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Supervisors’ Foreword

We are happy and honored to introduce Luca Lionni’s Ph.D. Colored Discrete
Spaces: Higher-Dimensional Combinatorial Maps and Quantum Gravity to the
readers of the Springer Theses Book series. This thesis provides a very interesting
perspective and important new results on the fascinating frontier between random
geometry and quantum gravity. Until recently, this interface was understood in
some depth only in two dimensions, where a wealth of sophisticated mathematical
methods in advanced enumerative combinatorics, probability theory, matrix mod-
els, and conformal field theory build a bridge between the discrete and continuous
formulations of quantum gravity. Among the most important tools for this bridge
are bijective maps such as those of Cori-Vauquelin-Schaeffer or Bouttier-di-
Francesco-Guitter. They entail that the metric properties of surface triangulations
dual to the Feynman graphs of matrix models can be understood in terms of a
combination of Brownian-type processes.

The task of correctly generalizing these tools to higher dimensions is daunting.
Luca Lionni not only dared to attack the problem but he made substantial progress
by capitalizing on the last decade rapid development of colored (i.e.,
un-symmetrized) tensor models. They are the higher-rank cousins of matrix models
but have more complex interactions, resulting in a much richer set of possible
elementary bricks and gluing rules to generate the dual higher-dimensional discrete
spaces.

A core result of the thesis is the definition of a new general bijection to treat
models of spaces triangulated through arbitrary tensorial interactions. It is shown
that any colored Feynman graph for such models is in bijection with a combina-
torial map of a particular type, called stacked map. This bijection can be seen as a
high-end generalization of the famous bijection due to Tutte between generic
combinatorial maps and bipartite quadrangulations. A natural way to understand
this bijection is to use matrix auxiliary fields which decompose a general tensor
model interaction into smaller parts. It is shown that the construction of these matrix
fields is possible regardless of the interactions considered. After explicit integration
on tensor variables a random matrix model is obtained, whose Feynman graphs are,
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as usual, ribbon graphs. It allows to import the older techniques of random matrices
to solve new questions in random tensor theory.

The thesis then illustrates the power of this technique. A central theme is to find
the optimal large size scaling limit for a given set of bricks and gluing rules. This is
extremely important for discrete quantum gravity applications, since maximizing
the number of faces for a fixed number of vertices is linked to gravity through a
suitably discretized Einstein—Hilbert action. Many interesting special cases have
been solved in detail in the thesis using the technique of stacked maps. More recent
and more difficult questions are also discussed, such as those raised by Witten and
Klebanov on the tensor extensions of the Sachdev-Ye-Kitaev model of holography
and quantum black holes.

The thesis is written in the precise and dense style of mathematical physics, but
many nice figures make it also very pedagogical and enjoyable. An extended
bibliography on both physical and combinatorial aspects completes the exposition.

In conclusion, the publication of Luca Lionni’s Ph.D. as a Springer Thesis is
timely and will certainly attract the attention of a wider readership to this excellent
and instructive presentation of new results on the combinatorics of colored graphs
and their applications to theoretical physics models.

Villetaneuse/Orsay, France Prof. Vincent Rivasseau
May 2018 Dr. Valentin Bonzom



Abstract

In two dimensions, the Euclidean Einstein—Hilbert action, which describes gravity
in the absence of matter, can be discretized over random triangulations. In
the physical limit of small Newton’s constant, only planar triangulations survive.
The limit in distribution of planar triangulations—the Brownian map—is a con-
tinuum random fractal spherical surface, which importance in the context of
two-dimensional quantum gravity has been made more precise over the last years. It
is interpreted as a quantum random continuum space-time, obtained in the ther-
modynamical limit from a statistical ensemble of random discrete surfaces and has
been shown to be equivalent to Liouville quantum gravity. The fractal properties of
two-dimensional quantum gravity can therefore be studied from a discrete
approach. It is well known that direct higher-dimensional generalizations fail to
produce appropriate quantum space-times in the continuum limit: the limit in dis-
tribution of dimension D > 2 triangulations which survive in the limit of small
Newton’s constant is the continuous random tree, also called branched polymers in
physics. However, while in two dimensions, discretizing the Einstein—Hilbert action
over random 2p-angulations—discrete surfaces obtained by gluing 2p-gons toge-
ther—Ieads to the same conclusions as for triangulations, this is not always the case
in higher dimensions, as was discovered recently. Whether new continuum limit
arise by considering discrete Finstein—Hilbert theories of more general random
discrete spaces in dimension D remains an open question.

We study discrete spaces obtained by gluing together elementary building
blocks, such as polytopes with triangular facets. Such spaces generalize 2p-angu-
lations in higher dimensions. In the physical limit of small Newton’s constant, only
discrete spaces which maximize the curvature survive. However, identifying them
is a task far too difficult in the general case, for which quantities are estimated
throughout numerical computations. In order to obtain analytical results, a coloring
of (D — 1)-cells has been introduced. In any even dimension, we can find families
of colored discrete spaces of maximal mean curvature in the universality classes of
trees—converging towards the continuous random tree, of planar maps—con-
verging towards the Brownian map, or of proliferating baby universes. However, it
is the simple structure of the corresponding building blocks which makes it possible
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X Abstract

to obtain these results; it is similar to that of one or two dimensional objects and
does not render the rich diversity of colored building blocks in dimensions three
and higher.

This work therefore aims at providing combinatorial tools which would enable a
systematic study of the building blocks and of the colored discrete spaces they
generate. The main result of this thesis is the derivation of a bijection between
colored discrete spaces and colored combinatorial maps, which preserves the
information on the local curvature. It makes it possible to use results from combi-
natorial maps and paves the way to a systematical study of higher dimensional
colored discrete spaces. As an application, a number of blocks of small sizes are
analyzed, as well as a new infinite family of building blocks. The relation to random
tensor models is detailed. Emphasis is given to finding the lowest bound on the
number of (D — 2)-cells, which is equivalent to determining the correct scaling for
the corresponding tensor model. We explain how the bijection can be used to
identify the graphs contributing at any given order of the 1/N expansion of the 2n-
point functions of the colored SYK model, and apply this to the enumeration of
generalized unicellular maps—discrete spaces obtained from a single building block
—according to their curvature. For any choice of colored building blocks, we show
how to rewrite the corresponding discrete Einstein—Hilbert theory as a random
matrix model with partial traces, the so-called intermediate field representation.
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Chapter 1 ®)
Introduction Check for

Gravity, on large scales, is described by general relativity, a dynamical theory of the
geometry of space-time, the latter being a four-dimensional continuous manifold.
One of its key concepts is that the presence of matter influences the curvature of
space-time. The other fundamental forces of nature, electromagnetism, the strong
interaction, responsible for the cohesion of the proton and the neutron, and the weak
interaction, responsible for radioactive decays, are described by a unified theory, the
Standard model [1-3]. It involves fields living and interacting locally on the ambient
space-time. We learn from general relativity, that this background space-time is not
the immovable background of Newton’s gravity or Einstein’s special relativity, but
dynamically reacts to its matter content. Importantly, these fields are quantized,
they represent quantum physical states. Measurable quantities, called observables,
are probabilities of transitions between states. These are computed from the partition
function and the correlation functions of the theory. However, the quantities computed
from these quantum high energy theories are not yet understandable from our low-
energy point of view. Renormalization is the process that tells us how we will perceive
quantum physical quantities from our scales. An electron, for instance, cannot be
considered “naked”, that is without the “cloud” of self-interactions, created and
annihilated particles which ineluctably surrounds it. Renormalization takes all of this
into account, and translates the bare theoretical quantum electron into a physically
meaningful theory: it is the renormalized electron charge which can be compared
with experimental results. Therefore, a non-renormalizable quantum theory makes
no physical sense.

While gravity is by far the weakest force of all four,' it implies the existence
of singularities—the black-hole singularities, the cosmological singularity—where
physical quantities diverge. These singularities occur at microscopic scales shorter

IRelative magnitudes of forces as they act on a pair of proton in an atomic nucleus: gravity 1, weak
interaction 10%*, electromagnetism 103, and strong interaction 1037

© Springer International Publishing AG, part of Springer Nature 2018 1
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2 1 Introduction

than the Planck scale,? and suggest that, at these scale, quantum effects should start
playing a role. Gravity is a classical field theory, the metric being the field describing
the dynamics of space-time geometry. Quantizing gravity therefore seems to imply
quantizing the metric field. Trying to quantize it directly as it is done for other
quantum field theories leads to divergences: general relativity is not a perturbatively
renormalizable theory [4, 5]. This is a hint that the concepts involved in a theory of
quantum gravity should differ radically from more familiar quantum field theories,
and could challenge our comprehension of quantum physics, and of gravity, and
therefore of space-time.

There are many attempts to build a theory of quantum gravity, among which string
theory, loop quantum gravity, causal dynamical triangulations, and many more, each
with its successes and fundamental issues. However, one important problem most
of these theories have in common, is how to make rigorous sense of a functional
integral of the kind

Z = / D[g]D[X]e_SGravhy_SSM’ (1.1)
M

where Sgy is the action of the standard model, and the functional integration is
performed over the metrics g of the space-time manifold M, and over the fields X
involved in the Standard model. In an Euclidean context, the most obvious choice for
the action describing pure gravity (gravity in the absence of matter) is the Einstein-
Hilbert action

SGravity = SEH = / dPx/Igl(A — WR) (1.2)

where A is the cosmological constant, G is Newton’s constant,’ and R is the Ricci
scalar curvature. This choice leads to the Einstein equations from the least action
principle.

One way of making sense of the partition function (1.1), is by introducing a short-
scale cut-off and seeing space-time on short scales as a lattice. A lattice in a general
sense is a discretized manifold, a space obtained by gluing together elementary
building blocks, such as tetrahedra in three dimensions. For any such discrete space,
provided that it has been given a well-defined notion of geometry, and in particular of
curvature, we would obtain a discretized version of the Einstein-Hilbert action (1.2).
Intuitively, two discrete spaces of the same topology represent two given geometries
over the same topological space, and given such a discrete space, by performing
some local modification on one of the building blocks, we vary slightly and locally
the discrete geometry. We can therefore try to make sense of (1.1) by assuming that
the integration over geometries can be replaced with a summation over discretizations

of the manifold,
/ Dlg] <«— > : (1.3)
M

discretizations of M

2 Approximately 10™35 meters, i.e. 10720 times the size of the proton. Planck energy is 1.22 x
1019Gev.

3G =6.67408(31) x 107" m3 kg=!.s72.



1 Introduction 3

Topology fluctuations are not a priori excluded, and considering [E some more general
set of discrete spaces, we can choose to define the discrete partition function of pure
gravity as

1
Z — [ — Sdiscrete ((C) s 1 .4
5= «©)° (1.4)

where Sgiscree (C) 1s a discrete version of (1.2) on C, and ¢(C) is the order of the
symmetry group of C. Let us review in more details several possibilities for [E, and
the corresponding discrete actions Sgiscrete (C), starting with dimension two.

Combinatorial maps are closed discrete two-dimensional surfaces obtained by
gluing a finite number of polygons along segments of their boundaries. They were
introduced in the 60’s by the seminal work of Tutte on discrete spheres [6, 7].
Since then, their study and enumeration has grown into a rich area of research
[8-11]. In dimension two, the topology of orientable surfaces only depends on the
number of “holes”—the genus—of the surface: a sphere has no holes, a tore as one
hole... The study of surfaces of higher genus was first addressed in [12]. Let us list a
few directions and references: rationality results [13], hypermaps [14, 15], restriction
on the allowed polygons [15-18], maps made of a single polygon [19-21], recursive
counting formulae [20, 22], bijections [15, 23]. The bijective methods due to Cori-
Vauquelin [24] and Schaeffer [25], which conserve the information on the geodesics
in the maps, have been extended to more general cases [26-28], and have led to a
better understanding of the metric properties of random surfaces. Their connection to
theoretical physics and random matrix models was highlighted by Brezin, Itzykson,
Parisi and Zuber [29], following an idea by t’Hooft [30] in the 70’s, this power-
ful approach leading to fruitful developments [11, 31, 32] The renown topological
recursion makes the bridge between maps and algebraic geometry [11, 33, 34].

Combinatorial maps are topological surfaces in the sense that they do not carry
an ad hoc geometry. In the case of triangulations, a canonical induced geometry can
be given to the map by supposing that every segment (edge) has the same length.
One then has a natural notion of local curvature—the number of equilateral triangles
around each point—and of geodesics—the shortest sequence of adjoining edges
between two points (vertices). A bigger polygon is not fixed by only specifying
that segments have the same length, and one needs to give additional information.
However, bigger polygons can still be given a similar simple geometry by taking
the star subdivision of each polygon, that is, adding a vertex in its center and lines
linking it to every point of its boundary, thus dividing it into triangles, which we
can take to be equilateral. The same notion of curvature is then defined. Gluings of
polygons can therefore be seen as particular kind of triangulations for which there is
less freedom on how the triangles can be glued together, because of the requirement
that some vertices have a fixed number of triangles around them.

The two-dimensional Einsten-Hilbert action can be discretized over a combinato-
rial map [35, 36]. From the Gauss-Bonnet theorem, the curvature term corresponds
to its Euler characteristics, 2 — 2g, where g is its genus, while the cosmological con-
stant term is proportional to a linear combination of the numbers of polygons. The



4 1 Introduction

discrete partition function therefore classifies combinatorial maps according to their
genus and size, and assigns to each map some exponential Boltzmann weight, which
depends on Newton’s constant. This defines a probability distribution over the set
of discrete two-dimensional surfaces: each map is a random two-dimensional space-
time with a random discrete geometry, together with a probability of realization given
by the discrete Einstein-Hilbert action. The probability decreases exponentially with
the genus, and the distribution is uniform on maps of the same genus and size. “The
smaller” the Newton constant is, the more this distribution is peaked around planar
maps.

Intuitively, a continuum limit is reached when the number of building blocks is
taken to infinity, while the size of the building blocks is taken to zero. Such a limit
can be given a rigorous mathematical meaning in terms of probability distributions:
planar maps made of triangles or of polygons of even size converge in distribu-
tion in the Gromov-Hausdorff sense towards the same continuous random metric
space called the Brownian map [37-39], or Brownian sphere, first introduced by
Marckert and Mokkadem [40], and which is a fractal surface homeomorphic to the
2-sphere [41], but which has Hausdorff dimension 4 [42], roughly, a measure of how
creased it is. All of this is closely related to two-dimensional quantum gravity. This
relation was studied via the KPZ relation [43—46], conjectured in [47]. Moreover,
in the recent series of papers by Miller and Sheffield [48-50], it is proven that the
Brownian map is actually equivalent to Liouville quantum gravity [51], the effec-
tive continuum gravitational theory obtained from coupling conformal matter to 2D
gravity, introduced by Polyakov [52] to describe a theory of world-sheets in string
theory.

Let us comment on this. Our justification to discretize the Einstein-Hilbert action
was to give a more rigorous meaning to the associated correlation functions: in the
two-dimensional case, we see that we can formally rewrite Zy; as a sum over the
genus g, of some coefficient times the combinatorial generating function of combi-
natorial maps of the same genus. We can then study the analytic properties of this
formal series [10, 53]. However, this reveals another interpretation of this approach,
as a discrete statistical description of gravity, analogous to the statistical description
of gases in the grand-canonical ensemble [54]: the accessible states are the discrete
surfaces, the “particles” are the elementary building blocks (the polygons in 2D),
the background temperature is Newton’s constant, the energy associated to a state is
the opposite of the Euler characteristics in 2D. As for the grand-canonical partition
function which contains the physics, it is given by the discretized Einstein-Hilbert
partition function. The continuum limit is reached at the dominant singularity of
the partition function. At the critical point, the area of the maps and the number of
polygons go to infinity, and the statistical system undergoes a phase transition. The
area is kept finite by rescaling the length of the edges to zero. The Brownian map
is therefore interpreted as an Euclidean quantum emergent random space-time: not
the large-scale macroscopic two-dimensional classical space-time, which is simply
the sphere as gravity in two-dimensions is purely topological, not the microscopic
statistical ensemble of discrete surfaces, but a mesoscopic continuous random space
with intriguing properties. It is seen as a thermodynamical limit of the statistical



1 Introduction 5

system of discrete surfaces. Matter can be added to this setup (see e.g. [54] Sects. 4.5
and 4.9, [31, 35] Chap. 30), by coupling the discrete surfaces to statistical models
(hard-dimers, Ising spins...), but this is out of the scope of this work.

In dimension D, the simplest choice for E is the set of triangulations, that is,
discrete spaces obtained by gluing together tetrahedra, or their higher dimensional
generalizations, called simplices. This is the point of view developed in dynami-
cal triangulations [36, 54]. As before in the two-dimensional case, assuming that
all edges have the same length leads to a notion of local curvature, and a dis-
crete version of the Einstein-Hilbert action (1.2) is obtained following Regge’s
prescription [55]. As in the two-dimensional case, the resulting discrete partition
function classifies triangulations according to their mean curvature: the normalized
sum of the number of simplices around (D — 2)-dimensional elements. However,
analytic computations are very difficult, and most results are numerical. This can be
overcome by introducing a coloring of facets, which are the (D — 1)-dimensional
elements of the simplices. This way, the colored triangulations are encoded into
edge-colored graphs, which conserve the information about their induced geometry.
This makes it possible to classify triangulations according to the Boltzmann weight
assigned by the Einstein-Hilbert action, i.e. according to their mean curvature. In
the case of colored triangulations, the distribution is peaked around a sub-family of
triangulations, which converge [56] in distribution towards the continuum random
tree introduced by Aldous [57-59], also called branched polymers in physics. This
continuous space gathers the properties of a continuum limit of “one-dimensional”
discrete spaces, and cannot be interpreted as a D-dimensional quantum space-time.

One therefore needs to consider some set [E of more general—or more constrained
—discrete spaces. The convergence towards the continuum random tree was also con-
cluded numerically for dynamical triangulations (see e.g. [54]), so the coloring does
not seem to be the problem. The aim of this thesis is to investigate the situation
for discrete spaces obtained by gluing other types of elementary building blocks,
such as bigger polytopes, or even more singular objects. Because the coloring was
the key assumption under which analytical results were obtained, we study colored
discrete spaces obtained by gluing together finitely many building blocks along their
colored facets. As before, an induced geometry is obtained by taking the star subdi-
vision of the building blocks—the cone—and assuming that edges all have the same
length. This defines a notion of local curvature, and the mean curvature is roughly
the normalized sum over (D — 2)-cells of the number of incident building blocks.
We stress that from a combinatorial point of view, counting how many configura-
tions have the same mean curvature is a natural and interesting problem of its own.
From the gravity perspective, the probability distribution induced by the discretized
Einstein-Hilbert action is peaked around configurations which maximize the num-
ber of (D — 2)-cells at fixed number of D-cells, and our first concern is therefore
to identify this sub-family E,, of discrete spaces for different choices of E. In the
limit where only such maximal configurations survive, the partition function (1.4)
reduces to the weighted generation function of elements of [E,.x, counted according
to their number of building blocks. It has a singularity, for which the volume of the
discrete space diverges. It is kept finite by rescaling the volume of building blocks
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to zero, so that at criticality, a continuum limit is reached which we would like to
characterize. A first indicator is the critical exponent obtained from the asymptotics
of the generating function near the singularity: for 1,/2 we expect the continuum limit
to be the continuum random tree, for —1/2 we expect it to be the Brownian map...
In this framework, the emergence of new critical behaviors would be an important
step towards establishing a theory describing quantum gravity.

When I started my Ph.D, in October 2014, the study of colored discrete spaces
in this context was at its early stages. In any dimension D, there are building blocks
of any size called melonic, which have a tree-like structure. It is easily shown that
gluings of such building blocks maximize the number of (D — 2)-cells at fixed num-
ber of building blocks if they inherit that tree-like melonic structure, leading to the
continuum random tree in the continuum limit. However, V. Bonzom had pointed
out in 2013 [60] that it was possible to escape this universality class by gluing other
kind of blocks, thus motivating this work. The case of building blocks of size four
(generalized quadrangulations) in dimension four was then investigated in 2015 [61].
It involves two kinds of building blocks, a melonic one and a block which mimics
the combinatorial structure of a two-dimensional polygon. Three critical regimes are
involved, according to the balance between the two counting parameters: the univer-
sality class of trees, leading to the continuum random tree in the continuum limit, that
of planar configurations, giving rise to the Brownian map, and a transitional one with
critical exponent <, for which baby-universes proliferate [62]. This universality class
for which we expect infinite cacti of Brownian spheres to emerge in the continuum,
was known from multi-trace matrix models [63-65], that is, by assuming that the
building blocks are (non-connected) collections of polygons.

Although only known universality classes appear, in our case they are recovered
in a very specific context, that of gluing connected building blocks together and
selecting the spaces which maximize the number of (D — 2)-cells at fixed number of
building blocks. As mentioned previously, the only universality class which appears
in this context in two dimensions is that of planar maps, referred to as the universality
class of 2D (pure) quantum gravity in physics. The first lesson we learn from these
results, is that in dimension four, this very restrictive framework does not limit the
universality class to a single one. Moreover, they concern one of the simplest models
one can build in dimension four, a couple of building blocks which mimic lower
dimensional structures and do not render the vast diversity and richness of colored
building blocks in dimensions three and higher. However, these results were precisely
obtained because of the very simple structure of these building blocks. The aim of
this thesis is to provide combinatorial tools that would enable a systematic study
of the building blocks and of the discrete spaces they generate. The main result
of this work is the derivation of a bijection with stacked combinatorial maps that
preserves the information on the number of (D — 2)-cells, making it possible to use
results from combinatorial maps and paving the way to a systematical classification
of D-dimensional discrete spaces according to their mean curvature.

Random tensor models [66], which generalize matrix models, have been intro-
duced in 1991 [67-69] as a non-perturbative approach to quantum gravity and an
analytical tool to study random geometries in dimension three and higher. The proof
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by Gurau in 2010 [70, 71] that colored random tensor models have a well defined
perturbative 1/N expansion opened the way to many results in the topic: 1/N-
expansions of the uncolored tensor models [72], the multi-orientable model [73],
and models with O(N)? symmetry [74], constructive and analyticity results [75—
78], double-scaling limit [79-81], higher orders [79, 82, 83], enhanced models [60,
61, 84], and the topological recursion [85]. References for the very recent bridge
with holography and quantum black holes are given in the paragraph on the SYK
model, below. There has also been very recent interest for symmetric tensor models
[86, 87]. The Feynman graphs of their perturbative expansions are the colored graphs
dual to the colored discrete spaces introduced previously, and the discrete Einstein-
Hilbert partition function (1.4) can be understood as the perturbative expansion of
the free-energy of some random tensor model. This generalizes the link between
matrix models and combinatorial maps. Solving a tensor model usually goes back
to studying the combinatorial properties of its Feynman colored graphs, which is
precisely the aim of this work. We stress that one of the problems we address in this
thesis is to determine how to scale a tensor model interaction in N to have a well-
defined and non-trivial 1/N-expansion, a question which appears in some recent
publications related to holography and quantum black holes [86, 88]. The bijective
methods developed in this thesis make it possible to rewrite tensor models as matrix
models with partial traces—the so called intermediate field theories, which could in
the future be used to prove constructive results (see [53, 77], and our first attempt for
non-quartic models [78]), and possibly use eigenvalues technics to solve the models,
as was done in [89].

Along this work, we detail the connections to two other areas of research. The
Italian school of Pezzana and followers studies the topological properties of colored
piecewise-linear manifolds and more singular colored triangulations using the dual
colored graph [90-101]. Recent papers investigate the topological properties of the
degree introduced by Gurau in the context of colored tensor models [102, 103]. In
this thesis, we explain how certain results, such as the topological invariance under
local moves on the colored graphs, translate in the bijective framework we introduce,
and apply this to determine the topology of the building blocks and of the discrete
spaces they generate.

The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical model with
remarkable properties [104]. It encounters tremendous interest as a toy model to
study the quantum properties of black-holes throughout a near AdS/CFT holography
[105-113]. Introducing flavors, as done in [83, 114, 115], the Feynman diagrams are
a particular kind of the colored graphs we study throughout this thesis. The combina-
torial bijective technics we introduce can therefore be applied to the characterization
of Feynman graphs contributing at any order of the 1 /N expansion of the correlation
functions, as detailed in this work. Furthermore, Witten pointed out recently [116]
that SYK-like tensor models could be considered, that lead to the same remarkable
properties but without quenched disorder. These tensor models are one-dimensional
generalizations of the models introduced by Gurau, and their Feynman diagrams are
therefore dual to colored triangulations [115]. Since then, the bridge between tensor
models and holography has been the subject of numerous papers, such as [117-123].
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Among these papers, some SYK-like tensor models have been considered, which
Feynman diagrams are dual to the more general kind of orientable or non-orientable
discrete spaces we study in this thesis. Matrix [88] and vector [124] models have
been considered which have similar diagrammatics.

The first chapter is devoted to giving a precise meaning to the statements of the
introduction.

e In Sect.2.1, we define notions of graph theory and combinatorial maps which will
be used throughout all of this thesis. In Sect. 2.2, we give a precise definition of
D-dimensional colored triangulations as pseudo-complexes obtained by gluing
simplices with colored facets.

e In Sect. 2.3, we explain how colored triangulations are encoded into edge-colored
graphs Sect.2.3.1. Section 2.3.2 is a brief summary of results from Crystallization
theory developed by the Italian school of Pezzana and followers, which we use in
the rest of this work. Section 2.3.3 introduces the degree, which classifies triangula-
tions according to their number of D-simplices and (D — 2)-simplices, a quantity
which will be central in this work. In Sect.2.3.4, we describe the colored trian-
gulations around which the distribution induced by the discrete Einstein-Hilbert
action is peaked.

e In Sect.2.4, we introduce colored discrete spaces obtained by gluing more general
building blocks, called bubbles. We detail the problems which we aim at solving
in this thesis.

e Section 2.5 clarifies how these questions arise from our discrete approach to quan-
tum gravity. Section 2.5.3 is a summary of the problems which we will tackle for
different sets of discrete spaces, and of the steps which we will follow to solve
them.

In Sect. 2.5.4, we show that if E is the set of colored triangulations, the parti-
tion function (1.4) can be rewritten as the free-energy of a colored random tensor
model.

In Sect.2.5.5, we detail this relation when E is a set of colored discrete spaces
obtained by gluing bubbles, as described in Sect.2.4.

Section 2.5.6, is devoted to the Sachdev-Ye-Kitaev (SYK) model. We briefly
explain the link with random tensor models and introduce a colored SYK model,
which Feynman graphs are the colored graphs described in Sect.2.3.

In Chap. 3, we develop a bijection between the colored graphs introduced in
Sect.2.3 and stackings of combinatorial maps we thus name stacked maps.

e We come to this bijection step-by-step, by first proving bijections in simpler cases
of Sects. 3.1 and 3.2.

e In Sect. 3.3, we detail the bijection with stacked maps in the general case, and in
some more specific cases, corresponding to different choices of E.

e The simplest case, that of the so-called quartic melonic bubbles, is detailed in
Sect. 3.4 from the point of view of combinatorial maps. This has been the most
studied tensor model in the last years (see e.g. [77, 80, 85, 89, 125]). In this
section we provide powerful tools to study these models, and prove a few new
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results concerning sub-leading orders in Sect.3.4.1, bounds on the degree and
sub-leading orders for spaces with boundaries in Sect.3.4.2, and an extension to
non-orientable spaces in Sect.3.4.3.

In Sect. 3.5, we focus on self-gluings of a single building block. They generalize
combinatorial maps made of a single polygon, called unicellular maps. We apply
the bijection from Sect. 3.3, along with classical methods from graph theory. These
manipulations make it easy to identify all the diagrammatic contributions to the
complex colored SYK model. We extend these techniques for the real colored SYK
model. In Sect. 3.5.3, we apply this framework to the enumeration of generalized
unicellular maps.

In Sect. 3.6, we generalize the intermediate field approach (see e.g. [89]) by rewrit-
ing the generating functions of colored graphs as matrix models with partial traces.
As mentioned previously, the intermediate field theory has proven a very powerful
tool in the quartic case to obtain analyticity results [53, 77], apply matrix-model
methods [89], the topological recursion [85], and study the phase transition at
criticality [125, 126].

Chapter 4 is devoted to the derivation of general results on stacked maps, which

are then applied to a number of examples.

Section 4.1 tackles the issue of finding the sharpest bound on the number of (D —
2)-cells in a discrete space. An equivalent problem is determining the right scaling
in N for a tensor model to have a well-defined and non-trivial 1/N expansion.

In Sect.4.2, we prove a series of results which specify some properties of the
building blocks which have a tractable impact on the configurations maximizing
the number of (D — 2)-cells at fixed number of building blocks. Sections 4.2.1
and 4.2.4 make it possible to extend results on a finite number of building blocks to
infinite families of building blocks. Section 4.2.5 treats the cases of non-connected
bubbles, which generalize multi-trace matrix models. Section 4.2.6 is an important
generalization of the results from Sect. 4.1 to a more general case, encountered for
non-orientable bubbles, and for orientable bubbles in dimension six or higher. A
theorem is proven, which states that when it exists, there exists a unique scaling
for a tensor model to have a well-defined and non-trivial 1/N expansion.

In Sect. 4.3, we apply the previous results to solve a certain number of examples
in dimension 3, 4 and D. We stress that they can in general be understood having
read the two first subsections of Sect.4.2. The results are summarized in Chap. 5.
Section 4.4 gives an application of the intermediate field theory for certain infinite
families of bubbles. We explain how to derive the effective theory describing the
fluctuations around the non-necessarily melonic vacuum.

In Chap.5, we provide tables Sect.5.1 summarizing the results of Chap.3, and

argue that more exotic behaviors are a priori not excluded.

This thesis is partially based on various articles and preprints, which we list here.

We first introduced the bijection of Sect.3.3.2 and proved many other results from
this thesis with my advisors Bonzom et al. [127] Colored triangulations of arbitrary
dimensions are stuffed Walsh maps, 2015, Electronic Journal of Combinatorics, Vol-
ume 24, Issue 1 (2017).



10 1 Introduction

The results on octahedra in Sect. 4.3.4 were derived in Bonzom et al. [128] Count-
ing gluings of octahedra, 2016, Electronic Journal of Combinatorics, Volume 24,
Issue 3 (2017) with V. Bonzom.

The results on the characterization of sub-leading orders of the colored SYK
model in Sect. 3.5 were derived in a recent paper with V. Bonzom and A. Tanasa. In
this thesis, we describe these results in the context of stacked maps.

Bonzom et al. [83] Diagrammatics of a colored SYK model and of an SYK-like
tensor model, leading and next-to-leading orders, Journal of Mathematical Physics
58, 052301 (2017).

The results concerning bubbles of size 6 in the Sects. 4.3.2 and 4.3.3 were obtained
in Lionni and Thiirigen [129] Multi-critical behaviour of 4-dimensional tensor mod-
els up to order 6, 2017, with Johannes Thiirigen.

Section 4.4 contains the very first result of a detailed study of the theory of
fluctuations around the vacuums of melonic and certain infinite families of non-
melonic tensor models.

Dartois and Lionni [130] Fluctuations around melonic and non-melonic vacuums,
in progress with Stéphane Dartois.

And at last, some of the results have only been proven in this thesis. The sim-
pler bijection of Sect. 3.1, the bijection W of Sect. 3.3.1 in the case of generic colored
graphs, the description of sub-leading orders of Sect. 3.4 and the bijection extended to
non-orientable quartic bubbles Sect. 3.4.3, the procedure to obtain the contributions
to the 2n-point function of the colored SYK model at sub-leading orders for n > 2,
the counting results on unicellular graphs in Sect. 3.5.3, and many of the results from
Sect.4.2, among which Theorem4.2.2 which states a necessary and sufficient condi-
tion of existence of the scaling of an enhanced tensor model to obtain a well-defined
and non-trivial 1/N expansion, and the unicity of this scaling when it exists. The
bi-pyramids, bubbles with toroidal boundaries, and higher dimensional generaliza-
tions in Sect.4.3.4 had not been treated before. I hope the new dual representation
for colored polytopes in Sect.2.4.5 will lead to future work.

Moreover, together with V. Rivasseau, we have tackled the question of proving
the uniform Borel summability of matrix models with interactions of order higher
than four, and of certain families of tensor models. More precisely, the loop ver-
tex expansion is a powerful combinatorial constructive method. It aims at proving
the analyticity of correlation functions in the Borel summability domain of the per-
turbative expansion at the origin [53, 75, 76]. Using this method, R. Gurau and
T. Krajewski showed in [53] that the planar sector is the large N limit of quartic
one-matrix models beyond perturbation theory. During my Ph.D, V. Rivasseau and
I have succeeded in applying intermediate field methods to show the non-uniform
Borel-Leroy summability of positive scalar, matrix and tensor interactions, in a series
of two papers

Lionni and Rivasseau [131] Note on the intermediate field representation of ®*
theory in zero dimension,

Lionni and Rivasseau [78] Intermediate Field Representation for Positive Matrix
and Tensor Interactions.
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As made clear in the titles, these results rely on a version of the intermediate field
representation adapted to exploit the positivity of the interactions. However, we could
not prove the uniform Borel-Leroy summability, needed to extend these results to the
large N limit. Recent progress by Rivasseau [132] should be extendable to matrix
and tensor models. These technics differ in many ways from the bijective methods
developed in this thesis, and analyticity results are out of the scope of this work, as
we focus on the problem of identifying spaces according to their mean curvature. I
have therefore chosen not to include them.
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Chapter 2 ®)
Colored Simplices and Edge-Colored ez
Graphs

2.1 Combinatorial Maps

In this section, we define several notions of graph and map theory which we will use
throughout this thesis. There are different equivalent ways of defining combinatorial
maps. A map is obtained by taking a finite collection of polygons and identifying
two-by-two all of the segments of their boundaries. The result is a discretized two-
dimensional surface. A map can therefore also be seen as a graph embedded in this
surface such that the connected components of the complement of the embedded
graph—which are its faces—are homeomorphic to discs. In all of this work, a graph
is the following (also called multigraph or pseudograph in graph theory)

Definition 2.1.1 (Graph) A graph is an ordered pair (), £), where V is a set and £
is a multiset of unordered pairs of elements of V.

The elements of ) are called vertices, and an element (v, v') € £ is an edge
between v and v'. The definition allows edges between the same vertex (loops)
and multiple edges, which are edges that link the same two vertices, also called
parallel edges. A combinatorial map can also be seen as a graph with an additional
constraint, which is a cyclic ordering of the half-edges around each vertex. We will
use the following formal definition

Definition 2.1.2 (labeled combinatorial maps) A labeled combinatorial map is a
triplet (D, o, o) where D is a set of half-edges (or darts) labeled from 1 to 2E such
that

e (o is a permutation on D
e « is a fixed-point free involution on D

Example of labeled map are shown in Fig.2.1. Each element of the unique decom-
position of ¢ into disjoint cycles is interpreted as a vertex of M, together with a cyclic
ordering or the incident half-edges: the edge following the half-edge i € D counter-
clockwise is o (i). A corner is an (ordered) pair (i, 0(i)). The edges of M are the
© Springer International Publishing AG, part of Springer Nature 2018 17
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®

10

Fig. 2.1 Equivalent labeled maps

disjoint transpositions of a: the other half-edge of the same edge as i is «(i). The
faces are the disjoint cycles of o o . The half-edge following i clockwise in a face,
o(a(i)) is the one which shares a corner with the other half-edge of the same edge.
By faces of a non-connected map, we mean the sum of the faces of its connected
components.

The degree (or valency) of a vertex or a face is the number of half-edges in the
corresponding cycle. An edge and a vertex, or a vertex and a face, are said to be
incident if the corresponding cycles contain a common half-edge. An edge and a
face are said to be incident if one or the other of its half-edges belongs to the face.
The extremities (or endpoints) of an edge are its incident vertices.

Labeled combinatorial maps depend on the arbitrary labeling of half-edges. Com-
binatorial maps are the equivalence classes upon relabeling the half-edges.

Definition 2.1.3 (Combinatorial maps) An (unlabeled) combinatorial map is
M={(pogop™ poaocp™)|peSul, 2.1)
where o and « are as in Definition 2.1.2.

An example of two equivalent maps is shown in Fig.2.1. Indeed, the labeled map
on the left and on the right are respectively

o = (1234)(567)(8910) o' = (1236)(8410)(795) (2.2)
a = (14)(35)(29)(68)(710) o = (16)(310)(29)(78)(45), 2.3)

and one can verify that the following permutation satisfies

p = (4687)(510); pooop =0, and poaop!l=d. (2.4)
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The number of labeled map corresponding to the same unlabeled map is

QE)!

|Aut(o, )|’ @)

where |Aut(o, «v)| is the number of automorphisms of the unlabeled map:
|Aut(a, )| = Card{p € S2z | (7,0) = (podop ', poaocp ™).  (2.6)

Rooted maps are such that a particular edge—the root—has been oriented. This
is equivalent to distinguishing a particular corner (e.g. the one before the outgoing
half-edge, counterclockwise) or to distinguishing a particular face (e.g. the one on
the right of the root edge). A root edge, root corner or root face, is also called a
marked edge, marked corner, marked face. The automorphism group of a rooted
map is trivial, so that the number of labeled and unlabeled rooted maps can trivially
be deduced one from another.

We call underlying graph the graph obtained by releasing the ordering constraint
on half-edges. More precisely, its vertices are the disjoint cycles of ¢ and there is
an edge (v, v') for each disjoint pair (d, d’) of « such that d (resp. d’) is incident
to v (resp. v'). It is also called the I-skeleton. This notion generalizes to higher
dimensional discrete spaces.

A path in a graph is a set of edges such that consecutive edges share an endpoint,
and which never passes twice through the same vertex (such paths are also called
proper paths). A graph is connected if any two vertices have a path between them.
A cycle in a graph is a cyclic succession of edges which share an endpoint, i.e. a
connected subgraph that only has degree two vertices.

Definition 2.1.4 (Excess) The excess of a graph (or a map) with E edges, V vertices
and K connected components, is defined as

L=E—-V+K. 2.7)

It corresponds to its number of independent cycles.

The example of Fig.2.2 has 8 independent cycles. A forest is a graph (or a map)
which as a vanishing excess, i.e. which has no cycle, and a tree is a connected forest.
A subgraph contains all the vertices of a graph, and a subset of its edges. An isolated
vertex is a vertex with no incident edge. Given a graph G, a spanning forest T is a
subgraph of G with no isolated vertex and no cycle. If G is connected, T is a spanning
tree. Given a graph G and a spanning forest 7', the number of edges which are not
in T is L(G).

Deleting an edge is removing it from the edge set. A cut-edge, or bridge, is an edge
which when deleted, raises the number of connected components by one. An edge-cut
is a set of edges which, when deleted, raises the number of connected components.
A k-bond is a minimal edge-cut comprised of k edges, i.e. a set S of edges such that
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deleting all of them disconnects a connected graph into two connected components
while deleting the edges of any proper subset of S does not.

The dual map is the combinatorial map (D, ¢~', a~"). Its faces are the disjoint
cycles of o~ 1. The dual M* of M has one vertex for each face of M, one face for each
vertex of M, and an edge between two non-necessarily distinct vertices if there was
an edge between the corresponding face(s). One may choose to restrict the degrees
of faces and/or vertices, e.g. to consider maps that have vertices of degrees 4 or 6 and
only faces of degree 5. A p-angulation is a map that has solely faces of degree p. A
triangulation is shown on the left of Fig.2.4. A regular graph or map is such that all
vertices have the same valency. It is said to be p-valent if all vertices have valency p.
The dual map of a p-angulation is a p-valent map.

A graph or a map is said to be bipartite if its vertices can be partitioned into two
sets A and B, such that edges can only have an extremity in A and the other in B.
We generally color the vertices in A and those in B with two different colors. The
dual of a bipartite map is face-bipartite, or face-bicolored.

Definition 2.1.5 (Genus) The genus g of a combinatorial map with E edges, V
vertices, F faces and K connected components is defined as

2K —29g=V —E+F. (2.8)

For a connected map, it is the genus of the surface on which the underlying graph
can be embedded.

The genus of a connected map is therefore the minimal genus of surfaces on which
the map can be drawn without crossings. The map on the left of Fig.2.2 is planar

@7&

Fig. 2.2 Isomorphic and non-isomorphic rooted maps

>

Fig. 2.3 A genus one map can be embedded on the torus
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cone C(X)
—>
%
X =0C(X)\ C(0X)

Fig. 2.4 A discrete disc and its cone

(g = 0) as it is embedded on the sphere. The map on the right of Fig.2.2 and the map
of Fig. 2.3 have genus 1: the surface of minimum genus on which they can be drawn
without crossings is the torus.

2.2 Colored Simplicial Pseudo-Complexes

A simplicial pseudo-complex is a set of vertices, edges, triangles, and D-dimensional
generalizations—called D-simplices—that satisfies additional rules. Before stating
them, we define the D-simplex recursively from the D — 1 one by taking its cone.
The 1-skeleton, or underlying graph, is obtained by keeping only the graph consisting
of the vertices and edges.

Definition 2.2.1 (Cone) The cone of a graph s its star subdivision, obtained adding a
vertex, and edges connecting that vertex to every existing one. The cone of a discrete
D — 1 dimensional space X without boundary 0X is a D-dimensional space C(X)
with boundary X = 0C(X) which 1-skeleton is the cone of the 1-skeleton of X. If
furthermore X has a boundary, the boundary of C (X) is the D — 1 dimensional space
obtained by identifying X and C(9X) along 0X (Fig.2.4).

A O-dimensional simplex is just a vertex, a 1-dimensional simplex consists of two
vertices joint by an edge, a 2-dimensional simplex is a triangle and its interior, a 3-
dimensional simplex is a tetrahedron and the volume it contains, etc. A 3-simplex is
pictured in Fig.2.5. Throughout this thesis, we consider that edges have unit length,
and that D-dimensional simplices have colored (D — 1)-simplices, also called facets.
In practice, we represent the coloring of facets by arbitrarily indexing the colors from
0to D. Simplices are glued together along facets of the same color. Besides avoiding
singularities (such as self-gluings of a simplex), the major motivation for considering
colored facets is that we can specify the attachment map so that the gluing of two
facets is done in a unique way. More precisely, every (D — k)-simplex inherits the
colors of the k facets it belongs to. For instance, an edge incident to two facets
respectively of color 1 and 2 will carry both colors 1 and 2. To each set of distinct
colors iy, ..., iy corresponds a unique (D — k)-simplex. We therefore require that
the gluing of two D-simplices along facets of color 1 is done identifying the sub-
simplices that have the same set of colors, as shown in Fig.2.6. Again, this is done
in a unique way.The resulting discrete space is a simplicial pseudo-complex.
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Fig. 2.5 A 3-simplex with 012
colored facets

023

013

Fig. 2.6 Simplices are glued
along colored facets in a
unique way

Definition 2.2.2 A dimension D simplicial pseudo-complex X is a set of
D-simplices satisfying

e Any (D — k)-simplex of X is also in X.
e The intersection of two D-simplices of X is a subset of their subsimplices.

A simplicial complex is such that two distinct D-simplices can at most share one
(D — k)-simplex and its subsimplices: there is less freedom in how the simplices
can be glued together. We do not make this stronger requirement. Throughout this
thesis, we will sometimes refer to pseudo-complexes as triangulations. We stress
however that this is somehow a conflictual denomination with that of generalized
p-angulations in Sect.2.4. Topologically, the pseudo-complex obtained by gluing
a collection of simplices along all their facets is a pseudo-manifold. Intuitively, a
pseudo-manifold is almost a manifold, apart for a certain number of singularities.
More precisely,
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Fig.2.7 A triangulated ball in 3 dimensions (left), and induced colored triangulation of its boundary
(right)

Definition 2.2.3 (Pseudo-manifold) A topological space X with triangulation C is
a D-dimensional pseudo-manifold if

e X is the union of all D-simplices

e the facets belong to precisely two D-simplices

e forany two D-simplices o and ¢’ of C, thereis asequence o = 09, 01, ...,0, =0’
such that Vi € [0, p — 1], 0; N 0;4 is a (D — 1)-simplex.

From a discrete pseudo-manifold, one can always build a colored triangulation
by taking its barycentric subdivision, which is always colored. It is obtained by
adding a vertex in every sub-simplex at the barycentre of the O-simplices, and joining
all the newly added vertices. Therefore, as long as a pseudo-manifold possesses a
discretization, it should also possess a colored triangulation.

By gluing only a subset of the facets of the simplices, one obtains a colored
triangulation of a pseudo-manifold with boundaries, which are lower dimensional
pseudo-manifolds themselves. The discretization induces colored triangulations of
the boundaries. On the left of Fig.2.7, we have represented a 3-dimensional trian-
gulation of a ball with a connected spherical boundary of color 0. The boundary
inherits a triangulation such that the color set of every sub-simplex contains color 0.
By considering all the colors but 0, we obtain a planar colored triangulation of the
boundary (right of Fig.2.7).

2.3 Edge-Colored Graphs

2.3.1 Graph Encoded Manifolds

We represent a D-simplex by a (D + 1)-valent vertex. An edge is dual to a facet of
the simplex, and carries the corresponding color. Because the gluing of two simplices
along facets of the same color i is done in a unique way, we can just represent this
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Fig. 2.8 An edge of color 3
encodes the identification of
the dual facets

gluing by identifying the two half-edges of color i incident to each vertex. This
is pictured in Fig.2.8. It is the 1-skeleton of the cellular dual of the triangulation,
but we will refer to it as the dual colored graph.! We say that the graph represents
the corresponding pseudo-manifold. In the crystallization literature (see Sect.2.3.2
and references therein), it is referred to as graph encoded manifold (GEM). The
corresponding graph is such that every vertex has valency D + 1, and an edge of
each color is incident to each vertex once, and only once (it is said to have a proper
(D + 1)-edge-coloring). Examplesin D = 2 are showninFig.2.9. A D = 3 example
is shown in Fig. 2.22 and both orientable and non-orientable examples in D = 4 are
shown in Fig.2.19.

Definition 2.3.1 We define Gp as the set of connected (D + 1)-regular properly
edge-colored bipartite graphs with color set {0, ..., D}. We denote Gp the set
obtained by dropping the bipartiteness condition. We denote (G% and @% the sets
obtained by dropping the connectivity.

Every pseudo-manifold has a colored triangulation, and this triangulation can be
encoded into an edge-colored graph (the neighborhood of vertices has to be strongly
connected, if not the triangulation cannot be reconstructed from the colored graph).
This condition is satisfied in the case of singular-manifolds, which are such that
the links of the vertices are piecewise-linear manifolds. We refer the reader to the
beginning of Sect. 2.3.2 for the definitions of piecewise-linear and singular manifolds.

Proposition 2.3.1 (Casali, Cristofori, Grasselli, 2017 [1]) In any dimension, any
singular-manifold admits a colored triangulation, and a (D + 1)-edge-colored graph
representing it.

Our assumption that every edge has the same length induces notions of distance
and curvature in the triangulation. The colored graph dual to a triangulation contains
all the information on its induced geometry. The D — k sub-simplices carry a set of
k colors and are identified in the dual colored graph by k-edge-colored subgraphs.
In particular, (D — 2)-simplices are cycles in the graph, which alternate edges of

INote that in the two dimensional case, the trivalent combinatorial map dual to the embedded
triangulation is referred to as the dual map, its underlying graph being the dual colored graph.
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Fig. 2.9 2D triangulations of the sphere, the torus and the real projective plane

two different colors, i and j. We call such a cycle a color-ij cycle, and in general a
bicolored cycle. We have the following correspondences:

triangulation  dual graph
D-simplex <> vertex
facet <> edge (2.9)
(D — 2)-simplex <> bicolored cycle
(D — k)-simplex <> subgraph in Gy_;

If the triangulation discretizes an orientable pseudo-manifold, one can choose a
local orientation of each simplex which will translate to a global orientation of the
manifold. More precisely, we have the following classical proposition [2].

Proposition 2.3.2 (Orientability) A pseudo-manifold is orientable if and only if its
dual colored graph is bipartite.

2.3.1.1 Two Dimensions

In two dimensions, if G € G, is a colored graph dual to a triangulation C, then it
is the 1-skeleton of the map dual to C. The simpler colored triangulations of the 2-
sphere, of the torus and of the real projective plane are represented in Fig. 2.9. We can
verify this right away by computing the genus of the corresponding triangulations.
Considering a triangulation C and its colored dual graph G, from the dictionary (2.9),
its genus g writes

2-29(C)=F(G)—EWG)+V(G) (2.10)

where we have denoted F the number of bicolored cycles of G (also the number of
faces of the trivalent map dual to C), and E and V its number of edges and vertices.
We respectively find genera 0, 1 and 1/2 for the examples of Fig.2.9.

