n → ∞ and
for all (i, j) ∈ E, we have the following results.

a. For pn → p, E
[
gJCn(i, j)

] → p
2−p .

b. For npn → 0 and pn → 0, E
[
gJCn(i, j)

] → 0.
c. For np2n → ∞ and pn → 0, E

[
gJCn(i, j)

] → 0.
d. For n2p3n → ∞, np2n → 0 and pn → 0, E

[
gJCn(i, j)

] → −1.
e. For npn → ∞,n2p3n → 0 and pn → 0, E

[
gJCn(i, j)

] → −2.

Proofs of Theorems 1–2 can be found in [16]. The two theorems together suggest
that gJC is a better asymptotic approximation of OR curvature than the Jaccard
curvature. We see that as the scaling changes and the ER graph becomes more
dense, gJC increases progressively. Table1 shows that the asymptotic behavior of
gJC matches that of OR curvature closely, while the behavior of JC and Forman
curvatures are very different.
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Table 1 The asymptotic values for the curvatures under different scalings for the ER graph

Ollivier-Ricci Forman Jaccard Generalized Jaccard

p constant p −∞ 5p−4
2−p

p
2−p

npn → 0 0 4 −2 0

npn → ∞ and n2p3n → 0 −2 −∞ −2 −2

n2p3n → ∞ and np2n → 0 −1 −∞ −2 −1

np2n → ∞ 0 −∞ −2 0

Table 2 Computational complexity for OR, Forman, JC, and gJC curvatures for d -regular graphs

Ollivier-Ricci Forman Jaccard Generalized
Jaccard

Complexity O(n4 log2 n) O(nd) O(nd2) O(nd3)

Computational Complexity: There is a clear hierarchy in the complexity of the
Forman, Jaccard, generalized Jaccard, and Ollivier-Ricci curvatures. See Table2 for
their complexity for d -regular graphs. Intuitively, the Forman curvature is based only
on the degrees of i and j so its complexity is O(m) for a graph with m edges which
is O(nd) for d -regular graphs. To compute JC, we are looking for the number of
common neighbors between i and j while to compute gJC we are looking for the
shortest path to get from any exclusive neighbor of i to any exclusive neighbor of j.
All of these shortest paths could be to the same neighbor of j. In d -regular graphs,
these extra computations require an additional factor ofO(d) for JC and an additional
factor of O(d2) for gJC. Finally, in OR, these shortest paths must represent a perfect
fractional matching in the sense that one neighbor of y cannot be the target of too
many neighbors of x, which is obviously a harder task. In [16], we provide proofs
for the above complexity claims.

4 Experimental Results

4.1 Network Models

Weconsider different networkmodels to investigate the relationship between Jaccard
and Forman curvatures in relation to Ollivier-Ricci curvature. This helps provide
insight on how the different curvatures are affected by changes in model parameter
values that have been shown to characterize certain network properties.
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Table 3 Average curvatures shown for different Erdos–Renyi (ER) graphs. Pearson correlation rp
and Kendall’s τ between OR curvature and Forman, JC, and gJC curvature are tabulated

Graph OR F JC gJC (OR, F) (OR, JC) (OR, gJC)

rp τ rp τ rp τ

ER(100,0.05) −0.59 −8 −1.95 −0.86 0.35 0.25 0.40 0.28 0.77 0.55

ER(100,0.1) −0.20 −19 −1.83 −0.23 −0.31 −0.21 0.64 0.45 0.90 0.73

ER(100,0.2) 0.15 −37 −0.77 0.09 −0.46 −0.30 0.89 0.76 0.94 0.80

ER(100,0.3) 0.26 −57 −1.48 0.17 −0.53 −0.38 0.97 0.86 0.97 0.86

ER(100,0.4) 0.35 −74 −1.30 0.23 −0.44 −0.28 0.97 0.86 0.97 0.86

ER(100,0.5) 0.47 −97 −1.01 0.35 −0.54 −0.37 0.96 0.83 0.96 0.83

ER(100,0.6) 0.55 −113 −0.77 0.41 −0.58 −0.40 0.93 0.77 0.93 0.77

ER(100,0.7) 0.67 −137 −0.39 0.54 −0.64 −0.45 0.92 0.75 0.92 0.75

ER(100,0.8) 0.77 −154 −0.06 0.65 −0.70 −0.50 0.91 0.74 0.91 0.73

ER(100,0.9) 0.87 −173 0.38 0.80 −0.83 −0.68 0.91 0.77 0.91 0.77

Erdös-Rényi (ER) model [13]: ER(n, p) is a network on n nodes that connects
every pair of nodes with probability p independently across node pairs. Table3 shows
the average curvatures of different ER graphs as the probability of connection p is
varied. When p is small, the graph is more disconnected and tree-like leading to
negative OR curvature, and as p increases the density of the graph increases (as does
clustering), increasing the average OR curvature as well. Average gJC closely tracks
averageORcurvature as p increases.On the other hand, the average Forman curvature
decreases as p increases due to increasing average degree. Of these lower complexity
curvatures, gJC has the best correlation with OR curvature, and this superiority is
more pronounced when p is small. The advantage of gJC with respect to JC is small
when p ≥ 0.2. The correlation between the Jaccard curvatures and OR curvature
improves as p is increased, deteriorating slightly when p ≥ 0.5.

Barabási–Albert (BA) model [13]: BA(n,m) is a network growth model, which
starts with at leastm nodes and new nodes connect preferentially tom existing nodes
with probability proportional to their degree. As shown in Table4, gJC correlates
the best with OR curvature for BA(100,1), because all mass transport paths need to
pass through any non-leaf edge being considered. Note, when m = 1, JC is non-
discriminating with a value of −2 for each edge since there are no triangles in
the graph. Increasing m from 1 to 2 and keeping number of nodes fixed results
in less correlation between gJC and OR curvature because now there potentially
exist shorter than 3-hop paths to account for. However, increasing m further leads
to improvement, similar to what was observed in ER graphs for moderate p values.
Increasing number of nodes n and keepingm fixed decrease the correlation of Jaccard
curvatures, probably because the graph becomesmore tree-like with larger hubs. The
correlations for Forman curvature get worse as m increases.

Watts–Strogatz (WS) model [13]: WS(n, k, p) is a network model on n nodes
which first constructs a ring lattice among adjacent nodes such that each node is
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Table 4 Average curvatures shown for different Barabasi–Albert graphs. Pearson correlation rp
and Kendall’s τ between OR curvature and Forman, JC, and gJC curvature are tabulated

Graph OR F JC gJC (OR, F) (OR, JC) (OR, gJC)

rp τ rp τ rp τ

BA(100,1) −0.31 −4 −2 −0.54 0.65 0.50 N/A N/A 0.92 0.94

BA(100,2) −0.45 −10 −1.90 −0.85 0.60 0.50 0.47 0.24 0.62 0.45

BA(100,5) −0.16 −25 −1.77 −0.19 −0.16 −0.07 0.73 0.54 0.86 0.66

BA(500,1) −0.31 −17 −2 −0.55 0.33 0.37 N/A N/A 0.93 0.72

BA(500,2) −0.79 −12 −1.98 −1.32 0.64 0.58 0.12 −0.05 0.52 0.40

BA(500,5) −0.58 −32 −1.94 −0.62 −0.08 0.03 0.52 0.34 0.81 0.60

Table 5 Average curvatures shown for different Watts–Strogatz graph. Pearson correlation rp and
Kendall’s τ between OR curvature and Forman, JC, and gJC curvature are tabulated

Graph OR F JC gJC (OR, F) (OR, JC) (OR, gJC)

rp τ rp τ rp τ

WS(100,4,0.1) −0.04 −4.17 −1.46 −0.22 0.33 0.25 0.89 0.89 0.96 0.90

WS(200,4,0.1) −0.08 −4.20 −1.51 −0.28 0.37 0.26 0.88 0.86 0.96 0.90

WS(500,4,0.02) 0.17 −4.04 −1.33 0.02 0.29 0.21 0.93 0.95 0.98 0.95

WS(500,4,0.05) 0.06 −4.10 −1.41 −0.11 0.29 0.23 0.90 0.91 0.96 0.92

WS(500,4,0.1) −0.05 −4.20 −1.47 −0.24 0.42 0.31 0.89 0.87 0.96 0.90

WS(500,4,0.2) −0.31 −4.36 −1.65 −0.57 0.39 0.30 0.86 0.79 0.95 0.87

WS(500,4,0.3) −0.54 −4.52 −1.78 −0.88 0.42 0.34 0.85 0.73 0.94 0.85

WS(500,4,0.5) −0.77 −4.71 −1.91 −1.2 0.49 0.45 0.77 0.55 0.89 0.83

WS(500,4,0.7) −0.9 −4.80 −1.98 −1.4 0.66 0.61 0.52 0.30 0.80 0.76

WS(500,4,0.9) −0.94 −4.85 −1.99 −1.45 0.76 0.69 0.35 0.19 0.78 0.78

WS(500,4,0.99) −0.93 −5.04 −2.00 −1.45 0.76 0.65 0.08 0.06 0.78 0.68

connected to k closest neighbors and then randomly rewires one end of each edge
with probability p. Our simulations, displayed in Table5, show little variation in
the curvatures of edges as the network size grows, when p and k are fixed, since
locally the networks appear similar. The curvatures become more negative as the
probability of rewiring increases due to the increase in the number of edges that
become shortcuts, i.e., edges whose end nodes share no common neighbors. The
correlations for JC and gJC decrease for increasing p, whereas the correlations for
Forman curvature increase. However, gJC still has better correlation than Forman
for the range of values considered. This indicates that gJC is a better approximation
overall, but especially so when the graph has more positively curved edges.

Random geometric graph (RGG) model [17]: RGG(n, r) is a network model
where all nodes are distributed uniformly on a metric space, e.g., a unit square, and
connections between nodes are formed only if the pairwise Euclidean distance is
less than a certain radius r, with 0 < r < 1. From Table6, note that increasing the
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Table 6 Average curvatures shown for different Random Geometric Graphs. Pearson correlation
rp and Kendall’s τ between OR curvature and Forman, JC, and gJC curvature are tabulated

Graph OR F JC gJC (OR, F) (OR, JC) (OR, gJC)

rp τ rp τ rp τ

RGG(500,0.05) 0.22 −5 −1.13 0.05 −0.17 −0.15 0.86 0.83 0.88 0.79

RGG(500,0.1) 0.23 −28 −0.75 0.37 −0.22 −0.12 0.94 0.86 0.94 0.82

RGG(500,0.15) 0.28 −64 −0.64 0.44 0.04 0.04 0.96 0.87 0.96 0.86

RGG(500,0.2) 0.32 −112 −0.61 0.46 0.16 0.09 0.97 0.89 0.97 0.88

radius r increases the clustering and, hence, increases the OR and both Jaccard cur-
vatures slightly. The correlation with Forman curvature becomes more negative as r
increases because the average node degree increases. The correlation coefficients of
the Jaccard curvatures increase as r increases. This observation agrees with the pre-
viously mentioned hypothesis that the Jaccard curvature approximates OR curvature
better for positively curved graphs.

4.2 Real-World Networks

We consider several real-world networks: The Gnutella network was obtained from
the Stanford large network dataset collection [9], while the rest of the networks were
obtained from theKoblenzNetworkCollection [8]. A brief description of the datasets
is provided below. Their network properties are displayed in Table7.

Table 7 Network properties of real-world networks being considered. The number of nodes n,
number of edges m, maximum degree dmax , average degree davg , and other well-known network
properties are reported

Dataset n m dmax davg Diameter Mean
shortest
path length

Clustering
coefficient

Assortativity

US power grid 4941 6594 19 2.67 46 20 0.1 0.003

EuroRoad 1174 1417 10 2.41 62 19 0.03 0.13

PGP network 10680 24316 205 4.55 24 7.65 0.38 0.24

p2p-Gnutella 6301 20777 97 6.59 9 4.64 0.01 0.03

Email network 1133 5451 71 9.62 8 3.65 0.17 0.08

Hamsterster 1858 12534 272 13.5 14 3.4 0.09 −0.08

Human protein 3133 6726 129 4.29 13 4.80 0.04 −0.13

Jazz musicians 198 2742 100 27.69 6 2.21 0.52 0.02
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4.2.1 Description of Networks

Infrastructure Networks: The US Power Grid network contains information about
the power grid of the Western United States. A node in this small-world network is
either a generator, a transformer or a power substation, while edges represent high-
voltage power supply lines between nodes. The Euroroad network, a road network
located mostly in Europe, is undirected with nodes representing cities and an edge
between twonodes denotes a physical road between them.This networkwas observed
to be neither scale-free nor small-world.

Online social and communication networks: The PGP web of trust is a social
network formed by people that shares confidential information using the Pretty Good
Privacy (PGP) encryption algorithm. The PGPnetwork is not a scale-free network but
exhibits a bounded degree distribution and a large clustering coefficient. TheGnutella
network is a peer-to-peer architecture, where nodes represent Gnutella hosts and
edges represent connections between them. It is not a pure power-law network and
preserves good fault tolerance characteristics. The email communication network
at the University Rovira i Virgili in Tarragona is a network of users where edges
indicate at least one mail exchange between the users.

Other miscellaneous networks: Human protein (vidal) is a biological network
that was an initial version of a systematic mapping of protein–protein interactions in
humans. A collaboration network between Jazz musicians is considered, with each
node being a Jazz musician and an edge denoting the two musicians playing together
in a band.

4.2.2 Discussion of Results

Table8 shows mean curvature values and correlations between OR and the other
curvature metrics for these networks. Note, gJC tracks OR closest in terms of mean
curvature. Since the range of Forman is unbounded,we see large negative average cur-
vatures for many networks. Furthermore, gJC correlates strongly with OR compared
to JC and Forman curvatures for almost every network considered. JC correlates
with OR curvature better than Forman curvature on PGP Network, p2p-Gnutella,
Email network, Hamsterster friendship network, and Human protein network, while
Forman correlates stronger only on the EuroRoad network. Table9 shows that our
gJC implementation is at least an order of magnitude faster than the OR implemen-
tation, while comparable with our JC implementation. Our Forman implementation
is the fastest among all the curvature metrics considered. These results agree with
the theoretical analysis in Sect. 3.
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Table 8 Average curvatures shown for different real-world networks. Pearson correlation rp and
Kendall’s τ between OR curvature and Forman, JC, and gJC curvature are tabulated

Graph OR F JC gJC (OR, F) (OR, JC) (OR, gJC)

rp τ rp τ rp τ

US power grid −0.34 −3.7 −1.89 −0.78 0.48 0.41 0.40 0.23 0.80 0.69

EuroRoad −0.33 −2.0 −1.97 −0.97 0.76 0.69 0.15 0.09 0.69 0.67

PGP network −0.10 −33 −1.36 −0.14 0.13 0.08 0.73 0.53 0.85 0.74

p2p−Gnutella −1.01 −31 −1.98 −1.16 −0.32 0.08 0.23 0.27 0.86 0.58

Email network −0.41 −33 −1.72 −0.38 0.15 0.11 0.73 0.56 0.81 0.69

Hamsterster
friendships

−0.34 −86 −1.87 −0.19 0.13 0.13 0.41 0.23 0.58 0.42

Human protein −0.62 −27 −1.93 −0.79 0.35 0.34 0.31 0.10 0.78 0.60

Jazz musicians 0.27 −73 −0.92 0.32 0.09 0.05 0.91 0.79 0.92 0.80

Table 9 Running times for computing the OR, Forman, and Jaccard curvatures for different real
networks

Graph (s) OR(LP solver) (s) Forman (s) JC (s) gJC (s)

US power grid 146.011 0.099 0.368 0.67

EuroRoad 9.515 0.023 0.227 0.432

PGP network 1052.614 0.419 2.624 5.258

p2p-Gnutella 219.943 0.331 2.146 5.66

Email network 57.279 0.071 0.718 1.543

Hamsterster
friendships

424.898 0.267 5.069 14.354

Human protein 78.64 0.084 0.951 1.312

Jazz musicians 72.137 0.092 0.957 1.539

5 Conclusion

We introduced two new network curvature metrics, JC and gJC, that are inspired by
the Jaccard coefficient. Theoretically, the gJC metric was shown to better approx-
imate OR curvature for Erdos–Renyi graphs compared to the JC metric. We con-
ducted experiments with different classes of network models and real networks, and
observed that gJC approximates OR curvature best compared with JC and Forman
curvature. Nonetheless, the JC curvature is easier to compute than gJC, and corre-
lates moderately well with OR for positively curved or strongly clustered networks,
suggesting that it could be used as a cheap proxy to the OR curvature for such special
scenarios. The Forman curvature, while being the cheapest to compute, shows weak
correlation with OR curvature for many real networks, demonstrating that at least
for the weighting scheme used here it exhibits a different notion of curvature than
Ollivier-Ricci.
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Combinatorial Miller–Hagberg
Algorithm for Randomization of Dense
Networks

Hiroki Sayama

Abstract We propose a slightly revised Miller–Hagberg (MH) algorithm that
efficiently generates a random network from a given expected degree sequence. The
revision was to replace the approximated edge probability between a pair of nodes
with a combinatorically calculated edge probability that better captures the likelihood
of edge presence especially, where edges are dense. The computational complexity
of this combinatorial MH algorithm is still in the same order as the original one. We
evaluated the proposed algorithm through several numerical experiments. The results
demonstrated that the proposed algorithm was particularly good at accurately rep-
resenting high-degree nodes in dense, heterogeneous networks. This algorithm may
be a useful alternative to other more established network randomization methods,
given that the data are increasingly becoming larger and denser in today’s network
science research.

1 Introduction

In network science, there are occasions in which one needs to generate random net-
work samples from a given node degree sequence. A typical context for doing this is
to conduct a statistical test ofwhether empirically observed network properties can be
explainedby a certain degree distributionor not. Several algorithmshave alreadybeen
developed for this purpose, such as the classic Havel–Hakimi algorithm [1], the dou-
ble edge swap method, the configuration model [2, 3], and the Bayati–Kim–Saberi
algorithm [4]. However, they come with respective limitations. The Havel–Hakimi
algorithm constructs a network using a heuristic, assortativity-inducing procedure,
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whose outcomes would not be appropriate to be used as fully randomized controls.
The double edge swap method is simple but its randomization process is slow and
gradual, with no well-defined termination condition. The configuration model is a
systematic, well-defined randomization method, but its outcomes often contain par-
allel edges and self-loops. TheBayati–Kim–Saberi algorithm can be computationally
costly and does not guarantee that it can produce a randomized graph as an output.

The Miller–Hagberg algorithm [5] (called the MH algorithm hereafter) addresses
those limitations of the other algorithms mentioned above by relaxing the require-
ment so that it generates a random network from a given expected degree sequence.
This relaxation allows for calculation of edge probability independently for each pair
of nodes. By sorting the nodes according to their expected degrees and implement-
ing an efficient node-skipping mechanism (see [5] for details), the MH algorithm
achieves linear computational complexity O(N + M), where N and M are the num-
bers of nodes and edges, respectively. This property is highly desirable for large-scale
network analysis.

While the MH algorithm can be used with any edge probability functions, its
original version uses Chung and Lu’s random graph model [6] that assumes that an
edge probability between two nodes with degrees wi and w j can be approximated
as min(1, wiw j/

∑
k wk). It is known that this assumption is invalid if the network

is dense (i.e., if wi is not negligible compared to N ). This issue is typically mani-
fested on high-degree nodes whose degrees generated by this algorithm often deviate
greatly from their expected degrees specified in the given degree sequence [5].1 This
limitation has not been so critical an issue so far because most real-world networks
show significant degree heterogeneity and thus they are fundamentally sparse [9].

With the recent expansion of modeling methodologies and application domains
of network science, however, there are now several situations in which one needs
to analyze dense networks, such as the ego networks in social media data [10],
the time/layer aggregations of temporal and multilayer networks [11, 12], and the
functional connectivity networks of the brain imaging data [13], to name a few.
These networks typically have much higher edge density than other more classical
networks, while they still maintain substantial degree heterogeneity. Accurately rep-
resenting their high-degree nodes in randomized counterparts is, thus, an important
methodological challenge.

In this paper, we aim to address the above challenge by implementing a small
yet unique revision in the original MH algorithm, by replacing the Chung–Lu edge
probability with a combinatorically calculated edge probability that better captures
the likelihood of edge presence especially, where edges are dense. In the rest of the
paper, we describe technical details of the algorithm revision and then present some
results of evaluation of the proposed algorithm through numerical experiments.

1There have been a couple of modifications of edge probability calculation proposed to address this
issue [7, 8], mostly using statistical physics approaches.
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2 Revising the MH Algorithm with Combinatorial Edge
Probability

We revise the MH algorithm by replacing the approximated edge probability with a
combinatorically calculated edge probability. This calculation is done by counting
the number of all network configurations in each of the two scenarios: the presence
or the absence of an edge between two focal nodes. Let wi and w j be the degrees of
two nodes, i and j , for which the edge probability between them is to be calculated.
Also let N and M be the numbers of nodes and edges in the network, respectively.
Assuming that each network configuration occurs randomly with equal probability,
the edge probability between the two nodes can be written as

p(N ,M, wi , w j ) = Cc(N ,M, wi , w j )

Cc(N ,M, wi , w j ) + Cd(N ,M, wi , w j )
, (1)

where Cc(N ,M, wi , w j ) is the number of network configurations in which the two
nodes i and j are connected directly, andCd(N ,M, wi , w j ) is the number of network
configurations in which those nodes are not connected directly (Fig. 1). Equation (1)
can be rewritten as

p(N ,M, wi , w j ) =
(

1 + Cd(N ,M, wi , w j )

Cc(N ,M, wi , w j )

)−1

, (2)

if Cc(N ,M, wi , w j ) �= 0.
Both Cc and Cd can be calculated as the product of the following three combina-

torial quantities (Fig. 1):

• Number of possibilities of placing the edges that emanate from node i to the rest
of the network

– For Cc:

(
N − 2

wi − 1

)

For Cd :

(
N − 2

wi

)

• Number of possibilities of placing the edges that emanate from node j to the rest
of the network

– For Cc:

(
N − 2

w j − 1

)

For Cd :

(
N − 2

w j

)

• Number of possibilities of placing the edges not adjacent to the two nodes among
the rest of nodes in the network

– For Cc:

( (N−2
2

)

M − wi − w j + 1

)

For Cd :

( (N−2
2

)

M − wi − w j

)

By multiplying these three quantities, we obtain
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i j
1 edge

wi – 1
edges

wj – 1
edges

N – 2 nodes
M – (wi–1 + wj–1 + 1) edges

A: B:

no edge

wi
edges

wj
edges

N – 2 nodes
M – (wi + wj) edges

i j

p = |A|
|A| + |B|

Fig. 1 Schematic illustration of the proposed combinatorial edge probability calculation (1). |A| =
Cc(N ,M, wi , w j ): Number of network configurations in which the two focal nodes, i and j , are
connected directly. |B| = Cd (N ,M, wi , w j ): Number of network configurations in which the two
nodes are not connected directly

Cc(N ,M, wi , w j ) =
(
N − 2

wi − 1

)(
N − 2

w j − 1

)( (N−2
2

)

M − wi − w j + 1

)

, and (3)

Cd(N ,M, wi , w j ) =
(
N − 2

wi

)(
N − 2

w j

)( (N−2
2

)

M − wi − w j

)

. (4)

By applying these combinatorial calculations into (2) and simplifying it, we obtain

p(N ,M, wi , w j ) =
(

1 + N − wi − 1

wi

N − w j − 1

w j

M − wi − w j + 1
(N−2

2

) − M + wi + w j

)−1

(5)

=
(

1 + 2M∗(N − wi − 1)(N − w j − 1)

wiw j (N 2 − 5N + 8 − 2M∗)

)−1

, (6)

whereM∗ = M − wi − w j + 1. In the actual computation of p, we use the following
more straightforward formula that does not involve inversion:

p(N ,M, wi , w j ) = X

X + Y
, (7)

X = wiw j (N
2 − 5N + 8 − 2M∗), (8)

Y = 2M∗(N − wi − 1)(N − w j − 1). (9)
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This correctly gives p = 0 if wi or w j = 0, which is convenient for practical pur-
poses.

The formula obtained above is surprisingly simple, involvingonly afinite, constant
number of basic arithmetic operations. Therefore, the revisedMHalgorithmwith this
combinatorial edge probability (called the combinatorial MH algorithm hereafter)
still maintains the original computational complexity O(N + M). Also note that
(7)–(9) recovers the original Chung–Lu formula wiw j/(2M) = wiw j/

∑
k wk , if

N → ∞ and wi , w j � M � N 2.
Equations (7)–(9) capture the edgeprobabilitymore accuratelywhere edgedensity

is high. Considering some extreme cases helps illustrate this benefit. For example,
in a complete graph made of N nodes, each node has N − 1 as its degree, and the
total number of edges is N (N − 1)/2. Letting wi = w j = N − 1 and M = N (N −
1)/2 (i.e., M∗ = N (N − 1)/2 − (N − 2) − (N − 2) + 1) in (7)–(9) produces p =
1, correctly indicating that any pair of nodesmust be connected directly. However, the
Chung–Lu model gives p = (n − 1)/n < 1 in the same situation. A more extreme
case is a star graph made of N nodes and N − 1 edges. The edge probability between
the central node (withwi = N − 1) and a peripheral node (withw j = 1) is correctly
calculated to be p = 1 by (7)–(9), while the Chung–Lu model gives p = 1/2, which
is far off the actual probability 1. Finally, another example that shows the opposite
way of deviation is a disconnected graph made of two 6-node star graphs (N = 12,
M = 10). In this graph, the edge probability between the two central nodes (wi =
w j = 5) is calculated to be p = 125/129 by (7)–(9), which correctly captures the
small possibility that those two central nodes do not have a direct connection to each
other. In the meantime, the Chung–Lu model gives p = min(1, 5/4) = 1, which
forces the two central nodes to always be connected in randomized networks. These
examples demonstrate the accuracy of the combinatorial edge probability proposed
in this study.

We note that (7)–(9) may not provide accurate edge probabilities for low-degree
nodes. For example, they give a nonzero (positive) edge probability between two
peripheral nodes in a star graph, since their mandatory connections to the central
node are ignored when the edge probability between them is calculated. In gen-
eral, the proposed algorithm tends to produce slightly higher-than-expected degrees
for peripheral nodes in heterogeneous networks (which will be seen in numerical
results later). Also, (7)–(9) may malfunction if a graphically impossible input is
given, because the formula was derived using combinatorial enumerations under the
assumption that the given parameters (N , M , wi , w j ) are graphically possible. For
example, (N ,M, wi , w j ) = (5, 10, 1, 1) (which is graphically impossible) gives a
meaningless value p = −5/76. However, such a problem will not arise as long as
the formula is used for randomizing the topology of an existing network. In what
follows, we exclusively consider cases in which the expected degree sequence is
always obtained from the degree sequence of another existing network.
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Fig. 2 Comparison of degree sequences among the original network (black, solid lines) and two
randomized ones (green, dotted lines: original MH algorithm; red, dashed lines: combinatorial
MH algorithm). Top: Zachary’s Karate Club network [14]. Middle: Ego network in Leskovec–
McAuley Facebook dataset [10]. Bottom: Dense heterogeneous network constructed using the
Barabási–Albert model [15]. For each randomization algorithm, the average result of 500 indepen-
dent randomization trials is shown. Nodes are sorted in descending order of their degrees in the
original network. A clear difference between the original and combinatorial MH algorithms is seen
on high-degree nodes (highlighted with red circles)
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3 Evaluations

We first tested the proposed combinatorial MH algorithm by applying it to several
illustrative dense networks. The following three networks were used:

• Zachary’s Karate Club network [14] (34 nodes, 78 edges, and density: 0.139)
• Ego network of an arbitrarily chosen user (user ‘3000’ for this example) in
Leskovec–McAuley Facebook dataset [10] (92 nodes, 2,044 edges, and density:
0.488)

• Dense heterogeneous network constructed using the Barabási–Albert model [15]
(300 nodes, 20,000 edges, and density: 0.446)

Figure2 shows the results in which the degree sequences among the given origi-
nal network and two randomized ones (by the original and combinatorial MH algo-
rithms) were compared. For each randomization algorithm, the average result of 500
independent randomization trials is shown. It is clearly seen in these plots that the
combinatorial MH algorithm (red, dashed lines) was able to represent high-degree
nodes more accurately than the original MH algorithm (green, dotted lines).

We also evaluated the effect of edge density on the performance of randomization
algorithms. Figure3 shows the results of a numerical experiment in which the edge
density was systematically varied on Erdős–Rényi and Barabási–Albert networks.
The performance of the algorithms was measured by the difference in average node
degrees between given and randomized networks. The combinatorial MH algorithm
successfully reproduced average node degrees that were closer to the given ones,
especially for high edge density cases.
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Fig. 3 Performance comparison between the original (gray, dashed lines) and combinatorial (blue,
solid lines) MH algorithms. Each algorithm was applied to a randomly generated expected degree
sequence (left: sequence generated from Erdős–Rényi networks, right: sequence generated from
Barabási–Albert networks) over varying network densities. N = 1, 000 for all cases. Performance
was measured by the difference in average node degrees between given and randomized networks.
Each data pointwas an average of 100 independent simulations. Error bars show standard deviations.
Similar trends were observed for N = 100, 500 and 2, 000
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4 Conclusions

In this paper, we presented the combinatorial MH algorithm in which the edge prob-
ability between a pair of nodes was combinatorically calculated. The derived edge
probability formula involved only a constant number of basic arithmetic operations,
keeping the linear computational complexity of the original MH algorithm. Numer-
ical experiments demonstrated that the proposed algorithm was particularly good at
accurately representing high-degree nodes in dense, heterogeneous networks. This
algorithm may be a useful alternative of other more established network random-
ization methods, given that the data are increasingly becoming larger and denser
in today’s network science research.

What is particularly unique about the proposed algorithm is that it captures, in
some sense, certain nonlocal topological dependencies in calculating edgeprobability
(this helps accuracy), even though the probability itself is still calculated indepen-
dently for each node pair (this helps computational efficiency). In themeantime, such
independent calculation of edge probability may also be a limitation of the algorithm
because, as noted earlier, it may produce inaccurate results where edges are sparse.
This limitation should be taken into account when one decides which network ran-
domization algorithm should be used for a specific network dataset. Proper handling
of such interdependency of edge probabilities will requiremore careful mathematical
analysis and algorithm design, which is among our future work.
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Proposal of Strategic Link Addition
for Improving the Robustness of
Multiplex Networks

Yui Kazawa and Sho Tsugawa

Abstract Recent research trends in network science have shifted from the analysis
of single-layer networks to that ofmultilayer networks. In particular, the robustness of
multilayer networks has been actively studied. Two popular multilayer networkmod-
els exist: interdependent and multiplex. This study proposes link addition strategies
to improve the robustness ofmultiplex networks against layer node-based attack. The
proposed strategies extend an existing strategy called random inter degree–degree
difference (RIDD), which is proposed for improving the robustness of interdepen-
dent networks. While RIDD adds links using inter-layer degree difference, proposed
strategies adds links using both inter-layer degree difference and degree of layer
nodes. Through several network attack simulations, we show that the proposed link
addition strategies can effectively improve the robustness of multiplex networks.

1 Introduction

Recent research trends in network science have shifted from the analysis of single-
layer networks to that of multilayer networks [1–17]. Amultilayer network is the one
having multiple layers of networks that interact with each other [1, 2]. Many real-
world complex systems havemultilayer structures [1, 3]. For instance, infrastructures
such as water supply systems, transportation systems, and power grids are defined as
networks that are interdependent on each other, which together can thus be described
as a multilayer network [3].

The robustness of multilayer networks has been actively studied [3–7, 9–16]. The
robustness of a network is its ability to maintain its connectivity against random fail-
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ures of nodes and intentional attacks to the network. Because it is desirable that many
systems defined as multilayer networks be able to maintain their overall connectiv-
ity, even when some nodes fail, the robustness of multilayer networks has attracted
extensive research interest.

Two popular multilayer network models exist: interdependent and multiplex net-
works. An interdependent network consists of multiple layers (i.e., networks) whose
nodes are interdependent [2]. In an interdependent network, when a node in a layer
fails, nodes in other layers that have a dependent relationship with the node also
fail [2, 3]. A multiplex network is a collection of several network layers that contain
the same nodes yet different intra-layer connections [2]. In other words, in a multi-
plex network, each node in each layer has exactly one inter-layer link with a node
in each different layer. Each node in a layer is called a layer node, and each set of
nodes that are connected via inter-layer links is called a multiplex node [9].

Several methods for improving the robustness of interdependent networks have
been proposed [11–16]. To add only a few links to a network is expected to be a
promising means of improving the robustness of the network based on its feasibility
in actual networks [16]. Ji et al. have proposed two link addition strategies called
random inter degree–degree difference (RIDD) and low inter degree–degree differ-
ence (LIDD). Because interdependent networks with high level of inter-similarity
are known to be robust against random failures of nodes [10], RIDD and LIDD aim to
increase the inter-similarity between layers through link addition. Ji et al. show that
RIDD and LIDD are more effective at improving the robustness of an interdependent
network than are the conventional link addition strategies such as random addition
(RA) and low degree (LD).

In our previous work, we have investigated the effectiveness of the link addition
strategy of RIDD for improving the robustness of multiplex networks rather than
that of interdependent networks [17]. Through simulations, we have shown that
RIDD can be applied to multiplex networks. By contrast, we have also shown that
the effectiveness of RIDD is comparable to that of the conventional link addition
strategy of RA for multiplex networks, which implies a room for improvement in
RIDD.

In this study, to improve the robustness of multiplex networks against network
attacks, we propose new link addition strategies by extending the existing link addi-
tion strategy of RIDD. The main purpose of our proposed strategies is to utilize
the degree of layer node in each layer as well as the inter-similarity between lay-
ers for link addition. The proposed strategies add links to nodes with low degree
and also aim to increase the inter-similarity between layers of multiplex networks.
Through network attack simulations, we also investigate the effectiveness of the pro-
posed strategies at improving the robustness of multiplex networks. Consequently,
we show that the proposed strategies more effectively maintain the size of mutually
connected giant component (MCGC) of multiplex networks than the RIDD which
uses only the inter-similarity between layers and the link addition strategies, which
uses only degree of layer node.
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2 Related Work

Recently, the robustness of interdependent networks against random failures and
intentional attacks has been investigated [3, 10]. Buldyrev et al. revealed that an
interdependent network can be fragmented by failures of a few nodes in a single layer
as a result of cascading failures [3]. Parshani showed that the inter-similarity between
layers in an interdependent network affects the network’s robustness [10]. The level
of the inter-similarity is quantified using two proposedmeasures: inter degree–degree
correlation and interclustering coefficient. Ji et al. also proposed another measure for
the inter-similarity called average inter degree–degree difference (AIDD) [16].

In addition, the robustness of multiplex networks have been also studied [5, 7,
9]. Brummit et al. showed that multiplex networks are generally more vulnerable
than simple single-layer networks [5]. Min et al. revealed that the inter-similarity
between layers in a multiplex network considerably affects their robustness against
failures and attacks [7]. Zhao et al. investigated the robustness of multiplex networks
against two types of attacks: multiplex node-based and layer node-based attack.
Layer node-based attack removes layer nodes in a network, whereas multiplex node-
based attack removes multiplex nodes, each of which corresponds to a set of layer
nodes. Through theoretical analyses and numerical simulations, these researchers
found that multiplex networks consisting of two scale-free networks are vulnerable
to layer node-based intentional attacks while simultaneously being robust against
random failures of layer nodes. In this study, we propose link addition strategies as
countermeasures against layer node-based attack. Note that we particularly focus on
layer node-based attack. This is becausemultiplex node-based attack can be regarded
as a special case of layer node-based attack when all the removed nodes or replicas
are the same in each network layer [9].

In previous studies, several link addition strategies for single-layer networks were
proposed [18–21]. LD,which adds links between low-degree nodes, is one of the pop-
ular link addition strategies for single-layer networks [18]. Moreover, RA [19–21],
which randomly adds links, is often used as a reference for comparison with other
link addition strategies. Zhao et al. showed that LD can improve the robustness of
single-layer networks more effectively than RA [18].

As discussed in Sect. 1, link addition strategies for interdependent networks have
also been proposed [16]. RIDD and LIDD are shown to be more effective than LD
and RA at improving the robustness of interdependent networks [16].

To the best of our knowledge, link addition strategies for multiplex networks have
not been proposed in previous studies. However, in our previous work, we applied
existing link addition strategies, RA and RIDD, to multiplex networks and examined
their effectiveness [17]. Through experiments, we showed that RA and RIDD can
be applied to multiplex networks. However, RIDD and RA are also shown to be
comparable in most cases. This fact motivates us to extend RIDD to further improve
the robustness of multiplex networks. Because RA is a simple baseline strategy,
the comparable performance of RIDD with RA suggests that RIDD can be further
improved. In the next section, we propose new link addition strategies by extending
RIDD.
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3 Link Addition Strategy

In this section, we first explain the existing link addition strategies proposed by Ji
et al. [16], and then propose link addition strategies for multiplex networks. In this
study, following [9], we particularly consider the problem of adding links to multi-
plex networks with two layers (i.e., duplex networks). Each layer is an undirected
unweighted graph, and the two layers are denoted as GA and GB . Each link addition
strategy has a fixed budget of M ′ links, and repeat the procedure explained later
in this section until the number of added links reaches M ′. Note that self-loop and
parallel edges are not allowed and the degree of layer node are calculated at each
step in every link addition strategy.

3.1 Link Addition Strategies Using IDD

The existing link addition strategies RIDD and LIDD add links based on IDD, which
is defined as the degree difference between two interconnecting nodes [16]. Since a
network with high inter-similarity (i.e., networks with low AIDD) has been shown
to be robust against random failure, both strategies aim to reduce AIDD, which is
calculated as the average absolute IDD per node in an interdependent network [16].
Let u be a node in graph GA, v be a node in graph GB , and node u have an inter-layer
link with node v. Then, the IDD of node u in graph GA is defined as I DD(u) =
ku − kv , where ku and kv are degrees of nodes u and v, respectively. The detailed
procedures of RIDD and LIDD are given as follows.

RIDDAt each step, IDD of all nodes inGA andGB are calculated. For each of graph
GA and GB , add a link between a pair of nodes selected randomly from the pairs of
unconnected nodes with negative IDD. If no pairs of nodes with negative IDD exist,
a link is added between randomly selected unconnected nodes.

LIDD At each step, IDD of all nodes in GA and GB are calculated. For each of GA

and GB , add a link between a pair of unconnected nodes with the lowest negative
IDD. If no pairs of nodes with negative IDD exist, a link is added between the pair
of unconnected nodes with the lowest degree.

3.2 Link Addition Strategies Using IDD and Degree
of Layer Node

We propose three link addition strategies that consider both IDD and degree of layer
node. These three are called low-degree IDD (LD_IDD), low-degree-product IDD
(LDP_IDD), and low-degree-sum IDD (LDS_IDD). Similar to RIDD and LIDD,
LD_IDD adds links between nodes with negative IDD, but it prefers to add links
to low-degree nodes. Low-degree nodes are vulnerable to attacks and failures [22].
Specifically, low-degree nodes tend to be isolated during attacks and failures because
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the connectivity of such nodes depends heavily on other relatively high-degree nodes.
Therefore, LD_IDD adds links to low-degree nodes while reducing AIDD in the
network. Note that adding links to low-degree nodes also occurs in the link addition
strategy for single-layer networks, LD [18]. LDP_IDD and LDS_IDD are variants
of LD_IDD. LDP_IDD uses layer degree product (i.e., the product of the degrees of
two interconnecting nodes) and LDS_IDD uses layer degree sum (i.e., the sum of
the degrees of two interconnecting nodes) instead of using degree of layer node only
in each layer. Layer degree product is defined as DP(u) = DP(v) = ku × kv and
degree sum is defined as DS(u) = DS(v) = ku + kv , where ku and kv are degrees
of interconnecting nodes u and v, respectively. These measures are used to measure
the importance of nodes in multiplex networks [2, 23].

The detailed procedures of LD_IDD, LDP_IDD, and LDP_IDD are given as
follows.

LD_IDD At each step, IDD and degree of all nodes in GA and GB are calculated.
For each of GA and GB , add a link between a pair of unconnected nodes with the
lowest degree and negative IDD. If no pairs of nodes with negative IDD exist, a link
is added between randomly selected unconnected nodes.

LDP_IDD At each step, IDD and degree product of all nodes in GA and GB are
calculated. For each of GA and GB , add a link between a pair of unconnected nodes
with the lowest degree product and negative IDD, except when degree product is
0. If no pairs of nodes with negative IDD exist, a link is added between randomly
selected unconnected nodes.

LDS_IDD At each step, IDD and degree sum of all nodes in GA and GB are calcu-
lated. For each of GA and GB , add a link between a pair of unconnected nodes with
the lowest degree sum and negative IDD. If no pairs of nodes with negative IDD
exist, a link is added between randomly selected unconnected nodes.

To evaluate the effectiveness of combining IDD and degree of layer node, we
compare the proposed strategies with those that use only degree of layer node (i.e.,
LD, LDP, and LDS). LDP adds a link between nodes with the lowest degree product,
and LDS adds a link between nodes with the lowest degree sum.

4 Methodology

4.1 Overview

Following [17], we conducted experiments with the following steps: (1) We first
generate duplex networks using network generation models. (2) We next add links
to both layers of the generated network using the link addition strategies previously
described in Sect. 3. (3) We then perform network attack simulation on the network
and investigate the connectivity of the remaining network. The details of these three
steps are explained in the remainder of this section.
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4.2 Generating Duplex Network

We generate a duplex network G by connecting two single-layer networks. We gen-
erate two graphs with the same size N , which are denoted as GA and GB . For each
node in graph GA, an inter-layer link is created between that node and a randomly
selected node in graph GB to construct an uncorrelated duplex structure. Each node
in graphsGA andGB is denoted as vA

i (i = 1, . . . , N ) and vB
i (i = 1, . . . , N ), respec-

tively. vA
i and vB

i are connected via an inter-layer link. In addition, the sets of nodes
and links in the graph GA are denoted by VA and EA, respectively, and the sets of
nodes and links in the graph GB are denoted by VB and EB , respectively. A duplex
network is denoted as G = (V, E), where V is a set of multiplex nodes and E is a
set of links connecting multiplex nodes. Layer nodes for multiplex node vi are vA

i
and vB

i . Multiplex nodes are regarded as connected if they have links on at least one
layer [9]. In other words, (vi , v j ) ∈ E when (vA

i , vA
j ) ∈ EA or (vB

i , vB
j ) ∈ EB .

We use the following models to generate single-layer networks: Barabási–Albert
(BA) model [24], community emergence (CE) model proposed by Kumpula et
al. [25], and Erdös–Rényi (ER) model [26]. We generate six types of duplex net-
works: (1) BA-BA network, (2) CE-CE network, (3) ER-ER network, (4) BA-ER
network, (5) CE-BA network, and (6) CE-ER network. BA model that generates
scale-free network and ER model that generates random networks are popular mod-
els used to generate artificial networks. CE model generates networks that have a
skewed degree distribution and tunable community structure. Although theCEmodel
generatesweighted graphs, theweight of the generated graph is ignored and the graph
is treated as an unweighted undirected graph in this paper.

We generated 10 duplex networks with N = 1000. We constructed BA graph
with m = 2.0, ER graph with p = 0.004, and CE graph with δ = 2.0, pδ = 0.004,
pr = 0.001, and pd = 0.001. The parameters used to generate the CE and ER graph
were determined based on values that make them approximately equal to those of
the BA graph. The number of links in the BA graph was 1997, the average number
of links in the CE graphs was 2004.8, and the average number of links in the ER
graphs was 2006.7.

4.3 Network Attack Simulation

We performed a simulation of layer node-based attack similar to that in [9] to inves-
tigate the robustness of multiplex networks with additional links. We first added
M ′/2 links to graph GA and GB by link addition strategies previously described
in Sect. 3. Now, we define the fraction of links added to duplex network G as
fa = M ′/(MA + MB) where MA and MB are the number of links of GA and GB ,
respectively. Next, we removed N × φA nodes fromGA, and N × φB nodes fromGB

in descending order of their degree. We then removed those nodes that are not part
of the largest component of GA and GB . Finally, we calculated the size of MCGC
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used as a common measure to evaluate the robustness of multiplex networks [2, 3,
9]. Note that MCGC is a set of connected multiplex nodes [9]. Multiplex nodes are
regarded as connected if they have links on at least one layer [9]. We used the nor-
malized size of MCGC, R, which is defined as the number of nodes belonging to the
MCGC normalized by the number of nodes N in the network.

For each network and link addition strategy, we performed 10 independent sim-
ulations of link addition and node removal. We then obtained the average of R from
the 100 independent simulation runs for each link addition strategy.

5 Results and Discussion

To evaluate the effectiveness of the proposed strategies, we compared the robustness
of multiplex networks when using the proposed link addition strategies and when
using RIDD and LIDD. Figure1 shows the relative size of MCGC R against the
fraction of removed nodes φA. We used fa = 0.10 and φB = 0.40. For comparison
purposes, these figures include the results when using RA to randomly add M ′/2
links to graphs GA and GB and those without link addition (denoted as NONE in the
figures). These results show that the proposed strategies LD_IDD, LDP_IDD, and
LDS_IDD outperform existing link addition strategies (Fig. 1). The size of MCGC
R when using the proposed strategies are larger than those when using LIDD, RIDD,
and RA. This confirms the effectiveness of the proposed strategies to improve the
robustness of multiplex networks. The results also show that the differences among
the three proposed strategies are marginal.

We next compared the proposed strategies with those that employ only degree of
layer node (i.e., LD, LDP, and LDS) in order to investigate the effectiveness of using
both IDD and degree of layer node. Figure2 shows the relative size of MCGC R

0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

BA BA network

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

BA ER network

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

CE BA network

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

CE CE network

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

CE ER network

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

ER ER network

NONE
RA
RIDD
LIDD
LD_IDD
LDP_IDD
LDS_IDD

0.0

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 1 Fraction of removed nodes from GA versus the relative size of MCGC R under a degree-
based attack when fa = 0.10 and φB = 0.40. Performance comparison between link addition strate-
gies that add links based on only the IDD of each node and those that add links based on both IDD
and degree of each node
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Fig. 2 Fraction of removed nodes from GA versus the relative size of MCGC R under a degree-
based attack when fa = 0.10 and φB = 0.40. Performance comparison between link addition strate-
gies that add links based on only the degree of layer node and those that add links based on both
IDD and degree of layer node. a LD_IDD versus LD, b LDP_IDD versus LDP, and c LDS_IDD
versus LDS

against the fraction of removed nodes φA when fa = 0.10 and φB = 0.40. Figure2
shows that the values of R when using the proposed strategies are higher than or
comparable to those when employing the strategies that use only degree of layer
node. This confirms the effectiveness of using both IDD and degree of layer node.
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6 Conclusion and Future Works

We proposed three link addition strategies that add links based on both IDD and
degree of each node: LD_IDD, LDP_IDD, and LDS_IDD. Through extensive simu-
lations, we showed that the proposed link addition strategies are more effective than
the existing strategies (i.e., those that use only IDD or only degree of layer node) at
improving the robustness of multiplex networks against layer node-based attack.

In future works, we will propose a more effective link addition strategy as well as
analyze the effectiveness of link addition strategies at improving the robustness of
multiplex networks consist of three ormore layers and real-worldmultiplex networks.

References

1. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer
networks. J. Complex Netw. 2(3), 203–271 (2014)

2. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M.,
Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks.
Phys. Rep. 544(1), 1–122 (2014)

3. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures
in interdependent networks. Nature 464(7291), 1025–1028 (2010)

4. Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent
networks under targeted attack. Phys. Rev. E 83(6), 065101 (2011)

5. Brummitt, C.D., Lee, K.M., Goh, K.I.: Multiplexity-facilitated cascades in networks. Phys.
Rev. E 85(4), 045102 (2012)

6. Lee, K.M., Kim, J.Y.: Cho, Wk, Goh, K.I., Kim, I.: Correlated multiplexity and connectivity
of multiplex random networks. New J. Phys. 14(3), 033027 (2012)

7. Min, B., Do Yi, S., Lee, K.M., Goh, K.I.: Network robustness of multiplex networks with
interlayer degree correlations. Phys. Rev. E 89(4), 042811 (2014)

8. Ouyang, M.: Review on modeling and simulation of interdependent critical infrastructure
systems. Reliab. Eng. Syst. Saf. 121, 43–60 (2014)

9. Zhao, Dw,Wang, Lh, Zhi, Yf, Zhang, J., Wang, Z.: The robustness of multiplex networks under
layer node-based attack. Sci. Rep. 6 (2016)

10. Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled
networks. Europhys. Lett. 92(6), 68002 (2011)

11. Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network
systems with multiple support-dependence relations. Phys. Rev. E 83(3), 036116 (2011)

12. Zhou, D., Stanley, H.E.: DAgostino, G., Scala, A.: Assortativity decreases the robustness of
interdependent networks. Phys. Rev. E 86(6), 066103 (2012)

13. Nguyen, D.T., Shen, Y., Thai, M.T.: Detecting critical nodes in interdependent power networks
for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)

14. Ruj, S., Pal, A.: Analyzing cascading failures in smart grids under random and targeted attacks.
In: Proceedings of AINA’14, pp. 226–233. IEEE (2014)

15. Reis, S.D., Hu, Y., Babino, A., Andrade Jr., J.S., Canals, S., Sigman,M.,Makse, H.A.: Avoiding
catastrophic failure in correlated networks of networks. Nat. Phys. 10(10), 762–767 (2014)

16. Ji, X.,Wang,B., Liu,D., Chen,G., Tang, F.,Wei,D., Tu, L.: Improving interdependent networks
robustness by adding connectivity links. Phys. A Stat. Mech. Appl. 444, 9–19 (2016)

17. Kazawa, Y., Tsugawa, S.: On the effectiveness of link addition for improving robustness of
multiplex networks against layer node-based attack. In: Proceedings of the 41st Annual IEEE



84 Y. Kazawa and S. Tsugawa

International Computers, Software, and Applications Conference (Student Research Sympo-
sium), pp. 697–700 (2017)

18. Zhao, J., Xu, K.: Enhancing the robustness of scale-free networks. J. Phys. A Math. Theor.
42(19), 195003 (2009)

19. Beygelzimer, A., Grinstein, G., Linsker, R., Rish, I.: Improving network robustness by edge
modification. Phys. A Stat. Mech. Appl. 357(3), 593–612 (2005)

20. Jiang, Z., Liang, M., Guo, D.: Enhancing network performance by edge addition. Int. J. Mod.
Phys. C 22(11), 1211–1226 (2011)

21. Cao, X.B., Hong, C., Du,W.B., Zhang, J.: Improving the network robustness against cascading
failures by adding links. Chaos Solitons Fractals 57, 35–40 (2013)

22. Barabási, A.L., Jennifer, F.: Linked: The New Science of Networks Science of Networks. Basic
Books, Cambridge (2002)

23. Pu, C., Li, S., Yang, X., Yang, J., Wang, K.: Information transport in multiplex networks. Phys.
A Stat. Mech. Appl. 447, 261–269 (2016)

24. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

25. Kumpula, J.M., Onnela, J.P., Saramäki, J., Kertesz, J., Kaski, K.: Model of community emer-
gence in weighted social networks. Comput. Phys. Commun. 180(4), 517–522 (2009)

26. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)



Part II
Graph Embeddings



Embedding-Centrality: Generic
Centrality Computation Using Neural
Networks

Rami Puzis, Zion Sofer, Dvir Cohen and Matan Hugi

Abstract Deriving vector representations of vertices in graphs, a.k.a. vertex embed-
ding, is an active field of research. Vertex embedding enables the application of rela-
tional data mining techniques to network data. Unintended use of vertex embedding
unveils a novel generic method for centrality computation using neural networks.
The new centrality measure, termed Embedding Centrality, proposed in this paper is
defined as the dot product of a vertex and the center of mass of the graph. Simulation
results confirm the validity of Embedding Centrality which correlates well with other
commonly used centrality measures. Embedding Centrality can be tailored to spe-
cific applications by devising the appropriate context for vertex embedding and can
facilitate further understanding of supervised and unsupervised learning methods on
graph data.

1 Introduction

Centrality indices are an important tool for studying the role and function of entities
in interconnected complex systems represented by networks, i.e., vertices and edges.
Centrality indices are used to rank vertices according to their importance for the
proper functioning of the complex system represented by the network. For example,
the most central vertices can be those that keep the network together, vertices that
monitor traffic, or spread information, and alike [1]. Together with other structural
properties such as the local clustering coefficient, centrality indices can be used to
create the vertex profiles for behavioral studies or classification tasks of sorts.

Majority of structural properties1 of vertices were designed by researchers tomeet
some specific goal. Similar to feature extraction in classicalmachine learning, it takes
a human domain expert to define a proper centrality measure.

1Properties stemming from the network topology
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Recently many efforts have been made to develop vertex embedding techniques
that automatically generate a numeric profile to represent vertices in a vector
space [2]. The first major advance in vertex embedding was made by Perozzi et
al. [3], who used Word2Vec style embedding treating vertices as words and random
walks as sentences. Intuitively speaking, the skip-grams approach trains a neural
network that highlights the vicinity of a vertex at the output layer when its identity
is provided as an input. CBOW trains a neural network that can infer the identity
of a vertex from its vicinity (see Sect. 2 for additional details). In both approaches,
there is a strong affinity between each vertex and its vicinity and the hidden layer
of the neural network is used for the embedding. As the result, neighbor vertices are
usually embedded near each other and the community structure of the network is
maintained.

State-of-the-art vertex embedding techniques result in a coarse-grained represen-
tation of the network in a condensed matrix form. Yet similar to other applications of
neural networks, the values of the hidden neurons are uninterpretable. The embed-
ding may sketch the position of a vertex relative to other vertices in the network, but
it does not encode vertex centrality.

In this paper, we propose a new point of view on vertex embedding.2 We note
that affinity between the input layer and the output layer is preserved also for sets of
vertices–an observation that makes Doc2Vec possible in textual applications. Thus,
we can investigate the affinity between a vertex and any region of the network, let it
be a path, a community, or even the network as a whole. Intuitively, a vertex having
the strongest affinity to all other vertices in the network is a central vertex. In this
paper, we hypothesize that the values of the output layer of a neural network trained
for vertex embedding encode a centrality measure when the set of all vertices is
provided as an input, i.e., all input neurons are set on. We elaborate on this approach
in Sect. 3.

Centrality measures proposed in the past were manually designed by researchers
or tailor-made for a specific purpose. To the best of our knowledge, this is the first
paper that proposed a method for learning a general-purpose centrality measure. As
such, we face the challenge of providing a sound evaluation of arbitrary centrality
measures. A set of small intuitive tests on which all existing centrality measures
agree is a starting point for a proof of concept, but unfortunately it is not sufficient
for convincing evaluation. In the past, researchers that proposed variants of existing
measures have shown the similarity of their measure to the prototype and demon-
strated that the differences are more intuitive according to their approach [5, 6].
Since this paper focuses on an unsupervised approach for learning a general central-
ity measure, we evaluate its agreement with a set of widely known standard centrality
measures and show that it falls within the bounds of agreement between the stan-
dard measures and themselves. The evaluation method is elaborated in Sect. 4 and
results of the evaluation of centrality measure learnt by an artificial neural network
are summarized in Sect. 4.

