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Notation

sets

vectors

matrices

equations

The set {1,2,...,n} is denoted by [n]. Sets are usually named with
upper-case letters S, T, etc. We write S C T when § is a subset of 7,
including the case S = T. A proper subset of T is denoted by
(SCT,S#T)orby SCT.

Vectors are denoted by lower-case letters, e.g., a, b, with possible
superscripts, e.g., a°, b°. Their entries are denoted by the same letters
with a subscript referring to the component, e.g., a;, b;, a?, b?. Vectors
can be either row vectors or column vectors. The context will always
make clear the meaning. For instance, if we say ‘the linear form cx’
and both ¢ and x have been defined as vectors, it is clear that ¢ is row
vector and x is a column vector. Similarly, if we say ‘the quadratic
form a Hb,” where a and b are defined as vectors and H is a matrix, it is
clear that a is row vector and b is a column vector. Sometimes, a vector
that is initially defined as a column (row) vector needs to be transposed
as a row (column) vector. Again, if the meaning is clear we avoid to
use the transposition sign, while otherwise we indicate the transposed

vector as a’.

The vectors of the canonical basis of R” are denoted by

e, =(1,0,...,0), ..., e, =(0,...,0,1).

Matrices are denoted by upper-case letters, e.g., A, B, with possible
superscripts, e.g., A?, B. Their entries are denoted by the corre-
sponding lower-case letters with subindices referring to the rows and
g, bg.. Differently from vectors, if a matrix has to
be transposed, this will be denoted by the transposition sign.

A convention we use in this book regards the equation numbering. If
we reference an integer linear program as (x), we reference the

integrality relaxation of (x) as (X).

columns, e.g., ajj, by, d

ix



Chapter 1
Introduction

Linear Programming (LP) and Integer Linear Programming (ILP) are two of the
most powerful tools ever created in mathematics. Their usefulness comes from the
many areas where they can provide satisfactory modeling and solving techniques to
real-life problems. Their appeal comes from the rich combinatorial and geometric
theory they are based upon.

Solving an LP problem consists in minimizing a linear functional over a poly-
hedron, which, in turn, amounts to detecting a vertex of the polyhedron where the
linear functional achieves the minimum (if it exists). The many theoretical aspects
of the study of linear programs are not only interesting per se, but are instrumental
to the most important goal, i.e., the actual possibility of computing the minimum.
Therefore, the basic question is how the input data that describe the polyhedron and
consist in an explicit list of the polyhedron facets can be turned into the solution.

Also solving an ILP problem consists in minimizing a linear functional over a
polyhedron, only that this time the input data do not describe the polyhedron of
interest, but rather a larger, ‘weaker’, polyhedron. This makes the problem much
more difficult to solve, because we have also to ‘discover’ the polyhedron inside.

In both cases the computational performance of the solving algorithms depends on
the input size, i.e., on the number of facets of the input polyhedron. The vast majority
of the LP/ILP instances of interest are made of polyhedra and linear cost functions
derived, indeed, from the modeling of combinatorial optimization problems, whose
instances are combinatorial objects such as graphs, sets, sequences, etc. Therefore,
when we discuss the size of an LP/ILP instance it is important to do it in relation to
the size of the instance of the underlying combinatorial optimization problem.

It turns out that the most effective formulations for some combinatorial optimiza-
tion problems (almost invariably NP-hard problems) are polyhedra with an expo-
nential number of facets. These type of large-size models were first pursued by the
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2 1 Introduction

pioneering papers (Dantzig et al. 1954) for the Traveling Salesman problem, Gilmore
and Gomory (1961, 1963) for the Bin Packing problem and Edmonds (1965) for the
Matching problem.

The computational challenge of solving such problems has been successfully
faced during the subsequent decades by developing ingenious techniques. These
techniques are mainly based on the idea of adding constraints to the problem (either to
the primal or to the dual), one at a time, only if the constraints are needed. Practically,
only a relatively small number of constraints are in fact necessary to define the
optimum out of the exponentially many original constraints. Since for exponential
models the constraints are never given explicitly but rather defined in terms of some
mathematical properties, it may be possible to use this implicit description to detect
whether a solution is feasible for all constraints or it violates some of them. If found,
a violated constraint is then added to the current model and the process is repeated
until no constraints are violated by the current solution.

The problem of detecting a violated inequality is called ‘separation’ if referred to
the primal problem or ‘pricing’ if referred to the dual. The theoretical importance of
the separation/pricing problem became evident after the appearance of the ellipsoid
method, because, by using the ellipsoid method, a polynomial separation routine
implies polynomial solvability of an LP instance even with an exponential number
of inequalities, as shown in the fundamental work of Grétschel et al. (1981).

However, the ellipsoid method suffers from numerical instability problems and
as such it is not suitable to practical use. Therefore the way to solve exponential-size
linear programs in practice has been the one of alternately solving a partial LP prob-
lem (not through the ellipsoid method, but via some more effective algorithm such as
the simplex) and then solving a separation/pricing problem to detect needed missing
inequalities. It is clear that solving an LP problem in this way is not straightforward.
Furthermore, when facing an ILP problem there are additional challenging issues
to take into account, such as devising an enumerative scheme (called branch-and-
bound) that reduces the search of an integer optimum to a sequence of increasingly
more-constrained linear programs. For exponential-size models, although possible
and in some cases even very effective, building a procedure to solve an ILP problem
by these techniques may be quite complex.

As an alternative to this separation/pricing paradigm, one technique has emerged
in the last years which allows to bypass the separation/pricing procedures and to
give an equivalent description of an exponential-size polyhedron, but requiring only
a polynomial number of facets. This can be achieved by finding another polyhedron,
in a higher-dimensional space, whose projection on the original variables coincides
with the original polyhedron. Although it may seem at first sight a weird idea to look
for something that is ‘simple’ in a high dimension and that gets ‘complicated’ by
projecting it down onto a lower dimension, it turns out that there are many problems
where this procedure can be realized.

Hence what we want to achieve is the following: a polyhedron P C R" is given
which has exponentially many facets. We want to find another polyhedron Q C
R"*"  with only a polynomial number of facets, whose projection onto IR" is exactly
P. The advantage would be that, instead of minimizing a linear functional over
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P, we could then extend the linear functional to R"*" and minimize it over Q.
The polyhedron Q is called a compact extended formulation of P, where the term
‘compact’ means that we have reduced the number of facets from exponential to
polynomial and the term ‘extended’ refers to the fact that Q is defined in a higher
dimension (but, clearly, the increase in dimension must not be exponential). We will
also use the expression ‘compact extended’ applied to LP or ILP models, to assert
that the number of constraints has been reduced in the same way at the expense of
an increase in the number of variables.

There are problems for which P has integral vertices that are in a one-to-one
correspondence with the combinatorial objects we want to characterize. In this case
having a polynomial description via Q for the same combinatorial objects is of
paramount importance and can cast new insight into the underlying combinatorial
problem. On the other hand, there are also problems where P is the relaxation of
an ILP that models a combinatorial optimization problem and P has also fractional
vertices beside the integral ones. Clearly in these cases Q is only a polynomial
description of the relaxed problem and not of the problem itself. Yet, it can provide
in any case some new insight into the problem and yield an alternative computational
approach.

In this book we try to explain how to build a compact extended formulation and
show several examples of problems where this construction is possible. Perhaps the
most straightforward technique to build a compact extended formulation is by using
linear programming and the powerful strong duality properties. A first pioneering
paper in this sense is Martin (1991). It was independently followed by other papers
using the same ideas, see Carr and Lancia (2002, 2004). Only recently this approach
has been presented in a systematic way in the survey Lancia and Serafini (2014).

However, other techniques are available, the most important being the nonnegative
factorization of the slack matrix. This notion was brought forth by Yannakakis (1991)
and proved to be an important tool both to find compact extended formulations or to
show that in some cases compact extended formulations cannot exist. One important
such negative result is the non existence of a compact extended formulation for
the matching polyhedron. This result was first proved for symmetric problems by
Yannakakis (1991) and recently refined by Rothvoss (2014).

A survey reporting various results derived from many different techniques of
geometrical-combinatorial nature (like the nonnegative factorization of the slack
matrix) is Conforti et al. (2011), that has been an important reference in writing our
book.

This book is roughly divided into two parts, the first more theoretical and the
second devoted to practical applications and examples. Since the subject deals with
polyhedra, LP and ILP, we found it necessary to precede the core of the matter
with four chapters devoted to an exposition of these background concepts. This
introductory material is tailored to the main topic of the book, but it has also some
self-contained flavor, so that the whole book can be used as a reference textbook
without pointing to other texts. In particular, Chap. 2 is devoted to polyhedra with
a special emphasis on projection issues, Chap. 3 is devoted to the basics of LP and
Chap. 4 is devoted to the basics of ILP. The theory of ILP has been treated at some
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length so that it can be used also as a small tutorial for students that have never
attended a course on ILP. A fourth chapter that explains in detail special LP and
ILP problems that require exponentially many rows and/or columns was particularly
necessary because compact extended formulations exist exactly for these models.

The general way to build a compact extended formulation is explained in Chap. 6
In this chapter we also explain in detail how to use LP techniques to build a compact
extended formulation. Some examples are immediately brought to the attention of the
reader so that the technique can be better understood. Also the role of the nonnegative
factorization of the slack matrix is explained in this chapter and some preliminary
examples are shown.

In the second part of the book, the chapters are devoted to the presentation of
compact extended formulations for some particular problems that are modeled as
large-scale LPs (or ILPs). For some of these problems we may describe different
formulations, obtained by various techniques, which are then compared to each
other.

We have chosen to present first the ‘more theoretical’ problems and later those
that are mostly application-oriented, although this dichotomy is difficult to ascertain
in general. Hence the first example in Chap.7 refers to a very interesting combi-
natorial object called permutahedron. We provide three different compact extended
formulations. The first one is based on LP techniques and the second one on a sim-
ple projection of a polyhedron whose vertices are integral. Both these formulations
require a quadratic number of variables and inequalities. A better compact extended
formulation can be obtained via sorting networks for which a O (n log n) formulation
can be given.

Another interesting purely combinatorial polyhedron is the parity polytope, i.e.,
the convex hull of all 0-1 vectors with an even number of ones. A closely related
polytope is the convex hull of all 0-1 vectors with an odd number of ones. We show in
Chap. 8 two alternative compact extended formulations for both polytopes, one based
on the union of polyhedra and the other one on LP. Whereas the former is a quadratic
extension, the latter is only linear. This result seems to be new. We conjecture that
the nonnegative rank of the slack matrix of the parity polytope is at most 4 (n — 2).

In Chaps.9, 10 and 11 we discuss three classical topics in graph theory, namely,
trees, cuts and stable sets. In Chap.9 we first deal with the Steiner tree problem,
a notoriously NP-hard problem, and show a compact extended formulation for its
relaxation. The particular case of a tree spanning all vertices is the well-known
minimal spanning tree problem, for which there exist polynomial algorithms and
polyhedral descriptions of exponential size. In this case we use both LP techniques
and nonnegative rank factorization to provide compact extended formulations. We
also present two NP-hard problems related to spanning trees that have found some
relevance in the literature. The first one deals with spanning trees constrained to have
a bounded degree and the second one the so called minimal routing trees, that have
a considerable importance in communication and also in computational biology.

In Chap. 10 we compare three popular models for the maximum cut problem and
show the equivalence of their relaxations by using compact extended formulations.
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These problems are closely related to the subject of edge-induced and node-induced
bypartite subgraphs, for which we give compact extended formulations as well.

In Chap. 11 we show a general compact extended formulation for the relaxation
of the stable set polytope. For some graphs the stable set polytope can be given an
exact representation, although with an exponential number of inequalities. When
the graphs are perfect, however, compact extended formulations are possible for the
stable set polytope. We give an example of such situation by describing a compact
extended formulation, obtained by LP techniques, for the class of comparability
graphs.

Chapter 12 is devoted to the Traveling Salesman Problem (TSP), one of the most
famous problems of combinatorial optimization. Compact ILP models for this prob-
lem have been proposed since a long time. However, only the exponential-size for-
mulation by Dantzig et al. (1954) proved to be effective for computational purposes.
Hence the question is if there exist compact extended formulations with the same
strength. The answer is affirmative, since we can express the subtour inequalities in
a compact form via the max -flow/min-cut theorem. In this chapter we present a new
formulation for the TSP that shows some flexibility to be adapted to some variants of
the TSP. Whereas we do not claim that this formulation is in general computationally
competitive with other known formulations, yet we think that it may be fruitfully
used for the particular case of the TSP with time windows.

In Chap. 13 we present the famous cutting stock - bin packing problem which was
the first problem to be modeled by column generation (Gilmore and Gomory 1961,
1963). The compact equivalent counterpart of this problem has a very interesting
structure of a particular flow problem. Two other packing problems for which we
may show compact extended formulations are the robust knapsack problem and the
cycle packing problem. In particular, for the former problem we show, by using LP
techniques, that of two different formulations appeared in the literature one is indeed
the compact extended formulation of the other.

Scheduling problems are notoriously difficult and ILP models have not yet shown
adequate strength for them to be competitive with other heuristic techniques. Per-
haps the most promising approach is by using time-indexed models. However, these
models suffer for their size which is typically pseudo-polynomial and slows down
too much the solution of real-life instances. We present in Chap. 14 a recent model
for the Job-Shop problem of time-indexed type that can be solved either by column
generation or by its compact equivalent formulation. We present also an interesting
approach for a one-machine problem for which a Dantzig—Wolfe decomposition was
proposed. This example allows us to show how the Dantzig—Wolfe decomposition
goes in the opposite direction with respect to the compactification techniques that
we have extensively discussed in this book.

Finally in Chap. 15 we deal with some combinatorial optimization problems aris-
ing in the solution of molecular biology related questions. The field of optimization
applied to molecular biology is also known as computational biology. We first sur-
vey the assessment of the evolutionary distance between two genomes, a problem
known as Sorting By Reversals. The problem is equivalent to packing the edges of a
bi-colored graph into a maximum number of alternating cycles. The problem has a
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natural exponential formulation which can be made compact by using LP techniques.
We then turn to the study of a particular type of matching (the noncrossing match-
ing) which, in computational biology jargon, is called an alignment. Alignments are
used to compare either protein sequences or protein 3-dimensional structures. We
describe two exponential-size models for this type of comparisons and their compact
extended reformulation.

Now that we have recapped what is in the book, let us close by remarking some-
thing that the reader will not find in this book. Namely, the book does not contain
any computational study of the effectiveness of using compact extended formula-
tions vs exponential-size formulations solved via separation/pricing. The amount of
work required to run such comparisons in a fair and thorough manner would have
been overwhelming, and, in fact, irrelevant for the main goal of the book, which is
to describe the theory behind compact extended formulations.

From our experience, we can say that sometimes a compact extended formulation
can be solved more efficiently than the original exponential-sized one, but, generally
speaking, separation/pricing are often faster in practice. However, due to its rela-
tively little popularity, the use of extended compact formulations has so far been the
exception rather than the rule. With our book we hope to promote the study of this
type of formulations, expecting that, when people start to use them consistently, the
refinement in their application will make them a competitive alternative to the more
complex algorithms based on separation and pricing.



Chapter 2
Polyhedra

2.1 Basic Definitions

Polyhedra play a central role in the theory of Linear Programming (LP), Integer
Linear Programming (ILP) and combinatorial optimization, beside other branches
of mathematics. The importance of polyhedra is due to the fact that they are at the
same time both convex objects, and as such they share all the important properties
of convex sets, and also combinatorial objects due to the rich structure of vertices,
edges, faces and facets.

For a thorough treatment of all properties of polyhedra and convex sets the reader
is referred to the monographs by Griinbaum (2003) and Rockafellar (2015). In this
chapter we limit ourselves to present the most relevant properties with respect to the
topics covered in this book.

Definition 2.1 A polyhedron in R" is the intersection of a finite number of closed
half-spaces.

We recall that a closed half-space is the set of points x € IR” that satisfy a linear
inequality a x < b (or equivalently ax > b), where a is a vector in R" and b
is a scalar. A hyper-plane (or simply a ‘plane’, as we will always refer to) is the
boundary of the half-space and is the set of points x € IR" that satisfy the linear
equation a x = b. Therefore, a polyhedron can be also defined as the feasible set
of a finite number of linear inequalities. Linear equations can be also considered in
the definition because each linear equation a x = b is equivalent to the pair of linear
inequalitiesax < bandax > b.

We recall that a convex combination of k > 1 vectors u!, ..., u* is any vector v
that can be expressed as v = Zie[k] Aul with A; > 0,i € [k], and Zie[k] A=1,
while a conic combination is any vector v that can be expressed asv = >, k] M u'
with A; > 0,i € [k]. The combinations are said strict if all coefficients A; are positive.
The convex hull conv(K) (conic hull cone(K)) of aset K C IR" is the set of all points
in IR" that can be expressed as convex (conic) combinations of any finite set of points
of K.
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8 2 Polyhedra

A set K is convex if K = conv(K) or, equivalently, if it contains all convex
combinations of points in K. A vertex (or extreme point) is any point of K which
cannot be represented as a strict convex combination of two points of K . A polyhedron
is pointed if it has at least one vertex. A set C is a cone if, foranyu € C alsoAu € C
for any A > 0. Moreover, a set C is a convex cone if C = cone(C).

According to the definitions, a half-space is a convex cone, and a polyhedron,
being the intersection of convex sets, is convex. A polyhedron is a convex cone if
all its defining inequalities are homogeneous, i.e., they can all be written in the form
ax <0.

We say that a polyhedron P is bounded if there exists M suchthat —M < x; < M,
i=1,...,n,forany x € P. Otherwise, the polyhedron is unbounded. A bounded
polyhedron is also called a polytope, and it is necessarily pointed.

We remind that sometimes in the literature we may find geometrical objects in IR?
that are called polyhedra but they are not convex. Etymologically the term polyhedron
comes from the Greek words moX0C (poliis, many) and £dpa. (hedra, seat) that simply
refer to an object made up of straight faces joined together by segments. This is why
we may encounter these ‘strange’ polyhedraln Convex Analysis a polyhedron is
always convex and is defined as above.

Given m points ul, .. u" eR'and 1 <k <m, we may define the set

k

K={ve1R”:v=Z)\,~ui, Sh=1 =0, ie[m]]. @2.1)

ie[m] i=1

K is therefore the convex hull of the points ul, . uk plus the conic hull of the
points «**1, ... u™. Thepoints u**!, ... u™ arealsoreferred to as rays or directions
because all points w + Au/, for j = k+ 1,...,m, are in K for any w € K and

any A > 0. Note that each ray is defined up to a positive multiplicative factor. For
this reason when we say that two rays u' and u? are different we actually mean
cone(u') # cone(u?). The following fundamental theorem holds:

Theorem 2.2 (Minkowski-Weyl) The set K as defined in (2.1) is a polyhedron. Con-
versely, every polyhedron can be represented as in (2.1).

Definition 2.1 corresponds to an ‘external’ representation of a polyhedron: there
are planes that cut off open half-spaces, like a carving operation on IR". What remains
inside is the polyhedron. Theorem 2.2 yields an ‘internal’ representation: there are
points (and possibly rays) and the space between the points is filled by the convex
(and possibly conic) combination operation. The remarkable fact expressed by the
theorem is that the two representations are equivalent and in both cases we only need
a finite information.

As asimple example consider the polyhedron in IR? defined by only one inequality,
i.e., x| +x2 > 2 which is just the closed half-plane ‘above’ the straight line x; +x, =
2. It does not look like a polyhedron as we may have it in our imagination, but it is
nonetheless a polyhedron. One internal representation is given by
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= () o= () = () =)

where m = 4 and &k = 1 as in (2.1). This representation is not unique, not only
because #?, u® and u* are defined up to a multiplicative positive constant, but also
because u' can be replaced by any point on the straight line, and u* can be replaced
by any vector with both positive entries.

This ‘unpleasant’ situation arises because this polyhedron has no vertices. Vertices
are very special points in a polyhedron. Since they cannot be expressed as a strict
convex combination of other points of the polyhedron, they must always be included
in the list of points of any internal representation.

If the polyhedron is unbounded also rays are necessary. In particular we need
special rays, called extreme rays, that are defined as the only rays that cannot be
expressed as conic combination of two different rays of the polyhedron. Extreme
rays play the same role of vertices with respect to rays and indeed they can be
thought of as vertices at infinity. Therefore also extreme rays must be listed within
the internal representation if the polyhedron is unbounded.

At this point we may wonder whether vertices and possibly extreme rays are not
only necessary but also sufficient for an internal representation. We have seen in the
previous example that in general this is not true. However, under a mild assumption,
the answer is affirmative and further characterizes the Minkowski-Weyl theorem.

Theorem 2.3 If a polyhedron K does not contain straight lines then it is the convex
hull of its vertices plus the conic hull of its extreme rays.

In particular we may also say that

Theorem 2.4 A polyhedron has at least one vertex if and only if it does not contain
straight lines.

The non existence of straight lines is almost always very easily checked, either
because the polyhedra we deal with are bounded by construction or because the
feasible points must be nonnegative, and so even if the polyhedron is unbounded we
know that it cannot contain straight lines.

We recall that by linear combination of the vectors u', . . ., u* we mean any vector
v that can be expressed as v = Zi [kl A; u' with no restriction on the scalars A;, and
by affine combination any vector v that can be expressed as v = >, ek M u' with
Zie[k] A; = 1. The linear hull lin(K) (affine hull aff(K)) of a set K C IR" is the set
of all points in IR” that can be expressed as linear (affine) combination of any finite
set of points of K. Compare with the convex and conic combinations previously
defined.

Since an affine set is a translated subspace (this subspace is unique for a given
affine set), the dimension of an affine set is defined as the dimension of its generating
subspace. Moreover, the dimension of a polyhedron (or, in general, of a convex set)
is defined as the dimension of its affine hull. When the dimension of a convex set is
the same as the space where it is defined then we say that the set is full dimensional
or that it is a convex body.
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If a polyhedron is not full dimensional it is more convenient to view the polyhedron
as embedded in the affine manifold given by its affine combination. In particular, the
topology is the one induced by the affine manifold, i.e., all neighborhoods are the
intersection of the neighborhoods in IR" with the affine manifold, and this is called
the relative topology of the polyhedron. Therefore when we speak of boundary
of a polyhedron we mean boundary in the relative topology (otherwise the whole
polyhedron would be boundary and the definition would become useless).

The relative boundary of a polyhedron consists of one or more polyhedra, called
facets that have dimension one less than the dimension of the polyhedron. Given an
external representation of a polyhedron, we say that an inequality is facet-defining if
there is a facet such that all points of the facet satisfy the inequality as an equation.
In order to identify facet-defining inequalities the following theorem is useful.

Theorem 2.5 Let a polyhedron be defined by the inequalities a’ x < b j» J € [m],
and possibly by equations. If there exists a point X, necessarily on the relative bound-
ary of the polyhedron, and an inequality, say al x < by, such that a' ¥ = by, while
a’ X < bj, forall j # 1, then the inequality a' x < by is facet-defining.

Since the facets are polyhedra themselves, their relative boundaries have in turn
facets, that, with respect to the original polyhedron, are simply called faces. Going
down we arrive at faces of dimension one, that we call edges, and faces of dimension
zero, that are the vertices. Necessarily, edges join exactly two vertices and vertices
joined by an edge are called adjacent.

We have stated at the beginning that vertices and faces may exhibit a rich com-
binatorial structure. A very interesting example is given by the permutahedron, a
polyhedron whose vertices are in one-to-one correspondence with the permutations
of [n] and whose facets are in a one-to-one correspondence with the proper subsets
of [n]. We will provide an extensive analysis of the permutahedron in Chap. 7.

One of the most interesting questions is understanding the vertex structure from
the given inequality set, or vice versa. The former case happens when a polyhedron
is described by a set of linear inequalities and we have to find some vertices, as it
happens in linear programming. In other cases, like in combinatorial optimization, a
set of points is defined that corresponds to the set of solutions of some combinatorial
structure and we want to find a description of the convex hull of these points, i.e.,
the linear inequalities that define this convex hull.

This task may be inherently intractable because there may be exponentially many
vertices with respect to the given set of inequalities and conversely exponentially
many facets with respect to a given set of vertices. As a relevant example of the first
type consider the n-dimensional cube, also called hyper-cub, which we simply refer
to as cube, that is defined by the 2 n inequalities

O<x;<1 jelnl

that give rise to 2" vertices (all 0-1 vectors in IR"). It is not difficult to see that the
cube has


http://dx.doi.org/10.1007/978-3-319-63976-5_7

2.1 Basic Definitions 11

(”) on—k
k
faces of dimension k.

In the reverse direction, there can be polyhedra with a small number of vertices
whose external representation requires many inequalities, like the orthoplex (also
called cross-polytope, or hyperoctahedron, or cocube), whose vertices are the 2n
points (0,0, ..., =£1,...,0,0). Their convex hull is described by the 2" inequalities

J€ln]

The number of faces of dimension k of the orthoplex is given by
n 2k+1
k+1 ’

2.2 Convex Hulls of Infinitely Many Points

If S is an infinite set of points, then conv(S) is not necessarily a polyhedron. However,
if § exhibits special properties it may happen that conv(S) is a polyhedron. For the
problems considered in this monograph the case S C Z" is relevant, i.e., when §
consists of points with integral coordinates.

This is an issue that may be easily overlooked. A typical case in integer linear
programming is when S C {0, 1}". Then, S is clearly finite and the Minkowski-Weyl
theorem implies that conv(S) is a polyhedron. This fact directs the search for optimal
solutions to finding the facets of conv(S), at least near the optimum. Since integer
linear programming is not computationally different than binary linear programming,
one is inclined to think that also the convex hull of the (infinite) feasible points of
an ILP instance is a polyhedron and therefore it makes sense to find the external
representation of conv(S). However, some caution is necessary. Consider in R? the
set §

S:{erz:xzfﬁxl, x> 1},

It can be proved that conv(S) has the extreme ray (1, 0) and infinitely many vertices
of coordinates (k, | ~/2 k) for all k such that2k*> —1isa square (sequence A001653
in OEIS (2017) that goes as 1, 5, 29, 169, 985, 5741, 33461, . . .). Therefore it is not
a polyhedron.

However, a positive result is given by the following important theorem due to
Meyer (1974).

Theorem 2.6 Let S = {x eZ":Ax < b}. If A and b have rational entries, then
conv(S) is a polyhedron.
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2.3 The Slack Matrix

The following important concept has been introduced by Yannakakis (1991). Let a
polyhedron P be defined by the set of inequalities A x < b (where possible non
negativity constraints are embedded in the matrix A). We assume that all inequalities
are non redundant, i.e., they are facet-defining. Let V be the matrix whose columns
are all vertices of P. Let 1 be a vector of all ones of size the number of vertices.

Definition 2.7 The slack matrix of P is the nonnegative matrix
S=b1"—AV.

In other words the entry s;;, associated to the ith facet and to the jth vertex,

measures the ‘distance’ of the vertex j from the facet i, given by b; — >, aix v,{.
Defining the slack matrix, as the slack matrix of the polyhedron P, is somehow
misleading, because the slack matrix is based on how the polyhedron is represented
through the matrix A and the vector b. It is clear that an inequality can be multiplied
by a positive constant and the polyhedron is not altered while the slack matrix is
altered by a constant factor along a row. However, this would not alter the structural
properties of the slack matrix, so that we may, with abuse of terminology, speak of
the slack matrix of a polyhedron.
For instance the slack matrix of the cube is the 2n x 2" matrix

(v)

where V is the matrix of all vertices of the cube, i.e., all possible 0-1 vectors and 1%
is the same matrix with all entries flipped.

A general concept associated to any m x n matrix A is the rank of the matrix,
rankA (also called linear rank). One possible way to define the rank is by finding a
factorization of A into the product of an m x g matrix B and a ¢ x n matrix C. The
minimum number ¢g such that a factorization exists is the rank of A.

An important concept associated to a nonnegative m X n matrix A is the nonneg-
ative rank of the matrix. The minimum number ¢ such that a factorization of A into
the product of an m x g nonnegative matrix B and a ¢ x n nonnegative matrix C
exists is called the nonnegative rank of A and is denoted rank A.

The problem of finding a nonnegative factorization is called Nonnegative Matrix
Factorization (NMF). NMF is very important in various areas of applied mathe-
matics, like quantum mechanics, probability theory, polyhedral combinatorics, com-
munication complexity, demography, chemiometrics, machine learning, data mining
(see for instance Gregory and Pullman 1983; Cohen and Rothblum 1993). In par-
ticular in data analysis the NMF corresponds to extracting features from a dataset.
This explains why the two matrix factors are often denoted as F' (features) and W
(weights).
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We have the following relations
rankA <rank; A < min {m, n}.

The first inequality is obvious. As for the second inequality we note that if m < n,
by taking B = [ (or any permutation matrix of order m), we obtain a nonneg-
ative factorization with ¢ = min {m, n}. Similarly if n < m, by taking C = [
(or any permutation matrix of order n), we obtain a nonnegative factorization with
g = min {m, n}. Whenever we have rank; A = min {m, n} we speak of a trivial
nonnegative rank factorization.

As we shall see later (Sect. 6.8) the nonnegative rank of the slack matrix plays an
important role relating the facets of a polyhedron and its projections.

2.4 Projections of Polyhedra

In this book we are interested in polyhedra and projections of polyhedra, and it is
useful to briefly recall some facts associated to projections. Originally, a projection
is a geometrical operation for sending points of the three dimensional space onto a
plane along some straight lines precisely defined. This operation can be abstracted to
general vector spaces. If we require the operation to be linear we have the following
definition.

Definition 2.8 A projection linear operator & : R" — R" is any linear operator
that satisfies the idempotency property P* = 2.

Let .4 be the null space of &7 and % its range. Equivalently, & is a projection
operator if & restricted to % is the identity. By the idempotency property x — & x €
N

Clearly a particular projection operator is identified by its null space and its range.
Therefore the way a projection operator can be represented depends on how the
range and the null space are represented. We say that a projection is orthogonal if
the null space and the range are orthogonal subspaces. In this case, we only need the
information either for the range or for the null space.

As a first case, let us assume that we know a basis r', ..., r* for .4 and a basis
rkHL " for 2. Let R be the n x n matrix whose columns are the n vectors
. By taking r!, ..., r" as a new basis for R" the relationship between the

old coordinates x and the new coordinates & of a generic point is given by
x = RE.

Hence we have for any linear operator A : R" — R" (where n are the new
coordinates of a point y)

y=Ax = Rn=AR¢é = n=R'AR¢
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1)

@-1)

Fig. 2.1 A non orthogonal projection in IR?

and the operator A is represented in the new system as R~'A R. Any vector repre-
sented in the new system has the first £ coordinates spanning .#” and the remaining
n — k coordinates spanning %. Therefore if & is a projection operator

R'PR=1J

where J; is a diagonal matrix with the first k entries equal to O and the remaining
entries equal to 1. Therefore
P =RJ R (2.2)

As a simple example consider the non orthogonal projection in Fig.2.1 where

(2 o (2 . (2 2\, (0 0
= ()= () w0 )= ().
1 (1 2 1 2 —4
-1 _ 2 _ -
w=i (i ) =50 )

As a second case, let us now assume that the null space ./ is defined as
N ={x:Kx =0}

for some (n — k) x n matrix K with full rank and we do not have available a basis
for 4. In other words, we explicitly know the orthogonal vectors to the null space
but not the basis of the null space. Let R; be the n x (n — k) matrix with columns
kL r", abasis of Z which we assume to be available. Any vector in Z can be
written as R; y for some vector y. Note that K R; is non singular because for any
y # Owemusthave K R,y # 0 (the range and the null space are two complementary
subspaces). Since x — Z x € A4 we have K (x — &£ x) = 0. Since & x = R, y for
some vector y, we may write K x — K R; y = 0 from which

y=(KR) 'Kx
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and therefore
2 =R, (K R)'K.

In the example

k=2 r=(F)=2=(F);02-5(1 )

As a third case suppose now that Z is defined via equations, i.e.,
Z={x:Hx=0}

for some k x n matrix H with full rank and that we have available a representation of

A viaabasisr!, ..., rk. Let Ry be the n x k matrix whose columns are r', .. ., r¥.

Note that H & = 0. Then we have x — & x = Ry for some vector y and, by
applying H, Hx — H #x = H Ry y, i.e., Hx = H Ry y and we may write

y = (H Ry) " 'H x.
Therefore from & x = x — Ry y we may write

P =1—Ry(HRy 'H. (2.3)

In the example

H=(12). Roz(f) —

1 0 2\ 1 1 2 4
@2(0 1)_(1)3(1 z)zz(_l 2).
As a fourth final case, suppose that both .4 and Z are defined via equations, i.e.,
N ={x:Kx =0}, X ={x:Hx=0}.

Then we have
K& =K, H2Z=0.

The first relation is due to x — & x € 4 for all x, and the second relation is due to
P x € Z for all x. The previous relations can be written as

(i) 7= (%)
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and since the rows of K and H are linearly independent, the matrix is invertible and

we have |
K\ (K
2= () (5):
In the example

KN (KY_ (1 -2\ (1 —2\_1( 2 2\(1 -2
H 0) \1 2 0 0) 4\-1 2 0 0/
For orthogonal projections the formulas are simpler. Indeed if % is represented

as
Z={x:Hx=0}

for some k x n matrix H with full rank, then the rows of H are a basis for .4 and
therefore (2.3) becomes
P =1-H'(HH") 'H. (2.4)

These projection operators can be also used to find the projection of a polyhedron if
we have an internal representation of the polyhedron as the convex hull of vertices
and the conic hull of estreme rays.

If the polyhedron Q is given by a set of inequalities, i.e.,

O0={xeR":Ax <d}

finding its projection Q is more complex. Let us start by studying the simpler pro-
jection in which & is the subspace generated by ey, ..., €, , and the projection is
orthogonal. Let

O={x,y)eR":Tx+Ry=<d} (2.5)

with T am X (n — k)-matrix and R a m x k matrix. We want to find the external
representation of the polyhedron Q = & Q on the subspace {(x, y) : y = 0}. Let,
for each x € R"7*,

Ox)={yeR':Ry<d-Tx} (2.6)

The polyhedron Q can be also expressed as
O0={xeR"*:0() #0}.

Now we introduce one of the most fundamental tools in linear algebra, polyhedral
theory, linear programming, combinatorial optimization, etc. This is the celebrated
Farkas’ lemma that dates back to 1894 (Farkas 1894, 1902) and can be considered in
some sense the ancestor of linear programming. The lemma defines two geometrical
sets and states that one is empty if and only if the other one is not empty. There are
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several variants of the lemma according to little variations about the definitions of
the two sets. The theorem can be proved from the separation theorem of convex sets.
We do not report here the proof.

Theorem 2.9 (Farkas’ lemma) Given an m x n-matrix Q and an m-vector q, the
feasible set of
Qu=<g, u=>0 2.7

is non empty if and only if the feasible set of
vQO >0, vg <0, v>0 (2.8)

is empty.

The Farkas’ lemma can be rephrased in polyhedral terms by saying that the poly-
hedron
{ue]R”:Qufq, uzO}

is not empty if and only v g > O for all points in the polyhedron
{velRm:szo, vZO}.
In a variant of the lemma we may say that the polyhedron
{ue]R”:QuSq}
is not empty if and only v ¢ > 0 for all points in the polyhedron
{ve]Rm:szo, v20}.

According to this variant of the Farkas’ lemma we have that Q(x) in (2.6) is
not empty if and only if for all u such that # > 0 and u R = 0O one has u (d —
T x) > 0. Since the set C := {u > 0 : u R = 0} is a polyhedral cone, the condition
u(d — T x) > 0 can be expressed only with respect to the generators of C, and, if
C is pointed, just to the extreme rays of C. Let u', ..., u? be these extreme rays.
Therefore Q(x) # @ if and only if u'd—-Tx)>0,i=1,...,q,so that

O={xeR':u'(d-Tx)=0,i=1,...,q}.
Denoting by U the matrix whose rows are the extreme rays ', the polyhedron Q is

given by
UTx <Ud.
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Fig. 2.2 A polyhedron in IR? and its projection

As a small example consider the polyhedron in IR? defined by

2 2 3 2
2 0 —1 | (™ 2
o 2 —1||l2]=] 2
0 0 —1)\M 0

and shown in Fig. 2.2. We want to project the polyhedron onto the subspace generated
by e; and e; (see in the figure also the projected polyhedron, actually a polygon).
Hence

2 -2 3 -2
2 0 —1 2
=1 o 2| BR=|l_4| 94=| 2
0 0 ~1 0

and
C:{ue]R4:3u1—u2—u3—u4=O, u; >0, up >0, uz >0, u420}.

The extreme rays of C have only two components different from zero and so they
are

u! 300
U:=[u?]= 0 3 0
u? 0 0 3
so that
4 -2 4
UT =1 -2 4 Ud = 4

-2 =2 -2
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and Q C IR? is described by

2x1—x <2
—x;+2x <2

X1 +x > 1

A slightly more complicated situation arises when we want to project a polyhedron
Q onto a subspace Z defined by

X ={x:Hx=0}

where H is a k x n matrix (not necessarily of full rank). We note that x € E if
and only if there exists a liniar combination of the rows of H, i.e., H y, such that
x+ H"y e Q.Hence x € Q if and only if

Ax+HT'y)y<d, Hx=0
ie.,

Ax+AH"y<d
H x =0.

In this way we have a new polyhedron in a higher dimensional space of dimension
(n + k) that we have to project back to R", i.e., to the subspace spanned by the first
n axes. We apply the previous results with the only warning that we have also a set
of equations (not all inequalities) and this amounts to having a corresponding free
variable in the Farkas’ lemma. Hence, with respect to the previous notation

A AHT
We have to find the generators of C

C={uv):uAH"+v0=0, u>0}.

The cone C (note that C is not pointed because v is free) can be represented by the
extreme rays of

uAHT =0, u=>0, (2.9)
plus a linear combination of the unit vectors of the axes vh ..., vk Let u’/ be one
of the extreme rays of (2.9). By the previous results, an inequality describing Q is
given by

wWA+vHx <ud.
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Note that, by putting # = 0 we obtain the constraintv H x < 0, from which H x =0
since v can have any sign. Therefore, denoting by U the matrix whose rows are the
extreme rays of (2.9), the inequalities defining Q are

UAx <Ud, Hx=0.
We reconsider the previous example, this time by projecting onto the subspace (see

Fig.2.3)
{x e R’ L X1 +XQ+X3=0}

so that
H=(1 1 1)
and
-2 =2 3 | -1
2 0 -1 1
T _
A= 0 2 |7
0 0 -1 -1

The extreme rays are the rows of

1 1 0 O
1 0 1 0
U= 0 1 0 1
0 0 1 1
and therefore
1 1 0 O -2 =2 3 0o -2 2 0
1 0 1 0 2 0 -1 -2 0 2 0
UA=10 1 0 1 0 2 -1 2 o 2| Yi=|2
0 0 1 1 0 0 -1 0 2 =2 2
Hence Q is described by
—2x+2x3 <0
—2x +2x3<0
2 x1 —2x3 <2

2xp —2x3<2
X1+ x+ x3=0

ie.,
{erR3:O§x1—x3§1, 0<x—2x3=<1, xl—i—xz+x3=0}.
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x2

Fig. 2.3 Projection of the polyhedron onto the subspace x1 +x2 +x3 =0

The vertices of Q are
#'=(222), #=(100), #£=(010), =(1 1 0),

and the vertices of Q are

W=

- =2 2 1 1 =3 12 1 -4 1
¥1=(000).=(5 -3 —3).¥=(-335 —3).%=(3

The projection matrix & is given, according to (2.4)
1 2 -1 -1

100 |
Z={01 0|—-[1|=5z(111)=2{-1 2 -1
0 0 1 1

W | =

and we may verify that 2 3/ = x/.

Enumerating the extreme rays of a cone can be a time-consuming task. However,
if we split the procedure into several steps, one variable at a time, we obtain the
so-called Fourier elimination scheme, that is easily implementable. Assume that R
in (2.5) has one column (and 7 has n — 1 columns). From R we form three index
sets, namely

I={i:R =0}, It={i:R >0}, I ={i:R <0}.
Now we have to find the extreme rays of the cone

u>0, uR=0.
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If R, = O for some & € I° then one extreme ray is given by u, = 1, u; = 0,
i # h. The other extreme rays are obtained by picking 7 € I and k € I~ and
defining u, = — Ry and uy = Ry, u; = 0, # h, k. This leads to the following new
inequalities in the subspace of xj, ..., x,_|

n—1

(Rthj— RkThj)ijthk_deh’ h€[+,k61_
j=1

J
n—1

ZThjijdh hell
j=1

The number of generated inequalities can grow very quickly. But this drawback is
inherent in the projection process itself. Some inequalities may be redundant and we
should be able to identify these inequalities. This is also a time-consuming task. Just
think that if we project a polyhedron onto IR!, only two inequalities are eventually
needed but the elimination scheme generates many inequalities.

We stress the fact that the number of inequalities of the projected polyhedron
can be higher with respect to the original polyhedron. It is indeed this property
that is exploited when, going in the reverse direction, we solve a problem in a
higher dimension because there are much less inequalities. Consider for instance the
4-dimensional unit cube that is rotated so that one diagonal is on the e, axis and we
want to project it on the 3-dimensional subspace spanned by e;, e, and e3. The cube
in the new coordinate system is described by the following eight inequalities

0< xi+x+x+x=<2, 0= x;—x—x3+x4=2,
0<—x1+x—x3+x4 <2, 0< —x1—x2+x3+x4 <2.
These inequalities have been obtained by defining new orthonormal axes 7!, ..., 74

that form as columns the matrix

11 11
11 -1 -1 1

R=-|_ 71 21 (2.10)
1 -1 1 1

and then the original inequality matrix has been multiplied by R.

By the Fourier method one obtains 16 inequalities. Four of them are redundant
(their coefficients are all zero) and the projection (shown in Fig.2.4) is described by
the following 12 facet-defining inequalities

X2+ x3 < 1, X1+ x <1, xp+x3 <1,

Xy — x3 <1, X1 — xp <1, X1 — x3 <1, 2.11)
—xn-—x=<1l -—-x-x=<l —-x—-x=<l ’
—x3+ x3 <1, —x1+ x <1, —x1+ x3 < 1.
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Fig. 2.4 A projection in IR? of the four dimensional cube

The projected polyhedron has the following 14 vertices
0,0, -1) 1(11 1) 1(11 1) 1(1 1,-1) 1(1 1,-1)
b 9 b 2 9 b 72 9 b K 2 9 K 9 2 K b K
(_17030)5 (07_1’0)7 (15070)3 (07150)5
1(1 1,1) l(111) l(1 11)1(111) 0,0,1)
2 T2 T g e e

All facets are equal diamonds with angles equal to either arccos(1/3) ~ 70.53° or
arccos(—1/3) >~ 109.47°.

Let us do again the same computation, this time however by projecting the cube
in the usual formulation (i.e., 0 < x; < 1,7 € [n]) onto the subspace {x : x; + x» +
x3 + x4 = 0}. Hence according to (2.9) we have to find the extreme rays of u A HT,
i.e., of

SO OO —=m—= OO

=u; —uy+uz —us+us—ue+u; —ug =0.