The orientability condition can be visualized in two dimensions. Triangles with
colored edges are glued without specifying an ordering of the colors around their
boundary. One may however choose a local orientation by embedding every triangle
on the sphere, therefore specifying an ordering of colors around the boundaries,
clockwise or counter-clockwise. The locally orientable combinatorial map dual to
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T

Fig. 2.10 Locally orientable maps can have twist edges

)

O

Fig. 2.11 A choice of orientation, the corresponding dual map, and a local change of orientation
at vertex v

the triangulation therefore has two kinds of edges, which represent the attachment
maps: the usual combinatorial map edges, carrying a (+4) label, and twisted edges,
reversing the faces and carrying a (—) label, also called twist factor. The way the faces
behave is shown in Fig.2.10. To define locally orientable maps with permutations,
we need two blades per half-edge, but we refer the reader to [3, 4]. The gluing of
two triangles with the same (resp. opposite) orientation is represented by a (—) edge
(resp. (+) edge). An example of a colored triangulation together with a choice of
orientation for each triangle, and the corresponding dual map is shown in Fig.2.11.

Definition 2.3.2 (Local change of orientation) A local change of orientation at a
vertex is done by inverting the ordering of the edges around that vertex and exchang-
ing the (+4) signs of the incident edges by (—) signs.

It is a classical result (see e.g. [4], Lemma 4.1.4) that the corresponding surface
is orientable if and only if all twists in the map can be changed to (4) signs by a
finite number of local changes of orientation. In two dimensions, bipartiteness of the
colored dual graph/map therefore implies that the triangulated surface is orientable.
One may e.g. choose to orient black vertices clockwise and white vertices counter-
clockwise, so that every edge carries a (+) sign. Equivalently, one may choose to
give the same orientation to every triangle, so that every edge carries a (—) sign, and
then perform local changes on white vertices. In dimension 3, a similar construction
also leads to a natural oriented geometric realization.
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2.3.1.2 Boundaries

Throughout this work, we will be mainly interested in triangulations with boundaries
such that unglued faces all have the same color, which we usually take to be 0. They
are dual to edge-colored graphs such that a certain number of white/black vertices do
not have an incident color-0 edge, and therefore have valency D instead of D + 1.

Definition 2.3.3 We denote G?, the set of connected bipartite edge-colored graphs
such that ¢ white vertices and ¢ black vertices have one incident edge for each color
in [1, D]}, and the others vertices have one incident edge for each color in [0, D]].

See the example in Fig.2.12. Some paths alternating color 0 and some color
i € [[1, D] begin on a degree-D white vertex and end on a degree-D black vertex.
Let us define the boundary graph:

Definition 2.3.4 (Boundary graph) Given a colored graph G € G, the boundary
graph OG has all the degree- D vertices of G and an edge of color i between a black
and a white vertex if there is a color Oi path between them in G.

Remark that if there is only one degree-D white vertex, the boundary graph is
necessarily the elementary melon shown in Fig.2.20. As there is only one way to
add a vertex in order to obtain a graph in Gp, we can consider equivalently graphs
in G% as graphs in Gp with a distinguished edge. Another example of a graph and
its boundary is shown in Fig.2.12. We have the following known properties.

Proposition 2.3.3 IfG € G%, the connected components of the boundary graph G
belong to Gp_y. The triangulation dual to G induces a colored triangulation of its
boundary, which dual graph is 0G.

In Fig.2.13, we have represented a color-01 path between two pending half-edges
dual to color-0 facets (shaded) of the boundary which have remained unglued (in our
convention, we would not represent the pending half-edges, but we do so here for
readability). As shown on the right, the boundary graph would have a color-1 edge
between the two vertices incident to the pending color-0 half-edges (which would
be degree- D vertices in our usual convention).

d .-
b .7
7
’ b
« =
\
C \ C

Fig. 2.12 A colored graph in (G%) and its boundary graph
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Fig. 2.13 A bicolored path between two pending color-0 half-edges dual to facets of the boundary
gives a color-1 edge in the boundary graph

2.3.2 Topology

Givenacolored graph G € Gp, the graph G'isthe graph obtained from G by deleting
all the color-i edges. The following result is classical (see e.g. [5], Proposition 3).

Proposition 2.3.4 (PL-Manifolds) A colored graph G € Gp represents a piecewise-
linear manifold (PL-manifold) iff for every color i, the connected components of G
are dual to triangulated spheres. In D = 3, the Euler characteristics is positive and

vanishes solely for manifolds
4

an((?) =0, 2.11)

k=0
where n(C) is the number of k-simplices of C.

A colored graph represents a singular manifold iff for every color i, the connected
components of G’ represent (D — 1)-dimensional PL-manifolds.

Proposition 2.3.5 (Regular embedding (jacket); Gagliardi, 1981 [6]) Given a col-
ored graph G € Gp and for every cyclic permutation | € Sp+1, there exists an
embedding G, of G onto a surface F,, such that the faces are bounded by edges of
color i and 1(i). The embedded graph is called a jacket, or a regular embedding
of G. F,, is orientable if and only if G is bipartite.

Every graph admits n!/2 regular embeddings. The regular genus of a graph is the
smallest genus of the regular embeddings of the graph. In particular, if it vanishes,
then the graph represents a D-sphere
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Gl #vwz G2

Fig. 2.14 Connected sum (1)

Proposition 2.3.6 (Ferri, Gagliardi, 1982 [7]) Ifa colored graph has a planar jacket,
then it represents a triangulated sphere.

9(G) =0 = C(G)=S8". (2.12)

The above condition is sufficient but not necessary. The regular genus of a manifold
is the minimal regular genus of all the colored graphs representing that manifold. It
was introduced by Gagliardi in [8]. In dimension two, the regular genus is simply the
genus, and for 3-manifolds, the regular genus is the Heegaard genus if the manifold
is orientable, and twice the Heegaard genus otherwise [8, 9].

Proposition 2.3.7 (Connected sum) A graph connected sum Gi#,,,,G2 of two
graphs G and G, representing two PL-manifolds M and M is obtained by delet-
ing a vertex vy in Gy, a vertex v, in G, and by reconnecting the pending half-edges
in the unique possible way (Fig.2.14). The resulting graph represents a connected
sum of My and M. If the two graphs are bipartite, then topologically there is a
unique connected sum of My and My, denoted M # My, and

Vol € Grandv; € Ga, Gi#y Gy represents M#M,. (2.13)

This property extends to the case of pseudo-manifolds if in every G’T1 and ng, vy
and vy belong to spheres. Furthermore,

0(G1) + 6(G2) = 6(G1#y,1,G2). (2.14)

The connected sums of triangulations with boundaries can also be done. In this
case, in every G’1 and G' »» v1 and v, must belong to spheres, or balls if they are
incident to the boundaries. In the case where v; and v, are incident to connected
components G and G} of the boundaries, then one of the connected components
of the boundary of the graph connected sum G #,,,,G> is the graph connected sum
OGS#,,,,0GS. If the boundaries are connected,

(G 1#y,0,G2) = (G 1)#y,1,0(Go). (2.15)

Furthermore, if the colored graphs G and G, are bipartite, then G#,,,,G> is too.
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2.3.2.1 Moves

We first define h-pairs
Definition 2.3.5 (h-pair) An h-pair is a pair of vertices linked by & parallel edges.

We will be interested in the following chapters in the influence on the local cur-
vature of the insertion or contraction of pairs, as pictured in Fig.2.15. Topologically,
an additional condition is important.

Definition 2.3.6 (h-dipole) An h-dipole of a colored graph dual to a manifold is an
h-uple of parallel edges of colors I = {iy, ..., i,} between two vertices v; and v,
such that in the graph G’ obtained by deleting all the edges with colors in I, v; and
v, belong to two different connected components. The dipole is said to be proper,

if at least one of the connected components of Gl containing v; or v, is dual to a
(D — h)-sphere.

Conversely, the condition for a dipole insertion is that the D — & + 1 consid-
ered edges which should all have different colors must be in the same connected

component of G'.

Theorem 2.3.1 (Gagliardi, 1987 [10]) Two colored graphs that are obtained one
from another by a finite sequence of proper dipole insertions and contractions rep-
resent the same (pseudo)-manifold.

h ~_
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3 3 377 N\3

Fig. 2.15 Pair insertion and contraction
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Fig. 2.16 pz-pair switching
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Fig. 2.18 A flip between two edges incident to a h-dipole

Considering two edges of the same color in a colored bipartite graph, there is
a unique way to exchange them while preserving bipartiteness. If the graph is not
bipartite, there are two ways to do so. We focus on the bipartite case.

Definition 2.3.7 (p-pair switching) A pz-pair switching in a graph G € Gp is the
exchange of two edges of the same color i which originally belong to precisely 7
common bicolored cycles. It is illustrated in Fig. 2.16.

Proposition 2.3.8 Ifa py-pair switching disconnects the graph G, the original graph
represents the connected sum of the PL-manifolds represented by G| and G,.

Proof The operation decomposes into a series of D-dipole insertions and contrac-
tions and a connected sum, as defined in Proposition 2.3.7. This sequence is shown
in Fig.2.17. U

It extends to pseudo-manifolds upon the same conditions as in Proposition 2.3.7.
A flip is a particular kind of p-pair switching.
Definition 2.3.8 (Flip) A flip in a graph G € G is the exchange of two edges of

the same color incident to the two vertices of a proper i-dipole with i € [1, D — 1]].
It is illustrated in Fig. 2.18.

Theorem 2.3.2 (Lins, Mulazzani, 2006 [11]) Two colored graphs in Gp that are
obtained one from another by a finite sequence of D-dipole insertions and flips are
dual to the same PL-manifold.

Definition 2.3.9 (Combinatorial handle) A combinatorial handle isa (D — 1)-pair
such that the four edges not in the pair belong to the same bicolored cycle.

Theorem 2.3.3 (Gagliardi, Volzone, 1987 [12]>) If G € Gp represents a PL-
manifold M, and if G’ is obtained from G by contraction of a combinatorial handle,
then

2Similar results were proven in 1982 by Gagliardi for the 3-dimensional case, “Recognizing a
3-dimensional handle among 4-coloured graphs,” Ricerche Mat. 31 (1982), 389-404.
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Fig. 2.19 Examples of D-dimensional handles (orientable SP~! x S' and non-orientable
SDfl >~<Sl)

o If G’ is connected, it represents a PL-manifold N such that M =p; N#H
e [fthe contraction separates the graph into two connected components which rep-
resent two Pl-manifolds N\ and N,, G' = G| U G), then M =p N#N,,

where H is one of the two PL-manifolds represented by the colored graphs in Fig.2.19
(or D-dimensional generalization).

2.3.3 Gurau’s Degree

A cycle is a connected subgraph that only has degree two vertices. In a colored graph
G € G, the subgraph containing all the vertices, and the edges of color i and j # i
is a collection of disjoint bicolored cycles.

Definition 2.3.10 (Score) The number of bicolored cycles of a graph G € G that
alternate edges of colors 7 and j is denoted ®; ;(G). The score ® of a colored graph
is defined as its total number of bicolored cycles

(G) =) ®;,;(G) (2.16)
i<j
If G is the colored graph dual to a triangulation C, the (D — 2)-simplices of C are
dual to bicolored cycles of G, and in particular

np-(C) = ®(G) 2.17)

We stress that bicolored cycles are generally called faces in the random tensor
literature, and @, the number of faces. The reason is that in dimension 2, they coincide
with the faces of the trivalent map dual to the triangulation. We have chosen to use
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bicolored cycle and score instead, not to be confused with the facets of triangulations
or the faces of combinatorial maps.

Definition 2.3.11 (Guraudegree) The degree of aconnected colored D-dimensional
triangulation C is defined as

DD —1
Sou (@) = D + %m@ 1y (©), 2.18)

in which np (resp. np_) is the number of D-simplices (resp. (D — 2)-simplices).
The degree of the dual colored graph G € Gp is

D(D —1)
O6ur(G) = D + ————V(G) = ®(G). (2.19)

Theorem 2.3.4 (Gurau, 2011 [13, 14]) The degree rewrites in terms of the genera
of the jackets, and is therefore a positive or vanishing integer

2

5Gur(G) = (D — l)'

> 9(Gg) =0, (2.20)
J

the jackets G 7 being the embedded graphs defined in Proposition 2.3.5.

Remark that the degree as defined here is usually referred to as the reduced degree,
the degree being commonly defined as

(D—1)!
weur(G) = T%ur(G). (2.21)
Proposition 2.3.9 (Casali, Cristofori, Dartois, Grasselli, 2017 [5]) Every bipartite
graph G € Gp with Gurau degree 0y (G) < D represents the sphere.

Proposition 2.3.10 (Bonzom, Lionni, Tanasa, 2017 [15]) No non-bipartite graph
G € Gp exists with Gurau degree 6y (G) < D — 1.

It can also be seen from [16] and Proposition 2.3.2 that graphs with degree D — 2
represent the sphere S?. Furthermore, it should be possible to extend the proof of
[15] to show that graphs with degree D — 1 represent D — 2 suspensions on the
real projective plane, such as on the graph on the right of Fig.2.19 but with a single
bicolored cycle visiting all the vertices.

Considering a triangulation with boundary, we will be interested in both the degree
of its boundary and the degree of its interior. We focus on the case where all missing
edges of the colored dual graph are of color 0. It is therefore obtained froma (D + 1)-
colored graph by deleting some color-0 edges. In the case where there are no remain-
ing edge of color 0, only a (connected) D-colored graph is left, which is interpreted as
a (D + 1)-colored graph with no color-0 edge. It is therefore dual to a triangula-
tion in which all the color-0 facets remain unglued. See the dedicated Sect.2.4.1.
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The degree of the boundary of G is the degree of the boundary graph G, which is
a non-necessarily connected D-colored graph,

dcur(0G) = (D — 1)K (OG) + %(D_Z)V(GG) — $(0G6), (2.22)

where K(0G) is the number of connected components of G, and ®(JG) is the
score of the boundary graph. The degree of the interior of G is its degree as defined
in Definition 2.3.11, with the difference that the score only counts bicolored cycles
(i.e. it does not count the bicolored open paths, dual to (D — 2)-simplices on the
boundary).

2.3.4 Melonic Graphs

We focus on a specific family of series-parallel colored graphs called melonic, defined
as the recursive insertion of D-dipoles on the elementary melon, which is the only
graph in Gp with two vertices (Fig.2.20).

We recall that i-dipoles were defined in Definition 2.3.6. A D-pair is always a
D-dipole. A D-dipole insertion is the operation illustrated below in Fig.2.21.

Definition 2.3.12 (Melonic graph) Melonic graphs are obtained by recursive D-
dipole insertions on the elementary melon.

An example of melonic graph is shown on the left of Fig.2.22. We have the
following classical result.

Theorem 2.3.5 (Bonzom, Gurau, Riello, Rivasseau, 2011 [17]) Graphs of vanish-
ing degree are the melonic ones.

Corollary 2.3.1 Melonic graphs are dual to triangulated spheres.
Proof From Theorem 2.3.4, graphs of vanishing degree only have planar jackets

(Proposition 2.3.5), and we conclude with Proposition 2.3.6. (Il

Definition 2.3.13 (Canonical pairing) The canonical pairing of a melonic graph
is defined as the (unordered) set of pairs of black and white vertices corresponding

Fig. 2.20 An elementary 0
melon in Gp A
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Fig. 2.21 A D-dipole insertion on a color 1 edge
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Fig. 2.22 A melonic graph and the corresponding bipartite plane tree

to the recursive D-dipole insertions. They are called canonical pairs and there is a
unique such set.?

A cycle that alternates k edges of color i and k canonical pairs is completely
separating, if when deleting those k edges the number of connected components of
the graph increases by k — 1. Completely separating cycles and vertices of trees are
characterized the same way. The following proposition indicates that melonic graphs
have a tree-like structure.

Proposition 2.3.11 A graph in G is melonic if and only if every edge belongs to a
completely separating cycle.

Proof (sketch) It is enough to show that the two half-edges of any color i incident
to a canonical pair either belong to the same edge, or form a 2-cut (the number
of connected components increases when we delete the two edges). This canonical
pair was inserted on some color-j edge in the recursive D-dipole insertion. At that
step, the two color-j edges incident to the pair do form a 2-cut. The following
dipole insertions do not change this property, as if some D-dipole are inserted on
the edges linking the vertices of the pair, then the corresponding half-edges become
2-cuts. Conversely, if every edge belongs to a completely separating cycle, then the
incidence relations between the pairs is tree-like. In particular, there exists a leaf, i.e.

3We do not prove this statement here, it follows from the recursive structure. However, it is a
consequence of the more general result of Lemma 4.1.2.
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a D-dipole. Contracting it, one obtains a smaller graph with the same property. This
way, one recursively recovers the elementary melon, which proves that the graph is
melonic. (]

(Full) D-ary trees are rooted (D + 1)-valent plane trees. The D-ary trees we
consider are properly edge-colored, with colors in [[1, D + 1]].

Proposition 2.3.12 (Gurau, Ryan, 2014 [18]) Melonic graphs with one marked
color-0 edge are in bijection with properly edge-colored D-ary trees.

We state here the following result, which is a consequence of the bijection we
will prove in Sect. 3.3 and of Proposition 2.3.11. It generalizes the bijection between
binary trees and rooted plane trees, and encodes the bicolored cycles of the colored
graph.

Proposition 2.3.13 Melonic graphs in Gp are in bijection with plane trees with
vertices and edges colored in [1, D + 1], and white square vertices, such that

e Edges link colored vertices to white vertices. Edges incident to color-i vertices all
have color i.

e White square vertices are of valency D + 1 and incident edges all have different
colors. The ordering of edges around white vertices is that of the colors.

e The color-ij cycles of a colored graph are mapped to the connected components
of the submap obtained by keeping only the edges and vertices of color i and j.

The generating function of connected melonic graphs with one distinguished

color-0 edge is
Gy = Y VO (2.23)

GeG
melonic

It satisfies the following equation,

1

_ k kD __
G(z) = gz 9 = =G (2.24)
which is rewritten as
G(z) =1+2G(x)". (2.25)

This is a consequence of the bijection between the D-ary trees of Proposition 2.3.12
and the objects described in Proposition 2.3.13. The solutions to this equation are
well known (see e.g. [19] p.125), and it can be shown that the combinatorial solution
(satisfying G(0) = 1) has the expansion

G9(z2) = ZC,?+IZk, where CPT' =

1 (D+ Dk+1
— - D+ Dk+1

k ), (2.26)
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the C ,(D *1 being Fuss-Catalan numbers. The generating function has a singularity at

DD
Ze = m, (2.27)
and the the coefficients ¢, behave asymptotically as
D +1
e~ — =302, (2.28)

~ \/—z_ﬂch n

The critical exponent -y is defined for the first non-vanishing coefficient in the Puiseux
expansion in z — z. of the generating function of rooted elements G(z) corresponding
to a non-integer exponent:

k
G(2) = Zai(zc — )" + (e — )" T +o0((ec —2)'77), Vi.ni €N, andyeQ\N.
i=0
(2.29)
The coefficients a; may be zero. A classical result (see for instance the famous book

[20]) is that the critical exponent (also called the string susceptibility in physics) can
be deduced from the asymptotics of the coefficients,

cn ~az" (2.30)

in the one-root case. We find the corresponding critical exponent

1
= —, 2.31
T=3 (2.31)
which is characteristic of families of trees, and the corresponding critical behavior
for the generating function of rooted melonic graphs near the singularity is

Giz)=a+bzc —z+ 0z —2), (2.32)

with a, b > 0. It was proven in [17] that the continuum limit of melonic graphs is
the continuous random tree [21-23]. More precisely, melonic graphs are in bijection
with the family of melonic D-balls [17], which converges uniformly in distribution in
the Gromov- Hausdorff topology on compact metric spaces towards the continuum
random tree (CRT). It has Hausdorff dimension 2 and spectral dimension 4/3. It
is known in the physics literature as branched polymers. This continuous space
gathers the properties of a continuum limit of “one-dimensional” discrete spaces.
For instance, deleting any internal point (not a leaf) of the CRT, raises the number
of connected components. As briefly explained in the introduction, the CRT can
therefore not be interpreted as a D-dimensional quantum space-time. We report the
reader to Sect.2.5 for more details on the link to quantum gravity. As the same
conclusions were reached numerically for dynamical triangulations (simplices with



38 2 Colored Simplices and Edge-Colored Graphs

no colors), it was therefore considered as a fact that because of the predominance of
singular* discrete space, this Euclidean discrete approach to quantum gravity failed
in dimension three and higher. This conclusion however relies on the assumption
that the space E introduced in the introduction is the full set of (colored) simplicial
pseudo-complexes (Definition 2.2.2). We have mentioned in the introduction that by
choosing other sets E, it was possible to escape this universality class. The aim of
this thesis is to develop combinatorial tools to explore possible choices for E.
Furthermore, melonic graphs have received arecent renewed interest in the context
of holography and quantum black holes as they are the leading order Feynman graphs
of the Sachdev-Ye-Kitaev model. We report the reader to Sect.2.5.6 for more details.

2.4 p-Angulations in Higher Dimension

In two dimensions, combinatorial maps are obtained by gluing polygons, and p-
angulations are degree-restricted maps obtained by gluing solely p-gons, i.e. discs
with a discretized boundary of p edges (1-simplices). The natural generalization of
combinatorial maps in higher dimensions are gluings of polytopes, in which con-
text p-angulations generalize to gluings of p-topes, i.e. D-dimensional balls with
a boundary made of p facets. As before for simplicial pseudo-complexes, we will
consider colored objects to avoid ambiguities and in order to work with the dual
edge-colored graphs. We introduce two ways of doing so. The first one, described in
the following section, leads to more singular gluings but is easier to work with and
is the framework we will consider for the rest of this work. The second one is very
general but will only be introduced shortly in Sect.2.4.5.

2.4.1 Building Blocks: Bubbles

2.4.1.1 Two Dimensions: Bubbles and Polygons

In dimension two, a p-gon is a disc bounded by p edges. p-Angulations are obtained
by taking a certain number of p-gons and identifying two by two all of the edges
of their boundaries. By considering the star subdivision of the p-gons, the latter are
triangulated, so that one can think of a p-angulation as a certain kind of triangulation,
with a degree restriction on some vertices (see the top of Fig.2.23). Because they
avoid ambiguities and allow us to work with the dual colored graph, we wish to
stay in the context of colored triangulations when going to higher dimensions. In an
attempt to generalize this idea to higher dimensions, we will consider building blocks
which are made up of D-simplices which all share one common vertex. These are
the elementary building blocks which we will glue along facets of their boundaries,
and are called bubbles.

“In the sense that these discrete spaces form a very particular and constrained subset of highly
curved discrete spheres.



2.4 p-Angulations in Higher Dimension 39
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Fig. 2.23 On the left is a cycle and its dual colored graph, on the right is the star subdivision of an
hexagon and its dual colored graph (with color-0 boundaries).

More precisely, a bubble in dimension 2 is the cone (Definition 2.2.1) of a cir-
cle with a colored triangulation. As a 1-simplex is a line between two vertices, a
1-dimensional colored triangulation Cy of a circle is just a cycle of even length alter-
nating vertices of colors 1 and 2, and is entirely specified by fixing its size 2p (top
left of Fig.2.23). The colored graph B dual to Cj is itself a bipartite cycle that alter-
nates edges of color 1 and 2 (bottom left of Fig.2.23). It’s two-dimensional cone is
obtained by embedding B in the plane, adding a vertex in its interior and linking it
to every existing vertex without crossings (top right of Fig.2.23). A bubble in 2D
is thus the star subdivision of a polygon. The boundary of the bubble Cp is Cg. The
coloring of Cp translates into a coloring of Cp: edges on the boundary are given the
additional color 0, and the radial edges are alternatively of colors 1 (resp. 2) if they
were added between the central vertex and a vertex of Cp of color 1 (resp. 2). The
colored graph B dual to the colored triangulation Cp is therefore precisely B, but to
which color-0 half-edges have been added to every vertex (bottom right of Fig.2.23).

The gluing of two (non necessarily distinct) bubbles along one edge is done by
identifying edges of the boundaries of two bubbles with opposite orientation in the
unique possible way (they all have the same color 0). Note that this respects the
coloring of vertices so that the resulting map is bipartite. In the dual picture, it is
done by identifying two color-0 half-edges incident to a black and a white vertex.
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2.4.1.2 Bubbles in Higher Dimension

The building blocks we will consider in most of this work are a generalization of
2 p-gons to dimensions three and higher. They are D-dimensional spaces with a sin-
gle vertex in their interior and a (D — 1)-dimensional discrete connected boundary,
which we further require to be a colored triangulation of size p. This is more general
than what announced in the preamble of Sect. 2.4, as we don’t restrict the topology of
the building blocks, which can even have singularities (they may be pseudo-manifolds
with a connected boundary). In the more natural case of a D dimensional ball (with a
(D — 1)-colored triangulated sphere as a boundary), it is a simplicial polytope. The
notion of cone was defined in Definition 2.2.1.

Definition 2.4.1 (Bubble) In dimension D, a bubble is the cone of a (D — 1)-
dimensional colored triangulation Cp. It is therefore a D-dimensional colored trian-
gulation with boundary Cz. We denote B € Gp_; the colored graph dual to Cp.

Bubbles are the D-dimensional objects we glue together along their boundaries.
However there is a canonical bijection between the D-dimensional object and its
(D — 1)-dimensional boundary, as illustrated in Fig. 2.24. Therefore, in the rest of this
work, bubble might equivalently refer to one or the other, and we will always denote
Cp its boundary. The boundary has a connected D-edge-colored dual graph in Gp_j,
which we also call bubble graph, or simply bubble when there is no ambiguity, and

cone
=
boundary
Cp
1 duality
—
B

Fig. 2.24 On the left is a (D — 1)-dimensional colored triangulation and on the right its D-
dimensional cone. On the bottom are their dual colored graphs
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which we will always denote B. The canonical bijection just mentioned is obvious
in the dual picture: given a graph B € Gp_; with colors in {1, ..., D} dual to a
(D — 1)-dimensional triangulation Cp, the graph B dual to its cone is obtained by
adding a pending half-edge on every vertex. These half-edges do not reach any other
vertex, as they are dual to a facet of the boundary. The graph B is the boundary graph
(Definition 2.3.4) of B: B = dB. The canonical bijection in terms of dual graphs is
shown in the bottom of Fig.2.24.

2.4.1.3 Degree

In dimension D, the degree of a bubble is defined as the Gurau degree (2.18) of its
(D — 1)-dimensional connected boundary Cp

D—1)(D -2
d6u(Cp) =D —1+ %nm(%) —np-3(Cp), (2.33)

The degree of it’s interior Cp, seen as a D-dimensional object with boundary is given
by it’s Gurau degree,

D(D - 1)

> np(Cp) — np_2(Cp), (2.34)

(;Gur(éB) =D+

however it is not a quantity we will be interested in throughout this work, as it
only differs from dgy,(Cp) by a linear function of np_1(Cpg). Indeed, denoting B the
colored graph dual to Cg, and B that dual to C B, which only differs from G by adding
color-0 half-edges incident to every vertex, we have the following relations

np-3(Cp) = ®(B) = &3(B) = np-2(Cs) (2.35)
np-1(Cs) = V(B) = V(B) = np(Cp), (2.36)

where <I>6(I§) is the number of bicolored cycles that do not contain color 0.

Dy = Z ®; ;. (2.37)

O<i<j

2.4.2 Gluings of Bubbles

The discrete objects we study in most of this work are the cell pseudo-complexes
obtained by gluing bubbles (Definition 2.4.1) along facets of their boundaries in every
possible way. Facets that lie on the boundary of a bubble with colors {1, ..., D} are
given the additional color O (as a convention). Two color-0 facets are glued in a
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Fig. 2.25 Gluings of octahedra in three dimensions

unique way, as described in Sect.2.2. Therefore, the gluing of two facets of color 0
belonging to two D-simplices (which in turn might belong to the same or to two
different bubbles) is represented as an edge of color O between the corresponding
vertices in the dual picture. We represent edges of color 0 as dashed, as they play a
special role. Non-restricted connected gluings of bubbles in dimension D are dual
to colored graphs in Gp. Any graph in G can be interpreted as a gluing of bubbles
once a choice is done for the color i playing the role of “color 0" (one might just
exchange the names of the two colors to be consistent with previous and following
definitions). The bubbles are then the connected components of the subgraph obtained
by deleting all color-0 edges. We can also choose to restrict the possible building
blocks (Fig.2.25):

Definition 2.4.2 (Bubble-restricted gluings) Consider a subset of bubbles B C
Gp—1. The connected discrete spaces obtained by gluing only copies of bubbles
from B are called B-restricted gluings. We denote G(B) the set of their dual colored
graphs, which we call B-restricted graphs, and bubble-restricted graphs more gener-
ally. In the boundary case, we denote G?(B) the set of graphs in G% such that, when
deleting all color-0 edges, only copies of bubbles in B remain.

Generalized 2 p-angulations are obtained when all bubbles in B have (a boundary
of) size 2 p. Non-orientable gluings can be obtained from orientable bubbles, as done
in Sect. 3.4.3, or by gluing non-orientable bubbles, such as the K4 graph on the right
of Fig.2.9.
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Fig. 2.26 Graph dual to an 8-angulation in three dimensions

Definition 2.4.3 (Locally-orientable gluings) Consider a subset of bubbles B C
Gp-1.One may decide to glue copies of bubbles from B so that the resulting dual col-
ored graphs are connected non-necessarily bipartite (D + 1)-regular edge-colored
graphs, which set we denote G(B). Non-bipartite graphs correspond to non-orientable
spaces. One may also consider non-orientable bubbles.

The dual graphs are such that when deleting every color-0 edge, the connected
components all belong to the bubble-set B. An example of 8-angulation is shown in
Fig.2.26. Remark that the previous definition allows self-gluings. Bubble-restricted
gluings are also simplicial pseudo-complexes in which there is less freedom on how
to put simplices together. A first consequence of this is that Theorem 2.3.4 is still
valid, i.e. a bubble-restricted gluing C is such that

np—2(C) <D+ WnD(C). (2.38)
However, a consequence of Theorem 2.3.5 is that this bound is saturated only for
gluings of melonic bubbles. Indeed, it is saturated for graphs of vanishing Gurau
degree, which are melonic, and melonic graphs have melonic bubbles when deleting
all the edges of any color i (consequence of Proposition 2.3.11). Therefore, melonic
graphs cannot be obtained from non-melonic bubbles.
Another important remark is that n,_,(C) counts every (D — 2)-simplex, in par-
ticular it also counts (D — 2)-simplices inside the bubbles (those that appear in Cp
when taking the cone of the boundary Cg). Such (D — 2)-simplices are identified by
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Fig. 2.27 Bicolored cycles identifying edges lying respectively in the interior of the bubble and on
its boundary

bicolored cycles which do not contain color 0, as illustrated on the left of Fig.2.27
in three dimensions. As the number of such (D — 2)-simplices is just

np (€)=Y np2(Cp) x np(C), (2.39)

BeB

wherenp_» (é ) = np_3(Cp) is the number of (D — 2)-simplices that do not belong
to the boundaries Cp of the bubbles (2.35), and n(C) is the number of such bubbles
in C. If G is the graph dual to C, the number of (D — 2)-simplices inside the bubbles
rewrites in terms of its bicolored cycles

n,_,(C) = Z D, ;(G) = Dy(G). (2.40)
O<i<j
The remaining (D — 2)-simplices belong to boundaries of bubbles,

nd ,(C) =np_»(C) —nS (). (2.41)

These are the (D — 2)-simplices we are interested in counting. They are identified
by color-0i cycles, as illustrated on the right of Fig.2.27, and therefore:

Definition 2.4.4 (0-Score) The 0-score is the total number of bicolored cycles con-
taining color 0:

D
nd L) =Y ®i(G) = Bo(G). (2.42)
i=1

It is also the number of (D — 2)-simplices of C which lie on the boundaries of the
bubbles.
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The number of D-simplices can also be expressed in terms of the number of
bubbles,
np(©) =Y np-1(B) x np(C), (2.43)

BeB

where we used (2.35). For p-angulations, it simplifies to
np(C) = p x b(C), (2.44)

in which b denotes the total number of bubbles of the triangulation,

b(C) =Y np©). (2.45)

BeB
The linear bound (2.38) rewrites
D(D —1)
np(C) < D+ Z[Tnm(m - nD_3(B>}nB(C) (2.46)
BeB
which can be expressed in the dual picture using (2.35),
D(D —1)
®y(G) <D+ Z TV(B) — ®(B) |np(G). (2.47)
BeB

In order to express this relation in terms of the degree dgy,:(B) of the boundary of the
bubble, we use that

DD- _ (D=1 (D-hHD-2

) 5 7 , (2.48)
so that (2.47) can be rewritten as
D) V(B)
®o(G) =np_,(C) =D+ Z(5c;ur(3) + (D - 1)(T - 1))nB(C), (2.49)

BeB

and (2.38), which is a bound on the number of (D — 2)-simplices in terms of the
number of simplices, is now re-expressed as a bound on the number of (D — 2)-cells
that lie on the boundaries of the bubbles, in terms of the number of bubbles.

2.4.3 Bubble-Dependent Degree

As mentioned in the previous section, a consequence of Theorem 2.3.5 is that the
bounds (2.38) and (2.49) are saturated only for gluings of melonic bubbles. Itis a (non-
trivial) consequence of [16] that there are only finitely many gluings of non-melonic
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bubbles that contribute to each order when they are classified according to Gurau’s
degree.’ Intuitively, they produce less (D — 2)-simplices than gluings of melonic
bubbles at fixed number of D-simplices, and therefore the term Wn p in Defini-
tion 2.3.11 or Eq. (2.38) is too strong. Its influence has to be softened by replacing
the factor w by some factor

D(D —1)
—

ag < (2.50)
For D-dimensional gluings C of a single kind of bubble B, we therefore rather
consider

0g(C) = D +ap x np(C) —np-(C). (2.51)

The factor ap has to be determined so that 65 (C) € N for any gluing C of bubbles B.
This is equivalent to the bound

np—(C) < D+ap xnp(C). (2.52)

For a given ap, relation (2.51) naturally classifies contributions according to the
corresponding §p > 0. We further want the set of contributions of at least one given
corresponding order to be of infinite cardinality, where we define the order as

Definition 2.4.5 (Order) For a given ag € R, the k™ order of contribution in the
classification of B-restricted graphs G(B) given by the corresponding d5 (2.51) is
the preimage of dp in G(B), which we denote 5;1 (k). It defines a partition of the
B-restricted graphs

GB) =| |05" % (2.53)
k

We call k the order and we say that a graph G € 51;1 (k) is of order k or contributes
at order k.

The bubble-dependent degree is then defined as follows
Definition 2.4.6 (Bubble dependent degree) For B € Gp_y, if there exists a scalar
ap € R such that the form

532@(3) — N

G +—> D+apV(G) — P(G) 2.54)

SWith the vocabulary of the paper, the authors show that there are a finite number of schemes. The
schemes are obtained by recursively contracting the D-dipoles, and by replacing the chains by their
minimal realizations. As gluings of non-melonic bubbles can neither have chains of arbitrary length
nor melonic contributions of arbitrary size, it implies that there are only finitely many gluings of
a non-melonic bubble B which have the same Gurau degree. This is a particular case of the more
general result we prove in Theorem 4.2.2.
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satisfies the two following conditions

e dzeN (2.55)

e 3k € N such that Card (531(1@) = o0, (2.56)

then d is said to be well-defined (2.55) and non-trivial (2.56), and is called a bubble-
dependent degree.

If the last condition is not satisfied, the generating function of contributions to
each order are polynomials in the counting parameter. In particular they do not have
singularities, and the corresponding theory does not define any continuum limit at
a given order (see Sect.2.5.1). This is clear intuitively: if the number of gluings
contributing to a given order is finite, one cannot have a limit of graphs of the same
order with an infinite number of bubbles, each rescaled to have vanishing volume.
We say that the corresponding degree is trivial.

The first non-empty order is called the leading order. One could then just translate
(2.54) to have a constant term smaller than D. However, we will prove in Theo-
rem 4.2.2 that if such a value of ap exists, then Condition (2.56) is always satisfied
at order 0. In particular, the leading order is always order 0.

As underlined in the definition, the existence of such a value of ap is not guar-
anteed, and it is not excluded for the O-score of graphs which maximize the 0-score
at fix number of vertices (maximal graphs) to have a non-linear dependence in the
number of vertices. In fact, the simplest non-orientable bubble generates maximal
graphs which exhibit a different behavior for even and odd numbers of bubbles. In
this case, we can still define the degree with the strongest slope, and exclude the
other maximal graphs from the leading order (see the example of the K4 bubble in
Sect. 4.2.6 on tree-like families). It can lead however to a non-trivial degree which is
non-negative but rational, and therefore defines rational orders. We argue in Sect. 5.2
that more exotic behaviors are not excluded, although they have never been observed
and are not-likely to occur.

Moreover, we have stated the definition as if such a value of ap was necessarily
unique. We will prove in Theorem 4.2.2 that whenever it exists, there is a unique
such value. More precisely, we will show that when choosing a smaller value of ag,
we can easily exhibit an infinite family of graphs for which §p — —o0, and when
choosing a higher value of az, we only have a finite number of contributions per
order.

As before for the Gurau degree, we can express the bubble-dependent degree in
terms of the (D — 2)-cells that lie on the boundaries of the bubbles, as the (D — 2)-
cells in their interiors is just a constant times the number of bubbles. Making use
of relations (2.39)—(2.47), we can rewrite dp in terms of the number of boundary
(D — 2)-cells ®( and of the number of bubbles b,

0(G) = D +ap x b(G) — Do(G), (2.57)
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which only depends on quantities linked to the boundary of the bubbles, and where
ap is determined so that conditions (2.55)—(2.56) are satisfied. The relation between
ag and ag is

agp =agV(B) — ©(B). (2.58)

In practice, for a given bubble B, we rather try to determine ap such that d 5 satisfies
(2.55)—(2.56). Moreover, for counting results such as in Sect. 3.5.3, we are only
interested in counting quantities that lie on the boundary of the bubbles. However,
comparisons between different models can only be done using relation (2.54), and
the coefficient

D(D —1) _

1 0 (2.59)

ap

gives the correction to Gurau’s degree (Definition 2.3.11). Indeed, we have

§Gur - 6B D(D - 1)
AB = =
\%4 4

—agp > 0. (2.60)

According to (2.58), the conditiona < w for non-melonic bubbles is equivalent

to
& < 0gu(B)+ (D — 1)(@ -1), (2.61)

D(D — 1)
<—
4

where dgyr (B) is the Gurau degree of the bubble B. This is consistent with (2.49).
This trivially generalizes to B-restricted gluings. The B-dependent degree of a
dual colored graph is®

08(G) = D+ ) _azV(Bng(G) — D(G), (2.62)
BeB

which can also be written in terms of boundary (D — 2)-cells

08(G) = D + ) _apng(G) — ®o(G). (2.63)
BeB

The orders are then defined as

G®) = |_|d5" ). (2.64)

keN

5The notation is rather conflictual as although it is the case for all known examples, it has actually
never been proven that the ap computed for gluings of a single bubble was necessarily the same
ap computed for B-restricted gluings with B € B. A possible candidate could be the example in
Sect. 5.2, where we need two conjugate bubbles to produce a graph which has more bicolored
cycles than expected when gluing only one or the other bubble. A more accurate notation would
therefore be a% in the case of B-restricted gluings, and the reader should keep in mind that for each
one of the examples of B-restricted gluings treated in this thesis, and for each B € B, it is proven
independently that a]g =ap.
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Again, as a consequence of Theorem 2.3.5, we know that for the complete family
of melonic bubbles B, in dimension D, ag = D(D — 1)/4 does not depend on
the size of the bubble, and dg.(B) = 0 in (2.49), so that for a melonic bubble B,
with V vertices,

14
B, = (D — 1)(3 —1), (2.65)

as expected from (2.61). In two dimensions, the Gurau degree is twice the genus of
triangulations, and for a combinatorial map M, ag = 1/2andag = V(B)/2 — 1, as
for melonic bubbles in higher dimension.

For a given bubble B, our first aim is to identify the maximal gluings:

Definition 2.4.7 (Maximal gluings) For a given B, we call maximal the B-restricted
gluings which maximize the number of (D — 2)-cells at fixed number of D-cells.
We will call maximal graphs their dual colored graphs, which maximize the number
of bicolored cycles at fixed number of vertices.

This is done in the dual picture by identifying the colored graphs in G(IB) which
maximize the number of bicolored cycles that contain color 0, at fixed number of
vertices. Indeed, we are interested in the (D — 2)-cells that lie on the boundaries
of the bubbles, and furthermore, the number of remaining bicolored cycles is just a
constant times the number of bubbles (2.39). In most known (orientable) cases they
satisfy a relation of the type

®(Guman) = D + ) dpnp(G), (2.66)
BeB

from which we deduce ag and ag.If ag € N, the bubble dependent degree defined for
this value of a is an integer, which vanishes only for maximal configurations, and is
positive otherwise. It therefore satisfies (2.55) and maximal graphs are precisely the
graphs contributing to the leading order thus defined. We will show in Theorem 4.2.2
that Condition (2.56) is necessarily satisfied at order 0. We will calculate the values
of ap and ap for a certain number of models. A table summarizes these results in
Sect. 5.1, and lists the sections where they are treated.

2.4.4 Pairings and Coverings

A colored graph in G always has an even number of vertices: because there is one
color-1 edge incident to each vertex and one only, color-1 edges define a partition of
the vertices in pairs (a 1-matching).
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Definition 2.4.8 (Pairing, covering) For a given bubble B € Gp_;, we call pairing
a partition of its vertices in pairs of black and white vertices. Pairings are usually
denoted Q. We call Q-covering of B and denote B € G, the edge-colored graph
obtained by adding color-0 edges between the vertices of each pair of 2.

Definition 2.4.9 (Optimal pairing and covering) We call optimal the coverings
which maximize the score (or equivalently the O-score) among all other coverings of
the same bubble. We call optimal the corresponding pairings.

We will generally denote ¢ (B %) the O-score of an optimal covering, and Qop an
optimal pairing. The following is not a sufficient condition for a graph to be melonic.
We do not prove it here as we prove a more general statement in Lemma 4.1.2.

Proposition 2.4.1 Melonic graphs have a unique optimal pairing, its canonical one.

2.4.5 Colored Polytopes in Three Dimensions

In this subsection we argue that the formalism of colored triangulations can be
generalized to study gluings of other kinds of building blocks, not necessarily having
colored-triangulated boundary. This is for instance the case of an icosahedron, which
boundary is a triangulation which is not properly colorable, but also of polytopes
having non-triangular facets, as the cube, or the dodecahedron. We consider the
example of the cube. Its boundary is a quadrangulated sphere with 6 facets, which
we color with indices from 1 to 6. The edges (resp. vertices) inherit the color set of
the 2 (resp. 3) colors of the facets they belong to. As before, when gluing two facets
of the same color, we require that the edges and vertices which have the same color
sets are identified. We consider two orientations of the cube, with opposite ordering
of colors around the boundaries of the facets. This is shown in Fig.2.28. One can
use this formalism to study gluings of bubbles. It would be possible to study gluings
of cubes by subdividing them into 3-simplices throughout a barycentric subdivision,
but this would require 56 simplices and would allow self-gluings, which are not
authorized in the present formalism.

In order to study the combinatorial properties of the discrete spaces obtained by
gluing colored cubes, we represent the two kinds of cubes by black and white vertices,
and the gluing of two facets of the same color by a colored edge between the two
corresponding vertices. The graph we obtain are precisely the same as when gluing
tetrahedrain dimension D = 5, i.e. 6-colored graphs in G5. We can use this formalism
to classify configurations according to their number of edges at fixed number of
cubes. However, the difference here relies on the fact that not all bicolored cycles
identify edges. Indeed, with the choice of coloring of Fig.2.28, only the bicolored
cycles 12, 13, 14, 15, 23, 25, 26, 34, 36, 45, 46, 56 identify edges; the others cycles
16, 24, 35 do not. We define the score of gluings of colored cubes as

Peuve (G € Go) = P(G) — @16(G) — P24(6) — P35(G). (2.67)
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Fig. 2.28 Gluing colored cubes
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Fig. 2.29 Gluing of four cubes

Let us compute the score of gluings of four cubes. A graph in Gs with four simplices
is a cycle alternating k edges and 6 — k edges. Its usual score is

K =30 — k(6 — k). (2.68)

In the case where k = 1, e.g. with distinguished color 1, we have one cycle 16, and
two cycles for 24 and 35. We find

o+l —30-5-5=20. (2.69)

cube

In the case where k = 2, there are two cases, shown in Fig.2.29.
They lead to different scores: for the graph on the left,

®+2 —30 -8 —4 =18, (2.70)

cube

and for the graph on the right,

o+ — 22 —5=17. (2.71)

cube
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In the case where k = 3, there are also two cases, leading to the scores

o =30-9-3=18, and ®*’ =30-9-5=16. (2.72)

cube cube

We find that *2¢ = &*39 This is different from the D = 5 gluings of tetrahedra

cube cube*
corresponding to these graphs, for which ®*? > &*3:

o+l =25 @*? =22, and ®* =21. (2.73)

In this interpretation of the graphs in Gs, the contribution of the cycle alternating 3
edges has therefore been “enhanced”. Although in this example, CDj;llbe is still larger,
we understand that interpreting graphs in Gs as representing gluings of colored cubes
could render maximal some graphs which were not. This also motivates the study of

discrete spaces obtained by gluing building blocks bigger than tetrahedra.

2.5 Quantum Gravity and Random Tensor Models

2.5.1 Discretized Einstein-Hilbert Action

In dimension D, the Euclidean Einstein-Hilbert partition function describes a theory
of pure gravity—i.e. without interacting matter—which is classical in the sense that
there are no quantum effects

Zpy = f Dlgle 5en9) (2.74)

where the functional integration is done over all metrics on some manifold M, and
denoting A the cosmological constant and R the Ricci scalar, the Einstein-Hilbert
action is

1
Sen(g, M) = / dPxy/Igl(A — ook (2.75)
M G

in which G is Newton’s constant, and we have set h = ¢ = 1. A common approach to
make sense of this partition function is to discretize the manifold M, as principally
developed by Regge [24]. We consider a triangulation of M, and provide it with
an induced geometry by assuming that all the edges have the same length /. For
such a choice C of triangulation, the first term of the action is just the volume of
M—proportional to the number of D-simplices of C—multiplied by A. The second
term, which encodes the local curvature, can be shown to be proportional to a sum
of deficit angles around (D — 2)-simplices, which expression is [17]

DD +1) 1 ]nD’ 276

Ap_r=2mnp_o, — [Tarccosﬁ
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where np and np_, denote respectively the number of D and (D — 2)-simplices,

& fktl
Ky 2F
Einstein-Hilbert action is expressed as a particular case of the Regge action,

as in the rest of this work. Denoting vy = the volume of a k-simplex, the

SRegge (A, C) = Avpnp — Vp_2Ap_s. (2.77)

1
167G
In the partition function, we replace the integration over geometries on M with a
sum over homogeneous triangulations of the manifold M

/ Dlg] < > (2.78)

C triangulation of M

We escape this classical background by summing over triangulations belonging to
some set [E, that may contain triangulations of any topology, and consider the discrete
partition function

| )
Zg(A)= ) —e et (2.79)
triangulations ¢
in E

where ¢(C) is the order of the symmetry group of the triangulation,” and

_ _» D(D+1 1
USD—GZ, and kp = Avp %%arccosﬁ. (2.80)

Kp-2 =
Here, the coefficient xp_, only depends on the choice of “cut-off” [, the length of the
edges, and on G.Inaquantum limit,/ isof order l and G — 0,sothatkp_, — +o00.8
In the continuum limit, / — 0 but we consider a “mesoscopic” limit in which the
action of gravity is still negligible. The two limits may however be of comparable
order (see the double scaling limit [25, 26]). We refer the reader to [27] for a detailed
discussion. In every case, we are in the limit where

Kp_p —> —+00. (281)

TThere is no canonical choice for this weight. If the aim is to best approximate the continuous
Einstein-Hilbert partition function, these weights should count the number of equivalent triangu-
lations for some good notion of equivalence. In practice however, the weights are fixed by what
we can actually compute exactly: the results are usually obtained combinatorially, and this is best
done by rooting the triangulations, i.e. distinguishing a particular facet. In that case, the weights are
all trivial, ¢ = 1. If one considers that the triangulations involved in the discrete partition function
should not be rooted, then it should be a “primitive” of the sum involving rooted triangulations,
in which case the weights ¢ are fixed, and encode the symmetries of the colored graph dual to the
triangulation. This is the point of view adopted in this thesis. We stress however, that any choice
could be justified a posteriori depending on what is recovered in the continuum limit.

81 should be thought of as a cut-off which is removed in the continuum limit / — 0, not as the
Planck scale [ p, as we would have kp_p ~ 11[,)_2/6 ~ 1 for D > 2.



54 2 Colored Simplices and Edge-Colored Graphs

On the other way, the cosmological constant A is not fixed, and e~"? is a variable
of the theory. The partition function (2.79) therefore makes sense if the exponent
of e"P-2 does not become arbitrarily large for large connected triangulations. We
therefore rewrite

Zr(A) = Z l (e—ifn+mﬂnfz)nn(eﬁnfz)nnfz—ann (2.82)
triangulations ¢
in E
and search for some a € R* and A € R such that for any connected triangulation in
E,np_, —anp < A.