2An online tool for visualization ofWord2Vec, namedWEVI [4], played a major role in the ideation
of this point of view.
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The contribution of this paper is twofold: (1) We propose an evaluation method
for centrality measures developed using unsupervised machine learning techniques.
(2) We propose an unsupervised centrality measure learnt by a neural network and
demonstrate its validity.

2 Background

Since word2vec was introduced by Mikolov et al. in [7], the use of neural networks
for embedding of entities (words, vertices, genes, etc.) has gained a lot of traction.We
refer to the taxonomy recently published by Hamilton et al. [2] for a variety of vertex
embedding techniques. The basic assumption behind word2vec and its successors
is that similar entities are used in similar contexts. Mikolov et al. define the context
of a word as 5–10 preceding and 5–10 following words. Perozzi et al. [3] define the
context of a vertex vi as 10 preceding and 10 following vertices along a randomwalk
passing through vi . See Fig. 1a for an example of a graph and a random walk. Other
approaches build vertex’s context from its neighborhood with closer vertices being
more relevant than the farther [8–10].

We will describe the basic embedding concepts in terms of vertices and their
contexts. Let G = (V, E) be a graph where V is the set of n vertices and E ⊆ V 2

(a) Sample graph and a
random walk.

(b) CBOW training instance. (c) Embedding

Fig. 1 Sample graph with 10 vertices (a), where the vertices 4 and 5 are the most central according
to all centrality measures. The randomwalk 3, 4, 5, 9, 5, 6, 5 is used as one of the training instances
for theCBOWneural network (b), where three preceding and three following vertices are the context
of the vertex 9. The vertex 5 is more emphasized because it appears three times in the context. The
rightmost figure c represents the embedding of the vertex 9, where the neurons of the hidden layer
correspond to the dimensions and the weights (synapses) between 9 and the neurons of the hidden
layer correspond to the coordinates of 9 in R

3
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is the set of edges. Consider an n-dimensional vector v ∈ R
n , where each index i

corresponds to a particular vertex. In the rest of this paper, we will use over-line (•)
to denote vectors. Vector dimensions will be specified as the vector domain (• ∈ R

x )
when needed.

Then-dimensional representationof a single vertexhas the entry at the correspond-
ing index set to 1 and the rest of the entries set to 0. The representation of a context
Cv ⊆ V is theweighted sumof the respective vertex-vectorsCv = ∑

u∈Cv
u · ω(v, u)

where ω(v, u) encodes the relevance of a context vertex u to v. Relevance is appli-
cation dependent and can be defined, for example, as the hop distance between u and
v, the number of times u appears in a particular context of v, etc. For example, in
Fig. 1b the output vector corresponds to the vertex 9 and the input vector corresponds
to its context 3, 4, 5, •, 5, 6, 5. In this example, 5 is three times more relevant to 9
than 3, 4, and 6.

The objective of vertex embedding is finding a low- dimensional representation
zv ∈ R

d for every vertex v ∈ V such that d << n and similar vertices have similar
representations. Similarity of vertices is loosely defined by similarity of their con-
texts. For example, structurally equivalent vertices3 should have the same coordinates
in the low dimensional space Rd .

Let D = {(v,C)} be a dataset containing vertices and their respective contexts in
a particular graph. There could be multiple contexts for each vertex as in the case of
random walks. Following word2vec, many researchers use one of the two log-linear
models for learning the d-dimensional vector representations of vertices using neural
networks: Continuous Bag-of-Words Model (CBOW) where the input layer of the
neural network is set to c and the output should match v, or Continuous skip-gram
Model (skip-gram)where given a vertex v the network should output the probabilities
of all vertices appearing in its context c. Figure1b is an example of CBOW where
d = 3.

Based on various empirical evidence, skip-gram based embedding is claimed to
produce better, more meaningful, representations of words (and of vertices). How-
ever, there is no clear theoretical basis for these claims. Further discussions in this
paper will refer to CBOW because it provides better intuition on the suggested cen-
trality measure. Yet, any embedding approach based on CBOW or skip-grams can
be used for deriving the Embedding Centrality measure.

The CBOW representation learning processes maximize
∑

(v,C)∈D log P(v|C).
The probability P(v|C) is defined using the softmax model

P(v|C) = ezC ·zv

∑
v′∈V ezC ·zv′ , (1)

where zv, zC ∈ R
d are low-dimensional vector representations of a vertex and a

context respectively. zC is obtained by averaging the vector representations of the
vertices in C :

3Vertices having exactly the same set of neighbors [11].
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zC = 1

|C |
∑

u∈C
zu . (2)

3 Embedding Centrality

Trained neural network, either CBOW or skip-gram, can be used to derive the vector
representation of vertices (or sets of vertices according to 2). However, the output
layer is always ignored for any practical application of the trained network. Only
the weights which encode the vertex (or word) coordinates in R

d are maintained.
Nevertheless, the classical neural network discussed here can be used for a variety
of supervised machine learning tasks. As such, given previously unseen context,
a trained CBOW model should predict the respective vertex with high accuracy.
Equation1 can be regarded as the confidence of the model. P(v|C) ranks the vertices
according to their affinity with the given context.

What would happen if the context is set to all vertices in the network?
Intuitively, the output layer would encode the affinity of each vertex with the network
as awhole. Next, we derive the EmbeddingCentrality (EmbC) based on this intuition.
In Sect. 4 wewill provide an empirical evaluation of EmbC versus common centrality
measures.

Let zV be the vector representation of the whole set of vertices in the network.
According to (2), zV = 1

n

∑
v∈V zv , which is the center of mass of the vertices in Rd

assuming that the mass of each vertex is unity. We will use softmax (Eq.1) to derive
the log probability of a vertex v to be associated with the center of the mass of the
network. The softmax normalization factor, is constant for a network and thus, can
be ignored for the purpose of vertex ranking.

log P(v|V ) = zV · zv − log

(
∑

v′∈V
ezV ·zv′

)

= zV · zv + const (3)

Following Eq.3, we will define Embedding Centrality (EmbC) of the vertex v as
its dot product with the center of the mass of the network.

Definition 1 (EmbeddingCentrality) TheEmbeddingCentrality (EmbC) of a vertex
v ∈ V is defined as:

EmbC(v) = zv · zV ,

where zv ∈ R
d is an embedding of v in the d-dimensional Euclidean space Rd and

zV is the center of mass of the graph.

Although we derived the definition of EmbC from the probability P(v|V ), it is
valid for both CBOW and skip-gram style embeddings due to the symmetry of dot
product zv · zC .

Figure2 depicts the result of setting the input context to all vertices in the sample
network from Fig. 1a. The three hidden neurons in Fig. 2a represent the center of the
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(a) Embedding Centrality (b) DeepWalk EmbC values

Fig. 2 EmbC computed in the sample graph from Fig. 1a

mass coordinates and the output neurons represent EmbC (darker color corresponds
to higher values). The EmbC values are compared to other centrality measures in
Fig. 2b. Vertex 4 is the most central according to all measures except betweenness.
5 has higher betweenness because it controls the paths between the leafs 0–3. Since
EmbC computation is stochastic, the centrality of similar vertices (such as 0–3 or
6–9) may vary. Error bars indicate the minimal and maximal values of EmbC for
these sets of vertices. Overall, in this example, the values of EmbC fit well between
the values of other centrality measures.

Algorithm 1: Embedding Centrality
Input: G = (V, E), d
Output: ∀v∈V EmbC(v)

1 Z [n×d]
� VertexEmbedding(G, d);

2 r �

∑
zi∈Z zi ;

3 for zv ∈ Z do
4 EmbC(v) � zv · r ;
5 end

3.1 Complexity

Algorithm 1 briefly outlines the steps for computing EmbC according to Definition 1.
Computational complexity of EmbC depends primarily on VertexEmbedding (steps
2–5 can be executed in O(nd) time). Although, the computational complexity of
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someembedding techniques is linear in the number of vertices [12], vertex embedding
can be quite expensive in a general case. The neural network optimization can be
performed in O(d log n) time per training sample when using hierarchical softmax.
However, the number of training samples |D| plays the major role.

3.2 Discussion

Definition 1 suggests that a vertex with high EmbC would have high average affinity
for all vertices in the graph.

EmbC(v) = zv · zV = 1

n

∑

u∈V
zv · zu

In this sense EmbC is similar to other centrality measures such as Valued Centrality
(VC) [13]—a variant of closeness centrality defined as the average of reciprocal
distances:

VC(v) = 1

n

∑

u∈V \{v}

1

dist (v, u)
,

where dist (v, u) is the distance between vertices v and u in a valued network. Here
the reciprocal distance represents the affinity between v and each other vertex in the
graph.

EmbC is also in line with centrality taxonomies such as the one proposed by
Borgatti and Everett [14]. The authors classify centrality measures according to
type of walk (walk, trail, or path), position of the vertex within the walk (radial
or medial), and property of the walk being aggregated (volume/count or length).
EmbC provides a generic method to construct a centrality measure according to
this classification. For example, EmbC with DeepWalk [3] considers medial random
walks while EmbC with node2vec [15] considers radial walks. Various embedding
techniques [2] consider various contexts including vertex neighborhoods, graphlets,
or subgraphs of sorts. Understanding that centrality can be defined based on vast
variety of contexts helps extending the Borgatti and Everett’s taxonomy of centrality
measures way beyond the concept of walks.

Similar classification is relevant also forwalk-based vertex embedding techniques.
For example, DeepWalk [3] used medial random walks, volume is captured by the
number of train instances involving a particular vertex, and the length property can
be captured by the relevance weight ω. Another example is node2vec [15], which
employs radial walks while the type of walk and length are controlled using tunable
parameters. In general, vertex embedding, and as a result also EmbC, relies on a
more general concept of contexts which could be any type of subgraphs including
walks, paths, or graphlets.
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4 Evaluation

In this paper we claim that EmbC, which encodes the affinity of a vertex with the
network as a whole, is a centrality measure. EmbC can be derived from arbitrary
embedding schemes in fully unsupervised, task-independent manner. Therefore, we
refrain from task-specific evaluation. Instead, we present a proof-of-concept evalu-
ation of the correlation between EmbC and common centrality measures.

The proof-of-concept evaluation of centrality agreement is performed on artificial
networks generated using the Barabasi–Albert [16] model with 100 or 500 vertices
and average degree ranging from 4 to 10. We used DeepWalk as the vertex embed-
ding scheme for EmbC with the length of the walk ranging from 15 to 100, 5–20
walks starting at each vertex, and the context size ranging from 2 to 10. Contexts
were padded with zeroes in cases of insufficient vertices—a common practice with
Word2Vec and DeepWalk. The size of the hidden layer (d) was ranging from 5 to 20
and the neural network was trained for eight epochs.

Correlation analysis was employed in the past to evaluate the tolerance of central-
ity measures to noise in the data [17]. Here we will analyze the correlations between
three common centrality measures and themselves vs. their correlation to EmbC.We
choose closeness (CC), betweenness (BC), and eigenvector centrality (EC) as the
representative centrality measures. We also include Walk Count (WC)—the num-
ber of random walks which pass through the vertex and Pass Count (PC)—the total
number of times the sampled walks passed through a vertex.

Since centrality measures are used mostly for ranking vertices and pinpointing
the most central ones, we will use Spearman correlation and average precision (AP)
correlation [18]. We choose AP because it values correct ranking of high centrality
vertices more than ranking of low centrality vertices in agreement with the common
practice in centrality analysis. Let rk1 r

k
2 be the top k vertices according to two different

centrality measures. Precision@k of the either one of the measures with respect to

the other one is |rk1∩rk2 |
k . AP is defined as the average precision@k for 1 ≤ k ≤ n.

Vertices with high centrality are affected the AP.
For every network we compute AP, and Spearman correlation between every

pair of centrality measures. It should be noted that all centrality measures differ
significantly from each other with Spearman correlation ranging from 0.1 to 0.9.
Figure3 presents the distribution of correlations between EmbC and CC, BC, EC
denoted as others and between the other measures and themselves. We observe
that more than 60–65% of cases have correlation between EmbC and the common
centrality measures of 0.5 or higher and AP of 0.7 or higher.

The performance of EmbC depends on the quality of embedding. Table1 dis-
plays the average performance of EmbC for several sets of DeepWalk parameters.
Specifically the size of the context and the number of hidden neurons. The results
clearly show that larger contexts and higher dimensionality of the embedding (i.e.,
the number of hidden neurons) results in EmbC which better correlates with all
other measures. Highest average AP of 0.816 and Spearman correlation of 0.836 are
obtained for d = 20 and context size 10.
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(a) AP (b) Spearman

Fig. 3 The distributions of correlations between EmbC and other measures and between all other
measures

Table 1 Average AP and Spearman correlation of EmbC with all other measures (BC,CC,EC,WC,
and PC) for different context sizes and different number of hidden neurons

(a) AP (b) Spearman

Table 2 APandSpearman correlation between all vertex centralitymeasures in one of the networks.
Vertex embedding was obtained with 20 hidden neurons and context size of 10

(a) AP (b) Spearman

Are these correlation values sufficient? Table2 presents the AP and Spearman cor-
rection between all evaluated centrality measures. Here the DeepWalk parameters
were set to their optimal values. We observe average AP of 0.78–0.83 for all tested
centrality measures and average Spearman correlation of 0.70–0.85. EmbC perfor-
mance fits well into these ranges allowing us to conclude that EmbC is a centrality
measure.
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5 Conclusions

In this paper, we proposed a novel Embedding Centrality (EmbC) measure defined
as the dot product of the vertex’s vector representation with the center of the mass
of the graph. The new centrality measure can be explained as the output of a neural
network trained to predict a vertex given its context when this network receives
the set of vertices as the input context. We showed that EmbC correlates well with
commonly used centrality measures confirming that it is indeed a centrality measure.
Results show that increasing the number of hidden neurons and the size of the context
positively affects the correlation with other centrality measures.

The power of EmbC lays in its generic computation and in the theoretical result
that vector representation of vertices preserves the notion of centrality. Further inves-
tigation of EmbC is required to understand the relation between the configuration
parameters used during embedding and interpretation of EmbC. Similar to neural
network based word embedding whose parameter optimization facilitated the devel-
opment of simpler andmore accurate embedding schemes,we believe that EmbCwill
facilitate further understanding of supervised and unsupervised learning methods on
graph data. If successful, this could also project the concept of centrality measures
to various domains without the necessity for explicit network construction.
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Fast Sequence-Based Embedding
with Diffusion Graphs

Benedek Rozemberczki and Rik Sarkar

Abstract A graph embedding is a representation of graph vertices in a low- dimen-
sional space, which approximately preserves properties such as distances between
nodes. Vertex sequence-based embedding procedures use features extracted from
linear sequences of nodes to create embeddings using a neural network. In this pa-
per, we propose diffusion graphs as a method to rapidly generate vertex sequences
for network embedding. Its computational efficiency is superior to previous meth-
ods due to simpler sequence generation, and it produces more accurate results. In
experiments, we found that the performance relative to other methods improves with
increasing edge density in the graph. In a community detection task, clustering nodes
in the embedding space produces better results compared to other sequence-based
embedding methods.

1 Introduction

Embedding graphs into a low dimensional Euclidean spaces is a way of simplify-
ing the graph information by associating each node with a point in the space. Thus,
various methods of graph embedding have been developed and applied to differ-
ent domains, such as visualization [8], community and cluster identification [18],
localisation of wireless devices [16], network routing [15], etc. Graph embeddings
usually aim to preserve proximity—nearby nodes on the graph should have similar
coordinates—in addition to properties specific to the application.

In recent years, sequence-based graph embedding methods have been developed
as a way of generating Euclidean representations using sequence of vertices obtained
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Fig. 1 a Cumulative distribution of the shortest path distance approximation error on the PPI
network [3] (|V | = 3,890) for embedding dimension d. The distortion for our method (D2V) is
much smaller than the state of the art (N2V). The distortion error for nodes u and v is defined
as eu,v = |d(u, v) − γ · ‖Xv − Xu‖| /d(u, v). Embeddings were created with parameter settings
such that n = 10, ŵ = 10, α = 0.025, k = 1, l = 40 (D2V) and l = 80 (N2V). The best inout and
return parameters of N2V were chosen with grid search over {0.25, 0.5, 1, 2, 4}. b Visualization of
a Watts–Strogatz graph with our embedding procedure

from random walks. These methods are inspired by Word2Vec—a method to embed
words into Euclidean space based on sequences in which they occur. Word2vec takes
short sequences of words from a document and uses them to train a neural network;
in the process it obtains an embedding for the words. The embedding space acts as
an abstract latent space of features, and places two words close if they frequently
occur nearby in the sequences [11]. Sequence-based graph embedding methods on
the other hand obtain their vertex sequences by random walk on graphs and then
apply analogous neural network methods for the embedding. The random walk has
the advantage that it obtains a view of the neighborhood, without having to compute
and store complete neighborhoods, which can be expensive in a large graph with
many high-degree vertices.

However, random walks are inefficient for generating proximity statistics. They
are known to spread slowly, and revisit a vertex many times producing redundant
information [2]. As a result, they require many steps or many restarts to cover the
neighborhood of a node. Methods like Node2vec [7] try to bias the walks away from
recently visited nodes, but in the process they incur a cost due to the complexity of
modifying transition probabilities with each step. We instead use a diffusion process
that samples a subgraph of the neighborhood, from which several walks can be
generated more efficiently.

Our contributions. In our method, we extract a subgraph of the neighborhood of a
node using a diffusion-like process, and call it a diffusion graph. On this subgraph,
we compute an Euler tour to use as a sequence. By covering all adjacencies in the
graph, the Euler tour contains a more complete view of the local neighborhood than
random walks. We refer to this sequence-generating method asDiff2Vec (D2V). The
sequences generated by Diff2Vec are then used to train a neural network with one
hidden layer containing d neurons. The input weights of the neurons determine the
embedding of the nodes.
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Due to its better coverage of neighborhoods, Diff2Vec can operate with smaller
neighborhood samples. As a result, it is more efficient than existing methods. In our
experiments with a basic implementation, it turned out to be several times faster. In
particular, it scales better with increasing density (vertex degrees) of graphs. Our
experiments also show that the embedding preserves graph distances to a high accu-
racy. On experiments of community detection, we found that clustering applied to the
embedding produces communities of high quality—verified by the high modularity
of the clusters.

2 Related Works

Well-knownembedding techniques use amatrix that describes the graph and factorize
it in order to create the embedding of the network. One can factorize the adjacency,
neighbourhood overlap, or Laplacian matrices. Based on the properties of the matrix
either eigenvalue decomposition or some variant of stochastic gradient descent is
used to obtain the graph embedding. These embedding methods all have a weakness,
namely that they are computationally expensive. We refer the reader to the recent
survey in [6] for a broader overview of graph embedding, and focus here on relevant
neural network-based embeddings.

Sequence-based embedding. The generation of node sequence based graph embed-
dings consists of three phases. First, the algorithm creates vertex sequences—usually
by a randomprocess. Second, features that are extracted from the synthetic sequences
describe the approximated proximities of nodes. Finally, the embedding itself is
learned using the extracted node-specific features with a neural network which has a
single hidden layer. Sequence-based embedding originates from theDeepWalkmodel
[13], which uses random walks to generate node sequences. This approach was im-
proved upon by Node2Vec (henceforth N2V) [7], which uses second-order random
walks to generate the vertex sequences. Second-order random walks alternate be-
tween depth-first and breadth-first search on the graph in a random, but somewhat
in a controlled way. In this attempt to have greater control on random walks, N2V
introduces parameters that affect the embedding quality and are hard to optimize.

3 Feature Extraction and Neural Network Embedding

Feature extraction. We start with extracting features called hitting frequency
vectors—denoting frequencies with which vertices occur near each other. The graph
is denoted by G(V, E). The set of vertices is V and the edge set is E . We assume
that the graph is undirected and unweighted. Let us consider an example to see how
an embedding is generated.

Consider the example in Fig. 2a. The vertex set contains nodes a, b, c, d, e and
nodes are indexed, respectively, from 1 to 5, and suppose we are given the 3 node
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a

b c

d e

a − b − c − d − c − d − e

e − d − e − d − c − d − e

b − a − c − d − a − b − a

hv = σ(Win · xv + bin)

ŷv−1 ŷv+1

ŷv = Φ(Wout · hv + bout)

xv

(a) (b)

Fig. 2 a Graph with linear vertex sequences. The three vertex sequences listed are used for feature
extraction in our example. b Architecture of the example neural network

sequences in the figure. To generate features from the sequences we choose a sliding
window size denoted by ŵ which limits the maximal graph proximity among nodes
that we are going to approximate. In this case we choose ŵ = 1.We calculate the co-
occurrence frequencies for node c as follows—we count howmany times other nodes
appeared at given positions before and after c limited by the window’s size. In this
toy example, it means positions at maximal 1 step before or after c in the sequence.
Counts at different positions are stored in separate vectors for each node. The result-
ing frequency vectors are as follows: yc,−1 = [

1 1 0 2 0
]

and yc,+1 = [

0 0 0 4 0
]

.
Components of the vectors can be interpreted as noisy proximity statistics in the
graph. The idea is that nearby nodes will have higher values in each other’s vectors.
We concatenate these vectors to form a vector of 2 · ŵ · |V | components and call it
the hitting frequency vector yv of a node v. We construct such a hitting frequency
vector for each node from the given sequences.

Learning an embedding from the features. For each vertex v ∈ V , we wish to
compute a coordinate in Rd . The set of hitting frequency vectors is a representation
of the graph in R|V |×2·ŵ·|V |, which we have to reduce to a R|V |×d space. We write as
xv the indicator (sometimes called hot-one) vector for v, which has |V | elements, all
of which are zero, except the element at index of v, which is set to 1. A schematic
of the neural network architecture is in Fig. 2b. The neural network has d hidden
neurons, each with |V | inputs and 2 · ŵ · |V | outputs. The incoming and outgoing
weight matrices of the hidden neurons are written as Win and Wout . To train the
neural network, the training algorithm uses input–output pairs of the form (xv, yv)
corresponding to each vertex v. Thus, the neural network learns to associatewith each
vertex, an output that is its hitting frequency vector. After the training, the incoming
weight matrix Win (of dimension d × |V |) gives the d dimensional embedding of
the vertices.

The weight matrix is used to approximately reconstruct the hitting frequencies
of a node. If two nodes have similar hitting frequency vectors, meaning that their
proximity is high, theywill also have a similar latent space representation. Our goal is
the efficient and scalable learning of the embedding so we use asynchronous gradient
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descent (ASGD). Analogous to previousworks [7, 13], we used hierarchical softmax
activation with multinomial logloss, with which the computational complexity of a
training epoch (while we decrease the learning rate from starting value to zero) is
O(|V | log(|V |)). We refer to the embedding as X, and the embedding of node v is
noted by Xv .

4 Sequence Generation Algorithm and Design

To generate sequences in the neighborhood of a node, we first compute a diffusion
graph, and then use it to compute vertex sequences.

Diffusion graph generation: We emulate a simple diffusion-like random process
starting from a vertex v to sample a subgraph of l vertices near v. The diffusion graph
˜G is initialized with {v}. Next, at each step, we sample a random node u from ˜G and
from the neighbors of u in the original graph G, we select w. We add w to the set
of vertices in ˜G, and add the edge (u, w) to ˜G. This process is repeated until ˜G has l
nodes.

Data: G – Graph object.
l – Number of nodes sampled.
v – Starting node .

Result: P – Eulerian sequence from v.

1 V
˜G ← {v}

2 while |V
˜G | < l do

3 w ← Random Sample(V
˜G)

4 u ← Random Sample(NG (w))

5 if u /∈ V
˜G then

6 V
˜G ← V

˜G ∪ {u}
7 E

˜G ← E
˜G ∪ {(u, w)}

8 end
9 end

10 ˜G ← Duplicate Edges(˜G)
11 P ← Random Eulerian Circuit(˜G, v)

Algorithm 1: Graph sampling

Node sequence sampling: To generate sequences from the subgraph ˜G, we take the
following approach. We convert ˜G into a multigraph by doubling each edge into
two edges. A connected graph where every node has an even degree is Eulerian,
and the Euler walk is easy to find [17]. We use this method to find the Euler walk
and use that as a vertex sequence. Observe that this diffusion graph sampling and
sequence generation can be performed in parallel across many machines, since each
diffusion graph can be generated independent of others. The generated sequences are
then used to produce graph embedding using neural networks as seen in the previous
section. Note that an Euler walk has the nice property that it captures every adjacency
relation in the subgraph into a linear sequence using asymptotically optimal space.
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This property then helps our method perform better both in the sense of efficiency
and quality of results.

Data: G – Graph embedded.
p – Sequence samples per node.
l – Number of nodes per sample.
d – Dimension of embedding.
k – Number of epochs.
ŵ – Size of sliding window.
α – Learning rate.

Result: X – Embedding of graph G.
1 G1, . . .GS ← Component Extraction(G)
2 Samples ← []
3 for i in 1 : p do

4 Walks ← {}
5 l ′ ← l
6 for j in 1:|{G1,G2, . . .GS}| do
7 if

∣

∣VG j

∣

∣ < l ′ then
8 l ′ ← ∣

∣VG j

∣

∣

9 end
10 for v in V do
11 Walks(v) ← Traceback(G j , v, l ′)
12 end
13 end
14 Samples(i) ← Walks
15 end
16 X ← Learn Emb.(Samples, d, ŵ,α, k)

Algorithm 2: Learning from sequences

5 Experiments

In our experiments we compare our method D2V with the state-of-the- art N2V [7]
method. We look at quality of embeddings and the computational performance. The
main observations from the experiments are the following:

• With increasing size of graphs, efficiency of D2V scales better than that of N2V.
• The D2V embedding preserves distances well between most pairs of nodes: in
128-dimensional embedding, over 90% pairs suffer a distortion smaller than 20%.
In any dimensions, it performs better than N2V.

• Clustering of the D2V embedding works well for community detection, and per-
forms better than N2V measured by the modularity of clusters.

Computational efficiency. In the first series of experiments we measured the aver-
age graph preprocessing and sequence generation times on a number of real-world
networks. Preprocessing in this case involves reading the graph and creating suitable
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Table 1 Computation time on real-life graphs.BlogCatalog: is a social network of bloggers, nodes
are bloggers and links are social relationships [1]. PPI: is a protein–protein interaction network of
humans [3].Wikipedia: is a word co-occurrence network based on a chunk of theWikipedia corpus
[9]. Columns report running time in seconds extracted from 100 experiments on the datasets. Bold
numbers mark the fastest mean preprocessing— sequence generation times on a given dataset

BLOGCATALOG PPI WIKIPEDIA

|V | = 10,312 |V | = 3,890 |V | = 4,777

|E | = 333,982 |E | = 38,739 |E | = 92,517

N2V D2V N2V D2V N2V D2V

Sequence
generation

59.089 19.983 4.253 4.684 12.135 6.879

Preprocessing 784.899 3.231 12.797 0.362 185.287 0.667

data structures. N2V in particular requires data structures to regularly update the
random walk probabilities. Note that it is the preprocessing and sequence genera-
tion, where these two methods differ, as they use similar methods for training neural
networks. Our results in Table 1 show that on larger networks D2V has a consistent
advantage performance wise.

Node distance approximation. Using the PPI network, we measure how well the
shortest path distance of nodesd(u, v) can be approximated by theEuclidean distance
of nodes in the embedding space. The relative approximation error eu,v for a given pair
of nodes u, v is defined by eu,v = |d(u, v) − γ · ‖Xv − Xu‖| /d(u, v). Essentially,
the absolute difference between d(u, v) and the scaled Euclidean distance to d(u, v).
The factor γ adjusts for the uniform scaling over the graph. We take the γ that
minimizes the sum of errors.

We plotted cumulative distribution of the relative approximation error for differ-
ent embedding dimensions on Fig. 1a. With a 32-dimensional D2V embedding one
can approximate half of the shortest path distances with a relative error below 20%.
Increasing the embedding dimension to 128 allows to approximate 90% of shortest
paths with an approximation error below 20%. Finally, we also plotted the approx-
imation error obtained with N2V embeddings. A 32-dimensional N2V embedding
can only approximate roughly 10% of the shortest path distances with a relative error
below 20%. Moreover, increasing the N2V embedding dimension does not decrease
the distortion considerably. We conclude that on this graph D2V approximates graph
distances better than N2V (Fig. 2).

Community detection. We evaluated the utility of the embedding in community
detection. We clustered the embedded nodes in the embedding space using k-means
clustering, and then computedmodularity [12] as a qualitymeasure. The experiments
involved six different datasets with number of vertices ranging from few thousands
to millions and we compared our results to clusterings obtained with standard com-
munity detectionmethods. Results are seen in Table 2. Our results show that k-means
clustering of the embeddings outperforms all other methods on most of the datasets.
Moreover, D2V (our method) results in clusterings that are higher quality than clus-
ters created with N2V.
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Table 2 Clustering quality measured by modularity. The baseline community detection algorithms
can be found in [4, 12, 14]. Bold numbers note the highest modularity value obtained on the
dataset. Dashes denote missing modularity values when obtaining a clustering was not feasible due
to computational complexity of the algorithm. Embeddings were created with baseline parameter
settings such that d = 128, n = 10, ŵ = 10, α = 0.025, k = 1, l = 40 (D2V) and l = 80 (N2V).
The best input and return parameters of N2V were chosen with grid search over {0.25, 0.5, 1, 2, 4}
while the cluster number varied between 2 and 50. The distance measure was the Euclidean distance
in the latent space. Besides the earlier used datasets we chose 3 additional social networks to asses
the representation quality. Flickr: a network of Flickr users [10].YouTube: is a friendship network
of YouTube users [19]. Markercafe: is data from an Israeli social network [5]

Algorithm Blogcatalog PPI Wikipedia Flickr YouTube Markercafe

Fast Greedy 0.2069 0.3029 0.1456 0.4517 – 0.2597

Walktrap 0.1766 0.2571 0.0553 0.4873 – 0.2026

Eigenvector 0.2035 0.2262 0.0915 0.4810 – 0.2455

K-means D2V 0.2225 0.3365 0.1420 0.5078 0.6265 0.2818

K-means N2V 0.2184 0.3270 0.1376 0.3647 0.4862 0.2630

6 Conclusions

In this work we proposed Diff2Vec a node sequence-based graph embedding model
that uses diffusion processes on graphs to create vertex sequences. We demonstrated
that the design of the algorithm results in fast sequence creation in realistic settings.
It also allows parallel vertex sequence generation which leads to additional speed up.
We confirmed that node features created with Diff2Vec are useful features for down-
stream machine learning tasks. We gave a detailed evaluation of the representation
quality of embeddings on shortest path distance approximation and the machine
learning task of community detection. Our findings show that besides the favorable
computational performance the representation quality itself is competitive with other
methods.
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Semi-supervised Graph Embedding
Approach to Dynamic Link Prediction

Ryohei Hisano

Abstract We propose a simple discrete-time semi-supervised graph embedding
approach to link prediction in dynamic networks. The learned embedding reflects
information from both the temporal and cross-sectional network structures, which is
performed by defining the loss function as aweighted sumof the supervised loss from
the past dynamics and the unsupervised loss of predicting the neighborhood context
in the current network. Our model is also capable of learning different embeddings
for both formation and dissolution dynamics. These key aspects contribute to the pre-
dictive performance of our model and we provide experiments with four real-world
dynamic networks showing that our method is comparable to state of the art methods
in link formation prediction and outperforms state-of-the-art baseline methods in
link dissolution prediction.

1 Introduction

One of the central tasks concerning network data is the problem of link prediction.
Link prediction can be roughly divided into two types: static link prediction and
temporal link prediction. Static link prediction is concerned with the problem of
predicting the overall structure of a network. The goal is to predict missing links
in partially observed network data that are absent from the dataset but that should
in fact exist. Example applications include knowledge graph completion, predicting
relationships among participants in social networking services and protein–protein
interactions. We refer to [3, 5, 9] for excellent reviews of the field. In a temporal
link prediction problem, the goal is to predict the future network state given previous
linkage patterns. Example applications include recommender systems, where users
and products are modeled as a bipartite graph and user purchases are modeled as
linkages over time. The goal here is to predict future purchase patterns of users from
past purchase patterns [4, 6, 12].

R. Hisano (B)
Social ICT center, University of Tokyo, Tokyo, Japan
e-mail: hisano.ryohei@sict.i.u-tokyo.ac.jp

© Springer International Publishing AG 2018
S. Cornelius et al. (eds.), Complex Networks IX, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-319-73198-8_10

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73198-8_10&domain=pdf


110 R. Hisano

In this paper, we focus on a slight variation of the temporal link prediction prob-
lem. Given a sequence of network snapshots from time 1 to time t , our problem is
to predict the transition of a network from time t to time t + 1. A transition of a
network can be summarized using two networks, a link formation network and a
link dissolution network. We choose to predict the transition of a network instead
of a network at the next time step for three main reasons. First, by predicting a net-
work only at the next time step, one cannot distinguish whether the prediction of
link formation is successful, whether the prediction of link dissolution is successful
or whether the network itself did not change much between different time steps,
and whether simply using the network information from the last time step might
suffice for prediction. We want to avoid this redundancy by focusing on predicting
the transition. Secondly, different forces might govern link formation and link dis-
solution. This is true in many domains, where the behavior governing link formation
and link dissolution are different. In social network, attitudes towards friending and
unfriending are different [8] and in economic networks, it is shown that the network
adopts gradually to exogenous productivity shocks, where the timescales to form and
dissolve a link are significantly different [7].1 Our hope is that by separately model-
ing these forces we might obtain better predictive accuracy. Thirdly, predicting link
dissolution is important in its own right. For instance, in the financial crisis of 2008,
many banks were reported to dissolve their relationships with poorly performing
firms while forming new links with better performing firms. Being able to predict
the formation and dissolution dynamics of a network separately in this setting is
an important issue in risk management. This is true even in social networks, where
important dissolutions in links might prevent the spread of good or bad influences in
a community [2].

Ourmodeling approach is a variant of semi-supervised graph embedding [17]. The
supervised part consists of a complex-valued latent feature bilinearmodel [14],where
past link formation and link dissolution information play the role of target values in
the training data. The unsupervised part consists of a graph embedding predicting the
neighborhood context in the current network [10]. The same complex-valued vectors
are used in both tasks, and the weighted sum of these two losses is the total loss in
our model. Semi-supervised graph embedding [17] was originally intended for use
in node classification, but we extend the idea to learning complex-valued vectors
capable of predicting the transition of a network.

To gain a better understanding of our model, we suggest the following intuitive
interpretation. While the temporal information concerning past link formation and
link dissolution networks provides a direct target signal for which nodes were more
likely to form or dissolve links with each other, these networks are usually much
sparser than the current network. Thus, by only using the past network information
we may not have enough information to learn the complex-valued vector bilinear
model sufficiently. On the other hand, the current network can be seen as providing a
different dimension, such as a spatial dimension in spatiotemporal modeling, which
is independent of the temporal information. Our strategy is to leverage this extra

1In short, it takes more time to form a link than dissolve a link.
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dimension to enhance the model learned from our supervised task. Thus the power
of graph embedding to effectively learn a distributional context capable of predicting
nearby nodes is used in ourmodel to force nearby nodes in the network to have similar
complex-valued vectors [10]. We show that our semi-supervised approach gives
better predictive performance than using a supervised or an unsupervised approach
alone.

The rest of the paper is organized as follows. We present our proposed model in
Sect. 2. Our training methodology is presented in Sect. 3. We give empirical results
in Sect. 4, followed by conclusions in Sect. 5.

2 Proposed Method

We refer to our link prediction method as SemiGraph, which has the objective func-
tions in (9) and (10) for link formation and link dissolution, respectively. Predictions
are made using (13) and (14).

2.1 Notations

Consider a sequence of directed networks defined as a set of adjacency matrices
G = {G1,G2, . . . ,Gt }, where G jkt equals 1 if the link j → k exists at time t and
equals 0 otherwise. Let V denote the set of nodes in the union of each snapshot of the
network G1 ∪ G2 ∪ · · · ∪ Gt , and let |V | denote the number of nodes in the union
of all the networks. The goal of this paper is to predict the transition of the network
from Gt to Gt+1 using the information up to Gt .

We define three kinds of network. The current network is the network state just
before prediction. With the above definitions, this is simply Gt . The past formation
networks are defined by concatenating all the link formation adjacency matrices
until time t . The adjacency matrix describing the link formation network at time t is
defined as {

Fjkt = 1 i f G jkt − G jkt−1 = 1

Fjkt = 0 otherwise.

The past dissolution networks are defined similarly, where the adjacency matrix
describing the link dissolution network at time t is defined as

{
Djkt = 1 i f G jkt − G jkt−1 = −1

Djkt = 0 otherwise.
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2.2 Learning from Past Formation and Dissolution Networks

We start with the supervised part, which consists of learning a complex-valued vector
bilinear model with past link formation and link dissolution information playing the
role of target values in the training data. The complex-valued matrix of the node
representations (i.e., C |V |×d , where |V | denotes the number of nodes in the network
and d the dimension of the learned representations) are learned separately for link
formation and link dissolution. These are learned in an identical manner, and we
focus on the link formation case.

Formally, let ( j, k) be a set of links in the past formation networks. The set of past
formation networks is restricted to the information from link formation networks for
a time window Ft , Ft−1, Ft−p. The loss function can be written as

Σ j,k∈( j,k)logp(k| j) = Σ j,k∈( j,k)(Re(v
T
f jW f v f k) −

logΣk ′∈Ne( j)exp(Re(v
T
f jW f v f k ′))), (1)

where Ne( j) is the set of all edges that did not form links with j in the past formation
networks, W f is a diagonal complex-valued matrix defining the scaling of the basis,
v f j is the complex vector representation for node j with dimension d, v denotes the
conjugate of v (i.e., v = Re(v) − i Im(v)) andRe() is a function keeping only the real
part of a complex values. The use of Re() is a simple trick to make the resulting value
interpretable as a probability. The use of a complex-valued vector instead of a real-
valued vector is to take into account symmetric as well as antisymmetric relations
in both linear space and time complexity [14]. This could be confirmed by the fact
that vT

f jW f v f k �= vT
f kW f v f j holds without forcing W f to be non-diagonal. We take

the complex conjugate in (1) to interpret it as a Hermitian inner product. We also
restrict each diagonal element of W f and Wd to have an absolute value of 1 to make
the model identifiable.

It is often intractable to directly optimize (1) due to the normalization constant,
andwe use negative sampling to address this issue. Formally, given a triple ( j, k, γ f ),
where j and k are nodes (we assume that j �= k) and γ f is a binary label indicating
whether a node pair exists in the past link formation networks (this is positive when
links exists), we minimize the cross entropy loss of classifying the pair j, k with a
binary label γ f :

I (γ f = 1)logσ(Re(vT
f jW f v f k)) +

I (γ f = −1)logσ(−Re(vT
f jW f v f k)), (2)

where I (.) is an indicator function that outputs 1 when the argument is true and 0
otherwise and σ is a sigmoid function defined as σ(x) = 1/(1 + e−x ). Therefore,
the supervised loss with negative sampling can be written more succinctly as

L f s = E j,k,γ f logσ(γ f Re(v
T
f jW f v f k)). (3)
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The supervised loss for past dissolution networks is defined in an identicalmanner,
resulting in

Lds = E j,k,γd logσ(γd Re(v
T
d jWdvd j )). (4)

2.3 Graph Embedding from the Current Network

The unsupervised part of our model consists of a graph embedding defined by the
current network. In previousworks, a skip-grammodel is used to learn the embedding
andwe adhere to this approach.Given a pair of an instance and its context (i.e., ( j, c)),
the loss function can be written as

Σ j,c∈( j,c)logp(c| j) = Σ j,c∈( j,c)(Re(v
T
f j u f c) −

logΣc′∈Ne( j)exp(Re(v
T
f j u f c′))), (5)

where v f j is the complex vector representation for node j as used in (1) and u f c

is a parameter for the skip-gram model. A context for each node is generated by
performing a truncated random walk (i.e., deep walk) starting from the instance
node [10]. Although other types of walk beside the simple random walk (such as a
breadth-first walk) are possible, preliminary experiments showed that the difference
is marginal and we use the simple deep walk in this paper. As in (1), (5) is intractable
due to the normalization constants andwe again resort to negative sampling, resulting
in

L f u = E j,c,γc logσ(γc Re(v
T
f j u f c)). (6)

The unsupervised loss for link dissolution is developed in an identical manner,
resulting in

Ldu = E j,c,γc logσ(γc Re(v
T
d j udc)). (7)

2.4 Semi-supervised Graph Embedding Approach

Given the loss functions defined in the previous sections, the loss functions for our
framework can be expressed as

L f = L f s + λ f L f u (8)

for learning link formation and
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Ld = Lds + λd Ldu (9)

for learning link dissolution. The L f s and Lds terms are the supervised losses for
predicting past formation or dissolution networks, respectively, and L f u and Ldu are
the unsupervised losses for predicting the graph context from the current network.
The loss function is similar in spirit to graph-based semi-supervised learning, where
graph embedding was used instead of the graph Laplacian [17].

2.5 Prediction

Prediction is made by using the learned complex-valued vectors and matrices v f , vd ,
W f and Wd . A straightforward approach is to predict

p(G jkt+1 = 1|G jkt = 0) = σ(Re(vT
f jW f v f k)) (10)

for link formation and

p(G jkt+1 = 0|G jkt = 1) = σ(Re(vT
d jWdvdk)) (11)

for link dissolution. Although this simple prediction works quite well in practice, the
predictive performance can be further improved by combining the predictions as

p(G jkt+1 = 1|G jkt = 0) = σ(Re(vT
f jW f v f k))

+Re(vT
d jWdvdk)) (12)

for link formation and

p(G jkt+1 = 0|G jkt = 1) = σ(Re(vT
d jWdvdk))

+Re(vT
f jW f v f k)) (13)

for link dissolution. The underlying understanding of this prediction is that link
formation and link dissolution are more likely to be driven by a rewiring process:
Thus the more likely a node is to form new links, the more likely the node is to
dissolve an existing link at the same time. Although subtracting the two effects, as
in

p(G jkt+1 = 1|G jkt = 0) = σ(Re(vT
f jW f v f k))

−Re(vT
d jWdvdk)) (14)

for link formation and
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p(G jkt+1 = 0|G jkt = 1) = σ(Re(vT
d jWdvdk))

−Re(vT
f jW f v f k)) (15)

for link dissolution, is also reasonable (i.e., a growing network where the more likely
a node is to form links the less likely the node is to lose a link), in our experiments
(12) and (13) outperform the other prediction method, so we use this prediction in
our experiments.

3 Training

We use stochastic gradient descent to train our model. We first sample a node and
perform a deep walk [10] to sample the context nodes from a network. We then
sample negative samples from the current network, past formation networks, and
past dissolution networks. Equipped with these positive and negative samples, we
take a gradient step with learning rate η1 for v f , vd , u f , and ud .

Each diagonal element of W f and Wd is learned in a different manner. As noted
before, to make the model identifiable we restrict each diagonal element of W f and
Wd to take an absolute value of 1. Thus, each diagonal element ofW f can be rewritten
as

W f ( j, j) = cos(θ j ) + isin(θ j ), (16)

for j = 1, . . . , d. We take a gradient step with learning rate η2 in θ instead. All the
off-diagonal elements are set to 0.

4 Experiments

Our empirical investigations are based on four real-world networks: a world trade
network, a bipartite customs data between Japan and the US (Japan to US exports
only), a small size interfirm buyer–seller network and a larger size interfirm buyer–
seller network. Code and a subset of the data to reproduce our results will be available
on the authors website.

4.1 Data

We next give a brief outline of the data used.
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Table 1 Statistics for datasets. Num Edges denotes the total number of interactions, Num Unique
Edges denotes the number of distinct interactions, Ave Form denotes the average number of formed
edges, Ave Diss denotes the average number of dissolved edges, and Snapshots denotes the number
of discrete time points observed in our datasets

Dataset Num nodes Num edges Num unique
edges

Ave form Ave diss Snapshots

WorldTrade 50 6,620 477 16.7 16.7 20

Customs 1,043 7,825 1,488 113.9 126 12

FirmSmall 690 13,108 1995 118.9 126.3 10

Firm 32,475 1,282,562 251,061 42,487.1 41,400.4 10

• WorldTrade is a network of world trade relationships among 50 countries from
1981 to 2000 [15]. We define two countries to be linked if the trading volume was
above the 90th percentile for all trade in a given year.

• Customs is a bipartite network dataset that records the names of exporters and
consignees of trade from Japan to the US. The data was obtained from the US
customs office and covers the period from January 2003 to December 2014. We
focus on firms that had more than 500 transactions during the time period, which
results in 431 Japanese firms and 603 US firms. To adjust for seasonal effects, we
aggregate the network data on a yearly basis resulting in snapshots of 12 networks.
Two firms are linked if there was a trade relation more than once a year.

• FirmSmall is an interfirm buyer–seller network for Japan from 2003 to 2012. Two
firms are connected if firms have a buyer–seller relationship. These data are based
on questionnaires and is obtained from the Teikoku Data Bank.2 We use a subset
of this dataset, restricting our attention to firms in Hokkaido, which is the northern
part of Japan.

• Firm is an interfirm buyer–seller network for Japan from 2003 to 2012. This is a
larger version of FirmSmall including firms from all parts of Japan.

The basic statistics for each dataset are reported in Table1.

4.2 Evaluation Criteria

Given a training set G1:t , we predict the transition from time t to time t + 1 which
consists of a link formation network (i.e., Ft+1) and a link dissolution network (i.e.,
Dt+1). We predict the last network in each datasets using all the past transitions as
training. For link prediction accuracy, we use the area under the receiver operating
characteristic curve (AUCROC), where the value is calculated for both link dissolu-
tion networks and link formation networks. We also use the area under the precision

2http://www.tdb.co.jp/index.html.

http://www.tdb.co.jp/index.html
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and recall curve (AUCPR) which provides an alternative view to AUCROC when
the class distribution is highly imbalanced [16].

4.3 Baseline Methods

We compare our prediction algorithm with the following baselines.

• Adamic-Adar (AA): scores are calculated as the weighted variation of common
neighbors [1] using the current network only. Since AA only generates scores for
node pairs within 2 hops geodesic distance, we only report results for non-bipartite
networks.

• Preferential Attachment (PA): scores are calculated as the product of the degree
of each node from the current network.

• Last time of Linkage (LL): scores are calculated by ranking pairs in ascending
order according to the last time of linkage.

• Longitudinal Mixed EffectsModels (LME): is a mixed effects model for modeling
dynamic networks [15]. Although it is computationally expensive, it is one of
the state-of-the-art methods in modeling dynamic networks. We used the same
hyperparameter settings as in [15].

We also compute AA-all and PA-all, which are computed over the union of all
networks until the current network. The graph heuristic approaches presented here
are simple, but have been shown to be surprisingly hard to be at in practice, making
them good baselines for comparison [13]. In particular, LL has been shown to often
be among the best heuristic measures for link prediction [13]. When predicting link
dissolution, we use the complementary score method (i.e., which is basically taking
the negative value of the original score) as in [11]. We also compare our model with
unsupervised graph embedding and supervised approach (i.e., our model without
the graph embedding term) to clarify the improvement in semi-supervised learning.
Throughout all of the experiments, we set the dimension of the learned complex
vectors as d = 15, the number of walks as five,λ f = λd = 0.05, initial learning rates
η1 = 0.1, η2 = 10−5, and p = t − 1 (i.e., using all past information). The learning
rate is decreased linearly with the number of nodes that have been used for training.

4.4 Experimental Results

Results for link dissolution prediction are presented in Table2. We make the follow-
ing observations. Basically for all the experiments our method performs better than
the state-of-the-art methods in both AUCROC and AUCPR except for the AUCPR
in the Customs data where the added value of our semi-supervised approach is small
due to the bipartite nature of the network. It is worth noting that our method outper-
forms better than the other methods quite significantly for the FirmSmall and Firm
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Table 2 AUC for link dissolution prediction. Since AA only generates scores for node pairs within
2 hops geodesic distance, we only report results for non-bipartite networks. Omissions are indicated
with ‘-’. Failure runs are indicated with ‘*’

Dataset
method

WorldTrade
ROC

PR Customs
ROC

PR FirmSmall
ROC

PR Firm
ROC

PR

AA 0.638 0.091 - - 0.478 0.100 0.473 0.129

PA 0.711 0.099 0.679 0.397 0.496 0.110 0.464 0.127

AA-all 0.676 0.100 - - 0.521 0.111 0.483 0.132

PA-all 0.703 0.101 0.649 0.307 0.538 0.121 0.489 0.134

LL 0.535 0.075 0.573 0.278 0.650 0.229 0.620 0.232

LME 0.672 0.120 0.587 0.266 0.538 0.126 * *

Supervised 0.679 0.074 0.635 0.255 0.653 0.171 0.612 0.197

GraphEmb 0.480 0.058 0.609 0.234 0.514 0.108 0.497 0.131

SemiGraph 0.715 0.126 0.686 0.291 0.736 0.254 0.674 0.251

dataset, whereas graph embedding shows almost no signs of predictability. Also in
this experiment, supervised learning is outperformed by our method by around 5–
13% inAUCROC, suggesting again the addedvalue of our semi-supervised approach.
We define an experimental run as failure (indicated by a ‘*’ in the tables) if it does
not complete within 7days on a standard workstation with a 2.33GHz processor and
64 GB of memory. Since the longitudinal mixed effects model involves inversion of
a matrix, it could not handle the large scale Firm data. Our proposed method takes
more time to run comparedwith the baseline state of the art methods, but nevertheless
returns results in a fair amount of time.

Results for the link formation prediction task are presented in Table3. We make
the following observations. Although our proposed method often shows superior
performancewhen evaluatingwithAUCROC, the performance becomes subtle when
evaluating with AUCPR. The reason behind this behavior is that for all the data
studied here the same links appear and disappear multiple times. While methods
like LL naturally restricts its link prediction to links that have been formed before,
our method does not involve any type of restriction to past formed links, and hence
making it inferior in performance.On the other hand, LLcould not predict linkswhich
was not formed before having its own shortcomings and for all the networks studied
here, our proposed method is among the top performing methods. Our method also
shows significant improvements over graph embedding and supervised learning. In
this experiment, supervised learning is outperformed by our method by around 10–
23% in AUCROC, while graph embedding is outperformed by more than 13–39%,
suggesting the added value of our semi-supervised approach.

To see howan increase in past information affects the performance of our proposed
model, we report results on predicting the transition of a network for the years 2005–
2012 for the FirmSmall dataset.3 Because we only have ten snapshots of the network,

3We omit AA, PA and LME since it did not show superior performance and for visual clarity.
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Table 3 AUC for link formation prediction. Due to heavy computational costs, AUCPR for the
Firm data is calculated over 106 negative samples making the values higher than that of FirmSmall

Dataset
method

WorldTrade
ROC

PR Customs
ROC

PR FirmSmall
ROC

PR Firm
ROC

PR

AA 0.666 0.013 - - 0.617 6.64 ×
10−4

0.614 0.066

PA 0.774 0.038 0.521 1.30 ×
10−4

0.707 1.43 ×
10−3

0.815 0.178

AA-all 0.659 0.013 - - 0.692 8.40 ×
10−4

0.716 0.078

PA-all 0.864 0.094 0.756 2.39 ×
10−4

0.790 1.94 ×
10−3

0.847 0.204

LL 0.873 0.209 0.836 0.125 0.781 0.145 0.744 0.511

LME 0.670 0.012 0.718 1.76 ×
10−4

0.720 2.11 ×
10−3

* *

Supervised 0.683 0.003 0.683 2.62 ×
10−4

0.703 6.18 ×
10−4

0.727 0.108

GraphEmb 0.706 0.016 0.581 7.95 ×
10−5

0.672 6.00 ×
10−4

0.624 0.069

SemiGraph 0.800 0.027 0.842 4.90 ×
10−4

0.860 0.011 0.802 0.222
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Fig. 1 AUC for link formation and link dissolution prediction for the Firm dataset

the prediction in 2005 is based on only one past transition and the last network before
prediction. We observe that for link formation prediction, almost all the methods
including our proposed method show improved accuracy with an increase in past
information. In this dataset, our method is the best performing methods. Comparing
our performance with supervised learning, we clearly see the benefit of our semi-
supervised approach. For link dissolution, although less clear than link formation
prediction we also observe that ourmethod show improved accuracywith an increase
in past information (Fig. 1).
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5 Conclusions

Wehave proposed SemiGraph, a simple discrete-time semi-supervised graph embed-
ding approach to link prediction in dynamic networks. Our model is capable of learn-
ing different embeddings for both formation and dissolution dynamics. To show the
effectiveness of our approach, we focused on predicting the transition of a network,
including both link formation prediction and link dissolution prediction. We have
shown that our method outperforms previous state-of-the-art baseline methods in
predicting link dissolution and is comparable to state of the art methods in predicting
link formation through experiments using a variety of real-world networks.
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Modularity Optimization as a Training
Criterion for Graph Neural Networks

Tsuyoshi Murata and Naveed Afzal

Abstract Graph convolution is a recent scalablemethod for performing deep feature
learning on attributed graphs by aggregating local node information over multiple
layers. Such layers only consider attribute information of node neighbors in the
forward model and do not incorporate knowledge of global network structure in the
learning task. In particular, the modularity function provides a convenient source of
information about the community structure of networks. In this work, we investigate
the effect on the quality of learned representations by the incorporation of community
structure preservation objectives of networks in the graph convolutional model. We
incorporate the objectives in two ways, through an explicit regularization term in
the cost function in the output layer and as an additional loss term computed via
an auxiliary layer. We report the effect of community-structure-preserving terms
in the graph convolutional architectures. Experimental evaluation on two attributed
bibliographic networks showed that the incorporation of the community-preserving
objective improves semi-supervised node classification accuracy in the sparse label
regime.

1 Introduction

In recent years, convolutional neural networks (CNNs) [8] have successfully exploited
the statistical regularities on several domains and have shown state-of-the-art results
in image classification [7], speech recognition [4], and related tasks. CNNs achieve
this by making two important assumptions about the statistical properties of the data,
locality, and translation invariance. These assumptions are exploited by learning local
feature extractors that are shared across the domain. Defining such feature extractors
requires clear notions of translation and locality. These are clear on domains where
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the sample dependencies have a regular Euclidean structure (i.e., images, videos, text,
and speech). However, in many data domains the relationships between the samples
are arbitrary and cannot be expressed as a regular Euclidean structure. The fields of
social networks analysis, bioinformatics, and information science all involve data
with various complex relationships between the entities. These relationships can be
represented mathematically with a graph G(V, E) where V is a set of vertices and
E is a set of pair-wise relationships between them. Each vertex in V represents a
single training sample in X, and an edge between two vertices can represent some
domain-specific relationship.

