
International Association of Geodesy Symposia

140

Hansjörg Kutterer
Florian Seitz
Hamza Alkhatib
Michael Schmidt    Editors 

The 1st International Workshop 
on the Quality of Geodetic 
Observation and Monitoring 
Systems (QuGOMS'11)
Proceedings of the 2011 IAG International Workshop, 
Munich, Germany, April 13–15, 2011



International Association
of Geodesy Symposia

Chris Rizos, Series Editor
Pascal Willis, Assistant Series Editor



International Association
of Geodesy Symposia

Chris Rizos, Series Editor
Pascal Willis, Assistant Series Editor

Symposium 101: Global and Regional Geodynamics
Symposium 102: Global Positioning System: An Overview

Symposium 103: Gravity, Gradiometry, and Gravimetry
Symposium 104: Sea SurfaceTopography and the Geoid

Symposium 105: Earth Rotation and Coordinate Reference Frames
Symposium 106: Determination of the Geoid: Present and Future

Symposium 107: Kinematic Systems in Geodesy, Surveying, and Remote Sensing
Symposium 108: Application of Geodesy to Engineering

Symposium 109: Permanent Satellite Tracking Networks for Geodesy and Geodynamics
Symposium 110: From Mars to Greenland: Charting Gravity with Space and Airborne Instruments

Symposium 111: Recent Geodetic and Gravimetric Research in Latin America
Symposium 112: Geodesy and Physics of the Earth: Geodetic Contributions to Geodynamics

Symposium 113: Gravity and Geoid
Symposium 114: Geodetic Theory Today

Symposium 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications
Symposium 116: Global Gravity Field and Its Temporal Variations

Symposium 117: Gravity, Geoid and Marine Geodesy
Symposium 118: Advances in Positioning and Reference Frames

Symposium 119: Geodesy on the Move
Symposium 120: Towards an Integrated Global Geodetic Observation System (IGGOS)

Symposium 121: Geodesy Beyond 2000: The Challenges of the First Decade
Symposium 122: IV Hotine-Marussi Symposium on Mathematical Geodesy

Symposium 123: Gravity, Geoid and Geodynamics 2000
Symposium 124: Vertical Reference Systems

Symposium 125: Vistas for Geodesy in the New Millennium
Symposium 126: Satellite Altimetry for Geodesy, Geophysics and Oceanography

Symposium 127: V Hotine Marussi Symposium on Mathematical Geodesy
Symposium 128: A Window on the Future of Geodesy
Symposium 129: Gravity, Geoid and Space Missions

Symposium 130: Dynamic Planet - Monitoring and Understanding . . .
Symposium 131: Geodetic Deformation Monitoring: From Geophysical to Engineering Roles
Symposium 132: VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy

Symposium 133: Observing our Changing Earth
Symposium 134: Geodetic Reference Frames

Symposium 135: Gravity, Geoid and Earth Observation
Symposium 136: Geodesy for Planet Earth

Symposium 137: VII Hotine-Marussi Symposium on Mathematical Geodesy
Symposium 138: Reference Frames for Applications in Geosciences
Symposium 139: Earth on the Edge: Science for a Sustainable Planet

More information about this series at
http://www.springer.com/series/1345

http://www.springer.com/series/1345


The 1st International Workshop
on the Quality of Geodetic

Observation and Monitoring Systems
(QuGOMS’11)

Proceedings of the 2011 IAG International Workshop, Munich,
Germany, April 13 – 15, 2011

Edited by

Hansjörg Kutterer
Florian Seitz

Hamza Alkhatib
Michael Schmidt

123



Volume Editors Series Editors

Hansjörg Kutterer
Bundesamt für Kartographie und Geodäsie
Frankfurt am Main
Germany

Florian Seitz
Technische Universität München
München
Germany

Hamza Alkhatib
Leibniz Universität Hannover
Geodätisches Institut
Hannover
Germany

Michael Schmidt
Deutsches Geodätisches Forschungsinstitut
München
Germany

Chris Rizos
School of Surveying
University of New South Wales
Sydney
Australia

Assistant Series Editors

Pascal Willis
Institut national de l’Information
Geographique et Forestiere
Direction Technique
Saint-Mande
France

ISSN 0939-9585
ISBN 978-3-319-10827-8 ISBN 978-3-319-10828-5 (ebook)
DOI 10.1007/978-3-319-10828-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014956880

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights
of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the
publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

The 1st international Workshop on the Quality of Geodetic Observation and Monitoring
(QuGOMS) was devoted to the general methodology in the field of estimation and filtering
with a refined uncertainty modelling emphasizing applications in engineering geodesy and
Earth system observation. Geodetic multi-sensor systems and networks using terrestrial and
space-borne observation techniques were thematic anchor points.

The QuGOMS workshop has been organized jointly by the study groups IC-SG2 and IC-
SG3 of the Intercommission Committee on Theory (ICCT) of the International Association of
Geodesy (IAG). Besides its strong relations to all IAG Commissions the workshop was also in
the scope of FIG Commissions 5 and 6. Thus, it attracted scientists under the umbrellas of both
IAG and FIG. The workshop took place in the rooms of the International Graduate School of
Science and Engineering (IGSSE) of the Technische Universität München, Garching/Munich
from 13th to 15th April 2011.

The workshop was organized in five regular sessions. To a large extent, the sessions’ topics
referred to the subjects of the IC-SG2 and IC-SG3 of the ICCT:
• Uncertainty modelling of geodetic data
• Theoretical studies on combination strategies and parameter estimation
• Recursive state-space filtering
• Sensor networks and multi-sensor systems in engineering geodesy
• Multi-mission approaches with view to physical processes in the Earth system

The contributed papers showed quite well the related questions and hence the close
connection of methodology in the different fields of application such as global geodesy and
engineering geodesy. Without doubt, it is worthwhile to continue this kind of workshop to
foster scientific exchange also between scientific organizations.

There were several colleagues who contributed to the success of the workshop and of the
proceedings. All editors of this volume acted also as convenors. Hamza Alkhatib coordinated
the reviews of the submitted papers and communicated with the symposium editors and with
Springer. Otto Heunecke took care of the contributions from engineering geodesy. Various
reviewers helped to ensure a valid review process. Florian Seitz acted as local host. All in all
this is gratefully acknowledged.

Frankfurt am Main, Germany Hansjörg Kutterer
12 September 2013
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Part I

UncertaintyModeling of Geodetic Data



Modeling Data Quality Using Artificial Neural
Networks

Ralf Laufer and Volker Schwieger

Abstract

Managing data quality is an important issue in all technical fields of applications. Demands
on quality-assured data in combination with a more diversified quality description are rising
with increasing complexity and automation of processes, for instance within advanced
driver assistance systems (ADAS). Therefore it is important to use a comprehensive quality
model and furthermore to manage and describe data quality throughout processes or
sub-processes.

This paper focuses on the modeling of data quality in processes which are in general
not known in detail or which are too complex to describe all influences on data quality. As
emerged during research, artificial neural networks (ANN) are capable for modeling data
quality parameters within processes with respect to their interconnections.

Since multi-layer feed-forward ANN are required for this task, a large number of
examples, depending on the number of quality parameters to be taken into account, is
necessary for the supervised learning of the ANN, respectively determining all parameters
defining the net. Therefore the general usability of ANN was firstly evaluated for a simple
geodetic application, the polar survey, where an unlimited number of learning examples
could be generated easily. As will be shown, the quality parameters describing accuracy,
availability, completeness and consistency of the data can be modeled using ANN. A
combined evaluation of availability, completeness or consistency and accuracy was tested
as well. Standard deviations of new points can be determined using ANN with sub-mm
accuracy in all cases.

To benchmark the usability of ANN for a real practical problem, the complex
process of mobile radio location and determination of driver trajectories on the digital
road network based on these data, was used. The quality of calculated trajectories
could be predicted sufficiently from a number of relevant input parameters such
as antenna density and road density. The cross-deviation as an important quality
parameter for the trajectories could be predicted with an accuracy of better than 40 m.

R. Laufer • V. Schwieger (�)
Institute of Engineering Geodesy, University of Stuttgart,
Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany
e-mail: volker.schwieger@ingeo.uni-stuttgart.de

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
DOI 10.1007/978-3-319-10828-5_1, © Springer International Publishing Switzerland 2015
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1 Introduction

Managing data quality requires first of all an adequate and
homogenous quality model. The model which is used in the
following was developed by Wiltschko (2004) and Wiltschko
and Kaufmann (2005) and consists of six inherent quality
characteristics. The six quality characteristics of the used
quality model are shortly defined as follows:
• Availability: Measure for existence of information at a

certain time and at a certain place.
• Timeliness: Measure for correlation of information with

temporally changing reality.
• Completeness: Measure for existence of all relevant infor-

mation to describe reality.
• Consistency: Measure for correlation of information with

the information model.
• Correctness: Measure for the correlation of information

with reality, timeliness assumed.
• Accuracy: Describes the correlation between determined

value and real value.
Depending on the kind of data, these quality characteris-

tics can be concretized each with several quantitative quality
parameters. Quality measurement methods are needed as
well to determine values for these quantitative quality param-
eters. With this model all relevant aspects of data quality can
be sufficiently described.

Considering a data management process, the occurring
input and output data can be described by quality parameters
which are part of individual quality models defined for the
different data. Since output data is generated from input data,
their quality can be determined from the quality of the input
data. However the relation between input and output data
quality can be quite complex and often cannot be described
in an analytical way. In some cases the dependencies are only
partly known. Therefore a robust method is necessary which
can handle this lack of information. As it turned out, artificial
neural networks are more capable to solve this problem than
other methods such as Petri nets or Monte-Carlo-simulation
(Laufer 2011). An important assumption is that all inputs that
influence the output significantly are captured (ideal case).

2 Data Quality Propagation
with Artificial Neural Networks

In the following part, ANN will be briefly introduced and
their most important advantages with respect to the other
methods mentioned in the introduction are presented.

Artificial neural networks are a method which was devel-
oped around 70 years before (Zell 1997). The motivation was
to copy the human brain in design and principle of operation.
The networks consist of neural cells linked by artificial nerve
tracts which can transmit information in an intelligent way
(e.g. threshold based). Starting with very simple networks
of artificial neural cells, more and more complex networks
were developed over time, capable to solve more complex
problems in combinatorics, pattern recognition, diagnostics
and other fields of application where normal computers still
get to their limits. A broad variety of applications is listed,
for example, in Hagan et al. (1996). The main advantages
of ANN with respect to other methods described in Laufer
(2011) are:
• Massive parallel work flow (fast),
• Ability to learn and adapt,
• Ability to generalize and associate and
• High fault tolerance.

The artificial neural network can be trained in different
ways depending on the kind of network and the application.
In this paper only feed-forward networks and therefore
supervised learning can be determined successfully. For
supervised learning a sufficient amount of learning examples
is necessary depending on the complexity of the process as
well as the number of different input and output parameters.

In feed-forward networks, all neurons are arranged in
several levels. Typically a network consists of 2–3 layers.
Figure 1 shows a single artificial neuron with R inputs with
the weights wi,j for the R different input parameters pj of
the neuron no. i. b describes the bias of the neuron. The
inputs are used in the transfer function † to generate the net
input n. The activation function f generates the net output a.
The flow of information in these kinds of ANN is always
fixed in one direction.

To train the network, training data sets representing the
whole possible data range are necessary. Validation data sets
are used to check the learning status of the net after each
iteration. After finishing the training, the net performance
must be evaluated independently using new data sets not yet
known to the net, so-called evaluation data.

3 Propagation of Data Quality
for Polar Point Determination

The polar point determination is a quite simple method to cal-
culate Cartesian point coordinates from measured distance
and direction to a new point. In the first step ANN were used
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Fig. 1 Artificial neuron with R inputs

to propagate the two quality parameters standard deviation
(in the following abbreviated with “deviation”) in longitu-
dinal and cross direction (l and c) referring to the direction
to the point. These two output parameters describing the
accuracy are besides others related to the following input
parameters:
• Measured distance (s)
• Standard deviation of distance (¢ s)
• Distance-related correction of measured distance (ppm)

The additional handling of availability of input data was
tested in the second step. Unavailable data were flagged with
the value “0”. For mathematical reasons it was necessary
to normalize all values (since the input parameters may
vary heavily in magnitude, e.g. distances up to several km
measured with a standard deviation of a few mm). For the
generation of training and evaluation data, it was necessary to
create a fault tree for different possible lacks in completeness
(cf. Laufer 2011) for further details.

The additional handling of quality parameters describing
availability demands a more complex network. For the single
handling of accuracy parameters, a network with one hid-
den layer containing nine neurons and two output neurons
(abbrev.: [9-2]) was sufficient. For additional propagation of
availability a [15-15-2]-network with two hidden layers was
necessary.

As shown in Fig. 2, the accuracy parameters l and c can
be propagated with an uncertainty below 0.1 mm. To avoid
the network memorizing the learning data sets, new example
data sets not used for training or validation of the network
were used to evaluate the trained network. The input data
were chosen randomly out of the trained intervals.

Handling availability in addition leads to similar results:
l and c were propagated with an accuracy of better than
0.1 mm, the availability with an accuracy of better than
0.03. Hence it is possible to distinguish between small
but real values near zero and not unavailable data, flagged
with “0”.

In a third step the propagation of parameters describing
completeness was determined. Therefore it was first of all
necessary to arrange the input and output data in data sets,

er
ro

r [
10

-2
 m

m
]

No.of test data set 

Error longitudinal dev.
Error cross devia�on 

Fig. 2 Polar point determination: Propagation of accuracy (evaluation
data)

which can contain one or more single parameters. Otherwise
it would not be possible to separate between a lack of
completeness and a lack of availability. If a complete data
set is missing, it is per definition a lack of availability. If
one parameter within a data set is missing, it is a lack
of completeness. To simplify matters, in this example all
input parameters and all output parameters where defined as
data sets.

For propagation of completeness, the input and output
parameter vectors were expanded by one flag for each data
set to provide information about completeness. The flag is a
binary character, where the value “1” stands for “data set is
complete”. Whereas “0” means “data set is incomplete”.

To keep the number of training data sets small and to get
the ANN well trained at the same time, it is important to
simulate a much higher lack in completeness during training
than will occur in reality. Otherwise, in a small amount of
training data, there are only a few lacks in completeness
occurring. Hence the network would not be able to learn how
to handle incomplete data sets.

Again, the accuracy parameters can be propagated with
an accuracy of better than ˙0.1 mm (Fig. 3). The com-
pleteness of the output data sets can be determined better
than ˙0.04. This means the completeness can be easily
propagated by adding new binary parameters to the input and
output vectors.

Propagation of consistency and correctness of the data can
be handled as well by introducing additional binary charac-
ters. The distinction between binary values describing com-
pleteness, consistency and correctness happens automatically
by the clearly defined and constant position of the parameters
within the vectors.

Handling timeliness of data, on the contrary, demands
time-sensitive ANN, so-called dynamic networks that can
handle time-invariant data. Since the focus of our research
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Fig. 3 Polar point determination: Propagation of accuracy and com-
pleteness (evaluation data)

was on static networks, the quality character timeliness has
not been investigated so far.

4 Propagation of Data Quality
for Mobile Phone Positioning

The project Do-iT (data optimization for integrated telem-
atics) with a duration of almost 4 years was funded by the
Federal Ministry of Economics and Technology. The focus of
the project was the generation of mobile phone trajectories,
so called floating phone data (FPD), of individual motor-
ized road users within the main road network for traffic
applications (e. g. congestion detection or traffic planning).
Generation of FPD is a complex process consisting of several
sub-processes as outlined in Fig. 4.

At the Institute of Engineering Geodesy Stuttgart (IIGS)
two different approaches regarding two different interfaces
for data recording where developed. The A-interface
includes data of all registered mobile phone users, not
depending on the status of the phone (active or only switched
on). The data on the second interface, the so-called Abis-
interface (“bis” is the French word for “bonus”), contain
only data of active mobile phones (phones during a call or
data connection). These data always have a high spatial and
temporal resolution, whereas the data from A-interface only
have a medium resolution if the phone is active, otherwise a
low resolution.

For practical reasons, the A-data can serve as practical
example to evaluate the use of ANN for propagation of data
quality. Therefore only the approach for A-bis data will be
briefly described in the following.

In a first step the recorded data are sorted and prioritized
in near-realtime with respect to the prospected calculability

reference data FPD-server

geodata
(localisation

network)

mobile phone
raw data

BTS
BSC

MSC

BTS

A
interface

A-bis
interface

MS

road network

public transport
network

floating
phone data

traffic control and traffic planning

cellular network

network probes

identification of active road users

mobile phone positioning

map-matching &
trajectories generation

BTS

BSC

quality
assurance

m
easures

Fig. 4 Process of FPD generation (Wiltschko et al. 2007)

and quality of generated FPD. Static mobile phones (e.g. in
buildings beside the roads), phones in trains or tram lines
are to be eliminated. In a second step, single positions are
generated, using beside other information, the measured sig-
nal strengths from neighboring radio cells and the theoretical
signal strength propagation maps for each radio cell. The
sequence of positions of each user can be converted into a
sequence of road elements on the digital road network (thus a
trajectory) using map-aiding methods (Czommer 2000). See
Ramm and Schwieger (2008) or Do-iT (2009) to read more
about the methods.

For evaluation of the generated trajectories, an empirical
quality parameter describing the correctness was introduced.
The parameter cross deviation describes the mean perpen-
dicular deviation of a sequence of positions from the most
likely route of the user on the digital road network. In Fig. 5
the situation is shown graphically. The figure is a screenshot
from a project evaluation report (Do-iT 2009), therefore a
reference trajectory measured by GPS is visible as well.

In the following it will be shown that the quality parameter
cross deviation can be propagated sufficiently with ANN
near realtime. The propagation of quality can be triggered
immediately after the generation of the FPD trajectory. The
following influence parameters were identified and investi-
gated in Laufer (2011):
• Length of trajectory in m,
• Duration of trajectory in s,
• Mean antenna density in antennas per km2,
• Difference in antenna density in antennas per km2,
• Mean density of road network in road elements per km2,
• Difference in density of road network in road elements per

km2,
• Number of road elements the trajectory consists of.

Besides these seven input parameters there are more
parameters which have a weaker and more or less diffuse
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influence on the quality of the FPD. These parameters were
not considered within this research.

The data base for training the ANN consists of 8 recorded
days. The mean cross deviation reached 180 m with a mean
length of trajectories of 6.5 km and a duration of 250 s. All
data was recorded in the test area of Karlsruhe and Ettlingen
where denser urban road networks dominate. Only some
smaller areas on the edges of the area have a more rural
character.

To find the best network configuration, different net
dimensions were tested as can be seen in Fig. 6 where the
results for one single day (March 26th 2009) are displayed.
The error of the propagated cross deviation within 50

Table 1 Results for testing different net configurations and different
amount of data

Net-
configuration

Mean square
error Max. dev. [m]

Standard
deviation
[m]

9-9-1/15-15-1
best of each day

0.024 93.9 41.0

9-9-1 (all 8 days
together)

0.025 103.8 41.0

15-15-1 (all 8
days together)

0.025 108.8 38.2

15-15-1 (all 8
days) 6 extrema
eliminated

0.024 80.1 27.9

Fig. 7 Best-Server-Plot for Karlsruhe and Ettlingen

randomly chosen test data sets does not exceed 100 m for all
networks. The network [15-15-1] does perform best.

As can be seen from Table 1, one single day data is enough
to get the ANN trained. The standard deviation of all 50 test
data sets reaches 41 m in both cases (single days versus all 8
days together). If a network with 15 neurons in each hidden
layer is used, the ANN trained with all 8 days of data together
performs a bit better than with a single day and a standard
deviation of 38.2 m was reached. Elimination of the six most
extremal cross deviations leads to a standard deviation of
only 27.9 m.

Since all results are reproducible, ANN seem to be a
practical method to propagate cross deviation. Nevertheless,
extremal values in cross deviation are more difficult to
handle for ANN than more regular values. In a whole, ANN
are capable to propagate cross deviation with a standard
deviation of 30–40 m. To get a better idea of how good or
bad this result is, a closer look into the process of generating
FPD is necessary.

Figure 7 shows the test area of Karlsruhe with the radio
cells where the Abis-data were available (inside the red
surrounded area). The radio cells are very inhomogeneous
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in size, depending on the density of the road network and the
expected amount of radio cells to handle. Since the single
positions of road users are extracted from mobile phone
data, particularly from the measured signal strength, the
standard deviation of this method reaches 560 m for a single
position (Do-iT 2009). This means that the identification of
the correct route within a denser road network, as in most
parts of the test area, is difficult. Furthermore the connection
between the correctness of a route and the cross deviation is
only based on a small number of test trajectories where GPS
as reference was onboard. Therefore, the cross deviation is
not a exact quantitative reference, it should be considered as
an indicator to evaluate the trajectories.

Regarding these facts, the results reached with ANN are
quite satisfactory. It is possible to map the dependencies
between input data quality and the cross deviation as output
quality parameter.

Conclusion

As could be shown for two examples, polar point deter-
mination and mobile phone positioning, ANN are capable
for propagation of data quality within processes. How-
ever, the results depend on the modeling of the ANN
as well as the quality of the training data. Finding the
best performing network can only be done empirically
by checking, for instance, the mean square error. The
use of dynamic ANN provides the opportunity to handle
timelines and should be part of further research. To get
more experiences in using ANN and to prove their general
usability for propagation of data quality more practical
examples are necessary.
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Magic Square of Real Spectral and Time Series
Analysis with an Application toMoving Average
Processes

I. Krasbutter, B. Kargoll, and W.-D. Schuh

Abstract

This paper is concerned with the spectral analysis of stochastic processes that are real-
valued, one-dimensional, discrete-time, covariance-stationary, and which have a represen-
tation as a moving average (MA) process. In particular, we will review the meaning and
interrelations of four fundamental quantities in the time and frequency domain, (1) the
stochastic process itself (which includes filtered stochastic processes), (2) its autocovariance
function, (3) the spectral representation of the stochastic process, and (4) the corresponding
spectral distribution function, or if it exists, the spectral density function. These quantities
will be viewed as forming the corners of a square (the “magic square of spectral and
time series analysis”) with various connecting lines, which represent certain mathematical
operations between them. To demonstrate the evaluation of these operations, we will discuss
the example of a q-th order MA process.

Keywords

Moving average process • Spectral analysis • Stochastic process • Time series analysis

1 Introduction

The spectral analysis of deterministic functions and the
formulation of stochastic processes belong to the well-
established statistical tools in various fields within geodesy
(see, e.g. Koch and Schmidt 1994; Moritz 1989; Welsch et al.
2000). We found, however, that in particular the nature of the
spectral representation of stochastic processes in terms of
the stochastic Fourier integral and its relationships with the
autocovariance and spectral distribution (or density) function
is far less well known than the details of the time-domain and
Fourier analyses of deterministic functions. Our motivation

I. Krasbutter • B. Kargoll (�) • W.-D. Schuh
Institute of Geodesy and Geoinformation, University of Bonn,
Nussallee 17, 53115 Bonn, Germany
e-mail: bkargoll@geod.uni-bonn.de

for this paper is therefore to take a step towards closing
this gap in understanding. We will in particular provide
the reader with the key definitions of the involved stochastic
processes as well as of their crucial properties (Sect. 2). Then
we will state and explain the computational formulae for the
spectral analysis of general real-valued covariance-stationary
stochastic processes (Sect. 3). This is in contrast to the
usual representation of these formulae in the mathematical
statistics oriented literature (e.g. Brockwell and Davis
1991; Priestley 2004), where one generally finds only the
results for complex-valued stochastic processes, which
often complicates their application in practical situations.
To aid the understanding of the mathematical relationships
of the involved fundamental statistical quantities (stochastic
process, autocovariance function, spectral representation of
the process, spectral distribution or density function) we
will use a corresponding graphical representation in form
of a “magic square” (also in Sect. 3). We will conclude this
paper with an outlook to extensions to the presented example
[moving average (MA) process].

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
DOI 10.1007/978-3-319-10828-5_2, © Springer International Publishing Switzerland 2015
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2 Basic Elements of Stochastic
Processes

In this chapter, we will provide a summary of basic defini-
tions (D) and properties of the stochastic processes consid-
ered in Sect. 3.
(D1):We say that XT D .˝;A; P; fXt ; t 2 T g/ is a (gen-
eral) stochastic process if and only if (iff)
• .˝;A; P / is any probability space (where ˝ denotes

the sample space, A a �-algebra of events, and P a
probability measure),

• T is any non-empty set, and
• Xt is a random variable defined on .˝;A/ for any t 2 T .

In this paper, we will restrict our attention to real-valued
and one-dimensional stochastic processes as given in the
following definition.
(D2):We say that XT is a real-valued (one-dimensional)
stochastic process iff Xt W .˝;A/ ! .R;B/ for any t 2 T ,
where B is the Borel sigma algebra generated by the set of
all real-valued, one-dimensional, left-open and right-closed
intervals.

In Sect. 3, we will use stochastic processes that have a
discrete parameter set T in the time domain as well as
processes with a continuous parameter set in the frequency
domain. This distinction is made by the following definition.
(D3): We say that XT is a
• discrete-parameter stochastic process (or stochastic

process with discrete parameter) iff T � Z. Furthermore,
we call XT a discrete-time stochastic process or
discrete-time time series iff the elements of T refer
to points in time.

• continuous-parameter stochastic process (or stochastic
process with continuous parameter) iff T � R. In addi-
tion, we call XT a continuous-frequency stochastic pro-
cess iff the elements of T refer to (angular) frequencies,
in which case we will also write T D W .
As far as discrete-parameter stochastic processes are con-

cerned, we will focus our attention on covariance-stationary
processes (in the time domain). The precise meaning of this
concept is provided as follows.
(D4): We say that XT is covariance stationary iff
• EfXtg D � <1 .i:e: constant=finite/ for any t 2 T ,
• Ef.Xt � �/2g D �2X < 1 .i:e: constant=finite/ for any
t 2 T , and

• �X .t1; t2/ D �X .t1 C �t; t2 C�t/ for any t1; t2 2 T and
any�t with t1 C�t; t2 C�t 2 T ,

where Ef:g denotes the expectation operator and �X the
autocovariance function, defined by �X .t1; t2/ D Ef.Xt1 �
�/..Xt2��/g. For a covariance-stationary stochastic process,
we have that �X .t1; t2/ D �X .t1 � t2; 0/ for any t1; t2 2 T
(and 0 2 T ) such that also t1 � t2 2 T ; that is, we can
always rewrite �X by using only a single variable argument,

the second one taking the constant value 0. In light of
this, we redefine the autocovariance function for covariance-
stationary processes as

�X .k/ WD �X .k; 0/ D �X .t C k; t/

for any k; t 2 T with t C k 2 T ; the parameter k is called
lag (cf. Brockwell and Davis 1991, pp. 11–12).

The fundamental instance of a covariance-stationary pro-
cess and primary building block for certain other stochastic
processes is white noise, defined as follows.
(D5): We say that ET WD XT is (discrete-parameter) white
noise with mean 0 and variance �2X iff
• T � Z,
• EfXtg D 0 for any t 2 T , and

• �X .k/ D
�
�2X if k D 0;
0 if k ¤ 0 .

Now let us consider a non-recursive filter C , defined by
the filter equation yt DP1

kD�1 ckut�k for any t 2 Z, or in
lag operator notation yt D C.L/ut with Lkut WD ut�k and
C.L/ DP1

kD�1 ckL
k , where .ut j t 2 Z/ is any filter input

sequence and .yt j t 2 Z/ any filter output sequence (in either
case of real numbers or random variables), and .ck j k 2 Z/ is
any sequence of real-valued filter coefficients. If we view the
random variables of a white noise process ET as filter input
to a
• causal (i.e. ck D 0 for any k < 0),
• either finite or infinite (i.e. a finite or an infinite number

of filter coefficients is non-zero),
• absolutely summable (i.e.

P1
kD�1 jckj <1), and

• invertible (i.e. there exists an inverse filter C with filter
coefficients . Nck j k 2 N

0/ such that ŒC .L/C.L/�ut D ut
where C.L/ DP1

kD0 NckLk)
version of such a non-recursive filter, then we obtain the
moving average process as filter output, as explained in the
following definition.
(D6): If ET with T � Z is (discrete) white noise with mean
0 and variance �2E , then we say that LT W .˝;A; P; fLt ; t 2
T g/ is a (discrete-parameter) moving average process of
order q (or MA(q) process) (with q 2 N) iff the random
variables Lt satisfy, for any t 2 T , the equation

Lt D Et C ˇ1Et�1 C : : :C ˇqEt�q D ˇ.L/Et
with ˇ.L/ D 1C ˇ1LC : : :C ˇqLq . In the limiting case of
q D1, we call LT an MA(1) process.

Treating ˇ.L/ as a complex polynomial, then, if ˇ.z/ ¤ 0
for any z 2 C with jzj � 1, then the filter ˇ and, hence the
MA(q) process, is invertible (cf. Brockwell and Davis 1991,
pp. 86–87). Furthermore, whereas any MA.q/ process with
q < 1 is covariance-stationary (cf. Priestley 2004, p. 137),
the MA.1/ process is covariance-stationary iff the sequence
.ˇk j k 2 N

0/ of filter coefficients is absolutely summable
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(i.e. iff
P1

kD0 jˇkj < 1) (cf. Brockwell and Davis 1991,
pp. 89–91).

On the other hand, as far as continuous-parameter stochas-
tic processes are concerned, we will only deal with stochastic
processes that are in a certain sense stochastically continuous
and that have orthogonal increments, which is explained in
the following.
(D7): We say that any continuous-parameter stochastic
process XT is mean-square right-continuous (or mean-
square continuous from the right) at t0 2 T iff
lim

t!t
C
0
EfŒXt �Xt0 �2g D 0 holds (cf. Gilgen 2006, p. 453).

(D8): We say that any continuous-parameter stochastic pro-
cess XT is a stochastic process with orthogonal incre-
ments �Xs;t D Xt � Xs with s; t 2 T and s < t iff
Ef�Xt1;t2�Xt3;t4g D 0 for any t1; t2; t3; t4 2 T with t1 <
t2 < t3 < t4 or t3 < t4 < t1 < t2, i.e. iff any two “non-
overlapping” increments are uncorrelated.

3 Magic Square
for Covariance-Stationary,
Discrete-Time Processes

In the current section, we will review the mathematical oper-
ations that connect the following four fundamental quantities
of a spectral analysis in the time and the frequency domain:
1. stochastic process,
2. autocovariance function,
3. the spectral representation of the stochastic process,
4. the spectral distribution function (or, if it exists, its deriva-

tive, the spectral density function).
We may view these quantities as forming the corners

of a square with various connecting lines, which represent
certain mathematical operations between them (see Fig. 1).
We will refer to this as the Magic Square. To demonstrate
the evaluation of these operations, we will consider the
example of an MA(q) process. The reader should note that,
with this understanding, it would be straightforward to apply
the Magic Square to more complicated processes such as
ARMA(p,q) processes, which would, however, exceed the
limit of this paper. We begin the discussion by construct-
ing the time domain (the “left-hand side”) of the Magic
Square.

3.1 Time Domain (Left-Hand Side)

We consider any stochastic process XT which is
• one-dimensional and real-valued (i.e. ˝ D R

1),
• discrete in time (with T D Z), and
• covariance-stationary with zero mean, variance �2X and

autocovariance function �X .

(1)

(4)

Time domain

(5)

(8)

Frequency domain

(10)

(9)

(12)

(11)

(2) (3) (6) (7)

Fig. 1 Magic square for covariance-stationary discrete-time stochastic
processes; upper left stochastic process, lower left autocovariance func-
tion, upper right spectral representation of the stochastic process, lower
right spectral distribution function; the numbers in brackets indicate the
mathematical operations as defined in Sects. 3.1–3.3

Furthermore, we consider any stochastic process LT
obtained by filtering the process XT , where we assume that
the filter  .L/ is
• non-recursive,
• causal,
• either finite or infinite,
• absolutely summable, and
• invertible (with inverse filter  .L/).

It follows that the process LT is
• one-dimensional and real-valued (i.e. ˝ D R

1),
• discrete in time (with T D Z), and
• covariance-stationary (cf. Brockwell and Davis 1991,

p. 84) with zero mean, variance �2L and autocovariance
function �L.
The general mathematical operations within the time

domain can be summarized as follows:
(1) XT () LT :

Lt D  .L/Xt ; Xt D  .L/Lt ;

hold for any t 2 Z. The first of these equations is
an expression of the above assumption that LT is a
stochastic process obtained by non-recursive filtering of
XT . The second of these equations reflects the presumed
invertibility of the filter operation.

(2) XT H) �X ;LT H) �L:

�X .k/ D EfXtCkXt g; �L.k/ D EfLtCkLt g;

hold for any t; k 2Z. These equations are simply an
expression of the definition of the autocovariance func-
tion applied to the stochastic processes XT and LT with
the properties stated above (cf. Priestley 2004, p. 107).

(3) XT H) �L;LT H) �X :
Substitution of (1) and shifted versions thereof into

(2) yields the expressions for �L.k/ and �X .k/.
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(4) �X () �L:

�L.k/ D
1X
mD0

1X
nD0

 m n�X .k �mC n/;

�X .k/ D
1X
mD0

1X
nD0

 m n�L.k �mC n/

hold for any k 2Z. These equations show how the
autocovariance function of a covariance-stationary
stochastic process is propagated by an essentially
absolutely summable filter to the autocovariance func-
tion of the filtered (covariance-stationary) process (see
Proposition 3.1.2 in Brockwell and Davis 1991, p. 84).

Example: MA(q) Process
Let us consider a non-recursive, causal, finite, absolutely
summable and invertible filter ˇ.L/. If we apply such a
filter to white noise ET (which satisfies the conditions made
for the input process XT ), then we obtain, by definition,
an invertible MA(q) process, which then satisfies the above
stated properties of LT . Hence, we may apply the general
mathematical operations stated in equations under (1)–(4) as
follows.

Lt D ˇ.L/Et ;

Et D ˇ.L/Lt D
1X
kD0

ˇkLt�k

The first of these equations defines the MA(q) process; the
second equation yields white noise expressed in terms of the
random variables of LT , filtered by means of a non-recursive,
causal and infinite filter ˇ. As far as autocovariance functions
are concerned, �X D �E takes a very simple form (see the
definition of white noise in Sect. 2); then, the first equation
of (4) may be simplified to

�L.k/ D
8<
:
�2E

q�jkjP
nD0

ˇnˇnCjkj; ifjkj � q
0; ifjkj > q

(cf. Brockwell and Davis 1991, pp. 78–79).

3.2 Frequency Domain (Right-Hand Side)

The usual approach to a spectral representation of a stochas-
tic process given in the time domain is to define it in the
frequency domain in terms of a complex stochastic process
associated with complex exponential base functions. This
allows one, besides a shorter notation, to also cover the
case where the stochastic process in the time domain is

complex-valued. Whenever the process in the time domain
is real-valued, as it is the case with the applications we
have in mind, this complication is, however, unnecessary. We
therefore restate the main results, given in complex notation
in the literature, in terms of pairs of real stochastic processes
associated with sine and cosine base functions. We find these
to be closer to our natural understanding of the concept
of “frequency” than complex exponentials. Thus, we will
consider as the spectral representations of the processes XT
and LT (defined in Sect. 2), in each case a tuple of two
stochastic processes

�
U .X /W ;V .X /W

�
D .˝;A; P; f�U .X /! ;V .X /!

�
; ! 2 W g/;

�
U .L/W ;V .L/W

�
D .˝;A; P; f�U .L/! ;V .L/!

�
; ! 2 W g/;

which we assume to be
• one-dimensional and real-valued (i.e. ˝ D R

1),
• frequency-continuous (with W D Œ��; ��),
• mean-square right-continuous, and
• processes with orthogonal increments.

The relationships of these processes in the frequency
domain with XT and LT in the time domain will become
evident in Sect. 3.3. The general mathematical operations
within the frequency domain are:
(5) .U .X /W ;V .X /W /() .U .L/W ;V .L/W /:

For any ! 2 W ,

U .L/W .!/ D
Z !

��
Re.H.�//dU .X /W .�/

�Im.H.�//dV .X /W .�/;

V .L/W .!/ D
Z !

��
Im.H.�//dU .X /W .�/

CRe.H.�//dV .X /W .�/;

U .X /W .!/ D
Z !

��
Re.H.�//dU .L/W .!/

�Im.H.�//dV .L/W .�/;

V .X /W .!/ D
Z !

��
Im.H.�//dU .L/W .!/

CRe.H.�//dV .L/W .�/

hold (Theorem 4.10.1 in Brockwell and Davis 1991,
pp. 154–155), where H.!/ D P1

kD0  ke�ik! with
! 2 Œ��; �� is the transfer function of the filter  , and
where H.!/ is the transfer function of the inverse filter
 (this implies that the transfer function is generally
one-dimensional, frequency-continuous and complex-
valued). The relations are described by stochastic
Riemann-Stieltjes-Integral, which will be explained
more precisely in Sect. 3.3.
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(6) .U .X /W ;V .X /W / H) FX ; .U .L/W ;V .L/W / H) FL

FX .!/ D Ef.U .X /W .!//2g C Ef.V .X /W .!//2g;
FL.!/ D Ef.U .L/W .!//2g C Ef.V .L/W .!//2g;

hold for ! 2 W (Priestley 2004, pp. 250–251). These
equations express the relations between the stochastic
processes U .�/W ;V .�/W and the so-called spectral distribution
function F.�/.!/. Hence, this function is real-valued and,
due to F.�/.��/ D 0, F.�/.�/ D �.�/.0/, has similar
properties as the probability distribution function. If the
derivative f.�/.!/ D dF.�/.!/=d! exists, f.�/.!/ is called
spectral density function and is also known as the power
spectrum.

(7) .U .X /W ;V .X /W / H) FL; .U .L/W ;V .L/W / H) FX :
Substitution of (5) into (6) yields expressions for

FL.!/ andFX .!/ in terms ofU .X /W ;V .X /W andU .L/W ;V .L/W .
(8) FX () FL:

FL.!/ D
!Z

��
jH.�/j2dFX .�/;

FX .!/ D
!Z

��
jH.�/j2dFL.�/

(cf. Theorem 4.4.1 in Brockwell and Davis 1991, p.
122). These equations depend on the transfer function
of the corresponding filter and reflect direct relationships
between the spectral density functions of XT and LT .
These integrals are the usual (deterministic) Riemann-
Stieltjes integral (see also Sect. 3.3).

Example: MA(q) Process
As explained in Sect. 3.1, the input process of an MA(q)
process is white noise. The spectral distribution function for

white noise, given by FE.!/ D �2E
2�
.!C�/; ! 2 Œ��; ��, can

be calculated from (12) in Sect. 3.3. The derivative fE of this
function, the spectral density function for white noise, clearly

exists and is fE.!/ D �2E
2�

. To evaluate (5)–(8), we may
substitute the Euler equations into H.!/ D Pq

kD0 ˇke�ik! ,
we may rewrite this as

H.!/ D
qX

kD0
ˇk cos .k!/ � i

qX
kD1

ˇk sin .k!/:

Hence, (8) can be rewritten for an MA(q) process as

FL.!/ D
�2E
2�

!Z
��

 
qX

kD0
ˇk cos .k�/

!2
C
 

qX
kD1

ˇk sin .k�/

!2
d�:

3.3 Transitions Between the Time
and Frequency Domain

In pursuing a spectral analysis of time-series, one establishes
a link between discrete-time covariance-stationary stochas-
tic processes and continuous-frequency mean-square right-
continuous stochastic processes with orthogonal increments
in form of a stochastic integral, which is very similar to
the connection of continuous deterministic functions and the
Fourier transform via the Fourier integral. This link can be
explained in four steps:
(a) First we have to familiarize ourselves with the usual (i.e.

deterministic) form of the Riemann-Stieltjes integral.
The key idea here is that one seeks to integrate some
function f (the integrand) with respect to some other
function g (the integrator) over some domain of inte-
gration; this is achieved by defining a Riemann-Stieltjes
sum with respect to some partition of the domain of
integration and then to determine its “limit” (i.e. the
integral value) as the partition becomes infinitely fine (cf.
Bartle 1976, Chap. 29).

(b) The next step is to replace the deterministic integra-
tor by some continuous-parameter stochastic process
with parameter set T . Then, one defines a stochastic
Riemann-Stieltjes sum with respect to some partition of
the interval T and subsequently determines its “limit in
mean square” as the partition becomes infinitely fine;
thus, the integral value becomes a random variable (cf.
Priestley 2004, pp. 154–155).

(c) Then, one replaces the general integrator process by
a continuous-frequency mean-square right-continuous
stochastic process with orthogonal increments (which
may be viewed as the variables of a “stochastic Fourier
transform”) and the general integrand by some complex
exponential or sine/cosine with discrete-time parameter
t . Then, the time-variable random integral variables con-
stitute a discrete-time stochastic process (cf. Brockwell
and Davis 1991, Sects. 4.6–4.8).

(d) Finally, we have to distinguish two cases: Either some
discrete-time covariance-stationary stochastic process
XT is given and one has to find a corresponding
continuous-frequency mean-square right-continuous
process with orthogonal increments as its spectral
representation, or one defines a process in the frequency
domain and seeks its time-domain representation (cf.
Brockwell and Davis 1991, Sect. 4.9).

In the following, we will treat the two cases described in
(d) by formulating the mathematical operations from the fre-
quency domain into time domain and vice versa. In addition,
the mathematical relationships between the autocovariance
and spectral distribution functions will be explained. We will,
however, not mention certain obvious transition relationships
that can be obtained via simple substitution.
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(9) XT (H .U .X /W ;V .X /W /; LT (H .U .L/W ;V .L/W /:

� Xt
Lt
�
D

�R
��

cos .!t/

(
dU .X /W .!/

dU .L/W .!/

)

C sin .!t/

(
dV .X /W .!/

dV .L/W .!/

)

hold for any t 2 Z and ! 2 W . These equations may
be viewed as the stochastic counterparts to the Fourier
integral (written in terms of sine/cosine base functions)
of some deterministic function; the reader will find
these equations in terms of complex exponentials, for
instance, in Brockwell and Davis (1991, Theorem 4.8.2,
pp. 145–147) or Priestley (2004, pp. 246–252).

(10) XT H) .U .X /W ;V .X /W /; LT H) .U .L/W ;V .L/W /:

(
U .X /W .!/ � U .X /W .	/

V .X /W .!/ � V .X /W .	/

)
m:s: � 1

2�

�
1X

tD�1
Xt

!Z
	

�
cos .t�/d�
sin .t�/d�

�
;

(
U .L/W .!/ � U .L/W .	/

V .L/W .!/ � V .L/W .	/

)
m:s: � 1

2�

�
1X

tD�1
Lt

!Z
	

�
cos .t�/d�
sin .t�/d�

�
;

hold for any t 2Z and !; 	 2W . These equations show
the reversed operation given by (9), so that one obtains
the increments U .:/W .!/� U .:/W .	/, V .:/W .!/ � V .:/W .	/ and

not U .�/
W .!/ or V .�/

W .!/ themselves (Theorem 4.9.1 in

Brockwell and Davis 1991, pp. 151–152). Here,
m:s:�!

denotes convergence in mean square.
(11) �X (H FX ; �L(H FL

�
�X .k/
�L.k/

�
D

�Z
��

cos .k!/

�
dFX .!/
dFL.!/

�
;

hold for k 2 Z; ! 2 W and describe the mathematical
relationships between a given spectral distribution and
the autocovariance function (known as Wold’s theorem,
a discrete version of the Wiener-Khintchine Theorem),
see Brockwell and Davis (1991, Corollary 4.3.1, p. 119)
or Priestley (2004, pp. 222–226). The described Fourier
transform is reduced to a cosine transform due to

the fact that the autocovariance function of any real
stochastic process is even (see Priestley 2004, p. 214).

(12) �X H) FX ; �L H) FL

�
FX .!/
FL.!/

�
D
�
�X .0/
�L.0/

�
! C �
2�

C 1

�

1X
kD1

�
�X .k/ sin k!

k

�L.k/ sin k!
k

�

hold for k 2 Z; ! 2 W and is the inverse operation to
(11); see Brockwell and Davis (1991, Theorem 4.9.1,
pp. 151–152) and Priestley (2004, pp. 222–226).

Example: MA(q) Process
In the previous sections the main results in the time and
frequency domain for an MA(q) process were presented. The
above mentioned equations in this section can be used to
verify these results.

Conclusion and Outlook

In this paper we demonstrated certain aspects of the
Magic Square, which connects a covariance-stationary
stochastic process with its autocovariance function, its
spectral representation, and the corresponding spectral
distribution or density function (if it exists). To keep
the presentation short, we focussed on the example of
a moving average process and its transition from the
time into the frequency domain. The application of more
complex (and more widely used) stochastic processes in
the time domain such as autoregressive moving average
processes would be an obvious extension of this scenario,
which we will deal with in the future. Furthermore, it
would be valuable to explore the principles behind the
transition from the frequency into the time domain by
specifying suitable spectral processes and to find their
time-domain representations.
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Describing the Quality of Inequality
Constrained Estimates

L. Roese-Koerner, B. Devaraju, W.-D. Schuh, and N. Sneeuw

Abstract

A key feature of geodetic adjustment theory is the description of stochastic properties of the
estimated quantities. A variety of tools and measures have been developed to describe the
quality of ordinary least-squares estimates, for example, variance-covariance information,
redundancy numbers, etc. Many of these features can easily be extended to a constrained
least-squares estimate with equality constraints. However, this is not true for inequality
constrained estimates.

In many applications in geodesy the introduction of inequality constraints could improve
the results (e.g. filter and network design or the regularization of ill-posed problems).
This calls for an adequate stochastic modeling accompanying the already highly devel-
oped estimation theory in the field of inequality constrained estimation. Therefore, in
this contribution, an attempt is made to develop measures for the quality of inequality
constrained least-squares estimates combining Monte Carlo methods and the theory of
quadratic programming. Special emphasis is placed on the derivation of confidence regions.

Keywords

Confidence regions • Convex optimization • Inequality constrained least-squares • Monte
Carlo method • Stochastic modeling

1 Introduction andMotivation

In many applications in geodesy some bounds or restrictions
on the parameters are known in advance. Truncating the
parameter space by formulating this knowledge as inequality
constraints often helps to improve the results. One can think
of the estimation of non-negative variance components for
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example or constraints on the power spectral density in the
design of decorrelation filters (Roese-Koerner et al. 2012a).

However, besides the process of actually determining a
solution of a problem, it is also important to give a measure
of its accuracy. In presence of inequality constraints, it is no
longer possible to project the uncertainty of the observations
to the parameters by applying the law of error propagation.
This is, because there is no analytical relationship between
observations and parameters. Even if a variance-covariance
(VCV) matrix could be obtained, it would not yield a realistic
error description, as one has to deal with truncated probabil-
ity density functions (PDFs).

Up to now, there have been different approaches for a
quality description in presence of inequality constraints. For
example Liew (1976) proposed to first identify all con-
straints, which are exactly satisfied (by solving the prob-
lem). Afterwards, these constraints are treated as equality
constraints, all other constraints are discarded and the VCV

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
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DOI 10.1007/978-3-319-10828-5_3, © Springer International Publishing Switzerland 2015

15

mailto:lutz.roese-koerner@geod.uni-bonn.de
mailto:schuh@geod.uni-bonn.de
mailto:devaraju@gis.uni-stuttgart.de
mailto:sneeuw@gis.uni-stuttgart.de


16 L. Roese-Koerner et al.

matrix of the equality constrained problem is computed. A
disadvantage of this method is, that inactive constraints (e.g.
constraints, which do not hold with equality) are neglected
and do not constrain the confidence region.

Geweke (1986) and Zhu et al. (2005) treated inequalities
as prior information in a Bayesian sense and truncated the
probability density functions. To obtain a valid PDF, the
function has to be scaled, which could be thought of as dis-
tributing the probability mass in the infeasible region over the
whole function, which might be not realistic. Furthermore,
the numerical evaluation of the PDF is computationally
expensive in the multivariate case.

In this paper, we aim at giving a quality description
for Inequality Constrained Least-Squares (ICLS) problems
using Monte Carlo methods. In contrast to the idea of scaling,
we want to obtain a PDF of the estimated parameters, which
is identical to the PDF of an Ordinary Least-Squares (OLS)
estimate inside the feasible region and where all probability
mass in the infeasible region is projected onto its boundaries.

The paper is organized as follows. In Sect. 2 we define the
ICLS problem and provide references on several solvers. Our
proposed method is described in Sect. 3, as is the derivation
of confidence regions and a brief description of a sensitivity
analysis for the constraints. In Sect. 4 a case study is carried
out to illustrate the application of our approach. The insights
that have been gained are summarized in Sect. 5.

2 Background

First, the well-known linear OLS estimation model is
extended to a linear ICLS estimation. We assume a
deterministic model of the form

yC v D Ax; (1)

with vector of observations y, vector of residuals v,
.n �m/ design matrix A and vector of unknown parameters
x. n is the number of observations, m the number of
parameters. The design matrix is assumed to have full rank
m and all quantities are assumed to be real valued. The
(possibly fully populated) VCV matrix Q of the observations
is assumed to be known. The aim is to minimize the quadratic
form

˚.x/ D vTQ�1v: (2)

Clearly, this aim can be achieved, by applying the usual OLS
estimator

Ox D .ATQ�1A/�1AT Q�1y: (3)

Throughout this paper, symbols marked with a hat refer to
unconstrained quantities whereas tildes refer to quantities of
a constrained solution.

We now introduce p inequality constraints in a matrix
vector notation:

BT x � b: (4)

B is a .m � p/ matrix of constraints and b the correspond-
ing right-hand side. As it is not known in advance which
constraints will lead to changes in the parameters (i.d. are
exactly satisfied or “active”) the usual techniques of equality
constrained estimation can not be applied. However, many
algorithms have been developed to solve such an ICLS
problem of the form

minimize ˚.x/ D vTQ�1v (5a)

subject to BT x � b (5b)

(which is often referred to as Quadratic Program (QP) as we
want to minimize a quadratic objective function ˚.x/ with
respect to some linear constraints). Most of the solvers can be
subdivided into two classes: Simplex Methods and Interior
Point Methods.

In each iteration of a Simplex method a search direction
is computed and projected onto a subset of the constraints. If
at least one constraint is active in the solution, the optimal
point will be at the boundary of the feasible set (the set
where all constraints are satisfied). Therefore, one follows
the borderline of the feasible set until the optimal solution is
reached. If it is not on the boundary, in the last iteration the
projection is neglected, resulting in a step into the interior
of the feasible set. Examples for solvers of this type are
the Active Set Method (cf. Gill et al. 1981, pp. 167–173)
or Dantzigs Simplex Algorithm for Quadratic Programming
(Dantzig 1998, pp. 490–498).

Interior Point Methods on the other hand, substitute the
original—possibly hard to solve—problem by a sequence of
easier to solve ones. Then a so called “central path” through
the interior of the feasible region is followed until the optimal
solution is reached. Examples are the Logarithmic Barrier
method or primal-dual methods (cf. Boyd and Vandenberghe
2004, pp. 568–571 respectively pp. 609–613).

Other approaches also include the idea of aggregating all
inequality constraints into one complex equality constraint
(Peng et al. 2006) or transforming (5) into a Linear Comple-
mentarity Problem (cf. Koch 2006, pp. 24–25), which can be
solved using Lemke’s Algorithm (cf. Fritsch 1985).

As we want to focus on the quality description, we will
not pursue the process of actually solving an ICLS problem
but refer to the above mentioned authors. All results within
this paper were computed using the Active Set Method.



Quality of Inequality Constrained Estimates 17

3 MC-QPMethod

As a VCV matrix is no longer representative in the inequal-
ity constrained case, we want to directly propagate the
probability density of the observations. Especially in cases,
where either no analytical solution is known or it would
computationally be very expensive to obtain, Monte Carlo
(MC) methods often are used. For the ICLS problem, MC
integration seems to be perfectly suited as the probability
distribution of the observations is assumed to be known but
there is no analytical relationship between observations and
parameters.

So the idea is to draw M samples of the observations,
solve the resulting QPs and use them to obtain an empirical
probability density function of the estimated parameters.

3.1 Propagation of the Probability Density

Assuming that we have a fully populated VCV matrix Q of
the observations, we want to draw M samples s.i/Y of the
observations, which follow the normal distribution

Y � N.EfYg;Q/: (6)

EfYg denotes the expectation operator of the random vari-
able Y , the random counterpart of the deterministic variable
y. As estimator of EfYg we use an unconstrained OLS
estimate

Oy D AOx (7a)

D A.ATQ�1A/�1ATQ�1y: (7b)

The process of sampling from the above described distribu-
tion can be done as follows (cf. Koch 2007, p. 197): First Q
is factorized into the product of two upper right triangular
matrices R using the Cholesky factorization

Q D RTR: (8)

Afterwards, M standard normal distributed samples s.i/E are
drawn from the distribution

E � N.0; I/; (9)

with identity matrix I and transformed to

s.i/Y D OyC RT s.i/E ; i D 1; : : : ;M: (10)

These samples are used as input for the quadratic
program (5), which is solved using the Active Set Method,
producing M solution s.i/QX . Hence, we can achieve an

empirical joint density function of the parameters QX by
computing and normalizing the histogram of the solutions.

One can think of this approach as computingM different
instances of the problem, resulting in M different objective
functions with M different minima. However, as the con-
straints remain unchanged, all minima inside the feasible
region coincide with the solution of an OLS estimation.
All solutions outside the feasible region on the contrary are
projected to the closest point (in the metric, given through
the objective function) that fulfills all constraints. As all these
points will be at the boundary of the feasible set, this will lead
to the accumulation of probabilities, described in Sect. 1.

The task of solving M different QPs is computational
demanding. However, as with the solution of the original
problem a good initial solution is known, QP algorithms will
converge fast.

3.2 Confidence Regions (HPD Regions)

As with the MC-QP approach we not only obtain a point
estimate but a whole empirical PDF, we can easily compute
confidence intervals. In Chen and Shao (1999) and the
Supplement 1 to the “Guide to the expression of uncertainty
in measurement” (GUM, ISO 2008, pp. 5 and 30) the
confidence interval of a Monte Carlo estimate (called highest
probability density (HPD) region) is defined as the shortest
interval, which contains 1 � ˛ percent of the data (with
1�˛ being the level of significance). This definition extends
naturally to the n-dimensional case:

The (1-˛)-confidence region˝ of an n-dimensional prob-
lem is defined as the smallest region containing 1�˛ percent
of the data

P fxj˝g D 1 � ˛: (11)

This region can be computed by simply sorting the values of
the n-dimensional histogram described in Sect. 3.1 by value,
starting with the largest one. Afterwards, the cumulative sum
is computed until 1 � ˛ percentage is reached. All bins of
the histogram that added up to 1 � ˛ percentage form the
confidence region. One has to be aware that this region is not
necessarily connected, due to the accumulation of probability
mass at the boundary of the feasible region (Chen and Shao
1999, p. 84).

Figure 1 illustrates such confidence intervals for a one
dimensional example for M ! 1. The PDF of the OLS
estimate with EfX g D 0 is plotted in light gray. The ˛
percent, which are not included in the confidence interval
(shaded areas) are symmetrically distributed at both tails of
the distribution ( ˛

2
at each side). This symmetry is destroyed

when introducing the inequality constraint x � 1 and
performing an ICLS estimate.
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Fig. 1 Probability density functions and confidence intervals of dif-
ferent estimates for a one dimensional problem: OLS (light gray),
Bayesian ICLS approach (gray) and MC-QP method (dark gray, dash-
dotted). The dashed line represents the inequality constraint x � 1 and
the minimal value of the objective function is reached for x D 0. The
parts not contained in the confidence intervals are the shaded regions
below the curves. In contrast to an OLS estimate the confidence region
of an ICLS estimate can be asymmetric, which is why the OLS PDF
has symmetric shaded regions, while those of Bayes and MC-QP are
one-sided

The PDF of the MC-QP estimate is indicated by the dash-
dotted dark gray line which coincides with the OLS estimate
in the feasible region and accumulates all the probability
mass in the infeasible region at its boundary. Thus, as the
confidence interval contains the values which are most likely,
the whole ˛ percent not included in the confidence interval
are at the left tail of the PDF (depending on the constraint).
So the confidence interval is bounded on one side by the
constraint and on the other side by the ˛ percent that are
“most unlikely”. As can been seen in Fig. 1, this results in
a smaller confidence interval.