—

SO == OO OO
—_—_ 0 0o o oo

SO OO OO ==

There are 16 extreme rays consisting of 0-1 vectors with exactly two 1’s, one on an
odd-index entry and the other one on an even-index entry. Hence the 12 inequalities
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that are obtained from U A < U d (as a simple calculation shows) are
xXp—xx <1, hok=1,...,4, h#k. (2.12)

To understand the relation between (2.12) and (2.11) we have to find a new coor-
dinate system for IR* such that the fourth axis is orthogonal to the projection range
and the other three axes span the range. For instance we may use the same matrix R in
(2.10) to establish the relation x = R & between the old x and the new & coordinates.
If we multiply the matrix underlying the inequalities in (2.12) by R we obtain (an
easy exercise) exactly (2.11) (with the only difference that & replaces x)

It is possible to establish a lower bound on the number of inequalities needed for
the higher dimensional polyhedron. More specifically, let 0 € IR"™™ and P C IR"
be two polyhedra such that 2Q = P. Moreover, we know the number v(P) of
vertices of P. Then the following theorem holds (Goemans 2015).

Theorem 2.10 The number t (Q) of facets of Q satisfies t(Q) > log, v(P).

Proof 1tis easy to show that each face of P is the projection of some face of Q. This
implies that the number f(P) of faces of P is at most the number f(Q) of faces of
Q,ie., f(P) < f(Q). Thisimplies v(P) < f(P) < f(Q). Now we note that each
face of a polyhedron is the intersection of some subset of its facets. This implies
that f(Q) is upper bounded by the number of subsets of facets, i.e., f(Q) < 2/(@),
Putting together the inequalities the thesis follows. |

Since the lower bound given by the theorem grows very slowly, a polynomial
external description of Q is not excluded even if the number of vertices is exponential.
For instance the permutahedron has v(P) = n! vertices, so that the bound is log, n! =
O(n logn) and there exists a polyhedron with this bound as it will be shown in
Sect. 7.4. We shall provide another lower bound in Sect. 6.8 based on the slack matrix
of P.

2.5 Union of Polyhedra Defined by Inequalities

While the intersection of convex sets is always a convex set, the union of convex sets
is in general not convex. However, disjunctive sets are almost pervasive in combina-
torial optimization and it is natural to model problems by considering the union of
polyhedra. As long as we have linear objective functions it is equivalent to optimize
over a set or over its convex hull. Therefore, the question we would like to answer
is: given m polyhedra P’, i € [m], how to find the external representation of

conv U P!
icim]

where conv is the closure of the convex hull. In order to obtain a polyhedron it is
necessary to take the closure if one of the polyhedra is unbounded. Consider the
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simple example in R? with P! = {x:x,=0,x; >0} and P2 = {(0, 1)}. The
convex hull of P! U P? is the non closed strip {x : x; > 0,0 < x; < 1} plus the
point (0, 1).

Let us first consider the simple case of the union of two polyhedra defined by

Pli={xeR":A'x<b'} P :={xeR':A’x <b?}
that we assume non empty. We want to find valid inequalities for the polyhedron
P :=comv(P', P?).

Just note that conv(P', P?) can be also expressed as conv(P!, P?) 4+ C! + C? where
the cones C' are defined by C' := {x : A’ x < 0}. By definition of convex hull, for
each point x € conv(P 1. P2?) there exist points y1 e P!, y2 € P2, and coefficients
a; > 0,0, >0, a1 + ap = 1 such that

x=a Y +ary?

and P is the closure of the canonical projection over IR" of the set in R332 given
by the values (x, y', ¥2, a1, a) feasible for the system
X = y1 + o y2

Al yl <!

A2 yz <p?

a1 +ar=1

(2.13)

o >0

o >0

The system (2.13) is clearly non linear. However, it may be easily made linear by
defining x’ := o; y'. Then (2.13) is equivalent to

o+ o= 1

xX— x'— x? = 0
Al x! — b'al < 0 (2.14)

A% x? — b2a2 < 0

o > 0

a > 0

Let P be the polyhedron in R¥'*? defined by (2.14). Denote by 22, the canonical
projection over the subspace of the x variables. Then we have:
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Theorem 2.11 P = 2, P.

Proof If a; > 0, to each solution in (2.14) there corresponds a solution of (2.13) and
vice versa. If «; = 0 and o, = 1, then every x feasible in (2.14) is given by the sum
of an element of P2 and an element of the cone C! and so x € P. The case o; = 1
and a; = 0 is symmetrical. |

Now we have to determine the inequalities defining P. To this aim we apply the
previous results. First let us rewrite (2.14) as

0 1 1 = /1
I -1 -1 N\ =10
0 Al —b! 2]l <|o
ol ¥+ A2 _p2 a | < |0 (2.15)
0 —1 a) < |0
0 —1 < \0

Hence P is defined by the inequalities u x < u for all those values u and u that
correspond to the generators of the polyhedral cone

C .= {(uo,u,vl,vz):u = A, Uy >vip, vVi>0,i= 1,2} (2.16)

or, more exactly, to the values (u, u) that are generators of the cone C, projection
of C onto the subspace of the variables (uq, u).

In order to find the generators of C we may use the Fourier elimination scheme.
However, if we are not interested in the full description of P but we need only some
facets, typically the ones that are near an optimal vertex, it is better to find directly
those facets. To this aim we may solve an LP problem after having normalized the
rays of C. We illustrate two possible normalizations. The first one is theoretically
more appealing because it does not introduce redundant inequalities but it requires
the a priori knowledge of an interior point of P (and consequently the assumption
that P is a convex body). The second one is a simple | - || bound and as such it is
always applicable but it may generate redundant inequalities.

As far as the first normalization is concerned, let x° be an interior point of P. This
means that for every (ug, u) € C one has ux° < ug. Let us now operate a space
translation so that x° becomes the origin and let £ := x —x°. Hence u (£ +x°) < uq
for every £ € P — x°. Therefore u & < ug — u x°. Since ug — u x° > 0 one has

ut<1, &£eP—x"  (u,u eC.

The set {u’ uwE<I1, EeP— xo} is by definition the polar set of P —x9. Since the
vertices of the polar set define the facets of P — x?, it is enough to set ug —u x° = 1
and maximize u ¢ for an arbitrary vector c. In conclusion, a facet of P can be found
by solving the following LP problem
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A

c=(1,2)

c=(-1,1)

\

c=(-1,-2)

Fig. 2.5 Two polyhedra and their convex hull

max uc
u vl Al =0
u — A =0
— up +vip! <0 (2.17)
— Uy +v2p2 <0
uo—uxo =1

In particular, the facet thatis output by (2.17) is the one that has non empty intersection
with the half line x° +a ¢, @ > 0. This suggests the following choice for the vector c:
suppose we have a point X lying outside P and we want to find a cutting inequality, i.e.,
an inequality that is both valid for P and makes X infeasible. This can be obtained by
maximizing u (£ — x°). Due to the normalization choice uo — u x° = 1, maximizing
u (X — x0) is equivalent to maximizing u £ — u°.

As an illustrative example consider the two triangles shown in Fig.2.5. They are
defined by the data:

0
Al=| -1 2}),p'=[0), A’=[-1 o0])r*=|-1
3
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If we apply the Fourier elimination scheme, we obtain many inequalities among
which the five facet-defining inequalities that are listed below. Alternatively, we
assume to know the interior point x° = (1, 1) and we solve several times (2.17) for
different values of c. For instance we may obtain the following five inequalities that
are facet-defining

c u u inequality
(1,0) (2/3,1/3) 2 2x1+x2<6
1, -1 (1/4,-1/) 34 | x1—2x2<3
(-1,-2) | (=1/2,-1/2) | O —x1—x2 <0
(-1, 1) (=2, 1 0 | 2x14+x <0
(1,2) 0,1) 2 X2 <2

If we impose the normalization ||u#]., < 1 we obtain the following LP problem

max uc
u —vtal =0
u — VA% =
— Uy +v'p! <0
e L2 <0 (2.18)
u <1
—u <1

If we solve (2.18) for the same previous values of ¢ we obtain the following inequal-
ities that are valid although not necessarily facet-defining

c u u inequality

(1,0) 1,-1)
(1, -1 a1,-1
(-1,-2) | (=1,-1)
(-1, 1) (-1, 1)

(1,2) (1,1

xX]—x2 <3
X1 —x2 <3
—x;1—x2 <0
—x1+x2 <1

X1 +x <4

~ = O W W

2.6 Union of Polyhedra Defined by Vertices and Extreme Rays

If the polyhedra that have to be merged as a convex hull of the union are defined by
their vertices and extreme rays, the situation is somehow simpler. Obviously this is
possible only if the number of vertices and extreme rays is computationally tractable.
The operation we have to carry out is very simple: we just put together all vertices
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and all extreme rays and take the convex combination of all vertices and the conic
combination of all extreme rays. This operation introduces new variables, that is,
the coefficients of the convex and the conic combinations. However, we have linear
expressions that define a new polyhedron in a higher dimensional space and we have
to project this polyhedron onto the space of the original variables.

Hence let us assume we have m polyhedra in R” whose vertices and extreme rays
are

Vi@, h=1,...pi, XG0, k=1,...,q, ie[m]

Then we have

Pi qi
D Dy )+ D> () =x

i€[m] h=1 i€[m] k=1
P (2.19)

2. 2 e =1

i€[m] h=1

ai, >0 Hir = 0,

Now we may use the Fourier elimination scheme to obtain a representation in terms
of inequalities in the space of the x variables.

As a very simple example, let us consider the example of p. 25 that we rewrite
here for easy reference. There are two polyhedra in IR?. P! is the half line
{x : x, =0, x; > 0} that has just one vertex v(1) = (0,0) and one extreme ray
r(1) = (1,0). P? is just the point (0, 1) so that we have the unique vertex
v(2) = (0, 1). Hence the polyhedron in R> that we have to project onto IR? is
defined by (note that the equations appearing in (2.19) have been converted into
pairs of inequalities in order to comply with (2.5))

—1

1 0 0 —1 0
0 1 0 -1 0 0
-1 0 0 1| /x 0
0 -1 0 1 0ffmx 0
o 0o 1 1 oflal<] 1
0 0 -1 -1 0} -1
0 0 -1 0o of\u 0
0 0 0 0 0
0 0 0 1 0

We think it may be useful for the reader to follow in detail the computation required
by the Fourier elimination scheme. We start from the last column and eliminate one
variable at a time going backward. The first step produces 6 4+ 2 - 1 = 8 inequalities,
of which the only facet-defining are the following
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0 1 0 -1 0
0 -1 0 1 0
o 0 1 1 Y 1
0 0 -1 -1 el I
0 0 -1 of (% 0
0 0 0 —1]\* 0
1 0 0 0 0

The second step produces 2 + 3 - 2 = 8 inequalities, of which the only facet-defining
are the following 5

0 0 -1 0
—1 0 0 X1

0o -1 -1 X2 < —1

0 -1 0 o]

0 1 1

The final step produces 2 4+ 2 - 1 = 4 inequalities, but one has null coefficients, so
that this is the final result

As a second slightly more complex example let us reconsider the example of the
Fig.2.5. In this case we have the data (there are no extreme rays)

- (3). 2= (3). w0 ()
- (). 2= (2). v ()

and, by applying (2.19), the polyhedron in R® we have to project onto R? is defined
by the inequalities
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1 0 0O -2 -3 -1 -2 -1 0
0 1 0 -1 0o -2 =2 1 0
—1 0 0 2 3 1 2 1 X1 0
0 -1 0 1 0 2 2 -1 X3 0
0 0 1 1 1 1 1 1 o 1
0 o -1 -1 -1 -1 -1 -1 an | _ -1
0 0 -1 0 0 0 0 0 ap | — 0
0 0 0 -1 0 0 0 0 o) 0
0 0 0 0 -1 0 0 0 %% 0
0 0 0 0 0 -1 0 0 a3 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 -1 0

We leave as an exercise for the reader to carry out the Fourier elimination scheme.
Starting backwards from the last column, we finally get

12 —24 36
288 288 0
0 4 (xl) <| s
—96 48 | \? 0
24 12 7

These can be clearly simplified as

1 -2 3
1 -1 0
0 1 (xl) <|2
2 1|\ 0
21 6



Chapter 3
Linear Programming

In this chapter we provide an overview of Linear Programming (LP). Although we
assume the reader is familiar with the subject, it is useful to review the basic concepts
and properties in order to establish the notation and the terminology and hence to
have a self-contained textbook. For a comprehensive treatment of the subject the
reader is addressed to the fundamental monographs (Dantzig 1963; Chvatal 1983;
Nemhauser and Wolsey 1988; Schrijver 1998).

3.1 Basic Definitions

A linear programming problem is the minimization (or maximization) of a linear
functional (that we usually call objective function) over a subset of R” defined by a
finite set of linear inequalities and/or linear equations.

A linear inequality defines a closed half space, whereas a linear equation defines
a plane. The presence of at least one inequality is required for the problem not to be
trivial. Indeed a subset defined by only linear equalities is a linear manifold in IR”
and a linear functional over a linear manifold is either constant or unbounded.

The vast majority of LP problems include special linear inequalities that simply
consist in the nonnegativity constraints of some or all variables. Due to their partic-
ular nature these constraints are always stated separately from the other constraints.
Variables not constrained to be nonnegative are called free.

In summary, an LP instance (or, more simply, an LP) is specified by

1. an n dimensional vector c¢ related to the coefficients of the objective function,
which is expressed as
Z Cj Xj =CX,

Jjé€ln]

© Springer International Publishing AG 2018 33
G. Lancia and P. Serafini, Compact Extended Linear Programming Models,

EURO Advanced Tutorials on Operational Research,

DOI 10.1007/978-3-319-63976-5_3



34 3 Linear Programming

2. an mo x n matrix A° and an mg vector b° referring to the equality constraints
expressed as
0 0 .
Zaijxj:bi, i € [mo]

J€ln]

3. an m; x n matrix A" and an m, vector b!, referring to the inequality constraints
expressed as
Dalixzbl,  ielm],

Jé€ln]

(an inequality > can be turned into an inequality < by multiplying both sides by
1)
4. aset J C [n] denoting the variables x; that have to be nonnegative, i.e.,

szO ]EJ

The set of vectors x that satisfy the stated constraints is called the feasible set. An
instance for which the feasible set is empty is called infeasible. Given a feasible point
X, inequalities that are satisfied as equalities by x are called active in x, whereas the
inequalities that are satisfied as strict inequalities are called nonactive in x.

Each feasible vector x for which the minimum (or the maximum, according to
the case) of the objective function is achieved is said to be optimal (or it is called
optimum). The value c x of the objective function for an optimal vector x is called
the optimal value. Conventionally, the optimal value is +o0c if, for a minimization
(maximization) problem the instance is infeasible (unbounded) and it is —oo if, for
a minimization (maximization) problem the instance is unbounded (infeasible).

The two most common LP models are the so-called canonical model in which all
variables are nonnegative and there are no linear equations

min c¢x max cx
Alx > p! Alx <b
x>0 x > 0.

and the standard model in which the only inequalities are the nonnegativity con-
straints, i.e.,

min c¢x max cx
A0y =0 Alx =p°
x>0 x> 0.

Every inequality can be converted into an equation by adding an extra variable, called
slack, constrained to be nonnegative, e.g.
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E aijxjfbi —— E a,-.,-xj—l-sizb,-, s; > 0.
J J

In the reverse direction an equation can be converted into two inequalities as
E a,»jszbi — E a,»jxjfb,», E aijszb,-.
J J J

A free variable x; can be converted into two nonnegative variables as

et - + -
Xp=x; —x;, x; =20, x;=>0.

~

While adding slack variables is quite common, transforming an equation into two
inequalities and similarly transforming a free variable into two constrained variables
are operations that can be done in principle, but in practice they are computationally
expensive.

In general, an LP instance may have a mix of linear inequalities and linear equa-
tions and a mix of nonnegative and free variables. It can be converted into either the
standard form or the canonical form by the above operations.

3.2 Polyhedral Characterization

According to Definition 2.1 the feasible set of an LP problem is a polyhedron.
Furthermore, all LP instances we consider in this book are either bounded or have a
nonnegativity constraint for the variables. So the polyhedron does not contain straight
lines and we are granted from Theorems 2.3 and 2.4 the existence of at least one
vertex and the possibility of representing internally the polyhedron as the convex
hull of its vertices and the conic hull of its extreme rays (if any).

We note that, even if the original polyhedron has no vertices and necessarily some
variables are free, we may, as previously described, transform these variables into
pairs of constrained variables, and therefore model the problem in a higher dimension
where the polyhedron does not contain straight lines and has at least one vertex.

The very fact that the objective function is linear implies that there is a vertex on
which the minimum or the maximum is achieved, unless the problem is unbounded.
The problem is unbounded only if there are extreme rays. We remark that there may
be non-vertex points where the optimum is achieved, but in any case one optimal
vertex must exists if an optimum exists. As a consequence we may look only for
vertices and extreme rays in order to solve an LP instance.

Although a polyhedron can be represented either as the intersection of a finite set
of half-spaces or, equivalently, as the convex/conic hull of a finite set of points, when
we talk about LP we always consider polyhedra that have an external representation.
This is due to the fact that the input of an LP instance is, as previously stated, a
set of inequalities/equations and ‘solving’ an LP instance amounts to either finding
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one optimal vertex or to prove that the instance is unbounded or infeasible.All LP
algorithmic issues are based on this setting.

Given a set of m > n linear inequalities in IR” that define a polyhedron P, a
vertex X of P is a vector such that at least n linearly independent inequalities are
active at X and the remaining inequalities are satisfied (maybe active or nonactive).
This characterization allows for identifying a vertex with the corresponding set of
active constraints and this is exploited by the simplex method (see below) in order
to find an optimal vertex. Unfortunately this characterization is not a bijection, i.e.,
the same vertex may correspond to several subsets of n active linear inequalities, if
some of the remaining m — n inequalities are active as well. This is an undesirable
feature of an LP instance and is referred to as degeneracy. In problems in which the
inequalities have a very special structure, like in the vast majority of LP models of
combinatorial problems, degeneracy is pervasive. Consider the following inequalities
and equations

Dxy=1, jel, D xj=1, iel, x;=0, i jeln]

ieln] J€ln]

that define a polyhedron in which there are n! vertices and each vertex is a permu-
tation matrix. It can be shown that for each vertex there are 2"~ n"~2 subsets of n>
inequalities that give raise to the same vertex!

3.3 Duality

One of the most important theoretical and practical properties of linear programming
is duality. Formally, given a problem in canonical form like

min cx
Ax>b 3.1

x>0
we define its dual problem as

max yb
yA<c 3.2)
y=0.
From now on we refer to (3.1) and to (3.2) as the default formulation of primal-dual

pairs, unless otherwise stated. For a maximization problem in canonical form we
have
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max cx min yb
Ax <b dual yA>c
x>0 y > 0.

Hence the dual of a problem in canonical form is again an LP problem in canonical
form and, clearly, the dual of the dual is the original problem, which we may call at
this point the primal problem. For a problem in standard form we have

min cx max yb
Ax=0b ‘E yA <ec.
x>0

The concept of Duality can be introduced by an economic interpretation of an
LP instance. This is an extremely important aspect of LP, which we cannot review
here due to space limitations. The reader is referred to the classical texts (Dantzig
1963; Dorfman et al. 1958). We note that there is a one-to-one association between
a variable in one problem and a constraint in the other problem.

For a generic LP instance like the following

min " x%4 !
AOO.XO +A01 xl — bO
AIOXO +A” Xl > bl

x' >0,
the dual problem is

max y°p°+ y'b!
Y0 A® 4 110 _ 0
yOAOI +y1 Al] <C1
y' >0,

A first relationship between the primal and the dual problem is the following
result, called weak duality, that can be easily proved:

Theorem 3.1. (Weak duality) For any primal feasible solution x and any dual fea-
sible solution y, cx > yb holds.

Therefore any feasible solution in one problem provides an upper or lower bound
to the optimal value of the other problem and, in particular, if for some variables x
and y we have ¢ X = yb then & and § must be optimal in the respective problems.
Weak duality implies also that if one problem is unbounded, the other one must be
infeasible.

The fundamental fact is that equality can always be achieved if the problems
are feasible. This property is calledstrong duality. The strong duality property is a
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consequence of the separation theorem and can be proved via the Farkas’ lemma,
Theorem 2.9 that we repeat here for easy reference.

Theorem 3.2. (Farkas’ lemma) Given an m x n-matrix Q and an m-vector q, the
feasible set of
Qu=<gqg, u=0 (3.3)

is nonempty if and only if the feasible set of
vQ >0, vg <0, v>0 (3.4)

is empty.

Theorem 3.3. (Strong duality) If both the primal and the dual problem are feasible,
then there exist a primal optimal solution x and a dual optimal solution y and
cX = Vb, ie., the primal and dual optimal values are equal.

Proof: In order to prove strong duality we apply the Farkas’ lemma by defining

0 AT ¢’ X .
O=|—-A O , g=1|-b |, v = yTl, u:()
¢ —b7 0 t Y

Then the feasible set in (3.4) is empty by weak duality for any # > 0. Assume there
is v = (x, y, 0) such that v Q > 0, v > 0. Consider a primal feasible x and a dual
feasible y (they exist by hypothesis). Then X + o x and y + « y are feasible for any
a > 0. By weak duality ¢ X + « ¢ X > $b + « yb. Since the inequality is true for any
a we cannot have v g < 0. Therefore the feasible set in (3.4) is empty also for = 0.
By Farkas’ lemma the feasible set in (3.3) is not empty, i.e., there exists a primal
feasible X and a dual feasible y such that c x < yb. Hence by weak duality ¢ x = yb.

|

We may also speak of strong duality even if one problem is unbounded, although
with infinite optimal values. However, there are instances such that the primal and
the dual problem are both infeasible and in this case strong duality fails even in this
extended meaning.

Strong duality implies that we may check the optimality of a primal solution %, if
we have available a dual solution ¥ and the following three conditions are verified:

Theorem 3.4. (Strong duality optimality check) A primal-dual pair of solutions
(X, 9) is optimal in the respective problems, if and only if

1. X is primal feasible;
2. v is dual feasible;
3. ¢cx=yb.
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The strong duality optimality check is important not only because it enables to
verify optimality of a pair (X, ) without solving the problem, but also because the
verification can be extended to instances with an exponential number of either vari-
ables or constraints, provided that a direct polynomial feasibility check is available,
i.e., without checking each constraint. We will come back to this important point in
Sect.5.1.

A further important characterization that is equivalent to strong duality is the
following Complementarity Slackness. To ease the notation we refer to a problem in
canonical form with all inequalities turned into equations by the addition of slack
variables, i.e.,

min cx max yb
Ax—s=b YA+t=c
x>0,s>0 y>0,t>0.

Theorem 3.5. (Complementarity slackness) The points (%, §) and (3, t) are optimal
in the primal and in the dual problem respectively if and only if

1. (X, $) is feasible in the primal problem;
2. (3, ©) is feasible in the dual problem;
3. )2.,‘ ?j =0, ] (S [n], )A),‘§i =0,i € [m]

The complementarity stems from the third requirement: at optimality either a
variable is zero or the associated constraint (in the other problem) is active (or maybe
both). The complementarity condition can be expressed in product form like in the
above theorem statement. The product form is exploited in the primal-dual interior
point algorithms (see below).

3.4 Algorithms

The first algorithm designed to solve an LP instance is the Simplex Method proposed
by Dantzig (1948, 1951, 1963). The basic idea of the algorithm is to search an optimal
vertex of the polyhedron by moving from a vertex to an adjacent better vertex until
no improvement is possible. A vertex is the extreme point of a set of edges (this set
may be empty) and also can be the extreme point of a set extreme rays (this set may
be also empty, but at least one of the two sets must be nonempty). The whole set
of edges and extreme rays needs to be explored to see whether there are any better
vertices or there is an extreme ray along which the improvement is unbounded. In
the latter case the algorithm stops reporting unboundedness, whereas in the former
case it continues iteratively from a vertex to an adjacent vertex if this is better. In
case no improvement is possible the algorithm stops returning the current vertex as
the optimal solution. It can be proved that this local optimality condition is indeed a
global optimality condition.
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However, this is only the idea of the algorithm. For an actual implementation
a vertex needs to be represented in some way. As previously remarked a vertex is
determined by at least n constraints consisting of active inequalities and/or equations.
This subset of constraints, that we may call basis, determines a vertex and can be used
to represent the vertex. Hence a practical implementation of the algorithm, instead
of working with vertices and adjacent vertices, works with bases and adjacent bases,
where two bases are adjacent if they differ by exactly one element. So the algorithm,
instead of describing a path linking adjacent vertices, describes a path linking adjacent
bases.

Unfortunately the correspondence between bases and vertices is not one-to-one.
As already remarked, a vertex can be represented by many different bases and the
algorithm can iterate among bases defining the same vertex. Beside an obvious slow-
ing down there is the concrete possibility of looping. To prevent looping special
anti-cycling rules have been devised that further slow down the algorithm. Although
looping is theoretically possible, empirical evidence has shown a low probability for
this event. In case of no degeneracy there is a one-to-one correspondence between
vertices and bases, that also preserves the adjacency property.

We note that in the original formulation of the simplex method, that makes use of
the standard form, the basis is the set of variables that are not constrained to be zero.
So it is the complement set with respect to the definition given above. Clearly there
is no conceptual difference.

At the time the simplex method was invented, the theory of computational com-
plexity, with its sharp distinction between polynomial and nonpolynomial algorithms,
was far from being developed, and nobody cared about an algorithm which worked
fairly well in practice but whose worst case performance was unknown and very
likely not polynomial. In 1970 an instance was shown that exhibited an exponential
time to be solved (Klee and Minty 1970; Minty and Klee 1972).

The empirical evidence that the simplex method performs well was substantiated
by theoretical results on the average case complexity (Borgwardt 1982; Smale 1983;
Shamir 1987). However, the question remained whether LP itself was a polynomial
problem. Conjecturing NP-completeness for LP was to be excluded, because strong
duality would have implied that NP is equal to co-NP, an unlikely result.

The search for a polynomial algorithm for LP was eventually successful although
in a totally new direction. The algorithm proposed by Khacijan (1979), based on pre-
vious studies of the mathematical soviet school, involved ellipsoids shrinking around
the optimal points. The combinatorial trap of exploring vertices was abandoned and
the algorithm worked from ‘inside’ the polyhedron. We cannot review here the detail
of the so-called Ellipsoid Algorithm. We point out only the two main features that
make the ellipsoid algorithm a very important theoretical tool.

One feature consists in checking at each step of the algorithm whether a point is
feasible for a polyhedron and in case it is not feasible the algorithm must provide
a plane separating the point from the polyhedron. We say that a plane of equation
a x = b separates two sets A and B if

ax<b<ay, forallx e A,y e B
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The second feature consists in the fact that the number of constraints enters the com-
putational complexity of the algorithm only in this separation procedure. Therefore,
if the separation procedure can be carried out in polynomial time by an ad-hoc algo-
rithm, i.e., without scanning all constraints one by one, then solving an LP instance
can be done in polynomial time even if there is an exponential number of constraints!
This property of the ellipsoid algorithm was immediately recognized (Grotschel et al.
1981, 2012) and exploited.

However, the algorithm was impractical due to its numerical instability and has
never been considered as a concrete tool for numerically solving LP instances. A
few years later a new algorithm was proposed by Karmarkar (1984), that was at the
same time of polynomial-time complexity and practically useful. The appearance
of this algorithm triggered a host of new results, and also revitalized old neglected
approaches, that eventually led to the theory of Interior Point algorithms and in
particular to the theory of Primal-Dual algorithms (Wright 1997).

In a nutshell, the satisfaction of the complementarity slackness conditions are
stated as a set of nonlinear equations that are solved via the Newton’s algorithm plus
the nonnegativity constraints. The new key step is that the conditions x; t; = 0 and
vi s; = O are substituted by x; t; = ¢ and y; s5; = &. Starting with a large ¢ (this allows
for satisfaction of the nonnegativity conditions and convergence of the Newton’s
algorithm) at each iteration the nonlinear system of equations is solved and the ¢
is slowly reduced from iteration to iteration until a solution within an acceptable
tolerance is found.



Chapter 4
Integer Linear Programming

4.1 Basic Definitions

One of the most effective ways for tackling hard combinatorial optimization problems
is the use of Integer Linear Programming (ILP). An integer linear program is just a
linear program in which the variables are required to take only integer values rather
than values in IR". Its general form is

min cx
Ax>b 4.1
x>0, xeZ"

What might seem like a small change in the definition of a linear program makes
actually a huge difference in practice: while linear programming is a polynomially
solvable problem, ILP is NP-hard, as many NP-hard problems can be reduced to
it (Karp 1972). These reductions show how the inherent difficulty of ILP does not
lie in the size of A, b, ¢ or the type of numbers involved, but rather in forcing the
integrality constraints on the variables, i.e., dealing with a set of feasible solutions
which is nonconvex and discrete. An integer linear program (which we will also call
an ILP for short) can be hard to solve even if it has only one constraint, or only two
variables per constraint and only binary entries in A, b and c.

Thanks to its flexibility, i.e., the fact that ILPs can be used to represent a large class
of problems arising in different application areas, integer programming is recognized
as a fundamental, powerful technique for solving optimization problems. Indeed, the
entries of the vast majority of ILPs solved in practice are not just sets of any input
numbers, but numbers derived, via modeling, from instances of various combinato-
rial optimization problems. The theory of integer programming has seen impressive
developments, leading to amazing results, over the last few decades. Integer pro-
gramming is nowadays successfully employed in several applications such as airline
crew scheduling, telecommunications, network design, timetabling, vehicle routing,
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and many others. For a thorough treatment of the theoretical foundations of integer
programming we refer the reader to the classical texts Nemhauser and Wolsey (1988)
and Schrijver (1998) or to the more recent Conforti et al. (2014).

In order to solve a combinatorial optimization problem P via ILP, a modeling phase
must map its possible solutions (both feasible and infeasible) into n-dimensional
vectors and then define which linear constraints need to be satisfied by a vector
for it to represent a feasible solution of P. Due to the combinatorial nature of the
problem, the vectors turn out to be integral (i.e., with all components in Z) or, most
of the times, indeed binary (i.e., with all components in {0, 1}). For instance, if the
solutions of P are subsets of a set of n elements, each solution can be mapped into its
characteristic vector in {0, 1}". When all the variables of an ILP model are restricted
to take only binary values, the resulting model is called a Binary Linear Program (or
01-ILP). This is a common situation for problems in which the values 1 and O are
given a boolean interpretation and the variables represent yes/no decisions. There
can be several alternative formulations for the same problem, with some of them
much better than others, in the sense that the resulting ILP can be solved in a much
shorter time. We will discuss some issues on the modeling of combinatorial problems
as ILPs in Sect.4.2.

Given the general ILP (4.1), let us define the polyhedron

P={x:Ax>b, x >0}.
The set of feasible solutions of (4.1) is X := P N Z". We define the polyhedron
Px := conv(X).

Notice that X C Px € P (for a 01-ILP, X in fact coincides with the vertices of Py
while in general it may happen that integral points are in the interior of Py).

The linear programming relaxation of the ILP is the LP obtained by relaxing (i.e.,
by removing) the integrality constraints on the variables. Hence its feasible set is the
polyhedron P and its optimal value is clearly a lower bound to the optimal value of
ILP, that is,

min{cx : x € P} <min{cx : x € X}.

Moreover, by LP properties we have
minf{cx : x € X} = min{cx : x € Px}.

The polyhedron P can be viewed as an approximation of Px and, ideally, we
would like P = Py, since in that case we could solve the integer problem by just
solving its LP relaxation. Such fortunate cases will be discussed in Sect.4.3.

Knowing that ILP is NP-hard, we can expect the vertices of P to be not all
integral. In the presence of fractional vertices we cannot solve an ILP by simply
solving a linear program. Nevertheless we can exploit the powerful algorithms for
linear programming through a process which reduces the ILP to a set of suitable
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LPs that, eventually, produce the optimal integral solution. In order to achieve this
result, there are two main alternative approaches, i.e., branch-and-bound, described
in Sect. 4.4 and the cutting-plane approach, discussed in Sect.4.5.

In addition to purely integer linear programs, integer programming includes the
study of Mixed-Integer Linear Programs (MILPs) A MILP is a linear program in
which some, but not all, of the variables are restricted to take only integral values.
The general MILP can be described by

min cx+dy
Ax >b
Tx+Qy=>r “4.2)
x>0, xeZ"
y>0,yeR?

where we have separated (if present) the part of the constraints involving only the
integer variables. Branch-and-bound and cutting-plane approaches can be applied to
MILPs as well. In Sect.4.6. we discuss state-of-the-art general-purpose solvers for
ILPs/MILPs.

4.2 Modeling

Consider the following problem: Given an undirected graph G = (V, E) assign to
each vertex i aunique label c(i) € [n], wheren = |V|,sothatz(ij)eE(c(i) 4+ c(j))is
minimized. This is a polynomial problem, which can be solved by a greedy algorithm.
Since the value of a solution is equal to ZieV d(i) c(i), where d(i) is the degree
of vertex i, the optimal solution should assign the label n to the smallest-degree
vertex, the label n — 1 to the second smallest-degree vertex, and so on, breaking ties
arbitrarily.

For the sake of example, let us assume that we failed to see the above greedy
algorithm and decided to solve the problem by using ILP. We will describe two
alternative models, one behaving very poorly, and the other one being effective.

W.Lo.g., let us assume V = [n]. In the first model, we have an integer variable x;,
for each i € [n], representing the label assigned to node i. The objective is

min Z (x; +x;). 4.3)

(ij)eE

The constraints must be such that the x; are all distinct values and the set of these
values is precisely {1, ..., n}. By the pigeon-hole principle, it is enough to enforce
that each one of them is in [n], and that each two of them are different. The first
condition is easily stated:
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The second condition, however, needs a trick. In integer/linear programming we don’t
have # constraints, but only inequalities. To enforce a condition such as x; # x; we
introduce (;) binary variables z;;, whose meaning is “is x; > x;7” and create the
following constraints

xi—x;=21—n(l—z;) 1<i<j<n @5)

xj—xizl—nzij 1§l<]§

Notice that, since z;; is binary, only one of them can be strict, while the other is

satisfied by any choice of the x’s. The first ILP model for the problem, let it be I P;,
is then defined by (4.3) subject to (4.4), (4.5), and z € {0, 1}"®~D/2,

The second ILP model is based on binary variables x;; whose meaning is “the
vertex i has been assigned label k. The objective function becomes

min > "k (i + xj0) (4.6)

(ij)eE k=1

while the constraints state that each vertex has a label and each label goes to a vertex:

ink =1 i €[n]
k=1

., 4.7
ink =1 k € [n]
i=1

The second ILP model, let it be I P, is then defined by (4.6) subject to (4.7), and
x € {0, 1}".

In order to compare the above formulations, let us look at a simple example, i.e.,
the clique K,, of n nodes. If we try to solve the problem on K3y by using I/ P; and a
state-of-the-art software for integer programming on a powerful PC (as of 2017), we
should expect to wait at least a few hours to obtain the solution. By using I P,, we
get the optimal solution in a fraction of a second. If we increase n, the difference in
performance becomes quickly dramatic. While I P, still returns its solution in less
than a second for n < 100, the running time of I P;, when n approaches 100, can be
in the order of years let alone centuries.

The reason for this phenomenon lies in the strength of the formulations, which
measures, loosely speaking, how well the LP-relaxation approximates the convex-
hull of integer solutions. One of the most powerful algorithms for the solution of
ILPs is branch-and-bound (see Sect.4.4) whose effectiveness relies heavily on the
fact that there is a small gap between the optimal integer solution and the value of the
LP-relaxation, which is a lower bound to the optimum. The solving process can be
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interpreted as a sequence of steps aimed at closing this gap. When the gap is large,
this process can require an enormous amount of time.

Let us consider / P;. The solution x; = 1 foralli and z;; = 1/n for all pairsi < j
is feasible for the LP-relaxation. This is clearly an optimal solution (each vertex gets
the smallest possible label) of value D", d(i) = 2 |E|. An obvious weakness of this
bound strikes the eye: the bound does not depend on the actual G, but only on the
size of E. For K, the LP-relaxation value is n (n — 1), while the integer optimum is
(n—1)n (n+ 1)/2, which is & (n) larger than the bound.

Definition 4.1 Letz;p(I, f)andzyp(I, ) be the optimal integer and LP-relaxation
values of an ILP formulation f of a minimization problem on an instance 1. We define
the integrality gap (IG) of f as

IGf :maxM
' rozpp(, f)

(For a maximization problem, the IG is defined as the maximum of the ratios

ZLP(I$ f)/ZIP(I’ f))

The integrality gap is always > 1. For some formulations of a problem the integral-
ity gap is a constant (the smaller, the better) and in these cases integer linear program-
ming is usually effective for the solution of the problem. Among such formulations
we recall the subtour-elimination (SE) for the Travelling Salesman Problem (TSP).
It is known that this formulation for the metric TSP has an IGsg < 3/2 (Wolsey
1980) and it has been conjectured by Goemans (1995) that it is indeed IGgg < 4/3.
As a matter of fact, integer linear programming has proved to be the most effective
solution for the TSP problem. Pataki (2003) illustrates the weaknesses and strengths
of alternative formulations for the TSP. Some software packages such as Concorde
(Concorde 2016) which use the best TSP formulations have been able to optimally
solve instances with up to 80,000 cities (corresponding to more than half a billion
variables).

On the other hand, there are formulations of a problem such that their integrality
gap is larger than any constant. In these case, the IG is usually expressed as a function
of the instance size. For an example of formulation of a problem in which IG — oo,
consider the Maximum Stable Set. Here the objective is the maximization of x (V)
over the stable set polytope of a graph G = (V, E), i.e., the convex hull of the set

{xef0,1}V :x;4+x; <1 (ij) € E}.

If we relax the integrality constraint the solution x; = 1/2 for each i is feasible, so
that the integrality gap is at least n/2 (if the instance / is a complete graph there
can be only one vertex in any stable set). The addition of clique inequalities, i.e.,
x(K) < 1forall cliques K in G, is still not enough to guarantee a constant integrality
gap (Carr and Lancia 2014), and indeed the ILP approach is not the best procedure
for the solution of the maximum stable set problem.
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Coming back to the problem described at the beginning of this section, the inte-
grality gap of / P, on K, is (n 4+ 1)/2, so I Gp, cannot be bounded by a constant.
On the other hand, for the formulation I P; it is always z; p (I, [ P,) = z;p(I, [ P)
hence the integrality gap is minimum possible, i.e., it is 1. The reason for this ideal
situation lies in the constraint matrix of / P, that defines a polytope with all integral
vertices, which implies that the problem can be solved, very fast, as a linear program.

In our example, the weakness of the model 7 P; lies primarily in the choice of
the variables, which forced us to use constraints such as (4.5). These constraints
are an example of the so-called ‘big-M’ inequalities, which are used to model the
disjunction (logical OR) of regular constraints. In the big-M method, in order to
impose that the variables satisfy at least one of two inequalities ¢’ x > b’,a” x > b”,
one introduces a 0-1 variable z and creates two inequalities @’ x > b — M z and
a’"x>b"— M (1 —z). If M is a suitably large (virtually infinite) number, one of
them can never be violated, while the other is binding. Big-M models are typically
very weak, since they yield LP-relaxations whose solutions have many fractional
components of very small value. For some problems like scheduling problems that
require the modeling of many disjunctive constraints (like “job i is scheduled before
job j OR job j is scheduled before job i”’) integer linear programming is not the best
approach for their solution.

Trick (2005) discusses the issue of recognizing weaknesses in a formulation and
possibly amend them. Most of the potential improvements (such as removing domi-
nated inequalities, or replacing one or more inequalities with stronger ones) are today
already taken care of by state-of-the-art general-purpose ILP solvers (see Sect.4.6).
The addition of valid inequalities (such as those discussed in Sect.4.5 on cutting
planes) to a formulation can help in making it effective, but the conclusion of Trick
(2005) is that most of the times, rather than trying to strengthen a weak ILP for-
mulation for a problem, it is better to think of a completely new one. Sometimes
the most effective formulations employ an exponential number of either variables
or inequalities. This is the case for all the formulations described in the examples
reported in this book.

4.3 Formulations with Integral LP-Relaxation

We say that a polytope/polyhedron is integral if it has no fractional vertices. If the
polyhedron P of the LP-relaxation of an ILP is integral, then P = Py and the ILP can
be solved by simply finding the optimal solution to its relaxation. We now describe
some sufficient conditions for this to happen.

Definition 4.2 An m x n matrix A is Totally Unimodular (TUM) if the determinant
of each square submatrix of A is either 0, 1 or —1.

By definition a TUM matrix must have all entries in {0, 1, —1}. If A is TUM and
B is a nonsingular square submatrix of A, then all entries of B~! are integer. This
property implies the following fundamental theorem.
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Theorem 4.3 Let A be TUM and b € Z"™. Then, for the ILP
min{cx:Ax >b, x>0, x GZ"}

itis P = Py.

Totally unimodular matrices can be characterized through some necessary and/or
sufficient conditions such as the following:

Theorem 4.4 Anm x n 0, £1 matrix A is TUM if and only if for all I < [m] there
exists a partition of I into K and L such that for all j € [n] it is

‘ E aij— E Cl,‘j

ieK ieL

<1

Theorem 4.5 (Camion 1963): A 0, =1 matrix A is TUM if and only if A does not
contain a square submatrix with an even number of nonzero entries per row and per
column such that the sum of the entries is congruent to 2 (mod 4).

Theorem 4.6 A 0, =1 matrix A is TUM if both of the following conditions are true:

— there are at most two nonzero entries in each column,

— the rows can be partitioned into two subsets such that two nonzeros in a column
are in the same set of rows if they have different signs and in different sets of rows
if they have the same sign.

Among the TUM matrices, we recall the node-arc incidence matrix of directed
graphs, the node-edge incidence matrix of bipartite graphs and the node-node adja-
cency matrix of complete bipartite graphs. These matrices are the constraint matrices
of many graph problems when modeled as integer linear programs, such as the short-
est path, the maximum flow, the minimum-cost flow, and the weighted matching on
bipartite graphs (a.k.a., the assignment problem). As a consequence, these problems
can be solved in polynomial time as linear programs. Furthermore, a 0,1 matrix has
the consecutive 1’s property (C1P) if all the 1 s of each column appear in consecutive
rows. Every C1P matrix is TUM. C1P matrices appear often as constraint matrices
of ILPs in which the rows are associated to time instants, and the consecutive 1s
identify a time interval. We will see examples of such matrices in Chap. 14 about
scheduling problems.

Another class of matrices yielding naturally integer ILPs are the so-called balanced
matrices.

Definition 4.7 A 0, &1 matrix A is balanced if it does not contain any square sub-
matrix H such that
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1. H has two nonzero entries per row and per column while no proper submatrix
of H has this property;
2. the sum of the entries of H is congruent to 2 (mod 4).