Another way of understanding this is from statistical physics considerations. E
can be seen as a grand-canonical ensemble in which triangulations are micro-states
which can exchange energy and whose number of simplices is not fixed, and we wish
to identify (2.79) with the grand-canonical partition function of the system,

1 5
Ze(N) = Y. O et (©e=IEO), (2.83)

C triangulation
in E
where £(C) is the energy associated with the triangulation C. As kp_ > 0, we
could naively identify 5 = kp_j, t = —kp,and € = —np_,, however this choice of
energy would not be bounded from below. The rescaling (2.82) is therefore interpreted
as an attempt to define an energy

Eg(C) = anp(C) —np-(0), (2.84)

with a chosen such that £ is bounded from below for C € E.
We furthermore expect the smallest such A to be the dimension D. Asnp_, € N,
this implies anp € N for saturating configurations. In the case where

Jag € Q7 such that §g = D 4+ agnp —np_» € N, (2.85)

we recognize condition (2.55), and Jg is the degree of a connected discrete space. In
the most general case, o € Q. From previous sections, we know that if IE is the full
set of colored connected triangulations defined in Sect. 2.2 (dual to colored graphs
in Gp), then

D(D—-1)

T (2.86)

ag,

and dg is Gurau’s degree (Definition 2.3.11). Many other choices are possible for the
set E. Here we are mainly interested in discrete spaces obtained by gluing bubbles
(see Sects.2.4.1 and 2.4.2), which are “rigid” blocs, themselves made of several D-
simplices glued together. We know (Theorem 2.3.5) that the same value ag = ag,
is found if [E is the set of spaces obtained by gluing melonic bubbles. For non
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melonic bubbles, we will show in Theorems 4.1.1 and 4.2.2 that this value leads to a
finite number of contributions per order. When such a value exists, it is smaller than
D(D — 1)/4 (2.50). Defining

A =e fotaro2 apd N = -2, (2.87)

the Eq. (2.82) can be expressed in the simpler form

1
ZgN) =) © N12©€) Nno-2(€)=anp(€), (2.88)
CeE ¢

In statistical physics terms, this is the partition function of micro-states in E, weighted
by the Boltzman weight N"»-2(€)=ann(€) = ¢=B&(C) "and with fugacity \. In the case
where the elements in [E are not necessarily connected, the free-energy (related to
the grand potential),

Fe(A\) =1n Zg(N\) (2.89)

is the sum over connected discrete spaces. Remark that the object we interpret as the
partition function of some non-classical theory of gravity has a sum over geometries
of connected spaces so thatis coincides with the partition function if the elements of £
are connected, or rather with the free-energy if the elements in [E are not connected.
To adjust the notations with the tensor model generating functions of Sects.2.5.4
and 2.5.5, we place ourselves in the second case, and consider the expansion of the
free-energy. If (2.85) holds, the free-energy writes

1
Fr(\) = NP — )\ ©) y—©) 2.90
5\ CZE O (2.90)

connected

which is also known as the 1/N expansion in theoretical physics. We call order
(see Definition 2.4.5) the integer values taken by dg and leading order the first non
vanishing value. We write

1 1 1
570 = FON + Nﬁ;”(A) + mf;;m +oe (2.91)

where ]—"[(Ei ) (A) is a weighted generating function of elements of [E of order i, counted
with respect to their number of D-simplices,

l- o
FEN =Y S (2.92)
n>0 .
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where ¢ is the number of elements of E of order i with n D-simplices, and €
is a symmetry factor of the building block. If there is a least one such space, the
leading order corresponds to spaces in [E with vanishing degree dg (we will prove in
Theorem 4.2.2 that it is always the case). Such discrete spaces maximize the number
of (D — 2)-simplices at fixed number of D-simplices. In the general case, they are a
subset of maximal spaces (Definition 2.4.7). In the large N limit, which corresponds
to the limit (2.81) discussed above, only elements of the leading order survive. If
the leading order generating function has a dominant singularity \., we denote ~y the
critical exponent, also called the string susceptibility in physics’

FLON) = a+ B0 — N7 +o((he — NPT, (2.93)

in which case the coefficients ¢© = o asymptotically behave [20] as

€"n!

¢ ~ kA" 73, (2.94)
The behavior of the average volume of leading order triangulations at criticality
satisfies 5

< V() >~1P <npC) >~ ZD)\aln FLO, (2.95)

where we used that the average number of D-simplices of leading order contributions
is

Dm0 PN )
<nplC) >= —=———— = A—InF; ' (\). (2.96)
P DV
This can be computed using (2.93) and leads to
A =N
V(C ~ P : 2.97
<V > A=A+ B — NP (2.97)

Intuitively, the large-scale limit should occur when the behavior does not depend on
the details of the discretization. This is precisely the case at the singularity A, as the
partition function only depends on the asymptotics of the coefficients, i.e. on A and on
the critical exponent . In order to reach a thermodynamical limit < np >— +o0 at
the singularity, the partition function can be normalized'” to have o = ]—"]éo) N =0.

9In practice, we rather count rooted spaces in order not to deal with symmetries. The critical behavior
is then given by (2.29) and (2.30).

107t can rightfully be argued that the partition function should be normalized otherwise, e.g. by
setting it to 1 for A = 0. This has been noticed by physicists in the 80’s. Another possibility is to
consider E a set of discrete spaces with a certain number k > 2 of connected boundaries, in which
case the exponent 2 —  is replaced with the exponent 2 — k — v < 1, so that < np > indeed
diverges at the singularity, and the same argument can then be applied.
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With this choice, at fixed [, the average volume diverges at criticality. However,
this can be avoided by sending / — 0 while keeping % finite. In this limit, the
volume of D-simplices goes to zero and a continuum limit is reached. The resulting
continuous space is interpreted as a quantum space-time, which we would like to
characterize.

In the first place, we will be interested in the critical exponent ~. In the case of
colored triangulations, the continuum limit of maximal configurations—which are
the melonic ones (Sect.2.3.4)—is the continuum random tree, or branched poly-
mers in the physics literature [18]. It is characterized by the critical exponent of
trees, v = 1/2. For two dimensional models, maximal configurations are the planar
ones, the critical exponent is v = —1/2, and the continuum limit is the Brownian
map, as detailed in the following subsection. The critical exponent does not provide
information on the metric properties of the continuum limit. However in general,
the exponent 1/2 or —1/2, are obtained from equations which suggest a bijection
with trees or planar maps, and we expect the continuum limits to be the continuous
random trees or the Brownian map from universality arguments. One of the aims of
this work is to explicitly describe these bijections.

It should be noted however that there are cases of statistical systems on maps which
lead to the same critical exponent but not to the same theory in the continuum limit.
An example is the case of the Ising model on random surfaces, for which the critical
exponent is v = —1/3 [28], corresponding in the continuum to unitary conformal
matter coupled to 2D gravity. The multi-critical hard-dimer model on random lattices
has the same critical exponent [29], but leads to non-unitary conformal matter coupled
to 2D gravity in the continuum. The critical exponent is therefore just a first indicator
of what we obtain in the continuum. To characterize the metric properties of the
continuum limit with more accuracy, one should calculate other quantities, such as
the Hausdorff dimension or the spectral dimension, but this goes beyond the scope
of this work.

2.5.2 Two Dimensions

In dimension two, the Einstein-Hilbert action (2.75) is discretized using the Gauss-
Bonet theorem, which states that the curvature term is topological

1
—f d*x\/|g|R =2 — 2g(M), (2.98)
47T M

¢ being the genus of the surface M. This can be recovered as for a triangulation
with equilateral triangles, the Ricci scalar, which encodes the local curvature, relies
on the number of triangles around vertices. The triangulation is locally flat at some
vertex v if there are precisely 6 equilateral triangles incident to it. If there are less,
the curvature is positive, if there are more, it is negative. More precisely,
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2 _deg(v)
fde lgIR < Z47r<1 2 ) (2.99)

veV(C)

where the sum is taken over vertices v of the triangulation C and deg(v) is the valency
of v, i.e. the number of incident triangles. As there are 3 corners per triangle,

> deg(v) =3F(C). (2.100)

veV(C)

where F is the number of triangles of C, or faces. The discretized Einstein-Hilbert
action is therefore

1 F(C)
SRegge(g) szF(C) — —GU()(V(C) — —> (2101)
As for a triangulation, 3F (C) = 2E(C), the Euler characteristics is
F
2—-29g=V—E+4+F=V——, (2.102)

2

we deduce the coefficient a = 1/2, and the degree is twice the genus, d = 2g. In
dimension two the 1/N expansion (2.90) is topological:

1

Fe(\) = N? — \FO N2 2.103

5(\) g 0 (2.103)
connected

In the large N limit, only maximal triangulations survive, i.e. triangulations of van-
ishing genus. The leading order partition function is the generating function of planar
triangulations of E. If E is the full set of triangulations, the coefficients of the gen-
erating function of rooted configurations—corresponding to the 2-point function—
behave asymptotically as [30]

1 s (2 "
(0)()\) e in 2(%) ocn AN, (2.104)

so that A\, = 27/256 and the critical exponent (2.94) is

=——. 2.105
v 2 ( )

If E is the set of colored triangulations, then in the large N limit, only pla-
nar colored triangulations survive, which are shown to exhibit the same critical
behavior [31-34]. In the case where E is the set of gluings of bubbles, which in
D = 2 are p-gons (with p even), the calculation in terms of their constituting triangles
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(taking the star subdivision of every p-gon) also leads to a = 1/2 and v = —1/2.
Stated in terms of the p-gons however, a = (p — 2)/2, and 6 = 2g is re-expressed
as

2
29(C,) =2+ pTF(cp) — V(). (2.106)

In the large N limit, only planar p-angulations survive. Planar triangulations or 2 p-
angulations converge in distribution towards the Brownian map [35-38], sometimes
called the Brownian sphere. It is a fractal random metric space homeomorphic to the
2-sphere [39], with spectral dimension 2 and Hausdorff dimension 4 [40]. Intuitively,
it means this space is very creased, but can be continuously deformed into a 2-sphere.
As the coefficient a and the critical exponent -, this continuum limit does not depend
of the choice of discretization p [38], at least for p even or p = 3, which are precisely
the values we are interested in. Let us state this in a more precise way. Denote C})
the number of rooted planar p-angulations with n faces, p being 3 or any even
number, pick a map M’ uniformly at random in C}, and denote V, its vertex set.
See (./\/l;’,, d,-) as arandom variable, d,, being the graph distance, i.e. the number of
edges in the smallest path between two vertices. Denote dg y the Gromov-Hausdorff
distance between compact metric spaces, and set c; = 6'/* and ¢y, = (W%U)l/ ¢

Let K be the space of isometry classes of compact metric spaces, which we equip
with the distance dg p .

Theorem 2.5.1 (Universality—Le Gall, 2013 [38]) There exist a random compact
metric space (Mo, D*) called the Brownian map, D* being a distance on M,
such that

(M, cpn™ 1 dy) 2 (Moo, DY), (2.107)

regardless of p even or equal to 3.

The relation between 2D quantum gravity and random planar maps has been
studied since the 80’s (see [41] for a review). Liouville quantum gravity [42] is a
theory of random surfaces with canonical conformal structure, which is the effec-
tive continuum gravitational theory obtained from coupling conformal matter to 2D
gravity. It was introduced by Polyakov as a model to describe the world-sheets in
string theory [43]. It is a construction of random surfaces a priori different from the
Brownian map—or sphere—which is the limit in distribution of random planar maps,
and which has a canonical metric structure. The link between the Brownian sphere
and Liouville quantum gravity has firstly been investigated principally throughout
the KPZ relation [44-47], conjectured in [48]. See [40, 49] concerning the Haus-
dorff dimension. It has been recently shown by Miller and Sheffield [50-52] that
the two objects could be equipped with the other object’s canonical structure and
that they are consequently equivalent. These continuum fractal random objects are
understood as “quantum 2D space-time”. This is what we would like to generalize
to higher dimensions, especially dimensions 3 and 4.
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2.5.3 Guideline in Higher Dimension

In this subsection, we summarize our problem and the steps of the study of col-
ored discrete spaces obtained by gluing bubbles (Definition 2.4.1), which are
D-dimensional elementary building blocks with a (D — 1)-dimensional bound-
ary which has a colored triangulation. Given a set of bubbles B, we will in the
first place be interested in identifying and counting maximal gluings of bubbles
(Definition 2.4.7), which maximize the number of (D — 2)-cells at fixed number
of D-cells. If in their dual colored graphs, the 0-score (Eq. 2.42) of maximal maps
satisfies a relation of the type

®0(Gman) = D + ) dpnp(G), (2.108)
BeB

then we choose this value (and corresponding ap) for the bubble-dependent degree
(2.63)
op(G) =D + Z&BnB(G) — $p(G), (2.109)
BeB

which vanishes for maximal gluings'! and is positive for other configurations. If ap
is an integer, (2.55) is satisfied, and to each positive integer corresponds an order
of contribution (Definition 2.4.5). If furthermore there are infinitely many leading
order configurations, condition (2.56) is also satisfied, and the generating function of
(connected) maximal configurations (2.91) is expected to have a dominant singularity
hyperspace. When there is only one counting parameter, such as for gluings of a
single kind of building block, the asymptotic behavior of the 2-point function (the
generating function Q](EO) of rooted maximal gluings counted according to their number
of D-simplices) is, at the singularity (2.29 and 2.30),

e~ A0 GO\ ~ e =N (2.110)

from which we can deduce the critical exponent . Given a bubble which properties
are unknown, we first study gluings of copies of this bubble, to characterize maximal
maps and find ag. It is not straightforward to characterize maximal maps when there
are more bubbles. Then, the generating function is multivariate, and the analysis can
be more involved (Sect. 4.3.1).!? At the singularity, the volume of the gluings is
kept finite by rescaling the volume of the bubbles to zero, in which case we reach a
continuum limit, which we would like to characterize, in the first place by its critical
exponent 7y, and then by its Hausdorff dimension, spectral dimension, etc. In the case
were the critical exponent is that of trees, 1/2, or that of planar maps, —1/2, we

11Or a subset of the maximal gluings in the most general case, see the discussion in Sect. 4.2.6 on
tree-like families.

12 A150, as mentioned before, the coefficient a% computed for B-restricted bubbles is not necessarily
the same as the coefficient ap computed for { B}-restricted gluings.
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expect it to be a good hint that the continuum limit is the continuous random tree or
the Brownian map. In this framework, the emergence of new critical behaviors would
be an important step towards establishing a theory describing quantum gravity.

Once the coefficient ag and the asymptotics of the generating function are known,
which allow us to find the singularity and the critical exponent, we are interested in
the topology of maximal configurations. This is done using theorems in Sect. 2.3.2.

In this analysis we only obtained information on the continuum limit of maximal
configurations. The next step would be to study how the higher order contributions
behave at the singularity (if they have no smaller dominant singularity). It is then
possible to compensate their negligible dependence in N with their behavior at the
singularity, leading to a double scaling limit [25, 26], but this goes beyond the scope
of this work.

2.5.4 Colored Random Tensor Model

In this subsection, we introduce briefly the colored random tensor model, which was
introduced as a non-perturbative approach to quantum gravity and an analytical tool
to study random geometries in dimension three and higher. For more details, we
refer the reader to the review [34] or to the recent book [53], which is an exhaustive
introduction to the subject. In dimension D, the colored tensor model has a partition
function

D
ZO\ M\ N) = / [[ar®ar®esa 7, 2.111)

i=1

D
. - 1 . - _ .
SUTO. TN =Y 10TV 4 —— </\ Trp((TV)) + /\TrD({T(’)})>,
, N 25
i=1

where T is a rank D tensor with N” complex entries indexed by {a, ..., ap} \ a;,
and where we have denoted

N
TOTO = Y 1) T (2.112)

{ao,-...apN\a; ~ {ag,....ap}\a;*
{ao,....apN\a;=1

and Trp ({T?}) is the generalized “trace” pictured below in Fig. 2.30 in the case D =
4. Representing interactions of the type Trp({T}) by white vertices, Trp ({T})
by black vertices, and a propagator of the type 7.7T® by an edge of color i, the
perturbating expansion is labeled by Feynman graphs which are the non-necessarily
connected graphs which connected components are the edge-colored bipartite graphs
in Gp, described in Definition 2.3.1. The perturbative expansion of the free energy,

eF M\ N)=Z(\ M\ N) (2.113)
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Fig. 2.30 Interaction of the D = 4 colored tensor model

is indexed by connected graphs, in Gp. The amplitude of a graph G € G, is pro-
portional to
AG) ~ gV @R NPO-PEEVG), (2.114)

up to a symmetry factor, ®(G) being the score of G (2.16). It rewrites in terms of
Gurau’s degree (Definition 2.3.11),

A(G) ~ gV @2 NP0 (2.115)
From Theorem 2.3.5, the graphs which have the strongest scaling in N are the melonic
ones, for which

Aieto(G) ~ g @/2NP. (2.116)

The free energy admits a 1/N expansion (2.91). In the large N limit (leading order),
Fro(g, N) = li ! F(\, N) (2.117)
LO ga - NI—I;HOO ND ’ . .

only melonic graphs survive. Fj o is the generating function of melonic graphs,
counted according to their number of white vertices (Sect.2.3.4). In this thesis, we
are mostly interested in gluing bigger building blocks, the bubbles of Sect.2.4.2.
This requires the introduction of uncolored (enhanced) tensor models.

2.5.5 Uncolored Random Tensor Models

While graphs in G label the Feynman expansion of colored tensor models, (D + 1)-
edge-colored graphs in G(B) are generated by the uncolored tensor model with
interactions in B [54]. We denote
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T-T= Y Tuaplaap: (2.118)
and consider the partition function

Za({Ag}, N) =exp F = /exp (—ND1 Z N*# \g Trp(T, T)) dpo(T, T),

BeB
_ (2.119)
where d (T, T) is the Gaussian measure,
— — ATy, apdT 4,...q
dpo(T. T) = exp (-NV7'T - T) ] s, (2.120)
aip,...,ap i
and we require Trp (7, T) tobe a U(N)®V invariant,
Tuoay = Y Uy UL, T, (2.121)
b1 ..... b[)
Tupar = Y Uy U Ty - (2.122)
b1 ..... bD

The polynomials Trz (7T, T) satisfying these conditions are such that the ith index of
atensor T is summed with the ith index of a conjugate tensor T'. If we represent the
tensors T as white vertices, the tensors 7' as black vertices, and the summation of the
ithindex between a 7 and a T as an edge of color i between the corresponding black
and white vertices, the polynomials Trz (7, T) are encoded into bubbles, which are
elements of Gp_. In the tensor model context, a bubble therefore labels an invariant
interaction of the action. For the example of the complete bipartite K3 3 bubble in
the middle of Fig.2.9,

_ N _ _ _
Tric, o (TT) = X g pcrdie, f.g.hi=1 LabeTadeTrdgThogThieT fic-

| —
b (2.123)

We perform a Feynman expansion of Z. First expand each exp(—NP~!15 )\
Trg(T, T)) as a series in Az and (illegally) commute the sums with the integral.
We are then left with Gaussian moments. By Wick’s theorem, they are evaluated as
sums over all pairings between T’s and 7"s. Those pairings are represented by new
edges to which the color O is assigned. Therefore, the Feynman expansion of the
free energy F = In Z is labeled by the connected (D + 1)-colored graphs of G(B),
whose bubbles are from the set B. The amplitude of a Feynman graph as a factor
N per bubble, a factor N per color-0i cycle, and a factor N ~P~1 per color-0 edge.
There are ) 5 p M color-0 edges in the graph, so that
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1

[T (=20 © N @+ e n5(@) (spHD-D(- 1)
c(G)

BeB

Fa@Ash, Ny = Y
GeG(B)
(2.124)
where ¢(G) is a symmetry factor. We see that the perturbative expansion of the free
energy is well defined if

V(B
D —55(G) = ©y(G) + Y _ np(G)(sp + (D — (1 — %)) (2.125)

BeB

is bounded from above, and the coefficient sz, which we call the scaling, has to
been chosen accordingly, if it is possible.'> We recognize the non-negativity of
condition (2.55), and if we further require (2.56), we see that dp is the bubble-
dependent degree (Definition 2.4.6), and we identify

dg = (D — 1)(@ —1) — s (2.126)

If ap € N, the bubble-dependent degree is a positive or vanishing integer, and the
free-energy admits the 1 /N expansion (2.91)

%fm({xg}, N) =7 () + %]—}gl’({)\g}) + %fﬁ)({)\g}) +ooe(2.127)
where fg )({/\ s}, N), the free energy of order i contributions, is the weighted gen-
erating function of B-restricted gluings of bubble-dependent degree i, counted with
respect to their number of bubbles (2.92). For melonic bubbles, from (2.65) we know
that we should choose sz = 0. From (2.61), we see that the condition a < w
for non-melonic bubbles can be translated for sp

D(D—-1)
ag < —a & sg > —O0gur(B). (2.128)
The random tensor model obtained choosing the value s3 = —dgy (B) for the bubbles

was originally called the uncolored tensor model [54, 55]. The degree is then Gurau’s
degree, and from what we explained (see (2.50) and preceeding paragraph), there are
no leading order contributions of Feynman graphs in Gp containing non-melonic
bubbles when deleting all color-0 edges, and therefore the leading order comprises
solely the melonic contributions of Sect. 2.3.4. We will see in Corollary 4.1.3, that
under certain assumptions, which are satisfied for all known bipartite examples in
dimension D < 6, s has to be at least 1 for non-melonic colored graphs to con-
tribute to the leading order. For the K4 bubble, s = 1/2. It is expected that sz should
always be positive. The random tensor model obtained choosing the coefficients ap

13 A5 explained before for a g, we should a priori differentiate s 3 computed for { B}-restricted gluings
and s%, computed for B-restricted gluings.
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satisfying Conditions (2.55) and (2.56) is called an enhanced tensor model [56—60]. 14
The degree is then the bubble-dependent degree of Definition 2.4.6, and there are
contributions of non-melonic graphs to the leading order.

The generating function of the cumulants is

i N o= dug(T, T)
In Zp[{\s}, N; J, J] =ln/e AT (D) =0 T=T) T2 2~ (2.129)
e Z5((As}. N)

Observables are also polynomials associated to bubbles, and their expectation is

— — , — duo(T, T
<Trg(T, T) >= /TrB(T, T)exp (—%Néﬂ/\g Trg(T, T)) %
(2.130)

Their Feynman expansion is a sum over graphs in G(B) with a distinguished bubble
B, which need not be in B. We may also be interested in the amplitude of transition
between a certain number of particular triangulated (D — 1)-pseudo-manifolds

<Trp (T, T) Trp (T, T) - >, (2.131)
whose perturbative expansion is a sum over connected graphs in G(B) with distin-
guished bubbles Bj, By, - - -. The Feynman expansion of the 2-point function,

Gy (A}, N) =< T.T > (2.132)

is labeled by colored graphs with a distinguished elementary melon (Fig. 2.20). Con-
tracting that melon, it goes back to distinguishing a particular color-0 edge. The
amplitude of a Feynman graph is therefore as in (2.124), without the symmetry
factor ¢(G), as the automorphism group of a rooted graph is trivial. In practice,
we therefore compute the leading order 2-point function, in order to determine the
critical exponent vy from the critical behavior near the dominant singularity.

In this thesis we consider a certain number of examples for B, for which we
compute the scalings s and the critical exponents «y. The results are summarized in
Sect. 5.1.

2.5.6 The Sachdev-Ye-Kitaev Model and Real Tensors

2.5.6.1 The SYK Model

Sachdev and Ye proposed a toy-model of N spins with Gaussian-random, infinite-
range exchange interactions, of order D, in O + 1 dimensions [61]. This quantum

14We discuss in Sect. 4.2.6 the case where the degree is rational and non-negative.
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Fig. 2.31 Melonic graphs of the SYK and colored SYK models

mechanics model attracted a certain interest within the condensed matter community.
A simple variant of the Sachdev-Ye model was proposed by Kitaev in a series of
seminars [62]. The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical model
of N Majorana fermions v; (i = 1, ..., N)living in O + 1 dimensions with random
interactions of order D, D being an even integer.!> The action writes:

(1 XN: a o XN:
Ssyk = /dT =) i—i — JirinWiy - Vip | - (2.133)
2 Py dt D!

i,.ip=1

Kitaev proposed this model as a model of holography. The most widely studied
version of the SYK model has real fermions, as above. As an example of Feynman
graphs obtained by perturbative expansion, we show on the left of Fig.2.31 a melonic
graph, which is a dominant graph in the large N expansion of the SYK model. The
dashed lines represent the quenched disorder.

The SYK model has three remarkable features [62—64]: it is solvable at strong
coupling, maximally chaotic and, finally, it presents emergent conformal symmetry
in the infrared limit. The SYK model is the first model having all these three prop-
erties (other known models only have some of these properties, but not all three of
them). The emergent conformal symmetry, here a reparametrization invariance, is
spontaneously broken, and the resulting Goldstone bosons are described by a univer-
sal Schwarzian action, which also describes theories of gravity in AdS,. The fact that
the system is maximally chaotic, i.e. that the Lyapunov exponent saturates the bound
of [65], is a consequence of these Goldstone bosons. These properties suggest that
the holographic dual of the SYK model describes black holes (maximally chaotic
objects) in the context of the (near) AdS,/CFT,; holography. The strong coupling
solvability, which is a rare and therefore precious property, makes it a toy model to
study the quantum properties of black holes.

This attracted a lot of interest within the high energy physics community. Thus,
Maldacena and Stanford studied in detail the two- and four-point functions of the
model [64], Polchinski and Rosenhaus solved the Schwinger-Dyson equation and

15D is usually denoted ¢ in the SYK literature.
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computed the spectrum of two-particle states [63], Fu et al. proposed a supersym-
metric version of the model [66], see also [67]. The bulk dual has been studied in
[68, 69], and so on [70-73].

2.5.6.2 Colored SYK Models

In [71], Gross and Rosenhaus proposed a generalization of the SYK model, in which
they have included f flavors (which we rather refer to as colors) of fermions, each
occupying N, sites and appearing with a g, order in the interaction. We consider a
particular case of their proposal where each flavor appears only once in the interac-
tion (¢, = 1). It corresponds to a colored SYK model. The coloring makes it possible
to use tools developed in the random tensor model literature to study the diagram-
matics of the model. A complex version was first mentioned in [72], we studied the
diagrammatics of the sub-leading orders in [15], and the emergent conformality of
the next-to-leading order 2-point function is shown in [74]. The action writes:

D N
SI/dT %ZZw;‘jt Z . WUl P ] @134

Note that we use superscripts to denote the flavor. Moreover, to ease notations, we
now work with D - N fermions—we have N fermions of a given flavor.

The Feynman graphs obtained through perturbative expansion of the action
(2.134) are the edge-colored graphs where the colors are the flavors. At each ver-
tex, each of the D fermionic fields which interact has one of the D flavors, and
each flavor is present exactly once. Therefore, at fixed couplings j;, ., the Feyn-
man graphs are the D-regular non-necessarily bipartite edge-colored graphs in Gp_1
(Definition 2.3.1). In order to study the 1/N expansion, one must average over the
disorder with the covariance

(.]11 lD.]I] ll_) ND 11_[5”( I+ (2135)

Each graph is thus turned into a sum over Wick pairings which can be represented
with edges carrying a new color, say the color 0. Color-0 edges encode the disorder
and are represented as dashed edges. An example of such a Feynman graph is given
on the right of Fig.2.31. Therefore, the Feynman graphs of the real colored SYK
model are the elements of G which are connected when deleting all the color-0
edges. They correspond to coverings (Definition 2.4.8) of bubbles B®, where B
spans Gp_;.

The complex version [72] is obtained by considering the propagation from 1 to 1)
and by considering the interacting term in (2.134) as well as its complex conjugate:
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(2.136)
The Feynman graphs obtained through perturbative expansion of the complex action
have the same structure as the one explained above for the real model (2.134). How-
ever, in the complex case, one has two types of vertices, which we can refer to as
white and black. Each edge connects a white to a black vertex. The Feynman graphs
of (2.136) are thus the subset of the Feynman graphs of (2.134) which are bipartite.
The averaging over the disorder is done throughout the covariance (ji, i, j_'ll .1p). The
Feynman graphs of the complex colored SYK model are the elements of G which
are connected when deleting all the color-0 edges. They correspond to coverings
(Definition 2.4.8) of bubbles B, where B spans Gp_;.

2.5.6.3 1/N Expansions

A Feynman graph G = B has a free sum for each bicolored cycle 0i in the graph,
which contributes to the amplitude of the graph with a factor N. Each color-0 edge
contributes with a factor N~°~1 (2.135). The amplitude of a Feynman graph G =
B* is therefore proportional to

Ay (G) = N*O=D=-DEG) 4(G), (2.137)
where @ is the 0-score (Definition 2.42), and E is the number of color-0 (disorder)

edges
V(B)

Eo(B%) = 5 (2.138)
As the graph G is a covering B®, b(G) = 1 and we can rewrite
V(B)
Po(G) = (D = DEo(G) = @0(G) — (D = D(—— - Db(G) -D+1=1- 60(G),

(2.139)

where we recognize a degree d, obtained by choosing the coefficients ag (2.57) as

V(B

ag = (D — 1)(% -1, (2.140)

for all bubbles B € Gp_;. From (2.126), this is equivalent to choosing the scaling
sg=0 (2.141)

for all bubbles, and we remark that in zero dimension, the free energy of the theory
would just correspond to
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deT _ND-IT T D—1 = 1—6,(B2®
Fon= [ vt 5 et Y ),
BeGp_, BeGp_y Q(B)
(2.142)
where we used the notations of Sect.2.5.5. In the case of the one-dimensional SYK
model under consideration, the free-energy admits a similar expansion

F) =logzy = Y 3 N0 a9, (2.143)

BeGp_, Q(B)

in which the A(B®) are the amplitudes of the right hand side of (2.137). This can be
written as the 1/N expansion

F(N)=Y_ N'"FO, (2.144)

=0

where F© is the free-energy of order / contributions, i.e. of coverings which have
degree 6y(B%) = 1.

The two-point function < ; (T)wl."; (") > has a perturbative expansion over
graphs with one distinguished color ¢ Half—edge and one distinguished color ¢’ half-
edge. Because of the coloring properties of the graph, we see that this is only possible

if ¢ = ¢/, in which case Feynman graphs are coverings B(sj)(B("’) , where the graph

B € @1071 is a bubble with one missing color-c edge (Definition 2.3.3). In fact,
we write

e

< VSO, (T) >e= Be.oi, i, GalT. T, (2.145)
where G, is the normalized 2-point function

1 [du(Ci v )

Gao(r, 7)) = , 2.146
2T, T) = [dies (2.146)
S being the action (2.134). The normalized 2-point function admits the 1/N expan-
sion ) )
N 16 ( B#® ~Q(B))
Ga(r, ™) = N Z Z N (B )AA(BI vy, (2.147)
BieGp-1 Q(B)

where the sum is over coverings with one marked color-c # 0 edge. Graphs con-
tributing to the normalized 2-point functions are obtained from those contributing
to the 2-point function < ¢ (7)1 (7') > by gluing the two pending color-c half-
edges. This creates precisely one bicolored cycle, thus the factor 1 /N in (2.146) and
(2.147).



70 2 Colored Simplices and Edge-Colored Graphs

We see from similar arguments, that the 2n-point functions

< il () - (o) > (2.148)

legy

vanish unless there exists a fixed-point free involution o € S, (a permutation which
is the product of disjoint transpositions) such that

2n
< W0 ) () >= [ [ 6e00G5, (s s ), (2.149)
c=1
i.e. if the ¢y, ..., ¢y, are equal two-by-two. For instance, in the case of the 4-

point function, non-vanishing terms have {c, ¢;, c3, cs} = {i, i, j, j} wherei # j,or
{c1, c2, c3,c4} = {i, 1,1, 1} (the sets are unordered). The 2n-point function has a per-
turbative expansion over graphs G,, which are bubbles with n missing colored edges.
We will see in Sect. 3.5 how to characterize the contributions to the 1/N-expansion
of the 2n-point functions at a given order.

2.5.6.4 SYK-Like Models Without Disorder and Tensor Models

Recently, Witten proposed a reformulation of the SYK model using real fermionic
tensor fields without quenched disorder [75]. This comes from the fact that both the
SYK model and random tensor models have the same class of dominant graphs in
the large N limit (N being, in the tensor model framework, the size of the tensor).
They are the melonic graphs described in Sect.2.3.4. In [76], Gurau complemented
Witten’s results with some modern results of random tensor theory (albeit using a
complex version of [75]). He gave a classification of the Feynman graphs of the
model at all orders in the 1/N expansion for the free energy and the 2-point function,
based on the Gurau-Schaeffer classification of colored graphs [16]. Notice that this
classification remains somewhat formal, in the sense that it does not give the graphs
which contribute at a given order of the 1/N expansion. This SYK-like model is
commonly referred to as the Gurau-Witten model. The action of the Gurau-Witten
model is

4
1 d A

S=|[dt| - F—pf 4 — 23 .t 2.150

/ sV G g | @i

where we used ¢ = D + 1 as D is commonly used for random tensor models.
Note that the ¢ = D + 1 fields above ¥/, f =1,...,q are now rank g — 1 ten-
sor fields. The notation 1)'v?¢p31)* stands for the interaction v'1%¢3¢*—note that
the contraction of tensor indices leads to different types of interaction terms. As
described in Sect.2.5.4, the Feynman graphs of the model are the colored graphs in
Gp = G,4—_1. The Gurau-Witten model has been the subject of many publications,
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among which [77-80]. In [15] we compare the diagrams contributing to the sub-
leading orders of the colored SYK model and the real colored random tensor model.
The emergent conformality of the next-to-leading order 2-point function is shown
in [74].

Other kinds of SYK-like tensor models have been studied in the literature. Uncol-
ored SYK-like tensor models have for instance been studied in [81], with the inter-
action corresponding to the K4 complete graph shown on the right of Fig.2.9. This
corresponds to an enhanced model, with scaling s = % This uncolored enhanced
tensor model had first been studied in [82], together with an order 4 melonic interac-
tion. Some other publications studying this models are [79, 83]. A multi-orientable
SYK-like tensor model has been introduced in [74].
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Chapter 3 ®)
Bijective Methods e

As mentioned in the introduction, the aim of this chapter is to develop bijections which
would enable a systematic characterization of the discrete spaces obtained by gluing
bubbles according of their mean curvature. In particular, as detailed in Sect. 2.5, we
are interested in identifying and counting the spaces which maximize the number
of (D — 2)-cells at fixed number of D-cells. This is summarized in the guideline
in Sect.2.5.3. Our criteria for the bijection is therefore that it should keep track of
the number of (D — 2)-cells, and map configurations to recognizable combinatorial
families. We come to the general bijection step-by-step, by first looking at a simple
case, then applying Tutte’s bijection, and then generalizing to any kind of colored
graph.

3.1 A First Bijection in the Simpler Case of Cyclic Bubbles

We first focus on the simplest case of gluings of a single specific kind of bubble
B = {B,p}. In dimension D and for 0 < k < L%J, we define a k-cyclic bubble of
size 2p as abubble By , with 2 p vertices which alternates k edges and D — k edges as
shown in Fig.3.1. It is determined by fixing k colors. In dimension 2, all bubbles are
I-cyclic, and a 1-cyclic bubble of size 2p is the colored graph dual to the boundary
of a 2p-gon (with bipartite boundary). As said before, the gluing of two 2p-gons
is done so that the coloring of vertices matches, and therefore the resulting 2 p-
angulations are bipartite. The dual of a 2 p-angulation is a 2 p-valent map. Vertices
are mapped to faces and vice-versa, and edges are mapped to edges. From the colored
graph representation, the map dual to the 2 p-angulation is intuitively obtained by
“collapsing” each bicolored cycle to a vertex (i.e. contracting all the edges of the
cycle), leaving only the color-0 edges. There is an ordering of color-0 edges around
the new collapsed vertex, which is that of their appearance around the cycle. This is
shown on the left of Fig.3.2.
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Fig. 3.1 A k-cyclic bubble of length 8

Fig. 3.2 The resulting map M* does not depend on the cyclic bubble (and on the dimension)

Proposition 3.1.1 Cyclic bubbles have a spherical topology.

Proof Consider ak-cyclic bubble alternating edges with colors (i, - - - , ix) and edges
with colors (iy + 1, --- ,ip). For any two permutations v, € S and vp_ € Sp—,
choosing (iy (1), ** » fy (k)3 fvp s k+1)s = = * > ivp_o(py) to orient the half-edges around
white vertices and (i, k), =« L, (1)} fvp o (D)s ** * s Lup_4(k+1)) to orient the half-edges
around black vertices, one gets a planar regular embedding (jacket), and we conclude
from Proposition 2.3.6. U

Proposition 3.1.2 There is a bijection between 3-colored graphs G with one marked
color-0 edge and combinatorial maps M* with bicolored faces and one oriented edge.
Bubbles of size 2p are mapped to 2 p-valent vertices.

Proof Of course this follows directly from the duality between colored graphs and
colored triangulations, and from the duality between the colored 2 p-angulations
and the colored 2 p-valent maps. However, when going to higher dimension, it is
straightforward to use the construction we will detail here. Starting from the 3-
colored dual graph G, we define the set of darts of M* as the set VV of the vertices
of G. Restricting to colors 1 and 2 in G, we are left with a collection of bipartite
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cycles that alternate edges of colors 1 and 2 (1-cyclic bubbles). We decide to orient
them e.g. from black to white on color 1 edges. This naturally organizes the vertices
of G into disjoint sets which are cyclically ordered. We define those sets to be the
disjoint cycles of the permutation o. The edges of color O of G are a set of disjoint
unordered pairs on V, which we define to be the disjoint transpositions of «. The
marked color-0 edge in G is naturally oriented, e.g. from black to white, which
translates into an orientation of the corresponding edge in M*. For the example of
Fig.3.2, the permutations are

o = (abed)(ef gh)(ijkl)
a = W))(bC)(dj)(ek)(gi)(hl) (3.1)

If we embed the colored graph G so that the ordering we chose for cycles of colors
12 corresponds to a counter-clockwise ordering and so that color-0 edges are always
on the exterior of the cycle, a bicolored cycle 01 arrives and leaves a color-0 edge on
the same side of that edge (this can be seen on Fig. 3.2). Therefore, half of the faces
of M* are one-to-one with the bicolored cycles 01 of G, and the other half with the
bicolored cycles 02. More precisely, bicolored cycles 01 only share color-0 edges
with bicolored cycles 02, so that the corresponding faces in M* can be colored with
colors 1 and 2 in a bipartite way (we recover the fact that it is the dual of a bipartite
2 p-angulation).

On the other way, we start from a combinatorial map M* with one oriented
edge and bipartite faces of colors 1 and 2 and construct the colored graph G. The
orientation of the marked edge translates into an orientation of every edge in the map,
such that all the edges around a given face have the same orientation. This orientation
is opposite for faces of different colors, and around each vertex, incident edges are
alternatively in-going and out-going. We define the set of black (resp. white) vertices
of G as the set of outgoing (resp. ingoing) half-edges of M*, and the set of edges of
color 0 of G as the set of disjoint transpositions of ao(M*). Going counter-clockwise
around vertices of M*, we encounter either corners (pairs of half-edges) going from
an outgoing edge to a ingoing edge or the opposite. We define the set of edges of
color 1 (resp. 2) of G as the set of corners of M* that start on an outgoing (resp.
ingoing) half-edge.

This describes a bijection between rooted colored graphs with labeled vertices
and rooted labeled combinatorial maps. For rooted objects the automorphism groups
are trivial, and the bijection extends to unlabeled graphs and maps. In the non-rooted
case, the correspondence we described gives a bijection between colored graphs with
labeled vertices and non-rooted labeled combinatorial maps. Since the symmetries
of the cyclic bubble are the same as the symmetries of the embedded vertex in a
face-bipartite map, the equivalence classes upon relabeling the vertices on one side
and the half-edges on the other side coincide. (]

In higher even dimension, gluings of k-cyclic bubbles of size 2p are also in
bijection with face-bipartite 2 p-valent maps. This bijection is a generalized duality,



78 3 Bijective Methods

in which bubbles are mapped to 2 p-valent vertices, and color-0 facets (or color-0
edges in the colored graph) are mapped to edges.

Proposition 3.1.3 There is a bijection between D-dimensional gluings of k-cyclic
bubbles—of any size but with the same alternating colorsiy, - - - iy andixyy, -+ ,ip—
and face-bipartite combinatorial maps.

Restricted gluings of such k-cyclic bubbles of size 2p with 2p € P = {2py, - --
2pp} are in bijection with combinatorial maps with allowed vertex valencies P =
{2p1,---2pp}. Gluings of such k-cyclic bubbles without restricting the sizes of
the bubbles are in bijection with Eulerian combinatorial maps (maps with vertices
of even valencies). As before, the graph is obtained by collapsing the bubble to a
vertex, and the construction in terms of permutations is exactly the same. In fact,
one gets the exact same 2 p-valent map from a 3-colored graph and from the (D +
1)-colored graph obtained by replacing every 12 bicolored cycle with a k-cyclic
bubble alternating edges of colors 1, iy, - - - iy and edges of colors x4, - -, ip (this
is illustrated in Fig. 3.2). The map has bicolored faces: one can color the faces of the
resulting 2 p-valent map M* with two colors 1 and 2 so that an edge is always incident
to two different colors (its dual map is bipartite). However, now, faces of M* of e.g.
color 1 correspond to the bicolored cycles of colors (0iy), - - - , (0ix), and faces of M*
of color 2 correspond to the remaining bicolored cycles (Qig+1), - - - , (Oip—x). The
0-score (Definition 2.42) of a colored graph G dual to a gluing of k-cyclic bubbles
with the same alternating colors iy, - - - i and iz, - - - , i p can therefore be expressed
with respect to the faces of the map M™ as follows

D0(G) = kF{(M*) 4+ (D — k) F,(M*) = (2k — D)F{(M*) + (D — k) F(M*)
(3.2)
in which we have denoted F; and F, the number of faces of type 1 and 2 of M* and
F = F) 4 F, the total number of faces of M*. We know that for a generic map,

F=2-29+E—-V<2+E—V, (3.3)

with equality if and only if the map is planar. Because the vertices have allowed
valencies in P = {2py, - - - 2pp}, we have the following relation

2E(M*) = Y 2pV,(M"), (3.4)
2peP

in which V,, is the number of k-cyclic bubbles of size 2p (or valency of 2p vertices
in M*), so that

F(M*) <2+ ) (p—DV,(M"). (3.5)
2peP
There are two cases :

o If 2k — D =0, ® is maximal if and only if the corresponding M* is planar, in
which case
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D
Po(Gmax) = D+ 3 (p = DV, (M), (3.6)
2peP

which is the linear bound (2.108) we were looking for. The bubble-dependent
degree of the dual colored graph is therefore defined as

D
0p,02(G) =D+ — Z (p — Dnp(G) — Do(G), (3.7)
2 2peP

where n, is the number of k-cyclic bubbles in G of size 2p. We deduce the
coefficients

D(p—-1)

D
> , and s, pp=(p— 1)(5 -1 (3.8)

ap.p/2 =

from (2.126). For k-cyclic bubbles of size 2 p, we compute the score

D(D — 1)

®(Bip) =p—7

—k(p — (D —k), (3.9)

from which we deduce the correction to Gurau’s degree (Definition2.3.11) using
(2.58),

DID-1) (p=hHDWD-2) DD -1

3.10
4 2p 4 4 (3.10)

dp,D/2 =

when p > 1, as expected for a non-melonic bubble. The counting of their dual pla-
nar bipartite 2 p-angulations, or more generally of planar bipartite degree-restricted
maps was done in [1]. Planar bipartite maps have faces of even sizes. Bender and
Canfield showed that the number cn73 of bipartite maps with n edges, such that
the faces have allowed degrees P = {2py, - - - , 2pp} (P may be infinite) behaves
asymptotically as

P~ a(PnPA", (3.11)

where «v and ). are given explicitly in terms of the roots of 2 = ZZ.PZ @—=1 (%’)X h

and therefore v = —1/2. In particular, the number of bipartite planar maps with
no restriction on the degree of the faces is
1 2
(") (3.12)
2+ 1D(n+2)\ n

It is also possible to count the contributions to higher orders, as done in [2]. As
a consequence of Theorem 2.5.1, the continuum limit of maximal maps is the
Brownian map.
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If 2k — D < 0, the maximal value of ®, is obtained when F;(M™*) =1 and
g(M*) = 0, in which case, again,

®o(Gmax) = D + (D = K)(E(M™) = V(M")). (3.13)

As the dual of M* is bipartite and F; (M*) = 1 itis easy to see that such maps are
in bijection with trees. Indeed, every face of color 2 is a “cut-face” (see Fig. 3.16).
The same calculation leads to a bubble-dependent degree

dpx(G) =D+ (D —k) Z (p = Dnp(G) — @o(G), (3.14)
2peP

and to the coefficients

DD-1) (p-DD-kk-1)

dpk=D-K(p—1), api = s spa=(p— Dk —1).

4 2p
(3.15)
We denote Gy, ... x, the generating function of gluings of k-cyclic bubbles of sizes
k € {ky,---kp} that have the same alternating colors iy, - - - iy and iz41,--- ,ip,

that have one marked color-0 facet, counted with respect to their number of edges.
The marked facet corresponds to a distinguished color-0 edge (which is already
oriented from black to white), and therefore corresponds to distinguishing an
oriented edge of M*, or equivalently marking a corner.

(3.16)
The generating function satisfies the well known tree equation,
Gy @) =14 Y _2GE 4 (@), (3.17)
k=1
or equivalently
Gy kp (@) = 142G 1, (). (3.18)

The tree structure is rendered explicit in the following section. This is done by
taking the dual and applying Tutte’s bijection. The critical exponent is that of
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plane trees, v = 1/2, and the continuum limit is expected to be the continuum
random tree (CRT) [3-5], also called branched polymers.

The construction would still hold for gluings of cyclic bubbles alternating different
sets of colors, however, in that case, it would no longer allow one to count easily the
bicolored cycles of the original colored graph. More precisely, while some bicolored
cycles would indeed be mapped to faces of the combinatorial map M*, some others
would be mapped to faces with twist factors on certain edges (Fig. 2.10).

A first conclusion of this section is that unlike in the two dimensional case, for
which planar degree-restricted combinatorial maps all fall in the same universality
class regardless of the choice of polygons of even length, higher dimensional gluings
of polytopes with spherical colored-triangulated boundary may fall in at least two
different universality classes, that of plane trees and that of planar maps.

3.2 Tutte’s Bijection and Cyclic Bubbles

3.2.1 Tutte’s Bijection

Tutte’s bijection [6] maps bipartite quadrangulations to combinatorial maps without
valency restriction. From quadrangulations to maps, a choice of keeping either white
or black vertices has to be made, e.g. black vertices here. An edge is then added
between the pair of black corners in every face. The white vertices and the edges of the
original quadrangulation are then deleted. It therefore maps faces to edges between
black vertices. A planar example is shown in Fig. 3.3. From maps to quadrangulations,
a white vertex is added in each face, and edges are added between this vertex and
every corner of the corresponding face. The ordering of the corners around the face
is opposite to the ordering of edges around the corresponding vertex.

3.2.1.1 Generalization to Generic Bipartite Maps

As bipartite graphs have only cycles of even length, the faces of a bipartite map are of
even degree. As before, a choice is made of either black or white vertices (e.g. black).

Fig. 3.3 Tutte’s bijection between bipartite quadrangulations and generic maps
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Fig. 3.4 Walsh’s representation of an hyper-edge

Fig. 3.5 Tutte’s bijection generalized for bipartite maps

The bijection now maps bipartite maps (with black and white vertices) to hyper-maps.
To explain this bijection, we choose to represent hyper-maps as bipartite maps (with
two kinds of vertices, white squares and black disks). Such objects are the Walsh
representation of hyper-maps, in which hyper-edges are replaced with “stars”, as
shown in Fig. 3.4, or detailed in [7]. The bijection is now quite similar in both ways,
and is a particular kind of duality for bipartite maps. A planar example is shown in
Fig.3.5. Starting from a bipartite map, a square vertex is added in each face, and
edges are added between the new vertex and every corner in the corresponding face,
so that their ordering around the new vertex is opposite to the ordering of corners
around the face. The initial edges and the white vertices are then deleted. Each initial
face of length 2 p has been replaced with a square vertex of valency p, and the number
of nearest neighbors of black vertices is the number of incident faces in the original
map. Similarly, in the other way white vertices are added in each face and edges
are added that reach every corner on black vertices. In Walsh’s representation, a
generic bipartite map is therefore mapped to a unique other bipartite map. Moreover,
any face-degree restriction is now translated into a degree restriction on the possible
valencies of square vertices, so bipartite 2 p-angulations are mapped to bipartite maps
such that square vertices are of valency p.
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3.2.2 Cyclic Bubbles Again

Applying this generalized Tutte bijection on the bipartite dual' of the map M*
described in Sect. 3.1, we know that there is a bijection between gluings of a single
kind of cyclic bubbles and bipartite maps I" in which bubbles become white square
vertices and black disks encode the way the bubbles are glued together. If the allowed
sizes of k-cyclic bubbles are {2p;, --- ,2pp}, then the allowed valencies of white
squares are {py,---, pp}, which indicates that there is one edge in I per white
vertex of the original colored graph G. Depending on the choice of black or white
vertices in Tutte’s bijection, there are either D — k bicolored cycles per black disk
and k bicolored cycles per face of the resulting bipartite map I', or the opposite.
We know that if k < D /2, a maximal M* has only one face corresponding to the k
bicolored cycles, so that if we do the right choice in Tutte’s bijection, the maximal
maps I" are planar maps with a single face, i.e. trees. In this section, we will describe
this bijection between gluings of cyclic bubbles and bipartite maps. Importantly, this
bijection holds when gluing cyclic bubbles with different colorings, and will even be
generalized to gluings of any kind of bubbles in Sect. 3.3.