However, this is not true for the Bayesian estimate (gray
curve). The symmetry is destroyed here as well, but the
scaling of the PDF leads to a shift of the beginning of the
.1 � ˛)-percent-interval and therefore to a bigger interval
compared to the MC-QP method.

3.3 Influence of the Constraints

So far, we investigated the distribution of the estimated
parameters and their confidence region. However, it might be
also of interest, to determine the influence of the constraints
onto the parameters. This can be done either on a global
level, determining if the overall change in the result due to
the constraints is significant or at a local level, investigating
the individual influence of each constraint on each parameter.
Due to the limited space, we will only very briefly discuss

the different options for such a sensitivity analysis and
provide some references for further reading. A more detailed
discussion could for example be found in Roese-Koerner
et al. (2012b).

On a global scale, one can perform a hypothesis testing.
Here, the sum of squared residuals of the unconstrained
OLS estimate is compared with the sum of squared changes
through the constraints (Koch 1981). Another global measure
is the ratio of the probability mass inside and outside the
feasible region (measured by checking in each Monte Carlo
iteration if at least one constraint is active or not).

To analyse the local influence, the Lagrangian

L.x;k/ D ˚.x/C kT .BT x � b/ (12)

of the ICLS problem (5) is needed. It is the sum of the orig-
inal objective function ˚.x/ and the rearranged constraints
multiplied with the Lagrange multipliers k. The Lagrange
multipliers of the optimal solution can be determined and
give a measure for the “activeness” of a constraint. This can
be used to quantify the influence of each constraint on each
parameter (cf. Boyd and Vandenberghe 2004, p. 252).

4 Case Study

In this case study, the MC-QP method is applied to derive
stochastic information of some quantities of a very simple
ICLS problem: the estimation of a line of best fit with a
constrained minimal intercept. We have intentionally chosen
a simple problem to focus on the methodological aspects
of the MC-QP method and on the comparison of different
confidence regions.

Assume the following uncorrelated and normal distributed
observations y to be measured at the supporting points t:

y D ��4:0 0:0 1:5 3:0 2:0	T ; t D �1 2 3 4 5	T :
The deterministic model reads

yi C vi D x1ti C x2: (13)

The parameter space should be constrained, so that only
intercepts of at least �3:5 are accepted:

x2 � �3:5 () �
0 �1	„ƒ‚…

BT



x1
x2

�
„ƒ‚…

x

� �
3:5
	

„ƒ‚…
b

: (14)

Therefore, we have an ICLS problem in the form of (5)
and can apply the MC-QP method. The unconstrained OLS
solution reads
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Fig. 2 Empirical marginal densities of the parameters after M D
10; 000; 000 Monte Carlo iterations. The PDF of the Monte Carlo
estimates are plotted in light gray (OLS) and dark gray (ICLS), the
dashed line is the analytical PDF of the OLS estimate and the PDF of
the Bayesian approach in plotted in gray. (a) Estimates of the marginal
density of x1, (b) estimates of the marginal density of x2

Ox D


1:5

�4:0
�

(15)

and the ICLS solution, which was obtained using the Active
Set Method, reads

Qx D


1:3636

�3:5000
�
: (16)

Comparison of the marginal densities of parameter x2, which
are illustrated in Fig. 2b, shows, that the MC-QP estimate
(dark gray bars) is nearly identical to the OLS estimate (light
gray bars) inside the feasible region. All probability mass
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Fig. 3 Empirical joint densities and confidence regions of the parame-
ters afterM D 10; 000; 000Monte Carlo iterations. (a) OLS: joint PDF
and confidence region, (b) MC-QP: joint PDF and confidence region,
(c) confidence regions of Bayesian (light gray), OLS (darker gray) and
MC-QP approach (black)
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left of the constraint is projected onto the boundary of the
feasible set, resulting in a peak at x2 D �3:5. The Bayesian
estimate (gray curve) is a scaled version of the analytical
PDF of the OLS estimate (dashed curve) inside the feasible
region.

The more “peaky” form and the shift of the maximum
of the MC-QP estimate of parameter x1 (Fig. 2a) results
from correlations between the parameters. The shift is even
stronger in the Bayesian approach. Figure 3a illustrates the
joint densities of the OLS estimate and the corresponding
95% confidence region. The joint PDF of the MC-QP esti-
mate is shown in Fig. 3b and is identical to the OLS estimate
inside the feasible region. Here, the accumulation on the
boundary can be seen as well. In Fig. 3c the confidence
regions of the different estimates are compared. As discussed
in Sect. 3.2, the confidence region of the MC-QP estimate
(black) becomes smallest due to the accumulation of the
probability mass on the boundary. On the contrary, applying
the Bayesian method (light gray) leads to a bigger confidence
region due to the scaling of the PDF. In this case study, the
confidence region of the Bayes estimate is even bigger than
the one of the OLS estimate (darker gray) because a huge
part of the PDF is truncated.

5 Summary and Outlook

The proposed MC-QP method allows a stochastic descrip-
tion of ICLS estimates but it is computationally expensive
to apply. It was shown that the introduction of inequality
constraints within this framework leads to smaller confidence
regions.

The possibilities of a sensitivity analysis (which were only
mentioned briefly here) as well as the determination of the
influence of constraints on correlations between parameters
are to be addressed in future work.
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GNSS Integer Ambiguity Validation Procedures:
Sensitivity Analysis

J. Wang and T. Li

Abstract

Global Navigation Satellite Systems (GNSS) have been widely used for many precise
positioning and navigation applications. In satellite-based precise positioning, as carrier
phase measurements are used, the determination of correct integer carrier phase ambiguities
is a key issue in obtaining accurate and reliable positioning results. Therefore much
effort has been investigated in developing a robust quality control procedure which can
effectively validate the ambiguity resolution results. Such a quality control procedure has
been traditionally based on the so-called F-ratio and R-ratio tests. A major shortcoming of
these two ratio tests is that their probability distributions, which are normally considered
to be Fisher distributed, are still unknown, which precludes the possibility to evaluate the
confidence level for the ambiguity validation test. To overcome such a shortcoming, an
alternative ambiguity validation test based on the so-called W-ratio has been proposed,
which allows for a more rigorous quality control procedure under the assumption that the
fixed integer ambiguities are constant. The W-ratio test has been widely used by many
researchers. Like any other quality control procedures, there are assumptions to be made, for
example, it is assumed that both functional and stochastic models are correct, in the W-ratio
test. This paper presents a sensitivity analysis for the new ambiguity validation test based on
the W-ratio as well as the other two ratio tests. The analysis will cover the sensitivities of the
ratio tests to undetected gross errors (outliers), stochastic models, and geometry strengths
relating to a variety of satellite constellations, such as GPS, GPS/GLONASS integration
with real data sets. While the performances of different ratio tests are analyzed in terms of
the so-called ambiguity “correct” rates based on the ground truth integer ambiguity values.
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1 Introduction

Precise kinematic relative GNSS-based positioning requires
the reliable determination of the carrier phase integer ambi-
guities. The carrier phase measurements are ambiguous, with
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the ambiguity—the integer number of signal wavelengths
between satellite and antenna—being an unknown value a
priori. Hence the determination of the integer ambiguities,
commonly referred to as ambiguity resolution (AR), is
the most critical data analysis step for precise GNSS-
based positioning. With fixed integer ambiguities, the
carrier phases can be used as unambiguous precise range
measurements.

The ambiguity resolution process consists of two steps,
namely: ambiguity estimation and ambiguity validation.
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In ambiguity search, integer ambiguity parameters are
initially treated as real (continuous) parameters. The real-
valued (float) ambiguity parameters, together with other
unknown parameters such as the coordinates of the roving
receiver, can be estimated using a least-squares or Kalman
filtering algorithm. The float solution of the real-valued
ambiguity estimates and their associated statistics is then
used to construct a search window, which is assumed to
contain the correct integer ambiguities. The process of
searching all possible integer ambiguity combinations within
the search window is then performed using a search criterion
based on the minimisation of the quadratic form of the least-
squares residuals (Teunissen 1993, 1995). It is important
to note that most ambiguity research techniques provide
ambiguity estimation within a few tens of milliseconds, and
such a performance normally satisfies most applications.
The best integer ambiguity combination from the search that
results in the minimum quadratic form of the least-squares
residuals will be considered as the most likely (best) solution.
The next step for the ambiguity resolution is to apply a so-
called discrimination (validation) test to ensure that the
most likely integer ambiguity combination is statistically
better than the second best combination, as defined by
the second minimum quadratic form of the least-squares
residuals.

Traditionally ambiguity validation test procedures have
been based on the so-called F-ratio and R-ratio test, (Frei and
Beutler 1990; Euler et al. 1991). An alternative ambiguity
validation (discrimination) test procedure has been proposed
by Wang et al. (1998), in order to overcome the drawback
of the validation test using the F-ratio and R-ratio (in which
the probability distribution are unknown). This procedure is
based on the ratio (called W-ratio) of the difference between
the minimum and second minimum quadratic forms of the
least-squares residuals and its standard deviation. Recent
research has shown that these ratios could be treated as
integer aperture estimators (Teunissen 2003), but the critical
values are computed through intensive simulations (Li and
Wang 2012).

A comparative study of the major ambiguity validation
procedures has been carried out (Wang et al. 2000), showing
that the ambiguity discrimination tests based on F-and W-
ratios are generally close to the success probability of ambi-
guity resolution. However, the results should be different if
undetected outlier and/or unmodelled systematic errors are
remaining in the raw observations. In addition, a different
stochastic modelling method and geometry of the satellite
constellation may also affect the ambiguity test. Thus, this
contribution will focus on a sensitivity analysis for the
ambiguity validation tests.

2 Ambiguity Estimation and Validation
Procedure

2.1 Ambiguity Estimation

In the case of using least-squares, the so-called Gauss–
Markov model for linearised GNSS (single- or double-
differenced) measurements is written as (Wang et al. 1998):

l D Acxc C Akxk C v (1)

D D ¢2Q D ¢2P�1 (2)

where is the n� 1 measurement vector, n is the number of
measurements; is the n� 1 vector of the random errors; is the
m� 1 double-differenced ambiguity parameter vector, and m
is the number of ambiguity parameters; is the t� 1 vector
of all other unknown parameters, and t is the number of all
other unknowns (except ambiguities); Ak is the design matrix
for the ambiguity parameters; Ac is the design matrix for the
other unknown parameters; D is the covariance matrix; Q is
the cofactor matrix; P is the weight matrix; and ¢2 is the a
priori variance factor, assumed as 1.

Based on the principle of least-squares (minimum), the
estimates of the unknowns in Eq. (1) can be obtained:

bx D QbxATPl (3)

with:

Qbx D
�
ATPA

��1
(4)

wherebx D .bxc; bxk/T and AD (Ac, Ak). Qbx is the cofactor
matrix of the estimated vector, which can be represented by
the following partitioned matrices:

Qbx D
"
Qbxc Qbxcbxk
Qbxkbxc Qbxk

#
: (5)

Furthermore, from Eqs. (1), (3) and (5), the least-squares
residuals are obtained as follows:

bv D l �Abx D Qbv Pl (6)

whereQbv D Q�AQbxAT is the cofactor matrix of the resid-
uals. With the estimated residual vectorbv and weight matrix
P, the a posteriori variance cofactor can be estimated as:

bs 2 D 
0

f
(7)
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where 
0 D bv T Pbv D lT PQbv Pl D lT Pl � lTPAbx, and
f D n�m� t.

The above solution is referred to as the float solution,
with the real-valued ambiguity estimates and their associated
statistics. The next step is to take into account the fact
that the ambiguities should be integer valued. This means
that the integer ambiguities can be obtained by applying an
appropriate searching method, e.g. the LAMBDA method
(Teunissen 1995). The best integer ambiguity combination
that results in the minimum quadratic form of the least-
squares residuals will be considered as the most likely (best)
solution. Normally, the first two best ambiguity combinations
are identified for validation purposes.

2.2 Ambiguity Validation withW-Ratio Test

The W-ratio is defined as (Wang et al. 1998):

W D dp
Var.d/

(8)

where

d D 
s �
m (9)

Var.d/ D •2Qd (10)

Qd D 4 � .Ks �Km/
TQ�1bxk .Ks �Km/ is the cofactor of

d, and ı2 is the variance factor. Km and Ks are the best
and second best integer candidates. Two different variance
cofactors can be chosen (Wang et al. 1998). If the a posteriori
variance cofactor bs2 is used, the W-ratio is referred as Ws

and it has a truncated Student’s t-distribution; otherwise if a
priori variance �2 is used, W-ratio is referred as Wa, which
has a truncated normal distribution.

3 Sensitivity Analysis for the Validation
Tests

3.1 Description of Test Data Sets and Data
Processing

To analyse the sensitivity of the carrier phase integer ambigu-
ity validation tests based on the W-ratio, F-ratio, and R-ratio,
a variety of numerical tests were carried out. All of the test
data are given in Table 1.

Data Set A: The outliers of 0.5, 1.0, 2.0 m were simulated
for pseudo-ranges while the outliers of 3, and 5.0 cm for
carrier phases, respectively. Only one outlier was simulated
in either pseudo-ranges or carrier phases for each data set at
any simulation test.

Table 1 Real data sets for the tests

Data set SV no.
Data
span (s) Obs. type Remark

A (GPS) 6 2,402 Dual 06.02.2010, Sydney

B(GPSCGLO) 8(5) 600 Single 25.08.2010, Sydney

C(GPSCGLO) 8(5) 600 Single 25.08.2010, Sydney

Data Set B: Single-frequency data from eight GPS satel-
lites and five GLONASS satellites were utilized for analysing
the effect of realistic stochastic modelling.

Data Set C: Single-frequency data from eight GPS satel-
lites and five GLONASS satellites were used to gain an
insight into the benefits of using a combination of GPS and
GLONASS for ambiguity resolution.

Each data set was processed by least-squares on an epoch
by epoch basis. The preset standard deviations for both L1
and L2 pseudo-ranges are 0.158 m, whereas those for L1
and L2 carrier phase are 0.0032 m. The best and second best
ambiguity vector (ambiguity estimation) was obtained using
the LAMBDA method.

3.2 Impact of Undetected Outliers

Tests were carried out with the Data Set A using the epoch-
by-epoch solution mode to study the influence of unde-
tected outliers (gross errors) on the ambiguity validation test.
Table 2 shows the averaged R-, F- and W-ratios, and their
corresponding success rate, as well as a posteriori variance
valuesbs 2, with different magnitudes pseudo-range outliers.
In addition, correct ambiguity validation rates were obtained.
Since the best integer ambiguity combinations identified
from the search process are identical to the true integer
ambiguity, the rates could be easily computed by actual test
results using R-, F- and W-ratios with the true values. In all
the following tests, a fail-rate of 0.001 for R-ratio test which
is based on the Integer Aperture estimator (Teunissen 2009)
was used, and the conventional critical value of 2.0 for F-
ratio, and W-ratio with 99 % confidence level (one-tail) were
used.

It can be seen from Table 2 that the statistics of the
validation tests were getting worse when looking over the test
statistics, which, as expected, become smaller in proportion
to the increase of the intentionally added outliers. It is very
hard to validate the best ambiguity combination with the
R-, F- and W-ratio values when an outlier of 2 m was
added. One possible reason would be understood from the
estimated a posteriori variance factors shown in the last
column, which should be close to unity according to the
least-squares estimation theory (Cross 1983). However, if the
variance factor is significantly different from unity (it may
be rejected by an appropriate hypothesis test), it is suspected
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Table 2 Averaged statistic values regarding ambiguity validation
with respect to undetected pseudo-range outliers (epoch by epoch
solution)

SV Outlier (m) R F Wa Ws bs 2
2 0.5 6.43 5.33 7.15 5.98 1.43

1 2.85 2.52 4.84 2.88 2.82

2 1.20 1.16 1.18 0.41 8.26

5 0.5 9.35 7.44 7.61 6.78 1.26

1 3.83 3.29 5.72 3.62 2.50

2 1.26 1.21 1.41 0.51 7.67

10 0.5 6.52 5.51 7.40 6.10 1.47

1 2.87 2.56 5.07 2.92 3.01

2 1.18 1.14 1.02 0.34 9.04

12 0.5 6.30 5.34 6.88 6.33 1.18

1 2.74 2.48 4.58 3.17 2.09

2 1.45 1.35 1.90 0.79 5.80

29 0.5 9.42 7.52 8.23 7.33 1.26

1 4.32 3.67 6.51 4.22 2.38

2 1.35 1.29 1.84 0.70 6.94

Outlier free 13.05 10.16 8.33 8.78 0.90

SV Outlier (m) Success rate (%)

R F Wa Ws

2 0.5 97.2 96.3 97.3 94.9

1 73.8 68.5 69 43.6

2 1.5 0.1 0.8 0.0

5 0.5 99.5 99.3 99.0 98.0

1 92.7 88.7 91.4 66.4

2 0.8 0.0 1.3 0.0

10 0.5 99.6 99.3 97.3 96.8

1 82 74.7 85.3 44.2

2 1.3 0.5 1.5 0.0

12 0.5 98.8 92.8 99.0 98.3

1 68 61.7 63.4 46.2

2 12.7 6.5 10.1 0.67

29 0.5 99.1 98.8 98.9 97.6

1 94.5 92.3 91.7 78.4

2 1.2 0.0 3.2 0.0

Outlier free 99.9 99.9 99.9 99.8

that outliers (gross errors) exist in the measurements or there
is a problem with the fidelity of stochastic and functional
model (Cross 1983). Since we have already assumed that
the outliers are undetected, it can be concluded that the large
undetected outliers in the pseudo-range measurements cause
the model non-fidelity, and hence lead to unrealistic a poste-
riori variance estimation, that makes the R-, F- and W-ratios
extremely small. Fortunately, such a large error considered
in the tests could be detected by the unit variance hypothesis
test with critical value 2.7 with 99.0 % confidence.

Table 3 is a summary of the ambiguity validation test
results with respect to the undetected outliers in carrier phase

Table 3 Averaged statistics values on the ambiguity validation with
respect to undetected carrier phase observation outliers (epoch by
epoch solution)

SV Outlier (cm) R F Wa Ws bs 2
2 3 2.68 2.57 4.47 5.02 0.89

5 1.22 1.21 1.3 1.48 0.88

5 3 2.28 2.21 4.12 4.53 0.91

5 1.25 1.24 1.42 1.56 0.91

10 3 2.47 2.39 5.01 5.33 0.94

5 1.21 1.21 1.36 1.36 1.00

12 3 3.8.0 3.52 5.36 5.83 0.92

5 1.85 1.78 2.62 2.85 0.92

29 3 2.48 2.40 4.39 4.72 0.93

5 1.49 1.47 2.00 2.13 0.94

Outlier free 13.05 10.16 9.25 8.78 0.90

SV Outlier (cm) Success rate (%)

R F Wa Ws

2 3 64.7 63.6 74.3 75.1

5 1.8 1.3 10.1 11.2

5 3 59.2 56.7 68.8 70.2

5 5.3 0.7 11.9 12.4

10 3 65.9 64.4 77.1 77.6

5 1.1 0.4 10.3 9.2

12 3 73.3 72.2 82 81.1

5 31.4 26.7 38.1 39.9

29 3 62.8 60.0 66.5 67.9

5 10.3 23.3 11.0 10.2

Outlier free 99.9 99.9 99.9 99.8

observations for each satellite. It can be concluded from the
results that the correct ambiguity can still be validated even
with a couple of centimetre outliers in one carrier phase
measurement.

3.3 Impact of Stochastic Modeling

In order to analyze the impact of a stochastic model on
ambiguity resolution, two types of stochastic models were
considered here namely, the ‘Preset’ and ‘Realistic’ models.
Note that a weight matrix is equally weighted in the ‘Preset’
model. For the ‘Realistic’ model, a realistic measurement
noise covariance matrix estimation method (Wang 2000) was
utilized.

Data set B was processed by the mathematical model used
in Wang (2000), which applies double difference separately
in GPS and GLONASS measurements. By applying the
realistic stochastic model, the ambiguity dilution of precision
(ADOP) values (Teunissen and Odijk 1997) drop signifi-
cantly comparing with the pre-set stochastic model, which
can be seen from Fig. 1. From the 23rd epoch on, the ADOP
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Fig. 1 ADOP values for both pre-set and realistic stochastic model

Table 4 Ambiguity validation statistics by pre-set and realistic models

Model R F Wa Ws Truth

Pre-set 546/600 414/600 427/600 332/600 600/600

Realistic 577/577 577/577 577/577 577/577 577/577

value with the realistic model fluctuates around 0.01 cycles,
whereas the ADOP values for pre-set model stays in around
0.075. Apparently there is no consideration for the changing
of measurement scenario for the pre-set stochastic model.

Table 4 shows the test statistics for ambiguity validation
results. Even though both models can provide us with correct
integer ambiguities in each epoch, the validation results are
quite different. The pre-set model can only validate success-
ful ambiguities by up to 546 out of 600 by R-ratio test with
pre-defined fail-rate 0.001, and by F-ratio and W-ratio, the
accepted numbers become less. However, with the realistic
model, for each validation method, they can all determine the
ambiguities correctly in each epoch, and at the same time, all
the resolved ambiguities are correctly accepted.

3.4 Satellite Configurations

With the increasing number of satellites for GLONASS,
there is more flexibility for the augmentation of GPS appli-
cations. To analyze the impact of GLONASS in ambiguity
resolution, data set C was processed firstly with GPS only,
and then with the integration of GPS and GLONASS.

Figure 2 shows the ADOP values with regard to GPS only
and GPSCGLONASS processed by with the pre-set stochas-
tic model, respectively. Obviously, with 5 more GLONASS
satellites integrated, there is a huge improvement in the satel-
lite geometry, and the ADOP values become fairly small,
around 0.01 cycles, see the red-dash line. In Table 5, the

Fig. 2 ADOP values in case of GPS only and GPSCGLONASS

Table 5 Ambiguity validation statistics with different satellite constel-
lations, 1 for GPS, 2 for GPSCGLONASS

Constellations R F Wa Ws Correct rate (%)

1 Mean value 3.24 3.06 2.83 3.06 84.1

Validation rates 46.7 % 43.2 % 53.1 % 30.4 %

2 Mean value 6.23 5.82 14.13 11.60 100

Validation rates 100 % 100 % 100 % 100 %

Table 6 Ambiguity validation statistics with different satellite constel-
lations, 1 for GPS, 2 for GPSCGLONASS

Constellations R F Wa Ws Correct rate

1 Accepted Correct 264 256 312 180 504/599

Incorrect 16 3 6 2

Rejected Correct 240 248 192 324

Incorrect 79 92 89 93

2 Accepted Correct 599 599 599 599 599/599

Incorrect 0 0 0 0

Rejected Correct 0 0 0 0

Incorrect 0 0 0 0

mean values for different ambiguity validation methods as
well as the validation results are presented. For the GPS only
solutions, the correct rate is 84.1 %, which was obtained
by comparing with the ground truth ambiguities in each
epoch. The ambiguity validation methods can only accept
up to 53.1 % of epochs by Wa ratio, and for the other
methods, they are too conservative. When integrating GPS
and GLONASS satellites, the mean values for all the vali-
dation methods increase dramatically, and the corresponding
validation results are identical to the correct rate. This reveals
the fact that the integration of GPS and GLONASS allows
more chances to resolve the ambiguity correctly.

In Table 6, the numbers of acceptance and rejection are
given. It is shown that, in case of poor satellite geometry,
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Type I error and Type II error are inevitable for all ambiguity
validation methods.

Concluding Remarks

Ambiguity validation is one of the most important steps
in ambiguity resolution. In this contribution, we have
performed a series of data processing to investigate the
sensitivity of the ambiguity validation tests with respect
to not only errors remaining in the raw measurements, but
different stochastic models and satellite configurations.

The numerical results have shown that the validation
test statistics, such as R-, F- and W-ratios, are sensitive
to the magnitude of remaining measurement errors. It
should also be emphasised that existence of outliers in
pseudo-range measurements significantly degrades the
performance of the validation tests. It has also been shown
that appropriate stochastic modelling is critical, not only
to improve the estimation precision, but also to enhance
the performance of the ambiguity validation tests. An
implementation of an online stochastic model reflects the
real measurement scenario, and then greatly improves the
ambiguity resolution performance.

Finally, it has been demonstrated that the inclusion of
GLONASS improves the validation results. On the other
hand, the analysis with an integrated GPS/GLONASS sys-
tem has shown that on the fly ambiguity resolution based
on single-frequency measurements could be possible, pro-
vided there are a large number of satellite measurements.
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Optimal Design of DeformationMonitoring
Networks Using the Global Optimization
Methods

M. Yetkin and C. Inal

Abstract

Geodetic networks are very important tools that can be used to monitor crustal movements
or the deformation of structures. However, a geodetic network must be designed to
sufficiently meet some network quality requirements such as accuracy, reliability, sensitivity
and economy. This is the subject of geodetic network optimization. Traditional methods
have been used for solving geodetic optimization problems. On the other hand, some
evolutionary algorithms such as the particle swarm optimization algorithm have been started
to be recently used. These methods are inspired by optimization and adaptation processes
that are encountered in the nature. They are iterative procedures for quickly and efficiently
solving complex optimization problems. They may provide global optimum solution or at
least near-optimum solutions to problems. In this paper, the use of the shuffled frog-leaping
algorithm for the optimal design of a deformation monitoring network is studied. The aim
is to design and optimize a geodetic network in terms of high reliability.

Keywords

First-order design • Geodetic network optimization • Nature-inspired optimization algo-
rithms • Network reliability • Stochastic search methods

1 Introduction

Mathematically, geodetic network optimization can be
defined as minimizing or maximizing a given objective
function that represents the desired network quality criteria
such as reliability. The reliability of geodetic networks,
which was originated from Baarda (1968), can be defined
as the ability of a network to detect and resist against
blunders in the observations Pelzer (1980) and (Seemkooei
2001a). Geodetic network optimal design can help in
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Department of Geomatics Engineering, Selcuk University, 42250
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identifying and eliminating gross errors in the observations
as well as in minimizing the effects of undetectable gross
errors existing in the observations. Thus, in order to
avoid a misinterpretation of the undetected gross errors
as deformation phenomena, a monitoring network should be
designed with high reliability (Kuang 1996). The importance
of optimal design of deformation monitoring networks has
also been investigated in Niemeier (1982).

Different geodetic network optimization problems may be
classified into different orders. There are zero-order design
(ZOD) problem, first-order design (FOD) problem, second-
order design (SOD) problem and third-order design (THOD)
problem (Grafarend 1974; Grafarend and Sanso 1985). The
FOD is the choice of the optimum locations for the stations
(Berné and Baselga 2004). In other words, an optimum
network configuration that will satisfy the desired network
quality criteria can be designed. For example, the optimal
locations of the reference stations in a deformation monitor-
ing network may be determined (Kuang 1996). This may be
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Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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an application of FOD in deformation monitoring networks.
The main aim of the present contribution is to optimize a
geodetic network that is established for deformation mon-
itoring in the sense of high reliability using a stochastic
optimization method. The selected optimization algorithm is
the shuffled frog leaping algorithm (Elbeltagi et al. 2005;
Amiri et al. 2009). The optimal distribution of network
points can be determined using this method. As known, the
network reliability depends on both the configuration matrix
A (the geometry of the network) and the weight matrix of
observations P (the accuracy of the observations).

2 The Optimal Design Problem

There are three main components of an optimization prob-
lem: the objective function, optimization variables and the
solution algorithm. The location of network points and/or
weights of observables can be found in a way that the pre-set
quality criteria are satisfied for the network. To accomplish
this, the design criteria must be expressed as a function of
station coordinates. In this paper the reliability of network is
taken into account as the quality criterion.

The function to be optimized is known as the objective
function. The optimal design of a geodetic network can
determine the optimal distribution of network stations such
that the network is designed with high reliability. At the
optimal design stage we have to consider that the network
must ensure that the detection of blunders as completely as
possible and the effects of the undetected ones on the esti-
mated parameters should be minimum. A general reliability
criterion in this case can be given as

min .ri / D max: (1)

That means that the minimum redundancy numbers of
observables is maximized. ri is the redundancy number of ith
observation and the corresponding diagonal element of the
redundancy matrix R (Kuang 1996). R is computed

R D I � A
�
ATPA

��1
ATP (2)

The optimal design problems can be solved by means of var-
ious optimization methods. Traditional methods are the trial
and error method and the analytical methods such as linear
programming. In this paper, the implementation of a meta-
heuristic method called the shuffled frog leaping algorithm
(SFLA) in the solution of the classical geodetic network
design problem is investigated. SFLA aims to emulate and
model the behavior of frogs searching for food laid on stones
randomly located in a swamp and combines the advan-
tages of the genetic-based memetic algorithm and the social
behavior-based particle swarm optimization algorithm. Our

preliminary results on its application in geodetic network
optimization are presented in this paper.

3 The Shuffled Frog Leaping Algorithm

Modern metaheuristic algorithms such as genetic algorithm,
ant colonies, particle swarm optimization, bee algorithms,
firefly algorithms and so forth to find optimal solutions to
optimization problems have been developed (Yang 2008).
Optimization algorithms could be divided into two groups:
deterministic and stochastic. Deterministic techniques pro-
duce the same set of solutions if the iterative search process
starts with the same initial point. They are almost all local
search techniques and may fail in finding global optima.
Nevertheless, stochastic algorithms may produce different
solutions even if the same starting point is used. The advan-
tage of the stochastic algorithms is their ability to jump out of
local optima thanks to their stochastic component. Generally
stochastic algorithms are meta-heuristic (Yang 2010). A
recent kind of nature-inspired meta-heuristic algorithm is
called the shuffled frog leaping algorithm (Eusuff and Lansey
2003; Elbeltagi et al. 2005; Eusuff et al. 2006; Rahimi-Vahed
and Mirzaei 2007; Amiri et al. 2009). Some of iteratively
applied stochastic search heuristics have also been applied to
geodetic networks (Dare and Saleh 2000; Berné and Baselga
2004; Yetkin et al. 2009; Yetkin 2013).

In the SFLA, the population consists of a set of solutions.
The solutions (frogs) are partitioned into subsets called as
memeplexes. Each memeplex perform a local exploration.
Within each memeplex, the individual frogs hold ideas about
the search space that can be infected by the ideas of other
frogs through a memetic evolution in which the parameters
of optimization problem are updated in order to reach to the
optimal solution. After a defined number of memetic evolu-
tion (local search) step, ideas are passed among memeplexes
in a shuffling process. The local exploration and the shuffling
processes continue until defined convergence criteria are
satisfied (Elbeltagi et al. 2005).

An initial population of F frogs is created randomly. For
D-dimensional problems (D variables), ith frog is repre-
sented as XiD (x1, x2, : : : , xD)i. For example, the coordinates
of the network stations are the variables in the geodetic FOD
problem. Afterwards, the frogs are ranked in a descending
order according to their performance value that is selected as
the reliability criterion in this paper. Then, the whole pop-
ulation is partitioned into m memeplexes, each containing
n frogs, i.e. FDm� n. In this process, the first frog goes
to the first memeplex, the second frog goes to the second
memeplex, frog m goes to the mth memeplex, frog mC 1
goes back to the first memeplex, etc. (Elbeltagi et al. 2005).

As mentioned above, within each memeplex a memetic
evolution called frog-leaping algorithm is performed to



Optimal Design of Deformation Monitoring Networks Using the Global Optimization Methods 29

improve the quality of the solutions, i.e. each memeplex
is evolved. The frogs with the best and the worst fitnesses
are termed Xb and Xw, respectively. Also, the frog with the
global best fitness is identified as Xg, then the position of the
frog with the worst fitness in each cycle is improved using
the following formulae:

Si D rand � .Xb � Xw/ (3)

Xnew D Xcurrent C Si (4)

where Si is the change in ith frog position; Xcurrent is the
current position of the frog with the worst fitness; Xnew is the
new position of the frog with the worst fitness; and rand is
a random number between 0 and 1. If this process generates
a better solution, it replaces the worst frog. Otherwise, the
computations in Eqs. (3) and (4) are repeated but Xg replaces
Xb. If no improvement becomes possible in this latter case,
then a new solution is randomly generated to replace the
worst frog with another frog having any arbitrary fitness
(Elbeltagi et al. 2005; Amiri et al. 2009).

The memetic evolutionary steps within each memeplex
are repeated for a specific number of iterations. The evolved
memeplexes are shuffled for global exploration. The frogs
are sorted in descending order of their fitness. The meme-
plexes are formed. Then, the memetic evolutions within each
memeplex are applied. The global exploration is repeated
until the solutions are converged.

Application of the SFLA meta-heuristic strategy is basi-
cally summarized as follows
1. Create a random population of F solutions (frogs).
2. Calculate the fitness for each individual. Sort the popula-

tion F in descending order of their fitness.
3. Divide F into m memeplexes. There are n solutions (frogs)

in each memeplex (FDm� n).
4. Evolve each memeplex. The number of evolving itera-

tions for each memeplex is N.
5. Shuffle the evolved memeplexes and return to step 2 until

a pre-defined number of function evaluations is reached.

4 An Example

This example deals with the optimal first order design of a
geodetic network by employing the SFLA. Let us consider
a monitoring network to be observed by GPS techniques as
shown in Fig. 1. The datum of the network is provided by
minimum constraints; point R1 has been considered as a fixed
station. R1, R2 and R3 are reference points. O1 and O2 are
object points. The locations of R1 and object points are not
allowed to change and their local coordinates are given in
Table 1. On the other hand, the locations of R2 and R3 are
allowed to change in a stable area to find the most reliable

Deformable object

Stable area

R1

R2

R3

O1
O2

Fig. 1 The monitoring network

Table 1 The coordinates of fixed points

Fixed points X (m) Y (m)

R1 500 1,000

O1 750 2,500

O2 3,000 2,250

network. The problem is to determine the exact position of
the two reference points. As is well known, the reliability of
a network is dependent upon both the configuration matrix A
and the weight matrix P.

The typical distance-dependent precision for the indepen-
dent baselines is given as

¢ .baseline/ D 5 mmC 1 ppm (5)

GPS receivers’ standard technical specifications in relative
positioning can be used for computation of standard devia-
tions of the baseline components. The A matrix that might be
used at the design stage is the typical of the distance deriva-
tives due the fact that the stochastic model only considers
planimetric distances (Berné and Baselga 2004, p. 52).

A deformation monitoring network consists of reference
and object points. To optimize the network configuration,
one may assume that the locations of the reference points
are allowed to vary to some extent (Kuang 1996). However,
as is well known, reference stations should be established in
stable places. Therefore, the search domain for the locations
of the reference stations must be determined according to this
important rule. The boundaries for the search domains of R2

and R3 are the same and given as xminD 0 m, xmaxD 5000 m,
yminD 0 m and ymaxD 2000 m. We will start with random
50 initial solutions. These initial solutions can be generated
using a random number generator. The best and the worst of
initial solutions are shown in Table 2.
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Table 2 The worst and the best of initial solutions

min. ri X2 Y2 X3 Y3

0.06105 708.96 224.69 1055.3 732.73

0.33998 1850.9 1,520 722.05 190.03

Table 3 The optimization results

min ri X2 Y2 X3 Y3

0.42929 1177.1 1743.2 1303.5 1841.8

Table 4 Statistical analysis of different runs

Run Min ri

1 0.40961

2 0.41915

3 0.40647

4 0.42929

5 0.40540

6 0.41720

7 0.41821

8 0.41288

9 0.42251

10 0.39943

11 0.41990

Best 0.42929

Worst 0.39943

Median 0.41720

The SFLA is used as described above to search optimal
point locations such that the minimum redundancy number
can be maximized. The main parameters of SFLA are:
number of frogs is 50; number of memeplexes is 5; number
of generation for each memeplex before shuffling is 20;
and number of shuffling iterations is 1,000. The obtained
optimal solution is given in Table 3. Monumentation of
the network stations can be made according to the optimal
station coordinates listed in this table.

It is noted that the SFLA is probabilistic since it involves
random numbers. For pseudo random number generators,
once the random seed is determined, the resulting random
stream is fixed. If different initial seeds are used while
running the algorithm, very different solutions might be
obtained. Therefore, we may run the algorithm several times.
Then the result with the highest minimum redundancy num-
ber will be selected as the final solution. Table 4 shows the
statistical analysis of different runs.

Conclusions

A new stochastic optimization approach to the optimal
first-order design of geodetic networks has been exam-
ined. The optimization procedure gives the optimal loca-
tions for any network point after appropriate optimization

criterion is given. In the present case the optimization
criterion was the maximization of the minimum redun-
dancy number. As is well known, this is the general
criterion for internal reliability (Seemkooei 2001b). The
stochastic optimization algorithms may be extensively
used in geodetic network optimization problems. Such
methods can provide sufficient solutions. Thus, optimal
networks for deformation monitoring or other geodetic
purposes can be obtained.

This paper suggests the use of the SFLA for opti-
mization of a deformation monitoring network. Optimal
design using the SFLA needs neither linearization nor
differentiation of the objective function. Even tough opti-
mization problems can be easily solved by means of
simple mathematical computations. The diversity of the
solutions is provided by random number generation.
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Towards the Combination of Data Sets
from Various Observation Techniques

M. Schmidt, F. Göttl, and R. Heinkelmann

Abstract

Nowadays, heterogeneous data sets are often combined within a parameter estimation
process in order to benefit from their individual strengths and favorable features. Frequently,
the different data sets are complementary with respect to their measurement principle, the
accuracy, the spatial and temporal distribution and resolution, as well as their spectral
characteristics.

This paper gives first a review on various combination strategies based on the Gauss-
Markov model; special attention will be turned on the stochastic modeling of the input
data, e.g. the influence of correlations between different sets of input data. Furthermore, the
method of variance component estimation is presented to determine the relative weighting
between the observation techniques.

If the input data sets are sensitive to different parts of the frequency spectrum the
multi-scale representation might be applied which basically means the decomposition of
a target function into a number of detail signals each related to a specific frequency band. A
successive parameter estimation can be applied to determine the detail signals.

Keywords

Combination strategies • Gauss-Markov model • Operator-software impact • Variance
component estimation • Multi-scale representation

1 Introduction

To achieve the goals of the Global Geodetic Observing
System (GGOS) a combination of complementary sensor and
observation systems has to be applied (Rummel et al. 2005).
This combination should be performed within a parameter
estimation process in order to benefit from their individual
strengths and favorable features. Data sets could be comple-
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mentary, e.g. with respect to their measurement principle,
accuracies, spatial and temporal distribution and resolution
or their spectral characteristics. Various combination strate-
gies can be applied, e.g. the rigorous combination within the
Gauss-Markov model or the model of variance component
estimation (Koch 1999).

In reference frame estimation geometric space-geodetic
techniques such as VLBI (Very Long Baseline Interfer-
ometry), GNSS (Global Navigation Satellite Systems) and
SLR (Satellite Laser Ranging) are usually combined; spe-
cial attention has to be turned on the datum definition
and the consideration of constraints; see e.g. Seitz (2015).
High-resolution geoid determination is performed by com-
bining the modern gravimetric space-geodetic techniques,
i.e. CHAMP (CHAllenging Minisatellite Payload), GRACE
(Gravity Recovery and Climate Experiment) and GOCE
(Gravity field and steady-state Ocean Circulation Explorer)

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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with terrestrial, airborne and shipborne measurements as
well as data from altimetry missions. This can be achieved
within a rigorous combination, mostly by considering prior
information in form of a given gravity model (see e.g. van
Loon and Kusche 2007) or by least-squares collocation
(see e.g. Kühtreiber and Abd-Elmotaal 2007). Since GRACE
provides accurate satellite data for the long wavelength part
(larger 500 km) of the gravity field, GOCE however for
the wavelength part between 100 and 500 km a spectral
combination (see e.g. Gitlein et al. 2007) or a multi-scale
representation (see e.g. Haagmans et al. 2002) can be applied
for high-resolution geoid modeling.

Recently data combination procedures entered other fields
of geodetic interest such as in hydrosphere or atmosphere
modeling; see e.g. Dettmering et al. (2011). A crucial point is
always the proper choice of the complete covariance matrix
of the observations. A detailed discussion on this topic is, for
instance, given by van Loon (2008).

The outline of this paper is the following. After introduc-
ing the general Gauss-Markov model in Sect. 2, we present
in Sect. 3 altogether six models for combining data sets from
various observations techniques. As an example we demon-
strate in Sect. 4 how a full covariance matrix can be con-
structed for time series processed in different analysis centers
(ACs) from the same original measurements. The different
ACs are treated as here like different observation techniques.
In Sect. 5 finally we discuss the multi-scale representation for
providing a concept for a multi-scale (spectral) combination.

2 Gauss-MarkovModel

The Gauss-Markov model is defined as

yC e D X ˇ̌̌ with D.y/ D �2 P�1 D �2 Q ; (1)

wherein y is the n � 1 vector of the observations, e the
related n � 1 vector of the observation errors, X the n � u
given coefficient (design) matrix, ˇ̌̌ the u � 1 vector of the
unknown parameters, �2 the unknown variance factor, P the
n�n given positive definite weight matrix of the observations
and Q D P�1 the n � n given cofactor matrix, furthermore
n > u holds; see e.g. Koch (1999). In case of rankX D u we
denote the model (Eq. (1)) as Gauss-Markov model of full
rank. However, if rankX D r < u holds, the model (Eq. (1))
is called Gauss-Markov model not of full rank and the rank
deficiency amounts d D u � r .

The least squares method yields the normal equation
system

N ˇ̌̌ D b ; (2)

wherein we introduced the normal equation matrix N D
XTP X as well as the “right-hand side” vector b D XTP y. In
case of full rank, i.e. rankN D u we obtain the solution

Ǒ̌̌ D N�1 b : (3)

In case of a rank deficiency, i.e. rankN D r < u the solution
reads

ˇ̌̌ D N� b ; (4)

wherein N� means a generalized inverse of N, e.g. the
pseudoinverse NC.

In the two cases the covariance matrices of the estimations
Ǒ̌̌ and ˇ̌̌ are given as

D. Ǒ̌̌ / D �2 N�1 ; (5)

D.ˇ̌̌/ D �2 N� : (6)

An estimation of the variance factor can be derived from the
maximum-likelihood method; see e.g. Koch (1999).

3 Combination Models

Whereas the vector y introduced in the Gauss-Markov model
(Eq. (1)) can be assumed to be the observation vector of
a single technique, we discuss in the following several
combination models (CMs) within the multi-technique case.
To be more specific, we combine the observation vectors
yp with p D 1; : : : ; P from altogether P techniques such
as GNSS, VLBI or SLR. Note, that we identify a set of
GNSS observation sites or GRACE ACs (see Sect. 4) also
with different observation techniques or groups. In the CMs
we distinguish between different stochastic approaches for
the observation vectors and different kinds of unknown
deterministic parameters.
CM 1: First we assume that for each technique p the vector
ˇ̌̌ of the unknown parameters is the same; i.e. we reformulate
the Gauss-Markov model (Eq. (1)) as

yp C ep D Xp ˇ̌̌ with C.yp; yq/ D �2 Qp;q (7)

for q; p D 1; : : : ; P , wherein yp is the np � 1 vector of
the observations and ep the np � 1 vector of the observation
errors. Furthermore, Xp is the np�u given design matrix and
Qp;q D QT

q;p the np � nq given cofactor matrix between the
observation vectors yp and yq; the other quantities have been
already defined in the context of Eq. (1). Next we rewrite CM
1 (Eq. (7)) and obtain the formulation
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3
775 : (8)

Note, we require for the total number n D PP
pD1 np of

observations that the inequality n > u holds. The complete
design matrix determines the total rank of the model. CM 1
(Eq. (8)) could be transferred into the Gauss-Markov model
(Eq. (1)) by defining the n�1 vectors y D �yT1 ; yT2 ; : : : ; yTp 	T
and e D �eT1 ; eT2 ; : : : ; eTp 	T as well as the corresponding coef-
ficient matrix X and weight matrix P. Thus, the estimation of
the unknown parameter vector ˇ̌̌ is obtained from Eqs. (3)
or (4), respectively.
CM 2: In our second approach we assume that the observa-
tion vectors of the different techniques are mutually uncor-
related, i.e. we set Qp;q D 0 for p ¤ q in CM 1 (Eq. (8)).
With Pp;p D Q�1

p;p we obtain with Np D XT
pPp;p Xp and

bp D XT
pPp;p yp the normal equation system

0
@ PX
pD1

Np

1
A ˇ̌̌ D

PX
pD1

bp : (9)

Due to the neglect of the cofactor matrices Qp;q for p ¤
q, i.e. the correlations between the observation vectors yp
and yq , the estimated variances of the estimated unknown
parameter vector

Ǒ̌̌ D
0
@ PX
pD1

Np

1
A

�1
PX
pD1

bp (10)

are usually too optimistic. Note, in Eq. (10) we require
rank.

PP
pD1 Np/ D u.

CM 3: In the third approach we separate for each technique
the u � 1 vector ˇ̌̌ D Œ ˇ̌̌Tp ; ˇ̌̌

T
c �

T into a up � 1 technique
dependent subvector ˇ̌̌p of so-called local parameters and
a technique independent uc � 1 subvector ˇ̌̌ c of common
or global parameters. Under this assumption the extended
version of CM 1 (Eq. (7)) reads

yp C ep D
�

Xp;p Xp;c

	 
 ˇ̌̌p
ˇ̌̌ c

�

with C.yp; yq/ D �2 Qp;q ; (11)

wherein Xp;p and Xp;c are given np � up and np � uc
coefficient block matrices. Reformulating this model yields
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. . . . . . . . .
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775 : (12)

CM 4: In this case we introduce for each technique an
unknown individual variance component �2p and an unknown
covariance components �p;q for the covariance matrices
between two individual techniques. Thus, the generalized
version of CM 3 (Eq. (11)) reads

yp C ep D
�

Xp;p Xp;c

	 
 ˇ̌̌p
ˇ̌̌c

�

with C.yp; yq/ D �p;q Qp;q (13)

with �p;q D �q;p and �p;p D �2p . Reformulating the model
above yields the linear model with unknown variance and
covariance components

2
664

y1
y2
.

yP

3
775C

2
664

e1
e2
.

eP

3
775 D

2
664

X1;1 : : : 0 X1;c

0 : : : 0 X2;c

. . . . . . . .
0 : : : XP;P XP;c

3
775

2
66664

ˇ̌̌1
ˇ̌̌2
.
ˇ̌̌P
ˇ̌̌c

3
77775

with

D.

2
664

y1
y2
.

yP

3
775/ D

2
664
�21Q1;1 �1;2Q1;2 : : : �1;PQ1;P

�1;2Q2;1 �22Q2;2 : : : �2;PQ2;P

. . . . . . . . . . . . . .
�1;PQP;1 �2;PQP;2 : : : �

2
P QP;P

3
775 I (14)

for the solution see, for instance, Koch (1999).
CM 5: In our next approach we again assume that the
observation vectors of the different techniques are mutually
uncorrelated, i.e. Qp;q D 0 for p ¤ q in CM 4 (Eq. (14)).
Thus, we obtain from CM 4 (Eq. (13)) the linear model with
unknown variance components

yp C ep D
�

Xp;p Xp;c

	 
 ˇ̌̌p
ˇ̌̌c

�

with C.yp; yq/ D ıp;q �p;q Qp;q ; (15)
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wherein the delta symbol ıp;q is defined as ıp;q D 1 for p D
q and ıp;q D 0 for p ¤ q. Note, that e.g. the computation of
the International Terrestrial Reference Frame (ITRF) is based
on CM 5 (Eq. (15)); see Seitz (2015).

As a specialization of CM 5 (Eq. (15)) we remove the
local parameter vectors ˇ̌̌p and obtain with ˇ̌̌ c D ˇ̌̌ the linear
model with unknown variance component components as

yp C ep D Xp ˇ̌̌

with C.yp; yq/ D ıp;q �p;q Qp;q (16)

as an extension of CM 1 (Eq. (7)). Applying e.g. the least
squares method to CM 5 (Eq. (16)) we obtain the normal
equation system

0
@ PX
pD1

1

�2p
Np

1
A ˇ̌̌ D

PX
pD1

1

�2p
bp : (17)

In case that the system is of full rank, the estimation of the
unknown vector ˇ̌̌ reads

Ǒ̌̌ D
0
@ PX
pD1

1

�2p
Np

1
A

�1 0
@ PX
pD1

1

�2p
bp

1
A : (18)

The variance components �2p can be estimated from the
residuals

Oep D Xp
Ǒ̌̌ � yp (19)

according to O�2p D .OeTp Pp;p Oep/=rp by means of the par-
tial redundancy rp (Koch 1999). Consequently, the estima-
tion (18) has to be performed iteratively. An efficient calcu-
lation of the variance components is given by a fast Monte-
Carlo implementation of the iterative maximum-likelihood
variance component estimation as described by Koch and
Kusche (2001).
CM 6: In this approach we assume that prior information
for the expectation vector E.ˇ̌̌/ D ���ˇ and the covariance
matrix D.ˇ̌̌/ D Qˇ of the unknown parameter vector ˇ̌̌ are
available. To be more specific we introduce the additional
Gauss-Markov model

���ˇ C eˇ D ˇ̌̌ with D.���ˇ/ D �2ˇ Qˇ (20)

wherein eˇ is the u � 1 vector of the errors for the prior
information and �2ˇ an unknown variance factor of the
pseudo observation vector ���ˇ. By combining the P models
(Eq. (16)) and the additional model (Eq. (20)) we obtain the
linear model with unknown variance components and prior
information as
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The extended normal equations for the unknown parameter
vector ˇ̌̌ including the unknown variance components �2p and
�2ˇ are given as

0
@ PX
pD1

�p Np C Pˇ

1
A Ǒ̌̌ D

PX
pD1

�p bp C Pˇ ���ˇ (22)

with �p D �2ˇ=�
2
p. Since the matrix Pˇ D Q�1

ˇ is positive
definite and the P matrices Np at least positive semidefinite,
the normal equation matrix .

PP
pD1 �p Np C Pˇ/ is regular

and Eq. (22) can be solved for

Ǒ̌̌ D
0
@ PX
pD1

�pNp C Pˇ

1
A

�10
@ PX
pD1

�pbp C Pˇ���ˇ

1
A ; (23)

see Koch (2000) or Koch and Kusche (2001).

4 Numerical Example

Assuming a non-rigid Earth body the motion of the Celestial
Intermediate Pole (CIP) is calculable from the differential
equation

p.t/C i

˝CW

dp.t/

dt
D �.t/ ; (24)

wherein ˝CW means the Chandler frequency and i D p�1;
for more details see e.g. Gross (2007). Equation (24) states
that the complex-valued motion of the CIP, p.t/, is driven
by the equatorial excitation function �.t/ D �1.t/C i �2.t/.
According to �j .t/ D �mass

j .t/C �motion
j .t/, the components

�j .t/ with j D 1; 2 can each be separated into a matter
term �mass

j .t/ and a motion term �motion
j .t/. Whereas the

latter is caused by moving masses the matter term is the
consequence of mass changes within the Earth system and
can be calculated by the degree two spherical harmonic coef-
ficients �C2;1.t/ and �S2;1.t/ of the gravitational potential
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Fig. 1 Top: monthly time series
of the excitation function
�mass
2Ip .tk/ calculated from the

degree 2 spherical harmonic
coefficients �S2;1Ip.tk/ from
P D 5 GRACE ACs, namely
CSR (cyan), GFZ (dark blue),
JPL (blue), IGG (orange) and
DEOS (magenta) at times tk with
k D 1; : : : 72 within the time
interval between January 2003
and December 2008; bottom:
empirical standard deviations
�mass
2Ip .tk/ of the time series; all

data in mas

according to �mass
1 .t/ D �mass

1 .�C2;1.t// and �mass
2 .t/ D

�mass
2 .�S2;1.t//.

Several processing or analysis centers (ACs) of
the GRACE K-band measurements, e.g. GFZ (Geo-
ForschungsZentrum Potsdam), CSR (Center of Space
Research, University of Texas, Austin, USA), JPL (Jet
Propulsion Laboratory, Pasadena, USA), IGG (Institute for
Geodesy and Geoinformation, University of Bonn) and
DEOS (Delft Institute of Earth Observation and Space
Systems), provide time-variable gravitational potential
models. Indicating the different ACs by the index p D
1; : : : ; P with P the total number of ACs we decompose
�mass
j .t/ DW �mass

j Ip .t/ according to

�mass
j Ip .t/ D �mass

j .t/C��mass
j Ip .t/ (25)

into an AC independent term �mass
j .t/ and an AC dependent

correction term ��mass
j Ip .t/. The first term stays for the fact

that all gravitational potential models are derived from the
same GRACE input data. However, different parameteriza-
tions, software packages, background models, standards and
procedures (e.g. outlier detection), etc. cause AC dependent
influences which can be summarized as so-called operator-
software impact (OSI) parameter; see e.g. Kutterer et al.
(2009) or Fang (2007). Thus, the term ��mass

j Ip .t/ means the
OSI deviation of the processed value �mass

j Ip .t/ from the “true”
value �mass

j .t/. Figure 1 shows exemplarily 5 monthly time
series �mass

2Ip .tk/ with p D 1; : : : ; P D 5 at discrete times
tk for a time span of 6 years between January 2003 and
December 2008, wherein the index k D 1; : : : ; K D 72 indi-
cates the 72 months starting with January 2003. As can be
seen from the bottom panel of Fig. 1 the empirical monthly
standard deviations �mass

2Ip .tk/ calculated via the relation

�mass
j Ip .tk/ D

1p
P � 1

0
B@

PX
qD1

q¤p

�
�mass
j Iq .tk/ � �mass

j Ip .tk/
�2
1
CA
1=2

are for j D 2 in the range between 10 and 15 mas. Usually
the time series �mass

j Ip .tk/ are considered as uncorrelated
signals, although they are derived from the same GRACE
raw measurements. As a consequence of this the accuracies
of estimations from a combination of these time series are
usually too optimistic.

For simplification we assume in the following that no
systematic offsets or trends exist between the time series
shown in Fig. 1 and that the OSI deviations��mass

j Ip .tk/ could
be interpreted as random variables with expectation values
E.��mass

j Ip .tk// D 0. By introducing the K � 1 observation
vectors yp D y C �yp D .�mass

j Ip .tk// we reformulate CM 1
(Eq. (7)) as

yp C ep D IK ˇ̌̌ with C.yp; yq/ D �2 Qp;q (26)

for q; p D 1; : : : ; P with the K � K unit matrix Xp D IK ,
the K � 1 vector ˇ̌̌ D .�mass

j .tk// of the unknown excitation
values �mass

j .tk/.
In the traditional approach, i.e. neglecting the cofactor

matrices Qp;q forp ¤ q, the Gauss-Markov model (Eq. (26))
is reduced to CM 2 with the normal Eqs. (9). To be more
specific, we define

Qp;q D ıp;q Qy;y D ıp;q
0
@ 1

P

PX
pD1

Qyp;yp

1
A (27)

with Qyp;yp D diag
h
.�mass
j Ip .t1//2; : : : ; .�mass

j Ip .tK//2
i
.
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Fig. 2 Estimated standard
deviations O�massItrad

2 .tk/ and
O�massIosi
2 .tk/ from the traditional

approach (black curve) and from
the alternative approach (red
curve)

Since the normal equation matrix is regular, the estimation
Ǒ̌̌ DW Ǒ̌̌ trad D . O�massItrad

j .tk// is obtained from Eq. (10).
In the alternative approach we consider the decomposi-

tion (25) and define for CM 1 (Eq. (7)) the covariance matrix
Qp;q as

Qp;q D Qy;y C ıp;q Q�yp;�yp ; (28)

wherein the matrix Qy;y was already introduced by Eq. (27).
According to Kutterer et al. (2009) we define the OSI
deviation Q�yp;�yp of the cofactor matrix as

Q�yp;�yp D ˛2 Qyp;yp : (29)

The calculation of the OSI parameter ˛ is explained in
detail by Fang (2007) and Heinkelmann et al. (2011) and
is not repeated here. With a given value ˛ the estimation
Ǒ̌̌ DW Ǒ̌̌ osi D . O�massIosi

j .tk// can be computed from the nor-
mal equation system of the Gauss-Markov model (Eq. (26))
considering Eqs. (28) and (29).