Startingwith [1], recent efforts have attempted to generalize themain assumptions
of CNNs to arbitrary graph domains. With [2], we now have scalable formulations
of convolutional layers applicable to general graphs and are denoted in the literature
as graph convolutional layers. Given a definition of proximity of graph vertices
as defined by simple k-hop distances, the graph convolutional layer extracts local
features for each node. These feature extractors are replicated over every node of the
graph, effectively limiting the number of learnable parameter to be independent of
graph size. This model has been shown to be very effective in various graph-based
learning tasks as demonstrated in [5, 6].

The assumption of locality on networks can be used to learn very useful models
but real networks also tend to exhibit various global properties. The field of Network
Science [11] is generally concerned with studying such high-level properties of net-
works. An important feature of real networks is the existence of dense clusters or
communities where the vertices of a network have a higher density of edges among
them that between clusters. [12] defined graph clustering as an optimization prob-
lem with an objective function called modularity. Modularity is a global measure of
the networks’ structure and can thus provide a higher-level view of the network’s
properties than considering local neighborhood information alone.

This work is based on the assumption that injecting additional information about
higher-level network structure into a neural architecture trained on an appropriate
graph-based learning task can improve performance on that task.Recent attempts [14,
15, 17] have successfully integrated community structure information into various
graph representation learning methods. Similar work has not yet been attempted for
graph convolutional models. In situations where the number of labeled examples
for training is very sparse, the model should be able to benefit from leveraging
more higher-level network structure information as compared to learning from labels
alone. In this work, we incorporate community structure information by integrating
modularity score optimization into the framework of graph convolutional neural
networks. For evaluation of our approach, we explore the case of semi-supervised
node classification on graph datasets in the sparse label regime.
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2 Background

Community or Mesoscopic Structure A graph G can be quantified as an n × n
adjacency matrix A where n is the number of nodes. If nodes i and j have an edge
between them, then entry Ai j of the matrix is 1 else it is 0.

Networks tend to be organized in a higher structural level into clusters. A cluster
or community in a network is a group of vertices that has a higher density of edges
among nodes within the group but sparser connections to nodes outside.

Reference [12] proposed modularity as a score to measure the goodness of parti-
tion of a given network. Statistically, it is the fraction of edges within a group minus
the expected fraction for a randomgraphwith same degree distribution, summed over
every group. It is the most commonly used objective function for community detec-
tion.Modularity optimization provides additional information not normally available
from optimizing neighborhood structure alone. Given a group assignment Matrix H ,
the score of the partition can be computed as:

Q = tr(HT BH), (1)

where Bi j = Ai j − ki k j

2e is the modularity matrix.

2.1 Graph Neural Network

The standard convolutional filters are not directly applicable to arbitrary graph struc-
tures due to lack of clear notion of translation andordering of the node neighborhoods.

Locality and Translational Invariance A CNN layer is simply a filter of learnable
parameters that is convolved on the input pixels of an image. Naturally, these layers
possess the properties of locality and translational invariance. The locality property
is based on the assumption that the statistical dependence of pixels in an image is
inversely dependent on the distance between them. In practice, this is exploited by
making the filtering step consider only pixel values in a fixed local neighborhood
which is defined by the size of the filter. The second assumption is that of spatial
model invariance, which is based on the observation that the identity of an object
in an image does not change regardless of its translation in the image. The CNN
filter exploits this property by sharing the same set of weights for every image patch.
Through these assumptions, the number of parameters of the convolutional layer can
be made independent of the input size. A suitable definition of convolutional layers
on graphs should possess these two properties.

Polynomial GraphConvolutional Filters [2] defined localized graph convolutional
filters directly computed in the spatial domain. The filter is defined as a polynomial
function of the graph Laplacian matrix. Besides a simple polynomial formulation, a
model computed via Chebyshev polynomials [3] has also been defined in the same
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work. These formulations have computational complexity of order equal to number
of graph edges due to sparse multiplications. An important property of polynomial
convolutions is that the locality of the filter is equal to the order of the polynomial.
[6] defined a simplified version of this by restricting the model to first-order filters.
In this document, we will refer to Kipf’s model as GCN and Defferrard’s Chebyshev
formulation as ChebNet. These classes of models posses both locality and translation
invariance properties of graph convolutions and have scalable computation time. The
model described in this paper is also based on the polynomial graph convolutions of
Defferard and Kipf and will be described in greater detail (Fig. 1).

Regularizing Deep Models via Graph Structure [16] described an approach for
incorporating graph structural information directly into any arbitrary deep architec-
ture during training. The structural information is incorporated as an unsupervised
loss term directly computed over the representations in any layer of the deep architec-
ture. The final loss function is then composed of two parts, the supervised loss over
labeled examples and the unsupervised loss over all example regardless of labels. The
domain structure can be incorporated in three ways as illustrated in Fig. 2, either by
(a) directly adding the unsupervised term to the output layer loss of the architecture,
by (b) computing the loss directly on the representations on any non-output layer, or
by (c) attaching a new auxiliary feed-forward layer to the architecture and computing
the loss on the output of that layer. In this work, the modularity optimization term is
incorporated into a graph convolutional architecture based on these techniques. The
resulting models will be described in detail in the next section.

Fig. 1 Standard convolutional layer
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Fig. 2 Semi-supervised embedding [16]

3 Model Description

3.1 Encoding Model

This section will describe the encoding layers used in the experiments. The inputs
are the attribute and adjacency matrices of the graph to be encoded, and the output is
a latent representation Z of any arbitrary dimensionality. The latent representations
depend on the weights and the biases of the encoder model which can be trained
using gradient descent. The encoders can also be made arbitrarily deeper by stacking
additional layers. Given a graph convolutional layer withC input channels (features)
and F output features:

GCN:Wt should be a C × F × 1-dimensional weight matrix. Even though GCN
incorporates first-order neighborhood, it also enforces parameter sharing between
first- and zeroth-order neighborhood weights, thus fixing its weight matrix size to
C × F .

ChebNet: For a Kth-order neighborhood model, Wt should have C × F × (K +
1) parameters. This is because the model learns a separate set of C × F weights for
each order degree ranging from k = 0 to K . For example, for a second-order model
Wt would be a C × F × 3-dimensional tensor with a forward matrix corresponding
to the zeroth-, first-, and second-order degrees.

Graph Convolutional Network (GCN)

This is the first-order layer used in the forward models of [5, 6]. This layer also
enforces weight sharing between the first-order and self-weights, effectively acting
as a regularizer and restricting the model to only one set of parameter weights. Given
the adjacency matrix A, the filter support is computed in the following steps:

1. Addition of self-connections: Ã = A + IN
2. Computation of degree matrix: D̃ = ∑

Ã
3. Normalization Step: Â = D̃− 1

2 ÃD̃− 1
2

The normalization step is done to prevent numerical instabilities and is com-
puted as a pre-processing step. Using the normalized adjacency matrix effectively
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makes averaging the aggregation strategy. The layer-wise model then becomes:
Ht = σ( ÂH t−1Wt ).

Now considering input X ∈ R
N×C with C input channels and convolved output

Z ∈ R
N×F with F features. The final model with a two-layer GCN with ReLU

nonlinearity in hidden layer and softmax in output layer is given as: Z = f (X, A) =
so f tmax( Â ReLU ( ÂXW (0)) W (1)).

The number of input channelsC is equal to the dimensionality of the features of the
data (such as the attributes of the node). For example, in case of Cora and CiteSeer,
it is equal to the size of the bag-of-words feature vector. In case of a featureless
approach, C will be equal to the number of nodes in the graph, as each node is then
represented with a one-hot representation.

Even though the layer-wise model is first-order, stackingmultiple layers increases
the locality of the filter. For example, a two-layerGCNwould incorporate information
in the second-order neighborhood of the node for computing the filter.

ChebNet This is the graph convolutional layer originally described in [2]. Unlike
the GCN model of Kipf, the Chebnet can incorporate multiple-hop neighborhood
information in a single layer. There is also no parameter sharing, as a separate set
of parameters are learned for the original node, and each hop neighborhood. For
example, a second-order Chebyshev layerwould have three sets ofweights and biases
in the forward model. The support matrices are computed as Chebyshev polynomials
of the scaled graph Laplacian matrix. The Laplacian matrix is scaled by division with
its largest Eigenvalue λmax to prevent numerical instabilities when stacking multiple
layers. The Chebyshev polynomials themselves are computed recursively as a pre-
processing step, and the largest Eigenvalue of the Laplacian is computed via efficient
power iterations.

Given the symmetric normalized graph Laplacian matrix:

L = In − D− 1
2 AD− 1

2 , (2)

its rescaled version is given as:

L̃ = 2L

λmax
− In (3)

With T0 = I and T1 = L̃ , the Chebyshev polynomials are defined recursively as:

Tk(x) = 2xTk−1(x) − Tk−2(x). (4)

Given the rescaled Laplacian L̃ and arbitrary model degree K, the filter supports can
be pre-computed from T0 to TK as follows:
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T0(L̃) = I

T1(L̃) = L̃

T2(L̃) = 2L̃2 − 1

T3(L̃) = 4L̃3 − 3L̃

T4(L̃) = 8L̃4 − 8L̃2 + 1

(5)

The layer-wisemodel can then be defined as a weighted sum of these components.

Ht = σ

(
K∑

k=0

Tk(L)Ht−1Wt
k

)

(6)

Since L̃ is a sparse matrix with O(|E |) elements, the filtering step involves mul-
tiplications with L̃ only. The Kth-order ChebNet layer will then have K+1 sets of
parameter weights and computational complexity O(|E |) where |E | is the number
of edges in the graph.

3.2 Task-Specific Cost Functions

Herewe briefly describe the optimization objective of graph-based learning task used
in the experimental evaluation. For the task of semi-supervised node classification,
we use the cross entropy over all labeled examples. The cross entropy loss is used as a
supervised training signal for semi-supervised node classification. Given k prediction
classes and Z = GCN (X, A) as the matrix of normalized prediction probabilities
for each class as computed by the model. The cross entropy loss over all labeled
examples yL ∈ Y is then given as: L = −∑

�∈yL Y� ln Z�

For graph convolutionmodels, even though the loss is only computed over labeled
examples, the predictions depend on the unlabeled examples as well due to the nature
of encoding model. The model is tested via prediction accuracy over a hold-out test
set.

3.3 Modularity Optimization Term

The main contribution of this paper is the incorporation of a modularity-preserving
constraint on the embeddings of the graph convolutional network. This constraint is
imposed by the addition of a new loss term into the task-specific cost functions of
the previous section. We can describe the modularity optimization as a secondary
objective that is jointly optimized with the primary objectives. As described in the
previous section, modularity is a quality function that scores the partition of a given
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network into k clusters or partitions. Given a cluster assignment matrix H , we can
simply compute this score as:

Q = tr(HT BH), (7)

where Bi j = Ai j − ki k j

2e is the modularity matrix.
Setting the model embeddings as the cluster assignments, we can compute a

modularity score for the embeddings using the termgiven above.Networkmodularity
can then be optimized using gradient descent in any neural network pipeline. In this
work, we follow the approaches in [16] to jointly optimize for both modularity
score and the task-specific in the semi-supervised embedding frame with the graph
convolutional model as the deep architecture.

Regularization Term We simply subtract the modularity optimization term from
the cost function of the output layer of the architecture. The term simply acts as a
regularizer that encourages the optimizer to favor weight values that maximize this
term. We use a trade-off parameter α to balance between the unsupervised loss and
task-specific objectives. Essentially, the two objectives share the same layers and
model parameters, and the model is trained to jointly optimize them. The modified
cost function is given as: Ltotal = (1 − α)Lsupervised − αtr(HT BH) ∗ ( 1

2e )where e
is the number of edges in the graph.

The first term of this loss function depends on all labeled examples in the case of
node classification. The modularity optimization term, however, is computed over
all embeddings regardless of the number of training samples. α then becomes a
hyper-parameter to be optimized.

Auxiliary Layer: An issue with regularizing the output layer of the architecture is
that the number of community partitions to be optimized over is fixed to the output
layer size.We introduce an auxiliary layer to compute a separate set of representations
which dimensionality equal to the number of network partitions to be optimized over.

Considering a two-layer encoder model given by two graph convolutional layers
denoted by GCN1 and GCN2, the forward model is given as:

Hhid = GCN1(X, A)

Hout = GCN2(Hhid , A)
(8)

We regularize the intermediate hidden layer representations via an auxiliary feed-
forward layer denoted by MLPaux , whose input is the hidden layer embeddings and
the output is an n × k cluster assignment matrix Haux where k is the number of
partitions.

Haux = MLPaux (Hhid) (9)

The task-specific loss is then evaluated over Hout and the modularity optimization
term over Haux . The total loss is then taken to be a weighted sum of these two.

Ltotal = (1 − α)Lsupervised(Hout ) − αLmodulari t y(Haux ) (10)
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In this type of architecture, the layers before the branching are shared between
the two objectives and receive training signals from both gradients. After branching,
the two terms have their own sets of weight parameters to optimize.

At each iteration, the layers unique to the supervised layer (after branching) are
only updated via gradients from the supervised loss, and the auxiliary layer only
receives gradient updates from the modularity loss. The layers before branching
should receive a linear combination of the gradients from both output layers (based
on α).

4 Experiments

4.1 Experimental Setup

Evaluation Metrics For node classification, we use accuracy score as evaluation
metrics. The accuracy score is simply the percentage of correctly classified nodes.

DatasetsWealso use two bibliographic network datasets, Cora andCiteSeer, initially
introduced in [13]. These possess node features and classification labels for analysis
on the semi-supervised classification task. These have been extensively used in the
semi-supervised learning literature, including [6, 18]. The node features consist of
bag-of-word representations of the document text, and the edges represent the citation
links. The links are assumed to be undirected in this case.

4.2 Semi-supervised Node Classification

Given the network structure, node features, and label values of a subset of nodes,
the task of semi-supervised node classification is to predict labels for the remaining
nodes. The task is different from standard supervised classification because the pair-
wise affinity structure of the samples is available as an input. The feature values of
both labeled and unlabeled examples can be used for prediction. The basic distinction
from pure community detection is that the latter involves inferring topological clus-
ters from structure alone. On the other hand, the labels for node classification have a
semantic meaning and might not necessarily correspond to structural communities.
However, many information network domains do tend to exhibit correspondence
between semantic and topological groups according to the cluster hypothesis, and
this can be attributed to the success of many semi-supervised learning methods in
recent literature.

Experiment Design Since the modularity optimization term provides additional
information about network community structure not available from the labels them-
selves, we expect it to be most effective when the number of labeled examples for
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training is very small. To verify this, we train the baselinemodels and our community-
enhanced variants on different numbers of training examples sampled from the label
set. To avoid issues with label imbalance, we sample an equal number of labels from
each class. We use uniform random sampling in our experiments but other sampling
strategies like PageRank and degree have been explored in [9]. We avoid centrality
and degree-based sampling because they tend to return a clustered set of nodes that is
not representative of the full label set. We also sample 1000 addition nodes as a test
set in each run.We do not use a validation set for early stopping for a fair comparison
in the sparse label regime. Instead, we let each model run for 100 epochs. Since the
accuracy is highly dependent on the initial training sample, we average the results
for 20 times with different train–test splits to get a good estimate of the average
performance.

We test with two graph convolutional encoders, GCN and ChebNet. For the
community-enhancement term, we use two approaches, regularization via auxil-
iary layer and direct regularization in the output layer. All models not counting the
auxiliary layers are stacked two-layer graph convolutional architectures. This brings
us to a total of six different architecture choices. We test all models for 5, 8, 11, 14,
17, and 20 training labels per class and measure performance for 20 runs. We also
report results for the Iterative Classification Algorithm [10], a semi-supervised clas-
sification baseline, averaged over 20 runs. For Cora, the accuracy scores for node
classification for all six neural architectures and the ICA baseline are detailed in
Table1. The results for CiteSeer are omitted because of space limitations, but they
are similar to the results for Cora. We also report the standard error for each instance.
Results in the top row of the table represent the baseline methods, and the second
row shows the proposed architectures in this paper.

ResultsWe note that the community-enhanced ChebNet without the auxiliary layer
is the best-performing model on both datasets. ChebNet benefits more from the
modularity optimization term because GCN’s first-order filter with weight sharing
already acts as a regularizer and therefore addition of another unsupervised regu-
larization term has little additional benefit. ChebNet is a more general model with
higher number of parameters and can incorporate higher-order neighborhood infor-
mation, allowing it to more easily optimize for secondary tasks. Figures3 and 4 show
the relative effect of the community-enhanced loss term on accuracy for both GCN
and ChebNet.

Embedding Visualization We also visualize the effect of the community enhance-
ment on the quality of learned model representations in the sparse label regime. We
create three instances of a two-layer ChebNet with values of α set to 0, 0.5, and 1.0
respectively. We train these models on Cora with five training labels per class until
convergence. We visualize the hidden layer representations of each using T-SNE.
These are shown in Fig. 5. We note that joint optimization with α = 0.5 leads to
better separation of ground-truth labels as compared to optimizing either term alone.
Setting α = 1.0 leads to some visible clustering patterns but this does not corre-
spond to a good accuracy score on the given task. We attribute this due to the model
converging to local minima of the modularity score loss.
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Fig. 3 Node classification accuracy score for GCN on Cora

Fig. 4 Node classification accuracy score for ChebNet on Cora

(a) α = 0.0 (b) α = 0.5 (c) α = 1.0

Fig. 5 T-SNE visualization of hidden layer embeddings of second-order two-layer ChebNet trained
on Cora with varying values of α

5 Conclusion

Wesuccessfully incorporate a community-structure-preserving objective in the graph
convolutional semi-supervised learning framework. To the best of our knowledge,
this is the first such attempt in this area. We showed that the incorporation of higher-
level structural information can improve the quality of learned representations for
node classification in sparse label regime.We also identified that the specific choice of
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filter support has a significant impact on the result. Higher-order filters tend to benefit
more from the additional network-structure-preserving terms in the loss function.
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Outer Synchronization for General
Weighted Complex Dynamical Networks
Considering Incomplete Measurements
of Transmitted Information

Xinwei Wang, Guo-Ping Jiang and Xu Wu

Abstract Outer synchronization for general weighted complex dynamical networks
with randomly incomplete measurements of transmitted state variables is studied in
this paper. The incomplete measurements of control information, always occurring
during the transmission, should be considered seriously since it would cause the fail-
ure of outer synchronization process. Different from previous methods, we develop
a new method to handle the incomplete measurements, which cannot only balance
well the overly deviated controllers affected by the incomplete measurements, but
also has no particular restriction on the node dynamics. Using the Lyapunov stability
theory along with the stochastic analysis method, sufficient criteria are deduced rig-
orously to obtain the adaptive control law. Illustrative simulations are given to verify
that our proposed controllers are effective and efficient dealing with the incomplete
measurements.

1 Introduction

In recent years, studies on the complex dynamical network have attracted growing
attention due to its ubiquity in real world [1]. Since the small-world [2] and scale-
free [3] network models were proposed, more complex networks in nature can be
described as simple models with their own features across many scientific and engi-
neering fields, such as social networks [4], the Internet [5], electrical power grids [6].
Along with in-depth researches, understanding better the complexity of a network
has been further divided into many detailed aspects, which include the evolution of
network nodes [7], the diversity of topological structures [8], the phenomenon of
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network synchronization [9] and so on. It has been noticed that the synchronization
of complex dynamical networks is worth studying emphatically. Coherent behaviors
in complex dynamical networks can explain many observed phenomena and induce
some underlying characteristics.

Abundant works on the synchronization of complex dynamical networks have
been made so far. Employing the master stability function method, Pecora et al.
first investigated the synchronization stability for a number of coupled systems [10].
Afterward, based on previous studies, it was feasible to realize the inner synchro-
nization of a complex dynamical network only by regulating the network coupling
strength [11, 12]. Additionally, applying suitable coupling strength to the network,
one single controller could pin the whole complex dynamical network to a syn-
chronous state [13]. Besides the above research results under the ideal conditions,
many studies are devoted to the synchronization problem under the influence of
unreliable factors, such as coupling delays [14], stochastic noise [15], incomplete
measurements [16–19]. Owing to physical limitations or measurement cost, the con-
trol information, like state variables, transmitted through the channel cannot always
be perfectly measured. In fact, unlike the influence brought by time delays or noise
disturbance, the damage to the synchronization process caused by incomplete mea-
surements has been seriously underestimated. The unexpected absence of control
information will intensify the unbalance of controllers from a normal state and lead
to a total failure of the synchronization process. Therefore, it is necessary to consider
the synchronization problem with the incompletely measured control information.

Existing studies regarding the incomplete measurements have been mainly con-
centrated on the stability analysis [16], synchronization [17], and state estimation [18,
19] of complex dynamical networks. The Bernoulli probability distribution [16–18]
was usually used to depict the incomplete measurements of transmitted information.
If the sent information is incompletely measured at the receiver, the commonmethod
is just ignoring the absent information without any replacement [17–19] or replacing
the vacancy with the most recently received information [16]. It is worth noting that
the mentioned methods [16–19] seem to apply only to the stable networked systems
or complex dynamical networkswith stationary nodes, but not to the general complex
dynamical networks. In their stability analysis, the Lyapunov function is designed
by error states along with system states. In this way, if the error dynamical network
and every single system are stabilized asymptotically at the same time, it means
that the values of all the state variables must reach constant (even zero) themselves
without any external control. Otherwise, the influence brought by incomplete mea-
surements will be directly reflected on the excess deviation of controllers from the
normal states where they should be, which will lead to the failure of synchronization
process. Furthermore, the condition is too ideal to be satisfied in most real complex
networks.

Motivated by the above discussions, we investigate the outer synchronization
problem for two general weighted complex dynamical networks with the incom-
pletely measured information in this paper. If the sent state variables are measured
incompletely by the response network for some time periods, the corresponding states
of the response network will be replaced during those time periods. It is effective
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to fix the excess deviation of controller inputs caused by the incomplete measure-
ments. The proposed method for the outer synchronization has no special restriction
on the node dynamics. Resorting to the Lyapunov stability theory together with the
stochastic analysis method, sufficient criteria are deduced rigorously to design the
novel adaptive controllers.

The rest parts of this paper are organized as follows. Preliminaries and problem
description are given in Sect. 2. The outer synchronization for two general weighted
complex dynamical networks with incomplete measurements of transmitted infor-
mation is further discussed in Sect. 3. In Sect. 4, illustrative simulations are provided
to verify the effectiveness of the novel adaptive controllers. Some conclusions are
drawn in Sect. 5.

2 Preliminaries and Problem Description

Some useful notations are introduced first. Suppose that p, q are constant matrices
of proper dimensions. ‖p‖ denotes the Euclidean norm of p. p ⊗ q denotes the
Kronecker product of p and q. λmax(p + pT ) denotes the maximum eigenvalue of
(p + pT ). I denotes the identity matrix of proper dimensions.

Consider a general weighted complex dynamical network consisting of N non-
identical nodes, which is described as

ẋi (t) = Ai xi (t) + fi (xi (t)) + ε

N∑

j=1

ci jΓ x j (t), (1)

where i = 1, 2, . . . , N , xi (t) = [xi1(t), xi2(t), · · · , xin(t)]
T ∈ Rn is the state vector

of the i th node. Ai ∈ Rn×n is the system matrix of the i th node, and fi : Rn → Rn is
a continuously vector-valued function of that. The full dynamics of the i th isolated
node is governed by Ai and fi . ε is the coupling strength of the complex dynami-
cal network, and Γ ∈ Rn×n is the inner coupling matrix of that. C = (ci j )N×N ∈
RN×N denotes the configuration matrix which represents the topological struc-
ture of the complex dynamical network. If there exists a directed connection from
node j to node i (i �= j), then ci j �= 0; otherwise, ci j = 0. The diagonal elements

{cii |i = 1, 2, . . . , N } of C are assumed to satisfy cii = −
N∑

j=1, j �=i
ci j .

Consider another weighted complex dynamical network (2) consisting of N non-
identical nodes, in which the node dynamics is assumed to be the same as that of the
complex dynamical network (1).

ẏi (t) = Ai yi (t) + fi (yi (t)) + ε

N∑

j=1

ci jΓ y j (t), (2)
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where yi (t) = [yi1(t), yi2(t), · · · , yin(t)]
T ∈ Rn is the state vector of the i th node in

the network (2). The other network parameters are the same as the complex dynamical
network (1). In order to achieve the outer synchronization between the complex
dynamical networks (1) and (2), we take the network (1) as the drive network and
accordingly the network (2) as the response one. The adaptive feedback controllers
ui (t) are designed using the state variables of the drive and response networks, which
could be expressed by [16–19]

⎧
⎪⎪⎨

⎪⎪⎩

ẏi (t) = Ai yi (t) + fi (yi (t)) + ε

N∑

j=1

ci jΓ y j (t) + ui (t),

ui (t) = −ki
(
yi (t) − xα

i (t)
)
,

(3)

where {ki } are the adaptive feedback gains of synchronization controllers. xα
i (t) is

the state variables which is received by the response network (3). It is different from
the original states xi (t) sent from the drive network (1) since the incomplete mea-
surements have taken place in the transmission process. For simulating the common
perturbation of transmitted information occurred in real circumstances, a random
variable αi (t) is introduced as follows.

{
Prob {αi (t) = 1} = E {αi (t)} = ᾱi ,

Prob {αi (t) = 0} = 1 − E {αi (t)} = β̄i ,
(4)

where αi (t) ∈ R is the randomBernoulli-distributed variable. For instance, as shown
in Fig. 1, αi (t) = 1 represents that the sent state variable of the i th node is measured
completely by the response network during the time period t ∈ (t1, t2)

⋃
(t3, t4).

Otherwise, if the sent information is measured incompletely, then αi (t) = 0 during
the time period t ∈ (t0, t1)

⋃
(t2, t3)

⋃
(t4,∞). {αi (t) |i = 1, 2, . . . , N } are mutu-

ally independent and identically distributed to each other. ᾱi ∈ R denotes the math-
ematical expectation of the random variable αi (t). In real networks, αi (t) can be
detected at any time since there always exists a mechanism for detecting whether the
transmitted information is received or not. In the existing studies [16–19], xα

i (t) was
described as

xα
i (t) = αi (t)xi (t). (5)

Fig. 1 An illustrative
example of the random
variable αi (t)
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For the purpose of eliminating the influence brought by the incomplete mea-
surements, most previous methods [16–19] employed the controllers shown in (3)
for the outer synchronization. However, the random incomplete measurements for
some time periods would make these controllers deviate overly from the normal
states unless the node dynamics reaches a stationary state. The excess quantity of
input variables to the controllers would prevent the outer synchronization between
different complex dynamical networks.

Motivated by the above discussions, we present a novel adaptive controller in the
following (6), which can handle well with the incomplete measurements of trans-
mitted information for outer synchronization between different complex dynamical
networks: {

ui (t) = −ki (yi (t) − x̄i (t)) ,

x̄i (t) = αi (t)xi (t) + (1 − αi (t)) yi (t).
(6)

For instance, as shown in Fig. 1, if the sent state variable xi (t) from the drive
network (1) is incompletelymeasured during the time period (t2, t3), the state variable
yi (t) in the response network (3) will replace the absent xi (t) right for the time period
(t2, t3). It will fix in time the excess deviation of synchronization controllers from
the normal state owing to the incomplete measurements.

Let ei (t) = yi (t) − xi (t), and then the error dynamical network (7) could be
obtained from the drive network (1) and response network (3) with the novel con-
troller (6).

ėi (t) = ẏi (t) − ẋi (t)

= Aiei (t) + fi (yi (t)) − fi (xi (t)) +
N∑

j=1

ci jΓ e j (t) − kiαi (t)ei (t).
(7)

In order to stabilize the error dynamical network (7) as well as obtain the outer
synchronization, one suitable assumption is introduced here. The nonlinear functions
{ fi (·) |i = 1, 2, . . . , N } are assumed to be continuous and satisfy the following con-
dition: there exist positive constants {μi |i = 1, 2, . . . , N } such that

‖ fi (z1(t)) − fi (z2(t))‖ ≤ μi ‖z1(t) − z2(t)‖ , (8)

which hold for any vectors z1(t), z2(t) ∈ Rn .

3 Main Results

In this section, by employing the Lyapunov stability theory and stochastic analysis
method, the main results of the outer synchronization between different weighted
complex dynamical networks with incompletely measured information are given in
the following.
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Theorem 1 Suppose that the assumption (8) holds. Use the following adaptive law

k̇i = δi ᾱi e
T
i (t)ei (t). (9)

If there exists a positive constant k∗ that is sufficiently large, then the response net-
work (3) will synchronize with the drive network (1) under the proposed controllers
(6), i.e.,

lim
t→∞ ‖ei (t)‖ = lim

t→∞ ‖yi (t) − xi (t)‖ = 0,

where δi is a positive constant which is used to adjust the amplitude of the error
variables and the speed of the outer synchronization process.

Proof Choose the scalar Lyapunov candidate function V as follows.

V =
N∑

i=1

eTi (t)ei (t) +
N∑

i=1

1

δi

(
ki − k∗)2. (10)

Taking the form of mathematical expectation, the derivative of V is deduced in
(11) with the novel adaptive controller (6), and one gets

E(V̇ ) =
N∑

i=1

(
eTi (t)ėi (t) + ėTi (t)ei (t)

) + 2
N∑

i=1

1

δi

(
ki − k∗) k̇i

=
N∑

i=1

eTi (t)

⎛

⎝Aiei (t) + fi (yi (t)) − fi (xi (t)) +
N∑

j=1

ci jΓ e j (t)

⎞

⎠

+
N∑

i=1

⎛

⎝Aiei (t) + fi (yi (t)) − fi (xi (t)) +
N∑

j=1

ci jΓ e j (t)

⎞

⎠
T

ei (t)

− 2
N∑

i=1

ki ᾱi e
T
i (t)ei (t) + 2

N∑

i=1

1

δi
ki k̇i − 2

N∑

i=1

1

δi
k∗k̇i ,

(11)

Together with the assumption (8) and the adaptive law (9), one has

E(V̇ ) =
N∑

i=1

(
eTi (t)ėi (t) + ėTi (t)ei (t)

) + 2
N∑

i=1

1

δi

(
ki − k∗) k̇i

=
N∑

i=1

eTi (t)
(
Ai + AT

i

)
ei (t) − 2

N∑

i=1

eTi (t)ki ᾱi ei (t)
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+ 2
N∑

i=1

1

δi
ki k̇i − 2

N∑

i=1

1

δi
k∗k̇i +

N∑

i=1

eTi (t)

⎛

⎝
N∑

j=1

ci jΓ e j (t)

⎞

⎠

+
N∑

i=1

⎛

⎝
N∑

j=1

ci jΓ e j (t)

⎞

⎠
T

ei (t) +
N∑

i=1

eTi (t) ( fi (yi (t)) − fi (xi (t))) (12)

+
N∑

i=1

( fi (yi (t)) − fi (xi (t)))
T ei (t)

≤
N∑

i=1

eTi (t)
(
Ai + AT

i + 2μi I − 2k∗ᾱi I
)
ei (t)

+
N∑

i=1

⎛

⎜⎝eTi (t)

⎛

⎝
N∑

j=1

ci jΓ e j (t)

⎞

⎠ +
⎛

⎝
N∑

j=1

ci jΓ e j (t)

⎞

⎠
T

ei (t)

⎞

⎟⎠,

Let e(t) = [
eT1 (t), eT2 (t), . . . , eTN (t)

]T ∈ RN , P = C ⊗ Γ , and one obtains

E(V̇ ) ≤ eT (t)
(
A + AT + 2μI − 2k∗α I + C ⊗ Γ + CT ⊗ Γ T

)
e(t)

≤ (
λmax(A + AT ) + 2μ + λmax(P + PT ) − 2k∗α

)
eT (t)e(t),

(13)

where
A = diag (A1, A2, . . . , AN ) ,

μ = diag (μ1, μ2, . . . , μN ) ⊗ I,

α = diag (ᾱ1, ᾱ2, . . . , ᾱN ) ⊗ I.

Taking k∗ = 1
2α

(
λmax(A + AT ) + 2μ + λmax(P + PT ) + 1

)
, it is proved that the

sufficiently large k∗ does exist. Then, one has E(V̇ ) ≤ −eT (t)e(t) < 0 holding for
any e(t) �= 0. Only if e(t) = 0, then E(V̇ ) = 0. Based on the Lyapunov stability
theory, the error dynamical network (7) is asymptotically stabilized at the origin,
which means the drive network (1) and response network (3) achieve the outer
synchronization with the incomplete measurements of transmitted state variables
under the proposed controllers (6). The proof is completed.

4 Numerical Simulations

In this section, numerical simulations are given to demonstrate the effectiveness of the
novel adaptive controllers (6) that handle well the random incomplete measurements
of transmitted information. The Lorenz system (14) is taken as the node dynamics
since its irregular behavior could increase the difficulty of the outer synchronization.



146 X. Wang et al.

Additionally, as a chaotic system, the Lorenz system is extremely sensitive to initial
values, which is convenient to construct different networks for the simulation:

⎧
⎪⎨

⎪⎩

ẋi1(t) = a (xi2(t) − xi1(t)) ,

ẋi2(t) = cxi1(t) − xi2(t) − xi1(t)xi3(t),

ẋi3(t) = xi1(t)xi2(t) − bxi3(t),

(14)

where a = 10, b = 8/3, c = 28. The assumption (8) is clearly satisfied since chaotic
attractors are bounded in a certain region [20]. Consider a weighted complex dynam-
ical network (15) composed of six chaotic nodes.

ẋi (t) = Axi (t) + f (xi (t)) + ε

6∑

j=1

ci jΓ x j (t), (15)

where A =
⎡

⎣
−10 10 0
28 −1 0
0 0 −8/3

⎤

⎦, Γ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, ε = 0.1. The topological structure of

the network (15) represented by the matrix C is shown in Fig. 2.

C = (ci j )6×6 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 0 0 2 0 0
0 −2 1 1 0 0
0 0 −1 0 0 1
0 0 0 0 0 0
1 0 2 0 −5 2
0 0 0 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Consider another weighted complex dynamical network (16), whose initial values
of state variables are chosen differently from (15).

Fig. 2 Topological structure
of complex dynamical
networks (15)

1 2

4 5

3

6



Outer Synchronization for General Weighted Complex … 147

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏi (t) = Ayi (t) + f (yi (t)) + ε

6∑

j=1

ci jΓ y j (t) + ui (t),

ui (t) = −ki (yi (t) − x̄i (t)) ,

xα
i (t) = αi (t)xi (t).

x̄i (t) = xα
i (t) + (1 − αi (t)) yi (t),

ei (t) = yi (t) − xi (t),

k̇i = δi ᾱe
T
i (t)ei (t).

(16)

The mathematical expectations of random variables {αi (t) |i = 1, 2, . . . , 6 } are
assumed to be the same as ᾱ = 0.7, and {δi |i = 1, 2, . . . , 6 } are set as δ = 2 for
simplicity. The initial values of state variables in the networks (15) and (16) are set
randomly in the interval (0, 1). The outer synchronization process of the networks
(15) and (16) is shown in Fig. 3.

From Fig. 3, it is easy to find that the dynamical error variables of the corre-
sponding nodes in the networks (15) and (16) converge quickly to the origin with
random incomplete measurements of transmitted state variables. Figure4 shows the
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Fig. 3 Error variables of corresponding nodes {xi |i = 1, 2, . . . , 6 } in the outer synchronization
process
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Fig. 4 Diagram of the random variable αi (t) versus time t

Fig. 5 Adaptive feedback
gains {ki }
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evolution of the random variable αi (t). The adaptive feedback gains {ki } are shown
in Fig. 5.

Figures3 and 4 show that, after a short period, the network (16) achieves com-
pletely the outer synchronization with the network (15) by employing the designed
adaptive controllers which function well with random incompletely measured infor-
mation.

5 Conclusions

In this paper, we have investigated the outer synchronization for general weighted
complex dynamical networks with incomplete measurements of transmitted state
variables. We have proposed a novel method that performs well to balance the overly
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deviated controllers affected by the incomplete measurements. Moreover, compared
to most previous methods, it has no special restriction on the node dynamics. Suffi-
cient criteria are deduced rigorously for designing the adaptive controllers to obtain
the outer synchronization.Numerical simulations are given to verify the effectiveness
of our proposed method dealing with the incomplete measurements of transmitted
information.
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Diffusive Phenomena in Dynamic
Networks: A Data-Driven Study

Letizia Milli, Giulio Rossetti, Dino Pedreschi and Fosca Giannotti

Abstract Everyday, ideas, information aswell as viruses spread over complex social
tissues described by our interpersonal relations. So far, the network contexts upon
which diffusive phenomena unfold have usually been considered static, composed
by a fixed set of nodes and edges. Recent studies describe social networks as rapidly
changing topologies. In thiswork—following a data-driven approach—wecompare
the behaviors of classical spreading models when used to analyze a given social
networkwhose topological dynamics are observed at different temporal granularities.
Our goal is to shed some light on the impacts that the adoption of a static topology
has on spreading simulations as well as to provide an alternative formulation of two
classical diffusion models.

1 Introduction

Since the last decade, we are living two lives at the same time: one offline and one
online. One of the facilities the WWW has granted us is the dismantling of physical
distances, thus impacting the way diffusive phenomena evolve.

In the real world, we are discussing the spread of viruses such as passive con-
tagion processes that do not require active agents to unfold. The diffusion of ideas,
conversely, is an example of active process: Each can choose to adopt/advertise
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a new idea or not. When we move to the online world, we can experience both pas-
sive and active diffusion. These processes occur on top of social structures that have
often been considered static. However, both passive and active processes require a
direct contact with a content to spread from an already infected person to a suscep-
tible one. Social interactions have a limited duration so that they dynamically shape
the topology of our social graph.

In thiswork,we tackle the problemof understanding if, and how, dynamic network
topology affects the diffusion of information. Is a static social network representation
enough to simulate information spreading? Must topology dynamics be taken into
account to understand the real diffusive phenomena better?

2 Related Works

Two different, yet related topics need to be reviewed and discussed: information
spreading and dynamic social networks analysis.

Information Spreading. When we use the word “spreading” we think contagious
diseases caused by biological pathogens. However, a plethora of phenomena can be
linked to the concept of the epidemic: such as the spread of computer viruses [1],
mobile phone virus [2], or the diffusion of knowledge in an online social network [3].
Here, we focus on the diffusion of innovations/idea. Rogers developed the diffusion
of innovation theory in 1962 [4]: It aims to explain how an idea or product diffuses
through a specific population or social system.

Dynamic Social Networks. With the explosion of human-generated data, the time
has started representing a non-negligible entity. During the last decade, several works
have provided novel interpretations of known problems, porting them from static to
temporal networks: Motifs mining [5], link prediction [6], community discovery
[7] are only a few examples. Indeed, [8] showed that it is mandatory to consider
different granularity of temporal abstraction. Once understood the importance of ties
dynamics for the overall network topology it becomes natural to study how they
affect spreading phenomena.

Spreading on Dynamic Networks. Recently, the analysis of diffusive processes in
dynamic networks has started to capture the attention of the research community,
such as in [9] or [10] where the authors used the SI and SIR model, respectively, in
dynamic contests. [11] and [12] are some of the few investigations of how dynamic
networks affect the spread of information. Finally, in [13] a data-driven study similar
to ours was performed. However, the authors were forced to synthesize network
topology evolution, thus making impossible to observe the impact of characteristic
phenomenon events on the diffusive process.
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3 Problem Definition

Our analysis will be focused on answering the following questions:

Q1 : Can analyzing spreading phenomena on a static social graph lead to an over-
estimate of the real volume of its diffusion?

Q2 : Do the choices made to keep track of topology dynamics impact the speed of
diffusive processes?

Q3 : Is it safe to assume that spreading phenomena on a dynamic network topology
unfold at a constant rate? Do the variations, as the diffusion progresses, of the
number of nodes/edges impact the overall diffusion process?

To address such questions, we define three different scenarios. We model a network
as an undirected graph denoted as G = (V, E), where V is the set of the nodes and
E is a set of interactions (edges), i.e., a triplet (u, v, t) where u, v ∈ V and t ∈ N

identify the time at which an interaction occurs between nodes u to v. We allow the
presence of multiple interactions among the same pair of nodes. In the following, we
will denote with Et j the set of interactions that appears in the graph at time t j . We
can formalize the problem in the following way:

Definition 1 (Spreading problem) Given a networkG = (V, E) observed for k con-
secutive snapshots, a diffusion model D, and a set It0 = {n1, n2, ..., n j } ⊆ V iden-
tifying the initial infected nodes, we define the result of D(G, It0) as the ordered
sequence I = {It1 , ..., Itk } of the nodes infected during each snapshot.

The scenarios we will analyze in our data-driven investigation are:

–S1 — Static topology. For each time ti with i = 1, ..., k, we applied D to the full
network G = (V, E) using as infected node set at time ti the result of D(G, Iti−1).
The set of edges will be E = Et1 ∪ Et2 ∪ ... ∪ Etk .
–S2—Snapshot evolution.For each time ti with i = 1, ..., k,we computeD(Gti , Iti−1)

where Gti = (V, Eti ).
–S3 — Interaction dynamics. For each time ti with i = 1, ..., k, we apply D incre-
mentally to the ordered stream of interaction in Eti .

In S1, a network will be built flattening all the interactions occurred in a single
one, thus describing dynamic phenomena with a static structure. In S2, a network
will be built for each snapshot and the spreading process computed on each one of
them starting, incrementally, from the previous infection status. Finally, in S3 all the
interactions among nodes that occur during each snapshot will be analyzed in their
temporal ordering: No network will be explicitly built.
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Table 1 Base statistics of the analyzed interaction graphs

Network Nodes Interactions Edges #Observation

WEIBO 1 656 615 6 759 012 3 394 566 90days

FB07 19 561 304 392 67 077 365days

4 Data-Driven Study

To address our research questions, we used the following datasets:

WEIBO1: It is based on data from the popular Chinese micro-blog serviceWEIBO2.
An interaction represents a direct message from two users. We selected the first 90
days of the year 2011.

Facebook: The FB07 network is a sample of the WOSN2009 [14] dataset and
describes online interactions between Facebook users during 2007.

In Table1 are reported the main statistics of the networks.
On such datasets, we simulated two classical compartmental models SI and

SIRdetailed in Sect. 4.1. For each scenario, in Sect. 4.2 we compared the diffu-
sion trends obtained while varying network dynamic and the model’s parameters;
in Sect. 5, we discuss our results and underline their relations with the topology
dynamic.

4.1 Diffusion Models

We chose SI and SIR to describe two different information diffusion scenarios:

D1 — Continuous advertising: After having adopted an idea/innovation, an agent
continues to advertise it to its neighbors during each interaction;
D2— Diminishing advertising: After having adopted an idea/innovation, an agent
can decide to stop advertising it to its neighbors.
Since both models have been described for complete networks and static graphs, we
will describe the modifications to apply them to the S2 and S3 scenarios.

SI: This model was introduced in 1927 by Kermack [15]. During the epidemics, an
individual can belong to two states, infected (I ) and susceptible (S); we adopt SI
to simulate diffusion scenario D1. SI assumes that if a susceptible node comes into
contact with an infected one, it becomes infected with probability β.

1http://www.wise2012.cs.ucy.ac.cy/challenge.html
2http://weibo.com

http://www.wise2012.cs.ucy.ac.cy/challenge.html
http://weibo.com
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Algorithm 1 Interaction-based SI
Require: It0 : set of initial infected node
1: for each ti in {1,...,k} do
2: Iti = Iti−1
3: for each interaction (u, v, ti ) in Eti do
4: if v in Iti−1 then

5: p = rand(0, 1) � Random value in [0,1]
6: if β > p then
7: add u to Iti
8: end if
9: end if
10: end for
11: yield Iti � Return daily status
12: end for

S1: Static network. For every day ti , each node u ∈ V having at least an infected
neighbor is evaluated to decide if it will become infected or not.SI sets the probability
of infection for a node having n infected neighbors as nβ: The more the infected
neighbors a node has the higher its chance to join the I set.

S2: Snapshot-based evolution. The model applied at day ti will use Iti−1 and Eti−1 .
Therefore, the node sets and the interactions of consecutive snapshot could vary.
Naturally, the nodes not present during ti do not take part in the diffusion process at
time ti . The probability of infection for a node u is nti β with nti ≤ n restricting the
set of infected neighbors to the ones that are present at time ti .

S3: Interaction-based evolution.We can imagine such scenario as word of mouth
spreading phenomena in which an idea or behavior can be shared/adopted only
through a direct contact. We implement streaming SI as shown in Algorithm 1. In
this model, an actor u involved into m interactions with infected nodes during the
day ti has a probability of infection equal to

∑m
i=1 β.

SIR: This model represents a variation of the previous one. Each node belongs to
three states during the epidemics: the state infected I , susceptible S, and removed
R. We adopt SIR to simulate diffusion scenario D2.

S1: Static network. We applied the classical formulation of the model on the
flattened static graph. In SIR the idea/innovation is adopted with a nβ probability.
Moreover, during each iteration, the probability that an infected node decides to stop
advertising to its neighbors — thus joining the R set — is γ.

S2–S3: Dynamic networks. To comply with the topology dynamics described by
S2 and S3, we adopted the SIRmodel with the same rationales used for SI. We omit
the pseudocode for the interaction-based version of SIR since it differs from the one
reported in Algorithm 1 solely for the evaluation of the removal probability γ.
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4.2 Diffusion Analysis

We organized our simulations as follows:

-i: For each dataset, we randomly selected 10 sets of nodes each one covering 5%
of the V : Such sets identify It0 ;

-ii: For each dataset, scenario, and initially infected status, we executed the SI and
SIR models while setting their parameters;

-iii: We build the infection trend as the iteration-wise average of the runs over the
10 executions performed varying the initially infected nodes.

D1—Continuous advertising. Figure1 shows the results obtained by the simulation
of the SI model on the two datasets.

Scenario S1. In WEIBO, Fig. 1a, setting β = 0.01 leads to an epidemic state
covering almost 70% of the nodes. Increasing the values, a significant speedup in
the diffusion process allows reaching almost the 80% of the nodes, after only 15–20
iterations. In FB07, Fig. 1d, the impact of β is more evident: A slight increase doubles
the number of nodes infected after the first 50 iterations.

Scenario S2. This scenario leads to a significant reduction of the diffusion speed;
in both WEIBO and FB07, the infection trends do not reach saturation. Observing
the FB07 trend, Fig. 1e, only for β = 0.5 we can reach a final percentage of infected
nodes “comparable” to the lowest one obtained by the samemodel on S1. InWEIBO,
Fig. 1b, the pattern is similar.

(a) WEIBO - S1 (b) WEIBO - S2 (c) WEIBO - S3

(d) FB07 - S1 (e) FB07 - S2 (f) FB07 - S3

Fig. 1 Simulation of SI models on both WEIBO and FB07: The curves represent the average
percentage of infected nodes over time while varying the model parameter
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(a) WEIBO - S1 - β = 0, 01 (b) WEIBO - S2 - β = 0, 5 (c) WEIBO - S3 - β = 0, 5

(d) FB07 - S1 - β = 0, 01 (e) FB07 - S2 - β = 0, 5 (f) FB07 - S3 - β = 0, 5

Fig. 2 Simulation of SIR models on both WEIBO and FB07: The curves represent the average
percentage of infected nodes over time while varying the model parameters

Scenario S3. We observe a behavior similar to the one identified in S2; however,
in this scenario the infection trends grow always faster than the ones in S2. Such
speedup is due to the different way the probability of infection is calculated: In S2
a node having n infected neighbors is subject to a nβ probability of being infected,
and in S3 the probability equals to

∑m
i=1 β (where m ≥ n since during the same day

multiple interactions can occur among the same pair of nodes).

D2—Diminishing advertising. Figure 2 shows the results obtained by the simula-
tion of the SIR model.

Scenario S1. In the simulation with SI, the diffusion reached in S1 with β = 0.01
is reachable in S2 and S3 when β = 0.5; so, we instantiate SIR fixing β = 0.01. In
both datasets, we observe, Fig. 2a, d, the classic decay experienced by the infection
trend in a SIR model. With lower values of γ (γ = 0.01), we found a rapid growth
in the first period followed by a period where it rapidly decreased. For γ >> β, the
growing phase is not present since all the initial infected nodes are more likely to
being removed than to spread the infection.

Scenarios S2–S3. In Fig. 2b, c, e, f, we report for S2 and S3 the infection trends
for β = 0.5. Similar to what happened in S1, for values of γ comparable to the β
ones the trend curves steadily die out. However, the velocity of both infection and
recovery diffusions is extremely lower w.r.t. the ones in S1.
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5 Discussion

Our results suggest that the particular characteristics possessed by a dynamic system
deeply affect the way a word of mouth diffusion of an idea/innovation will spread.
Now, we concentrate our analysis on the WEIBO dataset. In Fig. 3a are shown the
patterns of daily interactions and node presences of theWEIBO interaction network.
Such trends show an overall increase in the number of interactions and nodes. We
identify the Sundays with vertical lines; the WEIBO users tend to diminish their
presence during the weekends. We can also observe a sharp peak in the number of
interactions and nodes on the 34th day: Such day, 3 February 2011, identified the
Chinese NewYear. If we examine Figs. 1a, b, c and 2a, b, c, we can notice that in both
S2 andS3, for all the tested parameters, a “small” jumphighlights a sudden increase in
the infected nodes, while in S1 such behavior is not present. Therefore, by adopting
a flattened graph as in S1, not only we get an overestimate of the percentage of
infected but also we do not capture the presence of special events. Such observations
are confirmed by the prevalence plots shown in Fig. 3b, c where is reported for each
day the number of novel infected nodes for SI and SIR respectively.

Once compared the diffusion trends in the three identified scenarios we can now
provide answers to the research questions raised in Sect. 3:

A1: Yes, using an aggregate, static graph leads to an overestimate of the real network
connectivity and, as a consequence, of all the diffusion processes.

A2: Yes, different temporal granularities for topology dynamics aggregation (e.g.,
snapshots and interactions) cause different spreading velocities.

A3: No, peculiar topology evolution patterns or the chosen diffusion model affects
the rate of infection. In particular, cyclic patterns (weekend/weekdays) or spe-
cial events (the Chinese New Year) characterize the rate at which diffusion
occurs in SI, while the former loses its relevance with a SIR model.

(a) Daily trends (b) SI (c) SIR

Fig. 3 a Daily trends in the WEIBO. Vertical lines identify Sundays. b, c Delta infection trend in
SI (a) and SIR (b). The trends compare models having the following parameter settings — SI: S1
β = 0.01, S2–S3 β = 0.5; SIR: S1 β = 0.01 γ = 0.01, S2–S3: β = 0.5 γ = 0.01
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6 Conclusions

In this work, we analyzed diffusive phenomena on dynamic social interaction graphs.
We performed a data-driven study aimed to underline the real impact of network
dynamics. After having modeled three different scenarios, we studied their impact
on the outcome produced by classical compartmental models that we redefined to
handle topology dynamics3. Our results show that analyzing diffusive phenomena
without considering topology dynamic lead to relevant over estimate of the real speed
and not capture the presence of special events.

As future work, we plan to study the other side of the problem; namely, the impact
diffusive processes have on network topology.
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Fractal Analyses of Networks of
Integrate-and-Fire Stochastic Spiking
Neurons

Ariadne A. Costa, Mary Jean Amon, Olaf Sporns and Luis H. Favela

Abstract Although there is increasing evidence of criticality in the brain, the pro-
cesses that guide neuronal networks to reach or maintain criticality remain unclear.
The present research examines the role of neuronal gain plasticity in time-series
of simulated neuronal networks composed of integrate-and-fire stochastic spiking
neurons and the utility of fractal methods in assessing network criticality. Simulated
time-series were derived from a network model of fully connected discrete-time
stochastic excitable neurons. Monofractal and multifractal analyses were applied to
neuronal gain time-series. Fractal scaling was greatest in networks with a mid-range
of neuronal plasticity, versus extremely high or low levels of plasticity. Peak fractal
scaling corresponded closely to additional indices of criticality, including average
branching ratio. Networks exhibited multifractal structure, or multiple scaling rela-
tionships. Multifractal spectra around peak criticality exhibited elongated right tails,
suggesting that the fractal structure is relatively insensitive to high-amplitude local
fluctuations. Networks near critical states exhibited mid-range multifractal spectra
width and tail length, which is consistent with the literature suggesting that networks
poised at quasi-critical states must be stable enough to maintain organization but
unstable enough to be adaptable. Lastly, fractal analyses may offer additional infor-
mation about critical state dynamics of networks by indicating scales of influence as
networks approach critical states.

1 Introduction

The last two decades have seen increasing discussion about the prevalence and role
of criticality in the brain [1–4]. Criticality is a property of systems organized near
phase transitions. Loosely speaking, a critical state is stable enough to maintain

A. A. Costa (B) · M. J. Amon · O. Sporns
Department of Psychological and Brain Sciences, Indiana University,
Bloomington, IN 47405, USA

L. H. Favela
Department of Philosophy and Cognitive Sciences Program,
University of Central Florida, Orlando, FL 32816, USA

© Springer International Publishing AG 2018
S. Cornelius et al. (eds.), Complex Networks IX, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-319-73198-8_14

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73198-8_14&domain=pdf


162 A. A. Costa et al.

organization, but is unstable enough to be adaptable so as to facilitate switches
among states. Criticality has been experimentally demonstrated in neuronal systems
in a variety of ways, for example, in vivo [5–8], in vi tro [9, 10], and in silico
(e.g., [11–14]). A natural question to ask is, “Why do brains exhibit criticality?”
Though there is no agreed upon answer, a number of possibilities have been offered;
for example, criticality maximizes the range of inputs that can be processed by
neurons [15, 16], optimizes information processing [17, 18], and is a signature of
brain dynamics in healthy nervous systems [19].

A primary indicator of criticality is power-law distributions. As an example, both
size and duration of neuronal avalanches—cascades of neurons spiking consecutively
—in cortical circuits are distributed according to power laws [9]. In regard to criti-
cality, it is claimed that power-law distributions exhibit fractal scaling. Fractals are
scale-free and self-similar spatial or temporal patterns, whereby the global pattern
is maintained at various scales of observation [20, 21]. Mathematical fractals are
perfectly self-similar across scale (e.g., Koch snowflakes and Sierpinski triangles).
Natural fractals are statistically self-similar across scales (e.g., the coastline ofBritain
and tree branching). In this sense, power-lawdistributions can represent the scale-free
self-similarity of fractals, although precise relationship between criticality, fractals,
and power laws remains controversial (for review see [22]). While there is growing
evidence of criticality in brains, an explanation of how brains reach and maintain
such states remains elusive (cf. [23]).