A matrix H for which 1. holds is called a hole of A and a hole is called odd
if the sum of its entries is 2 (mod 4) and even if it is O (mod 4). Thus, the above
statement claims that a matrix is balanced if it has no odd-holes. This notion is due to
Truemper (1982) (see also Conforti et al. 2006). It extends the definition of balanced
0,1 matrices introduced by Berge (1972) for which a binary matrix A is balanced if it
does not contain any square submatrix of odd order having row-sum and column-sum
equal to 2. As a consequence of Theorem 4.5, the class of balanced matrices includes
the totally unimodular matrices.

Balanced matrices can be used for proving that special cases of set packing,
covering and partitioning problems turn out to have integral relaxations.

Given an n x m 0,1 matrix A, we define its

— set packing polytope: P(A) = {x e R" : Ax <1,0 <x <1};
— set covering polytope: Q(A) ={x e R" : Ax > 1,0 <x <1};
— set partitioning polytope: R(A) = {x e R" : Ax =1,0 <x <1}.

where 1 denotes a column vector of m components all equal to 1. A balanced matrix
can be characterized in terms of its set packing/covering/partitioning polytopes as
follows (Berge 1972; Fulkerson et al. 1974).

Theorem 4.8 Let M be a 0,1 matrix. Then the following statements are equivalent:

— M is balanced.

— For each submatrix A of M, the set packing polytope P(A) is integral.

— For each submatrix A of M, the set covering polytope Q(A) is integral.

— For each submatrix A of M, the set partitioning polytope R(A) is integral.

The above characterization of balanced matrices can be extended from 0, 1 matri-
ces to 0, =1 matrices. Given a 0, =1 matrix A, denote by n(A) the column vector
whose entry i is the number of negative entries in row i of A. Then, for each of the set
packing/covering/partitioning polytopes, define its generalized version by replacing
the RHS from 1 to 1 — n(A). We have the following theorem (Conforti et al. 2006):

Theorem 4.9 Let M be a 0, =1 matrix. Then M is balanced if and only if for
each submatrix A of M, the generalized version of the set packing, covering and
partitioning polytopes are integral.

A 0,1 matrix A is said to be perfect if the set packing polytope P (A) is integral,
and it is said to be ideal if the set covering polytope Q(A) is integral. Every bal-
anced 0,1 matrix is both perfect and ideal. The integrality of P(A) is related to the
notion of perfect graph. A graph G is perfect if, for every induced subgraph H of G,
the chromatic number of H equals the size of its largest clique. The theory of per-
fect graphs in relation to integer programming was developed mainly by Fulkerson
(1972), Lovész (1972) and Chvatal (1975).
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The clique-node matrix of a graph G is a 0, 1 matrix whose columns are indexed
by the nodes of G and whose rows are the incidence vectors of the maximal cliques of
G. The following theorem characterizes all perfect matrices (Lovasz 1972; Fulkerson
1972; Chvatal 1975):

Theorem 4.10 Let A be a 0,1 matrix. The set packing polytope P(A) is integral
if and only if the undominated rows of A form the clique-node matrix of a perfect
graph.

By using the generalized versions of the set packing and covering polytopes, the
notion of perfect and ideal matrices can be extended to 0, =1 matrices.

Besides their application in solving special classes of NP-hard graph optimization
problems, balanced and ideal matrices have been used to provide polynomial-time
algorithms to boolean problems such as SAT and logical inference. Boolean satisfi-
ability problems can be easily modeled as binary ILPs. A set of clauses is balanced
(respectively, ideal) if the constraint matrix of its ILP formulation is balanced (ideal).
Thanks to the integrality property of balanced matrices, there are now polynomial-
time algorithms (in fact, linear programs) to solve a class of boolean problems for
which no combinatorial algorithm was previously known (Conforti and Cornuéjols
1995).

4.4 The Branch-and-Bound Approach

Branch-and-bound (B&B) is a divide et impera procedure for solving ILPs via
implicit enumeration of all the solutions. We recall that in order to solve a complex
problem by divide et impera, one reduces it into smaller and simpler subproblems of
the same type, possibly repeating this process until the subproblems are so simple
that they can be solved directly. The name branch-and-bound is due to the two main
ingredients of the procedure, i.e., the creation of subproblems of a problem (branch-
ing) and the use of a mathematical criterion in order to discard at once a subproblem
from further consideration (bounding).

During the B&B procedure the original problem gets replaced by several subprob-
lems which are solved in turn. The unsolved problems at any stage of the procedure
are called the open problems. We introduce the following notation to distinguish
the various subproblems. Assume the original problem is (4.1). In the procedure
we create a number of polyhedra Pi, i =0,1,..., each contained in P. We denote
by IP(P') the ILP problem of minimizing ¢ x over P/ N X, and by LP(P?) its LP-
relaxation. Let C be a counter of all the subproblems created during the procedure.
Initially C := 0 and P := P.

The B&B approach tries to solve IP(P?) by first optimizing its LP-relaxation in
the hope that it yields an integral solution. If this is not the case, the feasible set
is partitioned into smaller subsets and the problem is solved on each one of these
subsets. In more detail some smaller polyhedra P’ are defined such that U; (P’ N
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X) = P°N X, and then the corresponding subproblems IP(P?) are solved in turn.
The best solution among the optimal solutions of the subproblems is the optimal
solution of the original problem.

Taken to the extreme, this partitioning might degenerate in acomplete enumeration
of all solutions, thus making the computation practically impossible. In order to
avoid this possibility, the procedure employs both lower and upper bounds. More
specifically, the procedure starts by setting X to be any feasible solution of IP(P°)
and u := c x (if no feasible solution is available, set # := oo and leave x undefined).
The solution x is called the incumbent and its objective value u yields an upper bound
to the optimum. The incumbent is the best solution found so far and gets updated
during the B&B process (with # monotonically decreasing) until eventually becomes
the optimal solution of IP(P?).

The incumbent and a lower bound to IP(P?) are used to avoid solving a subproblem
IP(P’) when its lower bound is not better than the incumbent, because this implies
that the best solution of IP(P?) cannot be better than the solution we have already
found. This is the key feature of the B&B procedure. It is clear from this observation
that in order to speed-up the computation we should strive to have (for minimization
problems) an incumbent value as small as possible and a lower bound as large as
possible.

In summary, the B&B procedure works as follows. First, it initializes the list of
open problems, by inserting only the original problem IP(P?). Then it iterates a
loop which terminates when the list of problems becomes empty. The generic loop
iteration consists of the following steps:

(i) select an open problem IP(P?) from the list

(i) solve its relaxation LP(P?) obtaining the optimal LP solution x* of value z; p =
cx* (where z; p := 400 if the problem is infeasible)

(iii) if zzp > u, discard IP(P’) and go back to step (i)

(iv) if x* isintegral and z;p < cx update x :=x* andu :=cx

(v) if x* is not integral, define a set {a/x = B/}, for j =1, ..., k, of constraints
(called branching constraints), which can either be inequalities or equations,
such that x* does not satisfy any of them and each integer point in P’ satisfies
at least one, but not all, of them. Create k new (sub)problems IP(P"), where
t=C+jforj=1,...,k,defined by

P =P Nix:alx =)
add them to the list of open problems. Set C := C + k and return to step (i).
Some comments are in order about the various steps of this procedure.

Solving the Subproblems

The subproblems are never solved from scratch. Since each subproblem is generated
by adding one or a few constraints to a solved problem, it is much faster to start from
the optimal solution of this problem. This solution is clearly infeasible for the new
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subproblem (step (v) above). The simplex method can usually in a few steps find a
new feasible and optimal solution. This speed-up has a price however. We need to
store all information to recover the inverse of the basis matrix when we retrieve the
subproblem in order to solve it. This information can be huge.

The Search Tree

If we consider each problem examined as a node of a graph, then the whole process
determines a particular tree 7', called the search tree of the B&B. Each node of T
is associated to a subproblem, and hence to a subset of solutions of IP(P?) (the
root node is associated to the whole X). The cardinality of this subset depends on
the level of the node in the tree. Nodes close to the root implicitly represent sets of
huge cardinality, while the cardinality decreases whenever branching constraints are
applied. Branching (step (v)) creates new sons of a given node, while pruning (step
(iii)) determines that a node of the search tree is a leaf. It is fundamental for B&B
to be effective that pruning occurs in the first levels of the tree, so that a very large
number of solutions can be discarded from further consideration at once. The best
way to achieve this is by the use of tight formulations (see Sect.4.2) which provide
strong lower bounds, but also by adding primal heuristics to the search in order
to decrease the upper bound. A primal heuristic is a procedure that can be called
every now and then with the goal of finding a good feasible solution and improve the
incumbent. Many primal heuristics are based on rounding a fractional solution and
then performing some type of local search.

Problem Selection

The selection of the next open problem to examine (step (i)) can be done in several
ways, among which the most prominent are LIFO, FIFO and Best-First. LIFO is a
rule by which the next problem examined is the last one added to the list, while FIFO
selects the problem which has been on the list for the longest time. With LIFO the
list of problems behaves like a stack, and the search tree is explored depth-first. This
is the best option to use when memory is a concern, since it does not require to store
too many open problems. With FIFO the list of problems acts like a queue, and the
search tree is explored breadth-first. This option may require a lot of memory, and
may become impractical if the bound is too weak, with pruning not occurring too
often in the early stages of the search. The best-first priority rule selects the problem
whose lower bound (as inherited from the father) is the smallest, the rationale being
that there is a better chance to find a low-value solution in its feasible set.

Branching

Branching (step (v)) is a crucial part of a B&B algorithm. If the branching constraints
are mutually exclusive, then the solutions over all # of IP(P") yield a partitioning of the
solutions of IP(P?), while otherwise they are just a covering. Generally speaking,
partitioning is a better option, because it creates smaller subproblems, but for the
correctness of the method it is sufficient to guarantee that each solution of IP(P?) can
be found in one of the subproblems. Although one can be flexible about the branching
constraints to employ for a problem, there is a ‘default’ rule which can always be
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used. Namely, let & be a fractional component of x*. Then, create two subproblems,
one with P’ = P' N {x : x;, < |x;/]} and the other with P' = P' N {x : x;, > [x}]}.
In this case, we say to have branched on the variable x;,.

The number of branching constraints determines the degree of the search tree. In
general it is advisable to have nodes of low-degree, at least at the first levels of the
tree. The default branching constraints yield a binary tree and, if the ILP variables
are binary, each branch is in fact fixing a variable x;, either to 0 or to 1. Most times
there are many fractional components in x* and the choice of the variable to branch
on might affect the overall running time of the procedure dramatically.

One standard choice is the most fractional rule: choose the component / such that
xj; is as far as possible from an integer value. A good branching rule would be one
which creates subproblems whose lower bounds are much higher than their father’s.
This way there is a better chance that they will be pruned when they are extracted
from the list. Several branching rules have been proposed in the literature for binary
ILPs, which heuristically pursue this objective (Achterberg et al. 2005; J.T. Linderoth
and Savelsbergh 1999). Among the most popular we recall Strong Branching, Full
Strong Branching and Pseudo-cost Branching.

The general idea is to try to assign a score to each variable candidate for branching.
The score should reflect the profit of branching on that variable, namely, the impact on
the objective function of fixing that particular variable. Assume that when a variable
X, is set to 0 the LP-relaxation bound from ! becomes /°, and when x;, set to 1 the
LP bound becomes /!. The improvement in the two cases is A; :=[; —I[,i =0, 1.
The score must average these two values. This is typically done by using a convex
combination (J.T. Linderoth and Savelsbergh 1999)

score(xy) = (1 — ) A® + uw AL

The exact value of u is usually an empirically determined constant in [0, 1], which
is sometimes adjusted dynamically through the course of the algorithm.

Strong (respectively, full strong) branching computes the score of a subset of
(respectively, all) the candidate variables and then branches on the variable with the
highest score. Full strong branching can be computationally expensive (there are
many LPs to be solved) but the payoff of pruning a node as early as possible can be
enormous. This consideration suggests the use of hybrid techniques. For example,
start with full strong branching for nodes near the root of the search tree, and then
switch to strong branching deeper down. Alternatively, use strong branching all
along, but with a set of candidates which is large near the root and smaller later on.
Pseudo-cost branching is similar to full strong branching, but in place of the values
A°, A deriving from fixing a variable to 0 and 1, it uses some heuristic estimates
A% and A' which do not need solving any LP (see Gauthier and Ribiere 1977 for
further details).

When the number of variables is large (like, for example, in some exponential-
size models, see Chap.5) binary branching on one variable at a time can result in
a very unbalanced search tree. In particular, while fixing x; = 1 can have a major
impact on the objective function and on the new solution, the branch in which x;, = 0
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usually does not change too much the current solution, since the role played by x;
can be easily compensated by one of the many other variables. Ryan and Foster
(1981) introduced a more flexible branching rule. At each node a (possibly) large set
S of variables is selected, and then two branching constraints are created, namely
D hesXn =0and >, ¢ x, > 1. The rule, originally proposed for a specific schedul-
ing problem, proved very effective and has since then been used for many problems
with a large number of variables.

Orbital Branching for Symmetric ILPs

Many ILP models possess a high degree of symmetry, in the sense that their feasible
sets can be partitioned into large classes of isomorphic solutions (i.e., equivalent
solutions with an identical ‘structure’). For example, consider the graph k-coloring
problem, which requires to color the nodes of a graph with k colors so as each edge
has endpoints of different colors. The ILP model is based on binary variables x;.
defined for each node and color (x;c = 1 if node i is colored c¢). The nodes with
the same color form an independent set, and the problem amounts to partitioning
the nodes into k independent sets. We can notice that for any coloring there are k!
different, but isomorphic, colorings obtained by changing the name of the colors
while keeping the same partitioning. This property should be taken into account in a
B&B, in order to avoid useless exploration of equivalent solutions.

The problem of coping with symmetry in ILP modeling has been originally inves-
tigated by Margot (2002, 2003). Building up on his results, the successful Orbital
Branching technique has then been developed (Ostrowski et al. 2007, 2011). The
fundamental idea of orbital branching is to recognize and treat as one those branching
variables that are equivalent with respect to the symmetry remaining in the problem
at any node of the search tree.

For a permutation 7 of the variable indices define x™ = (x,(1), ..., Xz(@)). For a
linear functional @ x define (a x), = a x™. Letus call P (;) the polyhedron obtained
by replacing each constraint a; x > b; of P with (a; x), > b;. If (cx), = cx and
P(m) = P, then the solutions x and x™ are in all respects equivalent solutions of the
problem. Each permutation such as the & above is called an automorphism of the
problem. The set of automorphisms forms a group, denoted as Aut(P). The orbit of
avariable x; isthe set 0; = {j : 3w € Aut(P), j = 7 (i)}. Loosely speaking, all the
variables xi, for k € 0}, are alternative copies of each other.

In a node of the search tree, call unassigned all variables whose value has not
yet been fixed to a constant by the branching constraints leading to the node. By
considering orbits of unassigned variables when making branching decisions, we
can extend B&B to be aware of symmetries and reduce the number of isomorphic
duplicates.

With the orbital branching technique, branching from a node of the search tree
starts by computing the automorphism group of P’ and its orbits, via a reduction to
an auxiliary graph problem. It then selects an orbit & of unassigned variables (this
choice can be based on several alternative greedy rules, such as picking the largest
orbit). After choosing a representative i; € & two branches are created, by fixing on
one side x;, = 1 and on the other >, _, x; = 0.



56 4 Integer Linear Programming

The use of orbital branching has proved very effective in speeding-up the solution
of ILP models with medium to high degree of symmetry. Variants of orbital branching
and other symmetry-breaking techniques are discussed in Ostrowski et al. (2015,
2008).

Dominance Rules

Let us call node i the node associated to the subproblem IP(P). Whenever step (iii)
is reached, we say that node i has been fathomed or killed. In addition to killing a
node because of its lower bound, we can introduce on or more dominance rules. We
say that a solution x is dominated by a solution y if cx > c¢y. A dominance rule
is a predicate that, given a node i, returns true if each solution of i is dominated
by a solution in some other node j (in which case node i can be fathomed), and
false otherwise. Dominance rules for several combinatorial optimization problems
are discussed in Ibaraki (1977) and Jouglet and Carlier (2011).

For instance, a dominance rule for the knapsack problem might be as follows: if
there are items i, j such that their weights are w; > w; while their profits satisfy
Di < pj, then every solution in which item i is put in the knapsack while j is left
out is dominated by a solution which takes j and leaves out i. Therefore, a node in
which x; is fixed to 1 and x; is fixed to 0 can be fathomed.

This fathoming criterion is in fact saying that a necessary condition for being a
global optimum is not satisfied by any of the solutions of a node. Notice that if we
find a neighborhood N such that no solution of node i can a be a local optimum for
N, then it cannot be a global optimum either. Sometimes this condition can be cast in
the form of one or more inequalities (called Local Search Inequalities), which can be
added to the model in order to incorporate the condition in the problem constraints
(Lancia et al. 2015). For instance, we could introduce in the model for the knapsack
problem the local search inequality

X,‘S)Cj i,j:(wiij)/\(pi<pj)

which makes infeasible any node of the search tree at which the variables already
fixed include x; =1, x; = 0.

Heuristic Versions of B&B

Although B&B is meant for the exact solution of an ILP problem, it can be easily
turned into a heuristic procedure which can find ‘good’ feasible solutions within a
‘reasonable’ time. For instance, one could assign a time limit to the search, or fix a
threshold 7 and terminate as soon as the difference between the upper bound u« and
the smallest lower bound of an open problem is less than 7. A less greedy version of
this heuristic approach is variable-fixing. In variable-fixing one defines and solves
a sequence of ILP models, each over a subset of the variables of the previous one.
We start by solving the original problem, but not to optimality (sometimes not even
to feasibility, i.e., by solving only the LP-relaxation of the root node). Let x be the
solution thus obtained. We fix some variables which have integer value (or very close
to integer) in x to such integers and then solve another ILP problem, with only the
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remaining variables, in the same way. The process is repeated until all variables have
been fixed.

Variable-fixing has the obvious problem of choosing which variables to fix, and
an early wrong decision can heavily compromise the effectiveness of the procedure.
Local Branching (LB) is a more sophisticated heuristic in which the ‘hard’ variable
fixing scheme is replaced by ‘soft’ variable fixing constraints, which fix a relevant
number of variables without losing the possibility of finding good feasible solutions
(Fischetti and Lodi 2003). In particular, suppose the problem is a binary ILP and a
current feasible solution x is given. Define B, = {j : X; = h} for h = 0, 1. Then the

constraint
Z(l _xi)+zxi >n—k

iEBQ ieB

requires to fix at least n — k of the variables to the same value they have in x, without
specifying which ones. A constraint of this type is called a local branching constraint.
Notice that any integer feasible solution for the constraint is obtained by flipping at
most k values of x, an idea which resembles some neighborhoods in local search
(like the k-OPT neighborhood for TSP) from which the term ‘local’ in LB. The
neighborhood-size parameter k, should be chosen as the largest value producing a
subproblem which is likely to be much easier to solve than the one associated with
its father. The idea is that there should not be too many solutions within distance k
from x, but still enough to likely find a better one. Computational experiments in
Fischetti and Lodi (2003) show that the choice of k is seldom a problem by itself,
and values of k in range [10, 20] proved effective in most cases.

The term ‘branching’ in LB is due to the fact that local branching constraint are
used as a branching criterion within an enumerative scheme (similar to a branch-
and-bound) for the heuristic solution of the problem. Local branching relies on an
IP-solver treated as a black-box. The overall procedure is like a two-level B&B, in
which the outer B&B makes calls to the IP solver, which is itself a B&B (the ‘inner’
one). However, to keep small the overall running time, the internal solver is not run to
completion, but only for a limited time (hence, it is used as a heuristic for ILP models
rather than an exact method). At each node of the outer B&B, in order to improve
over the current best feasible reference solution x, two branches are considered, i.e.,

Z(l—xj)+ Zx,zn—k

jZ.f,’:O j:)_Cj=1

and

D U-xp+ D xj<n—k-1

jZ)?,':O j:)_Cj=l

Two new ILP problems are then created by adding these constraints, and then
solved (heuristically) in the same way. The process is iterated until no subproblem
yields an improvement over the best solution so far.
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4.5 The Cutting-Plane Approach

The cutting-plane approach for solving ILPs is based on this observation: let X be the
optimal solution of the LP-relaxation of an ILP. Then, if X is fractional there must
exist some inequality ax > B valid for Py but violated by x.

An inequality such as the above is called a cut, since its addition to the formu-
lation would cut-off part of the polytope P containing the fractional solution X.
This operation strengthens the model, yielding a new LP-relaxation P’ for which
P D P’ O Px. The cutting-plane procedure is simply a loop which, starting from
the original formulation, adds a sequence of cuts until the optimal solution of the
current LP-relaxation is integral, and, henceforth, optimum for the ILP. The loop can
be described as follows:

Seti := 0 and P© := polyhedron of the LP-relaxation the original ILP
repeat
solve LP(P ) obtaining LP-optimum %
if x is fractional
find inequality a’x > B valid for Py and such that &' < B
add a'x > B’ to P obtaining P+
i=i4+1
endif
until ¥ is integer

The idea of using a sequence of cuts to better approximate Py by increasingly
stricter polyhedra is due to Gomory and dates back to the 1950s (Gomory 1958).

The cuts used by Gomory in its original approach were derived by the specific
algorithm used for linear programming, namely the simplex algorithm. Assume the
starting ILP problem to be in standard form

min{cx : Ax = b, x > 0, x integer}

(this can be done without loss of generality, by possibly adding integer slack vari-
ables). When the simplex algorithm finds the optimal LP-relaxation solution, it also
determines a partitioning of the column indices of A into B and N such that the
submatrix Ap, indexed by the columns in B, is nonsingular. Let us call A= AEIA
and b = Aglb. Then, the original constraints can be rewritten as

Xy +Zé(gj)€j = b, foreach? e B
JjeN

From each of the above inequalities, one can derive a valid inequality by first
rounding-up the value of each coefficient in the LHS:

X¢ +Z(&U] xj > b, foreach € B
JjeN
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and then, noticing that the x variables are integer, rounding-up the RHS as well:

x¢+ Y [ag]x; > [b] foreach( e B (4.8)
JEN

The simplex algorithm returns an optimal LP solution in which all variables in
N are zero, i.e., X = (X5, Xy) = (b, 0) with b > 0. If X is fractional, then, for any
component £ such that X, = by ¢ Z the above inequality is violated by % and is
therefore a cut, called a Gomory cut.

For any r € R let us denote the fractional part of r by f(r) :=r — |r]. Then the
Gomory cuts can also be derived in their fractional form as follows

> f@)xj = f(by) foreacht e B (4.9)

JeN

The cuts just described are Gomory’s integer cuts. In fact, Gomory later also
introduced cuts valid for generic MILPs, known as Mixed-Integer Gomory (GMI)
cuts (see Gomory 1963 for details).

When the cutting-plane algorithm was proposed as a method for solving ILPs, it
was not trusted to be a competitive alternative to B&B. As Gomory himself pointed
out, the method suffered from numerical instabilities problems, and also its conver-
gence was particularly slow, with the early cuts shaving off a big chunk of the first
LP-relaxations, but later on their effect would become less and less impressive.

Thanks to many major software improvements in linear programming solvers and
to the availability of cheap powerful computers, the method was revitalized in the
early 90s mostly by a group of researchers at Carnegie-Mellon University (Balas et al.
1996b. See Cornuéjols 2012 for an historical account of the period). They showed
how Gomory cuts, as well as new types of cuts, if carefully implemented could
help greatly in the solution of generic MILP problems. Cutting planes have since
then become a standard and indispensable component of any effective procedure for
solving integer programming problems.

The cut added in the cutting-plane algorithm can be any valid inequality violated
by the current LP optimum. When the ILP is the formulation of a combinatorial
optimization problem, then specific families of valid inequalities can be derived
from the combinatorial structure of the problem. More generally, however, there
are valid cuts that can be defined for any A, b and which are often referred to as
general-purpose cuts. Finding a violated cut is called the separation problem. When
a cut has a combinatorial interpretation usually the separation problem is solved by
some ad-hoc combinatorial algorithm, which should be polynomial for the procedure
to be effective. The separation problem of general-purpose cuts can be considered
on a case-by-case basis. Sometimes it is a polynomial problem but sometimes it is
NP-hard, as illustrated by the following examples.

The general paradigm for some general-purpose cuts for integer and mixed-integer
linear programs is as follows. A family .%# of cuts is described, and possibly the
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complexity of their separation is addressed. The addition of all cuts of type .# to
P determines the (first) % -closure of P, denoted as ¢(P, .%). This is usually a
polyhedron as well, let it be Py. If we add to P; all cuts of type .% valid for it, we
obtain the second .Z-closure of P, i.e., P, = ¢(Py, .%). This process can be iterated,
and each time the new closure is a better approximation of Py than the previous one:

PDP 2P D Px.

In some cases Py = 131 but in general this is not true. There might exist, however, a
smallest 7 such that P, = Py, and in that case we say that r is the .% -rank of P.

Chvatal-Gomory cuts

Definition 4.11 A Chvatal-Gomory inequality (also called a CG-cut) is a valid
inequality for Px of the form:
[uAlx = [ub]

where u € R!} is called the CG multiplier vector. ]

Note that Gomory cuts are a special case of CG cuts, obtained by taking u equal to
the £-th row of Ay;'. The first CG-closure of P is

c(P,CG) = {x >0:Ax>b,[ullx > [ub] forallu e ]Rﬁ}

Chvatal (1973) showed that, for rational (A, b), c(P, CG) isin fact a polyhedron, i.e.,
a finite number of CG cuts are sufficient to define it. This result was extended to the
case of irrational coefficients in Dunkel and Schulz (2013). For the matching polytope,
in which Py is the convex hull of the characteristic vectors of matchings in a graph,
Py = P;. Whilein general Py is strictly contained in Py, Chvital (1973) showed that
for every rational polytope there is a natural number ¢ such that P, = Py. Schrijver
(1980) extended this result to unbounded polyhedra and nonrational polytopes. Even
though the CG-rank of P is finite for every rational polyhedron P, it can be arbitrary
large, even in dimension two. Consider for instance the following example:
0,1)
° ° ° °
(k, 3)
° ° ° ° °

(0,0)

The polytope P, = conv{(0, 0), (0, 1), (k, %)} has the property that P,_; C Py.
The point (kK — 1, %) cannot violate any CG-cut for P;. Since Px = conv{(0, 0),
(0, 1)}, the CG-rank of Py is at least k. In particular, the rank of P, is exponential in
the encoding length of Py, which is O (log(k)). In contrast with the above example,
Eisenbrand and Schulz (2003) proved that the CG-rank of the relaxation of a binary
LP with n variables (i.e., of a polytope contained in [0, 1]") is bounded by n*(1 4
logn).



4.5 The Cutting-Plane Approach 61

Fischetti and Lodi (2007) studied the problem of optimizing ¢ x over the first CG-
closure for a pure integer problem. In order to do so, they modeled the separation of
CG-cuts (which is NP-hard) as a MILP, solved by a general-purpose MILP-solver.
The method was adapted, by the use of projection techniques, to the first CG-closure
of a mixed integer problem in Bonami et al. (2008). Some techniques to strengthen
CG-cuts are described in Letchford and Lodi (2002).

0-1/2 and mod-k Cuts

{0, %}-cuts are the special case of CG-cuts occurring when all the CG multipliers
u; are either O or % They have been introduced in Caprara and Fischetti (1996),
where it was shown that the associated separation problem is equivalent to finding
a minimum-weight member of a binary clutter, and hence it is NP-complete in the
general case. However, Caprara and Fischetti (1996) also obtained polynomial-time
separation algorithms for a large subclass of {0, %}-cuts which often contains wide
families of strong inequalities for P;. Effective algorithm for the NP-complete case
of the separation problem are described in Koster et al. (2009).

Mod-k (MK) cuts generalize {0, %}-cuts. They are CG-cuts in which each multi-
plier u; € {0, %, ey ’% }. MK-cuts are studied in Caprara et al. (2000), where they
are successfully applied to strengthen a standard formulation of the TSP.

Intersection and Split/Disjunctive Cuts

Split cuts are inequalities obtained from disjunctions with two terms, called split
disjunctions, studied in the early nineties by Cook et al. (1990). They are among the
most effective cutting planes currently implemented in MILP-solving software.

Given a € Z" and b € Z, the set S(a,b) ={x:b <ax < b+ 1} is called a
split set. A split set is a particular type of lattice-free convex set, i.e., a set containing
no integer points in its interior. A Split Cut (SC) for a polyhedron P C IR" is an
inequality valid for

(PN{x:ax<bphUPN{x:ax>b+1}) =P\ S(a,b).

Cook et al. (1990) proved that the SC-closure of a rational polyhedron P is a
polyhedron.

The separation of split cuts is in general an NP-hard problem (Caprara and Letch-
ford 2003), but some important violated spit cuts, arising when the simplex algorithm
is used to solve the linear programs, are easy to find. These cuts are called Intersec-
tion cuts and were introduced by Balas (1971) in relation to the corner polyhedron of
a basic LP solution (defined in Gomory 1969, Gomory and Johnson 1972). Andersen
et al. (2005) showed that intersection cuts are a special type of split cuts and they are
sufficient to define the split closure of P. They also provided a new proof that the
split closure is indeed a polyhedron. For a thorough survey on intersection and split
cuts see Conforti et al. (2011).
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Cover Cuts

Cover cuts for binary problems are better explained when the system of inequali-
ties is put in the form Ax < b. A set C C [n] is called a cover if there exists an
inequality a; x < b;, with a; > 0, for which ZjeC ajj > b;. Since it is impossible
for all variables in C to attain value 1, we have the following Knapsack-Cover (KC)

inequality:
Zx j<lcl—1.
jeC

KC inequalities were introduced independently by Balas (1975) and Wolsey
(1975) for the solution of the knapsack problem. The strongest KCs are obtained
when C is minimal, i.e., when no proper subset of C is also a cover. A simple way
to strengthen a KC inequality is as follows: assume a* = max cc a;; and define
the extension of C as E(C) := CU{j € [n]\ C : a;; > a*}. Then, the following
Extended Cover (EC) inequality is valid for Py:

ij§|C|—1.

JEE(C)

Although EC dominate KC inequalities, they are not guaranteed to define facets
of Px. Balas (1975) and Wolsey (1975) showed that, given any minimal cover C,
there exists at least one facet-defining Lifted Cover (LC) inequality of the form

ij+ Z ajx; <|Cl—1

jeC Jeln\C

where «; > 0 for all j € [n]\ C. Moreover, each such LC dominates the EC. The
process of computing the coefficients «; is called lifting and requires the solution of
auxiliary knapsack problems. Lifting can be done sequentially, i.e., the coefficients
are computed one at a time, or simultaneously, i.e., the coefficients are computed all
at the same time.

The separation of cover inequalities, in their various forms, is NP-hard (Crowder
et al. 1983; Gabrel and Minoux 2002), but there are effective heuristic procedures
for finding a violated cover cut.

Benders Cuts

Benders cuts were originally proposed in Benders (1962) within a two-stage strategy
(called Benders Decomposition) for the solution of the generic MILP (4.2), that we
rewrite here
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min cx+dy
Ax >b
Tx+Qy=>r (4.10)
x>0, xe2"
y>0,yeR?

We may always split the minimization into two phases, the first one with respect to
y for a fixed value of x and the second one with respect to x, i.e.,

min{v(x):szb, x >0, er”}
with

v(x):=cx+mindy
Qy>r—Tx
y=0

that becomes, by exploiting duality,

vix) =cx+maxnw (r — T x)

T0Q <d 4.11)
>0
If we denote by !, ..., 27 the vertices of the dual polyhedron and by 5!, ..., p¢

its extreme rays, we may express (4.11) as

) cx+max {#' (r —Tx):ielpl} ifp/ (r—Tx)=<0,jelq]
v(x) =
400 otherwise

and therefore (4.10) may be written as

min cx +
Ax>b
n>a(r—"Tx) i €[pl (4.12)
P or—Tx)<0, jelql
x>0, xeZ"

This formulation has all integer variables but one continuous variable 1 and expo-
nentially many constraints. This is a type of large-scale problem that we will describe
in Sect.5.3. The constraints involving the vertices 7" and the extreme rays p* are
added one at a time to the model like cuts, that are called Benders cuts. Once we have
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solved the so-called master problem (4.12) (with a subset of the listed constraints)
with optimal solution (x*, n*), we find a cut by solving the dual slave problem in
4.11)

max{n(r—Tx*):nQ <d, w ZO}.

If the slave problem is unbounded we determine the extreme ray p* along which
unboundedness occurs and add the cut

p*(r—Tx) <0.

Otherwise, let 7* be an optimal vertex solution of the dual slave problem with
value z*. If z* > 1™ we add the following cut (otherwise we stop because the problem
is solved)

n>a*(r —Tx).

Benders cuts were studied, among others, by Magnanti and Wong (1981). The
problem of optimizing the selection of the most effective Benders cuts was investi-
gated in Fischetti et al. (2010b).

Lift-and-Project Cuts

Consider a pure binary ILP (similar results can be obtained for mixed binary ILPs).
Lift-and-Project cuts are disjunctive cuts based on two fundamental ideas.

The convex hull of P N {0, 1}" can be generated by imposing the 0-1 condi-
tions successively, on one or more variables at a time. For instance, define Ky =
P,Ki=conv({x e Kp:x1 =0}U{x e Kg:x; =1}),Kr, =conv({x € K; : x, =
OJUuf{xeK;:x,=1}), and, in general, K; =conv({x € K;_;:x; =0} U
{x e Ki_1:x; =1}). Then K,, = Px.

There is a compact representation of the convex hull of the union of two polyhedra
(see also Sect.2.5). In particular, assume A" x > b" to be the system (including the
bounds on the variables) defining K;_; N {x : x; = h} for h = 0, 1. Then K; is the
projection on the x-space of the the polyhedron in IR*'2 defined by

o+ ap=1
0 1 _
xX— y - 'y =0
A% y0 e >0
oo o = (4.13)
Ay —b o1 =0
[04)) _0
011_0

Conceptually, one could obtain the optimal solution over Py by iterating the fol-
lowing steps fori = 1, ..., n: (i) solve the LP over K;_; (ii) lift the problem as in
(4.13); (iii) project the system (4.13) onto the x-space thus obtaining K;. Unfortu-
nately, the number of inequalities added to K;_; to obtain K is in general exponential.
Therefore, instead of adding all the inequalities valid for K;, one would add only
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one (or a few) inequalities violated by the LP optimum of K;_;. Each such inequal-
ity is called a lift-and-project (L&P) cut. The separation of the deepest cut is done
by solving a suitable LP (called CGLP, Cut-Generation LP). See our comments at
p. 26.

L&Pcuts were introduced by Balas et al. (1993). Their practical use within a
cutting-plane method is as follows. Given a current P and a fractional solution X of
the LP over P, we look for a component X; ¢ {0, 1}. Then we compute, by solving
CGLP, a valid inequality for conv({x € P : x; =0} U {x € P : x; = 1}) violated
by X. The cuts can be further strengthened by exploiting the integrality condition
on other variables besides the one used to build the disjunction. The strengthening
procedure is described in Balas and Jeroslow (1980). Computational experiments
attesting the effectiveness of L&P cuts are reported in Balas et al. (1996a).

4.6 General-Purpose MILP Solvers

Thanks to the theoretical developments described in the previous sections, we can
today rely on very powerful general-purpose programs for the solution of MILP of
various origin. Among the most popular commercial software of the recent years
we recall CPLEX (CPLEX 2017), Gurobi (Gurobi 2017), Xpress (Xpress 2017),
Lingo (LINGO 2017). As far as non-commercial codes are concerned, we recall
SCIP (Achterberg 2009), GLPK (GLPK 2017) and the CoinOR suite of programs
(CoinOR 2017).

All these solvers incorporate ideas from both branch-and-bound and the cutting
plane approaches. In particular, they run some enriched versions of B&B, which
includes the generation of cuts at some or all the nodes of the search tree. One such
strategy, called cut-and-branch, starts with the addition of cuts of various nature to
strengthen the formulation of the problem at the root node of the search tree, and
then proceeds with a standard branch-and-bound on the tighter formulation. Another,
more powerful, strategy is branch-and-cut (B&C), originally proposed by Padberg
and Rinaldi (1991) for the solution of the TSP. In B&C, the formulation of the
subproblem at each node of the search tree is strengthened by the addition of cuts,
which are valid for the subtree rooted at the node (local cuts) but can sometimes be
valid for the original problem as well (global cuts). Hopefully the addition of these
cuts can yield an integer solution, or improve the bound so much as to allow pruning
the node. Otherwise, a standard branch is performed.

All state-of-the-art codes start with a preprocessing phase aimed, e.g., at (i) detect-
ing and removing redundant/dominated inequalities; (ii) tightening a formulation
through the introduction of implied stronger constraints; (iii) finding logical impli-
cations between the variables, tightening their lower and upper bounds and possibly
fixing some of them to a constant. The use of constraint programming techniques
(Apt 2003) is instrumental to this phase.

Integer programming solvers rely on linear programming solvers as the building
block of the overall procedure. For most of them the LP solver is a fine implementation
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of the simplex algorithm, but some include a version of the interior point method.
Moreover, some of them may recognize and exploit a combinatorial structure in the
constraint matrix, like the incidence matrix of a graph. In such case the LP is solved
with ad-hoc network algorithms.

All aspects of B&B are important and they have been fine-tuned in the default
implementation of MILP solvers (e.g., branching strategy, choice of next open prob-
lem, number of runs of cutting planes, etc.). The defaults can be overwritten by setting
some user-parameters. The number of combinations of parameters is huge, and some-
times their combined effect can give unpredictable results, (i.e., enabling/disabling
some feature can result in a huge time saving on an instance but a big slow down on
another). This type of ‘butterfly-effect’ of some apparently innocuous parameters on
the overall performance of the solver is described in Lodi (2013). Notice that some
of the decisions crucial for the effectiveness of the solving process of a MILP code
could be cast as MILP problems themselves. Therefore, the MILP black-box could
exploit calls to the same black-box in order to improve its overall performance. This
line of research has been explored in Fischetti et al. (2010a).

One important aspect for the effectiveness of a MILP solver is the availability of
strong primal heuristics, to improve the incumbent as early as possible in the search
process. One such heuristic is the feasibility pump (Bertacco et al. 2007) which has
been incorporated in most versions of today’s commercial MILP codes.

Computational comparison of various MILP solvers as well as testing new ideas
and parameter settings is usually done on a standard test-bed of instances, called
MIPLIB (Koch et al. 2011).



Chapter 5
Large-Scale Linear Programming

When a combinatorial optimization problem is modeled as an ILP problem the
combinatorial structure of the problem is captured by the constraints and by the fact
that the variables are binary. When the problem is solved, almost always the inte-
grality constraint on the variables is relaxed in order to obtain a lower bound to the
optimal solution. The computation is obviously slower if the relaxation produces a
large integrality gap. In this case we should pursue the goal of embedding most of
the combinatorial structure of the problem into the constraints rather than into the
binary variables.

It may happen that this goal can be fulfilled, at the expense, however, of increasing
either the number of variables or the number of constraints. This increase is in general
exponential and as such it makes it impossible to store the problem matrix into the
computer memory, let alone to solve by any method the relaxation of such a large
ILP instance.

Due to the nature of the problem the underlying constraint matrix is defined in
terms of properties of its entries and is never explicitly generated nor stored. Hence
we have to understand how it is possible to solve an LP problem in which only a
fraction of the matrix is directly available while the rest of the matrix, of exponential
size, is only virtually known.

It has to be said that this possibility is not always granted and sometimes a certain
ingenuity is required to obtain a model. But, when this is possible, a great gain can
be obtained in terms of computing time. Furthermore, a new insight into the problem
may become available.

© Springer International Publishing AG 2018 67
G. Lancia and P. Serafini, Compact Extended Linear Programming Models,

EURO Advanced Tutorials on Operational Research,

DOI 10.1007/978-3-319-63976-5_5



68 5 Large-Scale Linear Programming

5.1 LP with Exponentially Many Columns

Letus assume that we are dealing with the following primal-dual pair of LP problems:

min cx max yb
Ax>b yA=sc (3.1
x>0 y=>0

We assume that the number of rows of the matrix A, and hence of the dual variables,
is a computationally tractable ‘small’ number m, whereas the number of columns of
the matrix A, and hence of the primal variables, is exponentially large with respect to
the number of rows. Let (x, y) be any primal-dual pair of (5.1). To check optimality or
non optimality of the pair we may apply the strong duality optimality check expressed
in Theorem 3.4, that we repeat here for convenience: a primal-dual pair of solutions
(x, y) is optimal in the respective problems, if and only if

1. x is primal feasible;
2. y is dual feasible;
3.cx=yb.

Therefore we submit a pair (x, y) to the three tests and if all of them have been
successfully passed the pair (x, y) is declared optimal. We stress that it may happen
that x is primal-optimal but y is not dual-optimal and in this case the tests have not
been passed and we are not able to ascertain the optimality of x.

Now let A be a submatrix of A with the same number of rows as A, but with only
a fraction of the columns of A, i.e., with a number of columns that is computationally
tractable. Let ¢ and X be the subvectors of ¢ and x respectively, corresponding to the
columns of A. The following problem has a size that makes it is possible to solve it
explicitly.

min ¢ X max yb
Ai>b yA<¢ (5.2)
x>0 y>0

Note that the vectors y in (5.1) and (5.2) have the same size. Problem (5.2) is usually
called Master Problem or Restricted Master Problem.

Let (x*, y*) be an optimal primal-dual pair in (5.2). We extend x* to a primal
solution in (5.1) by simply assigning the value O to the entries in (5.1) that are not
present in (5.2). Let us denote by x* this extended solution. We wonder whether
(x*, *) is an optimal primal-dual pair in (5.1) and therefore submit (x*, $*) to the
above three tests.

Since £* and y* are optimal in (5.2), we must have ¢ X* = y* b. Since we have
padded x* with zeros, we also have ¢ x* = ¢ x* and so the test number 3 has been
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passed. Also the test number 1 has been easily passed since A x* = A 2*. Now we
have to check the test number 2 and this is the real issue.

In the dual problem in (5.1) the number of constraints is exponential. Therefore
the feasibility of $* cannot be detected by directly inspecting each inequality. We
have to find out a way to check the feasibility by exploiting the properties underlying
the structure of the matrix A. Let us assume for the moment that there exists an
algorithm that, for each y, is able to tell whether yA < c is satisfied or not, and, if
not, to yield a violated inequality by y.

Hence, if $* is feasible in (5.1) the computation is over because we have an optimal
solution. If, on the contrary, y* is not feasible, the violated inequality yields, or as
we generally say, generates a column of A that must be explicitly taken into account
in order to solve the problem. This column of A is added to A (and correspondingly
an entry of ¢ is added to ¢) and (5.2) is solved again. The iteration goes on until a y*
feasible in (5.1) is found.

The method is called column generation for obvious reasons. The process of
finding out a violated inequality is called pricing, because the dual variables have
quite often the economic interpretation of prices and evaluating if it is worth starting
(i.e., generating) an activity (i.e., a column) by comparing its cost (i.e., ¢;) to the
intrinsic value of the production process at the computed dual prices (i.e., yAf ) is
exactly the feasibility check of test number 2.