Theorem 3.2.1 Thereis abijection between gluings G of k-cyclic bubbles of allowed
lengthin{2py, -- -, 2pp}andbipartite combinatorial maps T, such that white square
vertices have allowed valencies in {pi,--- , pp} and black disk vertices have no
degree restriction. The edges in T are labeled with subsets of [1, D] and all edges
incident to the same white vertex share the same color set. The bicolored cycles 0i
in the colored graph G are mapped to the faces of the combinatorial maps obtained
from T" by keeping all the black vertices and only the edges which color sets contain
color i. Distinguishing edges of G corresponds to marking corners on black vertices
of T.

Proof Given sets of integers {py, -, pp}, {ki,--- ,kp} we consider the corre-
sponding sets of all the k;-cyclic bubbles of length 2p;. If k < D/2, we choose to
pair together the black and white vertices that share D — k edges. If k = D /2, we
choose to pair the black and white vertices which do not share an edge of color 1.
As a vertex belongs to a single bubble, these choices translate into a pairing Q¢
(Definition 2.4.8) of the vertices of any gluing of cyclic bubbles. We consider such a
graph G, we label the resulting pairs from 1 to V /2 and we construct the combina-
torial map I'.

! As Eric Fusy suggested, it would actually be more natural to apply the version of Tutte’s bijection
between bicolored maps and bipartite maps, instead of taking the dual first and applying the version
of the bijection between bipartite maps and bipartite maps.
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We first define the set of darts as D = D, U D,, where the ith element of both D,
and D, corresponds to the ith pair. Each bubble is a cycle which is naturally oriented
(e.g. from white to black on the edges between paired vertices in 2, as pictured
above), so that to each bubble corresponds a disjoint cyclically ordered set of darts
of D,. The disjoint union of these cycles therefore defines a permutation o, on D,,
corresponding to white square vertices (Fig. 3.6).

We now consider the cycles which alternate pairs in Qs and color-0 edges. This
time, we choose to orient them from black to white on the pairs of ¢, i.e. from white
to black on color-0 edges, so that each cycle defines a disjoint cyclically ordered set
of darts from D,, and their disjoint union defines a permutation o, on D, which
corresponds to black vertices.

Each pair corresponds to a unique dart in both D,, and D,. The pair of those two
elements defines an edge, and the disjoint union of the corresponding transpositions
defines the permutation « corresponding to the edges.

Each edge e of I" therefore corresponds to a given pair 7 of G and we color e with
the set of all the colors of the edges incident to = which do not link its two vertices.
All the edges incident to a given white vertex have the same color set. Color-0 edges
of the original colored graph G are now corners around black vertices of the bipartite
map I". An edge is incident to four corners. It has two corners on one side, and two
corners on the other side. Counterclockwise, the white extremity of the color-0 edge
in the colored-graph picture is on the side of the edge visited before the corresponding
corner in the combinatorial map picture, while its black extremity is on the side of
the edge visited after the corner (see the figure below).

13

1 13

Fig. 3.6 Bijection between gluings of cycle bubbles and bipartite maps
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Color-i edges of G are either corners on white vertices of I' (if i belong to
the set labeling the incident edges), either half-edges around black vertices (if i
does not belong to the set labeling this edge). Therefore, by keeping only the edges
which color set contains 7, and by deleting all the isolated white square, we obtain a
combinatorial map I'” whose faces correspond to bicolored cycles 0i of G (see the
paragraph color-i submap below).

®0,;(G) = F(I'D). (3.19)

To goback to G from I'', we do the steps in the opposite order. Each step performed
here is the inverse operation of the step performed when building I" from G, which
ensures that this is a bijection. We replace each edge by a pair of black and white
vertices, one for each side of the edge, with the convention pictured below. For
each corner on a black vertex of I" we draw a color-0 edge between the vertices
corresponding to the two sides of the edges which are incident to the corner. For
each corner on a white square vertex incident to edges with colors {iy, - - - , i}, we
draw edges of colors {iy, - - - , iy} between the corresponding vertices. Then for each
edge of I', we draw edges of the missing colors between the two corresponding
vertices so that the resulting graph is (D + 1)-edge-colored. The two strands of each
edge of I" therefore correspond to the same pair, one is incident to a cyclic bubble,
and the other to a cycle alternating color-0 edges and chosen pairs.

We consider the equivalence classes upon relabeling the pairs. The cyclic bubbles
and the cycles alternating color-0 edges and chosen pairs have the same symmetries,
so we get a bijection between equivalence classes. (]

Because white squares are incident to edges that all have the same color set, we
can specify that color set on the white square itself.

3.2.2.1 Color-i Submap and Score

The color-i submap I'” is obtained by keeping all the edges which color set contains
color i and deleting isolated square vertices. We refer to them as monochromatic
submaps. Because of relation (3.19), and since a has been calculated before for
cycles (3.15), the bubble-dependent degree writes
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D
0pi(G)=D+ Y (D=k)(p— DV (I) =Y FIT?), (3.20)
2peP i=1
k=1
where V]f o 1s the number of p-valent white squares whose incident edges carry

k<D/2 colors. The critical behavior of the generating function of discrete spaces
obtained by gluing D /2-cyclic bubbles without restriction on their coloring is treated
in Sect.4.3.1 using tools developed in the beginning of Chap. 4. We will see it involves
three universality classes, characterized by the critical exponents 1/2, —1/2,and 1/3.

A map with ¢ marked corners on g black vertices corresponds to a colored graph
with ¢ marked color-0 edges. Deleting all the marked color-0 edges, we get a colored
graph in G?) with 2¢ degree-D vertices. The sub-faces on monochromatic submaps
which start on a marked corner and end on a marked corner without encountering any
other marked corner in the meantime are called broken faces. In the colored graph
picture, they correspond to the bicolored paths which start on a degree- D vertex and
end on another degree-D vertex.

3.2.2.2 Boundary Graph

The boundary graph is obtained from a colored map I" with marked corners the
following way. Faces around the color-i submap I'® are oriented clockwise (they
visit corners counterclockwisely). Keep all the marked vertices of I", and whenever
a broken face starts on a marked vertex v, and ends on some marked vertex v,
draw a directed line from v, to v,. Unmark all the vertices, to obtain the Eulerian
graph I' (s (there is no ordering of edges around vertices). The graph Fg) obtained by
keeping only the edges of color i, is a collection of disjoint directed cycles with no
isolated vertices. This implies that every vertex has two color-i incident half-edges,
one outgoing and one ingoing. They belong to the same edge if the cycle is of length
1. This is shown in Fig.3.7.

We now replace each vertex with a pair of black and white vertices and attach all the
outgoing (resp. ingoing) edges to the black (resp. white) vertex. The corresponding
graph OT is clearly in G p_. Its pairs of vertices correspond to marked corners of T,
which in turn correspond to pairs of degree- D vertices of the (D + 1) colored graph
G in bijection with I'. Furthermore, OT" has an edge of color i between two vertices

Fig. 3.7 Boundary graph from the bipartite map
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when a broken face joined two marked corners in I'. Because faces always leave a
marked corner of I" from a black vertex of G and arrive on a marked corner of I’
when they arrive to a white vertex of G, OI" coincides with the boundary graph of
the colored graph in bijection with I'.

Importantly, the boundary B = OI" naturally comes with a pairing of its vertices
(Definition 2.4.8). We say this pairing of B is induced by T'. Another important
remark is that commuting two half-edges of different colors incident to a marked
vertex does not change the boundary graph, while commuting two half-edges of the
same color may change the boundary graph.

3.3 Bijection Between Colored Graphs and Stacked Maps

We have seen several bijections with combinatorial maps. The interest of studying
maps instead of colored graphs is because bicolored cycles become faces. In the new
representations, we can therefore use results on maps, such as counting formulas,
bijections with known families, matrix models... We saw that k-cyclic bubbles were in
bijection with bipartite maps with prescribed face degree on some vertices (Fig.3.7).
This is Walsh’s representation [7] of hyper-maps. In this section, we generalize this
bijection for any colored graph. The objects we obtain are superpositions of D hyper-
maps—or of bipartite maps in Walsh’s representation. We have named such objects
stuffed Walsh maps in [8], “stuffed” referring to the non-trivial internal structure of
the vertices corresponding to hyper-edges. We develop here a slightly different - but
equivalent—point of view, in which the objects we consider are combinatorial maps
with colored edges. We call such objects stacked maps.

3.3.1 Stacked Maps

Stacked maps have two kinds of vertices, vertices which carry a color
i€{0,1,---, D} and white vertices. They have edges which also carry a color
i €{0,1,---, D}. Edges of color i can only link a white vertex and a vertex of color
i. Color-i vertices are only incident to edges of color i, and white vertices are incident
to one edge of each color in {0, - - - , D} and one only. There is no cyclic ordering
of edges around white vertices (an equivalent choice would be to order the edges
around white vertices according to their color). At most one corner per black vertex
may be marked. We denote Sp, the set of connected stacked maps with edges colored
in {0, ---, D} and S% if ¢ corners are marked. Examples are shown on the right of
Figs.3.12 and 3.13. Before proving the bijection, we need three definitions.
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3.3.1.1 Canonically Adding Marked Edges in the Boundary Case

The bijection in the previous section stood only for colored graphs without boundary.
However, we described how deleting marked color-0 edges corresponding to marked
corners of a map led to a colored graph with boundary. If we wish to extend the
bijection to colored graphs with boundaries, starting from a graph in G%, we need a
prescription on how to add back these color-0 edges in order to apply the bijection
for graphs without boundary but with distinguished edges. This is the subject of this
paragraph.

Consider a generic colored graph G, € G}, dual to a triangulation with bound-
ary, and a pairing €2 of its vertices. There is a canonical way of adding g color-0
marked edges to obtain a graph Gy o € Gp without boundary, but with ¢ marked
edges. Indeed, we consider the g paths which alternate pairs of vertices and color-0
edges, and which start and end on degree-D vertices. A color-0 marked edge is then
added between the two degree- D vertices for each path, as illustrated in Fig. 3.8. We
therefore obtain g cycles alternating color-0 edges and pairs of €2, each containing a
single marked color-0 edge.

Lemma 3.3.1 We consider G, € G?, a pairing  and the corresponding Go.q
obtained by canonically adding marked color-0 edges. The g marked edges induce a
pairing 2 of the boundary graph 0G, and we consider the corresponding covering

3G§2. Then, the 0-scores satisfies the following identity
Do(Gy) = Po(Go,e) — <I>o(3G§Z)- (3.21)
and the degree satisfies the identity (regardless of the chosen coefficient a):
3(G,y) = 8(Go.g) + Po(IG). (3.22)

It is therefore possible to classify triangulations with boundary according to their
degree by choosing a pairing of the boundary graph and using results and classifi-

Fig. 3.8 Canonically adding marked color-0 edges
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Fig. 3.9 A graph G, a pairing , and G,

cations on triangulations without boundary. See the characterizations of sub-leading
orders in Sects. 3.4.2 and 3.5 for applications.

3.3.1.2 The Graph G,q

Definition 3.3.1 Given a colored graph G € G, and a pairing € of its vertices, the
Eulerian graph G ,q is obtained from G by canonically adding ¢ color-O0 marked
edges, orienting every edge from black to white and contracting? every pair of .

Examples are shown in Fig.3.12 for a graph in G3 and in Fig.3.9 for a graph in
G%. As G is properly edge-colored, in G, each vertex is incident to two color-i half-
edges, one ingoing and one outgoing. To recover G from G, q, replace every vertex
with a pair of black and white vertices, and attach all the outgoing (resp. ingoing)
half-edges to the black (resp. white) vertex. Clearly, G,q is equivalent to (G, €2).
The color-i subgraphs G% are collections of disjoint directed cycles with no isolated
vertices, and which span all the vertices of G q.

Remark that in the case where G € G% is not connected, but a pair of 2 contains
a black vertex in one connected component and a white vertex in another connected
component, then G, has less connected components than G. Also note that if
OI' = B € Gp_; and 2 is the pairing of B induced by I, then I' 5 defined at the end
of Sect.3.2.2 coincides with B q.

3.3.1.3 Bicolored Submaps

Definition 3.3.2 (Bicolored submap) A bicolored submap I'“/ of a stacked map
I' € Sp is obtained by keeping all the color-i and color-j edges and vertices. The
vertices and edges of color k # i, j are deleted. We will be mostly interested in the
bicolored submap for colors 0 and i, which we will denote I"®.

2In the usual graph theoretical sense.
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The bicolored submaps for colors i and j is called the color-ij submap. Some
bicolored submaps are shown in Fig.3.15 for the example on the right of Fig.3.13.
Importantly, bicolored submaps are combinatorial maps in the usual sense. Indeed,
the white vertices all have degree two and the two incident edges therefore have a
trivial ordering. In fact, one may contract all the color-0 edges in I'” to get rid of
the valency-two vertices.

Giveni < j, we also need to define the twisted bicolored submaps Ff"’ ), obtained
from ') by adding a twist (Fig. 2.10) on every color-i edge.

Definition 3.3.3 (Twisted bicolored submap) The twisted bicolored submap '/’

withi < j is the combinatorial map obtained from I'/) by adding a twist-factor (—)
on every color-i edge while color-j edges carry (4) factors.

We stress that by doing a local change of orientation (Definition 2.3.2) on every
color-i vertex, all the twists are eliminated, so that the twisted bicolored submaps
are orientable. The reason is that the white vertices all have degree two and have
one edge incident to a color-i vertex and the other one incident to a color-j vertex,
i.e. contracting all the color-j edges, the map is bipartite.

3.3.2 The Bijection

We first describe the map W which to each pair (G, ) of acolored graph G € GY (i.e.
whose connected components are in G p) with ¢ marked color-0 edges and a pairing
of its vertices associates a stacked map W (G, €2) which connected components are
in S%,.

We consider the Eulerian graph G,q, which is obtained by orienting the edges
from black to white and contracting each pair in €2 into a white square vertex. For each
color i € [1, D], the subgraph G% obtained by keeping only the color-i edges is a
set of disjoint directed cycles Cfi) ey C;é) The subgraph G% contains precisely
q disjoint cycles containing one marked edge.

Each color-i cycle is replaced with a star-map of color i. The cyclic ordering of
appearance of the vertices around the cycle is translated into a cyclic ordering of
strands around the color-i square vertex. A directed edge of color i is now a directed
corner around a star-map of color i, i.e. part of a face around the submap of color
i. This is shown in Fig.3.10. Similarly, each color-0 cycle is also replaced with a
star-map of color 0. The cycles which contain one marked edge have a (non-cyclic)
ordering of the vertices, which starts and end at the marked edge. The marked edge
is mapped to a marked corner of the star-map, and the ordering of vertices around
the cycle is translated into an ordering of strands around the color-0 vertex, which
starts and ends at the marked corner. This is shown in Fig.3.11.

As they were incident to precisely one cycle per color i € {0, ---, D}, white
squares are now incident to precisely one edge for each color. There is no ordering
of edges around white vertices (incident edges are distinguishable because of their
color).
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Fig. 3.10 Directed cycles are mapped to star-maps of the same color
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Fig. 3.11 Directed cycles with a marked edge become star-maps with a marked corner

Fig. 3.12 A graph B with pairing Qp, the graph B q, and the stacked map W (B, Q2p)

Examples are shown in Fig.3.12 (with no marked corner and for colors 1, 2, 3),
and in Fig.3.13.

We stress that the bijection is between non-necessarily connected objects. Indeed,
if G has two connected components, G/ can be connected in the case where the pair-
ing 2 has at least one pair with one vertex in each connected component (Fig. 3.16).

Note that unmarking the corners in the stacked map picture corresponds to canon-
ically adding unmarked color-0 edges on (G, ©2¢) in the colored graph picture. The
reason why there can be at most one marked corner per color-0 vertex is because
the ¢ marked edges have been added canonically. Considering stacked maps with
more than one mark per color-0 vertex, we would recover cycles alternating color-
0 edges and pairs with more than one marked color-0 edge. Deleting the marked
edges, we would then recover the same element of G% for different stacked maps,
corresponding to non-canonical ways of adding ¢ marked color-0 edges.
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Fig. 3.13 Graph G,q and corresponding stacked map W (G, 2)

We detail the construction of W (G, 2) in terms of permutations : we label the
pairs in §2 and define the setof V (G)(D + 1) darts D of the map W (B, €2) as follows.
For each subgraph G% we have a set D and a set D, each one of V(G)/2 darts of
color i (one for each pair of G), and

D = U2 (D uDY). (3.23)

To each vertex labeled / in G, corresponds one dart in D} and one dart in DY,
with the same label /. The subgraph G% induces a partition of D7 in directed cycles
which define a permutation o} on Dy, corresponding to the color-i vertices. Some of
the cycles of the color-0 subgraph G% contain marked edges, and therefore, some
of the cycles of the permutation o have a non-cyclic ordering, which starts and ends
at the marked edge. Each vertex in G has a label / and belongs to a single C{ for
each i, so that to each / corresponds one dart d;’; with the same label / in each D;.
This gives a partition of U2'D? in [ unordered sets of D + 1 darts, one for each
color. We define o as the disjoint union of these sets, and

o= (Z'er) u (Ll a7). (3.24)
To each pair (i, [) correspond two darts, d;; € D} and d;, € Dy, and we define

(D+1, 75

a= || (.4 (3.25)
i,)=(1,1)

We then consider the equivalence classes upon relabeling the pairs. Twisted bicolored
submaps have been defined in Definition 3.3.3.
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Theorem 3.3.1 The map V is a bijection, which maps color i < j cycles to faces
around the twisted bicolored submaps FZ(” ).

Proof We describe the inverse map W~! and show that ¥~ (¥ (G, Q)) = (G, Q).
Starting from a stacked map in S’{), for each counterclockwise corner (eq, e;) around
a color i vertex v;, where e; = (v;, vy) and e, = (v;, v5), we draw a directed edge
from v} to v5 (which might be the same white square vertex). If the corner is marked,
we mark the corresponding color-0 edge. Each star-map of color i gives rise to a
directed cycle of color i and at this point, each cycle of color-i directed edges is as
pictured below. At this point, it is clear that if we started from (G, €2) and replaced
every directed cycle with a star-map, then deleted every directed edge, and then
performed the step just described, we recover a directed cycle for each directed
cycle of G,q, between the same vertices (corresponding to pairs), and directed the
same way. From this intermediary diagram, deleting all the color-i vertices and their
incident edges, we recover G, q, and then (G, 2) as in Definition 3.3.1. Therefore,
v (W (G, Q) = (G, Q).

Conversely, starting from a stacked-map I" € Sp, applying the first steps of the
map W', we get an intermediary diagram in which the oriented cycles and star-maps
are as in the picture above. Deleting the-star-maps and performing the first steps of
W, that is, adding a star-map for every oriented cycle so that the counterclockwise
ordering of edges around the colored vertices corresponds to the orientation of the
cycle, asinFigs.3.10and 3.11, we recover the star-maps we deleted for every oriented
cycle, with the same ordering of edges. Therefore, ¥ (W~/(I")) =T.

There remains to prove that bicolored cycles are mapped to faces around twisted
bicolored submaps Fz(ij ' InG /. the color ij cycles alternate edges with opposite
orientations: the color-i edges all have the same orientation, which is opposite to that
of the color-j edges. Each edge is mapped to a corner, and therefore, the bicolored
cycles are mapped to corners around '/, which are alternatively clockwise and
counterclockwise. By introducing a twist on every color-i edge, the faces precisely
visit the corresponding corners in the right order, as shown in Fig.3.14. ]
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(12)

Fig. 3.14 Color 12 cycles around a pair of €2, and corresponding faces in T,

Definition 3.3.4 (Score) The score of a stacked map I" is the sum of the unbroken
faces around twisted bicolored submaps.

D
(M) =Y Fn(T(7). (3.26)
i=1

The example I' = W (B, 2) of Fig.3.13, which color 01, 03 and 13 submaps are
shown in Fig.3.15 has, when adding twists on all the edges of the color of smaller
index, Fin(T(") = Fin (1) = 0, F(I'['?) = Fp(0*) = 1, F(I[") = 2 and
F(FZ(B)) = 3, so that its score is ®(I") = 7, as can be verified on Fig.3.9.

The procedure to obtain the boundary graph of a stacked map with marked
corners is as described at the end of Sect.3.2.2 for gluings of cyclic bubbles. The
only difference is that one follows broken faces around twisted color-Oi submaps
instead of broken faces around color-i submaps. For instance, the boundary graph
of the example in Fig.3.13 is a 1-cyclic bubble of length 4 (quartic melonic graph)
alternating color 1 and colors 2,3.

Some parts of the stacked map necessarily correspond to recognizable structures.

Proposition 3.3.1 (Tree-contributions) Tree contributions to a stacked-map T € Sp
correspond to melonic contributions to G € Gp, where (G, Q) = W~ (I').

Proof A tree contribution necessarily has a white vertex incident to D colored leaves.
Applying W1, we see that this white vertex corresponds to a D-pair. We can contract
itand proceed recursively: in the stacked map, this goes back to suppressing this white
vertex and the incident colored edges and leaves. O

Fig. 3.15 Some bicolored submaps
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Note however that some melonic contributions in G may not correspond to tree-
contributions if €2 does not coincide with the canonical pairing of the melonic sub-
graph (Definition 2.3.13).

3.3.2.1 Connectedness and Face-Exploration

As underlined previously, W (G, €2) might be connected for anon connected G € G%.
Here, we provide a mean of determining directly on a stacked map I whether it is
the image of a connected colored graph. We focus on the faces around the one-
color star-maps. They correspond to oriented edges of G,q, and therefore to edges
of G such that W(G, Q) = T. Starting from any white square v;, we consider all
the out-going faces around the D color-i star-maps, and denote {v{.,, v{.,, - - -} the
first white squares they reach. We keep in mind the faces we exploi‘ed already. For
each one of the v{ , either we have explored the D + 1 ingoing faces, or we only
have explored a subset of them, in which case we explore the remaining ingoing
faces. We denote {v; 1 U§; 5, - - - } the white squares they first reach. Now, some of the
vy., have unexplored outgoing faces, which we explore, denoting {v3., v3.,, - - - } the
white vertices we first reach. We continue, alternating the exploration of ingoing and
outgoing faces, and stop when we encounter only vertices which have already been
visited, and which we reach from faces we have already explored (this necessarily
happens as the map is finite). We define the exploration starting from v as

Xoul(vg) = |:{v(<)>}0utv {Ui] , v<]>;27 -+ tin, {vg;p Ug;zv < outs i| (3.27)

In the example on the right of Fig.3.16, we have X,y (vg) = [{vg}om, {vT.1, U?;z}im
{v; . }om]. We have the following characterization:

oy (in)
v (out)

v}, (in) = v3; (out)

Fig. 3.16 Non-connectedness from the face-exploration: a non-connected G and €2, the corre-
sponding W(G, €2), and an exploration from vj. The faces explored at the first step are in green,
those explored at the second step are in magenta
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Proposition 3.3.2 A stacked map T' = WV (G, Q) corresponds to a connected G €
Gp if and only if for any white square v, every white vertex of T appears precisely
twice in X, (v5).

As the vertices v and vy, appear only once in the exploration on the right of
Fig.3.16, we know that the map corresponds to a non-connected colored graph.
Furthermore, one of the white vertices does not appear at all.

Proof Indeed, it is easy to see that the exploration in I' explores the connected
component of G containing the black vertex of vg: starting from this black vertex
we consider all the incident edges, then we consider all the edges incident to all the
white edges they reach, and so on. Each visited white vertex appears exactly once
in X,y (vg) if only one vertex of the pair is in the connected component, or twice
if both vertices of the pair do: once in a set labeled “out”, and once in a set labeled
“in”. In particular, the exploration ignores €2, and G is connected if every vertex of
G has been visited, i.e. if each pair of €2 has been visited twice (once on a black
vertex, corresponding to outgoing faces of I", once on a white vertex, corresponding
to ingoing faces of I'). (]

Corollary 3.3.1 IfT' = W (G, Q) has less connected components than G € Gp, then
some face-explorations visit some vertices only once. The number of vertices visited
only once in an exploration is even.

Proof This follows from the fact that the vertices visited a single time correspond,
in (G, €2), to pairs with only one vertex in the component. As the number of vertices
in a connected component of G is even, the number of white vertices visited only
once in an exploration is even. (]

This characterization becomes somehow heavy when there are many colors and
for large maps. A sufficient condition for a stacked map to be the image of a connected
graph is the following.

Lemma 3.3.2 If a connected stacked map T has a colored leaf incident to every
white vertex (but one), then it is the image I’ = W (G, Q) of a connected G € Gp.

Proof Every vertex incident to a colored leaf will clearly be visited twice in the
exploration, once in an outgoing set, once in an ingoing set. In the case where a
single vertex has no incident colored leaf, it also appears twice in the exploration
which starts at this white vertex, by applying Corollary 3.3.1. (]

3.3.2.2 Pairing Induced by a Color

One may wonder how to specify a unique pairing per colored graph in order to have a
unique associated stacked map. Also, it would be useful to have a bijection between
connected objects. A way of doing so is to choose a particular color i, which we
take to be different from 0O in the case where some color-0 edges are marked. We
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recall that G' is the graph obtained from G by deleting all color-i edges. In a graph
G € Gp, the color-i edges are a 1-matching which defines a pairing Q@ of G'.

Theorem 3.3.2 The following induced map is a bijection

@) . 4 q
v Gl — st

G — ¥(G', 2"(G)). (3.28)

Proof Applying ¥ to (G, Q¥ (G)) for G connected, one gets a connected map in
S such that all color-i vertices are leaves. Every stacked map in S%, such that all
color-i vertices are leaves has a unique antecedent (G, 2) with G connected, and
such that color i links the vertices of each pair of 2. Deleting these leaves and their
incident edges, one gets a stacked map in S?,_,, putting back a color-i leave incident

to every white vertex is done in a unique way. O

The score of G € G% is that of I' € SY) | plus the number of color-j submaps
(which do not carry marked corners) for each j. The 0-score of G € GY, is that of
I' € S _, plus the number of color-0 submaps which do not carry marked corners.

It is also possible to do so choosing color 0, even if some edges are marked.
Some color-0 leaves in the stacked map would then be marked. Contracting them,
one should just distinguish the incident white vertices. Consequently,

v G — v, (6% 20@G)), (3.29)

where ¥, (G, QO (G)) has ¢ distinguished vertices, is also a bijection between col-
ored graph in Gp and stacked maps in Sp_; with ¢ distinguished white square
vertices. The 0-score of a map is then the sum for j € [1, D] of the number of
color-j submaps which do not carry distinguished vertices.

Proposition 3.3.1 adapts in the case of an induced pairing for a graph without
boundary: tree contributions to a stacked-map I' € Sp_, correspond to melonic con-
tributions to G € Gp, such that G = (W?)~!(I"). Again, not all melonic contri-
butions of G correspond to tree contributions of I', this only happens when, in
the melonic contributions, the color-i edges all link vertices of the canonical pairs
(Definition 2.3.13).

3.3.2.3 Gluings of 1-Cyclic Bubbles and Boundaries

The following proposition states that any connected colored orientable triangulation
is the boundary of some colored discrete space obtained by gluing 1-cyclic bubbles
in one more dimension. We will state a stronger result in Theorem 3.4.2.

Proposition 3.3.3 Every graph in Gp_, is the boundary of some connected graph
in Gp(B! ), where B! _is the set of 1-cyclic bubbles in Gp_ of any size.

cyc cyc
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Proof This is a simple consequence of Theorems3.3.1 and 3.2.1. Applying
Theorem3.3.1 to a graph Gp_; (with colors {1, ---, D}) for any choice of pair-
ing, we get a stacked map in Sp_;. We now embed all the white vertices, e.g. by
ordering the incident edges according to their colors, and then mark a corner per
white vertex, e.g. that between the edges of color D and 1. We obtain a bipartite map
M with marked corners on every white vertex and K connected components such
that edges carry colored labels. Because of the construction of W, G is recovered as
the boundary graph of M (here, the faces are around monochromatic submaps, as
described at the end of Sect.3.2.2). From Theorem 3.2.1, the corresponding map is
mapped bijectively to a colored graph in G D(]B%éyc) (with respect to the conventions
of Theorem 3.2.1, the color-i vertices become the white vertices there, and the white
vertices here are the black vertices there). U

3.3.3 Bubble-Restricted Gluings

Throughout this work, we are mostly interested in bubble-restricted gluings, i.e. in
the case where deleting all color-0 edges in the colored graph, one is left with copies
of bubbles from some set B C Gp_;. Deleting color-0 edges in a colored graph G
corresponds to deleting all color-0 vertices in W (G, 2), together with the incident
color-0 edges. Because the construction of W (G, 2) is done for each color indepen-
dently (star-maps only meet at white vertices but are built independently one from
another), the construction for the colors {1, - - - , D} is the bijection between colored
graphs with connected components in Gp_; and stacked maps with connected com-
ponents in Sp_;. Deleting all color-0 edges and vertices in W (G, €2), the remaining
connected submaps are copies of W({B,}, ©(,;) Where {B,} are copies of bubbles
B, € B and the pairings €23, are the pairings induced by €2 on this particular set
of bubbles {B,} in G, such that the “covering” {B, )% is connected.

In the case of restricted gluings, we decide to make a global choice of pairing 25
for all the copies of B. It translates into a pairing €2 of each graph in G(B). We denote
S(B, 2p) the set of connected stacked maps built for B and a choice of pairing Qp
for each bubble B € B, and S?(B, Q2p) the set of such objects with ¢ marked corners
on ¢ different black vertices. They are stacked maps such that, when deleting all the
color-0 edges and vertices, we are left with a collection of submaps isomorphic to
W (B, Q) for our choices Qp, where B € B. If B = { B}, we rather use S(B, Q)
and SY(B, Qp).

Theorem 3.3.3 For any set B of bubbles B, each equipped with a pairing Q2 g, there
is a bijection
Yy : GI(B) — S1(B, Qp). (3.30)

The bubbles isomorphic to B are mapped to the submaps isomorphic to V(B, Qp),
and the bicolored cycles 0i to the faces around bicolored submaps 0i, denoted T'®.
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Fig. 3.18 Color 01 cycles around a pair of Qp, and corresponding faces in ')

Proof The map W restricted to colored graphs in G(B) and pairings inherited from
the particular choices Q5 is easily seen to be a bijection with elements in S(B, Q).
However, because we will only be interested in color-0i cycles, we decide to orient
color-0 edges from white to black and not from black to white, as done for the other
colors. As in the proof for the bijection W, we show easily that we have a bijection
by looking at the oriented color-i cycles and the corresponding star-maps. The only
difference is that here, color-0 edges are oriented from white to black, which has to be
taken into account when going from G g to (G, 2) and conversely, but all the other
steps are as for W. In particular, the restriction of the bijection to colors in [1, D]
gives a collection of stacked maps isomorphic to W (B, 2p) for B € B. Another way
of obtaining this bijection from the bijection W is by adding a twist (Fig. 2.10) on
every color-0 edge and then doing a local change of orientation (Definition 2.3.2) on
every color-0 vertex. Bicolored cycles are therefore mapped to faces around bicolored
submaps (without twists), as illustrated in Fig.3.18. ]

Itis this theorem which was proven directly in [8]. Examples are shown in Fig. 3.12
(bijection W for a bubble B with pairing Q2p), Fig.3.17 (simplified bubble) and
Fig.3.19 (a graph in G(B) and corresponding stacked map in S(B, 25)). Bicolored
submaps have been defined in Definition3.3.2. We recall that unbroken faces are
faces which do not meet any marked vertex (Fig.3.19).
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Definition 3.3.5 (0-Score) The 0-score of a stacked map I' € S(B, Qp) is the sum
of the unbroken faces around color-0i submaps.

D
Do) =Y Fin(T?). (3.31)
i=1

Although this is different from the O-score for the bijection W, which involves
twists (3.26), it will not be conflictual as we are interested in bubble-restricted glu-
ings, and we will always use the present definition, which applies in the context of
Theorems 3.2.1, 3.3.3, and 3.3.4. Because of the particular role played by the color
0, color-0 vertices of stacked maps are represented as black discs, while for other
colors, the vertices are represented as colored squares and the edges are colored.
Furthermore, if a color-i vertex is a leaf in W (B, Q2p), we can as well not represent it
when drawing the maps, as it has no effect on the faces of ') (Fig. 3.17). Note that
when a color i is such that color-i square vertices all have valency 1, Fi,(I'”) is the
number of black (disc) vertices without marked corners (e.g. color 4 in Fig.3.19).
We will still call bubbles the submaps W (B, 25) and denote the number of bubbles
ng,orb =73, ng. We call maximal maps in S(B, Qp) the maps which maximize
the O-score at fixed number of bubbles.

We can compute the 0-score from the stacked map. For the example of Fig.3.19,
Fin(TV) = 2, Fiu(T'®) = Fi(C?) = 3 and Fin(TY) = 3, s0 that ®o(I") = 11.
Now consider the map I'y obtained by unmarking the corners. We have F(I'") = 3,
F(I'?) = F(I'?Y) =4 and F(I'?) = 5, so that ®o(I') = 16.

The procedure to obtain the boundary graph of a stacked map in S (B, Qp)
with ¢ marked corners is as described at the end of Sect.3.2.2 for gluings of
cyclic bubbles. The only difference is that one follows broken faces around color-
0i submaps instead of broken faces around color-i submaps. Lemma 3.3.1 can be
restated for stacked maps: Given a stacked map I', € SY(I"(B, 2)) with ¢ marked

Fig. 3.19 Bijection ¥, between edge-colored graphs and stacked maps
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corners on black vertices and I'g obtained from I', by unmarking the corners, the
relation between the bubble-dependent degree of I, and that of I'y is

05(Ty) = 5(Ty) + ®o(AT, ) (3.32)

where Q is the pairing of dr', induced by I';, and 8F(§2 is the corresponding covering.

The submaps W (B, Qp) can be seen as effective “vertices” with a non-trivial
internal structure, which is a superposition of hyper-edges (in Walsh’s representa-
tion). This is the reason why stacked maps were called stuffed Walsh maps in [8],
“stuffed” referring to the internal structure of vertices. This point of view was moti-
vated by the intermediate field theory (Sect.3.6), in which the generating function
is expressed as a matrix model with partial traces. The reason why we chose the
name stacked maps in the version of the bijection described here is because we
are interested in bicolored submaps, and a map in S?) can be seen as a stacking of
D(D + 1)/2 combinatorial maps. In the case of S?(B, Q2p), we are only interested
in the D layers of bicolored submaps containing color 0. The edges and vertices of
color 0 are common to these D stacked combinatorial maps.

3.3.3.1 Simpler Bijections

To recover the bijection of Theorem 3.2.1 for k-cyclic bubbles from the bijection of
Theorem 3.3.3, we notice that W applied to a k-cyclic bubble in which we have chosen
to pair the h-pairs (Definition 2.3.5) with & = D — k > D/2 gives the stacked map
pictured on the left, below (without color 0). It has k star-maps linking all the white
vertices in the same cyclic order, and for the D — k remaining colors it has a leaf
attached to each white vertex. As underlined before, we can delete all the leafs with
colors in [[1, D] and the incident edges. We then merge the k star-maps (with colors
denoted iy, - - - , i) into a single one as pictured below, and label the edges with the
color set {iy, - - - , ix}. After performing this operation for every bubble in a stacked
map, white vertices all have degree two. We can contract all the color-0 edges to
obtain the bipartite maps described in Theorem 3.2.1 (the convention on the coloring
of vertices is different, as underlined above). No color-0 edge remains, only color-0
vertices, to which we gave no color in Theorem 3.2.1, and the bicolored submaps 0i
in the stacked map picture become the color-i submaps. This simplified bijection can
be applied for non-cyclic bubbles in some cases, as stated in Theorem 3.3.4 below.
See, for instance, the examples in Sect.4.3.3. The white vertices now have a cyclic
ordering of edges around them, except if they have valency two in every color-i
submap, in which case the ordering is trivial (see the example of the K3 3 bubble in
Sect.4.3.2).

Theorem 3.3.4 If for a bubble B € Gp_, and a pairing Q, W (B, Q2) has only one
or no star-map which is not a leaf for each color, and if the cyclic ordering of
incidence of white squares is the same, then there is a simplified bijection with
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Fig. 3.20 Simplifying stacked maps in Theorem 3.3.4

bipartite combinatorial maps. Edges carry color sets and bicolored cycles 0i are
mapped to faces around color-i submaps.

Proof The bijective operation performed on every bubble is described in
Fig. 3.20. O

The properties of stacked maps are studied in Chap.4. Before, we focus on the
most simple and well known case of quartic melonic bubbles. We prove a few more
involved results in this simple case.

3.4 The Quartic Melonic Case

When the bubbles are 1-cyclic bubbles of length 4 (also called quartic melonic
bubbles), we saw in Sect.3.2.2 that there is a bijection between the corresponding
edge-colored graphs and combinatorial maps such that edges each have a single
color in [[1, D]. The colors of edges correspond to the colors of the simple edges
of the 1-cycles. In the case of quartic melonic bubbles, colored vertices have degree
2, so that the bijection simplifies. We denote B}’ the set of quartic melonic bubbles
(1-cycles of length 4).

Theorem 3.4.1 There is a bijection between colored graphs in G (B}') and com-
binatorial maps with edges colored in [1, D] and g marked corners, at most one per
vertex. We denote M, the set of such maps.

Examples are shown in Fig.3.21.

Proof The bijection described in the proof of Theorem 3.2.1 is trivially generalized
to the present case, canonically adding marked color-0 edges as described in the
previous section, and then mapping a colored graph with ¢ marked color-0 edges
to a bipartite combinatorial map with ¢ marked corners, such that white vertices all
have degree 2. An edge is labeled with the distinguishable color of the corresponding
1-cycle. By replacing degree 2 white vertices with edges, we obtain a (non-bipartite)
combinatorial map. In the other direction, there is a canonical way to add a white
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Fig. 3.21 Quartic gluings with boundaries are mapped to combinatorial maps with marked corners

vertex on every edge, and from Theorem 3.2.1 we obtain a colored graph with ¢
marked color-0 edges which can be deleted canonically. (]

Again, denoting I'”) the combinatorial map obtained by keeping all the vertices
and only the edges of color i—which we call color-i submap, bicolored cycles of
color 0i are mapped to faces around I'”, and bicolored paths between two degree-
D vertices are mapped to faces of I'”) between two marked corners, called broken
faces. We only count cycles encountering no marked corner, and denote Fi (I')
the corresponding faces. The bubbles are melonic, so thata = D — 1 (2.65), and the
degree is given by

D
0py(T) = D+ (D = DEI) = Y Fin(I'?). (3.33)

i=1

As the bubbles are melonic, it coincides with the Gurau degree (Definition 2.3.11).
Throughout this section, we will denote § = dp; for simplicity.

3.4.1 Quartic Melonic Gluings of Positive Degree
For regular colored graphs, which are in bijection with colored combinatorial maps
in MY, we have the following results.

Proposition 3.4.1 The degree of amap I" € MOD can be written as

D D
§(M) = DL(I) —2) L) +2 gr®), (3.34)

i=1 i=1

where L = E — V + 1 is the number of independent cycles of a connected graph, g
is the genus of a map, givenby2 —2g =V — E + F, and TV is the color-i submap.
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Proof The degree of I' € MY, is given by

D
6() =D+ (D—DET) =Y FI®). (3.35)

i=1
Combining the definitions of the genus and of the excess,
F=2L—-2g+V —E. (3.36)

As edges carry a single color, Zil E(D) = E(T"). Furthermore, V(I'V) =
V(I"), so that

D
§(M) =D+ ET) = V(I)+2) (9?) = LxD)), (3.37)

i=1
which concludes the proof, as the map is connected. O

The first following result is already known as we showed in Sect. 3.1 that maximal
gluings of 1-cyclic bubbles of a single kind are trees. However, here we are also able
to characterize maps of positive degree. We call monochromatic cycle in a graph with
colored edges a proper cycle (all vertices are distinct) such that all edges have the
same color. Similarly, we call polychromatic cycles a proper cycle such that at least
two edges have different colors. The total number of independent color-i cycles is the
excess of the color-i submap, and the number of independent polychromatic cycles
is the excess of the graph to which we subtract the total number of monochromatic
cycles.

Corollary 3.4.1 The degree § of amap ' € MOD satisfies
o) >0, (3.38)

and the first non-empty orders can easily be characterized:

e 0 = 0: maximal maps are trees
e 0 = D — 2: maps with a single monochromatic cycle (left of Fig.3.22)
e There are 3 cases:

— If D > 4, § = D: maps with a single polychromatic cycle (right of Fig. 3.22)

— If D = 4, § = 4: maps with a single polychromatic cycle, planar maps with two
color-i cycles, or maps with a color-i and a color-j # i cycle

— If D = 3, § = 2: planar maps with two color-i cycles, or maps with a color-i
and a color-j # i cycle

The following orders can also be characterized using Eq.(3.42), but the number of
possible cases increases with the order. Roughly, monochromatic cycles in planar
submaps contribute with D — 2, polychromatic cycles with D and raising the genus
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. . . ~ 0
Fig. 3.22 Maps contributing to the first two non-empty orders of M,

of monochromatic submaps by 1 contributes with 2, but implies a certain number of
monochromatic cycles.

Proof To prove that result, we use (3.34) and first show that
D D
@)
> L) > E_l L({TY). (3.39)

For eachi € [1, D], consider a forest 7 spanning I'”). There are L(I"”) edges in
@\ T and they identify independent cycles. The union | J; 5, 7 is connected
and spans I". A spanning tree 7 of Uie[[l,D]] T @ is thus a spanning tree of I". Since
all the edges in (J;p; py (D \ 7)) are distinct,

D
L) = > LI, (3.40)

i=1

and (3.39) follows from D > 2. Since g(I'”) > 0, one obtains (3.38). Furthermore, if
e ¢ T, theneithere € Ujcpy pj7 " ore ¢ Ujepi,py7 ) and since 7 is a tree spanning
Uieni,pp 7, we find

D
L(N) = LU, T+ L@, (3.41)
i=1

where L(UP T )) is the number of independent polychromatic cycles of I". Equation
(3.34) can be rewritten as
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D D
§() = DLUZ,T) + (D =2) Y L) +2) (), (3.42)

i=1 i=1

which is a sum of positive or vanishing terms. The inequality is saturated if and
only if L(U2,7W) = L(I'D) = g(I'V) = 0, i.e. if and only if I is a tree. Having
genus 1 requires at least two cycles, so that the first positive degree is D — 2, for
maps such that >, L(I'?) = 1. For D > 4, the second positive degree is D, for
maps such that L(U?, 7%) =1 but Vi, L(I'")) = 0. This describes maps such
that all color-i submaps I'” are trees, but the union of these trees has a single
cycle. If D =4,2D — 4 = 4 so that at order D we also have contributions of maps
satisfying Y, L(I'?) = 2, but they require Y, g(I'”’) = 2. This does not give any
restrictions if two monochromatic submaps have one cycle each, but it requires a
map with one monochromatic submaps containing two cycles to be planar. If D = 3,
2D — 4 =2 = D — 1, so that the second positive order is 2, with only contributions
from maps satisfying Y, L(I'”?) = 2. The same cases apply. O

Proposition 3.4.1 and Eq. 3.38 are both true for gluings of 1-cyclic bubbles of any
length.

3.4.2 The Boundary Case

Theorem 3.4.2 Any non-necessarily connected colored bipartite graph B € Gg71
with g white vertices is the boundary graph of some connected G € G (B}') with q
degree-D white vertices, or equivalently of some connected colored combinatorial
map with g marked corners.

It means that the boundary maps 0 : G5, (B}) — G%_, and 9 : M}, — G%,_, are
surjective. Forany B € G?, | and for any pairing we construct in the proof a specific
map M (B, 2) such that

OM(B, Q) = B. (3.43)

Proof As before in the proof of Proposition3.3.3, we apply Theorem3.3.1 to a set
G of K connected graphs in G p_; (with colors in [[1, D]), for any choice of pairing,
and get a set of stacked maps in Sp_;. We order the edges incident to white vertices
from 1 to D and then mark the corner between the edges of color D and 1 on each
white vertex. We obtain a combinatorial map M with marked corners on every
white vertex and K connected components such that each edge carries a colored
label, with boundary graph G = 0.M. We gather these connected components into a
single connected map with the right boundary graph. The procedure is illustrated in
Fig.3.23: we add one isolated vertex, pick one edge in each component, add a valency
two vertex on that edge, and then, if this edge has color i, add an edge of color j # i
between the newly added degree two vertex and the newly added isolated vertex. The
original connected components now interact through a star-map. The newly added
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Fig. 3.23 Obtaining a connected map with the right boundary graph

vertex is only incident to unbroken faces, so that the boundary graph is unchanged,
and the corresponding connected map suits. ]

Considering a graph B € Gp_i, any map in O~'(B) induces a pairing of its
vertices. Denoting M(B, €2) the family of maps in MY)(B)/ ? with boundary graph
B and induced pairing €2, it defines a partition 0~ Y (B) = Ug,M(B, €2;), where the
union is over inequivalent pairings. Each M(B, €2) contains infinitely many maps
as adding degree two unmarked vertices does not change the boundary graph, and

adding contributions of MY, to unmarked vertices neither.

Definition 3.4.1 Given a graph G with colored edges in [1, D], we define L,,(G)
as

D
Ly(G) = L(G) = Y _L(G"). (3.44)

i=1

It is the number of independent polychromatic—or rainbow—cycles of G, i.e. cycles
such that at least two edges carry different colors.

The 0-score of a covering B® can also be computed using the following lemma.

Lemma 3.4.1 The score of a covering B¢ of B € Gp_, is related to L,, (B)q) as
follows,
®o(B?) =14 V(B/o)(D — 1) — L,,(B)g). (3.45)

As an example, we see at first glance on the right of Fig.3.12 that for B and 2 in
the left of Fig.3.12, there is a single polychromatic cycle. As there are 4 pairs and
D = 4, adding color-0 edges on 2, we get ®o(B?) =1+4x3—1=12.

Proof This relies on the fact that the bicolored cycles 0i of B are in one-to-one
correspondence with the cycles of B/(ls)z’

D
@y (B?) = Z L(B}3). (3.46)

i=1
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As B/q is connected, L(B/q) = E(B/q)—V(B/o)+1, and as E(B/q) =
DV (Bq),
L(Bjg) =V (B/o)(D—1)+ 1. (3.47)

O

Recall from Definition 2.4.9 that an optimal pairing is one which maximizes
& (BY). It is thus equivalent to minimizing L,, (B /2). We have the following results.

Lemma 3.4.2 Let " be an edge-colored map with connected boundary graph OT =
B, induced pairing 2, and B,q as in Definition 3.3.1, then

L, (") > L,(Bq). (3.48)

‘When each monochromatic submap is a forest, L, (B,q) coincides with the num-
ber of independent cycles of the map itself.

Proof For each color i, consider 7@ a forest that spans ', As in the proof of
Corollary 3.4.1, the number of polychromatic cycles of I" is

D
L) =Y L) = LU TY). (3.49)
i=1

Consider 7;&’2 the sub-forest of 7> made of its connected components which have

at least one marked vertex. The union U2 17;(;, is a subgraph of U2, 7%, hence
L2, T?) = LU, TS (3.50)

As B is connected, U2 7.} is connected. Moreover, E(U2 T,\)) = Y2 E(T.")),
so that

D
LUZ, TS =Y E(TS) — VUL T + 1. (3.51)

i=1

Since ’Z;(x’,) is a forest, E (Z,Sé,) ) = V(Z(Xi,) )— K (7;53 ), K being the number of con-
nected components. We denote g the number of marked vertices and split the sum
over vertices

D D
D VID =Dg+ ) V(Ti) =Dg + Y col(v), (352)

i=1 i=1 veul 7o

i=1“ext
unmarked

where col(v) is the number of colors incident to v in U2 17;&’,) . Equation (3.51) now
writes
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D
LW T =g -1+ 3 (o) - D) =Y KTH+1. (353

veu?, 7.9 i=1

i=1“4ext
unmarked

Each connected component of 7;5;3 gives a disjoint cycle of B/q = I'5, so that
K(T) = @0, (B* 3.54
( ext) 0,1( ) ( . )
Using Lemma 3.4.1, we can rewrite

LU TS) = Lu(Bjo) + ) (col(v) — 1. (3.55)

veUP 7.9

i=1 ext
unmarked
As there are no isolated vertex, the sum in the right hand side is a sum of positive
terms, which concludes the proof. We furthermore deduce from (3.55) that

L(Uf;l’fegf,)) = L,(B)q) = Vv € UiDleegf,) unmarked, col(v) = 1.
(3.56)
O

Theorem 3.4.3 Let I'y € M}, with g marked corners, and connected boundary
graph B = OT',. Then its degree is bounded from below

0(Ty) = 14+ (D — (g + Lu(B/2)), (3.57)

Q being the pairing of B induced by I'; and K the number of connected components.
Moreover the equality holds if and only if

o T\ is a forest for each i € [1, D], and
e denoting ’];(x',) the restriction of F;i) to its trees which have at least one marked

vertex, those trees can meet on marked vertices only, and .
o I'y\ Uie[l.D]] 'Z;Sﬁ,) is aforest whose trees each meet Uie[[l D 7;5;} atasingle vertex.

