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Preface

The goal of this book is to describe, from my point of view, the most powerful
methods for evaluating multiloop Feynman integrals that are currently used in
practice. This book supersedes my previous Springer book ‘Evaluating Feynman
Integrals’ and its textbook version ‘Feynman Integral Calculus’. After the publi-
cation of these two books, powerful new methods have appeared and existing
methods have been improved in essential ways. One more qualitative change is
that most of the methods and the corresponding algorithms have been implemented
in computer codes which are often public. In such situations, I prefer to describe
these algorithms, rather than to provide ‘hand-made’ solutions, as I did in my two
previous books. However, I do not explain how to use the corresponding codes and
just refer to Internet pages and papers where tutorials and examples can be found.

In comparison to my two previous books, three new chapters have been added:
One chapter is on sector decomposition, while a second describes a new method by
Lee. The third new chapter concerns the asymptotic expansions of Feynman
integrals in momenta and masses, which were described in detail in my other
Springer book ‘Applied Asymptotic Expansions in Momenta and Masses’. In this
chapter, I first present a short summary of existing strategies for obtaining an
expansion of a given Feynman integral in a particular limit. Then I describe,
following papers that appeared after the publication of this book, how one can
reveal algorithmically the regions relevant to a given limit within the strategy of
expansion by regions. The chapter on Baikov’s method has been reduced, in the
present book, to a section in the chapter on integration by parts. The chapters on
the method of Mellin-Barnes representation and on the method of integration by
parts are written in a new way, with an emphasis on the corresponding algorithms
and computer codes. The chapter on the method of differential equations has a new
section and a new conclusion.

Although all the necessary definitions concerning Feynman integrals are provided
in the book, it would be helpful for the reader to know the basics of perturbative
quantum field theory, e.g., by following the first few chapters of the well-known
textbooks by Bogoliubov and Shirkov and/or Peskin and Schroeder.
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Chapter 1
Introduction

The important mathematical problem of evaluating Feynman integrals arises quite
naturally in elementary-particle physics when one treats various quantities in the
framework of perturbation theory. Usually, it turns out that a given quantum-field
amplitude that describes a process where particles participate cannot be completely
treated in the perturbative way. However it also often turns out that the amplitude
can be factorized in such a way that different factors are responsible for contribu-
tions of different scales. According to a factorization procedure a given amplitude
can be represented as a product of factors some of which can be treated only non-
perturbatively while others can be indeed evaluated within perturbation theory, i.e.
expressed in terms of Feynman integrals over loop momenta.

A useful way to perform the factorization procedure is provided by solving
the problem of asymptotic expansion of Feynman integrals in the corresponding
limit of momenta and masses that is determined by the given kinematical situation.
A universal way to solve this problem is based on the so-called strategy of expan-
sion by regions [1, 21]. This strategy can be itself regarded as a (semi-analytical)
method of evaluation of Feynman integrals according to which a given Feynman
integral depending on several scales can be approximated, with increasing accu-
racy, by a finite sum of first terms of the corresponding expansion, where each term
is written as a product of factors depending on different scales. The expansion by
regions applicable to general limits as well as the expansion by subgraphs applicable
to limits typical of Euclidean space are described in details in my other book [21]
and, in a very brief way, in this book in Chap. 9. The main goal of this chapter is to
present a general algorithm [9, 17] which has appeared after the publication of the
book [21] and provides the possibility to find regions relevant to a given limit in a
systematic way.

One needs to take into account various graphs that contribute to a given process.
The number of graphs greatly increases when the number of loops gets large. For
a given graph, the corresponding Feynman amplitude is represented as a Feynman
integral over loop momenta, due to some Feynman rules. The Feynman integral,
generally, has several Lorentz indices. The standard way to handle tensor quantities
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2 1 Introduction

is to perform a tensor reduction that enables us to write the given quantity as a linear
combination of tensor monomials with scalar coefficients. Therefore we will imply
that we deal with scalar Feynman integrals and consider only them in examples.

A given Feynman graph therefore generates various scalar Feynman integrals
that have the same structure of the integrand with various distributions of powers
of propagators (indices). Let us observe that some powers can be negative, due to
some initial polynomial in the numerator of the Feynman integral. A straightforward
strategy is to evaluate, by some methods, every scalar Feynman integral resulting
from the given graph. If the number of these integrals is small this strategy is quite
reasonable. In non-trivial situations, where the number of different scalar integrals
can be at the level of hundreds and thousands, this strategy looks too complicated.
A well-known optimal strategy here is to derive, without calculation, and then apply
some relations between the given family of Feynman integrals as recurrence rela-
tions. A well-known standard way to obtain such relations is provided by the method
of integration by parts1 (IBP) [7] which is based on putting to zero any integral of
the form

∫
ddk1ddk2 . . .

∂ f

∂kμi

over loop momenta k1, k2, . . . , ki , . . . within dimensional regularization with the
space-time dimension d = 4 − 2ε as a regularization parameter [5, 6, 8]. Here f is
an integrand of a Feynman integral; it depends on the loop and external momenta.
More precisely, one tries to use IBP relations in order to express a general dimen-
sionally regularized integral from the given family as a linear combination of some
irreducible integrals which are also called master integrals. Therefore the whole
problem decomposes into two parts: solving the IBP relations and evaluating the
master integrals. Observe that in such complicated situations, with the great vari-
ety of relevant scalar integrals, one really needs to know a complete solution of the
recursion problem, i.e. to learn how an arbitrary integral with general integer pow-
ers of the propagators and powers of irreducible monomials in the numerator can be
evaluated.

To illustrate the methods of evaluation that we are going to study in this book
let us first orient ourselves at the evaluation of individual Feynman integrals, which
might be master integrals, and take the simple scalar one-loop graph Γ shown in
Fig. 1.1 as an example. The corresponding Feynman integral constructed with scalar
propagators is written as

1 As is explained in textbooks on integral calculus, the method of IBP is applied with the help of
the relation

∫ b
a dxuv′ = uv|ba − ∫ b

a dxu′v as follows. One tries to represent the integrand as uv′
with some u and v in such a way that the integral on the right-hand side, i.e. of u′v will be simpler.
We do not follow this idea in the case of Feynman integrals. Instead we only use the fact that an
integral of the derivative of some function is zero, i.e. we always neglect the corresponding surface
terms. So the name of the method looks misleading. It is however unambiguously accepted in the
physics community.
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Fig. 1.1 One-loop self-
energy graph. The dashed
line denotes a massless propa-
gator

FΓ (q2, m2; d) =
∫

ddk

(k2 − m2)(q − k)2 , (1.1)

where the usual +i0 is implied in the propagators.
The same picture Fig. 1.1 can also denote the Feynman integral with general

powers of the two propagators,

FΓ (q2, m2; a1, a2; d) =
∫

ddk

(k2 − m2)a1[(q − k)2]a2
. (1.2)

Suppose, one needs to evaluate the Feynman integral FΓ (q2, m2; 2, 1; d) ≡
F(2, 1; d) which is finite in four dimensions, d = 4. (It can also be depicted by
Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate it. For
example, a straightforward way is to take into account the fact that the given func-
tion of q is Lorentz-invariant so that it depends on the external momentum through
its square, q2. One can choose a frame q = (q0, 0), introduce spherical coordinates
for k, integrate over angles, then over the radial component and, finally, over k0. This
strategy can be, however, hardly generalized to multi-loop2 Feynman integrals.

Another way is to use a dispersion relation that expresses Feynman integrals in
terms of a one-dimensional integral of the imaginary part of the given Feynman
integral, from the value of the lowest threshold to infinity. This dispersion integral
can be expressed by means of the well-known Cutkosky rules. We will not apply this
method, which was, however, very popular in the early days of perturbative quantum
field theory, and only briefly comment on it in Appendix E.

Let us now turn to the methods that will be indeed actively used in this book.
To illustrate them all let me use this very example of Feynman integrals (1.2) and
present main ideas of these methods, with the obligation to present the methods in
great details in the rest of the book.

First, we will exploit the well-known technique of alpha or Feynman parame-
ters. In the case of F(2, 1; d), one writes down the following Feynman-parametric
formula:

1

(k2 − m2)2(q − k)2 = 2
∫ 1

0

ξdξ

[(k2 − m2)ξ + (1 − ξ)(q − k)2 + i0]3 . (1.3)

2 Since the Feynman integrals are rather complicated objects the word ‘multi-loop’ means the
number of loops greater than one ;-)

http://dx.doi.org/10.1007/978-3-642-34886-0_14


4 1 Introduction

Then one can change the order of integration over ξ and k, perform integration over
k with the help of the formula (10.1) (which we will derive in Chap. 3) and obtain
the following representation:

F(2, 1; d) = −iπd/2Γ (1 + ε)

∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]1+ε . (1.4)

This integral can easily be evaluated at d = 4 with the following result:

F(2, 1; 4) = iπ2 ln
(
1 − q2/m2

)
q2 . (1.5)

In principle, any given Feynman integral F(a1, a2; d) with concrete numbers a1
and a2 can similarly be evaluated by Feynman parameters. In particular, F(1, 1; d)

reduces to

F(1, 1; d) = iπd/2Γ (ε)

∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]ε . (1.6)

There is an ultraviolet (UV) divergence which manifests itself in the first pole of the
function Γ (ε), i.e. at d = 4. The integral can be evaluated in expansion in a Laurent
series in ε, for example, up to ε0. We obtain

F(1, 1; d) = iπd/2e−γEε

[
1

ε
− ln m2 + 2

−
(

1 − m2

q2

)
ln

(
1 − q2

m2

)
+ O(ε)

]
, (1.7)

where γE is the Euler’s constant.
In fact, the integration in (1.6) can straightforwardly be performed at general ε

with the result

− iπd/2m−2εΓ (ε− 1) 2 F1

(
1, ε; 2 − ε; q2/m2

)
(1.8)

which can then be expanded in ε. However, for sufficiently complicated Feynman
integrals, this strategy of evaluating at general ε and expanding results is hardly
feasible.

Alpha parameters are closely related to Feynman parameters. For usual propaga-
tors, one starts from the representation

1

k2 − m2 = −i
∫ ∞

0
dα ei(k2−m2)α, (1.9)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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changes the order of integration over alpha parameters and loop momenta and takes
d-dimensional integrals over the loop momenta. For example, one obtains

F(1, 1; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0

∫ ∞

0
e

iq2 α1α2
α1+α2

−im2α1 dα1dα2

(α1 + α2)d/2 . (1.10)

Then one can turn to Feynman parameters, i.e. to (1.6), by changing variables by
α1 = ηξ,α2 = η(1 − ξ) and integrating over η.

We will study the method of Feynman and alpha parameters in Chap. 3, by deriving
a lot of useful formulae and considering various examples. The next chapter also
deals with parametric representations which are used there to resolve the singularity
structure in ε. In contrast to examples of Chap. 3, where some subtractions are used
for this purpose when analytically evaluating Feynman integrals, here the goal is to do
this in an algorithmic way by introducing so-called sector decompositions which can
be used either for analysis of convergence of regularized or renormalized Feynman
integrals, or for numerical evaluation.

To illustrate the basic idea of sector decompositions let us turn again to the integral
(1.1) which can be represented by (1.10) and reveal its UV divergence. (And let us
forget that we did this in a simple way using Feynman parameters (1.6) where the
divergence manifested itself as a pole of the overall gamma function.) We cannot
expand the integral in ε under the integral sign because the initial term, i.e. its value
at d = 4 is divergent. In alpha parameters, UV divergences manifest themselves as
divergences at small values, so that let us consider just the integral

I (ε) =
∫ 1

0

∫ 1

0
dα1dα2(α1 + α2)

ε−2 f (α1,α2), (1.11)

where f is regular at the origin.
To reveal the analytic structure in ε near ε = 0 let us decompose the integration

domain into two sectors, α1 ≤ α2 and α2 ≤ α1 and represent I as I1 + I2. The two
integrals are similar so that let us consider only I1. Let us introduce sector variables
by α1 = t1t2, α2 = t2. We have again an integration over the unit square:

I1(ε) =
∫ 1

0

∫ 1

0
dt1dt2 tε−1

2 g(t1, t2), (1.12)

where g(t1, t2) = (1 + t1)ε−2 f (t1t2, t2). Such a form of the integral easily provides
the possibility of expanding under the integral sign. To reveal the pole in ε we
then write down g(t1, t2) as g(t1, 0) plus g(t1, t2) − g(t1, 0). Taking explicitly the
integration over t2 in the first term we arrive at

I1(ε) = 1

ε

∫ 1

0
dt1 g(t1, 0) +

∫ 1

0

∫ 1

0
dt1dt2 tε−1

2 [g(t1, t2) − g(t1, 0)] . (1.13)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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We see that we have achieved our goal because the first term is just a simple pole
in ε while the second term can be expanded in ε. In Chap. 4, such procedure will be
extended to general Feynman integrals and various methods of sector decompositions
[2–4, 10, 19] will be described.

A powerful method of evaluating Feynman integrals is based on the Mellin–Barnes
(MB) representation [20, 22]. The underlying idea is to replace a sum of terms raised
to some power by the product of these terms raised to certain powers, at the cost of
introducing an auxiliary integration that goes from −i∞ to +i∞ in the complex
plane. The most obvious way to apply this representation is to write down a massive
propagator in terms of massless ones. For F(2, 1; 4), we obtain

1

(m2 − k2)2 = 1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)2+z
Γ (2 + z)Γ (−z). (1.14)

Applying (1.14) to the first propagator in (1.2), changing the order of integration
over k and z and evaluating the internal integral over k by means of the one-loop
formula (10.7) (which we will derive in Chap. 3) we arrive at the following onefold
MB integral representation:

F(2, 1; d) = − iπd/2Γ (1 − ε)

(−q2)1+ε
1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

× Γ (1 + ε+ z)Γ (−ε− z)Γ (−z)

Γ (1 − 2ε− z)
. (1.15)

The contour of integration is chosen in the standard way: the poles with a Γ (· · ·+ z)
dependence are to the left of the contour and the poles with a Γ (· · ·− z) dependence
are to the right of it. If |ε| is small enough we can choose this contour as a straight
line parallel to the imaginary axis with −1 < Rez < 0. For d = 4, we obtain

F(2, 1; 4) = − iπ2

q2

1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (z)Γ (−z). (1.16)

By closing the integration contour to the right and taking a series of residues at the
points z = 0, 1, . . ., we reproduce (1.5). Using the same technique, any integral from
the given family can similarly be evaluated.

We will study the method of MB representation in Chap. 5. This method provides
the possibility to resolve singularities in ε in an easy way. We will see, through
various examples, how one can analytically evaluate rather complicated Feynman
integrals. Moreover, this method can be applied almost in an automatic way because
various public computer codes for the application of this method are available.

Let us, however, think about a more economical strategy based on IBP relations
which would enable us to evaluate any integral (1.2) as a linear combination of some
master integrals. Putting to zero dimensionally regularized integrals of ∂

∂k ·k f (a1, a2)

and q · ∂
∂k f (a1, a2), where f (a1, a2) is the integrand in (1.2), and writing down

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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obtained relations in terms of integrals of the given family we obtain the following
two IBP relations:

d − 2a1 − a2 − 2m2a11+ − a22+(1− − q2 + m2) = 0, (1.17)

a2 − a1 − a11+(q2 + m2 − 2−) − a22+(1− − q2 + m2) = 0, (1.18)

in the sense that they are applied to the general integral F(a1, a2). Here the standard
notation for increasing and lowering operators has been used, e.g. 1+2−F(a1, a2) =
F(a1 + 1, a2 − 1).

Let us observe that any integral with a1 ≤ 0 is zero because it is a massless
tadpole which is naturally put to zero within dimensional regularization. Moreover,
any integral with a2 ≤ 0 can be evaluated in terms of gamma functions for general
d with the help of (10.3) (which we will derive in Chap. 3). The number a2 can be
reduced either to one or to a non-positive value using the following relation which
is obtained as the difference of (1.17) multiplied by q2 + m2 and (1.18) multiplied
by 2m2:

(q2 − m2)2a22+ = (q2 − m2)a21−2+

− (d − 2a1 − a2)q
2 − (d − 3a2)m

2 + 2m2a11+2−.

(1.19)

Indeed, when the left-hand side of (1.19) is applied to F(a1, a2), we obtain integrals
with reduced a2 or, due to the first term on the right-hand side, reduced a1.

Suppose now that a2 = 1. Then we can use the difference of relations (1.17) and
(1.18),

d − a1 − 2a2 − a11+(2− − q2 + m2) = 0, (1.20)

and rewrite it down, at a2 = 1, as

(q2 − m2)a11+ = a1 + 2 − d + a11+2−. (1.21)

This relation can be used to reduce the index a1 to one or the index a2 to zero. We
see that we can now express any integral of the given family as a linear combination
of the integral F(1, 1) and simple integrals with a2 ≤ 0 which can be evaluated for
general d in terms of gamma functions. In particular, we have

F(2, 1) = 1

m2 − q2 [(1 − 2ε)F(1, 1) − F(2, 0)] . (1.22)

At this point, we might stop our activity because we have already essentially
solved the problem. However, mathematically (and aesthetically), it is natural to be
more curious and wonder about the minimal number of master integrals which form
a linearly independent basis in the family of integrals F(a1, a2). We will do this in

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Chap. 6. We will also consider other simple examples where IBP relations can be
solved ‘by hand’, as in this example.

The are two news. The bad news is that solving IBP relations by hand is hardly
possible at the high modern complexity level of practical calculations. The good news
is that one can solve IBP relations automatically using various algorithms. The most
popular one is the Laporta’s algorithm [14, 15] based on solving overconstrained
systems of linear equations. There are public codes where this algorithm is imple-
mented. We will turn to this algorithm in Chap. 6 where some other algorithms will
be also briefly presented.

Two powerful methods described in this book are based on equations: differential
equations for one of them and difference equations for the other one. Within both
of them, it is assumed that one can solve IBP relations for the family of Feynman
integrals to which a given integral belongs. Practically, these methods are used to
evaluate master integrals.

Let us illustrate the method of differential equations (DE) [11–13, 18] again
with the help of our favourite example. To evaluate the master integral F(1, 1)

let us observe that its derivative in m2 is nothing but F(2, 1) (because
(
∂/(∂m2)

)
(
1/(k2 − m2)

) = 1/(k2 − m2)2) which is expressed, according to our reduction
procedure, by (1.22). Therefore we arrive at the following differential equation for
f (m2) = F(1, 1):

∂

∂m2 f (m2) = 1

m2 − q2

[
(1 − 2ε) f (m2) − F(2, 0)

]
, (1.23)

where the quantity F(2, 0) is a simpler object because it can be evaluated in terms
of gamma functions for general ε. The general solution to this equation can easily
be obtained by the method of the variation of the constant, with fixing the general
solution from the boundary condition at m = 0. Eventually, the above result (1.7)
can successfully be reproduced.

As we will see in Chap. 7, the strategy of the method of DE in much more non-
trivial situations is similar: one takes derivatives of a master integral in some argu-
ments, expresses them in terms of original Feynman integrals, by means of some
variant of solution of IBP relations, and solves resulting differential equations.

The recently developed method based on difference equations [16] uses relations
between Feynman integrals in shifted dimension, d. To illustrate it let us turn again
to our favourite example. To evaluate the master integral F1(d) ≡ F(1, 1; d) let us
use its alpha representation (1.10) and consider F1(d − 2). Up to simple changes of
exponents in the prefactors, the most essential change is the appearance of the extra
factor (α1 + α2) in the integrand. Then each of these two terms can be described
as a Feynman integral with a shifted index, i.e. either F(2, 1; d) or F(1, 2; d). As
we will see in Chap. 6 any integral of this family can be reduced to the two master
integrals, F1(d), and F2(d) = F(1, 0; d). (A partial reduction, where F(2, 0; d)

can be reduced further, to F2(d), is given by (1.22).) This is how one obtains the
following dimensional recurrence relation for the master integral F1(d):

http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_7
http://dx.doi.org/10.1007/978-3-642-34886-0_6
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F1(d − 2) = 2
(d − 3)x

(1 − x)2 F1(d) − (d − 2)(1 + x)

2(1 − x)2 F2(d), (1.24)

where we set x = q2/m2 and m = 1.
We will see in Chap. 8 how this and other similar equations can be systematically

solved. In this example, one can arrive at a result in terms of a hypergeometric function
which, after using some identity, can be reduced to (1.8). Within this method, one
obtains solutions in terms of multiple series with excellent convergence. For one-scale
integrals, this provides the possibility to evaluate each term in an ε expansion with a
big accuracy and then obtain analytic results in very high orders of this expansion.

As promised in the beginning of this introduction, the semi-analytic method of
expansions in limits of momenta and masses [1, 21] is briefly presented in Chap. 9.
Let us take again the integral F(2, 1; d) given by (1.2) as an example and study it in
the limit m2/q2 → 0. As explained in Chap. 9, one can proceed either by expansion
by regions, or using an explicit formula for the expansion written in graph-theoretical
language. In both cases, one has the sum of two contributions to the expansion. One
of them is obtained by expanding the propagator 1/(k2 − m2)2 in a Taylor series in
the mass m and the other one is obtained by expanding the propagator 1/(q − k)2 in
a Taylor series in the loop momentum k. This and other typical examples are studied
in Chap. 9. It will be also explained how to find regions relevant to a given limit by
a geometrical algorithm [9, 17].

Before studying these methods, basic definitions are presented in Chap. 2 where
tools for dealing with Feynman integrals are also introduced. Methods for evaluat-
ing individual Feynman integrals are studied in Chaps. 3–5, 7–9 and the reduction
problem is studied in Chap. 6. In Appendix A, one can find a table of basic one-
loop and two-loop Feynman integrals as well as some useful auxiliary formulae.
Appendix B contains definitions and properties of special functions that are used in
this book. A table of summation formulae for onefold series is given in Appendix C.
In Appendix D, a table of onefold MB integrals is presented.

Some other methods are briefly characterized in Appendix E. These are mainly
old methods whose details can be found in the literature. If I do not present some
methods, this means that either I do not know about them, or I do not know physically
important situations where they work not worse than the methods I present.

I will use almost the same examples in Chaps. 3–9 and Appendix E to illustrate
all the methods. On the one hand, this is done in order to have the possibility to
compare them. On the other hand, the methods often work together: for example, MB
representation can be used in alpha or Feynman parametric integrals, the methods
based on differential and difference equations require a solution of the reduction
problem, boundary conditions within the method of DE can be obtained by means
of the method of MB representation, etc.

Basic notational conventions are presented below. The notation is described in
more detail in the List of Symbols. In the Index, one can find numbers of pages
where definitions of basic notions are introduced.

http://dx.doi.org/10.1007/978-3-642-34886-0_8
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_7
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_14
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_14
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1.1 Notation

We use Greek and Roman letters for four-indices and spatial indices, respectively:

xμ = (x0, x),

q ·x = q0x0 − q ·x ≡ gμνqμxν .

The parameter of dimensional regularization is

d = 4 − 2ε.

The d-dimensional Fourier transform and its inverse are defined as

f̃ (q) =
∫

dd x eiq·x f (x),

f (x) = 1

(2π)d

∫
ddq e−ix ·q f̃ (q).

In order to avoid Euler’s constant γE in Laurent expansions in ε, we usually pull
out the factor e−γEε per loop.
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Chapter 2
Feynman Integrals: Basic Definitions
and Tools

In this chapter, basic definitions for Feynman integrals are given, ultraviolet (UV),
infrared (IR) and collinear divergences are characterized, and basic tools such as alpha
parameters are presented. Various kinds of regularizations, in particular dimensional
one, are presented and properties of dimensionally regularized Feynman integrals
are formulated and discussed.

2.1 Feynman Rules and Feynman Integrals

In perturbation theory, any quantum field model is characterized by a Lagrangian,
which is represented as a sum of a free-field part and an interaction part, L =
L0 + LI. Amplitudes of the model, e.g. S-matrix elements and matrix elements of
composite operators, are represented as power series in coupling constants. Starting
from the S-matrix represented in terms of the time-ordered exponent of the interaction
Lagrangian which is expanded with the application of the Wick theorem, or from
Green functions written in terms of a functional integral treated in the perturbative
way, one obtains that, in a fixed perturbation order, the amplitudes are written as finite
sums of Feynman diagrams which are constructed according to Feynman rules: lines
correspond to L0 and vertices are determined by LI. The basic building block of the
Feynman diagrams is the propagator that enters the relation

T φi (x1)φi (x2) = : φi (x1)φi (x2) : +DF,i (x1 − x2). (2.1)

Here DF,i is the Feynman propagator of the field of type i and the colons denote a
normal product of the free fields. The Fourier transforms of the propagators have the
form

D̃F,i (p) ≡
∫

d4x eip·x DF,i (x) = iZi (p)

(p2 − m2
i + i0)ai

, (2.2)

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 11
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_2,
© Springer-Verlag Berlin Heidelberg 2012



12 2 Feynman Integrals: Basic Definitions and Tools

where mi is the corresponding mass, Zi is a polynomial and ai = 1 or 2 (for the gluon
propagator in the general covariant gauge). The powers of the propagators al will be
also called indices. For the propagator of the scalar field, we have Z = 1, a = 1. This
is not the most general form of the propagator. For example, in the axial or Coulomb
gauge, the gluon propagator has another form. We usually omit the causal i0 for
brevity. Polynomials associated with vertices of graphs can be taken into account by
means of the polynomials Zl . We also omit the factors of i and (2π)4 that enter in
the standard Feynman rules (in particular, in (2.2)); these can be included at the end
of a calculation.

Eventually, we obtain, for any fixed perturbation order, a sum of Feynman ampli-
tudes labelled by Feynman graphs1 constructed from the given type of vertices
and lines. In the commonly accepted physical slang, the graph, the corresponding
Feynman amplitude and the integral are all often called the ‘diagram’. A Feynman
graph differs from a graph by distinguishing a subset of vertices which are called
external. The external momenta or coordinates on which a Feynman integral depends
are associated with the external vertices.

Thus quantities that can be computed perturbatively are written, in any given order
of perturbation theory, through a sum over Feynman graphs. For a given graph Γ ,
the corresponding Feynman amplitude

GΓ (q1, . . . , qn+1) = (2π)4 i δ

(∑
i

qi

)
FΓ (q1, . . . , qn) (2.3)

can be written in terms of an integral over loop momenta

FΓ (q1, . . . , qn) =
∫

d4k1 . . .

∫
d4kh

L∏
l=1

D̃F,l(pl), (2.4)

where d4ki = dk0
i dki , and a factor with a power of 2π is omitted, as we have agreed.

The Feynman integral FΓ depends on n linearly independent external momenta qi =
(q0

i , qi ); the corresponding integrand is a function of L internal momenta pl , which
are certain linear combinations of the external momenta and h = L − V + 1 chosen
loop momenta ki , where L , V and h are numbers of lines, vertices and (independent)
loops, respectively, of the given graph.

One can choose the loop momenta by fixing a tree T of the given graph, i.e. a
maximal connected subgraph without loops, and correspond a loop momentum to
each line not belonging to this tree. Then we have the following explicit formula for
the momenta of the lines:

1 When dealing with graphs and Feynman integrals one usually does not bother about the math-
ematical definition of the graph and thinks about something that is built of lines and vertices. So,
a graph is an ordered family {V, L, π±}, where V is the set of vertices, L is the set of lines, and
π± : L → V are two mappings that correspond the initial and the final vertex of a line. By the way,
mathematicians use the word ‘edge’, rather than ‘line’.
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pl =
h∑

i=1

eilki +
n∑

i=1

dilqi , (2.5)

where eil = ±1 if l belongs to the j th loop and eil = 0 otherwise, dil = ±1 if l lies
in the tree T on the path with the momentum qi and dil = 0 otherwise. The signs in
both sums are defined by orientations.

After a tensor reduction is performed one can deal only with scalar Feynman
integrals. For the tensor reduction, various projectors can be applied. For example,
in the case of Feynman integrals contributing to the electromagnetic formfactor (see
Fig. 2.1) Γ μ(p1, p2) = γ μF1(q2) + σμνqν F2(q2), where q = p1 − p2, γ μ and
σμν are γ - and σ -matrices, respectively, the following projector can be applied to
extract scalar integrals which contribute to the formfactor F1 in the massless case
(with F2 = 0):

F1(q
2) = Tr

[
γμ �p2Γ

μ(p1, p2) �p1
]

2(d − 2) q2 , (2.6)

where �p = γ μ pμ and d is the parameter of dimensional regularization (to be dis-
cussed shortly in Sect. 2.4).

Anyway, after applying some projectors, one obtains, for a given graph, a family of
Feynman integrals which have various powers of the scalar parts of the propagators,
1/(p2

l − m2
l )

al , and various monomials in the numerator. The denominators p2
l can

be expressed linearly in terms of scalar products of the loop and external momenta.
The factors in the numerator can also be chosen as quadratic polynomials of the
loop and external momenta raised to some powers. It is convenient to consider both
types of the quadratic polynomials on the same footing and treat the factors in the
numerators as extra factors in the denominator raised to negative powers. The set of
the denominators for a given graph is linearly independent. It is natural to complete
this set by similar factors coming from the numerator in such a way that the whole
set will be linearly independent.

Therefore we come to the following family of scalar integrals generated by the
given graph:

F(a1, . . . , aN ) =
∫

· · ·
∫

d4k1 . . . d4kh

Ea1
1 . . . EaN

N

, (2.7)

Fig. 2.1 Electromagnetic
formfactor
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where ki , i = 1, . . . , h, are loop momenta, ai are integer indices, and the denomi-
nators are given by

El =
∑

i≥ j≥1

Ai j
l ri · r j − m2

l , (2.8)

with l = 1, . . . , N . The momenta ri are either the loop momenta ri = ki , i =
1, . . . , h, or independent external momenta rh+1 = q1, . . . , rh+n = ql of the graph.

For a usual Feynman graph, the denominators Er determined by some matrix A
are indeed quadratic. However, a more general class of Feynman integrals where
the denominators are linear with respect to the loop and/or external momenta also
often appears in practical calculations. Linear denominators usually appear in asymp-
totic expansions of Feynman integrals within the strategy of expansion by regions
[1, 31]. Such expansions provide a useful link of an initial theory described by
some Lagrangian with various effective theories where, indeed, the denominators
of propagators can be linear with respect to the external and loop momenta. For
example, one encounters the following denominators: p ·k, with an external momen-
tum p on the light cone, p2 = 0, for the Sudakov limit and with p2 �= 0 for the
quark propagator of Heavy Quark Effective Theory (HQET) [17, 22, 25]. Some non-
relativistic propagators appear within threshold expansion and in the effective theory
called Non-Relativistic QCD (NRQCD) [4, 5, 21, 37], for example, the denominator
k0 − k2/(2m).

2.2 Divergences

As has been known from early days of quantum field theory, Feynman integrals suffer
from divergences. This word means that, taken naively, these integrals are ill-defined
because the integrals over the loop momenta generally diverge. The ultraviolet (UV)
divergences manifest themselves through a divergence of the Feynman integrals at
large loop momenta. Consider, for example, the Feynman integral corresponding
to the one-loop graph Γ of Fig. 2.2 with scalar propagators. This integral can be
written as

FΓ (q) =
∫

d4k

(k2 − m2
1)

[
(q − k)2 − m2

2

] , (2.9)

where the loop momentum k is chosen as the momentum of the first line. Introducing
four-dimensional (generalized) spherical coordinates k = r k̂ in (2.9), where k̂ is on
the unit (generalized) sphere and is expressed by means of three angles, and counting
powers of propagators, we obtain, in the limit of large r , the following divergent
behaviour:

∫ ∞
Λ

dr r−1. For a general diagram, a similar power counting at large
values of the loop momenta gives 4h(Γ )− 1 from the Jacobian that arises when one
introduces generalized spherical coordinates in the (4 × h)-dimensional space of h
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Fig. 2.2 One-loop self-
energy diagram

loop four-momenta, plus a contribution from the powers of the propagators and the
degrees of its polynomials, and leads to an integral

∫ ∞
Λ

dr rω−1, where

ω = 4h − 2L +
∑

l

nl (2.10)

is the (UV) degree of divergence of the graph. (Here nl are the degrees of the poly-
nomials Zl .)

This estimate shows that the Feynman integral is UV convergent overall (no
divergences arise from the region where all the loop momenta are large) if the degree
of divergence is negative. We say that the Feynman integral has a logarithmic, linear,
quadratic, etc. overall divergence when ω = 0, 1, 2, . . ., respectively. To ensure a
complete absence of UV divergences it is necessary to check convergence in various
regions where some of the loop momenta become large, i.e. to satisfy the relation
ω(γ ) < 0 for all the subgraphs γ of the graph. We call a subgraph UV divergent if
ω(γ ) ≥ 0. In fact, it is sufficient to check these inequalities only for one-particle-
irreducible (1PI) subgraphs (which cannot be made disconnected by cutting a line).
It turns out that these rough estimates are indeed true—see some details in Sect. 4.4.

If we turn from momentum space integrals to some other representation of Feyn-
man diagrams, the UV divergences will manifest themselves in other ways. For exam-
ple, in coordinate space, the Feynman amplitude (i.e. the inverse Fourier transform
of (2.3)) is expressed in terms of a product of the Fourier transforms of propagators

L∏
l=1

DF,l(xli − xlf ) (2.11)

integrated over four-coordinates xi corresponding to the internal vertices. Here li and
lf are the beginning and the end, respectively, of a line l.

The propagators in coordinate space,

DF,l(x) = 1

(2π)4

∫
d4 p D̃F,l(p)e−ix ·p, (2.12)

are singular at small values of coordinates x = (x0, x). To reveal this singularity
explicitly let us write down the propagator (2.2) in terms of an integral over a so-called
alpha-parameter

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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D̃F,l(p) = i Zl

(
1

2i

∂

∂ul

)
e2iul ·p

∣∣∣∣
ul=0

(−i)al

Γ (al)

∫ ∞

0
dαl α

al−1
l ei(p2−m2)αl . (2.13)

which turns out to be a very useful tool both in theoretical analyses and practical
calculations.

To present an explicit formula for the scalar (i.e. for a = 1 and Z = 1) propagator

D̃F (p) =
∫ ∞

0
dα ei(p2−m2)α (2.14)

in coordinate space we insert (2.14) into (2.12), change the order of integration over
p and α and take the Gaussian integrations explicitly using the formula

∫
d4k ei(αk2−2q·k) = −iπ2α−2e−iq2/α, (2.15)

which is nothing but the product of four one-dimensional Gaussian integrals:

∫ ∞

−∞
dk0 ei(αk2

0−2q0k0) =
√

π

α
e−iq2

0 /α+iπ/4,

∫ ∞

−∞
dk j e−i(αk2

j −2q j k j ) =
√

π

α
eiq2

j /α−iπ/4
, j = 1, 2, 3 (2.16)

(without summation over j in the last formula).
The final integration is then performed using [28] or in MATHEMATICA [39] with

the following result:

DF (x) = − im

4π2
√−x2 + i0

K1

(
im

√
−x2 + i0

)

= − 1

4π2

1

x2 − i0
+ O

(
m2 ln m2

)
(2.17)

where K1 is a Bessel special function [15]. The leading singularity at x = 0 is given
by the value of the coordinate space massless propagator.

Thus, the inverse Fourier transform of the convolution integral (2.9) equals the
square of the coordinate-space scalar propagator, with the singularity (x2 − i0)−2.
Power-counting shows that this singularity produces integrals that are divergent in
the vicinity of the point x = 0, and this is the coordinate space manifestation of the
UV divergence.

The divergences caused by singularities at small loop momenta are called infrared
(IR) divergences. First we distinguish IR divergences that arise at general values of
the external momenta. A typical example of such a divergence is given by the graph
of Fig. 2.2 when one of the lines contains the second power of the corresponding
propagator, so that a1 = 2. If the mass of this line is zero we obtain a factor 1/(k2)2

in the integrand, where k is chosen as the momentum of this line. Then, keeping in



2.2 Divergences 17

mind the introduction of generalized spherical coordinates and performing power-
counting at small k (i.e. when all the components of the four-vector k are small),
we again encounter a divergent behaviour

∫ Λ

0 dr r−1 but now at small values of r .
There is a similarity between the properties of IR divergences of this kind and those
of UV divergences. One can define, for such off-shell IR divergences, an IR degree
of divergence, in a similar way to the UV case. A reasonable choice is provided by
the value

ω̃(γ ) = −ω(Γ/γ ) ≡ ω(γ ) − ω(Γ ), (2.18)

where γ ≡ Γ \γ is the completion of the subgraph γ in a given graph Γ and Γ/γ

denotes the reduced graph which is obtained from Γ by reducing every connectivity
component of γ to a point. The absence of off-shell IR divergences is guaranteed
if the IR degrees of divergence are negative for all massless subgraphs γ whose
completions γ include all the external vertices in the same connectivity component
[11, 30]. (See details in Sect. 4.4.) The off-shell IR divergences are the worst but they
are in fact absent in physically meaningful theories. However, they play an important
role in asymptotic expansions of Feynman diagrams—see [31] and Chap. 9.

The other kinds of IR divergences arise when the external momenta considered
are on a surface where the Feynman diagram is singular: either on a mass shell or at
a threshold. Consider, for example, the graph Fig. 2.2, with the indices a1 = 1 and
a2 = 2 and the masses m1 = 0 and m2 = m �= 0 on the mass shell, q2 = m2. With
k as the momentum of the second line, the corresponding Feynman integral is of the
form

FΓ (q; d) =
∫

d4k

k2(k2 − 2q ·k)2 . (2.19)

At small values of k, the integrand behaves like 1/[4k2(q ·k)2], and, with the help of
power counting, we see that there is an on-shell IR divergence which would not be
present for q2 �= m2.

If we consider Fig. 2.2 with equal masses and indices a1 = a2 = 2 at the threshold,
i.e. at q2 = 4m2, it might seem that there is a threshold IR divergence because,
choosing the momenta of the lines as q/2 + k and q/2 − k, we obtain the integral

∫
d4k

(k2 + q ·k)2(k2 − q ·k)2 , (2.20)

with an integrand that behaves at small k as 1/(q · k)4 and is formally divergent.
However, the divergence is in fact absent. (The threshold singularity at q2 = 4m2 is,
of course, present.) Nevertheless, threshold IR divergences do exist. For example, the
sunset2 diagram of Fig. 2.3 with general masses at threshold, q2 = (m1 +m2 +m3)

2,

2 called also the sunrise diagram, or the London transport diagram.

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_9
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Fig. 2.3 Sunset diagram

is divergent in this sense when the sum of the integer powers of the propagators is
greater than or equal to five (see, e.g., [14]).

The IR divergences characterized above are local in momentum space, i.e. they are
connected with special points of the loop integration momenta. Collinear divergences
arise at lines parallel to certain light-like four-vectors. A typical example of a collinear
divergence is provided by the massless triangle graph of Fig. 2.4. Let us take p2

1 =
p2

2 = 0 and all the masses equal to zero. The corresponding Feynman integral is

∫
d4k

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2 . (2.21)

At least an on-shell IR divergence is present, because the integral is divergent when
k → 0 (componentwise). However, there are also divergences at non-zero values of k
that are collinear with p1 or p2 and where k2 ∼ 0. This follows from the fact that the
product 1/[(k2−2p·k)k2], where p2 = 0 and p �= 0, generates collinear divergences.
To see this let us take residues in the upper complex half plane when integrating this
product over k0. For example, taking the residue at k0 = −|k|+i0 leads to an integral
containing 1/(p·k) = 1/[p0|k|(1 − cos θ)], where θ is the angle between the spatial
components k and p. Thus, for small θ , we have a divergent integration over angles
because of the factor d cos θ/(1 − cos θ) ∼ dθ/θ . The second residue generates a
similar divergent behaviour—this can be seen by making the change k → p − k.

Another way to reveal the collinear divergences is to introduce the light-cone
coordinates k± = k0 ± k3, k = (k1, k2). If we choose p with the only non-zero
component p+, we will see a logarithmic divergence coming from the region k− ∼
k2 ∼ 0 just by power counting.

These are the main types of divergences of usual Feynman integrals. Various spe-
cial divergences arise in more general Feynman integrals (2.7) that can contain linear
propagators and appear on the right-hand side of asymptotic expansions in momenta

Fig. 2.4 One-loop triangle
diagram
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and masses and in associated effective theories. For example, in the Sudakov limit,
one encounters divergences that can be classified as UV collinear divergences.
Another situation with various non-standard divergences is provided by threshold
expansion and the corresponding effective theories, NRQCD and pNRQCD, where
special power counting is needed to characterize the divergences.

2.3 Alpha Representation

A useful tool to analyze the divergences of Feynman integrals is the so-called alpha
representation based on (2.13). It can be written down for any Feynman integral.
For example, for (2.9), one inserts (2.13) for each of the two propagators, takes the
four-dimensional Gaussian integral by means of (2.15) to obtain

FΓ (q) = iπ2
∫ ∞

0

∫ ∞

0
dα1 dα2 (α1 + α2)

−2

× exp

(
iq2 α1α2

α1 + α2
− i(m2

1α1 + m2
2α2)

)
. (2.22)

For a usual general Feynman integral, this procedure can also explicitly be imple-
mented. Using (2.13) for each propagator of a general usual Feynman integral (i.e.,
with usual propagators (2.2)) one takes (see, e.g., [23]) 4h-dimensional Gauss inte-
grals by means of a generalization of (2.15) to the case of an arbitrary number of
loop integration momenta:

∫
d4k1 . . . d4kh exp

⎡
⎣i

⎛
⎝∑

i, j

Ai j ki ·k j + 2
∑

i

qi ·ki

⎞
⎠

⎤
⎦

= i−hπ2h(det A)−2 exp

⎡
⎣−i

∑
i, j

A−1
i j qi ·q j

⎤
⎦ . (2.23)

Here A is an h × h matrix and A−1 its inverse.3

The elements of the inverse matrix involved here are rewritten in graph-theoretical
language (see details in [7, 23]), and the resulting alpha representation takes the
form [8]

3 In fact, the matrix A involved here equals eβe+ with the elements of an arbitrarily chosen column
and row with the same number deleted. Here e is the incidence matrix of the graph, i.e. eil = ±1
if the vertex i is the beginning/end of the line l, e+ is its transpose and β consists of the numbers
1/αl on the diagonal—see, e.g., [23].
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FΓ (q1, . . . , qn; d) = i−a−hπ2h∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαL

∏
l

α
al−1
l U−2 ZeiV/U−i

∑
m2

l αl ,

(2.24)

where a = ∑
al , and U and V are the well-known functions

U =
∑

T ∈T 1

∏
l �∈T

αl , (2.25)

V =
∑

T ∈T 2

∏
l �∈T

αl

(
qT

)2
. (2.26)

In (2.25), the sum runs over trees of the given graph, and, in (2.26), over 2-trees,
i.e. subgraphs that do not involve loops and consist of two connectivity components;
±qT is the sum of the external momenta that flow into one of the connectivity
components of the 2-tree T . (It does not matter which component is taken because of
the conservation law for the external momenta.) The products of the alpha parameters
involved are taken over the lines that do not belong to the given tree T . The functions
U and V are homogeneous functions of the alpha parameters with the homogeneity
degrees h and h + 1, respectively. See also [6] for various properties of these two
basic functions.

The factor Z is responsible for the non-scalar structure of the diagram:

Z =
∏

l

Zl

(
1

2i

∂

∂ul

)
ei(2B−K )/U

∣∣∣∣∣
u1=...uL=0

, (2.27)

where (see, e.g., [30, 40])

B =
∑

l

ul

∑
T ∈T 1

l

qT

∏
l ′ �∈T

αl ′ , (2.28)

K =
∑

T ∈T 0

∏
l �∈T

αl

(∑
l

±ul

)2

. (2.29)

In (2.28), the sum is taken over trees T 1
l that include a given line l, and qT is the total

external momentum that flows through the line l (in the direction of its orientation).
In (2.29), the sum is taken over pseudotrees T 0 (a pseudotree is obtained from a
tree by adding a line), and the sum in l is performed over the loop (circuit) of the
pseudotree T , with a sign dependent on the coincidence of the orientations of the
line l and the pseudotree T .
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Let me emphasize that this terrible-looking machinery for evaluating the
determinant of the matrix A that arises from Feynman integrals, as well as for evalu-
ating the elements of the inverse matrix, together with interpreting these results from
the graph-theoretical point of view, is exactly the same as that used in the problem
of the solution of Kirchhoff’s laws for electrical circuits, a problem typical of the
nineteenth century. Recall, for example, that the parameters αl play the role of ohmic
resistances and that the expression (2.25) for the function U as a sum over trees is a
Kirchhoff result.

In practical calculations, one often derives the alpha representation for concrete
diagrams by hand, rather than deduces it from the general formulae presented above.
For the derivation, one can also use the public code UF.m [29] which is applicable
also for general quadratic and linear propagators.

2.4 Regularization

The standard way of dealing with divergent Feynman integrals is to introduce a
regularization. This means that, instead of the original ill-defined Feynman integral,
we consider a quantity which depends on a regularization parameter, λ, and formally
tends to the initial, meaningless expression when this parameter takes some limiting
value, λ = λ0. This new, regularized, quantity turns out to be well-defined, and
the divergence manifests itself as a singularity with respect to the regularization
parameter. Experience tells us that this singularity can be of a power or logarithmic
type, i.e. lnn(λ − λ0)/(λ − λ0)

i .
Although a regularization makes it possible to deal with divergent Feynman

integrals, it does not actually remove UV divergences, because this operation is
of an auxiliary character so that sooner or later it will be necessary to switch off
the regularization. To provide finiteness of physical observables evaluated through
Feynman diagrams, another operation, called renormalization, is used. This opera-
tion is described, at the Lagrangian level, as a redefinition of the bare parameters of
a given Lagrangian by inserting counterterms. The renormalization at the diagram-
matic level is called R-operation and removes the UV divergence from individual
Feynman integrals. It is, however, beyond the scope of the present book. (See, how-
ever, some details in Sect. 14.6, where the method of IR rearrangement is briefly
described.)

An obvious way of regularizing Feynman integrals is to introduce a cut-off at
large values of the loop momenta. Another well-known regularization procedure is
the Pauli–Villars regularization [26], which is described by the replacement

1

p2 − m2 → 1

p2 − m2 − 1

p2 − M2

http://dx.doi.org/10.1007/978-3-642-34886-0_14
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and its generalizations. For finite values of the regularization parameter M , this
procedure clearly improves the UV asymptotics of the integrand. Here the limiting
value of the regularization parameter is M = ∞.

If we replace the integer powers al in the propagators by general complex numbers
λl we obtain an analytically regularized [32] Feynman integral where the divergences
of the diagram are encoded in the poles of this regularized quantity with respect to the
analytic regularization parameters λl . For example, power counting at large values
of the loop momentum in the analytically regularized version of (2.9) leads to the
divergent behaviour

∫ ∞
Λ

dr rλ1+λ2−3, which results in a pole 1/(λ1 + λ2 − 2) at the
limiting values of the regularization parameters λl = 1.

For example, in the case of the analytically regularized integral of Fig. 2.2, we
obtain

FΓ (q; λ1, λ2) = e−iπ(λ1+λ2+1)/2π2

Γ (λ1)Γ (λ2)

∫ ∞

0

∫ ∞

0
dα1 dα2

α
λ1−1
1 α

λ2−1
2

(α1 + α2)2

× exp

(
iq2 α1α2

(α1 + α2)
− i(m2

1α1 + m2
2α2)

)
. (2.30)

After the change of variables η = α1+α2, ξ = α1/(α1+α2) and explicit integration
over η, we arrive at

FΓ (q; λ1, λ2) = eiπ(λ1+λ2)
iπ2Γ (λ1 + λ2 − 2)

Γ (λ1)Γ (λ2)

×
∫ 1

0
dξ

ξλ1−1(1 − ξ)λ2−1

[
m2

1ξ + m2
2(1 − ξ) − q2ξ(1 − ξ) − i0

]λ1+λ2−2 .

(2.31)

Thus the UV divergence manifests itself through the first pole of the gamma function
Γ (λ1 + λ2 − 2) in (2.31), which results from the integration over small values of η

due to the power ηλ1+λ2−3.
The alpha representation turns out to be very useful for the introduction of dimen-

sional regularization, which is a commonly accepted computational technique suc-
cessfully applied in practice and which will serve as the main kind of regularization
in this book. Let us imagine that the number of space–time dimensions differs from
four. To be more precise, the number of space dimensions is considered to be d − 1,
rather than three. (But we still think of an integer number of dimensions.) The deriva-
tion of the alpha representation does not change much in this case. The only essential
change is that, instead of (2.15), we need to apply its generalization to an arbitrary
number of dimensions, d:

∫
ddk ei(αk2−2q·k) = eiπ(1−d/2)/2πd/2α−d/2e−iq2/α. (2.32)

So, instead of (2.22), we have the following formula in d dimensions:
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FΓ (q; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0

∫ ∞

0
dα1 dα2 (α1 + α2)

−d/2

× exp

(
iq2 α1α2

α1 + α2
− i(m2

1α1 + m2
2α2)

)
. (2.33)

The only two places where something has been changed are the exponent of the
combination (α1 + α2) in the integrand and the exponents of the overall factors.

Now, in order to introduce dimensional regularization, we want to consider the
dimension d as a complex number. So, by definition, the dimensionally regularized
Feynman integral for Fig. 2.2 is given by (2.33) and is a function of q2 as given by this
integral representation. We choose d = 4−2ε, where the value ε = 0 corresponds to
the physical number of the space–time dimensions. By the same change of variables
as used after (2.30), we obtain

FΓ (q; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0
dη ηε−1

×
∫ 1

0
dξ exp {iq2ξ(1 − ξ)η − i[m2

1ξ + m2
2(1 − ξ)]η}. (2.34)

This integral is absolutely convergent for 0 < Re ε < Λ (where Λ = ∞ if both
masses are non-zero and Λ = 1 otherwise; this follows from an IR analysis of
convergence, which we omit here) and defines an analytic function of ε, which is
extended from this domain to the whole complex plane as a meromorphic function.

After evaluating the integral over η, we arrive at the following result:

FΓ (q; d) = iπd/2Γ (ε)

∫ 1

0

dξ[
m2

1ξ + m2
2(1 − ξ) − q2ξ(1 − ξ) − i0

]ε . (2.35)

The UV divergence manifests itself through the first pole of the gamma function
Γ (ε) in (2.35), which results from the integration over small values of η in (2.34).

This procedure of introducing dimensional regularization is easily generalized
[8, 9, 11] to an arbitrary usual Feynman integral. Instead of (2.23), we use

∫
ddk1 . . . ddkh exp

⎡
⎣i

⎛
⎝∑

i, j

Ai j ki ·k j + 2
∑

i

qi ·ki

⎞
⎠

⎤
⎦

= eiπh(1−d/2)/2πhd/2(det A)−d/2 exp

⎡
⎣−i

∑
i, j

A−1
i j qi ·q j

⎤
⎦ , (2.36)

and the resulting d-dimensional alpha representation takes the form [8, 9]
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FΓ (q1, . . . , qn; d) = (−1)a eiπ [a+h(1−d/2)]/2πhd/2∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαL

∏
l

α
al−1
l U−d/2 ZeiV/U−i

∑
m2

l αl .

(2.37)

Let us now define4 the dimensionally regularized Feynman integral by means of
(2.37), treating the quantity d as a complex number. This is a function of kinematical
invariants constructed from the external momenta and contained in the function V .
In addition to this, we have to take care of polynomials in the external momenta and
the auxiliary variables ul hidden in the factor Z . We treat these objects qi and ul ,
as well as the metric tensor gμν , as elements of an algebra of covariants, where we
have, in particular,

(
∂

∂uμ
l

)
uν

l ′ = gν
μδl,l ′ , gμ

μ = d.

This algebra also includes the γ -matrices with anticommutation relations γμγν +
γνγμ = 2gμν so that γ μγμ = d, the tensor εκμνλ, etc.

Thus the dimensionally regularized Feynman integrals are defined as linear com-
binations of tensor monomials in the external momenta and other algebraic objects
with coefficients that are functions of the scalar products qi ·q j . However, this is not
all, because we have to see that the α-integral is well-defined. Remember that it can
be divergent, for various reasons.

The alpha representation is not only an important technique to evaluate Feyn-
man integrals either analytically (as explained in the next chapter) or numerically
(as explained in Sects. 4.2 and 4.3) but also a convenient tool to analyze their con-
vergence. The adequate technique for the numerical evaluation and the analysis of
convergence is the same: these are sector decompositions (appeared, for the first
time, in [18]) of a given alpha-parametric integral where new variables are intro-
duced in such a way that the integrand factorizes, i.e. takes the form of a product of
some powers of the sector variables with a non-zero function. Eventually, in the new

4 An alternative definition of algebraic character [19, 35, 38] (see also [13]) exists and is based on
certain axioms for integration in a space with non-integer dimension. It is unclear how to perform
the analysis within such a definition, for example, how to apply the operations of taking a limit,
differentiation, etc. to algebraically defined Feynman integrals in d dimensions, in order to say
something about the analytic properties with respect to momenta and masses and the parameter of
dimensional regularization. After evaluating a Feynman integral according to the algebraic rules,
one arrives at some concrete function of these parameters but, before integration, one is dealing
with an abstract algebraic object. Let us remember, however, that, in practical calculations, one
usually does not bother about precise definitions. From the purely pragmatic point of view, it is
useless to think of a diagram when it is not calculated. On the other hand, from the pure theoretical
and mathematical point of view, such a position is beneath criticism.

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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variables, the analysis of convergence reduces to power counting in one-dimensional
integrals.

For Feynman integrals considered at Euclidean external momenta qi , i.e. when
any sum of incoming momenta is spacelike,

(∑
i∈I

qi

)2

< 0 (2.38)

this analysis is described in Sect. 4.4.
As a result of this analysis, any Feynman integral at Euclidean external momenta

is defined as meromorphic function of d with series of UV and IR poles [9, 27, 30,
33, 34, 36]. Here it is also assumed that there are no massless detachable subgraphs,
i.e. massless subdiagrams with zero external momenta. For example, a tadpole, i.e.
a line with coincident end points, is a detachable subgraph. However, such diagrams
are naturally put to zero in case they are massless—see a discussion below.

Observe that increasing Re ε improves UV convergence and decreasing Re ε

improves IR convergence. If a given Feynman integral is only UV or IR divergent one
can apply sector decompositions and choose an appropriate domain of ε to provide
the convergence and then analytically continue the integral to the whole complex
plane of ε. If there are both UV and IR divergences in a given Feynman integral
so that changing ε improves one kind of convergence and spoils the other kind. As
explained in Sect. 4.4 one can, however, exploit an auxiliary analytic regularization
and provide an ambiguous definition5 [11] of dimensionally regularized Feynman
integrals in this situation.

There are no similar mathematical results for general Feynman integrals in cases
where at least some of external momenta squared are non-negative. However, one
can follow a simple recipe which is implicitly adopted at least by the authors of
so-called modern sector decompositions initiated in [2, 3]. According to this recipe,
various subintegrals appearing in parametric representations are considered in their
own domains of ε where they are convergent. We will continue this discussion in the
end of Sect. 4.4 after presenting various sector decompositions in Sects. 4.1–4.3.

Let me now emphasize that one is forced to evaluate Feynman integrals on a
mass shell or a threshold because they are really needed in practice. In fact, such
integrals will be mainly considered in this book as examples illustrating the methods
described. However, in every concrete example considered below, we will see that
every Feynman diagram is indeed an analytical function of d, both in intermediate
steps of a calculation and, of course, in our results.

5 Besides [11], the problem of defining UV and IR divergent Feynman integrals within dimensional
regularization was studied in [10] where Mellin–Barnes integrals were applied for this purpose.

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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2.5 Properties of Dimensionally Regularized
Feynman Integrals

We can formally write down dimensionally regularized Feynman integrals as integrals
over d-dimensional vectors ki :

FΓ (q1, . . . , qn; d) =
∫

ddk1 . . .

∫
ddkh

L∏
l=1

D̃F,l(pl). (2.39)

If a tensor reduction was already performed we deal with the corresponding scalar
integrals represented by the d-dimensional version of (2.7)

F(q1, . . . , qn; a1, . . . , aN ; d) =
∫

· · ·
∫

ddk1 . . . ddkh

Ea1
1 . . . EaN

N

, (2.40)

where the denominators Ei have the form (2.8). The indices ai can be either positive or
non-positive so that numerators in Feynman integrals correspond to negative indices.

In order to obtain dimensionally regularized integrals with their dimension inde-
pendent of ε, a factor of μ−2ε per loop, where μ is a massive parameter, is introduced.
This parameter serves as a renormalization parameter for schemes based on dimen-
sional regularization. Therefore, we obtain logarithms and other functions depending
not only on ratios of given parameters, e.g. q2/m2, but also on q2/μ2 etc. However,
we will usually omit this μ-dependence for brevity (i.e. set μ = 1) so that you will
meet sometimes quantities like ln q2 which should be understood in the sense of
ln(q2/μ2).

We have reasons for using the notation (2.39), because dimensionally regularized
Feynman integrals as defined above possess the standard properties of integrals of
the usual type in integer dimensions. In particular,

• the integral of a linear combination of integrands equals the same linear combina-
tion of the corresponding integrals;

• one may cancel the same factors in the numerator and denominator of integrands.

These properties follow directly from the above definition. A less trivial property is
that

• a derivative of an integral with respect to a mass or momentum equals the corre-
sponding integral of the derivative.

This is also a consequence (see [11, 30]) of the definition of dimensionally regularized
Feynman integrals based on the alpha representation and the corresponding analysis
of convergence presented in Sect. 4.4. To prove this statement, one uses standard
algebraic relations between the functions entering the alpha representation [9, 23].
(We note again that these are relations quite similar to those encoded in the solutions
of Kirchhoff’s laws for a circuit defined by the given graph.) A corollary of the last
property is the possibility of integrating by parts and always neglecting surface terms:

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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∫
ddk1 . . .

∫
ddkh

(
∂

∂ki
· r j

) L∏
l=1

D̃F,l(pl) = 0 , i = 1, . . . , h, (2.41)

where r j is a loop or external momentum.
This property is the basis for solving the reduction problem for Feynman integrals

using IBP relations [12]—see Chap. 6.
The next property says that

• any diagram with a detachable massless subgraph is zero.

Let us consider, for example, the massless tadpole diagram, which can be reduced
by means of alpha parameters to a scaleless one-dimensional integral:

∫
ddk

k2 = −iεπd/2
∫ ∞

0
dα αε−2. (2.42)

We divide this integral into two pieces, from 0 to 1 and from 1 to ∞, evaluate these
two integrals and find results that are equal except for opposite signs, which lead to
the zero value.6 It should be emphasized here that the two pieces that contribute to
the right-hand side of (2.42) are convergent in different domains of the regularization
parameter ε, namely, Re ε > −1 and Re ε < −1, with no intersection.

A massless Feynman integral with a zero external momentum can appear either
in the beginning when using Feynman rules, or after some manipulations: after using
partial fractions, integration by parts, etc. We can also include in this second class
all such integrals that appear on the right-hand side of asymptotic expansions in
momenta and masses [1, 31]—see Chap. 9. In any case, one sets such integrals to
zero. In fact, in any massless Feynman integral at zero external momenta, one can
reveal an internal one-dimensional integral with a pure power, similar to the above
integral for the tadpole (2.42). We will come back to this point in Chap. 4.

On-shell and threshold Feynman integrals have been already mentioned many
times, so that let us consider several typical one-loop examples. We must realize
that, generally, an on-shell or threshold Feynman integral is not the value of the
given Feynman integral FΓ (q2, . . .), defined as a function of q2 and other kinematical
variables, at a value of q2 on a mass shell or at a threshold. Consider, for example, the
Feynman integral corresponding to Fig. 2.2, with m1 = 0, m2 = m, a1 = 1, a2 = 2.
We know an explicit result for the diagram given by (1.5). There is a logarithmic
singularity at threshold, q2 = m2, so that we cannot strictly speak about the value
of the integral there. Still we can certainly define the threshold Feynman integral
by putting q2 = m2 in the integrand of the integral over the loop momentum or
over the alpha parameters. And this is what was really meant and will be meant by
‘on-shell’ and ‘threshold’ integrals. In this example, we obtain an integral which can
be evaluated by means of (10.13) (to be derived in Chap. 3):

6 These arguments can be found, for example, in [20], and, ironically, even in a pure mathematical
book [16].

http://dx.doi.org/10.1007/978-3-642-34886-0_6
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∫
ddk

k2(k2 − 2q ·k)2 = iπd/2 Γ (ε)

2(m2)1+ε
. (2.43)

This integral is divergent, in contrast to the original Feynman integral defined for
general q2.

Thus on-shell or threshold dimensionally regularized Feynman integrals are
defined by the alpha representation or by integrals over the loop momenta with
restriction of some kinematical invariants to appropriate values in the corresponding
integrands. In this sense, these regularized integrals are ‘formal’ values of general
Feynman integrals at the chosen variables.

Note that the products of the free fields in the Lagrangian are not required to
be normal-ordered, so that products of fields of the same sort at the same point are
allowed. The formal application of the Wick theorem therefore generates values of
the propagators at zero. For example, in the case of the scalar free field, with the
propagator

DF (x) = i

(2π)4

∫
d4k

e−ix ·k

k2 − m2 , (2.44)

which satisfies (� + m2)DF (x) = −iδ(x), we have

T φ(x)φ(x) = : φ2(x) : +DF (0). (2.45)

The value of DF (x) at x = 0 does not exist, because the propagator is singular at the
origin according to (2.17). However, we imply the formal value at the origin rather
than the ‘honestly’ taken value. This means that we set x to zero in some integral
representation of this quantity. For example, using the inverse Fourier transformation,
we can define DF (0) as the integral (2.44) with x set to zero in the integrand. Thus,
by definition,

DF (0) = i

(2π)4

∫
d4k

k2 − m2 . (2.46)

This integral is, however, quadratically divergent, as Feynman integrals typically are.
So, we understand DF (0) as a dimensionally regularized formal value when we put
x = 0 in the Fourier integral and obtain, using (10.1) (which we will derive shortly),

∫
ddk

k2 − m2 = −iπd/2Γ (ε − 1)(m2)1−ε. (2.47)

This Feynman integral in fact corresponds to the tadpole φ4 theory graph shown
in Fig. 2.5. The corresponding quadratic divergence manifests itself through an UV
pole in ε—see (2.47).

http://dx.doi.org/10.1007/978-3-642-34886-0_10


2.5 Properties of Dimensionally Regularized Feynman Integrals 29

Fig. 2.5 Tadpole

Observe that one can trace the derivation of the integrals tabulated in Sect. 10.1
and see that the integrals are convergent in some non-empty domains of the complex
parameters λl and ε and that the results are analytic functions of these parameters
with UV, IR and collinear poles.

Before continuing our discussion of setting scaleless integrals to zero, let us
present an analytic result for the one-loop massless triangle integral with two on-shell
external momenta, p2

1 = p2
2 = 0. Using (10.28) (which we will derive in Chap. 3),

we obtain

∫
ddk

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2 = −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (1 − 2ε)(−q2)1+ε
. (2.48)

A double pole at ε = 0 arises from the IR and collinear divergences.
A similar formula with a monomial in the numerator can be obtained also straight-

forwardly:

∫
ddk kμ

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2 = iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)

pμ
1 + pμ

2

(−q2)1+ε
. (2.49)

Now only a simple pole is present, because the factor kμ kills the IR divergence.
Consider now a massless one-loop integral with the external momentum on the

massless mass shell, p2 = 0:

∫
ddk

(p − k)2k2 . (2.50)

If we write down the alpha representation for this integral we obtain the same expres-
sion (2.42) as for p = 0 because only p2, equal to zero in both cases, is involved
there. In spite of this obvious fact, there is still a qualitative difference: for p = 0,
there are UV and IR poles which enter with opposite signs and, for p2 = 0 (but with
p �= 0 as a d-dimensional vector), there is a similar interplay of UV and collinear
poles.

Now we follow the arguments presented in [24] and write down the following
identity for (2.50), with p = p1:

∫
ddk

(k2 − 2p1 ·k)k2

=
∫

ddk

(k2 − 2p1 ·k)(k2 − 2p2 ·k)
−

∫
ddk 2p2 ·k

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2 , (2.51)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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where p2
2 = 0 and p1 · p2 �= 0. We then evaluate the integrals on the right-hand side

by means of (10.7) and (2.49), respectively, and obtain a zero value. This fact again
exemplifies the consistency of our rules.

Thus we are going to systematically apply the properties of dimensionally regu-
larized Feynman integrals in any situation, no matter where the external momenta
are considered to be. Moreover, we will believe that these properties are also valid
for more general Feynman integrals given by the dimensionally regularized version
of (2.7) which can contain linear propagators.
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Chapter 3
Evaluating by Alpha and Feynman
Parameters

Feynman parameters1 are very well known and often used in practical calculations.
They are closely related to alpha parameters introduced in Chap. 2. The use of both
kinds of parameters enables us to transform Feynman integrals over loop momenta
into parametric integrals where Lorentz invariance becomes manifest. Using alpha
parameters we will first evaluate one and two-loop integrals with general complex
powers of the propagators, within dimensional regularization, for which results can
be written in terms of gamma functions for general values of the dimensional reg-
ularization parameter. We will show then how these formulae, together with simple
algebraic manipulations, enable us to evaluate some classes of Feynman integrals.

We then turn to various characteristic one-loop examples where results cannot be
written in terms of gamma functions. In such situations, we will be usually oriented at
the evaluation in expansion in powers of ε up to some fixed order. We then introduce
Feynman parameters and present the so-called Cheng–Wu theorem which provides
a very useful trick that can greatly simplify the evaluation. Finally, we proceed at
the two-loop level by presenting more complicated examples of evaluating Feynman
integrals by Feynman and alpha parameters.

3.1 Simple One- and Two-Loop Formulae

A lot of one- and two-loop formulae can be derived, using alpha and Feynman
parameters, for general complex indices with results expressed in terms of gamma
functions. A collection of such formulae is presented in Sect. 10.1.

Let us evaluate, for example, the dimensionally regularized massive tadpole Feyn-
man diagram of Fig. 2.5 with a general power of the propagator,

FΓ (q;λ; d) =
∫

ddk

(−k2 + m2)λ
. (3.1)

1 See, e.g. textbooks [20] and [7] and a recent review [26].

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 33
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_3,
© Springer-Verlag Berlin Heidelberg 2012
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We apply the alpha representation of the analytically regularized scalar propagator
given by (2.13) with Z = 1, i.e.

1

(−k2 + m2)λ
= iλ

Γ (λ)

∫ ∞

0
dααλ−1ei(k2−m2)α, (3.2)

change the order of integration over k and α, take the Gaussian k integral by means
of (2.32), again apply (3.2) written in the reverse order, i.e.

∫ ∞

0
dααλ−1e−iAα = Γ (λ) i−λ

(A − i0)λ
, (3.3)

and arrive at (10.1). In particular, this table formula gives (2.47).
Let us now turn to the dimensionally regularized Feynman diagram of Fig. 2.2

with general powers of the propagators,

FΓ (q;λ1,λ2; d) =
∫

ddk

(−k2 + m2
1)
λ1[−(q − k)2 + m2

2]λ2
. (3.4)

From now on, we will use the following convention: when powers of propagators
are integers we use them with +k2 + i0, but when they are non-integral or complex,
we take the opposite sign, i.e. −k2 − i0. The second choice is more natural if we
wish to obtain a Euclidean, −q2, dependence of the results (see, e.g. (3.6)). We will
also prefer to use al for integer and λl for general complex indices. In the latter case,
the alpha representation is obtained from (2.37) by replacing al by λl and dropping
out the factor (−1)a .

Starting from the alpha representation of Fig. 2.2, with the basic functions U =
α1+α2 and V = α1α2q2, and using the change of variablesα1 = ξη, α2 = η(1−ξ)
we obtain the dimensionally regularized version of (2.31), i.e.

FΓ (q;λ1,λ2; d) = iπd/2 Γ (λ1 + λ2 + ε− 2)

Γ (λ1)Γ (λ2)

×
∫ 1

0

dξ ξλ1−1(1 − ξ)λ2−1

[
m2

1ξ + m2
2(1 − ξ) − q2ξ(1 − ξ) − i0

]λ1+λ2+ε−2
. (3.5)

Suppose that the masses are zero. In this case the integral over ξ can be evaluated
in terms of gamma functions, and we arrive at the following result:

∫
ddk

(−k2)λ1[−(q − k)2]λ2
= iπd/2 G(λ1,λ2)

(−q2)λ1+λ2+ε−2
, (3.6)

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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where

G(λ1,λ2) = Γ (λ1 + λ2 + ε− 2)Γ (2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (4 − λ1 − λ2 − 2ε)
. (3.7)

The one-loop formula (3.6) can graphically be described by Fig. 3.1.
In the case where the powers of propagators are equal to one, we have

∫
ddk

k2(q − k)2 = iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)(−q2)ε
. (3.8)

Observe that although the indices of the diagrams are integer at the beginning, non-
integer indices shifted by amounts proportional to ε appear after an intermediate
integration, e.g. after the use of (3.8) inside a bigger diagram.

Another formula that can be derived from (3.5) gives a result for the integral

∫
ddk

(−k2 + m2)λ1(−k2)λ2
.

Indeed, we set q = 0, m1 = m and m2 = 0, take an integral over ξ and obtain (10.4).
Consider now the following integral that arises in calculations in HQET

[13, 16, 18]: ∫
ddk

(−k2)λ1(2v ·k + ω − i0)λ2
.

Since the denominator of one of the propagators is not quadratic we cannot use the
general formula of the alpha representation. Still we proceed by alpha parameters,
i.e. apply (3.2) to the first propagator and a similar Fourier representation

1

(−A − i0)λ
= iλ

Γ (λ)

∫ ∞

0
dααλ−1eiAα, (3.9)

with A = −2v ·k − ω, to the second propagator. Changing the order of integration
as above and evaluating a Gaussian integral over k we then apply (3.3) to take the
integral ∫ ∞

0
αλ1+ε−3

1 e−iα2
2v2/α1 dα1

Fig. 3.1 Graphical interpretation of (3.6)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
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and, finally, an integral over α2, and arrive at (10.25).
This formula can be used to calculate the integral

∫
ddk

(−k2)λ1(−2v ·(q − k) − i0)λ2
. (3.10)

The graphical interpretation of the corresponding result is shown in Fig. 3.2, where
the dashed line denotes the propagator 1/(−2v ·k) and Ḡ is the function that enters
the right-hand side of (10.25).

The following one-loop integral is typical for the evaluation of the one-loop static
quark potential: ∫

ddk

(−k2)λ1[−(q − k)2]λ2(−2v ·k − i0)λ3
.

Here v · q = 0. (Typically, one chooses q = (0, q) and v = (1, 0).) One of the
propagators is not quadratic so that we proceed by alpha parameters and represent
each of the three factors as an alpha integral. After taking a Gaussian integral over k
we obtain

iλ1+λ2+λ3+ε−1πd/2∏
l Γ (λl)

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3∏

l=1

αλl−1
l dαl

)
(α1 + α2)

ε−2

× exp

(
i
q2α1α2 − v2α2

3

α1 + α2

)
.

Then the integral over α3 can be evaluated by the change α3 = √
t and (3.3). After

that the integration over α1 and α2 is taken, as before, by introducing the variables
η = α1 + α2, ξ = α1/(α1 + α2), with the result (10.27).

Using alpha parameters one can also derive the formula (10.42) for the formal
Fourier transformation within dimensional regularization. This formula provides
another way to derive (3.6). In fact, the initial integral is nothing but the convolution
of the two functions, f̃i = 1/(−k2 − i0)λi , i = 1, 2. Then one uses the well-known
mathematical formula (

f̃1 ∗ f̃2

)
(q) = (2π)d ˜( f1 f2)

for the convolution of two Fourier transforms, applies (10.42) and arrives at (3.6).

Fig. 3.2 Result for (3.10) in the graphical form

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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3.2 Auxiliary Tricks

3.2.1 Recursively One-Loop Feynman Integrals

Massless integrals are often evaluated with the help of successive application of the
one-loop formula (3.6). In addition one can use the fact that a sequence of two lines
with scalar propagators with the same mass and the indices a1 and a2 can be replaced
by one line with index a1 + a2. Consider, for example, the two-loop diagram shown
in Fig. 3.3. The internal one-loop integral can be evaluated by use of (3.8) and is
effectively replaced, according to Fig. 3.1, by a line with index ε. Then the sequence
of two massless lines with indices 1 and ε is replaced by one line with index 1 + ε,
and the one-loop diagram so obtained, which has indices 2 and 1+ε, is evaluated by
means of the one-loop formula (3.6), with the following result expressed in terms of
gamma functions: G(1, 1)G(2, 1 + ε)/(−q2)1+2ε. The class of Feynman diagrams
that can be evaluated in this way by means of (3.6) can be called recursively one-loop.

Another example where two tabulated one-loop integration formulae can succes-
sively be applied is given by the two-loop scalar diagram of Fig. 3.4 with general
complex indices and two zero masses,

∫ ∫
ddk ddl

(−k2)λ1 [−(k + l)2]λ2(m2 − l2)λ3
.

Here one can first apply the one-loop massless integration formula (3.6), then apply
(10.4) and obtain (10.39).