Considering that power-law distributions can be indicators of criticality, and given
that fractal scaling can be represented in terms of power-law distributions, fractal
analyses may be useful methods for assessing the presence of criticality and quanti-
fying how far a system is from criticality. In the current work, we test this hypothesis
and attempt to understand more about the processes that guide a neuronal network
to reach and/or maintain itself around criticality. To do this, we determine the scal-
ing behaviors of temporal series of simulations of neuronal networks composed of
stochastic spiking neurons [24] with gain plasticity [25] usingmonofractal detrended
fluctuation analysis (DFA) andmultifractalDFA (MFDFA). This neuronalmodelwas
first proposed as an explanation for self-organizing criticality (SOC) in cortical cir-
cuits in the brain, suggesting that neural circuits operate slightly above criticality
(self-organizing supercriticality; SOSC).

In a classic paper, Bak, Tang, and Wiesenfeld showed that systems with spatial
degrees of freedom self-organize into critical states reflected by 1/ f (fractal) noise
spectra, presenting minimally stable clusters at all length scales [21]. In accordance
with Bak and colleagues, our main finding is that 1/ f noise in time-series of neuronal
gain plasticity corresponds to systems in (quasi-)critical states.

In the following section, we detail the mathematical neuronal model implemented
and also the methods used for the analyses. Next, we present the fractal analysis
results and conclude with a discussion of the results that may further illuminate the
nature of neuronal criticality.
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2 Method

2.1 Neuronal Model

Themodel considered here was first proposed by Costa et al. [25]. It consists of a net-
work of i = 1, . . . , N discrete-time stochastic excitable neurons [14, 24–27]. Each
neuron is connected to all other neurons j (i.e., it is a fully connected network). The
presynaptic neuron j transmits signals to the postsynaptic neuron i proportionally
to the synaptic strength Wi j .

This is an adaptation of the Galves–Löcherbach (GL) model [24] by adding neu-
ronal gain plasticity. As in the GL model, each neuron has a membrane potential Vi

that is evolved at each timestep t . In the special case of GL model with the filter
function g(t − ts) = μt−ts , where ts is the time of the last firing of neuron i , the
membrane potential at t + 1 can be discretized as:

Vi [t + 1] =

⎧
⎪⎨

⎪⎩

0 if Xi [t] = 1,

μVi [t] + Iext + 1

N

N∑

j=1

Wi j X j [t] if Xi [t] = 0, (1)

where Iext represents external stimuli arriving at the postsynaptic neuron, while X j is
the state of the presynaptic neuron between the timesteps t and t + 1 (X j = 1 when
j spikes and X j = 0 otherwise). The leakage factor μ ∈ [0, 1] reflects the diffusion
of ions through the membrane.

Unlike the classic leaky integrate-and-fire (LIF) model [28], the neuron does
not fire deterministically when Vi [t + 1] exceeds a threshold. That fixed threshold
potential is substituted by a probability of firing Φ(Vi [t]), according to a firing
function [24, 25, 29–32]. The rational firing function [14, 25, 29] is used to calculate
the firing probability 0 ≤ Φ(Vi [t]) ≤ 1 for each neuron at each timestep:

Φi [t](Vi [t]) = Γi [t](Vi [t] − VT )

1 + Γi [t] − (Vi [t] − VT )
Θ(Vi [t] − VT ) . (2)

The neuronal gain Γi causes an amplification to the signal received by the neuron
and is evolved as it follows:

Γi [t + 1] = Γi [t] + 1

τ
Γi [t] − Γi [t]Xi [t] , (3)

where τ is gain recovery time. The neuronal gain recovers each timestep and is
decreased just after the neuron spikes. These dynamics are biologically plausible,
corresponding to the reduction and recovery of sodium channels at the axon initial
segment after spiking, as described in [33].

An advantage of studying neuronal gain plasticity instead of synaptic plasticity—
as in previousworks [12, 13, 34]—is the reduction in the number of equations evolved
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at each timestep: N equations for neuronal gains rather than N (N − 1) equations
for corresponding synapses [14, 25].

The results presented here come from simulations of networkswith N = 160, 000
neurons without external stimulus (Iext = 0). After spiking, neurons do not have
memory of previous timesteps (μ = 0). The threshold potential is VT = 0. Simula-
tions were conducted in Fortran90.

Analyses were performed in time-series of average gains (computed over all
neurons at each timestep) for different values of neuronal gain recovery times (τ ).
A long transient of 5 million timesteps was removed (see [25]), so that only the last
50,000 timesteps were analyzed.

2.2 Fractal Analyses

Detrended fluctuation analysis (DFA) is a type of monofractal analysis that removes
local linear trends within specified windows of time in the data and then looks
for statistical self-similarity in what remains. After linear detrending, the residual
represents fluctuations around the global trend. For eachwindow size, the log-log plot
of the transformed frequency as a function of the transformed amplitude fluctuations
reveals a linear relation indicating the degree of self-similarity across scaling, given
by the Hurst exponent (H ).

Hurst exponents approaching one (H ≈ 1) represent 1/ f noise or 1/ f scaling.
1/ f scaling indicates the presence of fractal structure within a signal or self-similar
temporal or spatial patterns across scales [35–37]. 1/ f noise contrasts with white
noise, which represents relatively randomor independent timesteps (H ≈ 0.5). Hurst
exponents close to 1.5 or higher (H ≈ 1.5) represent Brownian motion. Brownian
noise describes patterns of variability that exhibit a randomwalk pattern, with global
structure and local independence [38, 39]. Brownian noise often can be used to
describe the movement of natural systems, where it is not easy to predict a specific
movement trajectory, but the trajectory is always dependent on the system’s previous
position. Lastly, blue noise is indicative of anti-persistence (H ≈ 0.0), where pos-
itive data points tend to be followed by negative ones and vice versa such that this
signal tends toward its mean. Anti-persistence is an indicator of a signal with short
memory [39, 40].

Monofractal scaling identifies one scaling relationship that best characterizes a
signal and assumes invariance across temporal or spatial scales. However, variance
often occurs across scales. Multifractal analysis indicates the degree to which power-
law structure and self-similarity across scales are heterogeneous across a signal.
Unlike monofractal analysis, multifractal analysis is capable of characterizing dif-
ferent local scaling properties across a signal [41]. Multifractal detrended fluctuation
analysis (MFDFA) adds an additional q parameter to DFA, which weights the influ-
ence of small and large fluctuations or root-mean-square (RMS). RMS of variation
around local trends is successively raised to the value of each q parameter [8]. The
more negative the q value, the more strongly it is influenced by segments with small
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RMS. Conversely, more positive q values are influenced by segments with large
RMS and q’s of 0 are neutral to the influence of relatively small or large RMS [41].
The variation of Hurst exponents (Hmax − Hmin) based on q provides an index of
multifractality or the degree to which 1/ f scaling varies across the signal [41]. The
multifractal spectrum can be plotted to represent the variation, as well as the relative
length of the right and left tails of the multifractal spectra. Multifractal spectra with
long right tails indicate that the fractal structure is relatively insensitive to local fluc-
tuations with large magnitudes, and long left tails suggest that spectra are relatively
insensitive to local fluctuations with small magnitudes [41].

Prior to analyses, data were normalized and outliers ±4 standard deviations were
trimmed [39]. Minimum (min = 4) and maximum (max = 4,096) window sizes
were selected to accommodate the sample size of the time-series (S = 50, 000). The
minimumwindow size was chosen to avoid local RMS fluctuation errors, and a max-
imum window size was selected to represent a significant portion of the time-series
while allowing for multiple windows across the time-series [42]. Windows were
overlapped by 50% to provide better estimates of within-window variability [8, 43,
44]. A linear detrending procedure was utilized to examine power-law scaling in the
residuals (e.g., [42]). Preliminary analyses indicated that data were fractional Brow-
nian motion, suggesting that data did not need to be integrated prior to analysis [45,
46].

3 Results

DFA was used to determine the extent to which a dynamical sequence of average
neuronal gain (Γ ∗) exhibited 1/ f scaling. Hurst exponents were derived for average
neuronal gain time-series for different τ values (Fig. 1). Hurst exponents (H ) peak
in the range of 1/ f (fractal) noise τ ≈ 1, 920 (H = 0.91). Hurst exponents were
positively associated with average gain ranging between τ = 160 and τ = 1, 920.
After peaking at τ ≈ 1, 920, Hurst exponents began to decline with increasing τ
values (τ = 1, 920 – 12, 320). Hurst exponents were in the range between white and
1/ f noise (M = 0.81 ± 0.09, min = 0.67, max = 0.91), with the greatest degree of
1/ f scaling τ ≈ 1, 920.

For the same systems, the average branching ratio (σ∗)—a common measure for
criticality characterization [13, 47–49]—was also computed (see Fig. 1a). In theory,
σ∗ = 1 corresponds to a stable (critical) system, while lower values of σ∗ represent
the activity decreasing in a subcritical system, and σ∗ > 1 indicates the activity
increasing in supercritical ones. Figure1b reveals how H changes due to variations
in the average branching ratio corresponding to the networks with different τ values.

According to analytical calculations (see [25]), we can have the critical values
ΓC = 1/WC in the stationary state for the model with neither synaptic nor gain
plasticity, i.e., fix Γ and W values for all neurons. In the simulations, we have fix
WC = 1, which implies in ΓC = 1. However, for the model containing neuronal gain
plasticity, as presented here, we can also assert due to analytical calculations that Γ ∗
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Fig. 1 Relationship between
characteristic neuronal gain
recovery time (τ ) and fractal
scaling (Hurst exponent),
average branching ratio of
active neurons (σ∗) and
branching ratio. a As fractal
scaling increases τ = 160 to
1,920 and peaks τ = 1, 920,
the branching ratio
approaches criticality
(σ∗ ≈ 1). After this point,
the fractal scaling reduces,
suggesting that greater
fractal scaling of gain is
associated with gain
criticality. b As characteristic
neuronal gain recovery time
(τ ) increases, the branching
ratio moves away from
supercriticality (σ∗ > 1) to
subcriticality (σ∗ < 1). The
Hurst exponents peak for
τ = 1, 920
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depends on τ [25]. In this sense, we expect variations of the average gain in time-
series of networks with different τ values.

Figure1b compares three different measures to estimate criticality in neuronal
networks with different characteristic times of recovery τ . The three measures are
the Hurst exponent (H ), branching ratio (σ∗), and average gain (Γ ∗). Peak 1/ f noise,
as well Γ ∗ ≈ 1 (for this specific case of the model with μ = 0, VT = 0, Iext = 0,
Wi j = W = 1) and σ ≈ 1, is indicative of criticality.

MFDFA applied an additional parameter to the DFA analysis, such that mini-
mum and maximum q-orders were selected to examine the influence of segments
with large and small fluctuations on the degree of neuronal gain fractal scaling. The
q-orders ranged from qmin = −5 to qmax = 5 with a step size of qstep = 2 [41]. Neu-
ronal gain time-series exhibited multifractality, with average minimum Hurst expo-
nents M = 0.56 ± 0.12 and maximum Hurst exponents M = 1.70 ± 0.12 having
an average multifractal spectra width M = 1.06 ± 0.33. Multifractal spectra width
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Fig. 2 First, t = 500 timesteps of neuronal gain time-series (left column) and multifractal spectra
of corresponding time-series (50, 000 timesteps; right column) for select τ values ranging τ = 160–
10, 560. Gain time-series with lower characteristic time of neuronal gain recovery (τ ) demonstrate
higher frequency fluctuations, as compared to gain time-series for higher τ . Fast timescale fluctu-
ations are reflected in multifractal spectra with extended left tails. As τ increases, slow-frequency
and low-amplitude timescale fluctuations of neuronal gain become more pronounced, such that left
multispectra tails are truncated compared to right tails
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was negatively correlated with higher τ , r = −0.66, p = 0.02, such that 1/ f scaling
stabilized with greater neuronal gain M = 1.06 ± 0.33; see Fig. 2.

In terms of overall multifractal spectra tail length, multifractal spectra exhibited
elongated right tails (Mlef t−right = 0.33 ± 0.23). Differences between left and right
tail lengths demonstrated extended right tails for neuronal gain plasticity ranging
between τ = 320 and τ = 12, 320 (Mlef t−right = 0.39 ± 0.18), while extended left
tails were observed for gain plasticity between τ = 160 and τ = 240 (Mlef t−right =
−0.08 ± 0.04). Neuronal plasticity was positively associated with left tail values
(r = 0.75, p = 0.001, M = 0.43 ± 0.17) and negatively associated with differences
between left and right tail values (r = −0.73, p = 0.02, M = 0.33 ± 0.23). Elon-
gated right tail lengths indicate that networks with higher levels of plasticity are
relatively insensitive to local fluctuations with large magnitudes.

4 Discussion

The present study evaluated the fractal dynamics of fully connected networks of
stochastic integrate-and-fire spiking neurons in order to examine neuronal gain plas-
ticity as a factor that may drive the brain to reach and maintain critical states. Our
findings demonstrate the appropriateness of utilizing monofractal and multifractal
detrended fluctuation analyses to assess critical regimes.

We verify fractal scaling as an indicator of criticality by examining its relation-
ship to the average branching ratio of active neurons and average neuronal gain. In
addition, we demonstrate that fractal scaling is reduced within networks exhibiting
more extreme (sub/supercritical systems) versus intermediate values of average neu-
ronal gain. Networks poised at quasi-critical states must be stable enough tomaintain
organization but unstable enough to be adaptable.

Neuronal gain time-series exhibit multifractal structure, indicating that multiple
scaling relationships occur across each network’s signal (Fig. 2). This finding is
compatible with natural temporal and spatial variation in scale-invariant structure of
biomedical signals [50]. Given that multifractal structures reflect the relative influ-
ence of various scales within a system, this finding indicates that a broad range of
scales exert a meaningful effect on the network, especially for larger average gains
(lower τ values).

Multifractal spectra shifted from elongated left and shortened right tails with
faster neuronal gain recovery after spiking (smaller τ ), to shortened left tails and
elongated right tails with slower recovery time (larger τ ; Fig. 2). Specifically, net-
works with small τ values exhibited local fluctuations with relatively high-amplitude
fluctuations, such that multifractal spectra were relatively sensitive to local fluctua-
tions with larger amplitudes than to less-pronounced fluctuations. Along these lines,
networks with greater τ exhibited low-frequency amplitude fluctuations, such that
multifractal spectra were relatively sensitive to smaller fluctuations, as compared to
larger amplitude fluctuations.
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In summary, the present study identifies fractal scaling in neuronal networks
as a viable measure for identifying critical states. In addition, the present study
indicates that neuronal gain plasticity may play a significant role in modulating
system criticality. Future work will address whether the results presented here are
consistent for smaller or larger network sizes. Additionally, fractal analyses may
also be fruitfully applied to time-series of other signals related to neuronal activity,
including empirical recordings of in vivo and in vitro neuronal networks.
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Cultivating Tipping Points: Network
Science in Teaching

Catherine Cramer, Ralucca Gera, Michaela Labriole, Hiroki Sayama,
Lori Sheetz, Emma Towlson and Stephen Uzzo

Abstract Current education systems continue to be based predominantly on reduc-
tionist mindsets in which teaching is conducted on a subject-by-subject and module-
by-module basis. Improvement is planned and implemented using a linear, causal,
independent-problem-to-solution approach, with very little consideration given to
the interconnectedness among the various components and ideas involved in these
complex knowledge systems. This situation presents a need to think about how
understanding these connections can improve the learning of complex ideas. It also
constitutes an opportunity to provide a multifaceted intervention for communities
of learners, which would, itself, be a coordinated network of collaborative efforts to
develop a network literate populace. In this paper, the authors describe addressing
these issues through a multi-phase, multi-year approach to professional development
with formal and informal educators; the outcomes of this work; and next steps.

1 Introduction

While network science provides opportunities to develop many of the skills, habits
of mind, and core ideas that are essential for today’s interconnected world [1, 2], they
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are neither addressed nor utilized in extant elementary/secondary education curric-
ula nor teaching practice. However, theories of complex systems inform us of the
possibility of a “phase transition” or “tipping point” induced by collective actions
taking place on a dynamical network of interconnected components [3]. Through
leveraging the connections in the network science research community toward the
goal of developing and framing the needs of twenty-first-century learners, the authors
are cultivating such collective action. The plan is to strive for a tipping point through
increased attention to, and involvement in, identifying the needs of these learners
and the potential value of bringing network science to teaching. Specific to the pur-
pose of this paper is efforts to facilitate the development of practices and resources
with educators, and promote network thinking among K-12 students, teachers, and
administrators through developing curriculum materials, lesson plans, and practical
learning resources for K-12 classrooms across all domains of knowledge; provid-
ing rigorous professional development opportunities for both formal (school) and
informal (cultural institutions, camps, after-school and other community-based pro-
grams) educators; and increasing the awareness of the demand for network science
education among researchers.

This paper describes the trajectory of the development of models bringing
researchers together with K-12 formal educators in order to introduce the educators
to network science tools and concepts and the researchers to classroom challenges; to
collaborate on using network thinking in K-12 classroom settings; to create network
approaches to curriculum development; and to develop a path for mapping Network
Literacy Essential Concepts and Core Ideas [4] to learning standards.

2 Model I: Small Teams, Co-learning

This work began in 2010 with the NSF-funded Network Science for the Next Gen-
eration, also known as NetSci High, designed to address a skills gap between cur-
rent teaching and learning and STEM practice [5]. The kinds of advanced skills
needed by the twenty-first century workforce include: the ability to interact with
and derive meaning from large amounts of data, and facility with visual representa-
tions, metaphors and reference systems for abstract large-scale spatial and dynamic
data streams (necessary to see and make sense of patterns in complex data); and the
ability to create and understand more sophisticated scientific models. (Higher-order
thinking is needed to develop and interpret probabilistic and stochastic models to
allow exploratory and inductive skills to be used to identify patterns and characterize
behaviors across a wide range of differing environments and processes.)

Students in the STEM “pipeline” need to be prepared for this new reality as
they enter tertiary education and the modern day workforce. However, exposure
to these data-driven science skills is largely unavailable to most primary and sec-
ondary school students, particularly students in underserved communities. Such lack
of access sends students down a path that misses important opportunities to fully par-
ticipate in advances in modern society. NetSci High was developed to address this
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skills gap through a rigorous program of network science training and research. It
is a regional educational outreach program designed to empower high school stu-
dents and teachers to harness the power of network modeling and analysis, resulting
in a more holistic, dynamic understanding of the “interdependence” among com-
ponents and the evolution of relationships among various things around us. NetSci
High provides interventions in STEM teaching and learning that directly address
the need for twenty-first-century skills while targeting female, minority, and eco-
nomically disadvantaged students. It provides an alternative and advanced pathway
to develop rigorous skill-based curricula, resources, and programs that utilize the
rapidly growing science of complex networks as a vehicle through which students
can learn computational and analytical skills for network-oriented data analysis, as
well as how these skills can lead to breakthroughs in solving real-world problems.
NetSci High explores innovative approaches that, as this work demonstrates, can cap-
ture the interest and imagination of underrepresented populations to explore science
research problems using computational tools and methods [6–8].

The goal of NetSci High is to prepare and mentor teams of high school students
from underserved communities to do yearlong original network science research
projects. In the original design, the role of the high school teachers was intended to be
as co-learners and facilitators with the students. The teachers would then transition
to a mentorship role during the academic year. This structure was piloted in an
immersive two-week summer workshop at Boston University in 2012. Feedback
from participants in theworkshop revealed that the comfort level of teachers was very
low, as they were accustomed to being the authority in the classroom and found the
experience of co-learning with students to be a barrier to their learning. As a result, it
was modified for the 2013 project year, with a three-day teacher workshop designed
and executed to precede the student workshop in order to provide a preparatory
experience for teachers that would allow them to more effectively mentor students
during their workshop experience [9]. It became clear as an outcome of this project
that approaches for training teachers to mentor network science research differed
from those used with students (Figs. 1, 2, 3, and 4).

Summative project evaluation at the end of the 2015 project year used a mixed
method, post hoc model suited to the generative nature of the project [10]. It included

Fig. 1 Teacher and student
participants at NetSci High
intensive summer workshop
at Boston University, July
2013
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Fig. 2 Ninth Grade faculty
at teacher Professional
Development January 2014

Fig. 3 Educators mapping
learning standards to
Network Literacy Essential
Concepts, July 2015

three open-ended questions intended to elicit teacher perspectives on the effect of
participation in the program. The teachers were asked to reflect on their own learning,
network skills development, and the potential for the experience of participation
having sustained effects on their own practice (n = 16). They indicated that the
professional development and workshops themselves well prepared them to mentor
students during the research phase of the program. They also indicated that the
network perspective was likely to continue to influence their approach to certain
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Fig. 4 NiCE workshop
attendees doing hands-on
network exercise

content in their teaching practice, and they were highly appreciative of the new
technical skills, with these skills clearly being seen as having a distinct educational
value.

Further, the teachers tended to cite the value of the more theoretical learning,
with a special emphasis on the innovative qualities of the NetSci High process.
What the teachers learned through participation in this project was decidedly not
something they were likely to have otherwise gathered (concepts such as nodes,
edges, betweenness, clustering coefficients, centrality, and eigenvectors), and they
also learned from each other during the intensive summer workshops. The teachers
expressed appreciation of the new technical skills, tools, and approaches, with these
skills clearly seen as having a distinct educational benefit, and they stated that their
knowledge of network science had grown “exponentially” over the three years of
the project and had given them a new perspective on this new and emerging field of
science. The teachers also felt that the project helped them develop a comfort level
in regards to supervising student research outside of their area of expertise.

3 Model II: Cross-Disciplinary Curriculum

The next phase for bringing network science to teaching was curriculum develop-
ment, based on the belief that once instructors had a grasp of the network science
paradigm, they would be empowered to identify, develop, and test potentially effec-
tive interventions in instructional practice on their own. Further, it was believed
that introducing network science in this manner would highlight its potential as a
helpful tool for the teachers in their existing challenges rather than as an add-on
to their workload, and specifically to explore whether connecting subjects themati-
cally acrossmulti-disciplinary classrooms couldmake difficult academic topicsmore
accessible to students.

The first workshopwas for amulti-disciplinary team consisting of the entire ninth-
grade faculty from one of the Title 1 (87% low income, 97%minority) urban schools
participating in NetSci High (Chelsea Career & Technical Education High School,
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New York City Public Schools). They were brought together to test the interdisci-
plinary approach in a one-day workshop at the New York Hall of Science in 2014.
Teachers represented: English, Algebra, Global Studies, Special Education, Living
Environment, Career Management, Graphic Arts, and Technology departments. The
Assistant Principal also attended. Teachers received an introduction to network sci-
ence through participation in a data-gathering exercise that resulted in a network
visualization, plus several presentations of case studies–illustrating how all of their
teaching disciplines can use the network science approach–as well as an introduction
to Gephi, network analysis and visualization software. During the second half of the
day, the teachers mapped their curriculum to network science concepts, and drew
connections among their curricular themes in order to choose multi-disciplinary top-
ics for lesson planning. Their task upon returning to their home school was to develop
a team to teach a lesson or unit of instruction.

A short survey given at the end of the workshop showed a majority of the teachers
to have a high degree of confidence in their grasp of network science concepts.
The teachers ranged from minimally to somewhat confidant in their understanding
of network modeling, the use of Gephi, network research, and kinds of networks.
They gave higher scores of somewhat to very confidant in their abilities to work in
a group on the day’s projects. A majority of teachers saw a need for more specificity
in how to use network science to address curricular topics across disciplines. This
pointed to what we understood to be the next step in the trajectory of this work:
deeper, more interdisciplinary learning and practice. Topics the teachers surfaced
that they considered good possibilities for using a multi-disciplinary approach using
network thinking included: Medieval Europe; feudal Japan; the Islamic world;
the Renaissance; African Kingdoms; the Reformation; absolute monarchs; early
Latin American civilizations; world religion; systems of equations; inequalities;
exponential functions; quadratic functions; abuse of power; gender roles; benefits
of free republics; attaining power and influence; body cells and homeostasis; body
systems and homeostasis; and cell function as it relates to body system function. One
of the participating math teachers was able to use these new concepts to deliver a
lesson plan to his students based on rumor profusion in Twitter in order to introduce
the topic of comparing exponential to linear functions.

4 Model III: Mapping Network Literacy to Learning
Standards

In July 2015, seven teachers from New York and Vista, California attended a two-
day workshop at the New York Hall of Science focused on mapping the Network
Literacy Essential Concepts to learning standards. The Network Literacy Essential
Concepts were developed over a yearlong period (2014–2015) as a response to the
question: What should every citizen know about networks [11]? The teacher work-
shop was designed to test whether state-mandated learning standards, such as the
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Next Generation Science Standards (NGSS) [12], could be more easily applied in
the classroom through a network lens. This required an intensive period of review
of the standards, including the cross-cutting concepts, a recent addition to learning
standards, which lends itself to the application of network science. (Examples of
cross-cutting concepts include systems and system models; patterns; and cause and
effect.) Educators looked for specific standards that could be taught using Network
Literacy concepts. Educators then developed lesson plans that both used network
concepts and addressed specific standards. Examples of their lesson plans include a
network of counties based on energy usage;HudsonRiver foodwebs; and evidence of
the common ancestry of diversity. However, it became apparent to workshop facilita-
tors that there was a significant gap in teacher understanding of network applications
in the classroom, necessitating further work.

5 Model IV: Interdisciplinary Learning

The Networks in Classroom Education (NiCE) teacher workshop was held at the US
Military Academy at West Point as a four-day workshop in July 2017, supported by
theUSArmyResearchOffice [13]. Its goalwas to educate teachers and administrators
across K-12 instruction and nationally about network science and to enable those
teachers and administrators to bring network science thinking and ideas to their
students, schools, and districts. During the workshop, network thinking was not only
presented as concepts to be taught to students, it was also actively utilized as a tool to
make curriculumdevelopment anddelivery easier andmore successful, and to explore
and explicate school-wide challenges. The participating teachers and administrators
developed presentations and concrete lesson plans that utilized network science and
network thinking in classroompractice. These lesson plans collectively demonstrate a
tremendous opportunity to improve education by quantitatively identifying curricular
elements central to interdisciplinary learning and sequencing the implementation of
curriculumso that these central topicsmaybe accessible to a greater range of students.

During NiCE, we exposed 21 primary and secondary educators from around the
US to network science concepts and tools (10 from Central and Southern California,
7 from New York State, and 4 from North Carolina). The educators represented
a wide range of disciplines—from STEM fields to the humanities—including spe-
cialty fields from reading, to music, to English as a second language, as well as age
ranges from pre-K to high school. In small groups, these educators worked together
using network science concepts were learning to develop network-inspired interdis-
ciplinary modules and lesson plans that they brought back to their schools–public,
private, traditional, and charter–with the goal to enhance interdisciplinary learning
that builds upon connections and better aligns education with the complex world
it serves. Lesson plans developed during the workshop include: Balance Networks
in Music Ensembles; Interdependent Relationships in Ecosystems: 3rd–5th Grade;
Sharks, A Slice of NiCE; K-2 Network Science; Using Networks to Explore Nan-
otechnology; How Things Are Made (resource mapping); Networking in a Calculus
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Environment; Networks in World History;Networking Interdisciplinary Grade Level
Standards; AWorld Without Fish, and Community Networking Within Two Schools.

Results from a survey conducted with attendees indicated that participating teach-
ers: believe that what they learned in the workshop is applicable to implementing
science standards; can apply network science as an interdisciplinary approach to con-
necting concepts across curricula; understand that network thinking can be empower-
ing to students by providing relevant skills to solving a variety of real-world problems
and making connections; can both teach directly about networks and apply network
science in unit planning for social studies, science, language, music, art, and math;
network science provides more opportunities to both collaborate with other teachers
as well as to cultivate collaboration among students; network science can provide
opportunities for students to visualize and play with data; and teachers are eager and
willing to learn more about network science to improve practice.

The output of these teachers in the NiCE workshop constitutes a nexus of what
the authors learned from in the previous workshops. It was by far the most successful
in terms of how deeply the teachers demonstrated a capacity to understand and apply
the network paradigm to developing classroom resources, align themwith standards,
and engage in discourse around the synthesis of their prior knowledge and the new
knowledge of networks, the science of connections.

6 Conclusions

The creation and execution of teacher professional development in network science,
described herein, constitutes an evolution in both the understanding of the needs of
teachers, and a deeper understanding of the degree to which network science is a
radical shift in thinking about science and learning in general. The transdisciplinary
nature of network science does not fit the reductive paradigm normally used to design
curriculum, to chunk knowledge into pieces and deliver them as instruction, and to
test student knowledge based on this reductive and disconnected approach. The value
of bringing network science to teaching helps to introduce process skills, knowledge
of complexity, transdisciplinarity, and analytical methods to science and math, all of
which are now demanded of teaching with the Next Generation Science Standards.
But as the NiCE workshop demonstrates, it also requires a tipping point in seeing
connections and applying network science across disciplines and throughout grades.

7 Next Steps

As this work advances, network science might not only function as an effective way
into instruction and learning of advanced skills and knowledge in data-driven science,
but may also act as a bridge to new process-oriented standards, and advance teaching
practice overall. We will continue to build on these ideas to create more effective
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learning settings for network science and opportunities for teachers to use network
science to improve practice. And we will continue to test and validate the alignment
of the Network Literacy: Essential Concepts and Core Ideas to NGSS and other
emerging learning standards to build bridges between network literacy and teaching
and learning communities, and expand teacher training, curriculum and resource
development across learning settings.
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Terrorist Network Analyzed with
an Influence Spreading Model

Vesa Kuikka

Abstract Al Qaeda’s network structure before the tragic events of 9/11/2001 is
studied using a method of social network analysis. The method is based on a model-
ing framework to assess the influence of a node in a complex network with respect
to spreading information via different paths between source and target nodes. The
same framework is used consistently to compute closeness and betweenness cen-
trality measures as well as to detect subcommunities. Centrality measures taking
into account all possible paths between source and target nodes, not just the shortest
paths, are useful in modeling resilience of covert networks. Along these lines, new
versions of node and link betweenness centrality measures are proposed.

1 Introduction

Amethod of social network analysis is applied to an Al Qaeda terrorist network. The
proposed algorithm for detecting subcommunities uses influence measures where
influence of nodes is considered in both directions; a node has influence on others
and a node is influenced by others. Network topology, and possible directed connec-
tions, and unequal weights of nodes and links are essential features of the model. All
the parameters of the model have probabilistic interpretations giving flexibility in
various applications. Different measures, such as closeness centrality and between-
ness centrality, and community detection are computed with the same modeling
framework.

The modeling methodology is used in analyzing Al Qaeda’s network structure
before the tragic events of 9/11/2001. The purpose of this study is to demonstrate
possibilities of discovering new phenomena and the usefulness of the method with
real-world social network data. Terrorist network data centered on the 19 dead hijack-
ers have been collected from public sources after the terrorist attacks of September
11, 2001 [10, 11, 18]. The empirical data used in this study has been published
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in Krebs [10, 11]. The aim of studying covert, illegal, and terrorist networks is to
uncover common and specific characteristics of these networks [2]. Social network
analysis provides a number of analytical methods to help in preventing or investiga-
tion of terrorist and criminal activity. The two aspects of prevention and prosecution
have been discussed in more detail in [10, 11].

Observations of the study in [11] are such that many of the hijackers were distant
fromeach other in the network structure.Many hijackers on the sameflightweremore
than two steps away fromeach other.Krebs [11] describes the network structure of the
hijackers’ connections like the shape of a serpent. Keeping cell members distant from
each other and from other cells minimizes damage to the network if a cell member is
captured or otherwise compromised. Krebs [11] has also studied the phenomenon of
transitory shortcuts in the network structure to accomplish its goals. There has been
a balance between security and resilience. Trusted prior contacts were a strength in
coordinating tasks. The 19 hijackers had other accomplices that were conduits for
money and also provided needed skills and knowledge.

The terrorist network has 62 nodes and 306 links (ties, connections) between the
nodes. The 62members of the networkwere connected by a number ofways: attended
the same college, took flight classes together, bought flight tickets using the same
address, bought flight tickets together, were known to be together in week before the
attacks, and had last known address in the same area. Krebs [11] determined three
categories for strength of ties between the members of the network.

Different measures for evaluating, comparing, and categorization network mem-
bers and subgroups have been presented in the literature [17]. Network topology is
an essential factor in modeling complex networks. Node degree is a basic measure
for node centrality in a general network. Different network metrics can be given
interpretations even though their meanings largely overlap. Degrees reveal activity
between neighbors in the network. Closeness centrality shows ability to access oth-
ers in the network and monitor what is happening. Betweenness centrality measures
control or a role as a broker over the flow in the network.

A normalized version of reciprocal closeness centrality [14] is defined by

Cc (i) =
∑

j �=i

(
g−1
i j

)

N − 1
(1)

where the geodesic distance gi j is the shortest distance between ego and all its others.
N is the total number of nodes in the network. A generalized version of the measure
has been defined in [1]. (Freeman) betweenness centrality measure has been defined
in [6] where the betweenness of a node n is defined as the number of shortest paths
between other pairs of nodes that pass through n.

Various network measures have been developed using, for example, local struc-
tural characteristics [3, 4], geodesic distances [1], and random walks [13]. Geodesic
distances and random walks are based on considering paths of different lengths.

Different methods and algorithms have been presented for detecting communi-
ties in social networks [7, 8, 15–17]. Algorithms for detecting communities in net-
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work structures are minimum-cut method, hierarchical clustering, Girvan–Newman
algorithm, modularity maximization, statistical inference, and clique-based meth-
ods [5, 12]. One of the community detection methods, a diffusion community in a
complex network, described in review article [5], is a set of nodes that are grouped
together by diffusion or percolation of the same property in the network. Many of the
algorithms are based on the Kernighan–Lin algorithm [9]. The algorithm repeatedly
moves, starting from some initial division, the vertices that most increase or least
decrease a particular measure used for optimizing the division in the network.

In this paper, we use a theoretical framework to assess the influence of a node
in a complex network with respect to spreading of information. On the basis of the
method, consistent network measures, such as closeness centrality and betweenness
centrality, are defined. The same methodology is used to detect communities in the
network. In the following sections, after presenting the mathematical background,
we examine the network structures of Al Qaeda terrorists involved in September 11,
2001, attacks.

2 Modeling Influence Measures in Social Networks

The closeness and betweenness centrality measures and the community detection
algorithm of this study are based on computing the probabilities of influence Ps,t
from source node s to target node t . These quantities are calculated by computer
algorithm because of a high number of possible paths in network structures. The
quantities are functions of time T which we usually omit in notations.

Information spreading via different paths to a target node is calculated probabilis-
tically taking into account the not mutually exclusive events when the same influence
has been initiated from the same source node. The spreading is modeled as a repli-
cation process. The probability of a replication event is assumed to not dependent
on nodes’ states.

If two paths of lengths L1 and L2 have L3 common links at the beginning of
their paths, the conditional probabilities via L1 − L3 and L1 − L3 links given that
the spreading has occurred via L3 links are denoted by p(L1−L3) and p(L2−L3). We
denote the unconditional probability by pL3 . The probability for spreading via the
two routes is

Gs,t,d = pL3

(
p(L1−L3) + p(L2−L3) − p(L1−L3) p(L2−L3)

)

= pL3 p(L1−L3) + pL3 p(L2−L3) − pL3 p(L1−L3) pL3 p(L2−L3)

pL3

(2)

= pL1 + pL2 − pL1 pL2

pL3

where pL1 and pL2 are the unconditional probabilities of spreading via the links
of path lengths L1 and L2. Weighting factors for nodes and links are incorporated
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by multiplying the unconditional probabilities in (2) with node and link weighting
factors associated with the paths corresponding these terms. The weighting factor
for a source node is assumed to have the value of 1.0. In the Poisson distribution
model, the unconditional probabilities describing temporal spreading at time T on a
path of length L is

pL = 1 −
L−1∑

l=0

e−λT (λT )I

I ! (3)

where λ is the intensity parameter of the Poisson distribution.
In the algorithm, paths are combined iteratively in the descending order of com-

mon path lengths in a set of possible paths between source node and target node. In
the final phase of the algorithm, all the common links have been considered ending
up with D- independent terms. The probability for influence of source node s on
target node t is

Ps,t = 1 −
D∏

d=1

(
1 − Gs,t,d

)
, (4)

where D is the degree of source node s. Usually Ps,t �= Pt,s because of network
topology, directional links, and different weighting factors of nodes and links. We
introduce two closeness centrality measures as

Ps,• = 1

N

N∑

t=1

Ps,t , s = 1, . . . , N (5)

and

P•,t = 1

N
Ps,t , t = 1, . . . , N (6)

The number of nodes in the network is denoted by N . Equation (5) describes the
role of node s as source of influence and (6) describes the role of node t as target of
influence spreading. Again, usually the values of the quantities are not equal for a
node s (Ps,• �= P•,s). We introduce a quantity describing betweenness centrality as

Bn = 1

N 2

N∑

i, j=1
i, j �=n

(

1 −
D∏

d−1

(
1 − Gi, j,d

)
)

(7)

In (7), node n is removed from the network and the effects on all the other nodes in
the network are computed. The normalization factor in (7) is chosen to be N 2 (in the
literature N (N − 1) has been used in some definitions).
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The quantity in (7) is not very illustrative because nodes with high betweenness
centrality values have low values of Bn . A better measure for betweenness centrality
is

bn = C − Bn

C
(8)

where C is a cohesion measure for the whole network.

C = 1

N 2

N∑

i, j=1

(

1 −
D∏

d=1

(
1 − Gi, j,d

)
)

(9)

The algorithm for community detection uses the centralitymeasures of (5) and (6).
The idea in modeling community detection is based on the concept of node’s role
in the network as source and target of influence. Both of these aspects have a role
in community formation. Two subcommunities in a social network are detected by
searching local maxima argmaxV,V (P) of (10):

P =
iNV∑

s=iV

Ps,• (V ) +
iNV∑

s=iV

P•,t (V ) +
iNV∑

s=iV

Ps,•
(
V

) +
iNV∑

s=iV

P•,t
(
V

)
(10)

where V and V is split into two factions of the network of N nodes with N =
NV + NV . An analog for community detection of the Kernighan–Lin algorithm [9] is
used for searching the local maxima. Equation (10) could be generalized tomore than
two factions with the Kernighan–Lin algorithm moving vertices, one at a time, that
most increase the measure used for optimizing the division, between these factions.
In this paper, only divisions to two factions are searched.

Typically, social networks with weak interactions between nodes or social net-
works in their early development phases have several local maxima with different
compositions. These factions can overlap with each other. In many cases, unions and
intersections of the divisions are also local maxima of (10) with some parameters of
the model. If a union or intersection is not identified as a local maximum, these sets
of nodes could still be considered as possible subgroups of the network. In dynamic
community, building processes sets of nodes divided by different community bound-
aries may be left as outsiders. This is more probable if the measure of (10) has a low
value, or several divisions have almost equal numerical values.

3 Summary of the Results

Table1 summarizes the four groups of hijackers listed in the same order as in [10].
The first column shows node numbers of the network in Fig. 1 Columns 2 and 3 show
results of themodels (betweenness centrality and closeness centrality) to be discussed
in the following sections. The numerical results and the rankings obtained with
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Fig. 1 Subcommunities identified with time value T = 0.5 and model parameters λ = 0.5, wN =
wL = 1.0, L = 6

these newmeasures can be compared with the traditional closeness and betweenness
centrality values for the terrorist network in [10, 11]. The proposed method takes
into account more interactions in the network, not just the shortest paths between the
nodes. This kind of detailed modeling can lead to more accurate results.

Table2 shows the corresponding data for themost important nodes of the network.
Figure1 shows the network topology (structure) of the terrorist network. Results of
the community detection algorithm are indicated in the figure. Also, these results
will be discussed later in this paper. We argue that subcommunity structures similar
to those of Fig. 1 are characteristic to covert social networks. Subcommunity D has
a specific structure of central nodes and a subgroup G inside the subcommunity.
Subcommunities A and B are connected to the core structures of subcommunity D
only with a few links. Members of subcommunity E are connected with more links
to D due to their actual roles in the hijackings. The network topology of connections
between the terrorists is partly self-organized, but the main operational principles
have been planned and implemented systematically before the attacks [11].
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4 Closeness Centrality

Closeness centrality is one of themost importantmeasures in social network analysis.
In this paper, we use the definition of (4) because it is consistent with other measures
used in this study. Figure2 shows node degrees and the values of closeness centrality
measures for two time values T = 1 and T = 4. Degree values and T = 4 values are
multiplied by 0.3653 and 0.1333, respectively, for scaling the sum of measures of
the 62 nodes. Weighting values for nodes wN = 0.5 and links wL = 1.0, 0.75, and
0.5 for strong, medium, and weak connections published in [10, 11] are used.

The highest values of closeness centrality at T= 1 are for nodes {1, 2, 7, 3, 39, . . .}
in this order. The highest values of degrees are for nodes {1, 2, 7, 39, . . .}. Results
for time values T = 1 and T = 4 describe different temporal development phases of
influence spreading in the network. Results for low time values describe young social
networks or new ideas in social networks. These both aspects can exist simultane-
ously. Nodes {1, 2, 39, 48, 56} show different patterns when compared with most
of the other nodes {4, 6, 10, 12, 14, 18, 19, 21, 25, 36, 37, 38, 61, 62, . . .}. The five
nodes are in better positions to spread new ideas.

The values and rankings of reciprocal closeness centrality of (1) [10, 11] are
not equal to the results of (5). Equation (1), and the closeness centrality measure
of this paper have different definitions.The reason is that (1) takes into account
only the shortest distances between ego and others. Degree of nodes considers only
connections to the nearest neighbors. The measures of this paper take into account
influence spreading to all nodes in the network, but at early phases of influence
spreading nodes far away from a source node have not been reached. Node degree
values and the results for closeness centrality at times T = 1 and T = 4 agree with
this. Based on this discussion, we assume that low values of time T are more suitable
for analysis of the terrorist network as we assume that the network has self-organized
to change plans and act in a short notice. On the other hand, friendly relations of the
network have been developing during a long period of time before the hijackings.

Fig. 2 Closeness centrality for two values of time T and degrees of nodes
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5 (Node)Betweenness Centrality

The second measure usually used in social network analysis is (node) betweenness
centrality. This measure has a classical definition as the number of shortest paths
between other pairs of nodes that pass through node [6]. Values and rankings of the
Freeman betweenness and the betweenness centrality of this paper are not the same.
The reason is similar to the case with closeness centrality discussed before.

The first data series in Fig. 3 shows betweenness centrality values at T = 1 with
node weighting values wN = 0.5 for all nodes, and the second data series shows the
results withwN = 1.0 for the hijacker nodes (gray bars). Linkweighting factor values
are the same as in Fig. 2 The highest values of betweenness centrality are for nodes
{1, 2, 7, 3, 8, 5, 9, 4, 39, 36, 13, 11, 21, 52, 6, . . .}. These can be compared with the
highest values of closeness centrality for nodes {1, 2, 7, 3, 5, 9, 8, 36, 11, 13, 4, 39,
12, 52, 6, . . .}. The rankings of the first four nodes are the same. Nodes {8, 4, 39, . . .}
have higher betweenness rankings than closeness rankings. Their positions in the
network are favorable as brokers of information between other nodes as can be seen
in Fig. 1.

Next, we examine the second data series in Fig. 3. Obviously, higher node
weighting factors are observed on hijacker nodes. Different patterns for nodes
{14, 21, 61, . . .} and {39, 52, 56, . . .} uncover their special positions with respect
to the hijacker nodes. They are closely connected with the hijacker nodes, and as a
consequence, their betweenness centrality measures are sensitive to hijacker node
weighting factors.

Figure4 shows ratios of closeness centrality to betweenness centrality as calcu-
lated from (5) and (8). The first 19 bars are for hijackers, and in addition, some
important nodes are selected for comparison. A clear pattern is observed as nodes
{1, 2, 3, 7, 8} have a low ratio, meaning that their skills as brokers of information
are emphasized with respect to their leader skills (they can be good leaders as well)
when compared with other hijackers or other members of the terrorist network. On
the other hand, nodes {14, 61, 62} have high ratios, meaning that their leader skills
are emphasized (they can be good brokers of information as well).

Fig. 3 Betweenness centrality for two choices of node weighting factors, T = 1 Betweenness
centrality for two choices of node weighting factors, T = 1
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Fig. 4 Ratios of closeness to betweenness values of Figs. 2 and 3, wN = 0.5, T = 1

6 Link Betweenness Centrality

Similar to the node betweenness centrality, a classical link betweenness centrality
has been defined that counts the number of geodesic paths that run along links [17].
A new version of the link betweenness centrality is proposed in this section. The link
betweenness centrality is computed analogously to the node betweenness centrality
of (8) where instead of removing a node, one link is removed from the network.
Figure5 shows the results of 50 most important links {1 − 2, 2 − 1, 1 − 39, 39 −
1, 13, 1 − 5, 1 − 9, 1 − 8, 1 − 4, 9 − 1, . . .} of the terrorist network of Fig. 1. The
results demonstrate the central role of node 1. Connections from nodes 2 and 39 to
node 1 are the most important. The order of connections can be used for analyzing
the social network structure.

A member of the social network could utilize the link betweenness values in
prioritizing the order of sending or forwarding information in order to optimize the
effects. This measure could also be helpful in allocating countermeasures against
terrorist and criminal connections.

The alternative of adopting the new link betweenness centrality measure, instead
of the closeness measure, can also be used for detecting communities. This idea has
been earlier implemented in the Girvan–Newman algorithm [7, 16] which detects
communities by progressively removing links from the original network.

Fig. 5 Link Betweenness centrality of 50 highest values. Parameters wN = 0.5, wL =
1.0, 0.75, 0.5, and T = 1 (same as in Figs. 2 and 3 first data series)
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7 Community Detection

The community detection algorithm detects seven subcommunities inside the terror-
ist network. These subcommunities are shown in Fig. 1 denoted by letters A – G. C
is a subgroup of subcommunity B, and G is a subgroup of subcommunity D. The
first airplane crashed to WTC north with five terrorists {1, 9, 11, 12, 37}. In curly
brackets, the nodes are listed in the order of closeness centrality. Node 1 is in cen-
tral role in the whole operation. Node 1 is a member of subcommunity D, and the
other nodes are members of subgroup G. Terrorists {7, 8, 36, 26, 25} crashed to Pen-
tagon, and they are all members of subcommunity E. Terrorists {2, 13, 30, 10, 34}
crashed WTC south, and they are in subcommunities D and E with nodes {13, 34}
in subgroup G. Four terrorists {3, 38, 31, 29} crashed in Pennsylvania, and they are
in subcommunities D and E with node {38} in subgroup G.

In Fig. 1, no link weighting values are used. Using link weighting factors 1.0,
0.75, and 0.5 for the three categories of connection strengths published in [10, 11],
almost identical results are obtained. A new overlapping division composed of sub-
community E plus nodes {9, 11, 12, 13, 32, 33, 34, 37} appears. It is possible that
more weak structures are discovered with other choices of node or link weighting
factors. Typically, lower values of weighting factors and lower time values result in
more subcommunities. This occurs because networks with weaker connections more
easily split up. After all, the network topology information with appropriate values
of time T usually provides the main results of the analysis. If node and link weighting
factors are available, they should be used to get more accurate results.

Some conclusions can be made on the results. All the hijackers are in subcom-
munities D and E. All the nodes in subgroup G are hijackers on different planes that
could be interpreted as an inner circle among hijackers. The central nodes in each of
the four planes {1, 2, 3, 7} are in subcommunity D with one exception of node {7} in
subcommunity E. Other nodes in subcommunity D were not on the plains. This kind
of structures can be characteristic to covert networks. Subcommunities A and B are
detected as clear-cut divisions of the terrorist network. Members of subcommunities
A and B did not get on the planes. They were conduits for money and provided
needed skills and services. In this manner, factions of the network can be helpful in
profiling subcommunities and individual members of the network.

Figure6 shows divisions of the terrorist network into two factions with four dif-
ferent choices of node weighting factors. The two factions are indicated with 0s
and 1s (if more factions are searched with the algorithm, they are indicated corre-
spondingly). In the first table node weighting factors are wN = 0.5 for all the nodes.
In the second table, node weighting factors are wN = 0.5 for the 19 hijackers and
wN = 0.25 for the others. In the third table, node weighting factors are wN = 1.0
and wN = 0.5 correspondingly. In the fourth table, wN = 1.0 for all the nodes. In
all the tables, the time value of spreading process is T = 0.5, the Poisson intensity
parameter λ = 0.5 and link weighting factors are wL = 1.0. The first two columns
show the number of nodes in two factions. The third column in the first table shows
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# # D M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
11 51 A 50.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
22 40 B 49.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
17 45 C 48.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0
45 17 D 43.8 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 47 E 43.7 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 34 42.1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
37 25 41.4 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
39 23 41.1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
38 24 G 40.6 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 51 36.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
45 17 36.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1
40 22 36.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
17 45 30.6 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 34 29.8 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

51 11 107.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
17 45 105.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0

51 11 152.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

F

Fig. 6 Identified subcommunities with different node weights. In the following, the first number
gives the weight factor used for the 19 dead hijackers and the second number gives the weighting
factor for the rest of the nodes: wN = 0.5/0.5, wN = 0.5/0.25, wN = 1.0/0.5, and wN = 1.0/1.0.
Model parameters T = 0.5 and λ = 0

the label of the divisions shown in Fig. 1. The fourth column shows the numerical
value of the measure in (10).

The results are analyzed starting from lines with the highest values of the measure
in (10). The division between nodes denoted by A and the rest of the network is the
most optimal. This division appears in all the four tables of Fig. 6. Seven different
subcommunities or subgroups can be discovered form the first table.

Interestingly, when different node weighting factors (wN = 0.5 and wN = 0.25)
for the hijackers and the rest of the network are used in the model, the second
table shows a more clear picture and less divisions. The second line suggests that
faction A+C is a subcommunity. Consistently, the third line also indicates that the
overlapping A+B is a subcommunity. The fourth line discovers subcommunity E.
Because more information is used in the second table compared to the first table,
these results may be more accurate.

The third table with stronger connections also discovers division C. No other
divisions are found because of high cohesion of the network. In the fourth table with
very high equal node weighting factors, only one division A is discovered.

8 Conclusions

The method is based on a modeling framework to assess the influence of a node
in a complex network with respect to replicating information via paths of different
lengths between source and target nodes. The same framework is used consistently
to compute closeness centrality and betweenness centrality measures as well as to
detect subcommunities in the social network. Time is an important parameter in
dynamic network spreading models. In the same network structure, fast and slow
processes can exist at the same time.
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These centralitymeasures are different from the classical reciprocal closeness cen-
trality [14] and Freeman betweenness measures [6] which consider only the shortest
paths between source and target nodes. In terrorist or criminal networks, possibilities
of using all the paths of social network are important to maintain resilience of the
network in case nodes are removed from paths between source and target nodes. The
node betweenness measure of (8) in this paper and the Freeman betweenness mea-
sures have different values and rankings in the network [10, 11]. The difference can
be explained by different usage and interpretations of the two betweenness measures.

The community detection algorithm can be used to analyze possible subcom-
munities or closely connected members of the network. Structures characteristic to
covert social networks are discovered in the terrorist network of Al Qaeda. Members
in the subcommunities have different roles in planning, financing, and carrying out
the terrorist attacks. Subcommunities having only supporting functions are loosely
connected to the more tightly connected core structures of the network. The subcom-
munities detected by the algorithm have no overlapping members. In the terrorist
network, the subcommunity of seven terrorists is discovered who were all on three
plains used in the crashes. All the five terrorists on the first plane, which crashed
WTC north, except the most central node of the whole operation, are in this subcom-
munity. The five terrorists on the fourth plane, which crashed in Pentagon, are all in
another subcommunity discovered by the algorithm. In this subcommunity are also
ten other members of the terrorist network who were not on planes.

A new community detection method and a new node closeness centrality measure
are proposed in this paper. The community detection method can also be used with
many other closeness centrality measures. A new version of link betweenness cen-
trality is also defined in this paper. Themeasure is a new tool for analyzing undirected
or directed and weighted or non-weighted connections in social network structures.
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Author Attribution Using Network
Motifs

Younis Al Rozz and Ronaldo Menezes

Abstract The problem of recognizing the author of unknown text has concerned
linguistics and scientists for a long period of time. The authorship of the famous Fed-
eralist Papers remained unknown until Mosteller and Wallace solved the mystery in
1964 using the frequency of functional words. After that, many statistical and com-
putational studies were published in the fields of authorship attribution and stylistic
analysis. Complex networks, gaining much popularity in recent years, may have a
role to play in this field. Furthermore, several studies show that network motifs,
defined as statistically significant subgraphs within a network, have the ability to
distinguish networks from distinctive disciplines. In this paper, we succeed in the
utilization of network motifs to distinguish the writing style of 10 famous authors.
Using statistical learning algorithms, we achieved an accuracy of 77% in classify-
ing 100 books written by ten different authors, which outperformed the results from
other works. We believe that our method proved the importance of network motifs
in author attribution.

1 Introduction

An author’s writing style can be considered as an example of a behavioral biometric.
The words used by people and the way they structure their sentences are unique and
can frequently be used to identify the author of a certain work. The task of author
attribution is gained attention among researchers in the fields of statistical physics,
natural language processing, and data and information science. A thorough survey
of the techniques used in authorship attribution can be found in [18]. Applications
of authorship attribution are not only limited to the literature stylometry [4] but
also expanded to other fields such as social media forensic [16] and e-mail fraud
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detection [8]. As researchers find complex networks a promising field in linguistic
studies [2], more and more authorship attribution works based on text networks saw
the light of day. Measurement fromword co-occurrence network topology combined
with traditional statistical methods like frequency of functional words and intermit-
tency were used to attribute authors [1, 3].

Network motif defined by Milo et al. [11] as a statically significant subgraphs
pattern occurred in real-world networks compared to random ones has gained a lot
of attention because of its ability in discriminating networks from different discipline
[19]. In this work, we utilized network motifs as a fingerprint to attribute authors
by their writing style. More precisely, we extract network motifs from directed
co-occurrence networks of 100 books by 10 well-known authors and then we use five
machine learning algorithms to classify the authors by their network motif signature.
We show that four-node directed network motifs alone can be utilized to attribute
authors of different books.

The paper is organized as follows. Section2 is an overview of the efforts spent
by other researchers on the subject of author attribution. In Sect. 3, we describe our
dataset and steps taken place in order to extract the network motif from the text
networks. The classification methods and results are explained in Sect. 4. Finally, we
conclude our work in Sect. 5 with a road map for future work.

2 Motivation and Related Work

Several studies exist that deal with the importance of network motifs in natural lan-
guage networks. The first attempt to classify different networks including word co-
occurrence using network motifs was made by Milo et al. [12]. Li et al. [9] extracted
and studied three and four-node directed motif structure of 72,923 two-character
Chinese words network. They found that feed-forward loop (FFL) motif structure is
significant in their network. Rizvić et al. [15] examined three-node (triads) network
motifs extracted from directed co-occurrence networks of five Croatian texts and
compared their results with other languages. They realized that there is a similarity
between the Croatian language networks triad significance profiles and other pre-
viously studied languages. Cabatbat et al. [7] compared five-node network motifs
among other network measures of the Bible and the Universal Declaration of Human
Rights (UDHR) translations in eight languages. Pearson correlation coefficient and
mutual information were used to compare the metrics of real texts with random
texts from other sources. Their finding is that the distribution of network motif fre-
quency is beneficial in recognizing similar texts. Biemann et al. [6] realized that
motif signatures serve to discriminate co-occurrence networks of natural language
from artificially generated ones. To assist their finding, they present additional results
on peer-to-peer streaming, co-authorship, and mailing networks. The directed motif
of size 3 and undirected motif of size 4 was used in their work.