Proof We start with Eq.(3.32), 46(I'y) =d(T) + ®o(B?), and apply
Proposition3.4.1 to §(I'y) and Lemma 3.4.1 to ®(B%). That gives

D D
§(Tg) = DLn(To) + (D =2 Y L) +23 gC) + 14D — 1) = Ln(B)g).
i=1 i=1
(3.58)
As the two sums in the right hand side are sums of positive terms, and because of

Lemma 3.4.2, we get (3.57). Furthermore, the equality occurs when Vi € [1, D],
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L(F(()i)) = g(Féi)) = 0, i.e. monochromatic submaps are trees (first condition), and
when L,,(I'g) = L,,(B,q), which on one hand implies that

LU, Ty = L2, 7)) (3.59)

in (3.50), and on the other hand implies (3 56) This last condition means that
unmarked vertices belong to at most one ’];M (second condition). If the last con-
dition in Theorem 3.4.3 is not satisfied, then (3.59) is not either. On the other way,
a map satisfying the three conditions of Theorem 3.4.3 saturates (3.57), which con-
cludes the proof. O

We recall that GJf' is the set of quartic melonic bubbles, i.e. 1-cyclic bubbles of
size 4. A consequence of this theorem is that the degree of a colored graph in G, (B}')
is bounded from below by the optimal bound (that is, the inequality is saturated for
some colored graphs):

§(Gy € GHLMB)) =1+ (D —1)(q + Lu(9Gy)a,,)) (3.60)

where Q,p is an optimal pairing of the boundary graph 0G,. Therefore, we can give
the best possible lower bound on the degree of graphs with a given boundary graph:

Corollary 3.4.2 For a given bubble B € Gp_,, any colored graph in G, (B}') with
boundary graph B has a degree higher or equal to:

§(Gy € 07'(B)) = 14 (D — (g + Lu(B/a,,)). (3.61)

where Qqp is an optimal pairing of the bubble B. This bound is optimal.

Importantly, the map M(B, ) built from W(B, Q) in the proof of
Theorem3.4.2 is an example of map saturating (3.60). Therefore, for any given
bubble B, having found an optimal pairing, it is easy to exhibit a map in ' (B) of
minimal degree. It is also trivial to compute the degree of the corresponding map,
as its excess coincides with L,, (B ). The next important step would be to obtain a
relation of the kind

dou(B) =k = Lu(Bjq,) = fk). (3.62)

We suggest that this problem could be addressed by studying the maps obtained when
applying the bijection W of Theorem 3.3.2 on the pairing induced by a covering. This
kind of manipulations are used in Sect.3.5 for other purposes. For instance, if B is
not melonic, then L,, (BQ"P') > 1, and

Squ(B) >0 = (G, €07'(B)=1+(D—1D(g+1). (3.63)

But we will see in Sect. 3.5 that coverings with L,,(B%%) = 1 have a single cycle
when applying the bijection of Theorem 3.3.2 on color 0 (as on the left of Fig.3.31
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but with possibly trivial melonic insertions on the edges). From the inverse bijection,
it corresponds to a graph such as in Fig. 2.19 or with the two same colors going along
the “ribbon”. These graphs have Gurau degree D or D — 2. Therefore,

Scu(B) > D = (G, €07 (B)) =1+ (D—1)(q+2). (3.64)

This is an important question, which we leave for future work.

From Eq. (3.58), we see that one can also deduce the sub-leading orders in 0~ 1(B),
as done in Corollary 3.4.1. Indeed, it goes back to using Corollary 3.4.1 for Iy, and
be sure that the marked corners satisfy the canonical condition to obtain back I'y.
We apply this to the study of some non-maximal maps in M%. More precisely,

M, = Upegy, @' (B), (3.65)

and we can characterize the first subleading orders of some 9~!(B). We do it for a
quartic melonic bubble B; € BY}', i being the distinguished color. There are two pair-
ings if B;, one leading to L,,(B/q) = 0 (as the graph is melonic), and one leading
to L,,(B/q) = D — 2, so that with this pairing the minimal degree of contribu-
tionis 1 + (D — 1)(2+ D —2) = D* — D + 1, which is bigger than D for D > 1.
Therefore,

Corollary 3.4.3 The degree 6 of a map with quartic melonic boundary graph T'; €
0~1(B)), satisfies
o) >2D —1 (3.66)

and the first non-empty orders can easily be characterized:

e 0 = 2D — 1: maximal maps are trees with two corners marked on the same color-i
subtree T

e 0 = 3D — 3: maps with a single monochromatic cycle and two corners marked
on the same face in T,

e There are 3 cases:

— IfD > 4,0 = 3D — 1: maps with a single polychromatic cycle, with two corners
marked on the same color-i subtree T'®

— If D =4, 6 = 11: maps with a single polychromatic cycle, planar maps with
two color-i cycles, or maps with a color-i and a color-j # i cycle, all with two
corners marked on the same face in T,

— If D = 3, § = 9: planar maps with two color-i cycles, or maps with a color-i
and a color-j # i cycle, all with two corners marked on the same face in TV,

Proof The proof uses Corollary 3.4.1 to the map 'y obtained by unmarking the
corners, which corresponds to adding color-0 edges canonically. Here, one only has
to be sure to recover the right boundary graph, i.e. that the two marked corners are
on the same face on the color-i submap I"®. O
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In the case of a non-connected boundary, gathering maps of minimal degree from
0~'(B;) as done in the proof of Theorem3.4.2, where the B; are the connected
components of the boundary graph, we can easily build a map I';, with boundary
{B;} such that

0(Ty) = K(B) + (D — (g + Lu(B)2)), (3.67)

where K (B) is the number of connected components. We expect this map to be of
minimal degree in 0~ '({B;}) but we do not prove it here.

3.4.3 Locally-Orientable Quartic Melonic Gluings

We can adapt these theorems in the case where we drop the bipartiteness condition
and consider non-necessarily orientable gluings of quartic melonic bubbles Gp @)
(Definition 2.4.3), and also spaces with boundaries @% (B}). Most of the previous
results still hold in this case. Theorem 3.4.1 stated that once a choice of orientation
(e.g. from white to black on color-0 edges) was done for the cycles alternating edges
of color 0 and (D — 1)-pairs, then we had a bijection between G (B}') and M"D. In
the non-orientable case, one cannot make such a global choice. An orientation has
to be chosen arbitrarily for each such cycle. The resulting (LO) map will have twist
factors on the edges (Fig. 2.10), which depend on this choice. Two different choices
of orientation lead to maps which can be obtained one from another by a sequence of
local changes of orientation (Definition 2.3.2). We consider the equivalence relation
between two LOmaps

r ~e F/ P |: I" and I''can be obtained one from another ] (368)

by a finite sequence of local change of orientations

We denote M% the set of locally orientable combinatorial maps with edges colored
in [1, D] and ¢ marked corners on ¢ different vertices, and consider the subset
M (P) C MY, which elements satisfy the property (P).

M e M% (P) <& Thevertices of M can be coloredinblack and white sothat :
(—) edges carrying a (+) factor only link white vertices, (3.69)
(—) edges carrying a (—) factor only link a black and a
white vertex.

We consider the quotient set 1\711‘{) (P)/~5-

Theorem 3.4.4 There is a bijection between colored graphs in @'Z) (BY) and equiv-
alence classes in MqD (P)/~ -

Proof The proof is similar to the previous proofs with the difference that here, one
cannot make a global choice of orientation of all the cycles which alternate color-0
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Fig. 3.24 Assigning twist factors in the bijection

edges and (D — 1)-pairs. We detail the constructions. Each (D — 1)-pair defines an
half-edge, and each oriented cycle defines a vertex, with at most one marked corner
if the cycle contains a marked color-0 edge. As before, each quartic melonic bubble
defines an edge between the two corresponding pairs, colored with the colors not in
the (D — 1)-pairs. Here however, the edge carries a twist factor (+) or (—) (Fig. 2.10).
The cycles are embedded in the plane according to the orientation they were given,
and a factor is assigned as in Fig. 3.24. The locally orientable map defined this way
satisfies P. We see that choosing the opposite ordering of the cycle in the colored
graph, we reverse the ordering of the half-edges around the corresponding vertex,
and we invert all the twist factors. This is precisely the definition of a local change
of orientation. Conversely, starting from an element of M € M‘{) (P)/~» we replace
each vertex by a cycle alternating color-0 edges and (D — 1)-pairs of edges colored
with the colors not on the corresponding edge of M, and embed in the plane while
respecting the color: counterclockwise (resp. clockwise) for cycles corresponding
to white (resp. black) vertices. For each color-i edge of M, we add the two missing
color-i edges between the corresponding (D — 1)-pairs in accordance with the rule
of Fig.3.24. We then consider the underlying graph. (]

Proposition 3.4.2 trivially generalizes to the locally orientable case.

Proposition 3.4.2 The degree of a locally orientable map I € M(L’) is

D D
0(T) = DL,y (M) + (D —2) Y LID)+2) gD, (3.70)
i=1 i=1

where L = E — V + 1 is the number of independent cycles of a connected graph,
g€ %N is the genus of a map, givenby2 —2g =V — E + F, and T'? is the color-i
submap.

We define a twisted cycle as a proper cycle containing an odd number of edges
carrying (—) twist factors. Twists only modify the contribution of monochromatic
cycles.

Corollary 3.4.4 The degree § of a locally orientable map T € MOD verifies

5(I) > 0, (3.71)
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Fig. 3.25 A map with a twisted cycle and a map with two monochromatic cycles and genus 1/2

and the first non-empty orders can easily be characterized:

e ) = 0: maximal maps are trees
e 0 = D — 2: maps with a single monochromatic non-twisted cycle (left of Fig. 3.22)
ed=D—1:

— If D > 3, maps with a single monochromatic twisted cycle (left of Fig.3.25)
— If D = 3,maps with a single monochromatic twisted cycle or two monochromatic
cycles (planar)

e d=D:

— If D > 4, 0 = D: maps with a single polychromatic cycle (right of Fig. 3.22)

— If D = 4, 6 = 4: maps with a single polychromatic cycle or two monochromatic
cycles (planar)

— If D = 3, § = 3: maps with two monochromatic cycles, and genus 1/2 (right of
Fig.3.25)

The following orders can also be characterized using equation (3.70). Roughly,
monochromatic non-twisted cycles contribute with D — 2, polychromatic cycles with
D and raising the genus of monochromatic submaps by 1/2 (resp. 1) contributes with
1 (resp. 2), but implies a certain number of monochromatic cycles.

For the first orders, the proof is the same as for Corollary 3.4.1, with the difference
that the genus can be a half-integer.

Although we do not prove it here, Theorem 3.4.2, which states that any non nec-
essarily connected colored triangulation is the boundary of some graph in G4 (B? )
extends here in the case of non-necessarily orientable triangulations. A map with
non-orientable boundary graph B is constructed from B, q, but one has to be careful
when defining the twist factors. Relation (3.32), Lemmas 3.4.1 and 3.4.2 still hold,
as well as the lower bounds (3.57) and (3.60) on the degree of maps with boundary.
These bounds are expected to be saturated but it requires to exhibit a map with the
right degree, as was done in the proof of Theorem 3.4.2, and we do not study further
details here.
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3.5 Unicellular Graphs and the Colored SYK Model

3.5.1 Complex SYK: Bipartite Contributions

3.5.1.1 Partition Function

We recall from (2.143) and (2.144), that the order [ free-energy of the colored
SYK model is computed for coverings B which have degree 6o(B®) = I, where
Be Gq 1. Here, the pairing @ = Q@ is that defined by the color-0 edges. In this
subsection, we focus on bipartite coverings. The amplitude of a covering in the
colored SYK model is proportional to

A(B®) ~ N!70E), (3.72)
where ) is a degree defined by the choice

=D —1)(@—1) (3.73)

which does not define a bubble-dependent degree in the sense of Definition 2.4.6.
This choice corresponds to a scaling (2.126)

s =0, (3.74)
for every bubble, and to the coefficient

_D(D-1) B
T4 V(B

(3.75)

As we focus on the case where there is a single bubble, the corresponding degree is

V(B)

6(B*) =D+ (D — 1)(— — 1) — ®y(BY), (3.76)
which, using Lemma 3.4.1, leads to
50(B?) = Liu(Byg). (3.77)

In the case where B is bipartite, going from B, to W (B, 2), we replace each
monochromatic cycle with a star-map. This corresponds to applying the bijection
VO of Theorem 3.3.2 on (B, QO (B?)) (where again Q = QO (B®) is the pairing
induced by the color-0 edges). The number of polychromatic cycles of B)q is just
the number of independent cycles of W (B, €2):

Ln(B/o) = L(V(B, Q). (3.78)
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The order of contribution of a bipartite unicellular graph B is therefore the excess
of the stacked map W (B, €2). Identifying order k vacuum contributions goes back to
identifying maps of a given excess, as detailed in the subsection Identifying diagrams
contributing to a given order.

However, importantly, not all stacked maps in Sp_; represent colored-graphs
which are unicellular, meaning that the graph obtained when applying the inverse
bijection (¥ @)~ of (3.29) is connected when deleting all color-0 edges. Indeed, for
any connected stacked map I € Sp_, there exists a connected graph G € Gp such
that .

r=v?@G) =v(c° 20G) (3.79)

and T is the image of a unicellular graph iff G°, obtained from G by deleting all color-
0 edges, is connected. Only in that case, we can interpret G as some covering G =
B2”©) or equivalently as some contribution to the complex colored SYK model.
From (3.79),T" € Sp_, corresponds to aunicellular G = (¥ @)~1(T") iff it represents
a connected G through W, i.e. iff it satisfies the conditions of Proposition3.3.2.

In the unicellular case however, the exploration can also be simplified, as tree
contributions correspond to melonic contributions of the pre-image. In fact, we can
state a stronger version of Proposition 3.3.1:

Proposition 3.5.1 (Melonic contributions in the unicellular case) If I' = W@ (G)
with G° € Gp_, connected (D — 1 > 2), then tree-contributions to " precisely cor-
respond to melonic contributions to G.

Proof From Proposition 2.3.11, the color-0 edges all belong to completely separating
cycles in the melonic subgraphs of G. Because of the connectedness of G, they
therefore link the vertices of the canonical pairs (Definition 2.3.13). Therefore, when
applying W?, each such subgraph corresponds to a tree-contributions. The converse
was already known from Proposition3.3.1. (]

2-Point functions

A covering B¢ corresponds to a vacuum contribution of the colored SYK model.
Contributions G| to the 2-point function (2.145) have two degree- D vertices, which
miss a color-i edge. Adding a marked color-i edge between the two vertices, we
obtain a covering B, of a bubble B; with one marked color-i edge. Applying the
bijection of Theorem 3.3.2, we obtain a stacked-map with one marked corner on a
color-i vertex (Fig. 3.26). The star-map of color i containing the root corner does not
contribute to the 0-score of BIQ, and therefore the amplitude of a 2-point contribution
in the colored SYK model is proportional to

A(Gl) ~ N1—50(G1) — N_Lm(Bl;/Q) — N_L(\IJ(leQ)) (3.80)

This explains the factor 1/N in (2.146). The order of contribution of a bipartite
unicellular graph G; with one missing color-i edge to the corresponding 2-point
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missing
color-4

edge ~_ "

Fig. 3.26 Applying the bijection W to a 2-point contribution

function (2.145) is therefore the excess of the stacked map W (B, 2), where the
covering BlQ is obtained from G by adding a marked color-i edge between the two
degree- D vertices. Identifying order k contributions to the 2-point function goes back
to identifying maps with a given excess with one marked color-i corner, as detailed
in the subsection Identifying diagrams contributing to a given order.

Again, one has to worry about the connectedness of B, which is done throughout
a face-exploration in W (B, 2). In that case however, the exploration does not take
into account the face which encounters the marked corner.

2n-Point functions

We wish to use the same characterization in the case of the 2n-point functions (2.148),
that is, add the missing colored edges in the contributing graphs G, to go back to the
vacuum case, and use the bijection W on the pairing induced by the color-0 edges.
However, in the case where the missing edges do not all have different colors, there
are different ways of adding them back to recover a vacuum graph. To avoid the
ambiguity, we add the colored edges canonically (Fig. 3.8) on the pairing €2 induced
by the color-0 edges. We recall this procedure here. In G, starting from a vertex
which does not have a color-i edge incident to it, we follow the path alternating color-
i edges and color-0 edges. It necessarily ends on another vertex which does not have
a color-i edge incident to it (as there are no missing edges of color 0). We then add a
marked color-i edge between the two endpoint of the path. This leads to a covering
B2 The bicolored cycles of B containing a marked vertex do not contribute to the
0-score of G, and because marked edges have been added canonically, there is at
most one marked edge per bicolored cycle, so that

®o(G,) = Po(BS) —n. (3.81)

Applying the bijection of Theorem3.3.2, a graph G, contributing to < ;¢ - - -
i, ¢, > (where the i; are not necessarily different) is mapped to a stacked map with
n corners marked on n different colored vertices (one on a color i; vertex, one on a
color i, vertex, and so on). The amplitude of such a graph is proportional to

A(G,) ~ N17006G) — nNl=n=Lu(Buyo) — pl-n—L(¥(ByQ) (3.82)
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Fig. 3.27 Pruning a map and the corresponding scheme

Identifying order k contributions to the 2n-point function < ;, ¥;, - - - ¥, 1;, > goes
back to identifying maps with a given excess with n corners marked on n different
colored vertices (one on a color i; vertex, one on a color i, vertex, and so on), as
detailed in the following subsection. Again, one has to worry about the connectedness
of B, which is done throughout a face-exploration in W (B,,, 2). In that case however,
the exploration does not take into account the faces which encounter a marked corner.

3.5.1.2 Identifying Diagrams Contributing to a Given Order

Pruning. Considering W (B, 2), we recursively contract all the edges incident to
unmarked leaves (delete the edge and the isolated vertex), until there are no more
unmarked leaves, as shown in Fig. 3.27. We call this operation pruning. From Propo-
sition 3.5.1, it goes back to contracting the melonic contributions in B, and therefore
it does not change the connectedness of B (if B was not connected, it still is not,
and vice versa). Examples of colored graphs corresponding to pruned stacked maps
are shown in Fig.3.31. In the pruned stacked map, vertices are either colored ver-
tices incident to edges which all have the same color, or white squares incident to
edges which all have different colors (non necessarily D of them). Infinitely many
contributions will give the same pruned map. To generate all the stacked maps lead-
ing to the same pruned map, firstly, colored leaves have to be inserted incident to
white squares, so that the latter have one incident colored edge for each color in
[1, D]. Then, possibly trivial tree contributions have to be added on every colored
corner. Considering the marked corner as two corners divided by a cilium (the mark),
possibly trivial tree contributions should also be added on each side of the cilium.
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3.5.1.3 Chain Edges

We now consider maximal sequences of degree-two vertices, which start and end on
edges which have one endpoint of higher valency or marked, and alternate colored
vertices and white squares. We replace them with a chain-edge between the two
vertices of higher valency or marked (which are not necessarily of the same kind,
colored or white). Chain edges are represented as double lines. We are left with a graph
which has no valency-two unmarked vertices, and which we call a scheme (see the
decompositions in [9, 10] in the colored graph picture). For vacuum graphs, n = 0,
there can be ambiguities, for instance when the sequence of degree-two vertices is a
tree, or a cycle. In these two cases we get D + 1 possible schemes: an isolated vertex
or a cycles with one vertex, which is either colored or white. In the vacuum case,
different schemes therefore lead to the same stacked maps. This is not a problem in
this section as we are only interested in identifying these stacked maps. In Sect. 3.5.3,
in which we focus on counting stacked maps, we therefore only study rooted cases.
To go back from schemes to pruned maps, each chain-edge is to be replaced with a
sequence of arbitrary length alternating edges and degree two vertices, so that every
edge links a colored vertex to a white vertex.

However, it is important to make sure that the connectedness of B stays unchanged
when replacing the chain-edge with some realization. This is not a problem as long
as there is at least one white vertex in the realization. The only cases which might
cause problems are the minimal realizations in the case of a chain edge between a
color-i vertex and a white vertex, and in the case of a chain-edge between two white
vertices. For these cases, one has to apply the face-exploration of Proposition3.3.2.

We stress that the polychromatic nature of all the independent cycles is preserved,
even when replacing chain-edges with edges of a single color. If there are two or
more vertices of different colors in the cycle it is obvious, if there is one white square
or more on the cycle, then necessarily there are two different colors incident to it,
and if there are only color-i vertices, then there are necessarily white square between
them in every realization.

To identify the contributions to the kth order of the 2n-point function < );,;, - - -
;i > of the colored complex SYK model for n > 0, we identify all the schemes
M which edges are seen as chain-edges, and which have

k independent cycles;

e n corners marked on n different colored vertices: one on a color i; vertex, one on
a color i, vertex, and so on;

colored embedded vertices which have a marked corner or are of valency 3 or
more;

e white non-embedded vertices of valency 3 or more.

To recover all the colored graphs, one has to replace the chain-edges with all possible
realizations, i.e. sequences of degree-two vertices alternatively colored and white,
such that color-i edges always link a color-i vertex and a white square (the colored
vertices of the scheme impose boundary conditions on the colors in the sequence). The
particular cases of minimal realizations of chain edges between a color-i vertex and a
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Fig. 3.29 Vacuum, 2-point, 4-point, and 6-point leading order schemes
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Fig. 3.30 Vacuum, 2-point and 4-point next-to-leading order schemes

white vertex or between two white vertices have to be treated using Proposition 3.3.2.
This procedure is shown in Fig. 3.28 for a leading order contributions to the 4-point
function.

The schemes contributing to the first orders of the partition function, 2-point func-
tion and 4-point function of the complex colored SYK model for n < 0 are shown
in Figs.3.29 and 3.30, as well as the leading order of the 6-point function Fig.3.29.
Again, one should be careful to the particular cases when replacing chain-edges by
their mininmal realizations. It is in principle not complicated to find all the contribu-
tions to higher orders or/and to 2n-point functions with n > 3, however the number
of schemes grows extremely fast, and it is in practice very tedious. In these figures,
the labels i, j, k, [ represent colors in [1, D], which are not necessarily distinct.
Examples of coverings contributing to the next-to-leading order and next-to-next-
to-leading order of the partition function are shown in Fig.3.31 in the colored graph
picture. These examples have no melonic contributions and therefore correspond to
pruned stacked maps. We do not provide the equivalents of all the schemes in the
colored-graph pictures, and report the reader to [11], in which they are listed.
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Fig. 3.31 Vacuum NLO and NNLO coverings

3.5.2 Real SYK: Non-bipartite Contributions

We do not adapt the bijection W to the non-orientable case, however we explain here
how to generalize the previous procedure to non-orientable unicellular coverings, for
which we do not need to count bicolored cycles, since here, the degree depends only
on the number of polychromatic cycles of B, . For a non-bipartite bubble BeGp_y
and a pairing €2 of its vertices, we contract the pairs and are left with an Eulerian
graph for which monochromatic submaps are collections of cycles. Importantly, we
have lost the information on how which edge was attached to which vertex of the pair,
as it was carried by the orientation in the bipartite case. Several (B, 2) give the same
B/Q. In order to obtain all the (B’, 2) leading to the same B /@, we need to expand
each vertex of B’/Q into a pair of vertices and try all possible ways of attaching the
two incident color-i edges to one or the other vertex, for each color i. Some of the
graphs obtained will be bipartite, some others will be non-bipartite.

We then replace each oriented cycle with a star-graph, i.e. add a new color-i vertex
and color-i edges from that vertex to every vertex of the corresponding cycle. If one
of the edges is marked, we distinguish the color-i vertex. The procedure is a non-
embedded version of Figs.3.10 and 3.11, leading to a graph ®(B, Q). In particular,
the information on which edge of the cycle was marked is lost, and to obtain all
possible B /o leading to the same, (B, Q) we need to consider all possibilities of
marking one edge on a cycle corresponding to a distinguished color-i vertex. As
before in the bipartite case, the amplitude of a 2n-point covering is

A(G,) ~ N'=0Gn) — N1=n=LnBuja) — N1-n—L((5,.2) (3.83)

where éﬁz is obtained from G, by adding the missing edges canonically with respect
to the pairing induced by color O (this only depends on the pairing and can also be
done for non-bipartite bubbles). We stress again that the graph we obtain only keeps
the information on Cbo(éff) and L,, (Bn; /2), which is the information needed in the
present case. The graphs & (B, Q) contributing to a given order are the underlying
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Fig. 3.32 4-Point NLO and vacuum NNLO contributions to the real colored SYK model

graphs of the stacked maps contributing to the same order in the complex (bipartite)
case. The pruning procedure and replacements of chains by chain-edges is done as
in the bipartite case. The scheme-graphs contributing to the first orders of the 2, 4,
6-point functions are the underlying graphs of the schemes in Figs.3.29 and 3.30.
For instance, a non-bipartite colored graph leading to the top-left 4-point scheme
of Fig.3.30 is shown on the left of Fig.3.32. An example of next-to-next-to-leading
order vacuum contribution is shown on the right of Fig.3.32. All the leading order
and next-to-leading order colored graph contributing to the partition function, 2-point
and 4-point functions of the real SYK model are listed in [11].

3.5.3 Counting Unicellular Graphs of a Given Order

In dimension two, unicellular maps are maps with a single face. They are obtained
by taking a single polygon, and gluing the edges of its boundary in order to obtain
a closed surface. Their enumeration and the link with known counting formulas
such as the Harer-Zagier formula is the subject of many papers, among which
[12—14]. In higher dimension, we define unicellular spaces as self-gluings of a single
bubble. In the dual picture, they correspond to graphs in G such that, when deleting
all the color-0 edges, we are left with a single connected component. Unicellular
graphs are therefore what we have called coverings (Definition 2.4.8). They are
also the objects we have studied in the context of the SYK model, in the previous
subsections. In Sect. 4.1.2, and more generally in the following chapters, we will be
interested in certain properties of unicellular graphs B® for B € G p_; a given chosen
bubble. Determining precisely the O-score of all the coverings of a bubble without
trying them all (i.e. by only knowing its Gurau degree and its number of facets, for
instance) is a difficult question which remains unsolved. In this subsection, we tackle
another simpler problem, which is a first step in solving this question: we adapt the
decomposition of the previous section to the characterization of unicellular graphs
which have a given 0-score, without restricting the possible bubbles. We stress that
the choice

i=(D— 1)(@ -1, (3.84)
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is an obvious choice to classify and compare coverings of bubbles (unicellular graphs)
with respect to the number on (D — 2)-cells lying on the boundary of the bubbles,
not worrying about the number of internal (D — 2)-simplices, or equivalently about
the Gurau-degrees gy, of the bubbles. Indeed, the degree ¢ (3.76) thus defined only
depends on the number of facets and (D — 2)-cells which do not lie in the interior
of the bubbles, i.e. on the number of vertices of bubble-graphs and on the 0-score of
the coverings. The degree d defines orders (Definition 2.4.5) restricted to unicellular
graphs. Among bubble-graphs with the same number of vertices V (B), coverings
contributing to the same order share the same number of boundary (D — 2)-cells.
Among coverings with the same degree dy, the number of boundary (D — 2)-cellsis a
linear function of the number of vertices of the bubble-graphs, with slope (D — 1) /2.
In the orientable case, the coverings are bipartite and we can use the bijection ¥ and
the decomposition in pruned maps and schemes as described in Sect.3.5.1. Once the
schemes contributing to a given order have been characterized, we can try to compute
the range of possible Gurau degrees of the bubbles inside the coverings, and see if
for a given degree we can determine the set of allowed O-scores, depending on the
number of vertices. We leave this for future work, and focus on counting the maps
contributing to a given order of d. The generating function of D-colored stacked
trees rooted on a color-i corner and counted according to their number of white
squares is

Gr@) =1+Y 26", (3.85)

k>1

which is the generating function of melonic graphs in Gp_; (2.23)

1 Dk +1
_ D _k D _
Gr(z) = ,éo C.z", where C; = D1 ( L ), (3.86)

the C? being Fuss-Catalan numbers. To recover all the maps leading to a given pruned
map, colored leaves have to be added in that pruned map so that white squares are
incident to one colored vertex for each color in [1, D], and then the generating
function Gr(z) has to be added in every colored corner. Again, planting or pruning
tree contribution does not change the connectedness of

GO, where G = (W©O)"\(TI" e Gp_)). (3.87)

We compute the generating function of chains, counted according to their number
of white squares (z,) and colored squares (z,). There are six types of chain-edges,
each replaced with a different generating function in the schemes, corresponding to
chains between:

e two color-i vertices, Gl ;
e a vertex of color i and a vertex of color j # i, Q’i’;;

e two white vertices with incident edges of color i, G'%;

00?
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e two white vertices with incident edges of color i and j # i, gi{,;

e a white vertex with incident edge of color i and a color-i vertex, G’ ;

oce’

e a white vertex with incident edge of color i and a color-j # i vertex, G

We may also need the generating functions of chains without their minimal realiza-
tion, in the particular cases where replacing chain edges between a color-i vertex and
a white vertex or between two white vertices by their minimal realizations changes

the connectedness of G° (3.87).

e two white vertices with incident edges of color i, without minimal realization,
Tik.
oo *

e a white vertex with incident edge of color i and a color-i vertex, without minimal
realization, G

The generating function of chains between a colored vertex and a white square,
starting with color i and never encountering color i again is

ij _ _ k-l ok (D=1Dy
G.O\xzo,z.)_;w DO =2/ = =55 (3.88)

where we denoted
Y = ZoZe- (3.89)

A chain between two color-i vertices starts with an half-edge of color 7, then
as an arbitrarily long chain without any color-i edge (.), then has a white square,
which either is the last white square of the chain, either is incident to a color-i vertex
followed by a smaller chain between two color-i vertices [.].

o= o )o—afo—e—o]

(3.90)
Therefore,
it (20, 20) = Gl (20 20) X 20 X (1 + 24G1 (20 24)). (3.91)
which leads to )
) 1 D—1
Gii (20, 24) = (D= Dy (3.92)

(1 +y)(1=D=1y)

A chain between a vertex of color i and a vertex of color j # i is either a single
white square between a color i and a color j half-edges, either is that same white
square followed by a color-j vertex and a chain between two color- j vertices, either
starts with a white square followed by a color-k vertex, followed by a chain between
a color-k vertex and a color-j vertex:

G (2o, 20) = Zo(1 4 2.GH (20, 24)) + (D — 2)yG¥ (2o, 2). (3.93)
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which leads to z

(14+y) (1= (D -1y)

Gl (20, 20) = (3.94)

Linear combinations of these two generating functions are often needed in the fol-
lowing:
1 a(D—-1)y>+by

G0 (2o, 20) + G (20, 20) = — . (395)
Ze (14 y)(1 = (D —=1)y)
‘We obtain the other generating functions from these ones:
G (20r 20) = 272G (201 2) (3.96)
Gl (20, 20) = 2o (1 + 2468 (20, 24)) (3.97)
G (20, 20) = 24G (20, Z4), (3.98)
Gl (20, 20) = 1 + 2G5 (20, 24), (3.99)
G (2or 20) = 2261 (201 2), (3.100)
G (2or 2o) = 2401 (20, 2). (3.101)

We apply this to the enumeration of rooted coverings (at least one marked corner)
which have the same degree

80(B®) = Ln(B/q) = L(¥(B, Q)). (3.102)

Let us first consider examples. The 2-point scheme in Fig.3.29 has one colored
marked vertex. Following the procedure, this is just the generating function of rooted
trees Gr. The two 4-point schemes in Fig. 3.29 give back Gii and G... Inside each
realization of the chain, we need to add D — 2 generating functions of trees G per
white vertex, and two per colored vertex. Moreover, the colored marked vertices are
not included in the realization of the chain-edge, which gives four more factors Gr.
If we suppose that we can distinguish the two roots, we get

¥ @ = 6r@* [Dgi". (291 @P 72, Gr@?%) + DD — )G (:0r )P 2, gr(z>2)]. (3.103)

From (3.95),
y 3 1 DD -1y
il _ 1) e
DG (20, 24) + D(D — DG (20, 24) = = D=Dy (3.104)
and G” simplifies to
_ D+2
GO ) = 2P~ Debr @) (3.105)

1 — (D — 1)zGr ()P’
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which is the generating function of two-rooted leading order contributions, i.e. the
leading order 4-point function, for the degree dy. The second and the third 6-point
contributions are computed similarly as products of two or three g;’, and G.,, where
all non-equivalent choices of 7, j, k and /. The first 6-point schemes gives products
of G and GIL.

The generating functions of the next-to-leading order contributions to the 2-point
function (one-root schemes) are similar to those computed in [9]. The difference
relies on the fact that here, we do not need to worry about whether two colors pass
along the cycle or more. The second scheme in Fig.3.30 is simply

(D — 1)y? ]
(1+y) (1 =D =Dy) Jy—g@p
(3.106)

DGr(2)*G (2Gr ()P 7%, Gr(2)?) = DgT(Z)|:

The first drawing refers to two schemes, depending on whether the valency 3 vertex
is white or of some color-i. If it is white, either the bridge chain-edge is replaced
with ggg in which case there are (D 5 1) ways of choosing the two other colors j, k
incident to the white vertex. The other chain-edge is then replaced with G We
carefully verify that the minimal realization of G still corresponds to a connected
bubble, which is the case here. If the bridge chain-edge is replaced with G, there
are D — 1 choices for j, and then again (D 5 1) ways of choosing the two other colors
incident to the white vertex. Up to some factors, we find a linear combination

G5 (20, 20)[ G (20, 20) + (D = DG, (20, 24)]
= 2265 (20, 2)[1 + 201 (20, 24) + (D — 124Gl (26, 24) ]
(3.107)
Using (3.95), we rewrite

ii o il _ 1
14 26640 (205 20) + (D — 124G, (20, 20) = T—D-1y (3.108)

One has to add an extra Gr(z)* for the marked vertex, and an extra zGr ()23 for
the white square. We obtain the contribution for this scheme
D(D — 1)(D—2)[ y? ]
2
2 (1 + y)(l - (D - 1))’) y=2Gr ()P

(3.109)

If the valency-3 vertex is colored, then either it is of color i, in which case the
contribution is (gi';)z, either it is of some other color k, in which case the contribution
is (D — 1)GIkKGXk Using (3.95), we obtain the contribution

1 (D — Dy? (D =1y
Z(1+y)(1=(D-=Dy)1—=(D -1y’

(3.110)
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We replace z, per Gr(z)%, v per zGr(z)?, and add 2 factors Gy (z) for the marked
vertex and three for the valency-3 vertex, obtaining the contribution

y3

(1+y)(1—(D - I)Y)2j|y'zgr(z)0'

D(D — 1)2QT(Z)3|: (3.111)

Summing the three contributions (3.106), (3.109) and (3.111), we obtain the gener-
ating function of rooted order one schemes (next-to-leading order 2-point function):

g5V =

DD — 1) [ 22G7(2) + D — 24 2yGr (2)(D — 1)(Gr ()% — 1)]
2 (1+y)(1— (@ -1y)? y=2Gr@P
(3.112)

This can in theory be applied to count the contributions to any order of the degree
do. However, the number of schemes becomes rapidly impossible to handle.

3.6 Intermediate Field Theory

The intermediate field theory is a way of rewriting the generating functions of bubble-
restricted gluings as matrix models. Hopefully, we can then apply matrix models
methods, for instance throughout their eigenvalue decomposition. Of course, this is
very common in two dimensions. The fact that ¥ (Theorem 3.3.3) is a bijection with
stacked combinatorial maps suggests that this is possible.

Let us first give an example in the case of the simpler bijection of Sect. 3.1. It maps
bijectively gluings of a single kind of k-cyclic bubble to four-valent combinatorial
maps which faces are bicolorable, i.e. which dual maps are the bipartite quadrangu-
lations. It is easily seen that the generating function of such maps can be written as
a rectangular matrix model

dBdBY
2
(3.113)

’

Z\, N) = /exp{—J\/‘HTr(B.BT — %N‘k’””””(B.BT).(B.BT))}

where B is a N¥ x NP~* complex matrix, and the scaling s = (k — 1)(p — 1) has
been computed from (3.15). The left and right indices of the matrices are distin-
guished and give rise to two kind of faces, which are colored with 1 and 2. The maps
are face-bipartite and faces of different colors do not contribute with the same power
of N. We refer the reader to the paper of Di Francesco [15] on rectangular matrix
models for further developments.

In the case of quartic melonic gluings, the generating function can be rewritten as
a multi-matrix model throughout the bijection of Theorem3.4.1 with combinatorial
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maps whose edges carry colors in [1, D]. We need D size-N matrices - one for each
color, and as the valency of vertices is not restricted, the potential is a infinite sum of
all the possible traces of products of copies of these D matrices. Each monomial with
k matrices has to be rescaled with a symmetry factor 1/ k so the potential should look
like In(1 — Zi | M;). In the quartic case, these intermediate field generating func-
tions can be derived throughout the Hubbard-Stratonovich transformation applied to
the random tensor models, as detailed in the following subsections.

But first let us insist on the fact that the intermediate field representation has
proven a very powerful tool in the quartic case. The first application is in deriving
analyticity results for the corresponding matrix or tensor models. This representation
is used to prove the analyticity of correlation functions in the Borel summability
domain of the perturbative expansion at the origin [16—19]. Using this method, R.
Gurau and T. Krajewski showed in [18] that the planar sector is the large N limit
of quartic one-matrix models beyond perturbation theory. Attempts have been made
by V. Rivasseau and myself to apply intermediate field technics in order to obtain
analyticity results for non-quartic matrix and tensor models with positive interactions
[20]. We could prove the non-uniform Borel-Leroy summability, however the domain
of convergence shrinks to zero in the large N limit. As mentioned in the introduction,
this thesis focuses on geometric and combinatorial properties of discrete spaces, so we
do not present these developments here. In the quartic melonic case, the intermediate
field representation has also been used in [21] to apply eigenvalue methods, or the
topological recursion in [22]. In [23, 24], it is used to study the effective theory of
fluctuation around the melonic vacuum, the phase transition that occurs at criticality,
and the breaking of the symmetry of the model. We detail in Sect. 4.4 the very first
steps leading to a generalization of these results.

3.6.1 The Hubbard-Stratonovich Transformation

The Hubbard-Stratonovich transformation [25, 26] re-expresses the scalar ®* theory
as a theory with interactions of any order. The first step towards the intermediate field
representation is to develop the vertices using a new real scalar field o. This new
field splits the ¢* vertex into two ¢*o vertices, which is the reason why it is called
intermediate (see Fig.3.33). We consider the generating function of cumulants of
the complex ¢* theory,

- 1 - A - _ _
200N = 5 /C dpo (6. D) expl=3 G0y + 6+ 7). (114

where Z(\) = Z[0, 0; A]. We denote d (o) = J%dae’é. The first step relies on
the identity

VAeR", X eR, e 2% = / du(o) exp{—ivAX o) (3.115)
R



3.6 Intermediate Field Theory 129

applied to X = ¢¢. It leads to

Z[J,J;\] = f dpc (¢, P pc (o) exp{—iNAdgo + T+ Jd).  (3.116)

C®R

This is now a Gaussian integral on ¢ and ¢. Performing the integration over the initial
fields,

./ bt N ripripd0de 1 (3.117)
c ™ VN

and the partition now writes

Z[J, ;N\ = ﬁédu(a)exp(—ln(l—i—iﬁa%}-ﬁ). (3.118)

As mentioned previously, this transformation can be understood on the Feynman
graphs, as shown in Fig.3.33. The vertex is first split in two throughout a ¢ field. In
the new graphs, the half-edges corresponding to the ¢ fields are now gathered into
oriented cycles, which are then contracted into vertices of the new o theory.

The transformation generalizes to quartic matrix models, e.g. for the complex
model

- dMdM A PR N
. _ _ i n i i i T
Z[J,T; N, N]_fiz(x, N exp[-NTr(MM" + SMMMM' + M +MJ )]
_ (3.119)
where dMdM = N ]_[ﬁljzl dRe(M;;)dIm(M;;). The first step is
e~ INTEMMI MM _ / dv(A) exp(i\/)\N Tr(M*AM)), (3.120)

where the variable A is an Hermitian N x N matrix, and dv(A) = dZ—AOe’%Tr A% ig

normalized. We are left with a Gaussian integral which can be performed

b 3 ¢ ¢
{ S S
o @
o @

Fig. 3.33 Splitting of the quartic vertex
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/ e—NTr[MM"‘(nfiA\/%)H-l-MHM-s-] dMdM
Z(\, N)

eNTrJ[(]l—iA\/%)@]l]_lﬁ.

1
- det[(1 — iA\/%) ® 1]

(3.121)

As det[(1 — iA\/%) ® 1] = det(1 — iA\/%)N, we obtain the intermediate field
representation

Z[J,J;\,N]= /dy(A)exp—NTr[ln(l —iA\/%) —-Ja —iA\/%)"JT}.

(3.122)

Changing A to N~'/2A, we get the expression

2
Z[J,T; A, N]:/%exp—NT{% +1n(1—iAﬁ)JrJ(l—iAﬁ)*lﬂ].
(3.123)

The perturbative expansion of the intermediate field theory is over combinatorial
maps with vertices of any valency. They are obtained from the maps of the Feynman
expansion of the original quartic model by applying Tutte’s bijection (Sect.3.2.1) to
the dual quadrangulations.

3.6.2 Matrix Models for Quartic Tensor Models

The development for quartic (non-necessarily melonic) tensor models is similar to
the previous section. For k-cyclic bubbles of size 4 (3.15), the scaling s is

s=k—1. (3.124)
If Zp_ and Z; are respectively the sets of the D — k and k colors which alternate

on the considered k-cyclic bubble, we denote the corresponding invariant quartic
polynomial

Tz, T).7,(T.7, ,T) = Trz, [TrIDk[T ®T|.Trz, [T ® T]]. (3.125)
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The generating function for cumulants is

ZuJ. ;A N1 = / N TN Ty Dy Ty DT 407) ATAT
cp Z(\N)

(3.126)

We choose to pair the vertices which share D — k > D/2 edges (this is an optimal
pairing), and as before, we write the quadratic term as

e*%ND“‘*Z(T-Ika T).q (T.zp  T) — / dv(Mz,) exp <i* /AN D+k=2 Tr(T.z,_, T)-MIk )) ,
(3.127)

where Mz, is an Hermitian N* x N* matrix. We rewrite
Tr((T.z, ,T).Mz) = Tr([T ®T).[Mz7, ® ILID_k]), (3.128)

and see that the covariance is NP~11®P — i/ ANP+H=2M7 ® 17, ,. Integrating
over T and T, we get

1
det[1®P —iVANK=PMz @17, ]

Te(NP~T @ 11.(1%P — iV ANK-P Mz, @ 17, )7).

(3.129)
which, tracing on the identity factors and rescaling Mz, to N=*/2Mz_leads to the
intermediate field representation

k —k e .
Z[J, T\, N] = [ dglsz ¢ T TrME VY “ren[1 i,y Mz, |
6,0

N T(/e1.0%P i [y Mz @1z, ) ")

(3.130)

The partition function for the full quartic random tensor model in dimension D is

Z(\N) = /efT““[ﬂ@D*"ZIkcul,Dﬂ\/ﬁMIkMZH] Mzcppl dV(MIk).

(3.131)
The Feynman perturbative expansion has been studied at leading order in Sect. 3.1
for the case of a single set Z, in Sect.3.4 for the case of quartic melonic bubbles,
and in Sect. 4.3.1 for the case of 2-cyclic bubbles in dimension 4.
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3.6.3 Matrix Models for Generic Tensor Models

The matrix model we are going to present has multi-trace interactions. It has a
Gaussian measure, while its potential is a sum of two distinct terms. The first one
stands for the interaction bubble W (B, 2pz), while the second one, which does not
depend on B and corresponds to the color-0 edges of the stacked maps, is an infinite
series in the conjugate matrices which performs all the possible gluings of interaction
bubbles.

3.6.3.1 Matrix Bubbles

Given a bubble B with V vertices and an arbitrary labeling of both its black and
white vertices, there exist D permutations3 T1, ..., Tp Of [1, V] such that B can be
written in the following form

N N % D
Trg(T.T)= ) > T1 Tl.lumigfj]bmjgn% o (3.132)
i]l '1_ Jl L1) a,b=1 k=1
zlv,“igfl ]IV;. ]g 1

Since the key ingredient to go from B to the edge-colored map W (B, £2) which
encodes B through its broken faces is a pairing 2 of B, we re-organize the sums over
tensor indices according to €2. The pairing can also be thought of as a permutation b
that identifies each white vertex a with a particular black vertex b(a). For each color
i, we define the induced permutation 7; so that this expression reorganizes as

D

N 1%
> TT 7. iy Tpor o 1_[6[, . (3.133)
ib a=1

N
Tep(T.T) = Y
il Jteil k=1

iVoip=1 jY...jp=1

The matrix bubble equivalent to the pairing 2 = {(a, b(a) | a white vertex} on the
bubble B is then obtained from (3.133) by replacing each pair (7@, T?®@)) with a
NP x NP complex matrix M :

N

N v D
Ve.o(M) = Z Z l_IM(l1 9): (7@ j5@) 1_[5i£$j[k<u>. (3.134)
T k=1

3The permutation of color i is made explicit in B by keeping only edges of color i.
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Fig. 3.34 Two bubbles of order six together with their optimal pairings

Graphically, each one of the n pairs is identified with a copy of the matrix M, its
first D sub-indices being the edges reaching the white vertex of the pair, while its
D second half of sub-indices are those reaching the black vertex. The contraction
scheme between the n copies of M is then obtained by contracting sub-indices of
color i according to the edges of the bubble.

The matrix bubble associated to the examples in Fig.3.34 are

Z(Tr23 M) (Trs M), iy iy (Triz M)sy:j, = Tr[(Trps M) @ (Trys M)].(Trs M)
i1, J1

i2, )2
(3.135)
for the left example, and for that on the right,
> (Trsg M)i, iy o (Trss M) iy ko (Tr3a M)y ik i - (3.136)
i, 1.k
i2, j2,k2

It is clear in these examples that a smaller matrix can be considered if a subset of
colors is always traced on M. However, we intend to give general results, and our
choice of matrix further allows to consider a theory with infinitely many interactions
of a well chosen family. Thanks to the following theorem, proven in [8], we can
rewrite the correlation functions of any random tensor model as that of a multi-trace
matrix model. However, the resulting interactions are very complicated in general.

3.6.3.2 Intermediate field representation

Theorem 3.6.1 (Intermediate field representation) Any tensor model has an inter-
mediate field representation involving a complex matrix of size N® x NP. More
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precisely, for any pairing Q2 of the 2n vertices of the bubble B, the associated parti-
tion function and generating function of the cumulants formally* rewrite :

Zp(\, N) Z/D e—%Ns TrB(Tj)du(T, T) = /e‘%NP"(Dfl)VB,Q(M)_T”n(]l@D"'M)dV(M, ).
C

(3.137)

where dv(M, M) = %e‘Tr(MM) and Vg q is the matrix bubble equivalent to B

with pairing Q, and the generating function of the cumulants is

2000 N0, 7= [ o () 09 0900 L o, i,
(3.138)

We stress however that if in Vp (M), a subset I of colors is always traced
for each M, as mentioned earlier, the latter can be replaced by a matrix of size
|I] in the previous theorem, provided that every 1P — M term is replaced with
192 - M @1/, where [ = [1, D]\ I. In general, the cost of reducing the sized
of the matrices is that instead of a N? x N? one-matrix model, we get a multi-
matrix model with N'ZI x N'ZI matrices. This second approach is the one developed
on [8]. Depending on the interaction bubble, it can be an improvement or not. The
previous theorem is stated for any choice of pairing. In practice, we always choose
an optimal pairing. In the case of bubbles with a single optimal pairing, the subscript
Q is forgotten.

The strategy to prove the theorem is simply to expand the exponentials of the non-
quadratic terms and prove the equalities order by order in A. The proof then relies
on the one-dimensional case which we present as a lemma. We denote dv(z,z) =

dzdiefzﬁl

™

Lemma 3.6.1 Foralla € Cand p €N, the following relation holds
(zP e %)y = / 2’ e “du(z,7) = a”. (3.139)
C

Proof

-_.-dzdz 00 =
/Zp i = | e 525
C m z=2z=0

_ Lo k v k az
- ; k' [(8Z) ZP]z:O[(az) ]Z=0
1
=> E(pz(s,,,k)(ak) =a’. (3.140)
k>0

O

“i.e. as a formal power series in the coupling constant \.
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This is easily extended to products of multivariate polynomials.