Fig. 3.3 A recursively one-
loop diagram

Fig. 3.4 Vacuum two-loop
diagram with the masses 0, 0
and m

1

2

3

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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3.2.2 Partial Fractions

When evaluating dimensionally regularized Feynman integrals one uses their prop-
erties, in particular the possibility of manipulations based on the properties listed in
Sect. 2.5. Here the following standard decomposition proves to be useful:

1

(x + x1)a1(x + x2)a2
=

a1−1∑
i=0

(
a2 − 1 + i

a2 − 1

)
(−1)i

(x2 − x1)a2+i (x + x1)a1−i

+
a2−1∑
i=0

(
a1 − 1 + i

a1 − 1

)
(−1)a1

(x2 − x1)a1+i (x + x2)a2−i
, (3.11)

where a1, a2 > 0 and (
n

j

)
= n!

j !(n − j)!
is a binomial coefficient.

For example, the vacuum one-loop Feynman integral with two different masses,

∫
ddk

(k2 − m2
1)(k

2 − m2
2)

,

can be evaluated by (3.11) and (10.1), with the result

iπd/2Γ (ε− 1)
m2−2ε

2 − m2−2ε
1

m2
1 − m2

2

.

If one of the indices, e.g. a2 is non-positive, a similar decomposition is performed
by expanding (x + x2)

−a2 in powers of x + x1. Let us note that if one proceeds
by MATHEMATICA [27], one can use, for given integer values of a1 and a2, the
command Apart to perform partial fractions decompositions.

3.2.3 Dealing with Numerators

As we have agreed we suppose that a tensor reduction for a given class of Feyn-
man integrals was performed so that we start with evaluating scalar integrals. Let
us, however, mention that one can also evaluate integrals with Lorentz indices. A lot
of one-loop Feynman integrals with numerators can be found in Sect. 10.1. One can
reduce evaluating such a one-loop integral to an integral with a product kα1 . . . kαN .

Then one can switch to traceless monomials and back using (10.43a) and (10.43b).
An integral with a traceless monomial independent of other Lorentz indices is again

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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traceless. If it depends on one external momentum it should be proportional to its
traceless monomial. This is how tabulated integrals for traceless monomials, e.g.
(10.8), can be derived. Then one can turn back to usual monomials using (10.43b).
(In Sect. 10.2, one can find also other useful formulae for various traceless monomi-
als.) However, I would recommend to apply the recently developed algorithm and
the corresponding public code [19] which can work successfully, for example, for
four-loop propagator integrals with up to six indices in the numerator.

Another way of dealing with numerators is by shifting dimension. In the case
of a general h-loop Feynman integral with standard propagators, let us observe that
the function (2.27) in (2.37) can be taken into account by shifting the space–time
dimension d and indices al of a given diagram because any factor that arises after
the differentiation with respect to the auxiliary parameters ul is a sum of products
of positive integer powers of the α-parameters and negative integer powers of the
functionU . In particular, the factor 1/Un is taken into account by the shift d → d+2n.
Then the shift of a power of a parameter αl can be translated into a shift of the power
of the corresponding propagator, in particular, a multiplication byαl can be described
by the operator ial l+ where l+ increases the index al by one, the multiplication by
α2

l can be described by the operator −al(al + 1)l++, etc.
This observation enables us to express any given Feynman integral with numera-

tors through a linear combination of scalar integrals with shifted indices and shifted
dimensions. Systematic algorithms oriented towards implementation on a computer,
with a demonstration up to two-loop level, have been constructed in [23, 24]. We
will come back to this point in Chap. 6 when solving IBP recurrence relations.

At the one-loop level, this property has been used [9] to derive a general formula
for the Feynman integrals

F (N )
α1...αn

(λ1, . . . ,λN , d) =
∫

ddk
kα1 . . . kαn∏N

i=1[−(qi − k)2 + m2
i ]λi

, (3.12)

depending on the external momenta q1 −q2, . . . , qN −q1 and the general masses mi :

F (N )
α1...αn

(λ1, . . . ,λN , d) =
∑

r,κ1,...,κN : 2r+∑
κi =n

(−1)r

2r

×
{
{[g]r [q1]κ1 . . . [qN ]κN }α1...αn

(
N∏

i=1

(λi )κi

)

× F (N )(λ1 + κ1, . . . ,λN + κN , d + 2(n − r))

}
,

(3.13)

where {[g]r [q1]κ1 . . . [qN ]κN }α1...αn is symmetric in its indices and is composed of
the metric tensor and the vectors qi . Tabulated formulae with numerators presented
in Appendix A can be derived by means of (3.13).

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Let us now present a simple one-loop example and illustrate the trick with turning
to integrals without numerators. Consider the Feynman integral corresponding to
Fig. 3.5 with a numerator

F(q2, m2; a1, a2, a3; n; d)

=
∫

ddk (l ·k)n

(k2 − 2p1 ·k)a1(k2 − 2p2 ·k)a2(k2 − m2)a3
, (3.14)

where l is a momentum not related to p1 and p2. The alpha representation (2.37)
takes the form

F(q2, m2; a1, a2, a3; n; d) = (−1)a ia1+a2+a3+ε−1πd/2∏
l Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0
dα1dα2dα3

∏
l

αal−1
l U−d/2 exp

{
iV/U − im2α3

}

×
(

1

2i

∂

∂r

)n

exp

{
i[2rl ·(α1 p1 + α2 p2) + r2l2]

α1 + α2 + α3

}∣∣∣∣
r=0

, (3.15)

where
U = α1 + α2 + α3, V = q2α1α2.

Taking into account the arguments above we see, for example, that

F(a1, a2, a3; 1; d) = − 1

π
[a1l · p1 F(a1 + 1, a2, a3; 0; d + 2) (3.16)

+ a2l · p2 F(a1, a2 + 1, a3; 0; d + 2)] ,

F(a1, a2, a3; 2; d) = l2

2π
F(a1, a2, a3; 0; d + 2)

+ 1

π2

[
a1(a1 + 1)(l · p1)

2 F(a1 + 2, a2, a3; 0; d + 4)

+ 2a1a2(l · p1)(l · p2)F(a1 + 1, a2 + 1, a3; 0; d + 4)

+a2(a2 + 1)(l · p2)
2 F(a1, a2 + 2, a3; 0; d + 4)

]
. (3.17)

Fig. 3.5 Triangle diagram
with the masses 0, 0, m,
external momenta p2

1 = p2
2 =

0 and general indices

http://dx.doi.org/10.1007/978-3-642-34886-0_2
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Such a reduction of numerators can be performed for any Feynman integral.
The corresponding algebraic manipulations can easily be implemented on a computer.

3.3 One-Loop Examples

Let us present examples of evaluation of Feynman diagrams by means of alpha
parameters with results which are not written in terms of gamma functions for general
d. We first turn to the example considered in the introduction.

Example 3.1 One-loop propagator Feynman integrals (1.2) corresponding to
Fig. 1.1.

We apply (3.5) to obtain

F(q2, m2; a1, a2; d) = iπd/2(−1)a1+a2
Γ (a1 + a2 + ε− 2)

Γ (a1)Γ (a2)

×
∫ 1

0

dξ ξa2−1(1 − ξ)1−a2−ε
[
m2 − q2ξ − i0

]a1+a2+ε−2 . (3.18)

For example, we have

F(q2, m2; 2, 1; d) ≡
∫

ddk

(k2 − m2)2(q − k)2 (3.19)

= −iπd/2Γ (1 + ε)

∫ 1

0

(1 − ξ)−εdξ[
m2 − q2ξ − i0

]1+ε .

Suppose that we are interested only in the value of this (finite) integral exactly in four
dimensions. The integral over ξ is then evaluated easily at ε = 0 with the result (1.5).
Similarly, Feynman integrals corresponding to Fig. 1.1 with various integer indices
ai can be evaluated. In particular, we obtain (1.7).

Let us now evaluate

F(q2, m2; 1, 2; d) ≡
∫

ddk

(k2 − m2)[(q − k)2]2

= −iπd/2Γ (1 + ε)

∫ 1

0

ξ−1−ε(1 − ξ)dξ[
m2 − q2(1 − ξ) − i0

]1+ε (3.20)

in an expansion in ε up to the finite part. This time, there is an IR pole in ε which
is generated due to integration over small ξ. The standard procedure to extract the
pole is to make a subtraction of the integrand, integrate the subtracted expression by
expanding the integrand in ε and integrate the subtracted term explicitly. In our case,
this is achieved by the following decomposition of the integral:

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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F(q2, m2; 1, 2; d) = −iπd/2Γ (1 + ε)

×
[∫ 1

0

dξ

ξ1+ε

{
1 − ξ

[m2 − q2(1 − ξ)]1+ε − 1

(m2 − q2)1+ε

}

+ 1(
m2 − q2

)1+ε

∫ 1

0

dξ

ξ1+ε

]
. (3.21)

The last integral is ∫ 1

0

dξ

ξ1+ε = −1

ε
ξ−ε∣∣1

0 = −1

ε
.

When evaluating it we imply that the real part of ε is positive and then obtain a result
which can be continued analytically to the whole complex plane of ε. We will later
follow such prescriptions in similar situations.

The first integral is now convergent uniformly in ε and can be evaluated by expand-
ing the integrand in a Taylor series in ε. Expanding up to ε0 and evaluating the
corresponding integral we obtain the following result:

F(q2, m2;1, 2; d)

= iπd/2e−γEε

m2 − q2

[
1

ε
− ln(m2 − q2) − m2

q2 ln

(
1 − q2

m2

)]
. (3.22)

Here and in all the expansions in ε below we pull out the factor e−γEε, with Euler’s
constant γE, per loop in order to avoid γE in our results.

The next one-loop example is

Example 3.2 The triangle diagram of Fig. 3.5.

The Feynman integral for Fig. 3.5 with general integer indices looks like (3.14)
with n = 0, i.e.

F(q2, m2; a1, a2, a3; d)

=
∫

ddk

(k2 − 2p1 ·k)a1(k2 − 2p2 ·k)a2(k2 − m2)a3
, (3.23)

where q = p1 − p2, q2 ≡ −Q2 = −2p1 · p2. The alpha representation (2.37) takes
the form (3.15) with n = 0.

Introducing variablesα1 = ξ1η,α2 = ξ2η andα3 = (1−ξ1−ξ2)η and integrating
over η we obtain

http://dx.doi.org/10.1007/978-3-642-34886-0_2
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F(q2, m2;a1, a2, a3; d) = iπd/2(−1)a1+a2+a3Γ (a + ε− 2)∏
l Γ (al)

×
∫ 1

0
dξ1

∫ 1−ξ1

0
dξ2

ξa1−1
1 ξa2−1

2 (1 − ξ1 − ξ2)
a3−1

[Q2ξ1ξ2 + m2(1 − ξ1 − ξ2)]a+ε−2 . (3.24)

This can be a reasonable starting point for the evaluation of integrals with any given
indices ai . Let us evaluate the integral with a1 = a2 = a3 = 1 at d = 4. Then the
integral is finite:

F(q2, m2; 1, 1, 1; 4) = −iπ2
∫ 1

0
dξ1

∫ 1−ξ1

0

dξ2

Q2ξ1ξ2 + m2(1 − ξ1 − ξ2)
.

A straightforward integration gives the following result:

F(q2, m2; 1, 1, 1; 4)

= iπ2

Q2

(
Li2(x) − 1

2
ln2 x + ln x ln(1 − x) − π2

3

)
, (3.25)

where Li2(x) is the dilogarithm (see (11.7)) and x = m2/Q2.

Example 3.3 The massless on-shell box diagram of Fig. 3.6, i.e. with p2
i = 0, i =

1, 2, 3, 4.

With the loop momentum chosen as the momentum of line 1, the Feynman integral
takes the form

F(s, t; a1, a2, a3, a4; d)

=
∫

ddk

(k2)a1[(k + p1)2]a2 [(k + p1 + p2)2]a3[(k − p3)2]a4
, (3.26)

where s = (p1 + p2)
2 and t = (p1 + p3)

2 are Mandelstam variables.
The trees and 2-trees relevant to the functions U and V are shown in Figs. 3.7

and 3.8. Four more existing 2-trees, for example the 2-tree with the component con-
sisting of the lines 1 and 2 and the component consisting of the isolated vertex with
the external momentum p4, do not contribute to the function V because the product
α3α4 is multiplied by the corresponding external momentum squared which is zero.

Fig. 3.6 Box diagram

http://dx.doi.org/10.1007/978-3-642-34886-0_11
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Fig. 3.7 Trees contributing to the function U for the box diagram

Fig. 3.8 2-trees contributing to the function V for the massless on-shell box diagram

We have (2.37) with

U = α1 + α2 + α3 + α4, V = tα1α3 + sα2α4. (3.27)

Introducing new variables by α1 = η1ξ1,α2 = η1(1 − ξ1),α3 = η2ξ2,α4 =
η2(1−ξ2), with the Jacobian η1η2, and evaluating an integral over η2 due to the delta
function and an integral over η1 in terms of gamma functions we obtain

F(s, t; a1, a2, a3, a4; d)

= (−1)a iπd/2 Γ (a + ε− 2)Γ (2 − ε− a1 − a2)Γ (2 − ε− a3 − a4)

Γ (4 − 2ε− a)
∏

Γ (al)

×
∫ 1

0

∫ 1

0
dξ1dξ2

ξa1−1
1 (1 − ξ1)

a2−1ξa3−1
2 (1 − ξ2)

a4−1

[−sξ1ξ2 − t (1 − ξ1)(1 − ξ2) − i0]a+ε−2 , (3.28)

where a = a1 + a2 + a3 + a4.
Consider, for example, integral with all the indices equal to one. We have

F(s, t; d) = iπd/2 Γ (2 + ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0

∫ 1

0

dξ1dξ2

[−tξ1ξ2 − s(1 − ξ1)(1 − ξ2) − i0]2+ε . (3.29)

Then the integration over ξ2 results in

F(s, t; d) = −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0

dξ

s − (s + t)ξ

[
(−t)−1−εξ−1−ε − (−s)−1−ε(1 − ξ)−1−ε] . (3.30)

The singularity at s − (s + t)ξ = 0 is absent because the rest of the integrand is
zero at this point. To calculate this integral in expansion in ε one needs, however, to
separate the two terms in the square brackets. In order not to run into divergence due

http://dx.doi.org/10.1007/978-3-642-34886-0_2
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to the denominator one can perform an auxiliary subtraction at s − (s + t)ξ = 0.
We obtain

F(s, t; d) = −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (−2ε)
[ f (s, t; ε) + f (t, s; ε)] , (3.31)

where

f (s, t; ε) = (−t)−1−ε
∫ 1

0

dξ

s − (s + t)ξ

[
ξ−1−ε −

(
s

s + t

)−1−ε]
. (3.32)

To expand the function f in a Laurent series in ε one needs to perform another
subtraction, at ξ = 0, which we make by the replacement

1

s − (s + t)ξ
→ (s + t)ξ

s(s − (s + t)ξ)
+ 1

s
. (3.33)

Then the integral with the first term can be evaluated by expanding the integrand in ε
while the second term is integrated explicitly. Eventually, we arrive at the following
result:

F(s, t; d) = iπd/2e−γEε

st

(
4

ε2 − [ln(−s) + ln(−t)]
2

ε

+ 2 ln(−s) ln(−t) − 4π2

3

)
+ O(ε). (3.34)

Although we are oriented at calculations in expansion in ε, let us, for completeness,
present a simple result for general ε [17] which can straightforwardly be obtained
from (3.31):

F(s, t; d) = − iπd/2Γ (−ε)2Γ (ε)

stΓ (−2ε)

[
(−t)−ε 2 F1

(
1,−ε; 1 − ε; 1 + t

s

)

+ (−s)−ε 2 F1

(
1,−ε; 1 − ε; 1 + s

t

) ]
, (3.35)

where 2 F1 is the Gauss hypergeometric function (see (11.1)).

3.4 Feynman Parameters

Let us now turn to the alpha representation of scalar dimensionally regularized inte-
grals (2.40) with general denominators Ei which are quadratic or linear with respect
to the loop momenta. It has the same form (2.37) with Z = 1, i.e.

http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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F(q1, . . . , qn; a1, . . . , aN ; d) = (−1)a eiπ[a+h(1−d/2)]/2πhd/2∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαN

∏
l

αal−1
l U−d/2e−iW/U . (3.36)

For Feynman integrals (2.40) with standard propagators 1/(p2−m2+i0)a associated
with the lines of some graph. We have

W = −V + U
∑

m2
l αl , (3.37)

with the functions U and V given by (2.25) and (2.26).
In the case of general denominators Ei , the functions U and W in (3.36) can

be obtained easily by the public code UF.m [22]. If all the indices are integer and
some of them are negative, i.e. correspond to numerators of a given integral one
can use (3.36) and take the limit where some indices ai tend to negative integers.
After this, the integration is taken only over the parameters corresponding to positive
indices and one obtains in the integrand a polynomial due to the differentiation in the
parameters corresponding to negative indices and setting these parameters to zero.

Let us now present the alpha representation of scalar dimensionally regularized
integrals in a modified form by making the change of variables αl = ηα′

l , where∑
α′

l = 1. Starting from (3.36), performing the integration over η from 0 to ∞
explicitly and omitting primes from the new variables, we obtain

FΓ (q1, . . . , qn; d) = (−1)a

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαL δ

(∑
αl − 1

) Ua−(h+1)d/2 ∏
l α

al−1
l

Wa−hd/2 . (3.38)

The folklore Cheng–Wu theorem [5] (see also [2]) says that the same formula
(3.38) holds with the delta function

δ

(∑
l∈ν

αl − 1

)
, (3.39)

where ν is an arbitrary subset of {1, . . . , N }, when the integration over the rest of the
α-variables, i.e. for l∈ν, is extended to the integration from zero to infinity. Observe
that the integration over αl for l ∈ ν is bounded at least by 1 from above, as in the
case where all the α-variables are involved in the sum in the argument of the delta
function.

One can prove this theorem straightforwardly by changing variables and calculat-
ing the corresponding Jacobian. But a simpler way to prove it2 is to start from the alpha

2 Thanks to A.G. Grozin for pointing out this possibility!

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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representation (2.37), introduce new variables by αl = ηα′
l for all l = 1, 2, . . . , L ,

where η = ∑
l∈ν αl , and immediately arrive at (3.38) with the delta function (3.39).

Let me emphasize that this theorem holds not only for (3.38) corresponding to Feyn-
man diagrams with standard propagators but also for the alpha representation derived
for Feynman diagrams with various linear propagators.

As we will see below in multiple examples, an adequate choice of the delta
function in (3.38) can greatly simplify the evaluation. Note that one can use various
homogeneous substitutions which keep the form of the delta function in (3.38)—see
Sect. 3.1 of [10] and references therein.

In addition to alpha parameters, the closely related Feynman parameters are often
used. For a product of two propagators, one writes down the following relation:

1

(m2
1 − p2

1)λ1(m2
2 − p2

2)
λ2

= Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)

∫ 1

0

dξ ξλ1−1(1 − ξ)λ2−1

[
(m2

1 − p2
1)ξ + (m2

2 − p2
2)(1 − ξ)

]λ1+λ2
. (3.40)

This relation is usually applied to a pair of appropriately chosen propagators if an
explicit integration over a loop momentum then becomes possible. Then new Feyn-
man parameters can be introduced for other factors in the integral, etc. In fact, any
choice of the Feynman parameters can be achieved by starting from the alpha repre-
sentation (3.38) and making certain changes of variables. However, the possibility of
an intermediate explicit loop integration of the kind mentioned above can be hidden
in the alpha integral.

The generalization of (3.40) to an arbitrary number of propagators is of the form

1∏
Aλl

l

= Γ (
∑
λl)∏

Γ (λl)

∫ 1

0
dξ1 . . .

∫ 1

0
dξL

∏
l

ξλl−1
l

δ
(∑

ξl − 1
)

(∑
Alξl

)∑
λl

, (3.41)

where Al = m2
l − p2

l .
For the evaluation of diagrams with a small number of loops, the choice of applying

either alpha or Feynman parameters is usually just a matter of taste. In particular, if
we apply (3.41) to a two-loop diagram and then integrate over two loop momenta,
with the help of (10.1) and its generalizations to integrals with numerators, we obtain
the same result as that obtained starting from (3.38).

For completeness, here is a one more parametric representation which is related
to Feynman parameters and is often used in practice:

1

Aλ1 Bλ2
= Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)

∫ ∞

0

xλ2−1 dx

(A + Bx)λ1+λ2
. (3.42)

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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3.5 Two-Loop Examples

At the two-loop level, we first consider the

Example 3.4 Two-loop vacuum diagram of Fig. 3.9 with the masses m, 0, m and
general complex powers of the propagators.

The Feynman integral is written as

F(m2;λ1,λ2,λ3; d)

=
∫ ∫

ddk ddl

(−k2 + m2)λ1[−(k + l)2]λ2(−l2 + m2)λ3
. (3.43)

The two basic functions in the alpha representation are U = α1α2 +α2α3 +α3α1
and V = 0. We apply (3.38) to obtain

F(m2;λ1,λ2,λ3; d) =
(

iπd/2
)2 Γ (λ+ 2ε− 4)∏

Γ (λl)(m2)λ+2ε−4

×
∫ ∞

0

∫ ∞

0

∫ ∞

0
δ

(∑
l

αl − 1

) (∏3
l=1 α

λl−1
l dαl

)
(α1 + α3)

4−λ−2ε

(α1α2 + α2α3 + α3α1)2−ε .

Now we exploit the freedom provided by the Cheng–Wu theorem and choose the
argument of the delta function as α1 +α3 − 1. The integration over α2 is performed
from 0 to ∞. Resulting integrals are evaluated in terms of gamma functions for
general ε and we arrive at the table formula (10.38).

Consider now

Example 3.5 Two-loop massless propagator diagram of Fig. 3.10 with arbitrary
integer powers of the propagators,

Fig. 3.9 Vacuum two-loop
diagram with the masses
m, 0, m

Fig. 3.10 Two-loop propaga-
tor diagram

http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Fig. 3.11 Trees contributing to the function U for Fig. 3.10

Fig. 3.12 2-trees contributing to the function V for Fig. 3.10

F(q2; a1, a2, a3, a4, a5; d)

=
∫ ∫

ddk ddl

(k2)a1[(q − k)2]a2(l2)a3[(q − l)2]a4 [(k − l)2]a5
. (3.44)

The sets of trees and 2-trees relevant to the two basic functions in the alpha
representation are shown in Figs. 3.11 and 3.12

We have, correspondingly,

U = (α1 + α2 + α3 + α4)α5 + (α1 + α2)(α3 + α4), (3.45)

V = [(α1 + α2)α3α4 + α1α2(α3 + α4) + (α1 + α3)(α2 + α4)α5]q2

≡ Vq2. (3.46)

As we will see in Sect. 6.1, any diagram of this class can be evaluated for general ε in
terms of gamma functions. This is however hardly seen from its alpha representation.
In spite of the fact that the evaluation by alpha parameters is not an optimal method
for this class of integrals, let us evaluate, for the sake of illustration, this diagram for
all powers of the propagators equal to one, using its alpha representation. It is finite
at d = 4, both in the UV and IR sense. Representation (3.38) takes the form

F(q2; 1, 1, 1, 1, 1; 4) = (iπ2)2

q2

∫ ∞

0
dα1 . . .

∫ ∞

0
dα5

δ
(∑

αl − 1
)

UV . (3.47)

We exploit the Cheng–Wu theorem by choosing the delta function δ (α5 − 1), with
the integration over the rest of the four variables from zero to infinity. Then one can
delegate the integration procedure toMATHEMATICA [27] and obtain the well-known
result3:

F(q2; 1, 1, 1, 1, 1; 4) =
(
iπ2

)2

q2 6ζ(3), (3.48)

where ζ(z) is the Riemann zeta function.

3 This result was first obtained in [21] by means of expansion in Chebyshev polynomials in
momentum space. In [6], it was reproduced using Gegenbauer polynomials in coordinate space.

http://dx.doi.org/10.1007/978-3-642-34886-0_6
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Fig. 3.13 Sunset diagram with the masses m, m, 0

In the rest of this chapter, we will consider just two more examples which are,
however, more complicated than the previous ones.

Example 3.6 Two classes of two-loop integrals4 with integer powers of the propa-
gators:

F±(q2; a1, a2, a3) =
∫ ∫

ddk ddl

(k2 + q ·k)a1(l2 + q ·l)a2 [(k ± l)2]a3
. (3.49)

It turns out that the F− is simple. Indeed we rewrite the first denominator k2 + q ·k
as (k + q/2)2 − q2/4 and similarly the second denominator, make the change of
variables k = k′−q/2, l = l ′−q/2 and recognize F− as a two-loop vacuum diagram
with the mass m2 = q2/4 shown in Fig. 3.9 which was evaluated in Example3.4—see
(10.38).

The integrals F+ are, however, not so simple. Using the same manipulation as
above we see that they are graphically recognized as sunset diagrams of Fig. 3.13 at
threshold, i.e. q2 = 4m2. We start from the alpha representation (2.37) with Z = 1.
The two basic functions are

U = α1α2 + α2α3 + α3α1, V = α1α2α3q2. (3.50)

After using the threshold condition m2 = q2/4 we obtain

F+(q2; a1, a2, a3) = (−1)a ia+2ε−2∏
Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3∏

l=1

αal−1
l dαl

)
Uε−2 exp

{
−i

q2W
4U

}
, (3.51)

where
W = (α1 + α2)α1α2 + α3(α1 − α2)

2. (3.52)

4 They were involved, in particular, in the calculation [1, 8] of two-loop matching coefficients of
the vector current in QCD and Non-Relativistic QCD (NRQCD) [3, 4, 15, 25].

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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Proceeding as with the general alpha representation we come to

F+(q2; a1, a2, a3) = (−1)a
(
iπd/2

)2

(q2/4)a+2ε−4

Γ (a + 2ε− 4)∏
Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0
δ
(∑

αl − 1
) (

3∏
l=1

αal−1
l dαl

)
Ua+3ε−6

Wa+2ε−4 . (3.53)

We continue to exploit the Cheng–Wu theorem in an appropriate way. We choose
the delta function in (3.53) as δ (α1 + α2 − 1) and obtain an integral over ξ = α1
from 0 to 1, with α2 = 1 − ξ, and an integral over t = α3 from 0 to ∞:

F+(q2; a1, a2, a3) = (−1)a
(
iπd/2

)2

(q2/4)a+2ε−4

Γ (a + 2ε− 4)∏
Γ (al)

×
∫ 1

0
dξ ξa1−1(1 − ξ)a2−1

∫ ∞

0
dt

ta3−1[t + ξ(1 − ξ)]a+3ε−6

[t (1 − 2ξ)2 + ξ(1 − ξ)]a+2ε−4 . (3.54)

This two-parametric integral representation can be used for the evaluation of any
diagram of the given class in expansion in ε. Let us show how the integral with all
the indices equal to one can be evaluated in expansion in ε up to the finite part. We
start with (3.54) which gives

F+(q2; 1, 1, 1) = −
(
iπd/2

)2
Γ (2ε− 1)

(q2/4)2ε−1

×
∫ 1

0
dξ

∫ ∞

0
dt

[t + ξ(1 − ξ)]3ε−3

[t (1 − 2ξ)2 + ξ(1 − ξ)]2ε−1 . (3.55)

Observe that the integrand is invariant under the transformation ξ → 1−ξ. We write
the integral as twice the integral from 0 to 1/2 over ξ, change the variable ξ by

ξ = 1 − √
1 − x

2
, (3.56)

with the Jacobian 1/(4
√

1 − x), and rescale t → t/4 to obtain

F+(q2; 1, 1, 1) = −
(

iπd/2
)2

Γ (2ε− 1)(q2/2)1−2ε

×
∫ 1

0

dx√
1 − x

∫ ∞

0
dt

[t (1 − x) + x]1−2ε

(t + x)3−3ε . (3.57)

Remember that our integral is UV divergent. The overall divergence is quadratic
since the UV degree of divergence is ω = 2, and there are three one-loop logarith-
mically divergent subgraphs, so that, presumably, there should be poles up to the
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second order in ε. One source of the poles is the overall gamma function Γ (2ε− 1).
Another power of 1/ε comes from the integration over t and x in (3.57), namely
from the region of small t and x . To have the possibility to perform an expansion in
ε we have to reveal the singularity at ε = 0. Similarly to what we did in Example
3.3, let us perform a subtraction according to the identity

[t (1 − x) + x]1−2ε =
{
[t (1 − x) + x]1−2ε − (t + x)1−2ε

}
+ (t + x)1−2ε.

Now, the integral with the expression in braces can be evaluated by expanding the
integrand in a Laurent series in ε, while the last term can be integrated by hand with
a result expressed in terms of gamma functions which can be, of course, expanded
in ε after the evaluation:

∫ 1

0

dx√
1 − x

∫ ∞

0

dt

(t + x)2−ε =
√
πΓ (ε)

(1 − ε)Γ (ε+ 1/2)
.

The integration of the subtracted part up to order ε0 can straightforwardly be done
by MATHEMATICA [27]. Finally, we obtain the following result:

F+(q2; 1, 1, 1) =
(

iπd/2e−γEε
)2

(
q2

4

)1−2ε

×
[

1

ε2 + 2

ε
+ 11π2

12
− 1

2
+ O(ε)

]
. (3.58)

Consider now

Example 3.7 Non-planar two-loop massless vertex diagram of Fig. 3.14 with p2
1 =

p2
2 = 0.

The Feynman integral can be written as

F(Q2; a1, . . . , a6; d) =
∫ ∫

ddk ddl

[(k + l)2 − 2p1 ·(k + l)]a1

× 1

[(k + l)2 − 2p2 ·(k + l)]a2(k2 − 2p1 ·k)a3(l2 − 2p2 ·l)a4(k2)a5(l2)a6
, (3.59)

where Q2 = −(p1 − p2)
2 = 2p1 · p2, and the loop momenta are chosen as the

momenta flowing through lines 5 and 6.
Let us proceed by Feynman parameters following [12] where some integrals of

this class were calculated. (They were also evaluated in [14] and [17].) We write
down Feynman parametric formula (3.40) for the pairs of the propagators (3, 5) and
(4, 6):
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Fig. 3.14 Non-popular vertex diagram

1

(k2 − 2p1 ·k)a3(k2)a5
= (−1)a3+a5Γ (a3 + a5)

Γ (a3)Γ (a5)

×
∫ 1

0

dξ1 ξ
a3−1
1 (1 − ξ1)

a5−1

[−(k − ξ1 p1)2 − i0]a3+a5
(3.60)

and, similarly, for the second pair, with the replacements

ξ1 → ξ2, p1 → p2, k → l, a3 → a4, a5 → a6.

Then we change the integration variable l → r = k + l and integrate over k by
means of our one-loop tabulated formula (3.6):

∫
dk

[−(k − ξ1 p1)2]a3+a5 [−(r − ξ2 p2 − k)2]a4+a6

= iπd/2 G(a3 + a5, a4 + a6)

[−(r − ξ1 p1 − ξ2 p2)2]a3+a4+a5+a6+ε−2 . (3.61)

Then we apply Feynman parametric formula (3.41) to the propagators 1 and 2 and
the propagator resulting from the right-hand side of (3.61), with a resulting integral
over r evaluated by (10.1):

∫
ddr

[−(r2 − Q2 A(ξ1, ξ2, ξ3, ξ4))]a+ε−2

= iπd/2 Γ (a + 2ε− 4)

Γ (a + ε− 2)

1

(Q2)a+2ε−4 A(ξ1, ξ2, ξ3, ξ4)a+2ε−4 , (3.62)

where a = a1 + · · · + a6 and

A(ξ1, ξ2, ξ3, ξ4) = ξ3ξ4 + (1 − ξ3 − ξ4)[ξ2ξ3(1 − ξ1) + ξ1ξ4(1 − ξ2)].

http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Thus we arrive at the following intermediate result valid for general powers of
the propagators:

F(Q2; a1, . . . , a6; d) = (−1)a
(
iπd/2

)2

(Q2)a+2ε−4

Γ (2 − ε− a35)Γ (2 − ε− a46)∏
Γ (al)Γ (4 − 2ε− a3456)

× Γ (a + 2ε− 4)

∫ 1

0
dξ1 . . .

∫ 1

0
dξ4 ξ

a3−1
1 (1 − ξ1)

a5−1ξa4−1
2 (1 − ξ2)

a6−1

× ξa1−1
3 ξa2−1

4 (1 − ξ3 − ξ4)
a3456+ε−3
+ A(ξ1, ξ2, ξ3, ξ4)

4−2ε−a . (3.63)

We use the shorthand notation a35 = a3 +a5, a3456 = a3 +a4 +a5 +a6. As usually,
X+ = X for X > 0 and X+ = 0 otherwise.

This four-parametric integral representation can be used for the evaluation of
Feynman integrals of this class with various indices. Let us use it in the case a1 =
. . . = a6 = 1 and evaluate the corresponding Feynman integral in expansion in ε up
to the finite part. We have

F(Q2; 1, . . . , 1; d) =
(
iπd/2

)2

(Q2)2+2ε

Γ (2 + 2ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0
dξ1 . . .

∫ 1

0
dξ4

(1 − ξ3 − ξ4)
1+ε+

A(ξ1, ξ2, ξ3, ξ4)2+2ε . (3.64)

We introduce new variables by ξ3 = ξη, ξ4 = (1−ξ)η and integrate over ξ2 to obtain

F(Q2; 1, . . . , 1; d) = −
(
iπd/2

)2

(Q2)2+2ε

Γ (1 + 2ε)Γ (−ε)2

Γ (−2ε)

∫ 1

0
dη η−1−2ε(1 − η)ε

×
∫ 1

0

∫ 1

0

dξdξ1

ξ − ξ1

{
ξ−1−2ε[(1 − ξ)η + (1 − η)(1 − ξ1)]−1−2ε

− (1 − ξ)−1−2ε[ξη + (1 − η)ξ1]−1−2ε
}

. (3.65)

The singularity of the denominator at ξ = ξ1 is spurious because the numerator is zero
at this point. We notice that, due to the symmetry of the integrand, the integral over
ξ and ξ1 equals twice the integral over the domain 0 ≤ ξ1 ≤ ξ ≤ 1. Following [12]
again, we turn to the variable z by ξ1 = zξ, make the changes η → 1−η, z → 1− z
and come to

F(Q2; 1, . . . , 1; d) = −2

(
iπd/2

)2

(Q2)2+2ε

Γ (1 + 2ε)Γ (−ε)2

Γ (−2ε)
f (ε), (3.66)
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where

f (ε) =
∫ 1

0
dη ηε(1 − η)−1−2ε

∫ 1

0
dξ ξ−1−2ε

×
∫ 1

0

dz

z

{
[1 − ξ(1 − ηz)]−1−2ε − (1 − ξ)−1−2ε(1 − ηz)−1−2ε

}
. (3.67)

At this point it is claimed in [12] that, in principle, it is possible to evaluate this
integral, in expansion in ε up to the finite part, performing appropriate subtractions
of the integrand. Still another way was chosen: to expand various quantities of the
type (1 − X)λ in a binomial series, with subsequent integration and summing up
resulting multiple series. (This procedure can be qualified as another method of
evaluation.) Let us, however, realize the possibility of making subtractions. Indeed,
the situation is complicated because we are dealing with a three-parametric integral
so that several subtractions that would reveal the singularities that generate poles in
ε are necessary.

Since the prefactor in (3.66) involves a simple pole in ε we have to evaluate the
function f (ε) given by (3.67) up to order ε1. There are several sources of the poles:
the points ξ = 0, ξ = 1, η = 0, η = 1, and z = 1. The following strategy of
subtractions is suitable for the calculation. Let us first decompose f into the sum
f1 + f2 according to the subtraction of the braces in (3.67) at η = 0, i.e.

[
(1 − ξ(1 − ηz))−1−2ε − (1 − ξ)−1−2ε

]

+ (1 − ξ)−1−2ε
[
1 − (1 − ηz)−1−2ε

]
. (3.68)

Let us start with f1. We perform subtraction of the integrand at η = 1 according
to the decomposition of the first part of (3.68) into

[
(1 − ξ(1 − z))−1−2ε − (1 − ξ)−1−2ε

]

+
[
(1 − ξ(1 − ηz))−1−2ε − (1 − ξ(1 − z))−1−2ε

]
. (3.69)

The first term in (3.69) does not depend on η so that the corresponding integration
over η is performed in terms of gamma functions. Then the integral

∫ 1

0
dξ ξ−1−2ε

∫ 1

0

dz

z

{
[1 − ξ(1 − z)]−1−2ε − (1 − ξ)−1−2ε

}

appears. We need a subtraction at ξ = 1 here because when ξ → 1 the factor z−1−2ε

generating a pole in ε arises. So we replace ξ−1−2ε by 1 + (
ξ−1−2ε − 1

)
. The first

term corresponding to unity, after integration over ξ, gives the following integral
evaluated in terms of gamma functions
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∫ 1

0

dz

1 − z

(
1 − z−1−2ε

)
= ψ(−2ε) + γE,

where ψ(z) is the logarithmical derivative of the gamma function, i.e. ψ(z) =
Γ ′(z)/Γ (z). Thus we obtain the following contribution to our result:

f11 = −Γ (1 + ε)Γ (−2ε)

2εΓ (1 − ε)

= 1

8ε3 − π2

24ε
− 3ζ(3)

4
− 3π4

80
ε+ O(ε2). (3.70)

Starting from the second term we obtain an integral which can be evaluated by
expanding the integrand in ε and performing the integration, e.g. in MATHEMATICA
[27], with the following contribution:

f12 = π2

12ε
+ 5ζ(3) + 43π4

180
ε+ O(ε2). (3.71)

In the second part of (3.69), we make the same replacement (with the same
motivation) as before, i.e. ξ−1−2ε → 1 + (

ξ−1−2ε − 1
)
. The second part here again

produces an integral which can be evaluated by expanding the integrand in ε, with
the following contribution:

f13 = ζ(3) + 11π4

120
ε+ O(ε2). (3.72)

The unity gives a part where the integration over ξ is explicitly taken. The corre-
sponding result is proportional to the sum of these two two-parametric integrals:

∫ 1

0

∫ 1

0
dηdzηε(1 − η)−1−2ε

(
1 − η−1−2ε

)

+
∫ 1

0

∫ 1

0
dηdzηε(1 − η)−1−2ε

[
1 − (ηz)−2ε

1 − ηz
− 1 − z−2ε

1 − z

]
. (3.73)

The first integral can be evaluated in terms of gamma functions, with the following
contribution:

f14 = Γ (−2ε)

4ε2

[
Γ (1 + ε)

Γ (1 − ε)
− Γ (1 − ε)

Γ (1 − 3ε)

]

= − π2

12ε
− ζ(3) − π4

36
ε+ O(ε2). (3.74)

In the second integral, one can expand the integrand in ε. Here is the corresponding
contribution:
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f15 = −ζ(3) − π4

72
ε+ O(ε2). (3.75)

Let us now deal with f2 defined by the second part of (3.68). The integration over
ξ is performed explicitly, and the following integral over z arises:

∫ 1

0

dz

z

[
(1 − ηz)−1−2ε − 1

]
.

When z → 1 a factor (1 − η)−1−2ε appears so that we need a subtraction at z = 1.
We make the replacement 1/z → 1 + (1 − z)/z. The unity generates a part which is
integrated explicitly over z and then over η. The resulting contribution is then

f21 = −Γ (−2ε)2Γ (ε)

Γ (−4ε)

[
1

2ε

(
Γ (−4ε)

Γ (−3ε)
− Γ (−2ε)

Γ (−ε)
)

+ Γ (−2ε)

Γ (−ε)
]

= 1

8ε3 + 1

2ε2 + π2

12ε
− π2

6
+ 2ζ(3) +

(
29π4

360
− 7ζ(3)

)
ε+ O(ε2).

(3.76)

Starting from the second term and performing one more subtraction we obtain the
following integral

∫ 1

0

∫ 1

0
dηdzηε(1 − η)−1−2ε 1 − z

z

×
{[

(1 − ηz)−1−2ε − (1 − z)−1−2ε
]

+
[
(1 − z)−1−2ε − 1

]}
. (3.77)

For the part corresponding to the second square brackets, one can explicitly inte-
grate over η and then expand the integrand in ε and integrate over z with the following
resulting contribution:

f22 = −Γ (−2ε)3Γ (1 + ε)

Γ (−4ε)Γ (1 − ε)

[
1

2ε
+ 1 − ψ(−2ε) − γE

]

= − 1

2ε2 − π2

6ε
+ π2

6
− 2ζ(3) +

(
π4

90
+ 7ζ(3)

)
ε+ O(ε2). (3.78)

For the part corresponding to the first square brackets in (3.77), one can expand
the integrand in ε and integrate over z and ηwith the following resulting contribution:

f23 = −π2

6ε
− 9ζ(3) + 19π4

45
ε+ O(ε2). (3.79)
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Collecting all the eight contributions obtained and taking into account the prefactor
in (3.66) we arrive at the well-known analytical result5 [12]

F(Q2; 1, . . . , 1; d) =
(
iπd/2e−γEε

)2

(Q2)2+2ε

×
(

1

ε4 − π2

ε2 − 83ζ(3)

3ε
− 59π4

120

)
+ O(ε). (3.80)

In [12], a similar algorithm based on Feynman parameters has been developed
for the evaluation of planar massless two-loop vertex diagrams. It has turned out that
the evaluation, by Feynman parameters, in the planar case is more complicated. As
we will see in Sect. 6.1, there is, however, a better choice of an appropriate method
in this situation and the planar vertex diagrams of this class are in fact much simpler
than the non-planar ones.
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Chapter 4
Sector Decompositions

In this chapter, various sector decompositions are described. They are used both
for theoretical and practical purposes: for an analysis of convergence of Feynman
integrals, to prove theorems on renormalization and asymptotic expansion, to evaluate
Feynman integrals numerically in a Laurent expansion in ε = (4 − d)/2) etc.

The well-known way to analyze convergence of Feynman integrals is to decompose
an initial integration domain of alpha parameters into appropriate subdomains (sec-
tors) and introduce, in each sector, new variables in such a way that the integrand
properly factorizes, i.e. becomes equal to a product of monomials in the new vari-
ables times a non-singular function. The sectors developed by Hepp [21] and Speer
[43] were successfully used starting from the sixties for proving mathematical the-
orems on analytically or/and dimensionally regularized and renormalized Feynman
integrals [6–8, 17, 21, 25, 29, 30, 34, 39–43, 48]. These sectors are described in
Sect. 4.1.

It turns out that the Hepp and Speer sectors are generally not applicable if the
external momenta qi are not Euclidean, i.e. if

(∑
i∈ν qi

)2 ≥ 0 for some subset ν.
This means that they do not provide a proper factorization of the integrand. To deal
with Feynman integrals without restricting to Euclidean external momenta, Binoth
and Heinrich introduced sector decompositions of a new kind [11, 12] and provided
a powerful method of evaluating Feynman integrals numerically in situations with
severe UV, IR and collinear divergences. In contrast to Hepp and Speer sectors, the
sectors of [11, 12] are introduced recursively, according to so-called sector decom-
position strategies. Various recursive sector decompositions and the corresponding
public computer algorithms to evaluate Feynman integrals numerically are char-
acterized in Sect. 4.2. Furthermore, Hepp and Speer sectors are also described as
recursive strategies. In Sect. 4.3, a recently developed sector decomposition based
on geometrical ideas [22] is presented. Finally, in Sect. 4.4, we discuss the analy-
sis of convergence of Feynman integrals and present an ambiguous definition of
dimensionally regularized Feynman integrals in situations where both UV and IR
divergence are present.

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 61
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_4,
© Springer-Verlag Berlin Heidelberg 2012
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4.1 Hepp and Speer Sectors

In fact, the problem of resolving singularities in Feynman parametric integrals and
revealing poles in ε is very close to the mathematical problem [20] on analytical
properties of the distribution (generalized function) Pλ+ with respect to λ. Here P is
a polynomial of x1, . . . , xn and λ a complex parameter. The action of the functional
Pλ+ on a test function φ is given by the integral

∫
P≥0

P(x1, . . . , xn)λφ(x1, . . . , xn)dx1 . . . , dxn .

According to the conjecture of Gel’fand, this functional is a meromorphic functions
of λ. This conjecture was proven in [4, 9]. However, as it usually happens, proofs of
mathematical theorems can hardly be applied in practice.

Let us start from the alpha representation (3.38) and introduce what Binoth and
Heinrich called primary sectors [11, 12]. The set of primary sectors corresponds to
the set of the lines of a given graph. In the sector Δl defined by αi ≤ αl , i �= l, the
sector variables are introduced by αi = tiαl , i �= l. The integration over αl is then
taken due to the delta function in the integrand.

Alternatively, one can start directly from (2.24) and introduce primary sectors
αi ≤ αl , i �= l there with the new variables, α′

i = αi/αl belonging to a unit
hypercube. For example, in the case of l = L , using the homogeneity properties
of the functions in the representation, explicitly integrating over αL and omitting
primes at αi we obtain the contribution of ΔL as

F (L) = (−1)L

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

∫ 1

0
. . .

∫ 1

0

L−1∏
l

αal−1
l

× Ûa−(h+1)d/2
Γ Whd/2−adα1 . . . dαL−1, (4.1)

where

WΓ = −V̂Γ + ÛΓ

(
L−1∑
l=1

m2
l

L−1∏
l=l ′

αl ′ + m2
L

)
, (4.2)

ÛΓ = U(α1, . . . ,αL−1, 1), V̂Γ = VΓ (α1, . . . ,αL−1, 1) (4.3)

and the functions U and V are given by (2.25) and (2.26). Without loss of generality
let us consider only this primary sector.

The primary sectors are not sufficient for a proper factorization so that they are
further decomposed into smaller sectors. First we will study well-known Hepp and
Speer sectors. The Hepp sectors which are

α1 ≤ . . . ≤ αL (4.4)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2


4.1 Hepp and Speer Sectors 63

and (L − 1)! − 1 other sectors obtained from this one by permutations. The sector
variables are introduced by

αl = tl . . . tL , (4.5)

so that tl = αl/αl+1, i = 1, . . . , L − 1 and αL = tL .
We will not, however, study Hepp sectors because the Speer sectors are more

economical, in the sense that they are larger, so that their number is smaller, and they
are quite sufficient to provide a proper factorization in the case of massless Feynman
integrals at Euclidean external momenta. Therefore, the factorization formulae for
both functions in the parametric representation in the case of Hepp sectors can be
obtained from the corresponding formulae for Speer sectors.

Let us now show that the function U is proper factorized in Speer sectors. We can
consider U dependent on all L α-variables and set αL = 1 in the end. Thus, we will
deal with U rather than with Û .

Let us imply that the graph Γ is a connected graph, i.e. any two vertices of Γ can
be connected by a path in Γ . However, we are going to consider various subgraphs
of the graph and they can be disconnected, i.e. consist of several connectivity com-
ponents. A subgraph γ of Γ is determined by a subset of lines L(γ) and includes all
the vertices incident to these lines. (Sometimes isolated vertices are added to a sub-
graph. For example, Mathematica [47] produces isolated vertices as bi-connected
components—see below.) The number of loops of a subgraph is

h(γ) = L(γ) − V (γ) + c(γ), (4.6)

where V (γ) and c(γ) are, respectively the numbers of the vertices and connectivity
components.

We need extra graph-theoretical definitions. An articulation vertex of a graph Γ

is a vertex whose deletion disconnects Γ . Any graph with no articulation vertices
is said to be bi-connected (or, one-vertex-irreducible (1VI)). Otherwise, it is called
one-vertex-reducible (1VR). In other words, in a 1VR graph, one can distinguish two
subsets of its lines and a vertex (an articulation vertex) such that any path between
vertices from these two subsets goes through this vertex. From now on let us suppose
that we are dealing with a 1VI graph. It is natural to treat a single line as a 1VI graph
since we cannot decompose it into two parts.

Any subgraph can be represented as the union of its 1VI components, i.e. maximal
1VI subgraphs. Consider, for example, the two-loop self-energy graph of Fig. 3.10.
The subgraphs {1, 2, 5} and {1, 2, 3, 4} are 1VI. The subgraph {1, 2, 3, 5} is 1VR
and its 1VI components are {1, 2, 5} and {3}. The subgraph {1, 2, 3} is 1VR and its
1VI components are {1}, {2} and {3}.

A set f of 1VI subgraphs is called an ultraviolet (UV) forest if the following
conditions hold:

(i) for any pair γ, γ′ ∈ f , we have either γ ⊂ γ′, γ′ ⊂ γ or L(γ ∩ γ′) = ∅;
(ii) if γ1, . . . , γn ∈ f and L(γi ∩γ j ) = ∅ for any pair from this family, the subgraph

∪iγ
i is 1VR.

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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In other words, the number of loops in ∪iγ
i (where γi are disjoint with respect to

lines and belong to a UV forest) is equal to the sum of the numbers of loops of γi .
The term ‘UV’ is used because the UV divergences are due to the integration over
small values of αl where the exponent in (2.24) is irrelevant and they are generated
by the singularities of the factor U−d/2

Γ . We are going to show that the resolution
of the UV singularities can be performed by the use of sectors associated with 1VI
subgraphs.

For example, the set {1}, {2}, {3} of subgraphs of Fig. 3.10 is a UV forest and
{1, 2, 5}, {3} is also a UV forest but the set {1}, {2}, {3}, {4} is not a UV forest
because the condition (ii) breaks down.

Let F be a maximal UV forest (i.e. there are no UV forests that include F) of a
given graph Γ . An element γ ∈ F is called trivial if it consists of a single line and is
not a loop line. Any maximal UV forest has h non-trivial and L − h trivial elements.

Let us define the mapping σ: F → L such that σ(γ) ∈ L(γ) and σ(γ) �∈ L(γ′)
for any γ′ ⊂ γ, γ′ ∈ F . The inverse mapping σ−1: L → F exists and can be defined
as follows: σ−1(l) is the minimal element of the UV forest F that contains the line
l. Let us denote by γ+ the minimal element of F that strictly includes the given
element γ.

For a given maximal UV forest F , let us define the corresponding sector ( f -
sector) as

DF = {
α|αl ≤ ασ(γ), l ∈ γ ∈ F} . (4.7)

The intersection of two different f -sectors is of measure zero; the union of all the
sectors gives the whole integration domain of the alpha parameters. For a given
f -sector, let us introduce new variables labelled by the elements of F ,

αl =
∏

γ∈F : l∈γ
tγ, (4.8)

where the corresponding Jacobian is
∏
γ t L(γ)−1
γ . The inverse formula is

tγ =
{
ασ(γ)/ασ(γ+) if γ is not maximal
ασ(γ) if γ is maximal

. (4.9)

Consider, for example, the following maximal UV forest F of Fig. 3.10 consisting
of γ1 = {1}, γ2 = {2}, γ3 = {3}, γ4 = {1, 2, 5}, γ5 = Γ . The mapping σ is
σ(γ1) = 1, σ(γ2) = 2, σ(γ3) = 3, σ(γ4) = 5, σ(γ5) = 4. The sector associated
with this maximal UV forest is given by DF = {α1,2 ≤ α5 ≤ α4, α3 ≤ α4}
and the sector variables are tγ1 = α1/α5, tγ2 = α2/α5, tγ3 = α3/α4, tγ4 =
α5/α4, tγ5 = α4.

All the maximal UV forests of the given graph can be constructed at least in two
ways.

Way 1. Let us imply that the lines are enumerated. Let us consider the sequence
of subgraphs γl consisting of lines {1, 2, . . . , l}, respectively, with l = 1, . . . , L . For

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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each l, let us take the 1VI component of γl that includes the line l. The set of all
these components is a maximal UV forest. Then we construct in a similar way the
UV forests for other L! − 1 enumerations of the set of lines. After this we leave only
distinct maximal UV forests.

Way 2. Since we consider a 1VI graph we include it into any maximal forest. Let
us delete a line from it. The resulting graph is decomposed as the union of its 1VI
components which we include into the maximal UV forest. Then we continue this
process by deleting a line from some 1VI component which is not a single line, etc.

In the sector corresponding to a given maximal UV forest f , the function UΓ

takes the form
UΓ =

∏
γ∈ f

t h(γ)
γ

[
1 + Pf

]
, (4.10)

where Pf is a non-negative polynomial and the product is over elements of the given
maximal UV forest f . As we agreed we call such a factorization proper.

To prove this factorization formula we use the relation

∏
l �∈T

αl =
∏
γ∈ f

t L(γ\T )
γ , (4.11)

where T is a tree or a 2-tree. (We will need the latter case later.) Applying (4.6) for
γ and γ ∩ T , i.e. h(γ ∩ T ) = L(γ ∩ T ) − V (γ ∩ T ) + c(γ ∩ T ) = 0 and taking the
difference h(γ ∩ T ) − h(γ) we obtain

L(γ\T ) = h(γ) + c(γ ∩ T ) − c(γ) ≡ h(γ ∪ T ). (4.12)

Therefore, the factorization formula (4.10) will follow from the factorization of the
polynomial

∑
T

∏
γ∈ f

t c(γ∩T )−c(γ)
γ ,

and the problem reduces to constructing a tree that provides the minimal value of
the non-negative quantity c(γ ∩ T ) − c(γ). Let T0 be the tree composed of all
trivial elements of the given maximal UV-forest F . In other words, this tree can be
constructed as follows. One uses an order of lines which was used within Way 1 for
the construction of the given maximal UV forest f and includes the given line in the
tree if a loop is not generated. One can observe that this tree T0 provides the zero
value of c(γ ∩ T0) − c(γ) for all the elements of the given maximal forest.

We also need to factorize the second function (4.1), i.e. WΓ . Let us first consider
the pure massless case where WΓ = −VΓ . As we could see in the previous section,
the use of f -sectors provides a proper factorization (4.10) of the function U so that the
factor Ua−(h+1)d/2

Γ in (4.1) is properly factorized. However, these sectors generally
do not provide a factorization of VΓ . This can be seen using our example of Fig. 3.10.

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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We are going to use smaller sectors which are in fact obtained from the f -sectors
generated by the graph Γ by a further decomposition. As for U , we will deal with V
depending on all the L variables αl .

Let Γ ∞ be the graph obtained from Γ by adding a new vertex v∞ and connecting
it with all the external n+1 vertices by additional lines. These lines are only auxiliary
and no propagators correspond to them. When writing down the function U for Γ ∞,
let us include, by definition, these additional lines into any tree. In particular, then in
the case of two external vertices (i.e. for n = 1) we have

VΓ = UΓ ∞q2

where q is the only external momentum.
Let us define sectors in a way similar to the previous case of U but using, instead

of 1VI subgraphs, another set of subgraphs which we call s-irreducible. If a subgraph
γ does not have all the external vertices in the same connectivity component and if it
is 1VI let us call it s-irreducible as well. If a subgraph γ has all the external vertices
in the same connectivity component let us call it s-irreducible if the graph γ∞ is 1VI.
Let us call an s-irreducible subgraph trivial if it is a single line which is not a loop
line and which does not connect the external vertices.

The maximal forests consisting of s-irreducible subgraphs can be constructed
again by Way 1 or Way 2.

Let us define sectors1 in a way similar to the sectors discussed in the previous
section. Let us introduce sector variables by the same formula (4.8) as above. The
factorization of the function V follows from its definition (2.26) and the auxiliary
relations (4.11) and (4.12). The 2-tree that provides the minimal value of the non-
negative quantity c(γ ∩ T ) − c(γ) can be constructed by a procedure similar to the
procedure used for the function U : one considers the lines in the order used for the
construction of the given f -forest by Way 1 and includes the given line into the 2-tree
if a loop is not generated and if this is not the line whose inclusion would connect
all the external vertices.

By construction, for such a 2-tree T0, we obtain c(γ ∩ T0) − c(γ) = θ(γ) where
θ(γ) = 1 if the external vertices are connected in γ and θ(γ) = 0 otherwise. Hence
we obtain a proper factorization

− VΓ =
∏
γ∈ f

t h(γ)+θ(γ)
γ

(
−q2

T0
+ PV

)
, (4.13)

where q2
T0

< 0 is the square of the external momentum flowing into one of the con-
nectivity components of T0, PV is a non-negative polynomial (at Euclidean external
momenta).

Obviously, the Speer sectors can be obtained from those associated with the graph
Γ by a further decomposition, so that the factorization of the function UΓ in the

1 We call them Speer sectors although they are not exactly the same as in [43]. See, however, a
recent paper [5], where the authors use ‘genuine’ Speer sectors.

http://dx.doi.org/10.1007/978-3-642-34886-0_2


4.1 Hepp and Speer Sectors 67

corresponding variables also holds and has the form similar to (4.10) with the same
exponents.

Let us turn to the case of non-zero masses. Two subcases are simple. If for a given
primary sector, mL �= 0 then the term m2

L in (4.1) is dominating so that it is sufficient
to achieve a factorization of the function U using f -sectors. In another partial case
where all the masses are non-zero and the given Feynman integral is vacuum, the
function W is determined only by the massive term which takes a proper factorized
form immediately after the introduction of the primary sectors.

In the general case, s-sectors are not sufficient to proper factorize W although
they are sufficient both for W and the massive term. This can be seen in simple
examples. It turns out that we can achieve a factorization of the whole function W
by using more advanced sectors. In fact, it suffices just to change the definition of
the s-irreducibility which we used to construct s-sectors applied to factorize the
function V .

As before, if a subgraph γ does not have all the external vertices in the same
connectivity component and if it is 1VI let us call it s-irreducible as well. Let γm be
the subgraph consisting of all the massive lines. If a subgraph γ has all the external
vertices in the same connectivity component let us call it s-irreducible if the graph
γ∞/(γ ∩ γm) is 1VI.

The s-sectors constructed with this definition of s-irreducibility provide a proper
factorization of the function W . To see this, let reorganize the integrand in (4.1):

F (L) = (−1)L

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

∫ 1

0
. . .

∫ 1

0

L−1∏
l

αal−1
l

× Û−d/2
Γ

[
−VΓ

UΓ

+
L−1∑
l=1

m2
l

L−1∏
l=l ′

αl ′

]hd/2−a

dα1 . . . dαL−1. (4.14)

(We observed above that the case with mL �= 0 is simple so that we imply that
mL = 0.)

In each of resulting contributions of the s-sectors, the first term in the square brack-
ets can be written as the product tγ0 tγ0+ . . . times a positive polynomial, where γ0 is
the minimal element of a given s-forest including all the external vertices in the same
connectivity component,γ0+ is the minimal element that containsγ0 inside etc. Let us
consider various massive terms. If ml �= 0 and l ∈ γ0 then m2

l αl = m2
l

∏
γ∈F : l∈γ tγ

is divisible by tγ0 tγ0+ . . . so that the first term determines the factorization. Let us
consider the nest of the elements which include the external vertices in the same
connectivity component

γ0 ⊂ γ0+ ⊂ . . . γ∗ ⊂ γ∗+ ⊂ . . .

Here γ∗ is the minimal element of the given s-forest including all the massive lines. It
turns out that the term m2

l α
l with l = σ(γ∗) is dominating in the whole functionW/U ,

in the sense that it includes the minimal powers of the sector variables, tγ∗ tγ∗+ . . ..
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Therefore, we arrive at the following factorization formula:

WΓ

UΓ

=
∏
γ∈F

th(γ)+θ∗(γ)
γ HW , (4.15)

where θ∗(γ) = 1 if the external vertices are connected in γ and all the massive lines
belong to γ. Otherwise, θ∗(γ) = 0. Here HW is a function analytic in a vicinity of
the point tγ = 0, γ ∈ F .

Therefore we see that any Feynman integral at Euclidean external momenta can be
decomposed into contributions of Speer sectors, with properly factorized integrands.
Such form can be used both for numerical calculations and for proving mathematical
results. We will describe in the next section how numerical calculations with these
sectors as well as with other various sectors are organized. We will perform the
analysis of convergence of Feynman integrals in Sect. 4.4 and come back to the
discussion of the definition of dimensionally regularized Feynman integrals with
both UV and IR divergences.

4.2 Recursive Sector Decompositions

Let us now think of applying sector decompositions to the numerical evaluation of
Feynman integrals. Indeed, Speer sectors seem quite optimal for this purpose, and
the corresponding procedure has been implemented in a computer code—see below.
The bad news is that, although Hepp and Speer sectors can successfully be used for
proving theorems on renormalization [21, 39, 48] and on asymptotic expansions in
limits of momenta and masses typical of Euclidean space (see [29, 30] and Appendix
B of [34]), they are not sufficient for resolving the singularities of the integrand in
the case of Feynman integrals on a mass shell or at a threshold. Let us consider
again the massless on-shell box diagram,2 i.e. Example 3.3 of Sect. 3.3, with the
basic functions U and V given by (3.27), and try to apply the Hepp sectors to resolve
the singularities. (Hepp sectors have more chances to provide a proper factorization
because they are obtained from Speer sectors by an extra decomposition.)

Let us consider the primary sector Δ4 given by αi ≤ α4, with i = 1, 2, 3. We
obtain an integral over α1,α2 and α3 from 0 to 1. The two basic functions take the
form

Û = 1 + α1 + α2 + α3, V̂ = sα1α3 + tα2.

The first function has already a proper factorized form. However, the second function
is not proper factorized in some of the Hepp sectors, in particular, in α2 ≤ α1 ≤ α2.
Indeed, if we introduce the corresponding sector variables by α2 = t1t2t3, α1 =

2 Let me emphasize that according to the terminology accepted in the book (and used starting from
the sixties and seventies) the external momenta of this diagram are not Euclidean because all the
end-points are on the light cone. One can consider Euclidean values of the Mandelstam variables,
i.e. s < 0 and t < 0 but the configuration of the four external momenta is not Euclidean.

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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4.2 Recursive Sector Decompositions 69

t2t3, α3 = t3, we obtain V̂ = t1t3(st3 + t t1t2) so that this expression is not of the
desired form and a further sector decomposition is desirable.

In a pioneer paper [11, 12] Binoth and Heinrich invented recursive sector decom-
positions which work at least in the case where all the kinematic invariants in the
second function (4.2) in the alpha representation have the same sign.3

Binoth and Heinrich suggested to introduce sectors recursively, step by step. Let us
consider only the contribution of the primary sector ΔL given by (4.1) because other
primary sectors are quite similar. Let us choose a subset I = {i1, . . . ik} of {1, . . . , n},
with n ≡ L −1. The unit hypercube in (4.1) {(t1, . . . , tn)|0 ≤ ti ≤ 1∀i ∈ (1, . . . , n)}
is then decomposed into k sectors

Sl = {(t1, . . . , tn)|ti ≤ til ∀i ∈ I },

for l = 1, . . . , k, and the new variables are introduced as follows:

ti = t ′i ∀i �∈ I

til = t ′il
tir = t ′il t

′
ir ∀ir ∈ I, r �= l

It is easy to verify that the integration region in the new variables t ′i is again a
unit hypercube. Then for each of the k resulting sectors subsets of the indices are
chosen and new sectors are introduced in a similar way. The rules according to which
these subsets are chosen form a sector decomposition strategy. The goal of any such
strategy is to arrive, at some step, at a proper factorization of the functions Û and W .
At this step, the procedure terminates and the sum of integrals over resulting final
sectors can be used for numerical evaluation.

Indeed, at this point, the contribution of each of the final sectors takes a proper
factorized form ∫ 1

0
. . .

∫ 1

0

n∏
i=1

tai +bi ε
i f (t1, . . . , tn; ε) (4.16)

where a function f is a product of a polynomial of the form 1 + PU with positive
coefficients in PU and a polynomial of the form s + PW with positive coefficients
in PW and a positive linear function s of kinematic invariants which should be set
to concrete values before the procedure of numerical integration. To make the poles
in ε manifest, the integrations over the final sector variables ti are analyzed one by
one. Each of the integrals of the variables ti has the form

G(ε) =
∫ 1

0
ta+bεg(t) (4.17)

3 Typically, the kinematic invariants are considered positive. The transition to the negative sign is
trivial and reduces to taking into account a phase factor and replacing −i0 by +i0.
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where a is integer, g(t) is an infinitely differentiable function of a given sector variable
t = ti as well as other variables ti ′ and ε.

If a ≥ 0, no poles in ε arise so that G can be expanded in ε in a Taylor series
under the integral sign. If a < 0, poles do arise. To reveal them one subtracts first
terms of the Taylor series of g(t) in t at the origin up to order −1 − a and obtains,
after explicitly integrating the subtracted terms,

G =
−1−a∑
k=0

g(k)(0, ε)

k!(a + k + bε+ 1)
+
∫ 1

0
ta+bε

[
g(t) −

−1−a∑
k=0

g(k)(0, ε)

k! tk

]
. (4.18)

In fact, only the last term, i.e. at k = −1 − a, in the first sum here produces a pole
in ε. On the other hand, the integral over the remainder can be expanded in ε under
the integral sign.

One analyzes the integrations one by one and one obtains, as a result, the possi-
bility to evaluate numerically each term of the Laurent expansion in ε. Details and a
discussion of problems of numerical integration can be found in [11, 12] and in later
papers which we will discuss shortly.

When looking for an optimal sector decomposition strategy it is, of course,
reasonable to achieve a minimal number of the final sectors. The first strategy of
[11, 12] was already quite optimal in this respect. According to this strategy one
looks, at each sector decomposition step, for a minimal set I = {i1, . . . ik} such that
at least one of the functions Û and W vanishes for ti1 , . . . tik = 0. In the time when
there were no public codes for sector decompositions, subsequent numerous practical
calculations have shown that the code developed by Binoth and Heinrich and based
on this strategy successfully works for complicated Feynman integrals with multiple
IR and collinear divergences. For example, analytical results for double and triple
boxes [3, 31–33, 35–37, 45] were numerically confirmed by means of this code.

However, a sector decomposition strategy, in particular the strategy of [11, 12]
does not always terminate. Closed loops can appear within such an algorithm. Bogner
and Weinzierl [13, 14] were first to present strategies which were guaranteed to ter-
minate. They also developed a first public code for sector decompositions. Within
this code, four strategies were implemented three of which were guaranteed to ter-
minate. Strategy A [49] is conceptually the simplest one but it results in too many
sectors; Strategy B has been described in [44], Strategy C is an improved version of
strategy B. Finally, Strategy X is a variant of the strategy of Binoth and Heinrich [11,
12]. It is not guaranteed to terminate but produces less sectors than Strategies A–C.

In the second public code FIESTA [28] a new strategy (Strategy S) was
implemented. It is also guaranteed to terminate. Since then it was successfully applied
in various calculations. In the corresponding algorithm, one uses more general sec-
tors. For any n-dimensional vector (v1, . . . , vn) (where n = L − 1) in the positive
quadrant with at least two non-zero coordinates one considers the set I = {i |vi �= 0}
and separates the unit hypercube into k parts by

Sl = {(t1, . . . , tn)|tdi
i ≤ t

dil
il

∀i ∈ I }, l = 1, . . . , k
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where {i1, . . . ik} = I , and the exponents di are defined by

⎛
⎜⎜⎜⎜⎜⎝

di1

di2

di3
...

dik

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

...

1 1 1 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝

vi1

vi2

vi3
...

vik

⎞
⎟⎟⎟⎟⎟⎠

(4.19)

The new sector variables in Sl are defined by

ti = t ′i ∀i �∈ I

til = (t ′)vil
il

tir = (t ′)vir
il

t ′ir ∀i ∈ I, r �= l.

One can check that the integration region in the variables t ′ is still the unit hypercube.
To choose the vector v, one considers the set of weights W of the polynomial

P defined as the set of all possible (w1, . . . , wn) where ctw1
1 . . . twn

n is one of the
monomials of P . One says that a weight is higher than another one if their difference
is a set of non-negative numbers. If P had a unique lowest weight, a monomial could
be factored out and we would represent P in the required form. Hence it becomes
reasonable to try to minimize the number of lowest weights of P . One considers
the convex hull of W and choose one of its facets visible from the origin. Now v

is chosen to be the normal vector to this facet. This vector is chosen in such a way
because the vectors formed by the weights of the vectors t ′ir for r �= l are orthogonal
to v and therefore belong to the facet F . Hence there is a good chance that after a
single sector decomposition step only one of the vertices of considered facet is left
to be a lowest weight.

It turns out that the Hepp and Speer sectors can also be defined recursively [26], in
the style of the modern sector decompositions. With the Hepp sectors, the situation
is obvious: they are reproduced when we choose, as subsets I , maximal subsets of
lines at each step, i.e. with one line less than before this. To reproduce the choice of
Speer sectors within a sector decomposition let me remind the Way 2 (see Sect. 4.3) to
construct sectors. One has just to consider only subsets of the indices I = {i1, . . . , ik}
that correspond to s-irreducible subgraphs.

One more conclusion made in [26] is that the final sectors obtained within Strategy
S (for massless Feynman integrals at Euclidean external momenta) exactly coincide
with the Speer sectors—see a proof in the Appendix of that paper. This is a rather
nontrivial relation because Speer sectors are defined in the graph-theoretical language
while Strategy S is based on the geometrical language and reduces to finding convex
hulls of polytopes. We will consider one more geometrical strategy in the next section.

An updated version SecDec [18] of the code by Binoth and Heinrich was also
made public. Recently a new version SecDec 2.0 [15, 16] of this code was pub-
lished. In contrast to all the previously existing codes of sectors decompositions, it can
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work at general configurations of kinematic invariants, i.e. not only when kinematic
invariants in the function W has the same sign but also in physical regions.4 The
code is based on contour deformations in parametric integrals. This idea was first
suggested in [38] and was later further developed and successfully applied in numer-
ous one-loop calculations. At the two-loop level, it was applied in [1, 2, 23]. More
explicitly (see [10, 24, 38]), the integration over every parameter αi in an integral
of the type (4.1) over a hypercube is shifted in the complex plane by αi → αi − iτi

where τi depends on all the integration variables. It is chosen to be proportional to
αi (1 − αi ) so that the two end-points of each of the segments are not shifted.

4.3 Geometrical Sector Decompositions

A new method of sector decompositions was recently suggested [22]. It is not
recursive so that the corresponding sectors are similar, in their character, to Speer
sectors, rather than to the previously developed modern sector decompositions. Like
Strategy S described in the previous section, this method is based on geometrical
ideas. Let us illustrate it using the simple example of the triangle massless diagram
shown in Fig. 4.1. Let us restrict ourselves to the value of this Feynman integral at
the symmetrical Euclidean point p2

1 = p2
2 = p2

3 = −μ2.
The basic functions are

U = α1 + α2 + α3, (4.20)

−V = (α1α2 + α1α3 + α2α3)μ
2. (4.21)

The three primary sectors are symmetric so that let us consider only the primary
sector α1,α2 ≤ α3. So, the function −V gives P(α1,α2) = α1 +α2 +α1α2. Since
the function U takes the form 1 + α1 + α2 and turns out to be factorized from the
beginning the problem is reduced to the factorization of the function V only. Let us,
therefore, ignore the function U and study the toy example of the integral

Fig. 4.1 A triangle diagram

4 FIESTA 2 [27] can also work for Feynman integrals at threshold where some individual terms in
the function W are negative. A typical situation is with the term −2α1α2 accompanied by α2

1 +α2
2

so that the whole combination is non-negative. Such combinations can be found by FIESTA 2 in
an automatic way.
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I =
∫ 1

0

∫ 1

0
(P(α1,α2))

λ dα1dα2, (4.22)

where λ a complex regularization parameter. (In fact, λ = −1 − ε.)
Let us decompose the integration domain into three regions where one of the three

terms of the polynomial P is dominating. So, these are the regions with α2,α1α2 ≤
α1, α1,α1α2 ≤ α2, and α1,α2 ≤ α1α2. Since the third region has zero measure we
are left with the two regions, α2 ≤ α1 and α1 ≤ α2 which give equal contributions.
We can turn to sector variables in the first region by α2 = t1t2,α1 = t2 to obtain a
desirable factorization:

I1 =
∫ 1

0

∫ 1

0
t1+λ
2 (1 + t1 + t1t2)

λ dt1dt2. (4.23)

In fact, all the sector decomposition strategies provide this very solution of the prob-
lem.

Instead of this simple way to achieve a proper factorization in our example, we
will follow a lengthy way which, however, admits a generalization for any Feynman
integral considered in a kinematics with all the terms in the function (4.2) of the same
sign. Let us introduce new variables by αl = e−yl . We have

I1 =
∫ 1

0

∫ α1

0
(P(α1,α2))

λ dα1dα2

=
∫

Δ1

e−y1−y2−λy1
(
1 + ey1−y2 + e−y2

)λ
dy1dy2, (4.24)

where Δ1 = {y ∈ R
2+ |y1 ≤ y2 } and y = (y1, y2).

For any point in Δ1 one can introduce barycentric coordinates yl ∈ R
2+ by

yl =
2∑

l ′=1

(vl ′)lul ′ (4.25)

where v1 = (1, 1) and v2 = (0, 1) are vectors with integer coordinates. They corre-
spond to the edges of the region Δ1. So, we have

y1 = u1, y2 = u1 + u2. (4.26)

The contribution of the region Δ1 takes the form

I1 =
∫

R
2+

e−2u1−u2−λu1
(
1 + e−u2 + e−u1−u2

)λ
du1du2, (4.27)

Changing variables one again (the last time) by tl = e−ul we arrive at the factorization
(4.23).
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The importance of this very lengthy way (which looks too complicated in our
example) is explained by the fact that it can be used for general Feynman integrals
(at least with all the kinematic invariants of the same sign).

One starts from a contribution of a given primary sector (4.1) given by an integral
over a unit hypercube. Let us first consider a simplified situation with only one
function in the integrand, for example, W . So, we are dealing with an integral

I =
∫ 1

0
. . .