Due to the chosen cofactor matrices for the traditional and
the alternative approach according to Eqs. (26)–(29) the esti-
mated unknowns O�massItrad

j .tk/ and O�massIosi
j .tk/ (not shown

here) are identical. However, as expected the estimated
standard deviations are quite different as can be seen from
Fig. 2. Whereas the black curve in Fig. 2, representing the
standard deviations O�massItrad

2 .tk/ of the estimated parameters
according to the traditional approach, simulates unrealistic
high accuracies, the range of the estimated standard devi-
ations O�massIosi

2 .tk/ of the alternative approach agrees well
with the empirical accuracies shown in the bottom panel of
Fig. 1. Thus, the results of the OSI approach seem to be more
realistic.

The presented approach is just one way to consider the
OSI deviations. Several other strategies are outlined by
Kutterer et al. (2009), Fang (2007) or Heinkelmann
et al. (2011) in detail. These procedures include variance
component estimations according to CM 4 (Eq. (13)) and
CM 5 (Eq. (15)).

5 Multi-scale Combination

One promising modern tool for the representation and
the combination of input data from different observation
techniques is the multi-scale representation (MSR). The
MSR means viewing on a signal under different resolutions
(microscope effect). In other words the MSR provides
approximations of the signal under different resolution
levels. These approximations are representable as series
expansions in so-called scaling functions; furthermore the
differences between the approximations of two adjacent
levels are called detail signals, also representable by series
expansions, but this time in so-called wavelet functions.

In case of using scaling and wavelet functions as base
functions for modeling the target function, e.g. the gravity
field, two ways can be used for combining data from different
observation techniques, namely (1) the combination of data
sets from different observation techniques on the highest
resolution level or (2) the estimation of the target function
on different resolution levels due to the distribution and the
sensitivity of the data from different techniques.

The MSR is explained in detail in many publications, e.g.,
by Schmidt (2007, 2012). Here we give a brief summary for
the two-dimensional (2-D) case.

In the 2-D multi-scale approach we model the target
function F as F.x/ 	 FJ .x/ D FJ .x; y/ depending on the
2-D position vector x D Œx; y�T on the highest resolution
level J as

FJ .x; y/ D
KJ�1X
k1D0

KJ�1X
k2D0

dJ Ik1;k2 �J Ik1.x/ �J Ik2.y/ ; (30)

where �J Ik1.x/ and �J Ik2 .y/ are two 1-D base functions
depending on the coordinates x and y. In wavelet theory
these functions are called level-J scaling functions and gen-
erate a 2-D tensor product MSR; see e.g. Schmidt (2001). As
two examples the Daubechies scaling functions generate an
orthogonal MSR, the endpoint-interpolating B-spline func-
tions, however, provide a semi-orthogonal MSR; for the latter
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see e.g. Schmidt (2007). With the number KJ of scaling
functions �J Ik.z/ with z 2 fx; yg and k 2 fk1; k2g we define
the .KJ � KJ / � 1 vector dJ D vec DJ , wherein ‘vec’
means the vec-operator (Koch 1999). The KJ � KJ scaling
coefficient matrix DJ is defined as

DJ D

2
664

dJ I0;0 dJ I0;1 : : : dJ I0;KJ�1
dJ I1;0 dJ I1;1 : : : dJ I1;KJ�1

. . . . . . . . . . . . . . . . .
dJ IKJ�1;0 dJ IKJ�1;1 : : : dJ IKJ�1;KJ�1

3
775 : (31)

With theKJ�1 level-J scaling vector���J .z/ D .�J Ik.z// and
considering the computation rules for the Kronecker product
‘˝’ (see e.g. Koch 1999) Eq. (30) can be rewritten as

FJ .x; y/ D .���TJ .y/˝ ���TJ .x// vec DJ

D ���TJ .x/ DJ ���J .y/ : (32)

With j 0 D J � i0 and 0 < i0 � J the MSR is given as

FJ .x; y/ D Fj 0.x; y/C
i0X
iD1

3X
�D1

G�
J�i .x; y/ ; (33)

wherein the low-pass filtered signal Fj 0.x; y/ and the band-
pass filtered detail signalsG�

J�i .x; y/ are computable via the
relations

Fj 0.x; y/ D ���Tj 0.x/ Dj 0 ���j 0.y/ ;

G1
J�i .x; y/ D ���TJ�i .x/ C1

J�i    J�i .y/ ;

G2
J�i .x; y/ D    T

J�i .x/ C2
J�i ���J�i .y/ ;

G3
J�i .x; y/ D    T

J�i .x/ C3
J�i    J�i .y/ (34)

by means of the Lj � 1 level-j wavelet vectors    j .z/ D
. j;l .z// with Lj D KjC1 �Kj .

The level-j and level-.j � 1/ scaling functions �j Ik.z/
with k D 0; : : : ; Kj � 1 and �j�1In.z/ with n D
0; : : : ; Kj�1�1 as well as the level-.j �1/wavelet functions
 j�1Il .z/ with l D 0; : : : ; Lj�1 � 1 are related to each other
by means of the two-scale relations

�j�1In.z/ D
2nX

kD2n�.Kj�1/
pj Ik �j I2n�k.z/ ; (35)

 j�1Il .z/ D
2lX

kD2l�.Kj�1/
qj Ik �j I2l�k.z/ (36)

with given coefficients pj Ik and qj Ik; for more details see
e.g. (Schmidt 2012). The two Eqs. (35) and (36) can be
reformulated as matrix equations

���Tj�1.x/ D ���Tj .x/ Pj ;

   T
j�1.x/ D ���Tj .x/ Qj (37)

with the Kj � Kj�1 matrix Pj D .pj Ik/ and the Kj �
Lj�1 matrix Qj D .qj Ik/. In Eqs. (34) we introduced the
KJ�i � LJ�i matrix C1

J�i , the LJ�i � KJ�i matrix C2
J�i

and the LJ�i � LJ�i matrix C3
J�i . The corresponding 2-D

downsampling equations read



Dj�1 C1

j�1
C2
j�1 C3

j�1

�
D



Pj
Qj

�
Dj

h
P
T

j Q
T

j

i
(38)

for j D j 0C 1; : : : ; J and mean the pyramid algorithm. The
Kj�1�Kj matrix Pj and theLj�1�Kj matrix Q are defined
via the relation



Pj
Qj

�
D �Pj Qj

	�1
: (39)

Viewing on the rigorous combination explained before
from the point of the MSR we (1) have to choose an
appropriate number for the highest resolution level J defined
in Eq. (30), (2) we perform the parameter estimation by
means of an appropriate CM as defined in Sect. 3 and
calculate the series coefficients collected in the matrix DJ

(Eq. (31)) and (3) we calculate all detail signals by applying
the pyramid algorithm according to Eqs. (34) and (38). Since
all calculations within the pyramid algorithm are based on
linear equation systems the covariance matrices of all sets of
coefficients and the detail signals can be computed by means
of the law of error propagation.

As an alternative to the procedure described before the
spectral behavior of the different observation techniques
can be used directly in the estimation procedure. Since,
for instance, GOCE data cover a higher frequency part
than GRACE data, the MSR comes directly into play. The
procedure is visualized by the flowchart in Fig. 3. To be
more specific, the high-resolution observation vector y1 with
cofactor matrix Q1;1 of the first observation technique deter-
mines the coefficient matrix DJ (Eq. (31)) via a CM. The
detail signals GJ�1 2 fG1

J�1; G2
J�1; G3

J�1g to Gj2C1 2
fG1

j2C1; G
2
j2C1; G

3
j2C1g of the highest levels j2 C 1; j2 C

2; : : : ; J � 1 are calculated via Eqs. (34) and (38). Applying
in the next step again the pyramid algorithm the scaling
coefficient matrix Dj2 of level j2 is predicted as

Dj2 D Pj2C1 Dj2C1 P
T

j2C1 (40)

with covariance matrix

D.vecDj2/ D .Pj2C1 ˝ Pj2C1/D.vecDj2C1/

� .PTj2C1 ˝ P
T

j2C1/ (41)
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Fig. 3 Data combination within a MSR. The input data of different
observation techniques are introduced into the evaluation model at
different resolution levels. The coefficient matrix Dj2C1, estimated at
the level j2 C 1 is transferred to the lower level j2 by means of the
pyramid algorithm according to Eq. (40)

and improved by introducing the observation vector y2 with
cofactor matrix Q2;2 of the second observation technique
providing data of medium resolution. Continuing this process
until the lowest level the MSR of the gravity field according
to Eq. (30) is obtained.

Conclusion

In this paper we presented selected combination strate-
gies for parameter estimation from input data of different
geodetic observation techniques. Starting with the Gauss-
Markov model we outline parameter estimation within
different combination models including the estimation of
unknown variance and covariance components. If fur-
thermore prior information is available it can be used as
additional information, e.g. by introducing pseudo obser-
vations from a given gravity field model. As discussed
in various papers the variance components of the real
observations and the prior information express the rela-
tive weighting and may be interpreted as regularization
parameters; see e.g. Koch and Kusche (2001).

As an alternative approach to the rigorous combination
we discussed the MSR for combining input data from
observation techniques which are sensitive to different
parts of the frequency spectrum. A further advantage of
the MSR based on wavelet expansion is that usually a
lot of elements of the matrices C�

j introduced in Eq. (34)
are close to zero. Thus, as already standard in digital
image processing efficient data compression techniques
can be applied. This way, just the significant information
of the signal is stored. Finally, it is worth to mention that
all methods mentioned before can be formulated in the
framework of Bayesian Inference (Koch 2000).

We discussed briefly the problem of the OSI deviation.
This example demonstrates the importance of an realistic
stochastic model. In our opinion it cannot be the main goal
of data evaluation to achieve the smallest values for the

estimated standard deviations. Instead of this we aim at
realistic accuracies!

Finally we want to mention that future data com-
bination goes far beyond the combination of geodetic
techniques, since especially data from remote sensing
missions have to be connected with geodetic data. In such
a procedure, e.g. point measurements from GNSS have to
be combined with superficial measurements from InSAR.
These kinds of combination mean a further challenge for
geodesy in the very near future.
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On theWeighted Total Least Squares Solutions

X. Fang and H. Kutterer

Abstract

Nowadays the terminology Total Least Squares (TLS) is frequently used as a standard name
of the estimation method for the errors-in-variables (EIV) model. Although a significant
number of contribution have been published to adjust the EIV model, the computational
advantages of the TLS problem are still largely unknown. In this contribution various
approaches are applied for solving the weighted TLS problem, where the covariance matrix
of the observation vector can be fully populated: 1. The auxiliary Lagrange multipliers
are applied to give some implementations for solving the problem. 2. In contrast to the
nonlinear Gauss–Helmert model (GHM) proposed by other authors, the model matrices
and the inconsistency vector are analytically formulated within the GHM. 3. The gradient
of the objective function is given when the weighted TLS problem is expressed as an
unconstrained optimization problem. If the gradient equals to zero, the necessary conditions
for the optimality are identical with the normal equation which is derived by Lagrange
multipliers. Furthermore, a numerical example demonstrates the identical solution by the
proposed algorithms.

Keywords

Errors-in-variables • Gauss–Helmert model • Gradient • Lagrange multipliers • Total least
squares

1 Introduction

It is well known that the method of the Least Squares (LS),
which has been developed by C.F. Gauss and A.M. Legendre
in the nineteenth century, is applied to approximate solutions
of these overdeterminedsystems yC vyDAŸ, where the tra-
ditional observation vector y affected by random errors has
the corresponding residual vector vy, and Ÿ is an unknown
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parameter vector. However, this is not always the case in the
reality because the elements of the coefficient matrix can be
the quantities observed in some geodetic problems. If the
coefficient matrix is affected by random errors, the model
is called errors-in-variables (EIV) model. The terminology,
Total Least Squares (TLS), which is used for adjusting the
EIV model to estimate the parameters, was introduced by
Golub and Van Loan (1980) in numeric analysis, also seen
in Van Huffel and Vandewalle (1991).

Recently, the investigation about the TLS estimation has
been shown in quite a number of publications in geodesy.
From the methodological point of view, the most frequently
used approach, which rigorously adjusts the EIV model,
is the closed form solution in terms of the singular value
decomposition (SVD) of the data matrix (e.g., Teunissen
1988; Felus 2004; Akyilmaz 2007; Schaffrin and Felus
2008). Here, it should be mentioned that the generalized
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TLS solution as applied by Akyilmaz (2007) does not
directly yield the solution for the structured TLS problem,
see Schaffrin (2008). Another kind of methods uses auxiliary
Lagrange multipliers to rearrange the TLS problem as a
constrained minimization optimization, where the covariance
matrix of the observations including the conventional
observations and the observation in the model matrix is fairly
general (e.g., Felus and Burtch 2009; Schaffrin and Wieser
2008). Furthermore, avoiding pitfalls the non-linear Gauss
Helmert model (GHM) method proposed by Pope (1972)
can solve the weighted TLS problem without any limitation
of the variance covariance matrix (vcm). This also proves the
TLS adjustment not referring to a new adjustment method
but the adjustment for the model containing the uncertain
model matrix (see, Neitzel and Petrovic 2008; Neitzel 2010;
Schaffrin and Snow 2010). Note that in order to hold the
consistency we will still use the term TLS throughout the
report as a synonym for the LS estimation of the parameters
in the EIV model.

Although the GHM method can solve the weighted TLS
problem, the method is regarded as a particular one method
to solve the nonlinear normal equation (Schaffrin 2007). The
other algorithms cannot adjust the EIV model without the
limitation of the weight information. In this contribution, the
solutions for the TLS adjustment are established, which have
the following properties: 1. The solutions do not have any
limitation of the weight information. 2. They are not only
a particular method to solve the nonlinear normal equations
(i.e. the solutions are based on the different principles, see
Chap. 3 for detail). 3. They have no limitations concerning
the structure of the coefficient matrix A. The presented
solutions can be applied for solving weighted structured TLS
problems. Furthermore, a numerical example demonstrates
the identical solution by the proposed algorithms. The dis-
cussion about the relationship of the solutions, the sufficient
conditions of the optimization problem is organized in the
last part.

2 Mathematical Models of the TLS
Problem

The LS estimation is the best linear unbiased estimation
when the design matrix A is free of noise and the observation
vector y is affected by random errors. This kind of estimation
has frequently been applied in the Gauss–Markov model
for the error adjustment. In contrast, an EIV model is a
model similar to Gauss Markov model (GMM) except that
the elements of the design matrix are observed with random
errors. The LS adjustment is statistically motivated as a
maximum likelihood estimator in a linear GMM, and the
TLS as maximum likelihood estimator in the EIV model.

The definition of the weighted TLS can be expressed as an
optimization problem as follows

vTPv D min
subject to yC vy D .AC VA/ Ÿ

(1)

with v D vec
��

VA vy
	�

(‘vec’ denotes the operator that
stacks one column of a matrix underneath the previous
one). The matrix A affected by random errors should be
corrected by the residual matrix VA. Note that there is
an alternative formulation, which uses the error vector and
matrix instead of the residual vector and matrix. i.e. error
matrix EAD�VA, and error vector eyD� vy (see, Schaffrin
and Wieser 2008).

If one wants to take the stochastic property of all errors
into account, the observations may be written in an extended
vector l D vec

��
A y

	�
. Thus, the stochastic properties of

the uncertainty can be characterized by the extended cofactor
matrix

Qll D P�1 D



QAA QAy

QyA Qyy

�
D

2
66664

Q1

: : :

Qk

: : :

QuC1

3
77775 (2)

Qk is a n� n(uC 1) matrix representing the variances and
covariances between the elements of the kth column of the
augmented matrix

�
A y

	
and all elements. Qll and P are

the symmetric and positive definite cofactor matrix and the
weighted matrix of l, respectively. QAA and Qyy is the
cofactor matrix for A and y, and the cofactor matrices QAy

and QyA refer to the correlations between A and y.

3 TheWeighted TLS Solutions

3.1 Solutions Using LagrangeMultipliers

In this section we will show how to solve the fully weighted
TLS with ‘Lagrange multipliers’. According to the tradi-
tional Lagrange approach we form the target function as
follows

ˆ.v;œ; Ÿ/ D vTPvC 2œT
�
y �AŸ � VAŸC vy

�
(3)

where œ is the Lagrange multipliers vector.
Setting the partial derivatives of the target function w.r.t.

Ÿ, v, œ equal to 0, gives the necessary conditions as

1

2

@ˆ

@Ÿ

ˇ̌
ˇOŸ; Ov; Oœ D �AT Oœ � OVT

A
Oœ D 0 (4)
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1

2

@ˆ

@v

ˇ̌
ˇOŸ; Ov; Oœ D P Ov �

hOŸT ˝ In;�In
iT Oœ D P Ov � OBT Oœ D 0

(5)

1

2

@ˆ

@œ

ˇ̌
ˇOŸ; Ov; Oœ D y �AOŸ � OBOv D 0 (6)

where OBn�n.uC1/ D
hOŸT ˝ In;�In

i
with the full row rank.

The symbol ‘hat’ of the matrix OB is because of the use
of the estimated parameter vector OŸ. The operator ˝ is the
‘Kronecker–Zehfuss product’ (e.g., Grafarend and Schaffrin
1993, p. 409), which is defined by B˝A :D [bij �A] if
BD [bij].

From Eq. 5 we obtain the estimated residual vector as
follows

Ov D



vec .OvA/

Ovy

�
D

 OvA

Ovy

�
D Qll OBT Oœ: (7)

Inserting Eq. (7) to (6) Oœ can be expressed as

Oœ D
� OBQll OBT

��1 �
y � AOŸ

�
D OQ�1

�
y �AOŸ

�
(8)

with QD (BQllBT ).
Then by reinserting Eq. (8) to (7) we have

Ov D Qll OBT OQ�1 �y � AOŸ
�
: (9)

Now, we use the vectorization of a transposed vector to be the
same vector and vec(ABC)D (CT ˝A)vec(B) (Koch 1999,
p. 41) in order to derive

OVT
A
Oœ D vec

� OœT OVAIu

�
D
�

Iu ˝ OœT
�
OvA: (10)

With the help of Eqs. (10), (8), and (4) we obtain

�
Iu ˝ OœT

�
OvA D OVT

A
Oœ D AT OQ�1

�
AOŸ � y

�
(11)

leading to

�
Iu ˝ OœT

�
OvA C AT OQ�1y D AT OQ�1AOŸ: (12)

Now, the parameter vector can be estimated by

OŸ D
�

AT OQ�1A
��1 � OVT

A
OœC AT OQ�1y

�

D
�

AT OQ�1A
��1 ��

Iu ˝ OœT
�
OvA C AT OQ�1y

�
:

(13)

If OVA is obtained through OVA D I vecn�u .OvA/, where the
operator I vecn � u is the opposite of the ‘vec’ operator and
reshapes the vector as the assigned matrix form (Matlab’s
reshape), one can compute this solution with other two
closed-form expressions. From Eqs. (4) and (8) we present
the non-linear normal equation

�
AT C OVT

A

� OQ�1 �AOŸ � y
�
D 0 (14)

leading to

�
AT C OVT

A

� OQ�1AOŸ D
�

AT C OVT
A

� OQ�1y: (15)

The second solution can be expressed as

OŸ D
��

AT C OVT
A

� OQ�1A
��1 �

AT C OVT
A

� OQ�1y: (16)

If we add
�

AT C OVT
A

� OQ�1 OVA OŸ to both sides of Eq (15), the

other solution can be expressed as follows

OŸ D ON�1
�

AC OVA

�T OQ�1
�

yC OVA OŸ
�

(17)

with ON D
�

AC OVA

�T OQ�1
�

AC OVA

�
:

In the non-linear problem, the estimated parameter vector
cannot be separated from the predicted residual matrix OVA

and even the estimated parameter vector per se. Based on
the various closed-form expressions of the estimated param-
eter vector the algorithms can be correspondingly designed.
However, the convergence behavior of these solutions will be
discussed in another report.

3.2 Solutions Using the GHMMethod

The EIV model can be adjusted through another class of
the adjustment algorithm with linearization, namely the iter-
ative non-linear GHM. The first successful investigation
for solving the non-linear GHM was addressed by Pope
(1972). Recently, based on the non-linear GHM Schaffrin
and Snow (2010) put forward the regularized TLS solution in
Tykhonov’s sense to solve the circle fitting problem. Neitzel
(2010) applied it to solve the 2D similarity transformation.
However, the solution using the LS estimator is not explicitly
algebraically formulated. (i.e. the detailed structures of the
model (Jacobian) matrices and the inconsistency vector,
which are represented by the parameters and the observations
as well as residuals, are not presented and built into the final
solution of the non-linear GHM method.)
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Here, the nonlinear model f
�

lC v; Ÿ
� D 0 is linearized

as (e.g., Schaffrin and Snow 2010)

@f
@ŸT

ˇ̌
l0Cvi ;Ÿi

�
Ÿ � Ÿi

�C @f
@lT

ˇ̌
l0Cvi ;Ÿi

�
v � vi

�
C f

�
lC vi ; Ÿi

� D 0
(18)

neglecting the terms of the higher order. Note that approx-
imate values used for the position of linearization are not
random. Thus, l0 D l�0� (where the 0� denotes a random zero

vector (or vector of ‘pseudo-observation’) of suitable size, in
accordance with notion in Schaffrin and Snow (2010).

For the EIV model (1) we give the model matrices

@f
@ŸT

ˇ̌
l0Cvi ;Ÿi D AC Vi

A

@f
@lT

ˇ̌
l0Cvi ;Ÿi D

h�
Ÿi
�T ˝ In;�In

i
D Bi

(19)

and the inconsistency vector

f
�
lC vi ; Ÿi

� � @f
@lT

ˇ̌
l0Cvi ;Ÿi vi

D �AC Vi
A

�
Ÿi � y � viy �

h�
Ÿi
�T ˝ In;�In

i
vi

D AŸi � y D f
�
l; Ÿi

� D wi :

(20)

By using the model matrices and inconsistency vector,
the alternative representation of the EIV model as linearized
GHM reads

�
AC Vi

A

�
dŸC BivC wi D 0: (21)

Based on the linearized model and Eq. 20 the solution can be
obtained as follows

OŸiC1 D Ÿi C d OŸiC1
D Ÿi C �Ni

��1�
AC Vi

A

�T �
Qi
��1 ��wi

�
D �Ni

��1�
AC Vi

A

�T �
Qi
��1 �

y �AŸi
�C Ÿi

D �Ni
��1�

AC Vi
A

�T �
Qi
��1 �

yC Vi
AŸi

�
(22)

with NiD ((ACVi
A)T (Qi)� 1(ACVi

A))and QiDBiQll(Bi)T .
Note that the residuals and parameters are updated with

vi D Ovi � 0�, ŸiC1 D Ÿi C d OŸiC1 � 0�. i.e. the residuals are

not added on the previous residuals predicted. In contrast to
the update of residuals, parameters are accumulated at the
last stage. The process stops if the parameter or the extended
residual vector does not change in the order of magnitude.
The numerically obtained result is defined as the solution for
the WTLS problem: OŸWTLS WD ŸiC1:

3.3 Solutions Using the Gradient

In this part the TLS problem for the weighted case is
alternatively defined as the minimum of a sum of weighted
squared LS residuals (Fang 2011):

min
Ÿ
.y � AŸ/T

�
BQllBT

��1
.y � AŸ/ : (23)

The target function can be also classified as quasi indirect

error adjustment (Wolf 1968, Eq. (2153, 10)). The objective
function is similar to the objective function of the weighted
LS case since only the weighted matrices are different. In this
case the objective function is not subject to any constraints,
and the variables such as the residual matrix, vector as well
as the auxiliary vector of the Lagrange multipliers disappear.

The necessary condition for the local minimizer is given
by

@.y � AŸ/T
�
BQllBT

��1
.y � AŸ/

@Ÿ

ˇ̌
ˇ̌̌
OŸ
D 0: (24)

f (Ÿ)D (y�AŸ)T (BQllBT )� 1(y�AŸ) is scalar. The matrix

analysis property (differentiation of a scalar function w.r.t.
a vector) in Grafarend and Schaffrin (1993) is applied as
follows

@f .Ÿ/

@Ÿ
D
h
@f .Ÿ/

@1
� � � @f .Ÿ/

@k
� � � @f .Ÿ/

@u

iT
; (25)

where ŸD [1, : : : , u]T and 1� k� u.

The first derivative w.r.t. the parameter vector can be
extended in three parts according to the product rule (the
well-known Leibniz’s Law) as follows

@.y�AŸ/T .BQllBT /
�1
.y�AŸ/

@k

D @.y�AŸ/T

@k

�
BQllBT

��1
.y � AŸ/

C .y � AŸ/T
@.BQllBT /

�1

@k
.y �AŸ/

C .y � AŸ/T
�
BQllBT

��1 @.y�AŸ/

@k
:

(26)

Based on Eq. (26) the gradient can be analytically obtained

(see Appendix)

g D �2�AC A��T �BQllBT
��1

.y � AŸ/ : (27)



On the Weighted Total Least Squares Solutions 49

Table 1 Observation data vector (x, y) and corresponding weights,
taken from Neri et al. (1989) and also presented in Schaffrin and Wieser
(2008) and Shen et al (2010)

Point number x Weights of x y Weights of y

1 0.0 1,000 5.9 1.0

2 0.9 1,000 5.4 1.8

3 1.8 500 4.4 4.0

4 2.6 800 4.6 8.0

5 3.3 200 3.5 20

6 4.4 80 3.7 20

7 5.2 60 2.8 70

8 6.1 20 2.8 70

9 6.5 1.8 2.4 100

10 7.4 1.0 1.5 500

Obtaining the stationary point should be fulfilled:

Og D �2
�

AC OA��T � OBQll OBT
��1 �

y �AOŸ
�
D 0; (28)

which is identical to the normal Eq. (14), since the matrix
OA� is actually identical with Ivecn�u

��
QAAQAy

	 OBT Q�1�
y � AOŸ

��
, namely OVA. The normal equation can be iden-

tically gained from a different starting point. The gradient
per se is also an essential quantity to design the algorithms
for non-linear adjustment problems. Based on it, the descent
direction can be calculated, and one of the oldest iterative
descent methods is established (Teunissen 1990).

4 Test Results

In order to demonstrate the solution of the TLS problem, the
slope 1 and the intercept 2 of a line are estimated and hence
the model can be expressed as follows:

yC vy D Œ.xC vx/ ; e�


1
2

�
: (29)

The weight matrix is omitted to be presented here, which

can be found in Schaffrin and Wieser (2008).
The data of this example can be seen in Table 1. A

comparison of our solutions to the solution of Schaffrin and
Wieser (2008) is shown in Table 2. In fact, all of our solutions
correspond with the solution of Schaffrin and Wieser (2008).
However, our solutions do not have any limitation of the
weight matrix.

Table 2 The parameter estimates using the data of Table 1

Parameter
Unweighted
TLS solution

Solution of
Schaffrin and
Wieser

Solutions
designed in
the study

Parameter 1 �0.545561197 �0.480533407 �0.480533407

Parameter 2 5.784043775 5.479910224 5.479910224

Conclusions and FurtherWork

For the weighted TLS solutions presented it is obvious
that the algorithm (17) has the same analytical formu-
lation as the non-linear GHM method. The normal Eq.
(28) which represents the necessary conditions of the
optimality (23) is also identical with the normal Eq. (14)
derived by the Lagrange multipliers. From this normal
equation the solutions can be also differently designed.
The different forms could have the beneficial convergence
behavior, which can be investigated in the future.

It is broadly acknowledged that the method of
Lagrange multipliers yields only necessary conditions
for optimality in the constrained problems. Although the
sufficient condition is fulfilled for the residual vector
(Schaffrin and Wieser 2008), little importance has been
attached to the study about the sufficient condition of
weighted TLS problem for the parameter vector until now.
The second derivatives of the objective function represent
the sufficiency conditions of the weighted TLS solution.
On the basis of the obtained gradient and the Hessian
matrix (if we derive), the standard Newton algorithm is
designed for the weighted TLS problem to bring some
advantages versus the Gauss–Newton algorithm.

The proposed algorithm can be applied in geodetic
transformation. By means of the proposed algorithms and
properly designed covariance matrix, the structured TLS
solution can be established.

Appendix

According to Eq. (26) the partial derivative can be arranged
as follows

@.y�AŸ/T .BQllBT /
�1
.y�AŸ/

@k

D 2@.y�AŸ/T

@k

�
BQllBT

��1
.y � AŸ/ : : :

C .y �AŸ/T
@.BQllBT /

�1

@k
.y � AŸ/

D �2aTk
�
BQllBT

��1
.y �AŸ/ : : :

C .y �AŸ/T
@.BQllBT /

�1

@k
.y � AŸ/
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where AD [a1, : : : au] (i.e. ak is the kth column of the matrix
A).

Then, the second part can be solved with

@A�1

@k
D �A�1 @A

@k
A�1

(Grafarend and Schaffrin 1993) as follows

.y � AŸ/T @Q�1

@k
.y � AŸ/

D �.y �AŸ/TQ�1 @Q
@k

Q�1 .y �AŸ/

D �.y �AŸ/TQ�1BQT
k Q�1 .y �AŸ/ : : :

� .y � AŸ/TQ�1QkBT Q�1 .y � AŸ/

D �2.y � AŸ/TQ�1BQT
k Q�1 .y � AŸ/

with QD (BQllBT ). The last step of the equation can use the
following property: A scalar is given as sD aTCa (exem-
plarily square matrix and vector). aTCaD sD sT D aTCTa.
Combining the above equations, we finally obtain the gradi-
ent (the first derivative w.r.t. the parameter vector)

g D @f .Ÿ/

@Ÿ
D �2�AC A��TQ�1 .y � AŸ/

with A� D �Q1BT Q�1 .y �AŸ/ ; : : : ;QuBT Q�1 .y� AŸ/
	

through

@f .Ÿ/

@Ÿk
D �2aTk Q�1 .y� AŸ/

� 2.y �AŸ/TQ�1BQT
k Q�1 .y �AŸ/
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Integration of Observations andModels
in a Consistent Least Squares Adjustment
Model

A. Heiker and H. Kutterer

Abstract

Models are often treated as deterministic in geodetic practice. Hence, inaccurate models
directly affect the results of geodetic measurements. This paper proposes a method for the
mutual validation of models and observed data. To consider the inaccuracy of models,
data resulting from models are treated as stochastic parameter in a linear least squares
adjustment. The required stochastic information is obtained by empirical auto and cross
correlation functions. This approach is applied to the problem of the mutual validation
of Earth orientation parameters, second degree gravity field coefficients and geophysical
excitation functions. The results and the limitations of this approach are discussed.

Keywords

Auto correlation function • Data integration • Model quality • Time series • Validation of
observations and models

1 Introduction

Most geodetic applications consider observed data as well
as physical models. Hence, the results depend directly on
the quality of measurements and models. Models describe
the environment by mathematical relations, e.g., the changes
of the refraction index due to variations of temperature
and air pressure are modelled in electro-optical distance
measurements. The quality of a model can be assessed by
comparing the model with observed data, measured with
sufficient accuracy. Vice versa, if the quality of a model is
known measured data can be validated by comparing them

A. Heiker (�)
Geodätisches Institut, Leibniz-Universität Hannover,
Nienburger Straße 1, 30163 Hannover, Germany
e-mail: a.heiker@freenet.de; andrea.heiker@lgln.niedersachsen.de

H. Kutterer
Bundesamt für Kartographie und Geodäsie,
Richard-Strauss-Allee 11, 60598 Frankfurt, Germany

with the model. This paper proposes a method for the mutual
validation of models and observations.

The simplest method to judge the coincidence of models
and observations is the calculation of empirical correlation
coefficients. The three-cornered hat method (Premoli and
Tavella 1993; Galindo et al. 2001) assesses the quality of
time series by variance-covariance matrices (VCM). The
VCMs are calculated by differences of time series. As
differences instead of absolute values are used, the problem
is under-determined (Galindo et al. 2001; Koot et al. 2006).
Therefore, assumptions (zero correlations or the assump-
tion of minimum correlations) are necessary to determine
the VCMs. Galindo et al. (2001) have shown, that the
results of the three-cornered hat method are insufficient, if
the assumption of weak correlations between the reference
time series and other time series are not fulfilled. We pro-
pose in Sect. 2 a further approach which obtains stochas-
tic information and avoids the disadvantage of additional
assumptions.

The mutual validation of observed data and models is
performed within an universal, constrained, linear Gauß–
Helmert model. The least squares adjustment includes
a variance-covariance component estimation. Yu (1992)
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Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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and Heiker (2013) have developed the necessary formulas.
Based on the work of Kusche and Klees (2002), Kusche
(2003), and Heiker (2013) propose an enhanced Monte
Carlo solver for linear constrained adjustment models.
Observations as well as model data are considered as
stochastic (pseudo)observations. The interpretation of model
data as stochastic parameters allows the determination of
model residuals containing model inconsistencies. Missing
stochastic information is approximated by auto and cross
correlation functions. The complete adjustment model is
presented in Sect. 2.

This approach is exemplary applied to the mutual val-
idation of measured Earth orientation parameters (EOP),
measured second degree gravity field coefficients (GFC2)
and modelled geophysical excitation functions. Changes in
the Earth’s mass distribution impact the Earth’s rotation on
two ways. First, the tensor of inertia varies and induces
variations of the Earth’s gravity field and rotation. Sec-
ond, the mass displacements cause currents, which chance
change the angular momentum of the Earth and therefore
the rotation of the Earth. The excitation functions model
the mass displacements of oceans and atmosphere. The
so called mass terms describe the changes in the Earth’s
rotation due to variations of the tensor of inertia and the
motion terms the variations due to changes of the angular
momentum (Gross 2007). The tensor of inertia is the fun-
damental link between the EOP, GFC2 and the excitation
functions.

2 Integration in a Least Squares
Adjustment Model

2.1 Functional Model

An universal, constrained, linear Gauß–Helmert functional
model is two folded with

AH�ˇ C B� � wH D 0

AC�ˇ � wC D 0
(1)

where � D E .l/ � l D 0 and �ˇ D ˇ � ˇ0. The n � 1
residual vector � contains the inconsistencies between the
n � 1 observation vector l and the expectation value E .l/ of
the observations. The u� 1 vector ˇ0 denotes an approxima-
tion of the unknown, deterministic parameter vector ˇ. The
s�1misclosure vector wH depends on the observation vector
l, whereas the t � 1 vector wC belongs to the deterministic
constraint. The t � u matrix AC , the s � u matrix AH and the
s � n matrix B are full-ranked design matrices.
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Fig. 1 Empirical function of LOD is displayed in red. The empirical
function is approximated by the damped oscillation function (in blue)

2.2 Stochastic Model

Missing stochastic information are obtained by the empirical
auto and cross correlation functions. As the VCMs should
only contain noises, deterministic parts of the signal have
to be removed before the calculation of empirical auto- and
cross correlation functions. This leads to stationary time
series. For example, the polar motion contains two main
frequencies, the annual signal and the Chandler period. These
two frequencies are caused by the Earth’s rotation around
the sun and by the inelastic deformation of the Earth’s
body. As these frequencies are caused by systematic effects
they are removed. The VCMs are built as Toeplitz-matrices
with identical values on the diagonals. If a VCM is directly
built from empirical auto and cross correlation functions the
matrix in some cases tends to be semi-definite due to numeric
reasons. The approximation of the empirical auto and cross
correlation functions by analytic functions leads usually to
considerably better conditioned VCMs. Here, all auto and a
few cross correlation functions are approximated by damped
oscillation functions with

�ij .t/ D �maxe
ıjt�tmaxj cos! .t � tmax/ : (2)

where t denotes the lag, tmax the lag with the largest empir-
ical correlation �max. ı denotes the damping factor and !
the angular frequency. Figure 1 shows the empirical auto
correlation function of the length-of-day parameter (LOD) in
red. The blue line denotes the approximated auto correlation
function (see Eq. (2)). Cross correlation functions only are
considered, if the largest empirical value of the function is
above a specific threshold level.

The obtained VCM is divided in submatrices Vi . The final
VCM ˙ ll, which describes the complete stochastic model, is
then the sum of the matrices Vi multiplied with unknown
variance-covariance components �i

˙ ll D
X
i

�iVi : (3)
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Note, that the index i of �i denotes a counter for the sum sign.
The �i denote as well variance as covariance components
with dedicated variance and covariance matrices V i .

2.3 Linear Least Squares Adjustment

The least squares minimization

�0˙ �1
ll �! min (4)

leads to the system of normal equations

2
4B˙ llB0 AH 0

A0
H 0 A0

C

0 AC 0

3
5
2
4kH
�ˇ

kC

3
5 D

2
4wH

0
wC

3
5 (5)

with the vectors kH and kC denoting the Lagrange correlates
due to the functional model in Eq. (1). The system of normal
equations is solved by the (generalized) inversion of the
normal equations matrix.

Then, the unknown variance-covariance components are
obtained according to Heiker (2013) by

�i D �0B0 .B˙ llB0/�1 BViB0 .B˙ llB0/�1 B�

tr .Q11BViB0/
(6)

where Q11 is the left, upper submatrix of the inversion of
the normal equations matrix. The unknown parameters, the
residuals and the variance-covariance components are deter-
mined by using the efficient iterative Monte-Carlo solver
given in Heiker (2013).

3 Example

The link between the EOP, the GFC2 and the excitation
functions is the tensor of inertia, here considered as unknown
parameters. The mean and the trend are removed from all
observed and modeled data to avoid secular effects from
postglacial rebound. Thus, the unknown parameter vector
�ˇ contains the deviations of the mean tensor of inertia.

The five second degree gravity field coefficients per each
epoch are summarized in the stochastic observation vector
lGFC2 and the six elements of the tensor of inertia are
according to Hofmann-Wellenhof and Moritz (2006) linearly
related by

A1�ˇ � .lGFC2 C �GFC2/ D 0: (7)

The linear approximation of the Euler-Liouville equation
describes the EOP variations by the sum of the mass and the
motion terms (Gross 2007). Thus, the tensor of inertia can
be calculated from the difference of EOP and motion term.
However, the linear approximation has the disadvantage that

three of the six elements of the tensor of inertia vanish.
The observed EOP are summarized in the vector lEOP and
lMO contain the motion terms, then it holds

A2�ˇ � .B1 .lEOP C �EOP/� B2 .lMO C �MO// D 0: (8)

The mass terms of the excitation functions in vector lMA

are equal to three elements of the tensor of inertia multiplied
by a constant factor

A3�ˇ � .lMA C �MA/ D 0: (9)

Equations (7)–(9) are merged to

2
4A1

A2

A3

3
5�ˇ C

2
4 0 �I 0 0
�B1 0 0 B2

0 0 �I 0

3
5
2
664

�EOP

�GFC2

�MA

�MO

3
775

� � � �
2
4 lGFC

B1lEOP � B2lMO

lMA

3
5 D 0:

(10)

The trace of the tensor on inertia is not uniquely deter-
minable by Eqs. (7), (8) or (9). Hence, the equation system
has to be regularized by an additional constraint. The trace of
the tensor of inertia remains constant (Rochester and Smylie
1974) which leads to the linear equation

AC�ˇ D 0: (11)

Equations (10) and (11) describe a functional model accord-
ing to Eq. (1).

Following time series are available for a mutual validation
of EOP, GFC2 and excitation functions:
• EOP 08 C04 time series from the International Earth

Rotation Service (see www.iers.org),
• GRACE and SLR gravity field coefficients from the uni-

versity of Texas at Austin, Center for Space Research,
• two different atmospheric and oceanic excitation func-

tions from the geophysical fluid center: NCEP/ECCO vs.
ECMWF/OMCT (further information: http://geophy.uni.
lu/).

The five given time series are validated in four independent
combinations:
• EOP C GRACE C NCEP/ECCO,
• EOP C SLRC NCEP/ECCO,
• EOP C GRACE C ECMWF/OMCT,
• EOP C SLRC ECMWF/OMCT.
The full priori VCMs for the EOP and the excitation func-
tions are determined according to Sect. 2. As the available
GFC2 time series are too short to determine meaningful
correlations, the VCM for the GFC2 is a diagonal matrix
built from the standard deviations provided by the Center of

www.iers.org
http://geophy.uni.lu/
http://geophy.uni.lu/
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Fig. 2 Amplitude spectra of LOD residuals (left) and the �3 motion term residuals (right). Amplitudes are transformed in milliseconds per day
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Fig. 4 Amplitude spectra of the residuals of the second degree gravity field coefficients

Space Research. In each combination five variance compo-
nents for
• equatorial EOP: polar motion,
• axial EOP: length of day,
• equatorial excitation functions: �1 / �2 mass and motion

terms,
• axial excitation functions: �3 mass and motion terms,
• second degree gravity field coefficients.

are estimated. The results of the least squares adjustments
are residuals for each time series, the adjusted tensor of
inertia and adjusted variance covariance components (Heiker
2013). If the residuals show systematic effects, inconsisten-
cies between observed data and models are existing. All
residuals are analyzed in the frequency domain to relate
inconsistencies to periods. Figures 2, 3 and 4 show the
amplitude spectra of some residuals.



Integration of Observations and Models 55

Table 1 Variance components after 25 iterations

Full VCM Diagonal VCM

Polar motion 16.8462 0.4527
Length of day 22.1600 0.8307

Equatorial excitation functions 6.9196 0.7988

Axial excitation functions 94.8439 4.9342

GFC2 0.4459 0.2801

The graphs in Figs. 2 and 3 are obtained from the
combination of two different excitation functions with the
EOP and SLR GFC2. The NCEP/ECCO model contains
in Fig. 2 a semiannual period which is not present in the
ECWMWF/OMCT model. According to Eq. (8) solely the
difference between the EOP and the motions terms can be
validated, but not their absolute value. Hence, the semiannual
peak in LOD is due to inconsistencies in the NCEP/ECCO
�3 motion term. The amplitudes increase near the frequency
of six times a year. These are artefacts as daily EOP
are compared with monthly GFC2 (cf. Nyquist-Shannon
sampling theorem). According to Fig. 3, the combination
with the NCEP/ECCO model shows larger variations in the
mass terms than the combination with the ECMWF/OMCT
model. Thus, the ECMWF/OMCT model has obviously a
higher degree of consistency. However, the reason for the
higher degree of consistency might be due to the fact that
the gravity field coefficients are obtained from background
models using the ocean model OMCT driven by ECMWF
atmospheric data.

The residuals in Fig. 4 are obtained by combining SLR
and GRACE gravity field coefficients with the EOP and
the ECMWF/OMCT excitation functions. The GRACE C20
residuals show a large annual period and a large 161-day-
period which is due to the wrong ocean tide model used in
the GRACE-processing (Chen at al. 2008). This known fact
has led to the recommendation of the GRACE community
to replace the GRACE C20 coefficients by values obtained
by SLR (GRACE Technical Note no. 5 2011). The C21 and
S21 gravity field coefficients show merely small differences
between GRACE and SLR. The S21 coefficient residuals
show a dominant annual frequency in both graphs. The
gravity field coefficients C22 and S22 can not be validated at
all, as they are not redundantly determined by the functional
model.

The influence of the priori stochastic model on the least
squares adjustment is analyzed by using identical time series
but different stochastic models. The first run is performed
with full VCMs for the EOP and the excitation functions and
the second run only considers the diagonal elements of the
VCMs. Table 1 contains the adjusted variance components.
The variance components are clearly smaller if uncorrelated
stochastic models are used. Figure 5 shows the amplitude
spectra of the residuals of the �3 mass term. The residuals
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Fig. 5 Amplitude spectra of the �3 mass term residuals from different
VCM

are considerably larger, if correlations are considered. The
two largest peaks of the amplitude spectra are even assigned
to different frequencies.

Conclusions and Outlook

From a Bayesian point of view, our approach implicitly
assumes a normal distribution of the misclosure vector
wH with the expectation value E .wH/ D AH�ˇ and
the variance covariance matrix D .wH/ D B˙ llB0. If
the misclosure vector is equal to wH D Bl and the
(pseudo)observation vector l is normally distributed, this
assumption is true. Otherwise, if the functional model
result by a Taylor expansion of an arbitrary nonlinear
function or the observation vector lacks normal distribu-
tion, the results of our approach would be compromised
by linearizion errors or by a distribution errors. If the
implicit assumptions are strongly violated, one might
consider to use a Bayesian approach. The Bayes statistic
is able to deal with nonlinear functional relations and to
consider every kind of priori distributions.

This paper presents a method for the mutual validation
of models and data by means of a linear, constrained least
squares adjustment. As our approach has confirmed some
known facts, this approach is adequate for the mutual
validation of EOP, GFC2 and geophysical excitation func-
tions. The findings are summarized as follows.
• Once more, this example has led to the trivial conclu-

sion, that the functional and the stochastic model have
to be sensitive to the given problem. The difference of
the EOP and the motion term can be validated but not
their absolute values. The validation of C22 and S22 is
impossible.

• The ECMWF/OMCT excitation functions show a
higher degree of consistency with the EOP and GFC2
than the NCEP/ECCO model.
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• The S2 tide aliasing in GRACE C20 coefficients pub-
lished in Chen at al. (2008) is confirmed with our
approach.

• The comparison of two different stochastic models has
led to different results. Neglected correlations might
lead to too optimistic results.

Further time series are analyzed. There are some hints that
correlations might lead to frequency shifts in the residuals
(compare Fig. 5). Hence, the role of correlations has to be
investigated more closely.
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Comparison of Different Combination
Strategies Applied for the Computation
of Terrestrial Reference Frames and Geodetic
Parameter Series

Manuela Seitz

Abstract

The combination of space geodetic techniques is today and becomes in future more
and more important for the computation of Earth system parameters as well as for the
realization of reference systems. Precision, accuracy, long-term stability and reliability
of the products can be improved by the combination of different observation techniques,
which provide an individual sensitivity with respect to several parameters. The estimation
of geodetic parameters from observations is mostly done by least squares adjustment
within a Gauß-Markov model. The combination of different techniques can be done on
three different levels: on the level of observations, on the level of normal equations and
on the level of parameters. The paper discusses the differences between the approaches
from a theoretical point of view. The combination on observation level is the most
rigorous approach since all observations are processed together ab initio, including all
pre-processing steps, like e.g. outlier detection. The combination on normal equation
level is an approximation of the combination on observation level. The only difference
is that pre-processing steps including an editing of the observations are done technique-
wise. The combination on the parameter level is more different: Technique-individual
solutions are computed and the solved parameters are combined within a second least
squares adjustment process. Reliable pseudo-observations (constraints) have to be applied
to generate the input solutions. In order to realize the geodetic datum of the combined
solution independently from the datum of the input solutions, parameters of a similarity
transformation have to be set up for each input solution within the combination. Due
to imperfect network geometries, the transformation parameters can absorb also non-
datum effects. The multiple parameter solution of the combination process leads to a
stronger dependency of the combined solution on operator decisions and on numerical
aspects.
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1 Introduction

The combination of different space geodetic techniques is
a common procedure in order to compute precise geodetic
products today. Combining different observation types, the
individual potentials of the different techniques with respect
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Fig. 1 Horizontal station velocity field of DTRF2008

to the determination of certain geodetic parameters can be
exploited for the combined product. But also the increased
redundancy due to the larger number of observations leads
to a higher precision of the parameters. Examples for combi-
nations are the (a) realization of the International Terrestrial
Reference System (ITRS) which is computed by combining
data of Very Long Baseline Interferometry (VLBI), Global
Navigation Satellite Systems (GNSS), Satellite Laser Rang-
ing (SLR) and Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS) (e.g. Seitz et al. 2012),
(b) the computation of gravity field products by combining
satellite and terrestrial data (e.g. Kern et al. 2003) and (c)
ionosphere models and troposphere parameters derived from
multi-technique data (e.g. Dettmering et al. 2011; Krügel
et al. 2007). The integration of different space geodetic
techniques in order to ensure a long-term and precise mon-
itoring of the geodetic parameters is also the goal of the
Global Geodetic Observing System (GGOS) a component
of the International Association of Geodesy (IAG) (Plag
and Pearlman 2009). The derivation of geodetic parameters
from the observations is usually done by using the linear
Gauß-Markov model (see also Schmidt et al. 2013). The
combination of different techniques can be performed on the
three levels within a least squares adjustment: the observa-
tion, the normal equation and the parameter level. This paper
describes the mathematical fundamentals of the different
approaches and discusses the pros and cons with regard to
the ITRS realization from a theoretical point of view.

The ITRS is a global Earth related cartesian coordinate
system which is well defined (IERS 2010). It is realized
by the International Terrestrial Reference Frame (ITRF)
which consists of station positions and velocities of global
distributed GNSS, VLBI, SLR and DORIS observing sta-
tions. It is computed from long-term observation time series
of the four techniques, which span between 15 and 25
years. Figure 1 shows the horizontal velocity field of the
ITRS realization DTRF2008 (Seitz et al. 2012). Consistently
to the station coordinate time series of Earth Orientation
Parameters (EOP) are estimated. DTRF2008 is computed
by combining the four space geodetic techniques which
contribute to the determination of station coordinates and
EOP according to their individual potentials.

2 Least Squares Adjustment
by Gauß-MarkovModel

In general the linearized observation equation describes the
expectation values of the observation vector b as a linear
combination of known coefficients and the unknown param-
eters p (Koch 1999)

E.b/ D Ax (1)
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with

b n � 1 vector of observations
(measurement minus
“computed with a priori values”)

E.b/ n � 1 vector of the expectation
values of observations

A n � u coefficient matrix
x D p � p0 u � 1 vector of unknowns

(vector of corrections of p0)
p u � 1 parameter vector
p0 u � 1 vector of a priori values of p

Equation (1) is the deterministic part of the Gauß-Markov
model. The relation between observations and parameters
are given by physical or mathematical principles. Linearity
is, if necessary, achieved by a linearization of the original
observation equations. Therefore, the observation equations
are expanded into Taylor series. Usually, the number of
observations n is larger than the number of unknowns u
in order to reduce the impact of one observation on the
estimates (Koch 1999). For n > u the equation system
Ax D b is generally not consistent. From the addition of
the vector of observation errors v, the consistent observation
equation is obtained

Ax DbC v (2)

with E.bC v/ D E.b/ because ofE.v/ D 0.
It is expected that the observations are random values. The

variance-covariance matrix of the observations is assumed to
be known, except of the variance factor �20

Cbb D �20P�1 (3)

with
Cbb n � n variance-covariance matrix

of observations
P n � n positive definite weight matrix

of observations.

Equation (3) is the stochastic part of the Gauß-Markov
model.

For n > u the solution of Eq. (2) is not unique. A solution
can be get, if the squared sum of observation residuals
v D Ax � b is minimized (least squares adjustment). The
solution means the best linear unbiased estimation. The
corresponding normal equation reads (e.g. Schmidt et al.
2013)

ATPAOx D ATPb: (4)

The solution of the normal equation is given by

Ox D .ATPA/�1ATPb: (5)

With the normal equation matrix N D ATPA (which has to
be regular, see below) and the right hand side y D ATPb the
equation can be written in a compact form

Ox D N�1y: (6)

For the variance also an unbiased estimation is required. That
means, the equationE. O�20 / D �20 must be fulfilled, which can
be reached by the estimation

O�20 D
OvTPOv
n � u

: (7)

The relation between the squared sum of observations and
the squared sum of residuals is expressed as

bTPb � OvTPOv D yT Ox: (8)

The variance-covariance matrix of the estimated parameters
is obtained from the variance-covariance matrix of observa-
tions OCbb D O�20P�1, with the estimated variance factor O�20 by
error propagation

OCOxOx D .N�1ATP/ O�20P�1.N�1ATP/T (9)

D O�20 .ATPA/�1:

Solving the normal equation with Eq. (6) it is required that
the matrix N is of full rank. This is usually not the case.
For example in ITRS realization, the matrix N has a rank
deficiency with respect to datum parameters, namely with
respect to the orientation of the frame. In order to achieve
a regular normal equation matrix, pseudo-observations are
added to the normal equation system

Ox D .NCD/�1.yC d/ (10)

wherein, D is the normal equation matrix of pseudo-
observations and d is the right hand side of the normal
equation of pseudo-observations [according to Eqs. (4)–
(6)]. In order to remove the rank deficiency with respect
to the orientation of the frame, no-net-rotation conditions
in form of pseudo-observations are added (Angermann
et al. 2004). In the following, it is assumed, that the initial
normal equation system is free of pseudo-observations and
all constraints are added on the normal equation level.

3 Combination Strategies

Different space geodetic techniques are sensitive to common
geodetic parameters (e.g. station coordinates and EOP).
Performing technique-individual least squares adjustments,
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Fig. 2 Individual estimation of geodetic parameters from the observa-
tions of different techniques

independent solutions of the same parameters are obtained
as it is graphically shown in Fig. 2.

The combination can be performed on the different levels
of least squares adjustment as it is shown in Fig. 3. If the
processing could consistently be done for the techniques
(including also the data editing) and the stations would be
distributed homogeneously all three approaches would lead
to the same results. But this is usually, and in particular for
ITRF computation, not the case. Thus, the three combination
approaches provide solutions which differ slightly, illustrated
by three individual solutions in Fig. 3. In the following
paragraphs, the combination procedures are discussed in
more detail.

3.1 Combination on Observation Level

According to Eqs. (2) and (3) the observation equation sys-
tem for each of the m techniques k reads

Akxk D bk C vk (11)

Cbkbk D �2P�1
k (12)

with k=1,..,m. Preassumptions for a combination are (1) that
the equations are related to the same parameters and (2) that
the same a priori reduction models are used for modelling
the same phenomena (e.g. solid Earth tides, ocean loading,
troposphere refraction, . . . ). Then the individual observation
equations can be composed to one system

2
4A1

: : :

Am

3
5 x D

2
4b1

: : :

bm

3
5C

2
4v1

: : :

vm

3
5 (13)

Cbb D �2

2
64

P�1
1 0 0

0
: : : 0

0 0 P�1
m

3
75 : (14)

Pre-processing procedures, which includes also editing
of the observation data, are performed. Afterwards the least
squares adjustment is done according to Eqs. (5)–(9) consid-
ering Eq. (10) if necessary.

3.2 Combination on Normal Equation Level

The basic observation equations which are written for each
of the techniques are identical to those of the combination
on observation level (see Eq. (11)), considering the require-
ment of using the same standards for parametrization and a
priori models. The data editing is done separately for each
technique. Before the combination is done, the observation
equations are transformed to normal equations applying the
condition that the squared sum of residuals is minimized.

The normal equation for the technique k reads

Nk Oxk D yk: (15)

The normal equations of all techniques are combined
by adding those elements of the normal equations that are
related to the same parameters. Thus, if the normal equations

Fig. 3 Combination methods
based on different levels of least
squares adjustment process
shown for the example of the
consistent computation of the
Terrestrial Reference Frame
(TRF) and the EOP
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do not have the same size u�u, the individual equations must
be expanded to the full amount of all parameters which shall
be solved. This is done by adding zero lines and columns
to the normal equation matrix Nk and zero elements to the
right hand side of normal equation yk. Then all the normal
equation systems are sorted by the same order of parameters.
The combined normal equation system is written as (Gerstl
et al. 2001)

N D 1

�21
N1 C : : :C 1

�2m
Nm; N 2 u � u (16)

y D 1

�21
y1 C : : :C 1

�2m
ym; y 2 u � 1 (17)

bTPb D 1

�21
bT1 Pb1 C : : :C 1

�2m
bTmPbm; (18)

considering the estimated variance factors �2k . The combined
system NOx D y is solved by using Eqs. (5)–(9) considering
Eq. (10) if necessary.

3.3 Combination on Parameter Level

Combining techniques on the parameter level individual
technique solutions are performed initially, like it is illus-
trated in Fig. 2. The adjusted parameters are then combined
in a second least squares adjustment process by considering
the full variance-covariance matrices (see Fig. 3). Conse-
quently, the observation equation reads different from the
combination on observation and normal equation level

Ixk D OxC Nvk (19)

COxk Oxk D �2.Nk C Dk/
�1 D �2P�1

k ; (20)

wherein Dk is the normal equation matrix of pseudo-
observations (see also Eq. (10)). That means, in case of a rank
deficiency of the matrix Nk pseudo-observations are added
in order to generate the individual technique solutions. The
combined system is obtained by composing the observation
equations to one equation system

I
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The equation system is solved by a least squares adjust-
ment [see Eqs. (5)–(9) and Eq. (10) if necessary].