Lemma 3.6.2 Forany K €N, {a;} € CX, and given P[z;, ...,zx]and Qlzi, ...,
zx ] two complex polynomials, the following relation holds

(P12 QG - zK)e—Zf“'fwos/C PGz, 20) 01, . zk) € 2% [T dv(a, zi)

(3.141)

Proof The generalization of (3.139) to K complex variables zy, .., zx is the obvious
relation

Pem i []d =[]a" 3.142

[CK]_[z e ]_[ v(zi, Zi) = ]_[a (3.142)

so that by linearity, for two polynomials P(zi,...,zx) =Y, am ], 27" and

0(zy, ..., 25) = Zn By Hi Z,-q"’i,

(PG 200120 2000 = S [Tl )

m,n

= Z amﬂn(l—[ aipm"_‘_qmeiaz)O
= P(ay,..,ax)0(ay, ..,ax). (3.143)
|

Proof of Theorem 3.6.1. Given a bubble B, 2 a pairing of its vertices, and g € N,
we now prove that the following equality holds

[Trp(T. T)]" = /[VB,Q(M)]" exp<— Tr [T ® T]MT>du(M, MY, (3.144)

where [T ® T]1is seen as a N2 x N® matrix,

Tr[T® ’I_W]M* Z T;,. IDTll ]DM(ll ip)i(j1s-njn) (3.145)

We use expression (3.133) for the bubble B. Relation (3.142) applied to the products
over the vertices of matrix elements of 7 ® T gives

\4
1_[ ot Tb(a) ¥ b(a) /1_[ (§9...9): (2@ . j@y € T([T®T]M')dV(M, MT).

a=1
(3.146)
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Inserting this relation into (3.133) and using expression (3.134), one gets relation
(3.144) for p = 1. The relation for p > 0 then follows from applying Lemma 3.6.2.
Using (3.145), we can integrate 7 and T

_ S 1 _
duo(T, Tye TeTIM — __ —  — exp[—TrIin(1®? + M)]. (3.147
/ po(T. T) dei[190 & ] p[ ( )] (3.147)

Changing T — N2 T and T — N2 T in the tensor model, the interac-

tion becomes Trz(T, T) — NP~V Try(T, T), and the terms of the perturbative
expansion of the tensor and matrix models match:

1 /=AN*\” _ _ 1 ZANS 7
(5 Joe DY awr = LT ) [aaon)
(3.148)

efTrln(1®D+A71)dV(M’ M).

Equation (3.138) works similarly with sources. [

3.6.3.3 Feynman diagrams are stacked maps

We now perform the Feynman expansion of the matrix model (3.137). There are two
types of non-quadratic terms in the action which give rise to two types of vertices.

e The logarithm is expanded as an infinite sum of monomials,

(_1)k+1 Mk
k

Trin(1®” + M) =Tr )
k>0

(3.149)

To each monomial Tr M*, one associates a black vertex of degree k. Incident edges
are cyclically ordered (counter-clockwise) according to their order in the trace.
Since a matrix M represents a pair of vertices of B, and since the summation of
all the indices of two tensors is represented as a color-0 edge in the colored graph
picture, it is clear that Tr M* corresponds to a cycle of a colored graph which
alternates pairs of vertices and edges of color O (represented as corners around the
vertex). One thus recovers the color-0 vertices of stacked maps.

e The potential Vg  corresponds to the stacked map W (B, €2), with one color-0
half-edge on each white square, corresponding to M. As color-0 does not appear
in W(B, 2), we can interpret it as a stacked map with D + 1 colors, but with
a boundary. The boundary graph of the stacked map gives the contraction rules
between the indices of the copies of M.

e The quadratic term of the action propagates a M to a M, connecting black vertices
to bubbles.
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Chapter 4 ®)
Properties of Stacked Maps e

In this chapter, we aim at providing general results which would make it possible
to easily characterize and count maximal maps for a given set of bubbles. We saw
in Sect. 3.1 that we could recover the universality classes of trees and that of planar
maps, respectively called branched polymers and 2D pure gravity in physics, and we
wish to understand which properties of the bubbles will ineluctably lead to known
combinatorial families when restricting to maximal maps. Another of our goals is to
obtain general properties for the coefficient ag and the scaling sp leading to well-
defined and non-trivial bubble-dependent degrees, and to consistent 1 /N expansions:
Do they exist? Are they uniquely defined?

We recall that maximal gluings are those which maximize the number of (D — 2)-
cells at fixed number of D-cells, or equivalently, stacked maps which maximize the
0-score at fixed number of bubbles. If the dependence in the number of bubbles of
the 0-score of maximal maps is linear (2.108), we can deduce the coefficients a and
the appropriate bubble-dependent degree (2.63), the coefficient a (2.58), which gives
the correction to Gurau’s degree, and the scaling s of the corresponding enhanced
tensor model (2.119). We refer the reader to the guideline in Sect.2.5.3, in which
references to most of the notions defined in the first chapter are listed. We also recall
the reader that the list of symbols gives references to the definitions.

Again, we are interested in the topology of maximal gluings, and wish to under-
stand how the results of Sect. 2.3.2 apply in the context of stacked maps. In Sect. 4.1.3,
we adapt the notion of edge-deletion to stacked maps (whose white vertices all have
degree D + 1), and study how the 0-score and the topology vary when performing
that operation.

In Sect. 4.2, we discuss whether trees belong to maximal maps, as in that case there
is a simple formula for the coefficients a, a, and s, leading to a well-defined and non-
trivial 1/N expansion. Theorem 4.2.2 gives a sufficient and necessary condition of
existence of an appropriate bubble-dependent degree, and states that when it exists,
is is uniquely defined, as well as the coefficients a, a, and s. We also prove results
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which give general rules to determine which aspects of bubbles will modify the
critical behavior of maximal maps or not.

We generally use the stacked-map picture and the bijection ¥, of Theorem 3.3.3,
however we stress here that all results are also true using, when it is possible, the sim-
plified bijection of Theorem 3.3.4, in which bubbles are white vertices, and bicolored
submaps are monochromatic submaps. In the rest of this thesis, when referring to
stacked maps or simpler versions, black vertices/edges are the color-0 vertices/edges,
which play a special role when considering bubble-restricted gluings, as the structure
of the bubbles W (B, Q2p) for B € B is rigid. By face of a stacked map, we refer to
a face around a color-0i submap. In general, we study gluings of a single kind of
bubble, in order to determine the corresponding coefficients a, s.... We may then try
to characterize maximal maps obtained when considering sets of bubbles.

4.1 Trees and the Bound on (D — 2)-Cells

4.1.1 Projected Maps and Trees

Definition 4.1.1 (Projected map) The projected map I'* of a stacked map I' €
S(B, 2p) is obtained by replacing each bubble W (B, Q2z) with a non-embedded
vertex. It is bipartite and we color the resulting non-embedded vertices in white.

The same projected map may be associated to several stacked maps. This is not a
problem, as we are mostly interested in the excess of the projected map. The projected
map on the left of Fig.4.1 is that of the map in Fig. 3.19.

Definition 4.1.2 (Stacked trees) A stacked tree I' is such that its projected map I'*
is a tree.

When there is no ambiguity, we will just call them trees. In general, by number
of independent cycles of a stacked map, we refer to the excess of its projected map.

Fig. 4.1 Projected map and projected tree
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Remark that in the case of the simpler bijection of Theorem 3.3.4, the excess of the
map coincides with the excess of the projected map.

4.1.2 Generalized Unicellular Maps

Stacked maps with a single bubble generalize unicellular maps, as explained in
Sect.3.5.3. Here however, we are interested in the case where we have chosen a given
bubble B. The set of generalized unicellular colored graph is the set of coverings
of B {B%}q. It corresponds to the two-dimensional case of unicellular maps with
prescribed number of edges.

If a bubble B has V/2 pairs, then, building the bijection of Sect.3.3.2 with a
given choice of pairing Q, there are (V/2)! different unicellular maps with a single
bubble, each corresponding to a covering B® where ' differs from Q5. Choosing
another pairing to build the bijection, we would obtain (V/2)! different unicellular
maps. However, we would recover the same (V/2)! projected maps, counted with
multiplicity. The map Wo(B%#, Qp) is the only unicellular tree. The number of
independent cycles of any other unicellular map Wy (B, Qp) is the minimal number
of pairs of color-0 edges that have to be switched to recover B®# from B% in the
colored graph picture (see the definition of a p-pair switching Definition2.3.7).

Importantly, the choice of pairing 25 breaks the symmetry on equivalent pairings
of B. Indeed, if there are p equivalent pairings of B (i.e. such that the corresponding
graphs B/ q are isomorphic), then they give rise to p different unicellular maps. This
can be seen on the example of the K3 3 bubble Fig.4.2, where all three unicellular
maps on the bottom are maximal (they corresponding to choosing three edges of
different colors in the bubble). There are three maps which are not isomorphic, but
correspond to equivalent pairings.

If one chooses an optimal pairing (Definition 2.4.9) to build the bijection of
Sect. 3.3.2, then the only unicellular tree is maximal among unicellular maps. If

Fig. 4.2 On the top left is the K3 3 bubble and a pairing. On the bottom left is the corresponding
map, without colored vertices. On the right are the six unicellular maps
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there are other optimal pairings, there are other unicellular maps which are maximal.
If one chooses a non-optimal pairing to build the bijection, then the only unicellular
tree is not maximal. We will see in the Sect.4.1.4 that with such a choice, no tree is
maximal. In particular,

Lemma 4.1.1 Ifstacked trees belong to maximal maps in S(B, Qp), then the pairing
Qp is optimal for the bubble B.

Consider a bubble with more than one optimal pairing, and choose any optimal
pairing to build the bijection. Then there is at least one unicellular map which is not
a tree but is maximal. Consequently,

Lemma 4.1.2 If stacked trees are the only maximal maps in S(B, ), then B has
only one optimal pairing.

4.1.3 Edge-Unhooking

The following operation replaces the usual edge-deletion, which is central in obtain-
ing Tutte’s equations for families of combinatorial maps.

Definition 4.1.3 (Edge unhooking) Given an edge e in a stacked map I" incident to a
black vertex, one may unhook it from its black endpoint, and attach the pending end
to some newly added black vertex, thus obtaining another stacked map I', (Fig.4.3).

In practice, we do not unhook edges incident to marked corners. We stress that
the unhooking may raise the number of connected components. Edge-unhooking is
defined the same way for the simpler bijections of Theorem 3.3.4. We call bridge or
cut-edge an edge e such that I', has more connected components than I'.

Definition 4.1.4 (cut-bubble) A cut-bubble W (B, 2) is such that every incident edge
is a bridge.

The two corners incident to the edge e correspond to two color-0 edges of the cor-
responding edge-colored graph G € G(B). In the colored graph picture, unhooking
e goes back to switching these two color-0 edges (Definition 2.3.7).

D

Fig. 4.3 Edge unhooking



4.1 Trees and the Bound on (D — 2)-Cells 143
4.1.3.1 Edge-Unhooking and Score
Before switching them, the two color-0 edges belong to a certain number

Ti(e) = D —1I(e) 4.1)

common bicolored cycles of G. The unhooking is therefore a pz, -pair switching. In
the stacked map picture, the definition of 7, is

T,(e) = Card{i € [1, D] | Two different faces run along ¢ in I'”}. 4.2)

If f and f’ are the two exchanged edges in the colored graph picture, or the two
corresponding corners in the stacked map, we will also need to denote Z, (f, f”) this
quantity.

Proposition 4.1.1 When unhooking an edge e of amap T, the 0-score of the resulting
map T, is
Do(I'e) = ©o(I') + D — 215(e). (4.3)

Proof In each bicolored submap, there are either 1 or 2 faces running along e. In the
first case, the unhooking splits this face into two faces, while in the second case, the
two faces merge into a single face. Therefore,

Po(I"e) = Po(I') +Z1(e) — Ia(e), 4.4)

and we conclude with (4.1). O

In particular, as we wish to determine maximal maps, we will be interested in
knowing whether the stacked map obtained after unhooking or hooking an edge as
a higher 0-score

Bo(Ty) = DoT) & Ta(e) < g 4.5)

In the case where I', and I have the same number of connected components (e is
not a bridge), the bubble-dependent degree of I, is

og(l'e) = op(I') — D + 215 (e). (4.6)

If e is a bridge, i.e. if the unhooking disconnects the component of e into two com-
ponents I, = 'l LIT'2,

®y(I'}) + (') = Po(I") + D, (4.7)

and as the number of connected components is increased by one, the degree (2.51)
satisfies
05(I'}) +d5(2) = (D). (4.8)
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h-Pairs were defined in Definition 2.3.5.

Proposition 4.1.2 If B contains an h-pair with h > D /2, then the corresponding
pair of vertices belongs to every optimal pairing of B.

Proof In the colored graph picture, consider some Q2-covering B in which the
vertices of this pair, which we denote 7, are incident to two different color-0 edges
e1 and e, and then switch these two color-0 edges. Doing so, we get a Q'-covering
in which a color-0 edge links the two vertices of 7. The variation of the 0-score is

®(BY) — ®(B%) = D — 21, (4.9)

where 7, is the number of colors i for which e¢; and e, belong to two different
bicolored cycles 0i in B, Because 7 is an h-pair,Z, < D — h < D/2, and

®(BY) > ®(BY), (4.10)

so that B® is not optimal. (]

4.1.3.2 Edge-Unhooking and Topology

If the pair corresponding to an edge e is an /-dipole (Definition 2.3.6), then Z,(e) =
D — h, and we know how the 0-score varies upon unhooking e. The converse is
not true, an h-pair with Z,(e) = D — h is not necessarily a h-dipole. We have the
following properties:

e If the edge-unhooking disconnects the graph into two connected components G
and G, representing two pseudo-manifolds M, and M, and if the color-0 edges
belong to spheres in every G| and G} for i # 0, then G represents the (topo-
logically unique) connected sum M ;#M, (Proposition 2.3.8). The condition is
always satisfied for PL-manifolds. If G, represents a sphere, then G represents
M.

e If the pair of 2 corresponding to the edge e is a proper h-dipole with & > 1, then
the edge-unhooking is a flip in the colored graph picture (Definition 2.3.8), and
the topology is unchanged (Proposition 2.3.2).

An application of the first property is the following corollary.

Corollary 4.1.1 (of Proposition 2.3.8) If B® represents a PL-manifold B%, then
the triangulation C represented by a tree T of S(B, ) with b(C) bubbles is homeo-
morphic to the direct sum of b(C) copies of B

C =pr #y) B 4.11)

If a pair of vertices is a combinatorial handle in G (Definition 2.3.9) belonging to
the pairing €2, then the corresponding white square vertex in Wy (G, €2) is incident



4.1 Trees and the Bound on (D — 2)-Cells 145

to D — 1 colored leafs [[1, D] \ {i, j}, and a single face goes around the two other
incident color i and j edges in '/, and conversely. In the case where j = 0, then in
W (B, 2), the white square is incident only to colored leaves, apart for the color i.
Remark that from Proposition 4.1.2, for D > 3 such a pair belongs to every optimal
pairing of B. Consider an edge e of a stacked map of S(B, 2), which is incident to
a white square, itself incident to D — 1 leaves. If Z,(e) = 1, then the corresponding
pair is a proper h-dipole, and unhooking e, the topology is unchanged. If in the
contrary 7,(e) = 0, then, unhooking e,

e if I', is connected and represents a PL-manifold N, then G represents N#(SP~! x
S ] )7

e If I", is not connected, G represents the connected sum of the two components of
r,.

Indeed, as we focus on the orientable case, the handle H in Theorem 2.3.3 is the
orientable bundle over S'.

As an application of these results, we can specify the topology of the contribu-
tions to the first non-vanishing orders in the quartic melonic model which are
detailed in Corollary 3.4.1. Indeed:

e Maximal maps are trees of cyclic bubbles, which represent D-spheres S?, and a
connected sum of spheres is a sphere (it confirms something we already new, as
the corresponding colored graphs are melonic).

e Maps of degree D — 2 have a single monochromatic cycle. Any edge has 7,(e) =
1, and therefore unhooking it does not change the topology. Indeed, the corre-
sponding pair is a proper (D — 1)-dipole, once we have contracted all the edges
corresponding to tree contributions, which again, does not change the topology.
As it leads to a tree, contributions of degree D — 2 represent D-spheres. With the
same reasoning, maps with only monochromatic cycles and planar monochromatic
submaps represent D-spheres.

e In D > 4, maps with one polychromatic cycle are such that Z,(e) = 0, and the
pairs corresponding to half-edges are (D — 1)-pairs once the tree contributions
are contracted. These pairs are therefore combinatorial handles. Unhooking any
edge, we get a sphere. As we are in the orientable case, degree D contributions in
D > 4 represent SP~! x S'.

4.1.3.3 Vertex Splitting/Merging

The edge-unhooking is a particular case of a p-pair switching (Definition 2.3.7)
where the two color-0 edges are incident to the same element of the pairing 2. More
generally, in the stacked map picture, a p-pair switching corresponds to picking two
corners and:

e If they are on the same vertex, splitting the black vertex into two black vertices
along these two corners as shown in Fig. 4.4
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C1 splitting
= ¢ e
C

merging

Fig. 4.4 Vertex splitting and merging

e If they are on two different black vertices, merging the two vertices along the two
corners.

Note that this is done without ambiguity, respecting the fact that corners oriented
counterclockwise correspond to color-0 edges going from white to black vertices in
the colored graph picture (Theorem 3.3.3). The edge unhooking/hooking corresponds
to the case where the corners c; and ¢, are incident to the same edge. The variation
of the 0-score is the same as when unhooking an edge: if we denote I';, ., the map
obtained from I' by splitting the two corners ¢ and c;, then,

Dol e,) = Po(I') + D —215(cy, ¢2), 4.12)

where we have denoted Z,(cy, ¢p) the number of colors i such that the corners c;
and ¢, belong to two different faces in '), The topological properties are also as
for the edge-unhooking. In particular, if the splitting raises the number of connected
components and these connected components represent PL-manifolds, then I' is a
connected sum of the two connected components, and if one of the new corners
defines a proper h-dipole, then the topology is unchanged. In general, we only need
to unhook/hook edges, as any two maps differ one from another by a finite sequence
of edge unhooking/hookings. However, vertex splitting/merging turn out useful for
topology proofs, and in the case of tree-like families (Sect.4.2.6).

4.1.4 Score of Trees and the Coefficient ap

Proposition 4.1.3 (Score of trees) Consider a stacked tree T € S(B, 2) with b(T)
bubbles. Each of its color 0i subtree satisfies

F(TY) =1+b(T)(K(Bjg) — 1), (4.13)
where K (B/(g) is the number of disjoint cycles of color i in B,q. The O-score of T is
(7)) =D +b(T) (CDO(BQ) — D). (4.14)

Proof We prove this recursively on the number of bubbles b. There is only one
unicellular tree, and it has ®g;(BY) = K (B%) faces of color i. Now consider a
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stacked tree 7 with b > 1. It necessarily has an edge ¢ between a bubble and a
vertex of valency greater than one. Unhooking e, we get two trees 7 (resp. 73) with
by (resp. by) bubbles, such that b; + b, = b. The same face goes around both sides
of e in 7@, and it is duplicated after the unhooking. Therefore,

F(T") = -1+ F(T") + F(T,") (4.15)
=1+ (b1 +b2)(K(Bj) — D), (4.16)
which proves (4.13). Equation (4.14) follows from summing over all colors. U

Consequently, the bubble-dependent degree (Definition 2.4.6) of a tree is
65(T) = b(T)(ap — Po(B?) + D). (4.17)
To satisfy condition (2.55), ag therefore has to be chosen such that
ag > ®o(B% — D, (4.18)

as otherwise the family of stacked-trees has un-bounded negative degree. In partic-
ular, the 1/N expansion (2.90) would not be defined. This is true for any pairing
of B, so that we must choose

ap > ®o(B) — D, (4.19)

where 2 is an optimal pairing (Definition 2.4.9). In practice we will always build
the bijection of Theorem 3.3.3 with an optimal pairing. Doing so, the degree of
stacked trees is precisely

5p(T) = b(T)(ag — ©o(BY*) + D). (4.20)

Choosing ag = ®o(B%») — D, all the trees have vanishing degree. We have just
proven the following result

Corollary 4.1.2 [f, choosing an optimal pairing to build the bijection, stacked trees
are maximal (Definition 2.4.7), then the smallest possible choice for ag is

ag = ®o(B%) — D, 4.21)
This choice leads to a well-defined (2.55) and non-trivial (2.56) bubble-dependent
degree

55(T) = D + b(I)(Po(BE™) — D) — &y (T). (4.22)

The only bipartite examples we know which do not satisfy this condition are
in dimension 6 (see Sect.5.2). For all other known bipartite cases, this is the most
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appropriate definition of the bubble dependent degree. We can reformulate this degree
in terms of ap (2.58)
®o(BSr) + ®(B) — D
ap = ,
b V(B)

(4.23)

which we rewrite in terms of the score of B¢ (not only counting bicolored cycle 0i)

a_w (4.24)
T vy ‘

the bubble-dependent degree therefore writes

VG)

— QUP‘ —
65(G) = D + (P(B™n) D)V(B)

®(G). (4.25)

The corresponding scaling for the enhanced random tensor model is the following.

Corollary 4.1.3 The strongest scaling one can choose to have a defined 1/ N expan-
sion for enhanced tensor models associated to B such that trees belong to maximal
maps in S(B, Qqpt) is

sp=1+ @(D — 1) — ®y(B%m). (4.26)

From Lemma. 3.4.1, the scaling writes in terms of the number of polychromatic cycles
of any optimal covering L,,(B/q,,)

sp = Ln(Bjq,,) =0, (4.27)

with equality iff the bubble is melonic.

Proof We just need to prove the last statement, which is trivial as ®o(B%) < 1 +
@ (D — 1) with equality iff the bubble is melonic. (]

For B-restricted gluings, the 0-score of a stacked tree 7 € S(B, Qp) with ng(7)
bubbles W (B, Q5p) is

Oo(T) =D+ Y np(T)(®o(B) — D). (4.28)
BeB

If stacked trees belong to maximal maps in S(B, Qp), we obtain the same coeffi-
cientdp = ay forall B € B.
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4.1.5 Maps of Positive Degree and the Choice of ap

In the previous subsection, we showed that when trees were maximal, there was a
lower bound on the coefficient a for it to satisfy Condition 2.55, i.e. for the 1/N
expansion (2.90) to be well-defined. We showed that the choice

ag = ©o(B¥») — D, (4.29)

also satisfied Condition 2.56, and therefore the bubble-dependent degree thus defined
led to a non-trivial 1/N expansion. In this subsection, we show that this value is an
upper bound on a for Condition 2.56 to be satisfied. A consequence of (4.20) is that
when choosing

ag > ®o(B%) — D, (4.30)

there are only finitely many trees per order (Definition 2.4.5). In Theorem 4.1.1, we

prove that when trees belong to maximal maps, such a choice in fact leads to a finite
number of contributions per order.

Theorem 4.1.1 If trees belong to maximal maps in S(B, Qop) and if the degree is
built choosing the coefficient ag € Rt such that

ap > do(B%) — D, (4.31)
then there are finitely many contributions per order 65?1 (k), k € RT.
Proof Because the degree of a tree 7 with b bubbles is (4.17)
0g(7T) = b(T)(&B — ®¢(BY) + D), (4.32)

if ap is asin (4.31), then there are a finite number of trees contributing to every order.
If 7 and 7" are two trees, we have from (4.32)

0p(T) < 6(T") = b(T) < b(T). (4.33)

Furthermore, if 7t and I" have the same number of bubbles, as trees are maximal,
op(Tr) < 0p(T) < 63(T) = b(I) <b(T)). (4.34)
Consider k € Rt and T contributing at order k. From (4.32), the degree of trees
can be arbitrarily large, so that there exists a tree 7; such that k < dp(7}), and from

(4.34), b(I") < b(7;). Therefore,

Card[5;' (k)] < Card{I" € S(B) | b(T") < b(Tp)}. (4.35)
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But because the number of edges of a map is proportional to the number of bubbles
E) = nb(), (4.36)

there is a finite number of maps with less or as much bubbles as 7, which concludes
the proof. (I

Corollary 4.1.4 If trees belong to maximal maps of S(B, Qop), then the only value
of a for which the 1/N expansion (2.90) is well defined (Condition (2.55)) and not
trivial (Condition (2.56)) is that of (4.21). It corresponds to the bubble-dependent
degree of (4.25), to the scaling (4.25), and the correction to Gurau’s degree is (4.24).

4.2 Maximal Maps

There is a great diversity of bubbles of any size in any dimension. We seek to find
their coefficients ap, to count maximal maps, and to deduce their critical behavior
near the dominant singularity. Because our aim would be to find new continuum
limits, which should be characterized by different critical exponents, we would like
to understand which properties of bubbles trivially lead to known critical behaviors,
in order to focus on bubbles which might have more interesting properties. Because
of the results of the previous section, one of the first questions is whether trees
belong to maximal maps. When this is the case, we can compute ap using (4.21).
Proposition 4.2.3 compares the score of maps and trees, and is very helpful in simple
cases. Most of the other results in this section will allow us to restrict the set of
bubbles which might lead to interesting maximal maps. Section4.2.6 addresses the
cases where trees do not belong to maximal maps when choosing an optimal pairing.
We treat a number of examples in Sect.4.3. Some of them are simple applications
of the results in this section, and some more involved examples require a careful
study. In the present section, we often refer to examples of Sect.4.3, in order to
illustrate our results. First of all, there are simple but yet very useful consequences
of Proposition 4.1.1.

Proposition 4.2.1 Every edge e of a maximal map of S(B, Q) is either a bridge,
either satisfies I,(e) > %.

Proof Otherwise, unhooking e which is not a bridge and satisfies Z,(e) < % leads
to a connected map, which from Proposition 4.1.1 has a higher O-score. O

Proposition 4.2.2 [f every pair (but one) in the pairings Qg of the bubbles B € B
is an h-pair with h > D /2, then trees belong to maximal maps.

Proof In the submaps W (B, Qp) corresponding to the bubbles, the white square
vertices are incident to at least D/2 colored leaves. If an edge is not a bridge, unhook-
ing it does not raise the number of connected components, and does not increases
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the 0-score. At best, the 0-score remains unchanged, but this requires # = D /2 and
I>(e) = D/2. There is at most one edge incident to each bubble that corresponds to
an h-pair with i < D/2, its other endpoint being a black vertex. The subset of such
edges is therefore a collection of star-maps. We can complete this forest into a tree
spanning the map. Unhooking the L(I"*) edges defining independent cycles, which
all correspond to h-pairs with 4 > D/2, one obtains a tree with higher (or equal)
0-score and with the same number of bubbles. O

4.2.1 Large h-Pairs

We recall that an A-pair, defined in Definition2.3.5, is a pair of vertices linked by &
parallel edges. By large Ai-pair, we mean that 7 > D /2. The importance of the results
in this subsection is that they are local, and consequently they do not depend on the
set B. To such a pair corresponds a white vertex of W (B, 2) which is the neighbor
of h From Proposition 4.1.2, we know that an h-pair 7w with & > D /2 parallel edges
belongs to every optimal pairing, and Proposition 4.2.1 implies that when building
the bijection with any optimal pairing, edges corresponding to the pair 7 € Q2(B)
are bridges in every maximal map, regardless of the details of the rest of the map.
This is a local property.

Corollary 4.2.1 An edge which corresponds to an h-pair of B € Bwithh > D/2is
a bridge in every maximal map of S(B, Q). If this is the case for every pair but one
in the pairing Q2 of the bubble B, then every edge incident to a submap ¥V (B, Qp)
is a bridge in every maximal map.

Proof The first statement is because such an edge necessarily satisfies Z,(e) > D/2.
The second statement is proved exactly as in the proof of Proposition 4.2.2, with the
difference that the edges not in the spanning tree all have Z,(e) > D/2, so that the
0-score strictly increases at each edge-unhooking. (]

This applies to gluings of k-cyclic bubbles with & < %. It is stronger than proving
that maximal such gluings are in bijection with bipartite trees: it means that the
corresponding bubbles behave the same way, whatever the other bubbles they are
glued to. Cut-bubbles were defined in Definition 4.1.4.

Definition 4.2.1 We say that (B, Q2p) satisfies the cut-bubble property if

VB D B,VQpp, I maximalinS(B, Q) = W(B, Qp) are cut-bubbles in I".
(4.37)

Being a bridge in every maximal map means, in the colored graph picture, that in
every maximal map, either a color-0 edge links the two vertices of the corresponding
pair, or they are incident to two color-0 edges which form a 2-bond (deleting them
separates the graph).
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or

(4.38)

If 7 is an h-pair of B with i > D /2, we know how the corresponding pair will be
in every maximal map. Contracting this pair as pictured in Fig. 2.15, we obtain a
smaller bubble B;. To recover the maximal graphs in G(B) from the maximal graphs
in G(B7), one inserts the pair 7 in every bubble and adds color-0 edges so that each
pair 7 either has an edge of color 0 between its two vertices, either the two incident
color-0 edges form a 2-cut leading to a maximal map of G'(B) (a leading order
2-point function, in the physics vocabulary). This is illustrated in (4.38), in which G
is the generating function of maximal maps in G' (B) with one marked color-0 edge.

In the stacked map picture, contracting the pair corresponds to deleting the corre-
sponding edge, white square, and the colored edges incident to it inside W (B, Q5).
The contraction induces a pairing Qp. = 2 \ 7 of B;. To recover maximal maps in
S(B, ©2p), we can study maximal maps in S(B3, 25.), and then replace W (Bx, Q23p.)
with W (B, Qp) and add bridges between the newly added white squares, and black
vertices in various combinatorial maps of S(Bz, 25.). This is better illustrated in the
simple example of the first section of Sect.4.3.3. We might be interested in the opti-
mality of the corresponding pairing, for instance if maximal maps are trees. Because
alarge h-pair is in every optimal pairing, we know that if £2_ is optimal for Bz, then
Qp is optimal for B. The converse is also true:

Lemma 4.2.1 With these notations, an optimal pairing Qg induces an optimal pair-
ing Q. of Bx.

Proof Denote ey, - - - , ep_j, the edges of B obtained by contracting 7. Given any
covering B:%% of B, we can insert back the pair T oney, - - - , ep_y, directly on the
covering, obtaining a covering B¢ of B with an edge of color 0 between the vertices
of 7 for which

@y (B?) = ©o(B:%) + h. (4.39)

Comparing Qp,7 With some other pairing €2x:
Do(B7Hm7) — (B ™) = Po(BU) — Po(B?) = 0. (4.40)
O

If trees belong to maximal maps of S(Bz, 25.), we can deduce the coefficients
ag., ap, and sp. from those for B. From Corollary 4.1.2 and relation (4.39),
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ap = ng;r + h. (4.41)
Using (4.24) and
h(h —1
(B) = o(B) + L, (442)
we see that 5 B+ 1)
=ag (1 — , 4.43
an = a, ( V(B)) 2V(B) (443)
and from Corollary 4.1.3,
sp=s5 +D—1—h. (4.44)

We can give a stronger version of Corollary 4.2.1

Corollary 4.2.2 Consider B € B and a pairing Qp, B obtained from B by con-
tracting a certain number of pairs in a given order, and 2 the pairing induced by
Qp.

e If  was an h-pair in Qg with h < D2 but is now an h-pair in Qg withh > D/2,
then the corresponding edge is a bridge in every maximal map of S(B, Qp).

o If B is the elementary melon (Fig. 2.20), then (B, Qp) satisfies the cut-bubble
property: every edge incident to a submap V (B, Q) is a bridge in every maximal
map of S(B, Qp).

This includes all the melonic graphs, but also less trivial example, such as the
one in Fig.4.5. On the left of Fig. 4.5 is shown an example of bubble B that contains
large h-pairs, and on the right is a bubble B obtained from B by contracting all
the large h-pairs. It is enough to study maximal maps in S(B, Q 5) to understand
those in S(B, 25). We can deduce the coefficients ag, ag and sg from (4.41) (4.43)
and (4.44), knowing that for a 3-cyclic bubble in dimension D = 6, we have (3.8):
a3 =6, az3 = 11/2, and s33 = 4. We obtain

Fig. 4.5 A bubble B and simpler bubble B obtained by contracting large -pair
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ag =23 and sgp=7. (4.45)

A simple but similar example is treated in the first section of Sect.4.3.3. We restrict

our study to bubbles B € Gp_; which only have h-pairs with h < %

4.2.2 Comparing Maps and Trees

Proposition 3.4.1 generalizes for stacked maps with no marked corner. It compares
the 0-scores of stacked maps and of trees that have the same number of bubbles (with
no other restriction).

Proposition 4.2.3 Consider a stacked map T' € S(B, Qp) and a stacked tree T €
S(B, Qp) with the same number of bubbles (both connected). Then,

F(T®W) = FCD) = L") = 2L(T'?) 4+ 2g(I'®), (4.46)
and summing over the colors i,
D D
Dy(T) — ®o(I") = DLI™) —=2) LI D)+2) " g(@®). (4.47)
i=1 i=1
Proof As in the proof of Proposition 3.4.1, we write the number of faces of color 0i
submaps as

F@C") =2L(0") — 2Ty + v(r®) — EC?). (4.48)

The vertices of I'”) are all the black vertices (V,(I")), the white square vertices, and
the color i squares:

Vo(M) =Y V(B)/2xng(T), and Vi)=Y ®g;(B?) x np(D).
BeB BeB
(4.49)

The edges of ' are all the edges incident to black vertices (E,(I")), and all the
edges incident to color i square vertices, both equal to V,,. Therefore,

V(IO — ECY) = V() — E(D) + ) @0 (BH)nu(D). (4.50)
BeB

Inserting the expression of L(I"™),

LT*) =E. () —V,(I)—bT) +1, 4.51)
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leads to
VIO — ECD) = =L@ + 14 Y ng(D) (Do (B?) — 1), (4.52)
BeB
and (4.28) concludes the proof. U

The degree of a map in Sp(B) is therefore

D D
65(T) = b(I')(ap — ®o(B?) + D) + DL(I™) — 2 Z LDy +2 Zg(rm).
i=1 i=1
(4.53)
In particular, if trees belong to maximal maps in Sp(B), from (4.21), the degree of a
map is

D D
55(I) = DL(I™*) — ZZL(F(”) +2Zg(r<">). (4.54)
i=1 i=1

Proposition 4.2.3 also holds when using the simpler bijection of Theorem 3.3.4. In
that case, L(I'*) = L(I"), and trees are so in the usual sense. As the right hand side of
(4.47) is a sum of positive or vanishing terms (which vanishes for trees) it provides
a sufficient condition for trees to be maximal.

Corollary 4.2.3 Iffor any I’ € S(B, Qp), the following inequality is satisfied
D A D
> oLr®) < L), (4.55)
i=1
then stacked trees are maximal and other maximal maps are such that
D
A D . ,
Z L9y = EL(F*) and Vi € [1, D], g(I'") =0. (4.56)
i=l

The opposite is not always true. Indeed, this quantity may be negative for maximal
maps with bicolored submaps of positive genus. It is sometimes easy to determine
if trees are maximal, e.g. using Proposition 4.2.2. This allows us to compute the
coefficient ap using Corollary 4.1.2. The next step is to characterize the full set of
maximal maps. The following corollary provides a characterization.

Corollary 4.2.4 If stacked trees are maximal, and for every map T" € S(B, Q),
there exists another map U € S(B, Q) such that their projected maps and every
bicolored submaps have the same excess, and I’ has planar bicolored submaps,
Vi € [1, D], g(I'"D) =0, then
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D
. D
(@) - *
VI € S(B, ), E L(IY) < > L), 4.57)

i=1

and other maximal maps are such that
D
Z ) D x ) )
L@ = ZL{I") and Vie [1, D], gy =o0. (4.58)
i=1

The example of D/2-cyclic bubbles of different kinds is treated in Sect.4.3.1,
and illustrates the use of the results stated in this section. The example of Sect.4.3.3,

a size 6 bubble in D = 4 is also a rather simple application. We recall that B is
obtained from B by deleting every edge of color i. An example of the following
result is illustrated in the first section of Sect.4.3.3.

Proposition 4.2.4 Consider a bubble B € Gp_;. If there exists a color i € [[1, D]
such that B' is connected, if edges of color i define an optimal pairing 2; of B;,
and if trees are maximal among maps in S(BE, Q;), then stacked trees are the only

maximal maps in S(B, ;).

Proof We apply Theorem 4.2.3, which compares the 0-score of trees and maps:

Do(T) — Do(T) = L(I™) — 2LICD) + 2 (DD + do(T1) — do(I) (4.59)
> L(I'™) —2L(T'D) 4 2g(I'D), (4.60)

as trees are maximal among maps in S(B;, ;). Furthermore, as there is an edge
of color i on every pair of €2;, all color i square vertices in I'(B, €2;) are leaves.
Consequently, L(I'?) = g(I'?) = 0, and

Po(T) — Po(I") = L(T™) (4.61)

which is positive if I is not a tree. |

4.2.3 One-Cycle Maps

Lemma 4.2.2 Consider an optimal covering B of B, and two particular color-0
edges. They cannot belong to more than D /2 common bicolored cycles.

Proof Then the two color-0 edges e, ¢ would satisfy Z,(e, ¢’) < D /2. Exchanging
them leads to another covering B with ®(B%) = ®¢(B%») + D — 21, (e, e') > 0,
which contradicts the optimality of 2qp;. (]

Translated in the stacked map picture, this lemma states that unicellular maps in
S(B, Qp) With one (projected) cycle have a 0-score which is smaller or equal to
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that of the only unicellular tree. In fact, this property is true for stacked maps of any
size:

Proposition 4.2.5 Consider Qg an optimal pairing for each B € B, and " a stacked
map in S(B, Qp) satisfying L(I'*) = 1. Denote np the number of bubbles B € B.
Then any tree T with the same numbers of bubbles ng as T for each B € B has a
highest or equal O-score.

Proof Consider a one-cycle map. Consider a bubble B of this cycle (i.e. which is not
only incident to bridges). It has precisely two edges e and ¢’ which are not bridges.
Consider the corresponding unicellular tree with two marked leaves, at the extremities
of e and ¢'. It is almost a covering of B, with the difference that the pairs 7, and 7,/
corresponding to e and ¢’ have no incident color-0 edge. The boundary graph of this
unicellular tree is a k-cyclic bubble of size 4, with k = Card Z(e, ¢’) colors going
from 7, to 7., Z(e, €’) being the set of such colors. Because we have chosen an
optimal pairing of B, Lemma 4.2.2 implies k < D/2. As I,(e) = Z,(¢’) <k, from
Proposition 4.1.1, unhooking e leads to a tree with the same number of bubbles np
as I', and which has a highest or equal 0-score. All trees with the same number of
bubbles n 3 have the same 0-score, which concludes the proof. O

We can be more precise. The set Z, (e) is the same for all the edges which are not
bridges, as unhooking any one of them leads to a tree with the same 0-score, and
we denote it Z,. The colors which belong to Z, are those for which L(I'P) =1 (a
combinatorial map with one cycle has two faces), i.e. those for which color i is one
of the colors in Z (e, ¢’), which go between 7, and 7./ for every bubble of the cycle
C. Therefore,

T =Neeec Lle, €). (4.62)

The 0-score of the one-cycle map is that of the tree obtained when unhooking one
of the edges if and only if Z, = D/2, i.e. if all sets Z (e, ¢’) have precisely the same
colors. If all bubbles in B and all pairs in their optimal pairings have Z (e, ¢') < D/2,
then one-cycle maps have a lower 0-score than trees. On the contrary, the following
theorem shows that if at least two pairs in the optimal pairing of one of the bubbles
has Z(e, ¢’) = D/2, then maximal maps contain a subset in bijection with planar
combinatorial maps.

Theorem 4.2.1 Consider a bipartite bubble B and build the bijection with an opti-
mal pairing Qop. If there exists a maximal unicellular map T'y with L(I'T) =1,
then D is even and a subset of maximal stacked maps are in bijection with planar
combinatorial maps.

Proof We denote e and ¢’ the two edges which are not bridges in I'y, and 7 and 7’
the two corresponding pairs in Q4p. As 24 is an optimal pairing of B, the only
unicellular tree is maximal (see Sect.4.1.2). Unhooking either e or ¢’, we therefore
get that

0=D—2T,(e) = D — 2I,(¢), (4.63)
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so that D is even and Z,(e) = Z,(e’) = D /2. We will now consider colored graphs
in G(B) such that every pair apart from 7 and 7" has a color-0 edge between its two
vertices. Adding color-O edges on the pairs of B in €2, but not on 7 and 7’ and
then considering the boundary graph, we obtain an effective quartic bubble B(w, 7).
Because of (4.63), we know that D /2 colors cross from 7 to «’, and because the
bubble is bipartite, we know that the boundary graph B(7, 7’) is a D /2-cyclic quartic
bubble. We know from our first study of D /2-cyclic bubbles in Sect. 3.1, that maximal
gluings of D /2-cyclic bubbles of size 4 are in bijection with planar combinatorial
maps, as the white vertices all have valency two. The maps in S(B, Qqp) for which
all the pairs which do not correspond to e and ¢’ are leaves are therefore in bijection
with planar combinatorial maps (contracting all the leaves or adding them back is
done in a unique way). ([

4.2.4 Connected Sum

In this subsection, we are interested in the case where a bubble B is obtained as the
connected sum of two smaller bubbles B, and B,, as described in Proposition 2.3.7.
Can we deduce properties on the maximal gluings of B knowing the properties of
the maximal gluings of B and B,? Can we, conversely, deduce the properties of the
maximal gluings of B} and B,, knowing that of B? We begin by stating a simple but
useful lemma. By contracting a color-0 edge, we mean contracting its two-endpoints
as an h-pair (Fig.4.6).

Fig. 4.6 Contracting a color-0 edge between two bubbles
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Lemma 4.2.3 Contracting a color-0 edge between two distinct bubbles in a graph
does not change the 0-score. The score satisfies

D(D — 1)
P(Bi#By) = ®(B) + (B — ————. (4.64)

Proof This operation just reduces by one the length of the color 0i cycles passing
through that edge. The only bicolored cycles which would be suppressed are those
with a single color-0 edge, but there are none because the edge is between two distinct
bubbles. As for the score, we see that one bicolored cycle is suppressed for each of
the 2 x (12) ) bicolored cycles incident to the contracted vertices. ([

The operation suppresses one vertex v; in each bubble. We call £ the set of D
edges, one of each color in [1, D], which results from the contraction of (vy, v3).
Lemma 4.2.3 also conversely implies that inserting back a pair of vertices on £ inside
each bubble B = B #B, of a graph in G(B), one obtains a graph of G(B,, B,) with
the same O-score.

Consider a pairing 2; (resp. €2;) of B (resp. B;). We study the effect of the
operation on the stacked maps. The partner of v; in €;, denoted v;, so that m; =
(vi, v)), is therefore left alone when contracting the pair. We define the induced
pairing of B = B #B; as the pairing containing all the pairs of each £2; but 7;, and
the additional pair m4 = (v}, v5). We denote 24 that pairing.

As the operation creates a pair with one vertex from each bubble, in the stacked
maps it will merge two white squares, one from each W(B;, ©2;), and each one
of the colored edges and vertices incident to it. Indeed, for each color i, the con-
traction merges two oriented cycles (Fig. 3.10), (7, w4, 7y, --+) of By,q, and
(72, 7y, m,, - - -) of By g, into a single oriented cycle. If v; is a white vertex, then v}
is black and the ordering of appearance of the pairs along the merged oriented cycle
is (my, Ta, Tp, -+, T, 7rl/,, -+ +). The resulting operation in the stacked map picture
is illustrated in Fig.4.7.

In a map of S(By, By; 1, ), locally around each pair By, B, two black edges
and two bubbles are merged, so that L (I"*) remains unchanged. Likewise, two color-i
vertices and two color-i edges are merged, so that L(I'”) remains unchanged. As,

®
1/ 1c 1b 1, 32 3;) 3:1
, 4
L 1 1 H 3
17 1;) 9 3a 3p
a
2 >72/
2b 2c 3a 3b 3; 32 3’6 2; b @
2.7 2

Fig. 4.7 Local effect of the contraction on the stacked maps



160 4 Properties of Stacked Maps

from Lemma 4.2.3, the 0-score remains the same, we know from (4.47) comparing
the O-score of trees and maps that g(I"")) does too, as we can also verify directly on
the stacked maps.

Lemma 4.2.4 Consider a map Ty € S(B\#B,, Q) and denote T" the map of
S(B1, By; 21, 23) obtained by inserting a pair on £ in every B = B#B,. Then

L(T) =L@y, LTY)=LTY), and gT?)=gTy). (4.65)

In particular, T is a tree if and only if T'y is a tree. Similarly, if the simpler bijection
of Theorem 3.3.4 has been used, U is planar if and only if Ty is planar.

In a more general way, Corollaries 4.2.4 and 4.2.3 in S(By, B»; 21, £2,) give close
characterizations in S(B1#B,, Q4). We denote V; = V(B;) and Vy = V(B#B,). For
statement (c) of the following proposition, we define, for By O B #B,,

B = (B \ Bi#B>) U {By, By} (4.66)

Proposition 4.2.6 With the notations of Lemma 4.2.4, we have the following prop-
erties:

(a) Iftrees belong to maximal maps in S(By, By; 21, §2;), then trees belong to max-
imal maps in S(B1#B,, Qu), the pairing Qu is optimal for B1#B,,

ap4p, = dp, + asp,, (4.67)
1 DD — 1)

aB]#Bz = —(LlBI V1 =+ 6132 V2 — —), (468)
Vi 2

SB]#BZ = SBI + sBza (4.69)

and a map Uy is maximal in S(B1#B,, Q) if T is maximal in S(By, By; 1, Q7).
(b) Iftrees are the only maximal maps in S(By, By; 1, Q2), then the same property
holds in S(B1#B;, Q4).
(c) If the following property is satisfied for any B,

|:F# maximal in S(By, QB#)] = [F maximal in S(B, QB)], (4.70)

then if (B, 21) and (Ba, S2y) satisfy the cut-bubble property (4.37), so does
(B1# By, Q).

(d) If in the simpler bijection of Theorem 3.3.4, planar maps belong to maxi-
mal maps in S(By, By; 24, Q2), then planar maps belong to maximal maps in
S(B1#B,, Q4).

Proof (D), (d), and the first statement of (a) are proven similarly. Consider a map
I'y and another map T'j, with the same number of bubbles. Then with the notations
of Lemma 4.2.4, " has the same number of bubbles as I'/
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ng, (L") =ng,(T'") = ngyp, (Ty). (4.71)

Suppose that Ty, is a tree, or a planar map with the simpler bijection, then from
Lemma 4.2.4, '’ has the same property in S(By, B,; 21, 2,). If in addition trees (or
planar maps) belong to maximal maps in S(B;, By; 1, ), from Lemma 4.2.3,

Do () — Po(Ty) = Po(I') — Po(T") = 0 (4.72)

which proves the characterizations of (a), and (d). If trees are the only maximal
maps in S(By, By; 21, ©2,), the inequality is strict, and the same property holds in
S(B#B;, Q4), proving (b). We compute the coefficients a, a and s. If Tx is a tree in
S(B#B,, Q4), then T is a tree in S(By, B,; 1, £2,), and

@ (Ty) = ®o(T) = D +ap,np,(T) +ap,np,(T) = D + (ap, + ap,)npsp,(Ty),
4.73)
which proves (4.67). Using (4.24) and (4.64), (4.68) comes easily. Using that V# =
Vi 4+ V, — 2 and (4.67), we obtain the scaling (2.126)

\% -
SB#B, = (7# - 1)(D — 1) —ap#p, =SB, + SB,- (4.74)

We prove the last statement of (a): if trees belong to maximal maps in both
S(B#B,, Q) and S(B;, By; 21, 2,), then

'y maximal < ®¢g(Ty) = ©o(Ty) & P¢(I") = &¢(T) < I maximal . (4.75)

It remains to prove (c). Given By, Qp, such B #B, has pairing 24, and I'y maxi-
mal in S(By, g, ), then from (4.70), I' is maximal in S(B, Qp) and both W (B, ;)
and W (B,, 2;) are cut-bubbles in I'. Therefore, they must locally be as on the
left of Fig.4.8. Contracting the color-0 edge, we see on the right of Fig.4.8, that
W (B1#B,, Q) is a cut-bubble. U

Fig. 4.8 If W(B;, ;) are cut bubbles in I', W (B #B,, Q4) is a cut-bubble in ['4
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Proposition 4.2.7 If B| or B; represents a (D — 1)-sphere, then Ty and T represent
the same D dimensional pseudo-manifold.