∫ 1

0
Pλdα1 . . . dαn (4.28)

where n = L − 1 and λ = hd/2 − a and P = W is a polynomial of n variables αl .
All the kinematic invariants present in it should be set to concrete values. Let us make
one more assumption: suppose that all the monomials enter with coefficients equal
to one. (In fact, this condition is always satisfied for P = U .) Then P is a sum of N
monomials αw1

1 . . .αwn
n characterized by vectors w = (w1, . . . , wN ) composed of

the wl , i.e. P = ∑
i=1

∏n
l=1 α

(wi )l
l .

Then one decomposes (4.28) into N regions Δi where one of the N monomials is

dominating, i.e.
∏n

l=1 α
(w j )l
l ≤ ∏n

l=1 α
(wi )l
l for all j �= i . As in our simple example,

one turns to the new variables αl = e−yl and the contribution of the region Δi is
written as

∫
Di

e−y1−...−yn−λ(wi ,y)

⎛
⎝1 +

N∑
j=1: j �=i

e−(w j −wi ,y)

⎞
⎠
λ

dy1 . . . dyn, (4.29)

where Di = {y ∈ R
n+
∣∣((w j − wi ), y) ≥ 0 ∀ j �= i }, y = (y1, . . . , yn), and (w, y)

is the scalar product of vectors in n-dimensional Euclidean space.
Geometrically, the region Di can be described as C(Zi )

∗ ∩ R
n+ with Zi = (w1 −

wi , . . . , wn − wi ). Moreover, the convex polyhedral cone of a finite S is defined as

C(S) =
{∑
ν∈S

rνν |rν ≥ 0, ν ∈ S

}
.

The corresponding dual cone is defined as

C(S)∗ = {y ∈ R
n |(ν, y) ≥ 0 ∀ν ∈ C(S) }.

If a given region Di is a simplicial cone, i.e. a convex polyhedral cone with n edges
in n-dimensional space (like in our example) one can turn to barycentric coordinates
ul ∈ Rn+

yl =
n∑

l ′=1

(vl ′)lul ′ , (4.30)
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where vl are integer vectors corresponding to edges of Di , then change the variables
to tl = e−ul and obtain, up to the determinant of the linear transformation (4.30), the
following proper factorized representation for the contribution of the region Δi :

∫ 1

0
. . .

∫ 1

0

n∏
m=1

t
∑n

l=1(vm )l (1+λ(wi )l )−1
m

×
⎛
⎝1 +

N∑
j=1: j �=i

n∏
m=1

t
∑n

l=1((w j )l−(wi )l )(vm )l
m

⎞
⎠
λ

dt1 . . . dtn . (4.31)

If the region Di is not a simplicial cone, one needs to perform its triangulation,
i.e. to decompose this convex polyhedral cone into simplicial cones. One can apply
various algorithms for the triangulation, in particular, the algorithm developed by the
authors of [22].

One more complication which was not seen in our example is that there are two
basic functions to factorize. One way [22] to proceed is to consider the intersection of
the dual cones corresponding to these functions. Another way is to study the product
of the two basic functions and the resulting dual cone.

Conceptually, this geometrical algorithm [22] is oriented at the minimal number
of resulting sectors. Multiple checks confirm these feature. In [46], a FORM imple-
mentation of this algorithm was described. It stays private at the moment. However,
an implementation of this algorithm is present in the second version [27] of the public
code FIESTA [28].

Let me formulate some recommendations on which method of sector decompo-
sitions to apply in practice. For massless Feynman integrals at Euclidean external
momenta, Speer sectors look preferable. Since the geometrical approach provides
less sectors it is reasonable to try to use it. It works indeed very well at least up to
three loops. The most problematic step of this method is finding convex hulls of a
given set. This procedure is applied many times during the process of triangulation
so that, in four loops, this process can take too much time and this obstacle can
prevent to go further to numerical integration where the advantage of this method
(the minimal number of sectors) manifests itself. To evaluate numerically Feynman
integrals in four loops and beyond one can try FIESTA or SecDec.

4.4 Analysis of Convergence and a Definition of Dimensionally
Regularized UV and IR Divergent Feynman Integrals

Let us now apply Speer sectors to the analysis of convergence of Feynman integrals.
Let us introduce analytic regularization by substituting the powers of propagators al

by al + λl with general complex numbers λl . For simplicity, let us assume that the
powers of propagators are equal to one. (If al > 1, one can represent such a line by
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a sequence of al lines.) Let us use factorizations (4.10) and (4.15). A given s-forest
F can be represented as F1 ∪ F2 ∪ Γ , where F2 ∪ Γ is the nest of elements which
have all the external vertices in the same connectivity component and include all the
massive lines. We can represent the contribution of the corresponding sector as

GF =
∫ 1

0
. . .

∫ 1

0

∏
γ∈F1∪F2

dtγ

⎛
⎝∏
γ∈F1

tλ(γ)+h(γ)ε−ω(γ)/2−1
γ

⎞
⎠

×
⎛
⎝∏
γ∈F2

t−λ(γ̄)−h(Γ/γ)ε+(ω(Γ )−ω(γ))/2−1
γ

⎞
⎠ H(t) (4.32)

where H is a function analytic in a vicinity of the point t = 0, t denotes the set of
all the sector variables, γ̄ = Γ \γ and

λ (γ) =
∑
l∈γ

λl . (4.33)

Remember that there is no integration over tΓ which dropped out when turning to
the primary sectors.

The domain of the regularization parameters λl and εwhere these sector integrals
are convergent is determined by the inequalities

Reλ(γ) + h(γ) Re ε > ω(γ)/2, (4.34a)

Reλ(γ̄) + h(Γ /γ) Re ε < (ω(Γ ) − ω(γ))/2, (4.34b)

which correspond, respectively, to γ ∈ F1 and γ ∈ F2. In fact, the first inequalities
express UV convergence while the second inequalities express IR convergence. This
can be seen with another scenario of analyzing divergences, with a primary decom-
position of each α integral over [0, 1] and [1,∞), where the first part is responsible
for the UV divergences and the second part for IR divergences. Then, using appro-
priate sectors of Speer type, one can arrive at (4.34a), (4.34b), where the first/second
inequalities correspond to UV/IR divergences.

Speer has proven [43] the following statement.
Theorem The domain (4.34a), (4.34b) is non-empty for any graph without mass-

less detachable subgraphs.
Proof Let us define, following Speer, the analytic regularization parameters

λ
(0)
l = (2 − ε)

(
1 + δ − |T 1

l |
|T 1|

)
− 1, (4.35)

where T 1
l is the set of trees containing the line l (As before, | . . . | is the number

of elements in the corresponding finite set.) and let us prove that these parameters
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satisfy (4.34a) and (4.34b) for sufficiently small δ > 0. Since the imaginary part of
the regularization parameters is irrelevant we will assume that they all are real. Let
us also assume that ε is in a vicinity of the origin. At least, let |ε| < 2 so that it will
be allowed to divide inequalities by 2 − ε.

Let us start with (4.34a). Substituting (4.35) into (4.34a) and using the identity

∑
l∈γ

|T 1
l | =

∑
T ∈T1

L(γ ∩ T )

we obtain, by dividing by 2 − ε,

1

|T 1|
∑
T ∈T1

L(γ ∩ T ) < (1 + δ)L(γ) − h(γ). (4.36)

Then using (4.12) we obtain the following relations

L(γ ∩ T ) = L(γ) − L(γ\T ) = L(γ) − h(γ) − (c(γ ∩ T ) − c(γ))

≤ L(γ) − h(γ) (4.37)

from which the validity of (4.36) follows for any δ > 0.
Substituting (4.35) into (4.34b), using the relation L(γ̄ ∩ T ) = L(Γ ) − h(Γ ) −

L(γ ∩ T ) and dividing by 2 − ε we arrive at the inequality

1

|T 1|
∑
T ∈T1

L(γ ∩ T ) < L(γ) − h(γ) − δL(γ). (4.38)

Let us first drop the term with δ and take into account the arguments used after (4.36).
Then we observe that in the obtained relation the equality sign can take place if and
only if c(γ ∩ T ) − c(γ̄) = 0 for any tree T . Such situation is possible only if γ and
γ̄ are bi-components of Γ . Remember that the inequalities (4.34b) are written for
subgraphs that involve all the masses and external vertices, so that γ̄ turns out to be
a massless detachable subgraph. Therefore, if such subgraphs are absent, we have
the strict inequality (4.38) at δ = 0. This means that with the δ term we can choose
δ sufficiently small so that the inequality (4.38) is still satisfied.

Let us illustrate the choice of parameters (4.35) on the simple massless diagram
shown in Fig. 4.2. The basic functions are

Fig. 4.2 A two-loop massless diagram
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U = (α1 + α2)α3 + (α1 + α2)α4 + α1α2, (4.39)

V = α1α2α3 p2
1 + α1α2α4 p2

2 + (α1 + α2)α3α4 p2
3 . (4.40)

According to (4.35) we have

λ
(0)
1 = λ

(0)
2 = (2 − ε)

(
3

5
+ δ

)
− 1, (4.41a)

λ
(0)
1 = λ

(0)
2 = (2 − ε)

(
2

5
+ δ

)
− 1, (4.41b)

where we used the values |T 1
1 | = |T 1

2 | = 2 and |T 1
3 | = |T 1

4 | = 3 with |T 1| = 5.
In this section, we assumed the scalar case. Modifications for the general Feynman

integrals are straightforward: one adds nl/2 to the right-hand side of (4.35), where
nl is the degree of the polynomial in the numerator of the lth propagator. In addition,
ω(γ)/2 should be replaced by [ω(γ)/2] and (ω(Γ ) − ω(γ))/2 by [(ω(Γ ) − ω(γ) +
1)/2] where the square brackets denote the integer part of a number.

Writing down the inequalities (4.34a) and (4.34b) when the regularization is
switched off we obtain the well-known conditions of the UV and IR finiteness of a
given Feynman integral:

ω(γ) < 0, (4.42a)

ω(γ) − ω(Γ ) < 0. (4.42b)

The UV conditions (4.42a) are written for 1PI subgraphs and the IR conditions
(4.42b) are written for subgraphs which contain all the external momenta in the
same connectivity component and include all the massive lines. Therefore, the IR
condition can be formulated as the negativity of the IR degree of divergence (2.18).

From the convergence domain (4.34a) and (4.34b), a given Feynman integral
(considered as the sum over Speer sectors) can be continued analytically as a function
ofλl , l ∈ Γ and ε to the whole complex space C L+1 of the regularization parameters.
To do this one applies presubtractions in the sector integrals, similar to what was done
in Sect. 4.3 when revealing poles in ε.

Here one applies as many subtractions as necessary:

∫ 1

0
dt tλφ(t) =

∫ 1

0
dt tλ

⎡
⎣φ(t) −

n∑
j=0

φ( j)(0)

j ! t j

⎤
⎦+

n∑
j=0

φ( j)(0)

j !(λ+ j + 1)
, (4.43)

in order to analytically continue such an integral to the whole complex plane. (Here
λ is a linear combination of λl and ε and t is a sector variable.)

Now, we can use Speer theorem to unambiguous define dimensionally regularized
Feynman integrals at Euclidean external momenta. Suppose that there are both UV
and IR divergences so that for any ε a given Feynman integral is formally divergent
in some sense. Let us introduce an auxiliary analytic regularization as described

http://dx.doi.org/10.1007/978-3-642-34886-0_2


4.4 Analysis of Convergence 79

in this section. The theorem shows the existence of a non-empty domain of the
regularization parameters (λ1, . . . ,λL ; ε). Let us now define, following [19], this
Feynman integral within dimensional regularization as the analytic continuation of
the sum of the contributions of Speer sectors to the point (0, . . . , 0; ε).

What about Feynman integrals without restriction to Euclidean external momenta?
As a first natural extension, let us consider the situation where all the kinematic
invariants in the second function (4.2) in the alpha representation have the same sign.
Thanks to the modern sector decompositions, we do have the possibility to introduce
sectors which provide a proper factorization of the sector contributions. Remember
that some of the sector decomposition strategies are guaranteed to terminate and
that we even have a non-recursive geometrical strategy described in the previous
section. However, we do not have a generalization of the Speer theorem to this
more general situation so that we cannot immediately present a similar definition
of dimensionally regularized Feynman integral using the trick with the auxiliary
analytic regularization.

Let us realize, however, that practically oriented people and even the authors
of the various sector decomposition strategies do not bother that some parametric
subintegrals in final sectors are convergent in a certain domain of ε, for example, at
Re ε > 0 while other subintegrals are convergent in its completion in the complex
plane, i.e. at Re ε < 0.

Consider, for example, the Feynman integral corresponding to the graph depicted
in Fig. 4.2 with the indices a1 = a2 = a3 = 1, a4 = 2. There is a UV divergence
in the upper loop for which ω(γ) = 0 and there is an IR divergence in the fourth
line because of the index a4 = 2. Formally, this is in agreement with (4.42a) where
γ = {1, 2, 3} with ω(γ) = ω(Γ ) = −2. Both divergences manifest themselves
at least in the Speer sector α1 ≤ α2 ≤ α3 which is a part of the primary sector
α1,α2,α3 ≤ α4. (In fact, this is a Hepp sector.) Factorizing the functions (4.39) and
(4.40) (and finding agreement with (4.32)) we reveal the following product of the
sector variables in the integrand:

tε−1
2 t−ε−1

3 ,

where the sector variables ti correspond to subgraphs {1}, {1, 2} and {1, 2, 3}. Indeed,
we see that either the integral over t2 or the integral over t3 is divergent at a given
value of ε.

Since this is an integral at Euclidean external momenta we know that we can
introduce an analytic regularization and, starting from a domain of the regularization
parameters where the integral is convergent, and analytically continue the integral by
switching off the analytic regularization. After introducing the analytic regularization
by inserting

∏
l αλl into the initial Feynman integral the product of powers of the

sector variables becomes

tλ1
1 tλ1+λ2+ε−1

2 t−λ4−ε−1
3 .
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At this point, we can apply Speer theorem. Although it is formulated for the indices
al = 1, we can also apply it in our situation with a4 = 2 by switching to a4 = 1,
using parameters (4.41a) and (4.41b) with ε in a small vicinity of the origin and
analytically continuing to λ1 = λ2 = λ3 = 0 and λ4 = 1. (For a4 = 1, in the
product above only the power of t3 changes to −λ4 − ε.) This can be done by the
standard procedure typical when using practical sector decompositions: one subtracts
first terms of a Taylor series of the function which is in addition to the product of
the sector variables and explicitly evaluates integrals with these first terms. In our
example, the poles of the type 1/(λ1 +λ2 +ε) and 1/(1−λ4 −ε) are made manifest
this way. Then, in these terms and in the integral with remainders of such Taylor
series, one can let λl → 0, l = 1, 2, 3 and λ4 → 1. From such pole terms we obtain
ε-poles 1/ε and −1/ε.

Of course, for this sector contribution we can chooseλ1 andλ2 sufficiently positive
and λ4 sufficiently negative to provide convergence and then perform an analytic
continuation from this domain. Let me emphasize that there are also other sector
contributions and the power of Speer theorem is that it provides the values of analytic
regularization parameters simultaneously for all the sectors.

I think, it is a good problem to prove a kind of the Speer theorem at least for some
classes of Feynman integrals without restriction to Euclidean external momenta. Still
even without such an extension, we can live with dimensionally regularized Feynman
integrals defined via their sector decompositions and applying the recipe which is
usually implied in practice:

Consider integration over every sector variable in its own convergence domain
of ε and continue analytically the integral to the whole complex plane by Taylor
presubtractions.

At least I do not know examples where this recipe breaks down, i.e. leads to
erroneous results.

Observe that setting to zero diagrams with detachable massless subgraph can be
considered as a corollary of this recipe. Indeed, in any such diagram, one can reveal,
introducing an overall integration variable for alpha parameters associated with the
detachable massless subgraph, an integral without scale, i.e. an integral of a pure
power of this variable from zero to infinity. Then one can decompose it into two
pieces, as described in Chap. 2, and treat each piece in its own convergence domain
of ε, with the zero total result.
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Chapter 5
Evaluating by MB Representation

One often uses Mellin integrals1 when dealing with Feynman integrals. These are
integrals over contours in a complex plane along the imaginary axis of products of
gamma functions in the numerator and denominator. In particular, the inverse Mellin
transform is given by such an integral. We will, however, deal with a very specific
technique in this field. The key ingredient of the method presented in this chapter is
the Mellin–Barnes (MB) representation used to replace a sum of two terms raised
to some power by the product of these terms raised to some powers. Our goal is to
use such a factorization in order to achieve the possibility to perform integrations in
terms of gamma functions, at the cost of introducing extra Mellin integrations. Then
one obtains a multiple Mellin integral with gamma functions. The next step is the
resolution of the singularities in ε by means of shifting contours and taking residues.
It turns out that multiple MB integrals are very convenient for this purpose. The final
step is to perform at least some of the Mellin integrations explicitly, by means of
the first and the second Barnes lemmas and their corollaries and/or evaluate these
integrals by closing the integration contours in the complex plane and summing up
corresponding series.

In Sect. 5.1 we start with simple one-loop examples which illustrate the two basic
strategies of resolving singularities in ε. In Sect. 5.2 we discuss general properties
of multiple MB integrals we are going to deal with and outline basic steps of the
method. Section 5.3 contains various examples where MB representation are derived
and checked. Then in Sect. 5.4 the two basic strategies are described in details. In
Sects. 5.5 and 5.6 they are illustrated through examples. In Sects. 5.7 and 5.8 MB
integrals are used in two different ways to study asymptotic behaviour of Feynman
integrals. Finally, in Sect. 5.9 public codes related to the method of MB representation
are listed and the status of the method is briefly characterized.

1 First examples of application of Mellin integrals to Feynman integrals can be found in [8, 65].

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 83
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_5,
© Springer-Verlag Berlin Heidelberg 2012
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5.1 A One-Loop Example

Our basic tool is the following simple formula:

1

(X + Y )λ
= 1

Γ (λ)

1

2πi

∫ +i∞

−i∞
dz Γ (λ+ z)Γ (−z)

Y z

Xλ+z
. (5.1)

Here the contour of integration is chosen in the standard way: the poles with a
Γ (· · · + z) dependence (let us call them left poles, for brevity) are to the left of the
contour and the poles with a Γ (· · ·− z) dependence (right poles) are to the right of it.
See Fig. 5.1, where a possible contour C is shown in the case of λ = −1/4 − i/2.
(This terminology is useful and, although it often happens that the first right pole is
to the left of the first left pole of a given integrand, this, hopefully, will not cause
misunderstanding.)

We will use decompositions X +Y of various functions in integrals over Feynman
and alpha parameters. But the simplest way2 to apply this representation is to write
down a massive propagator as a continuous superposition of massless ones: Mellin–
Barnes (MB) representation

1

(m2 − k2)λ
= 1

Γ (λ)

1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)λ+z
Γ (λ+ z)Γ (−z). (5.2)

Fig. 5.1 A possible integration contour in (5.1) for λ = −1/4 − i/2

2 Historically, it was first advocated and applied in [16].
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Our first example is the same as Example 3.1:

Example 5.1 One-loop propagator Feynman integrals (1.2) corresponding to
Fig. 1.1.

We insert (5.2) with λ = a1 into (1.2), apply (3.6) and obtain the following result:

F(q2, m2; a1, a2; d) = iπd/2(−1)a1+a2Γ (2 − ε− a2)

Γ (a1)Γ (a2)(−q2)a1+a2+ε−2

× 1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (a1 + a2 + ε− 2 + z)

× Γ (2 − ε− a1 − z)Γ (−z)

Γ (4 − 2ε− a1 − a2 − z)
. (5.3)

The rules for choosing an integration contour that goes from −i∞ to +i∞ in the
complex z-plane are the same as before: the right poles (in Γ (· · · − z)) are to the
right of the contour and the left poles (in Γ (· · · + z)) are to left.

This representation can be used to evaluate any integral of this family in a Laurent
expansion in ε. In particular, for F(q2, m2; 2, 1; d), we obtain (1.15) and, at d = 4
come to

F(2, 1; 4) = iπ2

q2

1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z
Γ (1 + z)Γ (−z)2

Γ (1 − z)
(5.4)

with an integration contour at −1 < Rez < 0. Using properties of the gamma
function we obtain (1.16).

Here is a subtle point: if we look at (1.16) we observe that there is a product
Γ (z)Γ (−z) which would be bad if it was present from the beginning because we
could not satisfy our agreement about choosing the integration contours. Indeed,
here the right and left poles at ε = 0 glue together and there is no space between
them. However, the situation is unambiguous because we have fixed an integration
contour with −1 < Rez < 0 and we are free to perform identical transformations
of the integrand after that. A moral of this discussion is the recipe to derive the MB
representation for general powers of the propagators al and fix appropriate integration
contours at this point. Then, for concrete integer indices al , we are allowed to make
transformations like Γ (1 + z)Γ (−z) = −Γ (z)Γ (1 − z), but it is necessary to
remember about the choice of the contours made before this.

The integral (1.16) can be evaluated, according to the Cauchy theorem, by clos-
ing the integration contour to the right and taking a series of residues (with the
minus sign, of course) at the points z = 0, 1, 2, . . .. The residue at z = 0 gives
iπ2 ln

(−q2/m2
)
/q2 and the residues at z = 1, 2, . . . give the series

− iπ2

q2

∞∑
n=1

1

n

(
m2

q2

)n

.

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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As a result, we reproduce (1.5).
In the case of the indices equal to one we use (5.3) to obtain

F(q2, m2; 1, 1; d) = iπ2Γ (1 − ε)

(−q2)ε

1

2πi

∫
C

dz f (z, ε), (5.5)

with

f (z, ε) =
(

m2

−q2

)z
Γ (ε+ z)Γ (−z)Γ (1 − ε− z)

Γ (2 − 2ε− z)
. (5.6)

Our goal is to evaluate (5.5) in a Laurent expansion in ε. Possible integration
contours C in (5.5) in the cases Re ε > 0 and Re ε < 0 are shown in Figs. 5.2
and 5.3, respectively. In the former case, a contour can be chosen as a straight line
parallel to the imaginary axis, while in the latter case, there is no such choice.

Let us now introduce two basic strategies for resolving singularities in ε in MB
integrals. We will call them Strategy A and Strategy B. They both have computer
implementations as described in the next section. Strategy A [51] is a modified variant
of the strategy suggested in [53] (which will be described in Sect. 5.6) and Strategy B
was suggested in [64].

We know in advance that the given integral has a pole in ε because the diagram is
UV-divergent. There are no explicit functions with singularities in ε so that the pole
is generated by the MB integration. So, if we just set ε = 0 (or take more terms of

Fig. 5.2 A possible integration contour in (5.5) in the case Re ε > 0

http://dx.doi.org/10.1007/978-3-642-34886-0_1
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Fig. 5.3 A possible integration contour in (5.5) in the case Re ε < 0

the ε-expansion) we will obtain a wrong result which does not have a pole at ε = 0.
Moreover, it is clear that we cannot do this because the integration contour in (5.5)
should go between the point z = 0 and z = −ε so that, at ε = 0, there is no place
for the contour. Still it is clear that such a ‘naive part’ of the ε-expansion has to be
present in the right result which is, presumably, obtained from it by some extra terms.

Let us fix this naive part by choosing some straight contour for it. If we set ε = 0
we obtain the product of three gamma functions

Γ (z)Γ (−z)Γ (1 − z).

For any straight contour, the real part of the argument of at least one of these gamma
function turns out to be negative so that the standard prescription of the positivity of
the argument of any gamma function when crossing the real axis has to be violated.
It is not reasonable to choose a contour at 1 < Re z < 2 or 2 < Re z < 3 etc. because
we would violate this prescription for two gamma function. So, we are left with the
choices 0 < Re z < 1, −1 < Re z < 0 etc. For example, let us fix it at Re z = −1/4
so that we spoil the gamma function Γ (ε + z), in the sense that we violate our
prescription for it. Let us formally denote this transition by Γ (ε+ z) → Γ (1)(ε+ z)
where Γ (1)(ε+ z) means that the rule Re(ε+ z) > 0 when crossing the real axis is
changed to −1 < Re(ε+ z) < 0.

It is natural to violate the prescriptions in a minimal way, i.e. we do not need to
spoil this gamma function more, e.g., by switching to Γ (2)(ε+z) with the prescription
−2 < Re(ε+ z) < −1. We can write down (5.6) as
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1

2πi

∫
C

f (z, ε)dz = 1

2πi

∫
C0

f (z, ε)dz

+
(

1

2πi

∫
C

f (z, ε)dz − 1

2πi

∫
C0

f (z, ε)dz

)

= 1

2πi

∫
C0

f (z, ε)dz + resz=ε f (z, ε)

= 1

2πi

∫
C0

f (z, ε)dz +
(

m2

−q2

)−ε
Γ (ε)

Γ (2 − ε)
,

where C0 is the straight contour with Re z = −1/4, and we consider εwith |ε| < 1/4.
The way how the singularity in ε was resolved corresponds to Strategy A which

will be described in the next section in the general situation. The crucial point is that
we can safely expand the integrand in a Laurent series in ε in the integral over C0.
(In this particular example, this is just a Taylor series.) Its value at ε = 0 gives the
following contribution to (5.5):

iπ2 1

2πi

∫
C ′

dz

(
m2

−q2

)z
Γ (z)Γ (−z)

1 − z
.

This MB integral can be evaluated by closing the integration contour to the right
in the complex z-plane, as in the previous example. Combining the corresponding
result with the residue calculated above we arrive at (1.7).

Fig. 5.4 A choice of ε and an integration contour within Strategy B

http://dx.doi.org/10.1007/978-3-642-34886-0_1
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Let us turn to Strategy B [64]. Without loss of generality, we may consider ε real.
Let us choose ε and a straight contour such that the arguments of all the gamma
functions in the numerator of (5.6) will be positive when crossing the real axis. For
example, we can take ε = 1/2, Rez = −1/4—see Fig. 5.4. Let us then keep the
contour fixed and tend ε to zero. When the first pole of Γ (ε+ z) is crossed we add a
residue and tend ε to zero. As a result we arrive at the same intermediate result (5.7).

5.2 Evaluating Multiple MB Integrals

The first step of the method is to derive an appropriate MB representation. Of course,
it is advantageous to have a minimal number of MB integrations. In every case, we
will derive MB representations for general powers of the propagators. This is useful
and important for several reasons. First, if we obtain a MB representation for general
indices which we might imagine as complex we will certainly have unambiguous
prescriptions for choosing integration contours. Second, such general formulae can
be checked using various partial simple cases. Finally, starting from a general formula
we can derive a lot of formulae by setting some indices to zero and thereby turning
to graphs where the corresponding lines are contracted to a point. We will illustrate
all these features through multiple examples in Sect. 5.3.

Multiple MB integrals which arise in the evaluation of Feynman integrals have
the following general form:

1

(2πi)n

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

∏
i Γ

(
ai + biε+ ∑

j ci j z j

)
∏

i ′ Γ
(

a′
i ′ + b′

i ′ε+ ∑
j c′

i ′ j z j

) ∏
k

xdk
k

n∏
l=1

dzl , (5.7)

where ai , . . . , c′
i ′ j are rational numbers, xk are ratios of kinematic invariants and/or

masses, and their exponents, dk , are linear combinations of ε and z-variables.
Typically, ci j = ±1.

In the second step, one resolves the singularity structure of integrals (5.7) in ε,
taking residues and shifting contours, with the goal to obtain a sum of integrals where
one can expand integrands in Laurent series in ε. For this, we will apply Strategy A
and Strategy B introduced in the previous section in the one-loop case. They were
suggested in [51] and [64], respectively, and they both have public computer imple-
mentations described in [51] and [17]. In the next section, we will describe these
strategies as well as the ‘the old Strategy A’ [53] which we call in such a way
because the strategy of [51] was motivated by it. For completeness, we present in
Sect. 5.6 two examples considered with the old Strategy A.

The third step of the method is to evaluate integrals expanded in ε after the second
step. Here one can use corollaries of the first and the second Barnes lemmas (13.1)
and (13.47). A table of these formulae is presented in Appendix D. If Barnes lemmas
do not work at this point one can shift contours to the right (or left), replace a given

http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_13
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MB integral by a series of residues and transform it into a multiple series with the
hope to sum it up. In the case of onefold series, one can use summation formulae of
Appendix C.

In fact, we are going to be pragmatic and not to bother whether the change
of the order of integration over MB variables is legitimate. The analysis of the
validity of the manipulations with MB integrals that we use is certainly possi-
ble in every example—see, e.g., the proof [64] when deriving an MB represen-
tation for the non-planar double box diagram. In fact, the crucial point is not
the convergence of the integral in the basic identity (5.1), but the interchange of
the order of integrations between the Mellin–Barnes integral and the parameter
integrals.

Usually, at least at large values in the complex plane, the convergence of MB
integrals is perfect3 because gamma functions have exponential decrease in both
imaginary directions. This property can be used for numerical checks. Moreover, in
complicated situations, one can decompose a given integrand into pieces and choose
an order of integration for every piece in a special way, with the possibility to integrate
explicitly, using table formulae of Appendix D.

We will apply some standard properties of integration for multiple MB integrals.
We will use changes of variables of the type z → ±z + z0. When doing this we will,
of course, trace how the nature of various poles is transformed. Note that, after such
a change, z → −z, right poles become left poles.

The integration by parts (IBP) is also possible in multiple MB integrals, although
it is reasonable to apply it in rare situations. Still sometimes it is useful. For example,
tabulated formulae of Appendix D with the factor 1/z2 were derived using the IBP
identity ∫

C
dz

f (z)

z2 =
∫

C
dz

f ′(z)
z

. (5.8)

5.3 How to Derive and Check MB Representations

In simplest situations, it is sufficient to apply (5.2). Consider Example 3.2 where we
can apply it to the only massive propagator in (3.23) and then evaluate the resulting
massless triangle integral by (10.28) to obtain a onefold MB representation.

To present other possibilities to derive MB Representations let us consider again
Example 3.3:

3 In some situations, e.g. in a MB integral for the Gauss hypergeometric function, the asymptotic
exponents of gamma functions cancel each other so that the convergence is defined by the value
of the argument x which is present in the MB integral as xz . Depending on whether |x | < 1 or
|x | > 1, one has to close the integration contour to the right or to the left. Closing the contours to the
different sides corresponds to an analytical continuation with respect to the argument x . However,
there are certainly problems with the convergence in physical regions of kinematic variables, where
factors of the type xz , with x < 0, are present—see [17].

http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Example 5.2 The massless on-shell box diagram of Fig. 3.6, i.e. with p2
i = 0, i =

1, 2, 3, 4.

Let us start with (3.28). The natural idea here is to apply (5.1) to the denominator
of the integrand. We do this with X = −sξ1ξ2. After that we change the order of
integration over z and the parameters ξ1 and ξ2 and evaluate the parametric integrals
in terms of gamma functions:

F(s, t; a1, a2, a3, a4; d) = (−1)a iπd/2

Γ (4 − 2ε− a)
∏

Γ (al)(−s)a+ε−2

× 1

2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a + ε− 2 + z)Γ (a2 + z)Γ (a4 + z)Γ (−z)

× Γ (2 − a1 − a2 − a4 − ε− z)Γ (2 − a2 − a3 − a4 − ε− z), (5.9)

where a = a1 + a2 + a3 + a4.
We now turn to a class of one-loop Feynman integrals with two more parameters.

Example 5.3 The massless box diagram of Fig. 3.6 with two legs on shell, p2
3 =

p2
4 = 0, and two legs off shell, p2

1, p2
2 �= 0.

We proceed like in the pure on-shell case, using alpha parameters, and obtain

F(s, t, p2
1, p2

2; a1, . . . , a4; d) = iπd/2(−1)a Γ (a + ε− 2)∏
Γ (al)

×
∫ ∞

0
. . .

∫ ∞

0

(
4∏

l=1

αal−1
l dαl

)
δ

(
4∑

l=1

αl − 1

)

× (−sα1α3 − tα2α4 − p2
1α1α2 − p2

2α2α3 − i0)2−a−ε. (5.10)

We have chosen the delta function of the sum of all the α-variables so that the factor
with a power of the function U is equal to one.

Now we need a generalization of (5.1) to the case of several terms which is easily
obtained by induction:

1

(X1 + · · · + Xn)λ
= 1

Γ (λ)

1

(2πi)n−1

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dz2 . . . dzn

n∏
i=2

X zi
i

× X−λ−z2−···−zn
1 Γ (λ+ z2 + · · · + zn)

n∏
i=2

Γ (−zi ). (5.11)

We use (5.11) to replace the last factor in (5.10) by a product of four factors thus
separating terms with t , p2

1 and p2
2 from s. After that we introduce new variables by

α1 = η1ξ1, α2 = η1(1 − ξ1), α3 = η2ξ2, α4 = η2(1 − ξ2) and arrive at a product
of three parametric integrals evaluated in terms of gamma functions. Eventually we

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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obtain the following threefold MB representation of the general Feynman integral of
the given class:

F(s, t, p2
1, p2

2; a1, . . . , a4; d) = iπd/2(−1)a

Γ (4 − 2ε− a)
∏

Γ (al)(−s)a+ε−2

× 1

(2πi)3

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz3dz4

(−p2
1)z2(−p2

2)z3(−t)z4

(−s)z2+z3+z4

× Γ (a + ε− 2 + z2 + z3 + z4)Γ (a2 + z2 + z3 + z4)Γ (a4 + z4)

× Γ (2 − ε− a234 − z3 − z4)Γ (2 − ε− a124 − z2 − z4)

× Γ (−z2)Γ (−z3)Γ (−z4). (5.12)

In this chapter, we continue to use our notation: a124 = a1 + a2 + a4, etc. with
a = a1234. This representation can be, of course, used for evaluating these Feynman
integrals. However, we will use it below only as an auxiliary result when deriving an
MB representation for the massless on-shell double box diagrams.

One of the advantages of general formulae is that they provide a lot of partial
cases. For example (5.12) immediately gives a twofold MB representation for

Example 5.4 The massless box diagram of Fig. 3.6 with three legs on shell, p2
2 =

p2
3 = p2

4 = 0, and one leg off shell, p2
1 �= 0.

Indeed we put p2
2 to zero in the ‘naive’ sense, i.e. in the integrand of the corre-

sponding Feynman integral or in some parametric representation. This is equivalent
to setting p2

2 to zero in the sense of the leading term of the hard part of the asymp-
totic expansion in the limit p2

2 → 0 (see details in [57]), which corresponds to taking
residues (with the minus sign) of the poles of Γ (−z3). So we just take minus residue
of the integrand at z3 = 0. Thus we obtain

F(s, t, p2
1; a1, . . . , a4; d) = iπd/2(−1)a

Γ (4 − 2ε− a)
∏

Γ (al)(−s)a+ε−2

× 1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz4

(−p2
1)z2(−t)z4

(−s)z2+z4
Γ (a + ε− 2 + z2 + z4)

× Γ (a2 + z2 + z4)Γ (a4 + z4)Γ (2 − ε− a234 − z4)

× Γ (2 − ε− a124 − z2 − z4)Γ (−z2)Γ (−z4). (5.13)

Let us now turn to massive diagrams.

Example 5.5 The on-shell box with two massive and two massless lines shown in
Fig. 5.5, with p2

1 = · · · = p2
4 = m2.

The derivation of the corresponding MB representation is quite straightforward.
The combination that is involved in the corresponding integral over alpha or Feynman
parameters has now an additional piece as compared with the massless case:

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Fig. 5.5 On-shell box with
two massive and two massless
lines. The solid lines denote
massive, the dashed lines
massless particles

V − U
∑

m2
l αl = sα1α3 + tα2α4 − m2(α1 + α3)

2.

This term can be separated from the rest terms at the cost of introducing one more MB
integration according to (5.11). This time, let us introduce new parametric variables in
a slightly different way,α1 = η1ξ1, α2 = η2ξ2, α3 = η1(1−ξ1), α4 = η2(1−ξ2),
in order to make (α1 + α3)

2 simpler. Evaluating the parametric integrals we arrive
at the following massive generalization of (5.9):

F(s, t, m2; a1, a2, a3, a4; d) = (−1)a iπd/2

Γ (4 − 2ε− a)
∏

Γ (al)(−s)a+ε−2

× 1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2

(−t)z1(m2)z2

(−s)z1+z2
Γ (a + ε− 2 + z1 + z2)

× Γ (a2 + z1)Γ (a4 + z1)Γ (−z1)Γ (−z2)Γ (2 − a124 − ε− z1 − z2)

× Γ (2 − a234 − ε− z1 − z2)
Γ (4 − a122344 − 2ε− 2z1)

Γ (4 − a122344 − 2ε− 2z1 − 2z2)
, (5.14)

where a122344 = a1 + 2a2 + a3 + 2a4, etc. Observe that the onefold representation
(5.9) in the massless case follows from (5.14) when we put m to zero. As it was
discussed above we do this by taking the limit m → 0 in the sense of the leading
term of the hard part of the expansion. Here this means that we just take minus residue
at z2 = 0 with respect to the variable z2 which enters the integrand as the exponent
of m2.

The general MB representation (5.14) can be used to derive an MB representation
for the triangle diagram shown in Fig. 5.6. This class of Feynman integrals is obtained
from the corresponding box integrals if we set a4 = 0. If we do this blindly in (5.14)
we obtain a zero result due to Γ (a4) in the denominator. This is, of course, not
true. Let us think of a4 as a complex number and analyze the behaviour in the limit
a4 → 0 similarly to what we do when analyzing how singularities in ε are generated.
We identify the product Γ (a4 + z1)Γ (−z1) responsible for the generation of the
singularity when a4 → 0. To reveal this singularity we can take minus residue
at the point z1 = 0 and shift the integration contour over z1. The contribution of
the new integral is indeed zero because of the factor 1/Γ (a4). The contribution
of the residue produces Γ (a4) which cancels this factor in the denominator, and
we put a4 to zero after that. Changing the numbering 2 ↔ 3, for convenience,
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Fig. 5.6 Triangle diagram
with the masses m, m, 0 and
external momenta on-shell,
p2

1 = p2
2 = m2. The dashed

line denotes a massless propa-
gator

we obtain the following onefold MB representation4 for integrals corresponding to
Fig. 5.6:

(−1)a iπd/2Γ (4 − 2ε− a1 − a2 − 2a3)

Γ (4 − 2ε− a1 − a2 − a3)Γ (a1)Γ (a2)(−s)a+ε−2

× 1

2πi

∫ +i∞

−i∞
dz

(
m2

−s

)z

Γ (a + ε− 2 + z)Γ (−z)

× Γ (2 − a1 − a3 − ε− z)Γ (2 − a2 − a3 − ε− z)

Γ (4 − 2ε− a1 − a2 − 2a3 − 2z)
. (5.15)

Observe that if we want to have a representation for massive propagator-type
diagrams by setting a3 = 0 we will not reduce the number of integrations: there
is no Γ (a3) in the denominator and, on the other hand, no singularities in the limit
a3 → 0 are generated. So, one can simply apply (5.15) with a3 = 0 for this class of
diagrams.

The general MB representation (5.14) provides in a very similar way a MB rep-
resentation for another triangle diagram obtained from Fig. 5.5. We shrink the line 3
to a point and obtain Fig. 5.7. The corresponding onefold MB representation takes
the form

(−1)a iπd/2

Γ (4 − 2ε− a)Γ (a1)Γ (a2)Γ (a4)(m2)a+ε−2

× 1

2πi

∫ +i∞

−i∞
dz

(−t

m2

)z

Γ (a + ε− 2 + z)Γ (−z)

× Γ (a2 + z)Γ (a4 + z)Γ (4 − 2ε− a1 − 2a2 − 2a4 − 2z), (5.16)

where t = (p1 + p3)
2.

Among other partial cases of the massive on-shell boxes let us mention the case
where a1 = a2 = 0. Then we obtain a massless one-loop propagator-type diagram
which is evaluated by (3.6). On the other hand, one can see that to perform the
limit a1, a2 → 0 it is necessary to take two residues in the integrand and somehow
compensate the corresponding gamma functions in the denominator. Eventually one

4 In [26], it was demonstrated that this Feynman integral reduces, for any values of the three indices,
to a two-point function in the shifted dimension d − 2a3.

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Fig. 5.7 Triangle diagram
with the masses m, 0, 0 and
external momenta on-shell,
p2

1 = p2
3 = m2, obtained

from the box of Fig. 5.5

arrives at the known result. This procedure is just an additional check for the initial
MB representation (5.14).

The representation (5.14) can straightforwardly be generalized to various off-
shell cases, similarly to how we obtained the generalizations (5.12) and (5.13). For
the box of Fig. 5.5 with two massive and two massless lines, two legs on shell,
p2

3 = p2
4 = m2, and two legs off shell we obtain the following fourfold MB

representation:

(−1)a iπd/2(−s)2−a−ε

Γ (4 − 2ε− a)
∏

Γ (al)

1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

⎛
⎝ 4∏

j=1

dz j Γ (−z j )

⎞
⎠

× (m2 − p2
1)z1(m2 − p2

2)z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z1 + z2 + z3)Γ (a4 + z3)

× Γ (2 − a124 − ε− z1 − z3 − z4)Γ (2 − a234 − ε− z2 − z3 − z4)

× Γ (4 − a122344 − 2ε− z1 − z2 − 2z3)

Γ (4 − a122344 − 2ε− z1 − z2 − 2z3 − 2z4)

× Γ (a + ε− 2 + z1 + z2 + z3 + z4). (5.17)

For the box of Fig. 5.5 with two legs on shell, p2
2 = p2

4 = m2, and two legs off
shell, we obtain:

(−1)a iπd/2(−s)2−a−ε

Γ (4 − 2ε− a)
∏

Γ (al)

1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

⎛
⎝ 4∏

j=1

dz j Γ (−z j )

⎞
⎠

× (m2 − p2
1)z1(m2 − p2

3)z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z1 + z3)Γ (a4 + z2 + z3)

× Γ (2 − a124 − ε− z1 − z2 − z3 − z4)Γ (2 − a234 − ε− z3 − z4)

× Γ (4 − a122344 − 2ε− z1 − z2 − 2z3)

Γ (4 − a122344 − 2ε− z1 − z2 − 2z3 − 2z4)

× Γ (a + ε− 2 + z1 + z2 + z3 + z4). (5.18)

Finally, for the box of Fig. 5.5 with two legs on shell, p2
1 = p2

4 = m2, and two
legs off shell, we obtain:
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(−1)a iπd/2(−s)2−a−ε

Γ (4 − 2ε− a)
∏

Γ (al)

1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

⎛
⎝ 4∏

j=1

dz j Γ (−z j )

⎞
⎠

× (m2 − p2
3)z1(m2 − p2

2)z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z2 + z3)Γ (a4 + z1 + z3)

× Γ (2 − a124 − ε− z1 − z3 − z4)Γ (2 − a234 − ε− z2 − z3 − z4)

× Γ (4 − a122344 − 2ε− z1 − z2 − 2z3)

Γ (4 − a122344 − 2ε− z1 − z2 − 2z3 − 2z4)

× Γ (a + ε− 2 + z1 + z2 + z3 + z4). (5.19)

In two loops, our first example is the same as Example 3.7:

Example 5.6 Non-planar two-loop massless vertex diagram of Fig. 3.14 with p2
1 =

p2
2 = 0.

We are again dealing with two-loop vertex Feynman integrals (3.59). We start with
the four-parametric representation (3.63) obtained within the method of Feynman
parameters in Chap. 3. Let us turn to the variables ξ3 = ξη, ξ4 = (1−ξ)η and apply
(5.1) to the resulting denominator in the integrand:

Γ (a + 2ε− 4)

[ηξ(1 − ξ) + (1 − η)(ξξ2(1 − ξ1) + (1 − ξ)ξ1(1 − ξ2))]a+2ε−4

= 1

2πi

∫ +i∞

−i∞
dz1 Γ (−z1)η

z1ξz1(1 − ξ)z1

(1 − η)a+2ε−4+z1

× Γ (a + 2ε− 4 + z1)

[ξξ2(1 − ξ1) + (1 − ξ)ξ1(1 − ξ2)]a+2ε−4+z1
. (5.20)

Then we again apply (5.1) to transform the last line of (5.20) into

1

2πi

∫ +i∞

−i∞
dz2 Γ (a + 2ε− 4 + z1 + z2)Γ (−z2)ξ

z2ξz2
2 (1 − ξ1)

z2

(1 − ξ)a+2ε−4+z1+z2ξa+2ε−4+z1+z2
1 (1 − ξ2)a+2ε−4+z1+z2

.

After that all the integrals over the parameters ξ1, ξ2, ξ, η can be evaluated in terms
of gamma functions, and we come to the following twofold MB representation of
(3.59) with general powers of the propagators:

F(Q2; a1, . . . , a6; d) = (−1)a
(
iπd/2

)2
Γ (2 − ε− a35)

(Q2)a+2ε−4Γ (6 − 3ε− a)
∏

Γ (al)

× Γ (2 − ε− a46)

Γ (4 − 2ε− a3456)

1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2Γ (a + 2ε− 4 + z1 + z2)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Fig. 5.8 Double box

× Γ (−z1)Γ (−z2)Γ (a4 + z2)Γ (a5 + z2)Γ (a1 + z1 + z2)

× Γ (2 − ε− a12 − z1)Γ (4 − 2ε+ a2 − a − z2)

Γ (4 − 2ε− a1235 − z1)Γ (4 − 2ε− a1246 − z1)

× Γ (4 − 2ε+ a3 − a − z1 − z2)Γ (4 − 2ε+ a6 − a − z1 − z2). (5.21)

Let us now consider

Example 5.7 Massless on-shell planar double box diagram of Fig. 5.8.

As in Example 5.2 we have p2
i = 0, i = 1, 2, 3, 4. Let us consider double boxes

with the irreducible numerator (k + p1 + p2 + p4)
2 and the routing of the external

momenta as in [3]. Then the general double box Feynman integral takes the form

K (s, t; a1, . . . , a8, ε) =
∫ ∫

ddk ddl

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3

× [(k + p1 + p2 + p4)
2]−a8

[(l + p1 + p2)2]a4 [(l + p1 + p2 + p4)2]a5(l2)a6 [(k − l)2]a7
, (5.22)

As usual, we consider the factor corresponding to the irreducible numerator as
an extra propagator but, really, we are interested only in non-positive integer values
of a8. In fact, there are two possible independent irreducible numerators but the
derivation of the MB representation is simple only when we take one of them into
account.

In order to derive a MB representation for (5.22) it is possible to start from the alpha
representation and then apply (5.1) to the corresponding functions U and V . This is
not, however, an optimal way. In particular, this was done in the first calculation
of the master double box [53] but a resulting MB representation turned out to be
fivefold, with essential complications in the calculations. However, one can proceed
using a fourfold MB representation. Let us also mention that in the case of non-
planar on-shell double boxes it was possible to achieve [64] the minimal number of
integrations equal to four starting from the global alpha representation.

To arrive at a fourfold MB representation let us use the ‘loop by loop’ derivation
suggested in [66]. According to this procedure one starts from a one-loop subintegral,
derives an MB representation for it using alpha parameters, then inserts this result
into the given integral and obtains an MB integral for a Feynman integral with one
loop less and indices depending on MB integration variables. Then one selects a next
one-loop subintegral etc. One can use the public code AMBRE [33–35] for this.
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The loop by loop procedure was applied to the massless double box in [3]. Let us
do this by observing that (5.22) can be represented as

K (s, t; a1, . . . , a8, ε) =
∫

ddk [(k + p1 + p2 + p4)
2]−a8

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3

× F(s, (k + p1 + p2 + p4)
2, k2, (k + p1 + p2)

2; a6, a7, a4, a5; d), (5.23)

where the integral of four propagators dependent on l has been recognized as the
box with two legs off shell. Then we can use (5.12). After inserting it into (5.23)
we obtain the massless on-shell box with the indices a1 − z2, a2, a3, a8 − z4 for
which we apply our representation (5.9). After these straightforward manipulations,
we change the variables z2 → z2 − z4, z3 → z3 − z4, z4 → z1 + z4, and arrive at
the following fourfold MB representation of (5.22) (see also [3]):

K (s, t; a1, . . . , a8, ε) =
(
iπd/2

)2
(−1)a∏

l=2,4,5,6,7 Γ (al)Γ (4 − a4567 − 2ε)(−s)a−4+2ε

× 1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

⎛
⎝ 4∏

j=1

dz j

⎞
⎠

(
t

s

)z1

Γ (a2 + z1)Γ (−z1)

× Γ (z2 + z4)Γ (z3 + z4)Γ (a1238 − 2 + ε+ z4)Γ (a7 + z1 − z4)

Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)Γ (4 − a1238 − 2ε+ z1 − z4)

× Γ (a8 − z2 − z3 − z4)Γ (a5 + z1 + z2 + z3 + z4)Γ (−z1 − z2 − z3 − z4)

Γ (a8 − z1 − z2 − z3 − z4)

× Γ (a4567 − 2 + ε+ z1 − z4)Γ (2 − a128 − ε+ z2)Γ (2 − a238 − ε+ z3)

× Γ (2 − a567 − ε− z1 − z2)Γ (2 − a457 − ε− z1 − z3). (5.24)

Let us check (5.24). Let us observe that, if we start from (5.24), we have to obtain,
in the limit a1,3,4,6 → 0 with a8 = 0, the massless sunset diagram with the indices
a2, a5, a7. This corresponds to shrinking the horizontal lines—see Fig. 5.9. Indeed,
we can start from (5.25) and perform the limit a3 → 0 by taking minus the residue
at z1 = 4 − a1257 − 2ε in order to take into account the singularity of the integral of
Γ (a − 4 + 2ε+ z1)Γ (4 − a1257 − 2ε− z1). Then we can set a1 = 0 and reproduce
a known result.

Let us think of shrinking the vertical lines. We should obtain the product of two
one-loop massless propagator-type integrals with the indices (a1, a3) and (a4, a6) in
the limit a2,5,7 → 0 with a8 = 0—see Fig. 5.9. Yes, we do this by a similar analysis
and similar manipulations: take minus residue at z1 = 0 and set a2 = 0, then take
minus residue at z4 = −z2 − z3 and set a5 = 0, then take residues at z2 = 0 and
z3 = 0 and set a7 = 0.

The general fourfold representation (5.24) contains a lot of information. In par-
ticular, it is very easy to derive MB representations for the two classes of Feynman
integrals corresponding to the graphs shown in Fig. 5.10. The integrals for the box
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Fig. 5.9 Horizontal and vertical checks for the double box

(a) (b)

Fig. 5.10 Boxes with a one-loop insertion (a) and boxes with a diagonal (b) obtained from Fig. 5.8

with a one-loop insertion are obtained from the double box integrals at a4 = a6 = 0.
(For simplicity, we consider the case a8 = 0.) There are Γ (a4) and Γ (a6) in the
denominator of (5.24) but, of course, the limit a4, a6 → 0 is not zero see Fig. 5.9.
Indeed, we can distinguish the product

Γ (a4567 − 2 + ε+ z1 − z4)Γ (2 − a567 − ε− z1 − z2)Γ (z2 + z4)

which generates, due to integration over z2 and z4, the singularity of the type Γ (a4)—
remember our discussion in Sect. 5.2. So, to perform this limit we take a residue at
z4 = −z2 and minus residue at z2 = 2 − a567 − ε − z1 and then set a4 = 0. We
still have Γ (a6) in the denominator, but there is also the product Γ (a567 − 2 + ε+
z1 + z3)Γ (2 − a57 − ε− z1 − z3) which generates the singularity of the type Γ (a6).
Therefore, we take minus residue at z3 = 2 − a57 − ε − z1, then set a6 = 0 and
arrive at the following onefold MB representation:

K (a1, a2, a3, 0, a5, 0, a7, 0) =
(
iπd/2

)2
(−1)aΓ (2 − a5 − ε)Γ (2 − a7 − ε)∏

Γ (al)Γ (4 − a57 − 2ε)Γ (6 − a − 3ε)
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× 1

(−s)a−4+2ε

1

2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a − 4 + 2ε+ z)Γ (a57 − 2 + ε+ z)

× Γ (a2 + z)Γ (4 − a1257 − 2ε− z)Γ (4 − a2357 − 2ε− z)Γ (−z). (5.25)

The integrals for the box with a diagonal are obtained from the double box integrals
at a1 = a4 = 0. We start from the limit a4 → 0 as in the previous case. Then we
observe that there is no Γ (a1) in the denominator and no gluing of right and left poles
when a1 → 0. So, we just set a1 = 0. After that the integration over z3 involves only
four gamma functions

Γ (2 − a23 − ε+ z3)Γ (a5 + z1 + z3)Γ (2 − a57 − ε− z1 − z3)Γ (−z3).

The integral is evaluated by the first Barnes lemma (13.1), and we obtain

K (0, a2, a3, 0, a5, a6, a7, 0) =
(
iπd/2

)2
Γ (2 − a23 − ε)Γ (2 − a56 − ε)∏

Γ (al)Γ (4 − a237 − 2ε)Γ (4 − a567 − 2ε)

× (−1)aΓ (2 − a7 − ε)

Γ (6 − a − 3ε)(−s)a−4+2ε

1

2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a − 4 + 2ε+ z)

× Γ (a2 + z)Γ (a5 + z)Γ (−z)

× Γ (4 − a2357 − 2ε− z)Γ (4 − a2567 − 2ε− z). (5.26)

So, these two classes of integrals are rather simple because they are given only
by onefold MB representations. See—[63] where an algorithmic procedure of their
evaluation was described.

5.4 Two Basic Strategies of Resolving Singularities in ε

According to the old strategy A [53], one performs an analysis of the integrand to
understand how poles in ε arise. The guiding principle is that the product Γ (a + z)
Γ (b−z), where a and b can depend on the rest of the integration variables, generates,
due to the integration over z, the singularity of the type Γ (a + b). Indeed, if we shift
an initial contour of integration over z across the point z = −a we obtain an integral
over a new contour which is not singular at a+b = 0, while the corresponding residue
involves an explicit factor Γ (a + b). This observation shows that any contour of one
of the following integrations over the rest of the MB variables should be chosen
according to this dependence, Γ (a + b). Hence one thinks of integrations in various
orders and then identifies some ‘key’ gamma functions which are crucial for the
generation of poles in ε. Then one takes residues and shifts contours, starting from
the first poles of these key gamma functions. The same analysis and procedure is
then applied to the contributions of the residues.

http://dx.doi.org/10.1007/978-3-642-34886-0_13
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To present (the new) Strategy A [51] let us explicitly formulate what was implied
in the old Strategy A [53]. When we take care of one of the key gamma functions we
shift a contour and take a residue. Let Γ (Ai ) with Ai = ai +biε+∑

j ci j z j be one of
the key gamma functions in (5.7). Without loss of generality, we can consider ε real.
Then changing the nature of the first pole of this gamma function means changing
the rule for an admissible contour, i.e. that, instead of the condition ReAi > 0
when crossing the real axis in the process of the integration, we have the condition
−1 < Re Ai < 0. As in our first example in Sect. 5.1 let us denote this transition by
replacing Γ (Ai ) by Γ (1)(Ai ). The initial rule for the contour can be changed again
and then we have the condition −n < Re Ai < −n + 1 for n = 2, 3, . . . with the
notation Γ (n)(Ai ).

In contrast to Strategy B where one has straight contours in the beginning,
Strategy A is oriented at straight contours in the end. Apparently, it is desirable
to achieve a minimal number of terms after the resolution of the singularities in ε.
To do this, let us try to look for contours which are going to have in the end of this
procedure and for which the gamma functions in the numerator are changed, in the
above sense, in a minimal way. To formalize this requirement, let us introduce the
function σ(x) = [(1 − x)+] where [. . .] is the integer part of a number and x+ = x
for x > 0 and 0, otherwise. In other words, if −n < x < −n + 1 then σ(x) = n for
n > 0 and σ(x) = 0 for n ≤ 0.

So, let us set ε = 0 and look for contours, i.e. Re zi , for which the sum
∑

i

σ (Re Ai |ε=0) ≡
∑

i

σ

(
ai +

∑
j

ci j Re z j

)

is minimal.
After such a choice is done we identify gamma functions which should be changed,

in the above sense, in order to arrive at a final integral where a Laurent expansion in
ε is possible. In fact, this step replaces the first step in the old Strategy A where one
identified such key gamma functions after the analysis characterized above.

Then the second step in Strategy A is the same as in the old version: we take care
of the distinguished gamma functions, i.e. take a residue and replace Γ by Γ (1)(Ai )

(and, possibly, Γ (1)(Ai ) by Γ (2)(Ai ) etc.) We proceed iteratively, as in the previous
strategy: every residue is considered from scratch, i.e. treated in the same way as the
initial MB integral.

Let me emphasize that although this strategy aims at minimizing the number
of resulting terms, we cannot exclude that there is another way of resolving the
singularities in ε that is the best one in this sense. For example, it can happen, in rather
complicated examples, that different orders of changing the key gamma functions
lead to different numbers of resulting terms. Still I believe that such a difference is
negligible and that the Strategy A provides a resolution of the singularities in ε at
least very close to the theoretically best one.

The difference of the new and the old Strategies A is minor. In multiple applications
of the old Strategy A one can see that resulting contours were straight indeed. This
difference can still be seen in the following simple example of the integral
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1

2πi

∫ +i∞

−i∞
Γ (1 + ε+ z)Γ (−1/2 + ε+ z)Γ (3/2 − ε− z)Γ (−z) dz

which can be evaluated at general ε by the first Barnes lemma (13.1). Within the old
Strategy A, one can observe that there is no gluing of poles so that one can expand
the integrand in ε. However, a resulting contour cannot be chosen as a straight line.
Rather, within the new Strategy A, we have to choose a gamma function to be modified
and, as a result, we obtain a residue and an integral over a straight line which both
can be expanded in ε.

Let us now turn to Strategy B [64]. First, one chooses a domain of the regularization
parameter ε and values of the real parts of the integration variables, zi , w, . . . in such
a way that all the integrations over the MB variables can be performed over straight
lines parallel to imaginary axis. In fact this is not always possible. However, in
these situations, one can introduce an auxiliary analytic regularization to provide
the existence of such straight contours. Then one tends ε to zero, and whenever a
pole of some gamma function is crossed one takes into account the corresponding
residue. (If the auxiliary analytic regularization was introduced, one first performs, in
a similar way, the analytic continuation to zero values of the corresponding analytic
parameters.) It is simple to organize this procedure in such a way that no more than
one pole is crossed at the same time. For every resulting residue, which involves one
integration less, a similar procedure is applied, and so on.

Strategy B [64] is algorithmic in its character and, indeed, two algorithmic descrip-
tions were formulated in [2, 17]. The public code called MB.mwas presented in [17].
Strategy B was successfully applied both before and afterMB.mwas developed—see,
e.g., [3, 5, 9, 10, 12, 18, 20–22, 24, 25, 32, 39].

The additional code MBresolve.m where Strategy A is implemented was pre-
sented in [51]. It works together with MB.m. A package which includes MB.m and
MBresolve.m can be downloaded from [41]. As an example of a recent applica-
tion of this package let me mention [52]. So, if one needs to resolve the singularity
structure of a MB integral there is no reason to proceed by hand. With the use of
MB.m or MBresolve.m one solves this problem automatically. Moreover, these
and some additional codes provide the possibility to evaluate automatically resulting
MB integrals (which are coefficients at powers of ε). This point will be illustrated
through examples in the next section.

5.5 Two-Loop Examples

As in Chap. 3 let us turn to Example 3.7 and evaluate the integral (3.59) given by the
MB representation (5.21) with all indices equal to one. We have

F(Q2; 1, . . . , 1; d) =
(
iπd/2

)2

(Q2)2+2ε f (ε), (5.27)

http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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with

f (ε) = Γ (−ε)2

Γ (−3ε)Γ (−2ε)
V (ε)

and

V (ε) = 1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2Γ (2 + 2ε+ z1 + z2)Γ (1 + z1 + z2)

× Γ (1 + z2)
2Γ (−z1)Γ (−z2)

Γ (−ε− z1)

Γ (−2ε− z1)2

× Γ (−1 − 2ε− z2)Γ (−1 − 2ε− z1 − z2)
2. (5.28)

After the useful change of variables z1 → −1 − z1 − z2, we obtain

V (ε) = 1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2

Γ (1 + z1 + z2)Γ (1 − ε+ z1 + z2)

Γ (1 − 2ε+ z1 + z2)2

× Γ (−2ε+ z1)
2Γ (−z1)Γ (1 + 2ε− z1)

× Γ (1 + z2)
2Γ (−1 − 2ε− z2)Γ (−z2). (5.29)

For this simple example, the codes MB.m and MBresolve.m produce identical
intermediate results. These are MB integrals which are then expanded in a Laurent
series in ε. We do this up to ε0. There are three contributions. One of them is without
integration:

C1 = 1

ε4 − π2

2ε2 − 110ζ(3)

3ε
− 41π4

40
. (5.30)

The second contribution is given by a onefold MB integral:

C2 = 3
1

2πi

∫ r+i∞

r−i∞
dzΓ (1 + z)Γ (z)Γ (−z)2

(
1

ε2 + 3ψ(−z) − 2ψ(z) + γE

ε

+ 1

12

(
6ψ(−z)2 − 24ψ(z)ψ(−z) + 48ψ(z + 1)ψ(−z) + 36γEψ(−z)

+ 12ψ(z)2 − 12ψ(z + 1)2 − 24γEψ(z) − 24ψ(z)ψ(z + 1)

− 66ψ′(−z) + 12ψ′(z) − 12ψ′(z + 1) − 7π2 + 6γ2
E

) )
, (5.31)

where the integration is over the straight contour with r = −1/2 or some other
number between −1 and 0.

The integral of the 1/ε2 and 1/ε terms can be evaluated by means of corollaries
of the first Barnes lemma (13.1). In MB.m the evaluation of any integral of the form

1

2πi

∫ r+i∞

r−i∞
dz Γ (a1 + z)Γ (a2 + z)Γ (a3 − z)Γ (a4 − z). (5.32)

http://dx.doi.org/10.1007/978-3-642-34886-0_13
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and similar integrals with a derivative of one of the gamma functions involved is
implemented. To do this one uses the command Barnes1 and specifies an integra-
tion variable. Similarly, the evaluation of integrals of the form

1

2πi

∫ r+i∞

r−i∞
dz

Γ (a1 + z)Γ (a2 + z)Γ (a3 + z)Γ (a4 − z)Γ (a5 − z)

Γ (a6 + z)
, (5.33)

with a6 = a1 + a2 + a3 + a4 + a5, using the second Barnes lemma (13.47) is imple-
mented. However, the integration of the ε0 term cannot be done by corollaries of
Barnes lemmas. Here one can apply the PSLQ algorithm using as input a numerical
result for the ε0 part of (5.31) with a sufficiently high accuracy—see a brief descrip-
tion of this algorithm in Sect. 14.8. This gives the value 7π4/10 for the ε0 part of
(5.31) and the result

C2 = − π2

2ε2 + 9ζ(3)

ε
+ 7π4

10
. (5.34)

The third contribution is

6
1

(2πi)2

∫ r1+i∞

r1−i∞
dz1

∫ r2+i∞

r2−i∞
dz2Γ (1 + z1 + z2)Γ (2 + z1 + z2)Γ (1 + z2)

2

× Γ (−1 − z1 − z2)
2Γ (−1 − z2)Γ (−z2), (5.35)

where r1 = r2 = −1/4. This integral can straightforwardly be evaluated by a
successive application of the first Barnes lemma with the result −π4/6. Summing
up the three parts of the result we reproduce the result (3.80) obtained in [36].

Let us now apply (5.24) to the evaluation, in expansion in ε up to the finite part,
of the double box without numerator and with all powers of the propagators equal to
one. We know in advance that it has poles up to the fourth order in ε, due to IR and
collinear divergences. Representation (5.24) gives

K (s, t; 1, . . . , 1, 0, ε) = −
(
iπd/2

)2

(−s)3+2ε F(x, ε), (5.36)

where x = t/s and

F(x, ε) = 1

Γ (−2ε)

1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

⎛
⎝ 4∏

j=1

dz j

⎞
⎠ xz1

× Γ (1 + z1)Γ (−z1)Γ (−1 − ε− z1 − z2)Γ (−1 − ε− z1 − z3)

Γ (1 + z2 + z4)Γ (1 + z3 + z4)Γ (1 − 2ε+ z1 − z4)

× Γ (2 + ε+ z1 − z4)Γ (1 + z1 + z2 + z3 + z4)Γ (1 + z1 − z4)

http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_14
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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× Γ (z2 + z4)Γ (z3 + z4)Γ (−ε+ z2)Γ (−ε+ z3)

× Γ (1 + ε+ z4)Γ (−z2 − z3 − z4) . (5.37)

We use the integrand of (5.37) as an input for the code MB.m. After using com-
mands for resolving singularities in ε, we obtain a linear combination of 28 MB
integrals which are at most twofold. Some integrations can now be taken by Barnes
lemmas. One can look for such possibilities himself (herself) but it is more rea-
sonable at this point to use an additional public code barnesroutines.m by
Kosower [45]. The command DoAllBarnes looks for possible applications of
Barnes lemmas, in some order and with some priority, and applies the corresponding
commands Barnes1 and Barnes2 of MB.m.

After this we obtain a linear combination of five onefold MB integrals and a term
without integration. These are MB integrals without dependence on x = t/s, either
with four gamma functions or with five gamma functions in the numerator and one
gamma function in the denominator, times a linear combination of the ψ-function
and its derivatives, and MB integrals including xz , with six gamma functions and a
ψ-function. All these integrals can be evaluated by closing the contour to the right,
taking residues at the points z = 0, 1, 2, . . . and summing up resulting series with
the help of the table of formulae [31] presented in Appendix C. Alternatively, one
can apply the public codes SUMMER [68] and XSummer [47] written in FORM [67]
for the summation of these series.

Collecting all the contributions we reproduce the result of [53]:

K (s, t; 1, . . . , 1, 0, ε) = −
(
iπd/2e−γEε

)2

(−s)2+2εt
f

(
t

s
; ε

)
, (5.38)

where

f (x, ε) = − 4

ε4 + 5 ln x

ε3 −
(

2 ln2 x − 5

2
π2

)
1

ε2

−
(

2

3
ln3 x + 11

2
π2 ln x − 65

3
ζ(3)

)
1

ε

+ 4

3
ln4 x + 6π2 ln2 x − 88

3
ζ(3) ln x + 29

30
π4

− [2 Li3 (−x) − 2 ln x Li2 (−x) − (ln2 x + π2) ln(1 + x)]2

ε
− 4[S2,2(−x) − ln x S1,2(−x)] + 44 Li4 (−x)

− 4 [ln(1 + x) + 6 ln x] Li3 (−x)

+ 2

(
ln2 x + 2 ln x ln(1 + x) + 10

3
π2

)
Li2 (−x)

http://dx.doi.org/10.1007/978-3-642-34886-0_12
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+
(

ln2 x + π2
)

ln2(1 + x)

− 2

3
[4 ln3 x + 5π2 ln x − 6ζ(3)] ln(1 + x) + O(ε), (5.39)

where Sk,n(x) are generalized (Nielsen) polylogarithms [30, 43, 44]—see (11.8).
Generalized polylogarithms are partial cases of multiple polylogarithms—see (11.43)
and (11.46) in Appendix B.

This result is in agreement with the leading behaviour in the (Regge) limit t/s → 0
obtained in [63] by use of the strategy of expansion by regions [6, 57, 60, 61]
described in Chap. 9. Keeping the two leading powers of x we have

f (x, ε) = − 4

ε4 + 5 ln x

ε3 −
(

2 ln2 x − 5

2
π2

)
1

ε2

−
(

2

3
ln3 x + 11

2
π2 ln x − 65

3
ζ(3)

)
1

ε

+ 4

3
ln4 x + 6π2 ln2 x − 88

3
ζ(3) ln x + 29

30
π4

+ 2x

(
1

ε
(ln2 x − 2 ln x + π2 + 2)

−1

3
{4 ln3 x + 3 ln2 x + (5π2 − 36) ln x + 2[33 + 5π2 − 3ζ(3)]}

)

+ O(x2 ln3 x, ε). (5.40)

A remarkable feature of (5.39) is that the result has uniform transcendentality,
i.e. every term has transcendentality weight four. (We assume that the weight of
Lin (−x), Sk,n−k(−x) and ζ(n) is n and the weight of a product is the sum of the
weights of the corresponding factors.

5.6 Examples with the Old Strategy A

Although the old Strategy A does not have an implementation in a computer code
let us now consider examples where it was successfully applied because it might
happen that somebody provides such an implementation which could be better than
the new Strategy A. In fact, the resolution of singularities in ε in the first example is
rather simple and results in a few terms. On the other hand, this example will give
the possibility to discuss some additional techniques and limitations of the method
of MB representation. Then we will just outline calculations for the second example
(massless triple box) and discuss mainly the end of the calculation. One more reason
for not forgetting about the old Strategy A is that it proved useful in a series of
nontrivial calculations.

http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_9
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(a) (b)

Fig. 5.11 Planar massive on-shell double boxes: a first type, b second type. The solid lines denote
massive, the dashed lines massless particles

Fig. 5.12 Non-planar mas-
sive on-shell double box

Let us turn to

Example 5.8 Massive on-shell double box diagrams shown in Figs. 5.11 and 5.12.

This is an important class of Feynman integrals with one more parameter, with
respect to the massless on-shell double boxes. In particular, it is relevant to Bhabha
scattering.

The general double box Feynman integral of the first type (see Fig. 5.11a) takes
the form

BPL,1(s, t, m2; a1, . . . , a8, ε) =
∫ ∫

ddk ddl

(k2 − m2)a1[(k + p1)2]a2

× [(k + p1 + p2 + p4)
2]−a8

[(k + p1 + p2)2 − m2]a3[(l + p1 + p2)2 − m2]a4 [(l + p1 + p2 + p4)2]a5

× 1

(l2 − m2)a6[(k − l)2]a7
, (5.41)

where p2
i = m2, i = 1, 2, 3, 4, and we consider a (non-negative) power −a8 of the

factor (k + p1 + p2 + p4)
2 in the numerator as in the massless case.

To derive an appropriate MB representation for (5.41) we proceed loop by loop,
similarly to the massless case, i.e. recognize the internal integral over l as a massive
box with two legs off-shell for which we use representation (5.17). After that the
integral over k can be recognized as the massive on-shell box represented by (5.14),
and we obtain the following sixfold MB representation [56]:
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BPL,1(s, t, m2; a1, . . . , a8, ε) =
(
iπd/2

)2
(−1)a(−s)4−a−2ε∏

j=2,4,5,6,7 Γ (a j )Γ (4 − a4567 − 2ε)

× 1

(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw

5∏
j=1

dz j

(
m2

−s

)z1+z5 (
t

s

)w

Γ (a2 + w)Γ (−w)

× Γ (z2 + z4)Γ (z3 + z4)Γ (4 − a13 − 2a28 − 2ε+ z2 + z3)Γ (a7 + w − z4)

Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)

× Γ (a1238 − 2 + ε+ z4 + z5)Γ (a4567 − 2 + ε+ w + z1 − z4)

Γ (4 − a46 − 2a57 − 2ε− 2w − 2z1 − z2 − z3)

× Γ (a8 − z2 − z3 − z4)Γ (−w − z2 − z3 − z4)Γ (2 − a238 − ε+ z3 − z5)

Γ (4 − a1238 − 2ε+ w − z4)Γ (a8 − w − z2 − z3 − z4)

× Γ (a5 + w + z2 + z3 + z4)Γ (2 − a567 − ε− w − z1 − z2)

Γ (4 − a13 − 2a28 − 2ε+ z2 + z3 − 2z5)

× Γ (2 − a457 − ε− w − z1 − z3)Γ (2 − a128 − ε+ z2 − z5)

× Γ (4 − a46 − 2a57 − 2ε− 2w − z2 − z3)Γ (−z1)Γ (−z5). (5.42)

This general formula can be used to evaluate various Feynman integrals of the
given family. Let us consider the example of the Feynman integral without numerator
and ai = 1 for i = 1, 2, . . . , 7. Then (5.42) takes the form

B(0)(s, t, m2, ε) ≡ BPL,1(s, t, m2; 1, . . . , 1, 0, ε) = −
(
iπd/2

)2

Γ (−2ε)(−s)3+2ε

× 1

(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw

5∏
j=1

dz j

(
m2

−s

)z1+z5 (
t

s

)w

× Γ (1 + w)Γ (−w)Γ (2 + ε+ w + z1 − z4)Γ (−1 − ε− w − z1 − z2)

Γ (1 − 2ε+ w − z4)Γ (1 + z2 + z4)Γ (1 + z3 + z4)

× Γ (−1 − ε− w − z1 − z3)Γ (−z1)Γ (−ε+ z2 − z5)Γ (−ε+ z3 − z5)

Γ (−2ε+ z2 + z3 − 2z5)Γ (−2 − 2ε− 2w − 2z1 − z2 − z3)

× Γ (1 + ε+ z4 + z5)Γ (−z5)Γ (−2ε+ z2 + z3)Γ (1 + w − z4)

× Γ (1 + w + z2 + z3 + z4)Γ (−2 − 2ε− 2w − z2 − z3)

× Γ (z2 + z4)Γ (z3 + z4)Γ (−z2 − z3 − z4). (5.43)

Observe that, because of the presence of the factor Γ (−2ε) in the denominator, we
are forced to take some residue in order to arrive at a non-zero result at ε = 0, so
that the integral is effectively fivefold.