Fig. 4 Combination on parameter level: parameters of similarity trans-
formation are set up per input solution

In ITRF computation, the input solutions are solved by
applying pseudo-observations in form of minimum condi-
tions in order to reduce the rank deficiency of the individual
techniques with respect to parameters of the geodetic datum.
Thus, in case of GPS, SLR and DORIS no-net-rotation
conditions (see e.g. Seitz 2009) are used. In case of VLBI,
which is not related to the orbit dynamics of a satellite and
thus not sensitive to the Earth’s centre of mass, additionally
no-net-translation conditions are needed to realize the origin
of the frame.

Two different aspects, concerning the application of
pseudo-observations in case of combination on parameter
level, have to be discussed. (1) Applying pseudo-
observations it must be considered, that the combined
solution depends on the variances and co-variances obtained
from the individual technique solutions [see Eq. (20)]. Thus,
reliable pseudo-observations must be applied in order to
provide variances that reflect only the uncertainty of the
deterministic part of the Gauß-Markov model and not
an uncertainty with respect to the geodetic datum. That
means, loose constraint solutions (see e.g. Angermann
et al. 2004) cannot be used for a combination on parameter
level, but they have to be preliminary resolved applying
minimum datum conditions with suitable standard deviations
(in ITRF computation a few millimetres or less). (2) To
be able to realize the datum of the combined solution
independently from the input solutions, parameters of a
similarity transformation have to be set up for each individual
input solution in order to restore the rank deficiency of the
combined equation system with respect to geodetic datum
parameters (see Fig. 4). The singularity can then be removed
by arbitrary conditions.

4 Comparison of the Different
Combination Strategies

The combination on observation level is the most rigorous
combination model. All observation types are processed
together starting with the generation of observation equations
using the same parameterizations and reduction models. Pre-
processing steps as the detection of outliers and the editing
of the observation data can be done using the full amount of
available observations. In an optimal case, the data analysis
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is done by one single software, which can handle all the
observation types together. In case of ITRF computation,
such a software, which is able to process VLBI, SLR, GNSS
and DORIS data on highest standard, is not available up to
now.

The combination on normal equation level is – under
certain conditions – a good approximation of the combi-
nation on observation level. If the observation equations
are generated using the same parametrization and reduction
models and no constraints are added before the normal
equations are combined, the combination on normal equation
level is comparable to the combination on observation level.
The only difference is that the detection of outliers and the
data editing is done technique-wise. However, the effect on
the solution is, particularly in the case of ITRF computation,
assumed to be unverifiable.

A further aspect has to be discussed for the example of
ITRS realization. In order to be able to handle the large
normal equation matrices, parameters which are not of very
direct interest are reduced before the combination. Param-
eters which cannot be estimated very stable, as e.g. clock
parameters, are slightly constrained before reduction. These
constraints cannot be removed anymore in the combination,
even if the parameter would indirectly benefit from the
combination to such an extent that the constraint would
be unnecessary, e.g. if correlations to other parameters are
reduced. Thus, in order to avoid deformations of the solution,
the a priori constraints on the reduced parameters must be
introduced very carefully. A more rigorous way is not to
constrain and reduce parameters before combination.

The combination on parameter level shows clear differ-
ences with respect to the combination on observation and
normal equation level. Individual technique solutions are
performed adding the necessary datum conditions in form of
pseudo-observations. Only a minimum number of pseudo-
observations is allowed to avoid any over-constraining and
hence the deformation of the solution. Furthermore, it must
be considered that the combined solution depends on the
variances and co-variances obtained from the technique solu-
tions, so that reliable pseudo-observations must be applied
while generating the input solutions.

In order to ensure that the datum of the combined solu-
tion can be realized independently, it is necessary to set
up parameters of a similarity transformation for each of
the input solutions. The estimated similarity transformation
parameters and consequently the combined solution depend
on the set of stations used for the parameter set up. Due
to the inhomogeneous global distribution of stations the
transformation parameters are correlated and can absorb also
non-datum effects, which becomes particularly critical in
case of a poor network geometry.

The combination on solution level is not a straightfor-
ward approach due to the multiple application of pseudo-

Table 1 Comparison of the different combination methods

Observation Normal Parameter
level equation level level

Common pre-analysis
of observations

Yes No No

Pseudo-observations
needed for combination

No No Yes

Additional
transformation
parameters needed

No No Yes

Rigorous method Yes Widely No

observations and the subsequent removement of datum infor-
mation by the set up of transformation parameters. Added
to that is the fact, that these steps are not independent from
operator decisions (Which stations are used for the set up of
transformation parameters?).

Table 1 summarizes the most important characteristics of
the combination methods.

5 Combination in the Geodetic Practice:
The Realization of ITRS

The ITRS realization computed at DGFI is one example
for the combination on normal equation level (Seitz et al.
2012). Figure 5 shows the flowchart of the combination
procedure. The input normal equations are extracted from
files in SINEX (Solution INdependent EXchange) format.
The format description is available under http://www.iers.
org (2014-09-29). SINEX allows for the storage of normal
equations as well as of solutions. For the latest ITRS real-
ization (DTRF2008) GNSS, SLR and DORIS input data
are provided as solutions and the normal equation has to
be reconstructed using the information about the applied
constraints given in the SINEX files. The formulas used
for the reconstruction of the normal equation from SINEX
can be inter alia found in Seitz et al. (2012). The VLBI
contribution was provided in form of normal equations and
could be used directly from the SINEX files.

A combination of normal equations is done in the process
at two different stages (1) the combination of the normal
equation time series of one technique to one normal equation
per technique and (2) the combination of the technique
normal equations. The ITRF2005 was the first ITRF based on
time series of weekly or session-wise input data (Altamimi
et al. 2007; Angermann et al. 2007). The advantage of input
time series compared to multi-year input solutions is that
the analysis of the parameter time series (station positions,
datum parameters and EOP) can be done consistently for all
the techniques within the combination process.

The parameters, which are relevant in the ITRS real-
ization DTRF2008 are specified in Fig. 6. The figure gives

http://www.iers.org
http://www.iers.org
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Fig. 5 Flowchart of ITRS realization at DGFI

Fig. 6 Parameters of the ITRS realization DTRF2008. Dark colour
means that the technique contributes to the parameter

an overview about the contribution of the techniques to
the determination of the several parameters. While station
coordinates and the coordinates of the terrestrial pole are pro-
vided by all the techniques, UT1-UTC can only be derived
from VLBI in an absolute sense. GNSS and SLR contribute
to the UT1-UTC estimates by the first derivative in time.
The actually provided parameter is LOD, which is related
to the UT1-UTC by LOD D � d=dt(UT1-UTC). Concern-
ing the datum parameters, the origin is derived from SLR
observations only, while for the realization of the scale SLR
and VLBI observations are considered. Since also GPS and
DORIS observations provide information on origin and scale
(which should not be used for ITRF datum realization as
they are affected by systematics) the normal equations are
extended by scale as well as geocenter parameters, which
correspond to the degree 0 and degree 1 gravity field coef-
ficients, respectively.

Examples for the combination on parameter level are e.g.
the computation of the ITRF2008 (Altamimi et al. 2011)
and that of EOP series IERS C04 (ftp://hpiers.obspm.fr/iers/
eop/eopc04/C04.guide.pdf, 2011-0-02). As the combination
on observation level is the most intricate approach, ITRS
related products are not yet computed by combination on
observation level. Therefore, the IERS installed the Working
Group on the Combination at the Observation Level (COL),
which deals with the development of methods, strategies
and software necessary for the combination of the different
techniques on the observation level (http://www.iers.org,
2014-09-29).

Summary and Conclusions

The combination of different observation types can be
performed on the three levels of least squares adjustment
within a Gauß-Markov model: the observation, the normal
equation and the parameter level. For applications in ITRF
computation the approaches show differences with respect
to the data processing and/or to the mathematical concepts
and do not lead to identical results. The combination
on observation level is the most rigorous combination
method as the whole processing line starting from the pre-
processing steps is run using the full amount of available
observation data.

The combination on normal equation level is a good
approximation of the combination on observation level,
if the observation equations are written by using the
same standards for models and parametrization and if
no constraints are added to the observation or normal
equations before the combination. Thus, both, the combi-
nation on observation and on normal equation level can be
recommended for the computation of geodetic products.

The combination on solution level differs clearly from
the two other approaches. Technique-wise solutions are
performed and the resulting parameters are combined
afterwards by a second least squares adjustment process.
The multiple addition of pseudo-observations and the
subsequent reconstruction of rank deficiencies by set ups
of transformation parameters is problematic as the latter
step induce a stronger dependency of the final solution
on operator impacts (impact of selected stations on the
results) and numerical aspects (correlations between the
parameters of similarity transformation).

While combination on normal equation level is a stan-
dard, combination on the observation level is not per-
formed for ITRS realization today since an analysis soft-
ware, which allows the processing of all the different data
types in a contemporary way, is not available yet. In order
to overcome this problem, different groups working on

ftp://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf
ftp://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf
http://www.iers.org
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the development of multi-technique softwares. The IERS
initiated the Working Group on the Combination at the
Observation Level which deals with the development of
combination strategies for the IERS products of the future
by the use of the expertise of the different groups.
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W-Ratio Test as an Integer Aperture Estimator:
Pull-in Regions and Ambiguity Validation
Performance

T. Li and J. Wang

Abstract

Global Navigation Satellite Systems (GNSS) carrier phase integer ambiguity resolution is
an indispensible step in generating highly accurate positioning results. As a quality control
step, ambiguity validation, which is an essential procedure in ambiguity resolution, allows
the user to make sure the resolved ambiguities are reliable and correct. Many ambiguity
validation methods have been proposed in the past decades, such as R-ratio, F-ratio, W-ratio
tests, and recently a new theory named integer aperture estimator. This integer aperture
estimator provides a framework to compare the other validation methods with the same
predefined fail-rate, even though its application in practice can only be based on simulations.

As shown in literature, the pull-in regions of different validation methods may have a
variety of shapes which may dictate the closeness of such validation methods to the optimal
integer least-squares method. In this contribution, the W-ratio is shown to be connected with
the integer aperture theory with an exact formula. The integer least-squares pull-in region
for W-ratio is presented and analysed. The results show that the W-ratio’s pull-in region is
close to the integer least-squares pull-in region. We have performed numerical experiments
which show that the W-ratio is a robust way of validating the resolved ambiguities.

Keywords

Ambiguity validation test • GNSS • Integer aperture estimator • W-ratio

1 Introduction

Nowadays, Global Navigation Satellite Systems (GNSS)
are widely used in navigation, surveying, mapping, etc.
The demand for high precision GNSS positioning is still
increasing. Generally, there are two types of measurements:
code and carrier phase. The positioning accuracy based on
code measurements and carrier phase measurements are in
meter level and centimeter to millimeter level, respectively.
Hence, carrier phase measurements are essential for precise
positioning.

T. Li (�) • J. Wang
School of Surveying and Spatial Information Systems, The University
of New South Wales, Sydney, NSW 2052, Australia
e-mail: tao.li@unsw.edu.au

As a drawback, each carrier phase contains an integer
ambiguity in the number of wavelengths that needs to be
resolved. Traditionally used estimation methods, e.g. Least-
squares, or Kalman filtering, can only provide us with float
(or the real-valued) solutions and fixing the float ambiguities
(ambiguity resolution) to integers is not an easy task. An
amount of literature (e.g. Teunissen 1995; Han 1997; Wang
et al. 1998) can be found to study the integer ambiguity
resolution problem, and one of the most popular approaches
is the so-called LAMBDA (Least-squares AMBiguity Decor-
relation Adjustment) proposed by Teunissen (1995). With
the float solution and variance–covariance matrix of the
ambiguities from Least-squares, a search is carried out to find
out integer ambiguity candidates inside the hyper-ellipsoid
which is defined based on the float solution and the variance–
covariance matrix. Instead of one integer candidate, usually
the first best and the second best ambiguity combinations are

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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compared to make sure there is strong confidence in using
the best combination in positioning. Consequently another
problem called integer ambiguity validation emerged.

Various ambiguity validation methods have been pro-
posed, such as F-ratio test, R-ratio, difference test, project
test (Verhagen 2005), and W-ratio (Wang et al. 1998, 2000).
From a statistical point of view, the critical values to validate
the resolved ambiguity of these methods can be gener-
ated according to their distributions or empirical values. In
another approach to ambiguity validation, Integer Aperture
(IA) estimator (Teunissen 2003a, 2003b) has been developed.
In Verhagen (2005), the IA estimator was considered as a
framework for all the other classical validation methods,
and the geometries of different validation methods are then
reflected through various aperture pull-in regions.

In this contribution, the W-ratio test is first presented,
and then the deduction of the W-ratio test as an integer
aperture estimator is given, as well as its aperture pull-in
region, finally the performance of the W-ratio is analysed
with real data.

2 Parameter Estimation

The raw GNSS measurements are affected by many error
sources, such as troposphere delay, ionosphere delay, clock
error, etc. Through a double-differencing procedure, such
systematic errors can be reduced over a short baseline, and
the baseline components and integer ambiguities are the
remaining parameters to be estimated. Without loss of gen-
erality, the double differenced functional models are given as
follows:

�r¿ D 1

œ
�r¡C�rNC ©¿ (1)

�rP D �r¡C ©P (2)

where�r is the double differencing operator between satel-
lites and receivers, ¿ and P are carrier phase measurements
and code measurements respectively, œ is the carrier phase
wavelength, ¡ is the geometric distance between satellites
and receivers, N are the integer ambiguities in cycles, and
© represents the noise of the two types of measurements.

With an approximate rover position given, the above
models can be linearized as

l D AxC v (3)

where l is the vector of the observations, v is the
vector of observation errors, x is the vector of unknowns
xD (xr, �rN)T, A is the design matrix of both coordinates
Axr and ambiguities Aa, and xr are the coordinates.

It is interesting to note that Eq. (3) and the double
differenced stochastic model in the following are the so-
called Gauss–Markov model:

D .l/ D ¢20Q D ¢20P�1 (4)

where D is the covariance matrix, ¢2
0 is an a priori variance

factor, Q and P are the cofactor matrix and weight matrix of
the measurements.

By applying the classical least-squares approach, which
minimizes vTPv, the unknown parameters and their covari-
ance are uniquely estimated as:

bx D .bxr; ba/T D �ATPA
��1

ATPl;

bQOx D
�
ATPA

��1 D



QOxr QOxr Oa
QOaOxr QOa

�
(5)

whereba represents the float solution of the integer ambigui-
ties. Then the posteriori variance is

bs20 D bv
TPbv
f
D 
0

f
(6)

with f is the degree of freedom.

3 W-Ratio Statistical Test

The W-ratio has been proposed by Wang et al. (1998),
with the purpose of discriminating two sets of best integer
candidates—the most likely candidate and the second most
likely candidate. The likelihood ratio method (Koch 1988)
and the artificial nesting method (Hoel 1947) may be applied
to construct the discrimination tests, which both yield the
following test statistic:

W D dp
Var .d/

� c (7)

where

d D 
2 �
1; Var .d/ D ¡2Qd (8)


i D 
0 C .Lai �ba/TQOa�1 .Lai �ba/ (9)

c is the critical value, and ¡2 could be decided by users either
from an a priori variance ¢2

0 or from an a posteriori variance
bs20; Lai represents the integer ambiguities. By applying the
variance–covariance propagation law, the variance for d can
be derived as Qd D 4 � .La2 � La1/TQ�1

Oa .La2 � La1/ : Assuming



W-Ratio Test as an Integer Aperture Estimator: Pull-in Regions and Ambiguity Validation Performance 67

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
no

itc
nu

 (P
D

F) SND (Ws)

TSND (Wa)

SD (Ws)

TSD (Wa)

Fig. 1 Probability density function of SND, TSND, SD, TSD (degree
of freedom 4)

that Wa and Ws are the two ratios corresponding to a priori
variance ¢2

0 and a posteriori variance bs20, and under the
assumption that the fixed ambiguities are deterministic quan-
tities, they are supposed to have a truncated standard normal
distribution (TSND) and a truncated student t distribution
(TSD) respectively, from which the critical values can be
easily obtained (Wang et al. 1998).

From the definition of the TSND, TSD and one constraint
of the W-ratio (d� 0), we can obtain the probability density
function (PDF) and cumulative distribution function (CDF)
for the W-ratio. Figure 1 shows the PDF of both Wa-ratio
and Ws-ratio.

Apparent from Fig. 1, due to the constraint of d� 0, the
PDF of TSND and standard normal distribution (SND) are
different, as well as the TSD and student t distribution (SD).
The critical value for TSND is in fact a special case of SND,
and it is slightly larger than the SND critical value, which
implies that the accepted number of epochs for TSND will
be less than SND, however, more reliable.

4 W-Ratio as an Integer Aperture
Estimator

On the basis of the integer estimator, the IA theory was first
introduced by Teunissen (2003a), and the IA estimator a is
developed as:

a D
X
z2Zn

z!z .ba/Cba
 
1 �

X
z2Zn

!z .ba/
!

(10)

with the indicator function !z(x) defined as:

!z.x/ D
�
1 if x 2 
z

0 otherwise
(11)

where z is an integer vector and the centre of˝z. x represents
the float ambiguity vector. The ˝z are the aperture pull-in
regions, and their union˝ �Rn is the aperture space, which
is also translational invariant.

With the above definition, three outcomes can be distin-
guished as: (1) ba 2 ˝a Success: correct integer estima-
tion; (2) ba 2 ˝\˝a Failure: incorrect integer estimation;
(3)ba …˝ Undecided: ambiguity not fixed to an integer. Then
the probabilities of success (Ps), failure (Pf ) and undecided
(Pu) can be derived accordingly.

In the case of a GNSS model, fba.x/ represents the
probability density function of the float ambiguities, and is
usually assumed to be normally distributed. The IA estimator
allows the user to choose a pre-defined fail-rate, and then
determine the critical value accordingly.

In Verhagen (2005), the pull-in regions of integer aper-
ture bootstrapping, integer aperture least-squares have been
explored, as well as other IA estimators. Since integer least-
squares is optimal, the IA least-squares estimator can be
considered to be a better solution than the others, and the
pull-in region has been shown to be a hexagon. According
to simulations, the success-rate, fail-rate and undecided-rate
can be obtained respectively.

In a similar way, assume ¢2
0D 1, the W-ratio can be

considered as one of the integer aperture estimators and its
pull-in region is derived as follows:


2 �
1

2
q
.La2 � La1/TQ�1ba .La2 � La1/

� c

,
.La2 �ba/TQ�1ba .La2 �ba/ � .La1 �ba/TQ�1ba .La1 �ba/

2
q
.La2 � La1/TQ�1ba .La2 � La1/

� c

replace a with a generic form of x, we have:

,
.Lx2 �bx/TQ�1ba .Lx2 �bx/ � .Lx1 �bx/TQ�1ba .Lx1 �bx/

2
q
.Lx2 � Lx1/TQ�1ba .Lx2 � Lx1/

� c

with the property of integer translation, Lx1 has been moved to
the zero vector. By defining z D Lx2 � Lx1 D Lx2, the deduction
goes as follows:

,
.z �bx/TQ�1ba .z �bx/ �bxTQ�1ba bx

2
q

zTQ�1ba z
� c
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where z is the closest integer other than zero vector. Note
that the final formula for the pull-in region of W-ratio is
different from the difference test and the projector test,
whose pull-in regions as an integer aperture estimator are
provided in Verhagen (2005). By comparing these three
ambiguity validation methods, a noticeable difference is that
the determination of critical values for the difference test
and the projector test are either empirical or based on non-
strict distribution, whereas W-ratio is based on the truncated
normal distribution or truncated student t distribution. Con-
sequently, the size of their pull-in regions varies with the
critical values.

The shape of the W-ratio’s pull-in region, however, is sim-
ilar to those of the integer aperture least-squares, the integer
aperture difference test and the projector’s pull-in region; see
Figures 5 and 10 in Verhagen (2005). For a two dimensional
case, the W-ratio’s pull-in region can be constructed with
six intersecting half-spaces which are bounded by the planes
orthogonal to z with the condition above. Figure 2 shows the
pull-in region of the W-ratio test, with

Q D Œ0:1392� 0:0486I �0:0486 0:1583� I

In this case, the a priori variance for the W-ratio test is
considered as 1.0. The pull-in region of the integer least-

squares is shown as red solid line, with the other two
pull-in regions of the W-ratio tests shown in black and blue.
Obviously the W-ratio pull-in region is also close to the
integer least-squares pull-in region.

5 Numerical Analysis

Under the framework of the integer aperture estimator, the
W-ratio could be applied in another way instead of depending
on its truncated distribution. As suggested in Teunissen
(2003a), Verhagen (2005), the critical value should be deter-
mined from a given fail-rate. Based on the fail-rate, simula-
tions are carried out to find the corresponding critical value.
The exact procedures are: (1) given variance–covariance
matrix of the ambiguities and the fail-rate; (2) determine the
critical value according to the given fail-rate and then use the
critical value to perform the ambiguity validation test. For the
purpose of reliable results, the sample size should be as large
as possible. A discussion about the influence of the sample
size on the ambiguity validation results can be found in Li
and Wang (2012).

With the purpose of analysing the W-ratio’s performance
in real applications, a 30 min static data set with six satellites
was utilized, and the data was gathered on 6th, June, 2010,
Sydney, Australia, with a sampling rate and an elevation
angle as 1 s and 15 degrees, respectively. After least-squares
estimation, we can obtain the float solution together with
their variance–covariance matrix, and using the exact pro-
cedures above and a pre-defined fail-rate, simulations can be
applied to determine the critical values.

Due to the heavy computational burden of simulation for
each epoch, a certain epoch was selected to illustrate the
application of the W-ratio instead. In Figs. 3 and 4, both the
ADOP (ambiguity dilution of precision) values and Wa-ratio
values are plotted. It is shown that there is just a minor
change in the ADOP values, so the variance–covariance
matrix of the nine hundredth epoch was chosen to simulate
the critical value with a pre-defined fail rate as 0.001.

The results are listed in Table 1, with a critical value of
2.81 for TSND and 2.85 for WIA (W-ratio IA estimator). For
both approaches, the correct acceptances are quite similar
(1794, 1792), as well as the wrongly rejected ones (6, 8).
These results are extremely close to the truth so that for all
the resolved ambiguities it can be assumed to be correct.

Another 20 min kinematic data set, which was collected
on 9th, June, 2010, Sydney, Australia, has been used to
describe the W-ratio’s performance. There were six GPS
satellites tracked with dual-frequency observations available,
and the sampling rate and the elevation angle are the same as
in the previous data set.

After estimation on an epoch by epoch basis, the float
solution and its variance and covariance were obtained.
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Fig. 3 ADOP values changing with epoch number in static case
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Fig. 4 Wa-ratio statistical values in static case

Table 1 Wa-ratio performance in static case, CA D correct accep-
tance; WA D wrong acceptance; CR D correct rejection; WR D wrong
rejection

CA WA CR WR

TSND (’D 0.005) 1,794 0 0 6

WIA (Pf D 0.001) 1,792 0 0 8

The ADOP values plotted in Fig. 5 are roughly ranging
from 0.176 to 0.183 cycles, and in order to effectively
apply the IA for the W-ratio test, the geometry of the six
hundredth epoch was chosen to determine the critical value.
In Fig. 6, the statistical values of the Wa-ratio were plotted.
Table 2 shows the validation results with respect to different
way of determining the critical values. A 95 % confidence
level yields a significance level of 1.96 for TSND, and the
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Fig. 5 ADOP values changing with epoch number in kinematic case
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Table 2 Wa-ratio performance in the kinematic case, CA D correct
acceptance; WA D wrong acceptance; CR D correct rejection;
WR D wrong rejection

CA WA CR WR

TSND (’D 0.05) 823 6 160 211

WIA (Pf D 0.015) 905 21 145 129

W-ratio as an integer aperture estimator (WIA), with a pre-
defined fail-rate of 0.015 generates a critical value of 1.81.
Comparing with the WIA, the number of correctly accepted
(CA) epochs for the W-Ratio with TSND is smaller, which
means that the critical value for TSND is conservative. How-
ever, the wrongly accepted (WA) number, correctly rejected
(CR) number and the wrongly rejected number (WR) change
significantly.
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Concluding Remarks

In this contribution, various ways of utilizing the W-ratio
test have been discussed. Instead of determining the
critical value from the standard normal distribution, a
preferable way is to consider the constraint and thus, to
apply the truncated normal distribution, with a creation of
the look-up table to specify the critical values. Besides,
under the framework of the integer aperture estimator,
the pull-in region of W-ratio is presented, and the critical
value could be generated with a given fail-rate according
to simulations, which is also another way to apply the
W-ratio. In case of a short observation period, as the
satellite geometry doesn’t change too much, the user
is capable of obtaining the critical values by simulat-
ing the critical values with one epoch data. However,
more investigations should be carried out in the future to
study the performance of the W-ratio test as an integer
aperture estimator. The application of integer aperture
theory mainly depends on simulation, which only requires
geometry information regardless of the float solution (or
the quality of the observations). This issue needs further
analysis.
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Performing 3D Similarity Transformation Using
theWeighted Total Least-Squares Method
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Abstract

The 3D similarity transformation models, e.g. Bursa model is usually applied in geodesy
and photogrammetry. In general, they are suitable in small angle 3D transformation.
However, a lot of large 3D transformations need to be performed. This contribution
describes a 3D similarity transformation model suitable for any angle rotation, where the
nine elements in the rotation matrix are used to replace the three rotation angles as unknown
parameters. In the coordinate transformation model, the Errors-In-Variables (EIV) model
will be adjusted according to the theory of Least Squares (LS) method within the nonlinear
Gauss–Helmert (GH) model. At the end of the contribution, case studies are investigated to
demonstrate the coordinate transformation method proposed in this paper. The results show
that using the linearized iterative GH model the correct solution can be obtained and this
mixed model can be applied no matter whether the variance covariance matrices are full or
diagonal.
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1 Introduction

3D similarity transformation methods for nearly aligned
systems with small rotation angles are employed in many
cases, because the mathematical model can be simplified
into a linear system. Leick (2004) reviewed the similarity
transformation methods for these nearly aligned systems.
However, in many disciplines, e.g. photogrammetry, com-
puter vision and surveying engineering etc., the rotation
angles are generally not small. The simplified models are not
suitable anymore in this large transformation.

During the computational process, if the number of obser-
vations is more than the number of unknown parameters,
the Least-Squares (LS) adjustment within the Gauss–Markov
(GM) model is usually used to calculate the transformation
parameters from a redundant set of equations. LS estimation
is the best linear unbiased estimation, when the errors in the
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observation vector are normally distributed, and the matrix
of variables (the coefficient matrix) is error-free.

However, in coordinate transformation, various types of
random errors exist in the observation vector and the matrix
of variables. The Total Least-Squares (TLS) approach pro-
vides a solution, when all the data are affected by random
errors and can solve estimation problems in the so-called
Errors-In-Variables (EIV) model. Essentially, the EIV model
is a kind of nonlinear model. The nonlinear LS adjustment
has been investigated by Pope (1972). For estimating the
parameters in the EIV model, the TLS approach was intro-
duced (e.g. Golub and Van Loan 1980; Van Huffel and
Vandewalle 1991). In recent years, this method has also been
developed by Schaffrin (2006), Schaffrin and Wieser (2008),
Schaffrin and Felus (2009) and Neitzel (2010) solved the
TLS within the EIV model as a special case of the method
of LS within the nonlinear Gauss–Helmert (GH) model.

For applications, the EIV model is widely employed in
geodesy or engineering survey (e.g. Felus and Schaffrin
2005; Akyilmaz 2007; Schaffrin et al. 2009; Schaffrin and
Felus 2008; Lu et al. 2008; Felus and Burtch 2009; Neitzel
2010).

The 3D similarity transformation method proposed in
this paper can suit not only small but also large angle
rotation. Based on this nonlinear model, the solution within
the linearized iterative GH model will be applied to solve the
EIV model.

In Felus and Burtch (2009) the EIV model is calculated by
a closed form Procrustes approach, which limits the size of
the matrix and the accuracy of the result. In Neitzel (2010),
the EIV model is performed in the 2D transformation model.
Compared with this previous work, the GH model solved
in this paper does not impose any restrictions on the form
of functional relationship between the quantities involved
in the model, and so the transformation parameters can be
calculated, no matter how complex the EIV model would
be. Furthermore, in contrast to the linear 2D transforma-
tion model in Neitzel (2010), the 3D transformation model
described here is nonlinear and more complicated. Finally,
the calculation process presented in this paper permits to
solve the coordinate transformation, no matter if the weight
matrix is diagonal or not.

We present our transformation method, which can suit any
angle in the next section. The linearized iterative solution
within the GH model is used to solve the EIV model in
Sect. 3. The performance of our method is demonstrated by
the results of simulations and experiments with real data in
Sect. 4. Finally, last section gives “concluding remarks”.

2 Nonlinear 3D Similarity
Transformation

3D similarity coordinate transformation is the process of con-
verting spatial data from one coordinate system to another:

2
4XY
Z

3
5 D

2
4X0Y0
Z0

3
5C �M .˛1; ˛2; ˛3/

2
4xy

z

3
5 (1)

where
�
X; Y; Z

	
denote the coordinates in the target system

O�XYZ,
�
x; y; z

	
represent the coordinates of the corre-

sponding point in the source system o� xyz,
�
X0; Y0; Z0

�
are the three translation parameters, � is the scale factor, and
˛1, ˛2, ˛3 stand for the three rotation angles, respectively,
which produce the rotation matrix M

M .˛1; ˛2; ˛3/ DM3 .˛3/M2 .˛2/M1 .˛1/ D
2
4a1 a2 a3b1 b2 b3
c1 c2 c3

3
5
(2)

The nine elements (a1, a2, a3, b1, b2, b3, c1, c2, c3) form an
orthonormal matrix MTMDMMT D Ij3 � 3 (Ij3 � 3 denotes
the 3� 3 identity matrix) with det(M)DC 1.

The usual mathematical model of the transformation is
the simplified model, such as the Bursa and the Molodensky
model, which assume that the rotation parameters are small
and a linear approximation is valid. However, if the rotation
angles are large, the simplified models are not suitable
anymore.

In this contribution, the nine elements in the rotation
matrix will be used to replace the rotation angles as unknown
parameters. So the transformation model with 13 unknown
parameters can be obtained as:
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c1 c2 c3

3
5
2
4xy

z

3
5 (3)

However, in the rotation matrix M, only three of the nine
elements are independent, and the remaining six parameters
can be represented by nonlinear functions of these three
values. According to the property of the orthonormal matrix
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MT MDMMT D Ij3 � 3, six constraints can be organized in
various kinds. One of them can be expanded as:

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

a21 C a22 C a23 � 1 D 0
b21 C b22 C b23 � 1 D 0
c21 C c22 C c23 � 1 D 0
a1a2 C b1b2 C c1c2 D 0
a1a3 C b1b3 C c1c3 D 0
a2a3 C b2b3 C c2c3 D 0

(4)

In this paper, the constraints (4) will be converted into
pseudo-observation equations. Thus, the weights of these six
pseudo-observation equations will be set much larger than
others. So the unknown parameters will be estimated by the
weighted adjustment. In general case, the initial values of
the parameters can be set as �0D 1, (X0

0, Y0
0, Z0

0)D (0, 0, 0),
M0D Ij3 � 3, which are equivalent to aligned systems at the
beginning. The orthogonality has been tested and is endured
up to numerical inaccuracies.

3 The Nonlinear 3D Similarity
Transformation Solved
by the SolutionWithin the Nonlinear
GHModel

In the 3D similarity transformation model described in
Eq. (3) the number of unknown parameters is 13. If the
number of corresponding points is k, then the number of
observation equations is n (here nD 3k). Combined with
six constraints from Eq. (4), at least two three-dimensional
points and one elevation point are required to determine the
13 parameters; in general, more corresponding points are
measured, and an adjustment process is required for comput-
ing the best fitting parameters from the redundant data.

The LS adjustment is employed for estimation of the
unknown parameters in many cases. But there is a basic
assumption that only observations are affected by random
errors. This assumption implies that just the data in the
target coordinate system include errors, but coordinates in the
source system are true and error-free. In this case a Gauss–
Markov (GM) model is suitable.

However, the assumption that all the random errors are
confined to the observation vector is often not true. In many
cases, errors occur not only in the observation vector, but also
in the coefficient data matrix. In this case, the TLS approach
is the proper method for treating this EIV model.

The starting point for the TLS adjustment is the definition
of a quasi-linear model. However, the 3D similarity trans-
formation model described in the last section is nonlinear.
To calculate the nonlinear Weighted TLS (WTLS) problem,
the rigorous evaluation in a nonlinear GH model will be
performed.

Because
˚
Xi; Yi ; Zi

�
and

˚
xi ; yi ; zi

�
are both observa-

tions, random errors eXi , eYi , eZi and exi , eyi , ezi have to be
considered:

Xi �eXi � �a1 .xi � exi /� �a2
�
yi � eyi

�
��a3 .zi � ezi /� X0 D 0

Yi �eYi � �b1 .xi � exi /� �b2
�
yi � eyi

�
��b3 .zi � ezi /� Y0 D 0

Zi �eZi � �c1 .xi � exi / � �c2
�
yi � eyi

�
��c3 .zi � ezi /�Z0 D 0

(5)

Since the Eq. (4) is converted into pseudo-observation equa-
tions, errors are also included in:

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

1 � e31 � a21 � a22 � a23 D 0
1 � e32 � b21 � b22 � b23 D 0
1 � e33 � c21 � c22 � c23 D 0
� e34 � a1a2 � b1b2 � c1c2 D 0
� e35 � a1a3 � b1b3 � c1c3 D 0
� e36 � a2a3 � b2b3 � c2c3 D 0

(6)

The error vector is:

e
ˇ̌
.2nC6/�1 WD

�
eT2 ; e

T
1 ; e

T
3

	T
eT2 D

� � � � eXi eYi eZi � � � 	
eT1 D

� � � � exi eyi ezi � � �
	

eT3 D
�
e31 e32 e33 e34 e35 e36

	
(7)

where the subscript i indicates the corresponding point. As
usual, variances and covariance of the observations have to
be taken into account. Transferring the accuracies into the
corresponding weight matrices P1, P2 and P3, the objective
function to be minimized reads:

eTPe D e2
TP2e2 C e1

T P1e1 C e3TP3e3 D min (8)

The implicit form of the functional relation is established by
the Eqs. (5) and (6), which are nonlinear. The solution of this
EIV model can be obtained through an evaluation within the
GH model.

The nonlinear differentiable equations (5) and (6) can be
combined and written as:

f .e; Ÿ/
ˇ̌
.nC6/�1 D

� � � � fi .e; Ÿ/ � � � ; fC .e; Ÿ/
	T D 0 (9)

With the parameter vector

Ÿ D �X0 Y0 Z0 � a1 a2 a3 b1 b2 b3 c1 c2 c3 	T (10)



74 J. Shen et al.

In nonlinear 3D similarity transformation f(e, Ÿ) is:

f .e; Ÿ/
ˇ̌
.nC6/�1 D 0 D �

2
6666664

� � �
Xi � eXi � �a1 .xi � exi /� �a2

�
yi � eyi

�� �a3 .zi � ezi / �X0
Yi � eYi � �b1 .xi � exi /� �b2

�
yi � eyi

� � �b3 .zi � ezi /� Y0
Zi � eZi � �c1 .xi � exi /� �c2

�
yi � eyi

� � �c3 .zi � ezi / �Z0
� � �

fC .e3; Ÿ/

3
7777775 (11)

where fC(e3, Ÿ)D 0 represents the six pseudo-observation
equations (6).

The linearized condition equations can be written as:

f .e; Ÿ/ 	 A0
�
Ÿ � Ÿ0�C B0

�
e � e0�C f

�
e0; Ÿ0� D 0 (12)

involving the matrices of partial derivatives:

A0 .e; Ÿ/ D @f .e; Ÿ/

@ŸT
(13)

and

B0 .e; Ÿ/ D �@f .e; Ÿ/
@eT

(14)

So in nonlinear 3D similarity transformation A0(e, Ÿ) can be
built as:

A0
ˇ̌
.nC6/�13 D



A0
1

A0
2

�
(15)

where A0
1 stands for the coefficient matrix of the error

equations, which is linearized from Eq. (5). So the factors
in A0

1 except zeros are written as:
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A0
2 in Eq. (15) presents the coefficient matrix of the addi-

tional error equations, which is linearized from Eq. (6):
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2 D �

2
6666664
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0
2 2a

0
3 0 0 0 0 0 0

0 0 0 0 0 0 0 2b01 2b
0
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0
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0 0 0 0 0 0 0 0 0 0 2c01 2c
0
2 2c

0
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0 0 0 0 a02 a01 0 b02 b01 0 c02 c01 0

0 0 0 0 a03 0 a01 b03 0 b01 c03 0 c01
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3
7777775

(17)

B0(e, Ÿ) is decomposed as:

B01 jn�n D @f .e; Ÿ/
@e1T

D

2
6666666664

��a10 ��a20 ��a30 � � � 0 0 0

� �b10 ��b20 ��b30 � � � 0 0 0

� �c10 ��c20 ��c30 � � � 0 0 0
:::

:::
:::
: : :

:::
:::

:::

0 0 0 � � � ��a10 ��a20 ��a30
0 0 0 � � � ��b10 ��b20 ��b30
0 0 0 � � � ��c10 ��c20 ��c30

3
7777777775

(18)

B02 jn�n D @f .e; Ÿ/
@e2T

D I jn�n (19)

B03 j6�6 D
@f .e; Ÿ/
@e3T

D I j6�6 (20)

Here B0
1, B0

2 and B0
3, respectively, denote the matrices of

partial derivatives w.r.t. e1, e2 and e3. According to Eq. (14),
B0(e, Ÿ) is:

B0
ˇ̌
.nC6/�.2nC6/ D



B02 B01 0 jn�6

0 j6�n 0 j6�n B03

�
(21)

with the vector of misclosures:
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¨0 D �B0e0 C f
�
e0; Ÿ0� ˇ̌

.nC6/�1

D

2
6666666666666666664

� � �
Xi � �0a10xi � �0a20yi � �0a30zi �X00
Yi � �0b10xi � �0b20yi � �0b30zi � Y00
Zi � �0c10xi � �0c20yi � �0c30zi �Z00

� � �
1 � �a01�2 � �a02�2 � �a03�2
1 � �b01�2 � �b02�2 � �b03�2
1 � �c01�2 � �c02�2 � �c03�2
� a01a02 � b01b02 � c01c02
� a01a03 � b01b03 � c01c03
� a02a03 � b02b03 � c02c03

3
7777777777777777775

(22)

and cofactor matrices of e1, e2 and e3:

Q1 jn�n D P�1
1 (23)

Q2 jn�n D P�1
2 (24)

Q3 j6�6 D P�1
3 D .ı � I j6�6 /�1 (25)

Here, ı is a sufficiently large constant that presents the
weights of the six pseudo-observation equations.

If the data has been adjusted previously, the coordinates in
source and target systems might be related. Considering this
situation, the more general form of the cofactor matrix is:

Q
ˇ̌
.2nC6/�.2nC6/ D

0
@ Q2 Q21 0 jn�6

Q12 Q1 0 jn�6
0 j6�n 0 j6�n Q3

1
A (26)

where Q21 and Q12 denote the covariance matrix of e2 and e1.
So compared with the calculation process in Neitzel (2010),
in which the weighted matrix is diagonal, the observations
here can be correlated.

The estimation for the unknown parameters from the
solution of the linear equations system will be obtained as
follows (Neitzel 2010):

"
B0Q

�
B0
�T

A0�
A0
�T

0

#" bœ1

bŸ1 �bŸ0
#
C



¨0

0

�
D 0 (27)

and the first error vector is:

Qe1 D Q
�
B0
�Tbœ1

(28)

This is an iterative calculation process. After stripping the

randomness of the solution Qe1 and bŸ1, they are used in the
next iteration step as their approximations.

Table 1 Coordinates of corresponding points with errors (�0 D 0.001)
in two coordinate systems

No. 1 2 3 4 5

X1 �0.0011 100.0003 �99.9994 �99.9989 100.0015

Y1 0.0001 99.9985 �100.0007 �100.0010 100.0023

Z1 �0.0006 100.0007 �100.0001 100.0008 �100.0003

X2 9.9986 �83.7289 103.7279 4.2617 15.7378

Y2 10.0014 128.3343 �108.3338 �143.4093 163.4101

Z2 10.0007 98.4045 �78.4039 93.8759 �73.8769

Table 2 The estimated transformation parameters resulting from dif-
ferent algorithms with the data of Table 1

Exact
values

LS
method

WLS
method

Iterative GH
model

X0(m) 10.0000 9.9992 9.9992 9.9992

Y0(m) 10.0000 10.00031 10.00026 10.00026

Z0(m) 10.0000 9.99901 9.99983 9.99983

� 1.01 0.84101740 1.0099958 1.0099958

˛1 10ı 4ı58016.67700 9ı59059.5830 0 9ı59059.58300

˛2 30ı 25ı12026.4470 0 30ı00001.14500 30ı00001.1450 0

˛3 60ı 58ı04048.8910 0 59ı59059.88800 59ı59059.8880 0

b�20 0.00127 14.46322 0.00182 0.00148

4 Case Study

In the following section, a simulation and a real data example
will be used to examine the nonlinear 3D transformation
method and the computation method.

In the first example, we simulate a 3D similarity
transformation with large rotation angles. In this simulation,
all variables contain normally distributed errors with
zero mean, �0D 0.001, and all data have the same
accuracy. The transformation parameters are �D 1.01,
(˛1, ˛2,˛3)D (10ı, 30ı, 60ı), and (X0, Y0, Z0)D (10.00000,
10.00000,10.00000) (m). Five corresponding points were
given in the two coordinate systems with the coordinate
values given in Table 1. The unit of the coordinates is meter.

The weight matrix of the six pseudo-observation equa-
tions is P3D 1010 � Ij6 � 6. The initial values of the parameters
are set as �0D 1, (X0

0, Y0
0, Z0

0)D (0, 0, 0), M0D Ij3 � 3.
During the calculation process, the iteration is stopped, if

the results satisfy the condition
bŸh �bŸh�1 < 10�8 (h is the

number of iterations). Table 2 displays the estimated trans-
formation parameters calculated by different transformation
methods and computation models.

In Table 2, the second column presents the exact value
and the third column displays the estimated parameters by
the Bursa model using LS method. Column 4 and 5 show
the results calculated by the nonlinear model proposed in
this paper. The former presents the parameters using the
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Table 3 Coordinates of control points in two coordinate systems from
Felus and Burtch (2009)

No. x y z X Y Z Weights

1 30 40 10 290 150 15 1

2 100 40 10 420 80 2 2

3 100 130 10 540 200 20 2.5

4 30 130 10 390 300 5 4

Table 4 Comparison of the transformation parameters resulting from
different algorithms with the unequal data of Table 3

Row-wise
weighted GM
model

Algorithm in
Felus and
Burtch (2009)

Solution within the
linearized iterative
GH model

X0(m) 193.96132 188.97714 188.97713

Y0(m) 104.42440 101.51720 101.51720

Z0(m) �32.49900 �33.38008 �33.38008

� 2.1301997 2.1761269 2.1761270

˛1 �0ı30051.46660 0 �0ı30051.46660 0 �0ı30051.467000

˛2 4ı31021.12550 0 4ı31021.12550 0 4ı31021.12530 0

˛3 33ı32019.51110 0 33ı32019.51110 0 33ı32019.51130 0

SSE 7659.90 319.004 319.004

Weighted Least Squares (WLS) method, while the latter
presents the results calculated by the EIV model within the
GH model.

Because the Bursa model is not suitable anymore in this
large angle transformation, the correct results cannot be
obtained. But with the nonlinear transformation model, no
matter which calculation model is chosen, the results can
converge to the correct parameters. The number of iterations
by WLS method is 5, via the solution within the GH model
just 4 besides, the results calculated by the EIV model are
more reasonable, because all observation data which are
affected by random errors are corrected.

The variance component (b�20) shows that the solution of
the WLS method and the iterative GH model method are all
matching the parameters well, but the latter one is closer to
the exact values.

The second numerical example originates from Felus and
Burtch (2009). The accuracy of the data is varying, and the
weights are represented in the last column of Table 3. The
unit of the coordinates is meter.

In order to solve this EIV model, Felus and Burtch (2009)
employ a closed form Procrustes method. In our solution,
the weights for the six pseudo-observation equations are
still 1010. The initial values of the parameters and the
stopping criteria of the iteration are set identical to the
first example. The estimated transformation parameters are
displayed in Table 4, where SSE denotes the sum of squared
errors.

The number of iterations for the algorithm in Felus and
Burtch (2009) and the linearized iterative weighted GH

Table 5 Residuals of the variables in the numerical example 2

Point 1 Point 2 Point 3 Point 4

eX(m) 0.9855 �1.3720 �3.8094 1.5944

eY (m) �1.4834 �3.4764 3.2994 �0.8270

eZ(m) �3.3302 0.9734 �0.8199 1.6354

ex(m) �2.9929 �2.9385 10.4971 �3.1787

ey(m) 1.7975 6.7221 �1.4685 �1.2974

ez(m) 7.0490 �1.7622 1.3278 �0.9406

model are four in both cases. The residuals of the correspond-
ing points obtained from the solution within the unequally
weighted GH model are presented in Table 5.

Comparing the results in Table 4 and the residuals in
Table 5, differences and similarities in the results can be
analyzed. First of all, the nonlinear 3D similarity trans-
formation model described in this paper can estimate the
correct transformation parameters assuming there are no
systematic errors in the measurements. Secondly, since the
errors are obviously distributed in both the source and the
target coordinate systems, the EIV model is preferable for
solving this problem. This can be detected from the SSE
measure in Table 4. The SSE values calculated by the EIV
model are much smaller than those calculated by the GM
model. Finally, the error components presented in Table 5
demonstrate the key property of the EIV model, which treats
the source and the target coordinate systems equally under
the assumption that there are errors in all variables.

Concluding Remarks

This contribution investigates a method for 3D similarity
coordinate transformations. During the adjustment, the
solution of the WTLS method is demonstrated by means
of the linearized iterative GH model. The conclusions are
summarized as follows:
1. Unlike the Bursa model and the Molodensky model,

which are mainly suitable in small angle 3D trans-
formation, the method for 3D similarity coordinate
transformations proposed here can suit any angle trans-
formation, and this method is not sensitive to the initial
values. In other words, the orthogonality of the rotation
matrix has been tested and is endured up to numerical
inaccuracies.

2. The solution within the linearized iterative GH model
can be used as an alternative WTLS method for com-
puting the exact solution, but it is more general with
respect to the possible weight matrix.

3. Compared with other solutions, SSE or b�20 of the
iterative solution within the linearized GH model are
smaller.

4. With the EIV model, the errors in the source and the
target coordinate systems can be presented directly in
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every point. In other words, statistical information on
the transformed points can easily be obtained.
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Comparison of SpatialAnalyzer and Different
Adjustment Programs

C. Herrmann, M. Lösler, and H. Bähr

Abstract

Net adjustment is one of the basic tools for various surveying tasks. Among the trans-
formation of coordinates or the analysis and comparison of geometries, the adjustment of
geodetic networks is an important part of the surveyor’s work. The market offers a number
of software solutions, both commercial and freeware.

Seeing the range of software solutions, the question arises, whether the programs give
equivalent results. Earlier evaluations of net adjustment programs, partly including New
River Kinematics’ SpatialAnalyzer (SA), revealed on the one hand almost identical adjust-
ment results for the classic programs. On the other hand, the evaluations showed that SA,
using a different mathematical model (bundle adjustment), yields clearly distinguishable
deviations. Hence, in this paper the authors focused on SA with the classic programs as
reference. The first part of the comparison deals with the results of evaluating a terrestrial
network. As programs do not account for the earth’s curvature in a standardized way, the
chosen network is of small size to minimize the influence of the curvature to an insignificant
level.

The second part of the paper compares the results of the evaluation of basic geometries
(plane, circle, cylinder, sphere) using SA and other software packages with the least squares
solution obtained in a rigorous Gauss–Helmert model (GHM).
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1 Introduction

A study from Schwieger et al. (2010) took a brief look on
commercially available software products for net adjustment.
The authors discussed the user requirements for such soft-
ware and the various quality parameters dedicated to assess
reliability, efficiency and accuracy. The comparison of the
numerical results focused on the estimated coordinates of the
network points and a couple of quality parameters. Devia-
tions up to several millimetres in the coordinates between
the results of the different programs were observed.

Lösler and Bähr (2010) extended the list of compared pro-
grams a little, including open source software and freeware
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Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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as well. They focused on the estimated coordinates as a result
solely. SpatialAnalyzer (SA), taking part in their comparison,
revealed deviating results with respect to the other programs
and some characteristics concerning the data processing.
Consequently the present paper focuses on SA with some
other programs as reference. The authors extended the study
by a comparison of different form fitting algorithms to
discuss the availability of quality parameters of the estimated
geometries.

2 Net Adjustment

2.1 SpatialAnalyzer

This commercial software is developed and distributed by
New River Kinematics. It is designed for an industrial envi-
ronment and mainly used for quality control purposes. The
software architecture of SA allows the user to connect and
directly operate a large variety of measuring equipment
(total stations, laser trackers, scanners etc.). SA presents the
measurements on-line in a CAD environment.

Compared to the classic adjustment programs, SA uses
a different mathematical model. Instead of the common
approach of directly adjusting observations in one step, the
software uses concatenated similarity transformations. In SA
the tachymetric observations (distances, horizontal direc-
tions and vertical angles) cannot be used for the adjustment
directly. Instead, SA calculates local coordinates of all target
points per station. Thus, each station and the measurements
taken there, form an independent (sub-) system with indi-
vidual orientation. The adjustment is then performed by
simultaneously concatenating the station subsystems of the
network via similarity transformations (Calkins 2002). Up
to seven transformation parameters (translations in x, y and
z, rotations about the three axes and one scale factor) can
be estimated individually for each station. The adjustment
process is initially carried out in an arbitrary coordinate sys-
tem. To finally acquire the coordinates in the target system,
the adjusted network is transformed to the point group of
the initial values of the network points, again via similarity
transformation.

The other programs included in this study are GNU
Gama, Java Graticule 3D (JAG3D), Leica Geo Office (LGO),
Netz3D and NetzCG.

GNU Gama is developed by Aleš Čepek. The software is
open source and capable of adjusting geodetic networks con-
sisting of, e.g. observed distances, angles, height differences
and/or observed coordinates (see Čepek 2011).

JAG3D is developed by Michael Lösler and is open
source. The program offers adjustment of geodetic net-
works in 1D, 2D or 3D. Furthermore routines for coordinate

transformation, form fitting and coordinate conversion are
included.

LGO is distributed by Leica Geosystems. It is commercial
software to evaluate geodetic measurements. The mathe-
matical model of LGO’s computation module MOVE3 is
rigorously ellipsoidal (Grontmij 2011).

Netz3D is developed by the Geodetic Institute Karlsruhe.
It is a program for the adjustment of three dimensional
networks.

NetzCG is developed by the Geodetic Institute Karlsruhe
and COS Systemhaus OHG. It is an integrated net adjustment
tool for AutoCAD. NetzCG automatically separates horizon-
tal position and height and adjusts them separately.

2.2 Network

The network for this comparison was kindly provided by
COS Geoinformatik GbR. It consists of 72 sets of mea-
surements (slope distances, horizontal directions and vertical
angles) taken on 6 stations with 23 network points in total.
The maximum distance between two points is approximately
31 m.

As mentioned above, the programs account differently for
the earth’s curvature. The influence of the deflection of the
vertical increases with the network’s size. Witte and Schmidt
(2000) give a rule of thumb to assess the effect on the height
between two network points with

k D s2

2R
(1)

where s is the horizontal distance and R is the earth’s mean

radius. The effect is smaller than 0.1 mm for distances
below 36 m. This motivates the choice of a small network,
minimizing the influence of the curvature to an insignificant
level.

All the programs offer to calculate the adjustment with a
priori uncertainty values. Unfortunately the handling differs
with each program. To produce comparable results, the
authors chose a distance uncertainty of 0.3 mm and an angle
uncertainty of 5.5 arcsec (1.7 mgon) for all the software
packages.

The reader might wonder why the value for the angles
is that large and why the authors chose absolute values
rather than using a distance-depending stochastic model. The
fact, that the programs cope differently with the a priori
uncertainties, made it necessary to choose this approach.
Especially the stochastic model of SA lacks the option to
take centering or aiming uncertainties into account. The user
is only able to define an absolute value (1 sigma level) for
the angle uncertainty of the horizontal and vertical angles
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separately. The stochastic model of the direction uncertainty
with a distance-dependent approach is as follows:

�direction D
s
b1
2 C

�
b2

s
� �
�2

(2)

where b1 is the direction uncertainty of the instrument, b2

is the distance-dependent part representing an aiming or
centering uncertainty and s is the distance to the target point.
� is for converting b2/ s into an angle value, e.g. 180/ .
It is obvious that the influence of the aiming is largest at
short distances. Hence, especially in a network of small size,
the aiming uncertainty contributes significantly to the overall
uncertainty budget of a point and cannot be neglected. Due
to the rather small size of the network the authors chose the
relatively high absolute value of 5.5 arcsec (1.7 mgon).

The programs differ in the stochastic model of the dis-
tance uncertainty as well. Equation (3) is implemented in
LGO, NetzCG and Netz3D. JAG3D calculates the distance
uncertainty according to the law of propagation of variances
with (4). The model (5) is implemented in Gama. Similar to
the model of the directions, a1 is the absolute uncertainty of
the distance measurement and a2 is the distance-dependent
part. With a3D 1, (5) is the same as (3). Because of the
different models, the authors chose an absolute value for the
distance uncertainty. Compared to the horizontal directions,
this has a rather small effect, especially when measuring
short distances.

�distance D a1 C a2 � s (3)

�distance D
q
a12 C .a2 � s/2 (4)

�distance D a1 C a2 � sa3 (5)

2.3 Results

The adjustment was carried out with four constraints for the
datum defect (three translations and one rotation parameter)
as it is appropriate for tachymetric 3D networks (Illner 1983).
Table 1 provides an overview of the differences in coordi-
nates and standard deviations between the results of the com-
pared programs. Gama represents the results of JAG3D and
Netz3D, too, because the three of them provided identical
values, in coordinates as well as standard deviations. This
result shows the equally good quality of open source software
compared to commercially available solutions.

Using an alternative mathematical model, the results of
SA are similar to the other programs with a maximum devi-
ation of 0.5 mm. Taking into account the introduced distance
uncertainty of 0.3 mm and the tachymetric application, this
result is satisfying. On the other hand, the standard deviations

of SA’s solution are up to four times larger than the ones
of Gama (representing JAG3D and Netz3D, too, as stated
above) (Table 1) and are only calculated for actually mea-
sured points. Point 3333, which was determined by setting
up a station there, is not included in the covariance matrix
of SA’s net adjustment routine. The available covariance
matrix is only of a 3� 3 block diagonal structure. The reason
for the differences of the standard deviations could not be
distinguished clearly. The developers have been notified on
this discrepancy.

Concerning classic geodetic measurements, SA lacks
some basic features. There are no options for instrument and
reflector heights. Consequently they have to be zero or the
offset has to be adjusted manually. In contrast to the classic
programs, single observations cannot be excluded from the
adjustment process (e.g. because of a gross error). If one of
the polar elements of a measured point is missing, the other
two will be excluded as well, because SA does not use the
observations directly, as described in Sect. 2.1.

The comparison also revealed minor deviations between
LGO and NetzCG on the one hand, to the group of Gama,
JAG3D and Netz3D on the other hand. The maximum value
of the differences is 0.2 mm. These deviations are easily
explained, again through the mathematical models of LGO
and NetzCG. LGO works with a rigorously ellipsoidal coor-
dinate system. NetzCG separates horizontal position and
height automatically and adjusts the two “systems” sepa-
rately.

3 Form Fitting

A common way for the evaluation of point clouds is the form
fitting. Regular geometries, like planes, circles and cylinders,
are fitted to the measured points. Through estimating the
form parameters, it is possible to derivate the characteristics
of the object. Those parameters can be the radius of a sphere
or the normal vector of a plane, and by that its orientation,
just to name a few. The parameters can later be used to
assess the form in terms of quality control (e.g. dimensional
accuracy).