Proof As v and v, belong two different bubbles, deleting all the color-0 edges,
they belong to different connected components. If furthermore one of the bubbles
represents a sphere, then (vy, vy) is a proper 1-dipole, and from Theorem 2.3.1,
contracting it does not change the topology. (]

The results of this section imply that, given a bubble which contains an edge-cut
of D edges of different colors, we may just insert a pair of vertices on this edge-cut
and study the two smaller bubbles. The example of Fig.4.6 is treated in a size 6
bubble in D = 4, in Sect.4.3.3. When the properties of maximal maps in G(B) are
known, the results translate to the infinite family of bubbles which are connected
sums of elements of B. For a detailed description, we report the reader to [1], where
the family of connected sums of 2-cyclic bubble sin D = 4 is studied. We stress
that all the examples we treat in Sect. 4.3 extend to the infinite families of bubbles
obtained by doing the connected sums of the studied bubbles in all possible ways.

Conversely, it is more difficult to characterize maximal maps in S(Bj, By; 21, ),
knowing the properties of maximal maps in S(B;#B;, Q24). The reason is that in a
generic map of S(By, By; Q1, 25), there is not necessarily a color-0 edge between
the two vertices v; and v, for pairs of bubbles B; and B;. In particular, there can
be an odd number of bubbles. A careful study makes it sometimes possible to char-
acterize maps in S(Bj, By; 1, ©2,), knowing the properties of maximal maps in
S(B1#B;, Q4). This is the case when B # B, satisfies the cut-bubble property (Def-
inition 4.1.4). Indeed, if ever there is a color-0 edge in a maximal graph between
a bubble B; and a bubble B, in G(By, By; 1, €22), then contracting it does not
change the 0-score and we have a bubble Bi# B, in a maximal graph. It satisfies the
cut-bubble property, so the bubbles are as on the left of Fig. 4.8, and we may study
the rest of the graph. For instance, if B = B, = B, there is always one such edge.
Another approach that sometimes makes it possible to make strong deductions is the
following.

In the colored graph picture, consider a graph G in G(B), and the abstract graph
which has a vertex for each bubble and an edge between two vertices if there is a
color-0 edge between the corresponding bubbles. Choose a spanning tree 7, and
contract each of the corresponding color-0 edge in G. Denoting B = {B;, By, - - -},
the resulting graph G is a covering of a bubble

BT = (#,, () B)#G,, ) B)# - - (4.76)

Each contraction preserves the 0-score and, if trees belong to maximal maps, the
bubble-dependent degree. Therefore, if we restrict the possibilities for G7, it can
restrict the possibilities for G. This idea is applied in [2] to identify colored graphs
of positive Gurau degree.

We have studied bubbles obtained by contracting a vertex in each pair. But is a
bubble which has an edge-cut of D edges of different colors, always the graph con-
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nected sum of two smaller bubbles? Here are certain consequences to the existence
of such an edge-cut.

Lemma 4.2.5 Be B a bubble which has an edge-cut £ of D edges of different colors.
Deleting the cut, we obtain a graph B\g with two connected components, and if
e; € &, wedenote e; = (v, vy) where v! (resp. v;) is the black (resp. white) extremity
of e;. The following properties are true:

(a) There is an odd number of vertices on each side of the cut.
(b) Allthe v} (resp. v;) are in the same component of B\g.
(c) Inserting a pair of vertices on E preserves the bipartiteness.

Proof The statement (a) follows from considering the edges of color 1. There is one
in £, which as one extremity in each one of the two components of B\g, which we
denote B\I(g and B\28. For the rest, there are E; edges of color 1 in B{ ¢~ The number of
vertices in B< ¢ 1s therefore 2E; + 1. To prove (b), we focus on the bicolored cycles
li in B\lg. The edges which were incident to edges of £ are now D — 1-valent while
the others are D-valent. Consider the vertex which was incident to the color-1 edge
of £. There is a color 12 path starting at this vertex, and which necessarily ends
at the only vertex which does not have an incident color-2 edge. Because the path
alternates edges of color 1 and 2, there is an even number of vertices in the path, and
because the vertices in the path are alternatively black and white, its two endpoints
have the same color (black or white). Repeating this for each i # 1 proves (b). If B
is bipartite, inserting a pair on £ does not change this property apart for the vertices
incident to the edge-cut. Because of (), it is enough to color the vertex incident to
the {v; e} in white and conversely. O

4.2.5 Non-connected Bubbles

In two dimensions, whatever set B of connected bubbles we consider, maximal maps
are always the planar ones, and unless the counting parameters are tuned to reach
multi-critical behaviors, the critical exponent will be —1/2. It is still possible how-
ever to reach other critical behaviors by considering non-connected bubbles. A non-
connected bubble in 2D is a collection of polygons. Gluings of non-connected poly-
gons are generated by multi-trace matrix models [3—6]. Maximal maps are such that
connected components have to be planar. We build an abstract graph by associating
to each planar discrete surface a white vertex, to each non-connected bubble a black
vertex, and for each connected component of a bubble, if it belongs to a discrete
planar surface, we draw an edge between the corresponding black and white ver-
tices. Then one shows that for the map to be maximal, this graph has to be a tree.
Therefore, to each non-connected bubble made of k polygons will correspond a nodal
point between k planar discrete surfaces. At the nodal point, the surfaces are “close”,
but don’t “touch”. In this subsection, we show that the situation is very similar in
higher dimension.
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We consider a set B, with B € B, made of k non-necessarily connected compo-
nents B, = By U--- U By, and consider a maximal graph G € G(B)). It is consid-
ered as connected when non-connected bubbles are considered as connected objects
(i.e. if for any pairing of non-connected bubbles, the projected map is connected).
We denote B the set of bubbles

B=(By\Bu) U{By, -, B} (4.77)

To study the influence of the non-connectivity of B, we still consider all the bubbles
inB, \ B, asconnected objects and decide not to consider the bubble B, as connected
anymore, but rather as k connected bubbles B - - - Bx. With this choice, the graphs in
G(B,,) which were considered as connected are not seen as connected anymore when
changing our point of view for B, and we denote { K }neq1,.-, 4} its A corresponding
“connected” components in G(B.).! We consider the following abstract graph of
incidence relations. As explained above, if G € G(B,), we represent each K, as a
white vertex and each By, as a black vertex. For each connected component of B,
if it belongs to K,, we draw an edge between the corresponding black and white
vertices, obtaining a graph H. We denote V; = V(B}), and V, = 21;21 V;.

Proposition 4.2.8 If maximal graphs of G(B) satisfy (2.108), that is if their 0-score
has a linear dependance in the number of bubbles, then a graph in G(B,)) is maximal
if and only if H is a tree and the K, are maximal in G(B), and

k
ay_p =D+ s, (4.78)
j=1

1 k
a5, = 7((k — DD+ apV)). (4.79)

u =1

k
su_m =1—k+) su. (4.80)
j=1

Proof If G € G(B,), we consider G, whose connected components are in G(B). It
is the same colored graph, but the notion of connectivity is different. In particular,
G and G have the same O-score.

A
D)(G) = Y Dy(Ka). (4.81)
a=1

From the hypothesis, the K, satisfy

11t is not excluded for other bubbles in B to be non-connected.
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®o(Ko) < D+ Y apng(Ka), (4.82)
BeB

with equality iff the K, are maximal. Therefore,

A
®0(G) < Y (D + Y agnp(Ka)) = AD + Y apng(G). (4.83)

a=1 BeB BeB

This is maximal if and only if A is maximal, and the K, are maximal. The graph H
has k x np, edges, A + np, vertices, and is connected, so its excess satisfies

(k—Dng, — A+ 1= L(H), (4.84)

and at fixed np , A is maximal if and only H is a tree, in which case, A = (k —
npg, 4+ 1. This proves the first statement. By looking at the coverings of B,,, we
see it implies that an optimal pairing of B, is obtained by taking an optimal pairing
of each of the B;. To find the coefficients, we suppose that B, = {B_}. A maximal
graph Gy € G(By) satisfies

k k
D0(Gy) = ((k — Dnpg, + D+ Y agng (Gy) =D+ (k=)D + Y _ap)np,(Gu),
j=1 j=1
(4.85)
as for any j, np;(Gy) = np,(Gu). Therefore, B, also satisfies (2.108), and we
deduce (4.78). From (2.58),

k -
 ®(B;) +ap,
ap, = 221 ®B) +an , (4.86)
Vu

and (4.79) follows from (4.78). The coefficient s is deduced from (4.78) using
(2.126),

V‘
L —1)(D-1)-ag, (4.87)

~

sp, = (

M=

1

, k
(ZL-DD-D+k=-DD -~ (k-—1DD+Y ap). (488)
1 j=1

I
™M=~ 5
l\)‘<

J

4.2.6 Tree-Like Families and the Bound on (D — 2)-Cells

This section contains important results, however it is not needed to understand the
examples in a first reading. The notion of tree depends on the choice of pairing. As
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Fig. 4.9 Recursive definition of a tree-like family in the stacked map picture

detailed in the previous subsections, we are interested in knowing if trees belong to
maximal maps, which requires that the bijection is built with optimal pairings. If a
bubble B has more than one optimal pairing, then, choosing one of them, Qp, to
build the bijection, we know (Sect.4.1.2) that there are maximal unicellular maps
which are not trees. Consider one of these unicellular maps I'j, corresponding to an
other optimal covering B . The corners around black vertices correspond to color-0
edges in the colored graph picture. Picking two corners incident to black vertices of
two copies of '}, and merging the black vertices as detailed in Fig.4.4, we obtain
a connected stacked map with two bubbles, which is not a tree, but has the 0-score
of a tree with two bubbles. Repeating this vertex merging in a tree-like way, we can
generalize this to arbitrarily many bubbles. The maps built this way are not trees but
share all their properties. In our context, we call them tree-like maps.

Definition 4.2.2 (Tree-like family of stacked maps) An infinite family F of stacked
maps of S(B, Qp) is said to be tree-like if there exists a finite subset T of S(B, Q2p)
such that for any map in the family, there exists a map I'y € T, a black vertex v, and
two corners ¢ and ¢’ around v,, such that when splitting v, along ¢ and ¢’, we obtain
two connected components, one of them being 'z, and the other one being in F. We
call I a T-tree-like family.

This is illustrated in Fig.4.9. Put more simply, it is precisely like defining trees as
connected graphs for which there exists a leaf, and when deleting the edge incident to
the leaf, we are left with a vertex and a smaller tree. In this definition, all the corners
of a I’y can be merged to another element of F to build a bigger one. We could have
decided to allow only mergings for certain corners of the I'z and not the others, but
such families are not needed in our context. For the description to be well defined,
we further require that an element of T cannot itself be split into a smaller element of
T and a smaller element of F. We can state the same definition in the colored graph
picture:

Definition 4.2.3 (Tree-like family of colored graphs) An infinite family F of colored
graphs of G is said to be tree-like if there exists a finite subset T of Gp such that
for any graph in the family, there exists a graph G € T, a pair of color-0 edges f
and f’, such that when switching f and f’, we obtain two connected components,
one of them being G, and the other one being in F. We call I a T-tree-like family.
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Fig. 4.11 Local decomposition of a tree-like family

An example is shown in Fig.4.10. Choosing the dotted pairing to build the bijec-
tion, we recover precisely the example of Fig.4.9 (see Fig.4.2).

In the case of graphs in G(B), G is a set of bubbles { B, },c4 With color-0 edges
added in a connected way. G induces a pairing Q7 of this set of bubbles {B,},, so
that G coincides with the “covering” { B, }?T. The set {B,}, is seen as an effective
bubble, but unlike in the case of non-connected bubbles (previous section), here,
the color-0 edges have to be added so that {Ba}ffT is connected. A more global
characterization of [ in the colored graph picture, illustrated in Fig.4.11, is that a
graph G belongs to a T-tree-like family if any of its vertices belongs to a subset
{Bu}aca with pairing Q7 of its vertices, such that for each pair in 27, either a color-0
edge links the two vertices of the pair, either the two incident color-0 edges form a
2-cut. In addition there must be no subset A’ C A for which the property is satisfied
for {Ba}aea

In the case where there are more than one optimal pairings, the notion of tree is
too narrow. In particular, if trees belong to maximal maps, then the tree-like family
with T the set of maximal unicellular maps is a subset of maximal maps. Some-
times, they are the only maximal maps (see the example of gluings of octahedra in
Sect.4.3.4, for which T comprises the patterns in (4.195) with empty blobs, and an
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example is shown in Fig.4.28). Sometimes maximal maps are a larger T-tree-like
family (see the example of the K3 3 bubble in Sect.4.3.2, for which T comprises the
patterns in Figs. 4.18 and 4.16—with empty blobs - and an example of tree-like map
is shown in Fig.4.18). And sometimes, tree-like families are just part of a larger set
of maximal maps (as in the example of D /2-cyclic bubbles, see Sect.4.3.1).

4.2.6.1 Bijection with Trees

There is always a bijection between B-restricted gluings G(B) for which maximal
colored graphs are a T-tree-like family, and a set of stacked maps St such that
maximal graphs of G(B) are mapped to trees of Sy. We describe it briefly. Choose
a pairing for B, and consider a vertex. If it belongs to a subset {B,},c4 With Q7 a
pairing of its vertices, as described above, then we choose this pairing to pair the
vertices in the subgraph {B,},c4, and continue exploring the components which are
attached to {B,},c4 by 2-cuts of color-0 edges. If not, we take the pairing we chose
initially for the bubble B it belongs to, and pick another vertex not in the same bubble.
Having explored all the graph, we have built a partition of the vertices in pairings of
subgraphs {B,},ca, Which translates into a pairing €2,,(G) of the whole graph. We
then consider the map

G € G(B) —> ¥y(G, 2,(G)). (4.89)

The images of G(B) under the bijection have submaps W ({B,},, 227) (in one less
dimension) which are “cut-bubbles”, i.e. which are incident only to bridges, and have
submaps W (B, Q2p), which can be cut-bubbles or not. However, there are a certain
number of prohibited patterns, which correspond to the maps \lfo({Ba}ffT, Qp). For
instance, the patterns corresponding to other optimal coverings B®» with (possibly
trivial) map insertions on the corner around black vertices are forbidden, if Qopt’ is
not the optimal pairing used to build the bijection. This is illustrated for the gluings
of octahedra in Sect.4.3.4. The patterns on the right of (4.195) are prohibited, and
are replaced with the two new cut-bubbles in Fig.4.29.

4.2.6.2 Counting Tree-Like Families

We denote pr the number of pairs in Gr. Consider the generating function Gy of
rooted T-tree-like maps counted according to their number of “cut-bubbles” isomor-
phic to G, It satisfies the tree equation

Gr({zrh) =1+ Y zrGr({zr)”". (4.90)

GreT

As T is finite, the expected critical exponent of the generating function at the dominant
singularity is that of trees, 1/2. In the case of a T-tree-like family for which all G
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have the same nr, as it is the case if T is restricted to the k optimal coverings of B,
then taking all z7 equal to z, the equation simplifies to

Gr(z) = 1 + kzGr(z)P*. 4.91)

We refer the reader to the examples in Sects.4.3.4 and 4.3.2 for concrete examples.

4.2.6.3 Score

Because vertex-splittings present the same properties as edge-unhookings, (4.8) is
true for vertex splittings which disconnect the map: the sum of the degrees of the
connected components is the degree of the graph before the splitting. As for trees,
the structure of tree-like families enables us to deduce their O-score.

Proposition 4.2.9 IfF C G(B) is a T-tree-like family, the 0-score and the bubble-
dependent degree of an element G € F with ny(G) submaps isomorphic to Gy € T
are

®o(G) =D+ Y nr(G)(Po(Gr) — D), (4.92)
GreT
02(G) = Y nr(G)du(Gr). (4.93)
GreT

In the case where trees are not maximal (or just a finite number of trees belong
to maximal maps, as the unicellular tree is always maximal), then we cannot use the
results of Sect.4.1.4 to determine the coefficient a. If however maximal maps are
ultimately a T-tree-like family [F, then the 0-score of graphs in F which contain the
same number of bubbles B is the same. Denoting n 5 (G ) the number of bubbles in
Gr,

b(G) = Z nr(Gnp(Gr). (4.94)
GreT

The degree of graphs in F is

0(G) = Z nr(G)ng(Grag — Po(Gr) + D]. (4.95)
GTGT

If ng(Gyag — ®o(Gy) + D < 0 for some Gy € T, then elements of F(T) con-
taining only effective bubbles G have degree

§(G € F(Gr) = mi(G)ng(Grag — Po(Gy) + D], (4.96)

and we can find infinite families with unbounded negative degree. Therefore, to
satisfy Condition (2.55), we need to choose ap satisfying
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VYGr €T, ng(Gr)ag — ©o(Gr) + D > 0. 4.97)

In the case where the 0-score of maximal maps is a linear function of the number of
bubbles for maximal graphs ultimately

. b(Gmax) > K _ ~
3K € N, da > 0, such that {Gmaxmaximal = &0(Gmax) = D+ agb(Gmax),
(4.98)
then as (4.92), for Gax large enough, we have the relation
> 11 (Gma)lns(Gr)ds — ®o(Gr) + D] =0, (4.99)
GreT
which from (4.97) leads to
VG7 €T, ng(Gr)ag — 9o(Gr)+ D =0, (4.100)
and choosing any Gr € T, we can define
Oo(Gr) — D
_ $oGr) — D (4.101)
ng(Gr)

4.2.6.4 Non-linear 0-Score

It is not forbidden to have tree-like maximal graphs, whose 0-score does not satisfy
a linear dependence in the number of bubbles (4.98). This happens for instance if
there exists a graph G, with two bubbles such that maximal maps are a T tree-like
family with

T={G, = BQOI", G,}, and ®¢(Gy) — D > 2(Py(Gy) — D), (4.102)

i.e. G, has two bubbles but its O-score is higher than that of trees with two bubbles.
Then elements of the sub-tree-like family [F(G,) have a stronger O-score than ele-
ments of F \ F(G,) with even number of bubbles. However, among graphs with odd
number of bubbles, maximal maps belong to IF' \ F(G»,). In that case, a choice

_ Po(G»)) - D

) 4.103
ngp(Ga) ( )

leads to a non-trivial (2.56) bubble-dependent degree which vanishes for F(G;) but
is positive otherwise. In particular, maximal maps with an odd number of bubbles
are excluded from the leading order: the degree of tree-like graphs is (4.95)
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Fig. 4.12 The graph G»
with two bubbles By,

68(G € F) = ni(G)lag — ®o(G1) + D]+ n2(G)[2ap — ®o(G2) + D]
®¢(G,y) — D

=nm (6] >

— ®y(Gy) + D]. (4.104)

>0

Example of the K4 bubble

An example of a family which illustrates this behavior is that of maximal maps
in G(Bg,), where By, is the complete graph with 4 vertices, shown in Fig. 2.9. It is
shown in [7] that the choice

05y, (G) =3+ %b(G) — ®(G) (4.105)

satisfies almost all the conditions of a bubble-dependent degree (Definition 2.4.6), and
that the leading order thus defined is a { G, }-tree-like family, where G is represented
in Fig.4.12. However this only includes graphs with an even number of bubbles, so
that we know that maps which maximize the 0-score at fixed but odd number of
bubbles have an 0-score smaller than 3 4 3b/2. Therefore, the O-score of maximal
maps is not linear in the number of bubbles, although it is for maximal maps with
an odd number of bubbles. It is easy to see that a {BQ4, G, }-tree-like graphs with
a single B% are maximal among maps with an even number of bubbles. The only
condition which we required for a well-defined bubble-dependent degree, and which
1) Bx, does not satisfy, is that it takes value in %N instead of N.2

The major part of the results stated in the previous sections of this chapter under
the assumption that trees were part of the maximal maps generalize to the case where
a T-tree-like family F is (ultimately) part of maximal maps. The choice

®o(Gr) — D
dp = max 2060 —D (4.106)
GreT  np(Gr)

2In two dimensions, the degree reduces to twice the genus, so that it still takes integer values for
non-orientable maps.
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leads to non-trivial (2.56) bubble-dependent degree taking values in Q. This is very
general, as we show in Theorem 4.2.2 below that whenever a can be defined, there
necessarily exists a tree-like family in the leading order. intersection of F and the
leading order contains only the T, -tree-like family 'y, where T, is the subset of
elements of T saturating this choice of a

Do (Gr) —D] _ { 0ifG e Fy

ds(G €F) = Z nr(Gng(Gr)lap — n5(Gr) > 0 otherwise’

GreT
(4.107)
From this we can deduce the coefficients s and a, add large h-pairs, study connected
sums of bubbles, and so on. Corollary 4.1.2 gave a sufficient condition of existence
of the coefficient ap for the corresponding bubble-dependent degree to be well-
defined (2.55) and non-trivial. Theorem 4.1.1 proved the unicity of this value. We
saw however that is was possible—at least for non-orientable bubbles—to have only
finitely many maximal trees (one, in the case of the K4 bubble). The following results
enlarge the sufficient condition of existence of a non-trivial and non-negative rational
bubble-dependent degree to more general cases. The case which is not included
is discussed in Sect. 5.2. Intuitively, it states that a exists if there is ultimately a
subsequence of the 0-score of maximal graphs which is stronger than the other terms
and which is ultimately linear in the number of bubbles. It gives the corresponding
value of ag, and therefore of ap and sp, and further shows that whenever they exist,
they are uniquely defined.

Lemma 4.2.6 Given a non-necessarily bipartite bubble B € Gp_1, the supremum

M Qo(G) — D

olf = b G (4.108)

GeG(B)

exists, and we have the following bound for the coefficient ag to have a well-defined
bubble-dependent degree (agh — ® is bounded from below),

ag > al. (4.109)

Proof The bound on the 0-score is given by melonic graphs (2.47): For any G €
G(B),

®o(G) — D - D(D —1)

P(G) < [ bG) =

- oB)p(G)+D &

— ®(B).

(4.110)
The set { %é(Gé;D } GeBB) is therefore a non-empty subset of R with an upper bound,

thus the existence of the supremum.

Now suppose that (4.109) does not hold, then @z < o}, so that there exist G €
G(B) such that ag — PCL < 0. Consider the {G7}-tree-like family F(G7). A
graph G € F(Gr) has 0-score (4.92), and therefore satisfies

D(D —1)
4




4.2 Maximal Maps 173

®o(Gr)— D
isb(G) — D(G) = (an — 229 =Py 6y 4 . @.111)
b(Gr)
Asap — % < 0, this family has unbounded negative degree and this choice
for ap does not lead to a well-defined degree. |

Lemma 4.2.7 Given a non-necessarily bipartite bubble B € Gp-1, choosing
ap > ay. (4.112)

leads to a trivial bubble-dependent degree (for any k, the equation agb(G) —
®(G) = k has only finitely many solutions).

Proof Forany G € G(B), we have the following bound
®y(G) < a¥b(G) + D. (4.113)

If agb(G) — ®¢(G) = k, we can bound the number of bubbles of G,

B p D+k
agh(G) —a¥b(G)~D <k = b(G) < — . (4.114)
ap — Qg

D+k
&Bfag’

But there is a finite number of graphs in G(B) with less or as much bubbles as
which concludes the proof.

Theorem 4.2.2 (Existence and unicity of the bubble-dependent degree) For B €
G(B), the only possible choice which might lead to a non-trivial and non-negative
rational bubble-dependent degree is

ag = oy, (4.115)
If the supremum a% is reached (i.e. if it is a maximum), then the choice (4.115)
indeed leads to a non-trivial and non-negative rational bubble-dependent degree

35(G € G(B)) = D + alf b(G) — ®y(G) € QT (4.116)

with infinitely many solutions to D + a%b(G) — ©¢(G) = 0. Inparticular, the lead-
ing order is the order 0, and NP is always the right way of rescaling the free-energy
(2.91) to extract the contributions to the leading order.

If on the contrary /¥ is nota maximum, then D + oy b(G) — ®¢(G) € Q™ has
no order-0 contributions. This case is discussed in Sect.5.2.

Note that such a degree satisfies Condition (2.56) at order O but does not a priori
satisfy Condition (2.55) as it does not necessarily take values in N, as in the case of
the K4 bubble. A non-integer a leads to rational orders,
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GB) = | | 65'@. (4.117)

qeQt

and therefore to a 1 /N expansion (2.90) with rational powers in 1/N, but apart from
that, it still defines a well-behaved theory. From

®o(G) — D
Gp = max 26 -D (4.118)
ety b(G)

the coefficients ap and sp are deduced uniquely, using (2.58) and (2.126). If for
instance, one finds a graph G4 € G(B) with 4 bubbles in 4 dimensions, with 0-
score 15, and such that VG € G(B), ©¢(G) <4 + 14—1b(G), thenag = 11/4 and the
bubble-dependent degree is defined as 6 = 4 + '4—'b — ®( and takes values in %N,
and the scaling is s = 3/2V (B) — 23 /4.

Proof The fact that (4.115) is the only choice possibly leading to a well-behaved
bubble-dependent degree follows from Lemmas 4.2.6 and 4.2.7.
In the case where o/l‘;’ is a maximum, then there exist Gy € G(B) such that

v _ Po(Gr)—D

B = TGy & 63(Gr) =D + ¥ b(Gr) — Do(Gr) =0. (4.119)

In particular, from the left hand side, oy € Q. From the definition of o (4.108),
the degree is non-negative. Furthermore, any graph G in the {Gr}-tree-like family
F(Gr) has degree (4.93)

35(G € F(Gr)) = n1(G)dp(Gr) = 0, (4.120)

so that there are infinitely many contributions to the order 0. ]

4.2.6.5 Topology

Because of their definition, tree-like families decompose into connected sums of the
graphs in T, throughout a sequence of vertex splittings. Because vertex-splittings
present the same properties as edge-unhookings, Corollary 4.1.1 generalizes here:

Corollary 4.2.5 (of Proposition 2.3.8) If the elements of T represent PL-manifolds,
then the triangulation C represented by a tree-like map T € F with ny(C) submaps
isomorphic to Gy € T is homeomorphic to the direct sum of ny(C) copies of each
Gr. Denoting arbitrarily T = {Gr,, Gr,, -},

C Zpr (Huy )G )# (a0 G ) H -+ 4.121)

This is also true in the case of pseudo-manifolds, upon other conditions (see the
subsection Edge-unhooking and topology in Sect.4.1.3).
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4.3 Examples

4.3.1 D/2-Cyclic Bubbles of Different Kinds

We consider restricted gluings of D/2-cyclic bubbles of any kinds and sizes, and
choose to pair the edges not linked by color 1. Using the bijection of Theorem 3.2.1,
we can study the corresponding bipartite maps instead, which have edges carrying
sets of D/2 colors in [1, D], and black and white vertices, each one of the latter
being incident to edges which all carry the same color set. From Proposition 4.2.2,
as edges have D /2 colors, trees are maximal. The score of a D /2-cyclic bubble of
size 2 p, and the O-score of the covering obtained by adding color-0 edges parallel to
color-1 edges are respectively

D((p+1)D —2p)
4

D
P(p) = , and Po(p) =(p+ 1)3, (4.122)

According to Corollaries 4.1.2 and 4.1.3 and to (4.24), we can deduce the following
coefficients for a bubble of size 2p (which we had already obtained in 3.8)

. _(p—DD _DWD-1) p—1_DD-2)
ap = ————, ap = — X
2 4 P 8

D
, and s, =(p— 1)(5 -1,
(4.123)
and if all bubbles have size 2 p, the bubble-dependent degree of a colored graph can
be defined as
(r—-D

65(G) = D1+ =5—b(G)) ~ @(G). (4.124)

it vanishes for maximal configurations, which we want to characterize, and is positive
otherwise.

4.3.1.1 Single Kind of D/2 Cyclic Bubble

If there is only one kind of D/2 cyclic bubble, i.e. if D/2 cyclic bubbles alternate
the same color iy, - -+ ,ipy2 and ipja41, -+, ip, then L(F'W) = ... = L(I'r2)) =
L(I'*) and the other L(I"®) vanish, so that using (4.47) which compares the 0-score
of trees and maps with the same number of bubbles,

D D
0 < ®y(T) — Do(I') = DL(T*) —2 Z LIy 42 Z g(I'Dy =2Dg(IN)
i=1 i=1
(4.125)
and we recover the fact that maximal maps are the planar bipartite maps, (see
Sect.3.1).
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Fig. 4.13 Structure of a
maximal maps for three
2-cyclic bubbles in D = 4
(the blobs are planar
components)

13

()

4.3.1.2 2-Cyclic Bubblesin D = 4

Maximal maps
If there are all allowed 2-cyclic bubbles in D = 4, as color | appears in every color
set, I =T, and

D D
®(T) — ©o(I') = 4L(T) —2 Z LYy +2 Z g(I'®) (4.126)
i=1 i=1
=2(L(M) = Y L)) +2(g(0) + Y g(T?)),(4.127)
i#1 i#1

where we recognize the number of polychromatic cycles L, (I') = L(I') — ), £1
L(I'D) (Definition 3.4.1). If 7 is a tree spanning I'?, then U2, 7@ is a connected
graph spanning I, which misses Y2, L(I'®) edges, each defining an independent
cycle of I'. Therefore,

L) =) L) = LT =0, (4.128)
i£1

and (4.127) vanishes when the map is planar, and L(L,IZ.D= 2T(i)) = 0, i.e. when there
is no cycle containing edges 1i and 1 for i # j. The maximal maps are “trees”
of planar color 1i components (the incidence relations between planar connected
bicolored components are tree-like). A schematic example is shown in Fig.4.13.
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Topology of maximal maps

Before counting maximal maps, we prove that they have the topology of the 4-
sphere. We first consider a planar component 1i. In the colored graph picture, an
edge corresponds to a 2-pair 7 with internal colors j and k both different from i.
Deleting every edge of color j and k, we are left with a collection of cycles alternating
color-0 edges and parallel edges of color 1 and i. As the component is planar, we know
that 7, (e) = 2, which means that the vertices of 7 belong to two different connected
components (which are both 2-spheres). The pair  is therefore an /-dipole, and the
unhooking e is a flip in the colored graph, which leaves the topology unchanged.
Unhooking edges we end up with a tree, which, combining Proposition 3.1.1 and
Corollary 4.1.1, has the topology of the 4-sphere. We now consider a maximal map.
As the incidence relations between the planar components 1i are tree-like, there is
one such components which only interacts with the rest of the map at a black vertex.
There exist two corners around that black vertex such that when splitting this vertex
as described in Fig. 4.4, we obtain two connected components, one of them being a
planar map with edge colors 1i. The maximal map is therefore the connected sum
of a 4-sphere with a smaller maximal map, and recursively, this proves that maximal
maps have the topology of the 4-sphere.

Generating function

We denote G, ... , (22, 23, 24) the generating function of rooted maximal maps,
counted according to their number of bubbles of type 1i for each i, and such that
white vertices have allowed valencies py, - - - , pr. We denote Py, .. ,, (A1, -+, M)
the generating function of rooted planar bipartite maps such that white vertices have
allowed valencies {p;} = {p1, - - - , pr} and no face visits twice the same black vertex,
counted according to their number of white vertices of each kind. Using the general-
ized version of Tutte’s bijection (Sect.3.2.1), this is also the generating function of
rooted bipartite combinatorial maps with no cycle of length two, such that faces have
allowed degrees 2py, - - - , 2 p, counted according to their number of faces of each
kind. They may be computed using the literature on degree-restricted maps [8—11].
The root edge belongs to a maximal planar component such that no face visits twice
the same black vertex, in which all the edges have the same color set 1/, and such
that on each corner on each black vertex is a (possibly trivial) rooted maximal map.
The generating function of maximal maps therefore satisfies

4
Gipiy (2. 23, 24) = 1+ Z[P{m(zi(g{p;}(n, 3. 2)) 2 (G (220 23, 14))”) - 1].

i=2
(4.129)
If only white vertices of valency p are allowed, then this simplifies to

4
Gp(z2, 23, 24) = 1 + Z[P,, (zi (Gp(22. 23, z4))") - 1}. (4.130)
i=2
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4D quadrangulations and proliferation of baby universes

Solving such equations can in general be somehow involved. Here we treat the
particular case where p = 2, corresponding to 2-cycles of size 4. In that case, P
is just the generating function P of non-separable planar maps counted according
to their number of edges. Non-separable maps are maps such that no face has two
corners incident to the same vertex [12]. P is given by the system [12]

z=u(l —u)? (4.131)
P=@u+ DA —u). (4.132)

We furthermore consider only two such bubbles, with counting parameters z; and
Z», as the critical behavior is the same. When z; = 0 or when z, = 0, maximal
maps are precisely the usual planar maps, which are well known, leading to the
critical exponent v = —1/2. However, there is a narrow interval around z; = z, for
which there is a “destructive interference”, the critical behavior being that of trees,
with critical exponent v = 1/2. More precisely, we find in [13] that the tree regime
extends from

A (5 1 N
Q= )\72 € ]Qc,l,ac,Z[a (a(.‘,l» O16,2) = (Z (3 - \/g) 5 g <\/§+ 3)) ~ (0.95,1.047).
(4.133)
The generating function has the following expansion near its dominant singularity
for o €]ac,1, acal,

4(—2a2 20— 2 4 V2ala + 1)) . 2
G, o) = - —
a?+1 32(a—«/ﬁ+1)

t

(4.134)
At o) and o, 7, the generating function behaves as

g(t,ac,l)Zg(f—l>—48 (3 (17f—38))'/3<“/§9;“3 —z)2/3+0<‘/§9:3 —t
(4.135)
and
1/3
4 48(6(5v/5—11 5 2/3 5
PPN Wl sl M vof3-)
(4.136)

We find an intermediary critical regime, with critical exponent

1
YBU = 3’ (4.137)
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which differs from the tree critical exponent v7 = 1/2 or multi-critical yr, = 1 —
1/n, and from the planar exponent yp = —1/2 or multi-critical vp ,, = —1/m. It is
argued in [1, 14] that this exponent is characteristic of the regime for which baby-
universes proliferate [6]. The 1/3 exponent has also been found in the context
of planar graphs with given 2-connected or 3-connected components [15].> This
regime is obtained in the two-dimensional case using multi-matrix models [3-5].
As explained in Sect.4.2.5, this corresponds to gluing non-connected polygons. We
stress that in our case, this regime is recovered while selecting maximal graphs
obtained by gluing connected bubbles. In this framework, we see three universality
classes in dimension 4 while only the universality class of planar maps appears in
dimension 2. This regime is recovered in [1, 14] by considering a 1-cyclic bubble
with color i and a 2-cyclic bubble with colors 1i, both of length 4. The graphs of
this model are in bijection with combinatorial maps with edges carrying color i
or 1i. From Corollary 4.2.1, the edges of color i must be bridges in every maximal
maps, and therefore the 2-cyclic bubbles Bj; behave as in S(By;, €21;). Consequently,
maximal maps are planar and such that color-i edges are bridges, and the generating
function satisfies

G(zivz1) = P(21G (i, 210)7) + G (@i 210)° (4.138)

When z; << zy;, it leads to a planar regime with critical exponent —1/2, when
z; >> 71, it leads to a tree regime with critical exponent 1/2, and for z; = 3zy;, it
leads to the same intermediary exponent 1/3. To my knowledge, this exponent was
first mentioned in [3]. In [5], it is argued that by tuning the theory, one can obtain

the more general critical exponents y = ="

4.3.2 A Bubble with Toroidal Boundary in D = 3

We consider the complete bipartite graph K33 with a proper 3-edge-coloring, rep-
resented in Fig.4.14. It has six different pairings: either vertices inside pairs are all
linked by the same colori = 1, 2, 3, or each one of the three pairs contains a different
color. The last three are optimal and symmetrically equivalent. We choose an optimal
pairing Q¢ and consider the simplified bijection of Theorem 3.3.4. The white vertex
corresponding to the bubble is shown on the right of Fig.4.14, it is not embedded,
as the colored cycles of B, are of length 1 or 2.

Here, every pair has less than D /2 colors, so that Lemma 4.2.2 does not apply.
We thus focus on Corollary 4.2.3 instead (with L(I") = L(I"*)), and try to figure out
whether

D
3L —2) LY =0. (4.139)

i=1

31 thank Eric Fusy for pointing this out.
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23 12

Fig. 4.14 The K3 3 bubble and an optimal pairing, and the corresponding vertex

The union of two monochromatic submaps for any two colors i # j € {I, 2, 3}
covers I, _ ‘
rouyry¥ =r. (4.140)

The union of two forests respectively spanning I') and ') is a map which spans
I". We choose two such forests in the following way: first observe that ') N T'V) is
a forest (a cycle would have both colors (i, j) all along which is impossible), which
can thus be completed into both a forest 7 spanning I'”) and a forest 7 /) spanning
'), This ensures that '\ 7@ and T'¥) \ 7 do not have any common edges.
This choice of spanning forests gives us the following inequalities,

Vigj LIO)=LTYUT?)+L@?)+LrY) = La?)+LaY).
(4.141)
Summing the three different relations fori # j € {1, 2, 3}, we obtain that

3
3L() — 22L(r<">) >0, (4.142)

i=1
so that from Corollary 4.2.3, trees are maximal, and other maximal maps satisfy

3
3L(N =2 LI?Y)

i=I

g(T) = g(r'®) = gr®) =0.

(4.143)

From Corollaries 4.1.2 and 4.1.3 and from (4.24), we deduce the sought coefficients

ag,, =3, ag,, =1, and sg,, =1, (4.144)
and the bubble-dependent degree of gluings of bubbles with K3 3 toroidal boundary
is defined as

0Ky, (G) = 3(1 + b(G)) — Do(G), (4.145)

itis positive and vanishes for maximal configurations, which we want to characterize.
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Fig. 4.15 Bridgeless dominant maps with two fundamental cycles

We know focus on characterizing the full set of maximal maps of S(Bk, ,, Qopt)-

Because of (4.141), the first constraint in (4.143) is equivalent to L(I'? UTW) =0
for all i # j which from (4.141) leads to the system

LA+ L) =L@),  LOD)+LEP)=LI).  LEP)+LEY) = L),

(4.146)
whose solution is
2Ly =2L(?) =2L(®) = L. (4.147)
We now study the case L(I') = 2, for which (4.147) rewrites
LDy =L@r?®) =LTr®) =1, (4.148)

and identify the bridgeless solutions. There are three distinct cycles Cy, C,, C3, one
for each color, but only two independent cycles. It means that every cycle is the
symmetric difference of the other two. I' thus has the structure of a Theta graph, i.e.
two nodes with three segments between them (middle and right of Fig.4.15). Each
segment must be part of two cycles, meaning that the edges of a segment all have the
same couple of colors. Bipartiteness and the structure of the white vertex prevent any
map from having a chain with more than two consecutive edges with the same couple
of colors. Therefore, each segment has one or two edges, with the same colors. The
allowed maps are thus restricted to those shown in Fig.4.15.

We now prove by induction on the excess L that any map I" which has no submap
homeomorphic to one of those of Fig.4.15 and which is not a tree verifies

3
3L(T) — 2ZL(F<">) >0, (4.149)

i=1

and is therefore not maximal. We saw that this property is true for L(I") < 2. We now
consider L > 2andI" € S(Bg, ,, Qopt) such that L(I") = L. From Proposition 4.2.1,
all edges which are not bridges are such that |Z,(e)| = 2. Let ¢;; be one of them,
with colors {i, j}. It is not a bridge in any of the two monochromatic submaps it is
contained in. Let us unhook that edge, which leads to a map I'" with

3 3
L(OIM)y=LT)—1, and ZL(F“”) - ZL(F(i)) -2, (4.150)
i=1 i=1
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Fig. 4.16 Size one submaps

so that

3 3
3L(r) —2 Z LTy =3L(") -2 Z LIy —1. (4.151)

i=1 i=1

As e;; is not a bridge in 'Y and I'Y, the edges e, e incident to the same
white vertex are not bridges respectively in ' and I'V). Indeed, ¢;; belongs to
two distinct cycles, one containing e;; and whose edges all contain the color i and
one containing e and whose edges all contain the color j. Let us denote those
two cycles C; = (ejk, ..., €;;), and C; = (ej, ..., €;;), and el{j the first edge they
have in common (which might be ¢;;). Then the concatenation of the two chains
(eik, ..., el’.i) C C; and (e j, ...el/.j) C Cj, with el{j excluded, is also a cycle in I"'. This
implies that e;; and e are not bridges in I'". Furthermore, ¢;; is now attached to a leaf
in "', so that e; and e i are respectively bridges in I and I'"). When unhooking,
say, e;; from its black extremity, we get a map I'” such that L(I'"") = L(I'") — 1 and

SO LDy =37 LD — ¢, with € € {0, 1}. It comes that

3 3 3
3L(T) — Z LMDy =3La") -2 Z LDy —1=3LT") -2 Z LI"Dy42(1 —¢)

i=1 i=1 i=1

3
> 3L(M") —2) LI"Y).  (4.152)

i=1

Notice that T'” is not a tree as L(I') > 2 = L(I'”) > 0. Moreover, unhooking e;;
and e;; cannot create a submap homeomorphic to one in Fig.4.15. The induction
hypothesis thus applies to I'” from which we conclude that 3L (") — Z?:l L) >
0.

The submaps of Fig. 4.15 cannot be arranged in any possible way. In order to satisfy
the second constraint of (4.143), a bubble is locally as in the six cases pictured in
Figs.4.16 and 4.17. Indeed, it is clear for big Theta submaps, as a color-i submap
around a black vertex is just a collection of embedded cycles sharing a black vertex
(a “rosette””) which is planar because g(I''") = 0. Concerning small Theta submaps,
suppose that around a black vertex, an edge e' of a small Theta submap © is between
two edges e, and e, of some other small Theta submap ®,. These two edges share
acolor, e.g. 1. As g(I'V) = 0, 'V is locally as a planar rosette with tree insertions
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Fig. 4.17 Size two submaps

Fig. 4.18 This is an example of a maximal map

(which we don’t need to worry about). If ¢! also has color 1, the other edge of ©, has
to be in the same part of the plane delimited by e, and ¢, in I'" as e'. Applying this
to the three pairs of edges of ®,, the three edges of ®; cannot intersect an edge of ®,,
so that Theta submaps are as in Fig.4.16. If ¢! does not have color 1, then ®; and ®,
should be as in Fig.4.16. As a consequence, a maximal map I" of S(Bk, ,, Q2qpt) has
its monochromatic submaps planar and is a T-tree-like family (Sect.4.2.6), where T
comprises the maps obtained from Figs.4.16 and 4.17 by putting a trivial G = 1 for
each G.

As explained in the section detailing tree-like families, there is a simple bijection
with trees with 3 kinds of valency 3 vertices and 3 kind of valency 6 vertices. It maps
the example in Fig.4.18 to a tree with respectively (5, 1, 1) vertices coming from the
(left, middle, right) of Fig.4.16, and (2, 1,0) vertices from the (left, middle, right) of
Fig.4.17. The bijection extends to non-maximal maps by forbidding the patterns of
Figs.4.16 and 4.17.
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To count maximal maps, we decide (in the colored graph picture) to mark a color
0 edge such that its white extremity is the color-3 edge of the optimal pairing, or
equivalently, in the map picture, to orient a color 12 edge from a black vertex to a
bubble. The generating function of maximal maps rooted in this way and counted
according to their number of bubbles satisfies the tree relation

G(z) = 14+326(2)* + 32°G(2)°. (4.153)
The generating function for any marked color-0 edge is recovered by replacing z

with 3z. We computed the solution to this equation in [13]. It satisfies G(0) = 1 has
the square-root expansion

G@ =c—ayl—z/zc+ 01 —z/z) (4.154)

which characterizes tree-regimes, with critical exponent v = 1/2. We can compute

1
Ze= — [164 + \/2 (1334 —939528/2/Q + 9 22/3 Q)

~ 162
2
— 122668 +939528v/2/0Q — 9 22/3Q + 219784 ]
J ( /e ¢ \/1334 —939528v/2/Q +9 22/3Q>
~ 0.0144 (4.155)

where O = \71293487«/ 377 — 7870587 and
c~3.14604 , a=0.378154 (4.156)

can be given only numerically as they involve sixth roots.

The other order 6 bipartite bubbles in D = 3 are all melonic, and therefore are
cut-bubbles (Definition 4.1.4) in every maximal map, when building the bijection
with optimal pairings. There are three 1-cyclic bubbles, and three other melonic
bubbles (similar to that on the left of Fig.4.19, which only differ by the coloring. The
generating function of D = 3 hexangulations with one marked color-0 edge counted
according to their number of bubbles therefore satisfies

G(z) = 1 +272G(2)° +92°G(2)°. (4.157)

4.3.3 Sextic Bubblesin D = 4

In this section, we characterize maximal maps for every size 6 bubbles in dimension
four. The critical behaviors obtained are the same as for the size 4 interactions in
D =4
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4.3.3.1 Simple Examples

The order 6 bipartite bubbles in D = 4 include two kind of melonic bubbles, the
1-cyclic ones (4 different colorings) and the kind on the left of Fig.4.19. When
building the bijections with optimal pairings, melonic bubbles are cut-bubbles (Def-
inition 4.1.4) in every maximal map. There is a 2-cyclic bubbles of size 6, which
maximal maps have been characterized in Sect.4.3.1. There is a bubble obtained by
adding edges parallel to an optimal pairing of the K3 3 bubble, shown in the middle
of Fig.4.19. Because of Proposition 4.2.4, we know that trees are the only maximal
maps. For this bubble, the coefficients a, a, and s, are respectively 5, 7/3, and 1, and
the bubble-dependent degree is defined as 6 = 4 + 5b — @,.

Then, there are the bubbles as on the right of Fig.4.19. They contain a 3-pair,
and we can therefore proceed as explained in the section on large A-pairs. When
contracting the 3-pair of a bubble B¢ of this kind, a 2-cyclic bubble By of size 4 is
recovered. From (4.41), (4.43) and (4.44), we can deduce the coefficients a, a, or s
from those of B4, which are 2, 5/2, and 1; obtaining 5, 8/3, and 2. On the example
of Fig.4.19, we choose an optimal pairing €25, e.g. the one which pairs the vertices
linked by colors 3 and 4. This induces an optimal pairing 25, of By (here it is
obvious, however we have proven it in Lemma 4.2.1). We know that maximal maps
in S(Ba4, Q2p,) are planar combinatorial maps, with edges carrying color 2 and 4. To
recover the maximal maps in S(Bs, 25,), we need to add a white vertex on each
edge, and a color 2 bridge between this edge and some other maximal component.
There are 2 ways of doing so, as there are two sides on the color 24 edge. For the
counting, we root maximal maps at a color 24 edge oriented from a black to a white
vertex. A maximal map of S(Bg, 25,) decomposes as a non-separable (4.131) planar
map of color 34 containing the root, with one generating function per black corner
and one generating function per edge, that can be added in two possible ways. The
generating equation of maximal maps in S(Bg, 25, ), rooted as stated, and counted
according to their number of bubbles therefore satisfies

G(z) = P(2zG(2)%), (4.158)

where P is the generating function of non-separable rooted planar maps, counted
according to their number of edges. The critical behavior is expected to be that of

Fig. 4.19 Order 6 melonic and non-melonic bubbles, and a 2-cyclic bubble with additional 3-pair
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planar maps. The treatment is similar when considering all kinds of colorings of
this bubble together, leading to a relation similar to the one obtained for D /2 cyclic
bubbles of different kinds (4.130).