We remark three questions: as already observed we might have already found
a primal optimum £* but we have no proof of optimality until we find also a dual
optimum y*. This might seem a waste of time but it is unavoidable if we want to be
certified of the optimality of x*.

Secondly, one might wonder if the iteration goes into a loop, in the sense that an
infeasible y* generates an inequality already generated. This is clearly impossible:
for all generated inequalities and therefore present in A we must have v* A<eé
because y* is dual feasible for the master problem. Hence a violated inequality is
necessarily a ‘new’ inequality.

Thirdly, we don’t have to solve again from scratch the master problem after the
addition of the new violated inequality. The simplex method (if we solve by using
the simplex method) can ‘update’ the current optimal basis by taking care of the new
data with a minimum amount of computation. We do not dwell with these issues
here, that are certainly very important for computational purposes. We also note that
traditionally the column generation method is presented as a variant of the simplex
method, but it may also be introduced as we have done by assuming no a priori
knowledge of the solution method.

We might also think that eventually we have to generate as many columns as the
original matrix A and so the method requires in any case an exponential number
of computations. However, even if the method in general is not guaranteed to be
polynomial, in practice we don’t have to generate so many inequalities. Recall that
a vertex of the primal polyhedron in (5.1) must have at most m non-null entries and
therefore the number of columns necessary to compute the primal optimum x* is at
most m. Even it does not happen that these ‘optimal’ columns are generated one after
the other at the outset, nevertheless the number of ‘useless’ generated columns is of
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the same order of the useful ones and consequently the procedure converges toward
the optimum in an acceptable number of steps.

A question that may seem irrelevant concerns the presence of equality constraints
in the primal problem. An equality constraint is reflected in a free dual variable. So,
what is the problem? The question is that practically any LP solver carries out some
pre-processing of the constraints in an unknown way to the user. This pre-processing
has the effect to change the sign of the dual variables in an unknown way. Therefore
when we receive in output a list of optimal dual variables we do not know their signs.
We do know their signs from the theory if they correspond to inequality constraints
and so whatever sign we find in the output we know the true sign and can use the
variable in the pricing process. But for free variables we do not know their sign. The
way out from this problem is to understand whether the constraints are such that an
inequality constraint can replace with no disruption an equality constraint due to the
problem structure.

In this section we are dealing with LP problems. If the original problem has binary
variables, then the illustrated techniques apply to the relaxation of the ILP problem.
Yet, it is the ILP problem that we have to solve and there are other aspects that need
to be discussed.

5.2 Column Generation and Branch-and-Bound

It is standard practice to solve an ILP problem by branch-and-bound, that requires
adding the simple constraints x; = 0 or x; = 1 (in case of binary variables) to the
problem. This is never a complication for a ‘normal’ ILP problem. On the contrary
it reduces the size of the problem and the computation becomes faster as the number
of fixed variables increases.

However, if the variables are not explicitly present, as it happens with column
generation, constraining variables to be either O or 1 is not straightforward. Let us
first consider the constraint x; = 1 for a particular index k. If the constraint x; < 1is
already implied by the matrix A (as it frequently happens), we may think of adding
the explicit constraint x; > 1 so that the primal problem in (5.1) becomes

min c¢x
Ax>b
xp > 1

x>0
This entails the addition of a variable wy, in the dual problem that now becomes
yA <¢;  j#k yA'4wi=<a, y=0,w=0

For the optimum dual $, necessarily $ AX 41, < ¢; holds since that constraint is
present. Since wy, > 0, we have
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sk a qk
VA" < YA 4w <

and therefore the kth column cannot be generated again.
Let us now consider the constraint x; = 0. If we add the constraint x; < 0 (since
xr > 01is already present), then (5.1) becomes

min cx
Ax >b
—x; >0

x>0

and the dual constraints are
ijfcj Jj #k, yAk—wkfck, y >0, we > 0.

In this case it may happen that § A¥ > ¢; and the method would loop by generating
the k-column over and over. In general, therefore, we always have to understand how
the branching constraints are compatible with the pricing algorithm.

Another serious issue relative to branching concerns the fact that branching on
single variables forcing them to either O or 1 usually results in a very unbalanced
search tree. Indeed, due to the high number of variables (and this is the normal case in
column generation) forcing a particular variable to 0 has a very little effect. Typically
there are many other variables that can ‘fix’ the loss of that particular variable and
can produce an almost identical solution. On the contrary fixing a variable to 1 has
a strong effect. In many combinatorial models like set covering, or set packing, this
choice freezes part of the combinatorial structure and we are left with a smaller
problem. As a result a few choices of variables to 1 will lead to an integral solution.
Proving optimality of a found solution will result in a very long search fixing variables
to 0.

Finding more effective branching strategies in general has been object of consid-
erable research. One of the techniques more adequate for ILP with column generation
is the Ryan—Foster rule (Ryan and Foster 1981), that has been recalled in Sect.4.4.

5.3 LP with Exponentially Many Rows

Now we assume that in the following primal-dual pair of LP problems:

min cx max yb
Ax>b yA<c (5.3)
x>0 y=0
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the number of rows of the matrix A, and hence of the dual variables, are exponentially
many with respect to the number of primal variables.

This is a typical situation in problems to be solved by branch-and-cut. We start
from a ILP whose integral solutions correspond to the solutions we are looking for,
but the integrality relaxation is too poor and we have to strengthen the lower bound
provided by the relaxed LP by adding cutting inequalities, i.e., inequalities that are
valid for any integral solution and hopefully cut off the fractional solutions output
by the LP relaxation (see Chap.4). It is quite common that the added inequalities
depend on some combinatorial structure and therefore it is impossible to list all of
them, let alone embedding them into an LP model. Therefore they are generated one
by one, when they are needed, that is, when a fractional solution is found and we
have to find out a valid inequality that cuts off this fractional solution. Detecting a
violated inequality calls for a separation procedure.

The situation is exactly the same as for the dual problem in column generation.
Pricing a column and adding a cutting inequality are the same mathematical problem.
However, since the number of primal variables does not change we do not have to
find ad hoc branching rules and this is a distinctive advantage of row generation with
respect to column generation.

5.4 LP with Exponentially Many Columns and Rows

Although quite rare, there are LP models in the literature that require both an expo-
nential number of variables and of constraints. For a practical computation, only a
subset of rows and a subset of columns are explicitly generated. At each computation
stage a partial primal-dual solution (X, ) is available and we have to check optimal-
ity via Theorem 3.4. This time both tests 1 and 2 have to be worked out, and, unless
optimality is ascertained, we have to either add a column or a row or both according
to the case.

Whereas the current optimal value exhibits a monotonic behavior toward the final
optimum value as we add only columns (non increasing for minimum problems) or
only rows (non decreasing for minimum problems), if we add both rows and columns
the current optimal value goes up and down. Let us assume that we carry out the
column and row generation in the following systematic way: we add columns until
we find a dual globally feasible solution (as usual in column generation) and then we
add rows until we find a primal globally feasible solution (as usual in row generation).
We stop whenever both primal and dual solutions are globally feasible, a fact that by
the strong-duality optimality check guarantees global optimality.

To be more specific, we have to solve the following primal-dual pair of problems

min cx max yb
Ax>b yA<c
x>0 y=>0
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Fig. 5.1 Column and row generation process

where A has a very large number of rows and columns. We remark that sometimes,
in practice, ‘very large’ not only means exponential but also polynomial with large
exponents. A problem with @ (n®) variables and/or constraints can be considered
very large in practice and could call for a column or row generation process in order
to be solved.

Let us assume that the column-row generation process starts from a small matrix
A' and corresponding vectors ¢! and b' and an available pair (x!, y') that is optimal
for (A', c', b"). Moreover, let us assume that x' is globally primal feasible. By
‘globally’ we mean that x!, padded with all zeros and denoted x!, is feasible for the
whole original matrix, i.e., A X' > b. We start the column generation process and end
up with input data (A2, ¢?, b?) (note that b' = b?) and a pair (x?, y?) that is optimal
for (A2, ¢?, b*) with y? globally dual feasible. Similarly, if we pad y* with zeros and
denote the new vector as y? we have y> A < c. Then, if x? is not globally feasible,
we start the row generation process and end up with input data (A3, ¢3, b*) (note that
¢? = ¢3) and a pair (x3, y?) that is optimal for (A3, ¢, b*) with x3 globally primal
feasible. Then the process continues with primal variables x* with odd indices primal
globally feasible and dual variables y* with even indices dual globally feasible.

Now let us compare two input data with odd indices, like (A*,c*, b*) and
(AKF2 k42 pk+2) We recall that x? is globally feasible and if we pad it with the
necessary zeros, X is clearly feasible for (A2, c+2, b**2). Then we have

K xk = FH2gk > k2 ke
where the inequality comes from the optimality of x**2 for (A¥+2, ¢k+2 pF+2) A
similar reasoning shows that, for even indices y* b* < yk+2pk+2,

Hence we have the situation depicted in Fig. 5.1. The current optimal values jump
up and down around the unknown final optimal value narrowing the gap between the
best upper bound (the last current ¢* x* with odd index) and the best lower bound
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(the last current y* b* with even index) of the primal problem. This is helpful if we
may stop prematurely the process when the gap reveals a satisfactory approximation.

A procedure of this type has been adopted for the Minimum Routing Cost Tree
in Fischetti et al. (2002) where there is an exponential number of columns and a
polynomial number of constraints, which however is the order of n? m (with n the
number of vertices in a graph and m the number of edges) and therefore generating
rows at run time has speeded-up the computational process (see also Sect.9.4). Also
in Lancia and Serafini (2011) a column-row generation process is proposed for a
problem arising in computational biology.
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Chapter 6
General Techniques for Compact
Formulations

In this chapter we deal with large-scale LP problems and show how it is possible,
sometimes, to find a compact extended formulation of the same problem. Strictly
speaking, a compact extended formulation replaces the exponentially many inequal-
ities with a polynomial number of inequalities in a higher dimensional space. The
number of additional variables must also be polynomial. For the existence of a com-
pact extended formulation the feasible polyhedron of the original problem has to
be the projection of a higher-dimensional polyhedron with a polynomial number of
facets.

We may also extend this notion by considering the dual problems of both the
original and the compact extended formulation. In this case the dual of the original
problem has exponentially many variables while the dual of the compact extended
formulation has only a polynomial number of variables. Hence there is no projection
involved. However, we may almost always find a mapping that relates the variables
of both problems. In this case we speak of a compact equivalent formulation.

There are two main tools to build a compact extended formulation. Either we
exploit the primal-dual relation of linear programming or we use the slack matrix of
the problem (see Sect.2.3). We shall first explain in Sects.6.1-6.6 how to obtain a
compact extended formulation by using LP techniques and then in Sect. 6.8 how to
exploit the factorization of the slack matrix.

6.1 Primal Compact Extended Formulations

For the case of LP techniques we illustrate the situation in Fig.6.1. The letters P
and D refer to the primal and dual problem respectively. In the upper rows (in larger
font size) there are the exponential formulations. In the lower rows (smaller size
and bold face) there are the compact formulations. Within the ovals there are the
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Fig. 6.1 Diagram of derivation of compact formulations

problems which have a relation of compact-extended type. A waving arrow underlines
a compact equivalent. In Fig. 6.1(a) we show the case of exponentially many rows in
the primal. Both primal problems have their dual counterparts that are connected. It
is sometimes interesting to investigate this connection which can lead to new insight
into the problem, but in general computing the duals is not strictly necessary. In
Fig.6.1(b) we illustrate the case of exponentially many variables in the primal. In
this case we have to compute the dual and find its compact extended model. To
retrieve the solution of the original problem we have to compute the dual of the
compact extended model. This dual is strongly connected to the problem we started
with and we call this problem the compact equivalent of the original one.

Pseudo-compact reformulations can be described exactly in the same way, with the
only difference that “pseudo-polynomial” should replace “polynomial” everywhere.

We first explain in detail the case of a large LP with exponentially many inequal-
ities (Fig.6.1a). We have to solve an LP instance such as

min chxj,
jeJ
ZA{Xij,‘, iel, (61)
jelJ
x; > 0, integer, jelJ,

where [ is an index set of exponential size, so that the matrix A and the vector b
are never given explicitly but they are implicitly defined by some properties of their
entries. As explained in Chap. 5, typically (6.1) is solved by relaxing the integral-
ity constraint and solving (6.1) with only a small, i.e., a computationally tractable,
number of inequalities (a convention we use in this book regards the equation num-
bering: if we reference an integer linear program as (x), we reference the integrality
relaxation of (x) as (X). See also p. ix). Once a solution x is found to this reduced
problem we have to find out whether x is feasible for the whole set of inequalities
in (H) (i.e., the relaxed problem), and, in the negative case, we have to detect a
violated inequality. Hence we have to solve a separation problem.
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In principle we have to check whether

. j=
%IP;A,. X —bi >0 6.2)
However, as already pointed out, we cannot carry out the check (6.2) by inspecting
each inequality. Rather, we have to find out an ad-hoc procedure that, by exploiting the
structure of A and b, is able to directly check feasibility. Hence let us assume that the
separation problem (6.2) can be written as the following mathematical programming
problem

Eneig/] f(u,x). (6.3)

where u is a set of variables related to the data A and b. The feasibility condition is
therefore
mi[r} fu,x)>0. 6.4)
ue

We actually know that for a feasible x we have min,cy f(u,x) = 0 since by LP
properties there exist active constraints at optimality.

In order to derive a compact extended formulation of (6.1), we are going to use
a technique that requires the following condition to hold: (6.3) has a dual problem
and strong duality holds. This is always the case if (6.3) can be written as an LP
problem. Deriving a compact formulation from the separation problem written as an
LP has been first exploited by Martin (1991). Later papers using independently the
same idea are Carr and Lancia (2002, 2004). Our exposition differs from the one
given by Martin (1991). Let the dual problem of (6.3) be

{Ivlea&/( g(w, x). (6.5)

Problem (6.1) can be reformulated as

min E ijj’

jelJ

min £ @, x) > 0 (6.6)
uel
xj > 0, integer, j € J.

Apparently, we have replaced the exponentially many inequalities jes A{ Xj >b;

with the expression min,cy f(u, x) > 0. Note that x is again free in (6.6). The
problem (6.6) aims at finding the x that makes c x as small as possible, but only for
those x for which min, ¢y f(u, x) > 0, i.e., those x that are feasible in (6.1).
However, the problem (6.6) presents two difficulties. The first one is that it is
impossible to express the constraint min, <y f(#, x) > 0 in the usual framework of
a mathematical programming problem. The second difficulty, that becomes apparent
as soon as we write explicitly the separation problem, is that in f(u, x) a nonlinear
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expression is present. In order to overcome the first difficulty we exploit the strong
duality relation between (6.3) and (6.5) for which we know that, for a feasible x,
max,,cw g(w, x) = 0, which can be simply replaced by g(w, x) > 0, because this
constraint can be satisfied only by those x such that max,,cyw g(w, x) = 0, i.e., those
x that are feasible in (6.1).

Therefore we exploit strong duality and reformulate (6.6) as

min E CjXj,

jed
gw,x) =0
xj >0, integer,w € W jeJ.

6.7)

We note that actually the objective function plays no role in this derivation. The
whole technique refers only to the constraints.

6.2 Two Examples of Compact Extended Formulations

We illustrate this technique to a polyhedron that we have met in Chap. 2, namely the
orthoplex at p. 11. We recall that the orthoplex is defined in IR" by the following 2"
facet-defining inequalities:

> kx; <1

J€ln]
Given a point X we want to check if it is feasible. The separation problem can be

modeled as
max Z Xiu; <1

ieln]
u; € {—1,1} i€ [n]

The integrality constraints can be relaxed without altering the result, and so the
separation problem is the following LP model

max E Xiu;p <1

i€[n]

u; <1 i €[n] 6.8)

—u; <1 i €[n]

This would correspond to

fa®=1=>"%u, U={ueR":-1<u <1, iclnl}

i€[n]
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The dual of (6.8) is

w —w, = X; i € [n]

wsz,waO i €[n]

so that the compact extended formulation of the orthoplex is the polyhedron

> witw <1

~ i€[n]
P={@whw)eR": = _ ,
w—w; =X i €[n]

W;'_EO,W;EO i €[n]

that is defined in IR?", has dimension 21 and has 3n + 1 constraints. It is actually
a (2n — 1)-simplex with 2 n vertices. We will come back to this point at p. 98. The
reader will not fail to recognize the usual trick of expressing a free variable x; as
the difference of two nonnegative variables w;” — w; and expressing |x;| as the sum
of the same variables. Indeed the orthoplex can be defined also by the nonlinear
inequality >, ., 1xi| < L.

In the first example the extended compact representation of the orthoplex is a poly-
hedron, that does not ‘look” much different from the original polyhedron. Although
the facet structures are different, the vertices are in a one-to-one correspondence. The
next example is more interesting since the extended compact polyhedron resembles
very little the one we started from.

We recall the basic definitions of the transversal matroid: we are given a finite set M
and a family M, ..., M, of subsets of M. A subset T C M is called a transversal
if there exists a injective map ¢ € T +— E, such that ¢ € E;. In other words each
element of T is taken from a different subset of the family. Note that an element can
be shared by different subsets, but what matters in the definition is the subset from
which is being taken. Moreover some subsets may not be chosen by the injective
map. Let .7 be the collection of all transversal sets. Note that this collection is closed
under inclusion.

The set system (M, .7) is called a transversal matroid. (M, 7") can be rephrased
as a bipartite graph (V;, V,; E) where Vi = M, V, = [pland E = {(a, k) : a € M;}.
A transversal set is a subset T C V; = M of vertices that can be matched to vertices
of V, = [p]. For example let M = {a, b, c,d, e} and M| = {a,d}, M, = {b, ¢, d},
M5 = {a, e}, My = {b, e}. This transversal matroid can be represented as the bipar-
tite graph in Fig. 6.2 where the transversal set {a, b, c, e} (necessarily maximal) is
highlighted.

The matroid polytope is the convex hull of the incidence vectors of all subsets
in .7. A remarkable result derived by the Hall’s theorem on matching is that the
matroid polytope is given an external representation as (see also Schrijver 2002)
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Fig. 6.2 A bipartite graph representing a transversal matroid

P(7)={xe[0, 0" :x(S) < IT'(S)|. Sc M}

where I'(S) is the set of vertices adjacent to at least one vertex in S. This is in
general an exponential formulation. Even if it is not an exponential formulation (for
instance it is not if the bipartite graph is complete, only one inequality is enough)
we should work out the representation to get rid of the redundant subsets. However,
by applying the LP separation technique one can provide an alternative compact
extended formulation.

Given a solution 0 < x < 1 the separation problem (6.3) can be solved by the LP
problem (Martin 1991):

min E Vi — E Xi Uj

jeV ieV;
up <v; (i, j)eE (6.9)
v <1 ien

ui20,v‘,‘20

The dual of (6.9) is the LP problem

max Z —Zj

JEV2
ZW,’j—ZjSl jJeW
iel'(j)

—Zw,-jg—i,- i eV
Jera@)

wij >20,z; >0

and therefore the extended compact formulation of P(.7) is
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Z—ZjZO

JEV2
ZW,’j—ijl jeWw
iel'(j)
—Zwijf—xi ieV
Jer@)
O0<x; <1 ieV,

wij>20,z; 20

which implies z; = 0 and therefore can be simplified to

Zwijfl jeW

i€l (j)

Z Wij 2 Xi ieV;
JET@)
0<x; <1 ieV
Wij = 0
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This inequality system has a clear flow interpretation of a transportation problem.
The vertices V; are sources of flows that have to be at least x; for each vertexi € Vj.
A flow w;; is sent along each edge and has to reach the destinations V, where the
incoming flow into a vertex has to be not larger than one. By the total unimodularity

of the matrix each flow solution is integral.

6.3 Compact Equivalent Formulations

We now consider how to build a compact equivalent formulation (Fig. 6.1b). Suppose

we have to solve a large-scale ILP problem:

D Alxj=b. el
xj > 0, integer, jeJ,

where J is an index set of exponential size. The dual of (6.10) is

(6.10)
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max > b; yi.

iel

Salyze. el 6.11)
iel

yi =0, icl

As explained in Chap. 5, the column-generation scheme for (6.10) requires solving
the following master problem

min E CjXj,

jeJ

ZAljijbi’ iel, (6.12)
jeJ

Xj = 0, J S j7

where J C J is small and explicitly given. Given optimal dual variables J;, i € 1,
of (6.12), if they are also feasible in (6.11), then x;, j € J, optimal in (6.12), padded
withx; =0,j e J\ J, is also clearly optimal in (6.10), because x and ¥ satisfy the
strong-duality optimality check. In principle the pricing problem is therefore

max (Al yi—cj) <0

but, as already remarked, we can carry out the pricing only if we have an ad-hoc
procedure. In general, let us write the pricing problem as

max f (i, ). (6.13)

where u is an array of variables related to the columns of A, and y (the optimal dual
variables) is an array of fixed parameters. The dual feasibility condition is

max f(u,y) <0. (6.14)
uel

In fact we have max,cy f(u, y) = O for a feasible y, since there exists y and indices
jsuchthate; — > ., Al 3 =0.

In order to derive a compact extended formulation we are going to use the same
technique explained Sect. 6.1. Hence the following condition must hold: (6.13) has
a dual problem and strong duality holds. Again, this is always the case if (6.13) can
be written as an LP problem. Let the dual problem of (6.13) be

min g(w, y). (6.15)
weW

Then problem (6.11) can be reformulated as
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max Zb,- Vi

iel

max f(u, y) <0 (6.16)
uel
y=>0.

Apparently, we have replaced the exponentially many inequalities >, _, A,j i <¢j

with the expression max,cy f (1, y) < 0.Note that y is again a free variable in (6.16).
The problem (6.16) aims at finding the y that makes b y as large possible, but only
for those y for which max,cy f(u, y) <0, i.e., those y that are feasible in (6.11).
However, as in the previous case of primal compact extended formulations, we
cannot deal directly with (6.16). We exploit the strong duality relation between (6.13)
and (6.15) for which we know that, for a feasible y, min,cy g(w, y) = 0, which can
be simply replaced by g(w, y) < 0, because this constraint can be satisfied only by
those y such that min,,c g(w, y) = 0, i.e., those y that are feasible in (6.11).
Therefore we exploit strong duality and reformulate (6.16) as

max Zbi Vi
iel
gw,y) =0 617

y>0, weW.

The basic idea is to free y to let it adjust itself to a feasibility value in (6.11)
by imposing the feasibility condition g(w, y) < 0. Although (6.13) and (6.15) are
just two faces of the same problem, it is only the latter that can be fruitfully used
in a compact formulation. If (6.13) is an LP problem, we expect the variables y
to appear as coefficients in its objective function. Not only (6.16) is difficult to
handle, but we would also have the problem that freeing the y variables would yield
nonlinear expressions. This difficulty disappears in (6.17) where the y appear as r.h.s.
coefficients and can be freed without destroying linearity.

We will only consider pricing problems expressed as LP problems. Hence we may
assume that (6.15) can be expressed for instance as

min E Vi Whs

heH

Dlafwhn <y el

heH (6.18)
Zaihwhfﬂk, ke K,

heH

wy, >0 heH

and that the feasibility condition is Zh < Yo wn < & for some constant §. Then, to
obtain a compact reformulation of (6.11), it is just matter of plugging the condition
Zhe u Yhwi < 8 together with the constraints in (6.18) into (6.11) in place of the
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A{ yi <cj, j € J,sothat (6.11) becomes

max > by,

constraints >, _,

iel

ZVhWh <3,

heH

Sahwi<w, el (6.19)
heH

zaihwhiﬂk, keKk,

heH

yi 2 0,w, >0, iel, heH.

We stress again that, whereas y in (6.18) is constant, y in (6.19) is variable. In
this derivation we have applied the technique of compact extended formulations to
the dual of the original large-scale problem. Since we are actually interested in the
primal variables in (6.10) we have to build the dual of the compact dual (6.19). Not
surprisingly, this last problem is very close to the original problem and it usually
corresponds to a reinterpretation of the original problem (6.10).

In this book we will show several examples of this construction. However, we
think that it is useful for the reader to see right away how the technique can be
applied in concrete cases.

6.4 A First Example of Compact Equivalent Formulation

In this section we apply the technique to the Max-Flow problem. This is a simple
example of the general procedure of building a compact equivalent problem. No new
insight is actually gained in this case, because the exponential formulation of the
problem is not combinatorially richer than the usual polynomial formulation.

The max-flow problem is usually modeled as an LP problem by using arc flow
variables, bounding the flow on each arc by the arc capacity and imposing flow
conservation on all vertices, except the source and the sink. This is a polynomial
model that, thanks to the total unimodularity of the constraint matrix, yields integral
solutions if the capacities are integral.

However, it is well known that the max-flow problem can be alternatively for-
mulated in term of paths connecting the source to the sink. This formulation may
seem weird for the max-flow problem, but it turns out to be very useful in case of
multi-commodity flow problems. For the max-flow problem the formulation is as
follows: let &2 be the set of all paths connecting the source to the sink and P € &
be a generic path. Let xp be the flow on the path P. The value xp is a real number
equal on all arcs of the path P. If two paths cross an edge they share the capacity of
the edge.
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A word of caution is necessary. If two paths cross an edge in different directions,
the two flows do not cancel each other (in case their values are equal, otherwise
just one flow is canceled), but they coexist and they both use the capacity of the
edge. If we examine the problem closely we see that actually there is no difference
by assuming cancellation of the flows or non cancellation, because whenever two
paths cross an edge in different directions we can replace the paths with two or three
paths that globally carry the same flow and do not use the edge more than once. This
possibility of replacing paths is excluded in case of multi-commodity flow problems
where the flows are different and cannot be mixed.

Here we allow any crossing of an edge and a set of flows is feasible if the sum of
the absolute values of the flows crossing a particular edge does not exceed the edge
capacity. The problem can be formulated as the following model with exponentially

many columns:
max E Xp

Pe2?

Z xp <c. eekE, (6.20)
PePecP

xp >0, PeP.

The dual of (6.20) is

min E Ce Ve

ecE

vzl  Pe2, (6.21)
ecP

Ve >0, ecE.

Hence the pricing problem amounts to computing a shortest path with edge lengths
ye and requiring the shortest path to have length not less than 1. Since the edge
lengths are nonnegative, the shortest path problem has a dual for which strong duality
holds. The dual is the following Max-Tension problem, where each undirected edge
e = {i, j} has been replaced by the directed pairs (i, j) and (j, i) for which we have
Ye = Yij = Yji:
max w; — W

Wi —w; < Yij (i,j)eE (6.22)

wi—w; <y; (j,i)€E.
Now it is just matter of plugging these constraints together with the condition w, —

ws > 1 into (6.21) replacing the exponentially many constraints >, , ye > 1. So
we have
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min E Ce Ve

ecE

ezl 6.23
wi—wi—y; <0 G.))€E, 23
wi—w; —y; <0 (j,i)€E,

Ye >0, ecE.

In the dual of (6.23) let ¢ be the dual variable associated to the constraintw; — w, > 1,
and &;; and &;; be the dual variables associated to the other constraints. Then it is not
difficult to see that the dual of (6.23) is a flow problem in which there is flow ¢ out of
the source that has to be maximized. This flow goes through the network and on the
edge e = {i, j} has nonnegative values &;; and &;; (according to the flow direction),
that must obey &;; +&;; < c..

This is exactly the ‘normal’ formulation of a max-flow problem. In this case,
the exponential and the compact (i.e., the normal) formulations are equivalent in
the sense that they have the same optimal value. This should be no surprise since
the max-flow problem is a continuous polynomial problem. The question becomes
more interesting when a combinatorial problem has a stronger formulation via an
exponential model. The strength of an exponential model derives from the fact that
part of the problem constraints are not formulated explicitly through equalities and/or
inequalities, rather they are directly embedded in the constraint matrix. As a result the
lower bound provided by the integrality relaxation is usually higher for an exponential
model than for a model where the discrete structure of the problem is taken care of
only by the binary variables. Since the exponential model is equivalent, in terms of
integrality lower bound, to its primal compact formulation, the compact formulation
can be a more useful model than a normal approach based only on binary variables.
The example in the next section will illustrate this possibility.

6.5 A Second Example of Compact Equivalent Formulation

Let us suppose that we have to solve the following problem. Given the set [n], we
call feasible those subsets of [n] that have cardinality at most m. Let ¢ be the
set of feasible sets. To each element in [n] a cost ¢; is assigned. Each subset J is
assigned a cost c; that is the sum of three components: there is a fixed part ¢ (the
same for each subset), there is a second component that depends on the elements
of J and has cost D", _, ¢; and there is a third component that counts the ‘holes’
in the subset. More specifically, each subset should, at its best, contain consecutive
numbers. However, nonconsecutive numbers are allowed but there is a high cost K
for each missing number, what we may call a hole. For instance the set {1, 2, 3}
has cost ¢y + ¢1 + ¢2 + ¢3, the set {1, 2, 4} has cost ¢y + ¢; + ¢2 + ¢4 + K and the
set {3,4, 6,9} has cost ¢y + ¢3 + ¢4 + ¢c6 + c9 + 3 K. We want to select a family of
feasible subsets of [#] of minimum cost, with possible multiple repetitions of the
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same subset, and such that each element i € [n] is contained in at least b; subsets
(counting multiplicities).

This framework could model a staffing problem in which we have to cover n duty
periods with a certain number of shifts. No shift can cover more than m duty periods.
Idle periods in a shift should be avoided and this is taken care of by the cost K. Each
duty period i, if covered, has a cost ¢;. Moreover, in order to avoid a solution with
many short shifts, there is a fixed cost for each shift given by ¢(. Each duty period i
has to be covered by at least b; shifts.

Define
r ifieJ
ajj =

0 otherwise

and x; an integer variable denoting how many times the subset J is selected. Then
the problem can be modeled as the following large-scale ILP

min E Cyi Xy

Je #

Z aijxy>b;  i€n] (6.24)
Je 7

x; >0, integer Je 7

The dual of (6.24) is

max Z b,’ Vi

i€n]
Z aijyi<c; Je g 625
i€[n]
yi =0 i €[n]
Pricing requires checking
max aijyi—cy <0 (6.26)
Je 7 l;[n]

Let k; be the number of holes in J. Then we may rewrite (6.26) as

?leja}Zaini—Co—ZCi—KkJSO

ie[n] ie

i.e.,
Jes ;EJ (C; h) J = —¢Co
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We solve the pricing problem as a min cost path problem in an acyclic network
G = (V, E) with nodes

V={s}U{(,k):i=1,....n, k=1,...,m}U{t}

where s is a source node and 7 is terminal node. The setof arcs £ = E; U E; U Ey U
E, consists of four types of arcs

Es={s— (i,1):ie[nl}
Ei={(,k)— (,k+1):i,jeln], j>i, ke[m—1]}

. . . (6.27)
Ey={G,k)— (G, k+1):ien], ke[m—1]}
E, ={(i,m)—t:ie€[n]}
The cost of the arcs are
ci — Vi for (s - (i, 1)) € E;
cj—yi+(—i—1DK for (G,k)— (j,k+1))eE 6.28)
0 for ((i,k) — (i,k+1)) € E ’
0 for ((i,m) —t) € E,

Since the network is acyclic we do not have to bother if the costs are negative. Finding
a min cost path is always polynomial and strong duality holds.

See in Fig. 6.3 the network G for the case n = 5 and m = 3. Each path s — ¢ in
G can be identified with a subset of cardinality at most m and the cost of a path is
exactly > ;_,(ci — y;) + K k;. See in the figure a path that corresponds to the set
{2, 4}. The dual of the min cost path problem is the following max-tension problem

Fig. 6.3 The network G for n = 5, m = 3. All arcs are directed from left to right and from top to
bottom
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max w; — wy

Wikl —wWix <c;—y;+(—i—1DK, i jelnl,j>ikelm]

Wikl —Wwix <0 i €[nl, k e[m]
Wil — Ws <¢ =i i €[n]
wi—wim =<0 i €[n]

so that the compact dual of (6.25) is

max Z b; y;

i€[n]

Wi — Wy = —Co

Wikt1 —Wwik <¢cj—y;+(—i—DK, i,jeln],j>ikelm]
Wikel —Wix <0 i €[nl, k e[m]

Wil — Ws <c¢ —Yi i € [n]

wi—wim =<0 i €[n]

i =0 i €[n]

(6.29)

The dual of (6.29) is a min cost flow problem on the network G with costs as in

(6.28), with the additional constraint that the sum of the flows entering the nodes
{(i, k) : k € [m]}, has to be at least b;.

For illustrative purposes let us assume that the data of the network in Fig. 6.3 are:

c=3, ¢=@3,2,1,2,3), K=5 b=(5,3,43,5)

The dual of (6.29) has the optimal solution shown in Fig. 6.4. This flow solution is in
close connection with the the staffing problem we started with. Indeed the flow can
be decomposed into flow paths. Each path identifies a subset J and its flow value
yields x;. The optimal solution with 10 shifts for a total cost 76 is:

Fig. 6.4 The min cost flow solution of the example
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Fig. 6.5 The min cost flow solution of the example with ¢cg = 10

path J cy Xy CyXy
s—> (1, D) — (1,2) > (1,3) > ¢ {1} 3+3=6 2 12
s—(1,1)— (1,2) = 2,3) > ¢ {1,2} 34+3+2=8 2 16
s—>(1,)—> 2,2) > 3,3) > ¢ {1,2,3} 3+3+24+1=9 1 9
s—>1,D)— 2,2) > (3,3) >t {3,4,5} 3+14+243=9 3 27
s—> G, 1)—=>6,2)—> 5,3) >+t {5} 3+43=6 2 12

Suppose we evaluate this solution not satisfactory because there are too many shifts.
Then we may raise cg to the value 10. If we solve again (6.29) the dual optimal values
are shown in the Fig. 6.5 for a total cost of 146. The reader can find the 8 shifts as an
exercise. Note the presence of the shift with holes {1, 4, 5} two times.

In this case solving the dual of (6.29) has given an integral solution. This is not
the case in general. The solution could be fractional. If it is integral, then it is the
optimal solution of the original ILP problem. Note now a striking difference with
respect to column generation. Imposing integrality and developing a branch-and-
bound computation in a column generation requires a lot of ingenuity, as we have
explained in Chap.5. Now, with the compact equivalent formulation this difficulty
disappears. It is just matter to impose integrality on the variables that are related to
the original variables in the ILP and solve the ILP as usual.

6.6 A Common Feature for Path Problems

One of the most frequent features in building compact equivalent formulations con-
sists in having pricing problems that correspond to solving shortest path problems in
an undirected or directed graph G = (V, E). We have seen this fact in the previous
two example and this construction will appear several times in the examples we are
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going to discuss. Hence it is convenient to have a general framework for all these
problems.

We assume in this section that V = [r]. Each edge e¢ € E is also denoted by the
pair {i, j} identifying the edge. If the graph is directed we denote each edge ¢ € E
also by the ordered pair (i, j). Although {i, j} is an unordered set, we prefer to have
a standard representation of the edge by the ordered pair {i, j} with i < j. This
convention is useful when we have to implicitly consider a directed version of the
graph and we have to replace the edge {i, j} with the edges (i, j) and (j, 7).

It is well-known that a shortest path problem with nonnegative lengths §, from a
source s € V to a destination ¢ € V can be expressed as a linear program, namely

max w; — wyg,
W,‘—ij(se e=1{i,j}€E.

Therefore, if we need to constrain all paths between a source s and a destination ¢ to
be not shorter than a stated amount v, this condition can be expressed as

Wy — Wy >V
wi—w; <8 e=|{i,jle€k (6.31)
wi—w; <48, e={ijlekL.

The constraints (6.31) will be typically embedded in a larger LP problem, where
both the threshold v and the lengths 8, can be the sum of a variable and/or a constant
part,i.e.,v =u + f and §, = v, + g, with u and v, variables. Then (6.31) becomes

wy —w +u < —f,
W —w; — Ve < g, e={i,jleE, (6.32)

Wi —w; — Vv, < g, e=1{i, j} € E.

Note that the w variables will appear only in the constraints (6.32) within the LP
problem. By taking the dual of this LP, let us denote as ¢ the dual variables associated
to the constraint wy — w; +u < — f and by EiJj’ and $l.; the variables associated to
the second and third set of constraints respectively. Then, among other constraints,

the following constraints (associated to the w variables) are present in the dual:

D EE-Egp - D Eh-g)=¢

j>ss,jleE j<s:{j,steE
D GE-sn— D &g =00 ieV\isa),
j>idli.jleE j<i:{j.i}eE (6.33)
DG -0 - DL & -g) =t
j<t{j,t}eE j>t:{t,jl€E

£5.65,¢6=0, {i.j}€E.
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The constraints (6.33) define a flow of value ¢ from s to #. On each arc the flow
is§; = éﬁjr - Sl.; and obeys flow conservation in each node except the source and
the destination. For ease of notation, let us denote as ®(s, 7, ¢) the feasible set of
flows for (6.33), so that, instead of explicitly writing down (6.33) we simply write

Eed(s,1,0).

6.7 The Dantzig—Wolfe Decomposition Technique

The Dantzig—Wolfe decomposition works as follows. We have to solve an ILP prob-

lem of the following form
min ¢ x

Dx>d (6.34)
xeX

where X = {&',%%,...,£7} C R" is a finite, although very large, set. Let P =
conv(X), i.e.,

P={xe]R”:x=Zkk£k, S =1, kkzo} (6.35)
kelp] kelpl

and suppose also that the external description of P is given by
P:{xe]R”:szb} (6.36)

Taking into account (6.35) the convex relaxation of (6.34) can be written as

min Z (c %)) At

kelpl

D DN =d
kel p] (637)

S
kelp]
M >0

If we restrict A to be binary then (6.37) is exactly (6.34). The new formulation of
(6.34) has the drawback of requiring a very large number of variables. However, this
drawback is compensated in many cases by the fact that we have split the problem
constraints in (6.34) into the explicit constraints D x > d and the implicit constraints
x € X anditis possible to deal with them separately as we are going to show. Since the
number of variables is very large we have to employ a column generation technique.
The dual of (6.37) is
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max yd+w

y(D£5 +w < (cx5
y=0.

93

(6.38)

Once we have computed the optimal duals (3, w) for the restricted (6.38), pricing

means solving and checking

min (c — yD)x =min (c— yD)x >w
xeX xeP

i.e.,
min (¢ —yD)x
Ax > Db,
whose dual is
max vb
vA=c—3yD
v>0

so that the compact version of (6.38) is

max yd+w
vh > w
VA=c—yD
v>0,y>0
equivalent to
max yd + vb
vVA=c—yD
v>0,y>0
whose dual is in turn )
min cx
Ax>b
Dx>d

(6.39)

Not surprisingly this is exactly the relaxation of (6.34) if we had inserted into (6.34)
directly the external description (6.36) instead of the internal one (6.35). The conclu-
sion we may reach is that if we apply the Dantzig—Wolfe decomposition technique to
avoid some difficulties that can arise from having all constraints together like in (6.39)
and prefer to work with column generation, then looking for a compact extended for-
mulation of the column generation model is not worthwhile. It will bring us back to

where we started from!

In some sense the Dantzig—Wolfe decomposition goes in the reverse direction
with respect to compactification. Whereas in compactification we start from an
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exponential formulation and then try to find an equivalent compact version, in the
Dantzig—Wolfe decomposition we start from a compact formulation, which however
can be nasty for complicated constraints that slow down the computation, and arti-
ficially build up an exponential model in the hope that it will solve problems more
than it creates new ones. But it is clear that trying to find a compact formulation for
the exponential version will not lead us to something new. Maybe, we may find a
different view of the same problem that can shed some new light. We will see an
example of this type in Sect. 14.2.

6.8 Projections and Slack Matrix Factorization

We have seen how to define a polyhedron P C IR" obtained by projecting a poly-
hedron Q € R™™™ into a lower-dimensional space. We may ask how to do the
inverse operation, that is, given a polyhedron P C R”, how to define a polyhe-
dron Q C R"*"™ in a higher-dimensional space whose projection is indeed P. We
recall the basic steps for the projection: in a higher-dimensional space we are given
a polyhedron defined by ¢ inequalities as

O={(x.y)eR"™:Tx+Ry<d}. (6.40)

We have to find the extreme rays of the cone C = {v € R? : v > 0,vR = 0}. Let U
be the p x ¢ matrix whose rows are all extreme rays of the cone C. Then we have
shown that

P={xeR":UTx<Ud}. (6.41)

Hence if we start from
P={xe]R”:Ax§b}, (6.42)

where A is a p X n matrix, we may consider the expression
b—Ax=U(d—-Tx—Ryx)) (6.43)

where y(x) is a particular y € IR such that (x, y(x)) € Q. The expression (6.43)
has to be true for all x € P. In particular, if it is true for all vertices and extreme rays
of P, itis true for all x. We assume for the rest of this chapter that P is bounded,
so that we only need the vertices of P. The analysis can be carried out also for
unbounded polyhedra by taking into account the extreme rays, but this introduces
only notational complications that it is better to avoid in order to understand the main
issues.

Let V be the n x r matrix whose columns are all r vertices of P. Let 1 € R” be
the row vector with all ones. Then the matrix S = (b1 — A V) is the slack matrix of
P (see Sect.2.3) and (6.43) corresponds to the following factorization of the slack
matrix
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S=U@d1-TV—-Ry(V)=UW (6.44)

where both U and W have to be nonnegative.

Therefore, in order to find Q starting from P, the idea is to find a factorization of
S as U W where U has to be a nonnegative p x g matrix (with g unspecified) and
W anonnegative ¢ x r matrix. However, we must be aware that there may be many
redundant inequalities in the description of P as (6.41) and therefore we should be
able to add to the definition of P the ‘right’ redundant inequalities in order to go
backwards. This is clearly an impossible task.

For instance, if we consider the cube [0, 1]}  R? and want to project it to IR?, the
matrix U, whose rows are the extreme rays of the cone {v € R? : v > 0,v R = 0},
consists of five rows (we leave to the reader the easy computational details) but
one of them corresponds to the trivial inequality O - x; 4+ 0 - x, < I that is obviously
discarded when we project. But if we go backwards we should be able to introduce
at some point this trivial inequality in order to find Q as in (6.40).

In order to associate a factorization to each projection we have to show that there
exists such a factorization starting from (6.42), avoiding the trouble of the redundant
inequalities. To this purpose we first need alemma that uses the strong duality theorem
of linear programming. By active valid inequality of P we mean a valid inequality
that is active at some point of P.

Lemma 6.1. If>"]_, «; x; < B is an active valid inequality for a polyhedron
P={erR”:Mx§g}
with m inequalities, then there exists a nonnegative vector u € R™ such that
uM=a, ug=2p

Proof: Consider the primal-dual pair

max o x min u g
Mx<g uM =«
u=>0

Since o x < B1isan active valid inequality for P, the maximum of the primal problem
is equal to B. The thesis follows by the strong duality theorem. |

A similar result that does not require an active valid inequality but just a valid
inequality holds as well but with the assumption that P is bounded (Conforti et al.
2010). If P is unbounded and an inequality is valid but not active the result may
not hold. Consider this counterexample: P = {x eER>:x1<1l,x < l} and the
(nonactive) valid inequality x; +x; < 3. We get u; = 1, up = 1 but u; + up # 3.
However, the result may sometimes hold also with unbounded polyhedra. Consider
P={xeR’:x < 1,x <1,x >0} and the same valid inequality x; + x, < 3.
We getu, = land u; —u3 = 1 and from u; + uy =3, we getu; =2, uz = 1.
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We apply Lemma6.1 to the polyhedron Q whose projection is P.