As the reference for the comparison, the authors realized
the approximate and the rigorous GHM with MATLAB.
They compared this implementation to the form fitting tools
of SA and the software packages mentioned below. By using
this implementation, the authors could distinguish whether
the software packages obtain the least-squares solution via
the rigorous or the approximate GHM. In contrast to the
rigorous model, the approximate model does not update the
initial values of the adjusted observations with every itera-
tion. For further information on the rigorous evaluation of
the GHM see Lenzmann and Lenzmann (2004) and Neitzel
(2010).
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Table 1 Coordinate differences and standard deviations of SA and the other programs

Point
SA—Gama
[mm]

SA—LGO
[mm]

SA—NetzCG
[mm]

Standard
deviation SA
[mm]

Standard
deviation
Gama [mm]

X Y Z X Y Z X Y Z X Y Z X Y Z

1007 �0:1 0:0 0:2 �0:1 0:0 0:1 �0:1 0:0 0:2 0.42 0.27 0.29 0.09 0.06 0.07

1008 0:1 0:0 0:3 0:0 0:0 0:1 0:1 0:0 0:2 0.43 0.24 0.25 0.10 0.06 0.07

1009 �0:1 0:0 0:2 �0:1 0:0 0:1 �0:1 0:0 0:2 0.44 0.32 0.34 0.12 0.10 0.09

1098 0:1 0:1 0:0 0:1 0:2 0:1 0:1 0:1 0:0 0.46 0.36 0.41 0.07 0.06 0.07

3333 0:2 0:1 �0:1 0:2 0:2 0:0 0:2 0:1 �0:1 0.14 0.12 0.12

101 0:0 0:0 �0:1 0:0 0:0 �0:2 0:0 0:0 �0:2 0.46 0.42 0.44 0.18 0.16 0.17

102 �0:3 0:1 0:1 �0:3 0:1 0:1 �0:3 0:1 0:1 0.53 0.53 0.54 0.22 0.21 0.23

103 0:2 �0:2 0:0 0:2 �0:2 0:0 0:2 �0:2 0:0 0.53 0.52 0.53 0.21 0.21 0.22

104 0:0 �0:1 0:1 0:0 �0:2 0:1 0:0 �0:1 0:2 0.37 0.38 0.40 0.12 0.14 0.15

105 0:0 0:0 0:0 �0:1 0:0 0:0 0:0 �0:1 0:2 0.37 0.46 0.45 0.15 0.19 0.20

106 �0:1 0:0 0:0 �0:1 0:0 0:0 �0:1 0:0 0:0 0.29 0.35 0.28 0.11 0.13 0.11

206 �0:1 �0:4 �0:2 �0:1 �0:3 0:1 0:0 �0:4 �0:2 0.67 0.45 0.67 0.13 0.08 0.11

401 0:0 0:0 0:0 0:0 0:0 �0:1 0:0 0:0 0:0 0.53 0.36 0.38 0.21 0.14 0.15

402 �0:3 0:2 0:0 �0:3 0:1 �0:1 �0:3 0:1 �0:1 0.72 0.53 0.71 0.34 0.22 0.35

501 0:1 0:1 0:0 0:2 0:1 �0:1 0:1 0:1 0:0 0.41 0.35 0.31 0.16 0.14 0.13

504 0:3 0:0 �0:4 0:3 �0:1 �0:5 0:2 �0:1 �0:4 0.67 0.53 0.66 0.28 0.22 0.30

505 0:2 0:1 0:0 0:2 0:1 �0:1 0:2 0:1 0:0 0.58 0.54 0.58 0.24 0.22 0.25

506 0:0 0:0 0:0 0:0 0:0 �0:1 0:0 0:0 0:0 0.21 0.26 0.19 0.10 0.10 0.09

602 �0:1 0:0 0:1 0:0 0:0 0:2 �0:1 0:0 0:1 0.50 0.50 0.48 0.19 0.20 0.20

603 �0:1 �0:1 �0:1 �0:1 0:0 0:1 �0:1 0:0 0:1 0.44 0.38 0.44 0.15 0.14 0.17

604 �0:1 0:0 �0:2 �0:1 0:0 0:0 �0:1 0:0 �0:2 0.42 0.38 0.44 0.13 0.14 0.17

605 0:2 0:1 �0:1 0:2 0:2 0:1 0:2 0:2 0:0 0.44 0.50 0.46 0.20 0.20 0.19

606 �0:1 0:0 �0:1 �0:1 0:1 0:1 �0:1 0:0 �0:1 0.35 0.39 0.35 0.13 0.15 0.14

Gama represents JAG3D and Netz3D

The Least Squares Geometric Elements (LSGE) is a
MATLAB toolbox freely offered on www.eurometros.org.
The toolbox provides estimation of parameters for standard
geometries like lines, planes, spheres and cylinders etc.

The Form Fitting Toolbox is part of the program JAG3D
by Michael Lösler. It offers the estimation of form param-
eters through a GHM for two- and three-dimensional func-
tions (e.g. lines, n-degree polynomials, ellipsoids).

For the comparison of the software packages four basic
geometries were chosen. The sample data was taken from the
following studies: plane, Drixler (1994); sphere, Jäger et al.
(2005); cylinder, Späth (2000a) and circle, Späth (2000b).
The following equations depict the functional model for each
geometry.

The Hessian normal form (6) is one way to describe a
plane. n0D [nx ny nz]T represents the normalized normal
vector. d is the shortest distance of the plane to the point of
origin. PiD [xi yi zi]T is a point on the plane.

n0
T Pi D d (6)

The only form parameter of the sphere is its radius r. The

radius is defined as the distance between the center point
P0D [x0 y0 z0]T and the sphere’s surface. The center point
defines the sphere’s position. All points PiD [xi yi zi]T with
the distance r to P0 lie on the sphere. The functional model
can be written in vector form as follows, where the double
bars denote the length of the vector:

kPi � P0k D r (7)

Reducing the dimension from 3D to 2D enables to
describe a circle with (7). However, the conversion of the
2D geometry into the three dimensional space succeeds only
with the use of auxiliary quantities (Späth 2000b). Usually,
a circle is derived from intersecting two geometries, for
instance a plane and a sphere. The combination of two rather
simple functional models like (6) and (7) leads easily to the
estimation of the form (Eschelbach and Haas 2003). Hereby
the normal vector of the plane determines the orientation

www.eurometros.org
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Table 2 Estimated parameters of the forms

Sphere/m Plane/m Circle/m Cylinder/m

x0 9.99972450 21,303.5851708 0.23012344

y0 7.99980653 22,913.70679085 �0.29012746

z0 6.99930612 25.3418438 0.23419521

r 5.00054199 2.80954434 11.99127993

nx 0.1947970 0.88546719 �0.74569520

ny 0.5449293 �0.4647002 �0.66073840

nz �0.81554037 �0.0012322 �0.08581051

d 31.748989 8,215.588

The compared programs provided identical results

of the circle. The position and radius are obtained with the
functional model of the sphere.

The cylinder has only one form parameter, too, the
radius r. An implicit model of a cylinder with infinite length
is given by

k.Pi � P0/ � n0k D r (8)

A point P0D [x0 y0 z0]T and the normalized direction vector
n0D [nx ny nz]T describe the cylinder axis’ position and
orientation. The radius is the distance of this axis to the
cylinder’s surface.

The results of the form fitting with the different imple-
mentations are identical. Table 2 shows the number of identi-
cal decimal places of the estimated values. Only the approx-
imate GHM of the authors’ implementation revealed signifi-
cant differences. This proves that none of the tested programs
estimates the form parameters with the approximate model.
All the points representing the forms were introduced as
uncorrelated with the same weights.

However, the above mentioned software packages differ
in terms of available quality information on the estimates.
The geometry fit report of SA presents the estimated param-
eters of the form (e.g. center point and radius of a sphere).
Furthermore the report includes a list of the deviations of
each point to the estimated form and a graphical presentation
of the point distribution. Apart from that, no other parameters
(i.e. standard deviations etc.) are available to assess the
estimated form parameters in terms of quality or accuracy.

A simple stochastic model for some forms is implemented
in LSGE. The points representing circles, spheres and cylin-
ders can be weighted individually. A weighting of single
coordinate values or of points representing lines or planes
is not possible. Furthermore the user can retrieve a three by
three covariance matrix for the center point. The variance of
the radius of circles, spheres and cylinders is also available.
For the normal vector of the circle and the direction vector of
the cylinder, respectively, another three by three covariance
matrix is available. LSGE calculates the deviations of all
points to the estimated form as well.

In the Form Fitting Toolbox of JAG3D the coordinates of
the points can be weighted separately by introducing a fully
populated covariance matrix. The information on the accu-
racy of the estimated form parameters is available through a
fully populated covariance matrix as well. The size of this
matrix corresponds to the number of estimated parameters.
For example, center point, radius, normal vector and distance
to the point of origin of a circle are characterized by an
eight by eight covariance matrix. Besides, the following
information is presented for each point: standard deviation,
redundancy number, estimation of gross error and whether or
not the point is an outlier. This is inferred from two statistic
tests with user defined levels of significance.

Conclusion

Based on the studies from Schwieger et al. (2010) and
Lösler and Bähr (2010) this paper focuses on Spatia-
Analyzer as a tool for net adjustment and form fitting.
In contrast to Lösler and Bähr (2010) a special network
of small size was chosen, to minimize the influence
of earth’s curvature. The group of JAG3D, Gama and
Netz3D provided identical results in the estimated coordi-
nates as well as in the standard deviations. The differences
of up to 0.4 mm of SA to the solution of the above
mentioned group of programs are probably due to the
different mathematical model of SA using concatenated
similarity transformations. The differences of the standard
deviations in SA to the above mentioned group could
not be explained. By introducing the same gross error
free data to all the tested programs, the authors ensured
no observations being excluded. Therefore the different
standard deviations cannot be explained, e.g., by reduced
redundancy. Whether the differences in coordinates are
significant with respect to the standard deviations has
to be verified in further tests. However, a Monte-Carlo
simulation in SA of the uncertainties of the adjusted
network points provided values similar to the standard
deviations of Gama, JAG3D and Netz3D. This leads to
the cautiously optimistic assumption, that the differences
in coordinates are not significant.

In terms of form fitting all the programs included in
the present comparison provided identical results. It could
be verified that all the programs obtain their least squares
solution in a rigorous GHM. However, the programs differ
in the available quality information on the estimated form
parameters. JAG3D offers the widest range of informa-
tion.
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Čepek A (2011) GNU Gama 1.11, Adjustment of geodetic networks.
www.gnu.org

Drixler E (1994) Analyse der Form und Lage von Objekten im Raum.
DGK series C, vol 409. C. H. Beck, Munich

Eschelbach C, Haas R (2003) The IVS-reference point at Onsala—
high end solution for a real 3D-determination. In: Schwegmann W,
Thorandt V (eds) Proceedings of the 16th working meeting on Euro-
pean VLBI for geodesy and astrometry, Leipzig, 9–10 May 2003.
Federal agency for cartography and geodesy, Leipzig/Frankfurt am
Main, pp 109–118

Grontmij Nederland bv (2011) move3 USER MANUAL, Version 4.0
(move3.com)

Illner I (1983) Freie Netze und S-Transformation. AVN 90(5):157–170
Jäger R, Müller T, Saler H, Schwäble R (2005) Klassische und robuste

Ausgleichungsverfahren. Wichmann, Berlin

Lenzmann L, Lenzmann E (2004) Strenge Auswertung des nichtlin-
earen Gauß-Helmert-Modells. AVN, 2/2004. Wichmann, Berlin, pp
68–72

Lösler M, Bähr H (2010) Vergleich der Ergebnisse verschiedener
Netzausgleichungsprogramme. In: Zippelt K (ed) Vernetzt und
Ausgeglichen. Kit Scientific Publishing, Karlsruhe

Neitzel F (2010) Generalization of total least-squares on example of
unweighted and weighted 2D similarity transformation. J Geod
84(12):751–762

Schwieger V, Foppe K, Neuner H (2010) Qualitative Aspekte zu Soft-
warepaketen der Ausgleichungsrechnung. In: Qualitätsmanagement
geodätischer Mess- und Auswerteverfahren. Contributions to the
93rd DVW-seminar. Series of the DVW, vol 61

Späth H (2000a) Ein Verfahren zur Bestimmung des Least-Squares-
Zylinders. AVN, 2/2000. Wichmann, Berlin, pp 65–67

Späth H (2000b) Ausgleich mit einem Kreis im Raum. AVN, 11–12.
Wichmann, Berlin, pp 398–399

Witte B, Schmidt H (2000) Vermessungskunde und Grundlagen der
Statistik für das Bauwesen. Wittwer, Stuttgart

www.gnu.org


Part III

Recursive State-Space Filtering



State-Space Filtering with Respect to Data
Imprecision and Fuzziness

I. Neumann and H. Kutterer

Abstract

State-space filtering is an important task in geodetic science and in practical applications.
The main goal is an optimal combination of prior knowledge about a (non-linear) system
and additional information based on observations of the system state. The widely used
approach in geodesy is the extended Kalman filter (KF), which minimizes the quadratic
error (variance) between the prior knowledge and the observations. The quality of a
predicted or filtered system state is only determinable in a reliable way if all significant
components of the uncertainty budget are considered and propagated appropriately. But in
the nowadays applications, many measurement configurations cannot be optimized to reveal
or even eliminate non-stochastic error components.

Therefore, new methods and algorithms are shown to handle these non-stochastic error
components (imprecision and fuzziness) in state-space filtering. The combined modeling
of random variability and imprecision/fuzziness leads to fuzzy-random variables. In this
approach, the random components are modeled in a stochastic framework and imprecision
and fuzziness are treated with intervals and fuzzy membership functions. One example in
KF is presented which focuses on the determination of a kinematic deformation process in
structural monitoring. The results are compared to the pure stochastic case. As the influence
of imprecision in comparison to random uncertainty can either be significant or less
important during the monitoring process it has to be considered in modeling and analysis.

Keywords

Fuzziness • Fuzzy random variables • Imprecision • Monitoring • State-space filtering •
Uncertainty

1 Introduction

In the nowadays applications, many measurement config-
urations cannot be optimized in order to reveal or even
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eliminate non-stochastic error components. This has mainly
logistic and/or economic reasons. Typical examples are the
monitoring of slide slopes or the measurements of mobile
mapping systems. In both cases, polar measurements, e.g.,
with laserscanners or total stations are carried out which
are not elementary controllable. Another example is the
estimation of a trajectory with IMUs (especially without
GPS) which usually have a systematic but unknown drift in
the measurements. In order to be able to estimate uncertainty
measures and to realize a reliable analysis over time, state
space filtering of the data is carried out.

The main goal of filtering is an optimal combination of
prior knowledge about the (non-linear) system and additional
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information based on observations of the system state. The
quality of a predicted or filtered system state is only deter-
minable in a reliable way if all significant components
of the uncertainty budget are considered and propagated
appropriately. Conventionally, all uncertainty components
are modeled in a stochastic framework using random vari-
ables and stochastic processes. This implicitly assumes that
non-stochastic measurement errors such as, e.g., systematic
errors, are reducible or even eliminable due to changing
measurement setups and/or calibration processes. But often
this is not realistic and the reported uncertainty measures are
too optimistic since the respective imprecision is neglected.
Additionally, discretization errors and insufficient knowl-
edge about the system (fuzziness) play an essential rule in
nowadays applications. Especially in the identification of
kinematic systems, it is not possible to change measurement
setups in order to reveal or even eliminate non-stochastic
error components. For this reason, more general methods and
algorithms are required to consider and propagate impreci-
sion and fuzziness within the uncertainty budget of state-
space filters.

2 Modeling of Imprecision
and Fuzziness

2.1 Sources of Uncertainty

In the classical geodetic data analysis, the uncertainty is
described by stochastics (random variability). Random vari-
ability describes random deviations due to the laws of prob-
ability and can be seen in repeated data samples. It corre-
sponds to the complexity of reality were the future behavior
is uncertain at the moment (Bandemer 2006).

In contrast to that, imprecision is a non-stochastic part
of the uncertainty that can be assigned to the observations,
fuzziness is the non-stochastic uncertainty mainly assigned
to the models (of Geodesy) and the observed object (see
Fig. 1). The relevance of imprecision and fuzziness in the
applications is meaningful due to many reasons which are
described in the following.

For understanding and modeling of imprecision it is
important that the original measurement results are typically
preprocessed before they are introduced in the measurement
equation of a state-space filter. These preprocessing steps
comprise several factors s influencing the observations (see
also Fig. 2):
• Physical parameters for the reduction and correction steps

from the original to the reduced observations.
• Sensor parameters (e.g., remaining error sources that

cannot be modelled).

Fig. 1 Sources of uncertainty within the modeling process

Fig. 2 Interaction between the system and the measurement equation
and their influence factors

• Additional information (e.g., temperature and pressure
measurements for the reduction steps of a distance mea-
surement).
Most of these influence factors are uncertain realisations

of random variables; their imprecision is meaningful by
many reasons:
• The number of additional information (measurements)

may be too small to estimate reliable distributions.
• Displayed measurement results are affected by rounding

errors.
• Other non-stochastic errors of the reduced observations

occur due to neglected correction and reduction steps.
Figure 2 shows the interaction between the system and

measurement equation and their influence factors. While cor-
rection and reduction steps are systematic, the imprecision of
the influence parameters is directly transferred to the reduced
observations, which are now carrier of random variability
and imprecision.
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The fuzziness in the model is, e.g., due to insufficient
knowledge about a priori introduced model constants. This
concerns especially model constants that are only partially
representative for the given situation (e.g., the model con-
stants for the refraction index for distance measurements
in the formula of Barrel and Sears). Additionally, the exact
knowledge about reality is not existent which leads to effects
that cannot be modeled (imperfect models). A strict sepa-
ration between the measurement model and the models in
Geodesy is not possible. Therefore the fuzzy component
of the models in Geodesy does also partially affect the
measurement model (see Fig. 1).

The fuzziness of the object can be explained by the
unknown behavior of the object due to external influence
factors. A typical example is the unknown temperature of
the object during the measurements. This leads to an expan-
sion (e.g. of the steel or concrete) during the measurement
process and also in between different measurement epochs.
A detailed discussion of the here presented extended uncer-
tainty budget can be found in Kutterer (2002) and Neumann
(2009).

2.2 Modeling of Uncertainty

Due to the above mentioned reasons, the quantification of the
uncertainty budget of empirical measurements is often too
optimistic. For this reason, one has to find (exact) enclosures
for the non stochastic part of the influence factors. This
step is based on expert knowledge and on error models
concerning the deterministic behavior of these parameters
(Neumann 2009). The here described procedure leads to so
called fuzzy-random variables (FRV) which are a combina-
tion of probability and fuzzy-theory, see, e.g., Kwakernaak
(1978).

Imprecision and fuzziness can be modeled with the aid
of fuzzy theory (Zadeh 1965). Here, LR-fuzzy intervals
according to Dubois and Prade (1980) are used.

An LR-fuzzy interval is a special case of a one-
dimensional fuzzy set QA which is described by a membership
function m QA .x/:

QA WD ˚�x;m QA .x/
� jx 2 <� with m QA W < ! Œ0; 1� : (1)

The core of a fuzzy set is the classical set of elements of QA
with membership degree equal to 1.

An LR-fuzzy interval is defined as a fuzzy set over< with
a non-empty core. Its membership function is constructed by
monotonously decreasing reference functions L and R (see
Fig. 3). The ˛-cut of a fuzzy-interval QA is defined by:

QA’ WD
˚
x 2 X

ˇ̌
m QA .x/ � ’

�
(2)

Fig. 3 LR-fuzzy interval with linear reference functions

with ˛2(0, 1]. Each ˛-cut represents in case of monotonously
decreasing reference functions a classical interval. The
lower bound QA’;min and upper bound QA’;max of an ˛-cut
are obtained as:

QA’;min D min
� QA’

�
and QA’;max D max

� QA’

�
: (3)

LR-fuzzy intervals can be represented by QX D
.xm; r; cl; cr/LR: The midpoint is denoted by xm, and the
radius of the interval representing the core is r. Together with
the deterministic spreads cl and cr it serves as a measure of
uncertainty. Strategies to construct fuzzy numbers or fuzzy
intervals based on expert knowledge are given in Nguyen and
Kreinovich (1996) and Neumann (2009). In this paper only
symmetric reference functions are used. The main benefit
of this is that the midpoint equals the result of the pure
stochastic case within linear filtering processes.

Random variability is then introduced through the mid-
point of an LR-fuzzy interval which is modeled as a random
variable and hence treated by methods of stochastics. The
combination of random variability and imprecision/fuzziness
in uncertainty modeling leads to the theory of fuzzy-random
variables (FRV, see Fig. 4). FRVs serve as basic quantities;
they are an extension of the classical probability theory. For
this reason, all statistical methods have to be extended to
imprecise data and all statistical quantities are imprecise by
definition.

Here, this yields an LR-fuzzy-random interval QX D
.Xm; Xr; cl; cr/LR with a stochastic midpoint Xm; the under-
line indicates a random variable. Actually, QX is a special

case of a fuzzy-random variable, see also Möller and Beer
(2004). In contrast to the general case only the expectation
value is considered as superposed by imprecision/fuzziness
but not the variance. Without non-stochastic errors the pure
stochastic case is obtained (XrD clD crD 0), see Dubois and
Prade (1980) for examples.

In case of normal distributed values for the random part,
the standard deviation �x is the carrier of the stochastic
uncertainty, and the radius Xr and spreads cl and cr are the
carrier of imprecision. A geometric interpretation of a FRV
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Fig. 4 Construction of a FRV

Fig. 5 FRV for cl D cr D 0 with the variation range of the random
uncertainty component inside the core element

with clD crD 0 is given in Fig. 5. The lower and upper bound
of the core define the variation range (in a deterministic
manner) of the random midpoint.

3 Introduction to State-Space Filtering

3.1 System andMeasurement Equation

In this section, the notation for the filtering process is
introduced. Section 4 then extends the here given equations
to the extended uncertainty budget. The knowledge about the
system is given by the system equation with the state vector
xk 2 <nx , and the time index k.

xkC1 D f .xk;uk;wk/ with

f W xk 2 <nx ; uk 2 <u; wk 2 <w ! xkC1 2 <nx
(4)

where f is a known, in general nonlinear function, uk is a
vector of known (deterministic) input, and wk is the process
noise vector, which is caused by mismodeling effects and
other disturbances in the motion model. The main goal of fil-
tering is to estimate the optimal xk C 1 from the observations
ykC1 2 <ny and xk 2 <nx , with the help of the measurement
equation:

ykC1 D h .xkC1; vkC1/ with

h W xkC1 2 <nx ; vkC1 2 <v ! ykC1 2 <ny
(5)

where h is a known, in general nonlinear function, and vk C 1
is the measurement noise vector, which is assumed to be
independent and uncorrelated with known PDF.

Different algorithms were development in order to find the
optimal solution and to solve the computational problems.
Some of the approaches approximate the nonlinear function
(e.g. extended KF) and other approaches approximate the
distribution of measurements and state (e.g. unscented KF
and sequential Monte Carlo filter). The widely used approach
in the applications is the extended KF. It is used in engineer-
ing geodesy especially in applications such as engineering
navigation and deformation analysis. In order to extend the
KF to imprecision and fuzziness, the basic algorithm is
introduced in the following.

3.2 Extended Kalman Filter

Engineering navigation and deformation analysis requires
a sequential estimation of the system state based on infor-
mation coming from a (dynamic) model of the system and
from external observations. The extended KF minimizes the
quadratic error (variance) between the prior knowledge and
the observations. The algorithm starts with the definition
of the input data vector L and its associated variance–
covariance matrix (VCM) †LL:

L D � xk uk wk ykC1
	T

†LL D

2
664

†xx;k 0 0 0
0 †uu;k 0 0
0 0 †ww;k 0
0 0 0 †yy;kC1

3
775

(6)

with the initial conditions of the state estimates xk, distur-
bances wk for time tk, as well as the vector of measurements
yk C 1 for time tk C 1. The vectors xk, uk and wk are assigned
to the physical model, which represents the theoretical com-
ponent of the filter (system equation) whereas the vector of
measurements yk C 1 represents the experimental component
(measurement equation).

The evaluation continues with the extrapolation of the
system equation (prediction) and the error propagation for
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time tk C 1. The predicted system state xkC1, and its VCM
†xx;kC1 are given by:

xkC1 D ŒTkC1;k BkC1;k CkC1;k�„ ƒ‚ …
DW PkC1;k

2
4 xk

uk
wk

3
5 D PkC1;kx�

k

†xx;kC1 D TkC1;k†xx;kTTkC1;k C : : :
: : :BkC1;k†uu;kBTkC1;k C CkC1;k†ww;kCT

kC1;k;

(7)

with the transition matrix Tk C 1,k, the Jacobi matrix Bk C 1,k,
and the coefficient matrix of disturbing variables Ck C 1,k. The
matrices Tk C 1,k, Bk C 1,k, and Ck C 1,k depend on the physical
model to be observed and must be chosen accordingly.

The optimal estimation of the system state bxkC1 at time
tk C 1 (filtering) in a Gauss–Markov-Model is now based on
the predicted system state xkC1 at time tk C 1, and on the
(indirect) external measurements yk C 1:

bxkC1 D xkC1 CKkC1dkC1;

KkC1 D †xx;kC1AT
kC1

�
†yy;kC1 C AkC1†xx;kC1AT

kC1
��1
:

(8)

With the Kalman gain matrix Kk C 1, and the vector of
innovation dkC1 D ykC1 � h .xkC1/ as well as the design
matrix Ak C 1 which is the Jacobi matrix of the function h
with respect to x. This function models the relation between
the predicted system state and the collected measurements at
time tk C 1. In the linearized case considered here the vector
of innovation dk C 1 is given by dkC1 D ykC1 �AkC1xkC1.

4 Imprecise Filter Extension

4.1 General Case

In this section the filtering process is extended to the above
mentioned non-stochastic uncertainties. Therefore, the equa-
tions and algorithms from Sect. 3 have to be extended to the
FRVs from Sect. 2. The system equation (2) with FRVs yields
to:

QxkC1 D Qf
�Qxk; Quk; Qwk

�
with

Qf W = �<nxCuCw
�! = .<nx / ;

(9)

where =(<) is the FRV-space over the real numbers. The
extension of the measurement equation in the imprecise case
is:

Qy
kC1 D Qh

�QxkC1; QvkC1
�

with

Qh W = �<nxCv
�! = .<ny /

(10)

This mapping is a fuzzy extension of the classical probability
theory and the Eqs. (8) and (9) have to be solved with the
extension principle according to Zadeh (1965). This leads,
e.g. for Eq. (8) to:

QxkC1 WD mQxkC1
.x/

D sup
.xk;1;:::;wj/2<1�����<nxCuCw

xkC1Df .xk;uk;wk/

min
�

mQxk;1

�
xk;1

�
; : : : ;m Qwk;w

.wk;w/
� (11)

This equation is solvable by ˛-cut optimization (Möller
and Beer 2004) which reduces Eq. (11) to its interval exten-
sion if the discussion is based on the ˛-cuts (see, e.g., Viertl
2011):

Qxm;kC1 D f .Qxm;k; Qum;k; Qwm;k/;

QxkC1’;min
D min

x2ŒQx’�; u2ŒQu’�; w2Œ Qw’�
f .Qxk; Quk; Qwk/;

QxkC1’;max
D max

x2ŒQx’�; u2ŒQu’�; w2Œ Qw’�
f .Qxk; Quk; Qwk/;

(12)

and

mQxkC1
.x/ D sup

’2.0;1�
’ � iQxkC1’

.x/

with iQxkC1’
D ŒQxkC1’;min

; QxkC1’;max
�

(13)

The multidimensional mapping of FRVs leads to wrapping
effects and therefore for an overestimation of the true mem-
bership function of the resulting FRVs. A detailed discussion
of this topic can be found in Schön and Kutterer (2005)
as well as in Kutterer and Neumann (2009). For this rea-
son, the general solution of the system and measurement
equation with imprecision and fuzziness is at the moment
not available. In the following, the solution for the KF is
presented.

4.2 KF with Imprecise and Fuzzy Data

The imprecise/fuzzy extension of the extended KF can be
reduced to its interval extension if the discussion is based on
the ˛-cuts, see Eqs. (12) and (13). The interval extension of
the system statebxkC1 at time tk C 1 is obtained by the evalua-
tion of Eq. (8) using the fundamental arithmetic rules of inter-
val mathematics. The formulation of imprecision/fuzziness
is directly referred to the (basic) influence factors s in order
to reduce the overestimation effect which is caused by the
sub-distributivity property of the intervals (intervals are a
special case of fuzzy sets). This is possible if the filter
algorithm is formulated in a non-recursive way. Note that
interval extension is only required for the propagation of
imprecision/fuzziness to the estimated parameters since in
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the present approach the precise midpoint of the estimated
system state equals the result of the pure stochastic case.

In order to avoid this overestimation the recursion can be
resolved as introduced by Neumann and Kutterer (2007). For
this purpose, Eq. (14) is reformulated in full equivalence to
Eq. (8) as a linear mapping of independent quantities which
are not updated within the recursion, i.e. the initial state
vector and all system state measurements up to time tk C 1:

bxkC1 D
�

KkC1 .E�KkC1AkC1/PkC1;kHk

	
2
6664

ykC1
:::

y1bx0

3
7775 ;

(14)

with Hk D
�

Kk .E �KkAk/Pk;k�1Hk�1
	
, and H0DE

the identity matrix. Here, for the respective midpoints the
interval-mathematical evaluation yields:

bxm;kC1 D
�

KkC1 .E �KkC1AkC1/PkC1;kHk

	
2
6664

ym;kC1
:::

ym;1bxm;0

3
7775 ;

(15)

which equals the classical formulation if the actual measure-
ment values are taken as interval midpoints. For a specific
description of imprecision the interval radii of the influ-
ence parameters [s]D [sm � sr, smC sr] are introduced. This
yields:

bxr;kC1 D
ˇ̌�

KkC1 .E �KkC1AkC1/PkC1;kHk

	
MF

ˇ̌
sr
(16)

without specifying the composition of s in detail. With the
matrix of partial derivatives FD @y/@s that describes the
functional relationship between the observations and the
influence factors. The matrix M models the influence of the
measurement method on the propagation process.

The interval vector of the filtered system state estimate
bxkC1 is then composed as:

�bxkC1
	 D �bxm;kC1 �bxr;kC1;bxm;kC1 Cbxr;kC1

	
: (17)

In contrast to Eq. (12), this representation of the parameter

vector is exact component by component. Hence, it is the
tightest interval inclusion of the range of values in the
given parameterization, although it still overestimates the
correct range of values which is a convex polyhedron (a.k.a.
zonotope); see, e.g., Schön and Kutterer (2005) for a detailed
discussion.

In Sect. 5 some exemplarily results of the presented
algorithm of the extended KF are depicted.

5 Example for Imprecise Kalman
Filtering

This numerical example demonstrates an application of the
extended KF in a geodetic deformation analysis for the
monitoring of a lock (see Fig. 6). Due to changing water
levels (from 42 to 65 m) inside the lock, different deforma-
tions of the lock chamber occur. We focus on the periodical
expansion of the lock chamber during the time when ships
are passing through the lock.

Therefore, the 3d-coordinates of different points at the
right position of the lock chamber were observed with a
total station (Leica TPS 1101), measuring horizontal direc-
tions (a), zenith angles (b), and distances (c). The main
influence factors for the imprecision of the measurements
are given in Table 1. Additionally, the imprecision of the
measurement period (time step) must be considered. The
measurements of the temperature and the pressure are only
partially representative for the given situation, because they
are measured at the position of the instrument, only. On this
account, their imprecision is stronger than their uncertainty
determined in terms of standard deviations. Table 2 shows
the theoretical standard deviations (from the manufacturer)
and interval radii of the measurements (for the ˛-cut equal
to zero). Due to the definition of the geodetic reference
system, the expansion of the lock chamber is visible in the y-
coordinate of the point positions. On that account, the numer-
ical examples were mainly reduced to the y-coordinates of
the points. The time series consists of about 300 epochs
observed in periods of 75 s. There are four nearly identical
expansions of the lock chamber during the 300 epochs. For
this reason only the first 120 epochs with two expansions are
shown. The goal is to compute the displacements, velocities
and accelerations of the y-coordinates. The uncertainties
of the y-coordinate are mainly influenced by the direc-
tion measurements and the uncertainties of the x-coordinate
are mainly influenced by the distance measurements (see
Fig. 6).

Figure 7 shows the estimated system states (y-coordinate)
and Fig. 8 the stochastic uncertainty (standard deviations) of
the system state. The characteristic of the implemented KF in
this example is as follows: if the innovation is determined as
significant, the standard deviations of the measurements are
increased. This leads to maximum standard deviations of the
system state in case of strong innovations.

Due to the lack of space, the determination of the sig-
nificance of the innovation with statistical tests in case of
imprecise data cannot be shown; the reader is referred to
Neumann (2009) for the general procedure.
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Fig. 6 The lock Uelzen and the
measurement configuration

Table 1 An assortment of the most important influence factors

Influence
factor

Interval radii
(imprecision
and fuzziness)

Affected
measurements

Temperature 1.0 ıC (c)

Pressure 1.0 hPa (c)

Visual axis error 0.1 mgon (a)

Collimation error 0.1 mgon (a)

Vertical axis error 0.2 mgon (a) and (b)

Time step 3 s (a), (b) and (c)

Table 2 Standard deviations and interval radii of the observations

Measurement
Standard
deviations

Interval
radii

(a) Horizontal
direction

0.7 mgon 0.5 mgon

(b) Zenith angle 0.7 mgon 0.5 mgon

(c) Distance 2.0 mm 1.5 mm

Fig. 7 Y-coordinates of the filtered 3d-point positions and the corre-
sponding water levels

Fig. 8 Standard deviations of the estimated state vector

The fuzziness of the model is mainly due to possible time
delays of the measurements (time step). The importance of
the fuzzy component is strongly regulated by the character-
istic of the deformations. These effects become more and
more important for higher velocities and accelerations (see
Fig. 9). This is due to the proceeding expansion of the lock
during a time delay, which is stronger for high velocities and
accelerations.

Whereas the chosen measurement configuration leads to a
stronger imprecision/fuzziness of the point positions, the first
(velocity) and second (acceleration) derivatives of the pro-
cess (in the y-coordinates) are well determined (see Fig. 9).
This is in full accordance with the theoretical expectations
because the imprecision/fuzziness of the inner geometry
(derivatives) of processes is significantly reduced by observ-
ing only process differences.
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Fig. 9 Imprecision of the estimated state (y-coordinate)

Conclusions

The presented paper shows some ideas for the extension
of state-space filtering to imprecise data and fuzziness.
The consideration of imprecision and fuzziness leads to
an extended uncertainty budget which can be explained
by the nowadays applications, where measurement con-
figurations cannot be optimized in order to reveal or even
eliminate non-stochastic error components. Especially in
the identification of kinematic systems, it is not possible
to change measurement setups in order to reveal or even
eliminate non-stochastic error components.

Whereas random variability can be modeled in terms of
variance–covariance matrices, imprecision and fuzziness
are modeled by fuzzy theory. If imprecision and fuzziness
are absent, the presented approach leads to the same
results than in the stochastic case.

Both, the evaluation of statistical tests in case of
imprecision and fuzziness, e.g., for the determination of
the significance of the innovation, and the application
of the presented approach to adaptive KF techniques are

possible. Further work has to deal with the reduction
of the computational complexity. Therefore the recursive
propagation of imprecision and fuzziness is required. This
is already possible within recursive estimation (Kutterer
and Neumann 2011) and should be extended to the fil-
tering process. Additionally, the treatment of non-linear
functions within the propagation and estimation process is
required in order to handle all of the practical applications.
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Unscented Kalman Filter Algorithm
with Colored Noise and Its Application
in Spacecraft Attitude Estimation

Lifen Sui, Zhongkai Mou, Yu Gan, and Xianyuan Huang

Abstract

The accuracy and reliability of the estimation and prediction of satellite attitude are affected
by not only the random noise and systematic errors, but also the colored noise related to
time. Any theory or technique based on the hypothesis of Gaussian white noise ignoring
the colored noise cannot guarantee the actual reliability of the parameter estimates. On the
basis of Unscented Kalman Filter (UKF), the paper regards colored noise as pseudo white
noise and considers colored noise as ARMA model, calculates its variance by polynomial-
quotient which expresses colored noise model as form of progression. The random model
can be corrected with this method. Then the new UKF is formulated by time series analysis
theory. In order to verify the validity and rationality of this method, a simulated experiment
is showed which validates that the method can restrain effectively the influence of colored
noise for satellite attitude estimation.

Keywords

ARMA model • Attitude estimation • Colored noise • Quaternion • Unscented Kalman
Filter

1 Introduction

The state-space model of satellite attitude determination is
seriously nonlinear model in which the Extended Kalman
Filter algorithm is commonly used in all mature data pro-
cessing methods (Lefferts 1982). However, EKF transforms
the nonlinear problem into a linear problem through series
expansion which introduces the model error because of
ignoring the high order terms. While the initial is not accu-
rate, the filter is divergent easily. So UKF is used in satel-
lite attitude determination (Vandyke 2004; Crassidis 2003).
Compared with EKF, UKF can achieve more than second-
order accuracy. However, they are built on the basis of
Gaussian white noise. In the practical problems of attitude

L. Sui (�) • Z. Mou • Y. Gan • X. Huang
Zhengzhou Institute of Surveying and Mapping, 66th Longhai Middle
Road, Zhengzhou 450052, China
e-mail: suilifen@163.com

determination, the measurement error and kinetic model
error usually do not belong to Gaussian white noise, but to
colored noise which characteristics are unusual or time-space
related. The presence of colored noise seriously influences
the accuracy and reliability of UKF filter. A few filter
methods of controlling colored noise have been proposed to
handle colored observation noise. The classical approach is
to use the group difference of the adjacent observations to
transform the observation equations which can transfer the
observed colored noise into white noise. Then the EKF is
used to solve it (Yang 2006; Xiong 2007).

Unlike the traditional approach, colored noise may be
modeled by ARMA or AR model, and be treated as a virtual
white noise, which is expanded into series expression by
the polynomial long division and get its variance. Then the
filter is built by modern time series analysis method (Huang
2008). The simulation results show that the filtering method
can effectively control the impact of the colored noise on the
results of UKF filtering and improve filtering accuracy and
reliability to some extent.

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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2 Mathematical Model of Satellite
Attitude

2.1 Quaternion in Satellite Attitude

Since 1980s, the quaternion becomes the most widely used
attitude parameter because of its simple kinematical equation
and conversion with the attitude angles. Quaternion is a four-
dimensional vector, defined as

q D


q13
q4

�
D


n sin .�=2/
cos .�=2/

�
(1)

Where q13 D
�
q1 q2 q3

	T
is the vector part of quaternion, n,

� is the rotation axis and rotation angle respectively. It can be
found from the above expression that its four elements meet
the normalized constraints.

And the quaternion attitude matrix is:

A.q/ D �q24 � jq13j 2� I3 � 2q4 Œq13��C 2q13q13T (2)

The kinematical equation of satellite based on the quaternion

(Crassidis 2007) is:

Pq D 1

2

 .!/ q D 1

2
„.q/! (3)

Where ! D �
!1 !2 !3

	T
is the satellite attitude angular

velocity.


.!/ D

� Œ!�� !
� !T 0

�

„.q/ D


q4I3�3 C Œq13��

� qT13

�

Œ!�� D
2
4 0 �!3 !2

!3 0 �!1
� !2 !1 0

3
5 (4)

Assuming a sampling interval
�
tk tk C T

	
, Eq. (3) closed-

form solution can be obtained with fixed ! direction (Zhang
2004):

qkC1 D
 

cos
j‚kj
2
I4�4 � sin ‚k

2

j‚kj


03�3 ‚k

‚T
k

0

�!
qk

Where, ‚k D
Z tkCT

tk

! .�/d� , j‚j �� . When ! remains

unchanged,‚kD!kT.

It is worth noting that quaternion is redundant for rep-
resenting the global attitude, because quaternion represents
three-dimensional attitude through four parameters. So the
four parameters of quaternion must satisfy the normalization
constraint, while the commonly used numerical integration
algorithm cannot guarantee its normalization constraint.

2.2 Nonlinear Model of the Satellite
Attitude

Using quaternion as the attitude parameters, the nonlinear
state equation of satellite attitude is:

Px.t/ D


f1 Œq.t/; !.t/�

f2 Œ!.t/�

�
C


04�3
J�1

�
!.t/ (5)

Where f1 and f2 are kinematical equations and dynamic

equations respectively.

f2 Œw.t/� D J�1
h
T � Ph� Œ!�� .J! C h/

i

Among them, T is the total external torque (including the

control torque, moment of atmospheric drag, solar pressure
torque and the other external disturbance torque), h is the
total angular momentum, J is the inertia matrix.

Assuming �t is the sampling period, when the attitude
angular velocity ! remains constant during [tk, tkCT],
the discrete attitude quaternion propagation equation is
expressed as follows in accordance with Eq. (3) closed-form
solution:

qkC1 D 
.!k/ qk
D



cos .0:5 jj!k jj�t/ I3�3  k
�  T

k
cos .0:5 jj!k jj�t/

�
qk C wk

(6)

Where,  kD sin(0.5jj!kjj�t)!k/jj!kjj, wk is the process

noise introduced in the calculation of angular velocity
through dynamic equation.

Attitude measurement sensors usually used star sensor
because it is not only most accurate in all attitude determi-
nation sensors but also can provide the full range attitude
information (Zhang 2004). For convenience of calculation,
assuming that the star sensor coordinate system coincides
with the star coordinate system, the measurement direction
vectors of two star sensors are represented as unit reference
vectors in the inertial reference coordinate system at the
same time. So the measurement equation provided by star
sensors is:
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yk D h .qk/C vk D


A .qk/ r1
A .qk/ r2

�
C vk (7)

Where, A(q) is attitude matrix, vk is Gaussian white noise.

3 UKF Algorithm

For the nonlinear model, the extended Kalman filtering
(EKF) which ignores high-order terms based on Taylor
series expansion can be a good approximation, but it applied
only to weakly nonlinear model and may also cause filter
divergence when the initial state estimation error is large.
The Unscented Kalman Filter (UKF) is proposed based on
the idea that it is easier to approximate Gaussian distribution
than to approximate nonlinear functions (Pan 2005; Julier
1995; Fredrik 2005). It can achieve more than second order
accuracy based on a set of deterministic sampled Sigma
points to approximate the nonlinear distribution which can
be propagated directly through the nonlinear model and get
the mean and variance of the state vector. Compared to EKF
algorithm, it can give more higher-order nonlinear system
state estimation.

Suppose the state space model of nonlinear system:

bXkC1 D f
�bXk

�
C wk (8a)

Lk D h
�bXk

�
C vk (8b)

Where f (•) and h(•) are nonlinear function, bXk and Lk are
the state estimation and measurement vector respectively in k
moment. wk is the process noise arising from the disturbance
and model error. vk is the measurement noise. w(k) and v(k)
are zero mean and satisfy the following relations.

E
�
w.i/wT .j /

	 D ıijQ.i/; E
�
v.i/vT .j /

	 D ıijR.i/;

E
�
v.i/wT .j /

	 D 0
UKF algorithm is calculated as follows:

(1) Initialization: According to the state mean and covari-
ance, the following equations are obtained

bX .t0/DE
�bX0

�

†X0DE
��
X .t0/�bX0

� �
X .t0/�bX0

�T �

The Sigma points are sampled by the following equation:

�k�1 D
h bXk�1 bXk�1 C �

p
†xk�1

bXk�1 � �
p
†xk�1

i
(9)

Where � D pLC �.

(2) State propagation: The Sigma points are spread
through the state equation,

�kjk�1 D f .�k�1/ (10)

Xk D
2LX
iD0

W m
i �i;kjk�1;

†Xk D
2LX
iD0

W c
i

�
�i;kjk�1 �Xk

� �
�i;kjk�1 � Xk

�T
(11)

(3) Measurement update:

Ykjk�1 D h
�
�kjk�1

�
; Lk D

2LX
iD0

W m
i Yi;kjk�1 (12)

†LkLk D
2LX
iD0

W c
i

�
Yi;kjk�1 � Lk

� �
Yi;kjk�1 �Lk

�TCRk
(13)

†XkLk D
2LX
iD0

W c
i

�
�i;kjk�1 �Xk

� �
Yi;kjk�1 �Lk

�T
(14)

Kxk D †XkLk†�1
LkLk

(15)

bXk D Xk CK
�
Lk � Lk

�

†Xk D †Xk �K†LkLkKT (16)

From the above formula, it can be seen that UKF considers
observation noise as Gaussian white noise with variance R.
But in the practical problem, the noise from the different
time is likely correlated each other, that is the colored noise.
When the observation noise is colored noise, it is necessary to
consider the colored noise as virtual white noise and obtain
the prior distribution information. Then UKF is applied to
solve it.

In addition, although the attitude kinematical equation
based on quaternion is simple and easy to convert with the
attitude angles, the quaternion need to satisfy normalized
constraints. In the prediction process, UKF cannot guarantee
quaternion normalized constraints in the form of weighting.
So this paper uses error quaternion ıqk for UKF filter in
which the satellite attitude is obtained by the expression

(Xiong 2007) bqkC1 D
h
ıbqkC1

T
q
1 � ıbqkC1

T
ıbqkC1

iT ˝
bqk , which cannot only guarantee the quaternion normaliza-
tion constraint but also simplify the quaternion propagation
in the calculation process.
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4 Series Representation of Colored
Noise and Its Variance Calculation

It is necessary for any filter to know the noise prior distribu-
tion. Usually, measurement noise and process noise are seen
as Gaussian white noise which priori statistical properties are
known in order to simplify the calculation and not to affect
the estimation accuracy. However this approach ignores the
correlation of noise between adjacent times which would
greatly affect the estimation accuracy. In order to take into
account the relevance of the adjacent time, the colored noise
model is seen as ARMA or AR model which coefficients will
be expanded into a series form by polynomial long division.
And then its variance is calculated for approximately virtual
white noise.

Assuming that colored measurement noise vk and white
noise k with known statistical properties satisfy the follow-
ing relationship:

C
�
q�1� vk D D

�
q�1� k (17)

The following equation is obtained by deforming (17):

vk D D
�
q�1� =C �q�1� k (18)

Where D(q� 1) and C(q� 1) are the polynomial of unit delay
operators q� 1

C
�
q�1� D 1C C1q�1 C � � � C Cncq�nc

D
�
q�1� D 1CD1q

�1 C � � � CDnd q
�nd

Using polynomial long division to expand the coefficients
D(q� 1)/C(q� 1) of Eq. (18) into series form:

D
�
q�1� =C �q�1� D 1Cf1q�1Cf2q�2C � � �Cfj q�jC � � �

Assuming that the expression of C(q� 1), D(q� 1) is known
and the order nf is determined. Based on kq

�1 D
k�1; � � � ; kq�nf D k�nf , the Eq. (18) can be expressed as
follows:

vk D k C f1k�1 C � � � C fnf k�nf

The coefficients f1; � � � ; fnf can be obtained based on the
last equation. According to knowledge of mathematical
statistics, k; k�1; : : : ; k�nf are independent and identically
distributed under nf << t. Therefore, the colored noise
variance can be obtained by variance propagation law.

†v D
�
1C f 2

1 C � � � C f 2
nf

�
†

Therefore, for a single epoch, the colored state noise vk can
be seen as the virtual white noise with zero mean and †v

variance.

5 Test Computation and Analysis

The Eqs. (5) and (7) are state equation and observation
equation of satellite attitude. In order to analyze the impact
of color observation noise on the attitude estimation, we
suppose observation noise as colored noise which belongs
to AR model. Its expression is:

vk D 0:8vk�1 C k

The simulation parameters of satellite attitude estimation are

as follows:Two reference vectors: r1 D
�
1 0 0

	T
, r2 D�

0 1 0
	T

Initialization of quaternion:

q.0/ Dbq.0/
D �1=p3 sin .5ı/ 1=

p
3 sin .5ı/ 1=

p
3 sin .5ı/ cos .5ı/

	T

Initialization of angle velocity:

!.0/ D bw.0/ D �0 0 0 	T �ı=s�

Initial error covariance:

P0 D diag
�
10�6 � I3�3; 10�12 � I3�3

�

The inertia matrix is selected according to (Pisiaki 1990):

J D
2
4 198918 �210 �1821� 210 265365 55

� 1821 55 67406

3
5 ı

To analyze the impact of colored measurement noise on

satellite attitude estimation and to verify the effectiveness
of treatment method of colored noise, the paper uses the
following three programs to estimate attitude and compares
the results of each program with the true value.

Scenario 1: observation noise is white noise with mean 0 and
variance R, UKF is used;

Scenario 2: observation noise is colored noise, but the paper
still consider the observation noise as white noise with
mean 0 and variance R, UKF is used;

Scenario 3: observation noise is colored noise, the paper
considers it as virtual white noise based on AR model
which coefficients are known and obtain its variance using
polynomial long division. UKF is used.
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Fig. 1 Scenario 1
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Fig. 2 Scenario 2

Fig. 3 Scenario 3

The results are shown from Figs. 1 to 3. Figure 1 is
UKF error figure when the observation noise is white noise.
Figure 2 is error figure when the observation noise is colored
noise. Figure 3 is UKF error figure when the colored noise is
treated.

The following conclusions can be gotten from the above
results: when the observation noise contains colored noise,
the convergence becomes slow, and the estimation error
increases significantly under colored noise due to the pres-
ence of colored noise which makes the correlation between
states more complex. However, the filtering process has

ignored the correlations and affected the filtering accuracy.
It can be seen from Fig. 3 that the use of polynomial long
division can be good for the suppression of the influence of
colored noise.

Concluding Remarks

The colored noise greatly influenced the accuracy of
the nonlinear Filtering. However UKF algorithm cannot
effectively suppress the impact of colored observation
noise on the filter estimation accuracy. Under the con-
ditions of the new technology, the colored noise can be
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seen as a virtual white noise and its prior information
can be obtained by the series expansion method. Next,
UKF is used to determinate satellite attitude with colored
noise, which can reduce the influence of colored noise to
attitude estimation to some extent. It should also be noted
that the colored noise is considered as the AR model with
known model coefficients. So the further research is that
how to establish different models based on the different
characteristics of colored noise.
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Principles and Comparisons of Various
Adaptively Robust Filters with Applications
in Geodetic Positioning

Yuanxi Yang, Tianhe Xu, and Junyi Xu

Abstract

The quality of kinematic positioning and navigation depends on the quality of the kinematic
model describing the vehicle movements and the reliability of the measurements. A series of
adaptive Kalman filters have been studied in recent years. The main principles of four kinds
of adaptive filters are summarized, i.e. fading Kalman filter, adaptive Sage windowing filter,
robust filter and adaptively robust filter. Some of the developed equivalent weight functions
and the adaptive factors including the fading factors are also introduced. Some applications
are mentioned.

Keywords

Adaptive filter • Functional model error • Kalman filter • Navigation • Robust estimation

1 Introduction

The adaptive Kalman filtering can be classified into two
families, functional model adaptation and stochastic model
adaptation. For functional model adaptation, the multiple
model based adaptive estimation (MMAE) studied in some
references (Mohamed and Schwarz 1999; Moore and Wang
2001) has been analyzed. It has been pointed out by Yang
(1999) that the functional model adaptation cannot actually
adapt the complicated kinematic model errors.

For stochastic model adaptation, an adaptive Sage
windowing filter makes the covariance matrices of the
observation vectors and the model predicted state errors
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China
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T. Xu
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China
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adapted to the observation information (Mohamed and
Schwarz 1999), this kind of adaptive filter uses the residuals
from the previous m epochs to compute the covariance
matrices of the observation vectors and the state errors to
replace those at present epoch. It is hard to precisely describe
the online physical reality or measurement reality by the
windowing residual information (Yang et al. 2001a, b).

Other kinds of stochastic model adaptation methods
called the robust M–LS, LS–M and M–M filters (Yang 1991)
were developed for controlling the outlier influences on the
kinematic state estimates (Yang 1997). Furthermore, Koch
and Yang (1998) derived the robust Kalman filter for the rank
deficient observational model. These robust Kalman filters,
which adapt the weights or variance-covariance elements of
measurements to their actual errors, belong to the adaptive
filter.

A new adaptively robust filter was set up in 2001 for con-
trolling the influences of both the stochastically kinematic
model errors and the measurement outliers on the kinematic
state estimates (Yang et al. 2001a). After that several adaptive
factors have been developed (Yang et al. 2001a, b, 2004).
Three kinds of learning statistics for judging the kinematic
model errors have been set up, (Xu and Yang 2000; Yang and
Gao 2004; Yang et al. 2001a, b) An optimal adaptive Kalman
filtering was also given (Yang and Gao 2006).

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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An adaptive filter with multiple adaptive factors has been
studied (Ou et al. 2004; Ren et al. 2005), it was valid when
the state parameters belong to different groups with different
characteristics. Furthermore, the adaptive Kalman filters with
classified adaptive factors and multiple adaptive factors have
been studied (Cui and Yang 2006; Yang and Cui 2008).

In order to illustrate the progress of the adaptive filtering
we start from the principle of standard Kalman filter.

Let the linear dynamic system be given by

Xk D ˆk;k�1Xk�1 CWk (1)

where Xk denotes u� 1 state vector at epoch tk, ˆk,k � 1 the
u� u transition matrix, and Wk the state noise vector.

At epoch tk, the observation model reads

Lk D AkXk C�k (2)

where Lk represents nk � 1 observation vector, Ak the nk � u
design matrix, and �k the observational noise vector. Let
the covariance matrices of Wk and �k be taken as †Wk

and †k respectively, and Wk, Wj, �k and �j be mutually
uncorrelated. The predicted state vector is denoted as

Xk D ˆk;k�1bXk�1 (3)

†Xk
D ˆk;k�1†bXk�1

ˆT
k;k�1 C†Wk (4)

The error equation is

Vk D Ak
bXk � Lk (5)

VXk
D bXk � Xk (6)

where Vk and VXk
are the residual vectors of Lk and Xk

respectively,bXk is the estimated state vector. It is well known
that the standard Kalman filter is based on the following loss
function

� .k/ D VT
k †�1

k Vk C VT

Xk
†�1
Xk

VXk
D min (7)

By derivation we can easily get the estimator of the standard
Kalman filter.

2 Principle of Adaptive Filtering

In order to analyze the characteristics of various adaptive
filters we need not only to have their estimators but also to
know their principles and their corresponding loss functions.

2.1 Principle of Fading Kalman Filter

Fading Kalman filter aims at forgetting the previous state
information, and weakening its contribution in the present
estimates of the state vector. The loss function is like

� .k/ D VT
k †�1

k Vk C 1
œk

VTbXk�1

†�1bXk�1

VbXk�1
CbwT

k †�1
wk
bwk

D min
(8)

where �k (�k� 1) is a fading factor (Xia et al. 1990), VbXk�1

and bwk are the residual vectors of bXk�1 and the model error
vector respectively.

2.2 Principle of SageWindowing Filter

Sage windowing filter are divided into two types, i.e. IAE
(Innovation-based adaptive estimation), and RAE (Residual-
based adaptive estimation). These two adaptively windowing
estimations can be seen in many literatures (Mohamed and
Schwarz 1999; Yang et al. 2001a; Yang and Xu 2003). The
loss function of the Sage filter can be deduced as

� .k/ D VT
k
b†�1
k Vk C VTbXk�1

†�1bXk�1

VbXk�1
CbwT

k
b†�1

wk
bwk

D min
(9)

where b†k and b†Wk
are evaluated by windowing method.

2.3 Principle of Robust Filter

In order to control the influence of measurement outlier on
the kinematic state estimates, a robust filter principle is set
up (Yang 1991, 1997). A loss function of M–LS filter is like

� .k/ D
nkX
iD1

Pki �
�
Vk i

�C VT

Xk
†�1
Xk

VXk

D min

(10)

where � is a continuous and convex function (Yang 1991).