Let us apply our strategy of shifting contours and taking residues, with the goal
to decompose (5.43) into pieces where the Laurent expansion ε of the integrand
becomes possible. We will evaluate this integral in expansion in ε up to a finite part.
We know in advance that the poles in ε are now only of the second order because
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collinear divergences are absent. This is how such procedure can be performed in
this case [56]:

1. Take minus residue at z3 = −2−2ε−2w−z2, then minus residue at w = −1−2ε,
then a residue at z4 = 0, then a residue at z2 = 0, expand in a Laurent series in ε
up to a finite part. Let us denote the resulting integral over z1 and z5 by B1.

2. Take minus residue at z3 = −2−2ε−2w−z2, then minus residue at w = −1−2ε,
then a residue at z4 = 0, and change the nature of the first pole of Γ (z2) (choose
a contour from the opposite side, i.e. the pole z2 will be now right), then expand
in ε. Denote this integral over z1, z2 and z5 by B2.

3. Take minus residue at z3 = −2−2ε−2w−z2, then minus residue at w = −1−2ε,
then change the nature of the first pole of Γ (z4), then take a residue at z2 = −z4,
then take a residue at z4 = −ε and expand in ε. This resulting integral over z1
and z5 is denoted by B3.

4. Take minus residue at z3 = −2−2ε−2w−z2, then minus residue at w = −1−2ε,
then change the nature of the first pole of Γ (z4), then take a residue at z2 = −z4,
then change the nature of the first pole of Γ (2(ε + z4)) and expand in ε. The
resulting integral over z1, z4 and z5 is denoted by B4.

5. Take minus residue at z3 = −2−2ε−2w−z2, then minus residue at w = −1−2ε,
then change the nature of the first pole of Γ (z4), then change the nature of the
first pole of Γ (z2 + z4) and expand in ε. The resulting integral over z1, z2, z4 and
z5 is denoted by B5.

6. Take minus residue at z3 = −2 − 2ε − 2w − z2, then change the nature of the
first pole of Γ (−2(1 + 2ε + w)), then take minus residue at z4 = 1 + w, then
minus residue at z2 = −1 − 2ε− w and expand in ε. The resulting integral over
w, z1 and z5 is denoted by B6.

7. Change the nature of the first pole of Γ (−2−2ε−2w− z2 − z3), then take minus
residue at z4 = −z2 − z3, then a residue at z3 = 2ε − z2, then take a residue
at z2 = 2ε and expand in ε. The resulting integral over w, z1 and z5 is denoted
by B7.

One can see that all the other contributions vanish at ε = 0. By a suitable change
of variables, one can observe that B7 = B6. In fact, the dependence of the first five
contributions on the Mandelstam variable t is trivial: they are just proportional to
1/t .

The two-dimensional integrals B1 and B3 are products of one-dimensional inte-
grals which can be evaluated by closing the contour to the left and summing up
resulting series with the help of formulae [26] of Appendix C.

To evaluate the three-parametric integral B4 it is reasonable to observe that the
integrand only changes its sign after the transformation {z4 → −z4, z1 → z5,

z5 → z1}. If we take into account that the change of variables z4 → −z4 implies
that the initial integration contour −1 < Rez4 < 0 becomes 0 < Rez4 < 1 we will
obtain a simple equation for B4 and conclude that the value of the integral equals 1/2
times the residue at z4 = 0. The latter quantity turns out to be a factorized integral
over z1 and z5 which is evaluated like B1 and B3.

http://dx.doi.org/10.1007/978-3-642-34886-0_12
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The three-dimensional integral B2 is evaluated by closing the integration contours
over z1 and z5 to the left, summing up resulting series and applying a similar proce-
dure to a final integral in z2. The corresponding result is naturally expressed in terms
of polylogarithms, up to Li3, depending on s and m2 in terms of the variable

v =
[√

4m2 − s + √−s√
4m2 − s − √−s

]2

.

The form of this result provides a hint about a possible functional dependence
of the result for the four-dimensional integral B5, and a heuristic procedure which
was explicitly formulated in [31] turns out to be successfully applicable here. First,
all the contributions, in particular B4, are analytic functions of s in a vicinity of
the origin. One can observe that any given term of the Taylor expansion can be
evaluated straightforwardly because the corresponding integrals over z2 and z4 are
taken recursively. It is, therefore, possible to evaluate enough first terms (say, 30)
of this Taylor expansion. Then one takes into account the type of the functional
dependence mentioned above, turns to a new Taylor series in terms of the variable
v − 1 and assumes that the nth term of this Taylor series is a linear combination,
with unknown coefficients, of the following quantities of weights 1, 2, 3, and 4,
respectively:

1

n
, (5.44)

1

n2 ,
S1(n)

n
, (5.45)

1

n3 ,
S1(n)

n2 ,
S2(n)

n
,

S1(n)2

n
, (5.46)

1

n4 ,
S1(n)

n3 ,
S2(n)

n2 ,
S1(n)2

n2 ,

S3(n)

n
,

S12(n)

n
,

S1(n)S2(n)

n
,

S1(n)3

n
. (5.47)

where Sk(n) = ∑n
j=1 j−k , etc. are nested sums (see Appendix C). Using the informa-

tion about the first terms of the Taylor series one solves a system of linear equations,
finds those unknown coefficients and checks this solution with the help of the next
Taylor coefficients.

This experimental mathematics has turned out to be quite successful for the eval-
uation of B5. Finally, the contribution B6 is a product of a one-dimensional integral
over z1, which is easily evaluated, and a two-dimensional integral overw and z5 which
involves a non-trivial dependence on t and is evaluated by closing the integration
contour in z5 to the left, summing up a resulting series in terms of Gauss hypergeo-
metric function for which one can apply the parametric representation (11.5). After

http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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that the internal integral over w is taken by the same procedure and, finally, one takes
the parametric integral.

The final result takes the following form [56]:

B(0)(s, t, m2; ε) = −
(
iπd/2e−γEε

)2
x2

s2(−t)1+2ε

×
[

b2(x)

ε2 + b1(x)

ε
+ b01(x) + b02(x, y) + O(ε)

]
, (5.48)

where x = 1/
√

1 − 4m2/s, y = 1/
√

1 − 4m2/t , and

b2(x) = 2(mx − px )
2, (5.49)

b1(x) = −8

[
Li3

(
1 − x

2

)
+ Li3

(
1 + x

2

)
+ Li3

( −2x

1 − x

)

+ Li3

(
2x

1 + x

)]
+ 4(mx − px )

[
Li2

(
1 − x

2

)
− Li2

( −2x

1 − x

)]

− (4/3)m3
x + 4m2

x px − 6mx p2
x + (2/3)p3

x + 4l2(mx px + p2
x )

− 2l2
2(mx + 3px ) − (π2/3)(4l2 − mx − 3px ) + (8/3)l3

2 + 14ζ(3),

(5.50)

b01(x) = −8(mx − px )

[
Li3 (x) − Li3 (−x) − Li3

(
1 + x

2

)

+ Li3

(
1 − x

2

)
− Li3

(
2x

1 + x

)
+ Li3

( −2x

1 − x

)]

+ 16Li2

(
1 − x

2

)
(Li2 (x) − Li2 (−x))

+ 4

[
Li2 (x)2 + Li2 (−x)2 + 4Li2

(
1 − x

2

)2
]

− 8Li2 (x) Li2 (−x)

− (8/3)[π2 − 6l2
2 + 6lx px − 6mx (lx + px − 2l2)]Li2

(
1 − x

2

)

− (4/3)[π2 − 6l2
2 + 3m2

x + 6mx (2l2 − 2lx − px ) + 12lx px − 3p2
x ]

× (Li2 (x) − Li2 (−x)) + 8(mx − px )

[
(px − mx + 2l2)Li2

(
2x

1 + x

)

+ 2(lx − mx + l2)Li2

( −2x

1 − x

)]
− 8(mx − px )(2lx − px − 5mx + 4l2)

× (−mx px + l2(mx + px ) − l2
2 + π2/6)

− (20/3)m4
x + (164/3)m3

x px − 40m2
x p2

x − (4/3)mx p3
x − (8/3)p4

x
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+ 8mxlx (m
2
x − 3mx px + 2p2

x )

− 4l2(7m3
x + 21m2

x px − 4mxlx px − 23mx p2
x + 4lx p2

x − p3
x )

− π2((17/3)m2
x − (4/3)mxlx − 2mx px + (4/3)lx px − (7/3)p2

x )

+ l2
2(84m2

x − 8mxlx − 16mx px + 8lx px − 44p2
x )

− (8/3)l2(6l2
2 − π2)(3mx − 2px ) − (4/3)π2l2

2 + 4l4
2 + π4/9. (5.51)

The last piece of the finite part comes from B6 and B7:

b02(x, y) = 2(px − mx )

{
4

[
Li3

(
1 − x

2

)
− Li3

(
1 + x

2

)

+ Li3

(
(1 − x)y

1 − xy

)
− Li3

(−(1 + x)y

1 − xy

)
+ Li3

(−(1 − x)y

1 + xy

)

− Li3

(
(1 + x)y

1 + xy

)]
+ 2

[
Li3

(
(1 + x)(1 − y)

2(1 − xy)

)
− Li3

(
(1 − x)(1 + y)

2(1 − xy)

)

− Li3

(
(1 − x)(1 − y)

2(1 + xy)

)
+ Li3

(
(1 + x)(1 + y)

2(1 + xy)

)]

+ 2(my + py − mxy − pxy)

×
[

2Li2 (x) − 2Li2 (−x) + Li2

( −2x

1 − x

)
− Li2

(
2x

1 + x

)]

+ 4(mxy − pxy)(Li2 (−y) − Li2 (y)) − 4(mx + px − 2l2)Li2

(
1 − x

2

)

− 4(mxy − pxy)Li2

(
1 − y

2

)
− 4(mx + ly − mxy)Li2

(
(1 − x)y

1 − xy

)

+ 4(px + ly − mxy)Li2

(−(1 + x)y

1 − xy

)

− 4(mx + ly − pxy)Li2

(−(1 − x)y

1 + xy

)

+ 4(px + ly − pxy)Li2

(
(1 + x)y

1 + xy

)

+ 2(mx + px + my + py − 2mxy − 2l2)Li2

(
(1 − x)(1 + y)

2(1 − xy)

)

+ 2(mx + px + my + py − 2pxy − 2l2)Li2

(
(1 − x)(1 − y)

2(1 + xy)

)

+ 2p2
x (my + py − mxy − pxy) + 2px (2(myly + my py + ly py)

+ mxy(−my − 2ly − 3py + 3mxy) + pxy(−3my − 2ly − py + 3pxy))

+ 2mx (2px + my − 2ly + py)(my + py − mxy − pxy) − p2
y(mxy + pxy)

+ 2py(2m2
xy + p2

xy) + m2
y(2py − mxy − pxy)
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+ 2my(p2
y + m2

xy + 2p2
xy − py(3mxy + pxy)) − 2(m3

xy + p3
xy)

+ 2l2((4my + 4py − 3mxy)mxy + (2my + 2py − 3pxy)pxy

− 2(px + 2mx )(my + py − mxy − pxy) − m2
y − 4my py − p2

y)

+ 2l2
2(3(my + py) − 2(2mxy + pxy))

− (π2/3)(my + py − 8mxy + 6pxy)

}
. (5.52)

The following abbreviations are used here: lz = ln z for z = x, y, 2, pz = ln(1 + z)
and mz = ln(1 − z) for z = x, y, xy.

This result is presented in such a way that it is manifestly real at small negative
values of s and t . From this Euclidean domain, it can easily be continued analytically
to any other domain.

The result (5.48)–(5.52) is in agreement with the leading power behaviour in the
(Sudakov) limit of the fixed-angle scattering, m2 
 |s|, |t | which can be alternatively
obtained [56] by use of the strategy of expansion by regions [6, 57]:

B(0)(s, t, m2; ε) = −
(
iπd/2e−γEε

)2

s2(−t)1+2ε

×
{

2
L2

ε2 −
[
(2/3)L3 + (π2/3)L + 2ζ(3)

] 1

ε

− (2/3)L4 + 2 ln(t/s)L3 − 2(ln2(t/s) + 4π2/3)L2

+
[
4Li3 (−t/s) − 4 ln(t/s)Li2 (−t/s) + (2/3) ln3(t/s)

− 2 ln(1 + t/s) ln2(t/s) + (8π2/3) ln(t/s) − 2π2 ln(1 + t/s) + 10ζ(3)
]

L

+ π4/36} + O(m2L3, ε), (5.53)

where L = ln(−m2/s). This asymptotic behaviour is reproduced when one starts
from the result (5.48)–(5.52).

Starting from (5.42), one can try to evaluate integrals with other indices. For
example, the integral BPL,1(s, t, m2; 1, . . . , 1,−1, ε) was evaluated in [40]. There is
the same problem as in the massless case [3] connected with spurious singularities in
MB integrals. It can also be cured by introducing an auxiliary analytic regularization,
e.g. with a8 = −1 + λ. The singularities in the corresponding MB integral are first
resolved with respect to λ and then with respect to ε when λ and ε tend to zero.
(This possibility to introduce an auxiliary analytic regularization is present in the
codes MB.m and MBresolve.m.) In the result [40], one meets not only usual
polylogarithms but also the harmonic polylogarithm (HPL) [50] (see Appendix B),
H−1,0,0,1 (−(1 − x)/(1 + x)) with x defined after (5.48). In fact, HPLs are partial
cases of multiple polylogarithms—see (11.43) and (11.45) in Appendix B.

The situation with the analytical evaluation of the other two types of massive
on-shell double boxes shown in Figs. 5.11b and 5.12 is not so satisfactory as with the

http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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Fig. 5.13 Triple box

planar double box of the first type. For the planar double box of the second type with
the indices equal to one and without numerator the pole part was evaluated in [40].
Some preliminary results for the similar non-planar double box can be found in [40].

The corresponding master integrals for the three types of the massive on-shell
double boxes were characterized in [20–22], where the authors tried to evaluate
them both by the method of MB representation and by differential equations. An
essential problem within the method of differential equations is that one encounters
differential equations of third order and higher. So, analytic results are available at
the moment only for a restricted subset of the set of the master integrals for massive
on-shell double boxes. However, since for applications to Bhabha scattering, one can
turn to the limit of the small electron mass, the values for the master integrals can be
substituted by first terms of the corresponding asymptotic expansion [23].

Let us turn to

Example 5.9 The massless on-shell triple box diagram of Fig. 5.13.

The general planar triple box Feynman integral without numerator takes the form

T (s, t; a1, . . . , a10, ε) =
∫ ∫ ∫

ddk ddl ddr

(k2)a1[(k + p2)2]a2 [(k + p1 + p2)2]a3

× 1

[(l + p1 + p2)2]a4 [(r − l)2]a5(l2)a6[(k − l)2]a7

× 1

[(r + p1 + p2)2]a8[(r + p1 + p2 + p4)2]a9(r2)a10
.

(5.54)

To derive a suitable MB representation for (5.54) we follow the loop by loop
procedure like in the derivation of (5.24). We recognize the internal integral over the
loop momentum r as a box with two legs off-shell given by (5.12). After inserting it
into (5.54) we obtain an MB integral of the on-shell double box with certain indices
dependent on MB integration variables. These straightforward manipulations lead
[59] to the following sevenfold MB representation of (5.54):

T (s, t; a1, . . . , a10, ε) =
(
iπd/2

)3
(−1)a(−s)6−a−3ε∏

j=2,5,7,8,9,10 Γ (a j )Γ (4 − a589(10) − 2ε)

× 1

(2πi)7

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

7∏
j=1

dz j

(
t

s

)z1 Γ (a2 + z1)Γ (−z1)Γ (z2 + z4)

Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)
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× Γ (2 − a12 − ε+ z2)Γ (2 − a23 − ε+ z3)Γ (a7 + z1 − z4)Γ (−z5)Γ (−z6)

Γ (4 − a467 − 2ε+ z5 + z6 + z7)Γ (4 − a123 − 2ε+ z1 − z4)

× Γ (z3 + z4)Γ (a123 − 2 + ε+ z4)Γ (z1 + z2 + z3 + z4 − z7)

Γ (a6 − z5)Γ (a4 − z6)

× Γ (2 − a59(10) − ε− z5 − z7)Γ (2 − a589 − ε− z6 − z7)Γ (a9 + z7)

× Γ (a467 − 2 + ε+ z1 − z4 − z5 − z6 − z7)Γ (a5 + z5 + z6 + z7)

× Γ (a589(10) − 2 + ε+ z5 + z6 + z7)Γ (2 − a67 − ε− z1 − z2 + z5 + z7)

× Γ (2 − a47 − ε− z1 − z3 + z6 + z7)Γ (−z2 − z3 − z4), (5.55)

where a = ∑10
i=1 ai , a589(10) = a5 + a8 + a9 + a10, etc.

Let us consider the triple box with all the indices ai = 1:

T (0)(s, t, ε) ≡ T (1, . . . , 1; s, t, ε)

=
(
iπd/2

)3

Γ (−2ε)(−s)4+3ε

1

(2πi)7

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

7∏
j=1

dz j

(
t

s

)z1

Γ (1 + z1)

× Γ (−z1)Γ (−ε+ z2)Γ (−ε+ z3)Γ (1 + z1 − z4)Γ (−z2 − z3 − z4)

Γ (1 + z2 + z4)Γ (1 + z3 + z4)Γ (1 − 2ε+ z1 − z4)

× Γ (z2 + z4)Γ (z3 + z4)Γ (−z5)Γ (−z6)Γ (z1 + z2 + z3 + z4 − z7)

Γ (1 − z5)Γ (1 − z6)Γ (1 − 2ε+ z5 + z6 + z7)

× Γ (2 + ε+ z5 + z6 + z7)Γ (−1 − ε− z5 − z7)Γ (−1 − ε− z6 − z7)

× Γ (1 + z7)Γ (1 + ε+ z1 − z4 − z5 − z6 − z7)Γ (−ε− z1 − z2 + z5 + z7)

× Γ (1 + ε+ z4)Γ (−ε− z1 − z3 + z6 + z7)Γ (1 + z5 + z6 + z7). (5.56)

Starting from (5.56), the resolution of singularities in ε was performed in [59]
within the old Strategy A. An intermediate result, in an expansion in ε up to the finite
part, was given by MB integrals with up to five integrations. Taking some of these
integrations with the help of the table of formulae presented in Appendix D, it was
possible to reduce all the integrals to no more than twofold MB integrals of gamma
functions and their derivatives. A similar expression can, of course, be now obtained
using the codes MB.m (or MBresolve.m) and barnesroutines.m.

In the twofold MB integrals where one more integration (over a variable different
from z1) can hardly be performed in terms of gamma functions, it was possible [59] to
perform it with z1 in a vicinity of an integer point z1 = n = 0, 1, 2, . . ., in expansion
in z = z1 − n, with a sufficient accuracy. Then one obtained power series where,
in addition to nested sums with one index, various nested sums (see Appendix C)
appeared. These series were summed up in terms of HPLs. Of course, such twofold
series can be now handled with SUMMER [68] and XSummer [47].

Eventually, the following result was obtained [59]:

http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_12
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T (0)(s, t; ε) = −
(
iπd/2e−γEε

)3

s3(−t)1+3ε

6∑
j=0

c j (x, L)

ε j
, (5.57)

where x = −t/s, L = ln(s/t), and

c6 = 16

9
, c5 = −5

3
L , c4 = −3

2
π2, (5.58)

c3 = 3(H0,0,1(x) + L H0,1(x)) + 3

2
(L2 + π2)H1(x)

− 11

12
π2L − 131

9
ζ(3), (5.59)

c2 = −3
(
17H0,0,0,1(x) + H0,0,1,1(x) + H0,1,0,1(x) + H1,0,0,1(x)

)

− L
(
37H0,0,1(x) + 3H0,1,1(x) + 3H1,0,1(x)

) − 3

2
(L2 + π2)H1,1(x)

−
(

23

2
L2 + 8π2

)
H0,1(x) −

(
3

2
L3 + π2L − 3ζ(3)

)
H1(x)

+ 49

3
ζ(3)L − 1411

1080
π4, (5.60)

c1 = 3
(
81H0,0,0,0,1(x) + 41H0,0,0,1,1(x) + 37H0,0,1,0,1(x) + H0,0,1,1,1(x)

+ 33H0,1,0,0,1(x) + H0,1,0,1,1(x) + H0,1,1,0,1(x) + 29H1,0,0,0,1(x)

+ H1,0,0,1,1(x) + H1,0,1,0,1(x) + H1,1,0,0,1(x)
) + L

(
177H0,0,0,1(x)

+ 85H0,0,1,1(x) + 73H0,1,0,1(x) + 3H0,1,1,1(x) + 61H1,0,0,1(x)

+ 3H1,0,1,1(x) + 3H1,1,0,1(x)
)

+
(

119

2
L2 + 139

12
π2

)
H0,0,1(x) +

(
47

2
L2 + 20π2

)
H0,1,1(x)

+
(

35

2
L2 + 14π2

)
H1,0,1(x) + 3

2

(
L2 + π2

)
H1,1,1(x)

+
(

23

2
L3 + 83

12
π2L − 96ζ(3)

)
H0,1(x)

+
(

3

2
L3 + π2L − 3ζ(3)

)
H1,1(x)

+
(

9

8
L4 + 25

8
π2L2 − 58ζ(3)L + 13

8
π4

)
H1(x)

− 503

1440
π4L + 73

4
π2ζ(3) − 301

15
ζ(5), (5.61)

c0 = − (
951H0,0,0,0,0,1(x) + 819H0,0,0,0,1,1(x) + 699H0,0,0,1,0,1(x)

+ 195H0,0,0,1,1,1(x) + 547H0,0,1,0,0,1(x) + 231H0,0,1,0,1,1(x)

+ 159H0,0,1,1,0,1(x) + 3H0,0,1,1,1,1(x) + 363H0,1,0,0,0,1(x)

+ 267H0,1,0,0,1,1(x) + 195H0,1,0,1,0,1(x) + 3H0,1,0,1,1,1(x)
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+ 123H0,1,1,0,0,1(x) + 3H0,1,1,0,1,1(x) + 3H0,1,1,1,0,1(x)

+ 147H1,0,0,0,0,1(x) + 303H1,0,0,0,1,1(x) + 231H1,0,0,1,0,1(x)

+ 3H1,0,0,1,1,1(x) + 159H1,0,1,0,0,1(x) + 3H1,0,1,0,1,1(x)

+ 3H1,0,1,1,0,1(x) + 87H1,1,0,0,0,1(x) + 3H1,1,0,0,1,1(x)

+ 3H1,1,0,1,0,1(x) + 3H1,1,1,0,0,1(x)
)

− L
(
729H0,0,0,0,1(x) + 537H0,0,0,1,1(x) + 445H0,0,1,0,1(x)

+ 133H0,0,1,1,1(x) + 321H0,1,0,0,1(x) + 169H0,1,0,1,1(x)

+ 97H0,1,1,0,1(x) + 3H0,1,1,1,1(x) + 165H1,0,0,0,1(x)

+ 205H1,0,0,1,1(x) + 133H1,0,1,0,1(x) + 3H1,0,1,1,1(x)

+61H1,1,0,0,1(x) + 3H1,1,0,1,1(x) + 3H1,1,1,0,1(x)
)

−
(

531

2
L2 + 89

4
π2

)
H0,0,0,1(x) −

(
311

2
L2 + 619

12
π2

)
H0,0,1,1(x)

−
(

247

2
L2 + 307

12
π2

)
H0,1,0,1(x) −

(
71

2
L2 + 32π2

)
H0,1,1,1(x)

−
(

151

2
L2 − 197

12
π2

)
H1,0,0,1(x) −

(
107

2
L2 + 50π2

)
H1,0,1,1(x)

−
(

35

2
L2 + 14π2

)
H1,1,0,1(x) − 3

2

(
L2 + π2

)
H1,1,1,1(x)

−
(

119

2
L3 + 317

12
π2L − 455ζ(3)

)
H0,0,1(x)

−
(

47

2
L3 + 179

12
π2L − 120ζ(3)

)
H0,1,1(x)

−
(

35

2
L3 + 35

12
π2L − 156ζ(3)

)
H1,0,1(x)

−
(

3

2
L3 + π2L − 3ζ(3)

)
H1,1,1(x)

−
(

69

8
L4 + 101

8
π2L2 − 291ζ(3)L + 559

90
π4

)
H0,1(x)

−
(

9

8
L4 + 25

8
π2L2 − 58ζ(3)L + 13

8
π4

)
H1,1(x) −

(
27

40
L5 + 25

8
π2L3

− 183

2
ζ(3)L2 + 131

60
π4L − 37

12
π2ζ(3) + 57ζ(5)

)
H1(x)

+
(

223

12
π2ζ(3) + 149ζ(5)

)
L + 167

9
ζ(3)2 − 624607

544320
π6. (5.62)

The above result was confirmed with the help of numerical integration using sector
decompositions [14, 15] described in Chap. 4. Another natural check of the result is
its agreement with the leading power Regge asymptotic behaviour [58] which was

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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Fig. 5.14 Three-loop tennis
court graph

evaluated by an independent method based on the strategy of expansion by regions
[6, 57] described in Chap. 9. As in the case of the double box the result (5.62) has
uniform transcendentality: every term has transcendentality weight six.

The same procedure was used [11] to evaluate a little bit more complicated four-
point three-loop diagram:

Example 5.10 The massless on-shell tennis court5 diagram of Fig. 5.14.

An appropriate MB representation was derived straightforwardly in the loop by
loop procedure. As a result, an eightfold MB representation was derived for the
general diagram W (s, t; a1, . . . , a11, ε) of Fig. 5.14 with the eleventh index cor-
responding to the numerator [(l1 + l3)2]−a11 , where l1,3 are the momenta flowing
through lines 1 and 3 in the same direction. This general MB representation satisfies
horizontal and vertical checks described in Sect. 5.3. In the particular case of the first
ten indices equal to one and the numerator [l1 + l3)2, i.e. with a11 = −1

W (s, t; 1, . . . , 1,−1, ε) = −
(
iπd/2

)3

Γ (−2ε)(−s)1+3εt2

× 1

(2πi)8

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw dz1

7∏
j=2

dz jΓ (−z j )

(
t

s

)w

Γ (1 + 3ε+ w)

× Γ (−3ε− w)Γ (1 + z1 + z2 + z3)Γ (−1 − ε− z1 − z3)Γ (1 + z1 + z4)

Γ (1 − z2)Γ (1 − z3)Γ (1 − z6)Γ (1 − 2ε+ z1 + z2 + z3)

× Γ (−1 − ε− z1 − z2 − z4)Γ (2 + ε+ z1 + z2 + z3 + z4)

Γ (−1 − 4ε− z5)Γ (1 − z4 − z7)Γ (2 + 2ε+ z4 + z5 + z6 + z7)

× Γ (−ε+ z1 + z3 − z5)Γ (2 − w + z5)Γ (−1 + w − z5 − z6)

× Γ (z5 + z7 − z1)Γ (1 + z5 + z6)Γ (−1 + w − z4 − z5 − z7)

× Γ (−ε+ z1 + z2 − z5 − z6 − z7)Γ (1 − ε− w + z4 + z5 + z6 + z7)

× Γ (1 + ε− z1 − z2 − z3 + z5 + z6 + z7). (5.63)

5 Well, this is only one half of the court for singles.

http://dx.doi.org/10.1007/978-3-642-34886-0_9
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For the resolution of the singularities and evaluation of resulting MB integrals,
the above comments for the triple box also take place. In particular, for such cal-
culation, it is highly recommended to use public codes MB.m, MBresolve.m,
barnesroutines.m,SUMMER.m andXSummer.m, rather than proceed by hand
and mouse like in [11]. The result obtained in [11] has the same structure as (5.62).
It is also uniformly transcendental.

The analytic results for triple box and the tennis court were crucial to arrive at
an Ansatz [11] (previously formulated in two loops [1]) that determines the analytic
dependence of maximally helicity violating amplitudes with n external gluons in the
N = 4 supersymmetric Yang–Mills theory for n = 4 and n = 5 and provides a kind
of a background for n ≥ 6, where the amplitude is written in an exponential form
with this Ansatz plus a remainder with respect to it.

5.7 Applying MB Representation to Expand Feynman
Integrals in Momenta and Masses

To expand a given Feynman integral in some limit, where certain masses and/or
kinematical invariants are large with respect to the rest of these parameters, one can
successfully apply expansion by regions [6, 60, 61], as explained in details in the
book [57] and briefly in Chap. 9. An alternative technique for solving the problem of
asymptotic expansion is provided by multiple MB representations. Let us see how it
works using our simple examples. One can proceed either at a general value of ε, or
after the resolution of the singularities and expansion in ε. In the case of Example 4.1,
let us proceed after the expansion in ε and use the MB representation (5.3) to expand
such Feynman integrals in the two different limits, m2/q2 → 0 and q2/m2 → 0.
Consider, for example, F(2, 1; 4) represented by (5.4).

This is an integral over the variable z, with the ratio m2/q2 present in the form
(m2/q2)z . The initial integration contour is at −1 < Rez < 0. Let us observe that
if we follow the procedure used to evaluate this integral, i.e. close the integration
contour to the right and pick up (minus) residues at z = 0, 1, 2, . . . , n, . . . we will
obtain terms of the asymptotic expansion in the limit m2/q2 → 0. Indeed, one can
prove that the remainder of this expansion determined by picking up the (n + 1)-st
residue is of order (m2)n+1. Thus we obtain

F(2, 1; 4) = iπ2

q2

[
ln

−q2

m2 − m2

q2 − m4

2(q2)2 − · · ·
]

. (5.64)

If we are interested in the opposite limit, q2/m2 → 0, the natural idea is to close
the integration contour to the left and take residues at the points z = −1,−2, . . . to
obtain

F(2, 1; 4) = − iπ2

m2

[
1 + q2

2m2 + (q2)2

3m4 + · · ·
]

. (5.65)

http://dx.doi.org/10.1007/978-3-642-34886-0_9
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Consider now Example 5.2, where IR and collinear divergences are present. Let
us proceed at a general value of ε. We can use MB representation (5.9) for expanding
Feynman integrals with various indices in the two different limits, t/s → 0 and
s/t → 0. There is again the typical dependence of the ratio of t and s on z of
the form (t/s)z . The procedure of using (5.9) to obtain an asymptotic expansion
in the limit t/s → 0 is standard: to shift the integration contour to the right. For
the integral with given indices al , the points where it is necessary to take (minus)
residues are given by the right poles of the gamma functions, in our terminology: at
z = 0, 1, 2, . . . and at z = 2 − max{a1, a3} − a2 − a4 − ε+ n with n = 0, 1, 2, . . ..
For example, for F(s, t; d) represented by (5.9) at the indices equal to one, these
are the two series of residues at z = 0, 1, 2, . . . and z = −1 − ε,−ε, 1 − ε, . . .
which reproduce the hard and collinear contributions, respectively, to the asymptotic
expansion within expansion by regions—see Example 9.4 in Chap. 9. We obtain

F(s, t; d) = iπd/2

Γ (−2ε)

{
Γ (1 + ε)Γ (−ε)2

s(−t)1+ε

[
ln

t

s
+ 2ψ(−ε) − ψ(1 + ε) + γE

]

− Γ (ε)Γ (1 − ε)2

s2(−t)ε

[
ln

t

s
+ 2ψ(1 − ε) − ψ(ε) − 1 + γE

]

+ Γ (2 + ε)Γ (−1 − ε)2

(−s)2+ε

+ Γ (ε− 1)Γ (2 − ε)2(−t)1−ε

2s3

[
ln

t

s
+ 2ψ(2 − ε) − ψ(ε− 1) − 3

2
+ γE

]

+ Γ (3 + ε)Γ (−2 − ε)2t

(−s)3+ε

}
+ · · · . (5.66)

To obtain the asymptotic expansion in the opposite limit, s/t → 0, one shifts
the integration contour to the left and takes residues at the left poles at z = 2 −
min{a2, a4} − n and at z = 2 − a − ε− n with n = 0, 1, 2, . . .. For F(s, t; d), these
are the two series of residues at z = −1,−2, . . . and z = −2−ε,−3−ε,−4−ε, . . ..
One can check that the resulting expansion is nothing but (5.66) with the interchange
s → t, t → s—this should be the case because of the symmetry of the initial integral.

In these two examples, terms of asymptotic expansions were obtained as residues
in onefold MB integrals. If a Feynman integrals is represented by a multiple MB
integral one can choose the power of the small parameter of an expansion, x , as one
the integration variables so that there is the factor xz in the integrand. If there are
gamma functions with the −z dependence and without dependence on the rest of
the integration variables one can similarly shift the z-integration contour to the right
and obtain a series given by MB integrals with one integration less. If the argument
of a gamma function in the integrand equals −z plus a linear combination other
z-variables one can follow the old Strategy A and analyze how the poles in z are
generated due to the integration over the other variables. In this procedure, z plays
the role of ε.

http://dx.doi.org/10.1007/978-3-642-34886-0_9


5.7 Applying MB Representation to Expand Feynman Integrals in Momenta and Masses 121

However, it is much better to proceed ‘after’ the expansion in ε because this
procedure can be automated. Suppose that we have to analyze the asymptotic expan-
sion of a given multiple MB integral in the limit x → 0 and x appears in the integrand
as xz with z one of the MB integration variables. After resolving singularities either
by MB.m or MBresolve.m one can perform a Laurent expansion in ε and obtain
a linear combination of MB integrals over straight contours in MB variables, in par-
ticular in z. Then one can apply a simple procedure of shifting the contour in the
variable z to the right. Whenever a pole of some gamma function depending on z is
crossed, one takes a residue (with the minus sign) and obtains an MB integral with
one integration less. As a result, one obtains an asymptotic expansion in the limit
x → 0 with terms given by MB integrals. One can then apply to these integrals
commands of the MB.m and barnesroutines.m packages.

This procedure was implemented in Mathematica [69] as the public code
MBasymptotics.m [19]. For example, one can consider the massless on-shell
double box as an example, start from (5.37), apply MB.m or MBresolve.m,
then the command MBexpand of MB.m to perform an expansion in ε, then apply
MBasymptotics.m to obtain at most onefold MB integrals. Then one can convert
these integrals into series and either apply summation formulae of Appendix C or
SUMMER and XSummer and eventually reproduce (5.40). Similarly, the result (5.53)
for the leading behaviour of the massive on-shell double box in the limit of the small
mass can be reproduced starting from (5.43).

It is not clear in advance which way is simpler: expanding by MB representation,
or, by regions. My experience tells me that, usually, expanding by regions is cer-
tainly preferable, but sometimes, it looks more convenient to derive an appropriate
MB representation and proceed as described in this section. But sometimes, this
is just a matter of taste. In complicated situations, the two strategies can success-
fully be combined. In particular, extracting the leading asymptotic behaviour from
a general MB representation can show what kind of contributions one gets and will
help detecting all regions which contribute. For example, the calculation [11] of the
tennis court diagram of Fig. 5.14 provided a hint for finding a non-trivial contribu-
tion within expansion by regions which was, in turn, used to check the result. See
also [42], where both strategies to expand Feynman integrals in the Sudakov limit
were combined.

The asymptotic behaviour in various limits was evaluated with the help of MB
representation in many papers—see, e.g., [4, 13, 37, 38] and [23]. In the second
paper, the very code MBasymptotics.m was successfully applied.

5.8 Combining MB Representation with Sector Decompositions
to Expand Feynman Integrals

One more way [48] to use MB representation to expand Feynman integrals in
momenta and masses is to combine it with modern sector decomposition described
in Chap. 4. In fact, this idea was exploited many years ago. For example, in [7, 49] the

http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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asymptotic expansion of Feynman integrals in various limits of momenta and masses
was studied using Mellin transform and Hepp or Speer sectors. One more example of
applying sector decompositions can be found in [27–29] (see also references therein)
where leading and subleading logarithms in asymptotic expansions of Feynman inte-
grals in the high-energy limit were studied. This approach was successfully applied
up to two-loop level.

Let me present, following [62], an algorithm that provides an expansion in powers
and logarithms of t/s with numerical coefficients. Let us suppose that we are studying
a limit where kinematic invariants and masses are decomposed into two groups. At
the level of the contribution of the primary sectors, we have a decomposition of the
function (3.37) in (4.1) into two parts,

W = W1 + W2, (5.67)

and that those in the term W1 are much smaller than in W2. We introduce the parameter
of expansion, λ by multiplying by it the terms of the first group. Let us then separate
the two groups of terms by introducing a onefold MB integral,

Γ (a − hd/2)

(λW1 + W2)a−hd/2 = 1

2πi

∫ +i∞

−i∞
dz λz Γ (a − hd/2 + z)Γ (−z)

W−z
1 Wa−hd/2+z

2

, (5.68)

so that we obtain

F (L) =
(
iπd/2

)h

∏
l Γ (al)

1

2πi

∫ +i∞

−i∞
dz Γ (a − hd/2 + z)Γ (−z)λz

×
∫ 1

0
. . .

∫ 1

0
Ûa−(h+1)d/2 W z

1 W−a+hd/2−z
2

L−1∏
l

(
αal−1

l αl

)
. (5.69)

The idea of using MB representation is to reduce the problem of expansion to the
analysis of poles in the variable z of the integrand. To pick up terms of expansion
in the limit λ → 0 one closes the integration contour to the right and takes residues
in z. (The residues are taken with the minus sign according to the Cauchy theorem.)
In addition to the poles of one of the two explicitly present gamma functions Γ (−z)
at z = 0, 1, 2, . . ., we have poles coming from the parametric integration. In fact,
we have to distinguish poles which are of the same character as poles of gamma
functions with −z dependence.

The algorithm to evaluate numerically first terms of the asymptotic expansion at
λ → 0 implemented within of FIESTA 2 [62] consists of the following steps.

Step 1. The resolution of singularities of the integral over α1, . . . ,αL−1 by a
sector decomposition. Instead of the two functions in the integrand of (4.1), we have
the three functions Û , W1 and W2 raised to certain powers depending not only on
ε but also (for W1,2) on the MB integration variable z. As a result of this procedure
we obtain a sum of parametric integrals where all these three functions are proper

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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factorized, i.e. represented as powers of sector variables times positive functions.
Therefore each of resulting parametric integrals is represented as an integral over
t1, . . . , tL−1 from 0 to 1 of

∏
tri −1
i times a product of positive functions raised to

some powers. Here exponents ri have the form biε + ci z + ni where bi , ci , ni are
rational numbers.

Step 2. Let us reveal singularities in ε generated by the MB integration over z. The
integral of tbi ε+ci z+ni −1

i generates a z-dependence of the type Γ (biε+ ci z + ni ).
We are concentrating on sector integrals with ci < 0 because they are relevant to our
limit.

Using Taylor subtractions of sufficient order for the rest of the integrand we decom-
pose every integral over such ti into the corresponding integral with a remainder and
an integral of the subtracted terms which is evaluated analytically. The remainder
in such subtractions contributes to the remainder of the whole expansion. When
increasing the order of expansion it tends to zero with a given power of λ. The
explicit integration of every Taylor subtracted term provides a singular behavior in z
as a rational function. We take residues in z at these points, similarly to the residues
of the explicit Γ (−z).

Step 3. Every resulting residue is a sector integral where a proper factorization
due to the sector decomposition has been achieved. It is treated numerically within
FIESTA 2.

This algorithm within FIESTA 2 can successfully be applied at least at the two-
loop level. For example, the expansion of the massless on-shell double box (5.40)
can be numerically confirmed.

5.9 Conclusion

The method of MB representation is a powerful method which has good chances
to be developed and optimized further. Let me list the public codes which can be
applied within this method:

• To derive MB representations for planar graphs one can use AMBRE [33–35]. One
can easily check MB representations derived at general indices, for example, with
Mathematica [69].

• To resolve the singularities in ε in multiple MB integrals one can apply MB.m and
MBresolve.m.

• After the resolution of the singularities in ε and expansion in ε one can apply
various commands from barnesroutines.m. One can evaluate MB integrals
numerically within MB.m.

• When the integration in multiple MB integrals is hardly performed explicitly, one
can convert them into multiple series and apply such packages as SUMMER [68]
and XSummer [47] for summation.

• One can expand MB integrals in various limits of momenta and masses using
MBasymptotics and FIESTA 2 [62].
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All the codes listed above (apart from AMBRE and FIESTA 2) can be found at [41].
The technique of multiple MB representations is not always optimal. This holds

at least for non-planar double boxes with one leg off-shell. Although first analytical
results were obtained with its help [54, 55] the adequate technique here turned out
to be the method of differential equations which will be studied in Chap. 7. On the
other hand, massive on-shell double box diagrams considered in this chapter provide
an example of a situation where it is natural to combine these two methods. Still for
the moment, the problem of the evaluation of this class of integrals is not solved.

As an open problem within the method of MB representation let me mention the
automatic derivation of MB representations for non-planar graphs. AMBRE is hardly
applicable here. Indeed, it turns out that for MB representations derived within the
loop by loop procedure for nonplanar diagrams, there can be another source of poles,6

in addition to the poles revealed by MB.m. This feature can be illustrated through
Example 5.6. In the corresponding MB representation derived within the loop by
loop strategy one meets, in particular, the following onefold MB integral

1

2πi

∫ +i∞

−i∞
Γ (1 + 2ε+ z)Γ (−z)

1 + ε+ z
e−iπzdz.

There is no gluing of poles so that a pole in ε cannot be generated by the integration
over finite regions. Still a pole is generated and this can be seen by an explicit
evaluation of this integral by closing the integration contour to the right and summing
up the resulting series. This can be seen also by analyzing the asymptotic behaviour
of the integrand at infinity. Let us set z = x + iy and use the following formula of
the asymptotic behaviour of the gamma function at large arguments in the complex
plane:

Γ (x ± iy) ∼ √
2πe±i π4 (2x−1)e±iy(ln y−1)e− π

2 y yx−1/2 (5.70)

where y → +∞.
We can conclude that the leading asymptotic behaviour when y → +∞ is 1/y1−2ε

which explains the appearance of the pole. Let me still mention that, for this concrete
diagram, there is a better way to proceed with the ‘good’ MB representation (5.21).

A safe way to derive MB representation for non-planar graphs is to start from
alpha parameters and introduce MB integrations when separating terms contributing
to the basic functions. Hopefully, there exists a natural algorithm for this procedure
with a minimal number of resulting MB integrations.
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Chapter 6
IBP and Reduction to Master Integrals

The next method1 in our list is based on integration by parts2 (IBP) [18] within
dimensional regularization, i.e. property (2.41). The idea is to write down various
equations (2.41) for integrals of derivatives with respect to loop momenta and use this
set of relations between Feynman integrals in order to solve the reduction problem,
i.e. to find out how a general Feynman integral of the given class can be expressed
linearly in terms of some basic (master) integrals. In contrast to the evaluation of the
master integrals, which is performed, at a sufficiently high level of complexity, in a
Laurent expansion in ε, the reduction problem is usually solved at general d, and the
expansion in ε does not provide simplifications here.

The reduction to master integrals can be performed in the two different ways: one
can stop the reduction when one arrives at integrals which can be expressed in terms
of gamma functions at general d or to try to reduce any given integral to true master
integrals. The latter variant is the reduction problem in the ultimate mathematical
sense, i.e. the reduction to irreducible integrals which cannot be reduced further.

For many years IBP relations were solved by hand. There is a lot of example of such
solutions in the literature. To illustrate this procedure we consider in Sect. 6.1 various
simple examples. There are several public codes for certain classes of Feynman
integrals, with the IBP reduction done by hand. Typically, this reduction is in the first
way, i.e. to Feynman integrals expressed in terms of gamma functions at general d.
In the rest of this chapter, we will turn to algorithmic ways to solve IBP relations,
in particular to the well-known Laporta’s algorithm [43, 44]. For algorithmic IBP
reductions, the second way is typical, i.e. a reduction of any given integral to true
master integrals.

1 A recent alternative review on the method of IBP can be found in [33].
2 For one loop, IBP was used in [36]. The crucial step—an appropriate modification of the integrand
before differentiation, with an application at the two-loop level (to massless propagator diagrams)—
was taken in [18] and, in a coordinate-space approach, in [71]. The case of three-loop massless
propagators was treated in [18].

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 127
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_6,
© Springer-Verlag Berlin Heidelberg 2012
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6.1 Solving IBP Relations by Hand

The first example is very simple:

Example 6.1 One-loop vacuum massive Feynman integrals

F(a) =
∫

ddk

(k2 − m2)a
. (6.1)

In this chapter, we are concentrating on the dependence of Feynman integrals on
the powers of the propagators so that we will usually omit dependence on dimension,
masses and external momenta. Let us forget that we know the explicit result (10.1)
and try to exploit information following from IBP. Let us use the IBP identity

∫
ddk

∂

∂k
·k 1

(k2 − m2)a
= 0, (6.2)

with (∂/(∂k)) · k = (∂/(∂kμ))kμ. To write down resulting quantities in terms of
integrals (6.1) we replace k2 by (k2 − m2) + m2. We obtain

(d − 2a)F(a) − 2am2 F(a + 1) = 0. (6.3)

This gives the following recurrence relation:

F(a) = d − 2a + 2

2(a − 1)m2 F(a − 1). (6.4)

We see that any Feynman integral with integer a > 1 can be expressed recursively
in terms of one integral F(1) ≡ I1 which we therefore consider as a master integral.
(Observe that all the integrals with non-positive integer indices are zero since they
are massless tadpoles.) In this example, we have explicitly:

F(a) = (−1)a (1 − d/2)a−1

(a − 1)!(m2)a−1 I1, (6.5)

where (x)a is the Pochhammer symbol. So, the only master integral is

I1 = −iπd/2Γ (1 − d/2)(m2)d/2−1. (6.6)

As in Chap. 3 let us consider

Example 6.2 Massless one-loop propagator Feynman integrals

F(a1, a2) =
∫

ddk

(k2)a1 [(q − k)2]a2
. (6.7)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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(As we have agreed, the dependence on q2 and d is omitted.) For integer powers of
the propagators, these integrals are zero whenever one of the indices is non-positive.
Let us forget the explicit result (3.6) and try to apply the IBP identity

∫
ddk

∂

∂k
·k 1

(k2)a1 [(q − k)2]a2
= 0. (6.8)

We recognize different terms resulting from the differentiation as integrals (6.7) and
obtain the following relation

d − 2a1 − a2 − a22+(1− − q2) = 0 (6.9)

which is understood as applied to the general integral F(a1, a2) with the standard
notation for increasing and lowering operators, e.g. 2+1−F(a1, a2) = F(a1 − 1,

a2 + 1). We rewrite it as

a2q22+ = a21−2+ + 2a1 + a2 − d (6.10)

and obtain the possibility to reduce the sum of the indices a1+a2. Explicitly, applying
(6.10) to the general integral and shifting the index a2, we have

F(a1, a2) = − 1

(a2 − 1)q2 [(d − 2a1 − a2 + 1)F(a1, a2 − 1)

− (a2 − 1)F(a1 − 1, a2)]. (6.11)

Indeed, a1 + a2 on the right-hand side is less by one than on the left-hand side. This
relation can be applied, however, only when a2 > 1. Suppose now that a2 = 1. Then
we use the symmetry property F(a1, a2) = F(a2, a1) and apply (6.11) interchanging
a1 and a2 and setting a2 = 1:

F(a1, 1) = −d − a1 − 1

(a1 − 1)q2 F(a1 − 1, 1). (6.12)

This relation enables us to reduce the index a1 to one and we see that the two
relations (6.11) and (6.12) provide the possibility to express any integral of the
given family in terms of the only master integral I1 = F(1, 1) given by (3.8), i.e.
F(a1, a2) = c(a1, a2)I1, and the corresponding coefficient function c(a1, a2) is
constructed as a rational function of d.

Let us now complete the analysis for the example considered in the introduction,
i.e. once again consider our favourite example:

Example 6.3 One-loop propagator Feynman integrals (1.2) corresponding to Fig. 1.1.

We stopped in Chap. 1 at the point where we were able to express any integral
(1.2) in terms of the master integral I1 = F(1, 1) and integrals with a2 ≤ 0 which
can be evaluated for general d in terms of gamma functions by means of (10.3).

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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So, for any given indices a1, a2, we obtain, as a result of the reduction,

F(a1, a2) = c1(a1, a2)I1 +
∑

i1 > 0,i2≤0

c′(i1, i2)F(i1, i2), (6.13)

where the sum is finite and c′(i1, i2) are rational functions of q2, m2 and d. Let us
now try to understand what the true master integrals are. We want to have really
irreducible integrals, i.e. that cannot be expressed linearly in terms of other integrals.

Suppose that a2 ≤ 0, Then we can apply (1.17) to reduce a1 to one. In the case
a1 = 1, we use relation (1.17) multiplied by 2− to express the term 2m2a11+2− in
(1.19). Thus, we obtain the following relation

(d − a2 − 1)2− = (q2 − m2)2a22+ + (q2 + m2)(d − 2a2 − 1) (6.14)

that can be used to increase the index a2 to zero or one starting from negative values.
We come to the conclusion that there are two irreducible integrals I1 = F(1, 1) given
by (1.7) and I2 = F(1, 0) which equals the right-hand side of (6.6), and any integral
from our family can linearly be expressed in terms of them. This reduction procedure
to I1 and I2 can easily be implemented on a computer. Observe that the integrals I1
and I2 cannot be linearly expressed through each other, with a coefficient which is
a rational function of d, because, at general d, I1 is a non-trivial function of q2 and
m2 while I2 is independent of q2. Explicitly, instead of relation (6.13), we now have

F(a1, a2) = c1(a1, a2)I1 + c2(a1, a2)I2. (6.15)

For example, we obtain

F(3, 2) = − (d − 5)(d − 3)(−4m2 + dm2 − 8q2 + dq2)

2(m2 − q2)4 I1

+ (d − 2)((96 − 39d + 4d2)m4 − 2(3d − 14)m2q2 + (d − 4)(q2)2

8m4(m2 − q2)4 I2.

Let us now come back to the point where our reduction was incomplete, in the
mathematical sense, and we had (6.13). Suppose that we made the observation that
all the integrals with nonpositive a2 are proportional to F(1, 0) with coefficients that
are rational functions of d. Then we can write down Eq. (6.15) immediately and say
that the coefficient function at I2 is obtained as

c2(a1, a2) = 1

F(1, 0)

∑
i1 > 0,i2≤0

c′(i1, i2)F(i1, i2), (6.16)

where the integrals on the right-hand side are evaluated by (10.3). This ratio can be
simplified. If we proceed withMathematica [76] we can try to apply the command
FullSimplify at least for smaller values of the indices. Alternatively, one can

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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recursively apply identities for gamma functions of the form Γ (a + rε) reducing
them to Γ (1+ rε). So, it looks like we can have the desired reduction (6.15) without
the second part of the described procedure. Let me however emphasize that this result
was obtained with the help of analytical information on the integrals involved, while
the second part of the reduction was done using only algebraical IBP equations,
without such additional analytical information.

Let us now derive, using IBP, a simple rule which can be useful in many situations.
Let us consider the triangle diagram of Fig. 6.1 with general indices, m3 = 0 and
general masses m1 and m2. The general Feynman integral for this graph is

F(a1, a2, a3) =
∫

ddk

[(k + p1)2 − m2
1]a1[(k + p2)2 − m2

2]a2(k2)a3
. (6.17)

Let us write down the IBP identity with the operator (∂/∂k)·k acting on the integrand
of (6.17). Then we obtain the following ‘triangle’ rule:

1 = 1

d − a1 − a2 − 2a3

× [a11+(3− − (p2
1 − m2

1)) + a22+(3− − (p2
2 − m2

2))]. (6.18)

This identity can be applied to a triangle as a subgraph in a bigger graph. Suppose
that the external upper right line in Fig. 6.1 has the mass m1 and the external lower
right line has the mass m2 but these are internal lines for the bigger graph. Then the
factors (p2

1 − m2
1) and (p2

2 − m2
2) effectively reduce the indices of the corresponding

lines (with the momenta p1 and p2) by one.
For example, the triangle rule alone can provide an IBP reduction, in the first

way, of the massless Feynman integrals (3.44) corresponding to Fig. 3.10. We have
already considered these diagrams in Example 3.5 in Chap. 3. Let us first observe
that if a5 = 0 the integrals over k and l decouple and can be evaluated in terms of
gamma functions by use of (3.6):

F(a1, a2, a3, a4, 0) = (−1)a1+a2+a3+a4
(

iπd/2
)2

× G(a1, a2)G(a3, a4)

(−q2)a1+a2+a3+a4+2ε−4 . (6.19)

Fig. 6.1 Triangle diagram
with general integer indices

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Moreover, if some other index al is zero, the integral becomes recursively one-loop
(see Sect. 3.2.1), i.e. it can be evaluated in terms of gamma functions by successively
applying the same one-loop formula, for example,

F(a1, a2, a3, 0, a5) = (−1)a1+a2+a3+a5
(

iπd/2
)2

× G(a3, a5)G(a2, a1 + a3 + ε− 2)

(−q2)a1+a2+a3+a5+2ε−4 . (6.20)

If all the five indices are positive we can apply the triangle rule (in the massless
case) to the left triangle in Fig. 3.10 and reduce the sum a3 + a4 + a5 by one, so that
proceeding recursively we can eventually reduce one of the indices a3, a4, a5 to zero
and obtain an integral expressed in terms of gamma functions at general d.

Therefore, any Feynman integral of this family can be evaluated at general d in
terms of gamma functions. For example, the following result for the integral with all
the indices equal to one can be obtained:

F(1, 1, 1, 1, 1) = 1

ε
[F(2, 1, 0, 1, 1) − F(2, 1, 1, 1, 0)]

= 1

ε
G(1, 1) [G(2, 1) − G(2, 1 + ε)]

(
iπd/2

)2

(−q2)1+2ε

= − (iπd/2e−γEε)2

(−q2)1+2ε

[
6ζ(3) +

(
π4

10
+ 12ζ(3)

)
ε

+
(
π4

5
+ (24 − π2)ζ(3) + 42ζ(5)

)
ε2

]
+ · · · , (6.21)

so that the well-known result [17, 52] at order ε0 is again (as in Sect. 3.5) reproduced.
Similarly, planar two-loop massless vertex diagrams of Fig. 6.2 with p2

1 = p2
2 = 0

and general integer powers of the propagators can be reduced by IBP relations in the
first way using the triangle rule so that any such integral can be evaluated at general d
in terms of gamma functions. (As it was mentioned in Chap. 3, the evaluation of such

Fig. 6.2 Planar vertex
diagram
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Feynman integrals by Feynman parameters is rather cumbersome.) After applying
the triangle rule one arrives at the possibility to apply (10.7) and (10.28).

For example, the well-known result [27, 70] for Fig. 6.2 at all the six indices equal
to one was reproduced in this way in [42]:

(iπd/2)2

(Q2)2+2ε

1

ε

[
1

2ε
G2(2, 2)G3(2 + ε, 1, 1)

− G2(2, 1)

(
1

ε
G3(2, 1, 1 + ε) + G3(1, 1, 1)

)]

= (iπd/2e−γEε)2

(Q2)2+2ε

(
1

4ε4 + 5π2

24ε2 + 29ζ(3)

6ε
+ 3π4

32
+ O(ε)

)
. (6.22)

Historically, IBP relations were first successfully applied in [18] to three-loop
massless propagators diagrams shown in Fig. 6.3. The corresponding algorithm
[28, 29] called MINCER was implemented in FORM [72]. This is a hand-made
reduction in the first way, i.e. to integrals expressed in terms of gamma functions
and expanded up to a desirable order in ε. Since this a reduction based on explicit
recursive relations it is very fast and quite competitive with respect to modern algo-
rithmic reductions considered in the next sections of this chapter. MINCER has been
successfully applied in numerous calculations.

In [13, 19, 21, 22, 30, 31], the problem of reduction for two-loop on-shell dia-
grams was solved: in [30, 31], relevant recurrence relations were derived and used
to find all necessary integrals, and, in [13], a general algorithm implemented in the
REDUCE [35] package Recursorwas constructed. The reduction in the three-loop
case was developed in [44, 45] and, completely, in [49, 50] with an implementation
in FORM [72] (although no details of the reduction procedure were presented, as in
many other cases).

The reduction of two-loop bubble integrals with different masses was solved in
[20]. Three-loop vacuum diagrams with one mass were considered in [2, 13, 61].
The corresponding computer package MATAD was developed in [61]. The reduc-
tion of two- and three-loop propagator diagrams in HQET was solved in [14] and
implemented in the code Grinder [32, 77].

Let me emphasize that, after public computer codes of solving IBP relations
automatically have been appeared, there is no need to solve IBP relations by hand
because this procedure is time consuming and success is not guaranteed, while one
can easily apply these computer codes which are universal. The success depends

Fig. 6.3 Three-loop massless planar, non-planar and Mercedez–Benz propagator diagrams
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only on the complexity of a given problem, in particular, the number of indices for
a given family of Feynman integrals and the number of kinematic invariants.

6.2 General Setup for IBP Reduction

Suppose that we have a family of scalar Feynman integrals associated with a given
graph,

F(q1, . . . , qn; a1, . . . , aN ; d) =
∫

· · ·
∫ h∏

i=1

ddki
1∏N

j=1 E
a j
j

, (6.23)

with integer indices a j , where the denominators E j are given by

Er =
h∑

i ≥ j ≥ 1

Ai j
r ki · k j +

h∑
i = 1

Bi
r · ki + Dr , (6.24)

i.e are quadratic or linear functions of the external momenta qi and the loop
momenta ki . Our goal is to exploit IBP relations (2.41) in order to develop and
algorithm for a reduction of any Feynman integral (6.23) to master integrals. Explic-
itly, let us use the IBP relations

∫
· · ·

∫ h∏
i ′=1

ddki ′
∂

∂ki

⎛
⎝p j

N∏
j ′=1

E
−a j ′
j

⎞
⎠ = 0 (6.25)

written for i = 1, . . . , h and j = 1, . . . , N with p j = k j for j = 1, . . . , h and
ph+1 = q1, . . . , ph+n = qn with N = h + n.

After differentiating, the scalar products ki · k j and ki · q j are expressed linearly
in terms of the factors Ei of the denominator, and one obtains the IBP relations in
the following form:

∑
αi F(a1 + bi,1, . . . , aN + bi,N ) = 0. (6.26)

Now one can substitute all possible (a1, . . . , aN ) on the left-hand sides of (6.26) and
obtain an infinite set of relations between integrals (6.23).

In fact, in addition to IBP relations, one uses also symmetries of the given family
of integrals. Typically they have the following form:

F(a1, . . . , aN ) = (−1)
∑

di ai F(aπ(1), . . . , aπ(N )),

where di are fixed and are equal to either one or zero, and π is a permutation. One
more type of additional relations corresponds to parity conditions. For example,

http://dx.doi.org/10.1007/978-3-642-34886-0_2
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Feynman integrals can be zero if the sum of some subset of indices is odd and each
index is nonpositive.

One also takes into account boundary conditions which have the form

F(a1, . . . , aN ) = 0 when ai1 ≤ 0, . . . aik ≤ 0 (6.27)

for some subset of indices. These conditions are connected with zero values of
integrals without scale.

Feynman integrals (6.23) can be considered as elements of the field of functions
F of N integer arguments a1, . . . , aN . This is an infinitely dimensional linear space.
The IBP relations as well as additional relations mentioned above can be considered
as elements of the adjoint vector space F∗, i.e. the linear functionals on F , so that, for
any r ∈ F∗, there is a corresponding value 〈r, f 〉 for any given f ∈ F . The simplest
basis of this space is the set of elements H∗

a1,...,aN
which are defined as follows:

〈H∗
a1,...,aN

, f 〉 = f (a1, . . . , aN ).

After having fixed the set of IBP relations and additional relations we can generate
by them an infinitely dimensional vector subspace R ⊂ F∗. Now one considers the
set of solutions of all those relations, that is the intersection of the kernels of all
functionals r ∈ R. This is a vector subspace of F , that will be denoted with S.
A Feynman integral considered as a function of the integer variables a1, . . . , an is an
element of the space S for it satisfies the IBP relations and other relations mentioned
above. Formally,

S = { f ∈ F : 〈r, f 〉 = 0 ∀ r ∈ R}.

As it was proven in [56] the dimension of S is finite, i.e. the number of master
integrals is always finite. We will give more comments on this theorem below.

When talking about expressing one Feynman integral by another, it is usually
assumed that we consider the consequences of relations R. Let us say that an inte-
gral F(a1, . . . , aN ) can be expressed via some other integrals F(a1

1, . . . , a1
N ), . . .,

F(ak
1, . . . , ak

N ) if there exists r ∈ R such that

〈r, F〉 = F(a1, . . . , aN )

+
∑

ka′
1,...,a

′
N

F(a′
1, . . . , a′

N ). (6.28)

Let us turn to the notion of irreducibility of Feynman integrals. Suppose we have
two integrals F(a1, . . . , aN ) and F(a′

1, . . . , a′
N ) that can be expressed one by another,

for example, due to a symmetry of the diagram. Of course, it is reasonable to choose
only one of them as a master integral. However there seems to be nothing natural in
this choice, for they are equivalent. So, even having fixed a set of relations, we do
not have enough information to define master integrals. The only thing we know that
their number is equal to the dimension of S.
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Therefore, to define master (or, irreducible) integrals, we need to choose a certain
priority between the points (a1, . . . , aN ), formally, to introduce a complete order-
ing on them (that will be denoted with the symbol ≺ and named as lower). There
are different ways to do that but at least it looks natural to have simpler integrals
corresponding to the minimal elements in this ordering.

We will introduce an ordering in two steps. First of all, let us realize that the
Feynman integrals are simpler, from the analytic point of view, if they have more
non-positive indices. In fact, in numerous examples of solving of IBP relations by
hand, in particular, in the examples of Sect. 6.1, the natural goal was to reduce indices
to zero or negative values. The big experience reflected in many calculations has led
to the natural idea to decompose the whole region of the integer indices into so-called
sectors.3 This decomposition is standard in algorithmic approaches of solving IBP
relations (on which the corresponding computer codes are based), in particular in the
so-called Laporta’s algorithm [43, 44] which is characterized in the next section.

The sectors are 2N regions labeled by subsets ν ⊆ {1, . . . , N }, where σν =
{(a1, . . . , aN ) : ai > 0 if i ∈ ν , ai ≤ 0 if i �∈ ν}. A sector σν is said to
be lower than a sector σμ if ν ⊂ μ. Furthermore, F(a1, . . . , aN ) � F(a′

1, . . . , a′
N )

if the sector of (a′
1, . . . , a′

N ) is lower than the sector of (a1, . . . , aN ). To define an
ordering completely one has to introduce it in some way inside the sectors (this will
be discussed below).

Equivalently, we can start from the set of elements {d1, . . . , dn} called directions,
where all di are equal to 1 or −1. For any given direction ν = {d1, . . . , dN }, we
consider the sector σν = {(a1, . . . , aN ) : (ai − 1/2)di > 0}. In other words, in a
given sector, the indices corresponding to ±1 are positive (non-positive). It is natural
to assume that the ‘corner point’ ((d1 + 1)/2, . . . , (dN + 1)/2) (those numbers are
either ones or zeros) of the sector σ{d1,...,dN } is lower than all other points of this
sector.

To define an ordering completely we introduce it in some way inside the sectors.
After this, we can define what a master integral is. It is such an integral F(a1, . . . , aN )

that there is no element r ∈ R acting on F according to relation (6.28) such that all
the points (a′

1, . . . , a′
N ) are lower than (a1, . . . , aN ).

Well, this definition is a little bit tautological. Still it is quite natural and practical
and it is present in all the automatic solutions of IBP relations.

6.3 Laporta’s Algorithm

The idea of the Laporta’s algorithm [43, 44] is to solve systems of equations for indi-
vidual Feynman integrals. Let FM be the set the subspace of F generated by Ha1,...,an

where
∑

i |ai | ≤ M and RM be the intersection of R with the subset of F∗ generated
by H∗

a1,...,an
where

∑
i |ai | ≤ M . The limit of the difference between the dimensions

of FM and RM when M tends to infinity is the dimension of S which is finite

3 So, the word ‘sector’ is used here to denote a domain of integer variables, while in Chap. 4 it is
used for domains of continuous variables (alpha or Feynman parameters).

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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according to [56], so that there is a certain M such that RM has ‘enough’ relations to
express any given integral F(a1, . . . , aN ) with

∑
i |ai | ≤ M as a linear combination

of master integrals with the use of those relations. So, the method is based on finding
such an M and solving a system of linear equations which might be huge.

Of course, at any M , this system has a solution, i.e. any integral of the given family
is linearly expressed in terms of some integrals. The point is that starting from some
minimal M the situation stabilizes, i.e. the set of the integrals on the right hand side
of solutions stays the same, so these are master integrals.

A breakthrough in the implementation of this algorithm came due to the following
two publications: the first practical successful implementation was achieved for the
reduction of massless double box diagrams with one leg off-shell [24], and detailed
prescriptions for the implementation of this method in a general situation were pre-
sented in [43].

To see how the Laporta’s algorithm works let us turn to our favourite Example 6.3
for which a manual solution was presented in Sect. 6.1. Let us define the left-hand
sides of the IBP relations (1.17) and (1.18) written at the level of individual integrals:

L1(a1, a2) = (d − 2a1 − a2)F(a1, a2) − 2m2a1 F(a1 + 1, a2)

− a2(F(a1 − 1, a2 + 1) + (m2 − q2)F(a1, a2 + 1)), (6.29)

L2(a1, a2) = −a1((q
2 + m2)F(a1 + 1, a2) − F(a1 + 1, a2 − 1))

(a2 − a1)F(a1, a2) − a2(F(a1 − 1, a2 + 1) + (m2 − q2)F(a1, a2 + 1)).

(6.30)

Let us consider the sector a1 > 0, a2 ≤ 0, use IBP relations at various (a1, a2)

with a1 + |a2| ≤ M and solve the corresponding linear systems of equations with
respect to the integrals F(a1, a2) involved. At M = 1, we solve the system

L1(1, 0) = 0, L2(1, 0) = 0

and obtain

F(2,−1) = d(m2 + q2) − 2q2

2m2 F(1, 0),

F(2, 0) = (d − 2)

2m2 F(1, 0).

At M = 2, we solve the system of the six equations

Li (1, 0) = 0, Li (2, 0) = 0, Li (1,−1) = 0

with i = 1, 2 and obtain

F(2,−2) = (2 + d)m4 + 2(2 + d)m2q2 + (d − 2)(q2)2

2m2 F(1, 0),

http://dx.doi.org/10.1007/978-3-642-34886-0_1
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F(3,−1) = (d − 2)(−4q2 + d(m2 + q2))

8m4 F(1, 0),

F(3, 0) = (d − 4)(d − 2)

8m4 F(1, 0),

F(1,−1) = (m2 + q2)F(1, 0),

F(2,−1) = −2q2 + d(m2 + q2)

2m2 F(1, 0),

F(2, 0) = d − 2

2m2 F(1, 0).

Here the situation is stable from the very beginning, i.e. we reveal just one master
integral I2 = F(1, 0) in the considered sector. In complicated problems, such a
stabilization can take place for large M . For example, in the case of the double boxes
with one leg off-shell, it was necessary [24] to solve linear systems of dozens of
thousands of equations for dozens of thousands of variables.

At the moment, there are three public codes based on Laporta’s algorithm: AIR
[1] written in MAPLE, FIRE written in MATHEMATICA4 and Reduze [62, 73, 74]
written in C++, and a lot of private codes.5

6.4 Algebraic Structure of IBP Relations

Lee has observed [46] that the IBP relations have the structure of a Lie algebra.
Indeed, they are generated by the operators

Oi j = ∂

∂ki
· p j (6.31)

in (6.25) which can be considered as generators of linear transformation of variables
in the integrals (6.23), with the commutation relations

[
Oik, Oi ′ j ′

] = δi j ′ Oi ′ j − δi ′ j Oi j ′ . (6.32)

This observation was useful in various respects. First, it turns out that the IBP
relations are not linearly independent, so that it is sufficient to consider a subset of
them when performing an IBP reduction, for example, with the Laporta’s algorithm.
This is a variant of choosing a basic set of the IBP relations [46] generated by the
following operators:

4 A C++ version of FIRE is private at the moment.
5 By T. Gehrmann and E. Remiddi, S. Laporta, M. Czakon, Y. Schröder, A. Pak, C. Sturm, P.
Marquard and D. Seidel, V. Velizhanin, . . . .
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∂

∂ki
· ki+1, i = 1, . . . , h, kh+1 ≡ k1;

∂

∂k1
· p j , j = 1, . . . , n;

h∑
i = 1

∂

∂ki
· ki . (6.33)

Second, the algebraic structure of IBP relations provides the possibility to show
[46] that so-called Lorentz-invariance (LI) identities [23] follow from the IBP
relations. The LI identities express the fact that Feynman integrals are Lorentz scalars.
For several years, they were used within Laporta algorithm, together with the IBP
relations (e.g., in [23]), and it was not clear whether they provide new information.
They have the form

qμi qνj

(∑
r

qr [ν
∂

∂qμ]
r

)
F(a1, . . . , aN ) = 0. (6.34)

To prove that the LI identities follow from the IBP relations one can observe [46]
that the operator

h + n∑
i = 1

pi[ν
∂

∂ pμ]
i

=
h∑

i = 1

ki[ν
∂

∂kμ]
i

+
n∑

i = 1

qi[ν
∂

∂qμ]
i

, (6.35)

gives zero when acting on the integrand of a Feynman integral because this is a scalar
quantity. Therefore the operator in (6.34) acting on the integrand can be represented
as follows:

qμi qνj

h∑
r = 1

qr [μ
∂

∂qν]r

F = qμi qνj

h + n∑
r = 1

pr [ν
∂

∂ pμ]
r

− qμi qνj

h∑
r = 1

kr [ν
∂

∂kμ]
r

= −qμi qνj

h∑
r = 1

kr [ν
∂

∂kμ]
r

=
h∑

r = 1

[
(qi · kr ) q j · ∂

∂kr
− (

q j · kr
)

qi · ∂

∂kr

]

=
h∑

r = 1

[
∂

∂kr
· q j (qi · kr ) − ∂

∂kr
· qi

(
q j · kr

)]
.

Since the factors (qi · kr ) and (q j · kr ) can linearly be expressed in terms of
the ‘denominators’ E j in (6.23) the last equation shows that the LI identities are
expressed in terms of the IBP relations.
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Third, the structure of a Lie algebra helped to formulate [46] a simple criterion
that shows whether integrals of a given sector are all identically zero (because they
are scaleless integrals) or not. According to this criterion it is sufficient to check
whether the corner integral of the sector is zero in virtue of the IBP relations.

Fourth, it was shown in [46] how to develop an algorithm which looks for solutions
of the IBP relations in a given sector, similarly to looking for such solution ‘by
hand’. At present, a private code based on this algorithm works successfully for
some rather complicated cases [47]. As in the situations with solutions found by
hand, the corresponding solutions are practically very fast. (Well, if they exist.)

Fifth, the use of the structure of a Lie algebra for IBP relations was the starting
point in the proof of the theorem [56] on the finite number of the master integrals.

6.5 Baikov’s Method

One more systematic method to solve IBP relations (6.23) [3, 4, 10, 11, 60] is from
the beginning oriented at an IBP reduction to a minimal number of master integrals,

F(a) =
∑

i

ci (a)Ii , (6.36)

where underlined letters denote collections of variables, i.e. a = (a1, . . . , aN ), etc.
The coefficient functions satisfy the natural normalization conditions

ci (I j ) = δi j (6.37)

which simply mean that any master integral cannot be expressed in terms of other
master integrals. In fact, the master integrals are integrals of the given family, Ii =
F(ai ), where ai = (ai1, . . . , ai N ) are some concrete sets of the indices, and, by
definition, ci (I j ) = ci (ai1, . . . , ai N ). Typically, air are equal to 1, 0, −1, 2.

Consider, first, the case of vacuum Feynman integrals which are functions of some
masses and are defined by (6.23) with

Er =
∑

h ≥ i≥ j ≥ 1

Ai j
r ki · k j − m2

r , (6.38)

with r = 1, . . . , N = h(h + 1)/2.
The IBP relations in the vacuum case originate from the following N equations:

∫
· · ·

∫
ddk1 . . . ddkh

∂

∂ki
·
(

k j

Ea1
1 . . . EaN

N

)
= 0, i ≥ j. (6.39)

After differentiating, resulting scalar products ki · k j are expressed in terms of the
denominators Er . When we invert the relations (6.38) we obtain a matrix which is
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inverse, in some sense, to the matrix Ai j
r . So, we write down the IBP relations in the

following form:

∑
r,r ′,i ′

Āi ′i
r Ã j i ′

r ′
(

r′− + m2
r ′
)

ar r+ = (d − h − 1)δi j/2, (6.40)

where the operators r+ and r− increase and lower indices. (They were used in the
examples of Sect. 6.1 for various concrete values of r .)

Moreover, Āi j
r = Ai j

r for i = j , Ai j
r /2 for i > j and A ji

r /2 for i < j . The matrix
Ã is defined as follows. Take the quadratic N × N matrix A, where the first index
is labelled by pairs (i, j) with i ≥ j , and the second index is r . The corresponding
inverse matrix (A−1)

i j
r (with i ≥ j) satisfies

N∑
r = 1

Ai j
r (A−1)

i ′ j ′
r = δi i ′δ j j ′ . (6.41)

Then Ãi j
r is the symmetrical extension of (A−1)

i j
r to all values i, j .