All the previous works showed the ability of various size network motifs of dis-
criminating text from different languages and genre. They did not utilize machine
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learning algorithms to support their findings. On the other hand, Marinho et al. [10]
achieved 57.5% accuracy in their best scenario of attributing eight authors of 40
novels with three-node directed network motifs. An important aspect of author attri-
bution task is the feature frequency [18]. To capture an author style more preciously,
the feature should be more frequent. This motivates us to use the frequency of the
199 four-node directed network motif in an attempt to attribute the authors under
study.

3 Datasets and Methodology

3.1 Data Collection and Network Creation

The dataset used in this work comprised of 100 literature books authored by 10
different authors, 10 books for each individual author. The books are listed in Table1
andwere collected from theProjectGutenbergWeb site.1 Each bookwas limited to 20
thousandwordswhich are the length of the shortest book in the set. Text preprocessing
steps were applied to remove punctuation, numbers and non-Latin alphabets, and all
letters were converted to lowercase. We preserved functional words (stop words) in
the text as their frequency has been proven to reflect stylistic aspects of the text and
improve authorship attribution task [5, 13, 17]. A sample text fromCharlesDickens’s
“A Christmas Carol” novel and the resulted preprocessed text are shown in (Fig. 1a,
b, respectively) to illustrate this process.

Next, we created the directed co-occurrence networks from the result of the pre-
processed text of the 100 books. Co-occurrence networks can be constructed based on
the sentence, paragraph, or the whole text boundary. We chose the sentence bound-
ary as it produces less dense network hence reduces the amount of time required
to extract network motifs. Sentence boundary is defined by period, exclamation
point, and question mark [14]. The network constructed from the preprocessed text
is depicted in (Fig. 1c).

3.2 Feature Extraction

A plethora of network motif extraction tools exist, and each one has its pros and cons
related to the number of motif’s nodes count and the algorithm speed. We chose the
iGraph2 implementation for its flexibility and fast execution time. Tran et al. [19]
suggested that small undirected network motifs cannot reveal differences among
networks from different disciplines, while large ones do. Based on this argument and

1http://www.gutenberg.org.
2http://igraph.org.

http://www.gutenberg.org
http://igraph.org
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Table 1 Authors used in our experiments and their book titles

Authors Book titles

Bernard Shaw 1856–1950 Man and Superman, Candida, Arms and the Man, The
Philanderer, Caesar and Cleopatra, Pygmalion, Major Barbara,
Heartbreak House, The Devil’s Disciple, Cashel Byron’s
Profession

Charles Dickens1812–1870 A Christmas Carol, A Tale of Two Cities, The Pickwick Papers,
Oliver Twist, Great Expectations, David Copperfield, Little
Dorrit, Our Mutual Friend, The Life and Adventures of
Nicholas Nickleby, Dombey and Son

George Eliot 1819–1880 The Essays of George Eliot, Impressions of Theophrastus Such,
Silas Marner, Scenes of Clerical Life, The Mill on the Floss,
Adam Bede, Romola, Daniel Deronda, Felix Holt The Radical,
MiddleMarch

Herbert George Wells
1866–1946

Tales of Space and Time, The Food of the Gods and How It
Came to Earth, The Country of the Blind and Other Stories,
The Invisible Man, The First Men in the Moon, The Island of
Doctor Moreau, The War of the Worlds, The Time Machine, In
the Days of the Comet, Ann Veronica

Jack London 1876–1916 The Call of the Wild, White Fang, The Iron Heel, Before
Adam, Martin Eden, The People of the Abyss, The Night-Born,
The Sea Wolf, South Sea Tales, The Valley of the Moon

Mark Twain 1835–1910 The Adventures of Tom Sawyer, Adventures of Huckleberry
Finn, Life on the Mississippi, The Mysterious Stranger and
Other Stories, A Tramp Abroad, Following the Equator, The
Innocents Abroad, Roughing It, The Prince and The Pauper, A
Connecticut Yankee in King Arthur’s Court

Oscar Wilde 1854–1900 A House of Pomegranates, The Duchess of Padua, Vera, Lady
Windermere’s Fan, A Woman of No Importance, Intentions, An
Ideal Husband, Lord Arthur Savile’s Crime and Other Stories,
The Importance of Being Earnest, The Picture of Dorian Gray

Sir Arthur Conan Doyle
1859–1930

Rodney Stone, The Adventures of Sherlock Holmes, A Duet,
The Tragedy of The Korosko, The Refugees, Uncle Bernac,
The Valley of Fear, The Hound of the Baskervilles, Sir Nigel,
The Lost World

William Henry Giles Kingston
1814–1880

Hendricks the Hunter, The Three Lieutenants, The Three
Midshipmen, The Three Commanders, Peter the Whaler, Ben
Burton, The Three Admirals, Adventures in Africa, In the
Wilds of Florida, Peter Trawl

William Shakespeare
1564–1616

Hamlet, Prince of Denmark, The Life of Henry the Fifth, The
Merchant of Venice, The Tragedy of Antony and Cleopatra,
The Tragedy of Coriolanus, The Tragedy of Julius Caesar, The
Tragedy of King Lear, The Tragedy of Othello, Moor of
Venice, The Tragedy of Romeo and Juliet, The Winter’s Tale
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Fig. 1 Sample text from Charles Dickens’s “A Christmas Carol” novel showing the stages of text
preprocessing and the co-occurrence network created from the text

Fig. 2 199 different orientation of the directed four-node network motif

the importance of feature frequency explained at the end of Sect. 2, we chose the
directed four-node network motifs shown in Fig. 2. For each book in the dataset, we
extracted the 199 motifs from their directed network and then a data frame contains
the motifs frequencies was created. Figure3 illustrates a sample four-node directed
motif extracted from the example network of Fig. 1c. The frequency distribution of
the extracted four-node motifs from the books of Bernard Shaw, H.G. Wells, Jack
London, and William Shakespeare is shown in Fig. 4.
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Fig. 3 Four-node directed network motif sample from the network of Fig. 1

Fig. 4 Four-node network motif sorted frequency of the networks created from the books by
Bernard Shaw, H.G. Wells, Jack London, and William Shakespeare
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Table 2 Average classification accuracy results for the four-node directed motifs when splitting
the dataset into 75% for training set and 25% for testing set with 100 times random shuffling

Complete set 75% 50% 25% 10%

KNN 42 42 48 53 52

Decision tree 41 45 46 45 50

Random forest 56 58 58 59 64

SVM 53 56 62 63 67

MLP 66 68 70 70 68

4 Motif-Based Classification

For this part of the work, we utilized five supervised machine learning classification
algorithms, namely K-nearest neighbors (KNN), decision trees, random forests, sup-
port vector machines (SVM), and multilayer perceptrons (MLP). They are all part
of the scikit-learn3 machine learning package for Python. As we try to attribute 10
authors, we have a multi-class classification problem with the number of samples
(N = 100) which represents the number of books and the dimension of the feature
set (D = 199) was relatively high. We used two cross-validation methods, the first
one is to split our dataset into 75% training set and 25% testing set and then shuffle
the dataset and repeat the operation for 100 times. The second method was leave-
one-out, where the dataset is split into 99 sample for training and one sample for
testing then iterates through the remaining samples. The average classification accu-
racy was calculated with both methods for all the algorithms used in the work. All
the datasets were standardized by scaling to unit variance and removing the mean.
The classification was performed on all the feature sets, that is the whole 199 four-
node directed motifs and then recursive feature elimination (RFE) feature selection
method is used to find the best 75, 50, 25, and 10% features, respectively. An alter-
native method mostly used in the literature is to choose significant motifs based on
the highest Z -scores, but we preferred to collect the whole set of motifs and then use
feature selection methods to choose the best set.

The results of classification using the first cross-validationmethod of shuffling and
splitting the dataset are listed in Table2, while Table3 lists the results of the leave-
one-out cross-validation method. As can be seen from both tables, the two basic
classification algorithms KNN and the decision trees did not perform well compared
to more sophisticated algorithms. Although KNN gives us an average accuracy of
60% when using 25% of the dataset and the leave-one-out cross-validation method,
it is still lower than the accuracy obtained from the other classification methods. The
best classification accuracy of 77% was obtained when the MLP classifier used with
leave-one-out validation method.

3http://scikit-learn.org.

http://scikit-learn.org
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Table 3 Average classification accuracy results for the four-node directed motifs with leave-one-
out cross-validation method

Complete set 75% 50% 25% 10%

KNN 41 42 51 60 54

Decision tree 44 55 47 55 57

Random forest 61 56 62 60 65

SVM 61 66 70 66 71

MLP 72 73 75 77 72

5 Conclusion and Future Work

Throughout this work, we attempted to attribute 10 authors of 100 books using four-
node directed network motifs. Functional words (stop words) were kept during text
preprocessing as they proven by many previous works to reflect author style and
increase the accuracy of attributing authors. The results we obtained herein outper-
formed other works when network motifs were the only feature used in attributing
authors. Also, the number of 100 books used in this work is much higher than other
works, which statistically means if we used the same smaller dataset, we will get
better classification accuracy. This proves the importance of network motifs in rec-
ognizing the variety of writing styles among different authors. This opens the door
for future work to generalize this method in attributing text from a different genre
and translation assessment. Other possibilities are to study the effect of extracting
higher motif order on the accuracy of classification.
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15. Rizvić, H., Martinčić-Ipšić, S., Meštrović, A.: Network motifs analysis of croatian literature.
arXiv:1411.4960 (2014)

16. Rocha, A., Scheirer, W.J., Forstall, C.W., Cavalcante, T., Theophilo, A., Shen, B., Carvalho,
A.R.B., Stamatatos, E.: Authorship attribution for social media forensics. IEEE Trans. Inf.
Forensic Secur. 12(1), 5–33 (2017)

17. Segarra, S., Eisen, M., Ribeiro, A.: Authorship attribution through function word adjacency
networks. IEEE Trans. Sig. Process. 63(20), 5464–5478 (2015)

18. Stamatatos, E.: A survey of modern authorship attribution methods. J. Assoc. Inf. Sci. Technol.
60(3), 538–556 (2009)

19. Tran, N.T.L., DeLuccia, L., McDonald, A.F., Huang, C.-H.: Cross-disciplinary detection and
analysis of network motifs. Bioinform. Biol. Insights 9, 49 (2015)

http://arxiv.org/abs/1411.4960


Complex Networks Reveal
a Glottochronological Classification
of Natural Languages

Harith Hamoodat, Younis Al Rozz and Ronaldo Menezes

Abstract The success of humans cannot be attributed to language, but it is certainly
true that language and modern humans are inseparable. This work focuses on reveal-
ing the structure of 20 Indo-European languages belonging to three sub-families
(Romance, Germanic, and Slavic) from a chronological perspective. In order to find
the chronological characteristic features of these languages, we use (1) Heaps’ law,
which describes the growth of vocabulary (distinct words) in a corpora for each lan-
guage to the total number of words in the same corpora and (2) structural properties
of networks created from word co-occurrence in corpora of 20 written languages.
Using clustering approaches and entanglement, we show that in spite of differences
from years of being used separately and differences in alphabets, one can find lan-
guage characteristics that lead to cluster of languages resembling the organization
according to historical sub-families and chronological relations.

1 Introduction

The development of societies leads to the use of different tones and words creat-
ing different dialects for the same language. Over time, those dialects change by
adding or removing words until they are considered as a new language. Moreover,
themigration of human populations groups contributed to the formation of languages
because the geographical separation of populations acts as a catalyst for changes in
vocabulary. In fact, this analogy is similar to how different species emerged as a
result of geographical separation. This evolution of language formation means that
today there are thousand of different languages currently being used [17]. Due to
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the nature of their formation, many of these languages can be grouped together into
a language family. The languages in each family are related through descent to a
common ancestral language. Parental languages transfer some of its characteristics
to derived languages; thus, we can say that the derived languages within a language
family are “genetically” related [23].

There are about 100 language families in the world, e.g., Indo-European, Afro-
Asiatic, and Niger-Congo. The Indo-European family has the largest number of
speakers among all families known (more than 40% of the human population). It
contains about 445 languages many of themwidely spoken such as Spanish, English,
Russian, and Portuguese [10]. According to Linguists, the Indo-European family can
be divided into several sub-families such as Germanic, Italic-Romance, Slavic, and
Baltic [7].

The availability of large volumes of data today encourages researchers to study
the relation between languages using regularities extracted from corpora of text. In
this work, we show that even without lexical distance analysis or word-pair relations,
and focusingmerely on the structure built from syntax, we can detect useful structure
of language families.

2 Related Work

Although a number of studies have been done in the history of languages and how
they derived from each other, there is no unanimity on the origin of human languages
because of the lack of direct evidence and empirical data [4]. Due to the difficulty
to determine the specific date of language separation, the researchers try to study
the relationship between languages and convert the result into an estimate for when
a pair diverged. However, the calculation of the distance between pair of language
is one of the most efficient methods to use it for chronological estimation. Linguis-
tic distance—how different one language or dialect is from another [22]—can be
computed by the lexical distance of the language vocabulary [12, 21].

There are several distance measure algorithms that can be applied on text like
Hamming distance, Levenshtein distance, and Jaro–Winkler distance [25]. Leven-
shtein is commonly used, and it is a metric for measuring the difference between
two string sequences. The Levenshtein distance between two words is the minimum
number of single-character edits (insertions, deletions, or substitutions) required to
change one word into the other.

Petroni and Serva [21] created a chronological family tree for Indo-European and
the Austronesian group. They used fifty different languages for both cases depending
on two Swadesh list dataset, one for Indo-European and one for Austronesian. The
authors created matrices of the lexical distances between languages for the two
families. Each matrix contains 1225 elements to describe all pairs in a group. Then,
they calculated the absolute timescale for those pairs. In order to calculate the distance
between each language pair, one takes the average of the distances between the word
pairs. They used a modification of the Levenshtein distance and normalized it by the
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number of characters for longer of the two words, which is reasonable if two words
differ by one character this is much more important for short words than it is for
long words. They found that the result from the method above is relatively similar
to those found by glottochronologists.

The use of a cognate set of words to study the time of language divergence is not
new. In fact, Gray et al. [11] studied the time separation between 87 Indo-European
languages from a dataset of 2,449 cognate sets coded as discrete binary characters.
They applied likelihood models of lexical evolution to solve the problem of accuracy
of tree topology and branch length estimation. A Bayesian inference of phylogeny
was used to enhance the estimation of tree topology and branch lengths. Also, they
used rate-smoothing algorithms to reduce the rate variation across the tree. Last,
they tried to examine subsets of languages using split decomposition, and the result
showed a strong identity for the tree when comparing a subset result with complete
one. They found the results are in agreement with the Anatolian theory for the origin
time of Indo-European languages. Furthermore, a number of studies have been done
for the classification of languages using text characteristics without looking to the
time divergence [2, 15].

3 Methodology

3.1 Data Curation and Model

In this work, we utilize a large amount of textual data called the Leipzig corpora
collection [9]. The languages chosen for this work were Romanian (Ron), French
(Fra), Catalan (Cat), Italian (Ita), Spanish (Spa), Portuguese (Por), German (Ger),
Dutch (Dut), Danish (Dan), Norwegian (Nor), Swedish (Swe), English (Eng), Slove-
nian (Slv), Bulgarian (Bul), Polish (Pol), Russian (Rus), Ukrainian (Ukr), Croatian
(Cro), Czech (Ces), and Slovak (Slk). These languages were chosen because they are
good representations of three large sub-families of the Indo-European family, which
are Italic, Germanic, and Slavic. The text corpus for each language was constructed
from Wikipedia and news pages to ensure vocabulary diversity. We made the size
of the corpus for each language consistent; each language corpus is composed of 1
million sentences. After the entire text was converted to lower case, and the punctua-
tion and special characters were removed, we used 100,000 words from each corpus
for the work developed in this paper. The second kind of data we used relates to the
languages, tree topology, branches length, and divergence period between languages
(year the languages separate), which we reconstructed from several works [11, 12,
21] in linguistics. This hierarchy was done for the 20 languages we deal with in this
paper and is used as the ground truth (see Fig. 1).
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Fig. 1 A dated phylogenetic tree of 20 Indo-European languages with three sub-families, Italic,
Germanic, and Slavic. The dates on the y-axis are approximations for when these languages split
from a common language

3.2 Feature Extraction

We extracted a set of 19 features for each language; we want to demonstrate that
one could use these features (or some of them) to unveil a structure similar to the
ground truth. The first two features represent the vocabulary richness of the language
as expressed by Heaps’ law [13]. The parameters k and β describe the vocabulary
growth (distinct words) in texts as a function the total number of words seen [2, 16].
More formally, VR(n) = k nβ where VR is the number of vocabulary words in the
text of size n, k and β are parameters determined experimentally from the fitting of
Heaps’ law.

The other 17 features were obtained from the word co-occurrence network for
each language. The network is simple and built having words as nodes and linking
words if they appear in the corpus consecutively. The edges’ weights represent the
frequency in which the two words appear next to each other. The networks follow a
power-law distribution and have community structures (we used Louvain modularity
[3]); the number of communities is an important feature (com). The features αd and
αs represent, respectively, the scaling of the degree distribution and the distribution
of community sizes. The size of the network is given by the number of nodes n and
number of edges m.

There are many other structural characteristics that can be computed from the
networks. For this work, we exhaustively added many features without too much
concern for an exact number. The purpose is to make sure we are capturing as many
uncorrelated metrics as possible. Later we worked reducing the dimensions and
identifying the most significant parameters. The degree k of a node is the number
of edges connected to it. The higher average degree 〈k〉 the network has, the more
density it is [6]. From Table1, we can clearly see that the Slavic languages have a



Complex Networks Reveal a Glottochronological … 213

Ta
bl
e
1

E
ac
h
lin

e
in

th
is
ta
bl
e
re
pr
es
en
ts
19
-d
im

en
si
on

fe
at
ur
e
ve
ct
or

fo
r
th
e
la
ng
ua
ge

sh
ow

n
in

th
e
fir
st
co
lu
m
n

L
an
gu
ag
es

k
β

α
d

α
s

n
m

〈k〉
C
4

C
〈C

d
〉

〈C
b
〉

〈C
c
〉

D
tr
an

s
η �

�
r

Q
co
m

Po
rt
ug

ue
se

6.
40

0.
70

2
2.
30

2
1.
34

3
20

,6
41

70
,8
16

6.
86

0.
04

4
0.
18

6
0.
00

03
3

0.
00

01
0

0.
30

5
11

0.
01

03
11

.7
29

3.
33

1
−0

.1
35

0.
39

2
47

Sp
an
is
h

7.
63

0.
69

4
2.
32

3
1.
46

2
22

,2
58

73
,0
26

6.
56

0.
05

9
0.
24

1
0.
00

03
0

0.
00

01
0

0.
31

5
14

0.
00

88
12

.9
72

3.
21

7
−0

.2
27

0.
35

1
11

1

It
al
ia
n

8.
28

0.
68

9
2.
29

1
1.
39

9
22

,8
85

77
,6
93

6.
79

0.
03

5
0.
17

0
0.
00

03
0

0.
00

01
0

0.
30

2
13

0.
01

13
11

.7
21

3.
35

7
−0

.2
23

0.
36

3
55

C
at
al
an

7.
69

0.
68

6
2.
32

4
1.
33

5
20

,8
56

68
,0
05

6.
52

0.
07

3
0.
27

7
0.
00

03
0

0.
00

01
0

0.
32

2
10

0.
00

84
13

.5
51

3.
15

1
−0

.2
10

0.
36

4
44

Fr
en
ch

7.
41

0.
69

0
2.
28

9
1.
32

4
20

,7
00

73
,2
41

7.
08

0.
05

1
0.
25

7
0.
00

03
0

0.
00

01
0

0.
32

2
09

0.
01

09
16

.6
28

3.
14

6
−0

.2
45

0.
33

6
58

R
om

an
ia
n

8.
91

0.
68

3
2.
30

7
1.
25

2
22

,8
21

75
,3
61

6.
60

0.
04

3
0.
17

5
0.
00

02
8

0.
00

01
0

0.
30

5
10

0.
01

06
11

.3
06

3.
32

5
−0

.1
85

0.
37

1
33

D
ut
ch

6.
54

0.
70

0
2.
17

5
3.
52

9
20

,4
85

72
,7
45

7.
10

0.
08

1
0.
32

0
0.
00

03
0

0.
00

01
0

0.
32

6
11

0.
01

57
26

.0
30

3.
10

2
−0

.2
19

0.
30

4
31

G
er
m
an

0.
23

1.
00

8
2.
21

4
1.
42

7
24

,2
96

73
,8
41

6.
08

0.
08

8
0.
26

0
0.
00

02
0

0.
00

00
9

0.
31

7
10

0.
01

20
16

.1
21

3.
20

0
−0

.1
95

0.
35

2
11

2

D
an
is
h

5.
70

0.
72

0
2.
21

7
4.
80

4
22

,2
34

71
,6
12

6.
44

0.
06

6
0.
24

6
0.
00

02
0

0.
00

01
0

0.
31

1
10

0.
01

30
16

.5
35

3.
25

9
−0

.1
83

0.
35

8
34

N
or
w
eg
ia
n

6.
13

0.
70

6
2.
23

1
4.
45

6
20

,5
71

63
,9
97

6.
22

0.
09

0
0.
29

8
0.
00

03
0

0.
00

01
0

0.
32

2
10

0.
01

08
15

.3
49

3.
14

3
−0

.2
10

0.
36

4
30

Sw
ed
is
h

4.
65

0.
74

3
2.
18

6
1.
33

0
24

,0
71

70
,8
87

5.
89

0.
08

1
0.
27

8
0.
00

02
0

0.
00

01
0

0.
31

6
11

0.
00

86
11

.8
08

3.
20

9
−0

.1
99

0.
38

6
44

E
ng

lis
h

9.
88

0.
65

0
2.
36

8
1.
40

4
17

,4
48

68
,7
62

7.
88

0.
07

4
0.
31

8
0.
00

04
0

0.
00

01
0

0.
33

9
09

0.
01

07
22

.9
13

2.
99

4
−0

.1
93

0.
29

1
47

B
ul
ga
ri
an

5.
41

0.
72

8
2.
44

9
1.
85

4
23

,6
55

58
,7
46

4.
97

0.
06

1
0.
18

5
0.
00

02
0

0.
00

00
9

0.
30

6
17

0.
00

34
5.
09

1
3.
32

3
−0

.1
89

0.
50

3
49

6

Sl
ov
en
ia
n

7.
58

0.
71

6
2.
34

3
1.
79

1
28

,6
69

83
,4
70

5.
82

0.
03

7
0.
12

2
0.
00

02
0

0.
00

00
8

0.
28

6
11

0.
01

05
8.
59

3
3.
55

8
−0

.1
17

0.
39

6
62

R
us
si
an

7.
51

0.
71

9
2.
33

4
4.
50

2
29

,3
33

81
,4
05

5.
55

0.
04

5
0.
12

3
0.
00

01
0

0.
00

00
8

0.
28

5
10

0.
00

57
5.
41

5
3.
57

6
−0

.1
12

0.
42

8
57

U
kr
ai
ni
an

4.
41

0.
76

5
2.
34

5
2.
62

9
29

,3
63

78
,1
55

5.
32

0.
05

4
0.
14

7
0.
00

01
8

0.
00

00
8

0.
28

9
15

0.
00

66
5.
65

4
3.
54

3
−0

.1
59

0.
43

8
36

C
ze
ch

4.
71

0.
76

5
2.
38

7
1.
87

8
31

,4
86

83
,3
20

5.
29

0.
04

1
0.
10

1
0.
00

01
6

0.
00

00
8

0.
27

4
12

0.
00

57
4.
29

8
3.
72

6
−0

.0
86

0.
43

8
64

Sl
ov
ak

7.
07

0.
73

3
2.
28

8
2.
30

5
32

,5
42

87
,6
25

5.
39

0.
02

9
0.
08

6
0.
00

01
6

0.
00

00
8

0.
27

0
13

0.
00

75
4.
89

6
3.
77

5
−0

.0
81

0.
43

1
65

C
ro
at
ia
n

7.
31

0.
71

6
2.
31

7
2.
00

3
27

,3
69

63
,8
26

4.
66

0.
03

9
0.
14

4
0.
00

01
7

0.
00

01
0

0.
26

7
14

0.
00

40
2.
69

3
3.
81

9
−0

.1
34

0.
55

0
13

2

Po
lis
h

5.
92

0.
73

4
2.
39

0
3.
15

5
27

,3
90

72
,7
21

5.
31

0.
04

8
0.
12

2
0.
00

01
9

0.
00

00
9

0.
27

7
16

0.
00

82
5.
12

3
3.
67

8
−0

.1
30

0.
47

0
70



214 H. Hamoodat et al.

lower 〈k〉 compared to all other languages in the dataset, while the English language
has the higher one.

In addition to the network clustering coefficient (C), a measure of the degree to
which nodes in a graph tend to cluster together, we calculate the square clustering
(C4) which is the quotient between the number of squares and the total number of
possible squares [14].

Similar to the concept of clustering (C) is the concept of transitivity (trans) [24] of
the network. Moreover, bothC and trans depend on the number of triangles (cliques
of three nodes) in the network, so we have also included these features (trans and
η�, respectively) as part of our set of metrics. Another important feature of networks
is the average path length (�) between two nodes which is also included in our list.
Croatian has the longest value for � = 3.81 steps, while the shortest one was English
with � = 2.99. This is likely because morphological languages like most of Slavic
languages tend to have long sentences than analytic languages like English andDutch
[1]. The diameter of the network D is the largest shortest path and another important
feature we included here. Note that at this point, the idea is to have an exhaustive list
of features that could represent a language.

Related to community detection algorithms is themodularity of the network given
by Q which is designed to measure the strength of a division of a network into
groups; a measure the community structure [8]. The value of Q for all 20 networks
was calculated using the approach proposed by Newman [19]. Based on this metric,
Croatian has the largest modularity value of 0.550, while the lowest value was 0.291
scored by English.

Centrality measures are used to identify the important nodes within a network;
here we used degree centrality (Cd ) which is highly correlated to 〈k〉, betweenness
(Cb), and closeness (Cc) as defined byBorgatti [5]. However sincewewant a network
feature, we represent the average of all these values given by 〈Cd〉, 〈Cb〉, and 〈Cc〉.
Last, we compute the degree assortativity of the network which is given by r [18].

After all the analysis, we had a 19-dimension feature vector for each language as
depicted in Table1. This vector is used in clustering the networks, but we will also
try to identify the significant features and reduce the dimension.

4 Results and Discussion

In order to compare the tree resulted from the hierarchical clustering with the ground
truth tree (Fig. 1), we measured the quality of the alignment of the two trees by
calculating the entanglement function. Entanglement is a measure between 1 (full
entanglement) and 0 (no entanglement) which corresponds to a good alignment. We
took all the possible combination of the 19 parameters in the matrix, for each com-
bination, we constructed a tree and compared it with the ground truth in order to
find the entanglement. Table2 contains the best 10 entanglement from all combina-
tions. Furthermore, we can evoke which features have high impact on the results like
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Fig. 2 Entanglement between two trees using the best entanglement case

trans, r , �, and 〈k〉which they appeared in themost cases. In contrast, there are some
parameters useless for this work like Heaps’ law parameters and 〈Cb〉 (Table2).

The best combination between all the cases has the entanglement value of 0.06
(first case inTable2), this case has only seven parameters,which are the smallest com-
bination parameters that give better values (Fig. 2). The hierarchical clustering was
not only able to distinguish the Slavic languages from the non-Slavic language but
also to capture the branches relation and distances for this sub-familywith one excep-
tionwhich is theBulgarian language (discussed later).Moreover, it was ambidextrous
to recognize the Germanic from Romance languages with some differences in the
branches relation like Germany with Norwegian instead of the Dutch language.

In order to check the consistency of result, we tested the sensitivity of remov-
ing languages. First, we remove one language each time and calculate the average
entanglement for all cases. Secondly, we remove two languages and calculate the
average entanglement, and so on (Fig. 3b). The average entanglement increased until
the sixth language removed and then started to be constant at a high level, which
means that the topology of the tree is completely destroyed and the removal of more
languages does not affect the result.
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Fig. 3 Entanglement sensitivity as a function of removing languages

To test for certain language impact on the average entanglement and tree topol-
ogy, we removed one language each time and recalculated the average entanglement.
The language with high average entanglement in Fig. 3a means the most effective
language on the tree topology. In our languages set, when we removed the Bulgarian
language which occupied a whole branch in the network result cluster, the average
entanglement became very high (0.79) which means the branches relation is very
tangled. The unpredictable behavior of the Bulgarian language may be due to several
reasons; first, the number of uniquewords (nodes) is less thanothers Slavic languages.
Also, words in the Bulgarian language are most likely to connect with another word
several times which describes the reason why the language has a number of connec-
tions less than all other language networks in the dataset. On the other hand, several
important dissimilarities exist between the Bulgarian language and other Slavic lan-
guages. For instance, Bulgarian is an analytic language and its unique morphological
features tend toward the Balkan family of languages. The Bulgarian language roots
back to the Proto-Slavic branch of the Indo-European language family which have
common features with the Indo-Iranian languages, more specifically, the Germanic
family, but it was much similar to the Baltic family of languages. Finally, a lot of
the words in the Bulgarian language were borrowed from the Turkish and Greek
languages [20].

5 Conclusion

In this study, we used the topological measurements extracted from word co-
occurrence networks of 20 Indo-European languages alongHeaps’ law parameters to
construct the hierarchical cluster that represents the chronological distance between
those languages. The comparison that we made of our results with the glottochrono-
logical classification based on the lexical distance between word fluctuation among
different languages shows a strong agreement between the two methods. In order
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to support this finding, we test the tolerance of the cluster against languages varia-
tion. We did this by removing one language a time and calculate the entanglement.
Also, we extracted the best features that give the lowest entanglement; these features
we believe they best describe the chronological difference between languages. The
results we get from this work open the door for many future works; for instance,
we could expand our study to include languages from different main families. Also,
it is possible to apply our method to find the closest translation of document to the
original text in order to assets the quality of translation.
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A Percolation-Based Thresholding
Method with Applications in Functional
Connectivity Analysis

Farnaz Zamani Esfahlani and Hiroki Sayama

Abstract Despite the recent advances in developing more effective thresholding
methods to convert weighted networks to unweighted counterparts, there are still
several limitations that need to be addressed. One such limitation is the inability of
the most existing thresholding methods to take into account the topological proper-
ties of the original weighted networks during the binarization process, which could
ultimately result in unweighted networks that have drastically different topological
properties than the original weighted networks. In this study, we propose a new
thresholding method based on the percolation theory to address this limitation. The
performance of the proposed method was validated and compared to the existing
thresholding methods using simulated and real-world functional connectivity net-
works in the brain. Comparison of macroscopic and microscopic properties of the
resulted unweighted networks to the original weighted networks suggests that the
proposed thresholding method can successfully maintain the topological properties
of the original weighted networks.

1 Introduction

Network science has become an integral part of analyzing complex systems whose
aggregate behavior cannot be explained by the summation of their parts [1]. This is in
part due to the rapid advancement of data acquisition techniques that enable empirical
measurement from components of complex systems, where these measurements can
be used to estimate the links (similarities) between the system components. For
example, neuroimaging data such as functional magnetic resonance imaging (fMRI)
and electroencephalogram (EEG) are extensively used in computational neuroscience
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to study the connectivity between different regions of the brain [2]. However, since
the empirical data often include measurement noise and the connection between
components of the system (nodes of the network) are generally estimated using the
statistical measurements, the resulted networks are dense graphs including many
weak links. Analyzing such dense networks is often challenging due to the larger
memory requirement, higher computational time complexity, and the limited number
of measures to characterize the topology and properties of the weighted networks.
Hence, usually, the weighted networks are mapped to an unweighted counterpart by
binarizing the edge weights using a specific threshold where the connection weights
smaller than the predefined threshold are discarded.

Various thresholding methods have been introduced in the literature, which can
be categorized into two main categories of “absolute thresholds” and “proportional
thresholds” [3]. The absolute thresholding methods use a fixed threshold value to
binarize the weighted networks, whereas the proportional methods generally use
some statistics of the connection weights (such as mean, median, or the p-th per-
centile) for thresholding the weighted networks. However, none of these methods
take into account the topological integrity of the original weighted network, which
becomes problematic when some key edges that are critical for maintaining the
macroscopic and microscopic properties of the network are removed. This is espe-
cially important as it has been shown that such topological changes can significantly
impact the derived network metrics such as centrality measures [4]. Furthermore, the
majority of thresholding methods in the literature neglect the importance of weak
links, which has been shown to provide useful information about the underlying
properties of the network [5, 6].

According to our best knowledge, the only method that has partially addressed
the previous challenges is the 99% connectedness method by Bassett et al. [7]. Even
though this method takes into account the overall connectedness of the nodes, it
assumes the original weighted network is dense. In other words, for sparser networks
where the average node degree is very small, this method does not guarantee the
topological integrity of the network. This might not be a problem for functional
connectivity analysis, but it is problematic in effective connectivity analysis where
the resulted weighted networks are generally sparse.

To tackle these issues, here we propose a new thresholding method based on
the percolation theory which takes into account the whole network topology dur-
ing the binarization process. More specifically, we use the maximum threshold that
maintains the topological integrity of the original network, which in this case is
defined as the size of the largest connected component in the network. The ratio-
nale behind this method is to retain a minimum number of edges that keep the
network in the same level of global connectedness. The performance of the proposed
method was compared to existing statistical thresholding methods using both simu-
lated (based on a simple linear model) and real-world (Attention Deficit Hyperactiv-
ity Disorder-200 (ADHD-200) and the Center for Biomedical Research Excellence
(COBRE)) datasets. According to the results, the proposed percolation-based thresh-
olding method was capable of maintaining the topological properties of the original
weighted network at both macroscopic and microscopic levels.
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2 Materials and Methods

2.1 Percolation-Based Thresholding Method

The basic idea of the percolation-based thresholding method is to identify the min-
imum number of edges that maintain the giant component identified in the original
weighted network. To achieve this, we start binarizing the network using an initial
threshold (i.e., the maximum edge weight). Next, we characterize the size of the
largest connected component in the binarized network as a function of edge weight
threshold θ (we call this n(θ)) and compare it with the size of the largest connected
component in the original network (denoted by n0), which is usually the same as the
number of nodes for most weighted networks constructed using real-world datasets.
This process is repeated by gradually decreasing θ , until the critical threshold θc is
achieved, which is the first (largest) threshold value that satisfies

n(θc) = αn0. (1)

Here α is the level of the connectedness of the network. In this paper, we used α = 1
so that we can guarantee the same connectedness of the network after binarization.
Relaxing this criterion (using α < 1) results inmore sparse networks, which could be
beneficial for specific applications. However, since we want to minimize the impact
of thresholding on the topological integrity of the network, we keep α at one in
this study. Figure 1 provides a visual summary of the proposed percolation-based
thresholding method.

Fig. 1 A schematic illustration of the percolation-based thresholding method. First, the weighted
network is binarized using an initial edge weight threshold (θ0). Next, the largest connected compo-
nent in the binarized network is characterized as a function of edgeweight threshold θ and compared
to the size of the largest connected component in the original network (n0). The threshold θ is grad-
ually decreased until the stopping criterion n(θc) = αn0 is reached
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2.2 Performance Evaluation

To evaluate the effectiveness of the thresholdingmethod inmaintaining the properties
of the originalweighted networks, a simple distancemeasure (d)was used to calculate
the difference between the original and thresholded network properties:

d = |xt − xw|. (2)

Here xt represents the network property of the thresholded network and xw repre-
sents the same network property calculated using the original weighted network. The
distance value between different macroscopic and microscopic network properties
from the thresholded networks using percolation-based thresholding were compared
to several proportional thresholding methods including mean, p-th percentile of the
edge weights (p ∈ {%99,%95,%75,%50(median),%25,%5,%1}) [8], and meth-
ods proposed by Bassett et al. [7] including weighted average node degree that must
be maintained at a minimum number of connected nodes, the connectedness of at
least 99 % of the nodes, and a fixed thresholding method of average degree where
the average degree must not be smaller than the ln(|nodes|) ∗ 2. Table 1 provides a
summary of the methods examined in this study.

Table 1 Thresholding Methods. Label # refers to the corresponding label in the horizontal axis of
Figs. 3, 5, and 6

Label Method Short description Reference

1 Proposed
percolation-based method

Identify the minimum number of edges that
maintain the giant component in the original
weighted network

2 99% connectedness At least 99% of the nodes of the network must
be connected

[7]

3, 4 Average degree (a) Weighted average node degree that must be
maintained at a minimum number of connected
nodes

[7]

(b) The average degree must not be smaller
than the ln(|nodes|) ∗ 2

5, 6, 7
8, 9,
10, 11

p-th percentile p ∈
{%99,%95,%75,%50
(median),%25,%5,%1}

Edges less than the p-th percentile value are
discarded

[8]

12 Mean Edges less than the mean value are discarded [8]
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2.3 Datasets

We have used three simulated datasets and two real-world datasets to test the per-
formance of the proposed percolation-based thresholding method. The simulated
datasets with node sizes of 64, 125, and 216 (i.e., the number of Regions of Interest
(ROI)) were generated using a simple linear model with random design matrices as
described in [9]. More specifically we have

y = MB + e, (3)

where B is theweightmatrix,M is the designmatrix, and e is the random noise. Here,
B corresponds to a 3D image with five blocks at the corners and one in the middle to
simulate active brain regions (Fig. 2), M is random normal variables smoothed with
Gaussian fields to imitate the observed fMRI data, and e is the Gaussian random
noise chosen such that we have a signal-to-noise ratio of 10 dB.

For the real-world datasets, we used two major public fMRI datasets including
ADHD-200 [10] and the COBRE dataset [11]. The ADHD-200 dataset includes
fMRI scans from Attention Deficit Hyperactivity Disorder (ADHD) patients and
Typically Developing (TD) Children, whereas the COBRE dataset includes scans
from schizophrenia patients. The ADHD-200 dataset was preprocessed according
to the Athena pipeline [12] using the Analysis of Functional NeuroImages (AFNI)
and the FMRIB’s Software Library (FSL) tools, whereas the COBRE dataset was
preprocessed according to theCIVETpipeline [13] using theNeuroImagingAnalysis
Kit (NIAK). For each dataset, the weight of edges between the network nodes (in
this case the number of ROI) was estimated using correlation, partial correlation, and
tangent connectivity measures [14]. The summary of networks used in this study is
shown in Table 2.

Fig. 2 Simulated active brain regions
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Table 2 Datasets

Data Sample size (# of
networks)

Total # of nodes Reference

Simulated 20 64, 125, 216 [9]

Attention Deficit
Hyperactivity
Disorder (ADHD)

20 114 [10]

Schizophrenia (SZ) 72 39 [11]

Typically Developed
Children (TD)

20 114 [10]

3 Results

Figure 3 shows the mean threshold value calculated for different datasets using var-
ious thresholding methods, and Fig. 4 shows an example of thresholding a weighted
functional connectivity network where edges below the identified threshold value
using the percolation-based thresholding method are discarded. As seen in Fig. 3,
the 99% connectedness method provides similar threshold values to the proposed
percolation-based thresholdingmethodwhenusing the partial correlation and tangent
values, but provides a slightly higher threshold value for the correlation-based con-
nectivity. In general, average degree-based thresholding methods provided smaller
threshold values except for networks obtained from the correlation measure for real-
world datasets. Moreover, 99, 95, and 75 percentiles had higher threshold values,
while 50, 25, 5, 1 and mean resulted in a lower threshold value than the percolation-
based method. The 99% percentile method provided the largest thresholding values,
which means the binarized networks using this method will be much sparser than
the binarized networks using other thresholding methods.

To understand the impact of these threshold values on maintaining the properties
of weighted networks, the obtained threshold values for each weighted network
was used to extract the corresponding unweighted network and several measures
including the macroscopic (density, average shortest path length, and modularity)
andmicroscopic (closeness and degree centralities) propertieswere calculated before
and after the thresholding process.

Figures 5 and 6 show the mean distance value of the macroscopic (density, aver-
age shortest path length, and modularity) and microscopic (closeness centrality and
degree centrality) network properties between the original weighted networks and
the thresholded ones based on three connectivity measures for simulated and real-
world datasets. According to the results, in most of the cases, the distance between
the original network properties and the binarized network properties was smaller
when using thresholding methods based on the network topology (percolation-
based method, 99% connectedness, and degree-based method). Having said that in
some cases (e.g., mean distance of modularity calculated using tangent connectivity
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Fig. 3 Threshold values obtained from thresholding methods for three real-world (ADHD, SZ, and
TD children) and three simulated datasets with node size N ∈ {64, 125, 216}. The horizontal axis
in each plot shows the thresholding methods presented in Table 1. Each rows refers to a connectivity
measure including: correlation which is the simplest connectivity method that quantifies the linear
interdependency of two time series data, partial correlation which removes the effect of controlling
random variables when calculating the interdependency [15], and the tangent that uses residuals of
correlation matrices in the tangent space to estimate a covariance matrix [16]

measure), thresholding based on p-th percentile (i.e., 25, 5, and 1%) resulted in a
lower distance value between weighted and thresholded network. However, this was
mainly because of selecting a very small threshold value where only small number
of links were removed from the original weighted network, and hence the resulted
unweighted networks were dense. Taking into account this limitation of statistical
methods, the performance of the percolation-based method was especially good for
preserving the modularity of the correlation and partial correlation-based networks
in real-world datasets. Interestingly, the thresholding results using three tested con-
nectivity measures showed a similar pattern in maintaining degree centrality which
would indicate the robustness of degree centrality measure to outliers and noise.
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Fig. 4 Example of a functional connectivity matrix/network before and after thresholding with
the percolation-based thresholding method. The functional connectivity matrix represents the mean
correlation for 72 networks in SZ dataset. In the weighted functional connectivity matrix, rows
and columns represent ROIs (nodes), and the cell colors represent the strength of the connection
between nodes. In the thresholded functional connectivity matrix, black and white cells indicate the
presence and absence of the connections between ROIs, respectively

Fig. 5 Evaluation of the macroscopic and microscopic network properties after thresholding
for three simulated datasets with node size N = [64, 125, 216]. Each column refers to a con-
nectivity measures (correlation, partial correlation, and tangent) and each row refers to macro-
scopic/microscopic network properties. In each subplot, the horizontal axis represents the different
thresholding methods, and the vertical axis represents log of the distance value
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Fig. 6 Evaluation of the macroscopic and microscopic network properties after thresholding for
three real-world datasets. Each column refers to a network connectivity measure of correlation, par-
tial correlation, and tangent, and each row refers to a macroscopic/microscopic network properties.
In each subplot, the horizontal axis represents the different thresholding methods, and the vertical
axis represents log of the distance value

4 Conclusion

Choosing an appropriate threshold value to convert weighted networks to unweighted
ones is a major challenge in complex system analysis as the imprecise selection of
such threshold could significantly alter the original network topology, which could
subsequently bias the derived network properties such as centrality. In this study,
we proposed a percolation-based thresholding method that maintains the topologi-
cal integrity and connectivity of the original weighted network by minimizing the
number of isolated nodes after binarization. More specifically, the proposed method
resulted in thresholded networks with a similar macroscopic and microscopic net-
work properties (in particular modularity, average shortest path length, and degree
centrality) to the original weighted network. This is especially important in the field
of network neuroscience where changes of network properties could introduce a sig-
nificant bias to the outcome of the study. Even though the current study focuses on
the neuroscience applications, the percolation-based thresholding method could also
be used in other domains such as analysis of social networks and genetic networks.
Examples include scientific collaboration networks where nodes are scientists and
edges represent co-authorships [17], or gene co-expression networks where nodes
are genes and edges represent gene similarities [18].

The proposed method has limitations. Being an iterative procedure, the compu-
tational complexity of the proposed method is high, and it might not be suitable for
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very large networks. In this regard, using more efficient heuristic search methods for
identifying the critical threshold value (θc) could improve the computational time of
the proposed method. Furthermore, theoretical studies that describe the relationship
between different characteristics of the network and its topological integrity could
be beneficial for developing more effective thresholding methods.

Acknowledgements This work is supported by the National Institute of Health (NIH) grant #
MH112925-01. We would like to also thank Gregory P. Strauss and Katherine Visser for their
support of this work.

References

1. Barabási, A.L.: Network science. Philos. Trans. R. Soc. A 371(1987), 20120, 375 (2013)
2. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpre-

tations. Neuroimage 52(3), 1059–1069 (2010)
3. van den Heuvel, M.P., de Lange, S.C., Zalesky, A., Seguin, C., Yeo, B.T., Schmidt, R.: Propor-

tional thresholding in resting-state fmri functional connectivity networks and consequences for
patient-control connectome studies: Issues and recommendations. Neuroimage 152, 437–449
(2017)

4. Van Wijk, B.C., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and
connectivity density using graph theory. PlOS one 5(10), e13, 701 (2010)

5. Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot,
R., Giedd, J., Bullmore, E.T.: Disrupted modularity and local connectivity of brain functional
networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4 (2010)

6. Granovetter,M.: The strength of weak ties: a network theory revisited. Sociol. Theory. 201–233
(1983)

7. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfigu-
ration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. 103(51),
19518–19523 (2006)

8. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, USA
(2014)

9. Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B.: Total variation regularization
for fmri-based prediction of behavior. IEEE Trans. Med. Imaging 30(7), 1328–1340 (2011)

10. Milham, M.P.: The adhd-200 dataset. http://fcon_1000.projects.nitrc.org/indi/adhd200/
(2011). Accessed 01 May 17

11. Aine, C.: The center for biomedical research excellence (cobre) dataset. http://fcon_1000.
projects.nitrc.org/indi/retro/cobre.html (2011). Accessed 01 May 17

12. Bellec, P., Chu, C., Chouinard-Decorte, F., Benhajali, Y., Margulies, D.S., Craddock, R.C.: The
neuro bureau adhd-200 preprocessed repository. Neuroimage 144, 275–286 (2017)

13. Ad-Dabbagh, Y., Lyttelton, O., Muehlboeck, J., Lepage, C., Einarson, D., Mok, K., Ivanov, O.,
Vincent, R., Lerch, J., Fombonne, E., et al.: The civet image-processing environment: a fully
automated comprehensive pipeline for anatomical neuroimaging research. In: Proceedings of
the 12th Annual Meeting Of The Organization For Human Brain Mapping, p. 2266. Florence,
Italy (2006)

14. Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A.,
Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the
macroscale. Nat. Methods 10(6), 524–539 (2013)

15. Wang, Y., Kang, J., Kemmer, P.B., Guo, Y.: An efficient and reliable statistical method for
estimating functional connectivity in large scale brain networks using partial correlation. Front.
Neurosci. 10 (2016)

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html


A Percolation-Based Thresholding Method … 231

16. Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of brain
functional-connectivity difference in post-stroke patients using group-level covariance model-
ing. In: International Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 200–208. Springer, Berlin (2010)

17. Newman,M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2),
404–409 (2001)

18. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O.,
Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae bymicroarray hybridization.Mol. Biol. Cell 9(12), 3273–3297
(1998)



Discovering Patterns of Interest in IP
Traffic Using Cliques in Bipartite Link
Streams

Tiphaine Viard, Raphaël Fournier-S’niehotta, Clémence Magnien
and Matthieu Latapy

Abstract Studying IP traffic is crucial for many applications. We focus here on the
detection of (structurally and temporally) dense sequences of interactions that may
indicate botnets or coordinated network scans. More precisely, we model a MAWI
capture of IP traffic as a link streams, i.e., a sequence of interactions (t1, t2, u, v)
meaning that devices u and v exchanged packets from time t1 to time t2. This traffic
is capturedon a single router and sohas a bipartite structure:Links occur only between
nodes in two disjoint sets.We design amethod for finding interesting bipartite cliques
in such link streams, i.e., two sets of nodes and a time interval such that all nodes in
the first set are linked to all nodes in the second set throughout the time interval. We
then explore the bipartite cliques present in the considered trace. Comparison with
the MAWILab classification of anomalous IP addresses shows that the found cliques
succeed in detecting anomalous network activity.

1 Introduction

Attacks against online services, networks, and information systems, as well as iden-
tity thefts, have annual costs in billions of euros.Network traffic analysis and anomaly
detection systems are of crucial help in fighting such attacks. In particular,muchwork
is devoted to the detection of anomalous patterns in traffic. This work mostly relies
on pattern search in (sequences of) graphs, which poorly captures the dynamics of
traffic, or on signal analysis, which poorly captures its structure. Instead, we use here
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the link stream framework, which allows us to model both structural and temporal
aspects of traffic in a consistent way. Within this framework, a clique is defined by
a set of nodes and a time interval such that all the nodes in that set continuously
interact with each other during this time interval. Such patterns may be the signature
of various events of interest like botnets, DDoS, and others.

We present in Sect. 2 our link stream modeling of traffic captures, which calls
for specific notions, as this traffic is bipartite. We present in Sect. 3 fast heuristics
for finding cliques of interest in practice. We briefly present the MAWI dataset that
we use and then detail the results of our experiments in Sect. 4. Related work is
overviewed in Sect. 5, and we discuss the main perspectives in Sect. 6.

2 Traffic as a Link Stream

IP traffic is composedof packets, eachwith a source address and a destination address.
Routers forward these packets toward their destination, and one may capture traffic
traces by recording the headers of packets managed by a router, along with the time
at which they manage them. Such traces are generally collected on firewalls, access
points, or border routers. As a consequence, they often have a bipartite nature; they
capture exchanges between two disjoint sets of devices (for instance, the ones in a
company LAN and the outside Internet), as these routers are not in charge of traffic
between devices within one of these sets. This leads to the definition of bipartite
link streams that extend the classical definitions of bipartite graphs [1] and of link
streams [2, 3].

A bipartite link stream L = (T,�,⊥, E) is defined by a time span T , a set of top
nodes�, a set of bottom nodes⊥, and a set of links E ⊆ T × � × ⊥. If (t, u, v) ∈ E
then we say that u and v are linked at time t . We say that l = (b, e, u, v) is a link of
L if [b, e] is a maximal interval of T such that u and v are linked at all t in [b, e]. We
call l = b − e the duration of l. See Fig. 1 for an illustration. We consider undirected
links only: We make no distinction between (t, u, v) and (t, v, u) in E .

u

a

v

b

0 2 4 6 8 time

Fig. 1 A bipartite link stream L = (T,�,⊥, E) with T = [0, 10], � = {u, v}, ⊥ =
{a, b}, and E = ([1, 6] ∪ [8, 10]) × {(u, a)} ∪ [0, 5] × {(u, b)} ∪ ([2, 5] ∪ [7, 10] × {(v, a)} ∪
[3, 6] × {(v, b)}. In other words, the links of L are (1, 6, u, a), (8, 10, u, a), (0, 5, u, b), (2, 5, v, a),
(7, 10, v, a), and (3, 6, v, b). We display nodes vertically and time horizontally, each link being rep-
resented by a vertical line at its beginning that indicates its extremities, and a horizontal line that
represents its duration
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To model traffic as a link stream, we transform packets exchanged at timestamps
into continuous interactions; we consider that two IP addresses are continuously
linked together from time b to time e if they exchange at least one packet every
second within this time interval. This leads to the following definition of E : It is the
set of all (t, u, v) such that u and v exchanged a packet at a time t ′ such that |t ′ − t |
is lower than half a second.

3 Finding Cliques of Interest

In a bipartite graph G = (�,⊥, E), a clique is a couple (C�,C⊥) with C� ⊆ �
and C⊥ ⊆ ⊥ such that C� × C⊥ ⊆ E . In other words, there is a link between each
element of C� and each element of C⊥.

We define similarly a clique in a bipartite link stream as a tuple (C�,C⊥, I ) with
C� ⊆ �, C⊥ ⊆ ⊥ and I an interval of T such that I × C� × C⊥ ⊆ E . In other
words, each element of C� is linked to each element of C⊥ for the whole duration of
I . We call |C� ∪ C⊥| the size of the clique and |I | its duration. A clique is maximal
if there is no other clique (C ′

�,C
′
⊥, I ′) such that C� ⊆ C ′

�, C⊥ ⊆ C ′
⊥ and I ⊆ I ′.

See Fig. 2 for an illustration.
We explore cliques as patterns of interest in IP traffic. It is easy to extend to the

bipartite case the (non-bipartite) algorithm presented in [4]. However, we face two
issues. First, clique computations are costly, and enumerating all cliques is out of
reach in our case; we therefore resort to sampling. Second, not all maximal cliques
are interesting: In particular, a node and its neighbors is a bipartite clique, but has
little interest for us.

As a consequence,we focus on balanced cliques:A clique (C�,C⊥, I ) is balanced
if and only if ||C�| − |C⊥|| ≤ 1. We then search for balanced cliques as follows. We
iteratively build (C�,C⊥, I ) from the empty clique of maximal duration, (∅,∅, T ).
At each step, we choose a random node v in � or ⊥ such that v is linked to all nodes
in C⊥ or C�, respectively, during an interval Iv ⊆ I , and we update the current
clique into (C� ∪ {v},C⊥, Iv) or (C�,C⊥ ∪ {v}, Iv), respectively. In order to ensure

u

a

v

b

0 2 4 6 8 time

u

a

v

b

0 2 4 6 8 time

Fig. 2 Left: Two maximal cliques of the bipartite link stream of Fig. 1: ({u, v}, {a, b}, [3, 5]) (in
blue), and ({u, v}, {a}, [8, 10]) (in green). Right: From the blue clique ({u, v}, {a}, [1, 10]), our
algorithm builds the clique ({u, v}, {a, b}, [4, 5]) by adding b, which reduces the time span from
[1, 10] to [4, 5]
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the obtained clique is balanced, we alternatively choose v in � and in ⊥ at each
iteration. We stop when no node can be added.

This process samples a maximal balanced clique, and we run it many times to
obtain a large set of such cliques (see Sect. 4). It is clear that this set may be biased
by the sampling process, which is not uniform. However, since our primary goal is
to explore the relevance of some cliques in the context of IP traffic, studying this bias
is out of our scope. Notice also that the found clique is maximal among the set of
balanced cliques, but not necessarily maximal in the stream: It may be included in
an unbalanced clique.

Our sampling process tries to add as many nodes to the clique as possible, which
generally induces a reduction of its duration; see Fig. 2. As we are both interested in
large and long balanced cliques, we include in the sampled set all the intermediary
maximal balanced cliques built during the process.