This kind of robust filter uses robust maximum (M) likeli-
hood principle on measurement vector and uses least squares
(LS) principle on the predicted state vector. It is why the
method is named M–LS. There are two other kinds of
robust filters which are called LS–M filter and M–M filter
respectively (Yang 1991, 1997).
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2.4 Adaptively Robust Filter

In order to robustly adjust the contribution of the measure-
ments and the kinematic model information, a new adap-
tively robust filter motivated by robust estimation principle
is developed (Yang et al. 2001a, b). The loss function is as
follows

� .k/ D
nkX
iD1

Pki �
�
Vk i

�C ˛kVT

Xk
†�1
Xk

VXk

D min

(11)

where ˛k (0 � ˛k � 1) is an adaptive factor which balances
the contributions of the measurements and the predicted state
vector at tk. The first part of (11) is robust loss function and
the second part is an adaptive loss function.

3 Design of the Adaptive Factors

The key problem of the adaptive filters is to design the
adaptive factors. A reasonable adaptive factor should reflect
the measurement errors and/or the kinematic model errors.

3.1 Fading Factors

There are many fading factors in applications. Following are
the two factors (Xia et al. 1990)

�k D max

�
1;
1

n
tr
�
NkM�1

k

��
(12)

where tr[�] denotes the trace of a matrix, Mk and Nk are
expressed as

Mk D Akˆk;k�1†bXk�1
ˆT
k;k�1AT

k (13)

Nk D †V k
�Ak†WkAT

k �†k (14)

where †V k
is the covariance matrix of the predicted residual

vector Vk, with

Vk D AkXk � Lk (15)

3.2 Robust Weight Element

In robust filter, the robust equivalent weight elements may
determined by following weight function (Yang 1999; Yang
et al. 1999)

pi D

8̂̂
<
ˆ̂:

pi jV i =� vi j � c0

pi

c0� vijV i j

�
c1�jV i =� vi j

c1�c0

�2

c0 < jV i =� vi j � c1

0 jV i =� vi j > c1

(16)

where c0 and c1 are two constants, which are usually chosen
as 1.0–1.5 and 3.0–4.5 respectively (Yang 1999).

3.3 Adaptive Factors

We have set up several adaptive factors for the adaptive
filtering. A three segment function is like (Yang et al.
2001a, b)

˛k D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1
ˇ̌
ˇ� QXk

ˇ̌
ˇ � c0

c0j� QXkj
�

c1�j� QXkj
c1�c0

�2

c0 <
ˇ̌
ˇ� QXk

ˇ̌
ˇ � c1

0
ˇ̌
ˇ� QXk

ˇ̌
ˇ > c1

(17)

where

� QXk D
 QXk �Xk

 =
q

tr
�
†Xk

�
(18)

and QXk is the robust estimated state vector only by measure-
ments at epoch tk, c0 and c1 are two constants, which are
usually chosen as 1.0–1.5 and 3.0–4.5 respectively.

Three learning statistics and three kinds of adaptive fac-
tors have been constructed (Yang et al. 2001a, b; Yang and
Gao 2004).

4 Computations and Comparisons

A set of kinematic GPS observation data using two Trimble
receivers is used in the computation. A rover receiver is
mounted in an aircraft, and a reference receiver is fixed at a
site about 1 km from the initial aircraft location. The aircraft
takes off for a flight time of about 90 min. The measurements
used are C/A code and L1 and L2 carrier phases.

In order to analyze the influences of the vehicle distur-
bances on various Kalman filtering results, the highly precise
results from double-differenced carrier phase measurements
are used as reference values to compare with the results
from the code measurements. The constant velocity model is
employed in all the filters. The initial variances for position,
velocity and C/A code measurements are selected as 0.2 m2,
0.001 m2 s�2 and 1 m2, respectively. The spectral density
for velocities is chosen to be 0.01 m2 s�3. The dynamic
model covariance matrix is the same as that in Yang et al.
(2001a, b).
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Fig. 1 Standard Kalman filtering
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Fig. 2 Robust LS–M Kalman filtering
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Fig. 3 Adaptive Sage filtering

The following five schemes are adopted:
(1) Scheme 1: standard Kalman filtering;
(2) Scheme 2: robust LS–M Kalman filtering;
(3) Scheme 3: adaptive Sage filtering;
(4) Scheme 4: fading filtering;
(5) Scheme 5: adaptively robust filtering.

The position differences for the X component between the
results from the five computation schemes and the reference
values are shown in Figs. 1, 2, 3, 4 and 5. The RMSs for X,
Y and Z components are given in Table 1.

From the computed results and comparisons, the follow-
ing facts can be stated.
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Fig. 4 Fading filtering
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Fig. 5 Adaptively robust filtering

Table 1 The RMSs for X, Y and Z components

Scheme X/m Y/m Z/m

1 1.246 1.481 1.562

2 0.664 0.440 1.015

3 0.721 0.522 1.053

4 0.640 0.646 0.895

5 0.611 0.431 0.870

(1) From Fig. 1, we can see that the two disturbances in
the flight have serious effects on the standard Kalman
filtering.

(2) Figure 2 shows that the robust LS–M Kalman filter is
robust in controlling the influences of kinematic dis-
turbing, whose results are remarkably superior to the
standard Kalman filtering.

(3) Sage adaptive filter is better than the standard Kalman
filter, to some extent, in controlling the influences of
the dynamic model errors (see Fig. 3). However, Sage
adaptive filter, requires the historical information and the
width of moving windows is uncertain.

(4) Fading filter can control the influence of dynamic distur-
bances to some extent, and its results are equivalent to
those of robust LS–M filter or Sage adaptive filter (see
Fig. 5). One disadvantage of the fading filter is that the
formula of fading factor is too complex.
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(5) Figure 5 and Table 1 illustrate that the adaptively robust
filtering can realize a real adaptation. Its results are
obviously superior to other filterings, especially in the
notable sudden changes of the flight. It can not only
flexibly control the influences of the kinematic model
disturbances but also resist the influences of the measure-
ment outliers.

Concluding Remarks

The main principle of four kinds of adaptive filters as
well as their advantage and disadvantages are summarized
elaborately. The adaptive factors play significant roles in
adaptive Kalman filter, thus the design of adaptive factor
was also discussed. From the application of those adaptive
filters, it is shown that the adaptively robust filter cannot
only resist the influences of the measurement outliers,
but also effectively control the influences of the state
disturbances. So we recommend the adaptively robust
filter be used in application.

Acknowledgments The project is sponsored by Natural Science Foun-
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Alternative Nonlinear Filtering Techniques
in Geodesy for Dual State and Adaptive
Parameter Estimation

H. Alkhatib

Abstract

In many fields of geodesy applications, state and parameter estimation are of major
importance within modeling of on-line processes. The fundamental block of such processes
is a filter for recursive estimation. Kalman Filter is the well known filter, a simple and
efficient algorithm, as an optimal recursive Bayesian estimator for a somewhat restricted
class of linear Gaussian problems. However, in the case that state and/or measurement
functions are highly non-linear and the density function of process and/or measurement
noise are non-Gaussian, classical filters do not yield satisfying estimates. So it is necessary
to adopt alternative filtering techniques in order to provide almost optimal results. A number
of such filtering techniques will be reviewed in this contribution, but the main focus lays on
the sequential Monte Carlo (SMC) estimation. The SMC filter (well known as particle filter)
allows to reach this goal numerically, and works properly with nonlinear, non-Gaussian state
estimation. The main idea behind the SMC filter is to approximate the posterior PDF by a
set of random particles, which can be generated from a known PDF. These particles are
propagated through the nonlinear dynamic model. They are then weighted according to the
likelihood of the observations. By means of the particles the true mean and the covariance of
the state vector are estimated. However, the computational cost of particle filters has often
been considered as their main disadvantage. This occur due to the large, sufficient number of
particles to be drawn. Therefore a more efficient approach will be presented, which is based
on the combination of SMC filter and the Kalman Filter. The efficiency of the developed
filters will be demonstrated through application to a method for direct georeferencing tasks
for a multi-sensor system (MSS).

Keywords

Nonlinear filtering in state space • Kalman filter • Bayesian filter • Sequential Monte Carlo
filter • Multi-sensor system

1 Introduction

The Kalman filtering technique is used in geodesy especially
in applications such as engineering navigation and deforma-
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Geodetic Institute Leibniz Universität Hannover, Nienburger Str. 1,
30167 Hannover, Germany
e-mail: alkhatib@gih.uni-hannover.de

tion analysis. Both kinds of application require a sequential
estimation of the system state based on information coming
from a (dynamic) model of the system and from external
observations. Over the years refined models were introduced
for the system description (i.e., the trajectory of a vehicle),
and a great variety of sensors was used to observe the system
state. This yielded often nonlinearities in the equations of
the Kalman filter. In the field of engineering navigation for
example, Aussems (1999) describes the vehicle’s trajectory
by a refined model of consecutive arcs. In this model the
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vehicle coordinates are nonlinearly related to other state
parameters like the angular velocity in the horizontal plane,
the pitch angle or the tangential component of the linear
velocity. Another approach that may lead to nonlinear state
equations is the adaptive enhancement of the Kalman filter.
For the estimation of the thermal diffusivity of an aluminum
column Eichhorn (2008) introduces this physical param-
eter into the state vector. Thus, the initially linear state
equations become nonlinear at the order of reciprocal expo-
nentials. A majority of the performed observations of the
system are nonlinearly related to its state parameters; refer to
Sternberg (2000) for a disquisition on observation equations
in engineering navigation. Non-linearities can occur directly
due to the nature of the relation between measurements
like distances or angles and point coordinates or due to the
transformation of the observations in a different coordinate
system as is often the case in navigation applications. Hence
over the years a multitude of approximate nonlinear filters
has been proposed, see e.g. Bar-Shalom et al. (2001), and
Simon (2006). These methods can be loosely grouped into
the following two main categories:
• Gaussian approximate methods: A well known analyt-

ical approximation to handle a nonlinear system is to
linearize the measurement and the system equations using
Taylor series expansions; see Gelb (1974). However, as
pointed out in Doucet et al. (2001) this type of nonlinear
filter which includes the first-order and the higher-order
extended Kalman filter (EKF), is tended to diverge if the
system equations are highly nonlinear. Another method
to overcome the linearization process is the Unscented
Kalman filter (UKF). The UKF has been introduced in
Julier and Uhlmann (1997) and approximates the first and
the second moment of the posterior PDF rather than to
approximate nonlinear functions.

• Sequential Monte-Carlo methods: The SMC filter (also
known as particle filter) is a suboptimal filter for imple-
menting the recursive Bayesian filter by Monte Carlo
(MC) techniques, see e.g. Doucet et al. (2001) and Ristic
et al. (2004). The main idea behind the SMC filter is
to approximate the posterior PDF by a set of random
samples, which can be generated from a known PDF.
These generated particles are propagated through the
dynamic model. They are then weighted according to the
likelihood of the observations. In a resampling step, the
new weighted particles are drawn with a probability pro-
portional to the likelihood of the observation. By means of
the drawn particle the true mean and the covariance of the
state vector are estimated. If we assume that the number
of drawn particles is very large, the MC approximation
becomes an equivalent representation to the functional
description of the posterior PDF.
In this paper nonlinear filtering approaches are consid-

ered. We focus only on the second category, namely the

SMC filter. The problem of high computational cost due to
the large required number of particles has been solved in
Alkhatib et al. (2012). The approach that has been proposed
in Alkhatib et al. (2012) to overcome the computational effort
and improve the performance of the filtering process was
to combine the SMC filter with one of the filter from the
Gaussian approximate methods such as EKF. In this paper,
an extension of the aforementioned algorithm [proposed
in Alkhatib et al. (2012)] to the estimation of state and
static or minimal time-varying unknown model parameters
(adaptive parameters) is introduced. The estimation of both
the dynamic state and the static parameters is commonly
known as the dual estimation. Numerous papers have been
dealt with the developing of estimation algorithms based on
SMC methods, refer, e. g., to Storvic (2002), which con-
sidered models with sufficient statistics for the parameters
and applied particle filters to an augmented vector of states
and sufficient statistics. The used strategy here is based on
Storvic (2002) by adding random walk to the parameters, and
then expand the state space with the extended parameters for
the dual estimation.

The paper is organized as follows. Section 2.1 describes
the mathematical model of the system which includes both
the system dynamics and the measurement model. Sec-
tion 2.2 briefly introduces the EKF and the UKF. The SMC
filter is presented in Sect. 2.3. Two numerical simulations
are demonstrated in Sect. 3. Finally, section “Conclusion”
summarizes the results and gives an outlook for future work.

2 Nonlinear State Estimation

2.1 The Probabilistic Inference

Probabilistic inference is the problem of estimating states or
parameters of a system in an optimal and consistent approach
(using probability theory) given noisy observations. This
general framework is shown in Fig. 1. In particular, we
will be addressing the sequential (recursive) probabilistic
inference problem within discrete-time nonlinear dynamic
systems that can be described by a dynamic state-space
model (DSSM). The hidden system state xk , with initial
probability density p.x0/, evolves over time (k is the discrete
time index) as an indirect or partially observed first order
Markov process according to the conditional probability
density p.xkjxk�1/. The observations yk are conditionally
independent given the state and are generated according to
the conditional probability density p.ykjxk/.

The DSSM can also be written as a set of nonlinear system
equations

xk D f .xk�1;uk�1;wk�1/ (1)

yk D h .xk; vk/ (2)
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Fig. 1 Graphical model of a probabilistic dynamic state-space model

where vk is the process noise that drives the dynamic system
through the nonlinear state transition function f , and nk is
the observation or measurement noise corrupting the obser-
vation of the state through the nonlinear observation function
h. The state transition density p.xkjxk�1/ is fully specified
by f and the process noise distribution p.vk/, whereas h
and the observation noise distribution p.vk/ fully specify the
observation likelihood p.ykjxk/ . The exogenous input to the
system, uk, is assumed known.

2.2 The Bayes Filter

From a Bayesian perspective, the filtering problem is to
estimate the state xkC1 recursively given the data y1WkC1 up to
time kC 1. Thus, it is required to evaluate the joint posterior
PDF given the hole data. That is:

p.xkC1j y1WkC1/ D p.ykC1j xkC1/ � p.xkC1j y1Wk/
p.ykC1j y1Wk/ (3)

where the posterior PDF at time k, p.xkj y1Wk/, is first
projected forward in time in order to calculate the prior PDF
at time kC 1. This is done by using the probabilistic process
model (cf. Simon 2006, pp. 464):

p.xkC1j y1Wk/ D
Z
p.xkC1j xk/ � p.xkj y1Wk/dxk: (4)

The probabilistic model of the state evolutionp.xkC1j xk/
is defined by the system described in Eq. (1) and the known
PDF of the noise vector wk . The term p.ykC1j y1Wk/ in Eq. (3)
is a normalizing factor.

2.3 The Extended Kalman Particle Filter

On approach that has been proposed for improving particle
filtering is described in Alkhatib et al. (2012) which combine
the generic particle filter with the extended Kalman filter. In
this approach each particle is updated ate the measurement

time using the EKF, and the resampling is performed using
the measurement equation. The main goal in this approach
was the improving the numerical efficiency of the SMC filter.

The main drawback of the SMC filter is its computational
cost which leads to increasing the sufficient number of
particles to approximate the statistical moments of the state
parameter and the adaptive parameter as well. In Ristic et al.
(2004) and Simon (2006), several implementation issues
are considered for improving the PF algorithm, including
degeneracy, the selection of the importance density, and
particle filters with an improved sample diversity. Due to the
lack of space we discuss here only the developed approach
for enhancement of convergence based on combination with
the well known Kalman filter such as the extended Kalman
filter (EKF). The novelty of the proposed EKPF algorithm
was the update of each particle at every time step k using the
EKF, when a new measurement yk arrives. In other words,
we are running an extra EKF step for every particle i :

P�
kC1;i D Fk;iPC

k;iF
T
k;i CQk (5)

KkC1;i D P�
kC1;iHT

kC1;i
�
HkC1;iP�

kC1;iHT
kC1;i C RkC1

��1
xC
kC1;i D x�

0;i CKkC1;i
�
ykC1 � h.x�

kC1;i /
	

PC
kC1;i D .I �KkC1;iHkC1;i /P�

kC1;i :

KkC1 represents the Kalman gain of the i-th particle, and
PkC1;i is the appropriate estimation of the state covariance
matrix. We distinguish in Eq. (5) between the a priori P�

kC1;i
and the a posteriori PC

kC1;i . The transition and design matri-
ces Ak and Hk in Eq. (5) are defined as:

Ak D @f

@x
jxDxC

k
and Hk D @h

@x
jxDx�

k
; (6)

respectively. The key idea behind this approach is the sub-
stitution of the possibly non-linear model given by Eq. (1)
with a linearized model to reduce the variance of the drawn
particles in order to get short computing times without
increasing the number of samples.

The generated prior particles x�
k;i would be transformed

to a new set of particles xC
k;i using the EKF step given by

Eq. (5). Based on the transformed particles xC
k;i and their

covariance matrix PC
kC1;i we generate and propagate a new

set of particles using the Gaussian importance PDF:

xkC1;i � p.xikC1jxik; ykC1/ � N .xC
kC1;i ;P

C
kC1;i /: (7)

where the symbol � in Eq. (7) means that the particles are
generated from a specific PDF (in this case the Gaussian
PDF). The remaining computational steps of the EKPF are
similar to the generic PF, see Alkhatib et al. (2012).
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2.4 Combined Parameter and State
Estimation in EKPF Algorithm

The algorithm in Sect. 3.2 has to be developed in order to
estimate the static unknown parameters. The maximum like-
lihood parameter estimation should be then performed based
on PF and an effective stochastic approximation gradient
algorithm is used to optimize cost function. The estimation
of static parameters and dynamic state variables is performed
simultaneously. The algorithm shown in this paper is adapted
from Yang et al. (2008).

The state-space model should be extended by the static
parameters # :

xk � p .xkjxk�1;#/ (8)

yk � p .ykjxk;#/ (9)

The static parameter # 2 R
m with m dimensional unknown

static parameters vector. The method introduced here focuses
rather on the estimation of # directly by the maximum like-
lihood method. In other words, the dynamic state parameters
are be estimated by the SMC filter and static parameters are
estimated by recursive ML method online.

The cost function to estimate the likelihood is given by:

f .#/ Dp .ykjy0Wk�1;#/ (10)Z
p .ykjxk;#/ p .xkjy0Wk�1;#/ dxk:

A closed-form of the integral given in (10) expect for only
fey special cases is impossible. Numerical methods will be
approximate the optimal solution. In every filter step, the cost
function will be maximized. The problem here is to find the
zeros of the gradient rf .#/:

#k D #k�1 C �k Orf .#k�1/: (11)

In (11) Orf .#k�1/ denotes the estimated value of the
gradient in the point #k�1 and �k denotes a sequence of
decreasing step size. After a sufficient number of iterations,
the true value of #k will be estimated. The gradient estimate
in (11) is obtained by numerical approximation, for more
details see Yang et al. (2008).

3 Numerical Applications

We compare in this section the performance of the different
nonlinear filter techniques presented in Sect. 2 by two numer-
ical experiments. The first one is a simple target tracking
problem, which is typically arises in navigation, and the
second is to derive position and orientation parameters for the

transformation of a local sensor-defined coordinate system to
a global coordinate system.

3.1 Tracking of a Nonlinear Trajectory

In this scenario we track a vehicle moving along a
highly nonlinear trajectory. Consider a base state vector
x D Œxk yk Pxk Pyk�, where xk and yk specify the position of
the vehicle; and Pxk and Pyk are the velocities in the Cartesian
plane. The system is given by a linear kinematic model and
a nonlinear measurement model.

Dynamic system: The dynamic system (cf. Eq. 1) of the
vehicle can be modeled with a discretized Wiener velocity
model, cf. Bar-Shalom et al. (2001) and Särkkä (2006):

xkC1 D

2
664
xkC1
ykC1
PxkC1
PykC1

3
775 D

2
664
1 0 �t 0

0 1 0 �t

0 0 1 0

0 0 0 1

3
775 (12)

˙ wkwk D

2
6664

�t3

3
0 �t2

2
0

0 �t3

3
0 �t2

2
�t2

2
0 �t 0

0 �t2

2
0 �t

3
7775 � q; (13)

where wk is Gaussian with E.wk/ D 0 and q D
0:1Œm2=sec3� fixes the spectral density of the noise.

Measurement model: We assume that two sensors provide
measurements of distance si and horizontal angle #i to the
moving vehicle with a time discretization step of �t D
0:01 sec:

si;kC1 D
q
.xkC1 � Xi

0/
2 C .ykC1 � Y i0 /2 (14)

#i;kC1 D arctan

�
ykC1 � Y i0
xkC1 �Xi

0

�
(15)

whereXi
0; Y

i
0 are the locations of the sensors with i 2 f1; 2g.

The noise vector vk � N .0;˙ vv/ is characterized by
˙ vv D diagŒ�2s1 �

2
#1
�2s2 �

2
#2
�.

Figure 2 shows the final tracking results for three different
filtering techniques compared to the real trajectory. The prior
standard deviation of the measurements given by �si D
0:05Œm� for distances and �#i D 0:01Œrad� for angles. As
we can see in Fig. 2 all filtering methods for such optimal
measurement accuracies give almost identical estimates of
the system states. However, Low Cost sensors have become
prevalent in geodetic applications in the last years. Therefore
high variances of the measurements have to be taken into
account in the analysis process. If a more rigorous analysis of
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Fig. 2 Nonlinear filtering results of nonlinear trajectory

the measurements of low-cost sensors can be carried out, the
acquisition costs of a sensor system can be decreased. From
a theoretical point of view, the higher the variances the more
important is a very good approximation of the nonlinear
function (EKF) or of the PDF of the system (PF, EKPF). One
would expect that in cases of very high variances the EKPF
produces significantly more accurate results of the estimated
system states. For this reason, the variances in this simulation
study are increased by a factor of four. The RMSE values for
all 500 runs are shown in Fig. 3. It is clearly noticeable that
nearly all runs of the PF have a smaller RMSE in comparison
to the EKF and UKF.

Naturally, a more realistic dynamic model may reduce
the mismodelling effects due to approximation errors of the
function or the PDF, but this is not in the scope of the study.

3.2 Tracking of a Nonlinear Trajectory

In this section an application of the algorithm presented in
Sect. 2 is shown and the results are discussed. The main
goal of the numerical investigation is to derive position
and orientation parameters for the transformation of a local
sensor-defined coordinate system to a global coordinate sys-
tem. This is a typical task within the direct georeferencing
procedure of static terrestrial laser scans. For this purpose,
an adapted sensor-driven method based on a multi-sensor
system (MSS) has been developed at the Geodetic Institute
of the Leibniz Universität Hannover (GIH). The MSS is
established by a sensor fusion of a phase-based terrestrial
laser scanner (TLS) and additional navigation sensors to
observe the parameters.

The above mentioned transformation parameters include
the position of the MSS, which is equal to the translation

vector and a rotation matrix, which contains the orientation
of the three axes of the MSS—roll, pitch and yaw angle
known from aeronautics. The MSS as well as the mathe-
matical modeling in form of a Kalman filtering approach are
presented in details in Paffenholz et al. (2010).

This approach uses the constant rotation of the TLS
about its vertical axis with combination of kinematic GNSS
measurements to estimate 4 of the 6ı of freedom of the
transformation—the position vector as well as the orientation
in the horizontal plane. Therefore one GNSS antenna is
mounted eccentrically on the TLS. In order to optimize the
direct georeferencing strategy the MSS is enhanced with
additional navigation sensors—inclinometers—to estimate
the residual spatial rotation angles about the x- and y-axis
of the TLS.

In this MSS application the trajectory can be described
by a circle in 3D space. This parameterization is due to the
orbital motion of the antenna reference point (ARP) caused
by the constant rotation of the TLS about its vertical axis,
as already mentioned. The orientation change of the ARP
within two time steps is given by the circular arc segment
s divided by the radius rk.

The state vector is expressed by the following compo-
nents:

xGk D
�

XG
k ˛

G
S;k ˇ

L
S;k �

L
S;k

	T
(16)

where XG
k is the global position of the ARP at the epoch k,

˛GS;k describes the azimuth orientation of the MSS, ˇLS;k the
inclination in scan direction and �LS;k is perpendicular to the
scan direction. The indices G and L in Eq. (16) are refereed
to the global or to the local coordinate system, respectively.
The space state model leads to:
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�
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�
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k

˛GS;k C sk
rk

ˇLS;k
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3
7775wk:

(17)

The term �XL
k in Eq. (17) is given by:

�XL
k D

2
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�
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�
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�
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�
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�
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�

3
7775 ��X GNNS

SN;k (18)

where �XGNNS
SN;k represents the eccentric position of the

GNSS antenna. �XL
k in Eq. (17) is responsible for the high-

nonlinearity in the space state model. It should be pointed
out, that in Paffenholz et al. (2010) additional adaptive
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Fig. 3 RMSE values for the nonlinear filtering results of the 500 runs

Fig. 4 Filtering results of EKF and the EKPF; top the residuals obtained within a linear regression of the orientation ˛GS ; middle and bottom the
filtered inclinations ˇLS and �LS

parameters are considered in the space state model. However,
the consideration of such adaptive parameters in the EKPF
algorithm (refer to Sect. 3.2) needs a significant modification,
which will be shown in future works.

The measurement model is characterized by the position
of the GNSS antenna XG

k , and the measurements of the
inclination sensor ˇLS;k and �LS;k . This yields to:

ykC1 D
2
4 XG

kC1
ˇLS;kC1
�LS;kC1

3
5 D AkC1 � xGkC1 C vkC1: (19)

The state vector [refer to Eq. (17)] has been initialized on
x0 D 0 with the initial covariance matrix which has been
chosen equally to the noise covariance matrix in Alkhatib
et al. (2012):

P0 D diag Œ100mm2 100mm2 900mm2 : : :

0:01mg rad2 1mg rad2 1mg rad2�:

As start value for the EKPF, we randomly draw 500 particles
from N .x0;P0/.

Figure 4 presents a subsample of the estimated state
parameters by classical EKF algorithm and EKPF. The upper
part of this figure shows the residuals obtained within a
linear regression of the orientation ˛GS . Due to the constant
rotation of the TLS about its vertical axis, we expect a linear
relationship between ˛GS and time. Therefore, the residuals
are quality indicators. The residuals are in both algorithms
comparable, and lead to a metric uncertainty of about 1.5 cm
for the azimuth calculation at a distance up to 35 m. The
middle and lower part of Fig. 4 show a comparison between
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the filtered inclinations ˇLS and �LS , respectively. Here again,
the EKPF effect is noticeable for the filtered inclinations,
mainly in case of higher noise level.

Conclusion

In this paper, the newly developed EKPF algorithm for
non-linear dynamic systems with adaptive static param-
eter. The algorithm is based on the combination of the
newly developed EKPF algorithm and the gradient tech-
niques. The algorithm has been applied to derive trans-
formation parameters for the direct georeferencing of
terrestrial laser scans. The EKPF algorithm is based on
a combination of the SMC techniques and an EKF step,
which guarantees a faster convergence. The results of the
developed filter show an improvement of the filter effect.
The EKPF with adaptive parameter shows a better perfor-
mance in case of high-nonlinear space state equations.
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Parametric Modeling of Static and Dynamic
Processes in Engineering Geodesy

A. Eichhorn

Abstract

In this paper, the main focus is set on the utilization of parametric methods for the quantifi-
cation of causative relationships in static and dynamic deformation processes. Parametric
methods are still ‘exotic’ in engineering geodesy but state of the art e.g. in civil and
mechanical engineering. Within this context, an essential part is the physical (parametric)
modeling of the functional relationships based on partial or ordinary differential equations
using the corresponding numerical solutions represented by finite element (FE) or finite
difference (FD) models.

The identification of a physical model is realised by combination with monitoring
data. One important part of the identification includes establishing the deterministic model
structure and estimating a priori unknown model parameters and initial respectively
boundary conditions by filtering (e.g. adaptive Kalman-filtering). Major challenges are
establishing the parametric model structure, quantifying disturbances and the identifiability
of the model parameters which are possibly non-stationary. These challenges are discussed
with the help of a practical example from engineering geology.

Keywords

Descriptive and causative view • GB-SAR • Mass movement • Parametric modeling •
Static and dynamic deformation processes

1 Introduction

Modern engineering geodesy often deals with the observa-
tion, analysis and interpretation of time-dependent processes,
e.g. in vehicle positioning and navigation, acquisition of
geodata and monitoring of deformations. This may be per-
formed from a ‘descriptive point of view’ describing only
the temporal behaviour of the process (e.g. concerning trend,
signal, noise, discussion of stationarity and error distribution
etc.) or from a more ‘causative point of view’, taking also
into account the causes (triggers) for the temporal behaviour

A. Eichhorn (�)
TU Darmstadt Institute of Geodesy, Franziska-Braun Str. 7, 64287
Darmstadt, Germany
e-mail: eichhorn@geod.tu-darmstadt.de

of the process (see Fig. 1). Especially the second case aims
to explaining and understanding the underlying mechanisms,
which are responsible for the structure of the observed
process and enables (within boundaries) the prediction of the
future behaviour also with significantly changing triggers.

According to Heunecke (1995) and Welsch et al. (2000),
causative relationships can be mathematically quantified
either by
• Static models, where the time is not explicitly modeled

(the process is modeled as a series of succeeding balanced
states without considering the transition)

• or by dynamic models, where the time is explicitly mod-
eled and also the transition between balanced states is
described.
Dynamic models represent the most realistic and universal

quantification of time-dependent processes. Nevertheless,
they are often difficult to prepare. Especially in deformation

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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Fig. 1 Example: causative view of dam deformations

analysis, in many cases also the static representation of
a process is sufficient, dependent on the goals of process
analysis and interpretation. In the following, the focus is set
on the quantification of parametric static and dynamic defor-
mation processes. With the help of a practical example from
engineering geology (quantification of a mass movement),
the main differences between static and dynamic modeling
and identification are presented.

2 Parametric Modeling of Deformation
Processes

The quantification of causative deformation models can
be performed either non-parametric or parametric (e.g.
Isermann 1988; Heunecke 1995; Welsch et al. 2000).
In general, non-parametric modeling is performed in
a mathematically abstract way using regression or
correlation relationships between the influences (triggers,
e.g. temperature and mechanical loads) and the deformation
quantities (e.g. movements of selected object points, see
Fig. 1). The model parameters enable no or only a very
restricted interpretation of the physical structure of the
deformation process. Consequently, non-parametric models
are called ‘black box’- or ‘grey box’-models (see Welsch
et al. 2000). Typical examples are convolution integrals,
ARMA, Artificial Neural Networks and Fuzzy approaches.
Non-parametric models are directly derived from the
monitoring data (pure experimental system analysis) and
miss a theoretical system analysis based on physical justified
laws (see Isermann 1988). Consequently,
• Their validity is restricted to a small range around the

monitored temporal progress of influence and deforma-
tion quantities (in some cases, the processes are even
presumed to be stationary, which means that no significant
change in their stochastical properties is admissible),

• they show a very limited capability for prediction respec-
tively simulation (theoretical experiments with signifi-
cantly changing triggers)

• and they do not explicitly explain the physical mecha-
nisms which are responsible for the deformations.
In contrast to non-parametric models, parametric defor-

mation models base on physical laws derived in the frame-
work of a theoretical system analysis. The common repre-
sentation is performed by finite element (FE, e.g. Gallagher

1976) or finite difference (FD, e.g. Smith 1985) models.
They are generated as numerical solutions from continuum
mechanics and represent the physical structure of the defor-
mation process (‘white box’-models, see Welsch et al. 2000).
Consequently, numerical models like FE and FD
• Can be also valid in ranges which are significantly differ-

ent from the monitored deformation process,
• are capable to perform predictions also with significantly

changing trigger data and to calculate simulations, this
means to perform computational experiments, which
could not be observed at the real object

• and are helpful to understand the physical mechanisms
which are underlying the deformation process.
Quantifying a parametric model, major challenges are

• Designing the model structure itself (especially the load
functions which connect triggers like air temperature,
wind, rainfall with the physical structure of the object),

• to establish the initial and boundary conditions of the
model

• and to determine the numerical values of a priori insuffi-
ciently known model parameters (e.g. material properties
like rigidity or damping parameters).
In general, the quantification of model structure and

initial respectively boundary conditions is part of the the-
oretical system analysis and is performed by an interdisci-
plinary cooperation, e.g. with experts from civil-engineering,
geotechnics or engineering geology. In a second step, the
monitoring data obtained at the real object is used to improve
the theoretical model. One goal is to minimize the residuals
between calculated and measured deformations adapting the
model further to reality (including the numerical values of
model parameters). This step is called ‘parametric identi-
fication’ and is one important subject of geodetic research
in deformation analysis (e.g. Heunecke 1995; Welsch et al.
2000; Eichhorn 2005; Lienhart 2007).

One suitable tool for parametric identification is given
by the application of adaptive Kalman-filtering techniques
(e.g. Gelb et al. 1974; Heunecke 1995), which (principally)
enable the optimal estimation of a priori insufficiently known
model parameters. Until now, adaptive Kalman-filtering was
successfully used in civil engineering in combination with
static FE-models from artificial structures like dams (Gülal
1997), pylons (Heunecke 1996) and shell structures (Hesse
2002). In Lienhart (2007), the static FE-model of a mono-
lithic bridge is embedded in the environmental soil structure.

Nevertheless until now, real dynamic applications for
parametric identification are only performed for small and
well described structures under lab conditions like thermal
deformations of machine elements in mechanical engineer-
ing (Eichhorn 2005). The transfer to complex buildings and
natural objects is still missing. Especially the quantification
and identification of natural deformation processes like mass
movements is still a big challenge.
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3 Case Study: TheMass Movement
‘Steinlehnen’

The mass movement ‘Steinlehnen’ (see Fig. 2) is located near
Gries im Sellrain (Northern Tyrol, Austria), approximately
20 km southwest of Innsbruck and is part of the aus-
troalpine polymetamorphic Ötztal-Stubai crystalline com-
plex. The unstable mass consists of paragneisses, amphibo-
lites and granodiorite-gneisses. The slope strikes to east with
a dip angle between 30ı in the lower and 40ı in the upper
part (Zangerl et al. 2007; Mair am Tinkhof et al. 2010). In its
high active zone, the slope currently performs movements up
to 2–3 dm per year (Schmalz et al. 2010).

The mass movement is investigated in the project
‘KASIP’ (knowledge-based alarm system with identified
deformation predictor), which is funded by the FWF (Aus-
trian Science Fund). The project contains an interdisciplinary
cooperation between TU Vienna (Engineering Geodesy and
Engineering Geology), TU Darmstadt (Engineering Geodesy
and Physical Geodesy) and alpS—Center for Natural Hazard
and Risk Management (Innsbruck). One important goal is
the creation of a realistic numerical slope model including
its parametric identification using collected monitoring data
(see Kasip 2011).

3.1 Monitoring System

The monitoring data from ‘Steinlehnen’ consists of
• Airborne laser scanning data from 2003 (performed by

alpS, when the slope movement started with rockfalls,
now only used for DTM creation),

• tacheometer measurements to discrete slope points
(prisms, mean accuracy �pD 5–8 mm) which are
periodically performed (since 2003, ca. all 6 months)
by alpS and TU Darmstadt from a fixed pillar which is
mounted on the opposite slope,

• continuous radar measurements (all 7 min, accuracy of
the phase measurements strongly depends on the atmo-
spheric conditions, especially humidity, and may rise up
to �� D /2D 4 mm with a wavelength �D 17.4 mm)
performed by the GB-SAR (ground based synthetic aper-
ture radar) system IBIS-L (e.g. Rödelsperger et al. 2010)
within two 5 and 4 weeks measuring campaigns in 2010
and 2011 (see Fig. 3)

• and meteorological trigger data (e.g. daily temperature
and rainfall) from a weather station in Gries.
In contrast to the tacheometer measurements which are

restricted to selected (and accessible) slope points, the radar
measurements enable a contact-free laminar acquisition of
deformations with a high temporal and spatial resolution.

Fig. 2 Mass movement ‘Steinlehnen’

Fig. 3 GB-SAR system IBIS-L facing towards the mass movement
‘Steinlehnen’ (S. Rödelsperger)

In Fig. 4 some results from the radar measurements are
shown. The figure shows the integrated displacements (in the
direction of the line of sight to the radar system) of the slope
surface after 10.5 days in June 2010. The displacements are
overlaid to a DTM (digital terrain model) of the slope derived
from airborne laser scanning in 2003. The blue zone indicates
local movements up to 15 mm (see also Rödelsperger 2011).

3.2 Parametric SlopeModel

Taking a closer look to the monitoring data collected by
IBIS-L, it is possible to associate a certain dependency
between meteorological conditions (triggers) and the slope
deformations. In Fig. 5 this dependency is exemplarily pre-
sented for the temporal progress of five radar dissolution cells
extracted from a high active area (blue zone in Fig. 4). During
a phase of significant change of the meteorological condi-
tions from heavy rainfall over slight snowfall to sunshine,
the displacements are gradually integrated (integration steps
�tD 7 min) over a period of 25 days. Starting from balanced
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Fig. 4 DTM of ‘Steinlehnen’ with integrated displacements (KASIP
measuring campaign 2010, S. Rödelsperger)

Fig. 5 Time series of five resolutions cells (KASIP measuring cam-
paign 2010, S. Rödelsperger): integrated displacements over max. 25
days. Static view

states k, the displacements perform first accelerated and then
decelerated motions to new balanced states kC 1.

The time series give a good impression concerning the
typical behaviour of slope points as reaction to changing
weather conditions. Learning from the observations, it is
possible to establish two different views (see also Sect. 1).
The ‘static view’ is linked with a resulting static deformation
model, where only successive balanced states ( : : : , k, kC 1,
: : : ) are considered, without modeling the time-dependent
transition between the states (see Fig. 5). The static deforma-
tion model contains the quantification of the displacements
�x as reaction to the triggers u.

The ‘dynamic view’ is linked with a resulting dynamic
deformation model, where not only successive balanced
states are modeled but also the time-dependent transition (t1
: : : tn) between the states (see Fig. 6). The dynamic deforma-
tion model contains the quantification of the displacements

Fig. 6 The same time series but a dynamic view

�x(tk), their velocities v(tk) and (if necessary) accelerations
a(tk) as reaction to the triggers u(tk).

Considering the monitored motion of the slope surface,
the possibilities for parametric static and dynamic modeling
and identification are investigated in KASIP. The creation
of a realistic parametric model of the mass movement is
here realized on the base of finite differences (FD, see Smith
1985). The numerical modeling is performed by Engineering
Geology (TU Vienna) with the FD-software ‘FLAC3D’
(Fast Lagrangian Analysis of Continua in three Dimensions)
from Itasca Consulting Group Inc. (Itasca 2006). The
software enables the calculation of 3D-continuum-models,
using different elastic and plastic material models. The
integration of dynamic extensions like material creeping
makes FLAC3D suitable for static and for dynamic
modeling.

In detail, the numerical model of the mass-movement
is created in a theoretical system analysis based on the
following pre-information.
• The geometry of the surface of the slope is derived from

ALS in 2003.
• Movements at the surface of the slope are monitored

(tacheometer measurements and visual inspection) by
alpS since 2003.

• The geological structure of the slope (e.g. rock layers and
zones of assumed homogenous material properties) are
derived from geological mapping (Zangerl et al. 2007;
Mair am Tinkhof et al. 2010).

• In the case of ‘Steinlehnen’ there are no material samples
and lab experiments available (especially from the deeper
layers), so the (initial) theoretical numerical values for the
material parameters are taken from literature.
The dynamic numerical model of ‘Steinlehnen’ is

just finished (see Fig. 7). Its geometrical dimensions are
1.4� 2.2� 1.2 km (width� depth� height). It consists of
seven homogenous zones with amphibolites, ortho- and
paragneisses respectively rock mixtures. The discretization
of the model is realized by finite meshes with a mean
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Fig. 7 FD-model of the mass movement ‘Steinlehnen’

size of 25 m in the high active regions of the slope and
up to 100 m in the boundary areas. The 3D-positions of
their nodes represent the displacements. Each mesh is
characterized by five mechanical parameters: density �,
Young’s modulus E, Poisson’s ratio 	, angle of inner friction
' and cohesion c. These parameters are combined in a
Mohr–Coulomb material model (e.g. Schmidt 2006) which
quantifies amongst others the relationship between normal
and critical shear stresses that may cause local or even global
failure.

The failure mechanism is additionally ‘supported’ by a
slide face in an assumed depth of approximately 100 m (Mair
am Tinkhof et al. 2010). The integration of this mechanism
is motivated by monitored shear strain rates at the surface.
Its depth and extension is only hypothetical and may cause a
significant model uncertainty. The model uncertainty respec-
tively model quality represents one of the main restrictions
for parametric identification. In the case of adaptive Kalman-
filtering, it directly influences the parameter estimation. In
the worst case, Kalman-filtering only performs a ‘local’
adaptation to the monitored deformation process and the
identified model remains valid only for the monitoring data
comparable with a non-parametric model. In the case of
‘Steinlehnen’, one method to proof the validity of the model
could be to change the depth of the failure mechanism and to
check the model sensitivity concerning this variation. Until
now, this is not realized due to the extreme time-consuming
modeling process.

One still unsolved challenge is the quantification of a
direct functional relationship between external triggers (e.g.
temperature and rainfall) and the mechanical properties of
the model. Possibilities are given on the base of the integra-
tion of a groundwater table or pore-water pressure. Neverthe-
less, there’s currently no monitoring data available.

In the existing model, the strength parameters (inner
friction ' and cohesion c) of each mesh are assumed as
indirect triggers. As a consequence of changing meteoro-
logical conditions, they change their numerical values and
significantly influence the stability of the slope. To simulate a
slope failure, the strength parameters are marginally reduced
under certain boundary values (where the slope is just in a
balanced state). This is very common in soil mechanics and
called the ‘strength reduction technique’ (Mair am Tinkhof
et al. 2010).

The determination of numerical values for the strength
parameters ' and c is usually done by ‘trial and error meth-
ods’ (Mair am Tinkhof et al. 2010), visually matching the
effects of the step by step performed strength reduction with
available monitoring data. In the following, it is investigated
how a parametric identification of the numerical model in
terms of an optimal estimation of the strength parameters
may support this process. As the FD-model of the full slope
is just finished, no identification results with real monitoring
data are currently available. So, the presented example deals
with a simulation.

4 Parametric Identification
of a Simplified Scarp

The following example for parametric identification deals
with a simplified cut-out from the full slope model. The
geometrical dimensions of the scarp are 30� 70� 40 m
(width� depth� height). To reduce the calculation time, the
model is very rough, this means the displacements are cal-
culated in only 700 nodes (in comparison to approximately
100,000 nodes in the full model). The scarp is assumed to
be homogenous, this means there’s only one set of material
parameters needed. Like the full model, the motion of the
scarp is ‘triggered’ by the strength parameters ' and c. The
simplified dynamic FD-model is shown in Fig. 8.

Using reference values for the mechanical parameters, the
displacements in the surface nodes of the front wall (red
points in Fig. 8) are calculated and used as simulated ‘mon-
itoring’ data. As shown in Sects. 2 and 3.2, the parametric
identification can be performed under a static and a dynamic
view.

4.1 Static Example

In the static example, the dynamic FD-model is used in a
static way, this means only the total displacements between
successive balanced states are calculated (see Fig. 9, green
arrows). This procedure requires the variation of at least
one of the two strength parameters as a sequence of static
triggers uk. In this example, the stepwise reduction of the
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Fig. 8 Example for parametric identification: simplified scarp

Fig. 9 Static view: simulation of displacements

Fig. 10 Adaptive Kalman-filter for the static case

inner friction ' is chosen. Consequently, the balanced states
xk of the nodes are calculated by the sequence ukD'1, '2,
: : : , 'n, where k indicates the epoch. The state vector xk

contains the 3D-coordinates (x, y, z) of all nodes at epoch
k. The observation (monitoring) vector Lk is a subset of xk,
including only the surface nodes (see also (1)).

The second strength parameter c is assumed to be a priori
unknown and is the target for the identification task. Its
estimation is realized with an adaptive Kalman-filter, which
contains the ‘static’ FD-model in the system equations and
the simulated surface displacements Lk in the measuring
equations (see also Fig. 10).

Fig. 11 Estimation progress of the cohesion c (according to Schmalz
et al. 2010)

The state vector xk is extended with an adaptive part,
which contains the strength parameter c.

xk D .x1; : : : ; x700; y1 : : : y700; z1 : : : z700 j c/Tk
Lk D .x1; : : : ; x24; y1 : : : y24; z1 : : : z24/

T
k

(1)

In each filter epoch, the prediction xkC1 is calculated with
the non-linear FD-model. The required matrices for the error
propagation are obtained by numerical differentiation of the
full FD-model.

Some results from the parametric identification of the
static model are shown in Fig. 11.

Starting from different randomly initialized values c0, the
estimationsbc of the cohesion converge against the reference
value crefD 26.76 kN/m2. In the present case, the standard
deviations of the different c0 are derived from the (in the
simulation) known deviation to the reference value and
have the same order. In the case-study ‘Steinlehnen’, the
relative error of material parameters derived from geological
literature is generally assumed to be approximately 30 %
(Zangerl et al. 2007). For each c0, the estimation progress
shows a stable behavior. After four filter epochs, the relative
errors are <5 %� for all initializations. The precision of the
results is sufficient for further stability investigations, e.g.
calculating of realistic factors of safety (e.g. Roth 1999) for
the scarp.

4.2 Dynamic Example

In the dynamic example, the time-dependent transition
between two successive balanced states of the scarp is
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Fig. 12 Dynamic view: simulation of displacements

Fig. 13 Adaptive Kalman-filter for the dynamic case

calculated (see Fig. 12, green line). The motion is triggered
by a unique reduction of ' and c. It has to be mentioned that
FLAC3D calculates with an abstract time-unit expressed in
‘steps’.

In the dynamic case, the state vector x(tk) contains the
3D-coordinates (x, y, z) and the velocities (vx, vy, vz) of
all nodes at epoch tk. In the present example, the acceler-
ations of the nodes are small and can be neglected. The
observation (monitoring) vector L(tk) is a subset of x(tk),
including only the 3D-coordinates of the surface nodes [see
also (2)].

x .tk/ D
�
x1; : : : ; x700; y1 : : : y700; z1 : : : z700;

vx1; : : : vx700; vy1; : : : vy700; vz1; : : : vz700 j '; c/ T
tk

L .tk/ D .x1; : : : ; x24; y1 : : : y24; z1 : : : z24/
T
tk

(2)

As there is no definition of a varying trigger sequence
like in the static example, both strength parameters can be
assumed to be a priori unknown and are the targets for the
identification task. Consequently, the adaptive part in (2) may
contain both strength parameters ' and c. The filter strategy
is shown in Fig. 13 (see also Sect. 4.1).

Some results from the parametric identification of the
dynamic model are shown in Fig. 14. The estimated parame-
ters show in each case a stable behaviour.

Like in the static example, the initialization c0 and '0

of the strength parameters is performed randomly and their
standard deviations are derived from the (in the simulation)

Fig. 14 Estimation progress of inner friction ' and cohesion c (accord-
ing to Schmalz et al. 2010)

known deviations to the reference values. After three filter
epochs (t3D 1,500 time steps), the relative errors of the
estimation results of the cohesion c are again within the
range of some per mill. In contrast to c, the inner fric-
tion ' shows a more ‘inertial’ behaviour. The convergence
process happens more slowly and the relative errors after
four epochs (t4D 2,000 time steps) are within a range of
0.4–3 %.

These results show clearly a worse identifiability of the
friction in comparison to the cohesion. One reason for this is
given by the monitoring data, which is (in this example) only
available at the surface of the scarp and the slow progress
of the deformations. This statement is supported comparing
the monitored and predicted displacements of surface nodes
in the progress of the filter. In Fig. 15, this is exemplarily
shown for one surface node in z. Already after three filter
epochs (t3D 1,500 time steps), the predicted and monitored
z-coordinates of the node are fitting together within a range
of some sub-mm, even if the estimation of ' does not ‘hit’
its reference value. This shows the low sensitivity of the
monitoring data to changes in '.
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Fig. 15 Predicted versus monitored displacement (in z) in the progress
of the filter (according to Schmalz et al. 2010)

Conclusions

The simulations performed in Sect. 4 show that a para-
metric identification of a numerical model is principally
possible as well under static as under dynamic conditions.
The next steps will be to leave the simulations and to
integrate the real monitoring data (e.g. IBIS-L) in the
numerical model. For this case, a further extension of
the model structure with a combination of creeping and
failure will be necessary which reflects the temporal
behavior of the monitoring data shown in Fig. 6. This is
currently performed by integrating a visco-elastic–plastic
material model.

The decision for a static or dynamic Kalman-filter
depends on the temporal density and progress of the
available monitoring data. It is obvious, that the static
case is more constraining because it requires a sequence
of successive balanced states. Especially in the field of
natural deformation processes, this may require a long-
term monitoring and in the case of failure scenarios,
there possibly will not exist such a behaviour. So the
dynamic case is more realistic and flexible and in prin-
ciple enables a real-time identification of the deformation
process, because there is no requirement for the object to
be in a balanced state.

Nevertheless, parametric modeling and identification
of dynamic deformation processes is more complex and
time consuming than in the static case. Using a numerical
model with a high number of nodes (e.g. >10,000), the
computation time for the Kalman-filter may rise from
some hours for the static case to some days for the
dynamic case. This is mainly effected by the numerical
differentiation (Figs. 10 and 13) for the error propa-
gation of the prediction, which is not only performed
for coordinates but also for velocities and if necessary
accelerations. This relativizes the term ‘real-time’ from
above, especially in the context of alarm systems.

The creation of the functional relationships between
triggers and the physical structure of the object is another
big challenge in parametric modeling. In the case-study,
this is done by a ‘trick’, using model parameters as
indirect triggers. This approach cannot be assumed to
be universal. The optimal case would be the direct use
of monitored trigger data (e.g. temperature values and
rainfall) as input for the Kalman-filter and should be one
goal of the modeling process.

Acknowledgment The author thanks the FWF (Austrian Science
Fund) for the financial support of the project ‘KASIP’, project number
P20137.

References

Eichhorn A (2005) Ein Beitrag zur Identifikation von dynamischen
Strukturmodellen mit Methoden der adaptiven Kalman-Filterung.
PhD thesis, IAGB, Uni Stuttgart

Gallagher RH (1976) Finite-element-analysis. Springer, Berlin
Gelb A, Kasper JF, Nash RA, Price CF, Sutherland AA (1974) Applied

optimal estimation. The M.I.T Press, Cambridge
Gülal E (1997) Geodätische Überwachung einer Talsperre; eine Anwen-

dung der KALMAN-Filtertechnik. In: Wiss. Arbeiten der Fachrich-
tung Verm.wesen der Uni Hannover, Nr. 224, Hannover

Hesse C (2002) Deformation analysis of a shell structure under varying
loads with Kalman-filter techniques. In: Proceedings of 2nd sympo-
sium for geotechnology and structural engineering, Berlin

Heunecke O (1995) Zur Identifikation und Verifikation von Defor-
mationsprozessen mittels adaptiver KALMAN-Filterung (Hannover-
sches Filter). In: Wiss. Arbeiten der Fachrichtung Verm.wesen der
Uni Hannover, Nr. 208, Hannover

Heunecke O (1996) Einige Gedanken zur fachübergreifenden Unter-
suchung von Deformationsvorgängen, dargestellt am Beispiel der
Filterung der Biegelinie eines Pylons. In: Wiss. Arbeiten der
Fachrichtung Verm.wesen der Uni Hannover, Hannover, pp 75–92

Isermann R (1988) Identifikation dynamischer Systeme. Springer,
Berlin

Itasca (2006) Fast Lagrangian analysis of continua in three dimensions.
Version 3.1. manual

Kasip (2011) Project homepage. http://info.tuwien.ac.at/ingeo/research/
kasip/index.html

Lienhart W (2007) Analysis of Inhomogenous Structural Monitoring
Data. PhD thesis, Engineering Geodesy, TU Graz

Mair am Tinkhof K, Preh A, Tentschert E, Eichhorn A, Schmalz T,
Zangerl C (2010) FLAC3D and adaptive Kalman-filtering – a new
way to install effective alarm systems for landslides? In: Eurock rock
mechanics symposium 2010, Lausanne

Rödelsperger S (2011) Real-time processing of ground based synthetic
aperture radar (GB-SAR) measurements. PhD thesis, TU Darmstadt,
Schriftenreihe der Fachrichtung Geodäsie, Heft 33

Rödelsperger S, Läufer G, Gerstenecker C, Becker M (2010) Ter-
restrische Mikrowelleninterferometrie – Prinzip und Anwendungen.
In: AVN, 10/2010, pp 324–333

Roth W (1999) Entwicklung von Sicherheitsfaktoren mittels des kon-
tinuumsmechanischen FD-Codes FLAC. Master thesis, Engineering
Geology, TU Vienna

http://info.tuwien.ac.at/ingeo/research/kasip/index.html
http://info.tuwien.ac.at/ingeo/research/kasip/index.html


Parametric Modeling of Static and Dynamic Processes in Engineering Geodesy 125

Schmalz T, Buhl V, Eichhorn A (2010) An adaptive Kalman-filtering
approach for the calibration of FD-models of mass movements. J
Appl Geod 3:127–135

Schmidt H-H (2006) Grundlagen der Geotechnik. Teubner Verlag,
Wiesbaden

Smith GD (1985) Numerical solution of partial differential equations –
FD methods. Oxford University Press, New York

Welsch W, Heunecke O, Kuhlmann H (2000) Auswertung geodätischer
Überwachungsmesungen. Handbuch der Ingenieurgeodäsie, Wich-
mann

Zangerl C, Eberhardt E, Schönlaub H, Anegg J (2007) Deformation
behaviour of deep-seated rockslides in crystalline rock. In: Rock
mechanics



Land Subsidence in Mahyar Plain, Central Iran,
Investigated Using Envisat SAR Data

M. Davoodijam, M. Motagh, and M. Momeni

Abstract

In recent decades land subsidence and its associated fissures have been observed in many
plain aquifers of Iran. Knowledge of the deformation field in groundwater basins is of
basic interest for understanding the cause and mechanism of deformation phenomenon,
and for mitigating hazard related to it. In this paper the result of Envisat InSAR time-series
analysis for monitoring land subsidence in Mahyar Plain, Central Iran, is presented. Long-
term extraction of groundwater, which started in 1970 with the development of agriculture
in this area, has caused substantial subsidence and formation of many earth fissures in
Mahyar. Our analysis indicates significant subsidence bowl south of Mahyar plain with an
elliptical pattern directed northwest–southeast along the axis of the plain. The velocity map
obtained by the time-series analysis of InSAR data shows a maximum subsidence velocity
of�9 cm/year in the line of sight from the ground to the satellite in the year 2003–2006.

Keywords

Ground water • Interferometry • Land subsidence • Mahyar plain

1 Introduction

Subsidence is defined as the downward motion of a surface
relative to a datum such as sea level (Waltham 1989).
Generally, compaction of sediments, extraction of ground
water, oil and gas result in compression of the clay layers
beneath the land surface and subsequently elevation of the
land surface is lowered. In recent years, with the growing
population of the world and lack of water caused by global
warming there has been an increased request for groundwater
to supply domestic, industrial and agricultural needs. Excess
exploitation of this resource causes underground fluid pres-
sure to decrease. Thus the supportive effective stress on the
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rock matrix increases and rock compaction or land surface
subsidence occurs (Murk et al. 1995; Jachens and Holzer
1982).

Several problems are associated with land subsidence
including damages to underground infrastructure and civil
engineering structures such as buildings, roads, canals and
bridges, and increasing inland flooding along streams and
waterways due to changes in stream gradient. Decreasing
water level also increases pumping cost, as deeper wells are
required to be built to extract water. It has been addressed in
the literature that land subsidence caused by over extraction
of ground water is increasing around the world. It is also a
widespread problem in Iran (Motagh et al. 2008). This paper
presents the result of an InSAR time-series method, called
Small BAseline Subset (SBAS) (Berardino et al. 2002) for
analyzing temporal and spatial variability of land subsidence
in Mahyar plain, south of Isfahan province in Central Iran.
The analysis done in this paper is based on 15 C-band ASAR
radar images acquired by the Envisat satellite during 2003–
2006.