To construct the coefficient functions ci (a) in the vacuum case, the following
basic representation [3, 4] can be applied:

∫
. . .

∫
dx1 . . . dxN

xa1
1 . . . xaN

N

[
P(x ′)

](d−h−1)/2
, (6.42)

where the polynomial P will be defined shortly and the parameters x ′ = (x ′
1, . . . , x ′

N )

are obtained from x = (x1, . . . , xN ) by the shift x ′
i = xi + m2

i .
Integration over the parameters xi is understood in some way, with the requirement

that the IBP in this parametric integral is valid. In this case, such objects satisfy the
initial IBP relations (6.40). This property can be verified straightforwardly if we
take into account that the operator ar r+ is transformed into the differential operator
∂/∂xr and the operator r− is transformed into the multiplication by xr .

Now, the basic polynomial P of x which enters (6.42) is [3, 4]

P(x) = det
i j

(
N∑

r = 1

Ãi j
r xr

)
. (6.43)

Here are simple practical prescriptions for evaluating the basic polynomials:

1. Solve the system

∑
i ≥ j ≥ 1

Ai j
r ki · k j = Er , r = 1, . . . , N

with respect to ki · k j , i ≥ j .



142 6 IBP and Reduction to Master Integrals

2. Replace Er by xr on the right-hand side of this solution.
3. Extend this expression to all values of i and j in the symmetrical way.
4. Take the determinant of this matrix to obtain P .

In fact, the basic polynomial is defined up to a normalization factor independent
of the variables x j . This will be clear when constructing the coefficient functions
which will be themselves normalized at some point.

For general Feynman integrals, the problem can be reduced to the vacuum case
[3, 4, 10]. If there is one external momentum, q, so that we are dealing with a family
of propagator-type integrals, one involves into the game coefficients of the Taylor
expansion of F(a) in q2,

F(q2; a1, . . . , aN ) ∼
∞∑

aN+1 = 1

(q2 − m2
N+1)

aN+1−1 F(a1, . . . , aN , aN+1). (6.44)

It turns out [3, 4, 10] that the so defined objects F(a1, . . . , aN , aN+1) satisfy vacuum
IBP relations.

To formulate a prescription for corresponding basic polynomials in the non-
vacuum case, we need first to present a preliminary discussion of constructing master
integrals. To identify candidates for master integrals in a first approximation, we will
analyze integrals where the indices corresponding to irreducible numerators are set
to zero and other indices are either zero or one. Let F(ai ) with ai j = 1 or 0 be a
candidate to be considered as a master integral.

Let us remember the examples of this chapter where according to the setup
formulated in Sect. 6.2 the reduction always goes down so that a master integral
Ii = F(ai ) = F(ai1, . . . , air , . . . , ai N ) never appears in the decomposition of a
given Feynman integral in terms of master integrals

F(a) = · · · + ci (a1, . . . , ar , . . . , aN )Ii + · · ·

if ar ≤ 0 and air > 0. Therefore, we come to the natural condition for the coefficient
function ci (a) of F(ai ): if air = 1 then ci (a1, . . . , ar , . . . , aN ) = 0 for ar ≤ 0.

This condition can be realized easily [3, 4] in an automatic way by treating the
integration over x j as a Cauchy integral around the origin in the complex x j -plane,

1

2πi

∮
dx j

x
a j
j

∫
. . .

[
P(x)

](d−h−1)/2
. (6.45)

According to the Cauchy theorem, this expression reduces to the Taylor expansion
of order a j −1 of the integrand in x j so that it becomes a linear combination of terms

∫
. . .

∫ [
Pi (x)

]z−nd
∏

j :ai j ≤0

dx j

x
n j
j

, (6.46)
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where z = (d − h − 1)/2, and Pi (x) is obtained from P(x) by setting to zero all
the variables x j with j such that ai j = 1. We will use n j instead of a j for powers of
x j in auxiliary parametric integrals. Observe that the parameter nd in such integrals
plays the role of the shift of the dimension.

Suppose that we are not interested in higher terms of the Taylor expansion in
powers of (q2 − m2

N+1) in (6.44), i.e. we need just the value at q2 = m2
N+1, i.e.

the term with aN+1 = 1. Then the integration over xN+1 should be understood
in the sense of Cauchy integration so that, effectively, xN+1 is set to zero. So, if
P̂(x1, . . . , xN , xN+1) is the basic polynomial for the corresponding vacuum problem,
then the basic polynomial for the initial propagator-type problem is obtained as

P(x) ≡ P(x1, . . . , xN ) = P̂(x1, . . . , xN , 0). (6.47)

In the case of n independent external momenta q1, . . . , qn , one includes into the
procedure all the terms of the formal Taylor expansions in the scalar products qi ·q j .
One is usually interested only in the value at some qi · q j and not in the derivatives
at these points. (Otherwise, it would be necessary to deal with a generalization of
(6.44), where the initial Feynman integrals are rescaled by the Gram determinant
det(pi · p j ) which is raised to the power (h +n +1−d)/2—see [3, 4, 10].) Then the
transition to the vacuum problem, which effectively increases the number of loops,
h → h + n, can be performed as follows:

1. Introduce a complete set of invariants by considering, in addition to ki · k j ,
i ≥ j and ki · q j , also invariants generated by the external momenta, i.e. the
scalar products qi · q j , i ≥ j . Let pi = ki , i = 1, . . . , h and pi = qi , i =
h + 1, . . . , h + n so that the total number of the kinematical invariants becomes
N̂ = (h + n)(h + n + 1)/2.

2. Introduce, in some way, the corresponding new propagators.
3. Solve the system

∑
i ≥ j ≥ 1

Ai j
r pi · p j = Er , r = 1, . . . , N̂

with respect to pi · p j .
4. Evaluate the basic polynomial P̂ for such a vacuum problem.
5. Obtain P(x) ≡ P(x1, . . . , xN ) = P̂(x1, . . . , xN , 0, . . . , 0).

Let me emphasize that this strategy is applicable not only to usual Feynman
integrals with quadratic denominators but also for more general Feynman integrals
with the denominators (6.24): one treats additional vectors, like the quark velocity,
on the same footing as the true external momenta and considers Feynman integrals
as functions of various scalar products.

Now, we want to apply the basic parametric representation for two closely related
purposes:
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• identifying master integrals,
• constructing the corresponding coefficient functions.

According to the discussion above, let us consider integrals where the indices
corresponding to irreducible numerators are set to zero and other indices are either
zero or one. Let Ii = F(ai ) = F(ai1, . . . , air , . . . , ai N ). For indices equal to one,
we understand the corresponding integration over x j in the basic parametric repre-
sentation (6.42) in the Cauchy sense. This leads to a Taylor expansion of order a j −1
of the integrand in x j and gives a linear combination of (6.46).

Let us try to understand whether a given candidate can be considered as a master
integral. Suppose that Pi = 0. Then there is no other way as to consider the coefficient
function equal to zero. Therefore, this integral cannot be a master integral and has to
be recognized as a reducible integral within the reduction problem.

Let us assume a weaker condition: the parametric integral involves an integral
without scale which we set, by definition, to zero. Then, again, we cannot construct
the coefficient function in a non-trivial way so that the corresponding integral is
considered reducible.

After such analysis, we obtain a preliminary list of master integrals. Sometimes
one has to consider master integrals which differ from F(ai ) by some indices ai j < 0.
The number of such additional master integrals is connected with the degree of the
polynomial Pi with respect to some of the parameters x j .

Before discussing further the general recipes to construct coefficient functions
let us turn once again to our favourite example which is labelled in this chapter
as Example 6.3. The transition to the corresponding vacuum problem reduces to
adding a new propagator, 1/(q2 − s)a3 . We again consider these integrals at general
q2 and are not interested in derivatives so that, effectively, the corresponding index
will be a3 = 1 and the corresponding variable x3 is set to zero. The resulting basic
polynomial is

P(x1, x2) = −(x1 − x2 + m2)2 − q2(q2 − 2m2 − 2(x1 + x2)). (6.48)

There are two master integrals F(1, 1) = I1 given by (1.5) and F(1, 0) = I2 given
by the right-hand side of (6.6). We want to construct the corresponding coefficient
function with the normalization conditions (6.37), i.e.

c1(1, 1) = 1, c1(1, 0) = 0, c2(1, 1) = 0, c2(1, 0) = 1.

The coefficient function of I1 is simply obtained:

c1(a1, a2) =
(
q2 − m2

)(d−3)

(a1 − 1)!(a2 − 1)!
×

(
∂

∂x1

)a1−1 (
∂

∂x2

)a2−1

[P(x1, x2)]
(d−3)/2

∣∣∣∣
xi =0

. (6.49)

http://dx.doi.org/10.1007/978-3-642-34886-0_1
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For the coefficient function c2(a1, a2) of I2, we obtain linear combinations of
one-parametric integrals

f (n1, n2) =
∫

dx

xn1
[P2(x)](d−3)/2−n2 , (6.50)

where

P2(x) = P(x1, x)|x1=0 = αx2 + βx + γ (6.51)

with α = −1,β = 2(m2 + q2), γ = −(m2 − q2)2.
Consider first the case a2 ≤ 0. Then n1 is always non-positive here, and f (n1, n2)

can be understood as an integral between the roots

x (1,2) =
(

m ∓
√

q2

)2

of the quadratic polynomial P2(x), using the following explicit formula:

∫ x2

x1

dx xk(x − x1)
α1(x2 − x)α2

=
k∑

r = 0

xk−r
1 (x2 − x1)

α1+α2+r+1 k!
(k − r)!r !

Γ (1 + α2)Γ (1 + α1 + r)

Γ (α1 + α2 + r + 2)
. (6.52)

The evaluation at a1 = 1 and a2 = 0 provides a normalization factor to satisfy
the normalization condition c2(1, 0) = 1, and we obtain the following expression
for c2(a1, a2) at a2 ≤ 0:

c0
2(a1, a2) = c0

2(a1, a2) ≡ Γ (d − 1)

4d−2(m2q2)(d−2)/2Γ ((d − 1)/2)2

× 1

(a1 − 1)!
∫ x (2)

x (1)

dx

xa2

(
∂

∂x1

)a1−1

[P(x1, x)](d−3)/2
∣∣∣∣
x1=0

. (6.53)

In the case a2 > 0, the integrals f (n1, n2) appear also with n1 > 0. When taken
seriously they can be evaluated in terms of a Gauss hypergeometric function. Instead
of doing this, let us apply IBP to our parametric integrals f (n1, n2). This gives the
relation

f (n1, n2) = (d − 3)/2 − n2

n1 − 1
× (2α f (n1 − 2, n2 + 1) + β f (n1 − 1, n2 + 1)) (6.54)
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which can be used to reduce n1 to one or zero. Moreover, the identity

P(d−3)/2−n2
2 = P(d−3)/2−n2−1

2 P2

leads to the relation

f (1, n2) = 1

γ
( f (1, n2 − 1) − α f (−1, n2) − β f (0, n2)) (6.55)

which can be used to reduce n2 to zero.
This means that we can express any f (n1, n2) as a linear combination of an

auxiliary master integral f (1, 0) and integrals f (n1, n2) with n1 ≤ 0 which can be
evaluated in terms of gamma functions. We believe that the coefficient functions are
rational functions of everything. The only chance to satisfy this property here is to
construct c2(a1, a2) as a linear combination of c0

2(a1, a2) and the first coefficient
function c1(a1, a2):

c2(a1, a2) = c0
2(a1, a2) + Ac1(a1, a2). (6.56)

The constant A is determined by the normalization condition c2(1, 1) = 0:

A = −c0
2(1, 1). (6.57)

After this, the dependence on f (1, 0) drops out and c2(a1, a2) indeed turns out to
be a rational function.

Observe that integrating over some real domain, in particular between the roots
of a quadratic polynomial when constructing coefficient functions, with a subse-
quent normalization, is in fact equivalent to solving IBP relations for our auxiliary
parametric integrals. If there is such a possibility to understand a given parametric
integral it is reasonable to use it. If there is no such possibility, e.g. one meets a
polynomial of the third degree, or, an integration over one of the x-variables leads to
inconvenient integrals over the rest variables, then there is no other way as to treat
the auxiliary parametric integrals in a pure algebraic way by solving the correspond-
ing IBP relations. In the above example, the situation with a2 ≤ 0 could be treated
algebraically, by IBP in the initial two-parametric integral, but integrating over x2
has simplified the situation.

Let us extend what was done in the above example to the general situation. After a
preliminary analysis, with the help of (6.42), we obtain a preliminary list of candidates
for the master integrals. Let us define a relation of partial ordering of the master
integrals as follows:

F(a1) < F(a2) if a1 j ≤ a2 j for all j,

and the strict inequality holds at least for one index.
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The master integrals can be grouped into families characterized by their maximal
integrals. Let us start from the master integrals which have most non-negative indices.
Usually, the corresponding parametric integral for the coefficient function can be
understood in such a way that it results in integrations in terms of gamma functions.

Consider now a situation with two master integrals with F(a2) < F(a1), and
suppose that we already know c1. If a2i = 1 we have also a1i = 1. To construct
an algorithm for the coefficient function c2(a) we start with the case of negative
indices a j for those indices j where a1 j = 1 since in this case we have c1(a) = 0.
Experience shows that the integrations for c2(a) result in ratios of gamma functions
which in particular can be used to satisfy the normalization c2(a2) = 1.

In a next step one considers the case a j > 0. Then the corresponding parametric
representation usually leads to integrals which cannot be evaluated in terms of gamma
functions. (See the above example.) Thus, at first sight it looks hopeless to achieve
that the coefficient functions have to be rational functions of d. The way out is to look
for an expression for the coefficient function c2(a) which is a linear combination of
c1(a) and the basic parametric representation for c2(a) denoted by c0

2(a)

c2(a) = c0
2(a) + Ac1(a). (6.58)

The constant A is determined by the normalization condition c2(a1) = 0 which gives

A = −c0
2(a1). (6.59)

Then IBP relations are applied to the parametric integrals and the corresponding
relations are used to express any given parametric integral in terms of auxiliary
(parametric) master integrals and expressions which are straightforwardly evaluated
in terms of gamma functions. The dependence on the new auxiliary master integrals
has to drop out6 in order to provide a rational dependence of the coefficient functions
on d.

In fact, this strategy can be generalized to the case of several master integrals with
more complicated hierarchies.

The most complicated example of applying the strategy formulated in this section
is the evaluation of two-loop Feynman integrals for the heavy quark static poten-
tial [60]. Well, let us realize that this is a simple example, from the modern point of
view. I do not have doubts that the modern public codes based on Laporta’s algorithm
can provide easily an IBP reduction in this case because the corresponding two fami-
lies of Feynman integrals have only seven indices. In higher loop orders, this strategy
was never applied. In particular, the reduction to master integrals of Feynman inte-
grals for the heavy quark static potential in the three-loop approximation was done in
[59] with the public code FIRE [55, 75]. These are reduction problems with twelve
indices. Still I believe that this strategy can be optimized and automated in order

6 This cancellation serves as a good check of the algorithm, similarly to cancellations of spurious
poles in ε on the right-hand side of various asymptotic expansions in momenta and/or masses—see
Chap. 9.

http://dx.doi.org/10.1007/978-3-642-34886-0_9
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to solve complicated reduction problems. For example, it looks reasonable to apply
Laporta’s algorithm when solving IBP relations for auxiliary integrals appearing in
the evaluation of coefficient functions.

As to the author of the considered method, he has turned to another strategy within
his method based on an expansion in inverse power of d and applied to one-scale
integrals. The idea is to evaluate the coefficient functions in this expansion using
the method of stationary phase applied to the Ansatz (6.42). Practically, a coefficient
function at a given master integral is expanded in powers of 1/d up to sufficiently high
order and then the assumption that the coefficient functions are rational functions of
d is used. So, the coefficient function is written as a ratio of two polynomials of some
degree in d, with unknown coefficients, and it is matched in the expansion in 1/d.
The coefficients of the two polynomials are then found after solving these matching
relations.

This strategy turned out to be quite powerful. It was successfully used for the
reduction of the four-loop massless propagator integrals, where the number of the
indices equals fourteen, with multiple applications to various physical problems—see
[7–9] and references therein.

6.6 Shifting Dimension and Gröbner Bases

Both techniques implied in the title of this section were initiated by Tarasov. As it
was pointed out in Sect. 3.2.3 one can rid of numerators and negative indices at the
cost of shifting dimension [63, 64]. Then one can solve IBP reduction working with
positive indices and sifted dimension which turns out to be one more parameter.
Some prescriptions of this technique were presented in [66, 67]. Another example of
its applications [53, 54] is provided by the calculation of Feynman integrals relevant
to the two-loop quark potential (considered within Baikov’s method in [60] as it
was pointed out in the previous section). It was also used to solve the reduction
problem for two-loop propagator integrals with arbitrary masses [65], with a public
Mathematica implementation in [51], and obtain new results for the two-loop
sunset diagram with equal masses [69].

One more approach to solve reduction problems for Feynman integrals is based
on the theory of Gröbner bases [15] that have arisen naturally when characterizing
the structure of ideals of polynomial rings. The first attempt to apply this theory
to Feynman integrals was made in [66, 68], where IBP relations were reduced to
differential equations. To do this, one assumes that there is a non-zero mass for each
line. The typical combination ai i+, where i+ is a shift operator, is naturally trans-
formed into the operator ∂

∂m2
i

of differentiation in the corresponding mass squared.

Then one can apply some standard algorithms for constructing corresponding Gröb-
ner bases for differential equations. Another attempt was made in [25] where Janet
bases were used.

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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As an application of the method of [66], the solution of the reduction problem for
two-loop self-energy diagrams with five general masses was obtained in [68], with
an agreement with an earlier solution [65]. Moreover, the solution of the reduction
problem for massless two-loop off-shell vertex diagrams (which was first obtained
in [12] within Laporta’s algorithm) was reproduced in [37, 38].

One more approach based on Gröbner-type bases, called the s-bases, has been
developed in [57, 58]. Here is its very brief description.

Suppose first that we are interested in expressing any integral in the positive sector
σ{1,...,n} as a linear combination of a finite number of integrals in it. The left-hand
sides of IBP relations (2.41) can be expressed in terms of operators of multiplication
Ai and shift operators Yi = i+, Y −

i = i−, where

(A · F)(a1, . . . , an) = ai F(a1, . . . , an) and (6.60)

(Y ±
i · F)(a1, . . . , an) = F(a1, . . . , ai ± 1, . . . , an). (6.61)

Let A1,...,n be the algebra generated by shift operators Y +
i and multiplication

operators Ai . It acts on the field of functions F of n integer variables. One can
choose certain elements fi corresponding to IBP relations and write

( fi · F)(a1, . . . , an) = 0. (6.62)

The choice of elements fi is not unique, we will choose them so that they do not
depend on Y −

i . Consider the left ideal I ⊂ A1,...,n generated by the elements fi .
This ideal is named as the ideal of IBP relations. For any element X ∈ I we have

(X F)(1, 1, . . . , 1) = 0. (6.63)

Also we have

F(a1, . . . , an) = (Y a1−1
1 . . . Y an−1

n F)(1, 1, . . . , 1). (6.64)

The idea of the algorithm is to reduce the operator on the right-hand side of (6.64)
using the elements of the ideal I. Suppose we are interested in F(a1, a2, . . . , an). The
reduction problem becomes equivalent to reducing the monomial Y a1−1

1 . . . Y an−1
n

modulo the ideal of the IBP relations. After obtaining an expression like

Y a1−1
1 . . . Y an−1

n =
∑

ri fi +
∑

ci1,...,in Y i1−1
1 . . . Y in−1

n (6.65)

it is left to apply (6.65) to F at a1 = 1, . . . , an = 1 and obtain the following
expression:

F(a1, . . . , an) =
∑

ci1,...,in F(i1, . . . , in), (6.66)

http://dx.doi.org/10.1007/978-3-642-34886-0_2
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where integrals on the right-hand side are master integrals. (Here the formulae (6.62)
and (6.64) are used.)

To do the reduction we need an ordering of monomials of operators Yi or,
similarly, an ordering of points (a1, . . . , an) in the sector: (for two monomials
M1 = Y i1−1

1 . . . Y in−1
n and M2 = Y j1−1

1 . . . Y jn−1
n we have (M1 · F)(1, . . . , 1) �

(M2 · F)(1, . . . , 1) if and only if M1 � M2). Then the reduction procedure becomes
similar to the division of polynomials. But one needs to introduce a proper ordering.

A monomial is defined by its degree, i.e. a set of n non-negative integers (Nn).
Thus defining an ordering on monomials is equivalent to defining an ordering on N

n .
We require the following properties:

(i) for any a ∈ N
n not equal to (0, . . . 0) one has (0, . . . 0) ≺ a;

(ii) for any a, b, c ∈ N
n one has a ≺ b if and only if a + c ≺ b + c.

For example, the lexicographical ordering is defined the following way: a set
(i1, . . . , in) is said to be higher than a set ( j1, . . . , jn) (denoted by (i1, . . . , in) �
( j1, . . . , jn)) if there is l ≤ n such that i1 = j1, i2 = j2, …, il−1 = jl−1 and il > jl .
The degree-lexicographical ordering is (i1, . . . , in) � ( j1, . . . , jn) if

∑
ik >

∑
jk ,

or
∑

ik = ∑
jk and (i1, . . . , in) � ( j1, . . . , jn) in the sense of the lexicographical

ordering.
An ordering can be defined by a non-degenerate n × n matrix (ak,l ): for two sets

of numbers (i1, . . . , in) and ( j1, . . . , jn) one first compares
∑

l ila1,l and
∑

l jla1,l .
If the first number is greater, then the first degree is greater; if the first number is
smaller, then the first degree is smaller; and if those numbers are equal we compare∑

l ila2,l and
∑

l jla2,l and so on. For example, the following matrices correspond
to a lexicographical, a degree-lexicographical and a reverse degree-lexicographical
ordering for n = 5:

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Such an approach encounters the following problem: the reduction does not always
lead to a reasonable number of irreducible integrals, so one has to build a special
basis of the ideal first. Obviously having elements with lowest possible degrees is
equivalent to obtaining master integrals with minimal possible degrees. Therefore
one needs to build special bases. This can be done by an algorithm based on the
Buchberger algorithm with the use of S-polynomials and reductions [15].

Moreover, one has to keep in mind that we are interested in integrals not only in
the positive sector. The algorithm of [57, 58] aims to build a set of special bases of
the ideal of IBP relations (s-bases). The idea is to consider the algebra Aν generated
by operators Ai and operators Y +

i for i ∈ ν and Y −
i for i �∈ ν. Then for σν one again

considers the ideal of IBP relations in Aν . Now one has to construct sector bases
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(s-bases), rather than Gröbner bases for all sectors, where an s-basis for a sector
σν is a set of elements of I which provides the possibility of a reduction to master
integrals in σν and integrals whose indices lie in lower sectors, i.e. σν ′ for ν ′ ⊂ ν.

This leads to considering many sectors—seemingly the problem becomes harder.
But the important simplification is that one is not trying to solve the reduction problem
in each sector separately but allows to reduce the integrals in a given sector to lower
sectors—similarly to the ‘by hand’ solutions. It is also worth noting that it is most
complicated to construct s-bases for minimal sectors.

The construction of s-bases is close to the Buchberger algorithm but it can be
terminated when the ‘current’ basis already provides the needed reduction. The basic
operations are the same, i.e. calculating S-polynomials and reducing them modulo
current basis, with a chosen ordering. After constructing s-bases for all non-trivial
sectors one obtains a recursive (with respect to the sectors) procedure to evaluate
F(a1, . . . , an) at any point and thereby reduce a given integral to master integrals.

This algorithm was applied in practice to the reduction of a family of three-
loop Feynman integrals necessary for the analysis of decoupling of c-quark loops
in b-quark HQET [34]. The main difficulty in applying the algorithm in more com-
plicated situations (starting from ten indices) is that the construction of an s-basis
for a given sector is not guaranteed. It turns out that it is very difficult to find an
optimal ordering for this procedure. This problems is still open at the moment. There
is however a way to avoid this problem: to combine this approach with the Laporta’s
algorithm, i.e. to construct s-bases in sectors where this construction is easy and
non time and memory consuming and turn to Laporta’s algorithm in the rest of the
sectors. This option exists in the public code FIRE [55, 75].

6.7 Obtaining Additional Relations

If we deal with one family of Feynman integrals we can use a criterion [5, 6] based on
Baikov’s method to prove that the master integrals we have revealed are true master
integrals, in particular, their number is minimal. If we deal with several families of
Feynman integrals (for example, relevant to a given physical problem) we take the
union of the sets of the master integrals corresponding to the individual families.
(It often happens that some master integrals belong to different families.) Then we
could try to find relations in this united family. In this section, two examples of
finding such relations are presented.

The first example is given by the diagram of Fig. 6.4a. This is an integral with
the numerator k · p. It is denoted by I11 in [44] and belongs to the set of the master
integrals contributing to the three-loop g − 2 factor. It was present, in addition to
the corresponding master integral I10 without numerator. Indeed, if one runs an IBP
reduction for such integral with numerators one obtains two master integrals in the
upper sector, i.e. with positive four indices associated with the propagators. Later
it was observed in [45] that I11 is a linear combination of the integrals I14 and I18
(or, J14 and J18 in the notation of [45]). This linear connection was present in [45]
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(a) (b)

Fig. 6.4 The integral I11 (a) and the auxiliary diagram (b) used for its reduction

with the coefficient at I14 expanded in ε up to a certain power, rather than exactly at
general d. In [48] this relation was presented at general d:

I11 = 2d − 5

2(d − 2)
I14 − 1

4
I18. (6.67)

In the notation of [48], we have I14 = G4,4 and I18 = G3.
The relation (6.67) can be derived using a symmetry of Feynman integrals. In

the case of Feynman integrals connected with I11 no symmetry can help to reduce
the number of the master integrals and we have two master integrals in the highest
sector. However, if our goal is to reduce the number of master integrals for several
families of Feynman integrals considered together we can profit from a symmetry.
To reduce I11 it is enough to consider the family of Feynman integrals corresponding
to the graph Fig. 6.4b. In particular, we have F(1, 2, 1, 1, 1) − F(1, 1, 2, 1, 1) = 0.
However this relation is automatically satisfied after applying an IBP reduction. It
turns out that a missing relation can be revealed at the next level of indices: if we
reduce F(1, 2, 1, 2, 1)−F(1, 1, 2, 2, 1) = 0 to the master integrals we indeed obtain
an equation which leads to (6.67).

Let us turn to one more way to obtain extra relations between master integrals.
using the diagram of Fig. 6.5a considered at p2 = m2 as an example. In [39] it was
shown that a linear combination of the three master integral in the highest sector of

(a) (b)

Fig. 6.5 A two-loop diagram with the masses 0, M, m (a) and the auxiliary diagram (b) used for
its reduction
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the family of integrals associated with Fig. 6.5a is a function which is expressed in
terms of gamma functions at general d. It was observed that this function is given by a
two-loop vacuum diagram with two zero masses. This analysis was based on explicit
representations of Feynman integrals for Fig. 6.5a in terms of hypergeometric func-
tions and recurrence relation between hypergeometric functions. Later such relation
was derived in [41] using a trick with an introduction of an auxiliary mass and, in
[40] using recurrence relations between MB integrals representing Fig. 6.5a.

It turns out that this extra relation can be derived using IBP reduction and dif-
ferentiation with respect to M . Similarly to the previous example, let us consider
a diagram with one more propagator depicted in Fig. 6.5b. Using the numbering in
this figure let us consider F(1, 1, 1, 2, 0). First, we reduce it to master integrals.
Second, we use the fact that F(1, 1, 1, 2, 0) = − ∂

∂M2 F(1, 1, 1, 1, 0). So, we reduce

F(1, 1, 1, 1, 0) to master integrals and then take a derivative in M2. Then we take
the difference of the two results and straightforwardly arrive at the relation

(3d − 8)F(1, 1, 1, 0, 0) + 4m2 F(1, 1, 2, 0, 0)

+ 2M2 F(1, 2, 1, 0, 0) + (2 − d)F(1, 1, 0, 1, 0) = 0 (6.68)

which is noting but the additional relation of [39].

6.8 Conclusion

As a result of an IBP reduction one obtains, for any given integral of a family under
consideration, a result of the form (6.36), with coefficient functions ci which are
rational functions of everything. For example, irreducible quadratic polynomials in
d in the denominator are forbidden because they would show the presence of poles
with a non-zero imaginary part. However, the analysis of convergence of Feynman
integrals performed in Sect. 4.4 shows that the poles in ε (and d) can be present only at
real points. Therefore, if one obtains a quadratic polynomial in d in the denominator
of a coefficient at a master integral, this means that there are some relations between
the master integrals revealed before this. After finding such relations, for example,
using some symmetries (see the previous section), one has to obtain a reduction with
rational coefficients.

It is usually desirable to turn to a set of master integrals whose coefficient functions
are not singular at ε = 0—see [16] for a discussion of this idea and its practical
implementations. Another natural requirement oriented at numerical calculations is
to use, together with the IBP relations, some additional relations in order to build a
basis in the situation where all integrals are evaluated up to order O(ε). See [26],
where this idea was algorithmically implemented for planar integrals at two loops,
using additional relations with appropriately chosen Gram determinants.

The power of public and private codes of IBP reduction is permanently increasing.
The complexity of problems of IBP reduction can be measured in terms of the number

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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of indices and the number of kinematical invariants. For example, the IBP reduction
for four-loop propagator integrals, i.e. with fourteen indices, looked hardly feasible
ten years ago. Now, it is a relatively simple problem, not only for an implementation
of the Baikov’s method applied in [7–9] but also for some other private codes. At
the moment, some codes can work with eighteen indices (for example, massless
vertex integrals with two end-points on the light cone) and even with twenty indices
(massless five-loop propagators). Well, at least, up to some level of complexity of
integrals of corresponding families.
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Chapter 7
Evaluation by Differential Equations

In contrast to the method of alpha parametric representation, the method of MB rep-
resentation and many other methods of evaluating individual Feynman integrals, the
two methods presented in this and subsequent chapter are oriented at the evaluation
of master integrals. This means that we have a solution of the IBP relations [21] for a
given family of Feynman integrals, using some technique described in the previous
chapter.

The method of differential equations (DE) was suggested in [31–35] and devel-
oped in [46] and later papers (see references below). The idea of the method is to
take some derivatives of a given master integral with respect to kinematical invariants
and masses. Then the result of this differentiation is written in terms of Feynman
integrals of the given family and, according to the known reduction, in terms of the
master integrals. Therefore, one obtains a system of differential equations for the
master integrals which can be solved with appropriate boundary conditions.

We will consider typical one-loop examples in Sect. 7.1, a two-loop example in
Sect. 7.2 and a three-loop example in Sect. 7.3. The status of the method, i.e. its
perspectives and open problems will be discussed in Sect. 7.4, together with a brief
review of its applications.

7.1 One-Loop Examples

Of course, we start with our favourite example.

Example 7.1 One-loop propagator diagram corresponding to Fig. 1.1.

After solving the corresponding reduction problem in Chap. 6, we know that there
are two master integrals, F(1, 1) = I1 and F(1, 0) = I2. The second one is a simple
one-scale integral given by the right-hand side of (6.6). We have started to evaluate I1
in Chap. 1, by differentiating in m2 and arrived at the Eq. (1.23) for f (m2) = F(1, 1).
To be very pedantic, let us rewrite it in terms of our true master integrals,

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 157
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_7,
© Springer-Verlag Berlin Heidelberg 2012
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∂

∂m2 f (m2) = 1

m2 − q2

[
(1 − 2ε) f (m2)

1 − ε

m2 I2

]
, (7.1)

although this does not make an essential difference here.
Let us turn to the new function by f (m2) = iπd/2(m2)−εy(m2). We obtain the

following differential equation for it:

y′ − m2(1 − ε) − εq2

m2(m2 − q2)
y = − Γ (ε)

m2 − q2 . (7.2)

It can be solved by the method of the variation of the constant. The general solution
to the corresponding homogeneous equation, with a zero on the right-hand side of
(7.2), is

y(m2) = C(m2 − q2)1−2ε(m2)−ε. (7.3)

Then we make C = C(m2) dependent on m2, solve this equation and obtain

f (m2) = iπd/2(m2 − q2)1−2ε

[
−Γ (ε)

∫ m2

0

dx x−ε

(x − q2)2−2ε + C1

]
, (7.4)

where the constant C1 can be determined from the boundary value f (0) which is a
massless one-loop diagram evaluated by means of (10.7). This gives

f (m2) = −iπd/2(m2 − q2)1−2εΓ (ε)

×
[∫ m2

0

dx x−ε

(x − q2)2−2ε − Γ (1 − ε)2

Γ (2 − 2ε)(−q2)1−ε

]
. (7.5)

If we turn to expansion in ε and take terms up to ε0 into account we will repro-
duce (1.7).

The next example is also an old one.

Example 7.2 The triangle diagram of Fig. 3.5.

The only master integral that is not expressed in terms of gamma functions
for general d is F(1, 1, 1) = I1 = f (m2). We have already calculated it in
Example 3.2. Let us now do this by DE. As in the previous example, we take the
derivative ∂

∂m2 f (m2) and obtain F(1, 1, 2) which can be reduced to the master inte-
grals:

F(1, 1, 2) = 1

m2(m2 − Q2)

[
1

2
(d − 4)(2m2 − Q2)I1

+(d − 3)I2 + 2 − d

2m2 I3

]
. (7.6)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Let us again, as above, confine ourselves to the evaluation up to the finite part in ε.
Then the first term on the right-hand side of (7.6) is irrelevant because it is propor-
tional to ε. So, we obtain, at ε = 0,

∂

∂m2 f (m2) = iπ2 ln(m2/Q2)

m2(m2 − Q2)
. (7.7)

Thus, the evaluation of I1 at d = 4 reduces to taking an integral of the right-hand side
of (7.7). The boundary condition is simple: this function vanishes in the large mass
limit. This can be seen, for example, by examining this behaviour Consequently, the
known result (3.25) is once again reproduced.

If one needs to evaluate I1 at general ε, or obtain higher terms of expansion in
ε by DE, one can start from (7.6) and solve the so-obtained differential equation,
applying the method of the variation of the constant quite similarly to Example 7.1.

Let us now turn, following [12], to

Example 7.3 The on-shell box diagram with two massive and two massless lines
shown in Fig. 7.1, with p2

1 = . . . = p2
4 = m2.

These are functions of the three variables s, t and m2. The following combinations
arise naturally in the problem:

x =
√

4m2 − s − √−s√
4m2 − s + √−s

, y =
√

4m2 − t − √−t√
4m2 − t + √−t

. (7.8)

We again assume that we know a solution of the corresponding reduction
problem. The reduction based on the Laporta algorithm [26, 27, 37, 39, 40] leads
[12] to the family of the master integrals shown in Fig. 7.2: I1 = F(1, 1, 1, 1),
I2 = F(1, 0, 1, 1) = F(0, 1, 1, 1), I31 = F(1, 1, 0, 0), I32 = F(0, 0, 1, 1) and
I4 = F(1, 0, 0, 0) = F(0, 1, 0, 0), where I2 and I4 are present in two copies.

Suppose that we want to evaluate I1 by DE. Therefore, we assume that all
the master integrals with the number of lines less than four are already known.
The integrals I4 and I32 are given by (2.47) and (3.8). The value of the master inte-
gral I31 = F(1, 1, 0, 0) is very well-known and can be obtained by various methods.
To be self-consistent, let us observe that one can apply MB representation (5.15), set
a1 = a2 = 1, a3 = 0 and evaluate this integral by closing the integration contour

Fig. 7.1 On-shell box with two massive and two massless lines. The solid lines denote massive,
the dashed lines massless particles

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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Fig. 7.2 Master integrals for Fig. 7.1

and summing up the resulting series. Within the method of DE, it is important to
present this and later results in terms of the variables (7.8):

I31 = iπd/2e−γEε

(m2)ε

[
1

ε
+ 2 − 2

(
1

2
− 1

1 − x

)
H0(x)

]
+ O(ε). (7.9)

Here and in subsequent formulae, usual logarithms and polylogarithms are written
in terms of HPLs [48]—see Appendix B. Moreover, it is necessary to rewrite the
quantity q2 in (3.8) in terms of these variables, i.e. make the substitution q2 → t →
−(1 − y)2/(m2 y) in the factor (−q2)ε and then expand it in ε.

Finally, we need I2 which can be obtained using (5.16) at a1 = a2 = a4 = 1 and
evaluating this integral by closing the integration contour to the right. In [12], this
result was obtained by DE. It is also naturally written in terms of the variables (7.8):

I2 = iπ2

2m2

[
1

1 + y
− 1

1 − y

] [
2

3
π2 + H0,0(y) + 2H0,1(y)

]
+ O(ε). (7.10)

Observe that higher terms of this and other expansions in ε can be found in [12].
The starting point is to take derivatives in s or t and write them down as linear

combinations of integrals of the given class. In order to do this, one observes that
taking derivatives in the external momenta reduces to taking derivatives in s and t :

pi · ∂

∂ p j
=

6∑
r=1

pi · ∂sr

∂ p j

∂

∂sr
, (7.11)

where si = p2
i , i = 1, 2, 3, 4, are invariants with the on-shell condition, si = m2,

and s5 = s, s6 = t . This linear system of six equations can easily be solved, i.e.
the derivatives ∂/∂sr can be expressed linearly in terms of the derivatives pi ·∂/∂ p j

with i, j = 1, 2, 3—see [12].
One can use here the following expressions [22] which are equivalent to that of

[12] due to the on-shell conditions:

s
∂

∂s
= 1

2

[
p1 + p2 − s

4m2 − s − t
(p2 + p3)

]
· ∂

∂ p2
, (7.12)

http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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t
∂

∂t
= 1

2

[
p1 + p3 − t

4m2 − s − t
(p2 + p3)

]
· ∂

∂ p3
. (7.13)

So, we take partial derivatives of I1 = f (s, t) with respect to s and t , using (7.12)
and (7.13), and obtain, on the right-hand side, a linear combination of integrals cor-
responding to Fig. 7.1. Every integral can be written in terms of the master integrals,
according to the reduction procedure, and we obtain

∂ f

∂s
= −1

2

(
1

s
+ d − 5

4m2 − s
− d − 4

4m2 − s − t

)
f + g1, (7.14)

∂ f

∂t
= 1

2

(
d − 6

t
+ d − 4

4m2 − s − t

)
f + g2, (7.15)

where

g1 = −(d − 4)

[
1

4m2s
− 4m2 − t

4m2t (4m2 − s)
+ 1

t (4m2 − s − t)

]
I2

+ 2(d − 3)

t

[
1

(4m2 − s)2 + 1

t (4m2 − s)
− 1

t (4m2 − s − t)

]
I31

− d − 3

2m2 − t

[
1

s
+ 1

4m2 − s

]
I32

+ d − 2

m2t

[
1

(4m2 − s)2 + 1

t (4m2 − s)
− 1

t (4m2 − s − t)

]
I4, (7.16)

g2 = − d − 4

4m2 − s

[
1

t
+ 1

4m2 − s − t

]
I2

− 2(d − 3)

(4m2 − s)2

[
1

t
+ 1

4m2 − s − t

]
I31

− d − 2

m2(4m2 − s)2

[
1

t
+ 1

4m2 − s − t

]
I4. (7.17)

It is sufficient to use one of the two equations to evaluate f (s, t). Let it be (7.14).
Then (7.15) can be used for a non-trivial check. One needs also a boundary condition
when solving (7.14): it can be obtained using the fact that the function f (s, t) is
regular at s = 0. Multiplying (7.14) by s and taking the limit s → 0 one obtains

f (0, t) = −d − 4

2m2 I2 + d − 3

m2t
I32. (7.18)

Equation (7.14) can be solved in a Laurent expansion in ε,

f (s, t) =
∑
j=−1

f j (s, t)ε j . (7.19)
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As a result, one obtains a set of nested differential equations from (7.14),

d f j

ds
= −1

2

(
1

s
+ 1

4m2 − s

)
f j + h j , (7.20)

where the functions h j involve, in addition to the corresponding term of the expansion
of the function g1, a piece coming from f j−1. These equations can be solved by the
method of the variation of the constant.

The homogeneous equation corresponding to (7.20), which is the same for all f j ,
takes the following form in the new variable x given by (7.8):

(
d

dx
− 1

x
+ 1

1 + x
− 1

1 − x

)
f (0)(x) = 0, (7.21)

with the solution
f (0)(x) = x

(1 − x)(1 + x)
. (7.22)

Then the solution of the j th differential equation in (7.20) can be written as

f j (x, y) = f (0)(x)

[
A j +

∫
dx

h j (x, y)

f (0)(x)

]
, (7.23)

where A j is a constant which can be fixed by imposing the boundary condition (7.18)
expanded in ε.

Observe that the combinations of the kinematical invariants involved on the right-
hand side of (7.14) and (7.16) and, therefore, present in h j can be represented as

4m2 − s = m2 (1 + x)2

x
, 4m2 − s − t = m2 (x + y)(1 + xy)

xy
. (7.24)

After that the integration in (7.23), order by order in ε, becomes straightforward. All
the quantities are prepared in such a form that the integration is taken in terms of
HPLs of the next weight, also of the arguments x and y. So, one arrives at

I1 = iπd/2e−γEε

(m2)2+ε

[
1

1 + x
− 1

1 − x

] [
1

1 − y
− 1

(1 − y)2

]
H0(x)

×
[

1

ε
+ H0(y) + 2H1(y)

]
+ O(ε). (7.25)

Further terms of this expansion in ε can be found in [12].
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7.2 Two-Loop Example

We turn again to Feynman integrals appeared in Example 3.6.

Example 7.4 Sunset diagram of Fig. 3.13 with one zero mass and two equal non-
zero masses at a general value of the external momentum squared.

The general Feynman integral of this family is given by

F(a1, a2, a3, a4, a5)

=
∫ ∫

ddkddl (2q ·k)−a3(2q ·l)−a4

(k2 − m2)a1(l2 − m2)a2 [(q − k − l)2]a5
, (7.26)

so that there are two irreducible numerators in the problem. According to a solution
of the IBP reduction problem there are three master integrals, I1 = F(1, 1, 0, 0, 1),
Ī1 = F(1, 1,−1, 0, 1) and I2 = F(1, 1, 0, 0, 0). The last of them is the square of the
massive tadpole given by the right-hand side of (2.47). Let us now evaluate I1 and Ī1
by DE. For convenience, let us use, instead of Ī1, the integral with a1 = a2 = a5 = 1
and the numerator equal to the product of the momenta (flowing in the same direction)
of the massless and one of the massive lines,

Ĩ1 = 1

2

(
q2 I1 − Ī1 − I2

)
. (7.27)

We start with taking derivatives. We use the homogeneity of the integrals I1 and
Ĩ1 with respect to q2 and m2, with the help of Euler’s theorem, set q2 = s and obtain

s f ′(s) = (1 − 2ε) f (s) − ∂

∂m2 f (s), (7.28)

s f̃ ′(s) = 2(1 − ε) f̃ ′(s) − ∂

∂m2 f̃ (s), (7.29)

where f (s) = I1 and f̃ (s) = Ĩ1, and we have already put m2 = 1 after differentiating
with respect to the mass which results in indices equal to 2 instead of 1 on one of the
massive lines. The IBP reduction gives

F(2, 1, 0, 0, 1) = 1

m2(4m2 − q2)

[(
(d − 3)m2 − (d − 2)q2)I1

+ 3

2
(d − 2) Ī1 + 1

2
(d − 2)I2

]
, (7.30)

F(2, 1,−1, 0, 1) = 2

4m2 − q2

[
− (

2(d − 3)m2 + (d − 1)q2)I1

+ 3(d − 2) Ī1 + (d − 2)I2

]
. (7.31)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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F(2, 1, 0,−1, 1) = 1

m2(4m2 − q2)

[(
4(d − 3)m4 − (d − 2)(q2)2)I1

+ 3

2
(d − 2)q2 Ī1 − (d − 2)(2m2 − q2)I2

]
. (7.32)

As a result we arrive at the following differential equations for the functions f (s)
and f̃ (s):

s f ′(s) = 1

s − 4

[(
3s − 2 − 4ε(s − 1)

)
f (s)

+ 4(ε− 1)(h(s) + 3 f̃ (s))
]
, (7.33)

s f̃ ′(s) = 1

2
(ε− 1)

[
h(s) − s f (s) + 2 f̃ (s)

]
, (7.34)

where h originates from I2.
As in the previous example, it is convenient to turn to the new variable x given

by (7.8), or, vice versa,

s = − (1 − x)2

x
. (7.35)

Then we obtain the following equations:

f ′(x) = 1

x(x2 − 1)

[(
3 − 4x + 3x2 − 4ε(1 − x + x2)

)
f (x)

− 4(ε− 1)x(h(x) + 3 f̃ (x))
]
, (7.36)

f̃ ′(x) = 1

2x2(x − 1)
(ε− 1)(1 + x)

×
[
(x − 1)2 f (x) + x(h(x) + 2 f̃ (x))

]
. (7.37)

The second function f̃ (x) can be eliminated from this system in order to obtain
a separate equation for the first one:

f ′′(x) + (3ε(x − 1)2 + 6x − 2)

x(x2 − 1)
f ′(x)

+ (2ε− 1)(2x + ε(1 − 4x + x2))

x2(x − 1)2 f (x) + 2(ε− 1)2

x(x − 1)2 h(x) = 0. (7.38)

Then we turn to solving this equation in expansion in ε, as in the previous exam-
ples,

f (x) = f−2(x)

ε2 + f−1(x)

ε
+ f0(x) + · · · . (7.39)
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As usual, we need a general solution of the corresponding homogeneous equation at
ε = 0:

f ′′(x) + 2(3x − 1)

x(x2 − 1)
f ′(x) − 2

x(x − 1)2 f (x) = 0. (7.40)

Two independent solutions are

φ1(x) = 1 − x + x2

(x − 1)2 , (7.41)

φ2(x) = 4x(1 − x + x2)H0(x) − 1 + 7x − 3x2 − x3 + x4

x(x − 1)2 , (7.42)

with the Wronskian

w(x) = (x + 1)4

x2(x − 1)2 . (7.43)

The solutions are presented in a form similar to the previous example, in terms of
HPLs.

The equation for f−2 has the inhomogeneous term

r−2(x) = − 2

x(x − 1)2 . (7.44)

Its solution is written as

f−2(x) =
[

c1 −
∫

dx
φ2(x)r−2(x)

w(x)

]
φ1(x)

+
[

c2 +
∫

dx
φ1(x)r−2(x)

w(x)

]
φ2(x), (7.45)

where c1 and c2 are integration constants. We obtain

f−2(x) = 1

x(x − 1)2

[
x(c1(1 − x + x2) − x) − c2(1 − 7x + 3x2 + x3 − x4)

+ 4c2x(1 − x + x2)H0(x)
]
. (7.46)

The integration constants are evaluated from the regular behaviour of the solution
at x → 0 so that 1/x and

√
x in the asymptotic expansion of (7.46) are forbidden.

This gives the values c1 = 1 and c2 = 0, with

f−2(x) = 1. (7.47)
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The inhomogeneous term for f1(x) is

r−1(x) = 1 − 8x + x2

x2(x − 1)2 . (7.48)

Proceeding in a similar way we obtain the following solution:

f−1(x) = 1

2x(x − 1)2

[
1 − 6x − x2 − 2x3 + 2c1x(1 − x + x2)

−2c2(1 − 7x + 3x2 + x3 − x4) + 2(4c2 − 1)x(1 − x + x2)H0(x)
]
. (7.49)

The regularity condition at x = 0 gives c1 = 13/4 and c2 = 1/4, with

f−1(x) = 1 + 10x + x2

4x
. (7.50)

Finally, for f0, we have the inhomogeneous term

r0(x) = −3 − 9x + 2(48 + π2)x2 − 9x3 + 3x4

6x3(x − 1)2 . (7.51)

Similarly, we obtain the following solution:

f0(x) = 1

24x(x − 1)2

[
(x − 1)2(39 + 66x + 4π2x + 39x2)

+12(1 − 4x + 4x3 − x4)H0(x) − 48x(1 − x + x2)H0,0(x)
]
. (7.52)

The second function

f̃ = f̃−2(x)

ε2 + f̃−1(x)

ε
+ f̃0(x) + · · · . (7.53)

can be now obtained in a pure algebraic way, with the following results:

f̃−2(x) = − 1 + x2

4x
,

f̃−1(x) = − 1 + 11x + 11x3 + x4

24x2 ,

f̃0(x) = 1

48x2(x − 1)2

[
−(x − 1)2

(
(2π2 − 11)x(1 + x2)

+ 13(1 + x4) + 44x2
)

− 4
(

1 − 9x(1 − x2)(1 − x + x2) − x6
)

H0(x)

+ 24x(1 − 2x + 4x2 − 2x3 + x4)H0,0(x)
]
. (7.54)
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The corresponding result for the master integral Ī1 can be obtained easily from
(7.47), (7.49), (7.52) and (7.54), using (7.27). These results are in agreement with
[23, 24], where another choice of the master integrals was used (with higher powers
of the propagators, instead of integrals with numerators).

7.3 Three-Loop Example

At least in higher loops, evaluating Feynman integrals by DE can hardly be performed
without computer. There are no public codes for the method of DE and there is a
lot of private codes. In fact, there can be no universal code for this method because
every problem has its own peculiarities. Moreover, manipulations and results turn
out to be cumbersome. Therefore I would like to describe only very schematically
an example of a three-loop calculation, following [9], where all the twenty seven
master integrals for three-loop on-shell QCD Feynman integrals with two masses
were evaluated. These are propagators integrals with masses M , m and 0 and external
on-shell momentum, q2 = M2.

The method of MB representation and the method of DE often participate in a
competition. It turns out that sometimes one of these two methods works essentially
better than the other method. In this calculation, the method of DE works very well
for almost all the master integrals depending on the two non-zero masses, i.e. which
are nontrivial functions of the ratio x = m/M . However, for the master integrals of
Fig. 7.3 (integrals with the indices of lines equal to one as well as integrals with a
dot on a line with the mass M) the method of DE works successfully up to order
1/ε. When evaluating the finite part of the integrals by DE, one meets not only
singularities of the form 1/x and 1/(1± x), but also the singularities 1/(1±2x) (for
M5.2) and 1/(1 ± x/2) (for M5.3).

Thus, it was not possible to integrate the differential equations in terms of the
usual HPLs with three weight functions1 so that the finite part was evaluated by the
method of MB representation.

In particular, the master integrals with the (maximal) number of lines equal to six
shown in Fig. 7.4 were successfully evaluated by DE. Differential equations which

Fig. 7.3 Master integrals which pose difficulties within the method of DE. Solid lines denote
propagators with the mass M and dashed lines propagators with the mass m

1 Presumably, this can be done using multiple polylogarithms (11.43).

http://dx.doi.org/10.1007/978-3-642-34886-0_11
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Fig. 7.4 Master integrals with six lines. Wavy lines denote massless propagators

arise in the problem are relatively simple. They are obtained by differentiating in the
mass m which results in putting a dot on one of the corresponding lines. For example,
for M6.2, one obtains, after an IBP reduction, the following master integrals on the
right-hand side of the differential equations: M3.1, M3.2, M4.3, M4.8, M4.3a , M4.8b.
The first four of them are shown in Figs. 7.5 and 7.6. The integrals of Fig. 7.5 can
be expressed explicitly in terms of gamma functions at general ε, using (10.1). The
vacuum integral M4.3a differs from M4.3 by a dot on a line with the mass M . (In fact,
in the evaluation of [9], an integral with two dots was chosen.) The integral M4.8b

differs from M4.8 also by a dot on the line with the mass M . The integrals M4.3, M4.8,
M4.3a , M4.8b were evaluated also by DE—see [9]. To obtain the integration constants
in differential equations, boundary conditions at x = 1 were used. For example, for
M6.2, the corresponding value could be taken from [39, 40, 43, 44].

Fig. 7.5 Master integrals lower than M6.2 with three lines

Fig. 7.6 Master integrals lower than M6.2 with four lines

http://dx.doi.org/10.1007/978-3-642-34886-0_10
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One naturally obtains a result in terms of HPLs

M6.2 =
(

iπd/2
)3

M−6εΓ 3(1 + ε)

[
1

3ε3 + 7

3ε2 + 31

3ε

+ 4

3
π2x2 H0(x) + 16x2 H−3,0(x) − 8x2 H−2,0(x) + 4x2 H−1,0(x)

− 8

3
π2x2 H0,0(x) − 8x2 H0,0(x) − 4x2 H1,0(x) + 8x2 H2,0(x)

− 16x2 H3,0(x) − 16x2 H−2,0,0(x) + 8x2 H−1,0,0(x) − 8x2 H1,0,0(x)

+ 16x2 H2,0,0(x) − 4H−1,0(x) + 4H1,0(x) − 8H−1,0,0(x) + 8H1,0,0(x)

− 4π4x2

15
− 2π2x2

3
+ 8ζ(3)

3
+ 2π2

3
+ 103

3
+ O(ε)

]
.

Here one more term in ε as compared with [9] is presented. The ε1 term as well as
results for all the other master integrals can be found on the web page cited in [9].

7.4 Conclusion

At first sight, the method of DE cannot be applied to integrals dependent on one
scale since the dependence on the only scale parameter is trivial and can be obtained
immediately by power counting. However, one can introduce, for a one-scale integral,
an additional scale parameter, apply the corresponding differential equation, get the
boundary condition at a different, more suitable point and then return to the single
scale value. An example of this strategy can be found in [8].

I admit that it might seem, from the previous examples,2 that the method of DE
is not optimal. In particular, the results for Example 7.4 can be, probably, derived by
MB representation in a simpler way. However, the method of DE is very powerful
indeed and, in some situations, the very best one. An important feature of the strategy
outlined above is that it can straightforwardly be generalized to more complicated
classes of multiloop Feynman integrals, with a computer implementation of all the
steps. The method of DE, coupled with solving the IBP reduction problem by means
of algorithms described in the previous chapter, in particular by Laporta’s algorithm
[26, 27, 37, 39, 40], has become a powerful industry for obtaining results for various
phenomenologically important classes of Feynman integrals—see, e.g. [2–5, 7, 10–
19, 25, 38, 41, 42, 47, 49, 50].

I think, the first impressive example of this technique was evaluating master
integrals by DE for the massless double boxes with one leg off-shell, p2

1 �= 0, p2
2 =

p2
3 = p2

4 = 0, performed in [26, 27]. To express results obtained by DE for this
family of integrals, the authors introduced two-dimensional HPLs (2dHPLs) [26, 27]
which are natural generalizations of HPLs to the case of functions of two variables.

2 Simple instructive examples can be found also in the reviews [1, 6, 36].
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To define them [26, 27] one uses, instead of the functions (11.10), the following set
of functions of the two variables x and y labelled by the four indices 0, −1, −y and
−1/y:

g(0; x) = 1

x
, g(−1; x) = 1

1 + x
, g(−y; x) = 1

x + y
, (7.55)

g(−1/y; x) = 1

x + 1/y
. (7.56)

Then 2dHPLs are defined as the set of functions generated by repeated integrations
with these functions similarly to (11.9).

The 2dHPLs, as well as the HPLs themselves, turned out to be partial cases
of multiple polylogarithms which is clear from the definition (11.43) presented
in Appendix B. Still the introduction of 2dHPLs as new functions of mathemati-
cal physics, without referring to multiple polylogarithms, was quite useful. Indeed,
in [28–30], one discovered, independently of mathematicians, basic properties of
2dHPLs and, moreover, developed packages for their numerical evaluation [28–30].

Here are two more examples where new functions were introduced: generalized
HPLs in [4, 5] which were necessary to evaluate some two-loop massive Feynman
diagrams and some generalized 2dHPLs [11] which were necessary to evaluate two-
loop massless diagrams with three off-shell legs. These functions were not studied
from the mathematical point of view, so that their introduction was used just to
parameterize the results obtained. It turns out, however, that they are again partial
cases of the well studied multiple polylogarithms. Indeed, in the first of these two
cases, generalized HPLs were constructed recursively similar to HPLs with some
new building functions, in addition to (11.10), in particular

g(±4, x) = 1

4 ∓ x
and g(±r, x) = 1√

x(4 ∓ x)
.

So, such generalized HPLs have indices not only 0,±1 as the usual HPLs do, but
also ±4,±r etc.

In particular, one has [45] the following expression in terms of multiple polylog-
arithms

H0,0,−4,−r (x) = 1

72
sgn(y − 1)

[
−108ζ(3)G(0; y) + 216ζ(3)G(1; y)

+ 12π2G(0, 0; y) − 24π2G(0, 1; y) − 24π2G(1, 0; y) + 48π2G(1, 1; y)

+ 144G(0, 0,−1, 0; y) − 72G(0, 0, 0, 0; y) − 288G(0, 1,−1, 0; y)

+ 144G(0, 1, 0, 0; y) − 288G(1, 0,−1, 0; y) + 144G(1, 0, 0, 0; y)

+ 576G(1, 1,−1, 0; y) − 288G(1, 1, 0, 0; y) + 72π2 ln 2 G(0; y)

− 144π2 ln 2 G(1; y) + 576Li4

(
1

2

)
+ π4 + 24 ln4 2 + 48π2 ln2 2

)

http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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with x = (1 − y)2/y. In the second of these two examples, generalized 2dHPLs
[11] were introduced using building functions 1/λ, 1/(xλ), with λ ≡ λ(x, y) =√

(1 − x − y)2 − 4xy, and some other functions. However, all these generalized
2dHPLs can be expressed again in terms of multiple polylogarithms—see [20].
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Chapter 8
Evaluating Master Integrals by Dimensional
Recurrence and Analyticity

In this chapter, the method called ‘dimensional recurrence and analyticity’ (DRA)
is described following recent papers by Lee [24–26] and his papers with coauthors
[27–32, 34]. It is based on so-called dimensional recurrence relations (DRR) which
express a given master integral considered in dimension d − 2 or d + 2 as a linear
combination of Feynman integrals in dimension d with shifted indices. In the next
section, two kinds of such relations are described. As in the case of the method of
differential equations it is assumed that one can perform an IBP reduction [12] for a
given family of Feynman integrals. Using a solution of IBP relations with the help of
the algorithms described in Chap. 6, the linear combinations on the right-hand sides
of the DRR can be represented as linear combinations of master integrals so that we
obtain a difference equation (or, a system of difference equations) with respect to
the variable d. Then this equation is solved by finding its solution in the form of a
series and fixing then the arbitrariness encoded in the solution of the corresponding
homogeneous equation with the help of information about properties of the given
Feynman integral as an analytic function of d.

The general procedure in the case of one master integral in a given sector is
formulated in Sect. 8.2, following [24]. Section 8.3 contains various multiloop exam-
ples. (More examples can be found in [24–31, 34].) In Sect. 8.4, we consider,
following [32], the case of several master integrals in a given sector, where matrix dif-
ference equations have to be solved. Finally, in Sect. 8.5, we speculate about possible
irrational constants present in ε-expansions of one-scale Feynman integrals.

8.1 Dimensional Recurrence Relations

One can use two types of DRR [24, 44, 45] for master integrals. Let us suppose that
a given master integral F(d) has the form

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 173
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_8,
© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-34886-0_6
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F(a1, . . . , aN ; d) = 1

πhd/2

∫
· · ·

∫
ddk1 . . . ddkh

Ea1
1 . . . EaN

N

, (8.1)

where the dependence on masses and external momenta is suppressed and indices ai

are positive. Typically, one has ai = 1, 2, 3. The overall factor is introduced in order
to get rid of powers of π as coefficients in DRR. Let also suppose that the integral
corresponds to a graph and that propagators are usual quadratic propagators. We will
usually indicate only d as the argument of F and suppress a dependence on masses
and kinematic invariants because d is the main variable in this approach.

To express the integral F(d − 2), i.e. in dimension shifted by 2, let us start from
the alpha representation (3.36). The shift d → d −2 in the overall coefficient results
in the factor e−ih/2/π. As it was pointed out in Sect. 3.2.3 this shift in the integrand
results in the additional factor U [44, 45]. Every monomial present in U is a product of
some parametersαl which can be taken into account by the corresponding product of
factors (−ial)l+ involving shifting operators. Since the number of alpha parameters
in every monomial equals h we obtain one more factor e−ih/2/π. Using the explicit
representation (2.25) of the function U and taking into account the normalization in
(8.1) we arrive at the following formula

F(d − 2) = (−1)h
∑

T

∏
l �∈T

al l+F(d) (8.2)

which can be qualified as the raising relation because the integrals on the right
hand side are in dimension greater by two. Observe that, for Feynman integrals in
Euclidean space, the factor (−1)h is absent.

A more general way to derive raising relations valid also for negative indices can
be found in [25].

The lowering DRR can be obtained using manipulations which were used within
Baikov’s approach [1, 2] (see Sect. 6.5) where integrals over loop momenta are
transformed into integrals over scalar products. We consider now the general master
integral (2.40) where some indices can be negative. (Typically, one has ai = −1,−2.)
We suppose that the ‘denominators’ Ei form a complete basis in the linear space
of scalar products ki · k j and ki · p j where ki and p1, . . . , pn are the loop and
external momenta, correspondingly. An h-loop Feynman integral with an integrand
I is transformed as follows:

1

πhd/2

∫
. . .

∫
dk1 . . . dkh I = (−1)hπ−hn/2−h(h−1)/4

Γ ((d − n − h + 1) /2) . . . Γ ((d − n) /2)

×
∫ ⎛

⎝ h∏
i=1

h+n∏
j=i

dsi j

⎞
⎠ [V (k2, . . . kh, p1, . . . , pn)](d−n−h−1)/2

[V (p1, . . . , pn)](d−n−1)/2
I, (8.3)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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where

V (q1, . . . , qM ) =

∣∣∣∣∣∣∣

q2
1 . . . q1 · qM
...

. . .
...

q1 · qM . . . q2
M

∣∣∣∣∣∣∣
(8.4)

is the Gram determinant constructed with the vectors q1, . . . , qM and I is a function
of N = k(k + 1)/2 + kn scalar products si j , and, in Euclidean space, the factor
(−1)h is absent.

We choose I = 1/(Ea1
1 . . . EaN

N ), i.e the integrand in (2.40). Since the functions Ei

form a basis, the function V (l2, . . . lL , p1, . . . , pn) has the form of some polynomial
of degree h + n of E1, . . . , EN :

V (k2, . . . kL , p1, . . . , pn) = P (E1, E2, . . . , EN ) . (8.5)

Replacing d → d + 2 in (8.3), we obtain the lowering DRR

F (d + 2) (a1, . . . , aN ) = (2μ)h [V (p1, . . . , pn)]−1

(d − n − h + 1)h

× (
P

(
1−, . . . , N−)

F (d)
)
(a1, . . . , aN ) , (8.6)

where i− is used again for the lowering operators.
The raising relation (8.2) looks preferable since the right-hand side of it contains

integrals with indices shifted by at most the number of loops h, while the right-hand
side of the lowering relation contains integrals with indices shifted by h + n. This
difference can be important in complicated calculations because an IBP reduction of
integrals appearing on the right-hand side can be too complicated in the case of the
lowering relation. However, the lowering relation can be directly used also for master
integrals with negative indices. On the other hand, the two kinds of the relations are
equivalent so that one might use both of them for checks.

8.2 General Prescriptions

Suppose, we have to evaluate a master integral F(d) which is the only master integral
in a given sector. The procedure is recursive so that let us also suppose that master
integrals in lower sectors (in the sense of the definition in Sect. 6.2) are already
known. To evaluate F(d) let us use the corresponding raising or lowering relation.
To be specific, let us chose the raising relation. The next step is to perform an IBP
reduction of integrals present on the right-hand side. As a result, we express F(d −2)

as a linear combination of master integrals considered in d dimensions, in particular,
F(d) itself. The case where no other master integrals are present is trivial and the
given master integral can be evaluated in terms of gamma functions at general d. So,
we obtain a difference equation of the following form

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_6
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F (d − 2) = C (d) F (d) + R (d) , (8.7)

where R (d) is the inhomogeneous part which is a linear combination of lower master
integrals, i.e. in lower sectors. Coefficients at master integrals are rational functions
of everything, i.e. of d, masses and kinematic invariants. Experience tells us that the
coefficient at F(d) itself can be represented as

C (d) = c

∏n
i=1 (bi − d/2)∏m
j=1

(
b′

j − d/2
) . (8.8)

where bi and b′
i are numbers and a possible dependence on masses and kinematic

invariants is hidden in the overall coefficient c.
As in the case of differential equations, it is reasonable, first, to solve, the cor-

responding homogeneous equation F (d − 2) = C (d) F (d). Its specific solution
is represented as 1/Σ (d) where, similarly to an integrating factor in the theory of
differential equations, the function Σ (d) is called a summing factor. To construct
solutions of the homogeneous equation one replaces linear factors in (8.8) by some
gamma functions. One can check easily that a possible solution is

Σ−1 (d) = c−d/2
∏n

i=1 Γ (bi − d/2)∏m
j=1 Γ

(
b′

j − d/2
) . (8.9)

One more solution is

Σ−1 (d) = [
(−1)n+m c

]−d/2

∏m
j=1 Γ

(
d/2 + 1 − b′

j

)
∏n

i=1 Γ (d/2 + 1 − bi )
. (8.10)

Starting from one summing factor we can obtain another one but multiplying the
first one by any periodic function of d so that a general solution of the homogeneous
equation has the form

F0 (d) = ω (d) /Σ (d) , (8.11)

where ω (d) = ω (d + 2) is an arbitrary periodic function of d and Σ−1 (d) is a fixed
non-zero solution.

Let us now consider the inhomogeneous Equation (8.7) and turn to a new unknown
function by the substitution

F (d) = Σ−1 (d) g (d) . (8.12)

After multiplying both parts by Σ (d − 2), we obtain a much simpler equation for
g(d):
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g (d − 2) = g (d) + r (d) , (8.13)

where r (d) = R (d) Σ (d − 2).
We have

g(d) = g(d − 2) − r(d) = g(d − 4) − r(d) − r(d − 2) = · · ·

= g(−∞) −
∞∑

k=0

r(d − 2k) (8.14)

= g(d + 2) + r(d + 2) = g(d + 4) + h(d + 2) + r(d + 4) = · · ·

= g(+∞) +
∞∑

k=1

r(d + 2k). (8.15)

We can ignore formal quantities g(±∞) because each of the series involved provides
a solution of (8.13) if the series is convergent.

Remember that the function r(d) is a sum over master integrals lower than the
given master integral. Experience shows that if there is just one lower master integral
then only one series, in (8.14) or (8.15), is convergent. In cases with two and more
lower master integrals, it can happen that the contribution of one master integral
gives a series convergent at d → ∞ while a second master integral gives a series
convergent at d → −∞—see an example below. However, this property does not
always hold.

In the general situation, the idea suggested in [24] is to decompose r (d) into two
terms, r+ (d) and r− (d), decreasing fast enough at ±∞, respectively and providing
series convergent like geometrical progressions:

r (d) = r+ (d − 2) + r− (d) , r± (d ± 2k)
k→∞
< ak, |a| < 1. (8.16)

We have, correspondingly,

R (d) = R+ (d − 2) + R− (d) , (8.17)

with

∣∣∣∣ lim
d→+∞

C (d + 2) R+ (d + 2)

R+ (d)

∣∣∣∣ < 1,

∣∣∣∣ lim
d→−∞

C−1 (d − 2) R− (d − 2)

R− (d)

∣∣∣∣ < 1.

(8.18)
We arrive at the following general solution of the difference Equation (8.7):

F (d) = Σ−1 (d)ω (d) +
∞∑

k=0

s+ (d, k) −
∞∑

k=0

s− (d, k) , (8.19)
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s+ (d, k) = r+ (d + 2k)

Σ (d)
= [

(−1)n+m c
]k

n∏
i=1

( d
2 + 1 − bi

)
k

m∏
j=1

(
d
2 + 1 − b′

j

)
k

R+ (d + 2k) ,

s− (d, k) = r− (d − 2k)

Σ (d)
= c−1−k

m∏
j=1

(
b′

j − d
2

)
k+1

n∏
i=1

(
bi − d

2

)
k+1

R− (d − 2k) . (8.20)

Once the summing factor Σ(d) (with 1/Σ(d) satisfying the homogeneous
equation) is fixed, an arbitrariness of the solution of the inhomogeneous equation
(8.7) is encoded in the periodic function ω(d) of period 2. To take into account the
periodic condition, we can turn to the complex variable z = eiπd with ω(d) = Ω(z).

To fix the function ω(d) one can use analytical properties of the integral F(d)

which we are evaluating. It is sufficient to reveal these properties in an arbitrary stripe
of width 2, S = {d| d0 < Red � d0 + 2}, which is called the basic stripe. In fact, a
proper choice of the summing factor Σ(d) can greatly simplify this analysis as will
be seen in examples below.

The basic properties of a given Feynman integral F(d) as a function of d are the
position of poles (which can be only on the real axis) and the behaviour in the limits
Im d → ±∞. The position of poles can be revealed automatically, using the code
FIESTA [42, 43] of sector decompositions described in Chap. 4. Well, sometimes
poles at some values of d are spurious in the sense that they appear in different sectors
and cancel in the sum. However, one can check whether a pole is present by running
FIESTA and evaluating the pole part numerically.

The behaviour at large values of Im d can be analyzed using parametric repre-
sentations. Indeed, using (3.38) we can observe that in the limits Im d → ±∞ the
parametric integral itself does not contribute so that this behaviour is determined by
the overall gamma function. Using the formula (5.70) we arrive at the estimate

|F(d)| ≤ C ′e− π
4 hImd(Im d)a−hRe d−1/2 (8.21)

where C ′ is a constant and a the sum of the indices, as before.
When one takes into account the position of poles at some values d = di in

a given basic stripe one writes down a linear combination of terms bi/(z − eiπdi )

(or, higher poles). Then it is convenient to use the trigonometric identity

cot
(π

2
(d − di )

)
= i

z + eiπdi

z − eiπdi
(8.22)

and use as an Ansatz a linear combination of terms cot
(
π
2 (d − di )

)
. The revealed

analytic properties of F(d) can be insufficient to fix completely the periodic function
ω(d). Typically, some coefficients in such an Ansatz can be undetermined. To fix

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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them one can evaluate some pole parts of the given integral F(d) at d = di . In
particular, one can do this by the method of MB representation and accompanying
public codes because the method is flexible with respect to the shift of dimension.

After fixing the function ω(d), one arrives at a result in terms of a multiple series
with very good properties: these series are convergent uniformly with respect to d and
summands have a factorized structure. For one-scale integrals, one can then perform
a Laurent expansion in ε under the sum sign and evaluate coefficients at powers of ε
with a very high accuracy: several hundreds of digits, or even thousands. Then one
can successfully apply the PSLQ algorithm [15, 16] briefly described in Sect. 14.8
and thereby arrive at analytical results. For integrals with two and more scales, one
can use the series obtained in order to arrive at analytical results at general d, for
example, in terms of hypergeometric functions.

This general scenario will be illustrated through examples in the next section and
generalized in Sect. 8.4, to the case of two and more master integrals in a given sector.

8.3 Multiloop Examples

Let us now turn again to our favourite example and continue the analysis started in
the introduction.

Example 8.1 One-loop propagator Feynman integral (1.1) corresponding to Fig. 1.1.

The IBP reduction constructed explicitly in Example 6.3 shows that there are two
master integrals, F(d) = F(1, 1; d), and F2(d) = F(1, 0; d) The raising DRR for
F(d) following from (8.2) takes the form (1.24). Let us choose the summing factor

Σ (d) = 2d(1 − x)−d xd/2 sin2 πd

2
Γ

(
d − 1

2

)
. (8.23)

Turning to a new function by (8.12) we obtain a simpler equation (8.13) with

r (d) = 2d−3(d − 2)(x + 1)
xd/2−1

(1 − x)d
sin2 πd

2
Γ

(
1 − d

2

)
Γ

(
d − 3

2

)
. (8.24)

If we assume that x is in a small vicinity of the origin, then only r+ in (8.16) is
non-zero. Analyzing the behaviour of Σ(d) and Σ(d)F(d) (using (8.21) at Im d →
±∞) we see that these functions increase slower than e|πd|. Moreover, they do not
have poles in the stripe (2, 4]. Therefore, the function ω in (8.7) is a constant. At
d = 4, both Σ(d)F(d) and Σ(d)r+(d) take zero values. This means that the function
ω(d) in (8.7) should be set to zero and we are left with the specific solution of the
inhomogeneous equation determined by r+. We obtain

http://dx.doi.org/10.1007/978-3-642-34886-0_14
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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F(d) = − 1

1 + x
(Γ (1 − d/2)

−Γ (−d/2)
2x

(1 − x)2 2 F1

(
1,

d − 1

2
; d + 2

2
;− 4x

(x − 1)2

))
. (8.25)

Using identities for the hypergeometric function one can observe that this result
coincides with (1.8).

Consider next

Example 8.2 Three-loop vacuum diagram of Fig. 8.1.

The Feynman integral has the form

F(d) = 1

π3d/2

∫ ∫ ∫
ddk ddlddr(

k2 + m2
) (

l2 + m2
) (

r2 + m2
) (

(k + l + r)2 + m2
) ,

(8.26)
where we imply Euclidean space. Let us set m = 1.