Lemma 6.2. Let
P={xeR":Ax<b} and Q={(x,y)eR":Tx+Ry=<d}

where P has p inequalities and Q has q inequalities. We assume that each inequality
defining P is active at some point of P. If P is the projection of Q, then there exist
p nonnegative vectors ul, ..., u? € RY such that

WT=A", uR=0, ud=b

Proof: Each inequality A’ x < b; in R" defining P can be lifted to an inequality in
IR"*™ by simply padding with zeros the extra m coefficients. This inequality is active
and valid for Q since P is the projection of Q. Hence we may apply Lemma6.1

to Q. |

Note that this is an alternative way of showing the relationship between the
inequalities of a polyhedron and the ones of its projection. Whereas the previous
relation (p. 17) made use of the Farkas’ Lemma by starting from Q, this relation
makes use of the strong duality theorem (whose proof needs the Farkas’ Lemma)
starting from P.

Let us apply the lemmas to the previous example of the cube. Note that we do not
know 7', R and d. The lemmas give only an existence result. However, for illustration
purposes, we make the computation with the explicit knowledge of 7', R and d that
are

SO = OO
OO O = = =

0
1
0
0
—1
0

whereas the known data are the inequalities x; < 1, x, <1, —x; <0 and —x; <
0. It is an easy task to compute the vectors u' € R®. The matrix U has four
rows and six columns. All entries are null except u;| = uxp = uzs = ugs = 1.
By checking with the previous matrix U given by the extreme rays of the cone
{veR?:v>0,vR =0} we see that the missing row is exactly the one that gave
the trivial inequality.

The next important result (Yannakakis 1991) shows that it is possible to associate a
factorization like (6.44) to each projection. Consequently rank ; S gives the minimum
number of inequalities necessary to define Q. It can be shown thatrank ; S isinvariant
with respect to the particular inequality system defining P and therefore we may
speak of the nonnegative rank of a polyhedron.

Theorem 6.3. The number of inequalities of a higher-dimensional polyhedron can-
not be less than the nonnegative rank of its projection.
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Proof: If we form the matrix U whose rows are the vectors u' of Lemma6.2, we
have
U >0, UT = A, UR=0, Ud=b>»

and, by forming the matrix V whose rows are the vertices of P, we may write
U >0, UR=0, Ud1-TV—-Ry(\V))=b1—AV =S

This expression provides a factorization of the slack matrix of P, hence providing
the result rank, P < g. |

Note the important fact that the dimension of the space where the polyhedron Q
is embedded is not mentioned in the theorem. No matter how ‘big’ is the space where
we lift the polyhedron P we cannot expect the number of inequalities defining Q
to be below a certain threshold which is given by the nonnegative rank of P. Hence
Theorem 6.3 can be used to state negative results about the possibility to have a
compact extended formulation.

Starting from the factorization S = U W, we may build a polyhedron Q whose
projection is P by the following construction. Besides the lower bound provided
by Theorem 6.3 this result gives also an upper bound to the minimum number of
constraints needed to represent Q (Yannakakis 1991).

Theorem 6.4. Let P = {x € R" : Ax < b} with slack matrix S and nonnegative
factorization S = U W where U has q columns. Then P is the projection of the
polyhedron

Q:{(x,y)e]R”*q:Ax+Uy=b,yZO} (6.45)

Proof: We first prove P C Z2Q. Let V* be the vertex of P corresponding to the
k-th column of V. Then we have S¥ = U W¥,ie.,b — A V¥ = U W*. Since W* is
nonnegative, the point (V*, W¥) isin Q and then V¥ € 22 Q. If all vertices of P are
in the projection ZQ then P C & Q. Conversely, to prove that #Q C P, for any
(x,y) € Q we have

Ax<Ax+Uy=b>b

where the inequality is due to the fact that U > 0 and y > 0. |

As a consequence of the theorem we have

Theorem 6.5. Given a polyhedron P C IR" there exists an extended formulation of
P with t + 2 n constraints and t + n variables where t = rank P.

Proof: If we take the minimal factorization the polyhedron (6.45) has n + ¢ variables.
To prove the statement about the number of constraints, let us note that the number
of linearly independent equations in (6.45) is at most the number of variables, i.e.,
n + t. So the number of constraints is at most n 4 2 ¢. |
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Some remarks are in order. We have observed that S always admits the trivial
factorization S = I §. In this case (6.45) becomes

O0={Gx.»)eR"P:Ax+y=b,y>0} = Q={xeR'":Ax=<b}=P

and we have the original polyhedron.

The other trivial factorization S = S I gives also back the same polyhedron but
with an internal representation via its vertices. Assume that P = {x ¢ R" : Ax < b}
C IR and P is a polytope. By a suitable translation we may always assume that the
polytope is in the nonnegative positive orthant. Hence we may think that the constraint
matrix embeds the non-negativity constraints for all variables, that is,

() -0

We may express the slack matrix as

() ()

and the polyhedron (6.45) for the trivial factorization S = S/ is
_ (-1 0y (=Vy\_(O
0= [ () 4 (00) - (5v2) = () »=]

Q={(X,)’)IX=Vy, A_x—H;Zy,-—AVyzl;, yzo}

ie.,

from which we get >, y; = 1, so that we have by taking the first group of linearly
independent equations

0={@nix=vy Yy=1y=0] (6.46)

from which we obtain the known fact that the points of P can be expressed as convex
combinations of its vertices.

It has been observed that # < min {p, r}. Hence in general we are interested in an
extended formulation if < min {p, r} (and preferably much less) otherwise there
is no reason to reformulate a problem via Q rather than P. It remains to see how
to compute a minimal factorization. It has been proved (Vavasis 2009) that deciding
whether rank S = rank, S is NP-hard. Clearly also deciding whether there exists a
factorization S = U W for a given number ¢ of columns of U is NP-hard, because
this is a generalization of rank § = rank § (since computing rank S is polynomial).
However, the complexity of computing rank; S is unknown at the moment. If we
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A

(1,1,0)

Fig. 6.6 The orthoplex for n = 1 and its extended formulation

consider g fixed then Arora et al. (2012) have designed polynomial-time algorithms,
whose running time however depends exponentially on ¢. It is argued that in most
applications ¢ is a small number.

6.9 Union of Polyhedra

We have pointed out that if the vertices of the polyhedra are known, the convex hull
of the union of the polyhedra is simply the convex hull of all vertices. Clearly this
construction applies also if we have just one polyhedron and there is a polynomial
number of vertices. In this case a compact extended formulation can be found directly
by expressing the convex hull of the vertices.

As an immediate application let us consider the orthoplex (see p. 11 in Sect.6.2)
that has a polynomial number of vertices versus an exponential number of inequali-
ties. We recall that the vertices of the orthoplex are the 2 n vectors (0,0, ..., £1, ...,
0, 0). If we denote by y;" and y; the coefficients of the vertices with the +1 and
—1 respectively in the i-th position, then the orthoplex is the projection to R" of the
polyhedron

n n
0={.y oy ix=yt =y 320y 20 ieml Dyt + >y =1}
=1 im

(6.47)
This formulation is almost equal to the one found by linear programming techniques
in Sect.6.2. The only difference is the equation >, y; + >/_, y7 = 1 whereas
we have previously found an inequality. However, the projections are the same. See
in Fig. 6.6 the case for n = 1 where P (embedded in IR?) is just the segment joining
(1,0, 0) and (—1, 0, 0). Its extended formulation Q C IR?* according to (6.47) is the
segment joining the points (1, 1,0) and (—1, 0, 1). If we consider the inequality



100 6 General Techniques for Compact Formulations

y*t 4y~ < 1then Q becomes the triangle joining (1, 1, 0), (=1, 0, 1) and (0, 0, 0).
In both cases the projection is the same.

In other cases the polyhedron is the union of smaller polyhedra for which a
compact formulation is available. Hence, by applying the technique developed in
Sect.2.5 we end up with a compact extended formulation. We will see an example
in Sect. 8.2.

We conclude the section by showing an application of this technique to a more
complex polyhedron, that is, the Mixing Set polyhedron. The mixing set was intro-
duced by Giinliik and Pochet (2001) starting from the ideas in Pochet and Wolsey
(1994) for the Lot Sizing problem. It is defined as

M = {(xo,xl,...,xn) eR xZ" : xo +xx > by, k € [n], xo 20}
Note that negative values are allowed for the variables x;, k € [n]. Let
PM = conv(M)
Due to the integrality of x;, k > 1, we may rewrite each inequality as
Xk = [br — xo]l
and, denoting B, = by — |bx] and & = xy — [xo], we have
X = [b — xol = [Be + i) — & — Lxol1 = Lbe) — Lxo) + [B — &1
For each fixed value of xo let P(xo) C IR"™! be the polyhedron defined by
{(xo, x1, - vu ) 2 X = D] — [xo] + [Bi — &1,k € [n]}
Hence
PM = conv | ] P(xo)
x>0

For simplicity let us assume that the indices are ordered for increasing values of ;.
Define also 8y = 0 and B,+; = 1. Note that

1 ifB > &

fﬁk—ﬂ:[o i <&

So, if we think of varying xo = [xo] + & from an integral value z to z + 1, there are
at most n relevant values for & at which P (xy) changes. Let

P.= |J P

z=x9<z+l1
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Define

2+ Bn < xo <2+ Bt
P,(z) =13 (x0, x1, ..., %) s x> [b] —z ifk>h h=0,1,...,n
Xe =1l —z ifk<h

Due to the previous observation we have also

P,= ) P and P=JP

0<h<n z>0

Now note that if (xg, X1, ...,%,) € Pp(z) then (xo+ 1,x1,...,x,) € Py(z+ 1).
Hence, since we are interested in the union of the various polyhedra we may drop
the constraint xo < z + B+ from the definition of Pj(z) and so we may redefine

X0 > 2+ B
Po(z) =3 (xp, x1, ..., x) : x> [b] —z ifk>h h=0,1,...,n
Xk > |kl —z fk<h
Note that Py(z + 1) C P,(z) since z + 1 + By > z + B,. Hence we may drop from

the list the polyhedra Py(z) for z > 0. Therefore each polyhedron P, (z) is a pointed
cone, in fact an orthant. Let us define the vectors

Bn  ifk=0 |
I L R e B L
k k ] ’ k 1 itk
byl ifk<h
Then the vertex and the extreme rays of P, (z) are the vectors
1 itke=i
vz, re= 1 l., i=0,....n
0 ifk#i

Note that the set of extreme rays is the same for all polyhedra P,(z). Now we can
apply the technique developed in Sect. 2.6 so that we have

x = ap(0)1’ +ZZah(z)(v +ZS)+Z7II1 =

h=1 z>0

oo (0)V° +Z Zah(z)+s ZZzah(z)+Zr/hr

z>0 h=1 z>0
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X5 4
v(0)
-
ez = U 1(0¢’
4 =[V(1) -

= ! - =V(0)
=1v2) L= 3
Se==T 70

% v(2)

Fig. 6.7 A partial view of the polyhedron for the mixing set

‘We now define

n

=), =D @, heml  y=D > za)

z>0 h=1 z>0

and we may write

n n
x:ZAhvh+ys+Znhrh
h=0 h=0

Since the vectors (s, 7, ..., r") are linearly dependent we may further simplify by
defining

o=y +no, Mr=no+n, keln]

and writing

n n
x =Z)\hvh +,u0s—|—2uhrh
h=0 h=1

It is simple to prove that only the vectors v" can be vertices of P. Indeed, given any
point x with xo > 1 both the points (xo + 1, x; —1,...,x, — 1) and (xo — 1, x; +
1,..., x, + 1) are feasible, their convex combination yields x and therefore x cannot
be a vertex. See in Fig. 6.7 a partial representation of the union of the polyhedra, in
fact cones, P;(z) for the case n = 2. The polyhedron P is represented by dashed
lines.



Chapter 7
The Permutahedron

7.1 Basic Definitions

The permutahedron is a very interesting polyhedron because its vertices and facets
are in a one-to-one correspondence with, respectively, permutations and subsets of
[7] and therefore it shows the deep links that exist between abstract combinatorial
structures and geometrical objects. The external representation of the permutahedron
P C R" is given by the following 2" — 2 inequalities plus one equality.

Zx,->w JCnl, J£0,7 #[n]

iel - 2
nm+1) .
> w= M
2
i€[n]

Therefore every inequality is associated to a particular proper subset of [n] and
for the whole set [1] we have an equality. Because of the equality the permutahedron
is not full-dimensional. We first show that every inequality is facet-defining (clearly
in the relative topology as explained at p. 10). Let S be a generic subset of [n] and
consider the point of coordinates

S| +1

IS] + e

=1 2

i n+|S|+1 .
—— ¢S

Clearly > ;¢ % = |S| (S| + 1)/2 and it is not difficult to verify that >, % =
n(n+1)/2.Let J # S. We may write

IS|+1  [JI+14+(S|—J] n+|S|+1  [JI+14+m+I[S|—|J])
2 2 ’ 2 - 2
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so that

ZA I +D JIASI =D +n |\ S|
X = ) + )

iel

If | S| > |J| the second term in the sum is positive and then we have

JI(J+1
>4 s MI01HD 72
. 2
ieJ
If |S| < |J], since J # S, we have |J \ S| > 1. So we have
|J|(|S|—|J|)+n|J\S|>IJ\SI(n+|S|—|J|)>n+1—n_l
2 - 2 2 2

where the strict inequality comes from |S| > 1, |J| < n,|J \ S| > 1 and (7.2) holds
also in this case.

Hence, equality holds only if J = § and by Theorem 2.5 there is a one-to-one
correspondence between a proper subset S of [n] and a facet.

Let us now analyze the vertex structure. Each vertex is given by the intersection of
at least n planes, of which one is the equality and the other n — 1 are the inequalities
satisfied as equalities. Take two of these inequalities and suppose they are associated
to the subsets S and 7. By summing them we get

SISIED  ITTED 5 e St Y (43)

ieS ieT ieSNT ieSUT

If we consider the subsets SN 7 and S U T we must have, by feasibility in (7.1) of
the last expression in (7.3),

ISIASI+ 1) ITIATI+1) _ ISOTIASNTI+ 1 ISUTIASUTI+ 1)
2 + 2 = 2 + 2 '

It is not difficult to see that the following relation holds for any two sets S and T':

SIS+ 71T+ 1D |ISNT|(SNT|+1) |SUT|(SUT|+1)
2 * 2 = 2 * 2

where the inequality is always strict except when S C T or T C S. This means that
the inequalities in (7.1) are satisfied as equalities only when they refer to subsets
ordered by inclusion starting from a singleton set, adding one element at a time up to
the whole set [n], that corresponds to the equation > Xi = n(n + 1)/2. This
ordering can be viewed to as a permutation of [n].

If we move away from a vertex along an edge, this corresponds to having one of the
inequalities associated to the vertex no longer active. The active inequalities are still

ie[n]
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2,143

Fig. 7.1 The permutahedron for n = 4

ordered by inclusion but there is a jump of cardinality two in the ordering. If the vertex
had in the ordering the three sets {a, b, c}, {a, b, c,d} and {a, b, c, d, e} (among
others) and the second set is dropped along the edge, we have the jump from {a, b, c}
to {a, b, c, d, e}. When we reach the other vertex the only possibility to fill the jump
and still have the subsets ordered by inclusion is to insert the subset {a, b, c, e}.
Hence an adjacent vertex corresponds to a permutation obtained by switching two
adjacent elements in the permutation.

In Fig. 7.1 we show the polyhedron for the case n = 4. It is a three dimensional
object and hence it can be drawn and imagined as a real body. The visible edges
are drawn thicker. Each vertex is labeled with a particular permutation of the set
{1, 2, 3, 4}. Each facet is labeled with a particular proper subset of {1, 2, 3, 4}. The
visible facets have a larger label in normal style, whereas the hidden facets have a
smaller label in italics. For instance consider the vertex {3, 2, 1, 4}. It is generated by
the intersection of the three planes corresponding to the sets {3}, {3, 2} and {3, 2, 1},
that give the ordering (3, 2, 1). The element 4 is the one missing and is added to the
n — 1 elements to complete the permutation. Note the eight facets that are hexagons.
They are permutahedra of smaller dimension, namely with n = 3.

In Fig.7.8 at the end of the chapter we show a picture of a gadget in form of a
permutahedron found in the shop of the Sinagoga del Agua in Ubeda, Andalusia,
Spain.
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7.2 A Compact Extended Formulation by LP Techniques

The permutahedron requires 2" — 1 constraints, i.e., an exponential number with
respect to n. Since all inequalities are facet-defining it is not possible to represent the
same polyhedron with a smaller number of inequalities. However, it turns out that it is
possible to provide a compact extended formulation. Actually, we are going to provide
three different formulations. We first describe a formulation via LP techniques as
explained in Sect.6.1.

The essential tool to build such a formulation is to have a separation problem that
can be solved as an LP problem. Suppose we have a point x that satisfies Zie[n] Xi =
n(n + 1)/2, and we want to know if there are violated inequalities in (7.1). The
question is easily solved by sorting the x; values in ascending order and checking,
for each k € [n — 1], if (where we assume the entries have been sorted)

S5 > @ (7.4)

i<k
This check can be modeled as the following (n — 1) LP problems, for k € [n — 1],

min Z )Ei Uu;

i€[n]

Z u; = k

ieln]

—u; > —1 i€ [n]
u; >0 i €[n]

because the solution is binary and u; = 1 for the k indices corresponding to the first
k smallest values of x;. The dual problems are

max kWOk — Z Wik
i€[n]

Wor — Wik < X; i €[n]

wix > 0, i €[n]

and the validity condition (7.4) becomes

k(k+1)
o — X g = L EED

i€(n]

Therefore the permutahedron is the projection onto R" of the polyhedron
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k(k+1
kWok—ZW,‘kiw keln—1]
icinl 2
5 wne1 | WOk — Wik < Xj i€ln],keln—1]
P=1(kx,w)eR : n(n+1)
> =D
ieln] 2
wir = 0 i €[n]

There are n + (n + 1) (n — 1) = n*> +n — 1 = O(n?) variables and (n — 1) +
nn—1)+1+n=nn+1) = 0(n?) constraints. Hence P is a compact extended
formulation of the permutahedron. The dimension of Pisn?+n— 2, 1.e., one less
than that of the space where it is defined. To show this fact consider the point

1 1 k(n—k
"er i€ n], wor = %,k € [n—1], wi = ﬁ,i € [n].k € [n—1].

X =

Then clearly woy — wir < x; and

_k+1) k(n—k) _k nm=hbY _
kwor — D wix = 2 ”2(n+1)_2('“rl (n+1))_

i€[n]

k k k(k+1)
E(T+(k+l)) —

To get a slight idea of what is going on, we try to illustrate the situation for
the simplest case, namely n = 2, the only one that can allow some drawing of the
polyhedra. For n = 2 the permutahedron is just a segment in IR? connecting the points
(1,2) and (2, 1). Its compact extended formulation Pisa polyhedron of dimension
four defined in R>. P has five vertices whose coordinates (x1, X2, Wot, W11, W) are
respectively

(1,2,1,0,0), (1,2,2,1,0), ( 0,00, (2,1,1,0,0), (2,1,2,0,1)

le

3
2’

NI‘JJ

Note that there is a fractional vertex whose canonical projection onto the space of
x variables falls within the segment. In Fig. 7.2 we show a bidimensional rendering
of P. The underlying vertex-edges graph is complete, but this does not correspond
to the general case. For n = 3 P has 107 vertices and they do not have the same
degrees: 88 vertices have degree 10, 18 have degree 19 and one vertex has degree 28.
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1,2,1,0,0 2,1,2,0,1

Fig. 7.2 The LP compact extended formulation of the permutahedron for n = 2

7.3 A Direct Compact Extended Formulation

We note that there is another simple compact extended formulation for the permu-
tahedron, which can be simply derived by the properties of a permutation matrix.
A permutation matrix is a O—1 square matrix with exactly a 1 on each row and a 1
on each column. A permutation matrix can be seen as a point in R". Clearly there
are n! permutation matrices of size n. The convex hull in R” of the corresponding
points is a polyhedron Q which is described by

Dxj=1jenl. D xj=1ielnl x;=0 i jelnl (15
ieln] jé€ln]
The dimension of Q is (n — 1)? (there are n?
independent equalities).
2
Now we build the following linear map R" — R", x +— &

variables subject to 2n — 1 linearly

&= jxj ieln (7.6)

J€ln]

Clearly each permutation matrix is transformed into a permutation of [n]. The
Eq.(7.6) can also be viewed to as an injective linear map x — (x, &) from R
to R, An injective linear map transforms a polyhedron into another polyhedron
with the same dimension. Let Q be transformed into the polyhedron Q by the linear
map, or, alternatively, Q C R™ *" is defined by (7.5) and (7.6). The permutahedron
is the projection of Q onto R”".
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With respect to the previous formulation this one is only slightly more expensive:
one more variable and n (n+3) constraints instead of n (n+1). However, the extended
polyhedron is dimensionally smaller and it does not exhibit fractional vertices.

7.4 A Minimal Compact Extended Formulation

A smaller compact extended formulation for the permutahedron can be derived by
using a so-called comparison network, in particular a sorting network. A comparison
network is made up of wires and comparators. A comparator has two input wires
and two output wires (see Fig.7.3) and works as follows: when two numbers x; and
x, are fed as input, the comparator outputs two numbers that are x3 = min {x;, x,}
(above) and x4 = max {x, xp} (below).

A comparison network is obtained by assembling together a certain number of
comparators in such a way that the output wires of a comparator can become input
wires of other comparators (usually different otherwise one comparator would be
useless). Some wires are only input wires and we consider them input wires of the
network and some other wires are only output wires and we consider them as output
wires of the network. It is easy to see that the number of input wires is equal to
the number of output wires no matter how we assemble the comparators. If there
are n input wires and m comparators then the total number of wires is 2m + n. By
construction the numbers in output are a permutation of the numbers in input and,
similarly, the input numbers are a permutation of the output numbers.

We may ask which input permutations of [n] are transformed by the network into
theoutput 1, 2, ..., n,i.e., the identity permutation. This set of permutations is called
the feasible set for the network N. Let us denote this set as F(N). If there are no
comparators, F'(N) consists only of the identity. If there are enough comparators and
they are placed in a right way, then we may have that F' (V) contains all permutations.
In this case we speak of a sorting network.

See in Fig.7.4 a sorting network with n = 5 and m = 10. The placement of the
comparators mimics what a bubble sorting algorithm would do. The permutation
(2,4,3,5,1) is fed as input and in output there is the identity permutation. This
placement requires m = n (n — 1)/2 = O(n?) comparators for a sorting network
with n input wires. It is not the most efficient way to build a sorting network. It has
been proved that O (n logn) comparators are enough, although the hidden constant

X1 X3 =min {X{, X5}
X2 X4 =max{Xq, X5}

Fig. 7.3 A comparator
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2 1

4 1 2 2
X X

3 1 v 4 3 ¢y 3 3

X X

5 1 3 3 4 4 4 4
X X Y

1 v 5 1 5 v 5 5

Fig. 7.4 A sorting network

in the big O notation is rather large. The reader can find in Ajtai et al. (1983) how to
build an O (n log n) network.

Now we model the behavior of a comparison network as an LP problem. We
associate to each wire a variable x;, i € [2m + n]. Let us number the variables so
that x1, ..., x, refer to the input wires and x2,,,+1, - . . , X2m+n (in this order from top
to bottom) refer to the output wires. Refer to Fig. 7.5. For the comparator &, k € [m],
let us denote the two input variables as x; (k) and x, (k) and the two output variables
as x3(k) and x4 (k). Then for each comparator, we impose the following constraints

x3(k) < x1(k), x3(k) < xz(k), x1(k)+x2(k) = x3(k)+x4(k), k € [2m~+n] (1.7)

Note that (7.7) implies also x4 (k) > x; (k) and x4(k) > x, (k). By assembling together
all sets of constraints of type (7.7) and fixing the variables in output as x,.; = i,
we define a polyhedron Q ¢ R>"+",

Let us now consider the polyhedron conv(F(N)) C R", i.e., the convex hull of
the permutations in ' (N). If F(N) contains all permutations then conv(F (N)) is the
permutahedron. It is possible to prove (see Conforti et al. 2010; Goemans 2015) that
conv(F(N)) is the projection Z(Q) of Q on the first n variables. Since Q is defined
in IR?"*" and has 3 (2m + n) + n constraints it is a compact extended formulation
of the permutahedron. The number of facets of Q is O (n logn). Hence, by Theorem
2.10 this is a minimum formulation.

X

X ‘ 21
X5 ‘ Xs v X7 ‘ %22
X3 Xs v X9 ‘ X0, X11‘ X23
X4 ‘X12 v X13‘ X14] X15‘ X164y X17 X4
Xs X8 v %19 v % X5

Fig. 7.5 The LP variables for a sorting network
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X, 1
A
X, X, | xg 2
3
X, Xs | 3

Fig. 7.6 A sorting network forn =3

Note also that the dimension of Q is much less than 2m + n. Since n variables
are fixed and there are m linearly independent equations, the dimension of Q is m.
Hence we can visualize Q for the case n = 3 that requires m = 3 comparators, like
in Fig. 7.6, where the output variables have been already assigned their fixed values.

Since we have fixed the output variables, Q is actually embedded in IR® and not in
IR’. In Fig.7.7 we see Q. The drawing has been obtained by projecting Q on a ran-
domly chosen plane. The polyhedron Q has 8 vertices. Besides the six vertices, that

are permutations of (1, 2, 3), there are two more vertices, namely (2, 2, 2, 2, 3, 2)

and (1, % %, %, %, %). We may be surprised by the existence of a vertex with frac-
tional values for x, and x3. A word of caution is necessary. It is not said that the
coordinates x, ..., x, of the vertices of Q are integral. It is said that the coordinates
of the projection of Q are integral. We have to recall that the permutahedron for

n = 3 is bidimensional. Hence the fractional vertices go inside the projection and

{3,2,1,1,3,2}

=\ {2.2,2,2,3,2}

{3,1,2,1,3,2}

) {1,502, 5/2, 5/2, 512, 5/2}
{2,3,1,1,2,3 ’

2,1,3,1,2,3}

{1,2,3,2,2,3}

Fig. 7.7 The compact extended permutahedron forn = 3



112 7 The Permutahedron

Fig. 7.8 A gadget in the form of a permutahedron

disappear.The result of the projection is the hexagon obtained by six edges of Q that
join the six vertices that correspond to permutations. A seventh edge of this type
disappears in the projection.



Chapter 8
The Parity Polytope

In this chapter we deal with the following polyhedra:

P = conv {x € {0, 1}" : the number of 1’s is even}

P°4d — cony {x € {0, 1}"" : the number of 1’s is odd} .

The polyhedron PVe" is also called the parity polytope. Both polyhedra have 2!
vertices. This can be easily seen by observing that, denoting by E(n) and O(n) the
number of strings of length n with an even and an odd number of 1’s respectively, we
must have O(n + 1) = O(n) 4+ E(n), (we append either a zero or a one to a string of
length ») and similarly E(n 4+ 1) = E(n) + O(n). Since E(1) = O(1) = 1 we have
O(n) = E(n) = 2" ! for all n.

The polyhedra P€¥e" and P°4 can be also given an external representation as

Pp={xe[0,11": > x;— > x < |S| — 1, forall odd subsets § C [n]}

ics igS
Po={xel0,1]": in - Zx,- < S| — 1, for all even subsets S C [n]}
ics i¢s

(8.1)
This property will be shown in the next section.

From the external representation we see that there is a one-to-one correspondence
between the vertices of one polyhedron and some facets of the other polyhedron,
namely those defined by the set inequalities. This looks like a polarity relationship
between the polyhedra. We recall that the polar of a polyhedron P is the polyhedron

Pr={y:yx<1 VxeP} (8.2)
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The origin must belong to P for the polar to exist. Moreover, P* is bounded if and only
if the origin is an interior point of P. To better understand the relationship between
Pp and P, we operate the following coordinate system change

& =2x—1

so that the inequalities in (8.1) for Pz and Py become after the substitution

Zfi—z&in—2

ies i¢s
This can be rewritten as
D niS)E <n—2 (8.3)
ie[n]

where 1(S) is defined as 1;(S) = 1 ifi € S and 1;(S) = —1ifi ¢ S. In the definition
of polar polyhedron (8.2) we may restrict the condition to the x that are vertices
of P. Moreover we may consider an extended definition where the 1 on the r.h.s is
replaced by another positive number like n — 2 in our case. It just corresponds to a
space dilation. Since the vertices of Pg are the even sets the condition (8.3) applied
to all vectors 1(S), with |S| even, gives the set inequalities for Py, but the bounding
inequalities x € [0, 1]" have to be added to correctly define Po. Hence we have the
following relationship

Po=P:iN[0,1]" Pp=P5N[0,1]"

In the literature the characterization of Pg as in (8.1) is attributed to Jeroslow
(1975). However, that paper does not seem to contain such result nor some properties
that directly lead to the result. Moreover, we have not been able to find papers that
prove the result. Hence we are going to provide our own proof in the next section.

8.1 External Representation of the Parity Polytope

In this section we prove that PV = Py and P°4 = P, Let us use the following
notation: for § C [n], we denote its complement by S := [1n]\ S. We start by noticing
that every x € {0, 1} has an even number of 1’s (i.e., ‘it is even’) if and only if is
in Pg. In fact, if x is even then for every odd-subset S C [n] either x(S) < |S| or
x(S‘) >1(.e., —x(S’) < —1). By adding the two inequalities we get

x(S) —x(S) < |S| -1
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so that x € Pg. Conversely, suppose x € Pg N {0, 1}" but x is not even. Then there
exists an odd set S such that x(S) = |S| and x(S’) = (. By adding the equations we
get x(S) — x(S) = |S| > |S| — 1, a contradiction of x € Pg. Ina perfectly analogous
way we have that x € {0, 1}"* has an odd number of 1’s if and only if x € Py.

In conclusion, since PV and Pg (and Podd and Po) have the same integer points,
to show that PEVe" = Py (and P°%9 = P,) we need to prove that neither P nor Py
have any fractional vertices.

In order to obtain this result, we start by rewriting the inequalities defining Pg
and Py in (8.1) in a general, fundamental, way valid for both of them. For a vector
x € [0, 1]", letus denote by x =1 —x = (1 —xy, ..., 1 —x,). The conditions (8.1)
can then be rewritten as follows:

XS)+xS)>1 forallSe 2 (8.4)

where 2 is the set of odd subsets of [n] for Pg, and of even subsets of [n] for Po.

Theorem 8.1. Let x = (xy, ..., x,) be a point with all fractional components. Then
x cannot be a vertex of either Pg nor Po.

Proof. Let us assume n > 3 (since it is clear, by immediate inspection, that all
vertices of both Pg and Py are integer for n < 2). Notice that, for any set S, the
LHS of (8.4) is a sum extended to all i € [n], where for each i we pick either x; or
Xx;i = 1 — x;. We can visualize this sum by putting the values x; and x; in n columns,
over two rows, and picking an element from each column. The elements picked from
the top row identify the set S. For instance, in the example below, itis S = {1, 4, 5},
%(S) = 0.9 and x(S) = 1.6.

= | =1
[
\O| b=t
| oo
EES
SIEN
|
R

For a set S C [n] and each i € [n], define f;(S) = X; if i € S and f;(S) = x; if
i ¢ S. The value of the LHS of (8.4) is then £ (S) := >\, fi(S) = X(S) + x(S).

In order for x to be a vertex, there should be at least n tight inequalities for x. In
principle, these inequalities could also be the bounds 0 < x < 1 but since x has all
fractional components, no bounding inequalities can be tight and the only possible
tight inequalities must be of type (8.4).

We say that S is a tight set if f(S) = 1, i.e., if the inequality (8.4) corresponding
to S is tight for x. We show that there cannot exist n tight sets (irrespective of their
parity). Since for x to be a vertex, there should exist at least n tight sets (actually, n
tight sets of a certain parity, i.e., odd for Pr and even for Py), this proves that x is
not a vertex. |

The idea of the proof is that the potential tight sets are pretty much forced. In fact,
in each column of the above table one of the elements (the maximum) is >0.5 and
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so we cannot pick it more than once, or the sum will be >1 and the set will not be
tight.

For a set S, we say that S makes a mistake at i for each i such that f;(S) #
min{x;, 1 — x;}. For instance, in the above example, the set S = {1, 4, 5} makes two
mistakes, at 3 and at 6. Notice that for each mistake it is f;(S) > 0.5, so that S can
make at most one mistake or it is not tight. The sets that make one mistake can be at
most n, one for each position of the mistake.

If the components of x are not all identical, w.l.o.g. assume x; # x,. Let S a be
the set that makes the mistake at 1 and T be the set that makes the mistake at 2. We
have

FS) =) =f1(S) —fi(M) + f2(5) — fo(T)
= max{xy, | —x1} — min{xy, 1 —x1}+ min{xy, 1 —x2} — max{xy, 1 — xp}
=11 —=2x1| — |1 —2x2]
#0

so that S and T cannot be both tight. Hence there are less than n tight sets if the
components of x are not identical. Finally, assume x = (a,...,a) witha < 0.5
(a similar reasoning works for a > 0.5). The set S* that makes no mistakes is
unique, and it is $* = . If a set S makes one mistake it must be |S| = 1 so that
f(@S) = (n— 1)a+ (1 — a). For S to be tight it must be (n — 1)a = a, which is
impossible.

Theorem 8.2. Let x = (x1,...,x,) be a point with some, but not all, fractional
components. Then x cannot be a vertex of either Pg nor Po.

Proof. W.l.o.g., assume x; € (0,1) fori =1,...,m,x; = 1fori € Z; := {m+
1,...,k},x; = Ofori € Z, = {k+1, ..., n},where Z;UZ, # @J. Foraset S to be tight
it must be Z; C S and Zy C S,,. In such case, it is fozmﬂfi(S) + Z?=k+1ﬁ(S) =0
and

£ =D £(S)
i=1

so that S is a tight subset for x if and only if SN {1, . .., m} is a tight subset, for (8.4) in
dimension m, with respect to the all-fractional point x’ = (xy, ..., x,,,). By Theorem
8.1, we know that there are less than m such tight subsets, and, since m < n, there
are less than n tight subsets for x. |

Corollary 8.3. The polyhedra Pg and P are integer for each n.

In Fig. 8.1 we show a bidimensional rendering of the four-dimensional polyhedra
Pp and Py for n = 4. They look the same. Indeed they are isometrically isomorphic.
One can see that there is a one-to-one correspondence between respective vertices
by flipping the bit of the first coordinate. Note that in both polyhedra each vertex is
linked with an edge to all other vertices except the complement vertex (i.e., the one
obtained by flipping all bits). We remark that this fact is true just for n = 4.
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Fig. 8.1 The polyhedron Pg (left) and the polyhedron Py (right) for n = 4
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In Fig.8.1 Pg is the convex hull of the union of the two points (0, 0, 0, 0) and

(1,1, 1, 1), and the three-dimensional polyhedron given by the convex hull of all
points in {0, 1}* that have exactly two 1’s. This last polyhedron is also shown in the
figure like a three-dimensional object with edges drawn thicker and the hidden ones
drawn dashed. Similarly Py is the convex hull of the union of the points of two three-
dimensional polyhedra, namely the points with exactly one 1 and the points with
exactly three 1’s. Also in this case we have put into evidence these two polyhedra.

8.2 A Compact Extended Formulation by Union of Polyhedra

As it has been highlighted in Fig.8.1 Pg is the convex hull of the union of smaller
polyhedra. In particular we may define (this is not the only way to choose the poly-
hedra to build up the convex hull of the union, but it is certainly the most natural):

The inequalities 0 < x; < 1 and |

Py = conv {x € {0, 1}" : Zx,- =k}

ie[n]

ie[n]

Hence the external description of P; is immediately available as

Pk:conv{xe]R":in:k, 0<x; <1, ie[n]}

i€[n]

x; = k form a totally unimodular matrix.
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and, by denoting K = {k > 0 and even}, we are left to compute

Pr = conv U Py
keK

by the techniques developed in Sects.2.5 and 6.9. Therefore each x € Py can be
written as

x:Zakyk, Zakzl, o, >0, kekK
kekK kekK

with y* € P;. Hence the system (2.14) becomes in this case, by defining x* = o y*,

Zakzl

kekK
xi— > xf =0 i€ln)
keK
fo—kockzo kekK
i€[n]
- <0 kekK, ieln]
xk kekK, ieln]
o >0 kekK

There are (n+ 1) (n+3) = O(n?) constraints if nis even and (n+1) (n+2) = O(n?)
constraints if 7 is odd. The number of variables is n 4+ (n 4 1) (n + 2)/2 = O(n?) if
niseven and n + (n + 1)2/2 = O(n?) if n is odd. Hence it is a compact extended
formulation for Pr. However, it is not a minimal formulation. In the next section we
show a linear extension.

8.3 A Compact Extended Formulation by LP Techniques

As we have already seen in various examples, in order to build a compact extended
formulation by LP techniques we have to answer the basic question: how to detect a
violated inequality for Pg given x;? The analysis is similar for Py and is left to the
reader.

We build a directed acyclic graph, like the one exemplified in Fig. 8.2 for the case
n = 4. Each node of the graph, except the source and the termination, is labeled with
two symbols: an index k, k € [n], and the symbols L (left) or R (right). The list of
arcs with their costs is
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Fig. 8.2 The graph to detect a violated inequality

arc cost arc cost
(s) > (L,R) x—1 (s) > (1, L) — X
(k,R) — (k+1,L) xp41 —1 k,R) - (k+1,R) —xi41 ke[n—1]
(k,L) > (k+1,R) xpq1 — 1 k,L) > (k+1,L) —x41 ke[n—1]
(n,R) — (1) 0

Let us call ‘switching’ the arcs listed on the left, because their endpoints have the
symbols L and R switched (also the arc (s) — (1, R) is considered switching whereas
(s) — (1, L) isnot switching). Each path s — 7 consists of n nodes (beside the source
and the termination) and contains an odd number of switching arcs. To each path
we associated the set S of nodes that corresponds to the end nodes of the switching
arcs. Conversely, for each odd subset § there is a path containing the nodes (k, L) or
(k, R) as end nodes of the arcs of the path if and only if k € S. Each path has cost

D xi— > xi—IS|

ies i¢s

Hence, given a solution x, there is no violated inequality if and only if the max cost
path has value not greater than —1. This condition can be expressed by the dual
problem, i.e., by imposing that the value of a min-tension problem is not larger than
—1. Hence the polyhedron P can be expressed in compact extended form as:
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w(r) —w(s) <-1

w(l, R) — w(s) >x —1

w(l, L) — w(s) > —xi

wk+1,L) —wk,R) >x, 01— 1 ke[n—1]

wk+1,R) —w(k,R) > —xp11 keln—1] (8.5)

wk+1,R) —wk,L) > x4 —1 ke[n—1]
wk+1,L) —w(k, L) > —x341 keln—1]
w(t) — w(n, R) >0

0<x <1 k € [n]

This formulation requires (n +2n+ 2) = O(n) variablesand4 (n — 1) +4+2n =
6n = O(n) inequalities. As far as the bound on the number of inequalities for a
compact extended formulation is concerned, we have observed that Pr has on—1
vertices. Hence, according to Theorem 2.10 the number of inequalities cannot be
less than log, 2"~! = n — 1 and the formulation (8.5) is asymptotically minimal.

This result together with Yannakakis’ Theorem 6.3 allows to state a bound on
the non-negative rank of the slack matrix Sg of the polyhedron Pg. Let e(T') be the
incidence vector of the subset 7 C [n]. Let Sg and S}E be n x 2"~! matrices whose
columns are the vectors e(T) and 1 — e(T') respectively for all even sets 7. These
matrices are associated to the bounding constraints in (8.1). Let S}, be a 2=l -l
matrix whose rows and columns are associated to the odd and even subsets of [7]
respectively and the generic entry has value S;.(T', R) = |T A R| — 1. This matrix is
associated to the set constraints. Then we have

Since the linear rank of Sg is n + 1 (for n > 2), we have n + 1 < rank, (Sg) <
min {6n, 2”’1}.

By projecting from R¥*? to R"” we may easily compute numerically a factor-
ization of S. The matrix S, like S, which is just its transpose, has an interesting
combinatorial structure that deserves to be studied. A numerical analysis for n = 3
up to n = 10 shows that there exists a factorization Sy = 2U W with 4 (n — 2)
columns of U. This would suggest that rank . S}, < 4 (n — 2). In particular each row
of U (that is associated to an odd set) is a vector partitioned into (n — 2) blocks
of four entries. These four entries are all zero except one entry which is one. The
same structure holds for each column of W (that is associated to an even sets). It is
interesting to understand how to build these vectors from the sets.
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Here we provide an example for n = 5 which requires 12 columns of U. In the
example the rows of §* are associated to the following odd sets (in this order)

{1}, (2}, 34, {44, (53, 11, 2,3}, {1, 2,4}, {1, 2, 5, {1, 3, 4},
{1,3,5}.{1,4,5},{2,3,4},{2,3,5},{2,4,5}.{3.4,5},{1,2,3,4, 5}

and the columns of $* are associated to the following even sets (in this order). Note
that we have arranged rows and columns so that the same index corresponds to
complement sets (this is possible only for n odd)

(2,3,4,5},(1,3,4,5},{1,2,4,5},{1,2,3,5},{1,2,3,4}, {4,5}, {3, 5},
{3,4},{2,5},{2,4},{2,3},{1,5},{1,4},{1,3},{1,2},0

This is the factorization (in displaying the matrices U and W the structure into blocks
of four entries has been highlighted):

4222222222200000
2422222200022200
2242220022022020
2224202020220220
2222400202202220
2220042222022002
2202024220220202
2200222402202202
2022022042220022
2020220224202022
2002202222400222
0222022020042222
0220220202024222
0202202200222422
0022200022222242
0000022222222224

0100 0100 0100
0010 0100 0100
0001 0010 0100
0001 0001 0010
0001 0001 0001
1000 0010 0100
1000 0001 0010 0010010000000011

0000011100000001
1000000011100000
010000000001 1100
0011100000000010

2UW =2 1000 0001 0001 J0O0O0O11T01100000000
- 0100 1000 0010 0000000011011000
0100 1000 0001 1100000000100100

0100 0100 1000
0010 1000 0010
0010 1000 0001
0010 0100 1000
0001 0010 1000
1000 0010 1000

00000000001001 11
1110010000000000
0001001010010000
0000100101001000




Chapter 9
Trees

9.1 Steiner and Spanning Trees

The Steiner Tree problem can be stated as follows: given a graph G = (V, E), V =
[n], costs ¢, > O foreach arc e € E, and a subset T C V of terminal vertices, find a
minimum-cost tree spanning all vertices in 7. The vertices V \ T may or may not be
spanned by the tree. Vertices in V \ T spanned by an optimal tree are called Steiner
vertices. For notational simplicity, let us suppose 1 € T'.