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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Fig. 1 Geographical location of Mahyar plain in Iran

2 Study Area

Located in an arid and semiarid region of Iran with an
unconfined aquifer of an area of 158 km2 (Ajalloein et al.
2006), Mahyar Plain is a NW–SE trending plain south of
Isfahan province in central Iran (Fig. 1).

Long-term extraction of groundwater, which started about
30 years ago with the development of agriculture in this area,
has caused subsidence and formation of many earth fissures
in Mahyar, in turn leading to substantial damages to houses,
farms, channels and roads in the region. Land subsidence
monitoring is important in order to investigate the temporal
and spatial extent of subsidence and for mitigating hazard
related to it.

3 Methodology

To assess the temporal and spatial scale of land subsidence
in Mahyar, we use the SBAS method as implemented in the
STAMPS software (http://radar.tudelft.nl/~ahooper/stamps/
index.html)

This method uses a large number of SAR acquisitions and
implements a combination of a properly chosen set of multi-
looked DInSAR interferograms computed from these data.
The unwrapped interferograms are input data for the least-
squares method (Berardino et al. 2002), which is used to
produce spatio-temporal evolution of ground surface defor-
mation.

The following steps are done by STAMPS in order to
generate time series analysis:

1. Generating subsets of small baseline interferograms
2. Selection of slowly decorrelating filtered phase (SDFP)

pixels, defined as pixels whose interferometric phase after
azimuth and range filtering shows slow decorrelation over
short time intervals

3. 3-D phase unwrapping on SDFP pixels
4. Generating time series and mean velocity maps according

to coherent pixels (Hooper 2008).

4 Experimental Results and Analysis

4.1 InSAR Result

In this study 15 radar images of the study area, acquired
by the European Space Agency (ESA)’s Envisat satellite,
are used. The dataset consists of ASAR images recorded
in a descending trajectory spanning the year 2003–2006.
Thirty-seven differential interferograms were generated and
analyzed using the SBAS method. The topographic cor-
rection was done using the 90-m SRTM DEM. Figure 2
illustrates the final network of interferograms that we used
for the time-series analysis.

Figure 3 presents an example of a geocoded differential
interferogram in our study area. The interferogram covers the
time interval between April 2003 and November 2004. One
complete cycle of color from blue to yellow corresponds to
half a wavelength of apparent range change (about 28 mm
for the C-band radar onboard the Envisat satellite) between
the spacecraft and the Earth’s surface.

The obtained result indicates significant land subsidence
occurring south of Mahyar. The subsidence area delineates
an elliptical pattern directed northwest–southeast along the
axis of the Mahyar plain.

Figure 4 illustrates the average subsidence rate in Mahyar
obtained by the time-series analysis of Envisat SAR data.
The negatives values in the map represent subsidence sig-
nals in the LOS direction (motion away from the satellite).
We observe a maximum rate of LOS subsidence of about
9 cm/year in the southern part of Mahyar plain. Because
of the steep incidence angle of the Envisat satellite (�23ı)
interferometric results are more sensitive to vertical than
horizontal displacement (Hanssen 2001). This, coupled with
field and hydrological evidence for aquifer compaction in the
valley (next section), led us to interpret the LOS displace-
ment as indicating mainly land subsidence in the valley.

Figure 5 shows displacement time series for four selected
points, A, B, C, and D in Fig. 4. Point A lies in the area
of maximum subsidence. The maximum amount of Line of
Sight (LOS) displacement is about 23 cm during 2003–2006
(Fig. 5a). Point B lies on the main road that connects two
metropolitan Isfahan and Shiraz. Here we obtain �9.3 cm
displacement in the LOS direction. Point C and D are

http://radar.tudelft.nl/~ahooper/stamps/index.html
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Fig. 2 The network of interferograms used in this study
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Fig. 3 An example of a geocoded differential interferogram in Mahyar
between April 2003 and November 2004

two arbitrary points and their time-series results confirm
that most parts of the Mahyar plain sustained significant
subsidence in the year 2003–2006.

4.2 Earth Fissures

After InSAR observations a field survey of area for position-
ing of the fissures caused by land subsidence was done in
the summer 2010. The observed fissures have been overlaid
a descending interferogram in Fig. 6. As shown in Fig. 6 no
fissure was observed to the south part of the southern Mahyar
plain. In contrast, several parallel fissures were detected in
other parts of region.

Many reasons contribute to the generation of fissures in
areas affected by land subsidence. Factors such as decline
in the water table, faults, aquifer heterogeneities, bedrock
knob protruding into the aquifer system and presence of

Fig. 4 Mean velocity map of subsidence area in Mahyar

weakness plain in aquifer system control the progress of
fissuring (Burbey 2002).

4.3 Piezometric Records

Piezometric record in Mahyar plain shows a correlation
between the pattern of land subsidence and the decline in
water level. As shown in Fig. 7, the water table in the region
has a clear declining trend with a head decline of �12 m
between 1983 and 1995 and only small periodic recoveries,
probably caused by seasonal rainfall. Such a decline in water
table record suggests that land subsidence in Mahyar plain
results from overdrafting of the aquifer system.

Conclusions

This paper has demonstrated the capability of C-band
ASAR images for investigating land subsidence in Mah-
yar plain, an agricultural region south of Isfahan province
in Central Iran. Results obtained from the time-series
analysis of 15 ASAR images acquired in a descending
orbit between 2003 and 2006 indicates a subsidence
bowl south of the plain with maximum LOS velocity of
�9 cm/year. Analysis of the piezometric records suggests
that subsidence likely results from overdrafting of the
aquifer system that has caused an average decline of
�1 m/a in the water table since 1982.
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Fig. 5 Examples of time—series results at four selected points. For
locations of A, B, C and D please refer to Fig. 4

Fig. 6 Fissures detected during field survey of Mahyar plain in 2010.
Fissures are overlaid on a descending interferogram. The insets show
ground picture of three fissures in Mahyar

Fig. 7 Average groundwater level decline in Mahyar obtained from
piezometric records
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Recent Impacts of Sensor Network Technology
on Engineering Geodesy

O. Heunecke

Abstract

Wireless Sensor Networks (WSN) as an infrastructure comprised of sensing, computing
and communication elements are designed for the decentralized recording of environmental
information. If the matter of concern is referenced geospatial information this in particular
forms a Geo Sensor Network (GSN).

Recently there is an ongoing extensive impact of these new techniques on all geo
sciences, whereby it depends on the application which demands with respect to data quality,
size and costs of the sensor nodes, number of nodes in the network, requirements of
the communication component (coverage, data throughput) and the power management
are relevant. In Engineering Geodesy the new possibilities and new ideas emerging from
GSN especially concern geo(detic) monitoring of objects like landslides or engineering
construction sites. Theory and possibilities of GSN technology as well as some selected
aspects for geo monitoring in particular will be discussed. As the early detection of already
small variations is essential for Early Warning Systems (EWS) and risk management,
data quality and reliability is of utmost importance. Thus, customary utilization of low
cost equipment in such a GSN generally requires for calibration procedures and higher
sophisticated evaluation concepts in order to provide meaningful results.

Keywords

Engineering Geodesy • Geo monitoring • Geo sensor networks • Low cost GNSS receivers

1 Introduction

According to Stefanidis and Nittel (2005) and Nittel (2009)
GSN are specialized applications of WSN technology in geo-
graphic space that detect, monitor and track environmental
phenomena and spatial-temporal processes in particular.

GSN can be classified in terrestrial ecology observation
systems for the modelling of environmental phenomena
like weather and climate, real-time event detection, which
indicates monitoring tasks in general, and so-called mobile
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sensor nodes for human, vehicle and animal behaviour track-
ing and analysis. This itemization concerning mobile nodes
should be supplemented by guidance and control, e.g. fleet
management, in general.

For catastrophe and disaster management, including force
tracking and as well military scenarios, applications can be
correlated between these three classes, ranging from small
(local) to meso (regional) and finally the global scale. Within
a short time, GSNs have already claimed a wide field of
applications mainly because the easy available technology
of ubiquitous wireless communication, the miniaturization of
computing and storage platforms as well as the development
of novel and cost effective sensors.

Like the wide-spread use of satellite based positioning
techniques, that vary from global to local applications with
accuracies spanning the range between several meters to

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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Table 1 Modelling of spatial-temporal processes (compare Welsch
et al. 2000)

Real object Model of the object

Geometry domain Object is a
continuum, possibly
separated into
different regions

Object is dissected
by certain number of
characteristic points
(“discretization in
space”)

Time domain Object is more or
less permanently in
change, in particular
deformations

Object is monitored
in certain time
intervals
(“discretization in
time”)

millimetres based on different phase based augmentation
techniques, the rapidly ongoing GSN developments arguably
make a more detailed discussion comprehensive. The very
broad definition of GSNs as specialized applications of WSN
lead, on the one side, to a discussion of a large number
of tiny, untethered, battery-powered, low cost devices (in
the order of a few Euro only or less) deployed in ad hoc
fashion without detailed planning as typical (Sohraby et al.
2007; Bill 2010) and, on the other side, to the mention
of well-thought-out and sophisticated monitoring systems
with expensive high-end measuring units like the German-
Indonesia Tsunami Early Warning System (GITEWS; see
www.gitews.org) at the same time. Regarding the multiplic-
ity of different scenarios, a universal GSN approach does not
exist, but however an all-embracing theory in terms of e.g.
terminology, architecture and general properties is developed
and available. One ultimate goal for further GSN research
is the technical design of such systems in a way known as
swarm intelligence in Bionics, however.

Just as the automated data recording with individually
laid-out sampling rates has been a standard since many years
(“discretization in time”) in geo monitoring applications,
spatially condensed information clustering (“discretization in
space”) using GSN technology now becomes possible with
passable effort and costs and—which is the main benefit—a
more complete picture of the real situation in time and space
evolves, see Table 1. Finally, the developing extensively
growing data volumes poses new challenges for an ambitious
data evaluation and visualization.

All following explanations are focused on small-scale
GSN only as they are found in geo and structural health mon-
itoring applications. Such measurements and surveys are car-
ried out to monitor the condition of technical objects (build-
ings, machinery plants, etc.) and natural objects (embank-
ments, slopes liable to slide, etc.) for the determination of
their different kinds of movements and to document the state
of the respective objects. Objects equipped with wireless
sensors are often termed as ‘smart’, e.g. smart bridges or
smart dykes (Hopman et al. 2011).

Table 2 Design parameters and differentiating factors of GSN (com-
pare Heunecke 2008 and Bill 2010)

Design parameter Properties and distinctions

No. of nodes q Arbitrary, as a rule q D 10–1,000 in
small-scale GSN

Node mobility Static vs. partly in motion (active,
passive)

Node design Homogenous (all identical)/heterogenic

Node autarky Life cycle of several hours to years

Node deployment Planed/random (without adaption);
one-time/expansion of network (if
required)

Data coverage Scattered/spatially condensed/redundant

Data recording Permanent/sporadic/event based

Network topology Infra structural/ad hoc; star/mesh/hybrid
topology

Data communication One-directional/bi-directional; permanent
data flow/on request/sporadically

Localization Planed mounting/position sensor
integrated/derived from communication
signals

2 Geo Sensor Network Technology

2.1 General Statements

A WSN respectively GSN generally consists of the following
four basic components (Sohraby et al. 2007):
1. An assembly of distributed sensor nodes;
2. An interconnecting communication network (usually, but

not always restricted solely to wireless techniques);
3. A central point of information clustering; and
4. A set of computing resources at the central point or

beyond to handle data evaluation, event trending, status
querying, etc.
Table 2 lists a few design parameters and technical charac-

teristics which again disclose the omnibus GSN possibilities.
Only some of these properties will be discussed in the
following. For all geo monitoring applications distinguishing
is a well-planned procedure of installing the sensor nodes
and the intensive evaluation of data. Thus, a selection of
representative recording points well adapted to the object
is indispensable instead of a random deployment without
adaption which is often discussed in other GSN fields. An
expansion of the network planned in advance however can be
essential if the detected behaviour of the object is irregular.

Localization in a GSN stands for geo referenced data
acquisition in a well defined spatial frame whereas GNSS
very often is used in outdoor environments. Using GNSS as
a time server allows synchronization of all data to become
feasible in an easy way, opposed to the usage of a Real Time
Clock (RTC). Positioning, Navigation and Timing (PNT) is

www.gitews.org


Recent Impacts of Sensor Network Technology on Engineering Geodesy 133

generally a key issue for any surveillance of spatial-temporal
processes.

With many sensor nodes used in a GSN the price of
a single device is an essential parameter for cost effective
application. As noted in Table 2 the number of nodes in a
geo monitoring network normally is restricted but presum-
ably will increase in future regarding the new possibilities.
Projects with about 3,000 sensors and/or targets are already
known, especially for the preservation of evidence in ven-
turesome constructions. Additionally, of course the sensitive
measurands relevant for the monitored process, whether they
are causative forces or geometrical reactions (displacements,
inclinations, strain, etc.) at the output side of the investigated
process chain, are to be chosen adequately and individually
as well as the required measurement uncertainty of the data
which generally is ambitious.

2.2 Sensing

Organizationally, a GSN is subdivided into several so-called
sensor nodes (number of nodes denoted with q) with distinct
addressability, which in general are multifunctional devices
(number of sensors at a node denoted with p) in fully autarkic
operation. With regard to geo monitoring data quality and
secure operation even under harsh conditions are of highest
significance.

Although all networked sensors must have the basic avail-
ability of localization to attribute the observed information
(unless they are mounted fix at a known place) within mon-
itoring applications positioning and changes of positioning
(including inclination and distance changes) of the different
nodes are of particular significance. This is to be seen along
with other data such as trigger factors (rain fall, table water,
: : : ), environmental quantities (temperature, air pressure,
: : : ) and information of the sensor node itself (charge condi-
tion, power supply, : : : ). The previously information may be
useful to predict potential failures of a node caused by power
shortfalls. The different nodes can be all identical or, which
will be the normal case in Engineering Geodesy practise,
heterogenic with a certain number of p sensors onboard every
multifunctional device. Figure 1 depicts a typical sensor node
design. A processing and temporary storage unit makes such
a device a micro computer, whereas the possibility of data
pre-processing is optional, the so-called decentralized and
collaborative spatial computation (Duckham 2008). Finally,
with onboard computing a sensor node emerges from a
simple data logger to an intelligent platform.

Closed loop applications include also actuators, where
a reaction based on a detected situation can be accom-
plished automatically in real time. Such applications are
one of today’s Engineering Geodesy challenges and gen-
erally termed as ‘active monitoring’, e.g. hydraulic jacks

Fig. 1 Typical sensor node design (compare Günther et al. 2008)

Fig. 2 Crossbow MTS 420/MICA2 mote

to compensate settlements or compensation grouting during
tunnelling in urban areas. Within such tasks generally size
of the nodes etc. is secondary and permanent electric power
supply for the devices is presumed, however.

Due to normally restricted resources at the single sensor
node, link budgets (reachable ranges and data throughputs
of communication), power management of the autarkic units
(secure energy supply) and low maintenance (permanent
unattended operation) need detailed attention, especially in
harsh environmental conditions (e.g. dust, frost, humidity)
and for long term monitoring (year round operability). Thus,
for steady network operation the robustness of the whole
equipment is essential. Using novel technology, e.g. MEMS,
today a sensor node has a typical size between a shoe box and
a cigarette packet; see Fig. 2, with the prospect of becoming
smaller in future. Then often it also would be named a sensor
mote.

2.3 Communication

Each sensor node in a GSN has the ability to communicate.
The term network initially stands for communication and not
spatial relationships of the nodes. Regarding geo monitoring
in particular, license free wireless transmission techniques
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like WLAN (IEEE 802.11) come into consideration for
the efficient bridging of huge distances of up to several
kilometres from the scattered sensing units via gateway(s)
to the central data sink in the field where by default privacy
is given by standard encryption.

Bluetooth (IEEE 802.15.1) and ZigBee (based on IEEE
802.15.4, enhanced by ZigBee Alliance) are alternatives,
whereby especially the required data throughput is to con-
sider. Regarding existent practical needs, for secure trans-
mission over longer distances of several hundreds of meters
or some kilometres free line of sight is necessary to provide
adequate connectivity even with suitable external antennas.
Repeater nodes may be helpful in topographic restricted
vicinities.

Star and mesh network topology with one- and bi-
directional data communication is established, both
combined is called a hybrid network. Other than at star
topology with static and normally well-planned radio
connections (infra structural network) by a mesh network
different paths to the gateway can be taken by multi-
hop fashion in case of obstacles between the transmitter
and receiver etc. Here, the messages between the sensor
nodes are relayed at short(er) distances until they arrive at
the sink. Such non-hierarchical self-healing protocols for
multi-hop operating (dynamic routing) which automatically
configure themselves (ad hoc) have been developed, for
example XMesh by Crossbow (e.g. Nittel 2009), but the
presumption always is that there would be sensor nodes
available in the achievable range and the cumulated data
will not exceed the throughput as well as enough energy at
the relay nodes is available. With applications where static
radio connections cannot be planned there is no alternative to
this approach. At monitoring tasks wireless techniques often
are supplemented by wired communication, for instance
connecting of subsurface instrumentation in geotechnical
applications which as a rule is done by serial cables.

Transition power is a function of distance between the
sensor nodes and the gateway and the data volume to be
broadcast. As a rule: the shorter the distance the lower the
required transition power. Therefore mesh topology with
multi-hop offers advantages to simple star networks with
longer distances. Each node in the network adds its own data,
and the message size increases with each ‘hop’. Therefore,
nodes close to the gateway need significantly more energy
compared to leaf nodes in the network. Once again, it
becomes obvious that detailed planning (still) is important
for well operating GSNs in practice.

Nittel (2009) points out that sending data consumes about
800 times more energy than computing the same amount of
data on a local chip. Thus, minimizing communication is an
objective as soon as energy supply is a crucial issue at a
sensor node. Optionally, onboard computing and capacity of
data buffering (temporary storage) at the sensor nodes can be

used to reduce the transmission data volume, to optimize the
data packets, to avoid data lost due to communication failures
and finally, if necessary, to disburden the master station.
These facts assumedly will have impacts on the future design
of geo monitoring networks.

2.4 Network Operating

Normally, the central data sink or master station manages all
system operations on site, e.g. data collection and controlling
of the network. The evaluation of all data in real time
normally takes place here and, if necessary, early warnings
or even alerts can be given. ‘Real time’ is given as long as
the processed information of the GSN is available for all
necessary decision makings and actions. If the processing
of the data takes some time, e.g. a few minutes, often
this is called ‘near real time’ but, however, a small delay
for data gathering and evaluation must be accepted in any
case. Thus, real time always has to be seen regarding the
observed process but not the absolute time interval required
for the processing in seconds or minutes. The master station
is normally linked to a web server for supplementary data
archiving and data distribution separated corresponding to
access authorisation (esp. administrator, stakeholder, and
viewer). Therefore usually there is DSL, UTMS or GSM
connectivity.

Energy is possibly the most valuable property at the autar-
kic sensor nodes and customary communication is the most
energy consuming portion of the process. In geo monitoring
applications the nodes normally work time based with a
dense permanent data recording. When possible the nodes
switch over to a sleep mode if the sample rate is low, e.g. a
recording hourly or fewer (e.g. Martinez et al. 2009). With
temporary onboard data storage, e.g. by embedded boards,
broadcast can be reduced to a few orders of events per
day. However, this may be restricts real time availability of
results.

An event based network operation is optional if a sensor
node has the ability of threshold query. Only in case of
a threshold exceeding, data would be sent to the master
station immediately and the administrator would receive
knowledge of the event. But even with optimized operation
purely battery-supported operation with respect to long term
monitoring without interruptions and unattended running is
not possible. Possibilities to be explored for recharge include
solar panels, wind generators and, where appropriate, fuel
cells. ‘Energy harvesting’, the process by which energy is
for instance derived from thermal environments or kinetic
phenomena (e.g. vibrations), may offer new possibilities in
future.

So far, proprietary formats—often binary—are exported
from the sensors demanding data conversion before handling
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such information in own evaluations. To enhance data
integration the XML-based so-called Sensor Web Enabling
(SWE) initiative is proposed to make it easier to share data
streams, e.g. the leverage of data from other deployments for
own applications (see Bill 2010). Data integration from geo
services like official weather stations for example would
be much easier with such an interface. Finally, sensor
information becomes a part of the omnipresent Spatial Data
Infrastructure (SDI) and can be integrated in ‘Sensor GIS’
applications. These impacts are at the moment beyond the
scope of GSN to Engineering Geodesy, however.

3 Selected Aspects

Utilization of low cost equipment, e.g. MEMS, in geo moni-
toring applications generally requires calibration procedures
and/or higher sophisticated evaluation concepts. This shall be
explained by two examples.

3.1 Calibration of Motes: An Example

Crossbow Technology Inc. (see www.xbow.com) is one of
the leading WSN companies. A modular configured sensor
mote of a developer kit equipped with a combined ISM
(Industrial, Scientific and Medical bands) radio and power
module working with TinyOS (128 kbytes processor, two AA
batteries) is the MTS 420/MICA2, see Fig. 2. TinyOS is an
operating system designed for extremely restricted devices
such as Crossbow motes. The sensor board MTS 420 has
pD 5 different sensors with in total nine different quantities.
There is integrated a GPS receiver LEA-4A (16 channels,
L1; additionally an external patch antenna) from ublox (see
www.u-blox.com), an accelerometer (from Analog Devices),
a light sensor (from TAOS), a barometer (from Intersema)
and a temperature and humidity unit SHT 11 (from Sensirion,
see www.sensirion.com).

Only the temperature and humidity unit will be discussed
in the following. The SHT 11 chip, see Fig. 2, is specified at
a range from �40 to C80 ıC and an accuracy of ˙0.5 ıC at
25 ıC. For 0 and 50 ıC the accuracy specification ˙1.0 ıC
can be found. The humidity transducer is specified with an
absolute accuracy of ˙3 % of the relative humidity value
in a range between 20 and 100 %, which was confirmed
by a comparison with reference values in own studies. The
complete unit has a size of a few mm and costs of about
25AC. The SHT 11 temperature sensor was investigated in a
climate chamber at the UniBw between 0 and 35 ıC over
a time period of 10 h, whereby the reference values can be
guaranteed with 0.1 ıC. In total, 17 test items were available
and tested in two separated runs to check stability over
time.

A remarkable offset of several degrees non linear over
the examined temperature spectrum exceeding the specified
limits by far was to be seen. By polynomial regression
analysis (Welsch et al. 2000), individually performed for
every test item, calibration functions were established with
a remaining rms of better than 0.2 ıC. This simple example
shows that even with low cost sensors a good data quality
can be achieved, provided that a calibration is performed.
Increased effort for data handling is requested. Without such
investigations and calibration procedures, quality assess-
ments of data may be difficult to accomplish or not possible
at all. As quality cannot be compensated by ‘mass’ (in other
words many sensors) at geo monitoring applications such
examinations are highly recommended before commencing
with a project.

3.2 Carrier Phase Based Positioning Using
Simple Navigation Receivers

Geo localization using GNSS techniques is well-known,
especially concerning the GPS Standard Positioning Service
(SPS). To improve accuracy to cm and mm level augmen-
tation is needed. In general this is done by Phase based
Differential positioning (PDGNSS) techniques. Here besides
the code, the carrier phase information of the satellites sig-
nals is also introduced. Today, even with simple navigation
receivers produced for the mass market it is possible to obtain
accuracies of coordinate changes in the sub centimetre range
if the carrier phase data is available for processing. Many of
the simple navigation receivers make use of the carrier phase
data for some internal smoothing operations, but do not have
the ability of an autonomous phase based positioning like
RTK (Real Time Kinematic) rovers.

A procedure to make use of such gear is described in
more detail by Günther et al. (2008) and Glabsch et al.
(2010).1 Prerequisite is that a GNSS receiver has not only
the ability of carrier phase tracking but also the possibility
of read-out these data via a serial interface or USB. By the
serial interface or USB the configuration of the receiver also
has to be operated. Using commercial off-the-shelf wireless
device servers it becomes easily possible to integrate such
instruments equipped with serial ports or USB in a WLAN
network (Pink 2007). To keep costs low such a sensor node
(or sensor node component) in a GSN is just a simple ‘data
logger’ without own processing intelligence.

1The research was funded by the German Federal Ministry of Education
and Research (BMBF) from 2007 to 2010 in the program ‘Geotechnolo-
gien’.

www.xbow.com
www.u-blox.com
www.sensirion.com
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The developed monitoring system makes use of a per-
manent WLAN communication to gather all binary phase
and code data from the scattered low cost GNSS receivers
at a master station for an attached near real time processing
in batch mode. New baseline solutions are computed after
a certain time period, e.g. every 15 min, for all involved
sensor nodes to detect 3D surface movements. For each
epoch an individual solution depending strongly on the actual
satellite coverage is obtained. Using the described approach
it is necessary to have suitable software which continuously
collects the raw data from the q sensor nodes, converts the
proprietary binary data for the attached baseline processing
and hands over the results for the time series configuration,
filtering and other analysis tools.

The binary signals transmitted from the low cost receivers
to the master station contain not only code and phase infor-
mation, but also additional data like Signal to Noise ratio
(S/N), azimuth and elevation of satellites etc. This meta
information can be used to enhance and to optimize the
self-designed Near Real Time Processing (NRTP). NRTP
distinguishes against RTK but, however, must be considered
still ‘real time’ regarding the monitored process, e.g. a
landslide. All results can be stored in a MySQL data base
for enclosed (and repeated) evaluations.

The described approach is an alternative to the well-
known installation of a total station and offers, under good
conditions, similar or even better data quality. However,
also a combination of both approaches is technically easily
possible. The concept of gathering GNSS raw data over a
certain period of time opens all the well-known options of
high sophisticated post processing to all kinds of simple
receivers with a possibility of read-out of the carrier phase
information in a geodetic monitoring network. Of course, this
developed technique can be seen just as the position sensor
in Fig. 1.

Suitable receivers are available between 300 and 1,000AC,
for example Novatel Smart V1G Antenna (see Fig. 3) used
in a project described in the following. Such a device is
called an enclosure with receiver and antenna integrated in
one unit. Equipment like the Novatel Smart antenna is all-
weathered proofed and temperature resistant, which makes it
ideal for year-round operation even in harsh environmental
conditions, e.g. landslide or rock fall monitoring in alpine
winters. The emerging data amount for such a L1 receiver
is about 400 Byte/s depending on the satellite coverage.
Standard WLAN is able to meet these volumes even in larger
monitoring networks, however.

To test the benefits of low cost receivers several pilot
projects are conducted at the UniBw. A time series of 2
months (January and February 2011) from a monitoring
project at a lock is presented with Fig. 4. Depicted are plane
coordinates X, Y with a used moving average filter of 6 h.
Regarding the standard deviation of a single epoch of 15 min

- 14 L1 GPS, 12 L1 Glonass
- 0.15 cm rms accuracy carrier phase
- Power 9-24 V; 1.2 W
- Interfaces RS-232 / RS-422 / USB
- Environmental MIL-STD-810F
- Weight 575 g, size 115 x 90 mm

Fig. 3 Data Novatel Smart V1G antenna

Fig. 4 Example of a time series at a structure obtained by low cost
GNSS receivers (time period of 2 months, MA filter of 6 h) versus
temperature to demonstrate the potential

Table 3 Disposable and usable base line solutions in a pilot project
with free satellite visibility at all sensor nodes

Basis line solutions
Empirical standard
deviation epoch

Sensor node Disposable (%) Usable (%) X, Y [mm] H [mm]

# 101 99.9 98.7 3.0 5.3

# 102 99.9 98.7 2.9 5.2

# 103 100 99.4 3.1 4.8

# 104 100 99.4 2.5 4.6

(96 solutions per day) at Table 3 such a solution owns a
standard deviation of about 0.6 mm.

Table 3 depicts that there are about 99 % usable epoch
solutions in this project where only GPS data is used and the
Glonass option still is open. The behaviour of the structure
in Y direction with respect to the temperature influence is
clearly to be seen in Fig. 4. As consumer grade antennas tend
to be sensitive against multipath and other effects (Wieser
and Niedermayer 2011), at the moment filter periods of 3–6 h
are necessary to obtain reliable results. With a better quality
assessment of such antennas further enhancement of results
and especially shortening of filter intervals is a challenge.

From a methodical point of view it is conceivable to
use the above mentioned low cost GNSS sensor nodes as
beacons for a further densification with a class of (cheaper)
subordinated sensor nodes not equipped with a receiver
(heterogenic design, see Table 2). For instance Bill (2010)
discusses such localization approaches with respect to the
neighbouring nodes. On the other side it is also possible to
have (expensive) high-end receivers on some fiducial points.
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This well-known concept from Geodesy, e.g. for a better
modelling of troposphere refraction (e.g. Gassner et al. 2002)
can be assigned to small scale GSNs as well to improve accu-
racy and a staged configuration of the monitoring network
evolves.

Conclusion and Outlook

In the recent decade, there has been an ongoing pervasive
impact of GSN on geo sciences and engineering offer-
ing new possibilities for the monitoring of geotechnical
objects and civil engineering structures. Avoiding com-
munication and power lines during field installation in
addition to cost effective sensing devices and easy instal-
lation are some meaningful benefits derived from the new
technique. Thus, as an alternative to the exclusive geodetic
and geotechnical instrumentation currently available on
the market is possible to react appropriately in many
applications where cost constraints are dominant and a
flexible system set-up is required. As geo monitoring is a
multi scale problem concerning dimension of the objects,
nature and time dependence of the processes, relevance of
the problems etc., GSN is an ideal tool to react flexible
and efficiently to different potential situations.

When calibration and high-sophisticated evaluation
procedures are used, sufficient data quality for most of
the monitoring applications can be obtained even with
state of the art low cost equipment like presented in
Sect. 3. The essential benefit of the GSN developments is
that a densification of characteristic points of an object,
the discretization in space according to Table 1, now
becomes possible at a higher standard and at lower costs
than before. Therefore, a description of spatial-temporal
field problems, e.g. in terms of deformation patterns or
temperature distributions, can be achieved in a much
better way than before.

Because of this, more sophisticated real time capa-
ble approximation and interpolation algorithms, among
other things, are requested during elevation and process-
ing. Data fusion (compare Arnhardt et al. 2010) stands
for the possibility of cross checking data from identical
but neighboured sensors by combinations as well as
the comparison of different measured quantities (at the
same node) and their respective varying rates of change.
A better validation of the recorded data evolves from
an over determination—more measured quantities than
unknowns—of the time depending process. Redundancy,
which is well-known and practiced at geodetic networks
by means of least squares adjustment for years (see
Welsch et al. 2000) will help to detect malfunctions
and outliers and other failures as well as an enhance-
ment of data quality, especially with respect to accuracy
andreliability. Thus, ‘network’ furthermore stands not

only for communication, but also an integrated data anal-
ysis. Bayes-estimation in context with Kalman-filtering,
like it is already developed in robotics (Thrun et al. 2005),
seems to be a promising tool for prediction and updating
the system behaviour. Finally, enhanced data quality man-
agement is requested, will lead to better results and also
will help to avoid false alarms by better and more reli-
able decision making, something often lacking in today’s
acceptability of monitoring systems in practice. However,
a lack of suitable and intelligent GSN software to handle
the mentioned data fusion as well as the modelling of time
variant field problems appropriately including integration
of data into models especially for geodetic monitoring
purposes is to ascertain at the moment.
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Design of Artificial Neural Networks
for Change-Point Detection

H. Neuner

Abstract

An important assumption in the global approach to system identification is the homogeneity
of observed time series from statistical point of view. A violation of this assumption leads
to biased estimated parameters and a low quality of the model.

This paper addresses the task of change-point detection by means of Artificial Neural
Networks (ANN). The focus lies on the appropriate design of ANN by specifying the inputs,
outputs and the necessary number of hidden nodes for an error-free classification of the data.
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1 Introduction

In a modern perspective deformation analysis deals with
the modeling of the whole deformation process which is
formed by the causal relationship between acting loads, the
monitored object and its deformation. This approach enables
the derivation of object properties from the resulting models.
The most comprehensive description of the deformation
process is performed in dynamic models which express the
deformation as a function of acting loads and time (Welsch
and Heunecke 2001).

Upon the two distinct strategies of dynamic modeling this
study refers mainly to the behavioral approach.

Regardless if the models are linear or non-linear or if
the modeling is performed in time or frequency domain a
common assumption in this approach is the homogeneity of
the statistical parameters of the analyzed data. This refers
mainly to the constancy of the mean, of the variance and the
dependency of the autocorrelation function on the time lag.

H. Neuner (�)
Research Group Engineering Geodesy, Department Geodesy and
Geoinformation, TU Vienna, Gusshausstrasse 27-29, 1040 Vienna
e-mail: hans.neuner@geo.tuwien.ac.at

The homogeneity assumption is implicit. The linear mod-
eling in time-domain uses the entire data set undifferentiated
for the estimation of the weighting coefficients (Neuner et al.
2004). For linear modeling in frequency domain the data
is converted using the Fourier-transform, which typically
treats the data in a global way (Kuhlmann 1996). Non-
linear modeling, i.e. by Artificial Neural Networks (ANN),
assumes implicitly homogeneous statistical properties of the
data as well. This enables the use of a subset of the data
for network training (Miima 2002). In every case the model
performance decreases dramatically if the assumptions are
violated.

A two-step approach was presented in Neuner (2008)
to handle data with heterogeneous mean and/or variance in
dynamic deformation modeling. The study refers to piece-
wise homogeneous series as a special type of heterogeneity.
The locations of changes in the statistical parameters are
called change-points.

After transforming the time series with a wavelet-
transform (Bäni 2005) in a first step, the variance
homogeneity is assessed on the basis of the wavelet-
coefficients. A main advantage of this approach is the
homogeneous mean of these coefficients due to their
centering about the zero axis. This allows a separate
assessment of mean and variance homogeneity.
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Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
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A statistical variance homogeneity test, originally moti-
vated by Durbin (1968) and developed later by Inclán and
Tiao (1994), is applied on the series of wavelet coefficients.
The test uses a test value based on the centered cumulative
sum of squares of the samples (the wavelet coefficients). Its
main disadvantage is the availability of probability bounds
for the test value only in case of identical and independent
distributed (i.i.d.) samples. This is however a very severe
restriction which is seldom fulfilled by real-world data. Due
to the large variety it is difficult to assess how violations
affect the test power and the obtained results in last conse-
quence.

To avoid the abovementioned problems, this paper dis-
cusses an alternative method for variance change-point (vcp)
detection. The method has a non-statistical background. Its
main concept is the treatment of the vcp detection as a pattern
recognition task, which is solved by means of ANN. Up to
now, ANN were used in engineering surveying in a regres-
sion framework to perform non-linear system identification
(i.e. Heine 1999; Miima 2002; Neuner 2010).

Different to the regression framework, pattern recognition
in the sense it’s used in this paper aims the classification
of data with respect to a single feature or a set of features.
In this case, the feature of interest is the level of variance
in parts of the analyzed time series. The outputs of the
analysis are labels assigned to the input data according to
their membership.

Some advantages of using this ANN-based approach over
other vcp detection methods and classification methods, like
clustering algorithms, are:
– The method accounts for the alignment in time of the ana-

lyzed data. This allows the time localization of identified
vcp.

– It is a supervised method. The performance of the model
can be controlled by appropriate set up of the model
structure (see Sects. 2 and 3) and by special designed
training signals.

– The method doesn’t assume a specific probability or
correlation structure of the analyzed data.
The paper has the following structure: Basics related to

ANN are presented in Sect. 2. The theoretical background of
the vcp detection method is given in Sect. 3. Obtained results
are discussed in Sect. 4. The paper concludes with a summary
and an outlook.

2 Artificial Neural Networks

ANN are non-linear model structures that contain units
of information processing—the nodes—organized in layers.
The interaction between the nodes and their arrangement
in layers allowsfor a parallel processing of the information.
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An extensive treatment of ANN is given by Haykin (1999)
and Bishop (2005).

The general structure of an ANN is shown in Fig. 1.
Starting from left, the first layer contains the input nodes.
These are non-processing units that transmit and distribute
the input in the network. Usually the number of input
nodes NI equals the number of influencing parameters of
the process. The rightmost layer contains the output nodes.
These are information processing units which calculate the
final result. The number of output nodes NO corresponds to
the number of output parameters of the process. Additionally,
the model may contain a variable number of layers situated
between the input and the output layer. These are called
hidden layers. The number of hidden layers NH and of nodes
included in them is a model selection task that needs to be
solved individually in each modeling activity.

The nodes of adjacent layers are completely linked. The
strength of the links is expressed by weights. These weights
are initially unknown and represent the model parameters
that need to be estimated from pairs of input–output data in
the training phase.

The information processing at node level is drafted in
Fig. 2 and is done according to the formula:
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with kD 1 : : : NL. In (1) yk
(L) is the output from the kth node

in layer L, ® is the node specific activation function, wki
(L�1)

is the weight corresponding to the link between the kth node
in layer L and the ith node in layer (L�1), bkL is a node
specific bias term and NL is the number of nodes in layer L.

Typically, a sigmoidal function, like the tanh, is used for
the activation of the hidden nodes and a linear function is
used for the activation of the output nodes. This set up was
also adopted in the present case.

The resulting non-linear model is fitted to the observed
pairs of input and output data. The unknown weights are
estimated by minimizing a scope function E, which is built
as the sum of squared deviations between the observed and
computed values of the output, yobs and yANN respectively:

E D 1

N

NX
iD1

Ei D 1

2N

NX
iD1

NOX
kD1

�
y.k/obs;i � y.k/ANN;i

�2 ! min :;

(2)

where N is the number of samples.

The parameter estimation problem was solved in this
study with the Levenberg–Marquardt-algorithm (LM-
algorithm) which uses a second order approximation of
the error surface described by (2). In generally, such an
approximation requires the computation of the Hesse–
Matrix. This is especially for highly non-linear problems a
challenging task. The LM-algorithm circumvents the explicit
determination of this matrix by using an approximation
which involves the Jacobi-matrix J. Thus, starting with an
approximate solution w0 the modification of the estimated
parameters�w is done iteratively:

�w D �JTJC �I
��1 � rE .w/ ; (3)

where rE(w) denotes the gradient of the scope function
(2), � a regularisation factor and I the identity matrix.
The solution (3) is similar to the solution of the Gauss–
Markov-model. For�D 0 the two solutions are identical. For
large values of � the contribution of JTJ to the solution is
negligible and the solution is equivalent to the one obtained
by the steepest-descent.

A main reason for using ANN in vcp detection is their
property of universal approximation. As shown by Hornik
et al. (1989) an ANN with a single hidden layer of nodes
activated by a sigmoidal function and linear activated nodes
in the output layer can approximate a continuous function
to any degree of accuracy. According to this property the
only free structural parameter of the model is the number of

nodes included in the hidden layer. The ability of the model
structure to approximate complex functional dependencies
increases with the number of hidden nodes.

The aimed variance change detection sensitivity is
expressed in the ANN model by the number of output
nodes. Each output node refers to a specified level of the
variance through an assigned numerical label. The higher
the detection sensitivity the more complex is the function
needed to distinguish between the different variance levels.
Therefore, a useful approximation of this function requires
an adequate number of hidden nodes. An increase of the
number of hidden nodes leads to an increased number
of unknown weights that have to be estimated. In last
consequence, this affords an increase amount of data in the
training. These connections suggest that the aimed detection
sensitivity, the number of hidden nodes and the number of
training samples should be well-thought-out combined. This
aspect is investigated in the next section.

3 Change-Point Detection by ANN

Before starting the processing with ANN the input and
output data is usually normalized to a common domain, i.e.
[�1, 1]. One reason for this pre-processing step is the use
of activation functions, like the tanh, which are S-shaped
and have the main transition band in that domain. In order
to achieve a good improvement rate of the weights during
the iterated estimation it is necessary that the weighted
sum of the inputs to a node, which according to (1) rep-
resents the argument of the activation function, is situated
in this domain. This normalization step is also useful for
this study. The transformation of all data independently from
their nature, magnitude or source to a common variance
level allows an objective assessment of the latter. Thus, a
detection sensitivity of the model can be specified according
to the specific problem and considered in the design of
the ANN. Furthermore, a single ANN structure can be
used for the analysis of all influencing parameters and
deformation signals if the aimed detection sensitivity is the
same.

The input to the network was firstly generated by means of
a data window of fixed size. The window was moved over the
analysed time series with a stepsize of 1. The data included
at a certain position build one epoch of the input to the
network. This approach is similar to process control studies
(Pugh 1989; Ooh et al. 2005). Based on the analysis of the
dependency of the variance of the variance estimation on the
number of samples a window size NFD 20 was chosen. This
corresponds to an ANN architecture with 20 input nodes. In
case of standard normal distributed data the estimation of
variance from ND 20 samples has a variance of 10 % which
was considered to be sufficient for this study.
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It turns out that the use of the normalized data in the input
leads to poor detection performance. Therefore, in a second
approach characteristic measures for the variability of data
where used as input to the network. Concretely, the values of
the sum of squares and the absolute value of the range

NFX
iD1

x2
i and

ˇ̌̌
ˇ max
iD1::NF

.xi/ � min
iD1::NF

.xi/

ˇ̌̌
ˇ ; (4)

where calculated from samples contained in one position of
the data window. According to (4), the dimension of the input
reduces to two input nodes.

The output from the network are numeric labels assigned
to each variance level. These labels characterize only the
variance level and are not estimates of it. The number of
levels equals the number of output nodes and must be task-
oriented predefined. The finer the division of the variance
domain the more sensitive must be the detection model. This
requires a large amount of free parameters in the model and
implicitly large data sets for their estimation. Despite the
increase in the computation burden this is not a restriction,
due to the fact, that the training of the ANN is based on
synthetic signals, as shown in the next section.

The linear activation of the output nodes leads to a
continuous output from the network. The nearest label to
the computed output determines the assignment to a certain
predefined variance level. This corresponds in fact to the use
of threshold activation functions for the output nodes.

A main task in the design of ANN vor vcp detection is the
specification of the number of hidden nodes. This number
determines the structure of the model and thus, the capacity
of the network.

A good insight to the notion of capacity is gained by the
analysis of an ANN with NI binary input nodes and one
binary output node activated by a threshold function. Without
loss of generality the bias term is ignored. There are 2ˆ(NI)
distinct input patterns and each can be classified in 2 different
ways by the output node. This leads to 2ˆ(2ˆNI) possibilities
in which the NI inputs can be classified.

The thresholding occurs when the linear output equals to
0. In this case relation (1) can be written for the output node:

x1 D ®
 

NIX
iD1

w1i � yi

!
D

NIX
iD1

w1i � yi D 0: (5)

For NID 2 Eq. (5) describes a separating line between two
regions of the input space. In this case there exist 4 distinct
input patterns f(C1, C1); (�1, �1); (C1, �1); (�1, C1)g
and 16 possibilities in which they can be classified. Out of
these 16 possibilities only 14 can be classified by a linear
discriminator. The two unhandled possibilities correspond
to the logical XOR-function. The model capacity reflects

the number of distinct classification functions that can be
implemented by the model.

Note in the abovementioned example, that if the two-
dimensional input contains only three input patterns the
linear discriminator given by (5) can error-free handle all
the eight classification possibilities. This suggests that the
capacity of a model should be assessed with respect the
number of distinct patterns of the particular input space.

In general, a model of a certain capacity can implement all
possible classifications up to a maximum number of distinct
patterns Nmax. In case of the two input linear discriminator
NmaxD 3. Beyond this number of samples the model can
implement only a fraction of the total amount of possibilities
(for ND 4 only 14 out of 16 functions can be implemented).
The maximum number of distinct samples Nmax for which a
model structure can implement all 2ˆ(Nmax) possible classifi-
cation functions is called Vapnik–Chervonenkis dimension
(VC-dimension) and is a characteristic of the particular
(ANN-)model.

Unfortunately, the exact determination of this charac-
teristic measure is very difficult, especially for complex
network structures. Up to now a large amount of research
concerns the determination of lower and upper bounds for the
VC-dimension of various ANN-structures. For the present
study the results obtained by Baum and Haussler (1989)
are useful. They obtained the following upper bound on the
VC-dimension for an ANN that consists of NK threshold
activated nodes and NW weights:

VC-dimension � 2NWlog2 .eNK/ ; (6)

where e is the base of the natural logarithm. Based on (6)
they showed that if out of N patterns, with

N � NW

"
log2

�
NK

"

�
: (7)

a fraction of 1� ("/2) is correctly classified by that ANN in
the training phase, where 0<"� 1/8, than the network will
correctly classify a fraction 1� " of future patterns in the
so called test phase of the ANN, if these follow the same
distribution. This result was used to determine the number of
training samples for ANN with a certain number of hidden
nodes.

4 Results and Practical Considerations

In a first example the ANN-based change-point detection
method is used to detect variance changes in synthetic
signals. For the network training ND 10,000 samples were
generated from the standard normal distribution. Three vari-
ance change-points of different magnitude were introduced
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Fig. 3 VCP detection on synthetic signals

at locations of N/4, N/2 and 3 N/4. The magnitude of the
changes is expressed with respect to the original variance
level of 1, which was not modified in the first part of the
series and amounts to: 0.3, 2.0 and 1.0. The synthetic signal
is shown in blue in the upper graph of Fig. 3.

The input was generated from the original series using
Eq. (4) with NFD 20. The desired output is defined according
to the variance level in each of the four sections of the signal.
The labels 0, �0.5, 0.5 were chosen to characterize the three
distinct variance levels. By this choice one reads in the output
signal if the variance increases or decreases with respect
to the reference level. Note that these labels are arbitrarily
chosen and are not estimates of the variance or change in
variance.

The network weights were estimated using the LM-
algorithm. The output computed by the network is shown in
red in the upper graph of Fig. 3. As can be seen all samples
of the synthetic signal were error-free classified. This quote
is an exception. In similar studies the classification error
amounts to 3-5%�.

To assess the generalisation properties of the network a
second synthetic signal consisting of 10,000 samples was
generated from the standard normal distribution. The change-
points were placed at different locations: N/5, 2 N/5 and
4 N/5. The magnitude of the first 2 change-points was also
modified to 0.4 and 2.5 respectively. The structure of this
signal is shown in blue in the second graph of Fig. 3.

The already trained network was used to detect the vari-
ance changes in this second signal. This corresponds to a
run of the model in prediction modus. The classification
result is shown in red in the same graph. Again, an error-
free classification is attained with that model. This proves its
good performance for this test scenario.

In a second application the method was used to detect
variance changes in series of wavelet-coefficients of a defor-
mation signal recorded at a wind energy turbine.

The analysed series is shown in blue in the second graph
of Fig. 4. The analysed wavelet coefficients contain only the
variability information.

0 1 2 3 4 5

x 10
4

-1

0

1

Sample No.

citehtnyS
en iS

200 400 600 800
0

0.5

1

Sample No.

noita
mrofe

D
]nog

m[

Fig. 4 VCP detection for a deformation signal

Motivated by the fact that many real-world processes
contain cyclic components a synthetic cyclic signal was used
in the training phase to estimate the weights of the ANN.
The periods of the synthetic cyclic signals correspond to the
dominant periodicities contained in the analysed series of
coefficients. These are identified by spectral analysis.

Five different variance levels were introduced in the
synthetic signal by multiplying the unity amplitude with 1.0,
0.5, 0.75, 1.5 and 2.0. The structure of the ANN includes 15
nodes in the hidden layer. According to (7) for an amount
of ND 50,000 training patterns the misclassification error of
future data is below "D 2.5 %. Therefore, 1,00,000 samples
were generated for each predefined variance level. The use of
a synthetic cyclic signal in the training phase is an important
advantage of the proposed approach because it allows the
generation of sufficiently large data sets in accordance to the
desired level of misclassification for future data.

Subsequently, the trained network is used for the variance
homogeneity assessment in the series of wavelet coefficients.
The output computed by the network in case of the real-world
data is shown in red in the second graph of Fig. 4. As can
be observed, the model performs fairly good in identifying
distinct variance levels of the analysed coefficient series. This
result is used to set up a dynamic model which accounts for
the different variance levels.

5 Summary and Outlook

This paper deals with the variance change-point detection by
means of ANN. The developed method refers to a proper
generation of the input and the desired output signals used
to train the network. The design of the network architecture
is based on the notion of model capacity and related to that,
on the VC-dimension of the model structure. Some results
from practical applications are discussed in case of synthetic
signals and real-world data. Future work is focused on the
determination of tight upper bounds for the model capacity



144 H. Neuner

and a more thorough theoretical justification of the window
size NF used to generate the input to the network.
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Spatial and Temporal Kinematics
of the Inylchek Glacier in Kyrgyzstan Derived
from Landsat and ASTER Imagery

M. Nobakht, M. Motagh, H.U. Wetzel, and M.A. Sharifi

Abstract

Spatio-temporal variations of glacier flow are a key indicator of impact of global warming,
as the glaciers react sensitively to change in climate. Satellite remote sensing using optical
imagery is an efficient tool for studying ice-velocity fields on mountain glaciers. This study
evaluates the potential of Landsat and ASTER imagery to investigate surface velocity field
associated with the Inylchek Glacier in Kyrgyzstan. We present a detailed map for the
kinematics of Inylchek glacier obtained by cross correlation analysis of Landsat images,
acquired between 2000 and 2010, and a pair of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) images covering the time period of 2007–2008. Our
result indicates a high-velocity region in the elevated part of the glacier moving up to a rate
of about 0.5 m/day. Time series analysis reveals some annual variations in the mean surface
velocity of the Inylchek during 2000–2010.

Keywords

ASTER • Cross-correlation • Glacier dynamics • Inylchek/Kyrgyzstan • Landsat

1 Introduction

One of the greatest concentrations of permanent snow and ice
in the mid-latitudes of the Northern Hemisphere is located
in glaciated mountains of Central Asia. Tien Shan mountain
system hosts some of the largest non-polar glaciers in the
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world (Mayer et al. 2008). Mountain glaciers are the only
renewable fresh water resource in Central Asia, dominated
in part by large deserts and arid lowlands with very low
precipitation and extremely dry climates (Aizen et al. 2007).

Tien Shan mountain in Central Asia consists of 15953
glaciers with a total area of 15,416 km2 and a total volume of
1,048 km3. It is a vital source of water for rivers and lakes in
this region, in particular during dry years (Aizen et al. 2007).
Inylchek glacier in Kyrgyzstan (Fig. 1) located in Central
Tien Shan is the largest glacier of this mountain system
with 61 km of length and an area of 567.20 km2. Its glacial
runoff is 54 % of the average annual runoff of Kumarik River
(Shen et al. 2006). Inylchek also contains the largest glacial
lake of Central Asia, called Lake Merzbacher, located in the
conjunction point of northern and southern Inylchek (Wetzel
et al. 2005). This ice-dammed lake is founded by an ice dam
preventing the northern Inylchek drainage water from direct
runoff into the valley (Mayer et al. 2008). Frequent glacier
lake outburst floods (GLOFs) of Lake Merzbacher in recent
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Fig. 1 Position of Inylchek glacier and Merzbacher lake in a Landsat
image, acquired 21-aug-2006, bands 4, 3, 2>RGB

years caused heavy damage to infrastructure along the glacier
outflow region.

Valuable information about the dynamics and physical
condition of glaciers can be achieved by measurement of
surface velocity fields of glaciers. Inylchek glacier is located
in a very remote area with an average elevation of 4,000 m
above sea level. Performing ground-based in-situ measure-
ment of glacier surface velocity in this area is very costly and
extremely time-consuming. Remote sensing measurement
using optical imagery provides a valuable tool to study and
assess the kinematics of this type of glaciers.

Global coverage, satisfying spatial and temporal resolu-
tion (15 m ground pixel size, 16 days revisit period) and low
cost of ASTER images provide an opportunity to investigate
the dynamic and kinematic of mountain glaciers (Kargel
et al. 2005). In comparison with whiskbroom sensors, the
use of images such as ASTER obtained from pushbroom
sensors provides reliable results, as inherent problems related
to effects of attitude variations and inaccurate DEMs can be
solved by using raw image metadata. Also, extensive global
coverage, relatively good spatial and temporal resolution
(30 m ground pixel size, 16 days revisit period) and free
availability of Landsat scenes make this type of imagery a
viable option among other alternatives for large-scale and
long-term monitoring of remote glacial systems. Landsat
data has been extensively used in the past three decades
to study the kinematics and dynamics behaviour of several
glaciers in Antarctic region (Bindschadler 1998; Maas et al.
2008).

By using optical imagery for the kinematics analysis of
the glaciers the accuracy of the results greatly depends on
several factors including the ground resolution of the images
and the ability to precisely co-register consecutive images
(Scherler et al. 2008). To obtain an accurate and reliable
displacement field, performing precise image to image co-
registration is a very critical processing step (Leprince et al.
2007). In this study, several Landsat images and a pair of

ASTER images acquired over the Inylchek glacier in the past
decade are used to evaluate the temporal and spatial pattern
of its surface velocity field.

The paper is arranged as follows. Section 2 presents
the characteristics of images and the methodology used for
precise co-registration and correlation analysis of the images.
In Sect. 3 we discuss the obtained results and perform quality
test to determine factors affecting the quality of measure-
ments. We also investigate the annual variations in surface
velocity of glacier along a longitudinal profile. Finally we
conclude the paper with a summary of our findings in this
research in Section “conclusion”.

2 Data andMethodology

2.1 ASTER Imagery

ASTER’s spectral and geometric characteristics include
three bands in VNIR (Visible Near Infra-Red) range with
15 m resolution, six bands in SWIR (Short Wave Infra-Red)
with 30 m, five bands in TIR (Thermal Infra-Red) with
90 m, and a 15 m resolution NIR along-track stereo-band
looking back 27.6ı from nadir. Here we used VNIR band
(band 3 N), due to high contrast between features in this
frequency band, which facilitates both co-registration and
cross-correlation analysis of images. Following the standard
procedure described in detail in Leprince et al. (2007) and
Scherler et al. (2008), a digital elevation model is used as the
global ground truth for orthorectification of ASTER imagery,
because the images are not globally georeferenced.

A common problem for both radar-based and optical-
based DEMs is the existence of large gaps and voids espe-
cially in mountainous terrains. Smaller gaps can be inter-
polated using the original data but larger gaps and void
areas should be interpolated using other data sources. In
this study, a 90 m spatial resolution DEM provided by
Shuttle Radar Topography Mission (SRTM) is used. The
large voids in SRTM are patched with data from topo-
graphic maps, freely available from Jonathan de Ferranti
(http://www.viewfinderpanoramas.org). Over 10 tie points
are selected on stable features between first raw ASTER
image of 12 May 2007 and a shaded version of DEM.
Selected tie points are locally optimized using sub-pixel
correlation and converted into ground control points (GCP)
for precise orthorectification. In our analysis an average
misregistration of about 50 cm is achieved with a standard
deviation of 14 m between ASTER image of 12 May 2007
and hill-shaded DEM. Following this procedure, the other
ASTER raw image of 01 July 2008 is orthorectified and
co-registered relative to the fist ortho-image with average
misregistration of less than 2 cm and standard deviation
below 2.5 m (1/6 pixel size). This very precise co-registration

http://www.viewfinderpanoramas.org
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and orthorectification is a critical perquisite step for obtain-
ing accurate measurement of surface displacement by cross-
correlation of two ortho-images.

To derive accurate and confident velocity field a cross-
correlation algorithm in frequency domain, which relies on
Fourier shift theorem is applied (Leprince et al. 2007). The
relative displacement between two precisely co-registered
images can be retrieved from the phase difference of their
Fourier transforms, as follows: If i1(x, y) and i2(x, y) be two
consecutive images that differ only by a displacement of
(�x,�y), we have

I2
�
!x; !y

� D I1 �!x; !y� e�j .!x�xC!y�y/ (1)

where I1 and I2 denote the Fourier transform of images
and (!x,!y) are the frequency variables in column and row.
Normalized cross-spectrum of the images is expressed by

Ci1i2 D
I1
�
!x; !y

�
I�
2

�
!x; !y

�
ˇ̌
I1
�
!x; !y

�
I�
2

�
!x; !y

�ˇ̌ D ej.!x�xC!y�y/ (2)

where * denotes the complex conjugate. According to cross-
spectrum characteristics, relative displacement can thus be
recovered by either estimation of the linear phase of the
images’ cross-spectrum (Van Puymbroeck et al. 2000), or
determination of the exact location of the correlation peak
(Foroosh et al. 2002). In this study we used a combined
method developed by Leprince et al. (2007), using the COSI-
Corr module. This process provides us with two correlation
images representing horizontal ground displacement in East–
West and North–South directions, and a Signal-to-Noise
Ratio (SNR) for each measurement, representing the confi-
dence of the results.