There is one master integral in lower sectors—see Fig. 8.2. It is given by the third
power of the massive tadpole:

F1 (d) = Γ 3 (1 − d/2) . (8.27)

Using the parametric representation

F(d) = Γ (4 − 3d/2)

∫
dα1dα2dα3dα4δ

(∑
αi − 1

)
[α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4]d/2 (8.28)

Fig. 8.1 Three-loop vacuum diagram

Fig. 8.2 The lower master integral for Fig. 8.1

http://dx.doi.org/10.1007/978-3-642-34886-0_1
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one can conclude that the integral F(d) is an analytic function in the stripe S =
{d|Re d ∈ [−2, 0)}. Moreover, it is clear that any Euclidean Feynman integral with
all massive lines is an analytic function in the whole half-plane Re d < 0.

Using (8.2) and an IBP reduction we obtain the following DRR

F(d − 2) = − (3d − 10)3 (d − 2)

128(d − 4)
F(d) − (11d − 38)(d − 2)3

64(d − 4)
F2(d) (8.29)

where (x)n = x (x + 1) . . . (x + n − 1) is the Pochhammer symbol.
It is convenient to choose the summing factor Σ(d) with

Σ−1 (d) = 4d Γ (3/2 − d/2) Γ (3 − 3d/2)

Γ (2 − d/2)
. (8.30)

It has neither poles nor zeros in S. Introducing a new function by (8.12) we obtain
(8.13) with

r (d) = − (11d − 38) Γ 4 (2 − d/2)

4dΓ (5/2 − d/2) Γ (6 − 3d/2)
. (8.31)

The function r (d − 2k) decreases as (16/27)k at k → ∞, so that we can use
(8.14) and obtain a general solution of (8.29) in the form (8.20) with s+ = 0:

F(d) = 4d Γ (3/2 − d/2, 3 − 3d/2)

Γ (2 − d/2)
ω(z)

+ 1

16Γ (2 − d/2)

∞∑
k=1

(11d − 16 − 22k) Γ 4 (1 + k − d/2)

(3/2 − d/2)k (3 − 3d/2)3k
16k . (8.32)

The integral F(d) is an analytic function in S. According to (8.21) it behaves like

|F(d)| � |Γ (4 − 3d/2)| ∼ e− 3π|Im d|
4 |Im d|7/2−3Re d/2 (8.33)

when Im d → ±∞. The summing factor is also an analytic function in S with the
behaviour

|Σ (d)| � e
3π|Im d|

4 |Im d|−2+3Re d/2 . (8.34)

Finally, the specific solution of the inhomogeneous equation given by the second line

of (8.32) is also an analytic function in S with the behaviour e− 3π|Im d|
4 |Im d|σ with

some σ.
Observe that the limits Im d → ±∞ correspond to the limits z → 0,∞. So, from

(8.32), (8.33) and (8.34) we conclude that

ω(z)
z→0,∞∼ |Im d|ν , (8.35)
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where ν is a real number. Taking into account that

lim
z→∞

|Im d|ν
|z|α = lim

z→0

|Im d|ν
|z|−α = 0 (8.36)

for any ν and anyα > 0, we conclude thatω (z) is an analytic function in the extended
complex plane of z, except, maybe z = 0 and z = ∞ and growing slower than any
positive(negative) power of |z| when z tends to infinity (zero). This is sufficient to
claim that ω (z) is an analytic function in the extended complex plane of z, so that
this is a constant.

We can fix this constant by the condition F(0) = 1 which, e.g., follows from the
parametric representation. We finally obtain

F(d) = 4d Γ (3/2 − d/2, 3 − 3d/2)

Γ (2 − d/2)

1√
π

∞∑
k=0

(1 + 11k/8) (k!)4

(3/2)k (3)3k
16k

+ 1

16Γ (2 − d/2)

∞∑
k=1

(11d − 16 − 22k) Γ 4 [k + 1 − d/2]

(3/2 − d/2)k (3 − 3d/2)3k
16k . (8.37)

Both series here are very well convergent, with the behaviour (16/27)k . Moreover,
this convergence is uniform with respect to d and this is a very important feature of
results obtained with DRA. So, one can safely expand series under the sum sign. Since
the convergence of series which appear as coefficients at powers of ε is excellent one
can achieve a very high accuracy and then successfully apply the PSLQ algorithm
[15, 16]. As a result one obtains

F(d) = Γ (1 + ε)3
{

2

ε3 + 23

3ε2 + 35

2ε
+ 275

12
+ ε

(
−189

8
+ 112ζ3

3

)

− ε2
(

14917

48
− 280ζ3 + 136π4

45
+ 32

3
π2 ln22 − 32 ln42

3
− 256a4

)

− ε3
(

48005

32
− 4060ζ3

3
+ 68π4

3
+ 80π2 ln22 − 80 ln42 − 1920a4 − 272

15
π4 ln2

− 64

3
π2 ln32 + 64 ln52

5
− 1536a5 + 1240ζ5

)
− ε4

(
1108525

192
− 5390ζ3

+ 986π4

9
+ 1160

3
π2 ln22 − 1160 ln42

3
− 9280a4 − 136π4 ln2 − 160π2 ln32

+ 96 ln52 − 11520a5 + 9300ζ5 + 32π6

5
+ 272

5
π4 ln22 + 32π2 ln42 − 64 ln62

5

− 9216a6 − 3840s6 + 4880ζ2
3

3

)
− ε5

(
2570029

128
− 57967ζ3

3
+ 1309π4

3

+ 1540π2 ln22 − 1540 ln42 − 36960a4 − 1972

3
π4 ln2 − 2320

3
π2 ln32
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+ 464 ln52 − 55680a5 + 44950ζ5 + 48π6 + 408π4 ln22 + 240π2 ln42 − 96 ln62

− 69120a6 − 28800s6 + 12200ζ2
3 − 3824

135
π6 ln2 − 544

5
π4 ln32 − 192

5
π2 ln52

+ 384 ln72

35
− 55296a7 + 74240

7
ln2 s6 − 720π4ζ3

7
− 92800

7
ln2 ζ2

3

− 130360π2ζ5

21
− 22320 ln22 ζ5 + 772868ζ7

7
− 74240s7a

7
+ 87040s7b

7

)

+ O
(
ε6

)}
, (8.38)

in agreement with [8]. Here

an = Lin (1/2) ,

s6 = ζ−5,−1 + ζ6,

s7a = ζ−5,1,1 + ζ−6,1 + ζ−5,2 + ζ−7,

s7b = ζ7 + ζ5,2 + ζ−6,−1 + ζ5,−1,−1, (8.39)

and ζ... ≡ ζ(. . .) are multiple zeta values (MZV) defined by (12.4). In fact, this
master integral belongs to the set of three-loop master integrals relevant to the g− 2
factor which were evaluated up to transcendentality weight six in [22, 23, 35, 36].
The evaluation of these master integrals up to transcendentality weight seven was
preformed in [31] by DRA.

The next example is the same as Examples 3.7 and 5.6:

Example 8.3 Non-planar two-loop massless vertex diagram of Fig. 3.14 with p2
1 =

p2
2 = 0.

The Feynman integral (considered in Minkowski space) is given by (3.59) where
we now include the factor 1/πd . There are two lower master integrals corresponding
to graphs shown in Fig. 8.3. They can be evaluated easily in terms of gamma functions
using one-loop integration formulae (10.7) and (10.28):

Fig. 8.3 Two lower master
integrals for Fig. 3.14

http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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F1(d) = −Γ (4 − d)Γ
(
2 − d

2

)
Γ

( d
2 − 1

)2
Γ (d − 3)2

Γ (d − 2)Γ
( 3d

2 − 4
) , (8.40)

F2(d) = Γ (3 − d)Γ
( d

2 − 1
)3

Γ
( 3d

2 − 3
) . (8.41)

The integral has on-shell IR and collinear divergences at d = 4 and an UV
divergence at d = 6. Let us choose the basic stripe as S = {d|Red ∈ (4, 6]}.FIESTA
reports that F(d) is finite at Red ∈ (4, 6). It also shows that at d = 6 the integral
has a simple pole.

Using the lowering recurrence relation and an IBP reduction of the corresponding
integrals we obtain the following DRR:

F(d) = − (2d − 7)4

(d − 4)2
F(d + 2) + R+ (d) + R− (d + 2) , (8.42)

R+ (d) = −2
(
43d4 − 478d3 + 1963d2 − 3530d + 2352

)
(d − 3) (d − 4)3 F2(d),

R− (d + 2) = −2
(
37d3 − 313d2 + 858d − 752

)
(3d − 8) (d − 4)2 F1(d).

It turns out that R± (d) satisfy the conditions (8.18), i.e. this distribution of the
inhomogeneous term corresponds exactly to the two lower master integrals.

It is reasonable to choose the summing factor as

Σ (d) = 4d(4 − d) sin
(π

2
(d − 5)

)
sin2

(π
2

(d − 4)
)

Γ

(
d − 7

2

)
. (8.43)

Since Σ (d) ∼ (d − 6)2 near d = 6 we have

lim
d→6

Σ (d) F(d) = 0 (8.44)

and, therefore, the function Σ (d) F(d) is regular at d = 6.
According to (8.20), the general solution of (8.42) takes the form

F(d) = Σ−1 (d)

[
ω (d) +

∞∑
k=0

r+ (d + 2k) −
∞∑

k=0

r− (d − 2k)

]
, (8.45)

r+ (d) =
√
π2d sin(πd)Γ

( 3
2 − d

2

)
Γ

( d
2 − 2

)2
Γ

(
d − 7

2

)
(d − 3)Γ

( 3d
2 − 3

)
×

(
43d4 − 478d3 + 1963d2 − 3530d + 2352

)
,
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r− (d) = −π222d−6Γ
( d

2 − 3
)
Γ

(
d − 11

2

)
(5 − d)Γ

( 3d
2 − 6

)
(

37d3 − 535d2 + 2554d − 4016
)

.

Due to the choice of the summing factor, the function r+ (d) does not have any
singularities in the region Re d > 4. The function r− (d) has simple poles at

d = d1 (k) , d2 (k) , 5, 6

d1 (k) = 5 1
2 − 2k, d2 (k) = 4 1

2 − 2k, k = 0, 1, . . . (8.46)

Taking into account that Σ (d) F(d) is analytic in S, we obtain

ω (d) = b + b1 cot π2
(
d − 5 1

2

) + b2 cot π2
(
d − 4 1

2

)
+ b3 cot π2 (d − 5) + b4 cot π2 (d − 6) ,

b1 = π

2

∞∑
k=0

Res
d=d1(k)

r− (d − 2k) , b2 = π

2

∞∑
k=0

Res
d=d2(k)

r− (d − 2k) ,

b3 = π

2
Res
d=5

r− (d) = 256π7/2, b4 = π

2
Res
d=6

r− (d) = 1280π7/2. (8.47)

Taking into account the values of b3,4 one can make a natural guess b1,2 = f1,2π
7/2

and then check with the accuracy of thousand digits that

b1 = b2 = −256π7/2. (8.48)

The constant b can be fixed using the condition (8.44) and the properties of r±:

r+ (6 + 2k) = 0, r− (6 − 2ε) − 2560π5/2

−2ε
= O (ε) .

We obtain

b =
∞∑

k=0

r− (4 − 2k) = 0. (8.49)

Therefore, relations (8.45), (8.43), (8.47), (8.48), and (8.49) lead to a result for F(d)

in terms of a well convergent series. Then one can perform an ε-expansion under the
sum sign, evaluate coefficients at powers of ε with a high accuracy, apply PSLQ and
reproduce (3.80) [19] as well as results for higher terms obtained in [18].

Let us now consider

Example 8.4 Two-loop vacuum diagram of Fig. 8.4 with two different masses.

The Feynman integral has the form

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Fig. 8.4 Two-loop vacuum
diagram with the masses
m, M, m

F(d) = 1

πd

∫
ddk ddl(

k2 + m2
) (

l2 + m2
) (

(k + l)2 + M2
) , (8.50)

where we imply Euclidean space. Let us set m = 1.
Master integrals for lower sectors are products of one-loop tadpoles and are rep-

resented in terms of gamma functions at general d:

F1(d) = Γ 2 (1 − d/2) ,

F2(d) = Γ 2 (1 − d/2) Md−4.

The basic stripe can be chosen as S = {d|Red ∈ [0, 2)}. The DRR takes the form

F(d) = M2
(
4 − M2

)
(d − 2) (d − 3)

F(d − 2) +
(
M2 − 2 − 2Md−2

)
(d − 2) (d − 3)

Γ 2 (2 − d/2) . (8.51)

Let us suppose that M < 2. The result for M > 2 can be obtained by an analytical
continuation. Let us choose the summing factor as

Σ (d) = M−d
(
4 − m2

)−d/2

Γ (2 − d)
. (8.52)

Using (8.12) we obtain a simpler equation (8.13) with

r (d) =
(
M2 − 2 − 2Md−2

)
Γ 2 (2 − d/2)

Md
(
4 − M2

)d/2
Γ (4 − d)

. (8.53)

The limit

lim
d→−∞

r (d + 2)

r (d)
=

(
1 − M2

4

)
max

(
1, M2

)
� 1 (8.54)

shows that r (d) = r− (d) and allows us to represent the general solution in the form

F(d) = Σ−1 (d)ω (z) + H(d),

H(d) = Γ (1 − d/2) Γ (2 − d/2)

2 (3 − d)
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×
∞∑

k=0

(
1 − M2

4

)k ((
M2 − 2

)
M2k − 2Md−2

) (2 − d/2)k

(5/2 − d/2)k

= Γ (1 − d/2) Γ (2 − d/2)

2 (3 − d)

((
M2 − 2

)
2 F1

(
1,2−d/2
5/2−d/2

∣∣∣∣M2 − M4

4

)

−2Md−2
2 F1

(
1,2−d/2
5/2−d/2

∣∣∣∣1 − M2

4

))
.

The functions Σ (d) F(d) and Σ (d) H(d) are analytic in S, They are also
bounded at Imd → ±∞, so ω (z) is a constant. Fixing the constant by the con-
dition F(0) = M−2 we obtain

ω (z) = M−2 − H (0) = 4πθ
(
2 − M2

)
M3

(
4 − M2

)3/2 . (8.55)

One can check that θ
(
2 − M2

)
in this formula cancels the discontinuity of the func-

tion
(
M2 − 2

)
2 F1

(
1,2−d/2
5/2−d/2

∣∣∣M2 − M4

4

)
in H(t). Using properties of the hyperge-

ometric function one can represent the result as

F(d) = Γ
(
1 − d

2

)
Γ

(
2 − d

2

)
d − 3

×
(

2 F1

(
1,3−d

5/2−d/2

∣∣∣∣ M2

4

)
+ Md−2

2 F1

[
1,2−d/2

3/2

∣∣∣∣ M2

4

])
,

in agreement with [14].
Let us now briefly describe, following [27, 31], how the evaluation of a set of

master integrals can be organized.

Example 8.5 Master integrals for three-loop massless form factors shown in Fig. 8.5.
Two external momenta flowing to the right are on the light cone, p2

1 = p2
2 = 0.

These Feynman integrals were evaluated analytically in an ε-expansion up to
weight six in [4, 17, 20, 21], with the exception of the finite parts of A9,2 and A9,4
which were later evaluated by DRA in [27]. Then the evaluation of all these master
integrals up to weight eight was done by DRA in [31]. This is how the evaluation
was organized.

It turns out that there is at most one master integral in every sector. This means
that one can choose integrals with indices 1 and 0 as master integrals. So, there are
no dots on lines in Fig. 8.5 and no numerators in the master integrals are assumed.

Master integrals naturally form a partially ordered set in the sense of the definitions
of Sect. 6.2. In other words, a master integral is lower than another master integral
if the Feynman graph for the former can be obtained by contracting some internal
lines from the Feynman graph of the latter. This ordering enables us to introduce

http://dx.doi.org/10.1007/978-3-642-34886-0_6
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Fig. 8.5 Master integrals for three-loop massless form factors. The complexity level is indicated
to the left

the notion of complexity level (cl) of a given master integral which is the maximal
number of nested lower master integrals. According to this definition, the master
integrals with zero complexity level have no lower master integrals. The DRR for
such integral is obviously homogeneous and its explicit solution is expressed in terms
of Γ -functions. Moreover, it turns out that for three-loop on-shell massless vertex
master integrals any integral expressed in terms of Γ -functions has zero complexity
level. It might happen that this situation is general.

In Fig. 8.5, there are four rows of diagrams corresponding to complexity levels
0, 1, 2 and 3. Therefore, one starts the calculation from the complexity level 1, then
turns to the complexity level 2 and, finally, calculates the two master integrals of
complexity level 3, i.e. A9,2 and A9,4. Let us, for example, consider A6,3(d). The
raising DRR takes the form

F(1, 1, 1, 1, 1, 1; d − 2) = F(1, 1, 1, 2, 2, 2; d) + F(1, 1, 2, 1, 2, 2; d)

+ F(1, 1, 2, 2, 1, 2; d) + F(1, 2, 1, 2, 1, 2; d) + F(1, 2, 1, 2, 2, 1; d)

+ F(1, 2, 2, 1, 1, 2; d) + F(1, 2, 2, 1, 2, 1; d) + F(1, 2, 2, 2, 1, 1; d)

+ F(2, 1, 1, 2, 1, 2; d) + F(2, 1, 1, 2, 2, 1; d) + F(2, 1, 2, 1, 1, 2; d)

+ F(2, 1, 2, 1, 2, 1; d) + F(2, 1, 2, 2, 1, 1; d).
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After performing an IBP reduction of the integrals on the right-hand side we obtain

A6,3(d − 2) = 8(−3 + d)(−9 + 2d)(−7 + 2d)(−10 + 3d)

−16 + 3d
A6,3(d)

+ 32(−3 + d)(−9 + 2d)(−7 + 2d)(−5 + 2d)(−10 + 3d)

(−5 + d)(−4 + d)2(−16 + 3d)

× (−8 + 3d)(−32 + 7d) A4(d)

where

A4(d) = Γ (4 − 3d/2)Γ (d/2 − 1)4

Γ (2d − 4)
.

Here and in what follows, we omit, for brevity, a power-like dependence of the master
integrals on q2 + i0 which can easily be restored by power counting.

Let us choose the summing factor

Σ(d) = 1√
π

324d− 5
2

(
d

2
− 5

3

)
sin

(
1

2
π(d − 5)

)
sin

(
1

2
π

(
d − 14

3

))

× sin2
(
πd

2

)
Γ

(
d

2
− 5

4

)
Γ

(
d

2
− 3

4

)
Γ

(
d

2
− 1

2

)
.

Using (8.12) we obtain the equation (8.13) with

r(d) = 1

3(d − 5)
1024π(32 − 7d) sin

(
πd

2

)
sin(πd) cos

(
1

6
(3πd + π)

)

× Γ

(
7 − 3d

2

)
Γ

(
d

2
− 2

)3

.

Here only the function r+(d) is non-zero in (8.16) so that we have

A6,3(d) = (ω(d) + r+(d))/Σ(d). (8.56)

For A6,3, FIESTA says that in the stripe (3, 5] there can be simple poles at d =
10/3, 4, 14/3, 5. Taking into account this information and analyzing the behaviour
at infinity (Imd → ±∞) with the help of the (8.21) provides the following Ansatz
for Ω(z):

a0 + a1

z − e−2iπ/3 + a2

z − 1
(8.57)

which corresponds to the following Ansatz for ω(d):
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b0 + b1 cot

(
1

2
π(d − 4)

)
+ b2 cot

(
1

2
π

(
d − 10

3

))
.

The constants bi can be fixed by using a onefold MB representation for A6,3 which
can be obtained from the general representation (5.21):

ω(d) = 512π43−1/2
(

cot

(
1

2
π

(
d − 10

3

))
− cot

(
1

2
π(d − 4)

))
.

We obtain the following result:

A6,3(d) = ω(d)

Σ(d)
− 1

Σ(d)

∞∑
k=0

2048π2(−1)k(7d + 14k − 32)

3(d + 2k − 5)

× sin2
(
πd
2

)
cos

(
π

( d
2 + 1

6

))
cos

(
πd
2

)
csc

( 3πd
2

)
Γ

( d
2 + k − 2

)3

Γ
( 3d

2 + 3k − 6
) .

(8.58)

As an example of a master integral with complexity level two, let us consider
A7,2. There are four lower master integrals, A4, A5,1, A5,2, and A6,3. Three of them
are expressed in terms of Γ -functions and A6,3 is given by (8.58).

The lowering DRR has the form

A7,2(d + 2) = c7,2(d)A7,2(d)

+ c6,3(d)A6,3(d) + c5,2(d)A5,2(d) + c5,1(d)A5,1(d) + c4(d)A4(d).

where

c7,2 = − 8(d − 4)2(d − 3)

5(d − 2)(d − 1)(5d − 18)(5d − 16)(5d − 14)(5d − 12)
, (8.59)

and other coefficients are rational functions of d (presented in [27]).
Using (8.59) we choose the summing factor as

Σ (d) =
(d − 3) cos

(
πd
2

)
cos

(
π
6 − πd

2

)
cos

(
πd
2 + π

6

)
Γ

(
5d
2 − 9

)

Γ
( d

2 − 2
)2 . (8.60)

Turning to the new function by (8.12) we obtain (8.13) with g = Ã7,2(d) in the
following form:

Ã7,2(d + 2) = Ã7,2(d) + Ã6,3(d) + Ã5,2(d) + Ã5,1(d) + Ã4(d), (8.61)

http://dx.doi.org/10.1007/978-3-642-34886-0_5
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where Ãn(d) = Σ(d+2)cn(d)An(d). The general solution can easily be constructed
using the explicit form of the integrals A4, A5,1, A5,2, and A6,3:

Ã7,2(d) =
∞∑

l=0

[
Ã5,2(d − 2 − 2l) + Ã5,1(d − 2 − 2l) + Ã2

6,3(d − 2 − 2l)
]

−
∞∑

l=0

Ã1,1
6,3(d + 2l)

∞∑
k=0

A1,2
6,3(d + 2l + 2k) −

∞∑
l=0

Ã4(d + 2l) + ω(d).

(8.62)

Applying FIESTA to A7,2 we see that the integral has simple poles at d =
14/3, 5, 16/3, 6. The function Σ(d) has simple zeros at d = 14/3, 5, 16/3, there-
fore, Ã7,2(d) is regular everywhere in S except the point d = 6, where it has a
simple pole. Besides, from the explicit form of the summing factor and from the
parametric representation of A7,2(d) it is clear that Ã7,2(d) grows slower than any
positive (negative) power of |z| when Im d → −∞ (Im d → +∞). This fixes ω(d)

up to a function

a1 + a2 cot
(π

2
(d − 6)

)
. (8.63)

In order to fix the two remaining constants, one can use data obtained from the
Mellin–Barnes representation of A7,2(d) which can easily be obtained from the
general Mellin–Barnes representation for the non-planar on-shell vertex diagram
given by (5.21):

A7,2(d) = Γ
( d

2 − 2
)
Γ

( d
2 − 1

)2
Γ (d − 3)

Γ (d − 2)Γ
( 3d

2 − 5
)
Γ (2d − 7)

1

(2πi)2

∫ ∫
Γ (−z1)Γ (−z2)

Γ (d − z1 − 4)

× Γ (z2 + 1)2

Γ
( 3d

2 − z1 − 5
)Γ

(
d

2
− z1 − 2

)
Γ

(
3d

2
− z2 − 6

)
Γ (z1 + z2 + 1)

× Γ (d − z1 − z2 − 5)Γ

(
3d

2
− z1 − z2 − 6

)
Γ

(
−3d

2
+ z1 + z2 + 7

)
dz1 dz2.

Using the codes of [13] and [39] (described in Chap. 5) at d = 6 − 2ε and
d = 5 − 2ε one can straightforwardly obtain

A7,2(6 − 2ε) = − 41

15552ε
+ O(ε0),

A7,2(5 − 2ε) = −π5/2

24ε
+ O(ε0). (8.64)

Using these two values and also taking into account the fact that the singularities of
the inhomogeneous part should be cancelled, one obtains

http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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ω(d) = π3

20
√

5
tan

(
π

10
− πd

2

)
− π3

36
tan

(
π

6
− πd

2

)

− π3

20
√

5
tan

(
πd

2
+ π

10

)
+ π3

36
tan

(
πd

2
+ π

6

)
+ π3

60
cot3

(
πd

2

)

+ 13π3

180
cot

(
πd

2

)
+ π3

20
√

5
cot

(
π

5
− πd

2

)
− π3

20
√

5
cot

(
πd

2
+ π

5

)
.

Equations (8.62), (8.65), and (8.60) determine a result for A7,2(d).
Let us realize that there is a double sum in (8.62). Making a shift k → k − l, we

obtain the following triangle sum with the factorized summand:

∞∑
l=0

Ã1,1
6,3(d + 2l)

∞∑
k=l

A1,2
6,3(d + 2k). (8.65)

The factorized form of the summand essentially simplifies the numerical calculation
of the sum, making it possible to organize the calculations without nested do-loops.
Let me emphasize that this is a general feature of multiple series which arise within
the presented method.

This procedure was applied to all the integrals shown in Fig. 8.5. For example,
the result for A9,4 up to weight eight is [27, 31]

A9,4(d) = e−3γEε

{
− 1

9ε6 − 8

9ε5
+ ε−4

(
1 + 43π2

108

)

+ ε−3
(

14

9
+ 53π2

27
+ 109ζ3

9

)
+ ε−2

(
−17 − 311π2

108
+ 608ζ3

9
− 481π4

12960

)

− ε−1
(

−84 − 11π2

18
+ 949ζ3

9
− 85π4

108
+ 2975π2ζ3

108
− 3463ζ5

45

)
−

(
339

− 77π2

4
− 434ζ3

9
+ 2539π4

2592
+ 299π2ζ3

3
− 7868ζ5

15
+ 247613π6

466560
+ 3115ζ2

3

6

)

− ε

(
−1242 + 112π2 − 589ζ3 + 487π4

432
− 19499π2ζ3

108
+ 30067ζ5

45

+ 25567π6

30240
+ 18512ζ2

3

9
+ 38903π4ζ3

2592
+ 113629π2ζ5

540
− 8564ζ7

63

)

− ε2
(

4293 − 1887π2

4
+ 3756ζ3 − 491π4

32
+ 4019π2ζ3

18
+ 7874ζ5

15

− 9901847π6

3265920
− 26291ζ2

3

6
+ 9037π4ζ3

135
+ 35728π2ζ5

45
− 72537ζ7

14

+ 30535087π8

31352832
− 152299

216
π2ζ2

3 + 730841ζ3ζ5

135
− 76288

81
ζ−6,−2

)
+ O

(
ε3

)}
.
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8.4 Evaluating Multicomponent Master Integrals

Suppose now that we have to evaluate two or more master integrals in a given sector,
F1, . . . , Fk , with k ≥ 2. This is how one can proceed in this situation, according to
[32] where details can be found. Let us denote by F the column-vector composed of
Fi and call it multicomponent master integral (MMI). For each of the components,
one can construct the lowering or raising DRR which has the form (8.7) in the former
case and (8.7) with d − 2 → d + 2 in the latter case. For convenience, let us turn to
the variable ν = d/2 in this section. Now, on the right-hand side, we have a linear
combination of the components Fi so that, in particular, in the raising case, we obtain
the following matrix difference equation:

F (ν + 1) = C (ν) F (ν) + R (ν) , (8.66)

where C is a k × k matrix with elements rational in ν and the vector R involves
master integrals only in lower sectors.

As in the case k = 1, we need, first, to construct a solution of the corresponding
homogeneous equation, i.e. without R (ν) on the right-hand side. More precisely, we
have to find k solutions. To do this, let us involve into the game so-called cut-integrals1

which are obtained by replacing propagators 1/(E j +i0)a j by the differences 1/(E j +
i0)a j −1/(E j − i0)a j which are proportional to δ(a j −1)

(
E j

)
and are zero at a j ≤ 0.

Let us replace all the propagators according to this rule, denote the result of the
replacement by ΔF(d) and call it ‘maximal cut’.

It is easy to conclude that both IBP and dimensional recurrence relations are not
sensitive to the change of the sign of i0 in any subset of the propagators. Therefore,
Eq. (8.66) holds for any cut integral obtained from Fi present in and, in particular,
for ΔFi . Since cutting a line, in the above sense, gives a zero result if an index is a
non-positive integer, we see that the inhomogeneous term drops out and, therefore,
the maximally cut MMI satisfies [32] the homogeneous equation corresponding to
(8.66):

ΔF (ν + 1) = C (ν) ΔF (ν) . (8.67)

Let us see how this property can be used to find solutions of homogeneous equa-
tions associated with DRR, using the example of the two master integrals shown in
Fig. 8.6, where dashed lines denote static propagators 1/(v ·k + i0) and the condition
v · q = 0 is implied for the scalar product of v and the external momentum q. One
chooses v = (1, 0) and q = (0, q). We use the following normalization:

1 The cut integrals are also the basic tool of the powerful generalized unitarity technique [5, 6] which
provides the possibility to construct scattering amplitudes. In fact, the strategy of writing an Ansatz
as a linear combination of some basic scalar integrals and constructing the corresponding coefficient
functions is very similar to the strategy of solving IBP relations, especially within Baikov’s method
outlined in Sect. 6.5.

http://dx.doi.org/10.1007/978-3-642-34886-0_6
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Fig. 8.6 Master integrals F1
and F2

Fa(d) = (−1)a

(
iπd/2

)3

∫ ∫ ∫
ddk ddl ddr

k2r2((l + q)2)a(k − l)2(l − r)2(v · k)(v · r)
, (8.68)

where a = 1 and 2 and +i0 is implied in all the propagators.
The lower master integrals are shown in Fig. 8.7.
Here the labelling of the master integrals is taken from the future paper [33].

Moreover, in this labeling, F1 = P71 and F1 = P72 but the notation Fi is more
convenient within this section. The lowering DRR reads:

F (ν + 1) = C (ν) F (ν) + R (ν) , (8.69)

where F (ν) =
(

F1 (ν)
F2 (ν)

)
. The inhomogeneous term R (ν) =

(
R1 (ν)
R2 (ν)

)
contains

only the lower master integrals, and C (ν) =
(

C11 (ν) C12 (ν)
C21 (ν) C22 (ν)

)
is a matrix with

rational elements. (See explicit expressions for the functions Ci j (ν) and R (ν) in
[32].) Observe that although Ci j (ν) are quite cumbersome, the determinant of the
matrix C (ν) has a simple factorized form:

det C (ν) = − (ν − 2)(4ν − 7)2(4ν − 5)2

16(ν − 1)5(2ν − 3)2(8ν − 13)(8ν − 11)(8ν − 9)(8ν − 7)
.

(8.70)
This seems to be a general situation.

Let us now find two solutions Fi
h (ν), i = 1, 2 of the homogeneous equation

F (ν + 1) = C (ν) F (ν) . (8.71)

Solving this equation is equivalent to solving the second-order difference equation for

F (ν + 2) + C1 (ν) F (ν + 1) + C2 (ν) F (ν) = 0, (8.72)

Fig. 8.7 Lower masters inte-
grals P51, P53, P62



8.4 Evaluating Multicomponent Master Integrals 195

where C1 and C2 can be expressed in terms of the matrix elements of C (ν).
The maximally cut MMI ΔF satisfies 8.71. Observe that contracting the lower line

of F1 in Fig. 8.6 we obtain a scaleless integral which is zero so that it is not necessary
to cut this line. Let us omit the factors −2πi from each cut and let us take F1 and
perform the replacements 1/(k2 + i0) → δ(k2) and 1/(v ·k + i0) → δ(v ·k) = δ(k0)

for all the propagators apart from 1/(l + q)2.
Let us, first, integrate over the loop momenta of the two identical one-loop sub-

diagrams consisting of one static and two usual propagators

J (l) =
∫

ddk

πd/2 δ(k0)δ(k
2)δ(l2 − 2l · k), (8.73)

where δ(k0) comes from 1/(v · k + i0) = 1/(k0 + i0). Here is a subtle point because
in Minkowskian metrics we might conclude that this integral is zero due to the
kinematical restrictions. Indeed, in Minkowskian space the first two δ-functions result
in k = 0, which is incompatible with the last δ-function. Let us instead use the metric
signature (1, 1,−1,−1, . . .), so that k2 = k2

0 + k2
1 − k2

2 − · · · − k2
d = k2

0 + k2
1 − k2.

Then a straightforward integration gives

J (l) = 22−dΩ(d − 2)

πd/2

(−l2)d−4

(l2)(d−3)/2
, (8.74)

where l2 = −l2
1 + l2, and Ω(d) = 2πd/2/Γ (d/2) is the volume of the unit hyper-

sphere in Euclidean d-dimensional space.
To take the final integral

ΔF1 (ν) = 1

i6

∫
ddl

πd/2

J (l)2

(−(l + q)2)
(8.75)

we turn to Euclidean space and separate the two terms in the denominator of 1/(l2
0 +

(l + q)2) introducing a onefold MB representation. The factor 1
i6

corresponds to six
‘time-like’ integration variables, two per each loop momenta.

Then the internal integration is taken straightforwardly and we arrive at the
following result:

ΔF1 (ν) = 24−4νΓ (6 − 3ν)

Γ (ν − 1)2 Γ
(
8 − 4ν, 4ν − 13

2

) 1

2πi

∫
dz

Γ (−z)Γ
(
z + 1

2

)
Γ (z + 5 − 2ν)

× Γ

(
3ν − 11

2
− z

)
Γ (z − 4ν + 8) Γ (z + ν − 1) . (8.76)

It is easy to convert this representation into a linear combination of 3 F2 hypergeo-
metric functions.

There are two series of poles from the right of the integration contour and three
series of poles from the left:
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z1 = n, z2 = 3ν − 11

2
+ n,

z3 = −1

2
− n, z4 = 4ν − 8 − n, z5 = 1 − ν − n,

where n = 0, 1, . . .. It turns out that the sum of the residues taken at each of these five
series of poles gives a solution of 8.72. This can be checked either numerically, or
using the Zeilberger’s method of creative telescoping [46, 47]. We assume, of course,
that the corresponding sums are defined in some region of ν where they converge
and then analytically continued to the whole ν complex plane. As two independent
solutions let us choose the contribution of the series of residues at z1 and z4. The
solutions have the form

F1
1,h (ν) =

√
π24−4νΓ (6 − 3ν)Γ

(
3ν − 11

2

)
Γ (5 − 2ν)Γ (ν − 1)Γ

(
4ν − 13

2

) 3 F2

(
8 − 4ν, 1

2 , ν − 1
5 − 2ν, 13

2 − 3ν

∣∣∣∣ 1

)
,

F2
1,h (ν) =

32Γ (6 − 3ν)Γ (5ν − 9)Γ
(

5
2 − ν

)

24ν(8ν − 15)Γ (ν − 1)2Γ (2ν − 3)

×3 F2

(
8 − 4ν, 5

2 − ν, 4 − 2ν
10 − 5ν, 17

2 − 4ν

∣∣∣∣ 1

)
.

Analytical properties of these solutions can be found from the above
representation. The series for the hypergeometric functions 3 F2 here converge at
Re ν < 5/2. In order to determine the analytical properties of F1

1,h (ν) and F2
1,h (ν)

in the region Re ν � 5/2, one can use the recurrence relation (8.72). It would be
more convenient to use the representation in terms of series converging uniformly
in d. Luckily, both hypergeometric functions appear to be nearly-poised, and it is
possible to transform them to Saalschutzian 4 F3 whose series converge uniformly
in ν. Explicit expressions of F1

1,h (ν) and F2
1,h (ν) in terms of Saalschutzian 4 F3 can

be found in [32].
Therefore, the matrix of fundamental solutions in (8.71) has the form Fh (ν) =(

F1
1,h (ν) F2

1,h (ν)

F1
2,h (ν) F2

2,h (ν)

)
, where F1

2,h (ν) and F2
2,h (ν) are obtained form the first equation

of the system (8.71):

F1
2,h (ν) = F1

1,h (ν + 1) − C11 (ν) F1
1,h (ν)

C12 (ν)
, (8.77a)

F2
2,h (ν) = F2

1,h (ν + 1) − C11 (ν) F2
1,h (ν)

C12 (ν)
. (8.77b)

As in the case of one master integral in a given sector, we are now going to construct
a summing factor which is inverse to a solution of the homogeneous equation and
satisfies
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S (ν) = S (ν + 1) C (ν) . (8.78)

According to the recipe formulated in Sect. 5 of [34], the summing factor can be
constructed from the fundamental solution as

S (ν) = W (ν) S (ν)

(
F2

2,h (ν) −F2
1,h (ν)

−F1
2,h (ν) F1

1,h (ν)

)
, (8.79)

where

S (ν) = 22ν(ν − 2)Γ (2ν − 3)2Γ
(
4ν − 13

2

)
Γ

(
2ν − 7

2

)2
Γ (2 − ν)2 sin(πν)

is a solution of the equation S (ν) = S (ν + 1) det C (ν) and W (ν) is an arbitrary
periodic matrix. Using (8.69) and (8.79) we obtain the relation

(SF) (ν − 1) = (SF) (ν) + S (ν − 1) R (ν) (8.80)

which implies
(SF) (ν) = W (ν) +

∑
+∞

S (ν − 1) R (ν) , (8.81)

where W (ν) is an arbitrary periodic column-vector and the notation
∑

±∞ f (ν)
introduced in [37] means

∑
+∞

f (ν) = −
∞∑

n=0

f (ν + n) ,

∑
−∞

f (ν) =
∞∑

n=1

f (ν − n) . (8.82)

Now we need to determine W (ν) from the analytical properties of (SF) (ν) which
depend on our choice of W (ν). In particular, if we choose W (ν) = 1, the function
(SF) has singularities at ν = 2, 2 1

6 , 2 1
5 , 2 1

3 , 2 2
5 , 2 1

2 , 2 3
5 , 2 2

3 , 2 4
5 , 2 5

6 in the stripe
Re ν ∈ [2, 3). In order to cancel these singularities, we can choose W (ν) to be
properly degenerate matrix at the points of the singularities but we should also try
not to spoil the behavior of (SF) at ν → ±i∞. Therefore, it is very useful to eliminate
also the explicit and hidden zeros of S, which, at W (ν) = 1, are located at the points
ν = 2 1

8 , 2 3
8 , 2 5

8 , 2 7
8 ,±i∞. We finally choose

W (ν) = (1 + c)(1 + 2c)

c2

×
(

25(1 − c)
(
1 − 2c − 4c2

)
25 1+c

2c2−1
(1 − 2c)2

− c√
2

(
1 − 2c − 4c2

) c(1−2c)√
2(2c2−1)

(
1 − 2c − 4c2

)
)

, (8.83)
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where c = cos (2πν). With this choice of the summing factor, (SF) is holomorphic
in the stripe Re ν ∈ [2, 3) and grows at ν → ±i∞ slower than exp (2π |ν|). Taking
into account the singularities of

∑
+∞ S (ν − 1) R (ν), we obtain

W (ν) = 4π2

sin2(πν)

(
π − 2 arctan

(
4
√

5
)

cos2(πν)
) (−64√

2

)
. (8.84)

Multiplying (8.81) by S
−1 (ν) we obtain

F (ν) = S
−1 (ν) W (ν) + S

−1 (ν)
∑
+∞

S (ν − 1) R (ν) . (8.85)

With S (ν) , W (ν) , R (ν) determined by (8.79), (8.83), (8.84), and the explicit
expression for the right-hand side of (8.69) presented in [32] the above representation

(8.85) gives a result for the MMI F (ν) =
(

F1 (ν)
F2 (ν)

)
in terms of a series.

Let us make two remarks about the two terms in this representation of F1,2 (ν).
The second term, in fact, does not depend on the explicit form of the summing factor
S (ν) because

S
−1 (ν) S (ν + n) =

{∏n
k=1 C (ν + k) , n � 0∏−n−1
k=0 C

−1 (ν − k) , n < 0

is always a finite product of rational matrices. This product can be evaluated recur-
sively, so that one can organize a numerical evaluation without nested loops. The
first term can explicitly be written as a combination of the fundamental solutions F1

h
and F2

h :

S
−1 (ν) W (ν) =

(
F1,h (ν)
F2,h (ν)

)
,

F1,h =
25π5/2

(
π − (c + 1) arctan

(
4
√

5
))

(1 − c)c2(2c + 1)

×
[
(2c − 1)

(
4c3 − 2c + 1

)
2c2 − 1

F1
1,h −

(
8c3 − 4c + 1

)
F2

1,h

]
, (8.86)

F2,h = F1,h (ν + 1) − C11 (ν) F1,h (ν)

C12 (ν)
. (8.87)

Now, since the evaluation of all the nested sums appearing in representation (8.85)
can be organized in one loop, it is easy to calculate F (ν) with a high precision and
apply the PSLQ algorithm. Then we obtain [32]
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F1 (2 − ε) = 28π4

135ε
+ 116π2ζ(3)

9
+ π4

(
224

135
− 4 ln(2)

)
+ 226ζ(5)

3

+
(

−192s6 + 1808ζ(5)

3
− 8ζ(3)2

3
+ 928π2ζ(3)

9
+ 64π2Li4

(
1

2

)
+ 8

3
π2 ln4(2)

− 20

3
π4 ln2(2) − 32π4 ln(2) − 428π6

2835
+ 1792π4

135

)
ε

+
(

−768Li4

(
1

2

)
ζ(3) − 128π2Li5

(
1

2

)
+ 512π2Li4

(
1

2

)
− 1536s6

+ 384

7
s6 ln(2) − 384s7a

7
− 3072s7b

7
+ 4960ζ(7)

21
+ 35519π2ζ(5)

42

+ 14464ζ(5)

3
− 64ζ(3)2

3
− 31457π4ζ(3)

945
+ 7424π2ζ(3)

9
− 32ζ(3) ln4(2)

+ 372ζ(5) ln2(2) + 32π2ζ(3) ln2(2) − 480

7
ζ(3)2 ln(2) − 3424π6

2835
+ 14336π4

135

+ 16

15
π2 ln5(2) + 64

3
π2 ln4(2) − 40

9
π4 ln3(2) − 160

3
π4 ln2(2) − 3079

315
π6 ln(2)

− 256π4 ln(2)

)
ε2 + O(ε3),

F2 (2 − ε) = −π4

ε
− 93ζ(5) − 14π2ζ(3) − 2π4 ln(2) +

(
−96s6 + 120ζ(3)2

+32π2Li4

(
1

2

)
+ 4

3
π2 ln4(2) − 10

3
π4 ln2(2) − 989π6

420

)
ε

+
(

−384Li4

(
1

2

)
ζ(3) − 64π2Li5

(
1

2

)
+ 192

7
s6 ln(2) − 192s7a

7

− 1536s7b

7
− 32666ζ(7)

7
− 40585π2ζ(5)

84
+ 35047π4ζ(3)

630
− 16ζ(3) ln4(2)

+ 186ζ(5) ln2(2) + 16π2ζ(3) ln2(2) − 240

7
ζ(3)2 ln(2) + 8

15
π2 ln5(2)

− 20

9
π4 ln3(2) − 3079

630
π6 ln(2)

)
ε2 + O(ε3),

where ζ... are multiple zeta values (C.4) and the constants s6 and s7i are defined by
(8.39). The terms up to ε1 are in agreement with the previous results [40, 41].



200 8 Evaluating Master Integrals by DRA

8.5 What Numbers Can Appear in Epsilon Expansions?

Let me emphasize that if we apply the DRA method and obtain a result in terms of
a multiple well convergent series, going to higher powers of ε is an easy procedure,
in contrast to other methods, in particular, to the method of MB representation,
where the complexity of the evaluation rapidly increases for higher powers. This
feature provides the possibility to check hypotheses about types of irrational constants
present in ε-expansions.

It looks like massless propagator diagrams form the simplest class of one-scale
Feynman integrals. Calculational experience shows that only MZV appear in their
ε-expansions. In one loop, this is an obvious statement following from the one-loop
formula (3.6). In two loops, this property follows already from an IBP reduction
to integrals expressed in terms of gamma functions as described in Sect. 6.1. It was
also proven in [7] for more general massless propagator diagrams with indices linear
dependent on ε. Brown has proven [10] that this property holds for convergent scalar
massless planar propagator diagrams with the degree of divergence ω = −2 up to
five loops.

Brown also has proven that for three four-loop non-planar diagrams, M4,5 in
Fig. 8.8 and two more convergent diagrams, every coefficient in a Taylor expansion
in ε is a rational linear combination of MZV and multiple polylogarithms (see (11.43))
with sixth roots of unity as arguments. In fact, those two ‘additional’ diagrams are
not master integrals and, consequently, they do not appear in the list of the twenty
eight master integrals shown in Fig. 8.8 which are all four-loop massless propagator
master integrals [3]. So, they can be reduced to other master integrals [29] which
turn our to be planar and should have only MZV in their ε-expansions according to
the above mentioned result of [10].

The ε-expansion of M4,5 was evaluated in [29] up to transcendentality weight
twelve and only MZV were observed there. Moreover, this was also done in [30]
with DRA for all the four-loop massless propagator master integrals, i.e. diagrams
of Fig. 8.8 (where the complexity levels of the master integrals are also shown),
with the same qualitative conclusion that only MZV are present there. (For the IBP
reduction of integrals in DRR, the C version of FIRE [38] was used.) Since any other
four-loop massless propagator integral, with any integer powers of numerators and
propagators, can be represented, due to an IBP reduction, as a linear combination
of the master integrals, with coefficients which are rational functions of d, we come
to the conclusion that any four-loop massless propagator integral has only MZV in
its epsilon expansion up to transcendentality weight twelve. This means that if we
want to find something beyond MZV in four-loop massless propagator diagrams we
have to go to higher transcendentality weights. This is certainly possible within DRA
method.

Taking these results into account one obtains more motivations to try to prove
that there are only MZV in massless propagator diagrams. One more confirmation of
this hypothesis, for an infinite series of diagrams, is the proof [11] of the conjecture
of [9] about so-called zig-zag propagators graphs expressed in terms of odd zeta

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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Fig. 8.8 Master integrals for massless four-loop propagator diagrams. The complexity level is
indicated to the left

values ζ(2n − 1). Another alternative is to continue to look for unusual constants in
higher loops. Keeping in mind the dramatic progress of the last years in the field of
evaluating Feynman integrals, this also looks to be a possible scenario.
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Chapter 9
Asymptotic Expansions in Momenta
and Masses

If a given Feynman integral depends on kinematic invariants and masses which
essentially differ in scale, a natural idea is to expand it in ratios of small and large
parameters. As a result, the integral is written as a series of simpler quantities than
the original integral itself and it can be substituted by a sufficiently large number
of terms of such an expansion. For limits typical of Euclidean space (for example,
the off-shell large-momentum limit or the large-mass limit), one can write down the
corresponding asymptotic expansion in terms of a sum over certain subgraphs of a
given graph [3–7, 14, 15, 17]. This prescription of expansion by subgraphs has been
mathematically proven (see [14] and Appendix B.2 of [17]).

For limits typical of Minkowski space (i.e. which cannot be formulated in
Euclidean space) the universal strategy of expansion by regions [2, 16–19] is avail-
able. The two strategies are explained in details in my book [17]. The goal of this
chapter is to present important additional developments which have appeared after
its publication [9, 10]. It will be explained how to reveal algorithmically regions
relevant to a given limit.

In the first two sections, the two strategies are formulated and illustrated through
simple one- and two-loop examples. In Sect. 9.3, the expansion by regions is
formulated in terms of parametric representations of Feynman integrals. Then, in
Sects. 9.4–9.6, a geometrical algorithm [9, 10] to reveal regions is described, fol-
lowing [10] and [9], correspondingly. Finally, in Sect. 9.7 the mathematical status of
expansion by regions is discussed.

9.1 Expansion by Subgraphs

Let us consider a Feynman integral FΓ , corresponding to a graph Γ , in an off-shell
large-momentum limit. So, FΓ depends on the large Euclidean external momenta
Q1, . . . , Qn1 and the small external momenta q1, . . . , qn2 . All the masses are sup-
posed to be small. Its asymptotic expansion in this limit is described by the following

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 203
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_9,
© Springer-Verlag Berlin Heidelberg 2012



204 9 Asymptotic Expansions in Momenta and Masses

short formula [3–7, 14, 15, 17]

FΓ ∼
∑
γ

FΓ/γ ◦ MγFγ, (9.1)

which needs some explanations.
The sum (9.1) runs over asymptotically irreducible (AI) subgraphs. To define this

class of subgraphs let us denote by γ̂ the graph that is obtained from a given subgraph
γ by identifying1 all the external vertices associated with the large external momenta.
All the graphs of this form are subgraphs of the graph Γ̂ . So, a subgraph γ is AI if

(i) it contains all the vertices with the large external momenta and
(ii) γ̂ is one-particle-irreducible (1PI).

Furthermore, Fγ and FΓ/γ are Feynman integrals for the graphs γ and Γ/γ,
correspondingly. The operator Mγ corresponding to an AI subgraph γ is the Taylor
expansion operator with respect to its masses and small external momenta:

MγFΓ =
∫

dk1 . . . dkh ΠΓ/γTq1,...,m1,...,kh(γ)+1,...,kh Πγ, (9.2)

where the integrand is naturally subdivided into the factors Πγ and ΠΓ/γ corre-
sponding to γ and Γ/γ. It is implied that the large external momenta flow through γ,
so that there is no dependence on them in ΠΓ/γ . The loop momenta kh(γ)+1, . . . , kh

are external for γ and, by definition, they are considered small.
For any fixed order of expansion, MγFγ is a polynomial in the external momenta

and the loop momenta of Γ/γ. The symbol ◦ denotes the insertion of the polynomial
which stands to the right of it into the reduced vertex of the graph Γ/γ, i.e. to the
vertex to which the subgraph γ was reduced.

As explained in [17], the remainder of expansion (9.1) can be described by the
forest formula based on operators Mγ and, in this formula, the sum runs over nests
of AI subgraphs, i.e. families which can be ordered with respect to the inclusion,
γ1 ⊂ γ2 ⊂ . . . .

Let me illustrate this general prescription using a couple of examples, in particular,
our favourite one.

Example 9.1 One-loop propagator Feynman integral (1.2) corresponding to Fig. 1.1
with the indices 2 and 1:

FΓ (q2, m2; d) =
∫

ddk

(k2 − m2)2(q − k)2 . (9.3)

There are contributions of two subgraphs: the graph Γ itself and the subgraph γ
consisting of the massless line. The contribution from Γ is obtained by the expansion
of the massive propagator in a Taylor series in the mass m. The contribution from

1 Another possibility is to introduce a new vertex and connect it with each external vertex by a new
line.

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
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γ is obtained by expanding the propagator 1/(q − k)2 in a Taylor series in the loop
momentum k which is external for the subgraph:

1

(q − k)2 = 1

q2 + 2q · k − k2

(q2)2 + (2q · k − k2)2

(q2)3 + · · · . (9.4)

There is no contribution from the subgraph consisting of the massive line because
the corresponding integral is a zero scaleless integral.

Adding the two contributions we arrive at the following expansion:

FΓ (q2, m2; d) ∼
∫

ddk

(k2)2(q − k)2 − 2m2
∫

ddk

(k2)3(q − k)2 + · · ·

+ 1

q2

∫
ddk

(k2 − m2)2 + 1

(q2)2

∫
(2q · k − k2) ddk

(k2 − m2)2 + · · · . (9.5)

Evaluating the integrals on the right-hand side by use of (10.6) and (10.7), we
obtain the following result:

FΓ (q2, m2; d) ∼ iπd/2

(−q2)1+ε
Γ (1 − ε)2Γ (ε)

Γ (1 − 2ε)

(
1 + 2ε

m2

q2 + · · ·
)

+ iπd/2

q2(m2)ε
Γ (ε)

(
1 + ε

1 + ε

m2

q2 + · · ·
)

. (9.6)

The pole in ε in the contribution from Γ is of IR nature, while the pole in the
contribution from γ is UV. In fact, poles are present only in the leading-order terms.
We observe that the poles are cancelled to produce a result finite at ε = 0:

FΓ (q2, m2; 4) ∼ iπ2

q2

[
ln

(−q2

m2

)
− m2

q2 + · · ·
]

. (9.7)

An arbitrary, nth, term of the expansion can easily be evaluated, with a subsequent
summation to obtain (1.5).

If both masses are non-zero in such an example we have three contributions. Let
us consider

Example 9.2 The one-loop self-energy diagram of Fig. 2.2 given by (2.9) with equal
non-zero masses:

FΓ (q2, m2; d) =
∫

ddk

(k2 − m2)[(q − k)2 − m2] . (9.8)

The contribution from the subgraph consisting of the line for 1/[(q − k)2 − m2]
changes to

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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1

(q − k)2 − m2 = 1

q2 + 2q · k − k2 + m2

(q2)2 + (2q · k − k2 + m2)2

(q2)3 + · · · (9.9)

and we obtain a non-zero contribution from the subgraph consisting of the line for
1/(k2 −m2) which is, of course, equal to the previous one. Then the calculations are
similar to the Example 9.1. Eventually, one can evaluate general terms of expansion
for all the contributions and sum them up, reproducing the results (1.7) or (at general
ε) (1.8).

Let us now consider

Example 9.3 The two-loop propagator diagram of Fig. 3.10 with arbitrary integer
powers of the propagators and general masses which are small with respect to the
external momentum.

The Feynman integral has the form

FΓ (a1, . . . , a5; m1, . . . , m5) =
∫

ddk

(k2 − m2
1)

a1[(q − k)2 − m2
2]a2

×
∫

ddl

(l2 − m2
3)

a3[(q − l)2 − m2
4]a4 [(k − l)2 − m2

5]a5
. (9.10)

The corresponding set of AI subgraphs is shown in Fig. 9.1. The other subgraphs
are not AI and do not contribute to (9.1). For example, the subgraph {1, 2, 5} does
not have a path between external vertices, and the subgraph {1, 3, 5} is one-particle
reducible even after identifying the two external vertices. In the ‘physical’ language,
the flow of the external momentum cannot be distributed through line 5.

Let us now choose a specific case, where m1 = . . . = m4 = m and m5 = 0 and
all the indices ai are equal to one. The contribution of Type 1, i.e. when γ = Γ , is
obtained by Taylor-expanding the propagators in the masses. The resulting massless
two-loop self-energy diagrams given by (3.44) can easily be evaluated by means of
the triangle rule following from IBP as it was explained in Sect. 6.1.

All four contributions of Type 2 (see Fig. 9.1) are equal to each other because
of the symmetry of the diagram. The subgraph {2, 3, 4, 5} generates the following
contribution:

∫
ddk

k2 − m2

∫
ddl Tk,m

1

(l2 − m2)[(q − k)2 − m2](k − l)2[(q − l)2 − m2]
= 1

q2

∫
ddk

k2 − m2

∫
ddl

(l2)2(q − l)2 + · · ·

= −
(

iπd/2
)2 Γ (ε− 1)G(2, 1)

(−q2)2+ε(m2)ε−1 + · · · , (9.11)

where the function G is given by (3.7). All the terms in the Type 2 contributions are
products of massless one-loop integrals and massive vacuum integrals with numer-
ators and can analytically be evaluated by means of (10.2) and (10.10), respectively.

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Fig. 9.1 The subgraphs contributing to the large-momentum expansion of Fig. 3.10

In our simple case, the Type 3 contribution is zero because the fifth line is massless.
It would be non-zero in the case m5 �= 0 when the corresponding series in the result
would have the same structure as that of the Type 2 contribution and would be
evaluated by means of the same formulae.

For Type 4, we have two equal contributions, from γ = {1, 4, 5} and {2, 3, 5}.
Let γ = {1, 4, 5}. According to our prescriptions, we choose the loop momenta in
a different way and let the external momentum flow through all three lines of the
subgraphs. We obtain the following contribution:

∫
ddk

k2 − m2

∫
ddl

l2 − m2 Tk,l,m
1

[(q − l)2 − m2](q − k − l)2[(q − k)2 − m2]
= 1

(q2)3

∫
ddk

k2 − m2

∫
ddl

l2 − m2 + · · ·

=
(

iπd/2
)2 Γ (ε− 1)2

(q2)3(m2)2ε−2 + · · · , (9.12)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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where all the terms on the right-hand side are products of tadpoles with numerators
evaluated by means of (10.2).

There are two subgraphs of Type 5, {1, 3} and {2, 4}, with equal contributions.
The subgraph {2, 4} gives

∫ ∫
ddk ddl

(k2 − m2)(l2 − m2)(k − l)2 Tk,l,m
1

[(q − k)2 − m2][(q − l)2 − m2]
= 1

(q2)2

∫ ∫
ddk ddl

(k2 − m2)(l2 − m2)(k − l)2 + · · ·

=
(

iπd/2
)2 Γ (ε)2

(1 − ε)(1 − 2ε)(q2)2(m2)2ε−1 + · · · , (9.13)

where all the terms on the right-hand side can be evaluated by means of (10.38) and
its generalization to the case with numerators.

In the leading order (LO) of the expansion of our diagram, only Type 1 contributes.
In the next-to-leading order (NLO) m2, we also have contributions of Types 2 and 5
because Type 3 gives zero and Type 4 starts from the order m4. Although the original
diagram is finite, there are poles up to the second order in the individual contributions:
IR poles in Type 1, products of UV and IR poles in Types 2–4 and UV poles in Type 5.
Collecting the LO and NLO contributions we observe that the poles in ε are cancelled
and we obtain the following result:

FΓ (1, . . . , 1; m, m, m, m, 0)

∼
(

iπ2
)2

(
6ζ(3)

q2 + 2m2

(q2)2

[
ln2

(
−q2/m2

)
+ 4 ln

(
−q2/m2

)
+ 6

])
+ · · · .

(9.14)

The large mass expansion as well as expansions in other limits typical of Euclidean
space are described by the same formula (9.1) with the corresponding changes in the
definition of AI subgraphs—see [15, 17].

9.2 Expansion by Regions

The strategy of expansion by regions [2, 16–19] consists of the following
prescriptions:

• Divide the space of the loop momenta into various regions and, in every region,
expand the integrand in a Taylor series with respect to the parameters that are
considered small there.

• Integrate the integrand, expanded in the appropriate way in every region, over the
whole integration domain of the loop momenta.

• Set to zero any scaleless integral.

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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For our favourite example of the integral (9.3), we have two regions that determine
the asymptotic behaviour: k ∼ m and k ∼ q. For the first of them, the massive
propagator is not expanded and the massless propagator is expanded in k. For the
second of them, the massive propagator is expanded in m and the massless propagator
is not expanded. Thus, the region where k ∼ m corresponds to the contribution from
the subgraphγ consisting of the massless line and the region where k ∼ q corresponds
to the contribution from the graph Γ within expansion by subgraphs.

In fact, for limits typical of Euclidean space, where we have two scales, for
example Q and q, there is a simple equivalence of the two strategies. For a given
loop momentum we define regions where this momentum is large or small:

large, k ∼ Q, (9.15a)

small, k ∼ q. (9.15b)

Let us then define the set of regions labelled by 1PI subgraphs of the given graph:

ki ∼ Q, if ki is a loop momentum of γ,

ki ∼ q, if ki is not a loop momentum of γ. (9.16)

In the contribution from the region corresponding to a given γ, we can expand
every propagator from γ not only in its masses and the small external momenta
flowing through it but also in the rest of the loop momenta of the whole graph
(which actually correspond to the reduced graph Γ/γ). We thus obtain nothing but
the contribution from the subgraph γ within the method of expansion by subgraphs.
So we reproduce, within expansion by regions, the general prescriptions (9.1).

However, expansion by regions works for much more general limits than expan-
sion by subgraphs. Here two limits typical of Minkowski space are considered. (A lot
of other examples can be found in [17].) Let us turn again to the diagram of Example
3.3, i.e.

Example 9.4 The massless on-shell box diagram of Fig. 3.6 with p2
i = 0, i =

1, 2, 3, 4 and all the indices equal to one

F(s, t; d) =
∫

ddk

(k2 + 2p1 · k)(k2 − 2p2 · k)k2(k + r)2 , (9.17)

where r = p1 + p3.
Let us expand it in the Regge limit, |t | � |s| (which corresponds to the scattering

at small angles). Let us choose the external momenta as follows:

p1,2 = (∓Q/2, 0, 0, Q/2), r = (T/Q, 0,

√
T + T 2/Q2, 0), (9.18)

where s = −Q2 and t = −T . The regions that are typical in this limit are hard and
collinear. We have, in particular, the following region:

http://dx.doi.org/10.1007/978-3-642-34886-0_3
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1 − collinear(1c), k+ ∼ T/Q, k− ∼ Q , k ∼ √
T , (9.19)

where k = (k1, k2) and k± are the light-cone coordinates k± = k0 ± k3 with
2p1,2 · k = Qk±. The (2c) region is defined by the permutation of k+ and k− (i.e.
p1 and p2).

The hard region generates a Taylor expansion of the integrand in t but, owing
to the kinematics, this is a Taylor expansion in the four-vector r = p1 + p3. The
leading hard term contributes in the next-to-leading-order, 1/s2. This term is given
by the forward-scattering box, with p3 = −p1 and p4 = −p2, and can be evaluated
by means of alpha parameters, with the following result:

F (h), LO = iπd/2 Γ (−ε)2Γ (1 + ε)

(1 + ε)Γ (−2ε)(−s)2+ε . (9.20)

In the (2c) region, k2 and p2 · k are of order T , while p1 · k is of order Q2.
Moreover, (k + r)2 ≡ k2 + 2k · r − T ∼ (k + r̃)2, where

r̃ = (T/(2Q), 0,
√

T ,−T/(2Q)), (9.21)

with 2p1 · r̃ = 0 and −2p2 · r̃ = r̃2 = −T .
Thus the (2c) contribution is obtained by expanding the propagator 1/(k2+2p1 ·k)

in a Taylor series in k2, and by expansion also in a Taylor series in 2p1 · r . (Observe
that we are dealing with a function of three kinematical variables, 2p1 ·r, 2p2 ·r and
r2. So we expand the integrand (e.g. in the alpha representation) in 2p1 · r and then
set 2p1 · r = T .) Only the leading term in the Taylor expansion in k2 is non-zero,
because, starting from the next order, the factor k2 cancels the propagator 1/k2 and
we obtain a zero scaleless integral.

It turns out that the individual collinear contributions are not regularized
dimensionally, so that we introduce an auxiliary analytic regularization by consider-
ing the powers of the first two propagators to be 1 + λ1 and 1 + λ2, with λ1 �= λ2,
evaluate both contributions and then take the limit λ2 → λ1 → 0 in the sum of
the two contributions. The leading analytically regularized (2c) contribution is then
easily evaluated by means of alpha parameters, with the following result:

F (2c), LO = iπd/2 Γ (λ2 − λ1)Γ (1 + λ2 + ε)Γ (−λ2 − ε)2

Γ (1 + λ2)Γ (−λ1 − λ2 − 2ε)(Q2)1+λ1 T 1+λ2+ε . (9.22)

The (1c) contribution is obtained by the change λ1 ↔ λ2. Summing the two collinear
contributions and evaluating the next-to-leading contribution in a similar way, we
obtain, in the limit λ1,2 → 0,

F (c) = iπd/2 Γ (−ε)2Γ (1 + ε)

Γ (−2ε)s(−t)1+ε

[
ln(t/s) + 2ψ(−ε) − ψ(1 + ε) + γE

+ε t

s

(
ln

t

s
+ 2ψ(−ε) − ψ(1 + ε) + γE − 1

ε
− 1

)
+ · · ·

]
. (9.23)
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Combining (9.20) and (9.23) in the limit ε → 0 we see that, up to the finite
part in ε, the hard and collinear terms at next-to-leading order cancel each other.
In fact, this phenomenon takes place in an arbitrary order of the expansion starting
from the NLO, so that we are left with only the leading collinear contribution which
reproduces the result obtained with Feynman parameters and given by (3.34).

As a second example of a limit typical of Minkowski space let us take the threshold
limit. Let us consider

Example 9.5 The one-loop self-energy diagram of Fig. 2.2 given by (2.9) with equal
non-zero masses in the threshold limit q2 → 4m2.

Let us choose the loop momentum in another way (see Fig. 9.2) to obtain, instead of
(9.8) (used in Example 9.2), the following integral:

F(q2, y; d) =
∫

ddk

(k2 + q · k − y)(k2 − q · k − y)
, (9.24)

in order to make explicit the dependence of the propagators on the expansion
parameter, y = m2 −q2/4, of the problem. This is a usual convention: in the case of
two equal non-zero masses in the threshold, to let half of the external momentum flow
through one of the massive lines and the other half of it through the other massive
line. So we have transformed to the new variables (q2, m2) → (q2, y).

Let us perform expansion by regions. The primary task is to identify all relevant
regions in the problem. The hard region always contributes to the expansion in any
limit. In this example, the hard region generates a ‘naive’ Taylor expansion of the
integrand in y, where the integrals can be evaluated by means of partial fractions and
the tabulated formula (10.13):

F (h) =
∫

ddk Ty
1

(k2 + q · k − y)(k2 − q · k − y)

=
∫

ddk

(k2 + q · k)(k2 − q · k)
+ · · ·

= iπd/2
(

4

q2

)ε ∞∑
n=0

Γ (n + ε)

n!(1 − 2ε− 2n)

(−4y

q2

)n

. (9.25)

Fig. 9.2 One-loop propagator
diagram with two non-zero
masses in the threshold

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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Let us look for other regions. The soft region , k ∼ √
y, gives

F (s) =
∫

ddk

(q · k + i0)(−q · k + i0)
+ · · ·

= −
∫

ddk

(q · k + i0)(q · k − i0)
+ · · · = 0, (9.26)

because these are integrals without scale. Although the product in the integrand
is, strictly speaking, ill-defined because of pinching singularities, the presence of a
scaleless integral in the components of k additional to the linear combination q · k
shows that the integral is zero, according to our prescriptions.

The ultrasoft region, k ∼ y/
√

q2, also generates (for the same reason) a zero
contribution:

∫
ddk

(q · k − y + i0)(q · k + y − i0)
+ · · · = 0. (9.27)

In order to find the missing contribution, let us choose the frame q = (q0, 0)

(keeping in mind the non-relativistic flavour of the problem). We have

F =
∫

dk0 dd−1k

(k2 − k2
0 + q0k0 + y − i0)(k2 − k2

0 − q0k0 + y − i0)
. (9.28)

In any region other than the hard one, we have to suppose that some component
of k is small. It is easy to observe that we have no chances of arriving at a non-zero
contribution if we do not suppose that k0 is small. When k0 is small, i.e. at least
|k0| ≤ √

y, we can neglect k2
0 in comparison with q0k0. Thus both propagators are

expanded in k2
0, and we obtain

∫
dk0 dd−1k

(k2 + q0k0 + y − i0)(k2 − q0k0 + y − i0)
+ · · · . (9.29)

This series is already composed of quantities that are homogeneous with respect to
the expansion parameter, y. Each term can be evaluated by, first, integrating over k0
using Cauchy’s theorem. To be consistent we have to decide that, for any term arising
from the Taylor expansion in k2

0, we will close the integration contour in the same
half-plane. Let this be the upper half-plane, for definiteness. Observe that in this
example the results for the contributions of this type do not depend on this choice.
Observe also that, starting from some order of the expansion, the integrand does not
vanish when k0 → ∞. Nevertheless, we do not pay attention to this fact and all the
resulting integrals are by definition obtained by use of Cauchy’s theorem. In fact, such
manipulations can be proven by introducing an auxiliary analytic regularization—
see Appendix A.2.3 of [8], where a similar example of a triangle diagram is studied
in detail.
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It turns out, however, that in this example, only the leading term of the contribution
(9.29) survives because, for any of the subsequent terms, the resulting integrals in
the vector component, k, are integrals without scale. The leading term gives

πi√
q2

∫
dd−1k

k2 + y
= iπd/2Γ (ε− 1/2)

√
πy

q2 y−ε, (9.30)

where the spatial integral has been evaluated by means of the (d − 1)-dimensional
variant (with the replacement ε → ε+ 1/2) of (10.1).

Let us now come back to (9.29) and remember that we supposed that we had
started from the region with small k0. We have to say something about k. We do not
want the combination k2 + q0k0 + y to be expanded further because, otherwise, we
will arrive at zero scaleless integrals. This requirement fixes absolutely the order of
all the quantities involved, and we arrive at the following characterization of this new
region [2]:

potential(p), k0 ∼ y/

√
q2, k ∼ √

y. (9.31)

It is called ‘potential’ because it is connected with the Coulomb potential.
Thus we have contributions from two regions, and the whole expansion of the

given diagram near threshold consists of (9.25) and

F (p) = iπd/2Γ (ε− 1/2)

√
πy

q2 y−ε. (9.32)

The sum of these two contributions successfully reproduces the known analytic result
for the given diagram,

F(q2, y; d) = iπd/2Γ (ε)y−ε
2 F1

(
1

2
, ε; 3

2
;−q2

4y

)
, (9.33)

which can be obtained (as well as an equivalent result (1.8)) by means of Feynman
parameters. By use of (11.3), the right-hand side of (9.33) can be rewritten as a sum
of two terms, exactly corresponding to the hard and potential contributions (9.25)
and (9.32).

The general prescriptions for expanding Feynman integrals at threshold look as
follows [2]:

• Choose the canonical routing for the flow of the external momenta for the given
threshold. In particular, when there are two equal non-zero masses in the threshold,
let one half of the external momentum flow through one of the massive lines and
the other half of it through the other massive line. In the general situation with
masses mi ≡ ξi m with

∑
ξi = 1, let a portion ξi q flow through line i .

• Choose the frame q = (q0, 0).
• Consider the various regions where any loop momentum can be of one of the

following four types:

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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(hard), k0 ∼
√

q2 , k ∼
√

q2 ,

(soft), k0 ∼ √
y , k ∼ √

y ,

(potential), k0 ∼ y/

√
q2 , k ∼ √

y ,

(ultrasoft), k0 ∼ y/

√
q2 , k ∼ y/

√
q2.

• Try various choices of the loop momenta (and at the same time avoid double
counting).

• In accordance with the general strategy of expansion by regions formulated in
the beginning of this section, extend the integration to the whole space and set
scaleless integrals to zero.

9.3 Expansion by Regions in Parametric Representations

In fact, it is a non-trivial task to reveal the typical regions for a given limit. Usually,
one starts from considering one-loop examples, checks the results against known
analytical results, then proceeds in two loops etc. One can also use the second version
[12] of the code FIESTA [13] to obtain numerically several first terms of a given
asymptotic expansion, as explained in Sect. 5.8.

It turns out that it is reasonable to switch to expansion by regions for parametric
representations of Feynman integrals [16] in order to arrive at an efficient algorithm
for revealing regions. So, let us start from the parametric representation (3.36) or,
equivalently, from (3.38), i.e.

FΓ (q1, . . . , qn; d) = (−1)a

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαL δ

(∑
αl − 1

) Ua−(h+1)d/2 ∏
l α

al−1
l

(W(s1, s2, . . .))
a−hd/2 , (9.34)

where, in addition to (3.38), a dependence on kinematic invariants and/or masses in
the function W is indicated. This collection of variables is denoted by si , i = 1, 2, ....

Let us suppose that we have to study the asymptotic behaviour in a one-scale limit,
i.e. every mass and kinematic invariant has a certain scaling expressed in powers of
the small parameter of the problem, si → s′

i = ρκi si , i = 1, 2, . . .. The strategy
of expansion by regions formulated in terms of parametric integrals [16, 17] states
that the asymptotic expansion in this limit is given by a sum over regions in the
space of alpha parameters. Let us realize that we are not starting from an ‘honest’
decomposition of an initial alpha integral over some regions. Rather, by regions we
imply various relations between the integration variables, i.e. scalings of the alpha

http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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parameters in terms of the small parameter, ρ. So a region whereα1 ∼ ρr1 , . . . ,αN ∼
ρrN is labelled by a vector r = (r1, . . . , rN ) composed of the weights rl .

The contribution of the region r is obtained by scaling the masses and kine-
matic invariants according to the given limit as well as by substituting αl → α′

l =
ρrlαl , l = 1, . . . , N in the integrand of (2.37) and expanding it in powers of ρ. Here
one treats the product of the differentials as belonging to the integrand so that this
gives the factor ρ

∑
rl .

Let I (α1, . . . ,αN ; s1, s2, . . .) be the integrand in (9.34), excluding the delta func-
tion. Explicitly, the contribution of the region r is given by the prefactor in (9.34)

times ρ
∑

rl times the integral

∫ ∞

0
dα1 . . .

∫ ∞

0
dαN δ

(∑
αl − 1

)
I (α′

1, . . . ,α
′
N ; s′

1, s′
2, . . .) (9.35)

with the integrand expanded in powers of ρ.
Let us write down the LO contribution of a given region in a more explicit way.

For the two basic functions in (3.38) we have

U(α′
1, . . . ,α

′
N ) =

nmax(r;U)∑
j=nmin(r;U)

ρ jU j (α1, . . . ,αN ),

W(α′
1, . . . ,α

′
N ; s′

1, s′
2, . . .) =

nmax(r;W)∑
j=nmin(r;W)

ρ jW j (α1, . . . ,αN ; s1, s2, . . .), (9.36)

where U j and W j are polynomials. According to the prescription formulated above
the LO contribution of a region r is represented as

ρ
∑

l rl al+nmin(r;U)(a−(h+1)d/2)−nmin(r;W)(a−hd/2) (9.37)

times

(−1)a

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

×
∫ ∞

0
dα1 . . .

∫ ∞

0
dαL δ

(∑
αl − 1

) Ua−(h+1)d/2
nmin(r;U)

∏
l α

al−1
l(Wnmin(r;W)(s1, s2, . . .)
)a−hd/2 .