We may view a Steiner tree like a set of overlapping paths from one terminal
vertex to each of the other terminal vertices. Each path consists of some edges. The
whole set of edges belonging to the paths must form a tree and be of minimum cost.
It turns out to be more convenient to deal with a directed graph G = (V, A) where
each edge e = (i, j) is replaced by two opposite arcs (i, j) and (j, i). In this way
the tree can be seen as an arborescence rooted in the vertex 1 made up by a set of
overlapping directed paths from 1 to each other node in the terminal set. Each edge
is crossed in the same direction by the various overlapping paths.

Hence let &2, be the set of all directed paths from 1 to k with k € T’, where T’ =
T \ {1}. We model the problem by a Large Scale LP with an exponential number of
variables. We introduce binary variables z p, for each directed path P € &,k € T',
such that zp = 1 if and only if P is one of the paths in the tree. We also introduce
binary variables x;;, (i, j) € A, such that either x;; =1 or x;; = 1 if and only if
(i, j) is an edge in the tree. The constraints are such that, in a feasible solution,
the set {(i, j) € A : x;; = 1} defines a tree. Hence the problem can be solved by the
following ILP model:
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min E Cij Xij

(ij)eA
D ww=x; keT, (iHeA
PePy:(ij)eP (9.1)
D=l kel
Pe?,
Xij € Z+ (l]) eA
zp >0 Pe P, keT.

Note that in an optimal solution of (9.1) the x;;’s are necessarily binary and they
necessarily correspond to a tree. There is no need to introduce a constraint like

ZeeE Xe<n—1
Let vfj and u* be the dual variables associated, respectively, to the first and second

set of constraints in (9.1). It is not difficult to see that the pricing problem consists in
solving shortest path problems for each k € T’ with arc lengths vf.‘j and the optimality

condition requires the shortest path length in &, to be at least u*. Therefore the dual
compact extended model is

max E I/lk

keT’

w—yizu kel

vk — y_’; < foj i, j)eA, keT 9.2)
vaj = Cij (ij)e A

keT’

Vi ut =0 (ij)e A, keT,

with y{‘ being the shortest distance from 1 to i with lengths vf.‘j. The model (9.2)
has |T'|(n +2m 4+ 1) + 1 = O(nm) variables (by assuming that |7’| is linearly
related to n) and |T'| @m + 1) + 2m = O (nm) constraints. The dual of (9.2), i.e.,
the compact equivalent of (9.1), is (by using the shorthand notation explained in

Sect. 6.6)
min Z Cij Xij
(ij)eA (9 3
ghed, k1) keT :
gl < x; keT', (ij) € A.

The interpretation of this special flow problem is as follows: a unit of flow must be
sent from one terminal node to all other terminal nodes, thus assuring connectivity.
A capacity (independent for each flow) is available on each arc. Its use implies a cost
and we want to minimize the total cost. Clearly (9.3) is the compact equivalent of
the relaxation (9.1). In order to get the compact equivalent of the original integral
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problem (9.1) we add the integrality requirement to the x variables. There is no
need to impose integrality on the flows, because, once the capacities x;; are fixed the
problem splits into |7”| independent flow problems for which integrality is assured
by the total unimodularity of the flow constraints.

9.2 Spanning Trees

Incase T = V, the Steiner tree problem becomes the well known Minimal Spanning
Tree problem, for which several famous polynomial algorithms are available (Kruskal
1956; Prim 1957; Boruvka 1926). In this case there is no need to impose integrality
on the x variables because the solution is already integral. To show this fact let us first
quote a result by Edmonds (1973). Consider the convex hull of the incidence vectors
of all arborescences rooted in vertex 1. Let us call this polyhedron P*®. If we add to
a polyhedron the positive orthant we form the so-called dominant of the polyhedron.
Let Pjrb be the dominant of P*®. A linear objective function is unbounded on a
dominant polyhedron unless all its coefficients are non-negative. On passing from a
polyhedron to its dominant we may loose some vertices but we preserve the vertices
that are optimal for non-negative linear objective functions. The following theorem
holds for P (Edmonds 1973).

Theorem 9.1
P ={xeRL:x(84(S) > 1, forall S: 1€ 5,8 #V}

Hence the formulation of be is exponential. It turns out that the polyhedron
defined by the constraints in (9.3) is a compact extended formulation of be when
T=V.

Theorem 9.2 Let

0 ={(x,&) e RAHAIWIED - ek e @(1,k, 1), &8 <xi;, ke V\1, (ij) € A}

ij =
Then ijb is the projection of Q.

Proof We first prove Pjrb C ZQ. Given an x that is the incidence vector of an
arborescence rooted on vertex 1 we define (n — 1) unit flows ¥ from vertex 1 to
every other vertex k along the unique paths defined by the arborescence. Clearly
(x, &) € Q. Hence all vertices of be belong to the projection of some points in Q.
Furthermore, each x;; in (9.3) can be raised without bounds. Therefore be Cc Z0Q.
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Fig. 9.1 A graph and its spanning tree polyhedron

In order to prove ZQ C be, take any point x ¢ P.Then there exists a set S and
a node k such that x(6.(S)) < 1, 1 € S, k ¢ S. By the max-flow/min-cut theorem
this implies that there is no unit flow from 1 to node k, i.e., (x, &) ¢ Q. |

The passage from arborescences to trees is immediate. It is enough to add to (9.3)
edge variables y, and impose the constraint y, = x;; + x ;. Each vertex of this new
polyhedron Q is projected onto the y variables in a vertex that is the incidence vector
of a spanning tree. This shows that there exists a compact extended formulation
also for the dominant of the spanning tree polyhedron, i.e., the convex hull of the
incidence vectors of spanning trees.

This is not yet a compact extended formulation for the spanning tree polyhedron.
We recall that the spanning tree polyhedron has the following external representation
(Edmonds 1971),

x(ES) <I|S|—-1 ScV,1<|S|<n
P={xeRf: x(E)=|V|-1 (9.4)
x. >0 ec E

We show in Fig.9.1a bidimensional rendering of the spanning tree polyhedron
for the little graph shown at the left. This polyhedron has dimension four. The eight
vertices are labeled with the corresponding spanning trees. In Fig.9.2 we highlight
two facets of the polyhedron. These facets are three dimensional polyhedra. At the
left we show the facet induced by the inequality corresponding to the subset {1, 2, 3}.
This facet includes all vertices that have two edges in the subset {1, 2, 3}. At the right
we show the facet corresponding to the subset {2, 3, 4}. The other two subsets with
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4z

Fig. 9.2 Two facets of the polyhedron of Fig. 9.1

three elements are not facet-inducing. They induce bidimensional faces. The other
facet-inducing inequalities are given by the two-element sets that correspond to edges
(the reader can identify them on the figure).

The way we may build a compact extended formulation for (9.4) is by using linear
programming as explained in Sect. 6.1 (see also Martin 1991). Hence we have to find
a way to solve by LP techniques the following separation problem: given0 < X < 1,
suchthat X(E) = n — 1, is there any violated inequality in (9.4), i.e., is there a proper
subset S such that X (E(S)) > |S| —1?

Let us consider the following LP:

max E XoXp — E Vi

ecE ieV
Xe < Vi e=(,]J)
.. 9.5)
Xe =Y e=(,J)
=1

Xe>0,0<y <1

If X, > 0, the objective function forces x, to be as large as possible. Hence, for binary
values of y, x, is equal to one if only if both y; = 1 and y; = 1. If X, = 0, the value
of x, is irrelevant for the objective function. The optimal binary values y are the
incidence vectors of subsets S and the optimal binary values x are the incidence
vectors of E(S).
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It is not necessary to impose integrality on the variables in (9.5). The matrix
formed by the constraints x, < y; and x, < y; is totally unimodular since the row
associated to each constraint has a +1 in correspondence of the variable x, and a
—1 in correspondence of the variable y; (or y;). Adding the bounding requirement
v; < 1 and fixing one variable does not alter the total unimodularity.

Therefore if the optimal value of (9.5) is not larger than —1, then there exists no
violated inequality among the subsets that contain k.

‘We comment on the constraints y; = 1. If we disregard this constraint a solution
with value zero always exists that corresponds to the empty set. So we have to exclude
the empty set from the feasible solutions. One easy way to do this is by imposing
> ¥ = 1. However, this would destroy total unimodularity. Hence we have to solve
n different problem by imposing the constraint y; =1 in turn for k =1, ..., n.
Note that the whole set V' (which is a feasible solution in (9.5)) has value —1 (we
have assumed that x satisfies x (V) = n — 1) and therefore does not ‘hide’ possibly
violating subsets.

Hence there are no violated inequalities in (9.4) if and only if the optimal values

of (9.5) fork =1, ..., n, are all not larger than —1. Let us rewrite (9.5) as
— 1 + max Z)Eexe — Z Vi
ecE ieV\k

Xe—y <0 e=(j)eE, i#k
xe—y; =0 e=(GJj)€E, j#k
yi<l ieV\k

Xe, i =0

(9.6)

where we have explicitly discarded the variable y; and taken into account its value
in the objective function value. We build the duals of (9.6) (without the additional
term —1 in the objective function) for each k and associate the dual variable ufj to
the constraint x;; < y;, the dual variable u’;i to the constraint x;; < y;, and the dual
variable wf-‘ to the bounding constraints y; < 1. Note that there are no variables uf ;
because the corresponding constraints are missing in (9.6). It is however notationally
more convenient to assume the presence of these variables and assign them zero value.
Then the duals of (9.6) are

ieV\k
ufl‘i‘u/](lzx/\e e=(,j)eE

- D uli+wi=—1 ieV\k
jes(

uk,wkzO
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We embed the condition of no inequality violation into the polyhedron description
and we get (after having made X free)

> wh=<0 kev

ieV\k

w4 uf; > x, e=(,j)eE, keV
Zufjfwf.‘~|—1 ieV\k, keV
JE8()

erzn—l

ecE

0<x. <1

ub, wk >0

ij
These conditions can be simplified by noting that necessarily wf? =0, and so

ul; +ul; >=x, e=(.j)eE keV

>l <1 ieV\k keV

jes (i

er =n-—1
eckE

0<x, <1

uk. >0

L

A further simplification can be obtained by summing together the constraints as:

mel= D e = D Ui =D > ul =

eckE ecE ieV jed(i)
k k k
PIDNGEDNED IS IELES
ieV\k jes(i) jed(k) ieV\k jed(i)

which shows that the inequalities are actually equalities and therefore

Doxe=D ltul) = ujtuf=x

Jt
ecE ecE

D 2 ==l = > u=1

ieV\k jebd(i) J€s(@)
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Finally the following polyhedron is a compact extended formulation of (9.4)

Mﬁ-{j‘i'”];i:xe e=(,j)eE, keV
uf; =1 ieV\k keV
J€8(i)
Q_ (x u)eerhLan .

= ’ : erzn—l
ecE
0<x.<1
uﬁ‘j >0, ul,ij =0

Another extended formulation can be obtained by exploiting the factorization of
the slack matrix of P and the previous ideas on arborescences. The slack matrix
is partitioned into two parts. The first part is related to the constraints x(E(S)) <
|S| — 1. The second part is related to the non-negativity constraints of the x variables.

Let us consider the first part. A simple count shows that the generic entry sg7 of the
slack matrix of (9.4), where S is any proper subset of V of cardinality at least two and
T is any spanning tree of the graph, is given by the number of connected components
of T in S minus 1. This way of expressing the slack matrix is not helpful because it
is related to subsets, whose number grows exponentially. A clever alternative way of
computing sg7 is based on arborescences and can be let depend only on the vertices
of the graph (Conforti et al. 2011).

Given a spanning tree 7', a set S of vertices and a particular vertex k € S, collapse
all connected components of 7 in § in a pseudo-vertex and do the same thing on
V '\ §. Now the number of pseudo-vertices in § is just the number of connected
components of 7 in S. In the collapsed arborescence the pseudo-vertices at even
distance from the root k have in-degree 1, otherwise there would be two alternative
paths to the same node. Hence we may state that the entry of the slack matrix is the
number of vertices in S whose father (in the unique path from k) is not in S.

If we define )ij (T) abinary variable that is equal to 1 if and only if j is the father
of i in T rooted in k, we have

sst = > M(T)  withkes
ieS j¢S
If we specify a vertex k(S) € S for each subset S, sg7 can be written as

st =2 > D Ik =k(S)1li € SILj ¢ S1A{(T)

keV ieV jeVv

This is indeed a factorization of the first part of the slack matrix as U W where U
has rows indexed by subsets S and n* columns indexed by triples (k, i, j) € V? and
W has n* rows and columns indexed by spanning trees 7. In more detail
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i [1 ifk=k(S),ieS,j¢S
Ut =

. WL =2k (T
0 otherwise kij i (1)

For the second part of the slack matrix we have to add other | E| rows to U such
that the corresponding row of the slack matrix is given by the product of this new
row of U times W. The row of the slack matrix associated to the edge e has a 1in
the column index by T if and only if the edge e belongs to the spanning tree 7. Now
note that e € T if and only if Afj + )Jj‘-i = 1 for any k. Hence the generic entry s.r of
the second part of the slack matrix can be expressed as

ser =D > > Tk=1][e=j)]A(T)

keV ieV jeV
so that the row of U related to the edge e = (u, v) has all zeros except two ones in

position (k, i, j) = (1, u, v) and in position (k, i, j) = (1, v, u).
Now we may apply Theorem 6.4 and define the polyhedron

MES)+ > U iy =1S1-1 SCV.1<[S| <n

(kij)eVv?3
3
0 =1(x,y) e R . _x€+yilj+yjl'i:0 e=(ij) € E
x(E)y=n-—1

Xe >0,y >0

Now we should extract from the equations defining Q" a subset of linearly indepen-
dent equations. For n < 9 we have empirically seen that a linearly independent set
is given by all subsets of cardinality at most 3 plus the n — 3 subsets of cardinality
4 defined by (k,k+ 1,k +2,k+3) fork = 1,...n — 3. Hence we have

() +(3) #n =" 3

equations. We conjecture that this property is true for all n.

9.3 Bounded-Degree Spanning Trees

The Bounded-degree Minimum Spanning Tree problem consists in finding a span-
ning tree of minimum cost with vertex degrees bounded by a given number. A similar
problem consists in finding a spanning tree whose maximum vertex degree is mini-
mum (among all spanning trees). We show the exponential and compact models for
the second problem only since there is no difficulty in doing the same for the first
problem.
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As in Sect. 9.1, we transform the graph into a directed graph by replacing each
edge with two opposite arcs and look for arborescences. Then & is the set of directed
paths from 1 to k with k € V \ {1}, zp are decision variables to select a path P € Z
between 1 and k and x;; are variables selecting the arcs (ij) € A in the arborescence.
Let r be a variable denoting the maximum degree in the spanning tree. The ILP
model for this problem is similar to (9.1) with the following differences: V replaces
T, the objective function is r and, in addition, there are inequalities

z )C,'j-f- z Xji =1 ieV

(ij)edy () (ji)es— (@)

with corresponding dual variables w;. Also in this case the pricing problem consists in
solving shortest path problems foreachk € V \ {1} witharc lengths vf.‘j . By exploiting
the conditions for an optimal path, the dual compact extended model is

max Zuk
keV\1
y,’{‘ — y{‘ > uF keT
yE=oh < G.j)eA keT
S <witw, () eA ©.7)
keV\{1}
=t
ieV
vf'(jv uk9 wi > Oa

with yf{ shortest distance from 1 to 4 with lengths vj. Model (9.7) has (n — 1) (n +
m—+ 1) +1 = O(nm) variables and (n — 1) 2m + 1) + m = O(nm) constraints.
The dual of (9.7), i.e., the compact equivalent of the original problem, is

min r
ek e o(1,k, 1) keV\{1}

il;fx[j kEV\{l}, (l])EA

inj—i-zycjiﬁr ieV.

(ij)€d (i) (ji)es_()

The interpretation of this flow problem is very close to that for the Steiner tree
problem. A unit of flow must be sent from one node to all other nodes, thus assuring
connectivity. On each arc there is available a capacity which induces a node capacity
as the sum of the capacities of all incident arcs, both incoming and outgoing. The
largest node capacity has to be minimized.
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9.4 Minimum Routing Cost Trees

The Minimum Communication Cost Network is a basic problem in network design,
in which we have to connect n points by a network.

Apart from the building cost of the network for which the minimum spanning tree
problem can be an useful model, we focus here on the running costs that depend on
the communication demands between all pair of points that are proportional to the
expected usage of the best path between the points in the final network. Then we may
consider the communication cost for a pair of points to be the length of the shortest
path in the final network, weighted by the pair’s demand. The objective is to design
a network which minimizes the total communication cost.

This is clearly a relevant problem in network design. The problem has been first
studied by Scott (1969); Dionne and Florian (1979), among others. Johnson, Lenstra
and Rinnooy Kan (Johnson et al. 1978) have shown that the problem is NP-hard,
even in case all the demands are equal, all the building costs are 1, and the solution
is a tree. Not only the problem is NP-hard. Only relatively small instances (40-50
vertices) can be solved to optimality.

Here we model the relevant special case of finding a spanning tree of minimum
communication cost when all the demands are equal, a problem denoted as the
Optimum Distance Spanning Tree in Hu (1974) and the Minimum Routing Cost Tree
(MRCT) in Wong (1980) and in Wu et al. (2000).

Surprisingly this mathematical model can be applied for the alignment problem in
computational biology. Feng and Doolittle (1987) have suggested to use a tree for the
alignment of n sequences, because for n — 1 out of n(n — 1)/2 pairs of sequences,
the pairwise alignment induced is optimal. The cost of the alignments of the other
pairs is upper bounded by the sum of the costs along the path in the tree, since the
triangular inequality holds. From this observation it turns out that a good overall
alignment can be obtained by a minimum routing cost tree.

Formally, the minimum routing cost tree is the following network—design problem.
We are given an undirected weighted graph G = (V, E) in which the length of an
edge e = {i, j} is denoted as d,. A pair of vertices is an edge of the complete graph
K, = (V, Q). For a spanning tree T and a pair {i, j} € Q of vertices, d(i, j, T) is
the length of the unique path connecting i and j in 7. The routing cost of 7' is defined
as r.(T) = Z{i,j}eQ d(i, j, T). We want to determine a spanning tree of minimum
routing cost.

For each pair ¢ = {i, j} € Q, we denote by £?7 the set of simple paths in G
between i and j. Conventionally, for each pair {i, j} € Q, apath startsini < j. Let
P =UyepP9. Foreachpath P € &, weletdp := >, pd..

The MRCT problem can be formulated (Fischetti et al. 2002) as a Large Scale
ILP with decision variables zp, P € &, used to select a path between each pair of
vertices and x,, e € E, used to select the tree edges. The constraints are such that,
in a feasible solution, the set {e € E : x, = 1} defines a tree. The ILP model is the
following:
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min Z de Zp,

qeQ PeP4
Z zp >1, q €0,
Pe4
—Z zpt+ x>0, ecE,qeQ, ©.8)
PeP4:ecP
ng =n-—1,
eckE

Zp Zo,xg S Z+.

Let u?, v¢ and w be the dual variables associated to the three groups of constraints in
(9.8). The columns to be generated are those corresponding to the variables x» and
are associated to violated dual constraints u? — >",_, v, < dp, that can be rewritten
as Zee P(vZ +d,) > u?. Hence a pricing algorithm (Fischetti et al. 2002), consists
in finding, for each pair ¢ = {i, j}, the shortest i—j path in E, with respect to the
costs (v§ + d,), and checking if it is shorter than 1.

Let y/, fork € V and ¢ € Q, represent the length of the shortest i—k path. The
compact extended formulation of the dual of (9.8) is

max Zuq—i—(n— Dw,

q€0Q
g -y 4y <0, g=(i.jleQ, i<j
—v! +yl —yl<d, qeQ, e={hk}€E, 9.9)
— e +yl =yl <d,, qeQ. e={hk}€E,
D vitw <0, eckE,
qeQ

u? >0, v >0.

The size of the compact extended formulation is n (n — 1) (m + 1) /2 4 1 variables
and n (n — 1) 2m + 1)/2 4+ m constraints. This compact dual, however, does not
provide a direct information on the routing tree. To this aim, we compute the dual of
(9.9), which is the following compact equivalent of (9.8)

min Z dpk Zlg;?kh

{h,k}eE qeQ
&1 e ®(,j, 1), q=1i,jle€0,
g+ &L <x., geQ,{hky=ecE,

ng:n—l.

ecE

(9.10)
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This model turns out to be a min-cost multi-commodity flow problem with an addi-
tional constraint. For each pair {i, j}, one unit of flow must go from i to j. On every
arc e, a capacity x, is available for each flow. Furthermore, the total capacity in the
network is limited and must be equal to n — 1. In an integral solution the value of x,
is either 1 or 0 and clearly the objective measures the routing cost.



Chapter 10
Cuts and Induced Bipartite Subgraphs

10.1 Basic Definitions

If G = (V, E) is a graph, then each graph G’ = (V’, E’) which can be obtained by

removing some edges and/or some nodes (with all their incident edges) from G is

called a subgraph of G. If V' = V we say that G’ is a spanning subgraph of G.
When S is a subset of vertices of G, the graph

G[S]= (S, E(S)), where E(S) ={{i, j} e E:i,j €S}

is called the subgraph of G node-induced by S. Similarly, if F is a subset of edges
of G, then the graph

GIF]l=(V(F), F), where V(F) ={i € V : {i, j} € F for some j € V}

is called the subgraph of G edge-induced by F .

By repeatedly removing edges (or nodes) from a graph, we eventually obtain a
bipartite subgraph (after we break each of the original odd-cycles). An interesting
combinatorial question is then to determine the minimum number of edges (or nodes)
that is necessary to remove in order to obtain a bipartite subgraph. Equivalently, we
might think of the problem as that of keeping as many original edges (or nodes) of G
as possible so as the corresponding subgraph is bipartite. These problems are called,
respectively, the maximum edge-induced bipartite subgraph and maximum node-
induced bipartite subgraph problems. They are both NP-hard (Garey and Johnson
1979). In addition to their cardinality versions, these problems have weighted ver-
sions as well. The Max-Weight Edge-induced Bipartite subgraph (MWEB) problem
is the following:

Given a graph G = (V, E) and weights w;; on the edges, find F' C E such
that G[ F] is bipartite and w(F') is as large as possible.
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while the Max-Weight Node-induced Bipartite subgraph (MWNB) problem is the
following:

Given a graph G = (V, E) and weights w; on the nodes, find S C V such that
G[S] is bipartite and w(S) is as large as possible.

As we will see in Sect. 10.2, the problem MWEB is closely related to the max-cut
problem, specifically, when w;; > 0 for all edges. A model for the problem MWNB
will be described in Sect. 10.5.

10.2 Max-Cut and Edge-Induced Bipartite Subgraphs

LetG = (V, E) be agraph and letw,, e € E be positive weights. Denote by n = |V/|
and, without loss of generality, assume V = [n]. For any S C V, the set of edges

() =i, j}:ieS,j¢Ss}

is called a cut of G. The weight of the cut is w(§(S)) := 3 .55 We- The Max-Cut
problem consists in finding a cut of maximum weight. The problem is NP-hard, and
this holds also for its cardinality version, i.e., when w, = 1 for each ¢ € E (Karp
1972).

The subgraph (V, §(S)) is obviously bipartite, with bipartition (S, V \ S). Con-
versely, for each bipartite subgraph (V', E’), with bipartition (S’, V'\ S’), the edge set
E’ is contained in some cut. In particular, E’ C §(S) for each S suchthat SNV’ = §'.
These considerations suggest the modeling of the max-cut problem as the search of
a spanning bipartite subgraph of G with maximum edge-weight. The objective func-
tion guarantees that the optimal solution will indeed be a cut. In fact, the positivity of
the weights implies that £’ cannot be maximum if there exists §(S) D E’ for which
the inclusion is strict.

The first model for the max-cut problem that we consider is then the following
(Grotschel and Pulleyblank 1981)

Ve = max E We Xe\
ecE

x(C) =|Cl=1  C € Cul(G)
xee{osl} EEE,

(10.1)

where %,44(G) is the set of odd circuits of G. The constraints are justified by the fact
that a subgraph of G is bipartite if and only if it contains no odd cycle.

The feasible set of (10.1) is the set of the incidence vector of all bipartite sub-
graphs of G. Let us denote by Pg(G) the convex hull of the incidence vectors of
the bipartite subgraphs of G. Grotschel and Pulleyblank (1981) defined the class of
weakly bipartite graphs as those graphs for which Pg(G) is equal to the integrality
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relaxation of (10.1). Furthermore, they described a procedure to separate the inequal-
ities of (10.1) in polynomial time, which implies that max-cut on weakly bipartite
graphs is a polynomial problem. Barahona (1980) showed that all planar graphs are
weakly bipartite. Therefore, the max-cut problem is polynomial for planar graphs.

A related model, equivalent to (10.1), considers the removal of edges so that the
resulting graph is bipartite:

, .
Ve = min E We X

ecE
x(C)>=1 C € %u(G)
x.€{0,1} e€E.

(10.2)

Clearly ve + v =2, <k We, and this is true also for the relaxed versions.

‘We now describe a set of inequalities that would at first appear as a strengthening
of (10.1), in the sense that they are valid for all cuts and include (10.1) as a special
case. Let C be a cycle of G (of whichever parity) and F be an odd set of edges. Given
any cut, since C intersects the cut in an even number of edges, either there is an edge
of F not in the cut (i.e., |F| — x(F) > 1) or there is an edge of the cycle which is
notin F (i.e., x(C \ F) > 1). The logical Vv of these two conditions corresponds to
the valid inequality

|F| —x(F)+x(C\F)>1

which should hold for any cycle C and odd set F. We therefore have a second

formulation of the max-cut problem (Barahona et al. 1989; De Simone and Rinaldi
1994), i.e.:

VF = max E We X

ecE
xee{o,l} ec E

where € (G) is the set of circuits in G. Note that the constraints of (10.1) are a subset
of the constraints of (10.3) (namely, those for which C is an odd circuit and F' = C).
We denote by ¥ be the optimal value of (10.3) and by v¢ be the optimal value of
(10.1).

Both problems (10.3) and (10.1) can be solved by constraint generation using a
simple separation procedure introduced by Grotschel et al. (1987) (see also Grotschel
and Pulleyblank 1981) which can yield a violated inequality. Let x be a solution
feasible for a current subset of constraints. In order to detect an inequality in (10.3)
violated by x we build a graph Gy = (V' U V", E' U E” U E) (see in Fig.10.1 at
left the graphs G and G f). The vertices V' and V" are copies of V, with the natural
maps V' — V,i’+ iand V' — V,i” > i. The arcs sets E’, E”, E are defined by
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=

Fig. 10.1 Graphs G, G (left), and G, G¢ (right), with paths highlighted

E ={{.j):i'eV', j eV ijeE}

E// — {(i”, J-N) . l-// c ‘///7 j// c V//, (l, J) c E}

E ={0.j):i"eV, j eV’ j eE}U

{(G'.i"):j eV, i"eV" G )) €E}
Each arc in G r is naturally mapped into an arc of G. By using this correspondence,
each path C : i" — i” in G defines a circuit C through node i in G. The arcs in C
can be partitioned as = C N E and C \ F. The arcs in F' are naturally mapped to
aset F of arcs in C. The map which associates a path C : i’ — i” in G to the pair
(C, F) is surjective, i.e., for each pair (C, F), where C is a circuit and F is an odd
subset of arcs of C, there exist at least one path in Gy mapped into (C, F).
We now define lengths for the arcs of G . Namely, to each arc in E' U E” we

associate the length x,, where e is the corresponding arc in G, while to each arc in
E we associate the length 1 — x,. The length of a path C is

D e+ D> (1—x) =x(C\ F)+|F| —x(F)

ecC\F ecF
If the length of each path C in G5 satisfies
X(C\F)+|F|—x(F)>=1
then, for each pair (C, F) in G it is

xX(C\F)+|F|—x(F)>=1
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i.e., the inequalities in (10.3) are all satisfied. Therefore, in order to separate the
inequalities in (10.3) we need to compute, for each i € V, a shortest path between
i’ € V'and i” € V" and check whether its length is smaller than 1.

In a similar way, in order to detect a violated inequality in (10.1) we build the
graph G¢ = (V' U V", E), compute shortest paths in G¢, between i’ € V' and
i” € V", foreachi € V, and check whether any of them has length smaller than 1
(see in Fig. 10.1 at right the graphs G and G¢).

10.3 Compact Versions

Since the separation procedures are shortest-path problems, they can be modeled
as linear programs. Henceforth, we can develop compact extended formulations of
(10.3) and (10.1), as explained in Sect.6.1 (see Lancia and Serafini 2011). This can
be done by expressing the condition that the length of each i” — i” path is at least 1
via a set of linear constraints.

Let y;(i") and y;(i”) be the optimal dual variables of a shortest path problem in
Gr fromk' € V'toi’ € V' and to i” € V" respectively. The compact extended
formulation of (10.3) is then

Vp = max E We Xe
ecE

w(@)=w(") <1—xj (,j)€eE, keV
() = wG@") <1—x; (,j)€E, keV
(@)= w(j) <1—xijj (,j)€eE, keV
(i) —w() <=1—x; (G, j)eE, keV

WG = wl@) < x (.))eE kevV (104
(@) = (') = xi (,j)cE, keV

W) = (") = xij (.j)€E, keV

(") = (@) < xi (i,j)eE, keV

yi(k") = ye(k') = 1 kev

x. € {0, 1} ecE,

with 8 nm + n inequalities and m + 2 n? variables, where m = |E|.
In a similar way, problem (10.1) has the following equivalent compact model
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Ve = max Zwe Xe

ecE
(@) =) = 1—x;
(G = (@) <1 —x;
@) = ye(j) =1 —xj;
(") = (@) <1 —x;
(k") = yi(K') > 1
x. € {0, 1}

i, j)eE, keV
i,j)eE, keV
i,j)eE, keV
i, j)eE, keV
keV

eckE,
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(10.5)

with 4 n m + n inequalities and m + 2 n? variables. The optimal values of (10.4) and

(10.10) are clearly vy and v¢.

Proceeding in the same way, (10.2) (the edge-removal version of max-cut) has

the following compact version

Ve = min E We X,

ecE

(@) = (") < xj
ve(j") — v < xpj
(i) = (") < xij
w (@) —w(j) < X, j}
(k") = ye (k') = 1,
x. € {0, 1}

{i,jleE, keV
{i,jleE, keV
{i,jleE, keV
{i,jleE, keV
keV,

ecE,

(10.6)

with 4nm + n inequalities and m + 2 n? variables. The dual of (10.6) is a multi-

commodity flow problem with flow éi’fj,/ on {i’, j”} and éjlii,/ on {j’,i"}

max Z{k,

g e KK, ¢,

k k
DR+ £ < we,

keV

keV,
e={i,jl€E.

(10.7)

This is a particular type of multi-commodity min-cut problem on the graph G ¢. From
each node k' there is a flow ¢* to k”. The sum of these flows must be maximized,
taking into account a special capacity bound which is present jointly on the arcs
{i’, j”} and {i”, j'}. The problem (10.7) is the compact equivalent of the dual of

(10.2), that tries to find a set of odd circulations with maximum total flow within the
capacity bounds w,. The variables ¢* identify the odd circulations.
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We conclude this section by considering a popular polynomial model for the max-
cut problem, i.e., a binary program which has four constraints for each possible triple
of nodes:

VA = max E We Zes
eckE

zij < zik + 2k, i<jk#Fik#Fj i jkeV, (108)
Zij +zik +2jk <2, i<j<kijkeV,
zij €1{0, 1}, i<

Also this model turns out to be, in fact, a compact extended formulation of one
of the exponential models described in the previous section (Barahona 1993):

Theorem 10.1. The model (10.8) is a compact extended formulation of (10.3)

We prove this result by using the Fourier elimination technique. The proof is taken
from Conforti et al. (2010). Let us denote by R(G) the polytope in IR® defined
by (10.3).

Lemma 10.2. Let G = (V,E U Ei) be a supergraph of G over the same nodeset.
Then R(G) is the projection of R(G) onto RE.

Proof: It is sufficient to prove the statement when E consists of a single edge ¢'.
We use the Fourier method to project out the variable x,.. The inequalities defining
R(G) in which x, appears with nonzero coefficient are

@ xs <1;

(b) xo +x(F\{e'}) —x(C\F) <|F|—1whereC € € (G),e € F C C,|F|odd;

(C) —Xe 509

(d) —xe +x(F) —x(C\(FU{e'}) <|F|—1where C € €(G), e e C\F,|F|
odd;

Fourier’s method sums each inequality of type (a) or (b) with an inequality of
type (c) or (d) to eliminate x, . It is easy to see that the only inequalities that are not
redundant are obtained by combining an inequality of type (b) with an inequality of
type (d). Let C’ and C” be cycles of G containing €', let F/ € C’, |F’| odd, such
thate’ € F’,and F” C C”, |F"| odd, such that ¢’ ¢ F". Let Cy, ..., Cy be disjoint
cycles whose union is C' A C". Let F = F" A (F' \ {€'}). Note that |F| is odd.
The inequality obtained by summing the two inequalities determined by C’, F’ and
C”, F” is implied by the following inequalities, valid for R(G):

X(CNF)—x(C\F)<|FNCi|—1 if|FNC]isodd,
0<x,<1 ee(C/UC”)\{e/}

Therefore the only non-redundant inequalities produced by Fourier’s method are the
ones in (10.3). |
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Lemma 10.3. Let C € €(G) be a cycle with a chord e = {u,v} and F C C be a
set of odd cardinality. Then the inequality x(F) —x(C \ F) < |F| — 1 is implied by
the other inequalities in (10.3).

Proof: Let P, and P, be the two distinct paths in C between u and v, and let
Ci, C; be the cycles defined by P, U {e} and P, U {e}, respectively. By symme-
try, we may assume |F N Pj| is odd and |F N P,| is even. Let F; = F N P
and F, = (F N Py) U{e}. Then x(F) — x(C \ F) < |F| — 1 is the sum of the
two inequalities x(F;) — x(Cy \ F1) < |Fi| — 1 and x(F;) — x(Cy \ F») <
|F>| — 1. |

Letnow G = (V, EU{{u, v} : {u,v} ¢ E, u # v}) be the complete graph over the
same nodeset of G. By Lemma 10.2, R(G) is the projection onto IRZ of R(G). Since
the only cordless cycles of G are the triangles, by Lemma 10.3, R(G) is defined by
the following system, containing four inequalities for each triangle {ey, e;, e3} of G

Xey — Xey — Xy <0

1
— Xep + Xey — Xey <0
_x€1 _xe2 +xe3 SO

Xey + Xoy + Xoy < 2.

Notice that this is the set of inequalities defining (10.8), so that (10.8) is a compact
extended formulation of (10.3), as claimed. Furthermore, the inequalities 0 < x, < 1
are easily seen to be implied by the above system.

The model (10.8) has 4n (n — 1) (n — 2)/6 inequalities and n (n — 1) (n — 2)/6
variables.

10.4 Model Comparison

In this section we compare the three direct formulations for maxcut described
(namely, (10.1), (10.3) and (10.8)). We show how the relaxations (10.1), (10.3) and
(10.8) have the same value and thus provide the same strength in a branch-and-bound
search. Let us denote by v, be the optimal value of (10.8).

Clearly, v/ = va, since (10.8) is a compact extended formulation of (10.3).
Furthermore, it is obviously ¢ > vy since the constraints of (10.1) are a subset
of those of (10.3). All that remains to show for the three bounds to coincide is that
va > ve. To this purpose we need some preliminary results. Given a graph G with
positive weights w, on the arcs, let us call the completion of G the complete graph
G obtained by adding all missing arcs to G and assigning zero weight to these arcs.

Lemma 10.4. The model (10.1) gives the same objective function value when
applied to either G or G.

Proof: Let x be a feasible solution for (10.1) applied to G. Then we extend this
solution to a solution x for G by assigning x, = 0 to the added arcs. Clearly, x and
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X have the same objective function value. We want to show that x is feasible. For
each odd circuit C present in G and not in G, let ¢ € C be an added arc. On the path
P = C\ e we have x(P) < | P| since x, < 1 for each arc e. Since x; = 0 we have
X(C) < |P| = |C| — 1. Hence the optimal value for G is not larger than the optimal
value for G.

Now consider any feasible solution x for G. This solution can be projected to a
solution x for G by simply dropping the variables for the added arcs. The projected
solution is clearly feasible with the same value of the objective function. Hence the
optimal value for G is not larger than the optimal value for G. |

Definition 10.5. Given a solution x of (10.1) a tight edge is an edge e such that
either x, = 1 or there exists at least one odd cycle C containing e for which

x(C) = |C| — 1.

A tight solution is a solution for which each edge is tight. |

In other words, a tight edge is an edge whose value cannot be increased while
keeping all the other variables fixed, and a tight solution is a solution for which no
edge variable can be increased. Tight optimal solutions always exist as the following
Lemma shows.

Lemma 10.6. There always exists an optimal tight solution of (10.1).

Proof: Let x be an optimal solution, and suppose there is an edge e not tight. If
w, > 0, then we could increase x, by a positive amount while still satisfying all
the odd-cycle inequalities. This would contradict the optimality of the solution. If
w, = 0, we increase the value x, until it becomes tight. Since the edge weight is
zero, the new solution is still optimal. |

In view of Lemma 10.4 we now consider vc as the optimal value of (10.1) for the
complete graph G.

Lemma 10.7. v, > v¢

Proof: By Lemma 10.6, let us consider an optimal tight solution ¥ of (10.1). We
want to show that x is also feasible for (ﬁ), i.e., the solution defined by z;; := X;;
foreach 1 <i < j < n is feasible.
For each triple of nodes i, j, k the cycle (i, j, k) is odd and therefore the model
(10.1) ensures that
Xij + Xj + X < 2.

As far as the triangle inequalities are concerned, we want to prove that

Xij < Xik + Xjk.
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We know that {i, k} and {j, k} are tight. If any one of them has value 1, then the
triangle inequality is satisfied. Otherwise, there exist even paths Pj; and Py; such
that, for the cycles Cj := Py U {{i, k}} and Cy; := Py; U {{]j, k}} we have

X (Cix) = x(Pi) + Xix = | Pirl

and
X(Cyj) = X(Pyj) + Xji = | Pyjl.

Consider now the odd cycle C := Py U Py; U {{i, j}} (not necessarily simple).
From the feasibility of x, we have

X(Pi) + X(Pyj) + Xij = X(C) < |Cl = 1= [Pyl + | Pyj| =

X(Pi) + Xig + X (Prj) + Xji
from which x;; < X;x + X jx, i.e., the triangle inequalities are satisfied. n
From Lemma 10.7 and the fact that vc > vp = v, we derive the following:
Theorem 10.8. \_/c = ‘_’F = \_/’A.

In conclusion, we have alternative compact extended formulations for the max-
cut problem, all of the same strength. By looking at their sizes, we notice that the
formulation (10.8) has a number of constraints O (n*) and so it might be impractical
for graphs with many nodes. The model (10.10) has a number of constraints O (m n)
and so it can be a viable option if the graph is sparse.

10.5 Node-Induced Bipartite Subgraphs

Let G = (V, E) be a graph, and let w; be weights defined for the vertices. The
maximum node-induced bipartite subgraph is a bipartite subgraph G[S] = (S, E(S))
such that w(S) is maximum possible. For non-planar graphs, this problem is already
NP-hard even when all vertices have degree at most three (Choi et al. 1989). For
planar graphs with vertices of degree at most three the problem is polynomial, but it
becomes NP-hard when the maximum degree is larger than three (Choi et al. 1989).

The MWNB problem can be modeled in an analogous way as we did for the
edge-induced bipartite subgraph. We define binary variables x, for each v € V, used
to select the nodes of the subgraph. For each odd-cycle C, let us denote by V¢ the
set of nodes along the cycle. Then we have the following model

max E Wy Xy,

veV
x(Vo) =ICl =1 C € %u(G)
x, € {0, 1} veV,

(10.9)



10.5 Node-Induced Bipartite Subgraphs 147

The separation of the odd-cycle inequalities for the nodes can be done in the same
way as we did for the edges in Sect. 10.2. In particular, we build the auxiliary graph
G¢e = (V' U V", E) and compute shortest paths between i’ € V' and i” € V", only
that now we define the length of each edge {u’,V"} € E as 1 — (x, + x,)/2. This
way, the length of a cycle C in G (i.e., a path from i’ to i” in the auxiliary graph)
is [(C) = |C| — x(V¢) so that a violated inequality corresponds to a path of length
smaller than 1. Proceeding as in Sect. 10.3 we obtain the following compact version
of (10.9)

max E Wy Xy,

veV
(@) =w(j") = 1=x/2-x;/2 (,j))eE keV
() =w(@") <1=x/2-x;/2 (., j))eE keV
i@ =w(j) =1 =xi/2—=x;/2 (i,j)€E, keV
(") =) = 1=x/2-x;/2 (,j))eE, keV
Yi(k") — ye (k') > 1 keV

x, € {0, 1} vev,

(10.10)

with 4 n m + n inequalities and 2 n* + n variables.



Chapter 11
Stable Sets

11.1 Basic Definitions

Givenagraph G = (V, E), a stable set, also called an independent set,isaset S C V
of nodes no two of which are adjacent. When the vertices of G are associated weights
w;, fori € V, the weight of S is defined as w(S) := ZieS w;. The Maximum Inde-
pendent Set (MIS) problem calls for determining a maximum-weight independent
set. The problem is NP-hard, and this holds also for its cardinality version, i.e., when
w; = 1foreachi € V (Garey and Johnson 1979). On the other hand, there exist some
important special classes of graphs on which the problem is polynomially solvable,
such as perfect graphs and z-perfect graphs (Grétschel et al. 1986), circle graphs and
their complements (Gavril 1973), circular arc graphs and their complements (Gavril
1974; Gupta et al. 1982), claw-free graphs (Minty 1980), graphs without long odd
cycles (Hsu et al. 1981).

The maximum stable set problem can be formulated by a binary LP model with
variables x; associated to the nodes of the graph.

max E Wi Xi
ieV

)C,'-f-xj‘fl {i,jleE
x; € {0, 1} ieV.

(11.1)

We define the vertex-packing polytope VP(G) as the convex-hull of the feasible
solutions of (11.1). Given that the MIS problem is NP-hard, we expect VP(G) to
require and exponential number of inequalities in addition to the simple ones defining
(11.1). However, for bipartite graphs, the inequalities of the LP-relaxation of (11.1)
are both necessary and sufficient to define VP(G) (Grotschel et al. 1986).

Theorem 11.1. The feasible set of (11.1) is equal to VP(G) if and only if G is a
bipartite graph.
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Asithad already been pointed out in Sect. 4.2, the model (11.1) yields a very weak
LP-relaxation bound, but it can be strengthened by the addition of the exponentially
many clique inequalities

x(K)<1 Kex, (11.2)

where % is the set of all maximal cliques in G. We define the fractional vertex-
packing polytope of the graph G, denoted by FVP(G), as the set of all x > 0 for
which (11.2) holds. The clique inequalities are still not sufficient to define VP(G) in
general, but they are for perfect graphs.