4 Dataset and Results

We use an IP traffic capture from the MAWI archive, more precisely from the DITL1

initiative, from June 24, 2013, 23:45 to June 25, 2013, 00:45. This trace lasts 3, 600 s,
duringwhich 88, 266, 534 packets are sent involving 992, 466 nodes. 408, 751 nodes
are part of WIDE, and 583, 715 are outside of WIDE. WIDE/Non-WIDE sets are
nearly balanced, improving our chances of finding large balanced cliques.

We transform the data into a bipartite link stream L = (T,�,⊥, E), where T =
[0, 3600], � contains all observed WIDE IP addresses, and ⊥ all other observed IP
addresses. As said in Sect. 2, E is the set of links obtained by considering that nodes
interact for one second every time they exchange a packet. E contains 6, 206, 295
links.

In addition to this raw data, we use the MAWILab database [5], which gives
labels locating traffic anomalies in the MAWI archive. These labels are obtained
using an advanced graph-based methodology that compares and combines different
and independent anomaly detectors. This database indicates that there is a total of
488 anomalous IP addresses in our dataset that we will use to interpret the results in
the following.

We ran our sampling algorithm on the MAWI dataset. We ran 14 instances in
parallel on a server 2 for 106 days (3 months and 17 days). This led to a total of
1,291,084,661 sampled cliques, among which there were a great number of dupli-
cates: 198, 718, 323 are distinct maximal balanced cliques, which we study in the
rest of the paper.

We call anomalous clique a clique which contains at least one IP address that is
flagged as anomalous in the MAWILab database.

1http://mawi.wide.ad.jp/mawi/ditl/ditl2013/.
2A Linux machine with 24 cores at 2.9GHz and 256 GB of RAM.

http://mawi.wide.ad.jp/mawi/ditl/ditl2013/
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We show in Fig. 3 the distribution of sampled clique sizes and the inverse cumu-
lative distribution of their durations. Many are of size 2 or 3, which has little interest:
Cliques of size 2 are single links, and bipartite cliques of size 3 are just composed of a
node linked to two other nodes. Since any node with k neighbors leads to k(k − 1)/2
balanced 3-cliques, the large number of such cliques is unsurprising and brings no
significant information. We therefore focus on cliques of size 4 or more. Our sample
contains 275, 647 such cliques.

The sampled cliques of 4 nodes ormore involve 29, 744 distinct nodes, 94 ofwhich
anomalous. The fraction of anomalous nodes in these cliques therefore is 3.1 · 10−3,
much larger than in the whole dataset, 5 · 10−4. This indicates that maximal balanced
cliques are related to anomalous activity, as suspected.

While most maximal balanced cliques have a duration close to 1 second, the dura-
tion distributions show that there are very long cliques. However, duration is highly
influenced by size, as explained above, and sowe display the duration distribution for
each clique size separately in Fig. 4 (for readability, we show them in two plots). As
expected, the duration of large cliques is in general shorter than for cliques involving
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only few nodes. The 18 cliques spanning more than 500 s all have 4 or 5 nodes, the
longest being of size 4 and duration 1045.75s. Still, there are cliques involving 7
nodes for more than 10 s, up to almost 100 s. Larger cliques all have a duration close
to 1 second or less. Importantly, among the 18 cliques spanning more than 500 s, 17
are anomalous.

We deepen our understanding of large cliques by displaying in Fig. 5 the time
span of all maximal balanced cliques of size 4 or more: We sort cliques according to
their starting time, which gives their vertical position in the plot. We then represent
each clique (C�,C⊥, I ) by a horizontal line from the beginning of I to its end.
Colors indicate clique size. This plot confirms our previous observations; it shows
the prevalence of smaller cliques among the longest ones, and it shows that we
succeed in finding significant cliques during the whole time span of the dataset.

However, it also displays a sharp increase shortly after time 3000, corresponding
to a large number (31, 201) of short balanced cliques that start then. Figure5 right dis-
plays these cliques in more details and shows that they almost all involve anomalous
nodes. This confirms that clique structures are related to anomalous activity.

Interestingly, it seems that these anomalies cannot easily be distinguished from
other anomalies directly on simple plots like the number of distinct nodes or links
over time; see Fig. 6. Although there is a peak in both plots at time 3060, it is not
different from other peaks, yet it is the only one corresponding to such a sharp
increase in Fig. 5. This indicates that cliques highlight specific features of this event
that are worth investigating further.

We therefore display in Fig. 7 the graph induced by the balanced cliques we found
at seconds 3059, 3060, or 3061. The nodes of this graph are the nodes involved in
at least one of these cliques, and they are linked together if this link occurs in at
least one of these cliques. The graph has a large connected component with two
anomalous nodes linked to 228 distinct non-anomalous nodes, confirming that most
of these cliques are the signature of a same event (they actually are parts of a much
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Fig. 7 The graph induced
by all maximal balanced
cliques starting between
second 3059 and 3061, and
involving at least 4 nodes.
Anomalous nodes known
from MAWILab are in red

larger but unbalanced clique). This signature is typical of a coordinated scan in a
class C network.

5 Related Work

IP traffic has been extensively studied for decades with powerful approaches relying
on signal processing and machine learning [6], or graphs. In [7], the authors use
graphs to represent temporal dependencies in traffic and characterize traffic behav-
ior. In [8], the authors model the traffic as a bipartite graph and then used one-mode
projections and clustering algorithms to discover behavioral clusters.Clustering com-
munication behavior was also proposed in [9], where authors discuss the relevant
features before analyzing significant nodes for long periods.

Graph-based approaches are however limited in their ability to capture temporal
information, crucial for traffic analysis. Indeed, they generally rely on splitting data
into time slices and then aggregate traffic occurring into each slice into a (possi-
bly weighted, directed, and/or bipartite) graph. One obtains this way a sequence of
graphs, and one may study the evolution of their properties; see for instance [10].
However, choosing small time slices leads to almost empty graphs and brings little
information. Conversely, large slices lead to important loss of information as the
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dynamics within each slice is ignored. As a consequence, choosing appropriate sizes
for time slices is extremely difficult and a research topic in itself [11]. There is
currently an important interdisciplinary effort for solving these issues by defining
formalisms able to deal with both the structure and dynamics of such data. The link
stream approach is one of them [3], as well as temporal networks and time-varying
graphs [12, 13]. Up to our knowledge, these other approaches have not yet been
applied to network traffic analysis.

6 Discussion

We have shown that cliques in bipartite link streams modeling of IP traffic allow to
detect anomalous activity in IP traffic: Long cliques of significant size involve anoma-
lous nodes known fromMAWILab, although they are rather small, and simultaneous
apparition of many small cliques indicates coordinated activity like distributed scans.
This work however only is a first step, and it raises many questions.

In particular, the computational cost of our method is prohibitive. Algorithmic
work is therefore needed to design faster clique detection heuristics, and to search for
quasi-cliques. One may also preprocess the stream by iteratively removing nodes of
degree 1, which represent a large fraction of the whole and cannot be involved in non-
trivial cliques.Going further, onemayuse link streams to definemanyother structures
of interest regarding anomalous traffic. Exploring other modeling assumptions is
also appealing, in particular the fact that we linked nodes together if they exchanged
packets at least every second (other time limits may be interesting), the fact that we
considered undirected links, or the use of port or protocol information present in the
data.
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Router-Level Topologies of Autonomous
Systems

Muhammed Abdullah Canbaz, Khalid Bakhshaliyev
and Mehmet Hadi Gunes

Abstract In order to understand the Internet topology, it is important to analyze the
underlying networks’ characteristics. Internet is enabled by independently operating
Autonomous Systems (ASes) that collaborate to provide end-to-end communication.
In this paper, we investigate the network characteristics of backbone ASes that pro-
vide transit connectivity.We collect router-level probe data sets from all of the public
Internet topologymeasurement platforms and obtain network topologies of the back-
bone ASes. We then analyze the network characteristics of each AS and perform an
in-depth analysis of the high ranked ASes. Analyzing two snapshots, we observe
disassortative network topologies in the majority of AS topologies independent of
their network size. Also, most of the top-ranked ASes have a densely connected core
and exhibit power-law degree distributions.

1 Introduction

A challenge for network practitioners is the lack of understanding topological char-
acteristics of the Internet backbone as a plethora of new applications and systems
is deployed over a growing network. Underlying infrastructure not only affects the
scalability, robustness, and resiliency of the networks, but also impacts the dynamics
of routing protocols and communication performance [2, 14, 18, 20].

As of March 2017, there are 45,382 Autonomous Systems (ASes) advertising
their presence on the Internet [5]. These independently operated networks make up
the Internet. ASes interconnect with others as customer–provider or as peers with
the goal of maximizing their communication performance and profit. Each AS tries
to optimize its own communication efficiency without oversight of a global entity.
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AS relationships and their internal topologies are often proprietary, and the details
are not public.

Even though each network component and protocol has been well engineered,
there is a lack of understanding of the overall structure and operation of the Internet
[7, 8, 10]. Hence, network researchers infer network topologies by probing IP
addresses fromdiverse vantage points. Couple of research groups have builtmeasure-
ment platforms for the collection of the Internet topology data and share it with net-
work practitioners [4]. Internet measurements can suffer frommeasurement artifacts
such as incomplete observations, sampling bias, path accuracy, and unresponsive
nodes due to the Internet dynamics and limited visibility of vantage points.

In this study, we investigate the router-level graphs of ASes by combining pub-
licly available trace data sets provided by Internet topology measurement platforms.
While earlier studies have analyzed a subset of ASes [22], to our knowledge, this is
the first study to analyze AS topologies at Internet scale. We combined data from
three measurement platforms CAIDA Archipelago (Ark) [23], Measurement Lab
(M-Lab) [16], and RIPE NCC Atlas [21]. We analyzed the data for two samples,
i.e., March 2017 and October 2016. Obtained router-level graphs along with the
resolution results are provided at https://im.cse.unr.edu/data.

In our analysis of the basic network characteristics, we observe that there is a
correlation between the number of nodes and the number of edges in an AS. While
the maximum degree has a strong correlation with the number of nodes, the average
degree is slightly correlated with the number of nodes. Similarly, the assortativity of
topologies is independent of the network size. Majority of ASes have a disassortative
topology indicating that their high-degree routers are connected to low-degree routers
more than other high degree routers.

Moreover, we performed an in-depth analysis of the networks of the top-ranked
ASes, as identified by the number of IPv4 prefixes in their customer cone size by
CAIDA [3]. We observe that majority of the top-ranked ASes have a well-connected
core. Many of them also exhibit a decaying clustering coefficient distribution indi-
cating a hierarchical network topology. Similarly, we observe a rich club among the
routers of these ASes.

The rest of this paper is organized as follows. In Sect. 2, we summarize the network
measurement data collected from Internet measurement platforms and data process-
ing to obtain router-level graphs. We present network characteristics of observed
backbone ASes in Sect. 3 and then perform a detailed analysis of the top-ranked
ASes in Sect. 4. Finally, we conclude with Sect. 5.

2 Methodology

In this section, we summarize utilized measurement data sets and data processing to
obtain router-level topologies of backbone ASes.

Data Collection: Traceroute collects path traces from a source toward a destina-
tion IP address as a sequence of IP addresses belonging to routers. As load balancers

https://im.cse.unr.edu/data
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could send packets over different paths, Paris traceroute enforces probes to follow
the same path. We harvested trace data sets of three public platforms that provide
continuous topology measurements, namely CAIDA Archipelago (Ark) [23], Mea-
surement Lab (M-Lab) [16], and RIPE NCC Atlas [21]. These platforms perform
different measurement campaigns using different sets of vantage points and destina-
tions and hence have varying coverage [4]. By combining these data sets, we obtained
link level connectivity information. We obtained trace data sets of a 5-day period,
corresponding to an Ark probing cycle, for October 15–20, 2016 and March 1–5,
2017. In Oct-16 data, we obtained 189,343,288 path traces, generated from 5,859
vantage points toward over 148,605,967 destinations. Similarly, in Mar-17 data, we
obtained 194,545,069 path traces, generated from 5,720 vantage points toward over
149,406,222 destinations. We then extracted edge pairs and performed IP to AS
mapping to identify edges belonging to each AS. For IP to AS mapping, we utilized
Caida’s BGP Stream [17].We also used the sister AS data reports to identify multiple
ASes managed by the same organization. We then filtered IP level connectivity of
each AS. Overall, we obtained IP level information of 38,566 ASes in Oct-16 and
39,101 ASes in Mar-17 data sets.

IP Alias Resolution: Each IP address captured in our path traces represents an
interface of a router on a path from a vantage point toward a destination. As routers
have multiple interfaces and the path traces may contain different IP addresses of
a router, IP alias resolution is crucial to determine the router-level topology. After
slicing path traces into AS regions, we performed IP alias resolution to obtain the
router-level graph of each AS. We performed IP alias resolution using kapar [12],
which performs analytical resolution [11], and midar [13], which combines address-
based [9] and IP identification-based [22] probing methods. We then clustered alias
IP addresses to obtain the underlying router-level topology of each AS.

3 Analysis of Observed as Topologies

In this section, we analyzed the router-level graphs of ASes observed in the trace
data sets. While the measurements contained IP addresses belonging to 38,566 and
39,101 ASes, for Oct-16 and Mar-17 data, respectively, many had only couple of IP
addresses. InOct-16 data, 11,596 ofASeswere transit ASes that provide connectivity
to other ASes and 26,970 were stub ASes that only connect end users of the AS.
Similarly, in Mar-17 data, 11,523 were transit ASes and 27,578 were stub ASes.
We filtered ASes that did not have 10 or more routers after IP alias resolution and
ended with 19,614 ASes in both Oct-16 and Mar-17 data sets. A reason for such low
visibility of ASes is due to the fact that some of the ASes filter the traceroute probes
at their border.

Figure1 shows the number of nodes and edges along with giant component
sizes for the router-level graphs of each of the ASes that had at least 10 nodes in the
data sets. While Fig. 1a shows Mar-17 data ranked by the number of nodes from the
highest to the lowest, Fig. 1b and c show the number of nodes and edges, respectively,



246 M. A. Canbaz et al.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Giant Component
Edges
Nodes
Top 12 AS Nodes
Top 12 AS Edges

(a) Mar-17

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Oct-16

Mar-17

(b) Nodes

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1 10 100 1000 10000 1 10 100 1000 10000

1 10 100 1000 10000

Oct-16
Mar-17

(c) Edges

Fig. 1 Number of nodes, edges and giant components for all ASes—log–log scale. a ranked by
the number of nodes in Mar-17, b–c nodes and edges ranked by Mar-17 sample

when they are independently ranked by the Mar-17 snapshot. Note that, the bigger
marked blue crosses and red circles in the Mar-17 figure indicate the top-ranked
ASes analyzed in depth in Sect. 4.

From the Mar-17 data set, we observe that there is a positive correlation between
the number of routers and the number of links between them. Figure1b and c indicates
that captured graph size of some ASes varies between the two samples. We also
observe a highly skewed distribution in the number of nodes and edges per AS.
Moreover, 18.5 and 19.3% of the analyzed AS topologies in Mar-17 and Oct-16
data sets, respectively, seem to be tree-shaped, i.e., the number of nodes is exactly
one more than the number of edges. This might be due to the tree-like discovery of
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Fig. 2 Average and maximum degree for all ASes. a Mar-17 average degrees ranked by the
number of nodes—linear scale, b average degrees ranked by Mar-17 sample—linear scale, cMar-
17 maximum degrees ranked by the number of nodes—log–log scale, d maximum degrees ranked
by Mar-17 sample—log–log scale

traceroute paths or an actual tree topology of the AS. We observe that while the large
ASes contain large giant components, the smaller ASes are fragmented indicating
that the captured topologies were disconnected due to limited observations in those
networks. Thismight also be due to lack of identification of some sister ASes. Finally,
top-ranked ASes are not necessarily the largest topologies.

Figure2 shows the average and maximum degrees of the topology of each of
the ASes. Figure2a and c is ranked by the number of nodes as shown in Fig. 1 and
presents the trendline of the degrees and marks the top-ranked ASes. Figure2b and d
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Fig. 3 Assortativity of all ASes. a Mar-2017 data ranked by the number of nodes, b ranked by
Mar-17 data

show each of the average and maximum degrees of snapshots ranked by the Mar-17
data from the highest to the lowest.

While maximum degree shows a positive correlation with the number of nodes
in the AS, the average degree has slight positive correlation. This indicates, some
ASes have hubs that are connected to a large number of routers but overall degree of
the networks do not scale with the number of nodes, i.e., there are no high-density
mesh topologies that span the larger networks. When comparing different snapshots
in Fig. 2b and d, we observe variations in degrees of AS topologies between the two
data sets.

Assortativity is a metric illustrating the preference of a node to link to others.
When nodes prefer to connect to others with similar degrees, the network is noted
as assortative, i.e., nodes prefer to connect to similar nodes; however, the network
is noted as disassortative when the nodes prefer to connect to dissimilar nodes,
i.e., nodes with high degree prefer to connect to low-degree nodes. When there is
no preference among these two, the network is said to be non-assortative. Figure3
shows the assortativity of the router-level graphs of each of the AS.

When analyzing number of nodes-based ranking of the Mar-17 data set in Fig. 3a,
we observe that assortativity of networks has a slight correlation with the number
of nodes in the AS while there is considerable variance in the assortativity values.
While larger networks are often disassortative, the smaller networks exhibit greater
variation.Moreover,most of the top-rankedASes are non-assortativewith somebeing
slightly disassortative. Autonomous System level networks shown to have different
local assortativity profile then other networks (e.g., biological, social networks) [19].
Considering the top ASes presented in Sect. 4, the observed disassortativity indicates
that the networks are disassortative with assortative hubs.

When analyzing Mar-17-based ranking Fig. 3b, we observe that ASes vary from
being assortative to very highly disassortative with majority being within −0.1to−
0.8 range, i.e., disassortative and non-assortative. This indicates ASes often have a
hub-based star backbones and rarely contain core-based mesh backbones. Moreover,
we observe assortativity values of networks vary between the two samples. This
could be due to the change in the topological characteristics or due to the sampling
of the underlying networks.
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Fig. 4 Average of the clustering coefficient of routers in ASes. a Mar-2017 data ranked by the
number of nodes, b ranked by Mar-17 data

Clustering Coefficient measures the degree to which nodes in a graph tend to
cluster together. This measure, in social networks, reveals whether two friends of
a node are also friends or not. High clustering indicates a higher ratio of triangles
in the network. Figure4 shows the average clustering coefficient of the networks of
each of the AS.

In Fig. 4a ranked by the number of nodes, we observe a negative correlation
between the clustering coefficient and the number of nodes in the AS topologies.
This indicates smaller theAS network, the higher clustering coefficient they typically
have. While clustering coefficient of the networks is low, especially for large graphs,
they are often much higher than a random network of a similar size. In Fig. 4b ranked
byMar-17 data, we observe that only couple of AS networks have a clustering higher
than 0.3. We observe greater variance of clustering for some ASes which could be
due to sampling of the topologies.

In our analysis, we observed that about 62.7 and 60.8% of ASes have a clustering
coefficient of 0, indicating no triangle in their topology. While this might be due to
lack of comprehensive samples, it could be due to actual lack of triangles in their
topologies. From Fig. 4b, we realize 8% of the ASes that had a nonzero clustering
in one data set, have a zero clustering in the other. This indicates about than half of
ASes have no triangle in their network in both samples. On the other hand, about
1.9% of ASes have a clustering of 0.1 or higher and 16.8% of ASes have a clustering
of 0.01 or higher.

4 Analysis of the Top-Ranked ASes

In this section, we further analyze the characteristics of the top-ranked ASes. Caida
provides ranking of ASes based on various topological characteristics [3].We picked
the top 12 ASes based on the ranking of the number of IPv4 Addresses in their cus-
tomer cone. Table1 presents the network characteristics of the chosen ASes ordered
by the ranking forMar-17 data. In addition to the earlier metrics, it shows the density,
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global network clustering, average path length, diameter, modularity, and number of
communities for each AS.

When we analyzed the geographical coverage of these ASes, we observed that all
of these ASes serve multiple countries and are intercontinental. While 9 out of 12
top-ranked ASes are based in the USA, the other 3 are based in the northern Europe.
All of these ASes are serving as transit and access network providers in their regions.

Average Path Length is the average number of steps along the shortest paths for
all possible pairs of nodes in the network. It is one of the most crucial metrics of
network topology as it indicates how apart nodes are from each other. ASes try to
minimize the average path length to reduce the latency between end systems they
interconnect. Note that, in some of the topologies we have disconnected nodes. These
are due to either observation of different parts of the network frommultiple ingresses
that do not overlap or due to unresponsive routers marked as unknown in the graph
or lack of alias resolution between IP addresses of a router resulting in disconnected
path segments. Nodes that are disconnected from the giant component, less than 1%
on average, are ignored in the average path length calculations.

All of the top-ranked ASes have low average path lengths in the order of log(n)
with only AS 1239 and AS 2828 having a value slightly larger than log(nodes).

When considering assortativity coefficient, we observe that all top-ranked ASes
have a non-assortative connectivity with values ranging between−0.068 and−0.32.
This indicates their topologies contain both hubs surrounded with many small degree
nodes and cores with high-degree clusters. Recall that significant majority of ASes,
shown in Fig. 3b, had a disassortative network. Top-ranked ASes seem to be among
the few that are non-assortative.

Community Detection tries to identify group of nodes that are highly intercon-
nected and are close to be a clique. Detection of these communities can be achieved
by various approaches such as minimum-cut method, hierarchical clustering, statisti-
cal inference, clique-based methods. We utilized [15] to detect communities in each
AS. We observe the top-ranked ASes have 70–640 communities in their topologies.

Additionally,modularity reflects the density of the connections within the com-
munities of the graphs. High modularity indicates highly dense connections between
the nodes within communities with sparse connections between nodes of different
communities. On the other hand, low modularity indicates lack of tightly knot com-
munities. In our analysis, we observed high modularity in all ASes ranging between
0.59 and 0.88. This indicates the top-ranked ASes have regions of networks that are
tightly connected as reflected in the communities.

Degree Distribution is one of the crucial metrics for a network. Many natural
and man-made networks have shown to have a power-law degree distribution, which
indicates there are very few hubs that have very high-degree nodes along with a
very large number of nodes that have small degrees. Figure5 presents the probability
distribution function (PDF) of degrees of the top-ranked ASes for both Oct-16 and
Mar-17 data. We observe a fat-tailed power-law behavior in all but one AS. To
accurately classify degree distributions, we applied a goodness-of-fit test [1, 6].
Results confirm that except AS 701, ASes have a power-law degree distributionwhile
ASes 3356, 1299, 174, and 6453 have a cutoff. AS 701 is the largest among top ASes,
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Fig. 5 Degree distributions of the top-ranked ASes (PDF in log–log scale. legend: α ± error)

but it did notmatch anydistributions of power-law, lognormal, exponential, stretched-
exponential, or power-law with cutoff. This may be due to the traffic policies of this
AS to handle measurement requests or could be due to limited visibility of the AS.
Figure5 legend also provides the power-law exponent and the standard error of each
topology.

K-core is the subgraph of a network where every node in the subgraph has a
degree of k or higher. Identification of k-core allows us to analyze cores of the
topology and their connectivity. Figure6 presents the k-cores, i.e., subgraphs where
nodes with degree less than k are removed from the graph. The cutoff degree k is
determined based on the median degree of the Mar-17 graph. The nodes are colored
by node degree, with highest degree nodes in the center. The graphs indicate that
most of the ASes have a well-connected core of high-degree nodes, as reflected in
other metrics. Most of the topologies exhibit a core with a hierarchical or meshed
periphery structure. We observed similar structures in Oct-16 snapshots (not shown)
with majority getting denser in the Mar-17 snapshot. An interesting observation is
that AS 1273 has two communities connected to each other with only a couple of
routers in the k-core. It appears that this AS is serving in central Europe, North
America, and Eastern Asia regions. Table2 presents the subnetwork characteristics
of k-cores with median and maximal, i.e., maximum k-value where the graph is non-
empty, for both Oct-16 and Mar-17 data sets. In many ASes, the median degree is
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Fig. 6 Network layouts of the k-cores of the top-ranked ASes for Mar-17 data where k = median
degree

close to the maximal k-value for k-core. Overall, the maximal k-cores indicate there
are densely connected set of nodes that form a rich club.

Figure7 displays the clustering coefficient distribution of the top-ranked ASes.
We observe that most of the clustering distributions are inversely correlated with the
node degree, indicating a hierarchical network topology. In some cases, such as AS
3356, the relation is not linear and in others, such asAS174, the values are spread over
a wider range. In most of the ASes, low-degree nodes tend to have higher clustering
coefficient compared to the higher degree nodes. Average clustering values shown
in Table1 indicates that the top-ranked ASes are highly clustered. While a random
network of similar size would have a clustering, in the order of 1E-05 the clustering
values are in the range of 1E-02. Considering that they all have low average path
length, the top-ranked ASes can be classified as small world networks.
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Fig. 7 Clustering coefficient distribution of the top-ranked ASes (log–log scale)

5 Conclusion and Future Work

Investigating topological infrastructure of the Internet at the macroscale can be
achieved by understanding the network characteristics of the Autonomous Systems.
In this paper, we utilized path trace data sets from multiple data sources to map
the underlying topologies of ASes and obtained the router-level topologies. We then
analyzed network metrics for each of the backbone AS topology.

We analyzed the graph characteristics of 19,614 backboneASes that weremapped
by measurement platforms in two snapshots. We observed that majority of ASes are
disassortative and few are non-assortative. This indicates most ASes have star-like
topologies where high-degree hubs connect low-degree nodes. Also, we observe
that assortativity of graph is independent of its size. We also performed a detailed
analysis of the top-ranked ASes. Majority of the top-ranked ASes have similar graph
structures with a well-connected core and hierarchical or mesh-based peripheries.
With only one exception, the top-ranked ASes have power-law degree distributions.
Additionally, all of the top-ranked ASes are small worlds with high clustering and
low average path length.

As some of our observations are affected by measurement artifacts, in the future,
we plan to identify and adjust for the measurement artifacts in measurement data
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sets. Additionally, we plan to perform detailed measurements that would minimize
such errors. Finally, we plan to perform these analyses at link level topologies that
include subnetworks along with the routers as a 2-mode graph.
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Part V
Human Behavior and Social Networks



Social Influence (Deep) Learning
for Human Behavior Prediction

Luca Luceri, Torsten Braun and Silvia Giordano

Abstract Influence propagation in social networks has recently received large in-
terest. In fact, the understanding of how influence propagates among subjects in a
social network opens the way to a growing number of applications. Many efforts
have been made to quantitatively measure the influence probability between pairs of
subjects. Existing approaches have two main drawbacks: (i) they assume that the in-
fluence probabilities are independent of each other, and (i i) they do not consider the
actions not performed by the subject (but performed by her/his friends) to learn these
probabilities. In this paper, we propose to address these limitations by employing a
deep learning approach. We introduce a Deep Neural Network (DNN) framework
that has the capability for both modeling social influence and for predicting human
behavior. To empirically validate the proposed framework, we conduct experiments
on a real-life (offline) dataset of an Event-Based Social Network (EBSN). Results
indicate that our approach outperforms existing solutions, by efficiently resolving
the limitations previously described.

1 Introduction

Influence propagation in social networks has recently received large interest, both
in academia and industry. In fact, the understanding of how influence propagates
in a social network opens the door to a wide range of applications, as targeted
advertising, viral marketing, and recommendation. In this context, social networks
play an important role as a medium for spreading processes [1, 2]. As an example,
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a new idea can spread through a social network in the form of “word-of-mouth”
communication [3]. In the last decade, particular attention has been devoted to the
comprehension and modeling of the social influence phenomenon. Social influence
is recognized as a key factor that governs human behavior. It indicates the attitude
of certain individuals to be affected by other subjects’ actions and decisions. The
idea is that the interaction with other individuals (or a group) may result in a change
of subject’s thoughts, feelings, or behavior. In other words, a subject may take a
decision, e.g., to buy a new product or to watch a TV show, when she/he sees her/his
friends taking that decision.

A considerable amount of work has been conducted to investigate social influence
and analyze its effect. In [4, 5], the authors propose how to qualitatively measure the
existence of social influence, whereas in [6], the correlation between social similarity
and influence is examined. In [7], we introduce a novel interpretation of physical, ho-
mophily, and social community, as sources of social influence. Other relevant works
focused on the problem of influence maximization [8–11]. This problem aims to find
the most influential individuals in a social network in order to maximize the number
of influenced subjects. Viral marketing is a strategy that exploits this idea to promote
new products. Kempe et al. [10] focus on two fundamental propagation models, re-
ferred to as Independent Cascade (IC) model and Linear Threshold (LT) model. In
the IC model, each subject independently influences her/his friends with given influ-
ence probabilities. In the LT model, a subject is influenced by her/his friends if the
combination of their total influence probabilities exceeds a threshold. Both models
assume to have as input a social network whose edges are weighted by a measure
of influence probability. However, these values are not known in practice and, thus,
should be estimated. Many efforts have been made to quantitatively measure the
influence strength between pairs of friends [12–17]. In particular, Goyal et al. [15]
and Saito et al. [13] investigate how to learn the influence probabilities using only
the history of subjects’ actions. Such approaches have two main drawbacks: (i) they
assume that the probability of friends influencing a subject is independent of each
other, and (i i) they do not consider the actions not performed by the subject (but
performed by her/his friends) to learn the influence probabilities.

In this paper, we propose to address the aforementioned drawbacks by employing
a deep learning approach. Our objective is to learn subjects interplay for modeling
social influence and predicting their behavior. We summarize our contributions as
follows:

• We introduce a Deep Neural Network (DNN) framework that has the capability
for both learning social influence and predicting human behavior. To the best of
our knowledge, our solution is the first architecture that accomplishes these two
tasks in one shot.

• Wemodel social influence among subjects overcoming the assumptions introduced
by previous works. We design a DNN taking into account both (i) the relationship
between the subject and her/his friends and (i i) the interactions among them.
Further, we learn social influence considering also the actions not performed by
the subject (but performed by her/his friends) to understand who really affects
subject’s decisions.
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• We evaluate the performance of our approach using data from an Event-Based So-
cial Network (EBSN). This allows us to investigate social influence considering
together online (through the social network) and offline (real-life) social inter-
actions. Previous works conducted their experiments analyzing social influence
only in Online Social Networks (OSNs). We compare our approach with existing
solutions, achieving a remarkable improvement.

2 Problem Definition

In this paper, we aim to learn social influence in a social network in order to predict
human behavior, in terms of decision and actions performed by individuals. Let
G = (V, E) be a directed graph, which represents the social network, where V =
{u1, u2, . . . , uN } is the set of subjects and E is the set of edges connecting them.
Subject u j is considered a friend of subject ui if (u j , ui ) ∈ E . To model social
influence we measure the strength of friends’ influence on subject’s actions. We
define A as the whole set of actions. For each action a ∈ A, each subject is either
active, if she/he has performed the action, or inactive, otherwise. It should be noticed
that inactive subjects may become active, but not the opposite. We define Sui ,a as the
set of active friends of ui for the action a. The objective is to predict whether a subject
becomes active based on her/his active friends. To achieve this purpose, previous
works determine the influence probability pui (Sui ,a), i.e., the influence exerted on
subject ui by the active friends Sui ,a , by exploiting the history of ui actions. The
main assumption in these works is that the probability of various friends influencing
ui is independent of each other. Thereby, the probability pui (Sui ,a) is computed as
pui (Sui ,a) = 1 − ∏

u j∈Sui ,a (1 − pu j ,ui ), where pu j ,ui is the influence probability of u j

on ui .
As an example, Fig. 1a represents the social network of subject u5. To simplify the

reading, only the incoming edges of node u5 are represented. Each edge is weighted
by the influence probability pu j ,ui . A red node represents an inactive subject. The
decision of u5 to perform an action a is a function (1) of the active friends (u1, u2, u4)
and related influence probabilities.

Existing approaches learn the probability pu j ,ui , ∀(u j , ui ) ∈ E , from the actions
performed by both u j and ui . In particular, they consider ui as influenced by u j if

Fig. 1 Example of influence
probabilities in a social
network
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the latter performed the action before the former. Such approaches have two main
drawbacks. The probability of friends influencing a subject is considered independent
of each other. This assumptionmay not be always true, especiallywhen two friends of
a subject are in turn friends, as for the nodes u1 and u2 in the example of Fig. 1b. The
fact that subject u1 and u2 are both active can differently affect subject u5 decision. In
this instance, the joint probability of influencing u5 should be higher if compared to
the combination of the independent probabilities (1). Further, previous works in the
literature learn the influence probability by considering only the actions performed
by the subject (positive samples). However, it may be relevant to take into account
the actions not performed by the subject (negative samples), but performed by her/his
friends, so as to understand who really affects subject’s decisions. As an example,
we consider the scenario where subject u5 does not buy a certain product, while
some of her/his friends do. In this instance, considering also negative samples can
improve the influence modeling, as u5 may be affected by the friends that share the
same negative decision.

Previous works differ from each other for the way the probabilities pu j ,ui are esti-
mated. In this paper, we study the LTmodels proposed by Goyal et al. [15] and the IC
model of Saito et al. [13]. Other works in the literature model social influence at topic
level, i.e., considering influence among subjects with respect to a set of OSN topics.
We are not only interested in online scenarios, thus, we aim to model social influence
among subjects independently of the topics. In the LT models of Goyal et al., a node
becomes active if pui (Sui ,a) ≥ θ , where θ is the activation threshold. They propose
different probabilistic models to capture the influence probability pu j ,ui , referred to
as Bernoulli Distribution (BD), Jaccard Index (JI), Partial Credits-Bernoulli (PC-B),
and Partial Credits-Jaccard (PC-J). We do not describe them in details for the lack
of space. In the IC model of Saito et al., each active subject independently influ-
ences her/his inactive friends with influence probabilities estimated by maximizing
a likelihood function with the Expectation Maximization (EM) algorithm.

3 Proposed Solution

This work addresses the aforementioned drawbacks by formalizing a deep learning
approach for modeling social influence and predicting subject’s behavior. In this
section, we present the proposed approach based on a DNN architecture.

3.1 Deep Neural Network (DNN)

In recent years, deep learning [18, 19] has found successful application in a growing
number of areas. A DNN is able to approximate any continuous function by learning
the relationships embedded in the input data. Thereby, it replaces the manual feature
extraction procedure by building up a complex hierarchy of concepts through the
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multiple layers of the network to automatically extract discriminative and abstractive
features of data [20]. A DNN is defined by a combination of three layers: input layer
(x), hidden layers (h1,h2, . . . ,hL), and output layer (y). These layers are fully
connected in a weighted way as follows

h j =
{

φ j (xWxh j ) if j = 1

φ j (h j−1Wh j−1h j ) if 1 < j ≤ L

y = φo(hLWhL y) ,

whereWkl indicates the weights of the connections between layer k and l, while φ j is
a nonlinear activation function (e.g., sigmoid, ReLU, tanh, softmax) of each hidden
node at layer j , and φo is a nonlinear activation function of each output node. The
predictive model of a DNN can be formulated as ŷ = f (x|Θ), where ŷ denotes the
predicted output, Θ represents the model parameters (i.e., the inter-layers weights),
and f indicates the function that maps the input x to the output ŷ based on the DNN
architecture, i.e., f (x) = φo(φL(. . . φ2(φ1(x)) . . . )).

3.2 Social Influence Deep Learning

In this work, we address the limitations of existing approaches by learning the in-
terplay among subjects using a DNN. The proposed approach has the capability for
both modeling social influence and predicting human behavior in one shot. It should
be noticed that the DNN does not explicitly produce a mathematical model, but it
learns abstractive feature to implicitly model and learn the interaction of the data in
input. Our task can be formulated as the problem of predicting whether subject ui
performed action a as a function of the active friends Sui ,a . We address this task as
a binary classification problem. Thereby, the output yui ,a of the DNN is a Boolean
variable that is equal to 1 if ui performed a, and is 0 otherwise. The input layer
consists of two vectors vUui and v

Fa
ui that indicate subject ui and her/his active friends

for the action a, respectively. Both of them have length N = |V |. The former is a
one-hot vector that uniquely identifies each subject ui ∈ V . The vector consists of
all zeros with the exception of a single one that identifies one element of the set.
In this instance, subject ui is represented by the vector vUui , which has only the i th
element equal to one. The latter represents the active friends of subject ui for the
action a. The j-th element of vFa

ui corresponds to subject u j and it equals one only
if u j is active and (u j , ui ) ∈ E , otherwise is equal to 0. These two vectors are first
concatenated and then fed into a multi-layer architecture, as depicted in Fig. 2. For
the sake of simplicity, a DNN with only one hidden layer (L = 1) is depicted. In our
experiments, we design a network with a tower structure, where the bottom layer is
the largest and the number of nodes of each successive layer is half of its precedent. In
such a way, higher layers with few nodes can learn more abstractive features from the
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Fig. 2 DNN framework
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input data [20, 21]. Details about the implementation will be given in Sect. 4.2. The
training is performed by minimizing the binary cross-entropy loss between ŷui ,a and
yui ,a , where ŷui ,a = f (vUui , v

Fa
ui |Θ) is the predicted output of our DNN framework.

The rationale of this approach is basedon the attempt of overcoming the drawbacks
of previous works described in Sect. 2. We model social influence by considering
the inter-dependencies among friends. In fact, according to the DNN architecture
presented above, we take into account both (i) the relationship between the subject
and her/his friends and (i i) the interactions among them.We accomplish this task by
placing the social network in a neural network, letting the DNN learn the influence
strengths and the interplay among the subjects in the social network. We learn social
influence including in the training phase also actions not performed by the subject.
For each subject, we train our DNNwith an equal number of positive (yui ,a = 1) and
negative samples (yui ,a = 0). In such a way, the DNN framework has the capability
for both modeling social influence and predicting human behavior in one shot.

4 Experimental Evaluation

To empirically evaluate our framework, we conduct experiments using data of an
EBSN. This dataset allows us to investigate social influence considering both online
(through the social network) and offline (real-life) social interactions.

4.1 Dataset Description

An EBSN is aWeb platform where users can create events, promote them, and invite
friends to participate. Events range from small get-together activities, e.g., Sunday
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brunch or movie night, to bigger events, e.g., concerts or conferences [22]. The ratio-
nale behind the choice of utilizing an EBSN is based on the intrinsic agglomerative
power of the events. In fact, participating in an event represent a direct and explicit
form of social interaction, other than a personal interest. An EBSN provides a so-
cial network service so as to connect friends and users with common interests. In
the event main page, a user can see the information related to the event, e.g., date,
location, and description, along with the confirmed participants. This information
may activate processes of social influence, which can drive user participation in the
events [23].

In this study, we use a dataset from Plancast, an EBSN for sharing upcoming
plans with friends. Plancast allows users to subscribe each other providing direct
connections among them. Subscription is similar to the concept of following inOSNs,
e.g., Twitter. We utilize a dataset [22] that includes 93041 users and 401634 events,
combined in 1702058 user subscriptions and 869200 user–event participations. We
restrict our analysis to the USA, as most of the events have been organized there. We
filter out users without any subscription and that attended less than 20 events. We
set this threshold in order to build, per each user, a reasonable training and test set
to predict her/his behavior.

4.2 DNN Implementation

In this section, we describe how we implement and design our DNN framework. The
actions set A is defined by the user–events participation in the EBSN dataset, while
Aui ⊆ A is the set of events attended by subject ui ∈ V . A subject is considered active
for the event a if she/he decided to participate in the event a ∈ A. For each subject
ui , we randomly select nui events not attended by ui so as to consider also negative
samples, where nui = |Aui |. In order to limit overfitting and to reduce variability,
we utilize a tenfold cross-validation to split the dataset into training and test set. We
build the folds so as to preserve the percentage of positive and negative samples for
each subject in the dataset.

We implement our DNN framework in Keras [24], following a tower pattern com-
posed of L = 3 layers with {128, 64, 32} nodes, respectively. We train the network
for 25 epochs using RMSProp as optimization function, employing the ReLu as ac-
tivation function at the hidden layers and the sigmoid as activation function at the
output layer. Moreover, we apply a dropout technique, with a dropout equal to 0.1,
to avoid overfitting. We tune these hyper-parameter performing a grid search on a
validation set (10% of the data).

4.3 Performance Comparison

To validate the performance of our approach, we compare our proposed method
(DNN) with the following baseline algorithms: the LT models (BD, JI, PC-B, and
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Table 1 Prediction performances comparison: DNN versus LT models versus IC model

DNN(%) BD(%) JI(%) PC-B(%) PC-J(%) IC(%)

Accuracy 85 78 77 78 77 77

TPR 75 74 75 66 61 60

FPR 5 14 15 6 5 5

PC-J) proposed by Goyal et al. [15], and the IC model of Saito et al. [13]. To find the
best threshold θ in the LT model, we measured two metrics: the Youden’s index and
the closest point to (0,1) in the Receiver Operating Characteristic (ROC) curve. We
show only the performance related to the Youden’s index as it achieves better results.
To examine the performance of these models, we employ widely used metrics in
the evaluation of classification problem: Accuracy, True-Positive Rate (TPR), and
False-Positive Rate (FPR).

Table1 depicts the performance of the different solutions. Results indicate that
the DNN framework achieves the best Accuracy, TPR, and FPR. We empirically
show that the proposed approach outperforms the baseline algorithms, by efficient-
ly resolving the limitations related to the existing works. This result highlights the
importance of (i) the interplay among subject’s friends, in terms of dependent influ-
ence probabilities, and of (i i) the negative samples to detect influential friends and
learn influence strengths. Our DNN framework has the capability for both modeling
social influence taking into account these aspects and for predicting human behavior,
achieving remarkable results.

5 Conclusions

In this paper, we investigated social influence and how it impacts human behavior.
We propose to address the limitations of existing approaches by employing a deep
learning approach. We introduced a DNN framework that has the capability for
both modeling social influence and predicting human behavior. We implemented an
architecture that allows the DNN to learn the interplay among friends and to consider
both positive and negative samples. To empirically validate the proposed framework,
we evaluated our approach using real-life data of an EBSN. Performances exhibit a
significant improvement with respect to the state of the art, showing that the proposed
approach efficiently resolves the limitations related to existing works.
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Inspiration, Captivation, and
Misdirection: Emergent Properties
in Networks of Online Navigation

Patrick Gildersleve and Taha Yasseri

Abstract The World Wide Web (WWW) has fundamentally changed the ways
billions of people are able to access information. Thus, understanding how people
seek information online is an important issue of study. Wikipedia is a hugely impor-
tant part of information provision on the Web, with hundreds of millions of users
browsing and contributing to its network of knowledge. The study of navigational
behavior onWikipedia, due to the site’s popularity and breadth of content, can reveal
more general information seeking patterns that may be applied beyond Wikipedia
and the Web. Our work addresses the relative shortcomings of existing literature in
relating how information structure influences patterns of navigation online.We study
aggregated clickstream data for articles on the English Wikipedia in the form of a
weighted, directed navigational network. We introduce two parameters that describe
how articles act to source and spread traffic through the network, based on their in/out
strength and entropy. From these, we construct a navigational phase space where dif-
ferent article types occupy different, distinct regions, indicating how the structure of
information online has differential effects on patterns of navigation. Finally, we go
on to suggest applications for this analysis in identifying and correcting deficiencies
in theWikipedia page network that may also be adapted to more general information
networks.

1 Introduction

The Internet and particularly the World Wide Web (WWW) have brought a vast
sea of information to the fingertips of billions of people, fundamentally changing
the ways that we seek and gain information. Given the scale and importance of
WWW, it is important that people are able to navigate through it effectively, thus
understanding how people seek information online is vital for the design of such
information systems. Affordances of the platform (includingWeb page content, Web
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page design, and Web site hyperlink structure) and user desires determine whether
users are assisted, misdirected, or manipulated in navigation. We may record traces
of how users navigate online in clickstream logs—the sequence of clicks a user
makes within and between Web pages. These navigational data are an important
representation for the quality and utility of a Web site and may be harnessed by
Webmasters for improvements in Web site design [1, 2].

Wikipedia, the free, online, collaborative encyclopedia has become a hugely
important part of information provision on WWW. As the Web’s fifth most popular
Web site, it is the largest and most popular general reference work on the Internet [3].
While it is not immune to criticism on its accuracy [4], biases [5], and coverage [6],
it has been meaningfully compared to the Encyclopedia Britannica [7]. Analyzing
clickstream data for Wikipedia is of particular interest, since we may study naviga-
tional behavior for its hundreds of millions of users across the huge collaboratively
generated network of knowledge. These data on navigation between the vast number
of articles can reveal general patterns of information seeking behavior as well as
the influence of the article network’s structure. These insights can be used by both
the Wikimedia Foundation and editors to improve the Web site such as in regular
error correction, more fundamental Web site design changes as well as in addressing
important issues such as how regular users are affected by imbalance and systemic
bias [8–10] of content across Wikipedia. More generally, this analysis can help us to
understand human information seeking patterns beyondWikipedia and evenWWW.

Analysis of clickstream data, in the form ofWeb usage mining, has been practiced
with the aim of improving Web site design and targeting users more effectively to
increase use of the service on offer. For example, online shopping Web sites track
users to understand the patterns of behavior that may lead to a purchase [11], online
social networks analyze navigation patterns within their Web site to provide cus-
tomized experiences to increase user interaction and retention [12, 13], and click-
stream data may be used to detect fake or automated accounts on online services
[13].

Past work that covers more general patterns of navigation on WWW has tried to
identify how people use the Web (both within and between Web sites and individual
pages), as compared to its design and structure. Weinreich et al. find that ‘Link
following has remained the most common navigation action, accounting for about
45% of all page transitions’ [14]. However, the structure of the Web alone does not
give a full picture of how it acts as a medium for the discovery of information for
billions of people. Wu and Ackland identify a ‘mismatch between hyperlinks and
clickstreams’ for navigation between the 1000 most popular Web sites (as ranked
by Alexa.com), finding a marked difference between the network of hyperlinks and
the navigational network of clickstreams [2]. The authors comment that as we move
throughWeb2.0 andWeb3.0 that thismismatch between hyperlinks and clickstreams
will be alleviated, as users and algorithms ostensibly designed to serve users’ interest
(rather than individualWebmasters) providemore relevant hyperlinks across theWeb.

Wikipedia is one instancewhere users’ engagement in the formof editors’ writing,
correcting, and warring over articles shapes the form and structure of the Web site
itself. The editorial and traffic statistics ofWikipedia pages have been used to predict
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movies box office revenue [15], elections turnout and outcome [16, 17], and disease
outbreaks [18]. Clickstream analysis can provide important insights that both the
Wikimedia Foundation and editors may draw on when improving the Web site. For
example, while many link prediction techniques rely solely on hyperlink structure
and semantic features [19, 20],West et al. use navigation paths from theWikispeedia
game to create a link suggestionmodel [21]. Unfortunately, this approach is limited to
navigation where the eventual target page be explicitly known to both the algorithm
and the user. A more general approach presented in [22] utilizes implicit signals
from server logs to maximize objective functions under 3 Web browsing models
in suggesting the most useful links for the future, validated on the desktop English
Wikipedia.

Lamprecht et al. investigate how different naïve link selection models compare
to data from the Wikipedia clickstream, finding that a model based on article struc-
ture best explains user navigation choices [23]. This work is built on by Dimitrov
et al. by using a more complex model utilizing Bayesian inference, supplemented by
mixed effects hurdle models using network, semantic, and visual features to predict
transition counts in clickstream data [24]. Finally, ‘Why We Read Wikipedia’ [25]
provides a comprehensive overview of navigation onWikipedia to create a taxonomy
of users, their behaviors, and their motivations by matching survey responses with
data including user clickstreams. Awide range of navigational patterns are observed,
including fast-paced random exploration, current events driven navigation, and long
sessions of work and research.

The existing literature well covers the analysis of user behavior from clickstream
data including its applications in improving Web site design and user experience
across the WWW and specific to Wikipedia. However, relatively little research cov-
ers the properties and utility of the navigational graph itself. As a complement to
user-focussed clickstream analysis, traces of user navigation from clickstream data
may be used as part of a page-focused analysis. Put simply, instead of asking ‘how
do users behave?’, we shift the lens of focus to the Web pages in order to ask ‘how
are articles used?’. This change in reference frame allows us to directly investigate
how the structure of information on Wikipedia (and the Web at large) supports and
hinders different kinds of navigational behavior. Formally, our main contributions
are to introduce two metrics to describe the sourcing and spreading of user traffic
through Web pages and to use these metrics to construct a phase space that is used
to analyze patterns of user behavior. Different page types introduce different, dis-
tinct navigational structures into the page network. We finish by recommending use
cases for this navigational phase space in identifying errors and deficiencies in the
Wikipedia page network.

2 Results and Discussion

The Wikipedia clickstream dataset contains monthly aggregates for the number of
clicks on hyperlinks between articles on Wikipedia. From a network perspective,
these data act as an edge list and may be used to construct a weighted, directed
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Fig. 1 An illustration of the
different sourcing/spreading
configurations. The intensity
of shading schematically
codes the volume of traffic
across links to/from the
range of an article’s
neighbors

(a) Sink: G < 0 (b) Source: G > 0

(c) Bottleneck: D < 0 (d) Distributor: D > 0

graph. We use measures of how much a page acts as a relative traffic source or
sink (sourcing coefficient G) and how much a page acts to spread or focus traffic
(spreading coefficient D) as part of a ‘Navigational Phase Space’ to describe and
visualize how users navigate through pages on Wikipedia. Illustrations of different
sourcing and spreading configurations are provided in Fig. 1.

The sourcing coefficient of a given node (article) is defined as

G = Sout − Sin
Sout + Sin

, (1)

where Sin/out is the in/out strength of the node, i.e., the total number of clicks into/out
from the article. Flow is not conserved in this network, since users may arrive at a
node from an external source and may also click on multiple links within one page,
so Sout may be larger than Sin for a given node.

The distribution of G for all articles in the month of September 2016 is shown
in Fig. 2a. A wide range of values is observed for G. However, on the whole, more
pages act as traffic sinks (G < 0, Fig. 1a) rather than sources (G > 0, Fig. 1b) since
users eventually stop browsing.

How the shape of traffic changes as it passes through nodes is another important
emergent feature for each article. An article may receive disperse traffic from a range
of neighbors or focussed traffic from a narrow subset of neighbors and then go on to
send disperse or focussed traffic.

The spreading coefficient is defined as

D = σ̄out − σ̄in, (2)

where σ̄in/out is the normalized in/out entropy of the node. This describes the spread
of traffic, whether it is focussed over a relatively narrow subset of neighbors, or
dispersed across many neighbors; for further details on node entropy, see Sect. 4.

The distribution of D for articles in September 2016 is shown in Fig. 2b. We note
that most articles act as ‘channels’ (D ∼ 0), with no noticeable effect on the shape
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Fig. 2 Distributions of all articles’ sourcing coefficient (a) and spreading coefficient (b) are com-
bined to form a navigational phase space (c). P is the probability of an article existing at that point
in phase space

of traffic and that more articles act as distributors (D > 0), Fig. 1d, than bottlenecks
(D < 0), Fig. 1c.

We use these measures to construct a 2D navigational phase space for articles, as
shown in Fig. 2c. The point that an article exists in within this space describes the
nature of the traffic through it.

This navigational phase space may also be used to identify errors and deficiencies
in the Wikipedia page network, and in principle the network of pages of any Web
site.
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Extreme Behavior: An article occupying an extreme position in the navigational
phase space is usually indicative of some error relating to hyperlinks on the page or
hyperlinks leading to the page. Sourcing coefficient G ∼ −1 may be a result of an
article being erroneously linked to by another, far more popular, page that distorts the
data for traffic into the article. Spreading coefficient D ∼ −1 would indicate that the
vast majority of users seek the information of another article following or instead of
the information on the current article. This information could be used to inform the
merger of articles, or identify erroneous hyperlinks to the first page that should be
targeted at the second. An example is the article ‘Passenger’ (a person who travels in
a vehicle but bears little or no responsibility...)—D = −0.79. A brief investigation
reveals that the article is linked to by a template1 for ‘Nettwerk’, a popular music
label that manages ‘Passenger (singer)’. The result of this is that many articles on
acts relating to the Nettwerk music label erroneously link to ‘Passenger’ instead
of ‘Passenger (singer)’ and that users browsing acts relating to Nettwerk traverse
this link to only end up at the page relating to people traveling in vehicles. At this
point, after receiving incorrect information, most users’ strategy is to click through to
‘Passenger (disambiguation)’ (resulting in strong article bottleneck behavior) which
does link to ‘Passenger (singer)’—the desired page.

Page-Type Analysis: We observed through page title text that many of the arti-
cles with extreme navigational phase space behavior were of particular page types.
This motivated us to study the navigational phase spaces for different page types—
list pages, -ography pages, disambiguation pages, and trending pages. List articles
provide a list of links to all articles of a particular class (e.g., List of common mis-
conceptions). -ography articles act to summarize the body of work of creative pro-
fessionals (e.g., Paul McCartney Discography, Leonardo DiCaprio Filmography).
Disambiguation articles exist to resolve any ambiguitywhen articles on several topics
might be expected to have the same ‘natural’ page title (e.g., Wooden (disambigua-
tion)). Trending articles are the most popular articles that receive a peak in popularity
over the month of study (for more details on article types, see Sect. 4). By examining
the difference between the navigational phase spaces for these particular article types
against that for all Wikipedia articles, we observe distinct navigational patterns. The
results are shown in Fig. 3.

List pages act as both relatively strong sources and distributors of traffic, as indi-
cated in Fig. 3a. Users may arrive at a list page from an external Web site or from a
relatively narrow range of Wikipedia articles and be inspired to open a wide range
of articles from the list.

-ography pages (Fig. 3b) act as strong sources and distributors of traffic, more
so than regular list pages. Traffic toward -ography pages is predominantly focussed
from the respective actor/author/band, etc., and, as with list pages, users are inspired
to open a wide range of articles from the -ography page.

One would expect disambiguation pages to spread traffic to a range of articles,
since they are designed to act as navigation aids when a usermay be searching for any
of a range of similarly titled articles.We indeed observe this with for mode of articles

1A mini-page that can be automatically copied and updated across many articles.
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with D > 0 in Fig. 3c. However, there is a second mode with D < 0 that act to focus
traffic. This is atypical and likely undesirable behavior, evidence of misdirection that
is later elaborated on.

Trending articles (Fig. 3d) and related/linked articles are popular, by definition,
receiving a large amount of traffic, predominantly from external sources. It is of no
surprise that these articles then act as strong sources of traffic to the rest of the article
network; however, they do not act to focus or distribute traffic; captivated users come
from and navigate toward a similar spread of articles.

Since there are distinct patterns of navigation for different types of article, we go
on to identify two further examples of errors and deficiencies in the article network
through page navigational behavior.

Atypical Behavior: As previously observed, certain page types typically occupy
distinct areas in the navigational phase space. Aside from more general extreme
behavior, some articles of particular types may exhibit behavior that is atypical and
perhaps undesirable for their type.