A region is determined up to adding a vector (c, . . . , c) with an arbitrary real
number c because the corresponding contribution stays the same. In particular, the
leading power behaviour determined by (9.37) is independent of such c.

The terms of the expansion come from various regions and can be ordered
according to accompanying powers of ρ. After keeping some first terms of the
expansion one can set ρ = 1 and write down the given Feynman integral as these

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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selected first terms plus a remainder which has a sufficiently fast decrease in the
given limit.

It turns out that only a finite number of regions contribute to the expansion because
for the rest of the regions one obtains integrals without scale which are put to zero. In
the next section, we will consider a geometrical algorithm that provides the possibility
to find the relevant regions for a given limit.

9.4 How to Reveal Relevant Regions

Our goal is to find regions which have non-zero contributions. In fact, a contribution
is zero if this is a scaleless integral. A sufficient condition for this is the homogeneity
of the integrand with respect to a strict subset of the variables αl , i.e the homogeneity
of the functions Unmin(r;U) and Wnmin(r;W) determined by (9.37) and involved in the
LO contribution (9.38). Let ν be a strict subset of the set {1, . . . , N }. So, if

Unmin(r;U)

∣∣
αl→καl ,l∈ν = κdU Unmin(r;U),

Wnmin(r;W)

∣∣
αl→καl ,l∈ν = κdW Wnmin(r;W), (9.38)

for some dU and dW then the LO contribution is zero because it is a scaleless integral.
In this situation, all the next orders of the expansion are also zero because they
differ from the LO contribution by changing powers of the functions Unmin(r;U) and
Wnmin(r;W) and inserting some polynomials. Instead of checking the homogeneity
of the two functions we can consider their product UW .

Let us consider the function W(α1, . . . ,αN ; s′
1, s′

2, . . .), i.e. the function W where
the scaling of the kinematic invariants according to a considered limit is introduced.
This is a polynomial of αl , si and ρ, i.e. each term considered at fixed numeri-
cal values of the kinematic invariants takes the form αw1

1 . . .αwN
N ρw0 , so that each

monomial is labelled by an (N + 1)-dimensional vector w = (w1, . . . , wN , w0).
So, the polynomial W generates, for a given limit, a finite set of points P[W] in
the (N + 1)-dimensional vector space. Since W is homogeneous in the variables αl ,
all these points belong to the N -dimensional hyperplane w1 + · · · + wN = h + 1.
Similarly, the points of the set P[U] belong to the (N − 1)-dimensional hyperplane
w1 + · · · + wN = h, w0 = 0.

Let us now introduce the scaling corresponding to a given region r = (r1, . . . , rN ),
i.e. αl → α′

l = ρrlαl , l = 1, . . . , N . Then a given monomial αw1
1 . . .αwN

N ρw0

transforms into αw1
1 . . .αwN

N ρr1w1+···rN wN +w0 so that its dependence on ρ becomes
ρw·r̄ where r̄ = (r, 1) ≡ (r1, . . . , rN , 1) and w · r̄ is the scalar product in R

N+1.
The contribution of r is obtained by expanding in ρ when one keeps the minimal

powers of ρ and obtains P[Wnmin(r;W)] and P[Unmin(r;U)] defined by (9.36) as
subsets of all the points P[W(α′

1, . . . ,α
′
N ; s′

1, s′
2, . . .)] and P[U(α′

1, . . . ,α
′
N )],

correspondingly.
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Before looking for relevant regions in the general case, let us turn to Example 9.2,
i.e. the Feynman integral (9.8) in the large-momentum limit so that the corresponding
scaling is m2 → m′2 = ρm2. We have U = α1 + α2 and W(m′2) = ρm2α2

1 +
ρm2α2

2 + (2ρm2 − q2)α1α2. To reveal relevant regions we consider the product
of the two functions UW . The points for the polynomials involved are shown in
Fig. 9.3. The three points P[W] are A = (0, 2, 1), B = (2, 0, 1), C = (1, 1, 0). The
two points of P[U] are D = (0, 1, 0), E = (1, 0, 0). The six points for P[UW] are
A + D, A + E, B + D, B + E, C + D, C + E .

As it was pointed out after (9.8), there are three contributions to the expansion.
In the alpha-parametric language, they correspond to the following vectors in the
three-dimensional space and the corresponding faces of the polyhedron of weights
for P[UW]:

r̄ = (0, 0, 1), P[Wnmin(r;W)Unmin(r;U)] = {C + D, C + E},
r̄ = (1, 0, 1), P[Wnmin(r;W)Unmin(r;U)] = {A + D, C + D},
r̄ = (0, 1, 1), P[Wnmin(r;W)Unmin(r;U)] = {B + E, C + E}.

Let the function W be positive. It turns out [10] that if a region (r1, . . . , rN ) gives
a non-zero contribution then the vector r̄ = (r1, . . . , rN , 1) is orthogonal to one of
the facets (i.e. faces of maximal dimension) of the envelope (or, the convex hull)
of the set P[W(α′

1, . . . ,α
′
N ; s′

1, s′
2, . . .)U(α′

1, . . . ,α
′
N )] and this vector is directed

inside this set. For example, the fourth facet in Fig. 9.3 is irrelevant because the
corresponding normal vector (where the third component is always equal to 1) is
directed outside the set of weights.

To prove this statement let us consider the convex hull H [WU] of the set
P[W(α′

1, . . . ,α
′
N ; s′

1, s′
2, . . .)U(α′

1, . . . ,α
′
N )]. Observe that P[WU] is not of full

dimension N +1 because the points in it satisfy the condition w1 + ...+wN = 2h+1

Fig. 9.3 Points corresponding to P[U], P[W(m′2)] and P[UW(m′2)] for the one- loop propagator
diagram
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following from the homogeneity of the functions W and U . Let us take a tangent
hyperplane, orthogonal to r̄ . Its intersection with H [WU] is a face G of H [WU]. Let
us suppose that this face is not a facet. Then its dimension is no more than the dimen-
sion of the whole space of weights minus three, i.e. N − 2. Hence the projection of
G along the (N +1)-st axis also has at most dimension N −2. Therefore there are at
least two linear independent vectors orthogonal to G, and we can choose its non-zero
linear combination (u1, . . . , uN , 0) such that at least one of the ui is equal to zero.
However, the existence of such a vector means that the function UW is homogeneous
with respect to some rescaling of a strict subset of integration variables, i.e. relations
of the type (9.38) are satisfied. Therefore, the integral under consideration is zero
because it is scaleless.

Thus, regions with non-zero contributions correspond only to vectors, orthogonal
to facets of H [WU]. The points corresponding to other terms should be ‘above’ the
chosen hyperplane. Hence the regions with non-zero contributions correspond to the
‘bottom side’ of H [WU].

An algorithm to find all the relevant regions [10] is based on the property proven
above. So, the problem to find the regions reduces to a known problem of computation
geometry—finding a convex hull of a given set of points in a finite-dimensional
space. Here the public algorithmquickhull [1] can be applied. The corresponding
algorithm of finding regions is called asy.m and can be downloaded from [11]. Let
us point out that we meet the problem of finding a convex hull already for third time
in this book: it appeared in Sects. 4.2 and 4.3 when studying various algorithms of
sector decompositions.

Let us consider Examples 9.2 and 9.4 using asy.m. For the Feynman integral
(9.8) in the large-momentum limit the code asy.m reports about the regions (0, 0),
(1, 0) and (0, 1).

For the box in the Regge limit, it gives the regions (0, 0, 0, 0), (1, 0, 0, 0) and
(0, 0, 1, 0). The contribution of the region (0, 0, 0, 0) is nothing but the hard con-
tribution which is obtained by expanding the integrand in a Taylor series in t . In
particular, the leading term can be evaluated in gamma functions in agreement with
the result (9.20) obtained within expansion by regions in momentum space.

According to the prescriptions formulated in the previous section, the region
(1, 0, 0, 0) gives, at leading order,

iπd/2Γ (2 + ε)

∫ ∞

0
. . .

∫ ∞

0
dα1 . . . dα4δ

(∑
αl − 1

)

× (α2 + α3 + α4)
2ε (−sα1α3 − tα2α4)

−2−ε .

However, this contribution is not regularized dimensionally, so let us introduce an
auxiliary analytic regularization, like in the example considered in the momentum-
space picture. Introducing such a regularization in the exponents of α1 and α3, we
obtain the integral

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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iπd/2 Γ (2 + ε+ λ1 + λ2)

Γ (1 + λ1)Γ (1 + λ2)

∫ ∞

0
. . .

∫ ∞

0
dα1 . . . dα4δ

(∑
αl − 1

)
αλ1

1 α
λ2
3

× (α2 + α3 + α4)
2ε+λ1+λ2 (−sα1α3 − tα2α4)

−2−ε−λ1−λ2

which can easily be evaluated recursively in terms of gamma functions. We obtain
nothing but the 2-collinear contribution (9.22). Similarly, the region (0, 0, 1, 0) gives
the 1-collinear contribution so that we reproduce the result obtained in momentum
space.

9.5 Revealing Potential Regions

The first version of the code asy.m was not capable of revealing potential regions.
Let us consider again Example 9.5 whereasy.m reported only about the hard region.
The reason for this can be seen in the corresponding parametric representation,

F(q2, y) = iπd/2 Γ (ε)

×
∫ ∞

0

∫ ∞

0

(α1 + α2)
2ε−2 δ (α1 + α2 − 1) dα1dα2[

q2

4 (α1 − α2)2 + y(α1 + α2)2 − i0
]ε , (9.39)

where the parameters αi are integrated from 0 to ∞ (restricted by the delta function).
As it was pointed out in [10], it is the region where α1 ≈ α2 (more precisely
α1 − α2 ∼ y1/2) which causes problems. In other words, the polynomial in the
square brackets in (9.39) (considered at positive q2 and y) has terms of different
sign, such that cancellations occur because of the presence of the negative term
−q2α1α2/2.

To reveal the missing potential contribution, one can perform a simple trick [9].
We decompose the integration domain into two subdomains, α1 ≤ α2 and α2 ≤ α1.
The two resulting integrals are equal to each other, but such an equality will not
generally take place for any integral. In the first domain we turn to new variables
by α1 = α′

1/2, α2 = α′
2 + α′

1/2, remove the primes at αi and obtain the integral
(again from 0 to ∞ with the usual restrictions via the delta function)

iIπd/2 Γ (ε)

2

∫ ∞

0

∫ ∞

0

(α1 + α2)
2ε−2 δ (α1 + α2 − 1) dα1dα2[

q2

4 α
2
2 + y(α1 + α2)2 − i0

]ε . (9.40)

The goal of this trick was to make the line α1 = α2 (in the old variables) the border
of an integration domain which turned out to be (in the new variables) α2 = 0.
The Mathematica command for treating such parametrical integrals as well as other
commands of asy2.m are described in details in [9]. This command reports about
the regions (0, 0) and (0, 1/2). The first of them obviously corresponds to the hard
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region in momentum-space picture and the second of them provides the potential
contribution.

According to the prescriptions for writing down contributions of regions
formulated in Sect. 9.3, the contribution of the k-th order expansion of (9.40) in
the potential region reads

iπd/2 Γ (ε)

2 k!
∫ ∞

0

∫ ∞

0
dα1dα2 α

k
2

(
∂

∂α1

)k α2ε−2
1 δ (α1 − 1)(
q2

4 α
2
2 + y α2

1

)ε . (9.41)

Only the leading order (k = 0),

iπd/2 Γ (ε)

2

∫ ∞

0

dα2(
q2

4 α
2
2 + y

)ε , (9.42)

yields a non-vanishing contribution which is evaluated in terms of gamma functions
at general ε. Taking into account that we have two identical integrals after our decom-
position, we reproduce the result (9.30).

In fact, such a trick of making manifest squares of some linear combination of
the integration parameters was already used in the algorithm of the code FIESTA
[12] (described in Sect. 4.2) in order to evaluate numerically Feynman integrals at a
threshold. Using the implementation of this procedure in FIESTA it turned out to
be possible to automate the above trick for a general Feynman integral.

The trick applied in the previous example can be generalized to look for potential
regions for any diagram. The corresponding ‘preresolution’ algorithm implemented
in asy2.m tries to eliminate factorized combinations of terms in the function W
which potentially cancel each other, like (α1 −α2)

2 in the example above. It checks
all pairs of variables (say, x and y) which are part of monomials with opposite sign.
For all those pairs the code tries to build a linear combination z of x and y such that in
the variables x and z or y and z this monomial disappears. The code checks whether in
the new variables the number of monomials with opposite sign decreases. For all such
pairs the code recursively repeats the initial procedure in the new variables. As a result
it creates a tree of possible bisections and corresponding replacements of variables.
A leaf of this tree is a set of sectors and functions such that one cannot decrease
the number of monomials with opposite sign any longer. Ideally it means that all
monomials now have the same sign. The code analyzes all leafs and chooses one of
those with the minimal number of opposite-sign monomials (or the minimal number
of sectors if the numbers of monomials with opposite sign coincide). After finishing
with the preresolution, the code performs the replacements and looks for regions in
all those sectors, using the algorithm of the original code asy.m described in [10].

It was checked [9] that the updated version asy2.m works in various examples
of the threshold expansion (considered in [2, 17]): a triangle, a box, the two-loop
propagator diagram (with the masses m, m, m, m, 0), a two-loop vertex diagram.
Because of the decomposition of a given integration domain into subdomains, the

http://dx.doi.org/10.1007/978-3-642-34886-0_4
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number of resulting integrals for various regions increases a little bit. For example, the
(hard-hard) region for the two-loop propagator diagram is described by six integrals,
the (potential-ultrasoft) region is also described by six integrals, etc. However, the
(potential-hard) region is described by four integrals with some regions (with scalings
composed of powers 1, 1/2 and 0), and four more integrals with a set of regions of a
different type (composed of 1 and 0).

9.6 Revealing Glauber Regions

It turns out that the previous version of the code asy.m failed not only for potential
but also for so-called Glauber regions. Let us consider

Example 9.6 The one-loop five-point integral in Fig. 9.4.

Here two initial-state partons both perform a collinear splitting into two partons each
with momenta p1, p2 and q1, q2, respectively. While two partons, one of each pair,
collide with a large centre-of-mass energy Q = √

(p2 + q2)2, the two remaining par-
tons exchange a particle with the small mass m. We will use the simplified kinematics
p1 = p2 = p and q1 = q2 = q with p2 = q2 = 0 and (p + q)2 = 2p · q = Q2 in
the limit m2/Q2 → 0:

F(Q2, m2) =
∫

ddk

(k2 − m2)(k2 − 2p · k)(k2 + 2p · k)

× 1

(k2 − 2q · k)(k2 + 2q · k)
. (9.43)

This five-point integral is similar to the Sudakov form factor example treated in
Sect. 6 of [8] and can be expanded in loop-momentum space employing the following
regions:

• a hard region where k ∼ Q,
• a 1-collinear region where k2 ∼ p · k ∼ m2 and q · k ∼ Q2,
• a 2-collinear region where k2 ∼ q · k ∼ m2 and p · k ∼ Q2,

Fig. 9.4 One-loop five-point diagram exhibiting a Glauber contribution
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• a Glauber region where p ·k ∼ q ·k ∼ m2, and the components of k perpendicular
to the plane spanned by p, q scale as k⊥ ∼ m.

The Glauber region provides the leading contribution scaling as (m2)−2−ε, whereas
the collinear contributions start with (m2)−1−ε and the hard contribution starts with
(m2)0.

The alpha representation for (9.43) takes the form

F(Q2, m2) = −iπd/2 Γ (3 + ε)

∫ ∞

0
. . .

∫ ∞

0
dα1 · · · dα5

× δ
(∑

i αi − 1
)

(α1 + · · · + α5)
1+2ε

[
α1(α1 + · · · + α5)m2 + (α2 − α3)(α4 − α5)Q2 − i0

]3+ε . (9.44)

The code asy.m reports on the following three regions: (0, 0, 0, 0, 0), (0, 0, 0,

1, 1) and (0, 1, 1, 0, 0). The first region is hard; its contribution starts with (m2)0.
The second and third regions start with order (m2)−1−ε. They correspond to the two
collinear regions stated for the momentum-space expansion above. But asy.m does
not find anything corresponding to the Glauber region; in particular, none of the
regions found by asy.m provides the leading (m2)−2−ε contribution.

Let us observe that, as in the previous section about potential contributions, the
polynomial in the square brackets of (9.44) has terms of different sign. The missing
Glauber contribution stems from the parameter region where either (α2 − α3) ∼
(m2)1 or (α4 − α5) ∼ (m2)1. So let us decompose the parametric integral into four
parts corresponding to the domains where the two factors (α2 − α3) and (α4 − α5)

are either positive or negative and then introduce new variables in such a way that
this product takes the form ±α′

2α
′
4. For example, in the domain α2 ≤ α3, α5 ≤ α4

we change the variables by α2 = α′
3/2, α3 = α′

2 + α′
3/2 and by α4 = α′

4 +
α′

5/2, α5 = α′
5/2, similarly to the example in the previous section. However, in

the threshold expansion the cancelling terms appeared in squared form such that
a transformation between one pair of variables was sufficient. Here two separate
factors involve cancellations, which requires a twofold change of variables.

Removing the primes from the variables αi , the parametric integral reads

F(Q2, m2) = 2(I+ + I−) (9.45)

with

I± = − iπd/2 Γ (3 + ε)

4

∫ ∞

0
. . .

∫ ∞

0
dα1 · · · dα5

× δ (α1 − 1) (α1 + α2 + α3 + α4 + α5)
1+2ε

[
α1(α1 + α2 + α3 + α4 + α5)m2 ± α2α4 Q2 − i0

]3+ε , (9.46)

where we have chosen the argument of the delta function as α1 − 1, according to the
explanations presented after (3.38) in Sect. 3.4. So we may also write

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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I± = −iπd/2 Γ (3 + ε)

4

∫ ∞

0
· · ·

∫ ∞

0
dα2 · · · dα5

× (1 + α2 + α3 + α4 + α5)
1+2ε

[
(1 + α2 + α3 + α4 + α5)m2 ± α2α4 Q2 − i0

]3+ε . (9.47)

It is sufficient to consider the expansion of I+ and obtain a result for I− by analytically
continuing Q2 → −Q2 − i0, taking into account that the dependence on Q2 is
power-like.

The code asy2.m applied to the integral I+ again reveals three regions: (0, 0, 0,

0, 0), (0, 1, 0, 0, 0 and (0, 0, 0, 1, 0).
The evaluation of the contributions to each region is straightforward. The first

region is the hard one. The contributions of the second and third regions are
not individually regularized by dimensional regularization, as it often happens for
Sudakov-type limits. We use an auxiliary analytic regularization by introducing addi-
tional powers αδ2

2 α
δ3
3 α

δ4
4 α

δ5
5 of the new variables into the integrand of (9.47), taking

the limit δ2, δ3, δ4, δ5 → 0 in the end. The LO contribution of the second and third
regions to the integral F(Q2, m2) reads

− iπd/2 iπΓ (ε)

2Q2(m2)2+ε . (9.48)

This agrees with the leading contribution of the Glauber region in the momentum-
space expansion.

We have found the leading Glauber contribution of order (m2)−2−ε. But we seem
to have lost the two collinear regions with the scalings (0, 0, 0, 1, 1) and (0, 1, 1, 0, 0)

found before the change of variables. In fact, we can evaluate the contributions
from these two regions by expanding the integral (9.47). The resulting integrals are
scaleless and regularized by the parameters δ3, δ5, so they vanish, and asy2.m is
right in omitting these two regions.

To have an additional check we can represent the integral (9.47) including the
auxiliary analytic regularization factor αδ2

2 α
δ3
3 α

δ4
4 α

δ5
5 in terms of a onefold MB rep-

resentation:

I± = −iπd/2 Γ (1 + δ3)Γ (1 + δ5)

4

1

2πi

∫
dz (m2)z(±Q2 − i0)−3−ε−z

× Γ (−z)Γ (−2 − ε+ δ2 − z)Γ (−2 − ε+ δ4 − z)

× Γ (1 − δ2 − δ3 − δ4 − δ5 + z)Γ (3 + ε+ z)

Γ (−1 − 2ε− z)
. (9.49)

The asymptotic expansion of I± in the limit m2/Q2 → 0 is obtained by taking the
residues of the poles of the functions Γ (. . . − z). The poles of Γ (−z) correspond to
the hard region, while the poles of the two functions Γ (−2−ε+δ2,4 −z) provide the
contributions of the second and third regions. So asy2.m has found all contributing
regions.
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In the MB integral (9.49) we can safely take the limit δ2,δ3,δ4,δ5 → 0, add up I+
and I−, and arrive at the MB representation

F(Q2, m2) = iπd/2 i

2

1

2πi

∫
dz (m2)z(Q2)−3−ε−zeiπ(ε+z)/2

× Γ (−z)Γ (−2 − ε− z)Γ
(−1−ε−z

2

) Γ (1 + z)Γ
( 3+ε+z

2

)
Γ (−1 − 2ε− z)

. (9.50)

The LO contribution to F(Q2, m2) is obtained from the residue of the single pole at
z = −2−ε, in agreement with (9.48). The NLO contribution stems from the residue
of the double pole at z = −1 − ε and reads

iπd/2 Γ (1 + ε)

(Q2)2(m2)1+ε

(
i
π

2
+ 2ψ(−ε) − ψ(1 + ε) + γE − ln

Q2

m2 − 1

)
. (9.51)

This agrees with the NLO contributions of the second and third regions.
At next-to-next-to-leading order (NNLO) there is a contribution from the residue

of the single pole at z = −ε which reads

− iπd/2 iπΓ (2 + ε)

4(Q2)3(m2)ε
(9.52)

and agrees with the NNLO contributions of the second and third regions. The second
NNLO contribution comes from the residue of the single pole at z = 0. It is given by

− iπd/2 i eiπε/2 Γ (−2 − ε)Γ
( 1+ε

2

)
Γ

( 1−ε
2

)
2(Q2)3+ε Γ (−1 − 2ε)

(9.53)

and agrees with the LO contribution of the hard region. So indeed all contributions
to the five-point integral up to NNLO are correctly reproduced by the contributions
of the three regions found by asy2.m after the decomposition of the integral and
the change of variables.

The trick applied in this example was generalized to an arbitrary diagram [9] by
modifying the preresolution algorithm. When revealing Glauber regions for a general
diagram, the preresolution algorithm of asy2.m tries to eliminate monomials with
opposite sign in the polynomial W by automatically separating the integration into
domains and performing changes of variables. If the preresolution is enabled, the
code warns the user once the elimination of monomials with opposite sign has not
been successful, such that possibly not all regions are revealed. This is the case if
some monomials of opposite sign remain in the polynomial W after tries to eliminate
them, or if symbols with unknown signs are present in the polynomial. Eventually,
the code either reveals all relevant regions or issues a warning.

More examples and details, in particular instructions for using asy2.m can be
found in [9].
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9.7 Mathematical Status of Expansion by Regions

The strategy of expansion by regions still has the status of experimental mathematics.
One way to try to prove it is to start from an ‘honest’ decomposition of a given inte-
gral into non-intersecting regions. At the level of a one-parametric integral which is
similar to a Feynman integral in the large-momentum limit, expansion by regions
was illustrated in [17]. This point of view was taken in [8] where it was shown
explicitly and illustrated using various one-loop examples that one can start from a
decomposition into non-intersecting regions and arrive at an expansion by regions
in the sense of this chapter. The formalism presented in [8] is formulated for general
integrals, including one-loop and multi-loop integrals as well as parametric represen-
tations, phase-space integrals and integrals unrelated to Feynman diagrams. Up to
now, however, it has mainly been tested with one-loop examples, so its applicability
to multi-loop integrals is not yet clear.

It is the alpha parametric picture that looks to be suitable for proving expansion
by regions. Let me emphasize that to prove expansion by regions at least for some
specific limit typical of Minkowski space is a natural mathematical problem. It looks
reasonable to start from situations where the function W is positive. Perhaps, this
problem is not specifically related to Feynman integrals. Let us present an example
[9] of a one-dimensional parametric integral, without any relevance to Feynman
integrals, and show that expansion by regions works successfully. To do this, we will
use asy2.m.

Let us consider the integral

F(t) =
∫ ∞

0
(t + α+ α2)λdα, (9.54)

with λ a complex parameter, in the limit t → 0. We assume that λ is in the domain
Reλ < −1/2 in order to have an absolute convergence of the integral which then
can be continued analytically to the whole complex plane as an analytic function of
λ. Running the code asy2.m we obtain the two regions (1) and (0).

The LO terms from each region can be evaluated analytically in terms of gamma
functions at general λ, with the results

tλ+1Γ (−λ− 1)

Γ (−λ)

Γ (−2λ− 1)Γ (λ+ 1)

Γ (−λ)
.

They can be checked easily by deriving the onefold MB representation

F(t) = 1

2πi

1

Γ (−λ)

∫
Γ (−z)Γ (λ− z + 1)Γ (−2λ+ 2z − 1)t zdz

and evaluating the first terms of the asymptotic expansion in the limit t → 0 by
shifting the contour to the right and taking residues at the poles of the two gamma
functions in the integrand.
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Chapter 10
Appendix A: Tables

10.1 Table of Integrals

Each Feynman integral presented here can be evaluated straightforwardly by use of
alpha or Feynman parameters. Results are presented for the ‘Euclidean’ dependence,
−k2, of the denominators, which is more natural when the powers of propagators are
general complex numbers. As usual, −k2 is understood in the sense of −k2 − i0, etc.
Moreover, denominators with a linear dependence on k are also understood in this
sense, e.g. 2p · k → 2p · k − i0, although sometimes this i0 dependence is explicitly
indicated to avoid misunderstanding.

∫
ddk

(−k2 + m2)λ
= iπd/2 Γ (λ+ ε− 2)

Γ (λ)

1

(m2)λ+ε−2
. (10.1)

∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ
= iπd/2 Γ (λ− n + ε− 2)

2nΓ (λ)

(−1)ngα1...α2n
s

(m2)λ−n+ε−2
, (10.2)

where gα1...α2n
s = gα1α2 . . . gα2n−1α2n + · · · (with (2n − 1)!! terms in the sum) is a

combination symmetrical with respect to the permutation of any pair of indices. If
the number of monomials in the numerator is odd, the corresponding integral is zero.

∫
ddk

(2l ·k)2n

(−k2 + m2)λ

= iπd/2(−2)n(2n − 1)!!Γ (λ− n + ε− 2)

Γ (λ)

(l2)n

(m2)λ−n+ε−2
. (10.3)

∫
ddk

(−k2 + m2)λ1(−k2)λ2

= iπd/2 Γ (λ1 + λ2 + ε− 2)Γ (−λ2 − ε+ 2)

Γ (λ1)Γ (2 − ε)

1

(m2)λ1+λ2+ε−2
. (10.4)

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 227
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∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ1(−k2)λ2

= iπd/2 (−1)n

2n
gα1...α2n

s
Γ (λ1 + λ2 − n + ε− 2)Γ (n − λ2 − ε+ 2)

Γ (λ1)Γ (n − ε+ 2)(m2)λ1+λ2−n+ε−2
. (10.5)

∫
ddk

(2l ·k)2n

(−k2 + m2)λ1(−k2)λ2
= iπd/2(−2)n(2n − 1)!!

× Γ (λ1 + λ2 − n + ε− 2)Γ (n − λ2 − ε+ 2)(l2)n

Γ (λ1)Γ (n − ε+ 2)(m2)λ1+λ2−n+ε−2
. (10.6)

∫
ddk

(−k2)λ1[−(q − k)2]λ2

= iπd/2 Γ (2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (4 − λ1 − λ2 − 2ε)

Γ (λ1 + λ2 + ε− 2)

(−q2)λ1+λ2+ε−2
. (10.7)

Let k(α1...αn) = kα1 . . . kαn + · · · be traceless with respect to any pair of indices,
i.e. gαiα j k

(α1...αn) = 0—see (10.43b) below. Then

∫
ddk

k(α1...αn)

(−k2)λ1 [−(q − k)2]λ2
= iπd/2 AT(λ1,λ2; n)q(α1...αn)

(−q2)λ1+λ2+ε−2
, (10.8)

where

AT(λ1,λ2; n) = Γ (λ1 + λ2 + ε− 2)Γ (n + 2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (4 + n − λ1 − λ2 − 2ε)
. (10.9)

For pure monomials, the corresponding formula has one more finite summation:

∫
ddk

kα1 . . . kαn

(−k2)λ1[−(q − k)2]λ2

= iπd/2

(−q2)λ1+λ2+ε−2

[n/2]∑
r=0

ANT(λ1,λ2; r, n)
1

2r
(q2)r {[g]r [q]n−2r }α1...αn ,

(10.10)

where

ANT(λ1,λ2; r, n)

= Γ (λ1 + λ2 + ε− 2 − r)Γ (n + 2 − ε− λ1 − r)Γ (2 − ε− λ2 + r)

Γ (λ1)Γ (λ2)Γ (4 + n − λ1 − λ2 − 2ε)
,

(10.11)
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and {[g]r [q]n−2r }α1...αn is symmetric in its indices and is composed of the metric
tensor and the vector q.

∫
ddk

(2l ·k)n

(−k2)λ1 [−(q − k)2]λ2
= iπd/2

(−q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

ANT(λ1,λ2; r, n)
n!

r !(n − 2r)! (q
2)r (l2)r (2q ·l)n−2r , (10.12)

∫
ddk

(−k2)λ1(−k2 + 2p ·k)λ2

= iπd/2 Γ (λ1 + λ2 + ε− 2)Γ (−2λ1 − λ2 − 2ε+ 4)

Γ (λ2)Γ (−λ1 − λ2 − 2ε+ 4)

1

(p2)λ1+λ2+ε−2
.

(10.13)

∫
ddk

k(α1...αn)

(−k2)λ1(−k2 + 2p ·k)λ2
= iπd/2 BT(λ1,λ2; n)

p(α1...αn)

(p2)λ1+λ2+ε−2
, (10.14)

where

BT(λ1,λ2; n) = Γ (λ1 + λ2 + ε− 2)Γ (−2λ1 − λ2 + n − 2ε+ 4)

Γ (λ2)Γ (−λ1 − λ2 + n − 2ε+ 4)
. (10.15)

∫
ddk

kα1 . . . kαn

(−k2)λ1(−k2 + 2p ·k)λ2
= iπd/2

(p2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1,λ2; r, n)
(−1)r

2r
(p2)r {[g]r [p]n−2r }α1...αn , (10.16)

where

BNT(λ1,λ2; r, n)

= Γ (λ1 + λ2 + ε− 2 − r)Γ (−2λ1 − λ2 + n − 2ε+ 4)

Γ (λ2)Γ (−λ1 − λ2 + n − 2ε+ 4)
. (10.17)

∫
ddk

(2l ·k)n

(−k2)λ1(−k2 + 2p ·k)λ2
= iπd/2

(q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1,λ2; r, n)(−1)r n!
r !(n − 2r)! (p2)r (l2)r (2p ·l)n−2r . (10.18)
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Let p ·q = 0. Then

∫
ddk

(p ·k)b1(q ·k)b2

(−k2)λ1 [−(l − k)2]λ2

= iπd/2

(−l2)λ1+λ2+ε−2

[(b1+b2)/2]∑
r=0

ANT(λ1,λ2; r, b1 + b2)
b1!b2!

4r
(l2)r

×
min{r,[b1/2]}∑

r1=max{0,r−[b2/2]}

(p ·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)! , (10.19)

and

∫
ddk

(p ·k)b1(q ·k)b2

(−k2)λ1(−k2 + 2q ·k)λ2

= iπd/2 (p2)b1/2

(q2)λ1+λ2+ε−2−b1/2−b2
Bpq(λ1,λ2; b1, b2), (10.20)

for even b1 (and are equal to zero for odd b1), where

Bpq(λ1,λ2; b1, b2)

=
b1/2+[b2/2]∑

r=b1/2

(−1)r

4r

b1!b2!
(b1/2)!(r − b1/2)! BNT(λ1,λ2; r, b1 + b2). (10.21)

∫
ddk

(−k2 + m2)λ1(2p ·k)λ2

= iπd/2

(p2)λ2/2(m2)λ1+λ2/2+ε−2

Γ (λ2/2)Γ (λ1 + λ2/2 + ε− 2)

2Γ (λ1)Γ (λ2)
. (10.22)

∫
ddk

k(α1,...,αn)

(−k2 + m2)λ1(2p ·k)λ2

= iπd/2 Γ ((λ2 + n)/2)

2Γ (λ1)Γ (λ2)

Γ (λ1 + (λ2 − n)/2 + ε− 2)

(m2)λ1+(λ2−n)/2+ε−2

p(α1,...,αn)

(p2)(λ2+n)/2
. (10.23)

∫
ddk

(−k2 + 2p ·k)λ1(2p ·k)λ2

= iπd/2

(p2)λ1+λ2+ε−2

Γ (λ1 + λ2 + ε− 2)Γ (2λ1 + λ2 + 2ε− 4)

Γ (λ1)Γ (2λ1 + 2λ2 + 2ε− 4)
. (10.24)
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∫
ddk

(−k2)λ1(2v ·k + ω − i0)λ2

= iπd/2 Γ (2 − λ1 − ε)Γ (2λ1 + λ2 + 2ε− 4)

Γ (λ1)Γ (λ2)
(v2)λ1+ε−2ω−2λ1−λ2−2ε+4.

(10.25)

∫
ddk

k(α1,...,αn)

(−k2)λ1(2v ·k + ω − i0)λ2
= iπd/2ω−2λ1−λ2+n−2ε+4

× v(α1,...,αn)

(v2)−λ1+n−ε+2

Γ (2 − λ1 + n − ε)Γ (2λ1 + λ2 − n + 2ε− 4)

Γ (λ1)Γ (λ2)
. (10.26)

Let v ·q = 0. Then

∫
ddk

(−k2)λ1[−(q − k)2]λ2(−2v ·k − i0)λ3

= iπd/2 Γ (−λ1 − λ3/2 − ε+ 2)Γ (−λ2 − λ3/2 − ε+ 2)

Γ (−λ1 − λ2 − λ3 − 2ε+ 4)

× Γ (λ1 + λ2 + λ3/2 + ε− 2)Γ (λ3/2)

2Γ (λ1)Γ (λ2)Γ (λ3)(−q2)λ1+λ2+λ3/2+ε−2(v2)λ3/2
. (10.27)

Let p2
1 = p2

2 = 0, q = p1 − p2. Then

∫
ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3

= iπd/2 Γ (−λ1 − λ3 − ε+ 2)Γ (−λ2 − λ3 − ε+ 2)

Γ (λ1)Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε+ 4)

× Γ (λ1 + λ2 + λ3 + ε− 2)

(−q2)λ1+λ2+λ3+ε−2
, (10.28)

∫
ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(2p2 ·k)λ3
= iπd/2 Γ (−λ1 − ε+ 2)

Γ (λ1)Γ (λ2)

× Γ (λ1 + λ2 + ε− 2)Γ (−λ2 − λ3 − ε+ 2)

Γ (−λ1 − λ2 − λ3 − 2ε+ 4)(−q2)λ1+λ2+λ3+ε−2
, (10.29)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3

= iπd/2 Γ (λ2 − λ1)Γ (λ2 + λ3 + ε− 2)Γ (−λ2 − ε+ 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − ε+ 2)(−q2)λ1(m2)λ2+λ3+ε−2
, (10.30)
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∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ2 − λ1)Γ (λ2 + λ3 + ε− 2)Γ (−λ2 − λ4 − ε+ 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ4 − ε+ 2)

× 1

(Q2)λ1+λ4(m2)λ2+λ3+ε−2
, (10.31)

∫
ddk

(2p1 ·k + m2)λ1(2p2 ·k + m2)λ2(−k2)λ3

= iπd/2 Γ (λ1 + λ3 + ε− 2)Γ (λ2 + λ3 + ε− 2)Γ (−λ3 − ε+ 2)

Γ (λ1)Γ (λ2)Γ (λ3)(−q2)−λ3−ε+2(m2)λ1+λ2+2λ3+2ε−4
. (10.32)

Let p2
1 = 0, p2

2 = −m2, q = p1 − p2. Then

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k + m2)λ2(−k2)λ3
= iπd/2 Γ (λ2 + λ3 + ε− 2)

(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε+ 2)Γ (−λ2 − ε+ 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − 2ε+ 4)(−q2)λ1
, (10.33)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k − m2)λ2(−k2)λ3(−q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ2 + λ3 + ε− 2)

(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε+ 2)Γ (−λ2 − λ4 − ε+ 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε+ 4)(−q2)λ1+λ4
. (10.34)

Let P2 = M2, p2 = 0, (P − p)2 = 0. Then

∫
ddk

(−k2 + 2P ·k)λ1(−k2 + 2p ·k)λ2(−k2)λ3

= iπd/2 Γ (−λ1 − λ2 − 2λ3 − 2ε+ 4)Γ (λ1 + λ2 + λ3 + ε− 2)

Γ (λ1)Γ (−λ1 − λ2 − λ3 − 2ε+ 4)

× Γ (−λ2 − λ3 − ε+ 2)

Γ (−λ3 − ε+ 2)(M2)λ1+λ2+λ3+ε−2
. (10.35)
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Let p2
1 = 0, p2

2 = m2, Q2 = 2p1 · p2. Then

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ3 − λ4)Γ (−λ1 − λ2 − 2λ3 − 2ε+ 4)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε+ 4)

× Γ (λ2 + λ3 + ε− 2)

(Q2)λ1+λ4(m2)λ2+λ3+ε−2
, (10.36)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3
= iπd/2

(Q2)λ1(m2)λ2+λ3+ε−2

× Γ (λ2 + λ3 + ε− 2)Γ (−λ1 − λ2 − 2λ3 − 2ε+ 4)

Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε+ 4)
. (10.37)

The following integrals are related to two-loop diagrams:

∫ ∫
ddk ddl

(−k2 + m2)λ1[−(k + l)2]λ2(−l2 + m2)λ3

=
(

iπd/2
)2 Γ (λ1 + λ2 + ε− 2)Γ (λ2 + λ3 + ε− 2)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ3)

× Γ (λ1 + λ2 + λ3 + 2ε− 4)

Γ (λ1 + 2λ2 + λ3 + 2ε− 4)Γ (2 − ε)(m2)λ1+λ2+λ3+2ε−4
, (10.38)

∫ ∫
ddk ddl

(−k2)λ1[−(k + l)2]λ2(m2 − l2)λ3

=
(

iπd/2
)2 Γ (λ1 + λ2 + λ3 + 2ε− 4)

(m2)λ1+λ2+λ3+2ε−4

× Γ (λ1 + λ2 + ε− 2)Γ (2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (λ3)Γ (2 − ε)
, (10.39)

∫ ∫
ddk ddl

[−2v ·(k + l)]λ1(−k2 + m2)λ2(−l2 + m2)λ3

=
(

iπd/2
)2 Γ (λ1/2 + λ2 + ε− 2)Γ (λ1/2 + λ3 + ε− 2)

Γ (λ1 + λ2 + λ3 + 2ε− 4)

× Γ (λ1/2)Γ (λ1/2 + λ2 + λ3 + 2ε− 4)

2Γ (λ1)Γ (λ2)Γ (λ3)(m2)λ1/2+λ2+λ3+2ε−4(v2)λ1/2
, (10.40)
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∫ ∫
ddk ddl

[−2v ·(k + l)]λ1[−(k + l)2]λ2(−k2 + m2)λ3(−l2 + m2)λ4

=
(
iπd/2

)2
Γ (λ1/2 + λ2 + λ3 + ε− 2)Γ (λ1/2 + λ2 + λ4 + ε− 2)

2Γ (λ1)Γ (λ3)Γ (λ4)Γ (λ1 + 2λ2 + λ3 + λ4 + 2ε− 4)

× Γ (λ1/2)Γ (λ1/2 + λ2 + λ3 + λ4 + 2ε− 4)Γ (2 − λ1/2 − λ2 − ε)

Γ (2 − λ1/2 − ε)(m2)λ1/2+λ2+λ3+λ4+2ε−4(v2)λ1/2
.

(10.41)

This is the (inverse) Fourier transformation of (−q2 − i0)−λ in d dimensions:

1

(2π)d

∫
ddq

e−ix ·q

(−q2 − i0)λ
= iΓ (d/2 − λ)

4λπd/2Γ (λ)

1

(−x2 + i0)d/2−λ . (10.42)

10.2 Some Useful Formulae

To traceless expressions and back:

kα1 . . . kαN = 1

N !
[N/2]∑
r=0

1

2r (d/2 + N − 2r)r
(k2)r {[g]r [k](N−2r)}α1...αN , (10.43a)

k(α1...αN ) = 1

N !
[N/2]∑
r=0

1

2r (2 − N − d/2)r
(k2)r {[g]r [k]N−2r }α1...αN , (10.43b)

where {[g]r [k]N−2r }α1...αN is defined after (10.11) and (a)n is the Pochhammer
symbol (11.2).

Furthermore,

(k · p)N =
[N/2]∑
r=0

aN ,r (k
2)r (p2)r (k · p)(N−2r), (10.44)

(k · p)(N ) =
[N/2]∑
r=0

bN ,r (k
2)r (p2)r (k · p)N−2r , (10.45)

k(α1...αN )k
(α1...αN ) = (d − 2)N

2N ((d − 2)/2)N
(k2)N , (10.46)

where (k · p)(N ) = k(α1...αN ) p(α1...αN ) and

aN ,r = N !
4r r !(N − 2r)!(d/2 + N − 2r)r

, (10.47)

http://dx.doi.org/10.1007/978-3-642-34886-0_11
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bN ,r = 1

4r r !(N − 2r)!(2 − N − d/2)r
. (10.48)

Summation formulae:

[(k1)
m(k2)

n ∗ gs] ≡ kα1
1 . . . kαm

1 kαm+1
2 . . . kαm+n

2 gs,α1...αm+n

=
min{m,n}∑

j≥0, j+min{m,n} even

m!n!
2(m+n)/2− j ((m − j)/2)!((n − j)/2)! j !

× (k2
1)(m− j)/2(k2

2)(n− j)/2(k1 ·k2)
j , (10.49)

[(k1)
m(k2)

n ∗ {[g]r [k3]m+n−2r }]

=
min{2r,m}∑

r1=max{0,2r−n}

min{r1,2r−r1}∑
j≥0, j+r1 even

1

(m − r1)!(n − 2r + r1)!

× m!n!
2r− j ((r1 − j)/2)!(r − (r1 + j)/2)! j ! (k

2
1)(r1− j)/2 (k2

2)r−(r1+ j)/2

× (k1 ·k2)
j (k1 ·k3)

m−r1(k2 ·k3)
n−2r+r1 . (10.50)

In particular,

[(k1)
m(k2)

n ∗ {[g]r [k3]N−2r }]
=

(
n

N − 2r

)
(k2 ·k3)

N−2r [(k1)
m(k2)

n−N+2r ∗ gs], (10.51)

where k1 ·k3 = 0, N = m + n, and

[pb1qb2 ∗ {[g]r [l]n−2r }]

= b1!b2!
2r

min{r,[b1/2]}∑
r1=max{0,r−[b2/2]}

(p ·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)! , (10.52)

where p ·q = 0 and n = b1 + b2.

[(k1)
m(k2)

n(k3)
l−m−n ∗ gs]

=
∑

j1≥0, j1+m even

∑
j2≥0, j2+n even

∑
j3≥0, j3+l−m−n even

a(l, m, n, j1, j2, j3)

× (k2
1)(m− j1)/2(k2

2)(n− j2)/2(k2
3)(l−m−n− j3)/2

× (k1 ·k2)
( j1+ j2− j3)/2(k1 ·k3)

( j1− j2+ j3)/2(k2 ·k3)
(− j1+ j2+ j3)/2 ,
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a(l, m, n, j1, j2, j3) = 2( j1+ j2+ j3−l)/2m!n!(l − m − n)!
((m − j1)/2)!((n − j2)/2)!((l − m − n − j3)/2)!

× θ( j1 + j2 − j3)θ( j1 − j2 + j3)θ(− j1 + j2 + j3)

(( j1 + j2 − j3)/2)!(( j1 − j2 + j3)/2)!((− j1 + j2 + j3)/2)! , (10.53)

where θ(n) = 1 for n ≥ 0 and θ(n) = 0 otherwise.
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Appendix B: Some Special Functions

The Gauss hypergeometric function [2] is defined by the series

2 F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn! zn, (11.1)

where
(x)n = Γ (x + n)/Γ (x) (11.2)

is the Pochhammer symbol. This power series has the radius of convergence equal
to one. It is analytically continued to the whole complex plane, with a cut, usually
chosen as [1,∞). The analytic continuation to values of z where |z| > 1 is given by

2 F1(a, b; c; z) = Γ (c)Γ (b − a)

Γ (b)Γ (c − a)
(−z)−a

2 F1

(
a, 1 − c + a; 1 − b + a; 1

z

)

+ Γ (c)Γ (a − b)

Γ (a)Γ (c − b)
(−z)−b

2 F1

(
b, 1 − c + b; 1 − a + b; 1

z

)
.

(11.3)

Another formula for the analytic continuation is

2 F1(a, b; c; z) = (1 − z)−a
2 F1

(
a, c − b; c; z

z − 1

)
. (11.4)

This is a useful parametric representation:

2 F1(a, b; c; z) = Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
dx xb−1(1 − x)c−b−1(1 − zx)−a . (11.5)

MB representations for the Gauss hypergeometric function can be found in Sect. 13.3.
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The polylogarithms [7] and generalized (Nielsen) polylogarithms [1, 5, 6] are
defined by

Lia (z) =
∞∑

n=1

zn

na
(11.6)

= (−1)a

(a − 1)!
∫ 1

0

lna−1 t

t − 1/z
dt (11.7)

and

Sa,b(z) = (−1)a+b−1

(a − 1)!b!
∫ 1

0

lna−1 t lnb(1 − zt)

t
dt, (11.8)

where a and b are positive integers.
The harmonic polylogarithms [9] Ha1,a2,...,an (x) (or H(a1, a2, . . . , an; x))

(HPL), with ai = 1, 0,−1, are defined recursively by

Ha1,a2,...,an (x) =
∫ x

0
fa1(t)Ha2,...,an (t) dt, (11.9)

where

f±1(x) = 1

1 ∓ x
, f0(x) = 1

x
, (11.10)

H±1(x) = ∓ ln(1 ∓ x), H0(x) = ln x, (11.11)

and at least one of the indices ai is non-zero. For all ai = 0, one has

H0,0,...,0(x) = 1

n! lnn x . (11.12)

The number n in (11.9) (as well as in (11.43) for multiple polylogarithms) is called
weight. Up to weight 4, HPLs with the indices 0 and 1 can be expressed in terms of
usual polylogarithms [9]:

H0(x) = ln x, (11.13)

H1(x) = − ln(1 − x), (11.14)

H0,0(x) = 1

2! ln2 x, (11.15)

H0,1(x) = Li2 (x) , (11.16)

H1,0(x) = − ln x ln(1 − x) − Li2 (x) , (11.17)

H1,1(x) = 1

2! ln2(1 − x), (11.18)
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H0,0,0(x) = 1

3! ln3 x, (11.19)

H0,0,1(x) = Li3 (x) , (11.20)

H0,1,0(x) = −2Li3 (x) + ln x Li2 (x) , (11.21)

H0,1,1(x) = S1,2(x), (11.22)

H1,0,0(x) = −1

2
ln(1 − x) ln2 x − ln x Li2 (x) + Li3 (x) , (11.23)

H1,0,1(x) = −2S1,2(x) − ln(1 − x)Li2 (x) , (11.24)

H1,1,0(x) = S1,2(x) + ln(1 − x) Li2 (x) + 1

2
ln x ln2(1 − x), (11.25)

H1,1,1(x) = − 1

3! ln3(1 − x), (11.26)

H0,0,0,0(x) = 1

4! ln4 x, (11.27)

H0,0,0,1(x) = Li4 (x) , (11.28)

H0,0,1,0(x) = ln x Li3 (x) − 3Li4 (x) , (11.29)

H0,0,1,1(x) = S2,2(x), (11.30)

H0,1,0,0(x) = 1

2
ln2 x Li2 (x) − 2 ln x Li3 (x) + 3Li4 (x) , (11.31)

H0,1,0,1(x) = −2S2,2(x) + 1

2
Li2 (x)2 , (11.32)

H0,1,1,0(x) = ln x S1,2(x) − 1

2
Li2 (x)2 , (11.33)

H0,1,1,1(x) = S1,3(x), (11.34)

H1,0,0,0(x) = −1

6
ln3 x ln(1 − x) − 1

2
ln2 x Li2 (x)

+ ln x Li3 (x) − Li4 (x) , (11.35)

H1,0,0,1(x) = −1

2
Li2 (x)2 − ln(1 − x)Li3 (x) , (11.36)

H1,0,1,0(x) = 2 ln(1 − x)Li3 (x) − ln x ln(1 − x)Li2 (x) − 2 ln x S1,2(x)

+ 1

2
Li2 (x)2 + 2S2,2(x), (11.37)

H1,0,1,1(x) = − ln(1 − x)S1,2(x) − 3S1,3(x), (11.38)

H1,1,0,0(x) = 1

4
ln2 x ln2(1 − x) − ln(1 − x)Li3 (x)

+ ln x ln(1 − x)Li2 (x) + ln x S1,2(x) − S2,2(x), (11.39)

H1,1,0,1(x) = 1

2
ln2(1 − x)Li2 (x) + 2 ln(1 − x)S1,2(x) + 3S1,3(x), (11.40)
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H1,1,1,0(x) = −1

6
ln x ln3(1 − x) − 1

2
ln2(1 − x) Li2 (x)

− ln(1 − x)S1,2(x) − S1,3(x), (11.41)

H1,1,1,1(x) = 1

4! ln4(1 − x). (11.42)

Analytic properties of HPLs (and 2dHPLs) which allow to continue them to
any domain are described in [3]. A Mathematica package dealing with HPLs is
presented in [8].

The HPLs are partial cases of multiple polylogarithms introduced by mathemati-
cians and defined recursively by [4]

G(a1, . . . , an; z) =
∫ z

0

dt

t − a1
G(a2, . . . , an; t), (11.43)

with G(z) = 1 and where ai , z ∈ C. In the special case where ai = 0 for all i one
has by definition

G(0, . . . , 0; x) = 1

n! lnn x . (11.44)

So, the HPLs correspond to ai ∈ {−1, 0, 1}:

H(a1, . . . , an; x) = (−1)k G(a1, . . . , an; x), ai ∈ {−1, 0, 1}, (11.45)

where k is the number of elements ai equal to +1. Here are other partial cases where
multiple polylogarithms reduce to polylogarithms and generalized polylogarithms:

G(0n−1, a; x) = −Lin
( x

a

)
, G(0n, ap; x) = (−1)p Sn,p

( x

a

)
, (11.46)

where a = (a1, . . . , an), an = (a, . . . , a︸ ︷︷ ︸
n

) and a �= 0. The properties of the multiple

polylogarithms have been studied very well. For example, they form a shuffle algebra.
The multiple polylogarithms can also be represented [4] as multiple nested sums

Lim1,...,mk (x1, . . . , xk) =
∑

n1<n2<···<nk

xn1
1 xn2

2 · · · xnk
k

nm1
1 nm2

2 · · · nmk
k

(11.47)

=
∞∑

nk=1

xnk
k

nmk
k

nk−1∑
nk−1=1

. . .

n2−1∑
n1=1

xn1
1

nm1
1

. (11.48)

where the series converges at least at |xi | < 1. (Some authors use the reverse sum-
mation convention n1 > · · · > nk .) The two definitions are related by
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Lim1,...,mk (x1, . . . , xk) = (−1)k Gmk ,...,m1

(
1

xk
, . . . ,

1

x1 . . . xk

)
, (11.49)

where

Gm1,...,mk (t1, . . . , tk) = G(0, . . . , 0︸ ︷︷ ︸
m1−1

, t1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, tk; 1). (11.50)
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Chapter 12
Appendix C: Summation Formulae

In this appendix, summation formulae for series involving nested sums and binomial
coefficients are presented. Some of them are used in this book. These series have a
canonical form, in the sense that the argument of a nested sum Sk is n − 1, there
are powers of 1/n j etc. If the arguments are somehow shifted one can reduce the
summation problem to the tables below by some manipulations with a given series.
But I would recommend very much, in case of series with nested sums and inverse
powers of n, to apply the packages SUMMER [13] and XSummer [10] written in
FORM [12].

Nested sums are defined as follows [13]:

Si (n) =
n∑

j=1

1

j i
, Sik(n) =

n∑
j=1

Sk( j)

j i
, (12.1)

Sikl(n) =
n∑

j=1

Skl( j)

j i
, Siklm(n) =

n∑
j=1

Sklm( j)

j i
, (12.2)

etc. Properties and algorithms for the nested sums (also for negative indices which
are defined with (−1) j ) are presented in [13]. In particular, for positive indices, we
have

S j,k(n) + Sk, j (n) = S j (n)Sk(n) + S j+k(n). (12.3)

The nested sums are closely connected with multiple zeta values

ζ(m1, . . . , mk) =
∞∑

i1=1

i1−1∑
i2=1

· · ·
ik−1−1∑

ik=1

k∏
j=1

sgn(m j )
i j

i
|m j |
j

. (12.4)

see, e.g., [1, 3–5, 11, 15] and the reviews [2, 8, 16]. The number m1 + · · · + mk is
called weight.
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The sums with one index are connected with the ψ function (the logarithmical
derivative of the gamma function) as

ψ(n) = S1(n − 1) − γE, (12.5)

ψ(k)(n) = (−1)kk! (Sk+1(n − 1) − ζ(k + 1)) , k = 1, 2, . . . , (12.6)

where ζ(z) is the Riemann zeta function

ζ(z) =
∞∑

n = 1

1

nz
. (12.7)

12.1 Some Number Series

These are series up to weight 6 with at least 1/n2 dependence:

∞∑
n = 1

1

n2 = π2

6
, (12.8)

∞∑
n = 1

1

n3 = ζ(3), (12.9)

∞∑
n = 1

S1(n − 1)
1

n2 = ζ(3), (12.10)

∞∑
n = 1

1

n4 = π4

90
, (12.11)

∞∑
n = 1

S1(n − 1)
1

n3 = π4

360
, (12.12)

∞∑
n = 1

S1(n − 1)2 1

n2 = 11π4

360
, (12.13)

∞∑
n = 1

S2(n − 1)
1

n2 = π4

120
, (12.14)

∞∑
n = 1

1

n5
= ζ(5), (12.15)

∞∑
n = 1

S1(n − 1)
1

n4 = 2ζ(5) − π2ζ(3)

6
, (12.16)
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∞∑
n = 1

S2(n − 1)
1

n3 = π2ζ(3)

2
− 11ζ(5)

2
, (12.17)

∞∑
n = 1

S1(n − 1)2 1

n3 = π2ζ(3)

6
− 3ζ(5)

2
, (12.18)

∞∑
n = 1

S3(n − 1)
1

n2 = 9ζ(5)

2
− π2ζ(3)

3
, (12.19)

∞∑
n = 1

S1(n − 1)3 1

n2 = π2ζ(3)

6
+ 15ζ(5)

2
, (12.20)

∞∑
n = 1

S1(n − 1)S2(n − 1)
1

n2 = 7ζ(5)

2
− π2ζ(3)

6
, (12.21)

∞∑
n = 1

S12(n − 1)
1

n2 = 9ζ(5) − 2π2ζ(3)

3
, (12.22)

∞∑
n = 1

1

n6 = π6

945
, (12.23)

∞∑
n = 1

S1(n − 1)
1

n5
= π6

1260
− ζ(3)2

2
, (12.24)

∞∑
n = 1

S2(n − 1)
1

n4 = −4
π6

2835
+ ζ(3)2, (12.25)

∞∑
n = 1

S1(n − 1)2 1

n4 = 37π6

22680
− ζ(3)2, (12.26)

∞∑
n = 1

S3(n − 1)
1

n3 = − π6

1890
+ ζ(3)2

2
, (12.27)

∞∑
n = 1

S4(n − 1)
1

n2 = 5π6

2268
− ζ(3)2, (12.28)

∞∑
n = 1

S13(n − 1)
1

n2 = 61π6

45360
, (12.29)

∞∑
n = 1

S2(n − 1)2 1

n2 = 59π6

22680
− ζ(3)2, (12.30)

∞∑
n = 1

S1(n − 1)3 1

n3 = −11π6

5040
+ 2ζ(3)2, (12.31)

∞∑
n = 1

S1(n − 1)S2(n − 1)
1

n3 = −121π6

45360
+ 2ζ(3)2, (12.32)
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∞∑
n = 1

S12(n − 1)
1

n3 = 41π6

22680
− ζ(3)2, (12.33)

∞∑
n = 1

S1(n − 1)S3(n − 1)
1

n2 = 167π6

45360
− 3ζ(3)2

2
, (12.34)

∞∑
n = 1

S1(n − 1)2S2(n − 1)
1

n2 = 23π6

3780
− ζ(3)2, (12.35)

∞∑
n = 1

S1(n − 1)4 1

n2 = 859π6

22680
+ 3ζ(3)2, (12.36)

∞∑
n = 1

S112(n − 1)
1

n2 = 17π6

4536
− ζ(3)2, (12.37)

∞∑
n = 1

S1(n − 1)S12(n − 1)
1

n2 = 313π6

45360
− 2ζ(3)2. (12.38)

Series up to weight 6 with the factor 1/n where the convergence is provided by
other factors:

∞∑
n = 1

ψ′(n + 1)
1

n
= ζ(3), (12.39)

∞∑
n = 1

ψ′(n + 1)S1(n)
1

n
= 7π4

360
, (12.40)

∞∑
n = 1

ψ′′(n + 1)
1

n
= − π4

180
, (12.41)

∞∑
n = 1

ψ′(n + 1)S1(n)2 1

n
= π2ζ(3)

3
, (12.42)

∞∑
n = 1

ψ′(n + 1)2 1

n
= 5π2ζ(3)

6
− 9ζ(5), (12.43)

∞∑
n = 1

ψ′′(n + 1)S1(n)
1

n
= −2π2ζ(3)

3
+ 7ζ(5), (12.44)

∞∑
n = 1

ψ′′′(n + 1)
1

n
= −π2ζ(3) + 12ζ(5), (12.45)

∞∑
n = 1

ψ′′′′(n + 1)
1

n
= −2π6

105
+ 12ζ(3)2, (12.46)
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∞∑
n = 1

ψ′′′(n + 1)S1(n)
1

n
= π6

1512
, (12.47)

∞∑
n = 1

ψ′′(n + 1)S1(n)2 1

n
= π6

90
− 8ζ(3)2, (12.48)

∞∑
n = 1

ψ′(n + 1)2S1(n)
1

n
= − π6

432
+ 2ζ(3)2, (12.49)

∞∑
n = 1

ψ′(n + 1)S1(n)3 1

n
= 269π6

22680
, (12.50)

∞∑
n = 1

ψ′(n + 1)ψ′′(n + 1)
1

n
= 61π6

22680
− 2ζ(3)2. (12.51)

Series of weight 7 with at least 1/n2 dependence:

∞∑
n = 1

1

n7 = ζ(7), (12.52)

∞∑
n = 1

S1(n − 1)
1

n6 = 3ζ(7) − π2ζ(5)

6
− π4ζ(3)

90
, (12.53)

∞∑
n = 1

S2(n − 1)
1

n5
= −11ζ(7) + 5π2ζ(5)

6
+ π4ζ(3)

45
, (12.54)

∞∑
n = 1

S1(n − 1)2 1

n5
= −ζ(7) + π2ζ(5)

6
− π4ζ(3)

180
, (12.55)

∞∑
n = 1

S3(n − 1)
1

n4 = 17ζ(7) − 5π2ζ(5)

3
, (12.56)

∞∑
n = 1

S1(n − 1)3 1

n4 = 119ζ(7)

16
+ π2ζ(5)

3
− 11π4ζ(3)

120
, (12.57)

∞∑
n = 1

S1(n − 1)S2(n − 1)
1

n4 = 61ζ(7)

16
− π2ζ(5)

3
+ π4ζ(3)

, (12.58)

∞∑
n = 1

S12(n − 1)
1

n4 = 141ζ(7)

8
− 5π2ζ(5)

4
− π4ζ(3)

24
, (12.59)

∞∑
n = 1

S4(n − 1)
1

n3 = −18ζ(7) + 5π2ζ(5)

3
+ π4ζ(3)

90
, (12.60)

∞∑
n = 1

S13(n − 1)
1

n3 = −73ζ(7)

4
+ 5π2ζ(5)

3
+ π4ζ(3)

72
, (12.61)
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∞∑
n = 1

S1(n − 1)S3(n − 1)
1

n3 = −85ζ(7)

8
+ 11π2ζ(5)

12
+ π4ζ(3)

72
, (12.62)

∞∑
n = 1

S2(n − 1)2 1

n3 = 13ζ(7)

8
− 5π2ζ(5)

6
+ 11π4ζ(3)

180
, (12.63)

∞∑
n = 1

S1(n − 1)S12(n − 1)
1

n3 = −113ζ(7)

16
+ 7π2ζ(5)

12
+ π4ζ(3)

72
, (12.64)

∞∑
n = 1

S1(n − 1)2S2(n − 1)
1

n3 = −77ζ(7)

8
− π2ζ(5)

3
+ 7π4ζ(3)

60
, (12.65)

∞∑
n = 1

S1(n − 1)4 1

n3 = −109ζ(7)

8
− 5π2ζ(5)

6
+ 37π4ζ(3)

180
, (12.66)

∞∑
n = 1

S112(n − 1)
1

n3 = −61ζ(7)

4
+ 5π2ζ(5)

4
+ π4ζ(3)

40
, (12.67)

∞∑
n = 1

S1(n − 1)S4(n − 1)
1

n2 = 173ζ(7)

16
− 3π2ζ(5)

4
− π4ζ(3)

60
, (12.68)

∞∑
n = 1

S1(n − 1)S13(n − 1)
1

n2 = 61ζ(7)

4
− 3π2ζ(5)

2
+ π4ζ(3)

36
, (12.69)

∞∑
n = 1

S1(n − 1)2S3(n − 1)
1

n2 = 301ζ(7)

16
− 3π2ζ(5)

4
− π4ζ(3)

15
, (12.70)

∞∑
n = 1

S1(n − 1)S2(n − 1)2 1

n2 = −77ζ(7)

16
+ 13π2ζ(5)

12
− π4ζ(3)

30
, (12.71)

∞∑
n = 1

S1(n − 1)2S12(n − 1)
1

n2 = 423ζ(7)

16
− π2ζ(5)

6
− 37π4ζ(3)

360
, (12.72)

∞∑
n = 1

S1(n − 1)3S2(n − 1)
1

n2 = 307ζ(7)

16
+ 5π2ζ(5)

12
− 13π4ζ(3)

180
, (12.73)

∞∑
n = 1

S1(n − 1)5 1

n2 = 1855ζ(7)

16
+ 19π2ζ(5)

4

+ 11π4ζ(3)

30
, (12.74)

∞∑
n = 1

S1(n − 1)S112(n − 1)
1

n2 = 73ζ(7)

4
− 3π2ζ(5)

4
− π4ζ(3)

30
, (12.75)

∞∑
n = 1

S5(n − 1)
1

n2 = 10ζ(7) − 2π2ζ(5)

3
− π4ζ(3)

45
, (12.76)



12.1 Some Number Series 249

∞∑
n = 1

S14(n − 1)
1

n2 = 141ζ(7)

8
− 19π2ζ(5)

12
− π4ζ(3)

360
, (12.77)

∞∑
n = 1

S2(n − 1)S3(n − 1)
1

n2 = 19ζ(7)

16
+ 5π2ζ(5)

12
− 7π4ζ(3)

180
, (12.78)

∞∑
n = 1

S23(n − 1)
1

n2 = −131ζ(7)

16
+ 4π2ζ(5)

3
− 7π4ζ(3)

180
, (12.79)

∞∑
n = 1

S2(n − 1)S12(n − 1)
1

n2 = −141ζ(7)

16
+ 5π2ζ(5)

3
− 19π4ζ(3)

360
, (12.80)

∞∑
n = 1

S113(n − 1)
1

n2 = 113ζ(7)

16
− π2ζ(5)

2
, (12.81)

∞∑
n = 1

S212(n − 1)
1

n2 = 169ζ(7)

16
− π2ζ(5)

2
− 7π4ζ(3)

180
, (12.82)

∞∑
n = 1

S1112(n − 1)
1

n2 = 141ζ(7)

8
− π2ζ(5) − 7π4ζ(3)

180
. (12.83)

12.2 Power Series of Weights 3 and 4 in Terms
of Polylogarithms

The formulae of this section can be found in [7].

∞∑
n = 1

S2(n − 1)
zn

n
= −2S1,2(z) − ln(1 − z)Li2 (z) , (12.84)

∞∑
n = 1

S1(n − 1)2 zn

n
= −2S1,2(z) − ln(1 − z)Li2 (z) − 1

3
ln3(1 − z), (12.85)

∞∑
n = 1

S1(n − 1)
zn

n2 = S1,2(z), (12.86)

∞∑
n = 1

zn

n3 = Li3 (z) , (12.87)

∞∑
n = 1

S3(n − 1)
zn

n
= −1

2
Li2 (z)2 − ln(1 − z)Li3 (z) , (12.88)
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∞∑
n = 1

S12(n − 1)
zn

n
= 3S1,3(z) − ln(1 − z)Li3 (z) − 1

2
Li2 (z)2

+ 1

2
ln2(1 − z)Li2 (z) + 2 ln(1 − z)S1,2(z), (12.89)

∞∑
n = 1

S1(n − 1)S2(n − 1)
zn

n
= −1

2
Li2 (z)2 + ln(1 − z)(S1,2(z) − Li3 (z))

+ 1

2
ln2(1 − z)Li2 (z) , (12.90)

∞∑
n = 1

S1(n − 1)3 zn

n
= −1

2
Li2 (z)2 + 3

2
ln2(1 − z)Li2 (z)

+ ln(1 − z)(3S1,2(z) − Li3 (z)) + 1

4
ln4(1 − z), (12.91)

∞∑
n = 1

S2(n − 1)
zn

n2 = −2S2,2(z) + 1

2
Li2 (z)2 , (12.92)

∞∑
n = 1

S1(n − 1)2 zn

n2 = 2S1,3(z) − 2S2,2(z) + 1

2
Li2 (z)2 , (12.93)

∞∑
n = 1

S1(n − 1)
zn

n3 = S2,2(z), (12.94)

∞∑
n = 1

zn

n4 = Li4 (z) . (12.95)

12.3 Inverse Binomial Power Series up to Weight 4

The formulae of this section (as well as other similar formulae) can be found in [6].
See a table of formulae for the corresponding number series in [9]. Let

y =
√

4 − z − √−z√
4 − z + √−z

.