Theorem 11.2. The polytope FVP(G) is equal to VP(G) if and only if G is a perfect
graph.

In order to further refine the external representation of VP(G) by families of linear
inequalities we can consider the exponentially many odd-cycle inequalities

ICI -1

x(C) < C € 60aa(G), (11.3)
which state that a stable set can intersect an odd cycle C at most in | |C|/2] nodes.

The inequalities (11.3) are neither stronger nor weaker than (11.2) in that none of
the two families implies the other one. Let us define the circuit-constrained vertex
packing polytope CVP(G) as the solution set of the system of inequalities (11.1) and
(11.3) over nonnegative x. A graph is said to be ¢-perfect if CVP(G) = VP(G), and
h-perfect if CVP(G) N FVP(G) = VP(G).

While the separation problem for (11.2) is NP-hard (Grotschel et al. 1981), con-
straints (11.3) can be separated in polynomial time. It follows that we can find a
maximum-weight independent set in every ¢-perfect graph in polynomial time. The
separation procedure for (11.3) is discussed in the next section.

11.2 Compact Models

In order to separate the odd-cycle inequalities for the MIS problem, we employ a
reduction to the shortest path problem on the auxiliary graph G¢ = (V' U V", E)
defined in Sect.10.2 p. 141 (Gerards and Schrijver 1986). Given a vector £ € RY
which we want to separate, the length of each edge {i’, j”} of E is defined to be
1— & +X)).

Since a shortest path problem over nonnegative lengths can be solved via linear
programming, we can derive a compact reformulation of CVP(G) in the usual way
as described in Sect.6.1. Let y;(i") and y;(i”) be the optimal dual variables of a
shortest path problem in G¢ from k' € V' toi’ € V' and to i” € V", respectively.
The compact extended formulation of the independent set problem with odd-cycle
inequalities is then
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max E Wi Xi

ieV

Xi + X =<1 {i,j}eE

(k") =y (k') = 1 keV

(@) =w(") <1—xi—x; {i,j}€E, keV (11.4)

(") = wG@) <1—x;—x; {i,jl€E, keV
w() = wG") <l—x;—x; {i,jl€eE, keV
(@) =w(j) <1—x;—x; {i,jY€E, keV
x; € {0, 1} ieV,

with4 nm + n + minequalities and 2 n> + n variables, wheren = |V |andm = |E|.
This formulation is equivalent, under a transformation of variables, to the one in
Conforti et al. (2010) obtained by using projection techniques.

The dual of (11.4) is the compact equivalent of the dual of the exponential for-
mulation with odd-cycle inequalities It is again a special multi-commodity flow
problem on G ¢ with ﬂowé ,oon{i’, j"} andé seon {j’, i7"}

min - > g+ > (= DT g+ 18R,

{i,jleE keV {i,j}eE

£ e DK 0 Go), keV, (11.5)
> (2l i) 2w eV

{i,j}es(@) keV

This problem can be interpreted as follows: in G ¢ there are flows ¢ from &’ to k”.
These flows can be decomposed into paths and circulations. Among the circulations
there may be present small circulations i" — j” — i’. In addition there are edge
variables 1;; > 0. These three quantities may be viewed in G as follows: the paths
in G¢ are associated to odd cycles in G whereas the small circulations in G¢ are
associated to edges in G, as are the variables n;; > 0. Hence the problem (11.5) is
equivalent to find a cover of G by using odd cycles and edges. Each odd cycle has
twice the value of the corresponding flow, each edge associated to a small circulation
has twice the value of the circulation and each edge associated to 1;; > 0 has value
nij. The cover must be such that for each node the sum of the cycle and edges
values must be at least equal to the node weight. The objective consists in finding a
minimum cover, taking into account that the cost of an odd cycle C is its value times
(|C| — 1)/2 and the cost of the edges are equal to their values.

See in Fig.11.1(a) a graph with weights indicated near the vertices and in
Fig.11.1(b) the dual cover of the graph. The maximum independent set is given
by the vertices 4 and 6 for a total weight of 10. The optimal solution of (11.5) is
n14 = 3; ¢! = 0 and no flow associated; ¢ = 0.5 with flow

£54, =05, £h5 =05 &i, =15 &5=1,
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(a) An example graph (b) The solution of the Dual

Fig. 11.1 Independent set problem

£y =15, & =1, &, =05

This flow is decomposed into the path 2" — 4" — 5 — 6” — 3’ — 2" with value
0.5 and the two small circulations 5" — 6” — 5’ of value 1 and 3’ — 6" — 3’ of
value 1. The path is associated to the odd cycle (2,4, 5, 6, 3) in G of value 1 and
the small circulations are associated to the edges (5, 6) and (3, 6) in G both with
value 2; ¢3 = 0 with no flow associated; ¢* = 0 but there is small circulation & 2‘,5,, =
£4,, = 0.5 which is associated to the edge (4, 5) with value 1; ¢> = ¢ = 0 with no
flows associated.
The constraints at the vertices are satisfied and the objective value is

34+05-4+2+24+1=10.

11.3 Comparability Graphs

In this section we describe an example of a compact model of the MIS problem on
a class of perfect graphs. We know that for perfect graphs VP(G) = FVP(G) and,
although in general the separation of the clique inequalities is NP-hard, this problem
is polynomial for perfect graphs. Therefore, we can optimize over VP(G) for a
perfect graph in polynomial time via the use of a separation oracle for the clique
inequalities (Grotschel et al. 1981). Moreover, if for a particular class of perfect
graphs the separation of the clique inequalities can be cast as an LP problem, then
it is also possible to express a compact reformulation of VP(G). Here we give one
specific such example, namely, we consider the class of comparability graphs.

An undirected graph G = (V, E) is a comparability graph if there exists a partial
order >onV = {v, ..., v,},suchthat {v;,v;} € Eifandonlyifv; > v; orv; > v;.
Equivalently, there is a way to orient each edge {v;, v;} € E into an arc so that the
resulting directed graph is a partial order (i.e., it is acyclic and if (v;, v¢) and (v, v;)
are arcs of the directed graph, then also (vj, v;) is). Let 8 =(V, 75)) be a directed
graph obtained by orienting the edges of G as above. Note that E}) is acyclic and
it coincides with its transitive closure. It is known that recognizing a comparability
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graph, or computing the directed graph 8 from G, can be done in time O(n?)
(Spinrad 1985). Comparability graphs are perfect (see, e.g., Schrijver 2002), and
therefore VP(G) = FVP(G).

For a comparability graph weighted on the nodes, the largest clique can be found
in polynomial time. In particular, assume, w.l.o.g., that V = [n] and the nodes have

been relabeled according to a topological sorting of G (i.e., for each (u,v) € E it

is u < v). Then, by the transitive property, each directed path (i1, iy, ..., i) from i}
N

to iy in G corresponds to a clique in G. Conversely, given a clique Q = {iy, ..., ix}

in G, where i} < iy < --- < i, the sequence (iy, ..., i) is a directed path in G .

Therefore, the largest clique in G corresponds to the longest (node-weighted) path
in 8 Note that since the longest path in an acyclic graph can be found in linear time
(0(|75> ), then this is also the complexity for finding a largest-weight clique in a
comparability graph. The problem can be solved by dynamic programming.

In order to separate the inequalities (11.2) for a fractional solution x, we would
give weights x; to each node i of 8 and look for the longest (node-weighted) path in
G. Then, there are no violated inequalities if and only if the length of the longest path
is < 1. Since the dynamic-programming solution for the longest path problem in ?})
can be expressed by LP constraints, we obtain that FVP(G) has a compact extended
formulation. In particular, the maximum stable set on a comparability graph G has
the following compact model

max E Wi X;

ieV
Vi > X ieV
yi<1 ieV (11.6)

. . ﬁ
Yi = yi+tx; (i,j)e E
x; €10, 1} ieV,

where each variable y; represents an upper bound to the length of any directed path

in G ending at node 7 (i.e., to the x-weight of any clique of G containing i as its
largest-index node), and the constraints y; < 1 ensure that no clique in G has an x-
weight larger than 1. The model has 2n variables and 2n + m constraints. In Conforti
et al. (2010) it is proved, by using slack matrix factorization, that VP(G) admits a
compact formulation of size O (n?). The model (11.6) is an explicit example, of size
O (m), of such a compact reformulation.

Asasmall example consider the following graph G = (V, E) with V = {1, 2, 3, 4}
and £ = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Itis a comparability graph (its comple-
ment is an interval graph with only intervals 1 and 2 overlapping) with one topolog-
ical sorting corresponding to the natural ordering of the vertices. The vertices of the
polyhedron defined by the constraints in (11.6) are the following integral vectors:
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X1 X2 X3 X4 yr Y2 Y3 Y4
o 0 o0 o O o o0 o
o 0 O o o0 o0 o0 1
o 0 O o0 0 o0 1 1
o 0 o0 o0 0 1 1 1
O 0 0 O 1 0 1 1
0O 0 0 O 1 1 1 1
0O 0 O 1 0O 0 O 1
o 0 1 0 0 o0 1 1
o 1 0 0 0 1 1 1
o 1 0 O 1 1 1 1
1 0 0 O 1 0 1 1
1 0O 0 O 1 1 1 1
1 1 0 O 1 1 1 1

whereas the vertices of the ‘basic’ model (11.1) are the vertices

S N Y = = ===

o= N0 oo F
S O NN O N~ O O F
O O == O RI= O - ij

—_ O M=

Clearly, being the graph perfect, if we consider the polyhedron defined by the clique
inequalities (11.2) (there are only two inequalities for this small example) we find
only integral vertices.



Chapter 12
Traveling Salesman Problems

The (symmetric) Traveling Salesman Problem (TSP) is perhaps the most famous
combinatorial problem in the literature. An undirected graph G = (V, E) with
nonnegative lengths d, on the edges is given. A hamiltonian tour is a cycle visiting
each node in V exactly once. We want to determine the hamiltonian tour of smallest
length.

The standard IP formulation for the TSP problem is based on binary variables
x, for each edge e € E. If we consider the incidence vector of a hamiltonian tour
as a binary vector in IRE then the TSP polytope is defined as the convex hull of the
incidence vectors of all hamiltonian tours. Although some important classes of facets
of the TSP polytope are known, a full description of all facets is at the moment out
of reach. Compact extended formulations for the TSP polytope are also unknown.

Therefore when we speak of compact extended formulation for the TSP we mean
with respect to some strong ILP formulations that require an exponential number of
constraints. The TSP can also be modeled as an ILP problem with a polynomial num-
ber of variables and constraints. One famous model is due to Miller et al. (1960) that
is rather easy and simple to implement. However, as pointed out by many researchers
and also remarked in Pataki (2003) this model is weak and only small problems can
be practically solved.

Already in 1954 Danztig, Fulkerson and Johnson (Dantzig et al. 1954) proposed
a model that, beside the obvious degree constraints x(§({i})) = 2, foreachi € V,
that force each node to be entered and exited exactly once by a feasible solution,
uses also an exponential number of inequalities, the so-called subtour inequalities,
that force a hamiltonian tour to share at least two edges with each cut of the graph.
Formally x(6(S)) > 2, for each S C V, where §(S) is the set of edges in the cut
induced by S.

At a time when the power of computers was almost negligible with respect of
today technology, it was truly a bold statement proposing a model with an exponential
number of constraints, but Dantzig et al. (1954) had the intuition that it was the right
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idea and years later this far reaching result became the most prominent tool to solve
the TSP.

Due to the strength of the subtour inequalities, if we have in mind to find a (ILP)
compact extended model for the TSP we intend a model that implies at least the
subtour inequalities.

For a comprehensive review of the general problems related to the TSP the reader
can refer to the classical texts Lawler et al. (1985) and Gutin and Punnen (2006).

12.1 Separation of Subtour Inequalities

The standard way of separating the subtour inequalities is via a min-cut problem,
which can be solved polynomially (Stoer and Wagner 1994). A slightly slower sep-
aration procedure is to solve (n — 1) maximum flow problems (see, e.g., Cook et al.
1998). Namely, for a fractional solution x*, each edge e is assigned a capacity interval
[—x), x)]. Since it is enough to consider only sets § # V such that 1 € S, there are
no violated constraints if and only if the maximum flow from 1 to each other vertex
in V has value at least 2.

Define variables é‘,fi’;. to represent the flow, possibly negative, on the arc {i, j}
corresponding to the max-flow problem from 1 to k, forallk € V\{1}and {i, j} € E.
Let us assume conventionally that a flow from i to j withi < j is positive. We have
then the following compact extended formulation of the TSP where the max-flow
constraints replace the subtour inequalities (Carr and Lancia 2002):

eckE

er = 2, IS V,
ecd({i})

k

2.6 =2 ke V{1, (12.1)

J

DBy =D 8 keVA{ILieV\{LkL

j>i j<i

—xij SE <xij, ke V\{I}{i,j}eE,

x. €10, 1}, ecE.

In (12.1) there are m n variables and n> —n + 1 + 2m (n — 1) constraints (both are
o3 if m = 2n?)).

An alternative compact formulation that implies the subtour elimination inequali-
ties is reported in Yannakakis (1991). Take a hamiltonian tour and assign an arbitrary
orientation to the circuit. We associate to each edge (i, j) binary variables y;; and
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vji with the meaning the meaning y;; = 1 if and only if the tour traverses the edge
(i, j) from i to j. Furthermore we introduce binary variables with four indices zj;
where z;;;x = 1if the edge (i, j) is the kth edge of the tour starting from 4. These
variables are constrained as

Yij + yji = Xij (i,j) €E

2.5 =2 yu=1 PeV

Jed(i) Jjes(@)

ZZhijk:yij (i, j) e E, ke|n]
heV

ZZhijkzyij (i, j)eE,heV
keln]

ZZhijk = ZZhji(lH—l) = ZZjhi(n—k) jsh eV, keln]

ies(j) ies(j) ies(h)

It can be shown that these constraints imply the subtour inequalities and seem
to be even stronger (Yannakakis 1991). However, although polynomial, this model
that has O (n*) constraints and variables (if m = £2(n?)) is too heavy for any graph
but the smallest ones and is impractical. Also the formulation (12.1) requires many
variables and constraints but it is computationally viable.

12.2 A Column Generation Model for the ATSP

In this section we propose a large-scale model with exponentially many columns for
the Asymmetric Traveling Salesman Problem (ATSP). Moreover, the model lends
itself to be adapted with minor modifications to some important variants of the ATSP.
Clearly, since the symmetric TSP can be considered as a particular case of the ATSP,
the following results apply to the symmetric TSP as well.

Let G = (V, E) be a directed graph (not necessarily complete) with arc lengths
d,,fore € E. We want to find a shortest hamiltonian tour. Although the starting node
of a tour is irrelevant for the ATSP, in some variants it has a special importance, and
we assume that the starting node is always node 1.

The model we consider has | E| columns associated to the arcs plus exponentially
many columns associated to paths. Let 2% be set of paths P : 1 — k, k € V \ 1,
and & be set of paths P : k — 1,k € V \ 1. There are arc variables x,, ¢ € E, and
path variables z}g , P e o z%, ,P e P, keV\ Il Anoptimal tour is an optimal
solution of the following ILP model.
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min E d, x.

eckE
Xe — ZZ}; - ZZ%ZO keV\Il, e€E
PePkecP PePy.ecP
ZZ}D =1 keV\l
Pe Pk
D=1 keV\lI (12.2)
Pe,
er =n
ecE
x. € {0, 1} ecE
zh e {0, 1) PeP* kev\l
7% € {0, 1} PeP, keV\l

In Theorem 12.2 we will show that the non-zero x variables of a feasible solution
correspond to the arcs of a tour, while the non-zero z variables correspond to the paths
along such tour. Let us first consider the structure of feasible solutions of (12.2). We
note that in (m) we simply set x,, z};, zi > 0, i.e., we do not upper-bound the
variables. It is clear that this is not necessary for the variables zL and z3. It is less
evident for the variables x,, that, according to (12.2) could take the value at most 2.
However, we prove in Theorem 12.1 that (12.2) implies x, < 1 for any arc e.

Theorem 12.1. The feasible solutions x, of (12.2) satisfy the following properties:

- Zees+(5) Xe > 1 for any nonempty S C V;
- Zeea,(s) X, > 1 for any nonempty S C V;
cestk) Xe = L foranyk € V;
— Dves-yXe = Lforanyk € V;
— x, < 1foranye € E;
— D eest(s) Xe = 2ees-(s) Xe for any nonempty S C V.

Proof: Given a directed cut §7(S) with 1 € S and a feasible solution of (12.2), we
have, by taking k ¢ S,

Dxez= D> D g+ D> > 4=
ecdt(S) eedt(S) Pe PrecP ecdt(S) Pe P:ecP
Z Z z};zZz}o Z 1222}3:1
eedt(S) Pe Pk.ecP Pe Pk eedt(S)NP Pe Pk
and for 1 ¢ S we have, by taking k € S,
Z X > Z Z Z}o + Z Z pr >

eedt(S) eedt(S) Pe Pk.ecP eedt(S) PEPy:ecP
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D a=> 3 D> 1= =L

eedt(S) Pe PyecP PeP eesT(S)NP PeZy

We also obtain, in a similar way, zee 5-(5) Xe = 1. In particular, for S = {k} we have
D ecs+ k) Xe = 1 and, by summing over all nodes,

Zk: Z xe=2xe z 1:281ern

ecst (k) e kiees* (k)

Since >, x, = n we have X, ;. Xe = 1, for any k, and similarly we can prove
Zeea,(k) x. = 1 for any k. This equation also implies x, < 1, e € E.

We want to show by induction that >, 55 Xe = 2 ,c5-(5) ¥e- We have just
shown that this is true if |S| = 1. Let us suppose that 3, s+ (5) Xe = 2 c5-(s) Xe fOr
all subsets of cardinality |S| < k, and consider a subset S U {j} (j ¢ S). Then

Z Xe = Z xe—Zx,-j—i—iji

eest(SULD eest(S) ieS i¢S
and
D de= Dl xe= D xit Do
ees (SULD) ees=(S) ies igs

Since X c5-(jyXe = 2iesXij T 2igsXij = land 2 5y Xe = DicgXji +
DigsXji = 1 we have

TR RTEEDITED IS
ieS i¢S ieS i¢s
and the thesis is proven. |
Theorem 12.2. The feasible solutions of (12.2) correspond to feasible tours.

Proof: From >, _, x. = n, exactly n different arcs are chosen. From

ZZ}le and Zz%:l

Pe Pk Pe2?,

ecE

exactly two paths are chosen for each node k. From

Xe— D zp— D>, =0

PePk.ecP PePyecP

the two paths do not share arcs, so they form a circuit. From >, x. = n, all chosen
paths belong to a tour. The tour is feasible, because the paths satisfy the required
conditions. |
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By Theorem 12.1, the feasible solutions of (12.2) belong to the subtour inequal-
ity polytope. However, other inequalities of the ATSP polytope are not satisfied in
general by solutions of (12.2). For instance, for the graph with four nodes and arcs
(1,2), (2, 1), (1,3), (2,4), (3,4), (4,3), (3,2), (4, 1), the fractional solution for
which x;; = 1/2 for all arcs and all the nonzero variables z},, z}35, 23, Z341> 213
Zhou3s 231> 23415 Ziags Zhags 2315 235, have value 1/2, is a vertex and is the optimal solu-
tion with value 6, for costs c1p = ¢y1 =¢34 =cay3 = 1,¢13 =C4 = C3p =41 =2
(there is only one tour with value 8).

To define the dual problem of (12.2) we introduce the dual variables V¥, u*, u% and
r associated to the respective set of constraints in (12.2). Then the dual problem is

Zul]‘—i— Z u’é—i—nr

keV\1 keV\1
Zv’e‘—i-r <d, ec E
keV\1
=Sk uk <0 PeP* kev\l (12.3)
eeP
- D> vk tul < PeP, keV\l
ecP
>0 ecE, keV\L

Feasibility of the constraints >, _, V¢ > “1 for all P € 2% is checked by solving a
shortest path problem from 1 to k with lengths v* and checking whether the shortest
path value is less than u’f , and similarly for the > vEo> u’ﬁ, where we solve

ecP Ve
shortest path problems from k to 1.

12.3 ATSP - A Compact Reformulation

As explained, the dual problem (12. 3) can be written ina compact form by replacing
the exponentially many constraints ul <> k and u2 <> _pvEas

eeP “e
k k
max uy + U, +nr

eecP Ve

keV\l keV\l
Z vf+r <d, eec E

keV\1

y,(k)—y,(k)<v keV\l, e=(,j)eE

yik) — ygtk) > ub keV\l

yik) —yi (k) <vh keV\l, e=G,j)eE

vE>0 ecE, keV\Ll.
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The dual of (12.4) is the following problem, with variables x,, ¢ ! (k), &} (k), £ (k),
EZ (k), associated to the respective set of constraints:

min E d, x,

ecE
el(k) e (1, k, c'(k)) keV\l
£2(k) € ®(k, 1, 2% (k)) kev\l

£} (k) + &2 (k) < x. keV\l,ecE (12.5)
erzn

ecE

k) > 1,87 (k) > 1 keV\l

x. >0 ecE.

The model (12.5) can be simplified by noting that, at optimality, ¢' (k) = ¢2(k) = 1.
Hence we have

min E d, x,

eckE
E'k)y e d(1,k, 1)  keV\I1
E2(k)e dk,1,1)  keV\I1 (126)

Elk)+E2(k)<x, keV\l,ecE
erzn
Xeio ecE.

The problem (12.6) is a special multi-commodity flow problem with 2 (n — 1)
independent flows. The flows interact because the total flow on each arc is bounded
by a variable capacity and the total capacity which can be assigned to the arcs is
fixed to n. The price of assigning the capacity x, is d, x, and the objective is the
minimization of the total cost.

12.4 Time-Window ATSP

The formulation (12.6) for the TSP is practically non competitive with the usual
branch-and-cut procedures. However, this formulation allows a great flexibility in
order to deal with different types of objectives. Here we present only one possible
variant of the TSP which has great practical relevance and cannot be fit into the usual
branch-and-cut machinery.

The Time-Window ATSP (ATSPTW) is defined as follows: for each e € E atime
t, is assigned denoting the travel time of the arc. We assume that ¢, is a positive
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integer. The values d, may be distances or costs. For each node a time window is
specified and the arrival time in the node must fall within the time window. Since
we have assumed that 7, is a positive integer, we also assume that a time window is
specified by two integers 7,” and 7;". We may allow waiting times (if the arrival time
is too early with respect to the time window and in that case the departure may take
place at time 7;”) or we may not allow them (arrival and departure times at a node
must coincide). In both cases, if we need to take into account that an actual visit
requires a certain amount of time, the visit time can be easily embedded into the arc
travel times of the departing arcs and the time window definition. The objective is
the minimization of the tour length among the feasible tours.

The only thing that has to be changed with respect to the general model (12.2)
is the definition of 27%. Now 7% contains only paths fulfilling the time window
condition for each node of the path. Note that this condition is applied only to Z2*. It
cannot be applied to & for the simple reason that we do not know the actual starting
time of any path in %% and hence it is impossible to state any constraint with respect
to the time windows.

So it may seem inconsistent patching together two paths P’ € &2 and P" € 2
to form a tour when only the first path obeys the time window constraints. However,
the condition on the time window for a node &’ successor of k in the tour is taken
care of by some other path in Z7*" with k” successor of k.

Now in order to solve the pricing problem, we have to address the question of
finding shortest paths in 7%, Finding a shortest path that traverses the nodes within
the time windows is NP-hard (even allowing waiting at the nodes). We provide a short
proof of this fact by transforming the knapsack problem to the time-window shortest
path. Given an instance of 0—1 knapsack with values v; > 0, weights w; > 0,i € [n],
capacity K, we build the following shortest path problem on a directed graph: the
nodes are 1,...,n + 1 and for each pair (i,i + 1), i € [n], we insert two parallel
arcs. On one of these two arcs the travel time is O and the length is v;, while on the
other arc the travel time is w; and the length is 0. All nodes except node n + 1 have
time windows [0, +00), while the node n + 1 has time window [0, K]. Then finding
a shortest path from 1 to n + 1 within the time window of node n + 1, is equivalent
to finding an optimal knapsack solution.

Indeed, let J be the set of nodes i for which the chosen arc (i, i 4+ 1) is the one
with travel time w; and length 0. Then, given J, the length of the pathis >, ¢y Vi and
the travel time is >, _, w;. If the path is feasible for the time window of node n + 1,
we must have >, w; < K. Since minimizing >, ,, v; is equivalent to maximizing
> iy Vi the claim is proved.

Although the problem is NP-hard, it can be solved in pseudo-polynomial time by
finding a shortest path in a time-expanded network G = (V, E) where

V= {(i, )t et rf’]}, E = {((i, ),(G, )t -1t = t,-j}

If we allow waiting at node j we redefine E as
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E={(G1),(,t): ' -1 =1}

This network has a pseudo-polynomial size. We set the length of all the arcs
((i, %), (j, 7)) to the value of the dual variable v};.

Therefore, in order to price-in paths in &* we compute shortest paths in G from
(1,0) to (k, 7;"), and to price-in paths in 9% we compute shortest paths in G from
kto 1.

The dual problem (12.3) can be written in a compact form by replacing the expo-
nentially many constraints uf <>, _,vfandub <> _, vk as

max Z ulf—l— Z u§+nr

keV\l keV\l
Zv’;—l—r <d, ec E

keV\1

k k k

Wk, Ty =y a,00=uk  kev\i

VGt +1) —yiG, 0 <vE keV\lL e=G,j)eE t=0,....70 —t
() —k =uk kevii

¥ () -y <vi keV\l e=(G,j)€E

k>0 ecE, keV\l.

(12.7)

The dual of (12.7) is the following problem, with variables x,, ' (k), &, ,(k),
22 k), Sf(k), associated to the respective set of constraints (note that El (k) and
Ei‘t(k) are defined on G, whereas ¢2(k) and &2 (k) are defined on G):

min E d, x.

eckE
Eh)ed(, kT k) keV\l
E2(k) € Dk, 1,2%(k)  keV\1

Zglt(k) +§'€2(k) <x,. keV\l,ecE (12.8)
'

er =n

eckE

tMk) = 1,87 (k) > 1 kev\l

erO eec k.

where 51 (k) is a feasible flow on G and ® (1, k, El (k)) is the set of feasible flows on
G that have node (1, 0) as a source and node (k, tf) as a sink and the flow outgoing

from the source is constrained to be El (k). Similarly gz(k) is a feasible flow on G
and @ (k, i, £2(k)) is the set of feasible flows on G that have node k as a source and
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node 1 as a sink and the flow incoming to the source is constrained to be £2(k). The
model (12.8) can be simplified by noting that, at optimality, El (k) = ¢%(k) = 1.
Hence we have

min E d, x,

ecE
) ek 1) kevil
£2(k) € d(k, 1, 1) keV\l

Zgi,,(k) +562(k) <x, keV\le€cE (12.9)

t
I
e
X, >0 ecE.

As (12.6) this is a special multi-commodity flow problem with 2 (n — 1) inde-
pendent flows. The difference is that (n — 1) flows are defined on G and the other
(n — 1) flows are defined on G. The flows on G are ‘projected’ to G via the sum
> E;t(k). These projected flows share with &2 the variable capacity x, whose cost
has to be minimized.

The performance of this model heavily depends on the size of G, which is related
to the size of the time windows. The smaller the time windows are the smaller is
the set E of edges in the expended network, and this makes the formulation (12.9) a
computationally attractive model.



Chapter 13
Packing

13.1 Bin Packing

The Bin Packing problem was the first problem to be solved by a column-generation
technique (Gilmore and Gomory 1961, 1963). Actually, the problem faced by
Gilmore and Gomory was the Cutting Stock problem. However the cutting stock
and bin packing problems have the same mathematical structure and we prefer here
to present the bin packing problem, that can be formulated as follows. There are n
types of items. For each i € [n], there are m; items of type i, and each of them has
integer size s; > 0. We have to fill all items into bins of integer capacity K by using
the minimum number of bins. The bin packing problem is strongly NP-hard (Garey
and Johnson 1979).

We have introduced the bin packing problem in a more general form than it usually
found in the literature. Most of the times we find m; = 1, i.e., just one item for each
type, which simply means n different items. Allowing for m; > 1 makes the bin
packing problem exactly equal to the cutting stock problem.

A naive modeling of the problem by making use of binary variables that assign
items to bins and specify which and how many bins can be filled is not satisfactory.
The integrality relaxation of this model is so poor that only very small problems can
be solved by branch-and-bound.

The breakthrough idea of (Gilmore and Gomory 1961, 1963) was to model the
problems by using ‘filling patterns’ and the problem can then be formulated as the
optimal choice of a set of filling patterns. A filling pattern is a way of filling a bin
with some specified items within the bin capacity. Essentially, a filling pattern is a
feasible solution of an integer knapsack problem with capacity K (with the additional
requirement, usually automatically satisfied, that a filling pattern cannot have more
than m; items of type i). For a bin packing problem with m; = 1 for each type, a
filling pattern is a feasible solution of a 0—1 knapsack problem.
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Let J be the index set of all filling patterns. We represent the j-th filling pattern
by a vector a;, with the meaning that the j-th filling pattern has a; items of type i.

By its definition, the vector aij satisfies

E siai] <K.

i€[n]

We associate a non-negative integer variable x; to each j € J with the meaning that
the filling pattern has to be used x; times. Each time a filling pattern is employed a bin
is used. Hence the number of used bins is simply equal to > jes Xj- The constraint
about the number of items that have to be put into the bins is taken care of by imposing
that the total number of items of type i, i.e., > jes a] x; has to be at least equal to
m;.

At that time it was truly a bold idea to define a model with an exponential number
of variables, but it turned out that this was the right idea which outperformed the
naive ILP model and paved the way to other column generation models for a wide

variety of combinatorial problems. Then the model is the following

min E X;

jeJ

Zaijszmi i €[n] (13.1)
jelt

xj > 0 integer jelJ.

The dual of (13.1) is

i€[n]

DSalvist jel (13:2)
i€[n]

yi >0, i €[n].

In order to price a column of (13.1), i.e., to detect a violated inequality in (13.2) by
the current dual solution y, we should in principle solve

J =
max a; y;
jel ! Vi
and check whether the maximum is greater than one or not. However, we have noted

that the vectors aij are feasible solutions of an integer knapsack problem. Therefore
pricing can be carried out by solving the knapsack problem
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max Z?i zi
ieln]
Zsi =K (13.3)
ieln]

z; > Ointeger i € [n],

and checking whether the optimal value of (13.3) is greater than one. Strong duality
does not hold for( 13.3). However, the dynamic-programming recursion to solve the
knapsack problem (13.3) can be written as the following LP problem of pseudo-
polynomial size,

min wg — wy
wp —wi—1 >0 1<k<K (13.4)
Wi — Wi—s; = Ji si<k<K i¢€][n],
so that the maximum in (13.3) has the same value as the minimum in (13.4). Hence

the constraints >, a/ ¥ < 1, j € J, are equivalent to the constraints in (13.4)
plus the constraint wg — wo < 1. Then (13.2) can be reformulated as

max E m; y;

i€[n]

Wg — Wo <1

K (13.5)
Wi — Wi—1 >0 1<k<K

Wi — Wg—s, — ¥ 20 si<k<K i€]ln]

vi > 0.

The constraints in (13.5) can be expressed as constraints on a directed acyclic graph
G(V,E)whereV ={0, 1, ..., K}and E consists of the arcs (k — 1, k), fork € [K],
and (k — s;, k) fors; <k < K,i € [n]. We call the arcs (k — 1, k) of type 0 and the
arcs (k — s;, k) of type i. The size of this pseudo-compact formulation is n + K
variables and at most n K constraints.

The drawback of (13.5) is that it does not provide a direct information on the
actual primal variables, i.e., on how the bins are filled. Moreover, it is the dual
of a relaxed formulation and it seems difficult to use (13.5) in a branch-and-bound
search. Therefore, it is convenient to compute the dual of (13.5) and find the compact
equivalent of (13.1). By using the notation introduced in Sect. 6.6 the dual is

min ¢
Ee€ed(0,K,?)

K
Dewz=mi  ieln] (13.6)

k=s;
¢ >0, ok >0 k € [K]
x>0 si <k<K,ieln]
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Problem (13.6) is the compact equivalent of (13.1). It is a special flow problem
on G with flow &y on type-0 arcs and flow &;; on type-i arcs. There are additional
constraints not typical of flow problems because they go across several arcs, i.e.,
Z/f:s,» &x = m;. The meaning of &;; > 0 is that one item of type i is put into &;; bins
increasing the filled quantity in each of these bins from the value k — s; to the value
k. The flows &y correspond to one unit of empty space and enter whenever a bin
is not fully filled. A solution of (13.6) can be decomposed into paths from O to K.
Every path is a filling pattern, and its flow value corresponds to the number of times
the pattern is used, i.e., to the number of bins.

Problem (13.6) has been proposed by De Carvalho (1999) (see also De Carvalho
2002) and its equivalence to the original column generation model has been proved
through the Dantzig-Wolfe decomposition technique.

The advantage of this formulation with respect to (13.5) is that it is possible to
impose the integrality requirement directly on the variables &.

As an example, let us consider an instance withn = 6, K = 11,m = (30, 20, 10),
s = (3,5,7). The graph is shown in Fig. 13.1a, where all arcs are assumed directed
from the lower-indexed node. The solution obtained via (13.6) is shown in Fig. 13.1b.
In this simple example the solution is integer without imposing integrality and the
flow can be uniquely decomposed into three filling patterns: (1, 0, 1) to be used 10
times, (2, 1, 0) 10 times and (0, 2, 0) 5 times, for a total of 25 bins. Note that the
total bin space 25 x 11 = 275 is equal to > ; m; s; = 260 plus the total flow of the
arcs of type 0. Note also that the lower bound given by the naive ILP formulation
we have mentioned at the beginning is equal to [ Y, 5; m; /K | = 24 with integrality
gap 1.042.

Fig. 13.1 Flow compact models for bin packing
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13.2 Robust Knapsack

The Robust Knapsack Problem (RKP) is a variant of the knapsack problem in which
weights can be larger than expected and we have to take care of the worst scenario
when we decide which solution to choose. The problem is formalized as follows:
there are given n items of value v;, j :=1,..., n and an integer m < n. For each
item j, a nominal weight w; is given. The weight of each item can be increased
by a quantity w; > 0 to the weight w; +w;. The knapsack capacity is K. A subset
J C [n] is feasible if, for any subset S C J of cardinality at most m, the following

inequality is satisfied
2w+ W S K.
jeJ jes

This is equivalent to saying that a subset J is feasible if and only if the previous
inequality is satisfied for S = J if |J| < m and, if |J| > m, for the subset S C J
consisting of the m items in J with the largest w;. The RKP consists in finding the
feasible subset J with largest value.

In other words the items can have weight larger than expected, but this unfortunate
circumstance cannot happen too many times, in fact at most m times. When we build
a solution we must be prepared to such an occurrence and the chosen solution must
remain feasible.

The RKP was first introduced in Bertsimas and Sim (2003) in a more restricted
version. The given formulation is due to Monaci and Pferschy (2013). The RKP is
clearly NP-hard. It is also weakly NP-hard as the normal knapsack problem since
a pseudo-polynomial dynamic programming algorithm is available (Monaci et al.
2013). For a recent survey see also Monaci et al. (2013).

The following ILP model to solve the robust knapsack problem was proposed in
Bertsimas and Sim (2004):

max E Vi Xj

J€ln]

D wixj+ D ti+mr <K (13.7)
J€ln] J€ln]

tit+r=w;x; j € [n]

x;€{0,1}, 1, 20, r =0 j € [n].

Later a branch-and-cut model was developed by Fischetti and Monaci (2012) who
noted that robustness can be enforced to a normal knapsack model via the following
robustness cuts

D wixj+ > wix; <K SCN:|S|<m. (13.8)

jeln] jes
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We will now show how (13.7) is nothing but the compact extended formulation of
the large-scale LP using the robustness cuts (13.8). Given the current solution x*,
the separation of robustness cuts is straightforward and it can be solved also by the
following LP problem:

max z W;x7)z;
Jjeln]

D zi=m (13.9)

Jjé€ln]
;<1 jel[n]

and asking whether the optimal value is not larger than K — >°;_,; w; x7. The dual
of (13.9) is the following LP:

min mr+th

jeln]
r+ljZij;< j € [n]

r>0,t;>0, jelnl,

(13.10)

and the feasibility condition for x* requires mr + >, t; < K — 3, w; X7
Hence we may replace (13.8) with these constraints and get, after ‘freeing’ the values

X
max E Vi Xj

*
js

jeln]

mr+ Y <K= wix (13.11)
Jjeln] J€ln]

r+tp=wjx; j €ln]

which is exactly (13.7).

13.3 Cycle Packing

A well-known optimization problem consists in finding a cycle packing of maximum
cardinality in a graph G = (V, E). There exists both a directed and an undirected
version of this problem. The problem can be naturally modeled as the following
large-scale binary LP problem (Caprara et al. 2003):
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max E Xc,

Ce¥

z xe <1, ecE, (13.12)
Ce€:ecC

XcE{O,l}, CE%,

with % the set of cycles in G. The pricing can be carried out by finding a cycle
of minimum weight, with weights given by the optimal duals %, in (13.12). We
consider here the undirected case. We leave to the reader the directed case which
can be approached via a bipartite matching problem much in the same style as the
problem we will face in the next section.

A minimum cycle in an undirected graph can be found as follows. First compute,
for each {h, k} € E, a shortest path Ph* not containing the edge {A, k}, between
h and k. Then form the cycles C" := {h, k} U P"* and take the minimum among
these cycles. For the minimum cycle to be not shorter than 1, we can impose con-
straints involving variables yi’"‘ ,{h,k} € E,i € V,thatlead to the following compact
extended of the dual of (13.12)

min E U,

=y fu > 1, {h k) €E,

Yy Ly >0, {h k) € E, {i, j} € E\ (h.K),
VR~ fu =0, {hk) € E, (i, j) € E\{hk),
u, >0, ecE.

(13.13)

The size of this formulation is n m + m variables and m (2m — 1) constraints. The
dual of (13.13), i.e., the compact equivalent of (13.12), is

max Z {hk,
{

h,k}eE
g e @k, h, ") {h,k} € E,
M D gkl <1 {hk e E.

{i./YeE\{h.k}

The interpretation of this flow problem is as follows: for each edge {h, k} a flow
¢ is starting from one endpoint (say #) moving on the network, without using the
edge {h, k}, and ending in k. This flow is actually a circulation of value ¢"* passing
through the edge {4, k}. On each edge the sum of all circulations must not exceed 1.



Chapter 14
Scheduling

14.1 The Job-Shop Problem

We briefly recall the definition of the Job-Shop problem. A set M of m machines and
aset J of n jobs are given. Each job j € J consists of a sequence of n(j) operations
r(j, 1),...,r(j,k),...,r(j,n(j)), that have to be processed exactly in this order.
Idle times between consecutive operations are allowed. Each operation r(j, k) has to
be processed without preemption on a specified machine m(j, k) € M with aknown
processing time g (j, k) > 0. As customary in scheduling problems we assume that
the processing times are integer numbers. This allows to restrict the schedules to
integer numbers and this is an essential feature for what follows. Let L bet the set of
all operations, and £ = |L| = >, n(j).

A feasible schedule of the jobs inJ is a set of completion times ¢ (j, k) associated
to each operation r(j, k) such that: (i) theprecedence relations of the operations of
the same job are respected and (ii) operations associated to the same machine do not
overlap in time. It is not excluded that a machine can process more than one operation
for the same job (clearly on different times). The time 7(j, n(j)) is the completion
time of the job j.

There are two main objectives that can used to assess the quality of a schedule.
An objective that has received a great attention in the literature, starting from the
pioneering paper by Fisher and Thompson (1963) with its famous list of difficult
instances, is the minimization of the makespan, i.e., of the latest completion time
among the jobs max j¢; 1(j, n(j)). Among the many references we may quote Carlier
and Pinson (1989), Applegate and Cook (1991), Btazewicz et al. (1996), Jain and
Meeran (1999), Potts and Strusevich (2009), Brucker (2007a,b). Another possible
objective is the minimization of the total cost, i.e., the sum of the costs for the single
jobs. This objective has received a relatively little attention (Chakrabarti et al. (1996);
Della Croce et al. (2002); Queyranne and Sviridenko (2002)).
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Although both the makespan and the total cost are correlated objectives that,
loosely speaking, try to finish all operations as soon as possible, they may yield
different optimal schedules. Which one is more appropriate for a real scheduling
environment is matter of judgement by the production managers. From the point of
view of the analyst who has to find algorithmically a schedule, both objectives are
notoriously difficult (Lageweg et al. 1977; Brucker 2007b). Perhaps minimizing the
total cost presents some features that better allow modeling the problem also via LP
as shown in Lancia et al. (2011).

The problem we consider here (as in Lancia et al. (2011)) is the total cost, where
the cost of a job is given by a generic function

fi :IR = R U {+o00}, t— fi@), (14.1)

which assigns a penalty to job j if it is completed at time ¢. The function f;(t) takes
on value +o00 when its argument ¢ is an infeasible completion time for job j (e.g.,
because of release dates, deadlines, fixed idle times, etc.).Hence the cost of a feasible
schedule is defined as the following separable objective function

> £ (14.2)

jelt

To solve this type of job-shop problem, a time-indexed column-generation LP
model can be defined based on scheduling patterns. We recall that we have assumed
integral processing times, so that we restrict all time data to the integer numbers and
this makes possible to have a time-indexed model. A scheduling pattern p defines,
for each operation k of a job j, its starting time s, (j, k) and its ending time #, (j, k).
Let t(p) :=t,(j, n(j)) be the completion time of the last operation of job j for the
pattern p. The cost of a pattern is given by

c(p) = fi(p)). (14.3)

As in all time-indexed models we need to fix a value T for the time horizon. Let
us denote by P/ the set of patterns for job j with #(p) < T. To each pattern p in P/,
an (m T)-dimensional binary vector a” is associated, with m fields of length T, one
for each machine & € M. The ¢-th entry of the h-th field a,’;’t is 1 if and only if the
operation of the job which must be executed by machine 4 is being processed in the
time slot [ — 1, ¢].

A binary variable x,, is associated to each pattern p of P/, with the meaning
that x, = 1 if and only if the job j is scheduled according to the pattern p. Then
the job-shop problem with total cost objective may be formulated as the following
binary LP:
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min Z Z c(p) x,

Jj€l pepPi

> x=1 jeld

peP (14.4)
> > al, x, <1 heM, t=1,...T
Jj€l pepPi

x,€{0,1} pePl, jel.

where the first set of constraints assign exactly one pattern to each job and the second
set models the condition that a machines can process at most one operation at a time.
Let us denote by s(J, k, p) the starting time of operation k of job j for the pattern p.
The dual problem of (14.4) is (where the dual variables are denoted as u(j), j € J,
andv(h,t) <0, he M,t =1, ... T: note the sign of v(h, t))

T
max Zu(j) + Z Zv(h, 1)

jeJ heM t=1
n(j)  s(.k.p)+qk,j)

u(D=, D, (=vmG.k,0)<clp) pePl,jel

k=1 t=s(j.k,p)+1
v(h,t) <O0.
(14.5)
The pricing problem consists in solving for each job j
n(j) sG.kp)tqk.j)
min - c(p) + 2 (=v0m(j. k), 1) (14.6)

k=1 t=s(j.k.p)+1

and checking whether the minimum is less than u(j). Apparently, each pattern is
assigned its original cost c(p) plus additional costs —v(h, ) for the use of machine
h in the time slot [r — 1, t] and we have to find the pattern of minimum cost. For
ease of notation let v(k, 1) := Zizl* G+1 (—v(m(k), 7)) (we occasionally simplify
the notation by dropping the dependence on j).