Consider the aforementioned 2-mode distribution for disambiguation pages in
Fig. 3c. Articles in the mode with D < 0 act as bottlenecks, focussing traffic toward
one page—suggesting that on the whole, users find no ambiguity and mostly require
one page in particular. An example of this is for the page ‘Tinder (disambiguation)’
(D = −0.70) from which traffic is heavily focussed toward ‘Tinder (app)’, rather
than the combustible material. This behavior would suggest that a disambiguation
page might not be necessary and that ‘Tinder (app)’ should be the default.

Mimetic Behavior: Occasionally, a general article will behave very similarly to
articles of a particular typewithout explicitly being named or set out as such.We have
observed this most clearly with articles behaving like list pages. Examples of these
include ‘Saturday Night Live cast members’ (G = 0.61, D = 0.71), ‘Allied leaders
of World War II’ (G = 0.16, D = 0.76), and ‘Bollywood horror films’ (G = 0.96,
D = 0.41). This could be the basis for simple name changes or even splitting these
kind of articles into separate dedicated list and descriptive pages.

Clearly, the way that information is structured on Wikipedia has differential,
non-trivial effects on patterns of navigation on the Web site. Future research on the
production and structure of information on Wikipedia must clearly detail the impact
on regular users’ navigational behavior and ability to access information.

3 Conclusion

This work emphasizes that information structure is an important factor for naviga-
tion online and that hyperlinks are not created equal. Moreover, how information is
organized between and within pages shapes both the volume and shape of traffic that
flows across hyperlinks between them. Structure in the information network trans-
lates non-trivially to patterns of user navigational behavior so it is important that this
information structure acts to appropriately direct users, rather than to manipulate or
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Fig. 3 Navigational phase space difference heatmaps for a list pages, b -ography pages, c disam-
biguation pages, and d trending pages. �P is the difference between the values of the probability
distributions at that point for a given page type and the distribution for all articles (see Fig. 5).
Separate probability difference plots for G and D are also provided for each subfigure. Distinct
patterns of navigation are observed for different article types

misdirect them. Analyzing pages’ sourcing and spreading behavior as part of a nav-
igational phase space can act to further inform approaches to incorporating insights
from data on user desires into the production and design of content online.

We have provided several practical suggestions for using this analysis to improve
the content and structure ofWikipedia. There is certainly furtherwork thatmay utilize
these methods for studying patterns of navigation on and improving Wikipedia and
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other Web sites. Similar analysis could be applied to how patterns of navigation
vary among different categories of content (politics, religion, sport, etc.), as well as
deeper analysis on how navigation behavior is related to properties of pages such as
their popularity, rankings of article quality, and controversiality [26]. We hope that
this work inspires further research and application of clickstream data to issues of
information structure and navigation online, emphasizing that work onWeb structure
should not be conducted in isolation fromassessing its impact on regular users’ search
for information.

4 Data and Methods

Data: The Wikipedia clickstream dataset [27] contains several month-long counts
of the total number of clicks between pairs of pages (referrer, resource), including
traffic from external sites such as Google and Facebook, as well as the type of click
(internal link, external link, redlink for missing pages, and other for searches and
referrer spoofing). While these data do not offer a complete picture of individual
user navigation paths, the Markovian aggregated representation offers informative
in studying navigation through individual pages. Measures to filter out activity from
bots are enacted, and any (referrer, resource) pair with fewer than 11 clicks is cut from
the dataset. An example of the records from onemonth is shown in Fig. 4. From a net-
work perspective, these data function as an edge list, detailing edges between source
and target nodes with their respective weights. From this edge list, we construct a
weighted, directed navigation network of pages for 1month of user navigation on
Wikipedia. For the purpose of this project, we only consider navigation and infor-
mation seeking behavior across links within Wikipedia for the month of September
2016. This leaves us with a network that has 2,227,070 nodes and 13,951,247 edges.
The total number of clicks (sum of all weights) in this dataset is 1,187,607,386.

Node-Level Statistics: For each article (node) in the network, we consider 3 basic
properties for traffic both in and out: degree k, strength S, and entropy σ. In/out
degree describes the number of neighboring articles that an article receives traffic
from/sends traffic to. In/out strength describes the total volume of traffic into/out of
an article. Finally, a node’s in/out entropy, given by

σin/out = −
∑

i∈in/out edges

wi

Sin/out
ln

(
wi

Sin/out

)
, (3)

Fig. 4 A sample of
Wikipedia clickstream data



280 P. Gildersleve and T. Yasseri

Fig. 5 By subtracting the navigational phase space for all articles from that for articles of a particular
type, we highlight what patterns of navigational behavior are more (or less) likely to be associated
with articles of that particular type

where wi is the weight of a given edge in/out, describes the spread of traffic into/out
from a page. That is, whether traffic is focussed from/toward a narrow set of an
article’s neighbors or whether traffic from/toward an article is relatively evenly dis-
tributed across a wide set of its neighbors. This measure is normalized according to
the maximum possible entropy for a page of given degree k;

σ̄ = σ

ln(k)
. (4)

We note that the dataset filter for minimum edge weight (number of clicks)
between articles introduces boundary effects for articles with low degree and low
strength. For articles in the dataset with low degree and/or strength, any links they
might havewith slightly fewer than 11 clicks that are filtered out have a larger relative
effect on that page’s overall recorded properties. To mitigate these effects, while all
edges in the dataset from internal links in a month-long Wikipedia article network
are present in our analysis, we do not study articles with in/out degree or strength
below certain defined thresholds. Firstly, an article must have traffic both into and
out from it. Secondly, we take the peak from the navigational network’s in/out degree
and strength distributions, and only consider articles with degree/strength above this
value. Minimum values are typically k ∼ 2 and S ∼ 150. The remaining set of arti-
cles (13,76230 for September 2016) is where we focus our analysis.

Type Selection and Analysis: By analyzing the strings of text of the page title, we
detect the article types: List pages (n = 17997), disambiguation pages (n = 2379),
-ography pages (n = 1337). We also introduce a group of trending articles (n =
651) based on the volume of external traffic toward an article—so as not to directly
influence Sin which is based on internal traffic. A trending article must be one of
the 5000 most popular articles in a particular month and must also receive its peak
volume of traffic within said month compared to the other months in the dataset.
This removes consistently popular articles, preserving those which receive a spike
in popularity.
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For each of these article types, we find the distributions of sourcing parameter and
spreading parameter and form a normalized navigational phase space—equivalent
to a 2D probability distribution. We then subtract the equivalent 2D probability
distribution for all articles. This generates a heatmap highlighting where particular
article types are more or less likely to exist as compared to the distribution of all
Wikipedia articles and is our main tool in the analysis of different types ofWikipedia
article. An example of this process is shown in Fig. 5.
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Are Crisis Platforms Supporting Citizen
Participation?

Gonzalo Bacigalupe and Javier Velasco-Martin

Abstract Information systems are central to disaster management, and getting the
right information to everyone is fundamental. Besides research, digital systems for
disastermanagement have gained a central role in public and private disastermanage-
ment organizations. The blogging and social media platforms popularized a decade
ago were built around a user-generated content model in which users are not only
readers but also producers of information, and their use is now pervasive. During a
natural disaster crisis,massive amounts of information are generated via socialmedia,
including messages of caution and advice, information about affected individuals,
infrastructure damage, volunteering and donations, among others. Based on a review
of the literature and a systematic analysis of crisis platforms, we assess the ways in
which participation is defined, propose a participation categorization, and evaluate
the role that digital platforms may play in supporting community resilience for cri-
sis and extreme events. The present study reviews what kinds of participation crisis
computing projects are offered to the citizens of the regions they are scoping, and
will evaluate how crowdsourcing is framed and how it is made available to citizens.

1 Crisis Platforms for Participation

Information systems are central to disaster management, and getting the right infor-
mation to everyone is fundamental. The field of crisis computing/informatics grows
strongly [1], with contributions from multiple areas of knowledge, including social
computing [2], artificial intelligence [3, 4], geographical information systems [5], and
social sciences [6]. Besides research, digital systems for disaster management have
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Table 1 Research Process

Prodecure Stage
One—descriptive
analysis

Stage two—
participation
levels analysis

Stage three—
participation
modes analysis

Project collection Continuous, adjusted to filtering criteria.

Filter Inclusion criteria Web or Mobile
interface

Citizen
participation

Currently active

Dynamic
information

Public-access
web interface to
show results

Focus on natural
hazards

Exclusion criteria Simulation
interoperability

N/A N/A

Category development Type, Participation type N/A

Sponsor

Audience

Scope

Risk type

Citizen
participation

Analysis factors Type Participation type Participation

Sponsor Functions/features

Audience

Scope

Risk type

Citizen
participation

gained a central role in public and private disaster management organizations. The
blogging and social media platforms popularized a decade ago were built around
a user-generated content model in which users are not only readers but also pro-
ducers of information, and their use is now pervasive. During a natural disaster
crisis, massive amounts of information are generated via social media, including
messages of caution and advice, information about affected individuals, infrastruc-
ture damage, volunteering and donations, among others [7]. The Sendai Framework
endorses the departure from the Emergency Management paradigm toward disaster
risk reduction—DRR [8]. Citizens have an active role in the DRR framework, and
they are aware of the risks in their community and engage in the development of
solutions to increase their resilience and reduce their vulnerability: Participation and
resilience are central tenets of the DRRmodel. Community resilience is strengthened
by connectedness [8–10]. The exchange of information that takes place in human
communication is always modulating relationships between the participants [11],
and the same dynamics apply to computer-mediated communication: The Internet
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Table 2 Categories for general analysis

Dimension Category Description

Type Interoperability Enables different telecommunication systems to work together

Simulation Uses data analysis to estimate hypothetical or historic scenarios

Frameworks Offer a set of tools to build tailored disaster management
solutions

Dashboards Provide visual representations of a scenario or emergency in
present time, often driven with real-time data and combining
multiple information sources

Other Present more specific functions, these include memorial
archives, refuge setup app, and a phone call handling system

Sponsor Public Government institutions, including EMAs and armed forces

Private Business, usually software/technology companies

Academic University researchers

NGO Formal and informal volunteer organizations, including
software and emergency oriented teams

Audience Emergency
management

Central organization coordinators and first responders, people
officially assigned to manage the crisis, with access to sensitive
information through private interfaces

Public access The affected community and anyone of interest, either
nationally or globally

Clients Only paying customers can see information

NGO Formal and informal disaster-related civil and volunteer
organizations focused on response and volunteering

Variable The audience will depend on how the system is implemented on
particular cases

Government System explicitly developed for national-wide decision making
at central government

Risk General Covers four or more types of emergency, frequently all,
regardless of the risk it was created from

Multi-risk Is focused on two or three types of risk

Specific Is invested on a particular type of risk (e.g. earthquakes)

Scope Global Has worldwide reach, works with global data

Multi-country Reaches some countries, usually adjacent, based on specific
data from such countries

Country Is specifically designed for certain country, adjusts to local
reality

Local Covers a specific subset of a country, either a province or a city

Citizen
Input

Yes Has some type of input from citizens and volunteers who are
not part of the emergency management institutions

No Has no citizen input
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Table 3 Levels of participation in DRR crowdsourcing

Participation
level

Definition

Harvesting Citizens share information on social media, not intending the collection for a
particular system. This information is mined by the system [47–50].
Information needs to be validated before processing. Citizens contribute
passively to the project

Sensors Citizens actively share information user-generated content to a project;
frequently through a standalone app. Information has to be validated before
processing [48, 49, 51]

Trusted
sensors

Verified citizens send reports to a specific project, information does not
require validation before processing [40]

Nodes Verified citizens collaborate in some form of manually processing
information. This may include relaying, translation [40], and tagging

Agents Trusted citizens with identified skills or training perform specific tasks under
supervision of civil protection agencies [40]

Community Citizens share information with the system as part of communities, revealing
relationships between members, including relationships of closeness and
authority. Participation is not only individual but also explicitly collective
[15, 22, 24]

is as much about information exchange as it is about maintaining and building new
relationships [12–15]. Human connections are what determines the flow of infor-
mation on social media [16–21]. Taken together, these ideas suggest social media
and social software represents an important opportunity for nurturing community
resilience in the context of disaster risk reduction [22–25].

2 Crowdsourcing in Crisis Computing

The importance of citizen-generated information has been promoted by interna-
tional disaster-related organizations [8, 26]. A growing series of projects for disaster
management capture this citizen-generated information and analyze it for disaster
management under a crowdsourcing model [27]. There are important technological
challenges in these projects, and they frequently include: The real-time processing of
massive information streams [1, 28–30], information ranking: How to find relevant
information [1, 4, 16, 31], information validation: How to verify information authen-
ticity [16], rumor control: How to stop the spread of unverified information [32–34],
geolocalization: Determining geographic locations discussed on messages in order
to place the information in the context of a map [35, 36], information design: How
to present information in the most understandable way [37], citizen participation and
community resilience: How digital tools can empower citizens to be active agents of
disaster risk management [10, 13, 38–41]. The crowdsourcing model is rooted in the
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concept of coproduction [40]: The incorporation of a group of individuals outside
an organization to collaborate in the production of goods. Coproduction implies the
deliberate participation of external members, who collaborate based on their skills
and are compensated for their contribution. The degree of citizen participation in dis-
aster crowdsourcing varies. Substantive work addressing the technical issues of crisis
computing exists, but fewer studies examine how this participationmanifests and how
crowdsourcing platforms enable significant agency in disaster risk management. To
assess how participation emerges in these platforms, this paper characterizes crisis
crowdsourcing platforms in relation to a key dimension of disaster risk reduction
strategies: citizen participation. In order to measure citizen participation, a variety
of models have been developed in face-to-face settings [41–43], computer-mediated
settings [35, 44, 45], as well as specifically in crisis technologies in crisis comput-
ing as well [27, 46]. The broadest and most practical model of participation for the
purpose of this study was a taxonomy of participation roles for a disaster-oriented
crowdsourcing by Diaz, Carroll [40]. Text mining techniques are often used to col-
lect citizen-generated information to assist disaster management agencies in decision
making and planning; this method does not require the will of citizens to participate,
and it is passive participation [47–49] or harvesting [50]. Crowdsourcing implies
participants’ collaboration toward a shared goal [48, 49, 51]. Aside from reporting
events, other projects allow citizens to assist in information classification by way of
volunteer tagging, manually categorizing data, as is the case of creating training data
for artificial intelligence systems [3] or in geocoding [52]. Environments that pro-
mote interaction between citizens allow spontaneous communities to emerge [53].
In online communities, citizens organize, debate, and make decisions, communities
may generate collective intelligence, solving crisis-related problems such as victim
identification [54]. Communities formed online by citizens around disasters can be
considered communities of practice. For communities of practice, the relationships
between participants, including factors of trust, closeness, and authority, are vital for
the community structure and participation [24, 54–56]. Citizen online communities
for crisis can be spontaneous, improvised, self-organized and are able to support
collective behavior [53, 54]. The present study reviews what kinds of participation
crisis-computing-projects offer to the citizens of the regions they are scoping, and
will evaluate how crowdsourcing is framed, and how it is made available to citizens.
Table1 highlights the methodological choices for the review of platforms. Table2
offers a taxonomy of the dimensions studied while Table3 addresses the question of
what participation means in the types of platforms.
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M., Rutzinger, M.: Crowdsourcing, citizen science or volunteered geographic information? the
current state of crowdsourced geographic information. ISPRS Int. J. Geo-Inf. 5(5), 55 (2016)

50. Stefanidis, A., Crooks, A., Radzikowski, J.: Harvesting ambient geospatial information from
social media feeds. GeoJournal 78(2), 319–338 (2013)

51. Shirky, C.: Here Comes Everybody: The Power of OrganizingWithout Organizations. Penguin,
New York (2008)

52. Sierra, J., Garrido, R.: Volunteering assistance to online geocoding services through a dis-
tributed knowledge ssolution. In: The RICH-VGI Workshop at 18th AGILE Conference on
Geographic Information Science (2015)

53. Starbird, K., Palen, L.: “Voluntweeters”: Self-organizing by digital volunteers in times of crisis,
pp. 1071–1080 (2011)

54. Vieweg, S., Palen, L., Liu, S.B., Hughes, A.L., Sutton, J.: Collective intelligence in disaster: An
examination of the phenomenon in the aftermath of the 2007 virginia tech shootings. In: Fifth
Information Systems for Crisis Response and Management Conference (ISCRAM) (2008)

55. Purohit, H., Hampton, A., Bhatt, S., Shalin, V.L., Sheth, A.P., Flach, J.M.: Identifying seekers
and suppliers in social media communities to support crisis coordination. Comput. Support.
Coop. Work (CSCW) 23(4), 513–545 (2014)

56. Wenger, E., McDermott, R., Snyder, W.M.: Seven principles for cultivating communities of
practice. HBS Working Knowledge, vol. 4. Harvard Business School Press, Boston (2002)



Dynamic Visualization of Citation
Networks and Detection of Influential
Node Addition

Takayasu Fushimi, Tetsuji Satoh and Noriko Kando

Abstract In this paper, to effectively visualize the browsing order of scientific arti-
cles, we propose a visualizationmethod for citation networks focusing on the directed
acyclic graph (DAG) structure. In our method, all article nodes are embedded into
polar coordinate plane, where angular and radial coordinates express the citation
relations and order relations among articles, respectively. Furthermore, the proposed
method is equipped with a dynamic property to update coordinates of all nodes at
low cost when a new article node and citation links are added to the citation network.
From experimental evaluations using real citation networks, we confirm that our
method explicitly reflects citation relations and browsing order compared with exist-
ing methods. Furthermore, focusing on changes in visualization results when new
nodes and links are added to the citation network, our method can detect influential
node and links addition by angular displacement of each node.

1 Introduction

In recent years, documents such as news articles, blog articles, and scientific articles
are posted on the Web every moment. Some newly posted documents are related
to past documents, and users can find relevant documents by following hyperlinks,
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trackbacks, and citations. This allows many users to acquire not only single docu-
ments but also peripheral knowledge. However, there aremultiple related documents,
some of which have many related documents, and then users including researchers
face the problem of which documents to view from.

As effective visualization methods of the graph structure, Cross-entropy method
[9], spring-force model [6], multi-dimensional scaling [8], and spectral embed-
ding [2] have been proposed. In the former twomethods, since the layout coordinates
of each node are calculated by solving the optimization problem of the nonlinear
objective function, it is possible to obtain a very rich output result, but a large com-
putation time is required. On the other hand, the latter twomethods can obtain output
results at a very high speed because of solving the linear eigenvalue problem when
computing the layout coordinates of all nodes, but some nodes and links are over-
lapped in visualization results and then the quality of the output result is very poor. In
general, these existing visualization methods are difficult to output results reflecting
the order relation among articles. Therefore, in this paper, we focus on the directed
acyclic graph (DAG) structure of the citation network and propose a visualization
method considering the browsing order of the articles. Specifically, the layer of each
node is determined based on the order obtained by topological sorting with respect
to the DAG structure, and the embedding coordinates are determined by the citation
relation with the node group of the adjacent layers. By doing this, we express citation
relations by angle and order relations by radius, and realize visualization to polar
coordinate plane. Furthermore, the proposed method is equipped with a dynamic
property to update the visualization result at low cost when a new article node and
citation links are added to the citation network. Utilizing the advantage of low-cost
updating of coordinates by the proposed method, we quantify the influence degree
of the node that caused structural changes by coordinate displacement of each node.

This paper is organized as follows. After revisiting the details of our existing
method in Sect. 2, we explain our proposed method in Sect. 3. Next, we mention
basic statistics of our experimental dataset in Sect. 4 and show evaluation results
in Sect. 5 and Sect. 6. Finally, we describe related work in Sect. 7 and conclude in
Sect. 8.

2 Revisit of TF+PCE Method

The proposed method of this paper is an extension of our previous method [4]
which targets a hierarchical tree structure so as to consider connection between
non-contiguous layers like DAG. Therefore, in this section, we revisit our previous
method.

Our previous method, TF+PCE method, consists of the following two steps:

1. Construct a Topic Forest (TF) based on the similarity and the posting order of the
documents;

2. Embed a TF into the polar coordinates.
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For general time-series documents, the relevance among documents do not explicitly
represented unlink hyperlinks among Web pages, trackbacks among blog articles.
Therefore, our previousmethod constructs tree structures,whichwe call Topic Forest,
where relatively similar documents are connectedkeepingpostedorder of documents.
Then the TF is embedded into polar coordinates by PCE method, which is based on
a method [5] that embeds two node sets of a bipartite graph in concentric circles.
In polar coordinates, the angular and radial coordinates, respectively, express the
similarity of the documents and their posted order.

Now, for a given node set V and link set E of a Topic Forest G = (V, E), let root
node root in each tree be the zeroth layer, and assign the layers to all the nodes based
on graph distance g(·, ·) from root , Vs = {u; g(u, root (u)) = s}. We consider the
sth and (s + 1)th layer node groups, Vs and Vs+1, in a tree as a bipartite graph and
calculate coordinate vectors Xs and Xs+1. The nodes of Vs and Vs+1 are respectively
embedded into the concentric circles of radii rs and rs+1. For adjacency matrix
A = [au,v]u∈Vs ,v∈Vs+1 , we apply a double-centering operation on the adjacencymatrix
as well asMDSmethod [8] and obtain a centered adjacency matrix, Ã = [ãu,v]. Then
after initializing coordinate vectors Xs and Xs+1, the method iteratively calculates
the coordinate vectors to maximize the following objective function:

J (Xs,Xs+1) =
∑

u∈Vs

∑

v∈Vs+1

ãu,v
xTu
rs

xv
rs+1

+1

2

∑

u∈Vs

λu(r
2
s − xTu xu) + 1

2

∑

v∈Vs+1

μv(r
2
s+1 − xTv xv), (1)

where λu and μv are Lagrangian multipliers that represent the placement constraints

on each circumference. In (1), x
T
u
rs

xv
rs+1

= cos θu,v holds, and J (Xs,Xs+1) ismaximized
by placing adjacent nodes in the same direction from the origin.

If vectors Xs+1 are fixed, optimal coordinate vector xu of node u ∈ Vs is also
obtained:

xu = rs
‖x̃u‖ x̃u, x̃u =

∑

v∈Vs+1

ãu,vxv. (2)

From (2), it can be seen that coordinate vector x̃u is calculated as the resultant vector
of the coordinate vectors of all nodes inVs+1. However, we can calculate the resultant
vector only from the adjacent nodes of node u if the resultant vector is calculated
before double-centering of the adjacency matrix. That is because the value of au,v

can have 1 only if u and v are connected. After calculating the resultant vector, we
execute double-centering and normalizing operations to it.

Likewise, if vectors Xs are fixed, optimal coordinate vector xv of node v ∈ Vs+1

is obtained as xv = rs+1

‖x̃v‖ x̃v, x̃v = ∑
u∈Vs

ãu,vxu .
According to the above procedure, we determined optimal coordinate vectors Xs

and Xs+1. Next, analogous with the above procedure, we can calculate the optimal
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coordinate vectors of Xs+1 and Xs+2 from the relationship between Vs+1 and Vs+2.
As a basic framework, this algorithm employs a power iteration, just like the HITS
algorithm [7]. Clearly, the main computational complexity of one-iteration comes
frommultiplication by matrixA, which is the most intensive part and is proportional
to the number of links in the bipartite graph. Thus, the PCE method is expected to
work much faster.

3 Proposed Method

In our newly proposed method, we first assign the layer to each article node in a
citation network. Concretely, given a node (article) set V which consists of N = |V|
nodes and a link (citation) set E , we define a citation network structure G = (V, E)

which has the directed acyclic graph (DAG) structure. For each node v ∈ V , we
calculate the maximum distance not minimum distance from the root node root ∈ V .
For instance,we showan example of assigning layers in Fig. 1. In Fig. 1, a nodewhose
name is “Jan.” is root which is assigned the layer 0, and nodes which cite only root
are assigned the layer 1, V1, like node “Feb.” and node “Mar.” Although node “Apr.”
and node “Jul.” cite root , they also cite nodes of V1. Therefore, they are assigned
the layer 2, V2, based on maximum distance from root . Similarly to the above, we
assign a layer to a node v ∈ V as follows:

L(v) = max
(v,u)∈E

L(u) + 1,

where (v, u) means the node v refers to the node u. For all the nodes, we can cal-
culate the layers in order from the root with O(|V| + |E |) based on the topological

Fig. 1 Assigning layers for
DAG structure. The month
name in the node and the
color of the node indicate the
month when the
corresponding article was
posted. The older one is
bluish, and the newer one is
reddish
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sorting. This assignment method of layers is intuitive because researchers tend to
survey reference articles from newer ones than older ones considering dependence
relationships among them.

At the second step of our newly proposed method, we embed all nodes into the
polar coordinates considering the layers and connectivity of nodes based on our
previous study, PCE method. Our original PCE method only considers the node
connection between adjacent layers like Vs and Vs+1. As can be seen from the Fig. 1,
there also exist some links between non-contiguous layers. Thus, we extend our
previous PCE method to handle such a DAG structure by introducing the following
objective function:

J (X) =
∑

u∈V

∑

v∈V\{u}
ãu,v

xTu
L(u)

xv
L(v)

+ 1

2

∑

u∈V
νu(L(u)2 − xTu xu), (3)

where νu stands for the Lagrangian multipliers that represent the radius constraints
on each circumference.

Furthermore, we explain the dynamic property of our method. Now let node w
be the newly added node, and we consider the situation that the node w refers to
some nodes Γ (w) ⊂ V . Then our method decides the coordinate vector xw of node
w only from those of connected nodes Γ (w), because xw is obtained by calculating
the resultant vector of coordinate vectors of connected nodes, double-centering, and
normalizing like (2):

xw = L(w)

‖x̃w‖ x̃w, x̃w =
∑

v∈V
ãw,vxv.

Although we have also to update coordinates of the other nodes like {u ∈ V|(v, u) ∈
E ∧ v ∈ Γ (w)}, we need only to a few iteration to update them by using already
calculated coordinate vectors as initial vectors.

4 Dataset

In order to evaluate our proposed method, we utilize the real citations of scientific
articles obtained by CiteSeerX1 and construct citation networks according to the
bibliography in each article. The total numbers of nodes (articles) and directed links
(citations) are 281,977 and 1,187,204, respectively. In our experiments, we randomly
select a seed node2 and extract nodes which the seed node can reach through the
citation paths, and then we set the oldest article node to root . As a result, the numbers
of nodes and directed links are 3,734 and 6,595, respectively.

1http://citeseerx.ist.psu.edu/.
2The article title is “The Graham Scan Triangulates Simple Polygons.”

http://citeseerx.ist.psu.edu/
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5 Static Visualization Results

5.1 Existing Visualization Methods Used for Comparison

In our experiments, we compare the visualization results of our method to those
of four well-known existing methods. Now, let K = 2 be the dimensionality of
embedding space and zk = (x1,k, . . . , xN ,k)

T be a vector whose element stands for
the kth coordinate of each node.

We first explain the spectral embedding (SE) [2], which calculates the coordinate
vectors of all nodes by directly minimizing the following objective function S(X) =∑K

k=1 z
T
k (D − A)zk ,whereD is a diagonalmatrix, each element ofwhich is the degree

of node, and (D − A) is referred to as a Laplacian matrix. Actually, we compute the
coordinate vectors as eigenvectors corresponding to the two minimum eigenvalues
excluding the trivial eigenvector.

Second one is multi-dimensional scaling (MDS) [8], which first calculates the dis-
tance matrix G = [g(u, v)]u,v∈V and then performs the double-centering operation
by multiplying the matrix HN = IN − 1

N 1N1
T
N to the distance matrix. Mathemat-

ically it is formulated as minimizing the following objective function, M(X) =
1
2

∑K
k=1 z

T
k (HNGHN )zk .

Thirdmodel (KK) [6], whichminimizes the following objective function,K(X) =∑
(u,v)∈V×V αu,v(g(u, v) − ‖xu − xv‖)2, where αu,v is a spring constant which is nor-

mally set to 1/2g(u, v)2.
Last one is cross-entropy method (CE) [9], which first defines a similarity

ρ(xu, xv) between the embedding positions xu and xv, uses the corresponding ele-
ment au,v of the adjacency matrix as a measure of distance between the node
pair, and tries to minimize the total cross-entropy between these two represented
as the following objective function, C(X) = −∑

(u,v)∈V×V
(
au,v log ρ(xu, xv) +

(1 − au,v) log(1 − ρ(xu, xv))
)
. In this study, we used the function ρ(xu, xv) =

exp(− 1
2 ||xu − xv||2).

Here the former two perform a power iteration with respect to either a graph
Laplacian matrix or a double-centered distance matrix which is calculated from a
given graph while the latter two repeatedly move each position vector by using the
Newton method in a framework of nonlinear optimization.

5.2 Results and Discussion

Figures2 and 3 show the static visualization results of our proposed and other existing
methods. In each visualization result, node color is assigned according to the posted
order of corresponding articles and belonging CNM [3] communities. From Fig. 2,
we can observe that in the results of SE and MDS, many nodes overlap, and the
relationship between articles is unclear. Since these methods are linear methods, the
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(a) Spectral Embedding (b) Multi-Dimensional Scaling

(c) Spring-Force model (d) Cross-Entropy method

(e) Proposed method

Fig. 2 Static visualization results. Node is gradationally colored according to the posted order of
corresponding articles. The older one is bluish, and the newer one is reddish

coordinate vectors can be obtained quickly, but the quality of the solution is somewhat
poor.We can also see that in the results ofKKandCE, nodes are efficiently distributed
on the plane since the citation network can be embedded in the plane with few link
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(a) Spectral Embedding (b) Multi-Dimensional Scaling

(c) Spring-Force model (d) Cross-Entropy method

(e) Proposed method

Fig. 3 Static visualization results. Node color stands for the CNM community. The number of
communities is set to 20

overlapping. Compared to the result of our proposed method, where almost all nodes
are embedded according to the posted order of corresponding articles, the order of the
posting times is not explicitly reflected in the visualization results of these existing
methods.
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From Fig. 3, in all the visualization results, we can confirm that densely connected
nodes assigned the same color are placed in the vicinity of each other. Especially for
the result of our proposed method, same color nodes are embedded into the almost
same directions. From these results, our method can produce decipherable visual-
ization results where connected nodes are located in the same direction and posted
order of corresponding articles are almost preserved. Our visualization results allow
researchers to efficiently access to the desired articles, because users can visually
confirm whether an article refers to multi-disciplinary articles or not, authoritative
articles or not, articles of new development fields or not, and articles of the state-of-
the-art techniques or not from our visualization results.

6 Dynamic Visualization Results

6.1 Average Moving Angle

In this section, we evaluate dynamic property of our proposed method. In evaluat-
ing, we consider the following factors: a newly added node refers to the nodes (1)
belonging to the lower layers (like layer 25) or (2) the middle layers (like layer 12);
and (i) embedded into a certain direction or (ii) multi-directional.

Then we evaluate our method from the viewpoint of moving angle of each node
when adding a node. Concretely, we calculate the coordinate vector of a newly added
nodew and re-calculate all the nodes of the original network by our proposedmethod.
Let yu be the coordinate vector of node u ∈ V ∪ {w} in the augmented network. We
calculate the average of moving angles between coordinate vectors xu and yu of each
node u ∈ V \ {root} in the original and the augmented networks:

Θ̄ = 1

N − 1

∑

u∈V\{root}
arccos

(
xTu
|xu |

yu
|yu |

)
.

6.2 Results and Discussion

Figure4 shows the dynamic visualization results, where a big black node with ten
links was added to the original network described in previous section, and Fig. 5
shows the moving angle averaged for each layer. From these results, we can observe
that (1) the average of moving angles represents relatively small value when links to
nodes located in a certain direction are added like case1 and case3, (2) the variance of
moving angles represents relatively large valuewhen links to nodes located in various
direction are added like case2 and case4, and (3) the averagemoving angles represent
the larger values not only at target layers but also at related layers especially in
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(a)

Case1: lower layers and one direction.

(b)

Case2: lower layers and multidirection.

(c)

Case3: middle layers and one direction.

(d)

Case4: middle layers and multidirection.

Fig. 4 Visualization results of augmented network. A big black circle and black solid lines are
newly added node and links

Fig. 5 Average moving
angles in each layer
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case4. These results indicate that when an influential article which refers to articles of
various fields or articles cited/citing a lot is added, the average and standard deviation
of moving angle represent somewhat larger and very larger values, respectively.
Actually the average and standard deviation of moving angles are 2.7◦ and 0.15 in
case1, 3.0◦ and 2.68 in case2, 2.4◦ and 0.16 in case3, and 3.6◦ and 66.06 in case4,
respectively. These promising property of our method is derived from its algorithm
similar to the HITS algorithm, where a good hub represented a node that linked to
a lot of other nodes, and a good authority represented a node that was linked by a
lot of hubs. Thus, we can conclude that our method detects influential node and link
addition by average and standard deviation of moving angles of coordinate vectors.
Furthermore, we emphasize that each visualization result in Fig. 4 was obtained at a
few second computation with a few iteration times.

7 Related Work

In this paper, we propose a method that effectively visualizes citation relationships
among time-series documents like scientific articles. A related study of time-series
document visualization is Alsakran et al.’s STREAMIT [1]. This method treats doc-
uments in a certain snapshot as a particle and calculates an optimal location in
two-dimensional space by a dynamics model based on the similarity between docu-
ment particles. Similar document particles are located in the vicinity of each other,
and non-similar document particles are located far away. STREAMIT dynamically
computes optimal locations for newly added documents and constructs a graph by
the Delaunay triangle based on the optimal location of each document particle. Then
for the constructed graph, the method cuts a link that is longer than the threshold
parameter and forms document clusters. Finally, it displays each graph of each snap-
shot by animation. Unlike our method that represents the time axis (layer) by the
polar coordinate plane’s radius, STREAMIT greatly differs because it animates the
change of the corresponding document cluster, which is a disadvantage from the
viewpoint of the manifestness of time-series data.

8 Conclusion

In this paper, focusing on the DAG structure of citation networks, we proposed a
visualization method considering the browsing order of the articles. In our method,
article nodes are embedded into the polar coordinate where citation relations and
posted order relations are represented by angle and radius, respectively. Further-
more, our method is equipped with a dynamic function to update coordinates of
all nodes at low cost when a new node and links are added to the citation net-
work. From experimental evaluations using real citation networks, we confirmed that
our method explicitly reflects citation relations and browsing order compared with
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existing methods. Furthermore, we verify that our method can detect influential node
and link addition by average and standard deviation of moving angles of coordinate
vectors. In future, we plan to verify usefulness of our method using more various
and larger-scale networks.

Acknowledgements This work was supported by JSPS KAKENHI Grant No.16K16154 and by
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A Trust-Based News Spreading Model

V. Carchiolo, A. Longheu, M. Malgeri, G. Mangioni and M. Previti

Abstract Online social networks are overwhelmedwith information spreading, phe-
nomena whose underlying mechanisms require deeper analysis. In this paper, we
introduce the direct credibility among nodes, a parameter that takes into account
news trustworthiness. We exploit this amount into a well-known epidemic model
to study the news diffusion process and to discover which elements affect the deci-
sion of individuals to propagate or not the news. In addition, we also consider how
credibility evolves over time, in particular how news spreading process and nodes
credibility assessment mutually influence themselves. Simulations on synthesized
social networks show that the proposed approach seems a good starting point to
define a realistic news spreading model.

1 Introduction

Disseminating information is a pervasive activity in nowadays society, indeed people
interact each other continuously to exchange information in the real world as well
as in virtual spaces, e.g., online social networks. Understanding information spread-
ing mechanisms have several advantages, e.g., epidemic control [1], political topics
analysis [2] or marketing optimization [3] among others.
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Data traversing (online) social networks can be classified as news, rumors, opin-
ion, or even simple information (for instance about market items, real estates, and so
on); sometimes it needs a sort of users approval to be propagated along the network;
therefore, it is possible to label such information as either false or true. The assess-
ment of information truthfulness can be actually performed on a per-user basis, i.e.,
each individual that receives a news can perceive it as false or true, and consequently,
he can decide to forward it or not. Moreover, the quality of an information generally
also affects the source it comes from; indeed if a person usually sends fake news,
people he contacted probably will tend to discard such information, considering him
untrustworthy.

Modeling news spreading in social networks is not a really new question [4, 5];
one of themost effective approach leverages epidemicmodels [6, 7], where replacing
diseases with news is adopted [8–10], leading to a social contagion metaphor where
ideas infect people, whose judgment though still allows to propagate or stop the
infection process (in contrast with real-world diseases contagion).

In this paper, we want to model news spreading using an epidemic approach, also
taking into account individuals trust relationships described previously, i.e., how
much credibility users assign each other as inferred from the judgment about news
they spread.

The concept of trust (here we will use the term trust or credibility interchange-
ably) is widely adopted in modeling social networks [11–14]; in particular, we want
to investigate on how trust and the information contagion process mutually affect
each other, as in real world where if an unreliable person tries to propagate an infor-
mation, it will probably stopped by receivers since they suppose this is a (yet another)
fake news; or conversely, the news spreading process influences trust since a set of
real (respectively, false) news posted by a person over time will reasonably rise
(respectively, lower) the credibility he receives from others.

Themodel we leverage is a modified version of the susceptible-infective-removed
(SIR) epidemic proposed by Newman [15], where we introduce nodes direct credi-
bility. We exploit such credibility to build a multiplex network where one level is the
contact network and the latter we named the credibility network; the multiplex net-
work allows us to model both the news spreading and the trust assessment processes,
as well as their mutual interaction.

To validate our approach, we ran a 1000-nodes duplex network simulations where
trust-based news spreading process is examined in several scenarios; results showed
that our proposal models social media users real behavior.

Our final goal is to define a realistic news spreading model to improve these real-
world phenomena comprehension, also achieving their predictability and control,
e.g., leveraging the model in large-scale simulations or for “bad spreaders” detec-
tion/removal.

The paper is organized as follows. In the next section, we introduce the credibility
parameter and its role and dynamics. In Sect. 3 we present and discuss simulations
results, while in Sect. 4 we finally present our conclusions and future works.
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2 Credibility in News Propagation

In [15], the contagion propagation occurs in a contact network, where each node is
an individual and each link represents a contact between individuals through which
the infection is propagated. To describe the spread of the infection, a SIR model is
used, where a population of N individuals is divided into three states (susceptible,
infective, and removed) and the state transitions are guided by the transmissibility
formula Ti j where two main parameters are used for each pair of nodes i and j : the
contact rate and the time interval in which node i is infectious (see [15] Sect. 2 for
more details).

In our scenario instead, we want to describe how news is propagated in an online
social network, how their propagation is influenced by the proponents credibilities,
and how in turn news spreading affects credibilities. The interaction between these
processes can be easily thought as a multiplex network with two layers, i.e., the
contact network and the credibility network, having the latter two directed edges for
each node pair to model their different mutual trust.

In addition, in real social networks, individuals behavior can change over time;
so, for instance, people that often reposted false news could decide to verify received
contents and stop fake information forwarding for a particular source, or conversely,
a person could start to trust another bad one he receives news from, if the bad guy
becomes reliable by sending a significant number of true news over time. To model
this, in our proposal, an individual updates the trustworthiness he assigned to each
of the nodes he received news from, according to the truth of news being sent. In
addition, people usually tend to weight more the most recent news, disregarding
older ones; in other words, as time passes people increasingly neglect news (a sort
of aging process).

To take into account all these issues, every time that an ignorant node j has to
decide if repost or not a new news spread by its spreader neighbor i , we use amodified
version of abovementioned Newman’s transmissibility formula Ti j . In our version,
we add the direct credibility; the new equation hence is:

Ti j = 1 − e−βi j τi Cr ji (1)

where βi j is the contact rate between i and j , τi is the time interval in which node i is
infectious; hence, its news is visible (and sharable) for its neighborhood, and Cr ji is
the credibility that susceptible node j assigned to i before the current transmission
attempt of news from i itself.

As argued in [16], the direct credibility should also be updated every time a node
receives a news; therefore, we also introduce the equation:

Cr ji =

n∑

x=0
(x + 1)Cnewsx

n∑

x=0
(x + 1)

(2)
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where Cnewsx is the credibility j assigns to the news x according to its credibility, in
particular:

• if the news x is false Cnewsx = 0,
• if x is true Cnewsx = 1,
• if x is false, but it is perceived as true (e.g., it cites false authoritative sources,
and/or it seems coming from logical reasoning or it starts from a real event), then
Cnewsx ∈ [0, 0.5[,

• if x is true, but it is perceived as false (e.g., it does not cites any sources, it is poorly
described or its content is strange enough to sound fake), then Cnewsx ∈]0.5, 1].
x is used to number news according to their temporal order (the more recent is a

news, the higher is x); moreover, it is also used toweightCnewsx , thus easilymodeling
the aging process cited above. Finally, Cr ji is normalized so that it falls within the
range [0, 1].

3 Simulations

To validate the proposal described in previous section, we implemented a simulator
to generate a 1000-nodes duplex network (the same we used in [16]) composed by:

• the undirected contact network, modeled as a scale-free (typically used for social
networks),

• the directed credibility network, in which for each news propagated through a
contact network edge, if receiver reposts the news (according to the transmissibility
formula 1), the credibility of the trust network edge in the opposite direction is
updated using (2).

As previously explained in [16], after various attempts that wemadewith nodes of
different degrees, we identified a well-connected node (adjacent to three hubs) with
high degree (32 in our simulation), so we used it as unique seed of all the 150 news
propagated in each simulation in order to test the influence of credibility parameter
in news spreading over this network.

Our simulator works as follows. First, all credibilities are set to 0.5 that represents
a neutral credibility, i.e., the confidence that an individual gives to a new contact.
When the simulation starts, the seed node injects a news in social network and each
of his neighbors use (1) to decide whether repost the news. If the receiving node
does not overcome the transmissibility threshold value, he reposts the news and a
credibility update is performed using (2) on the corresponding credibility network
edge. At next step, infected nodes attempt their neighborhood contagion using the
same mechanism. If they succeed to spread the news, the simulator updates directed
credibilities and another diffusion step is performed.

The spreading process goes on until the contagion cycle ends; i.e., there are no
new infected nodes. After that, the simulator counts the number of infected nodes
and resets the network to allow further news to be spread.
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The only parameters retained by the simulator are the directed credibilities Cr ji
that are used in (1) to evaluate the transmissibility on a specific edge for next news
spreading, and they represent the memory of past experiences of a node’s neighbor-
hood.

These local changes on credibility network cause a global change in news propa-
gation on the contacts network. Indeed, if an individual’s local credibilities decrease
due to the increment of false posted news, as well as the credibility of his neighbors,
this implies that “bad spreader” inserted news progressively reach a lesser number of
nodes, since individuals decide to not propagate false news coming from unreliable
neighbors. Conversely, if posted news is true, individuals’ local credibilities increase
because individuals decide to repost such news.

To test these behaviors, we performed five groups of 10 different simulations:

• all news are false, i.e., Cnewsx ∈ [0, 0.5[ (case A);
• all news are true, i.e., Cnewsx ∈]0.5, 1] (case B);
• 50 news are false, other 50 are true and the last 50 are false (case C);
• 50 news are true, other 50 are false and the last 50 are true (case D); cases C and
D allow to better investigate on the dynamics of credibility;

• all news are propagated with Newman transmissibility formula (to use it as a
reference case where all credibilities are set to 1).

For each simulation group, we calculated the average number of infected nodes
for each propagated news in order to discover the temporal evolution of the network.
Such values are presented in Fig. 1.

Since all simulations where credibility matters (cases A, B, C, and D) leverage on
initial neutral credibility, the number of infected nodes for the first news is similar
in all these simulation groups. In further steps, i.e., when other news are inserted in
the network, the parameter Cr ji plays a fundamental role in the network evolution,
indeed:

• In case A, the number of infected nodes for each news progressively decrease as
the number of spread news increments (from an average of 188 infected nodes at
starting time to a final value of 22).

• In case B, the number of infected nodes for each news progressively increases as
the number of spread news increments (moving from an average of 184 infected
nodes to a final value of 342).

• In case C, the number of infected nodes for each news decreases with the same
trend as case A for the first 50 news (an average of 28 infected nodes in case A
versus 27 in case C). Afterward, with individual behavior changes from spreading
false news to true ones, the curve changes consequently, reaching a peak of 201
infected nodes at the 101st news. Similarly, when the behavior switches from good
to bad again, the curve decreases.

• In case D, the number of infected nodes for each news increase with the same trend
as case B for the first 50 propagated news (an average of 320 infected nodes in case
B versus 312 in case D). Then, when the seed becomes a bad guy, the curve trend
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Fig. 1 Temporal evolution average of the network for each group of simulations

decreases, reaching a minimum of 54 infected nodes at the 106th news, whereas
it increases as soon as the seed behavior becomes good again (true news).

• In the Newman case, the credibility does not affect the curve, so it is used only as
reference to show the improvements introduced to the model. Indeed, one would
expect that this curve is (at least asymptotical) reached by the case B curve; in fact,
it could be compared to the case where credibility is always equal to 1. Instead, at a
steady state, the caseB simulations perform an average of about 130 infected nodes
less than the Newman ones. This is because not all the true news is perceived as
such and some received a low credibility value although true, for instance, because
they are without sources or relevant details. Furthermore, our credibility update
formula keeps track of past inserted news, albeit in a decreasing way due to aging
factor; hence, it will never reach Cr ji = 1.
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Cases C and D show another real social media users behavior; i.e., losing credibil-
ity is easier than achieving it again. In the case C indeed, the curve increases slowly
after the first behavior change at the 50th news (from an average of 27 infected nodes
at 50th news to 52 at the 60th news), whereas in the case D, at the same point the
curve decreases very rapidly (from an average of 312 infected nodes at 50th news
to 154 at the 60th news). The same curve variations can be observed in the other
behavior changing points at the 100th news.

4 Conclusions and Future Works

In this work, we introduced a model to describe how news is propagated on an online
social network, how this is influenced by the proponents credibilities, and how in
turn the proponents credibilities are affected by the news propagation mechanism
over the time.

Starting from the Newman epidemic model, we modified the transmissibility
formula adding the direct credibility, also providing a related updating formula trig-
gered for each news shared or reposted by users; such formula takes into account the
credibility of each news posted by users.

To validate our approach, we simulated a 1000-nodes duplex network (a contact
and a credibility network) where a hub node spread 150 news through its contact in
several scenarios. Results showed that our proposal models social media users real
behavior for what concern credibility dynamics and news propagation.

In our further works, wewill refine themodel distinguishing also the case inwhich
some nodes are disconnected in one or more temporal steps during which the news
is visible on social network from the case in which nodes read that news but decide
to no repost it; we also aim at validating the model on larger networks to apply it on
real social media data.
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Discovering Mobility Functional Areas:
A Mobility Data Analysis Approach

Lorenzo Gabrielli, Daniele Fadda, Giulio Rossetti, Mirco Nanni,
Leonardo Piccinini, Dino Pedreschi, Fosca Giannotti
and Patrizia Lattarulo

Abstract How do we measure the borders of urban areas and therefore decide
which are the functional units of the territory? Nowadays, we typically do that just
looking at census data, while in this work we aim to identify functional areas for
mobility in a completely data-driven way. Our solution makes use of humanmobility
data (vehicle trajectories) and consists in an agglomerative process which gradually
groups together those municipalities that maximize internal vehicular traffic while
minimizing external one. The approach is tested against a dataset of trips involving
individuals of an Italian Region, obtaining a new territorial division which allows us
to identify mobility attractors. Leveraging such partitioning and external knowledge,
we show that our method outperforms the state-of-the-art algorithms. Indeed, the
outcome of our approach is of great value to public administrations for creating
synergies within the aggregations of the territories obtained.
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1 Introduction

The traditional interpretation of the urban hierarchy refers merely to the size of the
city, with its population and boundaries. From the theoretical point of view, a slightly
different perspective is given by the concept of polycentrism [1]: Urban areas are
often evolving from mono-centric agglomerations to more complex systems made
of integrated urban centers (cores) and subcenters. In other territories, some cities
and towns are increasingly linking up, forming polycentric integrated areas.

The understanding of the spatial organization of similar regions and of how places
link among them can improve analytical approaches when facing governance chal-
lenges such as the economic development of complex nationwide systems. Indeed,
policymakers are paying increasing attention to the role of homogeneous economic
agglomeration and to the capacity of local areas to contribute to social growth [2].

Moreover, the contraction of public expenditure has driven a process of service
concentration toward denser urban areas.

Our work aims at contributing to this debate by providing a tool to researchers
and policymakers to build a novel definition of regions seen as functional areas of
similar behaviors [3].

The questions that drive our research are thus the following:

Q1: Can we identify mobility functional units just looking at human vehicular move-
ment data?
Q2: Are such units mono-centric agglomerations or more complex polycentric inte-
grated areas?
Q3: Which are the most relevant characteristics of such areas?

To answer such questions, we developed amethodologywhich identifies a reason-
able number of well-knit subregions that are significantly self-contained regarding
mobility fluxes and therefore represent candidate functional areas w.r.t. mobility. The
approach also tries to be not influenced by marginal municipalities that are substan-
tially disconnected from the others and/or less appealing from the decision-maker
point of view, e.g., because of low traffic flows or small population. This latter charac-
teristic is often neglected by traditional group discovery algorithms, whose final goal
is to partition a generic set of linked elements disregarding any semantics attached
to it.

As in [4], we model movements between municipalities as a network, and we
compare our approach with competitors taken from network analysis studies (i.e.,
community detection) as well as from data mining ones (i.e., clustering).

2 Background

In this section, we discuss some works in the literature that are adopted—or might
be adapted— to identify functional areas.
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(a) Iteration n (b) Evaluation(n) (c) Iteration n + 1

Fig. 1 An iteration of MFAD: Considering a generic iteration n (a), we evaluate all possible
combination of localQ (b). Once selected the best pair, i.e., (b, c), we proceed to the union of nodes
and updating the data structures (c)

From a statistical and economical point of view, in [3] are illustrated different
methodologies used to solve the problem of redefining urban areas. Among these,
Dynamic Metropolitan Areas (DMAs) are specifically designed to deal with the
characteristics of polycentricity. The first stage of the DMA algorithm has a top-
down approach: It identifies first-order centers (seeds) which have at least 50,000
inhabitants and merges the surrounding municipalities that commute at least 15% of
their inhabitants.

While (to the best of our knowledge) there are no works on data science tackling
our specific problem, several group discovery methods might be applied to it, follow-
ing a clustering of network-based perspective. Here, we briefly mention some basic
approaches in the field, while Fig. 1b will provide a detailed description of those we
compared to.

Clustering methods generally aim to group a set of objects putting together those
that are similar to each other under some specific notion of similarity. The three
classical and most frequently adopted examples are: k-means, representing a family
of partitioning methods that create compact clusters, trying to minimize the diversity
within a bunch and to maximize it across different groups; hierarchical clustering,
producing several different partitioning at various levels of aggregation; density-
based clustering, which puts together groups of objects that form locally dense
areas, not enforcing any constraint on the size and shape of clusters. The solution we
proposed belongs to the hierarchicalmethods, yet basing the aggregation of groups on
complex self-containment considerations rather than on the standard maximization
of mutual similarities within the cluster.

Network-based methods search for communities, i.e., groups of linked nodes that
share common properties, defining them w.r.t. several objective functions [5]. In the
context of territorial partitioning, community discovery has become an essential tool
for decision-makers that need to study social complex systems, e.g., in grouping
together municipalities showing similar characteristics [2]. Indeed, by adopting a
community discovery approach, we can obtain, in a bottom-up way, an unsupervised
classification of territories. In this work, we realize a dedicated method, which we
called Mobility Functional Areas Discovery (MFAD), based on a context-specific
combination of objective functions. As we will show in the experiment section,
results prove the superiority of our solution.
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Algorithm 1MFAD(OD)
1: Inputs: OD represents the mobility flows among municipality.
2: Output: The territorial tessellation T̃ .
3: G = CreateMobili t yGraph(OD) � loading the graph
4: T = ∅
5: while |G.V | > 1 do
6: C = ComputeCon f igurations(G) � computing all the possible fusions
7: best Pair = argmax(a,b)∈C localQ(a, b,G) � selecting the best fusion
8: G = update(G, best Pair) � updating G
9: T = T ∪ {G} � Saving configuration
10: T̃ = argmaxG∈T globalQ(G) � Evaluating configurations

return T̃

3 Mobility Functional Areas Discovery (MFAD)

Our final goal is to partition the territory considering mobility habits. We model the
mobility betweenmunicipalities as a network graphG = (V, E, F) and approach the
task of defining a meaningful tessellation as the problem of identifying a community
coverage of G. The municipalities define the set of the nodes V of G, while edges E
represent the flows between nodes, their weights being denoted with F(e) for each
e ∈ E .

The general criterion we follow to obtain an optimal solution is self-containment
of traffic flows: The traffic within a group of nodes should be much higher than that
across different groups. The literature on community detection over networks pro-
vides a measure, calledmodularity, that seems to approximate this notion. However,
directlymaximizingmodularity in our context leads to results that violate somebasics
expectations of the domain expert; e.g., it causes the appearance of geographically
discontinuous groups (which is counterintuitive) and the fact that densely populated
areas tend to dominate the whole process (undesirable).

To overcomemodularity limitations, adopt an agglomerative process, summarized
in Algorithm 1, driven by a local measure that at each step of the process evaluates
the benefits—regarding self-containment of flows—of aggregating a pair of groups
into a single larger one. Modularity is then used as a global measure to decide when
the aggregation process should stop. The process starts from a situation where each
input node in the networkG is kept separated from the others, meaning that each node
forms a cluster by itself. Iteratively, two clusters are selected and merged together,
thus reducing the number of clusters by one unit, and stop only when G contains
just one cluster. In order to choose which clusters to merge, all possible pairs are
taken into consideration, and for each of them our local measure localQ is computed,
selecting the best one. Such measure, in particular, is computed as the fraction of the
local traffic (i.e., the flows involving either node of the pair) that would be converted
into internal traffic thanks to the merger:

localQ(a, b,G) = F(a, b) + F(b, a)
∑

(x,y)∈E∧{a,b}∩{x,y}�=∅ F(x, y)
(1)
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Considering the example in Fig. 1, localQ(b, c,G) would compute the ratio
between the total traffic between b and c, i.e., F(b, c) + F(c, b) (the same traf-
fic that, if b and c are merged, will move from inter-group traffic to intra-group) and
the total traffic from/to any of them, i.e., F(a, b) + F(b, a) + F(b, c) + F(c, b) +
F(c, d) + F(d, c).

When the best pair of nodes a, b is found, they are merged thus replacing them
in G by a single node a&b. The edges to/from the new node are the union of those
to/from either of the original nodes, and the flows associated with them are computed
as the sum of the original flows, e.g., F(a&b, c) = F(a, c) + F(b, c).

When the iterative process comes to an end, T will contain the collection of all
graphs obtained at each step, including the original graph G and the last one where
only two (big) nodes are left. In order to identify the most promising aggregation
level, we adopt the modularity measure as global evaluation criterion and find the
graph G ∈ T that maximizes it. That is computed by function globalQ:

globalQ(G) =
∑

(i, j)∈E
F(i, j) − F(i →) ∗ F(→ j)

K
(2)

where F(→ i) represents the total sum of outgoing flows from node i and F( j →)

is the total of incoming flows to node j . Finally, K = ∑
e∈E F(e) represents the total

flows in the network. Overall, the rightmost part of the formula provides the expected
flow from i to j .