Then

∞∑
n = 1

1(
2n
n

) zn

n
= 1 − y

1 + y
ln y, (12.96)

∞∑
n = 1

1(
2n
n

) zn

n2 = − 1
2 ln2 y, (12.97)
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∞∑
n = 1

1(
2n
n

) zn

n3 = 2Li3 (y) − 2 ln y Li2 (y) − ln2 y ln(1 − y)

+ 1
6 ln3 y − 2ζ(3), (12.98)

∞∑
n = 1

1(
2n
n

) zn

n4 = 4S2,2(y) − 4Li4 (y) − 4S1,2(y) ln y

+ 4Li3 (y) ln(1 − y) + 2Li3 (y) ln y − 4Li2 (y) ln y ln(1 − y)

− ln2 y ln2(1 − y) + 1
3 ln3 y ln(1 − y) − 1

24 ln4 y

− 4 ln(1 − y)ζ(3) + 2 ln y ζ(3) + 3ζ(4), (12.99)
∞∑

n = 1

1(
2n
n

) zn

n
S1(n − 1) = 1 − y

1 + y

×
[
−2Li2 (−y) − 2 ln y ln(1 + y) + 1

2 ln2 y − ζ(2)
]
, (12.100)

∞∑
n = 1

1(
2n
n

) zn

n
S1(n − 1)2 = 1 − y

1 + y

[
8S1,2(−y) − 4Li3 (−y)

+ 8Li2 (−y) ln(1 + y) + 4 ln2(1 + y) ln y − 2 ln(1 + y) ln2 y

+ 1
6 ln3 y + 4ζ(2) ln(1 + y) − 2ζ(2) ln y − 4ζ(3)

]
, (12.101)

∞∑
n = 1

1(
2n
n

) zn

n
S2(n − 1) = − 1 − y

6(1 + y)
ln3 y, (12.102)

∞∑
n = 1

1(
2n
n

) zn

n2 S2(n − 1) = 1
24 ln4 y, (12.103)

∞∑
n = 1

1(
2n
n

) zn

n
S3(n − 1) = 1 − y

1 + y

[
1

24 ln4 y + 6Li4 (y) + ln2 y Li2 (y)

− 2ζ(3) ln y − 4 ln y Li3 (y) − 6ζ(4)
]
,

∞∑
n = 1

1(
2n
n

) zn

n
S1(n − 1)S2(n − 1) = 1 − y

1 + y

[
1
3 ln3 y ln(1 + y) − 1

24 ln4 y

+ 1
2ζ(2) ln2 y + ln2 y Li2 (−y) + ln2 y Li2 (y) +ζ(3) ln y−4 ln y Li3 (−y)

− 4 ln y Li3 (y) + ζ(4) + 8Li4 (−y) + 6Li4 (y)
]
, (12.104)
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∞∑
n = 1

1(
2n
n

) zn

n2 S1(n − 1) = 4Li3 (−y) − 2Li2 (−y) ln y

− 1
6 ln3 y + 3ζ(3) + ζ(2) ln y, (12.105)

∞∑
n = 1

1(
2n
n

) zn

n2 S1(n − 1)2 = −8S1,2(−y) ln y + 4Li3 (−y) ln y

− 2Li2 (−y) ln2 y + 4Li2 (−y)2 − 1
24 ln4 y + 4ζ(2)Li2 (−y)

+ ζ(2) ln2 y + 4ζ(3) ln y + 5
2ζ(4), (12.106)

∞∑
n = 1

1(
2n
n

) zn

n3 S1(n − 1) = 4H−1,0,0,1(−y) + S2,2

(
y2

)

− 4S2,2(y) − 4S2,2(−y) − 6Li4 (−y) − 2Li4 (y) + 4S1,2(−y) ln y

+ 4S1,2(y) ln y − 2S1,2

(
y2

)
ln y + 4Li3 (−y) ln(1 − y)

+ 2Li3 (−y) ln y + 2Li3 (y) ln y − Li2 (y) ln2 y

− 4Li2 (−y) ln y ln(1 − y) − 1
3 ln3 y ln(1 − y) + 1

24 ln4 y

+ 2ζ(2)Li2 (y) − 1
2ζ(2) ln2 y + 2ζ(2) ln y ln(1 − y)

+ 6ζ(3) ln(1 − y) − 3ζ(3) ln y − 4ζ(4), (12.107)
∞∑

n = 1

1(
2n
n

) zn

n
S1(n − 1)3 = 1 − y

1 + y

[
− 48S1,2(− y) ln(1 + y)− 48S1,3(− y)

+ 24S2,2(− y) − 12ζ(2) ln2(1 + y)− 24 ln2(1 + y)Li2 (− y)

+ 24ζ(3) ln(1 + y)+ 24 ln(1 + y)Li3 (− y) − 8 ln y ln3(1 + y)

+ 12ζ(2) ln y ln(1 + y)+ 6 ln2 y ln2(1 + y)− ln3 y ln(1 + y)

+ 1
24 ln4 y − 3

2ζ(2) ln2 y + 3 ln2 y Li2 (− y)

+ ln2 y Li2 (y) − 5ζ(3) ln y − 12 ln y Li3 ( − y) − 4 ln y Li3 (y)

+ 3
2ζ(4) + 12Li4 (− y) + 6Li4 (y)

]
. (12.108)

12.4 Power Series of Weights 5 and 6 in Terms of HPLs

∞∑
n = 1

zn

n5
= H0,0,0,0,1(z), (12.109)

∞∑
n = 1

S1(n − 1)
zn

n4 = H0,0,0,1,1(z), (12.110)
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∞∑
n = 1

S2(n − 1)
zn

n3 = H0,0,1,0,1(z), (12.111)

∞∑
n = 1

S1(n − 1)2 zn

n3 = H0,0,1,0,1(z) + 2H0,0,1,1,1(z), (12.112)

∞∑
n = 1

S3(n − 1)
zn

n2 = H0,1,0,0,1(z), (12.113)

∞∑
n = 1

S1(n − 1)3 zn

n2 = H0,1,0,0,1(z) + 3H0,1,0,1,1(z)

+ 3H0,1,1,0,1(z) + 6H0,1,1,1,1(z), (12.114)

∞∑
n = 1

S1(n − 1)S2(n − 1)
zn

n2 = H0,1,0,0,1(z) + H0,1,0,1,1(z)

+ H0,1,1,0,1(z), (12.115)

∞∑
n = 1

S12(n − 1)
zn

n2 = H0,1,0,0,1(z) + H0,1,1,0,1(z), (12.116)

∞∑
n = 1

S4(n − 1)
zn

n
= H1,0,0,0,1(z), (12.117)

∞∑
n = 1

S13(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,1,0,0,1(z), (12.118)

∞∑
n = 1

S1(n − 1)S3(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,0,1,1(z)

+ H1,1,0,0,1(z), (12.119)

∞∑
n = 1

S2(n − 1)2 zn

n
= H1,0,0,0,1(z) + 2H1,0,1,0,1(z), (12.120)

∞∑
n = 1

S1(n − 1)S12(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,0,1,1(z)

+ H1,0,1,0,1(z) + 2H1,1,0,0,1(z) + H1,1,0,1,1(z) + 2H1,1,1,0,1(z), (12.121)
∞∑

n = 1

S1(n − 1)2S2(n − 1)
zn

n
= H1,0,0,0,1(z) + 2H1,0,0,1,1(z)

+ 2H1,0,1,0,1(z) + 2H1,0,1,1,1(z) + 2H1,1,0,0,1(z)

+ 2H1,1,0,1,1(z) + 2H1,1,1,0,1(z), (12.122)



254 12 Appendix C: Summation Formulae

∞∑
n = 1

S1(n − 1)4 zn

n
= H1,0,0,0,1(z) + 4H1,0,0,1,1(z) + 6H1,0,1,0,1(z)

+ 12H1,0,1,1,1(z) + 4H1,1,0,0,1(z) + 12H1,1,0,1,1(z)

+ 12H1,1,1,0,1(z) + 24H1,1,1,1,1(z), (12.123)
∞∑

n = 1

S112(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,1,0,1(z) + H1,1,0,0,1(z)

+ H1,1,1,0,1(z), (12.124)
∞∑

n = 1

zn

n6 = H0,0,0,0,0,1(z), (12.125)

∞∑
n = 1

S1(n − 1)
zn

n5
= H0,0,0,0,1,1(z), (12.126)

∞∑
n = 1

S2(n − 1)
zn

n4 = H0,0,0,1,0,1(z), (12.127)

∞∑
n = 1

S1(n − 1)2 zn

n4 = H0,0,0,1,0,1(z) + 2H0,0,0,1,1,1(z), (12.128)

∞∑
n = 1

S3(n − 1)
zn

n3 = H0,0,1,0,0,1(z), (12.129)

∞∑
n = 1

S1(n − 1)3 zn

n3 = H0,0,1,0,0,1(z) + 3H0,0,1,0,1,1(z)

+ 3H0,0,1,1,0,1(z) + 6H0,0,1,1,1,1(z), (12.130)
∞∑

n = 1

S1(n − 1)S2(n − 1)
zn

n3 = H0,0,1,0,0,1(z) + H0,0,1,0,1,1(z)

+ H0,0,1,1,0,1(z), (12.131)
∞∑

n = 1

S12(n − 1)
zn

n3 = H0,0,1,0,0,1(z) + H0,0,1,1,0,1(z), (12.132)

∞∑
n = 1

S4(n − 1)
zn

n2 = H0,1,0,0,0,1(z), (12.133)

∞∑
n = 1

S13(n − 1)
zn

n2 = H0,1,0,0,0,1(z) + H0,1,1,0,0,1(z), (12.134)

∞∑
n = 1

S1(n − 1)S3(n − 1)
zn

n2 = H0,1,0,0,0,1(z) + H0,1,0,0,1,1(z)

+ H0,1,1,0,0,1(z), (12.135)
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∞∑
n = 1

S2(n − 1)2 zn

n2 = H0,1,0,0,0,1(z) + 2H0,1,0,1,0,1(z), (12.136)

∞∑
n = 1

S1(n − 1)S12(n − 1)
zn

n2 = H0,1,0,0,0,1(z) + H0,1,0,0,1,1(z)

+ H0,1,0,1,0,1(z) + 2H0,1,1,0,0,1(z)

+ H0,1,1,0,1,1(z) + 2H0,1,1,1,0,1(z), (12.137)
∞∑

n = 1

S1(n − 1)2S2(n − 1)
zn

n2 = H0,1,0,0,0,1(z) + 2H0,1,0,0,1,1(z)

+ 2H0,1,0,1,0,1(z) + 2H0,1,0,1,1,1(z) + 2H0,1,1,0,0,1(z)

+ 2H0,1,1,0,1,1(z) + 2H0,1,1,1,0,1(z), (12.138)
∞∑

n = 1

S1(n − 1)4 zn

n2 = H0,1,0,0,0,1(z) + 4H0,1,0,0,1,1(z)

+ 6H0,1,0,1,0,1(z) + 12H0,1,0,1,1,1(z) + 4H0,1,1,0,0,1(z)

+ 12H0,1,1,0,1,1(z) + 12H0,1,1,1,0,1(z) + 24H0,1,1,1,1,1(z), (12.139)
∞∑

n = 1

S112(n − 1)
zn

n2 = H0,1,0,0,0,1(z) + H0,1,0,1,0,1(z)

+ H0,1,1,0,0,1(z) + H0,1,1,1,0,1(z), (12.140)
∞∑

n = 1

S1(n − 1)S4(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+ H1,1,0,0,0,1(z), (12.141)
∞∑

n = 1

S1(n − 1)S13(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+ H1,0,1,0,0,1(z) + 2H1,1,0,0,0,1(z)

+ H1,1,0,0,1,1(z) + 2H1,1,1,0,0,1(z), (12.142)
∞∑

n = 1

S1(n − 1)2S3(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,0,1,1(z)

+ H1,0,0,1,0,1(z) + 2H1,0,0,1,1,1(z) + H1,0,1,0,0,1(z)

+ 2H1,1,0,0,0,1(z) + 2H1,1,0,0,1,1(z) + 2H1,1,1,0,0,1(z), (12.143)
∞∑

n = 1

S1(n − 1)S2(n − 1)2 zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+ 2H1,0,0,1,0,1(z) + 2H1,0,1,0,0,1(z) + 2H1,0,1,0,1,1(z)

+ 2H1,0,1,1,0,1(z) + H1,1,0,0,0,1(z) + 2H1,1,0,1,0,1(z), (12.144)
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∞∑
n = 1

S1(n − 1)2S12(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,0,1,1(z)

+ 2H1,0,0,1,0,1(z) + 2H1,0,0,1,1,1(z) + 3H1,0,1,0,0,1(z)

+ 2H1,0,1,0,1,1(z) + 3H1,0,1,1,0,1(z) + 3H1,1,0,0,0,1(z)

+ 4H1,1,0,0,1,1(z) + 4H1,1,0,1,0,1(z) + 2H1,1,0,1,1,1(z)

+ 6H1,1,1,0,0,1(z) + 4H1,1,1,0,1,1(z) + 6H1,1,1,1,0,1(z), (12.145)
∞∑

n = 1

S1(n − 1)3S2(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 3H1,0,0,0,1,1(z)

+ 4H1,0,0,1,0,1(z) + 6H1,0,0,1,1,1(z) + 4H1,0,1,0,0,1(z)

+ 6H1,0,1,0,1,1(z) + 6H1,0,1,1,0,1(z) + 6H1,0,1,1,1,1(z)

+ 3H1,1,0,0,0,1(z) + 6H1,1,0,0,1,1(z) + 6H1,1,0,1,0,1(z)

+ 6H1,1,0,1,1,1(z) + 6H1,1,1,0,0,1(z)

+ 6H1,1,1,0,1,1(z) + 6H1,1,1,1,0,1(z), (12.146)
∞∑

n = 1

S1(n − 1)5 zn

n
= H1,0,0,0,0,1(z) + 5H1,0,0,0,1,1(z) + 10H1,0,0,1,0,1(z)

+ 20H1,0,0,1,1,1(z) + 10H1,0,1,0,0,1(z) + 30H1,0,1,0,1,1(z)

+ 30H1,0,1,1,0,1(z) + 60H1,0,1,1,1,1(z) + 5H1,1,0,0,0,1(z)

+ 20H1,1,0,0,1,1(z) + 30H1,1,0,1,0,1(z) + 60H1,1,0,1,1,1(z)

+ 20H1,1,1,0,0,1(z) + 60H1,1,1,0,1,1(z)

+ 60H1,1,1,1,0,1(z) + 120H1,1,1,1,1,1(z), (12.147)
∞∑

n = 1

S1(n − 1)S112(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+ H1,0,0,1,0,1(z) + 2H1,0,1,0,0,1(z) + H1,0,1,0,1,1(z)

+ 2H1,0,1,1,0,1(z) + 2H1,1,0,0,0,1(z) + H1,1,0,0,1,1(z)

+ 2H1,1,0,1,0,1(z) + 3H1,1,1,0,0,1(z)

+ H1,1,1,0,1,1(z) + 3H1,1,1,1,0,1(z), (12.148)
∞∑

n = 1

S5(n − 1)
zn

n
= H1,0,0,0,0,1(z), (12.149)

∞∑
n = 1

S14(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,1,0,0,0,1(z), (12.150)

∞∑
n = 1

S2(n − 1)S3(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z)

+ H1,0,1,0,0,1(z), (12.151)
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∞∑
n = 1

S23(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,1,0,0,1(z), (12.152)

∞∑
n = 1

S12(n − 1)S2(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,1,0,1(z)

+ H1,0,1,0,0,1(z) + H1,0,1,1,0,1(z)

+ H1,1,0,0,0,1(z) + 2H1,1,0,1,0,1(z), (12.153)

∞∑
n = 1

S113(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,1,0,0,1(z)

+ H1,1,0,0,0,1(z) + H1,1,1,0,0,1(z), (12.154)
∞∑

n = 1

S212(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z)

+ H1,0,1,0,0,1(z) + H1,0,1,1,0,1(z), (12.155)
∞∑

n = 1

S1112(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z) + H1,0,1,0,0,1(z)

+ H1,0,1,1,0,1(z) + H1,1,0,0,0,1(z) + H1,1,0,1,0,1(z)

+ H1,1,1,0,0,1(z) + H1,1,1,1,0,1(z). (12.156)
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Chapter 13
Appendix D: Table of MB Integrals

13.1 MB Integrals with Four Gamma Functions

This is the first Barnes lemma:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= Γ (λ1 + λ3)Γ (λ1 + λ4)Γ (λ2 + λ3)Γ (λ2 + λ4)

Γ (λ1 + λ2 + λ3 + λ4)
. (13.1)

Results for integrals withψ(λ1+z), . . . are obtained from (13.1) by differentiating
with respect to λ1, . . .. Second derivatives give, in a similar way, results for integrals
with products of two different functionsψ(λi ±z) and with the combinationsψ′(λi ±
z) + ψ(λi ± z)2.

Various corollaries can be derived from (13.1). For example,

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ1 − λ2) − ψ(λ1 + λ3)

]
, (13.2)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ2 + λ3) − ψ(λ1 + λ3)

]
. (13.3)

The asterisk is used to indicate that the first pole of the corresponding gamma function
is of the opposite nature, i.e. the first pole of Γ (λ2 + z) in (13.2) is considered right
and the first pole of Γ (−λ2 − z) in (13.3) is considered left.

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 259
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_13,
© Springer-Verlag Berlin Heidelberg 2012
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These are four formulae with the psi function with the same condition as in (13.2):

1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ1 + z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ1 − λ2)2 − ψ(λ1 − λ2)ψ(λ1 + λ3)

+ ψ′(λ1 − λ2) − ψ′(λ1 + λ3)
]
, (13.4)

1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ2 + z)

= −1

2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
ψ(λ1 − λ2)2 − ψ(λ1 + λ3)2

+ 2ψ(λ1 − λ2)(γE − ψ(λ2 + λ3)) − 2ψ(λ1 + λ3)(γE − ψ(λ2 + λ3))

+ ψ′(λ1 − λ2) + ψ′(λ1 + λ3)
]
, (13.5)

1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(−λ2 − z)

= 1

2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
ψ(λ1 − λ2)2 + 2γEψ(λ1 + λ3)

+ ψ(λ1 + λ3)2 − 2ψ(λ1 − λ2)(γE + ψ(λ1 + λ3))

+ ψ′(λ1 − λ2) − ψ′(λ1 + λ3)
]
, (13.6)

1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ1 − λ2)ψ(λ2 + λ3)

− ψ(λ1 + λ3)ψ(λ2 + λ3) − ψ′(λ1 + λ3)
]
. (13.7)

These are four formulae with the psi function with the same condition as in (13.3):

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ1 + z)

= −Γ (λ1 − λ2)Γ (λ2 + λ3)

× [
ψ(λ1 − λ2)(ψ(λ1 + λ3) − ψ(λ2 + λ3)) + ψ′(λ1 + λ3)

]
,

(13.8)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ2 + z)

= 1

2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
(ψ(λ1 + λ3) − ψ(λ2 + λ3))

2

+ 2γE(ψ(λ1 + λ3) − ψ(λ2 + λ3)) − ψ′(λ1 + λ3) + ψ′(λ2 + λ3)
]
,

(13.9)
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1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(−λ2 − z)

= 1

2
Γ (λ1 − λ2)Γ (λ2 + λ3)

× [
2(ψ(λ1 − λ2) − γE)(ψ(λ2 + λ3) − ψ(λ1 + λ3))

+ ψ(λ1 + λ3)
2 − ψ(λ2 + λ3)

2 − ψ′(λ1 + λ3) − ψ′(λ2 + λ3)
]
,

(13.10)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ2 + λ3)

2 − ψ(λ1 + λ3)ψ(λ2 + λ3)

− ψ′(λ1 + λ3) + ψ′(λ2 + λ3)
]
, (13.11)

This is an example with the gluing of two poles:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗∗(−1 − λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2 − 1)Γ (λ2 + λ3)
[
1 − λ1 + λ2

+ (λ1 + λ3 − 1)(ψ(λ1 + λ3 − 1) − ψ(λ2 + λ3))
]
, (13.12)

where the first two poles of Γ (−1 − λ2 − z), i.e. z = −λ2 and z = −λ2 − 1, are
considered left, with the corresponding change in notation. Here it is implied that
λ1 + λ3 �= 1.

In the case λ1 + λ3 = 1, we have

1

2πi

∫ +i∞

−i∞
dz Γ (1 − λ1 + z)Γ (λ2 + z)Γ ∗∗(−1 − λ2 − z)Γ (λ1 − z)

= (λ1 + λ2 − 1)Γ (λ1 + λ2)Γ (−λ1 − λ2). (13.13)

Here is one more example of such an integral:

1

2πi

∫ +i∞

−i∞
dz Γ (1 − λ1 + z)Γ ∗(λ2 + z)Γ ∗(−1 − λ2 − z)Γ (λ1 − z)

= Γ (λ1 + λ2)Γ (−λ1 − λ2)

× [
(λ1 + λ2)(ψ(−λ1 − λ2) − ψ(1 + λ1 + λ2)) − 1

]
. (13.14)

Furthermore, we have

1

2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)

= Γ (λ1 − λ2)Γ (λ2 − λ1) [2γE + ψ(λ1 − λ2) + ψ(λ2 − λ1)] , (13.15)
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where the poles z = −λ1 and z = −λ2 are right. These are four more formulae with
these conditions:

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(λ1 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4ψ(λ1 − λ2)ψ(λ2 − λ1)

+4γE(ψ(λ2 − λ1) − 2ψ(λ1 − λ2)) − 4ψ(λ1 − λ2)2 − 4ψ′(λ1 − λ2)

+2ψ(λ2 − λ1)2 + 2ψ′(λ2 − λ1)
]
, (13.16)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(λ2 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 2ψ(λ1 − λ2)2

+ 4ψ(λ1 − λ2)(γE − ψ(λ2 − λ1)) − 8γEψ(λ2 − λ1) − 4ψ(λ2 − λ1)2

+ 2ψ′(λ1 − λ2) − 4ψ′(λ2 − λ1)
]
, (13.17)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(−λ2 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ1 − λ2)2

− 4ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) − 2ψ′(λ1 − λ2)
]
, (13.18)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(−λ1 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ2 − λ1)2

− 4(γE + ψ(λ1 − λ2))ψ(λ2 − λ1) − 2ψ′(λ2 − λ1)
]
. (13.19)

There are similar formulae with different understanding of the nature of the poles:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

= 2Γ (λ1 − λ2)Γ (λ2 − λ1) [γE + ψ(λ1 − λ2)] , (13.20)

where the pole z = −λ1 is left and the pole and z = −λ2 is right, and

1

2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)

= 2Γ (λ1 − λ2)Γ (λ2 − λ1) [γE + ψ(λ2 − λ1)] , (13.21)
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where the pole z = −λ1 is right and the pole and z = −λ2 is left. These are four
more formulae with these conditions:

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(λ1 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2

− 8ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) + 2ψ′(λ2 − λ1)
]
, (13.22)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(λ2 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4γEψ(λ2 − λ1)

− 6ψ(λ2 − λ1)2 − 6ψ′(λ2 − λ1)
]
, (13.23)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(−λ2 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2

− 8ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) + 2ψ′(λ2 − λ1)
]
, (13.24)

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(−λ1 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4γEψ(λ2 − λ1)

− 6ψ(λ2 − λ1)2 − 6ψ′(λ2 − λ1)
]
. (13.25)

Furthermore, we have

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

= Γ (λ1 − λ2)Γ (λ2 − λ1) [2γE + ψ(λ1 − λ2) + ψ(λ2 − λ1)] ,

(13.26)

where the poles z = −λ1 and z = −λ2 are left. These are four more formulae with
these conditions:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(λ1 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ1 − λ2)
2

− 4ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) − 2ψ′(λ1 − λ2)
]
, (13.27)
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1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(λ2 + z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4(γE + ψ(λ1 − λ2))ψ(λ2 − λ1)

− 2ψ(λ2 − λ1)2 − 2ψ′(λ2 − λ1)
]
, (13.28)

1

2πi

∫ +i∞
−i∞

dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(−λ2 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4ψ(λ1 − λ2)2

+ 4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2 − 4ψ(λ1 − λ2)(2γE + ψ(λ2 − λ1))

− 4ψ′(λ1 − λ2) + 2ψ′(λ2 − λ1)
]
, (13.29)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(−λ1 − z)

= −1

4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 2ψ(λ1 − λ2)
2

+ 4ψ(λ1 − λ2)(γE − ψ(λ2 − λ1)) − 8γEψ(λ2 − λ1)

− 4ψ(λ2 − λ1)
2 + 2ψ′(λ1 − λ2) − 4ψ′(λ2 − λ1)

]
. (13.30)

We also have

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2

= −Γ (λ1 − λ2)ψ
′(λ1 − λ2), (13.31)

where the pole z = −λ2 is right. These are three more formulae with this condition:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(λ1 + z)

= −Γ (λ1 − λ2)
[
ψ(λ1 − λ2)ψ

′(λ1 − λ2) + ψ′′(λ1 − λ2)
]
, (13.32)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(λ2 + z)

= Γ (λ1 − λ2)ψ
′(λ1 − λ2) [2γE + ψ(λ1 − λ2)] , (13.33)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(−λ2 − z)

= 1

2
Γ (λ1 − λ2)

[
2γEψ

′(λ1 − λ2) − ψ′′(λ1 − λ2)
]
. (13.34)
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We also have

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)2

= 1

4
Γ (λ1 − λ2)

[
π2 + 2(γE + ψ(λ1 − λ2))

2 − 2ψ′(λ1 − λ2)
]
,

(13.35)

where the pole z = −λ2 is left,

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ ∗(−λ1 − z)Γ (λ2 − z)

= −Γ (λ1 + λ2)ψ
′(λ1 + λ2), (13.36)

where the pole z = −λ1 is left, and

1

2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)

= 1

4
Γ (λ1 + λ2)

[
2(γE + ψ(λ1 + λ2))

2 + π2 − 2ψ′(λ1 + λ2)
]
,

(13.37)

where the pole z = −λ1 is right. These are three more formulae with this condition:

1

2πi

∫ +i∞
−i∞

dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(λ1 + z)

= 1

6
Γ (λ1 + λ2)

[
ψ(λ1 + λ2)3 + 3ψ(λ1 + λ2)

(
ψ′(λ1 + λ2) − γ2

E + π2

6

)

− 2γ3
E − γEπ

2 + 6γEψ
′(λ1 + λ2) − 4ζ(3) − 2ψ′′(λ1 + λ2)

]
, (13.38)

1

2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(−λ1 − z)

= − 1

12
Γ (λ1 + λ2)

[
12γEψ(λ1 + λ2)

2 + 2ψ(λ1 + λ2)
3

+ 3ψ(λ1 + λ2)

(
6γ2

E + π2

3
− 2ψ′(λ1 + λ2)

)

+ 2(4γ3
E + 2γEπ

2 − 6γEψ
′(λ1 + λ2) + 8ζ(3) + ψ′′(λ1 + λ2))

]
,

(13.39)
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1

2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(λ2 − z)

= 1

4
Γ (λ1 + λ2)

[
4γEψ(λ1 + λ2)

2 + 2ψ(λ1 + λ2)
3 + 4γEψ

′(λ1 + λ2)

+ψ(λ1 + λ2)(2γ
2
E + π2 + 2ψ′(λ1 + λ2)) − 2ψ′′(λ1 + λ2)

]
.

(13.40)

In some situations, it is possible to evaluate MB integrals with higher derivatives
of the ψ function. Here are some examples:

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)

= Γ (λ1 + λ2)
4

Γ (2(λ1 + λ2))

[
2ψ(λ1 + λ2) − ψ(2(λ1 + λ2))

]
, (13.41)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)2

= Γ (λ1 + λ2)
4

Γ (2(λ1 + λ2))

[
4ψ(λ1 + λ2)

2 − 4ψ(λ1 + λ2)ψ(2(λ1 + λ2))

+ψ(2(λ1 + λ2))
2 − ψ′(2(λ1 + λ2))

]
, (13.42)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ′(λ1 + z)

= 2
Γ (λ1 + λ2)

4

Γ (2(λ1 + λ2))
ψ′(λ1 + λ2), (13.43)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)ψ(λ2 − z)

= Γ (λ1 + λ2)
4

Γ (2(λ1 + λ2))

[
4ψ(λ1 + λ2)

2 − 4ψ(λ1 + λ2)ψ(2(λ1 + λ2))

+ψ(2(λ1 + λ2))
2 + ψ′(λ1 + λ2) − ψ′(2(λ1 + λ2))

]
, (13.44)

1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)2ψ(λ2 − z)

= Γ (λ1 + λ2)
4

Γ (2(λ1 + λ2))

[
8ψ(λ1 + λ2)

3 − 12ψ(λ1 + λ2)
2ψ(2(λ1 + λ2))

+2ψ(λ1 + λ2)(3ψ(2(λ1 + λ2))
2 + 2ψ′(λ1 + λ2) − 3ψ′(2(λ1 + λ2)))

+ψ(2(λ1 + λ2))(3ψ
′(2(λ1 + λ2)) − 2ψ′(λ1 + λ2))

−ψ(2(λ1 + λ2))
3 − ψ′′(2(λ1 + λ2))

]
, (13.45)
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1

2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ′(λ1 + z)ψ(λ2 − z)

= Γ (λ1 + λ2)
4

Γ (2(λ1 + λ2))

[
4ψ(λ1 + λ2)ψ

′(λ1 + λ2)

−2ψ(2(λ1 + λ2))ψ
′(λ1 + λ2) + ψ′′(λ1 + λ2)

]
, (13.46)

13.2 MB Integrals with Six Gamma Functions

This is the second Barnes lemma:

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (λ5 − z)

Γ (λ6 + z)

= Γ (λ1 + λ4)Γ (λ2 + λ4)Γ (λ3 + λ4)Γ (λ1 + λ5)

Γ (λ1 + λ2 + λ4 + λ5)Γ (λ1 + λ3 + λ4 + λ5)

× Γ (λ2 + λ5)Γ (λ3 + λ5)

Γ (λ2 + λ3 + λ4 + λ5)
, (13.47)

where λ6 = λ1 + λ2 + λ3 + λ4 + λ5.
Here is a collection of its corollaries:

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ ∗(−λ3 − z)Γ (λ4 − z)

Γ (λ5 + z)

= Γ (λ1 − λ3)Γ (λ2 − λ3)Γ (λ3 + λ4)

Γ (λ1 + λ2 − λ3 + λ4)

[
ψ(λ1 + λ2 − λ3 + λ4)

+ ψ(λ3 + λ4) − ψ(λ1 + λ4) − ψ(λ2 + λ4)
]
, (13.48)

where λ5 = λ1 + λ2 + λ4 and the pole z = −λ3 is considered left,

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ ∗(λ3 + z)Γ (−λ3 − z)Γ (λ4 − z)

Γ (λ5 + z)

= Γ (λ1 − λ3)Γ (λ2 − λ3)Γ (λ3 + λ4)

Γ (λ1 + λ2 − λ3 + λ4)

[
ψ(λ1 − λ3) + ψ(λ2 − λ3)

− ψ(λ1 + λ4) − ψ(λ2 + λ4)
]
, (13.49)

where λ5 = λ1 + λ2 + λ4 and the pole z = −λ3 is considered right,

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ3 + z)Γ (λ3 − z)2

Γ (λ4 + z)

= −Γ (λ1 + λ3)Γ (λ2 + λ3)

Γ (λ1 + λ2 + 2λ3)

[
ψ′(λ1 + λ3) + ψ′(λ2 + λ3)

]
, (13.50)
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where λ4 = λ1 + λ2 + λ3 and the pole z = λ3 is considered right,

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ ∗(λ2 + z)2Γ (−λ2 − z)Γ (λ3 − z)

Γ (λ4 + z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)

2Γ (λ1 + λ3)

[π2

2
+ (γE − ψ(λ1 − λ2) + ψ(λ1 + λ3)

+ ψ(λ2 + λ3))
2 + ψ′(λ1 − λ2) + ψ′(λ1 + λ3) − ψ′(λ2 + λ3)

]
,

(13.51)

where λ4 = λ1 + λ2 + λ3 and the pole z = −λ2 is considered right,

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)2Γ ∗(−λ2 − z)Γ (λ3 − z)

Γ (λ4 + z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)

Γ (λ1 + λ3)

[
ψ′(λ1 + λ3) − ψ′(λ2 + λ3)

]
, (13.52)

where λ4 = λ1 + λ2 + λ3 and the pole z = −λ2 is considered left.
The integrals (13.47) can be evaluated recursively in the case where the difference

λ6 − (λ1 + λ2 + λ3 + λ4 + λ5) is a positive integer. In particular, we have

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (−z)

Γ (λ5 + z)

= (Γ (1 + λ2 + λ3 + λ4))
−1Γ (λ1)Γ (λ3)Γ (λ2 + λ4)

Γ (1 − λ1 − λ3 − λ4)Γ (1 + λ1 + λ2 + λ4)Γ (λ1 + λ3 + λ4)

× [
Γ (1 + λ2)Γ (1 − λ1 − λ3 − λ4)Γ (λ1 + λ4)Γ (λ3 + λ4)

− Γ (λ2)Γ (−λ1 − λ3 − λ4)Γ (1 + λ1 + λ4)Γ (1 + λ3 + λ4)
]
,

(13.53)

where λ5 = λ1 + λ2 + λ3 + λ4 + 1, and

1

2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (−z)

Γ (λ5 + z)

= (Γ (2 + λ2 + λ3 + λ4))
−1Γ (λ1)Γ (λ3)Γ (λ2 + λ4)

Γ (1 − λ1 − λ3 − λ4)Γ (2 + λ1 + λ2 + λ4)Γ (λ1 + λ3 + λ4)

× [
Γ (2 + λ2)Γ (1 − λ1 − λ3 − λ4)Γ (λ1 + λ4)Γ (λ3 + λ4)

− 2Γ (1 + λ2)Γ (−λ1 − λ3 − λ4)Γ (1 + λ1 + λ4)Γ (1 + λ3 + λ4)

+ Γ (λ2)Γ (−1 − λ1 − λ3 − λ4)Γ (2 + λ1 + λ4)Γ (2 + λ3 + λ4)
]
,

(13.54)

where λ5 = λ1 + λ2 + λ3 + λ4 + 2.



13.2 MB Integrals with Six Gamma Functions 269

Here are more corollaries of the second Barnes lemma:

1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (1 − λ1)Γ (1 − λ2)

× [
Γ (1 − λ1)Γ (1 − λ2) − Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

]
, (13.55)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered left,

1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= −Γ (λ1)Γ (λ2)Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

+ Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (1 − λ1)Γ (1 − λ2)

× [
Γ (1 − λ1)Γ (1 − λ2) − Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

]
, (13.56)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered right,

1

2πi

∫ +i∞

−i∞
dz

Γ ∗(λ+ z)2Γ ∗(z)Γ (−z)Γ (−λ− z)

Γ (λ+ 1 + z)

= − 1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ+ z)Γ (z)Γ ∗(−z)Γ ∗(−λ− z)

= 1

6λ
Γ (λ)Γ (−λ)

[
12(γE + ψ(λ)) + 2λπ2

+ 3λ((ψ(λ) − ψ(−λ))2 − ψ′(λ) + ψ′(−λ))
]
, (13.57)

where the nature of the poles at z = 0 and z = −λ is indicated by asterisks, according
to our conventions,

1

2πi

∫ +i∞

−i∞
dz

Γ (λ+ z)2Γ (z)Γ ∗(−z)Γ ∗(−λ− z)

Γ (λ+ 1 + z)

= − 1

2πi

∫ +i∞

−i∞
dz

z
Γ ∗(λ+ z)Γ ∗(z)Γ (−z)Γ (−λ− z) = 1

λ2 Γ (λ)Γ (−λ)

×
[

1 + λ(ψ(λ) + ψ(−λ) + 2γE) − λ2
(
ψ′(λ) − π2

6

)]
, (13.58)
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1

2πi

∫ +i∞

−i∞
dz

Γ (λ+ z)2Γ ∗(z)Γ (−z)Γ ∗(−λ− z)

Γ (λ+ 1 + z)

= − 1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ+ z)Γ ∗(z)Γ (−z)Γ ∗(−λ− z)

= 1

λ
Γ (λ)Γ (−λ)

[
2(γE + ψ(λ)) − λ

(
ψ′(λ) − π2

6

)]
. (13.59)

We also have

1

2πi

∫ +i∞
−i∞

dz

z2 Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

Γ (2 − λ1)Γ (1 − λ2)

× Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)
[
1 + (λ1 − 1)(ψ(2 − λ1) + ψ(1 − λ2)

− ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))
]
, (13.60)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered left,

1

2πi

∫ +i∞

−i∞
dz

z2 Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= Γ (2 − λ1 − λ2 − λ3)Γ (λ3)
[−Γ (λ1)Γ (λ2)(ψ(λ1) + ψ(λ2)

− ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))

+ Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (2 − λ1)Γ (1 − λ2)

× [
1 + (λ1 − 1)(ψ(2 − λ1) + ψ(1 − λ2)

− ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))
]]

, (13.61)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered right,

1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

= − 1

λ2
1λ2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
2λ1 − λ2

+ λ1(λ1 + λ2)(γE + ψ(λ1 − λ2)) − λ1(λ1 − λ2)

× (ψ(−λ1) − ψ(−λ2) + ψ(λ2 − λ1) − ψ(1 − λ1 + λ2))
]
, (13.62)

where the pole at z = 0 is left and the nature of the first poles of the gamma functions
is shown by asterisks,
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1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

= 1

λ2
1λ

2
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
λ2

1 − λ1λ2 + λ2
2

− λ1λ2(λ1 + λ2)γE + λ1(λ1 − λ2)λ2(ψ(−λ1) − ψ(−λ2))

− λ1λ2(λ2ψ(λ1 − λ2) + λ1ψ(λ2 − λ1))
]
, (13.63)

where the pole at z = 0 is left,

1

2πi

∫ +i∞
−i∞

dz

z2 Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

= 1

λ3
1λ

2
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
2(λ2

1 + λ1λ2 − λ2
2)

+ λ1(λ2
1 + λ2

2)(ψ(λ1 − λ2) + γE)

− λ1(λ2
1 − λ2

2)(ψ(−λ1) − ψ(−λ2) + ψ(−λ1 + λ2) − ψ(1 − λ1 + λ2))

− λ2
1λ2(λ1 − λ2)(ψ′(−λ1) − ψ′(−λ2))

]
, (13.64)

where the pole at z = 0 is left,

1

2πi

∫ +i∞

−i∞
dz

z2 Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

= − 1

λ3
1λ

3
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
(λ1 + λ2)(2λ

2
1 − 3λ1λ2 + 2λ2

2)

−λ1λ2(λ
2
1 + λ2

2)γE + λ1λ2(λ
2
1 − λ2

2)ψ(−λ1)

−λ1λ
3
2(ψ(λ1 − λ2) − ψ(−λ2)) − λ3

1λ2(ψ(−λ2) + ψ(λ2 − λ1))

+λ3
1λ

2
2(ψ

′(−λ1) − ψ′(−λ2)) − λ2
1λ

3
2(ψ

′(−λ1) − ψ′(−λ2))
]
,

(13.65)

where the pole at z = 0 is left,

1

2πi

∫ +i∞

−i∞
dz

z2 Γ (λ+ z)Γ (z)Γ ∗(−z)Γ ∗(−λ− z)

= − 1

6λ3 Γ (λ)Γ (−λ)
[
12 − 6λ(2γE + ψ(−λ) + ψ(λ))

+ λ2(π2 − 6ψ′(−λ)) − 3λ3(ψ′′(−λ) + 2ζ(3))
]
, (13.66)

where the pole at z = 0 is left,
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1

2πi

∫ +i∞
−i∞

dz

z2 Γ (λ+ z)Γ ∗(z)Γ (−z)Γ ∗(−λ− z)

= 1

6λ3 Γ (λ)Γ (−λ)
[ − 12 + 6λ(2γE + ψ(−λ) + ψ(λ)) − λ2(π2 − 6ψ′(−λ))

− λ3(π2(ψ(−λ) − ψ(λ)) + (ψ(−λ) − ψ(λ))3 − 2ψ′′(−λ) − ψ′′(λ)

+ 3(ψ(−λ) − ψ(λ))(ψ′(−λ) + ψ′(λ)) − 6ζ(3))
]
, (13.67)

where the pole at z = 0 is right,

1

2πi

∫ +i∞

−i∞
dz

z
Γ (λ+ z)2Γ ∗(−λ− z)2

= − 1

6λ4

[
6 + λ2(π2 − 6ψ′(−λ)) + 12λ3ζ(3)

]
, (13.68)

where the pole at z = 0 is left,

1

2πi

∫ +i∞

−i∞
dz

z2 Γ (λ+ z)2Γ ∗(−λ− z)2

= 1

3λ5

[
12 + λ2(π2 − 6ψ′(−λ)) − 3λ3(ψ′′(−λ) − 2ζ(3))

]
, (13.69)

where the pole at z = 0 is left,

1

2πi

∫ +i∞

−i∞
dz

z2 Γ (λ+ 1 + z)2Γ (−λ− z)2

= 2Γ (1 + λ)2Γ (−λ)2(ψ(−λ) − ψ(1 + λ)) − ψ′′(−λ), (13.70)

where the pole at z = 0 is right.

13.3 The Gauss Hypergeometric Function
and MB Integrals

The Gauss hypergeometric function can be defined in terms of MB integrals:

2 F1(a, b; c; x)

= Γ (c)

Γ (a)Γ (b)

1

2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z)Γ (−z)

Γ (c + z)
(−x)zdz (13.71)
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= Γ (c)

Γ (a)Γ (b)Γ (c − a)Γ (c − b)

× 1

2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z) Γ (c − a − b − z)Γ (−z)(1 − x)zdz. (13.72)

Combining these two formulae with (11.4) gives the following useful formula:

1

2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z) Γ (c − z)Γ (−z) xzdz

= Γ (a + c)Γ (b + c)
1

2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z)Γ (−z)

Γ (a + b + c + z)
(x − 1)zdz.

(13.73)

http://dx.doi.org/10.1007/978-3-642-34886-0_11


Chapter 14
Appendix E: A Brief Review of Some
Other Methods

In this appendix, some methods which were not considered in Chaps. 3–9 are briefly
reviewed. The method based on dispersion relations was successfully used from the
early days of quantum field theory. The Gegenbauer Polynomial x-Space Technique
[21], the method of gluing [23] and the method based on star-triangle uniqueness
relations [34, 53, 54, 72] are methods for evaluating massless diagrams. The method
of IR rearrangement [74], also in a generalized version based on the R∗-operation
[22, 69], is a method oriented at renormalization-group calculations.

One more method (in addition to the method presented in Chap. 8) based on dif-
ference equations [60] is briefly described. It also provides the possibility to obtain
numerical results with a high precision. Some methods which could be character-
ized as based on experimental mathematics are discussed. In particular, this is the
integer relation algorithm called PSLQ [36, 37] which provides the possibility to
obtain a result for a given one-scale Feynman integral, when we strongly suspect
that it is a linear combination of some transcendental numbers with rational coeffi-
cients, provided we know the result numerically with a high accuracy. Then a list of
references to papers where Feynman integrals are evaluated by summing up series
and expanding hypergeometric functions at (half-)integer parameters is presented.
Finally, a new method based on the notion of symbols is advertised.

14.1 Dispersion Integrals

A given propagator scalar Feynman integral can be written as

F(q2) = 1

2πi

∫ ∞

s0

ds
ΔF(s)

s − q2 − i0
, (14.1)

where the discontinuity ΔF(s) = 2i Im(F(s + i0)) is given, according to Cutkosky
rules, by a sum over cuts in a given channel of integrals, where the propagators
i/(k2−m2+i0) in the cut are replaced by 2πi θ(k0)δ(k2−m2), while the propagators

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts 275
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0_14,
© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_8
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to the left of the cut stay the same, and the propagators to the right of the cut change
the causal prescription and become −i/(k2 − m2 − i0).

Let us again consider our favourite example of Fig. 1.1, with the indices equal to
one. This time, let us include all the necessary factors of i from each propagator and
the factor −i corresponding to the definition of the Feynman integral with i on the
right-hand side of (2.3). We have

ΔF(q2) = 4π2
∫

ddk θ(k0)δ(k
2 − m2)θ(q0 − k0)δ

[
(q − k)2]

= 2π2

q0
Ωd−1

∫ q0

0
dr rd−2 δ

⎡
⎣

(
q2

0 − m2

2q0

)2

− r2

⎤
⎦

= 24−dπ(d+3)/2

Γ ((d − 1)/2)

(q2 − m2)d−3+
(q2)(d−2)/2

, (14.2)

where X+ = X for X > 0 and X+ = 0 otherwise, as usual. We have chosen q =
(q0, 0) and introduced (d − 1)-dimensional spherical coordinates with the surface
of the unit sphere in d dimensions equal to

Ωd = 2πd/2

Γ (d/2)
. (14.3)

For d = 4, this gives

ΔF(s) = 2π3(q2 − m2)+
q2 . (14.4)

Integrating from the threshold s0 = m2 in the dispersion integral (14.1) (where a
subtraction is needed) leads to the finite part of (1.7) (where the factors of i mentioned
above were dropped) up to a renormalization constant.

In this calculation, a phase-space integral corresponding to a two-particle cut with
the masses m and 0 was evaluated. The evaluation of three- and four-particle phase-
space integrals is much more complicated. Although we have less integrations in
integrals corresponding to cuts, because of the δ-functions, resulting integrals are
still rather nasty so that the evaluation of Feynman integrals via their imaginary part
by means of Cutkosky rules (see [71] for a typical example) was successful only up
to some complexity level. On the other hand, the phase-space integrals are needed
for the calculation of the real radiation. It has turned out that the development of
methods of evaluating Feynman integrals resulted in similar techniques for the phase-
space integrals. Now, one applies, for the evaluation of the phase-space integrals,
the strategy of the reduction to master integrals, using IBP, and DE applied for
the evaluation of the master integrals—see, e.g., [3, 4]. Moreover, the technique
of the sector decompositions described in Chap. 4 is also applicable here and was
successfully applied in NNLO calculations—see references in Chap. 4.

http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_1
http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_4
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It turns out that Feynman integrals with propagators replaced by delta functions
naturally arise also within the generalized unitarity technique [10, 11] which is a
powerful modern method of constructing scattering amplitudes.

14.2 Gegenbauer Polynomial x-Space Technique

The Gegenbauer polynomial x-space technique (GPXT) [21] is based on the SO(d)

symmetry of Euclidean Feynman integrals. According to (10.42), the dimensionally
regularized scalar massless propagator in coordinate space is

DF (x1 − x2) = 1

(2π)d

∫
ddq

e−ix ·q

q2 = Γ (1 − ε)

4πd/2
[
(x1 − x2)2

]1−ε , (14.5)

where x2 = x2
0 + x2. It can be expanded in Gegenbauer polynomials [35] as

1

[(x1 − x2)2]λ = 1

(max{|x1|, |x2|})2λ

×
∞∑

n=0

Cλ
n

(
x̂1 · x̂2

) (
min{|x1|, |x2|}
max{|x1|, |x2|}

)n/2

, (14.6)

where |x | = √
x2, λ = 1 − ε and x̂ = x/|x |. The polynomials Cλ

n are orthogonal
on the unit sphere [35]:

∫
dx̂2Cλ

n

(
x̂1 · x̂2

)
Cλ

m

(
x̂2 · x̂3

) = λ

n + λ
δn,mCλ

n

(
x̂1 · x̂3

)
. (14.7)

The normalization is such that
∫

dx̂ = 1. So, the strategy of GPXT is to turn to
coordinate space, represent each propagator by (14.6), evaluate integrals over angles
by (14.7) and sum up resulting multiple series.

First results for non-trivial multiloop diagrams within dimensional regularization
were obtained by GPXT: for example, the value of the non-planar diagram (see the
second diagram of Fig. 6.3 with all the powers of the propagators equal to one), with
the famous result proportional to 20ζ(5) [21].

The GPXT as well as the method of gluing (see below) were crucial in many
important analytical calculations, for example, of the three-loop ratio R(s) in QCD
[21] and the five-loop β-function in theφ4 theory [19]. More details on the GPXT can
be found in the review [56]. See also [9] where the application of GPXT is reduced
systematically to the evaluation of nested sums (defined in Appendix C).

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_10
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14.3 Gluing

The dependence of an h-loop dimensionally regularized scalar propagator massless
Feynman integral corresponding to a graph Γ on the external momentum can easily
be found by power counting:

FΓ (q; d) =
(

iπd/2
)h

CΓ (ε)(q2)ω/2−hε, (14.8)

where ω is the degree of divergence given by (2.10) and CΓ (ε) is a meromorphic
function which is finite at ε = 0 if the integral is convergent, both in the UV and IR
sense. (Of course, there are no collinear divergences in propagator integrals.)

It turns out that the values CΓ (0) are the same for graphs connected by some
transformations based on gluing. The gluing can be of two types: by vertices and
by lines. Let Γ be a graph with two external vertices. Let us denote by Γ̂ the graph
obtained from it by identifying these vertices, and by Γ̄ the graph obtained from it
by adding a new line which connects them. Then the following properties hold [23]:

• Gluing by vertices. Let us suppose that two UV- and IR-convergent graphs, Γ1 and
Γ2, have degrees of divergence ω1 = ω2 = −4 and that Γ̂1 and Γ̂2 are the same.
Then CΓ1(0) = CΓ2(0).

• Gluing by lines. Let us suppose that two UV- and IR-convergent graphs, Γ1 and
Γ2, have degrees of divergence ω1 = ω2 = −2 and that Γ̄1 and Γ̄2 are the same.
Then CΓ1(0) = CΓ2(0).

For example, the first and the second diagrams in Fig. 6.3 with all the indices equal
to one produce the same graph after the gluing the external vertices. It is shown in
Fig. 14.1. Therefore, one could obtain the value of the more complicated non-planar
diagram (proportional to 20ζ(5)) from a simpler planar diagram [23].

The method of gluing was successfully applied in the combination with GPXT—
see the references above. As a recent application of the method of gluing let us refer
to the evaluation of the master integrals for massless four-loop propagator diagrams.
The evaluation of all the 28 master integrals (shown in Fig. 8.8) was done in [5] in
an algebraic way using various gluing relations.

One more recent development of the method of gluing is its application in coordi-
nate space in order to evaluate non-planar four-loop master integrals. This was one of
the steps of the evaluation [33] of the five-loop correction to the anomalous dimen-

Fig. 14.1 The graph Γ̂ obtained by gluing of vertices

http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_8


14.3 Gluing 279

sion of the Konishi operator in the N = 4 super Yang–Mills theory. In fact, this was a
more general gluing, with the help of an auxiliary analytic regularization which was
introduced on the ‘background’ of dimensional regularization—see details in [33].

14.4 Star-Triangle Relations

The method based on star-triangle uniqueness relations can be applied to massless
diagrams. As in the case of GPXT, the coordinate space language is used, where the
propagators have the form 1/(x2)λ up to a coefficient depending on ε—see, e.g.,
(14.5).

The basic uniqueness relation [34, 72] connects diagrams with different numbers
of loops. It is graphically shown in Fig. 14.2, where λ′

i = d/2 − λi and

v(λ1,λ2,λ3) = πd/2
∏

i

Γ (d/2 − λi )

Γ (λi )
. (14.9)

This equation holds when the vertex on the left-hand side is unique, i.e. λ1 + λ2 +
λ3 = d. The triangle on the right-hand side, with λ′

1 +λ′
2 +λ′

3 = d/2, is also called
unique. Remember that, in coordinate space, the triangle diagram does not involve
integration and is just a product of the three propagators,

[
(x1 − x2)

2]−λ3
[
(x2 − x3)

2]−λ1
[
(x3 − x1)

2]−λ2 ,

while the star diagram is an integral over the coordinate corresponding to the central
vertex.

The relation (14.9) can be used to simplify a given diagram. Almost unique rela-
tions introduced in [70], withλ1+λ2+λ3 = d−1, can be also useful. Sometimes one
introduces an auxiliary analytic regularization, to satisfy (almost) unique relations,
which can be switched off in the end of the calculation. For example, using (almost)
unique relations, the general ladder massless scalar propagator diagram with an arbi-
trary number of loops, h, with all the indices ai equal to one (see the first diagram

Fig. 14.2 Uniqueness equation
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of Fig. 6.3 and imagine a general number of rungs), was evaluated [8] with a result
proportional to ζ(2h − 1).

Another example of applications of the uniqueness relations is the evaluation of
the diagram M4,4 which is one of the twenty eight master integrals shown in Fig. 8.8
for the four-loop massless propagator diagrams. To evaluate this diagram at d = 4,
uniqueness relations were used together with functional equations in [53, 54]. In
this calculation, the initial problem was reduced to the problem of expansion of the
propagator diagram of Fig. 3.10 with the indices a1 = . . . = a4 = 1, a5 = 1+λ in a
Taylor series in λ up to λ4. This diagram, at various indices, was investigated in many
papers starting from the old result for all indices equal to one [67] which was later
reproduced [21] by GPXT, an analytical result for this diagram with general values
of the indices a1 and a2 and other integer indices [21], an analysis of this diagram
from the group-theoretical point of view [15, 16], an extension of the previous results
with the help of GPXT [55], etc. See also a recent paper [44] where the history of
evaluating the diagram of Fig. 3.10 is presented in details, with extensive references.

Eventually, this diagram was evaluated at d = 4 with the result

(
iπ2

)4
(441/8)ζ(7)/q2

which is of transcendentality weight seven. Modern methods provide the possibility
to go systematically to higher orders of expansion in ε. Using the DRA method
presented in Chap. 8 it was possible to evaluate the ε-expansion of this and all other
diagrams of Fig. 8.8 up to weight twelve [62].

14.5 Duality for Planar Graphs

Although we already used the word ‘planar’ many times let me present some def-
initions. A planar graph is a graph that can be drawn on a plane without crossing
lines. Let Γ be a Feynman graph, i.e. the set of its vertices is decomposed into two
subsets of internal and external vertices. We denote by Γ ∞ the graph obtained from
Γ by connecting each external vertex with one additional vertex. A Feynman graph
is planar if Γ ∞ is planar.

There are some additional relations for Feynman integrals corresponding to planar
Feynman graphs. For a planar Feynman graph Γ , one constructs the corresponding
dual graph Γ̃ [66] as follows. We draw a point in each of the h domains of the plane
corresponding to loops of Γ . We divide the external domain of Γ by extending each
of n external lines of Γ to infinity and choose a point inside each of the resulting sub-
domains. Then we connect by lines each pair of the points belonging to neighbouring
domains. We consider as external vertices all the exterior points and denote this by
drawing external lines. For example, in Fig. 14.3, a three-loop Feynman graph and
the corresponding three-loop dual graph marked with dashed lines are shown. We

have ˜̃
Γ = Γ .

http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_8
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_8
http://dx.doi.org/10.1007/978-3-642-34886-0_8
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Fig. 14.3 A planar three-loop
graph and the corresponding
dual graph

It turns out that, for planar Feynman graphs, the corresponding Feynman integrals
in coordinate space

F(x1, . . . , xn)

∫
. . .

∫ ∏
l

Dl

(∑
i

eil xi

)
dd xn+1 . . . dd xV (14.10)

can be written as integrals over loop momenta. (As before, V is the number of
vertices, n is the number of external vertices and e is the incidence matrix, i.e.
eil = ±1 if i is the beginning (end) of l.) We naturally enumerate the vertices of
Γ starting from its external vertices. Let us introduce momenta for the dual graph
by pi = xi − xi+1, i = 1, 2, . . . , V − 1. The momenta p1, . . . , pn−1 will be
independent external momenta and the momenta pn, . . . , pV −1 the loop momenta.
Then the argument of the lth propagator,

∑
i eil xi , can also be associated with the

line of the dual graph which crosses l.
Let me emphasize that this transition to the momentum-space picture is done just

by a linear change of variables, rather than by the standard way, via Fourier transform.
Moreover, this correspondence holds at general d. Let us take the coordinate-space
Feynman integral corresponding to the graph of Fig. 14.3 drawn with solid lines. Then
it can be represented as the momentum-space Feynman integral corresponding to the
graph of Fig. 14.3 drawn with dashed lines. A much more non-trivial application of
this duality relation can be found in [33] where 22 of the 24 coordinate-space master
integrals correspond to planar graph so that results for them could be obtained by
identifying them as momentum-space integrals of Fig. 8.8 and using the results of [5].

There is also a duality relation in the sense of the Fourier transform. As it was
explicitly proven in [24], the Fourier transform of a Feynman integral for a planar
graph can be written as the Feynman integral for Γ , with propagators which are
Fourier transformed original propagators. Observe that if one starts from usual prop-
agators in momentum space one obtains integrals with propagators raised to powers
depending on ε—see (14.5).

http://dx.doi.org/10.1007/978-3-642-34886-0_8
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Duality relations were often applied together with star-triangle relations of
Sect. 14.4.

14.6 IR Rearrangement and R∗

The method of IR rearrangement is a special method for the evaluation of UV
counterterms which are necessary to perform renormalization. The counterterms
are introduced into the Lagrangian, i.e. the dependence of the bare parameters (cou-
pling constants, masses, etc.) of a given theory on a regularization parameter (e.g.,
d within dimensional regularization) is adjusted in such a way that the renormalized
physical quantities become finite when the regularization is removed. The renormal-
ization can be described at the diagrammatic level, i.e. the renormalized Feynman
integrals can be obtained by applying the so-called R-operation which removes the
UV divergence from individual Feynman integrals. Thus, for any R-operation, the
quantity RFΓ is UV finite at d = 4.

As is well known, the requirement for the R-operation to be implemented by
inserting counterterms into the Lagrangian leads to the following structure [14]:

RFΓ =
∑

γ1,...,γ j

Δ(γ1) . . . Δ(γ j )FΓ ≡ R′ FΓ + Δ(Γ ) FΓ , (14.11)

where Δ(γ) is the corresponding counterterm operation, and the sum is over all sets
{γ1, . . . , γ j } of disjoint UV-divergent 1PI subgraphs, with Δ(∅) = 1. The ‘incom-
plete’ R-operation R′, by definition, includes all the counterterms except the overall
counterterm Δ(Γ ). For example, if a graph is primitively divergent, i.e. does not
have divergent subgraphs, the R-operation is of the form RFΓ = [1 + Δ(Γ )] FΓ .

The action of the counterterm operations is described by

Δ(γ) FΓ = FΓ/γ ◦ Pγ, (14.12)

where FΓ/γ is the Feynman integral corresponding to the reduced graph Γ/γ, and
the right-hand side of (14.12) denotes the Feynman integral that differs from FΓ/γ

by insertion of the polynomial Pγ in the external momenta and internal masses of
γ into the vertex vγ to which the subgraph γ was reduced. The degree of each Pγ
equals the degree of divergence ω(γ). It is implied that a UV regularization is present
in (14.11) and (14.12) because these quantities are UV-divergent. The coefficients of
the polynomial Pγ are connected in a straightforward manner with the counterterms
of the Lagrangian.

A specific choice of the counterterm operations for the set of the graphs of a
given theory defines a renormalization scheme. In the framework of dimensional
renormalization, i.e. renormalization schemes based on dimensional regularization,
the polynomials Pγ have coefficients that are linear combinations of pure poles in
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ε = (4 − d)/2. In the minimal subtraction (MS) scheme [46], these polynomials are
defined recursively by equations of the form

Pγ ≡ Δ(γ) Fγ = −K̂εR′ Fγ (14.13)

for the graphs γ of the given theory. Here K̂ε is the operator that picks up the pole
part of the Laurent series in ε. The modified MS scheme [7] (MS) is obtained from
the MS scheme by the replacement μ2 → μ2eγE/(4π) for the massive parameter of
dimensional regularization that enters through the factors of μ2ε per loop.

If Γ is a logarithmically divergent diagram the corresponding counterterm is just
a constant. To simplify its calculation it is tempting to put to zero the masses and
external momenta. This is, however, a dangerous procedure because it can generate IR
divergences. Consider, for example, the two-loop graph of Fig. 14.4a. It contributes to
the mass renormalization in theφ4 theory. To evaluate the corresponding counterterm
it is necessary to compute R′ Fγ , according to (14.13). Here R′ = 1 +Δ1, where Δ1
is the counterterm operation for the logarithmically divergent subgraph of Fig. 14.4a.
We consider each of the two resulting terms separately. The last term is simple. The
first one is just the pole part of the given diagram. If we put the mass to zero we will
obtain an IR divergence. There is another option which is safe: we put the mass to zero
and let the external momentum q flow in another way through the graph: from the
bottom vertex, rather than from the right vertex—see Fig. 14.4b. Then the resulting
Feynman integral is IR-convergent and, at the same time, much simpler because it is
now recursively one-loop and can be evaluated in terms of gamma functions.

This is a simple example of the trick called IR rearrangement and invented in [74].
In a general situation, one tries to put as many masses and external momenta to zero
as possible and, probably, let the external momentum flow through the graph in such a
way that the resulting diagram is IR-convergent and simple for calculation. Consider
now the three-loop graph of Fig. 14.4c contributing to the β-function in theφ4 theory.
It is also logarithmically divergent. When calculating its counterterm, it is dangerous
to put the masses to zero and let the external momentum flow from the bottom to the
top vertex, because we run into IR divergences either due to the left or the right pair of
the lines. Still there is a possibility not to generate IR divergences: to put the masses
of the central loop and the external momentum to zero. The resulting three-loop

(a) (b) (c)

Fig. 14.4 a A two-loop graph contributing to the mass renormalization. b A possible IR rearrange-
ment. c A three-loop graph contributing to the β-function
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Feynman integral is evaluated in terms of gamma functions, first, by integrating the
massless subintegral by (10.7) and then by (10.38).

Quite recently the method of IR rearrangement was applied to four-loop diagrams
in [33] in coordinate space, where instead of setting an external momentum to zero
we integrate over a coordinate.

At a sufficiently high level, such a safe IR rearrangement is not always possible.
However, there is a way to put as many masses and momenta to zero and still have
control on IR divergences. Formally, we have

Pγ = −K̂εR′ ∗ Fγ(q), (14.14)

where it is implied that all the masses are put to zero, and one external momentum
is chosen to flow through the diagram in an appropriate way. (Another version is to
put all the external momenta to zero and leave one non-zero mass.)

The operation R∗ removes not only UV but also (off-shell) IR divergences in a
similar way [22], i.e. by a formula which generalizes (14.11). Now, it includes IR
counterterms Δ̃(γ) which are defined in a full analogy to the UV counterterms Δ(γ).
They are defined for subgraphs irreducible in the IR sense, with the IR degree of
divergence given by (2.18). Now, they are local in momentum space. For example,
the IR counterterm corresponding to the logarithmically divergent (in the IR sense,
i.e. with the IR degree of divergence ω̃(γ) = 0) factor 1/(k2)2 for the two lower
lines in Fig. 14.4a (when they are massless) is proportional to δ(d)(k)/ε. More details
on the R∗-operation can be found in [69]. So, according to (14.14), one can safely
put to zero all the momenta and masses but one, in a way which is the simplest for
the calculation, at the cost of generating IR divergences which should be removed
with the help of IR counterterms. Finally, the problem of the evaluation of the UV
counterterms for graphs with positive degrees of divergence can be reduced, by
differentiating in momenta and masses, to the case ω = 0.

The R∗-operation was successfully applied in renormalization group calcu-
lations—see, e.g., [19].

14.7 Difference Equations

Basic prescriptions of a method based on difference equations can be found in [60]
and an informal introduction in [61]. It is analytical in nature but is used to obtain
numerical results with a high precision. The starting point of this approach is to
choose a propagator, in an arbitrary way, treat its power, n, as the basic integer
variable and fix other powers of the propagators (typically, equal to one). Then the
general Feynman integral of a given family is written as

F(n) =
∫

· · ·
∫

ddk1 . . . ddkh
H

En
1 E2 . . . EN

, (14.15)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_2
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where H is a numerator. After combining various IBP relations, one can obtain a
difference equation for F(n):

c0(n)F(n) + c1(n)F(n + 1) + · · · + cr (n)F(n + r) = G(n), (14.16)

where the right-hand side contains Feynman integrals F1, F2, . . . which have one
or more denominators E2, E3, . . . less with respect to (14.15). These integrals are
treated in a similar way, by means of equations of the type (14.16) so that one obtains
a triangular system of difference equations. This system is solved, starting from the
simplest integrals that have the minimum number of denominators, with the help of
an Ansatz in the form of a factorial series,

μn
∞∑

l=0

bl n!
Γ (n − K + l + 1)

, (14.17)

where the values of parameters μ, bl and K are obtained from these values for the
factorial series corresponding to the right-hand side of (14.16).

This method was successfully applied, with a precision of several dozens up to
hundreds of digits, to the calculation of various multiloop Feynman integrals [57–60].

Observe that, although this method is numerical, it requires serious mathematical
efforts. The same feature holds for any modern method of numerical evaluation. One
can say that the boarder between analytical and numerical methods becomes rather
vague at the moment.

Sometimes it is claimed that sooner or later we will achieve the limit in the process
of analytical evaluation of Feynman integrals so that we will be forced to proceed only
numerically. However, the dramatic progress in the field of analytical evaluation of
Feynman integrals shows that we have not yet exhausted our abilities. So, the natural
strategy is to combine available analytical and numerical methods in an appropriate
way.

14.8 Experimental Mathematics and PSLQ

When evaluating Feynman integrals, various tricks are used. One usually does not
bother about mathematical proofs of the tricks, partially, because of the pragmatical
orientation and strong competition and, partially, because, now, there are a lot of
possibilities to check obtained results, both in the physical and mathematical way.

An example of such ‘experimental mathematics’ suggested in [40] was described
in Sect. 5.5, where it was supposed that the nth coefficient of the Taylor series cn of
a piece of the result for the master massive double box is a linear combination of
the 15 functions (5.44)–(5.47) of the variable n. Then the possibility to evaluate the
first 15 coefficients c1, c2, . . . , c15 was used and the corresponding linear system for
unknown coefficients in the given linear combination was solved. At this point, a pure

http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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mathematician could say that there is no mathematical proof of this procedure and its
validity is not guaranteed at all even after we (successfully) check it by calculating
more terms of the Taylor expansion, starting from the 16th and comparing it with
what we have from the obtained solution. Still I believe that this pure mathematician
will believe in the result when he/she looks at some details of the calculation. Indeed,
suppose that we forget about just one of the functions in (5.44)–(5.47) and follow our
procedure. Then we indeed obtain a different solution of our system of 14 equations
but it blows up and looks so ugly, in terms of rational numbers with hundreds of
digits in the numerator and denominator, that this pure mathematician will say that
our previous solution, with nice rational numbers, is true and there is no need for
mathematical proofs.

There are a lot of other elements of experimental mathematics in dealing with
Feynman integrals. Indeed, we never hesitate to change the order of integration over
alpha and Feynman parameters and over MB parameters, it is not known in advance
which IBP equations within the algorithm formulated in [60] are really independent,
etc. One more example of experimental mathematics1 is provided by the so-called2

PSLQ algorithm [36, 37]. It can be applied when we evaluate a one-scale Feynman
integral in a Laurent expansion in ε. Let us suppose that, in a given order of expansion
in ε, we understand which transcendental numbers can appear in the result and that we
can obtain the result numerically with a high accuracy. For example, in the finite part
of the ε-expansion in two loops we can expect at least xi−1 = ζ(i) with i = 2, 3, 4
or, equivalently, x1 = π2, x2 = ζ(3) and x3 = π4. Then the PSLQ algorithm could
be of use. In this particular example, it gives the possibility to estimate whether or
not a given number, x can be expressed linearly as x = c1x1 + c2x2 + c3x3 with
rational coefficients ci .

The PSLQ is an example of an ‘integer relation algorithm’. If x1, x2, . . . , xn

are some real numbers, it gives the possibility to find the n integers ci such that
c1x1 + c2x2 + · · · + cn xn = 0 or provide bounds within which this relation is
impossible. (In the above situation, we consider our numerical result as x4, in addition
to the xi , i = 1, 2, 3.) More formally, suppose that xi are given with the precision of
ν decimal digits. Then we have an integer relation with the norm bound N if

|c1x1 + · · · + cn xn| < ε, (14.18)

provided that max|ci | < N , where ε> 0 is a small number of order 10−ν . With a
given accuracy ν, a detection threshold ε and a norm bound N as an input, the PSLQ
algorithm enables us to find out whether the relation (14.18) exists or not at some
confidence level (see details in [36, 37]).

The PSLQ algorithm has been successfully applied in the evaluation of various
single-scale Feynman integrals—see, e.g., earlier applications in [6, 17, 38, 39, 52].
For example, almost all the results mentioned in Chap. 8 were obtained using PSLQ.

1 The very term ‘experimental mathematics’ can be found on the web page where, in particular,
the PSLQ algorithm is described [75].
2 The name ‘PSLQ’ comes from the words ‘partial sum’ and ‘lower-diagonal’ used in the algorithm.

http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_8
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The experience obtained in the calculations shows that one needs at least seven digits
for each independent transcendental number.

In addition to various private implementations of PSLQ, there is now an imple-
mentation within Mathematica [76].

14.9 Evaluating Feynman Integrals by Summing up
Series

Any Feynman integral can be converted into a multiple series. To do this, one can
start from the derivation of an MB representation, either in the loop-by-loop strategy
in the case of planar graphs, or using the alpha representation. Then the (multiple)
MB integral obtained can be transformed straightforwardly into a sum of (multiple)
series, by closing the integration contour(s) in the complex plane to the right or to
the left. This can be done both at general ε or after the resolution of the singularities
in ε. Then one can try to sum up the series obtained by available summation for-
mulae or computer codes, for example, by tables of summation formulae presented
in Appendix C and the codes SUMMER [73] and XSummer [64]. Some other sum-
mation formulae can be found in [1, 45]. Algorithms for summing up various series
were presented in [1, 50]. See also [13] and references therein. Most corresponding
computer codes are private, with some exceptions, for example Sigma [68].

In some situations, one arrives at a onefold series which can be recognized as
a hypergeometric series p Fq with parameters depending on ε. Then one can apply
existing formulae for the expansion of p Fq near integer and half-integer parameters.
A Mathematica package for doing this in the case of 2 F1 and 3 F2 was developed
in [47]. Here are papers on other various cases: [25–27, 45, 48, 49, 51, 52, 65].

14.10 Symbols

A new tool for evaluating Feynman integrals is the so-called symbol map which
associates an element of a tensor algebra with a given transcendental function. Our
experience tells us that analytical results for Feynman integrals in a Laurent expansion
in ε can be expressed in terms of multiple polylogarithms [41] (see (11.43)) and, in
particular, HPLs and usual polylogarithms. However, these functions can depend
on masses and kinematical invariants in a rather complicated way, via some rational
and irrational combinations. Moreover, there are various identities between them, for
example, corresponding to a shuffle algebra. In particular, for the polylogarithms,
various functional identities can be found in [63]. The goal of using symbols is to
map functional identities among multiple polylogarithms onto algebraic relations
among the corresponding symbols.

http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_11
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Let F : C
n → C be a complex valued function depending on n complex variables

xk , 1 ≤ k ≤ n and let the total differential of F be expressed in the form

dF =
∑

i

Fi d log Ri , (14.19)

where Fi and Ri are functions of the variables xk , and Ri are rational functions. Then
the symbol of F is defined recursively by [32, 43]

S(F) =
∑

i

S(Fi ) ⊗ Ri . (14.20)

In the case where F is a multiple polylogarithm the differential of F can be repre-
sented in an explicit form. For example, in the special case where all the arguments
of the multiple polylogarithm are generic (i.e., they are mutually different and do not
take particular values), one obtains [42]

dG(an−1, . . . , a1; an) =
n−1∑
i=1

G(an−1, . . . , âi , . . . , a1; an) d ln

(
ai − ai+1

ai − ai−1

)
.

(14.21)
The symbol of G(a1, . . . , an−1; an) is then defined in the form

S(G(an−1, . . . , a1; an))

=
n−1∑
i=1

S(G(an−1, . . . , âi , . . . , a1; an)) ⊗
(

ai − ai+1

ai − ai−1

)
. (14.22)

The symbol satisfies the following identities:

R1 · · · ⊗ (Ra Rb) ⊗ · · · Rk = R1 · · · ⊗ Ra ⊗ · · · Rk + R1 · · · ⊗ Rb ⊗ · · · Rk,

(14.23)

R1 · · · ⊗ (cRa) ⊗ · · · Rk = R1 · · · ⊗ Ra ⊗ · · · Rk, (14.24)

R1 · · · ⊗ (±1) ⊗ · · · Rk = 0 (14.25)

for any constant c and rational functions Ri . The first of these properties is similar
to the basic property of the usual logarithm.

For example, the symbols of the classical polylogarithms and the ordinary loga-
rithms are given by
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S(Lin (z)) = −(1 − z) ⊗ z ⊗ . . . ⊗ z︸ ︷︷ ︸
(n−1) times

, (14.26)

S
(

1

n! lnn z

)
= z ⊗ . . . ⊗ z︸ ︷︷ ︸

n times

. (14.27)

Here are two examples which show how symbols work to prove functional iden-
tities between dilogarithms. Let us, first, prove the very well known identity

Li2 (1 − x) + ln(1 − x) ln x = −Li2 (x) + π2

6
. (14.28)

The symbols of the functions involved are

S[Li2 (1 − x)] = −x ⊗ (1 − x), (14.29)

S[ln(1 − x) ln x] = (1 − x) ⊗ x + x ⊗ (1 − x), (14.30)

S[Li2 (x)] = −(1 − x) ⊗ x . (14.31)

We then get

S[
Li2 (1 − x) + ln(1 − x) ln x

]
= −x ⊗ (1 − x) + [

(1 − x) ⊗ x + x ⊗ (1 − x)
]

= (1 − x) ⊗ x = S[ − Li2 (x)
]
. (14.32)

So Li2 (1 − x) + ln(1 − x) ln x is equal to −Li2 (x) up to terms whose symbols
vanish. Putting x = 1, we see that

[
Li2 (1 − x) + ln(1 − x) ln x

]
|x=1 = 0, (14.33)

−Li2 (1) = −π2

6
, (14.34)

and arrive at (14.28).
Let us now turn to

Li2

(
1 − 1

x

)
+ 1

2
ln2 x = −Li2 (1 − x) . (14.35)

We have (14.29) and

S
[

Li2

(
1 − 1

x

)]
= − 1

x
⊗

(
1 − 1

x

)
= x ⊗ (1 − x) − x ⊗ x, (14.36)

S[ln2 x] = 2 x ⊗ x . (14.37)
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We then get

S
[

Li2

(
1 − 1

x

)
+ 1

2
ln2 x

]
= [

x ⊗ (1 − x) − x ⊗ x
] + x ⊗ x (14.38)

= x ⊗ (1 − x) (14.39)

= S[ − Li2 (1 − x)
]
. (14.40)

So Li2 (1 − 1/x)− 1
2 ln2 x is equal to −Li2(1−x) up to terms whose symbols vanish.

Putting x = 1, we see that both functions vanish and arrive at (14.35).
The first impressive application of the symbol technology in perturbative calcula-

tions was presented in [43] for the two-loop hexagon Wilson loop which, according
to the conjecture in [2], is related to a six-point amplitude in N = 4 supersymmetric
Yang–Mills theory. The previously obtained result [28, 29] which took seventeen
pages in a journal was rewritten in two lines. The result of [28, 29] was written in
terms of multiple polylogarithms with a cumbersome dependence on three conformal
variables. So the authors of [43] started from this result, calculated its symbol and
then adjusted a much simpler function having the same symbol. Since the knowl-
edge of the symbol determines a transcendental function up to lower weight functions
multiplied by numerical constants it was necessary to fix this ambiguity. This was
done by matching the result of [28, 29] in appropriate limits.

First direct applications of the symbol technology to Feynman integrals can be
found in [30, 31], where the massless hexagon integral and one-mass hexagon inte-
gral in six dimensions were evaluated. As a recent application, let me mention the
evaluation of three-point two-loop massless Feynman integrals [18], with much sim-
pler results than in [12]. I am confident very much that symbols will help a lot in the
nearest future to evaluate important classes of Feynman integrals which could not be
evaluated up to now by existing tools.
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List of Symbols

al Power of a propagator (index)
~DF Propagator in coordinate space
DF;DF;i Propagator in momentum space
d Space–time dimension
Ei Denominator of propagator
F Feynman integral
2F1ða; b; c; zÞ Gauss hypergeometric function
Gðk1; k2Þ Function in one-loop massless integration formula
Gða1; . . .; an; zÞ Multiple polylogarithm
glm Metric tensor
Ha1;a2;...;anðxÞ Harmonic polylogarithm (HPL)
h Number of loops
k Loop momentum
L Number of lines
Lia zð Þ Polylogarithm

l Loop momentum
m Mass
p External or internal momentum
Q2 ¼ �q2 Euclidean external momentum squared
q External momentum
Sa;bðzÞ Generalized polylogarithm
Sj, Sjk,... Nested sums

s ¼ ðp1 þ p2Þ2 Mandelstam variable

T Tree, 2-tree, pseudotree

t ¼ ðp1 þ p3Þ2 Mandelstam variable

tl Sector variable
U Function of alpha parameters

u ¼ ðp1 þ p4Þ2 Mandelstam variable
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ul Auxiliary parameter
V Number of vertices
V Function of alpha parameters
W Function of alpha parameters
w Variable in MB integrals
x Coordinate
xi Variable in the basic parametric representation
z, zi Variable in MB integrals
al Alpha parameter
bl ¼ 1=al Inverse alpha parameter
C Graph
CðxÞ Gamma function (first Euler integral)
c Subgraph
cE ¼ 0:577216. . . Euler’s constant
dðxÞ Delta function
e ¼ ð4� dÞ=2 Parameter of dimensional regularization
fðzÞ Riemann zeta function
fðm1; . . .;mkÞ Multiple zeta value
kl Parameter of analytic regularization
n, ni Feynman parameter
sl Sector variable
wðxÞ ¼0 ðzÞ=ðzÞ Logarithmical derivative of the gamma function
x Degree of UV divergence
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A
Alpha parameters, 15

C
Cheng–Wu theorem, 46

D
Degree of UV divergence, 15
Dispersion integral, 275
Divergence, 14

collinear, 18
IR, 16
on-shell IR, 17
threshold IR, 17
UV, 14

Dual graph, 280

F
Feynman amplitude, 12
Feynman integral, 12
Feynman parameters, 45
First Barnes lemma, 259

G
Gauss hypergeometric function, 237
Gegenbauer polynomial x-space

technique (GPXT), 277
Generalized polylogarithm, 238
Gluing, 278
Graph, 12

H
Harmonic polylogarithm (HPL), 238

I
Index (power of a propagator), 12
Integer relation algorithm, 286
Integration by parts (IBP), 2, 90, 127
IR rearrangement, 282

M
Mandelstam variables, 43
Master integral, 2, 127
Mellin–Barnes (MB) representation, 6, 83, 84
Method of difference equations, 284
Method of differential equations (DE), 8, 157
Method of dimensional recurrence

and analyticity (DRA), 173
Momentum

external, 12
internal, 12
loop, 12

Multiple polylogarithms, 240
Multiple zeta values, 243

N
Nested sums, 243

P
Partial fractions, 38
Pochhammer symbol, 237

V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts
in Modern Physics 250, DOI: 10.1007/978-3-642-34886-0,
� Springer-Verlag Berlin Heidelberg 2012

295



P (cont.)
Polylogarithm, 238
Propagator, 11
PSLQ, 285

R
Recursively one-loop diagrams, 37
Regularization, 21

analytic, 22
dimensional, 22, 23
Pauli–Villars, 21

Riemann zeta function, 244

S
Second Barnes lemma, 267
Sector

in the space of indices, 136
in the space of parameters, 61

Subgraph
detachable, 25
divergent, 15
one-particle-irreducible (1PI), 15

Symbol, 287

T
Tadpole, 25, 28
Tree, 12
Two-dimensional HPL (2dHPL), 169

U
Uniqueness relations, 279

W
Weight, 238, 243
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