We solve (14.6) for each job j by a forward dynamic-programming procedure. Let
V (k, t) represent the minimum cost of a pattern consisting of the first k operations
and completing the k-th operation within t, i.e., also at times earlier than ¢t. We
initialize V (0, t) := O for each ¢ and the other values as V (k, t) := 4+00. The values
V(k, t) can be recursively computed as

Vk, 0y =min {V(k, 1 — 1), V(k — 1,1 — q(k)) + fx(6) + 0k, )} (14.7)

fork € [n(j)]and ¢t =0,..., T. The two terms in the above expression represent
the minimum cost of patterns which complete the k-th operation before ¢ and exactly
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at time ¢, respectively. Hence, the optimality condition for the column generation LP
model (14.4) is given by V(n(j), T) > u(j) forall j € J.

The dynamic-programming recursion formula (14.7) corresponds, for each job j,
to find a shortest path on a special network G = (N, E). The node set N is given by

N={G.kt):jel, 0<k=<n(j),0<t=<T}.

The nodes can be partitioned into levels L(j, k), j € J and 0 < k < n(j), where
each level L(j, k), k > 0, contains anode (J, k, t) for each possible completion time
t of the k-th operation of j and each level L(j, 0) contains a node (j, 0, t) for each
possible starting time of the first operation. The arcs in E are of two types denoted
by Ej and E; and defined as

Eo:={((i k= 1), (k) :jed, 0<k<n(j),0<t =T},
E = {((jk=1,t—q(. k) (k) :jel, 0<k=<n(j) 0<t<T}.

Each arc in E is assigned zero cost, whereas the arc (j, k — 1,¢t — q(j, k)), (J, k, 1))
in E| is assigned cost fj(t) + v(k, t). The network G has n connected components,
one for each job. In the network there are n source-sink pairs. The sources are the
nodes s; := (j,0,0) and the sinks are the nodes d; := (j, n(j), T). Then (14.7)
solves, for each job j, a shortest path problem from s; to d;. Refer to Fig. 14.1 for
an example with two jobs and four operations.

As anticipated in Sect.6.6, (14.7) can be written as (6.30) and the optimality
condition can be expressed as in (6.32) where the cost of each arc consists of a fixed
part fjx(t) and a variable part V(k, t). The extended compact formulation of (14.5)
is therefore

T
max Zu(j)—i— Z Zv(h,t)

jeJ heM t=1

V(ji,n(j),T)—V(j,0,0) > u(j) jelJ

V(j,k,t) <V(,k,t—1) ke[n(j)],te[T],jeJ
V(. k) <V k=1,1—qk) + fix@) + vk, 1) keln(l.telTl.jel
v(h,t) <0.

(14.8)

where we have added the index j to V (-) to explicitly show the dependence on j.
However, we are not only interested in the optimal value of (14.8) but also on the
optimal schedule (not necessarily integral at this point). As explained in Sect. 6.6
the dual of (14.8)., i.e., the compact equivalent of the original column generation
LP problem (14.4) is a special flow problem. One unit of flow has to be sent from
each source s; to each sink d;. On each arc ((j, k,t — 1), (j, k, 1)) € Ej there is
a flow £°(j, k, t) and on each arc ((j,k — 1, — q(j, k)), (j, k, 1)) € E; there is a
ﬂowél(j, k,t).Eacharc ((j,k —1,t —q(j,k)), (j, k,t)) € E;isalsoassociated to
the machine m(k), so that we may partition E; into subsets E (m) for each machine
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Fig. 14.1 The network flow model for two jobs and four operations

177

m. Let E|(m, t) be the set of arcs ((j, k — 1,7 — q(j, k)), (J, k, ') in E{(m) such
thatt’ — g(j, k) <t <t'. The machine constraints require the total flow on the arcs

E(m, t) to be bounded by 1. In conclusion, the compact equivalent of (14.4) is
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min > fiu®E' (k1)
(j.k,t) ; .
& e d(sj,d;, 1),  jed,
Z 561'51, meM,0<t<T.

ecE(m,t)

Clearly if the flow is integral it gives rise to a path s; — d; which can be interpreted
as a scheduling of the job ;.

14.2 The One Machine Problem

In this section we describe the One Machine problem, following the approach pro-
posed by van den Akker et al. (2000). A set J of n jobs is given that have to be
processed on the same machine without preemption. The processing time of job j is
a positive integer number p; > 0. The time ¢; is the completion time of the job ;.

As with the job-shop problem there are two classes of objectives that can used to
assess the quality of a schedule, either related to the worst job performance or to the
sum of the performances of the jobs. The performance of a job can be related to its
completion time or to the delay, or also to the anticipation, with respect to specified
due dates. As for the job-shop problem, we may summarize the various cases by
assigning a function

fi tR— R U {400}, t—= fi, (14.9)

that assigns a penalty to the completion time ¢. We consider here the objective function
that sums the various job performances, i.e.,

> fiih- (14.10)

jes

We build a time-indexed model with time horizon T that is clearly simpler than
the one for the job-shop. We define binary variables

1 if job j is completed at time ¢ )
Xji = t=pj, jeJ

0 otherwise

and a binary matrix

t>p;, jeJ, 1<t<T

2t — L ifr—pj+1<t=<t
’ 0 otherwise
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with columns indexed by j¢ and rows by 7. The column indexed by j¢ refers to the
schedule for job j with completion time ¢, and the 1’s in the column refer to the times
t for which the machine is busy with that job, in case that schedule is employed. The
the time-indexed ILP model is

min Z Z fitxje

jed pj<t<T
> xp=1 jeld
pj<t<T (14.11)
ZZa{txj,fl l<z<T
jed pj=t<T

xj; €{0,1} jelJ.

The first set of constraints imposes the assignment of exactly one schedule to
each job, whereas the second set of constraints takes care of the impossibility of
processing more than one job at a time. This is a pseudo-polynomial model, due to
the presence of T in the number of variables and constraints. However, its size is not
so large to be intractable, differently from the previous job-shop model. The lower
bound provided by the integrality relaxation is usually good, but, as observed in
van den Akker et al. (2000), the number of constraints heavily affects in any case the
computational performance. According to van den Akker et al. (2000) the way out
from the dependance on T is to build a Dantzig-Wolfe decomposition (see Sect. 6.7).
They suggest to use as a set X in (6.34) the feasible solutions of

ZZu{’xﬂfl l<t<T

jel pj<t<T (14.12)
xj; €{0,1} jel.

The peculiarity of X is that the polyhedron of (14.12) has integral vertices due to
the total unimodularity of the matrix. Hence P = conv(X) is also the set of feasible

solutions of B
ZZa{txj,fl 1<t<T

jed pj<t<T
O<xy<1 jel.
Let X = {&',..., £7} be the set of vertices of P. Each £ is a schedule that obeys the

machine capacity constraints but not necessarily the assignment constraints. Hence it
may correspond to a schedule such that a particular job starts more than once, or even
does not start at all. It is more appropriate to call each X* a pseudoschedule. According
to the Dantzig-Wolfe decomposition we have to solve by column generation the
problem (6.36) that becomes in this case
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. ak
min (>0 D ik M
kelpl jeJ pj<t<T

DD Bom=1 jeJ

ke[p] pj<t<T

>
kelp]
A =0 ke [pl

(14.13)

Once we have computed the optimal dual variables (y, w) of (14.13) (note that they
are unrestricted in sign), pricing means computing

min >, >, Skl =202 83,

jeJ pj<t<T jeJ pj<t<T

which is the same as finding the minimal pseudoschedule with cost coefficients
given by
fie = ¥j

Since the matrix ail has a network structure, pricing can be also achieved by ﬁndir_1g
a path of minimum cost in a network G = (V, E) with nodes V = {1,2,..., T}
and arcs partitioned in arcs Ej and E; defined as

Eo={tt+):1<t<T—-1} E={t—-pj.t):pj<t=<T,jel}

The arcs in Eq are assigned cost 0, while the arc (r — p;, t) € E; is assigned cost
fjt — ¥j. Since G is acyclic a dynamic programming recursion can find an optimal
pseudoschedule in time O (n T). Even if this is a pseudpolynomial bound the com-
putation is quick. In Fig. 14.2 we show the network G for the case of two jobs and
processing times 3 and 4, and with a time horizon 7' = 13. We also show a possible
pseudoschedule given by the first job completing at time 4, followed after one unit
of idle time by the second job completing at time 9, followed immediately by a
repetition of the first job ending at time 12. Then there is one unit of idle time.

Fig. 14.2 Pricing the DW decomposition for the one machine problem
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Now suppose that we want to compact the column generation model. As already
shown in Sect. 6.7 the compactification procedure will bring us back to (14.11) with
its many constraints. However, a new interpretation has emerged because we can
rephrase (14.11) in terms of the graph G. Indeed we have to send on G one unit of
flow at minimum cost, with the additional constraint (of non network type) that the
flow has to use exactly one arc among the arcs associated to job j, for each job.


http://dx.doi.org/10.1007/978-3-319-63976-5_6

Chapter 15
Computational Biology Problems

15.1 Introduction

Computational Biology is a recent application field of optimization and mathemat-
ical programming techniques which has experienced a tremendous growth over the
past two decades. Computational biology problems originate from the interpretation
and analysis of genomic molecular data. More precisely, the discovery of important
signals in DNA sequences, the understanding of complex biological processes in
the cell, or even the detection and removal of experimental errors, are cast as com-
putational problems over some suitable mathematical models. Once the genomic
data have been translated into mathematical objects (e.g., strings, graphs, sets, etc.)
the original questions become computational problems, to be solved by standard
techniques. Moreover, most of the times, these problems turn out to be very hard
optimization problems, not only in the sense that they are NP-hard but also because
the instances of interest in real-life computational biology applications are usually
huge.

The availability of genomic data has increased almost exponentially over the
past thirty years. For example, the European Molecular Biology Laboratory data-
base of nucleotide sequences has increased from roughly 1,000 entries of 1982 to
about 100,000,000 of today (Kulikova et al. 2005). Notice that each entry itself
is a sequence that can range from a few hundred to several hundred thousand of
nucleotides. Similarly, the Protein Data Bank (Berman et al. 2000), which is the
main repository for 3D protein structures, has grown from 100 to almost 100,000
entries, where each entry is the 3D representation of a protein which can contain
several thousands amino acids. This increase in both volume and size of genomic
data has posed new challenging problems, requiring sophisticated lines of attack.
Among the many techniques that have been used for solving computational biology
problems, the use of integer linear programming has steadily grown over years. In
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CGATTCTTGTTttataggttagAATTTG
()
CGATTCTTGTTgattggatattAATTTG

CGATTCTTgttttataGGCTAGATCCGCCATGCG

1 (b)
CGATTCTTGGCTAGATCCGCgttttataCATGCG

Fig. 15.1 Evolutionary events: (a) reversal; (b) transposition

particular, some of the models adopted for computational biology problems have
an exponential number of constraints or variables, and have been solved by using
branch-and-cut or branch-and-price.

In this chapter we survey some applications of integer linear programming to com-
putational biology problems which required the solution of exponential-size models.
The separation/pricing procedures of these models can be cast as linear programs, so
that extended compact formulations can be used for solving their relaxation. In par-
ticular, we will address genome rearrangement problems arising in the computation
of evolutionary distances between genomes (Sect. 15.2), and the alignment of both
protein sequences (Sect. 15.3) and protein 3-dimensional structures (Sect. 15.4).

15.2 Sorting by Reversals and Alternating Cycles

Given the large amount of genomic data available, it is today possible to compare the
genomes of different species, e.g., to compare a human chromosome with an homol-
ogous chromosome of the mouse. When comparing genomes, the differences are
not measured in terms of insertions/deletions/mutations of single DNA nucleotides,
but rather by a series of evolutionary macro-events (i.e., modifications affecting long
fragments of DNA on a chromosome) that have happened since the two species
diverged from their most recent common ancestor. Among these evolutionary events
we recall reversals and transpositions. When an event occurs, a DNA fragment is
detached from its original position and then it is reinserted, on the same chromo-
some. In a reversal, it is reinserted at the same place, but with opposite orientation
than it originally had. In a transposition, it keeps the original orientation but it ends
up in a different position (see Fig. 15.1).

Since evolutionary events affect long DNA regions, comprising possibly many
genes, the basic unit for genome comparison is not the nucleotide, but rather the gene.
Given two genomes, number each of their » common genes with a unique label in
[n]. Then, each genome becomes a permutation of [r]. The goal of the genome
comparison problem is to identify a set of evolutionary events that, when applied
to the first genome (a permutation 7 = (7} ... m,)) yield the second genome (a
permutation o = (o7 ... 0,)). Note that, by possibly relabeling the genes, we can
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always assume that o is the identity permutation¢ := (12 ... n). Hence, the problem
becomes that of turning m into ¢, i.e., sorting .

Reversals are considered by far the predominant type of evolutionary event and
their study has received the most attention in the literature. In the remainder of
the section we will focus on reversals only. A reversal is a permutation p;;, with
1 <i < j < n,defined as

pij=, ... i=11j, j—=1, ...,i+1,i|,j+1,...,n).
reversed

Note that by applying (multiplying) p;; to a permutation 7, one obtains the permuta-
tion (7ry, ..., i1, Tj, Wj—1, ... Wi, Tjt1, ..., T,),1.€., the order of the elements
7, ..., ; has been reversed.

LetZ = {pij |1 <i < j < n}. Zisasetof generators of Sy, the set of all permu-
tations of [n]. That is, each permutation 7 can be expressed as a product (o' p? . .. p?
with p! € #Z fori = 1... D. The minimum value D such that ip!p?... p? = 7 is
called the reversal distance of m, and is denoted by d (). Sorting By Reversals
(SBR) is the problem of finding d(;r) and a sequence plp? ... p?0) that satisfies
' p? ... p?® = 7. The reversal distance is used to estimate the amount of time that
took evolution to derive new species from their common ancestors, and to reconstruct
phylogenetic trees explaining how various species are related to each other.

SBR is NP-hard, as proved by Caprara (1997), who closed a longstanding open
question about the computational complexity of the problem. SBR has been stud-
ied by, among others, Kececioglu and Sankoff (1995), Bafna and Pevzner (1996),
Tran (1997), Caprara (1999a, b), Christie (1998), Berman et al. (2002). Most of these
papers deal with theoretical aspects of problem, such as its complexity and approx-
imability, while the most effective exact solution for SBR is a branch-and-price model
by Caprara et al. (2001). A peculiar characteristic of the approach in Caprara et al.
(2001) is that the model does not represent SBR directly, but rather it solves a differ-
ent problem which is closely related to SBR, i.e., the decomposition of a bi-colored
graph into a maximum set of edge-disjoint alternating cycles.

In order to describe the model in some detail, we need to introduce the concepts

of breakpoint and breakpoint graph. Let 1 = (74, ..., m,) be the input permutation.
The breakpoint graph G(w) = (V, BUY) of  is defined as follows. Add to & the
elements 77 := 0 and 1| := n + 1, re-defining = := (0, my, ..., m,, n+ 1). The

node set V := {0, ..., n + 1} has a node for each element of 7. The graph G ()
is bi-colored, i.e. its edge set is partitioned into two subsets, each represented by
a different color. B is the set of black edges, each of the form (m;, 7;41), for all
i €{0,...,n}suchthat |m; — m;11| # 1. Such a pair 7;, 7; 1 is called a breakpoint
of 77, and we denote by b(;r) := | B| the number of breakpoints of 7. Denote by 77 ~!
the inverse permutation of . Y is the set of gray edges, each of the form (i, i + 1),
for all i € {0, ..., n} such that |7tlf1 — nijrlll # 1. Note that each node i € V has
either degree 0, 2 or 4, and has the same number of incident gray and black edges.
Figure 15.2 depicts the breakpoint graph associated with the permutation (4 2 1 3).
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Fig. 15.2 The breakpoint graph G (;r) for r = (4 2 1 3). Gray edges are thin, black edges are thick

An alternating cycle of G(ir) is a cycle whose edges are alternately grey and
black, without edge repetitions but possibly with node repetitions. For example, edges
0,4),4,3),3,1),(1,0) and (4, 2), (2, 3), (3,5), (5,4) form alternating cycles in
the graph of Fig. 15.2. An alternating-cycle decomposition of G (i) is a collection
of edge-disjoint alternating cycles, such that every edge of G is contained in exactly
one cycle of the collection. It is easy to see that G (;r) always admits an alternating-
cycle decomposition. In the graph of Fig. 15.2, alternating cycles (0, 4), (4, 3), (3, 1),
(1,0) and (4, 2), (2, 3), (3,9), (5,4) form an alternating-cycle decomposition. Let
c(r) be the maximum cardinality of an alternating-cycle decomposition of G (7).
Bafna and Pevzner (1996) proved the following property which turns out to be key
for the practical solution of SBR:

Theorem 15.1. For every permutation w, d(w) > b(mw) — c(7).

For x € R, define LB(x) = b(;r) — |x]. From Theorem 15.1 it follows that,
whenever x > ¢(;r), LB(x) is a valid lower bound which can be used in a branch-
and-bound approach for SBR. Furthermore, the lower bound LB(c(7r)) turns out to
be very strong, and most of the times its value matches the optimal value of SBR. As
a matter of fact, Caprara (1999b) proved that the probability that d () # LB(c(r))
for a random permutation 7 with n elements is @ (1/n°). Notice that if we relax the
definition of c¢(7r) and obtain an upper bound ¢(;r) > c(;r) then LB(c(r)) is still a
valid lower bound for SBR. This might be a good option when ¢ () is very close to
c(r) while its computation is much easier to carry out. In particular, this is true if
we relax the concept of alternating cycles so as to include also alternating cycles that
go through the same edge twice. Let us call spurious alternating cycle an alternating
cycle in which at least one edge is traversed twice, but no edge is traversed more
than twice. An example of a spurious alternating cycle is given in Fig. 15.3.

X b2 V

by O——) b3
e N

Fig. 15.3 Spurious alternating cycle C = by, yi, b2, y2, b3, y3, b2, ya
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The computation of the lower bound for SBR has therefore motivated the study
of the Alternating-Cycle Decomposition (ACD) problem (specifically, the decompo-
sition of the breakpoint graph G (;r), but, since the approach remains the same, let
us state the problem in more general form as follows).

We are given a graph G = (V, E) with arcs partitioned into two classes, say black
and gray. In each node, the number of black incident arcs is equal to the number of
gray incident arcs. An alternating cycle is a cycle made of edges alternating the
two colors and not strictly containing a cycle that alternates the two colors. If there
are no edge repetitions, the alternating cycle is called genuine otherwise it is called
spurious. Denote by % the set of genuine alternating cycles, by ] the set of spurious
alternating cycles and let " := %, U %]. An alternating cycle decomposition is a set
of edge-disjoint genuine alternating cycles. The alternating cycle decomposition
problem consists in finding a decomposition of maximum cardinality. This problem
is NP-hard (Caprara 1999b). A natural set packing O—1 LP model is the following:

max E Xc

Ce%6)

Z xc <1 ecE (5.1
Ce6y:ecC

xce{O,l} CE%Q.

Pricing the columns can be carried out by solving a perfect matching problem on an
auxiliary non-bipartite graph (Caprara et al. 2001). In principle, the theory presented
in this book could be applied to this particular pricing since matching problems do
have dual problems for which strong duality holds. However, LP formulations of
matching problems require an exponential number of inequalities and this rules out
the possibility of a compact extended reformulation.

When the alternating cycle decomposition is extended so as to include also spuri-
ous alternating cycles the pricing problem becomes simpler. The weaker set packing
0-1 LP model is the following:

Ce¥

Z MecXc <1 eckE (15.2)
Ce¥

xc €{0,1} Ce¥,

where 1, ¢ is equal to the number of times the arc e is traversed by the cycle C. We
note that the 0—1 linear programs (15.1) and (15.2) are equivalent since only genuine
alternating cycles can have xc = 1 in (15.2). However, the linear relaxations (15.1)
and (15.2) are different. The dual of (15.2) is
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min E U,

ecE

z,u'e,C Ue = 1 Cev (153)
ecE

u, >0 ecE.

Hence, pricing calls for finding an alternating cycle of minimum weight with weights
given by the optimal dual variables i, of the master problem. A minimum alternating
cycle can be found by the following construction (Caprara et al. 2001). An auxiliary
bipartite graph G = (V' U V", E’ U E”) is defined where V' and V" are copies of
V.Anarc ¢ ={i’, j’} € E/,i’ € V', j” € V", exists in G if there exists a node
k € G such that {i, k} € E is gray and {k, j} € E is black. Let us denote this set
of intermediate nodes as K (i, j). These edges receive weights mingex , j) Uik + ;-
Moreover, there exist edges {i’,i”} € E” for each i € V. These edges receive zero
weight. If we exclude the perfect matching E”, let us call it ‘trivial matching’, each
perfect matching in G corresponds to one or more alternating cycles in ¢ and a
minimum alternating cycle in € corresponds to a minimum perfect matching. Since
the trivial matching has zero weight, it is indeed the absolute minimum matching.
Hence, if we want to find a minimum alternating cycle, we have to explicitly exclude
the trivial matching. This is straightforward if we solve the matching problem via
ILP by adding the constraint

D =n—1

ieV

to the usual LP formulation of a bipartite matching problem with variables z(i’, j”) €
{0, 1} for each {i’, j”} € E' U E”. However, adding this constraint destroys the total
unimodularity property of the bipartite matching constraint matrix, so that strong
duality is lost.

Hence we have to resort to a more complex construction in which we have to
carry out n pricing problems by excluding from G each arc {i’, i”} in turn. Let E ) be
the edge set E” with the edge {A’, h""} removed. Each pricing problem is therefore
solved by the following LP problem:

. . - - ./ o/
min min (u; ug;) z(@’,
Z kEK(i,j)( ik + kj)Z( J )
{1/,]”}EE/
>z =1 i'eV
e

{i’,j"}eE'"UE}

Z Z(l.,, j//) =1 J-// c V//

.

i'eV’:
{i’,j"}eE'"UE)
zG@',j") =0 {i",j"}y e E'UE],
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whose dual is

max » y@)+ D y(j")

ireV’ jrevr
Y +y(") < i+ i keK(,j), {i',j"} e E'
y(i)+yi") <0 {(i",i"} € E}.

These constraints, for all 2 € V, have to be inserted into (15.3) so that the compact
extended model of (15.3) is

min E U,

ecE

Do+ D w(H =1 heV

fryer e

(@) +yn(G") < wix + uyj ke K@, j), {i',j'Y€E, heV
(@) + @) <0 {i",i"V € E), heV

u, >0 ecE.

(15.4)

This formulation has 2 n2 4+ m variables and at most n?> (n — 1)2/44+n(m — 1) +
n 4+ m constraints. The O (n*) comes from all possible alternating paths of two arcs.
An exact count of all alternating paths leads to the formula >, _,, diW dP with dl.W
the degree of vertex i for the gray edges and d? for the black edges.

Again, we need the dual of (15.4), i.e., the compact equivalent of (157), toretrieve
the cycles and possibly imposing integrality on the corresponding variables. The dual,
obtained after modifying (15.4) by multiplying all variables y, (i") by —1, is again
a special multi-commodity flow problem on the bipartite graph G’ modified to have
multiple parallel arcs (i’, j”); for each k € K (i, j). For each h € V there is a flow

I-]}{j on the arc (i', j”); and a flow &" on the arc (i’,i”). The flow &' is set to 0. All
nodes in V' are sources of a flow ¢” and all nodes in V" are sinks of a flow . The
flow Eil;(j originates from these sources. The arcs (i’, i”) have unbounded capacity
and there is no upper bound on éih, There are no capacity bounds on the arcs (i’, j);
either but the flows 55}2 j have a peculiar constraint. The arc (i’, j”); is associated to
the two edges {i, k} and {k, j} in E and the flow 5,-}}( ; is ‘counted’ both for the edge
{i, k} and for {k, j} and itis the edges {i, j} € E which have a unity capacity bound.
Hence the capacity bounds are

DD E <1 lijleE

heV keV

S>E <1 G jiek.

heV keV

The objective function is the maximization of >, ¢".
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15.3 Alignments and Longest Common Subsequences

A DNA sequence is (at least from a computer scientist point of view) a string over the
alphabet X'y = {A, C, G, T} of four letters called nucleotides. While in the previous
section we were concerned with the study of macro evolutionary events affecting
DNA sequences, in this section we focus on micro evolutionary events, such as the
deletion/insertion of a nucleotide, or the mutation of a nucleotide into another.

The DNA encodes the instructions used by an organism for building the proteins
necessary to its function (e.g., proteins are the main constituents of most tissues,
they act as antibodies, they carry out the chemical reactions that take place in cells,
etc.). A protein is a sequence of small organic compounds called amino acids or
residues. There are 20 amino acids and Nature has defined an encoding (the same for
all living organism) by which each triple of consecutive nucleotides (called a codon)
is translated into one particular amino acid (notice that there is a certain redundancy
in the code, useful for preserving an amino acid sequence also when the underlying
nucleotide sequence has undergone a few mutations).

The biologists have assigned a unique letter to identify each of the 20 amino acids,
thus defining the following alphabet of amino acids

Xr={aCDEFGHIKLDMNPOQR,STV,W,Y}

so that, from a computer scientist perspective, a protein is a string over X4.

In the passing of genomes from parents to their offspring several “errors” might
occur, and the DNA sequences in the descendants are not exact copies of those
in the ancestors. We have seen some of these events, acting on long substring of
nucleotides at once, in Sect. 15.2. On a smaller scale, a few nucleotides might get
deleted or inserted, and, correspondingly, an encoded protein might change its amino
acid sequence with the appearance/disappearance of some amino acids while the rest
of the amino acids remain intact. With the rationale that the largest the number of
unchanged amino acids, the closest should two proteins be considered, people have
studied the Longest Common Subsequence (LCS) problem, i.e., the identification of
a maximum number of ordered (non necessarily consecutive) identical amino acids
that appear in two potentially related proteins.

More formally, the problem is defined as follows. We are given two sequences
a=(ay,...,a,)andb = (by, ..., b,) of letters from an alphabet X. Any sequence
that can be obtained from a by deleting some of its elements is called a subsequence
of a, and similarly we define a subsequence of b. For each k < min{n, m} and indices
I1<iij<---<ip<mnand1 < j; <--- < jr < m such that

(@i, ... ai) = (bj,....bj)

we say that (a;,, ..., a; ) is a common subsequence of a and b, of length k. The LCS
problem calls for determining a common subsequence of maximum possible length.
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Fig. 15.4 Two sequences with longest common subsequence highlighted

The LCS problem is polynomial, and it can be solved via an O (mn) dynamic
programming procedure (see Bergroth et al. 2000 for a survey on algorithms for LCS).
Although integer linear programming is not the best way to approach this problem,
the ILP model gives a nice example on which we can apply our compactification
techniques. Furthermore, a similar model will be used in the next section, where in
fact we will be solving an NP-hard problem. Finally, the LCS problem on a set of an
unspecified number of sequences rather than just two is NP-hard (Maier 1978). An
ILP model for this multiple-sequence LCS contains variables for finding a common
subsequence for each pair of input sequences and these variables should satisfy the
constraints that we are going to define.

We model the LCS problem as a special case of a noncrossing bipartite matching
problem. Consider a complete bipartite graph over the nodes [n] (top shore) and
[m] (bottom shore). Draw the graph in the plane, by putting the vertices in points
of coordinates (x, 1), for x € [n], and of coordinates (x, 0), for x € [m]. Draw each
edge (i, j) as a line segment L(i, j) between (7, 1) and (j, 0). We will then refer to
the edges also as lines. We say that two lines (i, j) and (i’, j') cross each other (or,
are crossing lines) if

LG, )N LG, jH =1 (15.5)

Note that crossing lines intersect at exactly one point, which might be a point in the
middle (which explains their name) or a common endpoint. We define a predicate
Xli, j,u,v] that is true if (i, j) and (u, v) are crossing lines and false otherwise.
When two lines do not cross, we call them noncrossing. Note that two noncrossing
lines are either identical or one of them lies completely to the right of the other (e.g.,
i <i'and j < j).

A set M C [n] x [m] is noncrossing matching (also called an alignment) if, for
each (i, j), (i’, j) € M the lines (i, j) and (i’, j) do not cross (notice that this
condition implies that M is in fact a matching).

When the edges of [n] x [m] are weighted, an important problem calls for find-
ing a maximum-weight noncrossing matching. Also this problem can be solved
by dynamic programming in time O (mn). We proceed to describe an ILP model
for its solution. The model can be used to solve the LCS problem as well via the
following simple reduction. For input sequences a and b, consider the complete
bipartite graph ([n], [m], [n] x [m]) and define weights for the edges as w;; = 1 if
a; = b; and w;; = —1 otherwise. Clearly, any noncrossing matching M such that
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43 (3-3) 2-3 13
4-2 GL 2-2 1-2
4-1 3-1 (21) 1-1

Fig. 15.5 A clique of alignment lines (/eft) - the corresponding grid path (right)

|M| = w(M) identifies a common subsequence, given by the endpoints of the edges
in M. In Fig. 15.4 we illustrate the graph for two sequences (only edges of weight
1 are drawn), and highlight the common subsequence (W, G, C, R, R) with the cor-
responding noncrossing matching. Since if we remove an edge from a noncrossing
matching the matching remains noncrossing, a max-weight alignment cannot contain
edges of weight —1, and hence it identifies a LCS.

The following is a first ILP model for the max-weight noncrossing matching
problem:

max Z Z Wij Xij
ie[n] je[m]

xij+xw =1 duelnl, jovelm]: X[ j uv] (15.6)

x;j € {0, 1} i €[n],je[m].

Let .# denote the collection of all sets of mutually incompatible alignment lines
(i.e., each element F of ./ is a set of lines, and, for any I’,!” € F, with I #[”,
there is no alignment containing both /" and /”). The model (15.6) yields a very poor
LP-relaxation but it can be strengthened by replacing its inequalities with stronger
cligue inequalities. The new model reads

max E E Wij Xij

i€[n] jelm]

Z Xij < 1 Fe#n (157)
@i, ))er
x;; € {0, 1} i €ln],je[m]

The clique inequalities get their name from considering a conflict graph for the
alignment lines. In this graph, every alignment line (i, j) is a vertex, and two lines
are connected if they cross each other. A clique in the conflict graph is then a set of
mutually incompatible alignment lines.

The clique inequalities can be separated in polynomial time by computing a
longest path on an acyclic directed grid (Lenhof et al. 1998). Since this problem
can be cast as an LP, the model (15.7) admits a compact reformulation. In particular,
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consider a directed grid of size n x m. Number the rows of the grid, bottom to top, as
1,2, ..., n, and the columns of the grid as m, m — 1, ..., | from left to right. Then
a node in column i, row j, of the grid corresponds to (is) the alignment line (i, j).
Vertical arcs of the grid are oriented upwards, while horizontal arcs point to the right
(see Fig. 15.5). We have the following (Lenhof et al. 1998)

Claim. A set F = is a maximal clique of alignment lines if and only if it is the set
of nodes of a path from (n, 1) to (1, m) in the grid.

A clique is maximal if it is not a proper subset of another clique. Clearly, enforcing
the clique constraints for all maximal cliques implies that they hold for all cliques.
Given a vector X > 0, in order to perform separation of the clique inequalities we
give each node (i, j) of the grid a weight equal to %;;. Call length of a path in the
grid the sum of the weights of the path nodes. The most violated clique inequality
is found by taking the longest path from (n, 1) to (1, m) and checking if its length
is greater than 1. Let y;; be an upper bound to the length of the longest path from
(n, 1) to (i, j). Then the compact extended reformulation of (15.7) is the following

max E E Wij Xij

ieln] jelm]
Yim <1
Ynl = Xn1 (15.8)
Yij = Ya+n,j = Xij 1 €[n]\{n}, j € [m]
Yij = Yij—» = Xij 1 €[n], je[m]\{l}
x;j € {0, 1} i €ln],je[m]

with 2 nm variables and 2 nm — (n + m) + 2 constraints.

15.4 Protein Fold Comparison

The residues of a protein are linearly arranged along a chain of atoms, which is
called the protein’s backbone. In the aqueous solution in which it naturally occurs,
the protein quickly folds into a very compact form fully determined by the sequence
of its amino acids (see Fig. 15.6a, b). The folding is often indicative of the protein’s
function and hence it is valuable to have an abstract description that captures the

0 00000000 000000 @
(a) (b)

Fig. 15.6 a An unfolded protein. b After folding. ¢ The contact map graph




194 15 Computational Biology Problems

important features of this folding. One such description is the protein’s contact map.
The contact map is a graph whose vertices are the residues of the protein. The vertex
set is linearly ordered by the order in which the residues occur on the backbone.
There is an edge between two vertices whenever the distance between the residues
in the folded protein is smaller than a certain threshold (e.g., 5 A). Any two such
residues are said to be in contact (see Fig. 15.6c¢).

An important computational biology problem requires to evaluate the degree of
similarity of two 3-dimensional protein structures. As a matter of fact, since a protein
carries out its function by exploiting its 3-dimensional shape (for instance, by docking
onto some molecule of complementary shape), it is reasonable to assume that proteins
with very similar 3D structure perform, more or less, the same function. Clustering
of proteins into families of related elements must then be done based on their 3D
similarity rather than on the similarity of their amino-acid sequence. In particular,
there is the need for search engines in which the search key is a 3D structure to be
matched against the structures of a protein data base (Murzin et al. 1995; Mizuguchi
et al. 1998). These engines must use similarity measures to find the best hits given
the search target.

One of the similarity measures that has emerged in the past years is the Contact
Map Overlap (CMO) (Goldman et al. 1999). This is an indirect measure of similarity
which, rather than comparing two protein structures directly, assesses the similarity
of their contact maps (a somewhat easier problem but clearly related to the former).
Given two proteins, their CMO is found by determining the best alignment (i.e., a
particular type of matching) of the residues of one protein with those of the other.
The value of an alignment is given by the number of pairs of residues in contact in
the first protein which are aligned with pairs of residues that are also in contact in
the second protein. The optimal alignment has maximum value, so that the CMO is
the largest number of common contacts.

The contact map overlap problem can be formally stated as follows: given two
graphs G| = (V}, E1) and G, = (V,, E») in which the vertices are linearly ordered,
find two isomorphic, edge-induced, subgraphs such that (i) the isomorphism map
between the vertices of the two subgraphs is monotonic (i.e., if a vertex i is mapped
to a vertex j, then no vertex following i can be mapped to vertex preceding j) and

Gy

Fig. 15.7 A contact map alignment of value 5



15.4 Protein Fold Comparison 195

(i1) the number of edges in each subgraph is maximum. A monotonic isomorphism
between the vertices of two subgraphs is, basically, a noncrossing alignment between
Vi and V,. In Fig. 15.7 we illustrate an example of such an alignment.

An IP formulation of CMO is the following (Lancia et al. 2001). Let V| = [n]
and V, = [n,], and denote each edge e in E| or E, by an ordered pair (u, v), with
u < v. Define binary variables x;;, fori € V; and j € V,, representing the alignment
lines, i.e., the pairs of residues aligned in the two proteins. Furthermore, let z,, be
binary variables that are set to 1 whenever two contacts e € E; and f € E, are in
common for an alignment. As in Sect. 15.3, let .# denote the collection of all sets
of mutually incompatible alignment lines. The IP formulation is then:

max Z () ()

@i,j)eE,
(u,v)eE,
Z (i) = Xius Z Ly < Xiy 1€ Vi, (u,v) € Ey
@i,j)eE, (J,)EE,
.. (15.9)
Z 26, ) = Xius Z 26, oy < Xju u € Vo, (i, j) € E;
(u,v)EE, (vu)eE,
> xp<l Fed
@i,j)eF

x e {0, PPz e {0, 1FE

As it was already shown in Sect. 15.3, the exponentially many clique inequalities
for the alignment lines can be replaced with a polynomial-size set of equivalent
constraints which require the introduction of ny n, additional variables y;;.

The compact extended reformulation of (15.9) is then (see Carr and Lancia 2002,
2004)

max Z i, j) @)

(i, j)eE,
(u,v)eE,
z 26, ) = Xius Z 2wy <X L€V, (u,v) € By
(IS (J,)EE)
z 26, )y = Xiu, Z i pow <X u € Vo, (i, j) € E
(u,v)eE, (v,u)eE,
Vin, < 1 Yni,1 = Xpy 1

Yij = Yi+1).j = Xij ieVi\{ni}, jeWn
Yij = YiG-1) = Xij eV, jeWwn\{l}

x e {0, 1}V z e {0, 1}E<E2 y > 0.
(15.10)

The size of this formulation is 2 ny n, + m m, variables and 2 (ny m, + n,m; +
nyny) — (ny +ny) + 2, where m; = |E;| fori =1, 2.
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of protein sequences, 190 Column generation, 69
of protein structures, 193 Compact
Alignment problem in computational biol- equivalent, 75, 81
ogy, 133 extended, 75
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Computational biology, 183
Cone, 7
B Conic
Benders combination (definition), 7
cuts, 62 hull (definition), 7
decomposition, 62 Contact map, 194
Big-M method, 48 overlap problem, 194
Bin packing, 165 Convex
filling pattern, 165 body, 9
Binary linear program, 44 combination (definition), 7
Branch-and-bound, 51 hull (definition), 7
branching rule, 53 hull of infinitely many points, 11
dominance rule, 56 set, 7, 8
incumbent, 52 CPLEX, 65
primal heuristic, 53 Cube, 10, 12, 22, 95, 96
problem selection, 53 Cut-and-branch, 65
search tree, 53 Cut (of a graph), 138
symmetry breaking, 55 Cuts
Branch-and-cut, 65 0-1/2, 61
Branching rule, see branch-and-bound Benders, 62
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cover, 62
disjunctive, 61
general-purpose, 59
Gomory, 59
lift-and-project, 64
mod k, 61
split, 61
Cutting-Plane method, 58
Cutting stock problem, 165
Cut (violated valid inequality), 58
Cycle packing, 170

D

Dantzig—Wolfe decomposition technique,
92,168, 179

Disjunctive cut, see cuts

Dominance rule, see branch-and-bound

Dynamic programming, 167, 175

E
Edge-induced bipartite subgraph, 137

F

Farkas’ lemma, 16, 38
variants, 17

Free dual variables, 69

G

GLPK, 65
Gomory, 58
Gomory cut, 59
Gurobi, 65

H

Half-space (definition), 7
Hamiltonian tour, 155
Hyperoctahedron, see orthoplex

I
Idempotency property, 13
Incumbent, see branch-and-bound
Independent set, 149
Inequalities

active, 34

nonactive, 34
Integer linear program, 43
Integer programming, 43
Integrality gap, 47

Index

J
Job shop problem, see scheduling, job shop
problem

K
Knapsack, 162, 166
robust, 169

L

Lift-and-project, 64

Linear
combination (definition), 9
hull (definition), 9

Linear programming
basis, 39
canonical form, 34
complementarity slackness, 39
definition, 33
degeneracy, 36
duality, 36
ellipsoid algorithm, 40
primal-dual algorithm, 41
relaxation, 44
simplex method, 39
slack variables, 34
standard form, 34
strong duality, 38
strong duality optimality check, 38
weak duality, 37

LINGO, 65

Local branching, 57

Local search inequality, 56

M
Master problem, 68
Matching
noncrossing, 191
Matrix
balanced, 49
clique-node, 51
consecutive 1’s property (C1P), 49
ideal, 50
nonnegative factorization, 12
perfect, 50
totally unimodular (TUM), 48
Matroid polytope, 79
Max-cut problem, 138
Max-flow problem, 84, 156
Max-tension problem, 85
MILP-Solvers, 65
Minkowski-Weyl theorem, 8
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Mixed-integer linear program, 45
Multi commodity flows, 135

N

NME, see matrix, non-negative factorization
Node-induced bipartite subgraph, 137
Noncrossing alignment, 195

Noncrossing matching, 191

o
Orbital branching, 55
Orthoplex, 11, 78, 99

P
Parity polytope, 113
Perfect graph, 50
Permutahedron, 10, 24, 103
Polyhedra
adjacent vertices, 10
definition, 7
dominant, 125
edges, 10
external and internal representation, 8
extreme rays, 8
faces, 10
facets, 10
pointed, 8
slack matrix, 12, 94
union, 24, 117
union, normalization to compute extreme
rays, 26
union via vertices and extreme rays, 28
vertices, 10

Polytope, 8
matroid—, 79
parity —, 113

set covering—, 50
set packing—, 50
set partitioning—, 50
tree —, 126
TSP —, 155
vertex packing —, 149
Pricing, 69
Projection
definition, 13
Fourier elimination scheme, 21, 26
of polyhedra defined by inequalities, 16
of the cube, 22, 23
orthogonal, 16
via Farkas’ lemma, 16
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with a known basis for the null space and
orthogonal vectors to the range, 15

with a known basis for the null space and
the range, 13

with a known basis for the range and or-
thogonal vectors to the null space, 14

with known orthogonal vectors to the null
space and to the range, 16

R
Rank

linear, 12

nonnegative, 12, 98, 120
Rays, 8
Relative topology, 10
Robust knapsack, 169

S
Scheduling
job-shop problem, 173
makespan, 173, 178
one machine problem, 178
pseudoschedule, 179
scheduling pattern, 174
time horizon, 174
time-indexed models, 174, 178
total cost, 173, 178
Search tree, see branch-and-bound
Separation
of subtour inequalities, 156
Separation problem, 59, 72
Set covering
integral relaxation, 50
polytope, 50
Set packing
integral relaxation, 50
polytope, 50
Set partitioning
integral relaxation, 50
polytope, 50
Slack matrix, 12
of spanning tree polytope, 130
Sorting by reversals, 185
Sorting network, 109
Stable set, 149
on comparability graphs, 152
Staffing problems, 87
Strong branching, 54
Strong duality check, 68
Subtour inequalities, 155
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T Steiner, 123
Theorem TSP, 155
arborescence polytope, 125 asymmetric, 157
complementarity slackness, 39 polytope, 155
Goemans (lower bound on the number of with time-windows, 161
inequalities in a projection), 24
Hall, 79
Meyer (on rational polyhedra), 11 \%

Minkowski-Weyl, 8
spanning tree polytope, 126
strong duality, 38
weak duality, 37
Yannakakis, 96, 131
Total unimodularity, 48, 81, 128, 179
Transversal, 79

matroid, 79 W
Trees Weakly bipartite graph, 138

Variable fixing, 56
Vertex

definition, 8
Vertex-packing, 149

bounded-degree spanning, 131

polytope, 126

routing cost, 133 X
spanning, 125 Xpress, 65
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