4.3.3.2 A Size 6 Bubblein D =4

We consider the bubble B in Fig.4.20. It has four different optimal pairings, among
which Q = {(a, a"), (b, V), (c, )} (®o(B?) = 8), which we choose to build the
bijection. It satisfies the conditions of the bijection of Theorem 3.3.4, and we therefore
study the corresponding bipartite maps, which edges have color sets 23, 34, and 234.
White squares have valency 3, and the cyclic ordering of edges around white squares
is given by color 3, which appears on every edge, and is (es4, €23, €234) (A color-3
edge oriented from black to white is a counterclockwise corner around a white square
vertex). Using Proposition 4.2.2, as edges have D /2 colors or more, trees belong to
maximal maps, and according to Corollaries 4.1.2 and 4.1.3 and to (4.24),

7
ap=4. ap=7. and s5=2, (4.159)

where we used ®(B) = 10. Again, the bubble-dependent degree is defined as
05(G) =4 + b(G)) — Po(G). (4.160)

We wish to characterize other maximal maps. We could study directly the excess
and genus of bicolored submaps, as done in [16]. However, there is a simpler way
of solving this example by noticing that there is a 4-cut of edges with 4 different
colors. The bubble is therefore the connected sum of two necklaces, which we denote
B and B, (Fig.4.6). Note that regarding our choice of pairing, it is color 3 which
is never included in the pairs, and which plays the role of color 1 in the section
on 2-cyclic bubbles Sect.4.3.1. We apply results from Sect.4.2.4 on bubbles which
are connected sums of two smaller bubbles (we could have derived the coefficients

34

o

234

23

Fig. 4.20 An order 6 bubble, and the corresponding vertex
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34 34

234

23 23

Fig. 4.21 Splitting each bubble into two necklaces

a, a, and s from (4.67), (4.68), and (4.69). From a map in S(B, 2), we recover a
map of S(By, By, 21, ;) by performing the operation of Fig.4.21 on each white
vertex corresponding to a bubble. We obtain maps with edges either carrying color
set 34, or 23, and such that there is a partition of the edges in pairs of edges sharing a
corner, with counterclockwise order 34, 23, and with the same 0-score. Conversely,
any map satisfying this property gives back a map in S(By, B,, 21, ;) with the
same 0-score. We know that the O-score of a map in S(By, B, 21, £2,) is maximal
iff the map is planar, and such that there is no cycle with both an edge 34 and an edge
23. The set of maximal maps in S(B, €2) is therefore the preimage of the subset of
maximal maps in S(By, Ba, €21, £2,) for which there is a partition of the edges in pairs
of edges sharing a corner, with counterclockwise order 34, 23. Indeed, such maps
exist, and the 0-score of such a map in S(By, By, 1, €2) is higher or equal to that
of any other map in S(Bj, By, 21, €2») such that there is a partition of the edges in
pairs of edges sharing a corner, with counterclockwise order 34, 23. In particular, it is
strictly higher than the O-score of the images of maps in S(B, €2) which do not belong
to maximal maps in S(By, B,, 21, 2,). We do not count maximal maps explicitly
here. However, the characterization of maximal maps is very close to that of 2-cyclic
bubbles in D = 4. More precisely, it corresponds to the case \| = Ay ( = 1) in
(4.133), with a hard dimer configuration on the color-0 edges: in the colored graph
picture, the color-0 edges resulting from the pair insertions on the edge-cuts inside
each bubble can be thought as occupied. Here however, every bubble should be
incident to a dimer, and dimers can only link the two different 2-cyclic bubbles. The
a = 1 case in (4.133) leads to a tree behavior v = 1/2, and coupling the system to
hard-dimers is expected to lead to a tree-like behavior, or, if the system is fine-tuned,
to multi-critical behaviors v = %

4.3.3.3 Another Size 6 Bubblein D = 4

We consider the bubble B on the left of Fig. 4.22. It has four optimal pairings, and we
choose Q = {(a, a’), (b, b'), (c, c")} (Po(B%) = 8) to build the bijection. It satisfies
the conditions of the bijection of Theorem 3.3.4, and consequently we focus on the



188 4 Properties of Stacked Maps

234 134

c b

Fig. 4.22 An order 6 bubble, and the corresponding vertex

corresponding bipartite maps. The simplified vertex is shown on the right of Fig. 4.22:
the edges have color sets 12, 234, and 134, white squares have valency 3, and we do
not embed these vertices, as all colored cycles of B, are of length 1 or 2. Here we
cannot use Proposition 4.2.2 directly. However, the trick here will be to notice that
deleting the edges of color 4 in the colored graph we recover the K3 3 bubble, and to
use the results of Sect.4.3.2. We know that when picking any two colors in {1, 2, 3}
orin {1,2,4}, (4.141) is satisfied. The quantity L(7 U 7)) does not depend on
the chosen spanning trees, and we denote

L) = L) — L") — L(I'Y). (4.161)
In particular, we will use the two following properties:
L) = L) + LY, (4.162)

foranyi # j € {1,2,3,4};and fori # j € {1, 2,3},

both '@ and ') but is not a cut-edge in T

LU(F) -0 = |:There exist some edge in I" which is a cut-edge in j| ) (4 163)

As edges containing color 3 or 4 are the same edges, '® = I'®  Using that L(I'®) =
L(I'®), we rewrite the part of (4.47) depending on the excesses

4L(T) =2 24: LYy =2L(T) +2L55(T) > 0. (4.164)
i=1
From Corollary 4.2.3, trees are maximal, and other maximal maps satisfy
Lz=Ly=0, and Vi, g =0. (4.165)
From Corollaries 4.1.2 and 4.1.3 and from (4.24), we compute

=4, ap=2, and sg=2, (4.166)
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where we used @ (B) = 8. The bubble-dependent degree is defined as
05(G) =41 + b(G)) — Py(G), (4.167)
which from (4.54) rewrites
0p(G) = 2L(T) 4+ 2L5(T). (4.168)

We focus on characterizing the other maximal maps. There are two cases. If in
addition L7 = 0, then (4.146) is satisfied for colors 1, 2 and 3, and we know from
Sect.4.3.2 that the map is a maximal map of S(Bk,,, Qopt), 50 We know how it is.
If not, Liz(I") > 0, which means that there exists an edge e which is not a cut-edge,
but is so in both T'" and I'®. Unhooking e, we obtain a new diagram I, such that,

LT)=LM)—1, LY =L@"), and LTP)=LT?). (4.169)
Using (4.162) and (4.165),

0<LT)—LOM) — L@ =L@)—1-L@D) =L@ =L@ —L@P)—1.
(4.170)
Furthermore, L(I'®) — L(l"f)) is O or 1, but the first value contradicts (4.170), so
that
LT =L@®) —1, 4.171)

so that I' is obtained from I', by hooking an edge of color i34 to create a cycle
such that I'® = I'® stays planar, and such that it is a cut-edge in '), We still
have L(I",) > L(l"él) + L(ng)) = L(T'D) + L(I'®), so there are two cases. Either
L(T,) > L(T'Y) + L(I'?), in which case we repeat the same steps, either L(I",) =
L(T'(V) + L(I'?),in which case I, is a tree. From this tree, I is obtained by hooking
a certain number of edges i34 so that every edge of color 12 stays a cut-edge and
such that the overall map remains planar.

Maximal maps are quite similar to that of the example in Fig.4.19, with the
difference that the tree part has three valency 3 vertices and three valency 6 vertices.
We root maximal maps at a color 134 or 234 edge oriented from a black to a white
vertex. We denote G the generating function of maximal maps in S(B, ), rooted
as stated and counted according to their number of bubbles. There are two cases. In
the first case, the root is either a bridge of color 134 or of color 234, and it belongs
either to one of the three degree 3 vertices or to one of the three valency 6 vertices.
The contribution is 6zG(z)? + 622G (z)°. In the other case, the root is not a bridge,
in which case it belongs to a non-separable planar map of color 34 containing the
root (4.131), and we need to add one generating function per black corner of the
non-separable component and one generating function per edge - corresponding to
the color-12 bridge - that can be added in two possible ways. Indeed, a white vertex
is added on every edge, and a color-12 bridge is added between that white square
and a maximal submap, and there are two ways of deciding which one of the two
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color 34 segments has color set 234 and which one has colors 134. The orientation
of the color 34 root edge translates into an orientation of either the color 234 edge
or the color 134 edge, so that the two orientations coincide and so that the edge is
oriented from a black to a white vertex. If P is the generating function of rooted
non-separable planar maps counted according to their number of edges, this second
possibility contributes as P (21@3). It generates a tree part 2zG> which has to be
subtracted from the overall tree part. The generating function G therefore satisfies

G(z) = P (226°) + 42G(2)* + 62°G(2)° 4.172)

We have counted maximal maps of S({B, Bmelo}, S0ptp) in [13], where By is
a l-cyclic bubble of size 6. We denote A the corresponding counting parameter
and ¢ the parameter counting the total number of edges. Adding the melonic bubble
simply modifies the cubic term

G(2) = P (21G%) + 4MG(2)° + 617G (2)", (4.173)
where A = 4 + \3. The explicit system of equations is

2(F1) = u(l —u)? (4.174)
F=Q0@u+D1—-u)+ % (u(1 —u)®) + %uz(l -t (4.175)

The solutions are roots of polynomial equations of order 16. The system becomes
singular when the Jacobian vanishes,

det 613 F2 2(1 —w)u — (1 — u)? .
¢ 1 =Bu(l—w*+6ul1—u) =21 —w?+2u(l—u) =30 —w)+3u+1) "

The critical coupling is positive for the non-melonic interaction but negative for the
melonic part,
10 19683

A= —— 1A = 4.176
g+ )=S0 (4.176)

Expanding the generating function around the singularity for A = )\, gives

1 4 1 4 2 2
F(t,A) = % - %133(1 —1/1:(A))3 + O —1/1:(\)) (4.177)

with the critical exponent 2/3 characterizing the proliferation of baby universes. For

A > A, explicit results are difficult to obtain since higher order roots are involved.

For A < A, the series expansion at the critical point 7, | = % is
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F
20

A=-

n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 n n n 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Fig. 4.23 Generating functions G(¢, \) for A = —7, —6, ..., 7, 8 and for A = A.. The purple curve
shows the loci of planar critical points valid for A < A, while the magenta curve indicates the critical
points of the tree regime for A > A,

F. ) = 2166 +9) (9>\+62)(9>\+166)< . )

243 243(9\ + 10) oty

V209X + 166)° r\? t
O + 166) (1 - —) +0 (1 - —) (4.178)
—3(9\ + 10) e le.1

At A3 = 0, the behavior is tree-like. The results are shown in Fig. 4.23.

4.3.4 Gluings of Bi-Pyramids and More

We consider the bi-pyramidal bubbles which decompose into two pyramids with a
2 p-gonal basis (left of Fig. 4.24). The dual colored graphs are shown in the middle of
Fig.4.24. The case p = 2 corresponds to the octahedron of Fig. 2.24. The octahedral
bubble (bottom left of Fig. 2.24) has three optimal pairings, which are defined by
choosing all edges of a given color, 1, 2 or 3. Whatever optimal pairing we choose
to build the bijection, it therefore has three maximal unicellular maps, and we know
from Sect.4.2.6 on tree-like families, that the tree-like maps obtained by gluing those
unicellular maps in a tree-like way have the same 0-score as trees. We will show that
they are the only maximal configurations. Bi-pyramids of bigger size have a single
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Fig. 4.24 A bi-pyramid with 16 facets, the dual colored graph By, and W(By, Qopt“) without
colored vertices

optimal pairing, defined by the color-3 edges in Fig.4.24. We will show that when
building the bijection with this pairing, trees are the only maximal maps.

We consider a bi-pyramidal bubble B, with 4p vertices, p > 2, and the optimal
pairing Q" defined by the edges dual to the 2p-gonal basis, which we take to
have color 3. We consider a simplified version of the map W (B,, Qqp”) with no
degree-two colored vertex and no colored leaf, as shown on the right of Fig. 4.24. We
suppose that I' € S(B,, Qop”) is a maximal map, and we first focus on a particular
bubble W(B,, Q2p”). Let e be an edge incident to it. Because I' is maximal, from
Proposition 4.2.1, either it is a bridge, either Z,(e) = 2 (it cannot be 3 as I'® is a
collection of star-maps). From Proposition 4.1.1, if e is not a bridge, unhooking it
leads to a connected map I, with

Dy(T,) = Op(I") — 1. (4.179)

The edge e satisfies the following property:
Pl . Ifeisabridge, then all edges incident to the same bubble are also bridges.
Indeed, we consider the edges ¢; and e, as on the left of Fig.4.25. As e is a
bridge, Z,(e1) and Z,(e,) are both smaller or equal to one. As I' is maximal, from

Proposition 4.2.1, e; and e; are both bridges. By induction, we obtain (P}). We now
suppose that e is not a bridge. It satisfies the property.

Fig. 4.25 In a maximal map, the edges e, ¢; and e, form an edge-cut
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733 . Unhooking e, e; and e, raises the number of connected components

Indeed, if (7762) is not satisfied, we first unhook e, obtaining I, with (4.179). But
in Iy, Z;(e;) and Z,(e,) are both smaller or equal to one, and this is still the case for
e, after unhooking e;. Unhooking both edges leads to a map I'” with

Qo(I'") = @o(T,) + 6 — 2Ia(e1) — 2Tn(e2) = Po(T) +2 > Po(I'),  (4.180)

which contradicts the maximality of I'. We remind that a k-bond is a minimal edge-
cut comprised of k edges, i.e. a set S of edges such that unhooking all of them
disconnects a connected graph into two connected components while unhooking the
edges of any proper subset of S does not. The property (Pez) implies that {e, e, e»} is
an edge-cut, and therefore either it is a 3-bond—middle of Fig. 4.25, either it contains
a 2-bond—right of Fig. 4.25 (the blobs represent connected components). In the first
case, unhooking e and then e, we obtain a connected map I'" with

Qo(I'") = Po(I,) + 3 — 2Tn(e1) = Po(Te) + 1 = Do(I). (4.181)

The equality cannot be strict as I' is maximal, and therefore I'" is a maximal map
and e is a bridge, so from (P/), all the edges incident to the bubble in '’ are bridges.
There are 2p > 4 edges incident to the bubble so that there is at least one another
edge e4, which is a bridge in I'” and therefore was also a bridge in I" since unhooking
e and e; did not affect this. From Pel, {e, e, e;} cannot be a 3-bond. In the second
case, suppose that {e, e;} is a 2-bond. We first unhook e and then ey, as it is not a
bridge in I",. This leads to a connected map I'" for which (4.181) is also true. As
previously, it is an equality, which means that all the edges incident to the bubble
are bridges in I'’. The only possibility not to arrive at a contradiction is that there are
only four edges incident to the bubble. Therefore,

Lemma 4.3.1 For p > 2, the only possibility in a maximal map is that all edges
incident to a bubble are bridges. For p = 2, the three possibilities in Fig.4.26 are
allowed, which correspond to the three optimal pairings.

In the case of a bi-pyramidal bubble B, with p > 2, it implies that maximal maps
of S(B), Qopt”) are trees. However we have proven something even stronger:

M, b b M,

Fig. 4.26 Edges incident to a bubble are either bridges, or form 2-bonds of this sort
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Corollary 4.3.1 (B, Qop”’) satisfies the cut-bubble property (4.37): whatever the
set B of bubbles containing B,, a bubble V(B,, Q") in a maximal map of
S(B, Qopt]B) is a cut-bubble, i.e. all incident edges are bridges.

The 0-score of an optimal pairing of B, is ®y(B?) = 4p, so that from Corollar-
ies 4.1.2 and 4.1.3, for p > 2,

ag, =4p—3, and sp =1, (4.182)
and the appropriate bubble dependent degree is, for I' € S(B,, Qopi”),
5Bp(1") =3+ @p—-3)b() — Oy(I). (4.183)

Computing
®(B,) =2(p+ 1), (4.184)

we deduce from (4.24) the coefficient a,

ag, = (4.185)

| W

1
4p’
and therefore, if G is the colored graph corresponding to I', the correction to Gurau’s
degree (Definition 2.3.11) is

S6ur(G) = 35,(G) 1

VG -4 (4.186)

Notice that the optimal covering of a bi-pyramidal bubble has a planar jacket. From
Proposition 2.3.6, it therefore represents a 3-sphere. Applying Proposition 4.1.1 on
the topology of trees, maximal gluings of bi-pyramids with p > 2 have the topology
of the 3-sphere. For p > 2, we denote G, the generating function of rooted maximal
configurations of S(B,,, Q.p”") counted according to their number of bubbles,

G,(2) = 1+ 2G,(2)*". (4.187)

4.3.4.1 Gluings of Octahedra

We now focus on the case where p = 2. We have just proven that in a maximal map,
edges incident to a bubble are as in Fig. 4.26. We denote Sy, the set of maximal maps
in S(B>, Qoptz), and call face of a stacked map a face around one of its bicolored
submaps. We prove the following property:

Lemma 4.3.2 In a maximal map, two edges incident to a bubble and forming a
2-bond are incident to the same black vertex.
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Proof Indeed, an edge might either be a bridge, or be part of a 2-bond connecting a
black vertex to a bubble (i.e. minimal set of two parallel edges), or neither of these
two kinds. We denote p(v) the number of the last type of edges incident to the black
vertex v. They can be part of 2-bonds incident to different bubbles and k-bonds for
k > 2. We now prove by induction that for a maximal I", p(v) = 0 for any black
vertex v. This way, the edges in I € S, around black vertices are either bridges or
form 2-bonds incident on the same bubbles.

For some black vertex v, the p(v) considered edges (ey, ..., e,()) form an edge-
cut, since the other edges attached to v are all either bridges or pairs of edges that
form 2-bonds. Let p, < p; < ... be the numbers of edges in each bond of the unique
decomposition of the edge-cut (ey, ..., €pw)).

Notice that there are no bridges in the bond decomposition of (ey, ..., e,)), as
we excluded them by definition. Therefore p(v) = 0 or Va, p, > 1. In particular,
ey is always part of a k-bond with £ > 1 and p(v) = 1 is impossible.

Let us look at the case p(v) = 2, i.e. two edges e; and e, which form a 2-bond
but reach two different bubbles. From Lemma 4.3.1, we know that to each of them
is attached another 2-bond which does not contain e; or e,. We denote them ( f1, f>)
and (gi, g2) as in the left of Fig.4.27 (note that the case in Fig.4.27 is the most
general case for which (ej, #) and (e,, hy) form two 2-bonds). From (4.179), after
unhooking e;, one obtains I'" with one face less than I' and in which both e; and e,
are bridges. This implies that f; and g, are bridges in at least I or I'"®, so that
unhooking them both brings two additional faces (according to Proposition 4.1.1).
One thus obtains a new element I'” with more faces than I, which is impossible.

Now suppose that for ¢ > 1, it is proven that I' € Sy,,x has no black vertex v for
which 1 < p(v) < ¢, and let T’ € Sy, with p(v) = ¢ + 1 for some black vertex v.
Since e is not a bridge, I'” obtained by unhooking e; has one face less than I'. From
Lemma 4.3.1, ¢, is incident to a bubble to which another pair of edges (fi, f>) is

Fig. 4.27 On the left is a map with p(v) = 2 and on the right one with p(v) = k > 2 for some
black vertex
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attached and form a 2-bond as shown on the right of Fig. 4.27. After detaching e;, we
may also detach one of these edges, e.g. fi. As e is unhooked, f; is now a bridge in
either I or I'"®. Let us choose the case I'"® as in Fig.4.27. Since I' € Spax» fi
was not a bridge in I'") and had two distinct incident faces of color 1, and this is still
the case after unhooking e; (because e; and f; belonged to two different connected
components in I'™"). Unhooking f; therefore gives a graph I'” with one more face
than I'’, hence ®¢(I'") = ®o(I") and I'” € Syax. However I'” has a vertex v with
p(v) = g which contradicts our hypothesis. Notice that if p(v) =3 in I with the
edges ey, ey, e3 forming a 3-bond, then e, and e3; cannot be incident to the same
bubble (else they would form a 2-bond). This ensures that p(v) =2 in I'” (as the
quantity p(v) counts 2-bonds if their edges are not incident to the same bubble). This
concludes the induction. ([l

Definition 4.3.1 Assume that the edges incident to a bubble form two 2-bonds like
in Fig.4.26. The vertical cut of the bubble consists in removing the inner edges of
color a of the bubble which connect both 2-bonds.

Let I' € Syax Without bridges, and thus satisfying the properties Lemmas 4.3.1
and 4.3.2 without bridges. The vertical cut of I' is obtained by performing the vertical
cut of each bubble. It leads to amap VI" which has a single black vertex per connected
component. We say that I is planar if VI is a planar map.

Lemma 4.3.3 If T’ € Sy without bridges, then T is planar.

Proof From Lemmas4.3.1 and 4.3.2, we know that a bubble in I' € S;,,x without
bridges is adjacent to exactly two distinct black vertices, and the vertical cut of the
bubble separates I" into two connected components,

(4.188)

In the map I'“), one deletes the inner edges of color b, and the other way around for
I'® InT@ the edges e; and e4 are merged into a single edge, as well as e, with es,
while in ['® | the edges e; and e, are merged into a single loop, as well as e3 with ey.
This turns the edges incident to the bubble into a pair of parallel edges in ') and a
pair of loops in ['®,

w0 - (000

(4.189)
From Euler’s formula, the number of faces of I'¥, ¢ = 1,2 is

Oo(I') =2b — V 4+ 2(k'© — g, (4.190)
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where we have used the fact that the number of edges of ') is 2b (b the number of
bubbles) and the number of vertices of I'“) is V the number of black vertices of T".
Moreover, k©), g© respectively denote the number of connected components and
the genus of I'©),

One can easily turn 'V and I'® into planar maps by permuting the order of the
edges around the black vertices. For instance, one can make parallel edges occupy
consecutive corners. This way, when edges are parallel in I''“), they become a pair
of disjoint loops in T'® (and the other way around) and there is no edges sitting
at the corner inside each loop. This permuting of edges around black vertices does
not change the number of connected components of '), but only its genus. This
thus maximizes ®o(I"“)) and it can be concluded that I' € Sy, without bridges has
planar maps 'V and T'®,

Let v be a black vertex in . The faces of ['©, ¢ = 1, 2, can be partitioned as
those which go through v (there are CD(()?} of them) and those which do not (there are

@ffl of them),
Po(I') = ff), + ). (4.191)

Since I'D and '@ are planar, there are well defined notions of outside and inside the
faces which are delimited by either parallel edges or loops. The face which leaves
the black vertex v along the external (resp. internal) side of an edge which is part of
a 2-bond in I'“ comes back to v for the first time along the external (resp. internal)
side of the edge in the same 2-bond,

(4.192)

This property is obvious for ') as one travels outside or inside a loop. With some
abuse of notation, it can be visualized on I' itself, by saying that the external (internal)
face leaving v along e; returns to v for the first time along the external (internal) side
of e,

(4.193)

This shows that there is a bijection between the faces which go through v in ') and
r'® and ) = o).

Let Fo(v)’ be the connected component of the vertical cut of I" which contains v.

For the bubble represented in (4.188), one deletes the inner edges of color a and gets

two loops. In fact each bubble provides the vertical cut with two loops. Therefore,
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Fig. 4.28 A generic example of a maximal map

there is a bijection between the faces of I'g(v) and the faces of ') (and I'® as well)
and thus

Do(I) = @(Fo(v)) + D) (4.194)
At fixed @ffl, one maximizes ®o(I"©) by maximizing ®,(I'o(v)). Since ['h(v) is
a 1-vertex map, this is done by selecting any planar configuration for I'g(v). This
reasoning applies to any black vertex of I' and shows that the vertical cut has to be
planar. (]

Proposition 4.3.1 The set Sy« is defined by the Lemmas4.3.1, 4.3.2 and 4.3.3. It is
a tree-like family with T the three patterns in (4.195) (with empty blobs). The 0-score
of an element T € Sy.x with b(I') bubbles is ©y(I") = 5b(T") + 3.

An example of a generic maximal map is given in Fig.4.28.

Proof Let Sy be the set of elements of S(B,, Q) satisfying the criteria given in
Lemmas4.3.1, 4.3.2, 4.3.3. From those propositions, we already know Sy, C Sp. It
is therefore sufficient to show that all elements of Sy have the same 0-score, &y =
5b6(I") + 3. The criteria of Lemmas4.3.1, 4.3.2, 4.3.3 show that around a bubble of
I' € Sy, I takes any one of the following forms
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(4.195)
where the blobs reproduce the same pattern. In the case where the bubble is incident
to two 2-bonds, one can unhook an edge in each 2-bond. We saw when treating the
general case of bi-pyramids that this led to a map with the same 0-score. Doing so for
all bubbles incident to 2-bonds, the number of faces is preserved and I' is transformed
into a tree for which it is known from Proposition4.1.3 that ®y(I") = 56(I") + 3. I

As trees are dominant, the coefficient a and the scaling are as in (4.182) for

p = 2, as well as the bubble-dependent degree (4.183) and the correction to Gurau’s

degree (4.185). From Corollary 4.2.5 on the topology of tree-like families, maximal

maps also have the topology of the 3-sphere. Denoting G, the generating function of

rooted maximal gluings of octahedra counted according to their number of bubbles.
It satisfies (4.91)

Gr(2) =1+ 326:()". (4.196)

Expanding G»(z) as a power series Go(z) = Y, axz", this is equivalent to the
recursion
ap+1 = 3 Z Ay A, A3 Ay (4197)

ki,ka k3 kg
ki+ky+k3+ks=n

with ap = 1. One finds (1, 3, 36,594, ...). The singularity analysis of G,(z) is
completely straightforward. Singular points (G,.., z.) are solutions of ®(G,, z) =
1-G, + 32@3 =0anddg, ®(Gs,z) = -1+ IZZQS = 0. The second equation gives
=1/ (1293(,) which after being plugged into the first equation leads to G, . = 4/3
and z, = 9/256. Expanding 1 — G>(z) + 3zG»(z)* = 0 around that point gives the
critical behavior

4 [2048
G:22) = 3 _\/ 243 (256 \/% - Z (4.198)

which lies in the universality class of trees. As underlined (4.89) in the subsection
on tree-like families, there is a simple bijection with trees with 3 kind of valency 4
vertices, in which the pattern in (4.195) where a is 1 and b is 2, is replaced with that
on the left of Fig.4.29, and the pattern where a is 2 and b is 1 is replaced with that on
the right of Fig. 4.29. To arrange the blobs A, B, C and D, one has to follow the faces
around bicolored submaps, remembering that corners oriented counterclockwise on
black vertices are, in the colored graph picture, color-0 edges going from a black to
a white vertex. The bijection holds for non-maximal gluings, as long as the patterns
on the right of (4.195) are prohibited. This gives a bijection in which maximal maps
are precisely trees.
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Fig. 4.29 Effective bubbles for the other maximal unicellular maps

Although we obtain the same critical behavior as for bi-pyramids of bigger size,
there is a big difference here: the proof is tedious and relies on the details of the
bubbles. In particular, we have not proven that octahedral bubbles would always
behave as in (4.195) when in a maximal map of S(B, Qp), where B, € B.

4.3.4.2 Gluings of Larger Toroidal Bubbles

In Sect.4.3.2, we studied the example of the K3 3 bubble, which has a toroidal bound-
ary. It is the smallest bubble of an infinite family of bubbles K, of size 2q (¢ > 3)
with toroidal boundaries and with a structure which is very similar to that of bi-
pyramidal bubbles, as pictured in Fig.4.30. The difference is that all three colors
go around the “ribbon”. Pairing every letter with the corresponding primed letter in
Fig.4.30 is an optimal pairing. The stacked map corresponding to the bubble is in
the middle of Fig.4.30. It is easily seen that (Pel) and (PZ) are also satisfied, as they
only rely on the fact that two neighboring edges share a single color. We see that the
3-bond case can only work when there are only three edges, which is the case of the
K3 3 bubble (¢ = 3). The two 2-bonds decomposition can only apply if there are four
edges, which is the case for the corresponding 8-vertices bubbles K4 (¢ = 4, right
of Fig.4.30). For bubbles of bigger size in this family (¢ > 4), the same conclusions

¥

Fig. 4.30 An example of toroidal bubble and simplified stacked map with 2¢ = 14, and example
of simplified stacked map in the case ¢ = 4
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apply, and we are left with trees only. In the case of the size 8§ toroidal bubbles, there
are only two optimal pairings, and we get generalized trees with two kind of valency
4 edges, leading to the equation (4.91)

Ga(z) = 1 4 22G4(2)*, (4.199)

for G, the generating function of rooted maximal gluings of size 8 toroidal bubble
counted according to the number of bubbles. The O-score of an optimal pairing of

K, is d>0(Kf,2°p‘) = 2gq, so that from Corollaries 4.1.2 and 4.1.3,
ag, =2q —3, and sg, =1, (4.200)
and the appropriate bubble dependent degree is, for I' € S(K, Qpi?),
0p,(I') =3+ (2¢ — 3)b(T") — Do(T). (4.201)

Computing
d(K,)) =q, (4.202)

we deduce from (4.24) the coefficient a,
(1 - —), (4.203)

and therefore, if G is the colored graph corresponding to I', the correction to Gurau’s
degree (Defintion 2.3.11) is

Ocur(G) — 0k, (G) _ 3 (4.204)
V(G) 2q

4.3.4.3 Higher Dimensional Generalizations

In dimension D > 3, we consider the bubble BqD shown in Fig.4.31, and denote 2¢
the number of its vertices. We distinguish two cases. If all edges of one of the colors,
say i, belong to the “lateral” (D — 2)-pairs, then this color has been added on an
optimal pairing of the D — 1 dimensional bubble B’ obtained by deleting all color-i
edges. From Proposition 4.2.4, choosing the only optimal pairing of B f , trees are the
only maximal maps. If not, then all colors go along the “ribbon”. Choosing to pair
the (D — 2)-pairs, we obtain the simplified stacked map on the right of Fig.4.31.
Again, it is easily seen that (P) and (P?) are also satisfied. The 3-bond case does
not apply: all colors appear around the only cycle of V(B f, 2) and there are at least
four colors. The two 2-bonds decomposition can only apply if there are four edges
incident to the bubble, which only happens in dimension 4. In that case, we see that
since all colors around the cycle of W(Bj}, Q) are different, the two 2-bonds case
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Fig. 4.31 Bubble representing S* x S', with 2¢ = 16, and simplified stacked map

is also non-maximal. We conclude that higher dimensional generalizations all have
only tree maximal maps.
The 0-score of the optimal pairing is ®o((B”)?) = g(D — 1), from which we
deduce the coefficients @, and s.”
ay=q(D—-1)—D, and s =1 (4.203)

(the scaling is computed trivially from (4.27), as L,, ((B f ) /Q) = 1). The score of the
bubble depends on whether the two same colors appear on the cycle of ¥ (BP, Q):

e if it does, the score is

D—-1)(D-2
@(B{fa) =2+ q%, (4.206)
and the coefficient a is
DD—-1) D-2
b — - . 4.207
Ay q 1 2 ( )

In that case, we see that every (D — 2)-pair is a D — 2 dipole, so that switching
two edges of one of the colors going along the cycle is a flip (Definition 2.3.8),
which does not change the topology and leads to a melonic graph. The topology
of the graph is therefore that of S”. From Proposition 4.1.1, as maximal maps are
trees, they too have the topology of the sphere SP.

e If 3 colors or more go along the cycle of lI/(BqD, 2), then every (D — 2)-pair is
a combinatorial handle (Definition 2.3.9), and contracting it leads to a melonic
graph. From Theorem 2.3.3 the graph represents the connected sum of a sphere
and SP~! x S!, and therefore represents SP~! x S! itself. Because the bubbles
do not represent the sphere, maximal maps do not represent PL-manifolds (Propo-
sition 2.3.4). The score differs from that of the previous case by D — 1,
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D—-1)(D-2
@(be) = q%, (4.208)
and the coefficient a is DD — 1 D
ab, = bpw-h b (4.209)
’ 4 2q

4.4 Fluctuations Around Non-melonic Vacuums

In this section we give an application of the intermediate field representation of the
enhanced tensor models to the study of the sub-leading orders, when trees are the
only maximal maps. By translating the theory around the leading order, we are able
to factorize leading order contributions and isolate the partition function of the sub-
leading orders. It is then possible to study the eigenvalues of the mass matrix and
to show that the leading order describes a stable vacuum of the theory, and that the
effective theory of subleading orders describes a theory of fluctuations around that
tree vacuum.

4.4.1 Leading Order Free Energy and Trees

We consider a bubble B, and an optimal pairing of its vertices g, such that trees
belong to maximal maps. From Proposition 4.1.3 and Theorem 4.1.1, the coefficient
sp as to be taken as follows in order to have a well-defined and non-trivial 1/N
expansion,

sp =1+ pug(D—1) — dy(BLw), (4.210)

where pp = Y2 We denote ®f = ®o(B%). Here, we change the sign M — —M

and M — — M, to have positive signs in front of the interactions, and we choose the
sign of the coupling constant A to have a positive sign in front of the matrix-bubble,
and rescale it by pp. These manipulations are done so that we can compare the
perturbative expansion with combinatorial results. We consider the partition function
of the corresponding intermediate field theory (Theorem 3.6.1),

A NSB Try(T.T) - A ND=0F (A1) Trin(1 ®0 — i) -
Zp(A,N) = els di(T, T)= [ ers dv(M, M),
cb

] ] 4211)
in which dv(M, M) = %e_ Tr(MM) Motivated by results from [17, 18], we do
the replacements

M=x1®P 4+ M, and M= y1®’ + M, (4.212)
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and denote Vl(gk) (M) the sum of the (’k‘) interactions obtained from V(M’) by replac-
ing k copies of M’ with 1®? in every possible way. The partition function then writes

Zg(A\, N) = e_ND(xy_%x"’Ll"(l_y)) /e_Tr(XMu”'M’) (4.213)

A D08 ( u—1p0E-D / =1y, (k) @D _ M —
etiN 6 (xr=I NS P Tr(M )+ ) VP (M) ~TrIn(L I dv M’ W),

Theorem 4.4.1 If trees are the only maximal maps in S(B, Q2) the resulting integral
is subdominant and describes an effective theory on the fluctuations. The large N
free-energy therefore only receives contributions from the exponential factor before
it,

A
Foo =—xy+ —x*—=1In(1 —y), (4.214)
1

where p is the number of pairs of the bubble B, and where a and y are the unique
solutions of the equations

x=-——, and y=Xx""l (4.215)

We identify x with the leading order two-point function, which is also the generating
function of trees with one marked corner, as it satisfies

G, =1+ )\G). (4.216)
Furthermore, for large N, y = O (1) and x = O(1). The partition function becomes

-2
A A ~ _ ;

Zp(\, N) = e N F / exp[fND_q)g vy ) - Trin(® — xM')i|dV(M’, M,
H k=0

5 (4.217)
where we have denoted In(1 — o) = In(1 — @) + .

Proof We first prove the large N behavior of x and y. On one hand, < Tr M >=
xNP+ <TrM' >and < TrM >= yNP+ < TrM' >, and < Tr M’ > is at most
in N?. On the other hand, we can compute explicitly their first order in N. Indeed,
at large N, < Tr M > only selects dominant maps with one marked black leaf. In
particular, they scale at N2, so that y = O(1). Similarly, at large N, < Tr M >
selects only trees with one additional bubble of valency one. It therefore has one
more propagator than usual dominant maps, which does not change the factor N, so
that < Tr M >= O(NP), and again x = O(1).

We now focus on the fluctuation theory. Making the choice (4.215), two cancella-

/

tions occur: the term T2 coming from the logarithm is cancelled by the —x Tr M’

I—y
term, and the terms from Vgt_” which are of the form Ax*~! Tr M’ are in turn
canceled by —y Tr M’. The interactions are either Vp, either terms of the sum

2 k=0 Vfgk) (M'"). Regarding the number of faces, the latter behave as if the matri-
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ces which have been replaced with identity factors were leaves. The maps of the
fluctuation theory therefore have at most as many faces as dominant maps of the
initial theory. The assumption that dominant maps are trees also applies, so that a
dominant map of the fluctuation theory should be a tree, which must have at least

one leaf. There might be two kind of such leaves, the Tlr;v’ term and those of the form

of the form Ax*~! Tr M’, which have both been cancelled. The fluctuation integral
therefore generates no tree, and therefore is at most of order O (NP . O

The change of variable only extracts trees. In the case where trees are not the only
maximal maps in S(B, Q2p), he resulting integral is not subdominant. The previous
result generalizes for the partition function of a family of interaction B,

AB nsp i B Ap yD—of _ ®D_ )
Zp(0N) :fD eZBe]B N TrB(T,T)dM(T, Ty = /EZBEJB N Vg (M)—TrIn(1 M)du(M, i),
C
(4.218)
Changing variables, it becomes
A
_ND _ 2B B 41n(1—
230 N) = ¢V pen GRlB (1) (4.219)
o AB D08 1B kv, () o
X/e—Tr(xM +y M)+ per g N0 Bk (M’)—Trln(]L@’D—m)dV(M,,M,).

Theorem 4.4.2 [ftrees are the only maximal maps in S(B, Qp), the resulting integral
is subdominant and describes an effective theory on the fluctuations. The large N
[free-energy therefore only receives contributions from the exponential factor before
it,

A
Fooo=—xy+ Y —x —In(l - y), (4.220)
BeB

where |ip is the number of pairs of the bubble B, and where x and y are the unique
solutions of the equations

1
v=o—" and y= Z Apxhel, (4.221)
-y BeB

We identify x with the leading order two-point function, which is also the generating
function of trees with one marked corner; as it verifies

Gr=1+ AsGl". (4.222)

BeB

Furthermore, for large N, y = O (1) and x = O(1). The partition function becomes
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1 1
N
) -y
4 4
3 3
23— S~ 2
1 1
Fig. 4.32 Quadratic partial trace and corresponding contraction operator
D Ap B2 -
Zga Ny =V fxaz,oo@)/exp[zv[’ > g Y v e~ TP 7xM/):|dV(M’,A7I/).
BeB ugN 0 k=0
(4.223)

4.4.2 Effective Theory of Fluctuations: Pruning and Schemes

The Feynman diagrams of the perturbative expansion of the effective theory of fluc-
tuations

N g FB72 N _ _
z$ O\, Ny = /exp[ND > qu > VP ) - Trina®P — xM/)]du(M’, M.
Ben HBNTO (o

(4.224)
are similar to that of the full theory, which are stacked maps in S(B, Qp), with the
difference that there are no tree contributions: they are obtained from the elements
of S(B, Q) by the pruning procedure described in Fig. 3.27. Instead, the generating
function x of rooted trees is added on every corner around the black vertices generated
by the logarithm (corresponding to color-0 edges in the colored graph picture). In the
case where a tree contribution was attached to a white square of the bubble W (B, Q5),
it has been pruned, and the “leaf” incident to the bubble which is a remainder of the
pruned tree—the x1®? insertion—also carries a generating function x.

We now focus on the quadratic terms in the equation. In (4.224), the quadratic
terms are either — Tr M'M’, either +"—22 Tr(M'?) from the logarithm, either terms in

Vg’”_z)(M/). The latter are obtained from Vg by inserting pp — 2 identities, thus
leaving only two copies of M’, and are of the form

NP -2PHI Ty [Tr (M), (4.225)

where T = [1, D]\ I, I being the set of crossing colors. This is pictured on the left

Qf Fig.4.32 for Tr3[Troq (M ")2]. The contribution of these terms to the quadratic part
is
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A - -2 -
NP SN 2B g2 D gy 2 NP Y 2B g2 N gl Ty (Tp ()]

[
BeB g N0 pen 1B P.qeQ

= le Y KNP T [T, (4.226)
X
1

in which p, g are pairs in €2, which is the unique optimal pairing of B (Lemma 4.1.2),
and denoting k; p the number of optimal pairs of B with crossing colors I,

A5
Kig=) 2.5 2B ms. (4.227)
BeB KB

Remark that from Lemma 4.2.2, the sum is for / with no more than L%J crossing
colors. We denote B
= (M', M), (4.228)

and gather all the quadratic terms, and rewrite them using a quadratic operator acting
on H:

— < H;OH >=—Tr M'M' + = Tr(M’2)+ —ZK e NP e [Tep(M)?).

(4.229)
We introduce the contraction operator e; associated to the quadratic partial traces

<M, e;M' >= Tr;[Trs(M)*], (4.230)

with which we can express the operator O introduced in (4.229) and its inverse O~

192D y2c-1

712((:_1 _ 1®2D)

(4.231)
in which 1922 is the N?? x N2P identity 1¥?P = &[; pj, and we have denoted

192D ‘ —x21®2D c—1

C=1%"— 3" K;pN"Pe,. (4.232)

IC[1,D]
<141

The action of the effective theory can thus be rewritten using the operator O:
up—3

_ 1 , ~ _
S[M', M'] = 5 (H: OH) + NP v > VP ') — Triog(1®P — xi1),
BeB k=0

AB

(4.233)
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where lfc;/g has no linear and quadratic terms,

log(1 — z) = log(1 — 2) + z + 22/2. (4.234)

The Feynman diagrams labeling the perturbative expansion of the theory with
effective action (4.233) have no valency one or two vertices. Interpreting the quadratic
terms as part of the propagator and not as valency two vertices, we have contracted
the sequences of valency two vertices as described in Fig. 3.27. By studying the
algebra of the e;, we show in [19] that the propagators in O~ are chain-edges which
carry the generating function of those sequences of valency two vertices. We further
show that for Az smaller than the dominant singularity A%, all the eigenvalues of the
mass-matrix O are positive, so that for Az < A%, the non-melonic tree vacuum is the
stable vacuum of the theory. When A reaches the dominant singularity, one of the
eigenvalues vanishes, and the theory undergoes a phase transition.
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Chapter 5 ®)
Summary and Outlook ez

5.1 Summary of the Studied Building Blocks

In this table, we summarize the results we obtained with respect to the bubbles studied
throughout this work. Given a bubble B, we specify the coefficient ag, which, from
Theorem 4.1.1, is the only value allowing to define a bubble-dependent degree
(Definition 2.4.6) which provides a well-defined (2.55) and non-trivial (2.56) 1/N
expansion. It provides the smallest bound on the number of (D — 2)-cells, which for
the cases we studied is linear in the number of bubbles of the cell pseudo-complex,

n%_5(C) < D +ag x np(C), (5.1)
saturated only for maximal configurations. For non-melonic bubbles, we provide the

corresponding value of ag (2.58), which gives the smallest bound on the number of
(D — 2)-simplices, and the correction to Gurau’s degree:

6Gur _63 _ D(D - ])

Ap =
B % 4

—ag > 0. (5.2)
We also give the unique scaling sp (2.126), which properly defines an enhanced
random tensor model (Sect.2.5.5). We provide the critical exponent g, given by the
critical behavior of the free energy of maximal configurations with one distinguished
color-0 facet near its dominant singularity (2.29) and (2.30). We denote

PB = @, (5.3)
2

which is the number of pairs in the bubble. For D > 3, the third column from the

left indicated the genus (for D = 3) or the degree (for D > 3) of the bubble, and its

topology. By “(sing)”, we mean that the represented space is not a piecewise-linear

manifold. The topology of maximal gluings is indicated in the column “max. top.”.
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The column “section” gives the references to the sections where the corresponding
example is treated. For dimension two, we obtain the following values.

Bubble B size Vg /2 ag ap Ap sB vB top.| section
-20n 1 1 2
P8 P p—1] 1 0 0 -1 82 252
5.1.1 Dimension Three
Bubble B Vp/2 | g(B);B= .. ag ag Ap sB vp | max.top.| section
melonic
p 0; S? 2p—1) 3 0 o 1 S3 234
3 ;72 3 1 1 1 1| oGing) | 432
peven|  0;S2 2p-3 | B L] s 434
p 1,72 2p—3 % S0 3 26ing | 434
where we have denoted the 2-Torus
T° S x S (5.4)
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5.1.2 Dimension Four

213

Bubble B Vg/2 | dcur(B); ag ap Ap Sp B max. section
£ top.
. P 0; 83 3(p—1) 3 0 0 3 st 23.4
melonic
p p—1 20p—1) 2+% 1—% p—1| =1/2;1/2;1/3| s* 3.1
53
3 3; 5 7/3 2/3 1 I ?(sing) | 433
S x S!
3 LS 5 8/3 173 1 -3 s 433
3 4; 4 2 1 2 I 2sing) | 433
T2 x I
3] 28 4 13 213 2 2 s* 433
peven| 1;83 3p—4] 3-1 I 1 1 st 434
. _ _2 2 T 9 (si
P 3; 3p—4| 3 » » 1 3 ? (sing) 434
8% x 8!

¢ According to [1], the bubble represents the trivial I-bundle over the torus.
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5.1.3 Dimension D

Bubble B % OGur (B); ag Ap SB B max. top.| section
Bx..
melonic P 0; sP-1 (D — 0o o0 1 sP 234
% D(p-1
k-cyclic p | G5y (D - 56| (- —1/2:1/2;1/3|  sP 3.1
v sh-1 b(p—-1 Dk —1)
peven| D —3; p(D — 1)2;2 1 1 sP 434
sb-t H-D
P D—1; p(D — % 1 1 ?(sing) | 434
SP=2 % H-D
S]
where we have denoted
dpikp = (p—DIk(D —k)— D +1], (5.5)
(p—D(D —k)k—1)
Apkp= . (5.6)

2p

We stress that from these examples, we can study the infinite families obtained
by doing the connected sums of any number of copies of these examples, and add
any number of A-pairs on the resulting bubbles. Using the results in Sects. (4.2.1)
and (4.2.4), we can deduce the values of a and s for these infinite families of bubbles
and characterize maximal maps, obtain the critical exponent, and determine their

topology.
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Fig. 5.1 A size 6 bubble in D = 6 and stacked map without colored leaves

5.2 Towards More Interesting Behaviors?

Throughout this thesis, we have mentioned a number of times that all known examples
of bipartite bubbles in dimension D < 6 were such that choosing an optimal pairing
to build the bijection, trees were part of the set of maximal maps. In D = 6, however,
we can exhibit a bubble B for which this is not the case.! It is illustrated in 5.1.

All of its pairings are optimal. We choose the pairing Q. = {(a, a’), (b, b'),
¢, c')}. The stacked map W (B, Q) is pictured on the right of Fig.5.1 (without the
color-6 leaves). This bubble is not invariant under exchanging the colors of the black
and the white vertices. We denote B the corresponding bubble, and also choose to
pair the vertices linked by color 6. The resulting stacked map is similar to that of
Fig. 5.1, with the roles of colors 2 and 5 permuted. The 0-score of the corresponding
coverings is ®o(B%r) = 11, and the 0-score of trees in G(B, B) is therefore

D(7) =6+ 5b(T). (5.7)

In particular, the O-score of a tree with two and four bubbles would be
o =16, and @’ = 26. (5.8)
We now exhibit a graph of G(B, B) with two bubbles, which 0-score is stronger
than CID(()z): the O-score of the graph G, pictured in Fig.5.2 has 3 color 0i cycle for

each i, and therefore its O-score satisfies

Do(Gy) = 18 > @Y. (5.9)

'We found this bubble together with Thierry Monteil.
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Fig. 5.2 A graph which O-score is higher than that of a tree

This is already a strong property, as it implies that not all sets of bubbles are such that
trees belong to maximal maps. In particular, we can build a {G,}-tree-like family [,
(Fig. 4.11), and from Proposition 4.2.9, the 0-score of a tree-like graph G with n;
bubbles G, is

Do(G € Fp) =6+ 12 x n2(G). (5.10)

In order to compare this with other graphs in G(B, B), we convert back in terms of
b=np+ng="2ny:
Do(G € Fy) =646 x b(G). (5.11)

It implies that trees with an odd number of bubbles do not belong to maximal maps.
A consequence of this fact is that the results of Sect. 4.1 on the coefficients a, a and s
do not hold anymore, as they relied on the fact that trees were part of maximal maps.
However, as detailed in Sect. 4.2.6, as long as the sequence {<I>8}b€N of the 0-scores
of maximal maps satisfies

dneN, VbeN, (5.12)

then the unique coefficient a leading to a non-negative rational and non-trivial bubble-

dependent degree is
. ®;—D
dp = , (5.13)
n

and the coefficients ag and sp are uniquely defined accordingly.
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We do not continue here the precise study of the graphs in G(B, B). The behavior
for the first terms is very similar to that of the K4 non-orientable bubble, and we expect
the same behavior to occur, which is non-linear, but is linear for an even number of
bubbles. In that case, K = 2N, and ap = 6 from (5.11). We argue however that it
is not a priori impossible for a set of bubbles B to generate maximal maps which
0-score has a non-linear increasing dependence in the number of bubbles, although
it is not likely to occur. If F(Gy) is a Gy-tree-like family, where G; comprises k
bubbles B and B, the 0-score of elements of F(Gy) is linear in 5(G), and we denote

, ®o(Gy) — D
=" (5.14)
the corresponding slope,
(G € Fr) = 6+ ag, x b(G), (5.15)

where aé;k is not necessarily an integer. From (2.38), we obtained the bound (2.61),
which applies for ag;, :

B
s, < Sou(B) + (D~ D(*52 1) = dy. (5.16)

We compute ¢ (B) = 23, and therefore dgy(B) = 12, and a],, = 22
ag, <?22. (.17)
Non-linear increasing behaviors could happen for B-restricted graphs satisfying

b(G) >k

Vk e N, VA €]0, a’
ag > A

max

[, 3G € G(B) such that (5.18)

For instance, in the case of B = {B, B}, starting from G| = B%r | we can exhibit
a graph G such that b(G,) =2 and a;;, < ag,. If ever the property (5.18) was
satisfied for B = {B, B}, then we could find a graph G with k > 3 bubbles, such
that ‘12;2 < a/Gk < 22, and recursively build an infinite sequence {G, G2, Gy - -}
such that

ag, < ag, < ag, <---<22. (5.19)

We stress that this is not a priori forbidden, as ag; € Q (5.14), although it is very
likely not to occur. As a consequence, maximal maps would not have a 0-score linear
in the number of bubbles, and it would not be possible to find a satisfying (2.55) and
(2.56). Indeed, choosing a smaller than 22, there would exist a graph G with a/G > da,
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from which we could build the infinite family of arbitrarily large G, -tree-like graphs
F, with degree

5(G eF,) = (@—ay ) x b(G) —> —o0, (5.20)

b—+o00

so that the 1/ N expansion (2.90) would not be defined, and choosing a larger or equal
to 22, there would only be a finite number of contributions per order. If maximal
graphs in G(B, B) satisfy a relation of the type

Po(Gmax) = D + f(B(Gmax)), (5.2

where f is a strictly increasing non-linear function taking rational values on integers
and such that
lim f(x) <22, (5.22)

xX—>—+00

then a proper definition for the degree would be
0(G) = D + f(b(G)) — Do(G). (5.23)

It would lead to a 1/N expansion with rational orders. The leading order contribu-
tions would be those of vanishing degree, i.e. maximal configurations. It would not,
however, be possible to define a tensor model generating the corresponding 1/N
expansion.
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