Computational costs: From a computational point of view, the algorithm costs
o(n3) where n is the cardinality of V . While high, the cost is not a real issue in
our application, since n is typically a low number; in our case study, covering the
municipalities of a region, we have around 300 nodes, and running the whole process
on a standard computer takes about 20min. It is worth to notice that the expensive
part of the algorithm is easily parallelizable.

4 Experiments

We apply our methodology on a dataset of trajectories capturing the mobility of
individuals in a region. The dataset consists of 5 million trips produced by around 70
thousand cars within Tuscany (Italy) in a period of observation of 5weeks.1 Tuscany
has about 4.8 million residents and 287 municipalities with a population density of
163 residents/Km2.

MFAD is applied to the origin and destination matrix (OD Matrix) at the munic-
ipality level. An OD Matrix is a network that describes the number of trajectories
that start in a municipality and end in another one (not necessarily adjacent): The
Tuscany dataset is composed by 287 nodes and 30 thousands of arcs. The average

1The analyzed trajectories are generated from raw GPS data using a tool called M-Atlas [6].
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degree of the network is 119.74, and the average clustering coefficient is 0.74, while
the average shortest path is 1.64. The final output ofMFAD is a set of 25 contiguous
areas that, as will be discussed in broader detail later, highlight some impressive
structures in the region.

4.1 Competitors

Here, we introduce some of the main state-of-the-art methods for partitioning sets
of elements into groups, which are then used as competitors against our proposed
solution. Following the literature, we refer to partitioningmethods based on networks
(CD) or clustering. Finally,we introduce a simple randommodel as baseline solution.

Louvain, described in [7], is a fast and scalable algorithm based on a greedy
modularity approach. It has been shown that modularity-based approaches suffer a
resolution limit, and therefore, Louvain is unable to detect medium-sized communi-
ties [8]. This produces communities with high average density, due to the identifica-
tion of a predominant set of very small communities and a few huge communities.
Demon, introduced in [9], is an incremental and limited time complexity algorithm
for community discovery. It extracts ego networks, i.e., the set of nodes connected
to an ego node u, and identifies the real communities by adopting a democratic,
bottom-up merging approach of such structures. Infohiermap is one of the most
accurate and best performing hierarchical non-overlapping clustering algorithms for
community discovery [10] studied to optimize community conductance. The graph
structure is explored with some random walks of a given length and with a given
probability of jumping into a random node.

K-medoids and DBSCAN are two of the existing methods for obtaining a homo-
geneous grouping of elements. We choose these algorithms because they can easily
accommodate any distance function, which is a crucial feature for our problem, since
standard measures (Euclidean, etc.) would not model it in a meaningful way. In par-
ticular, since the goal of our analysis is to identify groups that maximize the local
score introduced in Sect. 3, we feed the algorithms with a distance which is the com-
plement of localQ, i.e., distance(a, b) = 1 − localQ(a, b, Q), which has the same
range of values [0, 1]. K-medoids is a partitional clustering algorithm that clusters
the dataset into k clusters, where k is known a priori. It minimizes the overall distance
(more specifically, the sum of squared distances) between the points of a cluster and
its center. In contrast to the K-means algorithm, K-medoids chooses a real point
as center and works with an arbitrary metrics of distances between data-points. We
determine k using the standard silhouette score [11]. DBSCAN is a density-based
clustering algorithm. It identifies each input point as core point, border point, or
outliers. A point p is a core point if at least minPts other points are within distance
ε from it. Border points are those that are not core but have a core point within
distance ε. Finally, all remaining points labeled as outliers. The minPts parameter
is known to be not critical and thus was set to the standard default value of 3. The
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(more critical) parameter ε was instead chosen through a grid search, selecting the
one that optimizes the globalQ function introduced in 2.

We compute a baseline method calledNM1 to test if there is a random configura-
tion that generates a better territorial partitioning thanMFAD. NM1 fixes a priori the
number of territorial partitions (k) and then randomly chooses k elements that rep-
resent the seed of clusters. The remaining municipalities are assigned sequentially,
according to three criteria: The candidate municipality is assigned to an adjacent
seed; if not possible, the municipality is assigned to an existing group that contains
adjacent municipalities; if all fails, the municipality is assigned randomly to a seed
(even if not adjacent).

4.2 Results

Here, we show the territorial partitions obtained with network-based methods and
how they provide a good partitioning, yet not satisfying some requirements needed
to answer our research questions. We will see the territorial partitions obtained with
clustering methods and how DBSCAN proves to be the best competitor for our
approach. Finally, we evaluate the territorial partitions obtained with a null model
w.r.t. the final configuration of MFAD, proving that its random process fails to find
better partitioning.

Since Louvain optimizes the partition modularity, its modularity score is higher
than MFAD, yet the latter provides communities with higher average densities
and higher conductance. The main drawback of Louvain is the reduced number
of communities it produces, which comes from the tendency of modularity-based
approaches to build up few huge communities along with small-sized ones (Fig. 2a).
Demon is a good method because it manages to handle noise and overlapping com-
munities.Yet,MFAD improves bothdensity and conductance (Fig. 2b). In our context,
moreover, offering crisp and non-overlapping partitions is a plus, since it simplifies
the interpretation of results. Demon’s overall very good results are therefore not very
appealing to our goal. Infohiermap creates communities that are on average less
dense thanMFAD. Also, it produces a comparable conductance (MFAD= 0.88, Info-
hiermap = 0.95), while not optimizing this measure explicitly. Finally, Infohiermap
groups are consistently non-contiguous, which is a counterintuitive result from the
application viewpoint (Fig. 2c). Overall, MFAD produces results that outperform
CD approaches, since the latter tend to find either too few and big communities, or
non-contiguous ones.

Now, we show the territorial partitions obtained with K-medoids and DBSCAN
cluster methods. For K-medoids, we selected the k value that optimizes the
silhouette coefficient, which results to be k = 6. As shown in Fig. 3, the algo-
rithm produces non-contiguous areas and a fragmented spatial partitioning, which
also happens for any other value of k. DBSCAN was performed for several values
of ε in the interval [0, 1], computing the globalQ score for each result, as reported in
Fig. 3c. The best score is obtained for ε = 0.79. Figure3a depicts the corresponding
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(a) Louvain (b) Demon (c) Infohiermap

Methods Internal Edge Density Conductance Modularity Communities Contiguous
MFAD 0.27/0.75/0.49/0.20 0.014/0.97/0.88/0.19 -0.06 25 True
Louvain 0.15/0.32/0.21/0.07 0.014/0.58/0.38/0.27 0.16 7 True
Demon 0.12/0.50/0.28/0.18 0.37/0.90/0.50/0.17 -0.38 7 False

Infohiermap 0.09/0.50/0.18/0.10 0.90/0.98/0.95/0.24 0.006 29 False

Fig. 2 Communities identified. a Louvain produces very few, and large communities; b Demon
communities are slightly dispersed and show a significant overlapping (not visible from the figure);
c Infohiermap produces several non-contiguous areas. We report the min., max., avg., and std.
deviation of the measures. MFAD communities are denser on average and have a good value of
conductance even though it was not explicitly among its optimization criteria

Fig. 3 Territorial
partitioning. K-medoids (a)
generates a fragmented
partitioning useless for our
purpose. DBSCAN (b)
provides 21 contiguous
communities with ε = 0.79
(the optimal value). Visually,
the result is good and
comparable toMFAD (c). As
shown in d, however, the
optimal value of globalQ for
DBSCAN is much lower
thanMFAD

(a) k = 6 (b) DBSCAN

(c) MFAD (d) performance comparison

territorial partitioning, showing that DBSCAN basically satisfies the requirements
we mentioned before, producing a reasonable number of contiguous communities
and isolating/removing uninteresting (noisy) municipalities. In terms of globalQ
score, however, we can see that the best DBSCAN can reach is still largely inferior
to MFAD (around 35% smaller). Also in this case, although DBSCAN is so far the
best competitors, MFAD remains, however, the best option, since it reaches much
higher values of our globalQ quality function.
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Finally, the random heuristics called NM1 has been applied with all possible
values of k between 10 and 30, running the method 100 times for each k. Varying
the number of areas produced by the model NM1, which assigns each municipality
randomly to one of the k groups, we obtain lower values of globalQ w.r.t. MFAD.
We can see that the random approach consistently behaves much worse than our
solution, regardless of the number of groups it seeks.

5 Evaluation

In this section, we evaluate the functional areas obtained by MFAD with the aid of
domain experts (co-authors of this paper) working for a public agency on topics
related to territorial policies. For this kind of problems, the expert needs a complete
tessellation of the territory; therefore, in Sect. 5.1, we show an assignment criterion
for municipalities not grouped byMFAD. In Sect. 5.2, we show the internal structure
of the main areas identified and, finally, we report some domain expert’s comments
regarding how the obtained results can be used (Sect. 5.3).

5.1 Saturation

MFAD produces clusters which do not include the totality of the municipalities. For
some applications, the domain expert requires the assignment of all themunicipalities
in a cluster. This may be the case, for example, if we use the partition to redefine
the perimeters of universal public services (health care, education, transport). In this
scenario, we must assign every municipality to a cluster, since we cannot have a
territory where the service is not provided. For this reason, we applied a saturation
process that iteratively (i) selects the unassigned municipality m and the area a such
that they are adjacent and their merger maximizes the globalQ function; (ii) assigns
m to a; (iii) reiterates the process until all areas have been assigned. Geographically
isolated municipalities, if any, form singleton areas (Fig. 4).

5.2 The Polycentric Structure of the Urban Areas

As requested by the domain expert, we analyzed the structure of the communities
identified, with particular reference to the highly populated areas. In Fig. 5a, we note
that rural areas (mainly situated in theSouth) are definedby larger aggregations,while
the central areas are comprised of smaller ones. TheNorthern border, which ismainly
mountainous, shows more fragmentation than the population density would suggest.
This could be due to a combination of two factors: insulated communities and a
border effect (since our data are trimmed at the administrative regional border). After
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(a) MFAD (b) MFAD with Saturation (c) Global Improvement

Fig. 4 Figures a and b show the result provided byMFAD, before and after the saturation process
applied to include also the unclusteredmunicipalities in the detected areas. In c, we show the growth
of globalQ value for each reallocated municipality

(a) Population Density (b) Most populated areas (c) Network structure

Fig. 5 Here, we evaluate the characteristics of the areas obtained byMFAD. a The size and density
of communities depend on the socioeconomic characteristics of the territories, observing a very low
density in rural areas (mainly in the South of Tuscany andmountainous locations) and very high one
in the most urbanized zones. b Among the 25 areas, we select those belonging the more urbanized
part of the region. c Observing the internal structure of the network generated by vehicular flows,
we can observe several polycentric subareas

selecting some interesting areas for the domain expert (Fig. 5b), we can observe the
internal structure of the communities with the highest population density. Figure5c
shows the structure of four communities, depicting the flow between municipalities
and the in/out flows of every single municipality as the size of lines and points. The
densest area has a main hub in Firenze, which is accompanied by a second, slightly
smaller one at North-West, and together they keep all the area tightly connected to
them. The area on the West is centered on Pisa and has a different and more diffuse
structure. Indeed, there are several poles of comparable size (Pisa being slightly
larger), each capturing a part of the area, and in most cases, they are only weakly
connected to other poles. The area around Empoli is quite similar to Pisa, at a smaller
scale. Finally, the small area around Monsummano is very homogeneous and made
of municipalities of approximately the same weight.
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5.3 Exploitation Potential

Theproposed bottom-up approach defines a partition of the selected region that can be
interpreted in different ways. The first application could be an analytical approach:
Mobility patterns tell us a story about territorial integration that goes beyond the
administrative borders. If we want to analyze the socioeconomic dynamics and the
determinants of local development, the algorithm can suggest us which might be the
boundaries of our analysis.

From the public administration perspective, this method of clustering territories
could be helpful in the policy design phase. Since we are looking at highly inte-
grated areas, we might want to tailor the intervention on the characteristics of the
aggregated partition, since we expect that the outcome at the municipality level can
have a spillover effect on the surrounding territories and, vice versa, that the socioe-
conomic conditions of surrounding territories affect the potential outcome of the
single municipality. Therefore, an integrated and coordinated policy implementation
approach can maximize the desired outcome and prevent potential drawbacks.

Moreover, as we mentioned in the introduction, public service provision can be
more cost-effective when implemented at an aggregated level. This is especially true
in the case of Italian municipalities, where excessive fragmentation of administrative
units has been recognized as one of the sources of inefficient public expenditure.

6 Conclusion

The evolution of the economy and society affects the way metropolitan areas change
over space and time. It is, therefore, necessary an accurate boundary delimitation of
services to increase the efficiency of public administrationswithoutmarginalizing the
surrounding territories.We propose to use Big Data, to be precise GPS data produced
by vehicles, to overcome the limitations of traditional sources in the measurement of
the real boundaries of the city. The position of our work is to contribute to provide a
tool to policymakers for building a novel definition of regions considered as mobility
functional areas [3].

The results highlighted in the paper show on a real dataset that MFAD outper-
forms state-of-the-art methods optimizing an objective function defined by domain
experts. We have shown that 25 communities emerge from data, observing only
the private vehicle mobility (ref. question Q1 in the introduction). The identified
communities show a polycentric structure, with centers apparently corresponding
to highest population density and presence of transport infrastructures that facilitate
connections to/from other municipalities (ref. Q2). Finally, the areas found have a
very diverse population density and size, the tighter connections corresponding to
highest populated areas (ref. Q3, and see Fig. 5a).

Planned developments of the work include the exploration further aspects with
domain experts, in particular how communities change by applying our method only
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to the systematic versus occasional traffic and by including public transportation.
Also, it would be very helpful including social and productive aspects of the global
objective function. Comparison with the Local Labour Communities defined by the
Italian Statistical Institution (ISTAT) shows that the border effect (i.e., the influence
of neighboring municipalities outside our dataset) is relevant in those areas. This
suggests that further developments should include cross-border data. Finally, we
plan to modify the initialization phase of our method—now consisting in putting
each municipality in a separated group—by following the approach in [3], which
might provide better initial seeds for the computation, injected through local domain2

knowledge.
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Estimating Peer-Influence Effects Under
Homophily: Randomized Treatments
and Insights

Niloy Biswas and Edoardo M. Airoldi

Abstract When doing causal inference on networks, there is interference among
the units. In a social network setting, such interference among individuals is known
as peer-influence. Estimating the causal effect of peer-influence under the presence
of homophily presents various challenges. In this paper, we present results quantify-
ing the error incurred from ignoring homophily when estimating peer-influence on
networks. We then present randomized treatment strategies on networks which can
help disentangle homophily from the estimation of peer-influence.

1 Introduction

When doing causal inference there is often interference among the units of interest.
Interference is when the response to treatment of a unit is affected by the treatments
assigned to its neighbors. In a social network setting, where a unit corresponds to an
individual and an individual’s neighborhood corresponds to their peers, such inter-
ference among individuals is known as peer-influence. With the increased usage of
social media and availability of network data, understanding the casual effects of
peer-influence has garnered much interest. The research area yields a wide range
of applications. For example, in advertising Bakshy [5] examined the impact of
friends’ product affiliation on advertisements via randomized experiments on Face-
book users; Aral [3] used randomized experiments on Facebook to examine how
firms can design social media marketing campaigns to create peer-influence. In pol-
itics, Bond [6] assessed voting behavior results from randomized experiments on
Facebook (where political mobilization messages were delivered to Facebook users
via a randomized control trial during the 2010 US congressional elections) to find
that effect of peer-influence on voting turnout was greater than the effect of the direct
messages themselves.
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There is recent work on methodology for estimation of causal peer-influence
effects (e.g., Toulis and Kao [10], Athey et al. [4]). However, identifying and estimat-
ing peer-influence under the presence of homophily have long remained a challenging
problem [2, 8, 9]. This is the problem of identifying to what extent the response of
an individual is attributable to the treatments given to its neighbors (peer-influence)
or attributable to a latent, intrinsic similarity between peers (homophily). This paper
makes several contributions toward tackling this problem. In particular, we: (i) Intro-
duce a framework for modeling peer-influence and homophily; (ii) under different
models of peer-influence and homophily, quantify the error incurred from ignoring
homophily in the estimation of the peer-influence effect; (iii) under a stochastic block
model framework for the network, devise randomized treatment strategies which can
help disentangle latent homophily from the estimation of peer-influence. Our ran-
domized treatment strategies can also be applied in amore general setting, for general
inference of network features in the presence of latent homophily.

2 Peer-Influence Under Homophily: Results and Inference
Strategies

2.1 A General Framework for Modeling Peer-Influence
and Homophily

Peer-influence is used to denotewhen the response of one individual is affected by the
treatments assigned to its neighbors (e.g., friends in a social network). For individual
i , this can be represented by peer((Z j ) j∈Ni ), where (Z j ) j∈Ni are the treatments
assigned to the neighbors of i and peer(·) is a function taking values in the space of
responses.

Homophily represents the latent, intrinsic similarity between close individuals in a
network. For j = 1, . . . , N , let X j be independent and identically distributed random
variables corresponding to the latent variable associated with individual j in the
network. Then, for individual i , homophily can be represented by hom((X j ) j∈Ni ),
where (X j ) j∈Ni are the latent variables in the neighborhood of i and hom(·) is a
function taking values in the space of responses.

We now introduce the general framework used in our analysis of peer-influence
and homophily. Suppose we are interested in the responses of N units in a network.
This is represented by the random variables Yi for i = 1, . . . , n. The response Yi of
the i th unit depends on its treatment, peer-influence, and latent homophily. Our full
model is given by:

Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) = α + β0peer((Z j ) j∈Ni ) + h0hom((X j ) j∈Ni ) + εi (0,σ
2
Y )

(1)
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Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) =τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni )

+ β1peer((Z j ) j∈Ni ) + h1hom((X j ) j∈Ni ) (2)

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and identi-

cally distributed according to an unknown distribution with zero mean and variance
σ2
Y . β0,β1 are the unknown peer-influence parameters, and h0, h1 are the unknown

homophily parameters. Latent effects due to homophily in the model are represented
by indepedent and identically distributed random variables (Xi )

N
i=1 with mean 1 and

variance σ2
X . Z are the assigned treatments.

Under different models of the peer-influence peer(·) and homophily hom(·), we
will focus on estimating peer-influence and homophily parameters β0 and h0, respec-
tively, assuming the variances are known. Note that our analysis here is focussed on
inference concerning the untreated individuals (1 above), but all the methodology
can be easily applied to the treated individuals in the network (2 above). In our
analysis, we consider the significance of the following factors in the inference of
peer-influence under the presence of homophily, their consequences for the design
of experiments:

1. Modeling of peer-influence: as a binary (peer((Z j ) j∈Ni ) = 1∑
j∈Ni

Z j>0) or a lin-
ear (peer((Z j ) j∈Ni ) = ∑

j∈Ni
Z j ) effect.

2. Modeling of homophily: as an unnormalized (hom((X j ) j∈Ni ) = ∑
j∈Ni

X j )
or normalized (hom((X j ) j∈Ni ) = ∑

j∈Ni
X j/|Ni |) latent factor. Unnormalized

homophily corresponds to when dense regions of the network have a stronger
homophily effect compared to more sparse regions. Normalized homophily cor-
responds to when the homophily effect is not affected by the density of different
regions in the network.

3. Choice of peer-influence estimate: as a difference of means estimate (for binary
peer-influence) or as the average of stratified estimates (for linear peer-influence).

4. Allocation of treatments: fixed optimal treatment allocation or randomized treat-
ment.

In this short paper, we only discuss results and strategies for the case of binary peer-
influence under unnormalized homophily. Discussion of the other cases is included
in the appendix.

Binary peer-influence effect with unnormalized homophily. Consider the binary
peer-influence model with unnormalized homophily. For the untreated individuals,
we have

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y ) (3)

where εi (0,σ2
Y ) are independent and identically distributed with zero mean and σ2

Y
variance.
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Consider estimating the peer-influence parameter βo using a difference in means
estimator. Partition the set of untreated individuals into sets M (0)

0 := {i : Zi =
0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with no treated neighbors) and

M (1)
0 := {i : Zi = 0,

∑
j∈Ni

Z j > 0} (the set of untreated individuals with at least
one treated neighbors). Then, the difference in means estimator for β0 is given by:

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi (4)

Under the negligence of latent homophily in the model, this difference of means
estimator for peer-influence would appear unbiased. However, the presence of latent
homophily actually interferes and introduces bias to the estimation of peer-influence,
as highlighted in Theorem 1 below.

Theorem 1 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M (0)

0

|Ni ∩ N j | + avg
i, j∈M (1)

0

|Ni ∩ N j | − 2 avg
i∈M (0)

0 , j∈M (1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 | + 1

|M (1)
0 |

)

(5)

We can interpret (5) to understand the optimal treatment allocation with respect
to minimizing the bias and variance. For binary peer-influence effect with unnormal-
ized homophily, the bias of β̂0 is minimized through an assignment of treatments Z
which manages to balance the average homophily effect (corresponding to average
vertex degrees) between individuals inM (1)

0 andM (0)
0 . Under such balanced treatment

assignment, unbiasedness is achieved when

avg
i∈M (1)

0

|Ni | = avg
i∈M (1)

1

|Ni | = avg
i∈M (0)

0 ∪M (1)
0

|Ni |,

where M (0)
0 ∪ M (1)

0 is the set of all (untreated) individuals. For binary peer-influence
effect with unnormalized homophily, the variance of β̂0 is minimized through treat-
ments Z which:
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Fig. 1 Optimal treatment allocation

1. Ensure |M (1)
0 | = |M (0)

0 |, such that there is balance between the number of indi-
viduals which are affected and not affected by peer-influence (in set M (1)

0 and
M (0)

0 , respectively).
2. Ensure that the individuals in M (1)

0 are mixed with individuals in M (0)
0 as well

as possible. In particular, this corresponds to choosing Z such that elements
in M (0)

0 have minimal shared neighborhoods between themselves (minimiz-
ing avg

i, j∈M (0)
0

|Ni ∩ N j |), elements in M (1)
0 have minimal shared neighborhoods

between themselves (minimizing avg
i, j∈M (1)

0

|Ni ∩ N j |), and shared neighborhoods

between elements of M (0)
0 and M (1)

0 are maximal, respectively (maximizing
avg

i∈M (0)
0 , j∈M (1)

0

|Ni ∩ N j |). This is illustrated through Fig. 1.

Having developed conceptual insights into what treatment assignments are opti-
mal for inferring peer-influence in the presence of homophily, we can further extend
our analysis to consider the cases of randomized treatment. In particular, by con-
sidering randomized treatment under a stochastic block model framework (e.g., see
Holland [7], Airoldi [1]), we can take advantage of symmetries and exchangeabil-
ity to gain insight into the optimal design of randomized experiments under such
framework. This is explored in Sect. 2.2 where randomized treatment designs which
disentangle homophily from the estimation of peer-influence are considered.
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2.2 Disentangling Homophily from Estimation of
Peer-Influence: Randomized Treatment Strategies

We now propose a general strategy for reducing bias in the inference of binary peer-
influence under the presence of homophily. It is applicable to weighted, directed
graphs which are clustered. Furthermore, our strategy does not assume any model
for homophily hom(·), which can remain unknown.

Suppose we have a graph G of N vertices which is clustered into r clusters.
Assume that given clustering of the graph captures the covariates of the individuals
in the network, such that individuals with same or similar covariates are members
of the same cluster. Under such a clustering, we fit a corresponding stochastic block
model onto the network of N individuals in r communities. Note that by fitting such
a stochastic block model, we are implicitly assuming that individuals in the same
cluster are exchangeable (hence the need to have a good cluster for this assumption to
be justified). Denote the communities of the fitted stochastic block model by the sets
B1, . . . , Br , which are of respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N ).
Let P be the r × r adjacency probability matrix between the r communities. Values
A1, . . . , Ar directly are obtained from the cluster sizes, and the entries of the matrix
P can be estimated using MLEs (e.g., in the unweighted graph case, we can choose
[P]i, j = number of edges from cluster i to j

|Ai ||A j | ).Within each community Bs , different individuals
are affected by different levels of peer-influence. For example, in the binary peer-
influence case, untreated individuals are either in setM (0)

0 (no treated neighbors—not
affected by peer-influence) or in set M (1)

0 (at least one treated neighbors—affected
by peer-influence); in the linear peer-influence case, untreated individuals in M (k)

0
are affected by the k-levels of peer-influence.

When estimating peer-influence, the bias due to homophily arises from imbal-
ances in the homophily effect between the sets of individuals with different levels
of peer-influence. This motivates the key idea in our design of randomized treat-
ments to remove bias from homophily: We want to design experiments such that in
every community Bs , an equal number of individuals are affected and not affected
by peer-influence. By the construction of the cluster, every community Bs has a sim-
ilar effect due to latent homophily. Therefore by designing randomized experiments
which ensure that every such cluster Bs has an equal (expected) number of indi-
viduals with different levels of peer-influence, we reduce the bias in the estimation
of peer-influence arising from latent homophily. For randomized treatments where
individuals in cluster s are treated independently with probability θs , our strategy
described leads to constrained optimization problems for θs . This can then be solved
to obtain optimal θopts values as required for reducing bias in the estimation of peer-
influence under the presence of latent, unknown homophily. We now highlight our
strategy in detail for the estimation of binary peer-influence under the presence of
homophily (linear peer-influence case in appendix).
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An algorithm for inference of binary peer-influence. For a weighted, directed
graph G of N vertices which is clustered into r clusters, consider a corresponding
stochastic block model of N individuals in r communities. Denote the communities
of the SBM (clusters of G) by the sets B1, . . . , Br , which are of respective sizes
A1, . . . , Ar (where A1 + · · · + Ar = N ). Let P be the r × r adjacency probability
matrix between the r communities.Weassign treatments independently to individuals
such that individuals in Bs are treated with probability θs for s = 1, . . . , r . We want
to choose θs with the aim of reducing bias, such that homophily does not interfere
with the estimation of peer-influence. Note that the general bias of the binary peer-
influence estimator β̂0 is

avg
i∈M (1)

0

EX [hom((X) j∈Ni )] − avg
i∈M (0)

0

EX [hom((X) j∈Ni )].

This highlights that the bias in our estimation arises from an imbalance in the average
homophily effect between the sets M (1)

0 and M (0)
0 (the individuals who are and are

not affected by peer-influence, respectively). This observation motivates the key idea
in our design of randomized treatments to remove bias from homophily: We want to
design experiments such that in every cluster Bs , an equal number of individuals are
affected and not affected by peer-influence. For randomized treatment assignment,
this means we want

∀s = 1, . . . , r, E[|M (1)
0 ∩ Bs |] = E[|M (0)

0 ∩ Bs |]. (6)

Let us now derive a result about M (0)
0 and M (1)

0 under our framework to proceed
further with (6).

Proposition 1 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (0)

0 denote the set of untreated individuals
which have no treated neighbors and let M (1)

0 denote the set of untreated individu-
als which have at least one treated neighbor. For ease of notation, let {s ∈ M (0)

0 },
{s ∈ M (1)

0 } denote the event that a fixed vertex in community s is in the set M (0)
0 ,

M (1)
0 , respectively. Then,

P(s ∈ M (0)
0 ) = (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s , and (7)

P(s ∈ M (1)
0 ) = (1 − θs)

(

1 −
r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)

. (8)
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Using Proposition (1), we can now directly derive an algorithm to reduce the effect of
homophily during inference. Let s denote any vertex in the graph which is in commu-
nity Bs . Note that E[|M (0)

0 ∩ Bs |] = AsP(s ∈ M (0)
0 ) and E[|M (1)

0 ∩ Bs |] = AsP(s ∈
M (1)

0 ) = As(1 − P(s ∈ M (0)
0 )), as all untreated individuals are in eitherM (0)

0 orM (1)
0 .

This gives,

E[|M(1)
0 ∩ Bs |] = E[|M(0)

0 ∩ Bs |] ⇐⇒ P(s ∈ M(0)
0 ) = 1

2
P(Zs = 0)

⇐⇒ (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s = 1

2
(1 − θs)

⇐⇒
r∑

v=1

(Av − 1v=s)log(1 − Ps,vθv) + log(2) = 0

For |Ps,v| ≈ 0, log(1 − Ps,vθv) ≈ −Ps,vθv . This allows us to approximate the
optimal θs values by simply solving a set of linear equations. Our algorithm is given
below.

Algorithm 1: Randomized treatment design for more accurate inference of
peer-influence

1 function optimal_treatment_values (A(G),B(G));
Input : Adjacency matrix A and clustering B (with r clusters) of some graph

G
Output: Treatment probabilities θ ∈ [0, 1]r for Bernoulli assignment on each

cluster
2 Fit an SBM, giving an adjacency matrix P for clusters B1, . . . , Br of sizes

A1, . . . , Ar .
3 Choose treatment probabilities for the clusters θ ∈ [0, 1]r as the solution to:
⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1,1(A1 − 1) P1,2A2 ... ... P1,r Ar
P2,1A1 P2,2(A2 − 1) ... ... P2,r Ar

.

.

.
.
.
.

.

.

. ...
.
.
.

Pr−1,1A1 Pr−1,2A2 ... Pr−1,r−1(Ar−1 − 1) Pr−1,r Ar
Pr,1A1 Pr,2A2 ... Pr,r−1Ar−1 Pr,r (Ar − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ1
θ2
.
.
.

θr−1
θr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= log(2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
.
.
.

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(9)

In practice, if (9) does not have a solution in [0, 1]r , we can solve the constrained
optimization problem of minimizing

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1,1(A1 − 1) P1,2 A2 ... ... P1,r Ar
P2,1 A1 P2,2(A2 − 1) ... ... P2,r Ar

.

.

.

.

.

.

.

.

. ...

.

.

.
Pr−1,1 A1 Pr−1,2 A2 ... Pr−1,r−1(Ar−1 − 1) Pr−1,r Ar
Pr,1A1 Pr,2 A2 ... Pr,r−1 Ar−1 Pr,r (Ar − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ1
θ2
.
.
.

θr−1
θr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

− log(2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1

.

.

.
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(10)
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for θ ∈ [0, 1]r and for some chosen norm
∥
∥

∥
∥ on R

d (e.g., L2). Note that under the
optimal treatment probabilities θopt obtained from (9), the total expected number of
treated individuals is

∑r
s=1 Asθ

opt
s . In practice, often it is desirable to control the

expected number of individuals treated under randomized treatment. This is can be
done under our framework by considering the constrained optimization problem of
minimizing the norm in (9) subject to θ ∈ [0, 1]r and ∑r

s=1 Asθs = Nx , where x is
our chosen percentage of individuals treated.

Analysis of treatment strategies via simulations. We highlight the performance of our
randomized treatment strategy compared to alternatives via numerical results from
Monte Carlo simulations under a stochastic block model. We consider the bias and
mean squared error of our optimal randomized treatment compared to other common
randomized treatment strategies. Unsuccessful treatment occurs when either one of
the sets M (0)

0 or M (1)
0 is empty, and the difference in means estimator for binary

peer-influence (4) is ill-defined.
We consider the unnormalized sum of latent variables (hom((X) j∈Ni ) =∑
j∈Ni

X j for X j i.i.d. latent random variables with mean 1, variance σX ) as our
homophily function. The baseline simulation model (with binary peer-influence,
unnormalized homophily) here is:

Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β11∑
j∈Ni

Z j>0 + h1
∑

j∈Ni

X j

for α = 3,β0 = 0.1, h0 = 1, τ = 0.2,β1 = 0.05, h1 = 0.5,σY = 1.52,σX = 12.

SBMGraph Simulation. The following figures display the bias and variance of the
difference in means estimator (y-axis) against the controlled expected percentage
of treated individuals (x-axis) for our strategy in comparison with other common
randomized treatment strategies. The figures highlight that our randomized treatment
strategy leads to improved estimation of peer-influence. We are working with a
directed SBM of 1530 vertices and 7 clusters with

(A1, A2, A3, A4, A5, A6, A7) = (600, 340, 200, 150, 100, 90, 50) , P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

50 10 20 5 5 15 3

10 30 5 15 15 10 5

10 5 40 5 10 13 12

4 5 10 25 15 14 12

14 15 10 5 20 10 10

13 14 5 2 10 35 15

10 14 14 5 5 10 45

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

/

1530.
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2.3 Concluding Remarks

When doing causal inference in networks, neglecting latent homophily can lead to
inaccurate inference of peer-influence. In this paper, we have introduced a general
framework for modeling peer-influence and homophily, quantified the error incurred
from ignoring homophily, and devised randomised treatment strategies which allow
the estimation of peer-influence in the presence of homophily. Simulations highlight
our method’s performance relative to other randomized treatment strategies. This
work is a preliminary insight into a forthcoming project. Our future extensions will
involve further statistical analysis and theoretical guarantees on the performance
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of the randomized treatment strategies, and results from experimentation on large
real-world social networks.

A Appendices

A.1 Peer-Influence Under Homophily: Results and Inference
Strategies

Binary peer-influence effect with normalized homophily: Consider now binary
peer-influence effect with normalized homophily. For the untreated individuals, we
have

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j

|Ni | + εi (0,σ
2
Y ) (11)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

As before, consider estimating the peer-influence parameter βo using a difference
in means estimator. Partition the set of untreated individuals into sets M (0)

0 := {i :
Zi = 0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with no treated neighbors)
and M (1)

0 := {i : Zi = 0,
∑

j∈Ni
Z j > 0} (the set of untreated individuals with at

least one treated neighbors). Then, the difference in means estimator for β0 is given
by:

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi (12)

Unlike in the case with unnormalized homophily, the difference of means esti-
mator for peer-influence remains unbiased in the presence of normalized homophily.
This is further highlighted in Theorem 2 below. Furthermore, for most sparse and
dense models for the underlying graph, Theorem 2 can be used to show that β̂0 is a
consistent estimator of peer-influence under normalized homophily.

Theorem 2 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of normalized homophily in our model (11), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j |
|Ni ||N j | + avg

i, j∈M(1)
0

|Ni ∩ N j |
|Ni ||N j | − 2 avg

i∈M(0)
0 , j∈M(1)

0

|Ni ∩ N j |
|Ni ||N j |

)

+ σ2
Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(13)

Linear peer-influence effect with unnormalized homophily: We now consider
modeling peer-influence as a linear function of the number of treated neighbors
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peer((Z j ) j∈Ni ) = ∑
j∈Ni

Z j . For the untreated individuals under unnormalized
homophily, this gives:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j + εi (0,σ
2
Y ) (14)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

Consider estimating the peer-influence parameter β0. Generalizing our method-
ology from the binary peer-influence case, we now develop a stratified estimator for
β0. Let

M (k)
0 := {i : Zi = 0,

∑

j∈Ni

Z j = k}

be the set of untreated individuals which have k treated neighbors. Then, an average
of difference in means estimator for peer-influence is:

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

.

(15)
where we average over all k such that |M (k)

0 | > 0 (so that β̂(k)
0 is well-defined). Note

that here we are averaging over the class of estimators β̂(k)
0 under the assumption

of linear peer-influence. In the case of nonlinearity, we can also consider each β̂(k)
0

separately to understand the kth-level peer-influence effect in the network.
The presence of latent unnormalized homophily interferes and introduces bias to

the estimation of linear peer-influence, as highlighted in Theorem 3 below.

Theorem 3 Consider the estimator β̂0 for linear peer-influence effect β0. Under the
presence of unnormalized homophily in our model (3), the mean squared error of β̂0

(conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(
h0

∑
k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

(16)

Equation (16) highlights that unbiasedness estimation via optimal treatment allo-
cation may be difficult computationally, as now we need to ensure balance across all
the strata (M (k)

0 )k≥0. This motivates an alternative approach of unbiased estimation.
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Linear peer-influence effect with normalized homophily: For the peer-influence
effect on untreated individuals under normalized homophily, we obtain:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j

|Ni | + εi (0,σ
2
Y ) (17)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

To estimate the peer-influence parameter β0, the same stratified estimator as in
the linear peer-influence with unnormalized homophily case can be applied:

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

.

(18)
whereM (k)

0 := {i : Zi = 0,
∑

j∈Ni
Z j = k} andwe are averaging over all k such that

|M (k)
0 | > 0.
In the presence of normalized homophily, β̂0 remains an unbiased estimator of

peer-influence. This is highlighted in Theorem 4 below.

Theorem 4 Consider the estimator β̂0 for linear peer-influence effect β0. Under the
presence of normalized homophily in our model (11), β̂0 is unbiased and the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j |
|Ni ||N j | + avg

i, j∈M(0)
0

|Ni ∩ N j |
|Ni ||N j | − 2 avg

i∈M(0)
0 , j∈M(k)

0

|Ni ∩ N j |
|Ni ||N j |

)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

(19)

The difference of means estimator for linear peer-influence remains unbiased
in the presence of normalized homophily. Furthermore, for most sparse and dense
models for the underlying graph, Theorem2 can be used to show that β̂0 is a consistent
estimator of linear peer-influence under normalized homophily.

A.2 Disentangling Homophily from Estimation of
Peer-Influence: Randomized Treatment Strategies

An algorithm for inference of linear peer-influence. We now use our general
framework to design randomized treatments for the inference of linear peer-influence
effects under homophily. We proceed to find the optimal treatment probabilities θs
for s = 1, . . . , r under a stochastic block model with r communities as before.

Let M (k)
0 denote the set of untreated individuals which have k neighbors (note

that we are abusing notation here: Now, M (1)
0 represents untreated individuals which



336 N. Biswas and E. M. Airoldi

have exactly 1 neighbor, rather than at least 1 neighbor as before in the binary peer-
influence case). First, we derive a proposition about M (k)

0 under our framework.

Proposition 2 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (k)

0 denote the set of untreated individuals
which have k treated neighbors. For ease of notation, let {s ∈ M (k)

0 } denote the event
that a fixed vertex in community s is in the set M (k)

0 . Then,

P(s ∈ M (k)
0 ) = (1 − θs)

∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

Bin(tv; Av − 1{v=s}, θvPs,v)
)

(20)
where Bin(tv; Av − 1{v=s}, θvPs,v) = (Av−1{v=s}

tv

)(
θvPs,v

)tv(1 − θvPs,v
)Av−1{v=s}−tv .

The main idea behind the homophily disentangling strategy is to ensure that
in every community Bs on our stochastic block model, there are equal (expected)
numbers of individuals being affected by different levels of peer-influence. In the
case of linear peer-influence, this means choosing treatment values such that inside
every community s, each individual has an equal probability of being in sets M (k)

0
for different peer-influence levels k. Under a stochastic block model, values of k
range from 0 to N − 1 (as one individual can have at most N − 1 treated neighbors).
However, in practice, we can choose to consider k = 0, 1, . . . , K where K is the
maximum degree of the actual observed network. Therefore, through an optimal
assignment of treatments, we wish to satisfy

∀s = 1, . . . , r, P(s ∈ M (0)
0 )=P(s ∈ M (1)

0 ) = · · · = P(s ∈ M (K−1)
0 ) = P(s ∈ M (K )

0 ),

where expressions for each P(s ∈ M (k)
0 ) as functions of θs for s = 1, . . . , r are

obtained fromProposition 2 above. This gives Kr conditions to satisfy for r variables
θs ∈ [0, 1] (for s = 1, . . . , r ), so we can approach this as a constrained optimization
problem as considered in the binary peer-influence case before.

B Tables of Main Results

B.1 Analytical Results
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B.2 Randomized Treatment Strategies to Disentangle
Homophily
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C Proofs

C.1 Proof of Theorem 1 (See p. xxx)

Theorem 1 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(5)

Proof Recall the definition of the difference in means estimator for binary peer-
influence (4).

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi

where M (0)
0 := {i : Zi = 0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with

no treated neighbors) and M (1)
0 := {i : Zi = 0,

∑
j∈Ni

Z j > 0} (the set of untreated
individuals with at least one treated neighbors). The response variables (Yi )i=1,...,N

are defined by:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β11∑
j∈Ni

Z j>0 + h1
∑

j∈Ni

X j

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and identi-

cally distributedwith zeromean and variance σ2
Y . Note that the setsM

(0)
0 andM (1)

0 are
Zmeasurable and that latent homophily variablesX = (X j ) j=1,...,N are independent
of Z = (Z j ) j=1,...,N . Therefore,

E[β̂0|Z] =
∑

i∈M(1)
0

E

[
Yi |Z

]

|M(1)
0 |

−
∑

i∈M(0)
0

E

[
Yi |Z

]

|M(0)
0 |

=
∑

i∈M(1)
0

E

[
β0 + ∑

j∈Ni
X j

]

|M(1)
0 |

−
∑

i∈M(0)
0

E

[ ∑
j∈Ni

X j

]

|M(0)
0 |
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= β0 +
∑

i∈M(1)
0

h0|Ni |

|M(1)
0 |

−
∑

i∈M(0)
0

h0|Ni |

|M(0)
0 |

= β0 + h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(1)

0

|Ni |
)

.

This gives the bias of β̂0: E
[
β̂0 − β0|Z

]
= h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (1)

0

|Ni |
)

. Similarly,

var [β̂0|Z] = var

(
∑

i∈M(1)
0

Yi

|M(1)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

∣
∣
∣
∣ Z

)

=
var(

∑

i∈M(1)
0

Yi
∣
∣ Z)

|M(1)
0 |2

+
var(

∑

j∈M(0)
0

Y j
∣
∣ Z)

|M(0)
0 |2

−
2cov(

∑

i∈M(1)
0

Yi ,
∑

j∈M(0)
0

Y j
∣
∣ Z)

|M(0)
0 ||M(1)

0 |

=
∑

i∈M(1)
0

∑

k∈M(1)
0

cov(Yi , Yk
∣
∣ Z)

|M(1)
0 |2

+
∑

j∈M(0)
0

∑

l∈M(0)
0

cov(Y j , Yl
∣
∣ Z)

|M(0)
0 |2

−
2

∑

i∈M(1)
0

∑

j∈M(0)
0

cov(Yi , Y j
∣
∣ Z)

|M(0)
0 ||M(1)

0 |
= avg

i,k∈M(1)
0

cov(Yi , Yk
∣
∣ Z) + avg

j,l∈M(0)
0

cov(Yi , Yk
∣
∣ Z) − 2 avg

i∈M(0)
0 , j∈M(1)

0

cov(Yi , Y j
∣
∣ Z).

For i ∈ M (1)
0 and k ∈ M (1)

0 , by the law of total covariance and as X are i.i.d.,

cov(Yi ,Yk
∣
∣ Z) = E[cov(Yi ,Yk

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Yk

∣
∣X,Z]

∣
∣
∣ Z

)

= σ2
Y1{i=k} + cov

(
α + β0 + h0

∑

a∈Ni

Xa,α + β0 + h0
∑

b∈Nk

Xb

)

= σ2
Y1{i=k} + h20 cov

( ∑

a∈Ni

Xa,
∑

b∈Nk

Xb

)

= σ2
Y1{i=k} + h20σ

2
X |Ni ∩ N j |

Similarly for j ∈ M (0)
0 and l ∈ M (0)

0 ,

cov(Y j ,Yl
∣
∣ Z) = σ2

Y1{ j=l} + cov
(
α + h0

∑

a∈N j

Xa,α + h0
∑

b∈Nl

Xb

∣
∣
∣ Z

)

= σ2
Y1{ j=l} + h20σ

2
X |N j ∩ Nl |

For i ∈ M (1)
0 and j ∈ M (0)

0 , by the law of total covariance and as X are i.i.d.,
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cov(Yi ,Y j

∣
∣ Z) = E[cov(Yi ,Y j

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Yk

∣
∣X,Z]

∣
∣
∣ Z

)

= 0 + cov
(
α + β0 + h0

∑

a∈Ni

Xa,α + h0
∑

b∈Nk

Xb

)

= h20 cov
( ∑

a∈Ni

Xa,
∑

b∈Nk

Xb

)

= h20σ
2
X |Ni ∩ N j |.

Therefore,

var [β̂0|Z] = avg
i,k∈M(1)

0

cov(Yi , Yk
∣
∣ Z) + avg

j,l∈M(0)
0

cov(Yi , Yk
∣
∣ Z) − 2 avg

i∈M(0)
0 , j∈M(1)

0

cov(Yi , Y j
∣
∣ Z)

= avg
i,k∈M(1)

0

(

σ2
Y1{i=k} + h20σ

2
X |Ni ∩ Nk |

)

+ avg
j,l∈M(0)

0

(

σ2
Y1{ j=l} + h20σ

2
X |N j ∩ Nl |

)

− 2 avg
i∈M(0)

0 , j∈M(1)
0

(

h20σ
2
X |N j ∩ Nl |

)

= h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 |

+ 1

|M (1)
0 |

)

Now we can recall the bias–variance decomposition of the MSE to obtain

E[(β̂0 − β0)
2|Z] =

(
E[β̂0 − β0|Z]

)2 + var [β̂0|Z]

=
(

h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M (0)

0

|Ni ∩ N j | + avg
i, j∈M (1)

0

|Ni ∩ N j | − 2 avg
i∈M (0)

0 , j∈M (1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 | + 1

|M (1)
0 |

)

as required. �

C.2 Proof of Theorem 3 (See p. xxx)

Theorem 3 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
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squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(16)

Proof We proceed as similar to the binary peer-influence estimator case. Recall the
definition of the estimator for linear peer-influence (21):

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

,

(21)
where M (k)

0 := {i : Zi = 0,
∑

j∈Ni
Z j = k} (the set of untreated individuals with k

treated neighbors). The response variables (Yi )i=1,...,N are defined by:

Yi (Zi = 0, (Z j ) j∈Ni )= α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β1

∑

j∈Ni

Z j + h1
∑

j∈Ni

X j

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and iden-

tically distributed with zero mean and variance σ2
Y . Note that sets M

(k)
0 are Z mea-

surable and that latent homophily variables X = (X j ) j=1,...,N are independent of
Z = (Z j ) j=1,...,N . Therefore,

E[β̂(k)
0 |Z] = 1

k

(∑
i∈M (k)

0
E

[
Yi |Z

]

|M (k)
0 | −

∑
i∈M (0)

0
E

[
Yi |Z

]

|M (0)
0 |

)

= 1

k

(∑
i∈M (k)

0
E

[
kβ0 + ∑

j∈Ni
X j |Z

]

|M (k)
0 | −

∑
i∈M (0)

0
E

[ ∑
j∈Ni

X j |Z
]

|M (0)
0 |

)

= β0 + 1

k

(∑
i∈M (k)

0
E

[∑
j∈Ni

X j |Z
]

|M (k)
0 | −

∑
i∈M (0)

0
E

[∑
j∈Ni

X j |Z
]

|M (0)
0 |

)

= β0 + 1

k

(∑
i∈M (k)

0
h0|Ni |

|M (k)
0 | −

∑
i∈M (0)

0
h0|Ni |

|M (0)
0 |

)
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= β0 + h0
k

(

avg
i∈M (k)

0

|Ni | − avg
i∈M (1)

0

|Ni |
)

,

which gives the bias of the estimator β̂0 =
∑

k β̂(k)
0∑

k 1
to be:

E[β̂0 − β0|Z] = h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M (k)

0

|Ni | − avg
i∈M (0)

0

|Ni |
)

.

Similarly, var [β̂0|Z] = 1
(
∑

k 1)
2

∑
k>0

∑
l>0 cov(β̂

(k)
0 , β̂(l)

0 ), where

cov(β̂(k)
0 , β̂

(l)
0

∣
∣
∣Z) = 1

kl
cov

(
∑

i∈M(k)
0

Yi

|M(k)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

,

∑

i∈M(l)
0

Yi

|M(l)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

∣
∣
∣
∣ Z

)

= 1

kl

(
∑

i∈M(k)
0 , j∈M(l)

0
cov(Yi , Y j |Z)

|M(k)
0 ||M(l)

0 |
+

∑

i∈M(0)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M(0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M(k)
0 ||M(0)

0 |
−

∑

i∈M(0)
0 , j∈M(l)

0
cov(Yi , Y j |Z)

|M(0)
0 ||M(l)

0 |

)

.

For i ∈ M (k)
0 and j ∈ M (l)

0 , by the law of total covariance and as X are i.i.d.,

cov(Yi ,Y j

∣
∣ Z) = E[cov(Yi ,Y j

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Y j

∣
∣X,Z]

∣
∣
∣ Z

)

= σ2
Y1{i= j} + cov

(
α + kβ0 + h0

∑

a∈Ni

Xa,α + lβ0 + h0
∑

b∈N j

Xb

)

= σ2
Y1{i= j} + h20 cov

( ∑

a∈Ni

Xa,
∑

b∈N j

Xb

)

= σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |.

This gives

cov(β̂(k)
0 , β̂

(l)
0

∣
∣
∣Z) = 1

kl

(∑
i∈M(k)

0 , j∈M(l)
0

cov(Yi , Y j |Z)
|M (k)

0 ||M (l)
0 |

+
∑

i∈M(0)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M (0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M (k)
0 ||M (0)

0 |
−

∑
i∈M(0)

0 , j∈M(l)
0
cov(Yi , Y j |Z)

|M (0)
0 ||M (l)

0 |

)

= 1

kl

(∑
i∈M(k)

0 , j∈M(l)
0

σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |

|M (k)
0 ||M (l)

0 |

+
∑

i∈M(0)
0 , j∈M(0)

0
σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |

|M (0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
h20σ

2
X |Ni ∩ N j |

|M (k)
0 ||M (0)

0 |
−

∑
i∈M(0)

0 , j∈M(l)
0

h20σ
2
X |Ni ∩ N j |

|M (0)
0 ||M (l)

0 |

)
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= 1

kl

(

σ2
Y
1{l=k}
|M (k)| + h20σ

2
X

∑
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j |
|M (k)

0 ||M (l)
0 |

+ σ2
Y

1

|M (0)| + h20σ
2
X

∑
i∈M(0)

0 , j∈M(0)
0

|Ni ∩ N j |
|M (0)

0 ||M (0)
0 |

− h20σ
2
X

∑
i∈M(k)

0 , j∈M(0)
0

|Ni ∩ N j |
|M (k)

0 ||M (0)
0 |

− h20σ
2
X

∑
i∈M(0)

0 , j∈M(l)
0

|Ni ∩ N j |
|M (0)

0 ||M (l)
0 |

)

= 1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j | − avg
i∈M(k)

0 , j∈M(0)
0

|Ni ∩ N j |

− avg
i∈M(0)

0 , j∈M(l)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 |

+ 1k=l

|M (k)
0 |

)]

.

Now, we can recall the bias–variance decomposition of the MSE to obtain

E[(β̂0 − β0)
2|Z] =

(
E[β̂0 − β0|Z]

)2 + var [β̂0|Z]

=
(
E[β̂0 − β0|Z]

)2 + 1

(
∑

k 1)
2

∑

k>0

∑

l>0

cov(β̂(k)
0 , β̂(l)

0 )

=
(

h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j |

− avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

− avg
i∈M(l)

0 , j∈M(0)
0

|Ni ∩ N j | + σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

=
(

h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j |

− 2 avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

as required. �

C.3 Proof of Theorem 1 (See p. xxx)

Proposition 1 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (0)

0 denote the set of untreated individuals
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which have no treated neighbors and let M (1)
0 denote the set of untreated individu-

als which have at least one treated neighbor. For ease of notation, let {s ∈ M (0)
0 },

{s ∈ M (1)
0 } denote the event that a fixed vertex in community s is in the sets M (0)

0 ,
M (1)

0 respectively. Then,

P(s ∈ M (0)
0 ) = (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s , and (7)

P(s ∈ M (1)
0 ) = (1 − θs)

(

1 −
r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)

. (8)

Proof Note that each vertex in the graph is assigned treatment independently and
that under the stochastic blockmodel the events of any pair of vertices being adjacent
are independent. Therefore,

P(s has 0 treated neighbors | s is untreated) = P(s has 0 treated neighbors)

for all k and s = 1, . . . , r . This gives

P(s ∈ M (0)
0 ) = P(s is untreated)P(s has 0 treated neighbors)

= (1 − θs)P(s has 0 treated neighbors)

= (1 − θs)P
( r⋂

v=1

{s has 0 treated neighbors in Bv}
)

= (1 − θs)

r∏

v=1

P(s has 0 treated neighbors in Bv)

= (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s .

where the Av − 1v=s arises from noting that s can have at most As − 1 neighbors
in Bs (it cannot connect to itself). Note that sets M (0)

0 and M (1)
0 partition the set of

untreated individuals. Therefore,

P(s ∈ M (1)
0 ) = P(Zs = 0) − P(s ∈ M (0)

0 )

= (1 − θs) − (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s

= (1 − θs)
(
1 −

r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)
.

�
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C.4 Proof of Proposition 2 (See p. xxx)

Proposition 2 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (k)

0 denote the set of untreated individuals
which have k treated neighbors. For ease of notation, let {s ∈ M (k)

0 } denote the event
that a fixed vertex in community s is in the set M (k)

0 . Then,

P(s ∈ M (k)
0 ) = (1 − θs)

∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

Bin(tv; Av − 1{v=s}, θvPs,v)
)

(20)
where Bin(tv; Av − 1{v=s}, θvPs,v) = (Av−1{v=s}

tv

)(
θvPs,v

)tv(1 − θvPs,v
)Av−1{v=s}−tv .

Proof Note that each vertex in the graph is assigned treatment indpendently. There-
fore,

P(s has k treated neighbors | s is untreated) = P(s has k treated neighbors)

for all k and s = 1, . . . , r . This gives

P(s ∈ M (k)
0 ) = P(s is untreated)P(s has k treated neighbors)

= (1 − θs)P(s has k treated neighbors)

= (1 − θs)
∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

P

( r⋂

v=1

{s has tv treated neighbors in Bv}
)

= (1 − θs)
∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

P(s has tv treated neighbors in Bv)
)
.

We now wish to evaluate P(s has tk treated neighbors in Bv). Let nv be the number
of neighbors s (denoting a fixed individual in community Bs) has in Bv . Under a
stochastic block model setup,

nv ∼ Bin(Av − 1v=s, Ps,v)

tv|nv ∼ Bin(nv, θv)
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where the Av − 1v=s arises from noting that s can have at most As − 1 neighbors in
Bs (it cannot connect to itself). We want the unconditional distribution of tv . Recall
that moment generating function of X ∼ Bin(N , p) is E(zX ) = ((1 − p) + pz)N .
Therefore,

E[ztv ] = E[E[ztv |nv]] = E

[(
(1 − θs) + θs z

)nv ] =
(

(1 − Ps,v) + Ps,v
(
(1 − θs) + θs z

))Av−1v=s

=
(

(1 − θs Ps,v) + Ps,vθs z

)Av

,

giving tv ∼ Bin(Av − 1v=s, θs Ps,v). This gives

P(s has tv treated neighbors in Bv) = Bin(tv; Av − 1{v=s}, θvPs,v)

from which (20) directly follows. �
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