2.2 Landsat Imagery

Table 1 lists the images analyzed in this study. Suitable
Landsat pairs were selected among more than 70 images
acquired in the period 2000–2010 in this region. Many
parameters have been considered for selecting these pairs,
in particular the presence of strip lines in images, Scan
Line Corrector (SLC)-failure in Landsat7 and the similarity
of scenes with regards to cloud cover and snow cover. In
contrast to ASTER raw images, all Landsat images are
accessible in orthorectified and georeferenced format.

Similar to ASTER images, the co-registration of Landsat
images is a key step to measure glacier surface velocity
fields. It will significantly affect the accuracy of the obtained
velocities (Berthier et al. 2003; Leprince et al. 2007). In this
study, an automated precise registration and orthorectifica-
tion package, called AROP, is used for precise co-registration

Table 1 Images used to study Inylchek glacier

Master image Slave image Sensor Separation (day)

13 Sep 2000 16 Sep 2001 Landsat 7 368

13 Sep 2000 01 Jul 2002 Landsat 7 656

16 Sep 2001 01 Jul 2002 Landsat 7 288

23 Feb 2002 14 Mar 2003 Landsat 7 384

21 Aug 2006 24 Aug 2007 Landsat 5 368

12 May 2007 01 Jul 2008 ASTER 416

26 Jun 2009 15 Jul 2010 Landsat 5 384

of Landsat Images (Gao et al. 2009). Using this package
we achieved co-registered pairs, consistent in the geographic
extent, spatial resolution, and projection. Over 300 tie points
between two images were generated with the RMSE less than
0.4 pixel size for each pair. Finally, correlation map in sub-
pixel accuracy was obtained by applying cross-correlation
for a 64� 64 window as the initial correlation search window
and 32� 32 sliding window as the final correlation window.
Final ground resolution of 60 m was obtained by a sliding
step of 2 pixels for correlation window.

3 Results

Figure 2 illustrates an example of East–West components
of displacement field obtained by sub-pixel correlation of
two Landsat images acquired in August 2006 and August
2007 over Inylchek glacier. For a better visualization, a slope
masking has been applied using SRTM digital elevation
model, and the displacement map has been overlaid on a
Landsat image. In this case the slope of all glaciated re is
lower than 20ı.

As a consistency test three images from the years 2000,
2001 and 2002 are investigated to compare the cumulative
displacement of 2000–2001 and 2001–2002 pairs with the
one obtained directly from 2000 to 2002 pair (see Table 1).
An example of surface displacement along the a-b profile in
Fig. 1 is given in Fig. 3. A good agreement over most parts of
the profile is observed. There are some discrepancies in the
centre of the profile, which is related to the effect of cloud
cover and difference in sun azimuth in 2000–2001 and 2000–
2002 pairs, as confirmed by visual investigation of images.

Based on our observation along this profile, we can
analyse the mean surface velocity in three parts; velocities in
a high elevated tributary of glacier (Part I), velocities along
the main trunk of southern Inylchek glacier (Part II) and
surface velocities right before glacier drainage to the lake
Merzbacher (Part III).

Variation of the mean surface velocity along the profile
different time period associated with the data in Table 1 is
illustrated in Fig. 4. As shown in this figure, the highest mean
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Fig. 2 East–West component of the correlation of two Landsat images
over the central Inylchek glacier for the period of 21 Aug 2006 to
24 Aug 2007 overlaid on a Landsat RGB image. Displacements are
positive toward the East

Fig. 3 Surface displacement along the longitudinal profile over
Inylchek glacier (see Fig. 1). Solid and dashed lines depict the total
displacement over the time span given in the figure’s legend

surface velocity is occurring at the most elevated part of the
profile (Part I), Glacier flows northward in this part and its
velocity sharply decreases along the profile. It is interesting
to note that a quick change in velocity is happening between
Part I and Part II, at the kilometre 5 along the profile a–b. This
is due to the difference in velocities between the ablation
zone of the glacier and the accumulation zone, as expected.
The surface velocity slowly decreases downstream along Part
II, as can be expected for parallel ice flow in the ablation
zone. This part of the profile shows some fluctuations in the
mean surface velocity; the velocity obtained for the 2009–
2010 period are about 1.25 times higher than that obtained
for the 2006–2007 period.

A major extent of south Inylchek glacier flows toward the
Lake Merzbacher (Mayer et al. 2008). Thus, we observe a
reduction in the mean velocity exactly before the region of
glacier rotation toward the lake. In contrast, close to the ice
dam (Part III) a considerable acceleration is observed, which
is in accordance with the glacier drainage and glacier calving

Fig. 4 Surface velocities derived from repeat Landsat and ASTER
imagery by cross-correlation analysis along the a–b profile indicated
in Fig. 1

into the Lake Merzbacher. Our findings in this research agree
well with results which have been previously published by
Mayer et al. 2008. However they have investigated surface
velocities just near the ice dam (Part III) while we present a
velocity map for whole glacier extent.

Conclusion

More than 70 Landsat images and 3 ASTER images
acquired over the Inylchek glacier in Kyrgyzstan were
investigated to derive the temporal and spatial pattern of
the surface velocity field of this glacier. Our preliminary
results indicate several important features associated with
the kinematics of the Inylchek; e.g., a high-velocity region
in the elevated part of the glacier is observed moving
at a rate of about 0.5 m/day during the 2002–2003 time
period. A quick change in velocity is observed between
the ablation zone of the glacier and its accumulation zone
and also a striking increase in mean surface velocity is
observed between 2009 and 2010.
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Response Automation in Geodetic Sensor
Networks by Means of Bayesian Networks

S. Horst, H. Alkhatib, and H. Kutterer

Abstract

Today’s geodetic sensors allow an almost fully automated data collection. This happens
in a previously fixed chain with constant parameters. A reaction to events during the
measurement process, for example by adjusting the measurement resolution or a specific
control of an actuator, is usually not intended. This lack will be overcome by adaption
of new communication techniques with networked sensors and a proper assessment of
occurring events. As the basis of such an assessment probabilistic state variables of the
processes are introduced. As an analysis method Bayesian networks are used in our
study, which are powerful tools to make decisions based on uncertain information. The
evidence calculation on the sensor nodes is derived by Kalman filtering and a subsequent
compatibility test. The advantages of this method are shown by means of a simulation.

Keywords

Assessment of events • Bayesian networks • Kalman filter • Response automation • Sensor
networks

1 Introduction

In today’s engineering geodesy applications, a variety of
different sensors is used. All these geodetic sensors allow an
almost fully automated data collection. For example modern
total stations are able to align on different points, laser scan-
ners measure huge point clouds or inclinometer sample in
certain intervals. Furthermore, new wireless communication
techniques are introduced in geodetic engineering processes.
For example in Pink (2007) a wireless sensor network based
on GNSS sensors for monitoring measurements is evaluated.
Despite these new techniques, all applications have one thing

S. Horst (�) • H. Alkhatib
Geodätisches Institut Hannover, Nienburger Str. 1,
30167 Hannover, Germany
e-mail: horst@gih.uni-hannover.de

H. Kutterer
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in common: usually each step in the process is performed
in a previously fixed chain with constant parameters (e.g.
scanning a target point at fixed time intervals). A reaction
to events during the measurement process, for example by
adjusting the measurement resolution or a specific control of
an actuator, is usually not intended. Typically the adaptation
of the process is carried out by the operator. Furthermore,
the evaluations are usually based on a separate interpretation
of the individual sensors. A constant impact of events on
different sensors is not considered as preliminary informa-
tion. The aim of this work is to implement an automatic
response capability in engineering survey processes using
neighborhood relations. The two main necessary steps for
an automatic response are the detection and assessment of
an event in the measurement process and a decision and
performance of an appropriate response. The realization of
these two steps is based on a few key assumptions to facilitate
the further development:
• The process consists of a number of sensors to observe

certain aspects of the environment.
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• These observations are rather accurate and reliable. Pos-
sibly there is not for each state value a sensor available.
On the other hand it is possible, that different sensors for
the same state value are available.

• Via a communication system, information can be
exchanged between the sensor nodes.

• A prediction of future situations is dependent on the
subject of quantity and quality of available observations
and with a corresponding uncertainty.

• There is some prior information about possible events.
These assumptions are according to the general definition of
(geodetic) sensor networks (Sohraby et al. 2007) and make it
possible to establish responsiveness.

The paper is organized as follows. Section 2 describes the
concept for the description of states and events in geodetic
processes by means of state variables. Also a brief overview
about two different ways of the assessment of events is given.
Section 3 describes the Bayesian networks, which are used
as the main tool for the assessment of events in the sensor
network. After the implementation of the Bayesian probabil-
ity in the network Sect. 4 will deal with the evaluation of a
probability value on each sensor node by Kalman filtering.
In Sect. 5 a simulation of such an assessment of events
is presented. Finally, section “Conclusion” summarizes the
results and gives an outlook for future work.

2 State Description

The system theory defines a state of a system as the descrip-
tion of a situation, in which an object with respect to certain
selected properties remains unchanged (Lunze 2008). States
of a system can be described by means of sensor data. Hence,
a state transition is a change to an object, where it is trans-
ferred from one state to another. Such state transitions are
triggered by events. In order to identify and to assess an event
the state change must be described. In geodetic processes
usually this is carried out by sensor information. Sensor
information can be distinguished in raw sensory informa-
tion (generated by a given sensor data described without
any preprocessing), abstract sensor information (mapping
the raw sensor information to a standard value range), as
well as aggregated information (summarize a number of
different observations to aggregate information) and derived
information (all information derived by inference from the
available information) (Strassberger 2007). It is obvious that,
depending on the sensor information, we get different forms
of describing variables. Especially if sensor information with
boolean return values are used, a safe deduction of the state
change is possible and a response to the event can be derived
directly. Exemplary total station measurements to reference
points will return boolean variables for the availability of the
reflectors. These variables will be referred as hard variables.

Table 1 Variables of a change in state

Variable Value

Logical variable (e.g.
availability)

Boolean values

Probability of a change in
state

P.eventi /

Probability of aggregation
value of a change in state

P.eventaggjevent1; : : : ; eventi /

Time function of the
probability of a change in
state

f .t IP.eventi //

However, if uncertain or aggregated information is used,
the state change can only be described by a probability. In
particular the influence of neighboring sensors can only be
modeled in this way. The variables used in this work are
shown in Table 1.

The straightforward task of describing and assessing state
changes based on the presented variables can be divided
into two parts. The logical variables can be modeled with
simple queries. It is just a question of control engineering
where the query variable generates the response directly.
This paper will not deal with such scenarios. The second
case based on probabilistic variables will be presented by
an example of a monitoring task. By using different sensors
at several points, neighbourhood relationships have to be
taken into account for the entire assessment of the situation.
Additionally, preliminary information on the monitoring area
can be considered by using probabilistic variables for this
assessment. Based on the assessment, an action should be
started.

3 Bayesian Networks
for the Assessment of Events

In case of raw sensor information and abstract sensor infor-
mation the uncertainty is limited to measurement inaccu-
racies. In geodesy, different common evaluation methods
are used. However, when aggregated or derived informa-
tion is used, there is often no safe deduction possible.
In general, the uncertainty with respect to the incidence
of an event increases during the inference process. Instead
of the safe deduction with boolean variables, the inference
process is based on statistical knowledge. Such probabilistic
inference procedures are particularly advantageous if not
all the interdependent aspects of the context are known
locally. A common approach to probabilistic inference is the
Bayesian network. The subsequent remarks are mainly based
on Jensen (2001) and Koch (2007).

A Bayesian network is an acyclic, directed graph whose
nodes represent random variables and whose edges repre-
sent the direct causal dependencies between these variables.
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Further on variables not connected by edges are conditionally
independent. The parents of one node Xi are those nodes,
which leads an edge to Xi . For each node Xi exists a
conditional probability distribution P.Xi jpar.Xi//, where
par.Xi / is the amount of parents. This conditional proba-
bility distribution quantifies the influence of the parents on
the node. This probability distribution is a multidimensional
table [conditional probability table (CPT)] if the random
variables take only discrete values. For variables with contin-
uous state space, however, a continuous probability density
function is necessary. In our work, we will assume that all
the variables are discrete. The conditional probability tables
represent the prior information in the sensor network.

In such a probabilistic network the probability of all
states of the network can be calculated (joint probability
distribution). The joint probability distribution is expressed
as a product of distributions over a smaller number of
variables, through repeated application of the product rule
of probability calculus and by exploiting conditional inde-
pendence relations described in the graph structure. In the
general case of Bayesian networks, consisting of a set of n
nodes organized in a directed acyclic graph, where each node
Xi has parents, the joint probability distribution is compactly
expressed as

P.X1; : : : Xn/ D
nY
iD1

P.Xi jpar.Xi // (1)

An observation on a node leads to a change in the
probability distribution of that node. Also, the probability
distribution of the directly connected node changes, if they
were not yet observed itself. Child nodes are calculated
according to the conditional probabilities, parent nodes by
the Bayesian rule. In order to make an assessment of events in
our monitoring network, we have to calculate the probability
that a variable will be in a certain state based on the
evidence on other nodes in a current situation. While the prior
information is stored in the CPTs the calculated probabilitys
are influenced by this information and new evidence of the
current situation (Jensen 2001). Bayesian networks support
vague, conflicting, and incomplete evidence by allowing one
to enter a probability for evidence of a variable being in each
state. Therefore various inference algorithms can be used to
compute the marginal probabilities for each unobserved node
given information on the states of a set of observed nodes.
One of the most used methods is the junction tree (Jensen
2001, Chap. 5). Inference in Bayesian networks allows to
update the probabilities of the other variables by taking
into account any state variable observation. Without any
event observation, the computation is only based on a priori
probabilities. When observations are given, this knowledge
is integrated into the network and all the probabilities are

updated accordingly. Knowledge about events is formalized
as evidence. We distinguish between hard and soft evidence
(refer to Sect. 4) of the random variable. Hard evidence for
a node Xi corresponds to safe deduction of the state. Soft
evidence corresponds to an update of the prior probability
values for the states of this node.

4 Soft Evidence by Kalman Filter

It is obvious that each sensor node generates evidence by
its measurements. In the scenario of a sensor network, ele-
mentary limitations concerning processing power or limited
data storage on the sensor nodes exist. Depending on these
limiting preconditions a recursive filtering method should be
used for the evaluation of a new system state. The recursion
allows for the estimation of a new state by an update of the
old state by new measurement data. In addition to the last
and current state all previous measurements need not remain
in the memory storage of the node. The Kalman filter is such
a recursive algorithm to estimate the state of a linear system.
The Kalman filter algorithm is shown for example in Caspary
and Wichmann (2007) or Welsch et al. (2000) and will not be
discussed here. The further remarks refer exclusively to the
results of a complete filtering step under the assumption of
normally distributed variables.

According to Sect. 2 probabilistic state variables for
assessment of an event are needed, which can be included as
evidence in the Bayesian network (refer to Sect. 3). Therefore
the results of the Kalman filter (the filtered state vector Ox.k/CC
and the cofactor matrix of the filtered state vector Q.k/

Ox Ox;C)
cannot be used directly. Hence, the results of the filtering
process have to be transformed into probabilistic values
according to the desired value (see Fig. 1).

For this task, different approaches are possible. In the
first instance the p-value of a compatibility test of the
difference of two filter results (epoch k and epoch k � 1)
is used. Equation 2 shows this residual between two filtered
measurements of the filtering algorithm.

d D Ox.k�1/
CC � Ox.k/CC (2)

Beside this residual the variance of d is needed. It must
be considered that the estimated states of two neighboring
epochs are not independent. In the usual notation (Kalman
gain K.k/, design matrix of the observation model Ak , transi-
tion matrix ˚.k/, observation vector l.k/) the states of epoch
k and k � 1 can be written as:

"
Ox.k/CC
Ox.k�1/

CC

#
D


.I�K.k/Ak/˚.k/ K.k/

I 0

�"Ox.k�1/
CC
l.k/

#
(3)
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Fig. 1 Soft evidence by local Kalman filtering

The variance-covariance matrix can be obtained by error
propagation. With Qk�1

Oe Oe;C as the cofactor matrix of the filter-
ing error of epoch k � 1 the covariance matrix of the two
estimated states is shown in Eq. 4.

Kov.Ox.k�1/
CC I Ox.k/CC/ D Q.k/

Oe Oe;�..I �K.k/Ak/˚.k//T (4)

Subsequently the difference and the variance of the fil-
tered values are calculated. Under the previously introduced
assumption of normally distributed variables, the residual
vector will be normally distributed according to

d � N.0I �20Qdd/ (5)

where Qdd is the cofactor matrix of the residual vector,
derived from error propagation.

To introduce a probability of a change in state a compati-
bility test is performed on the basis of the null hypothesis that
the current state is not significantly different from the previ-
ous state. As a further simplification the example shown in
the following section is calculated only with scalar states. At
this point the transition to a multiple test was not investigated
yet. Following studies should take this into account. In the
special case of a scalar residual vector we get the probability
of a change in state directly by calculating the p-value for the
hypothesis the residual element d D 0.

P.jT j D j dq
�20 qdd

j � z1� ˛
2
jH0/; z � N.0; 1/ (6)

This probability can be introduced as soft evidence into the
node of the Bayesian network and sent to the evaluation
node.

5 Simulation Results

In Bayesian networks only one-directional causal relation-
ships between the variables are defined. Neighboring sensor
nodes often have seemingly mutual relationships and the

Fig. 2 Bayesian network of a simple monitoring process

direction of this influence is not clearly determined. In this
case, the edges between this correlated variables can not be
addressed unambiguously, which would lead directly to an
unauthorized cycle in the directed acyclic graph. This fact
suggests there are common causes or effects. If this common
causes or effects can’t be found in the previously identified
variables, this indication that not all the relevant variables
for the area have been identified (Munkelt 2008). To avoid
this problem an additional synthetic hypothesis or rather a
synthetic node is introduced, which is equally influenced by
the observations of all other nodes. Therefore the network
is divided into homogeneous areas where uniform behavior
can be assumed. This cluster of small Bayesian networks is
combined by superior state variables represented as a central
node.

The concept of an automatic response capability within
the sensor network based on probabilistic variables will be
demonstrated by means of a total station network. The sensor
nodes are defined by three reflectors in a homogeneous area.
The central node is defined by the total station. On each
sensor node we are able to determine a distance measurement
by the total station and an acceleration measurement by
an accelerometer. As a monitoring scenario, two different
events are suspected. On the one hand a point movement of
individual sensor nodes is possible, on the other hand partial
vibrations of sensor nodes could occur. The homogeneous
field in the scenario leads to the assumption that if a single
point movement is detected, further points in the field should
move also. However, vibrations in the sensor network have
only influence on individual nodes. But if on all nodes a
shock is detected, it will be presumed that a point motion is
present. An illustration of the Bayesian network is shown in
Fig. 2. The left rectangle represents the distance cluster of the
three reflectors. The right rectangle represents the inclinome-
ter measurements on the three reflector points. Each clustered
information is modeled by a central node (for example the
total station). The main query about the two states of a
movement or vibration in the network is represented by
the red rectangle with conditional dependencies to the two
sensor clusters.The inference task in the Bayesian network
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Fig. 3 Raw and filtered data from one accelerometer

Fig. 4 Raw and filtered data from distance sensor (simulated)

is characterized by the calculation of the joint probability of
the whole network to determine the actual event of moving
or vibrating.

Referring to Sect. 4 the analysis of sensor information
by means of Kalman filter is implemented directly on the
node. An exemplary result of one accelerometer is shown in
Fig. 3. The noisy line represents the raw accelerations and
the smooth line the filtered states. The accelerometer used in
this experiment was an low-cost adxl335 mounted on a micro
controller (Analog Devices Inc. 2012). For the accelerometer
measurements a standard deviation of 0.01 g can be assumed.

Next to the accelerometer measurements simulated dis-
tance measurements are introduced into the model. For each
node a time series of distance measurements with several
changes of the mean was generated. The data was simulated
with a normal distribution and standard deviation of 0.002 m.
An example of one node is shown in Fig. 4.

According to Fig. 3 the raw measurements and the filtered
results can be seen. Furthermore, different changes of the
mean are visible in the data. Based on the filtered results the
p-value of a change in state is calculated on each sensor node.
Exemplary results of such a calculation on one inclinometer
node are shown in Fig. 5.

After the p-value of the compatibility test is determined,
the value is send to the central node. There, the values
obtained are introduced as soft evidence to the Bayesian
network. After the update all CPTs of the three sensor nodes,

Fig. 5 Calculated p-values for a change in state by one compatibility
test

Fig. 6 Probabilities of the global events move and vibration in the
network

the conditional probabilities of the two events are calculated.
Based on real and simulated sensor data a Matlab simulation
was calculated for an initial assessment of the concept. The
results of this simulation are represented in Fig. 6.

As one can see, the events in the sensor data (different
changes of the mean) are clearly visible. By calculating
the p-value of the compatibility test, these events can be
expressed as probability of a change in state. The graph
of this information is similar to the filtered sensor data.
Only through the subsequent calculation of the Bayesian
network, the probabilities of the global events move or
vibration become visible. It is obvious that the impact of
one accelerometer change of the mean is insignificant to the
global variables but two or more have a recognizable effect.
Only with an additional event in the distance measurements,
the probability of a movement in the area rises to one. Based
on this assessment it is possible to make an appropriate
response. In this case such a response could be to hook up
an additional sensor for a more precise observation.

Conclusion

This paper gives an overview about a concept of
implementing automatic responses to events in geodetic
processes developed at the GIH. We have shown that these
events can be modeled by logical and probabilistic state
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variables. The estimation of the logical state variables
and the deduction of responses are straightforward
while the calculation of the probabilistic variables
and a response based on them are challenging. In our
study we used Kalman filter and subsequent p-value
calculation of a change in state to determine soft evidence
for the Bayesian network. This approach allowed the
quantification of existing neighborhood relations and
the assessment of occurring events. While one sensor
has an insignificant impact on the state of the whole
system, two or more have a recognizable effect. The
topics of the ongoing research are the improvement of
other methods to identify evidence on the different sensor
nodes. Referring to Li et al. (2011) Bayesian methods
could be used to identify and evaluate changes of the
mean in the filtered data. Also the implementation of an
appropriate response based on probabilistic assessment
should be developed. A possible method for this task is a
decision table.
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Efficiency Optimization of Surveying Processes

I. von Gösseln and H. Kutterer

Abstract

In order to perform an efficiency optimization of surveying processes typical measuring
processes can be modeled by using Petri nets. Petri nets are a mathematical and graphical
modeling language for the description of concurrent and distributed systems. The modeling
allows a simulation and an efficiency optimization of the processes. Simulations of
surveying processes can be performed with different input values like the number of staff
or the order of activities. The main goals of the optimization are the reduction of cost or
the decrease of the required time. Since the exact duration of the individual steps of a
measurement task cannot be defined in advance, timed transitions in stochastic Petri nets
are selected to introduce the duration of the activities. The presented method is applied to
the optimization of a polar network measurement.

Keywords

Efficiency optimization • Modeling and simulation of surveying processes • Petri nets

1 Introduction

In construction processes an ongoing increase of automation
is observed. Therefore the compliance with quality becomes
more and more important for subsequent tasks. The increas-
ing frequency of measurements requires a very efficient inte-
gration of surveying processes into construction processes.
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Thus, one topic of the DFG1-research project EQuiP2 is the
quality assurance. To get more information about the devel-
oped quality model see Schweitzer and Schwieger (2011).

Another important task is to improve the efficiency of
surveying processes to ensure a good integration of them into
construction processes. For this purpose, an efficiency model
is set up to evaluate the performance of surveying processes
and their interaction with construction processes. The two
main efficiency criteria are cost and duration. The aim is to
reach low cost or a short duration.

The optimization of a surveying process is carried out
as follows: First, the activities of the process have to be
simulated with different input values. Second, the solution
with the lowest cost or the shortest duration has to be
selected. The input values of the process can be the number
of staff or the order of activities. A simulation of various

1German Research Foundation.
2German: Effizienzoptimierung und Qualitätssicherung ingenieur-
geodätischer Prozesse im Bauwesen, engl.: Optimization of effi-
ciency and quality control of engineering geodesy processes in civil
engineering.

H. Kutterer et al. (eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring
Systems (QuGOMS’11), International Association of Geodesy Symposia 140,
DOI 10.1007/978-3-319-10828-5_23, © Springer International Publishing Switzerland 2015

157

mailto:vongoesseln@gih.uni-hannover.de


158 I. von Gösseln and H. Kutterer

scenarios with different input values requires a timetable for
the surveying process. Measuring processes include several
different activities that are partly concurrent. Often certain
conditions must be fulfilled before an activity can start. For
example, the concrete of the foundation slab must be dried
before the walls of the building can be staked out.

In particular for complex processes a modeling language
is needed that allows computer-based simulation, that can
deal with concurrent processes and that can check and take
into account the fulfillment of conditions. In our project
EQuiP, we have chosen Petri nets because they comply with
all these requirements.

2 Process Modeling and Simulation

2.1 Elements of a Petri Net

The modeling of the measuring working steps is realized
by a place/transition Petri net, which is one special type of
a Petri net. Petri nets are a graphical tool to describe and
analyze concurrent and distributed processes. Expressed in
mathematical terms a Petri net is a directed bipartite graph in
which the two node types are called places and transitions.
They are connected by directed arcs. Arcs run from places
to transitions or reverse. Connections between nodes of the
same type are not allowed. For more information on Petri
nets see Reisig (1985) or Ajmone Marsan et al. (1994).

Figure 1 shows the elements of a place/transition Petri net.
In our project EQuiP Petri nets are implemented as a graph
in Java.

One of the two node types is called place. Places are
represented by circles and model the passive components
of a process like objects, states or conditions of a process.
Places can contain tokens which can be represented by small
filled circles or numbers. Tokens show the compliance of
conditions, the value of an object or the state of the process.
In the example in Fig. 2 there are ten “resources” and two
members of “staff”. The other node type is called transition.
Transitions are represented by rectangles and model active
elements like actions, working steps or events of a process.
The main activities of the measurement in Fig. 2 are the “set
up of the target points”, the “set up of the total station” and
the “measurement”.

The directed arcs represent the relations between places
and transitions. An arc from a place to a transition defines
the place as an input place of the transition. And an arc from
a transition to a place defines the place as an output place
of the transition. If all input places of a transition contain
enough tokens, the transition is called enabled and it can fire.
When a transition fires, tokens are removed from each input
place and new tokens are created at each output place. After
that, subsequent transitions may be enabled and the tokens

Fig. 1 Elements of a place/transition Petri net

Fig. 2 Place/transition Petri net of a simple measurement

move through the Petri net. Arcs may have an edge weight.
The edge weight regulates how many tokens are needed in
the input place to enable the transition or how many tokens
will be created in the output place after the transition has
been fired. In the example there have to be three resources to
enable the transition “set up target points”. If no edge weight
is specified, it is one.

2.2 Timed Petri Nets

To attain a simulation close to reality, timing information
has to be assigned to transitions. A concept for the intro-
duction of temporal information into Petri nets was given
by (Ramchandani 1974). In his approach each transition ti
gets a firing time �i which is the duration of the activity. �i
is a non-negative bounded real number. Each transition with
a firing time is called a timed transition. After removing the
tokens from the input places the time event starts. After a
certain period of time the tokens are created at the output
places of the transition and the time event ends. In a sim-
plified assumption a fixed duration can be assigned to each
activity. In real-world systems the duration is rather a random
quantity that can be approximated by a rectangular or normal
distribution in a large number of cases (Ramchandani 1974).
This type of Petri net is called a stochastic Petri net.

2.3 Run of a Petri Net

Using the example in Fig. 2 one run of the Petri net is
explained. The first activity of this measuring process is
the “set up of the target points”. When the transition fires
three tokens from the input place “resources” are removed
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Fig. 3 Place/transition net of a polar network measurement

because the edge weight is three. One token is removed from
the other input place “staff”. At the same time the surveyor
“sets up the total station”. When this transition fires, one
token is removed from the input place “resources” and one
from the other input place “staff”. After the set up has been
completed, one token is created at the output place “total
station prepared”. The set up of the target points takes a
little bit longer in this example and after its completion one
token is created at the output place “target points prepared”.
Now the “measurement” can be carried out. Both tokens
from the input places are removed. After the measurement
has been finished, one token is created at the output place
“measurement completed”. The result of the Petri net run
is the elapsed time of the measuring process. This is a very
simple model of a measuring process.

A slightly more complex model is the Petri net of a
polar network measurement illustrated in Fig. 3. Although
the depth of modeling is not very high, all important relations
and conditions can be modeled. The input values of the Petri
net are a defined “order of total station positions (TS-Pos)”
and the number of staff which is not specifically modeled
in the Petri net but considered in the simulation. In the first
transition the “current TS-Pos is detected” from the given list
of total station positions. Then the “set up of the current TS-
Pos” by the surveyor and the “set up of the target points (TP)
for the current TS-Pos” by the assistants can occur. When
the events of both transitions are completed and the tokens
at the places “TS-Pos is mounted” and “TP are mounted”
are created, the “measurement” can be carried out. At the
same time, the assistants can “set up the TP for the next TS-
Pos”. After the measurement has been finished, the next run
of the tokens through the Petri net starts. This is repeated
until the place “number of TS-Pos” is empty. Then the last
enabled transition is “remove equipment” and after its firing
the Petri net has no enabled transitions left and is called dead.

The result of the simulation is the duration of the whole
network measurement.

3 Optimization

The basis for carrying out the optimization of a network mea-
surement is the definition of the possible input values. In this
case the number of staff and the order of the measurements
and the set up can vary. The zero to second order design
is already set and will not be optimized in the described
approach. In the efficiency optimization the different input
values can be selected and the simulation of the measurement
and thus the calculation of the duration is carried out in the
Petri net. Finally, the solution with the shortest duration or
lowest cost is selected as the best solution. The output values
are the total duration and the total cost of the measurement
and the selected input values of the best solution.

Expressed mathematically one is faced with a combina-
torial optimization problem. For simple tasks all possible
solutions can be evaluated. For complex tasks a good solution
has to be found with a search heuristic. Otherwise the compu-
tation takes too long. In our project EQuiP genetic algorithms
have been selected as a search heuristic. In Rehr et al. (2011)
we have described in detail how the optimization of a net-
work measurement with genetic algorithms works. For more
information on genetic algorithms see Goldberg (1989).

4 TimeModel

As already mentioned, time delays for the transitions of the
Petri net are needed for the simulation of the measuring
process. The duration can be a fixed value (the expected
value) for each activity or a random value that can be
approximated by a certain distribution function. Figure 4
shows examples for probability density functions (PDF) of
the used input distributions for the activities. The expected
value of the activity in this figure is � D 3min. In addition
to the expected value, each activity is associated with an
!. This variable describes the upper and lower limit of the
distribution function, thus the variability of the duration. For
all activities carried out during a measurement, time values
for � and ! have to be determined. In a first approach,
empirical values are used.

In the optimization only the expected values are taken
for the Petri net simulation. Otherwise, the optimization
process would take too long because for each candidate
solution the simulation has to be carried out many times
with different random durations for the activities. Using the
expected value, the simulation must be performed only once
for each candidate solution.
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Fig. 4 Input distributions for an activity with the variables � D 3:0min
and ! D 1:5min

After the optimization, the process is simulated many
times with the input values of the best solution. In this case
10,000 iterations are used, because with this number the
repeatability of the result (mean value and variance) is given
in the range of a few seconds. The duration of each working
step is a random value that follows one of the distributions
shown in Fig. 4. Different distributions are tested to ana-
lyze the effect of their choice for the whole process. It is
conceivable that different activities has to be approximated
by different distributions in reality. For example the unload
of the equipment might follow a normal or a rectangular
distribution. It is equally probable that the duration is shorter
or longer than the expected duration. Other activities like
measuring sets of angles have a specific duration at the
minimum. In general it is more probable that the activity lasts
longer than shorter than the expected value. Such activities
are often done automatically or semi-automatically. They
might be approximated by a gamma distribution or another
unbalanced distribution.

All PDFs of the distributions illustrated in Fig. 4 can be
expressed with the variables � and !. The notation of the
rectangular distribution with the lower bound a D � �! and
the upper bound b D � C ! is:

X � U .a; b/) X � U .� � !; � C !/ (1)

The PDF of the rectangular distribution is:

f .x/ D
�

1
2!
; for � ! � x � � � !

0 ; otherwise
(2)

The normal distributions expressed with the mean value� D
� and variance �2 D !2

3
is:

X � N �
�; �2

�) X � N
�
�;
!2

3

�
(3)

The PDF of the normal distribution is truncated at the bottom
to prevent values appearing below a lower bound a D � � !
(see Robert 1995):

f .x/ D

8̂<
:̂

1p
2��2

�exp

�
� .x��/2

2�2

�

1
2 �
�
1�erf

�
a��p
2�2

�� ; for x � a
0 ; for x < a

(4)

The notation of the gamma distribution with the shape
parameter k D 2 and scale parameter � D !p

3
is:

X � � .k; �/) X � �
�
2;

!p
3

�
(5)

The PDF is shifted to the right, with the result that the x-
value of the PDF maximum is the excepted value � . Then the
function is:

f .x/ D
�
.x��C�/

�2
� exp

�� x��C�
�

�
; for x � � � �

0 ; for x < � � � (6)

5 Numerical Study and Results

Figure 5 shows the network that should be measured and
optimized beforehand. The optimization is performed only
for the sequence of activities and the number of staff. The
observation network and the positions of the points remain
unchanged in this first approach. The network of paths
with travel times from point to point must be known in
advance, too.

The polar network measurement has been selected as an
example because each point of the network must be visited
repeatedly to set up and orientate the prisms to the current
total station position. That implies a high logistic effort. The
solution of an extended multiple traveling salesman problem
is required for planning the optimal order of total station
positions and the routes of all participants. One is faced with
a very complex optimization problem.

The optimization is carried out with genetic algorithms.
The fitness value that is used to compare the different solu-
tions is calculated by using the Petri net simulation which
model is illustrated in Fig. 3.

As described, the Petri net simulation in the optimization
is carried out with the expected values for the duration of the
activities. The best result of the optimization is a solution that
takes xOpt D 4:03 h. Subsequent to the optimization the tem-
poral variation of this best solution is computed. Therefore,
this variant is simulated 10,000 times with random values for
each activity. Successively, the three distribution functions
were used that were described in Sect. 5. The results of this
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Fig. 5 Welfengarten network

computation is shown in Fig. 6. The doted line in all sub-
figures is the result of the optimization calculated with the
expected values.

For the first calculation of the temporal variation, normal
distributions were assumed for all activities (Fig. 6a). The
temporal variation of the result seems to follow a normal
distribution, too, but the mean value (xND D 4:07 h) is
slightly shifted to the right, compared with the result of the
optimization. The reason is probably, that the input normal
distribution is cut on the left side and a few more random
values are bigger than the expected value.

The next tested distribution was the rectangular distribu-
tion for all activities (Fig. 6b). The result seems to follow a
normal distribution again. The mean value (xRD D 4:05 h)
is approximately the same as the result of the optimization.
Such a distribution has been expected because the number of
random values to the right and left side of the expected value
are the same.

In the last simulation the gamma distribution was chosen
to describe the duration of the activities (Fig. 6c). Once more
the temporal variation seems to follow a normal distribution.
But in this case the mean value (xGD D 4:45 h) is strongly
shifted to the right compared with the other output distri-
butions and the result of the optimization. Furthermore, the
variance of the result is larger than in the other two examples.
The input gamma distribution has a steep ascent close to
the expected value and then decreases slowly. The majority
of the random values is bigger than the expected value. In
addition, the range of random values is larger than the range
of the other two input distributions. This explains the right
shift and the higher variance of the output distribution, but
such a strong shift was not expected ahead of the tests.

Fig. 6 Temporal variation of the network measurement calculated with
a random duration for the activities (10,000 iterations). (a) Input distri-
bution: truncated normal distribution, (b) input distribution: rectangular
distribution, (c) input distribution: gamma distribution

If the gamma distribution turns out to be the most appropriate
distribution function to approximate the duration, we have to
find a way to consider this strong right shift already in the
optimization to get realistic results.

In Fig. 6 the effect of the selected distribution becomes
clear. But it remains the open question which input distribu-
tion is the closest to reality.
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6 Summary and Outlook

Petri nets are qualified for modeling and simulation of
surveying processes. With their assistance it is possible to test
different input values in an optimization process and to select
the best of all solutions. After the optimization the temporal
variation of this solution can be computed to get a simulation
closer to reality.

In future work a characteristic distribution for each activ-
ity has to be found. Probably different activities have to be
approximated by different distributions. This requires that
the durations are recorded during a network measurement.
A recording of the duration with a stopwatch would be
expensive and the logging of values would take time, too.
Ideally, the duration is recorded automatically and does not
obstruct the measurement staff in their work. An execution
of the simulated network measurement in the Welfengarten
is planned. To derive the durations of the activities, the
measurement should be monitored by GPS loggers.

Furthermore, it is necessary to find out if it is really the
best way to carry out the optimization only with the expected
value. If the gamma distribution is used to model the time
delay or even different input distributions, it might be better
to simulate a certain number of each scenario to get a more
realistic total duration.

For further developments, an integration of the quality
parameters (accuracy and reliability) into the optimization
process is aimed.

Acknowledgements The presented paper shows results and
approaches developed within the research project KU 1250/10-1
“Effizienzoptimierung und Qualitätssicherung ingenieurgeodätischer
Prozesse im Bauwesen (EQuiP)”, which is funded by the German
Research Foundation (DFG). This is gratefully acknowledged by the
authors.

In addition, the authors thank the two reviewers for their constructive
comments and suggestions.

References

Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G
(1994) Modelling with generalized stochastic Petri nets. Wiley, New
York

Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Boston

Ramchandani C (1974) Analysis of asynchronous concurrent systems
by Petri nets. Ph.D. Thesis. Massachusetts Institute of Technology,
Project MAC, Cambridge

Rehr I, Rinke N, Kutterer H, Berkhahn V (2011) Maßnahmen zur
Effizienzsteigerung bei der Durchführung tachymetrischer Netzmes-
sungen. AVN 1:2–13

Reisig W (1985) Petri nets. An introduction. Springer, Berlin (EATCS
monographs on theoretical computer science, 4)

Robert CP (1995) Simulation of truncated normal variables. Stat Com-
put 5:121–125

Schweitzer J, Schwieger V (2011) Modeling of quality for engineering
geodesy processes in civil engineering. J Appl Geodesy 1:13–22



Modeling and Propagation of Quality
Parameters in Engineering Geodesy Processes
in Civil Engineering

Jürgen Schweitzer and Volker Schwieger

Abstract

Quality assurance in civil engineering is a complex and multifaceted field. Especially for
successful automation it plays an important role. One aspect of the quality assurance relates
to the geometry of a building. In order to determine and control geometric elements,
measurement and evaluation processes of engineering geodesy have to be integrated into
the construction processes. So the task of engineering geodesy is to create the basis for
bringing the planned building geometry in quality-assured reality.

One way to describe the quality is to define a quality model, which describes the quality
on the basis of characteristics, which are substantiated by parameters. In generally the
characteristics and the parameters are derived from the requirements.

For engineering geodesy processes in civil engineering a process- and product-oriented
quality model consisting of the characteristics “accuracy”, “correctness”, “completeness”,
“reliability” and “timelessness” was build. These five characteristics are substantiated
by altogether ten parameters. In addition to the well-known parameters like “standard
deviation” in geodesy and “tolerance” in civil engineering, other parameters like “number of
missing elements” and “condition density” help to have a complete and detailed description
of the quality of the geometry of a building and the related processes. The parameters can
be differentiated in process- and product-related parameters. Finally the quality parameters
can be analyzed to get a significant statement about the actual reached quality within the
process.

Keywords

Engineering Geodesy • Monte-Carlo-Method • Quality Model

1 Introduction

In the standard (DIN EN ISO 9000) quality is defined as
“degree to which a set of inherent characteristics fulfils
requirements”. A characteristic is defined as a distinguish-
able feature. In general one can say that quality is the
fulfillment of requirements of a product or process. Quality
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Institute of Engineering Geodesy, University of Stuttgart,
Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany
e-mail: volker.schwieger@ingeo.uni-stuttgart.de

in construction, respectively in civil engineering is generally
measured by the adherence to guidelines or standards, such
as the “recognized rules of technology”, DIN/ISO standards,
association guidelines as well as individually contracted
specifications.

In this article the considered product is the geometry
of a high-rise building in shell construction. So the main
focus lies on the engineering geodesy processes, since these,
among others, are responsible for delivering geometry on a
high quality level.

The complexity of the quality is considered by a quality
model that describes the quality on the basis of character-
istics which are substantiated by parameters. The quality
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model is developed within the project “Optimization of
Efficiency and Quality Control of Engineering Geodesy Pro-
cesses in Civil Engineering” [German: Effizienzoptimierung
und Qualitätssicherung ingenieurgeodätischer Prozesse im
Bauwesen (EQuiP)] which is supported by the DFG (German
Research Foundation). In contrast to most quality models
which are only product-orientated, this quality model is
product- and process-orientated.

In this article the basics of the quality model are firstly
explained and in the following the propagation of the quality
parameters of the quality model for engineering geodesy
processes in civil engineering are presented.

2 Quality Model

2.1 Fundamentals

A quality model is a conceptual framework in which the
abstract term of quality is gradually resolved into individual
aspects and so the abstract term is substantiated. Using a
quality model, the quality of a product or process should be
completely describable and comparable.

A quality model typically consists of characteristics and
parameters. A quality characteristic is an inherent feature of
a product or process, related to a requirement. The quality
characteristics form the first hierarchical level. Each charac-
teristic may be described by a number of parameters. The
parameters substantiate the characteristics. Each parameter
may be quantified with a specific (measurable) value (e.g.:
standard deviation � D 1 cm). Details about quality models
in the area of software development and Transport Telemat-
ics can be found in Boehm et al. (1978), ISO 1926 (2001) and
Wiltschko (2004). On the base of this information, a quality
model for engineering geodesy processes in civil engineering
is developed (see Table 1).

Details about the derivation and the development of the
quality model can be found in Schweitzer and Schwieger
(2011).

2.2 Exemplary Parameters

Exemplary, two parameters of the quality model from Table 1
are chosen and explained in detail:

The standard deviation is a parameter for the char-
acteristic accuracy. It is derived from the random scatter
of the measurements xi of a random variable X around
the expected value E(X)D�. The standard deviation �x is
defined as the square root of the variance Var(X) and can
be calculated from repetitions [see Eq. (1)] or derived from
accuracy information of e.g. the measurement devices. To
ensure accuracy of two or three dimensional variables, such

Table 1 Characteristics and parameters of the quality model

Parameters Characteristics

Standard deviation Accuracy

Tolerance correctness
Topological correctness

Correctness

Number of missing/odd elements
Adherence to the plan

Completeness

Condition density
Minimal detectable error (MDE)
Impact of MDE on parameters
Vulnerability to failures

Reliability

Time delay Timeliness

Fig. 1 Use of terms in the field of building tolerances [translated and
modified from (DIN 18202)]

as points, a covariance matrix has to be used [for detailed
information see Niemeier (2002) or Teunissen (2003)].

�x D
sX

.xi � �/2
n

(1)

The tolerance correctness tc is a parameter for the charac-
teristic correctness. It is an aggregated value that delivers a
statement of compliance with the required tolerance. Further
information can be found in Schweitzer and Schwieger
(2011). It often relies on the measured length of a building
component. In some cases angles and other features may play
a role, but for the applications discussed in this paper, lengths
are important. If tc is greater or equal than zero, the tolerance
is met. If tc is negative, the tolerance is not met [see Eq. (2)]

tc D 0:5
q
T 2 � T 2M � jlmeas � lnomj (2)

The tolerance T is a specified value, which can be taken
for example from standards like (DIN 18202). lmeas is the
measured size and lnom is the nominal size of a building
component (see Fig. 1). The surveying tolerance TM is a
tolerance value, which is derived from the uncertainty of
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the measuring results. TM is derived from the confidence
interval of the standard deviation of the measuring process
[see Eq.(3)]

TM D 2k1�˛=2�measure (3)

The factor k1�˛/2 is regarded as a quantile of the correspond-
ing distribution function with the given error probability
˛. The surveying tolerance is equal to the length of the
confidence interval [Cl, Cu]. Further information on this topic
can be found in Schweitzer and Schwieger (2011).

Considering the Guide to the Expression of Uncertainty
in Measurement (GUM 1995) the standard deviation in Eq.
(1) corresponds to the uncertainty u (type-A). The tolerance
TM corresponds to the extended uncertainty U which is
derived from the standard deviation �measure. If �measure is
derived from device uncertainties the parameter is of type-B.
Parameters of type-A are determined by traditional statistical
methods, while parameters from type-B are evaluated by
other means like experience with prior knowledge about the
measuring device.

The problems regarding the systematic and random com-
ponents of the parameters will not be vanished. Further
details on this can be found e.g. in Koch (2008).

3 Quality Propagation Methods

3.1 General

The quality parameters described in Sects. 2.1 and 2.2
are related to single products or processes. To describe
the quality of several processes or finished products, an
appropriate computational procedure to propagate the quality
parameters through the process has to be developed for
each parameter. The exemplary parameters from Sect. 2.2
are taken to explain the propagation procedure. For the
parameter standard deviation the Monte Carlo Method or the
variance covariance propagation law can be used. For the
parameter tolerance correctness the quadratic tolerance prop-
agation law is used. Correlations can be neglected, since no
stochastic relationship between the two tolerances T and TM

exists.

3.2 Standard Deviation

To propagate the standard deviation on the one hand you can
use an empirical method, the Monte Carlo Method (MCM).
This is a numerical method to propagate random variables
through a process or a system. A large number m of scattered
observations are generated computer-based in a “virtual

Fig. 2 Difference between the Monte Carlo method and the variance
covariance propagation

experiment” whose impact on the outcome is determined. It
also ensures that each scatter of the input variables X1 : : :

Xl suffice its statistical probability distribution. With each
sample, the functional model f (X1 : : : XI) is going through
the calculation and thus gives results yD f (X). On the basis
of the m results, a statistical analysis is performed. Important
statistical parameters like the expected value �, the standard
deviation � , confidence interval [Cl, Cu], kurtosis ˛4 and
skewness ˛3 can be determined empirically. The kurtosis is a
measure for the peakedness and the skewness is a measure for
the asymmetry of a probability distribution of a real-valued
random variable

˛3 D m�1��3X.� � xi /3 (4)

˛4 D m�1��4X.�� xi /4 � 3 (5)

For further information, see Koch (2008) or Binder (1979).
This procedure is also accepted by the GUM, written down
in Supplement 1 to the GUM (JCGM 2008).

On the other hand, the variance covariance propagation
law can be used. This is a statistical method to propagate
the standard deviation of a random variable. The basis is
a linear or linearised model and normal distributed input
variables. The statistical parameters skewness and kurtosis of
a probability density function (PDF) of a normal distributed
random variable are always zero. The normal distribution
is always completely defined by the expected value and the
variance. For further information see e.g. Niemeier (2002).

In Fig. 2 the main differences between the two propa-
gation methods are shown. For linear processes and normal
distributed random variables the variance covariance propa-
gation law is a reliable tool. Only in the case of non-linear
processes and non-gaussian distributions, the MCM has to
be considered. One expressive property of the MCM is the
computational cost, because the functional model has to be
computed m times.
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3.3 Tolerance Correctness

The tolerance correctness parameter cannot be propagated
directly. Here, the particular parts of Eq. (2) have to be
regarded separately: The tolerances T and TM [Eq. (3)]
are propagated by the quadratic tolerance propagation law,
where each of the tolerances is added quadratically [see
Ertl ((2006)]. The other parameters lmeas and lnom may be
propagated in a linear way. This propagation method is
only applicable on tolerances from building components,
which are in a straight line. Further information is given in
Schweitzer and Schwieger (2011).

4 Simulation Results

4.1 Example: Basement Walls

As an example for the propagation of the quality parameters,
the process “building of the basement walls” of a high-
rise building in civil engineering is regarded. In Fig. 3 the
process is shown in a flowchart represented by a petri-net.
The propagation of the quality parameters relies on the first
two processes (1.1 stationing and 1.2 align formwork) only.

The first process “stationing” describes the free stationing
of a total station. The input parameters of the first process
are the polar elements (measured with a total station), the
coordinates of the control points, and all related standard
deviations. The output parameters are the station coordinates
(x, y, z) with their standard deviations. The functional model
is a free stationing, which is realized by a Helmert Transfor-
mation [see for example (Niemeier 2002)].

The second process “align formwork” describes the align-
ment of a formwork, which has to be adjusted in x- and z-
direction see Fig. 4.

The input parameters are the station coordinates from
the first process including standard deviations. The output
parameters are the coordinates of the formwork corners the
respective standard deviations and the tolerance correctness,
relying on the vertical and horizontal position of the form-
work.

Following the GUM (1995) standard deviations should be
considered as uncertainties independent of their construction
as type A or B or even combined.

The functional model is a polar survey of the corner marks
1, 2, 3 and 4 of the formwork and the subsequent calculation
of the distance among these points.

4.2 Different Simulation Scenarios

As a numerical example the Monte Carlo Method and the
variance covariance propagation law are chosen as propaga-

Fig. 3 Process-building of the basement walls

Fig. 4 Ground plan (left), vertical section of the formwork (right)

Table 2 Input and output parameters of the processes

Processes Input Output

1.1 3 x (�hz,� v,� s,�hz,�v,�s) emp. PDFX,Y,Z

3 x (� x,y,z,�x,y,z),

1.2 emp. PDFX,Y,Z 4x (� xp,yp,zp ,�xp,yp,zp)

4 x (�hz,� v,� s,�hz,�v,�s) 4x (�d,,�d,)

4x tc

tion methods for the standard deviation. It is focused on the
first two processes, which are described in Fig. 3.

In Table 2 the input and output parameters of the processes
“1.1 stationing” using three reference points and “1.2 align
formwork” using the four points shown in Fig. 4 are pre-
sented.

The polar elements are introduced with the standard devi-
ation �hzD �vD 0.0008 gon and � sD 0.01 m and the control
points are introduced with �x, �y, � zD 0.005 m. The number
of random samples m for the MCM is 100,000 [recommended
by Koch (2008)]. For this example three control points are
chosen which are located within a distance of about 100
to 200 m away from the station. For the evaluation of the
probability density function (PDF) resulting from MCM the
standard deviation � , skewness ˛3 [Eq. (4)] and kurtosis ˛4

[Eq. (5)] are used.
The Monte Carlo Method is performed by using two

different variations. The first one is done where all input
variables are normal distributed, the second variant the polar

elements are uniform distributed (interval
h
��p3I �p3

i
)

and the coordinates of the control points are normal dis-
tributed.

The results for the free stationing step are shown in
Table 3.

There is no significant difference between the standard
deviation of the variance covariance propagation law and
both Monte Carlo Method variations.
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Table 3 Results of the process 1.1 free stationing

VCP MCM(1) MCM(2)

¢x [mm] 5.2 5.1 4.9

¢y [mm] 5.5 5.6 5.6

’4 (x/y) 0 �0.03/0.01 �0.17/�0.11

’3 (x/y) 0 �0.004/�0.01 0.01/�0.01

Table 4 Results of the process 1.2 align formwork

VCP MCM(1) MCM(2)

1.3 ¢x [mm] 6.3 6.5 6.1

1.3 ¢y [mm] 11.0 11.1 11.0

¢d 7.7 7.7 7.7

tc [mm] 8 10 14

’4 (d) 0 0.08 �0.88

’3 (d) 0 �0.03 0.02

And there is also no significant difference between
the PDFs of the MCM(1) and the variance covariance
propagation (VCP). This is underlined by the significance
test for a3 and a4 with respect to the theoretical
values (E(a3)D ˛3D 0, E(a4)D˛4D 0) assuming normal
distribution. With a significance level of ˛D 5 % and
inequalities 6 and 7 it can be shown that for the values
a3D�0.01 and a4D�0.03 we get the test quantities of
yd(˛3)D 1.29 and yd(˛4)D 1.93 as a result.

yd .˛3/ D ja3j �
�
6 �m�1��1=2 < y1�˛=2 D 1:96 (6)

yd .˛4/ D ja4j � 2
�
6 �m�1��1=2 < y1�˛=2 D 1:96 (7)

Both test quantities are smaller than the threshold of the
normal distribution, so a3 and a4 do not differ significantly
from zero.

But a small difference between the PDFs of the second
MCM variation and other two can be seen while the hypoth-
esis is discarded, because the test value ydD 3.4 according to
the kurtosis ˛4D�0.17 is greater than the threshold of 1.96.
In this process this has no effect on the standard deviation,
but only on the confidence interval [Cl, Cu] and so the
tolerance correctness of the following processes.

For the second process “align formwork” the results from
the first process are introduced. For the MCM the complete
result values from the x- and y-coordinate are introduced.
In Table 4 one can see the results of the second process,
where only two of the four points are chosen. �d describes
the standard deviation of the exemplary distance d D 13. It
is computed in the first variant (VCP) with full covariance
information and the second and third variant (MCM) using
the MCM.

Again there is no significant difference between the stan-
dard deviation �d of the three variants. At the second varia-

Fig. 5 PDF’s of the resulting distance d [VCP and MCM(1)]

Fig. 6 PDF’s with confidence intervals of the resulting distance d
[VCP blue lines and MCM(2) red speckled lines]

tion of the MCM, the kurtosis of the empirical PDF differs
significantly from the other two. This can also be seen in
Figs. 5 and 6 where the two PDFs of the Monte Carlo Method
variants are plotted together with the normal distribution. It
can be seen that the second PDF [MCM(2)] is narrower than
the first one. This has no influence on the standard deviations
but again on the confidence intervals. The confidence inter-
vals are empirically computed by the Monte Carlo Method.
The interval between the maximum and the minimum of the
m random results is divided into small intervals, see Koch
(2008), and relative frequencies are computed. Then the
confidence interval [Cl, Cu] can be determined by adding the
probabilities at both ends until the probability ˛/2D 0.025
is reached. The confidence interval resulting from MCM(2)
is [199.986; 200.0135] (shown by the red speckled lines
in Fig. 6) in contrast to the confidence interval resulting
from VCP [199,98; 200,02] (shown by the blue lines in
Fig. 6). The different confidence intervals have an influence
on the surveying tolerance TM [compare Eq. (3)] which can
be calculated by TMD (Cu – Cl). For the calculation of tc
in Table 4 the values lmeas and lnom are assumed as equal,
because there are no real measurements available for the
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statistical simulation case. The numeric values for tc in
Table 4 show the maximum difference between lnom and lmeas

that would deliver a positive tc, if real measurements would
be available.

In this case it can be concluded, that different input
distributions have no influence on the standard deviations but
on the tolerance correctness. The influence on other quality
parameters e.g. for reliability are not discussed in this paper.

Conclusions

A quality model for engineering geodesy processes in
civil engineering, which can be used to describe the qual-
ity of the geometry of a building is presented in this paper.
Additionally, computational procedures are presented to
propagate the quality parameters through the processes.
The Monte Carlo Method and the variance covariance
propagation law are chosen here for propagating param-
eters with different input distributions.

For one application case it is shown, that different
distributions (Gaussian and uniform) of input values have
a very small influence on the standard deviation but a
decisive on the confidence intervals and so on the toler-
ance correctness. This was numerically demonstrated for
the alignment of a formwork of a high rise building. The
tolerance correctness of the MCM with partly uniform
distributed input values is 4 mm greater than the tolerance
correctness of MCM with Gaussian input values and
6 mm greater than the VCP result.

Because of the high requirements to the tolerances
in building construction, correct knowledge about the
measurement processes has to be available in construction
phase. In the demonstrated case the correct propagation
by MCM leads to a more relaxed decision (2 mm in
comparison to VCP). This is due to non-linearity in the
model. If uniform distributed observations are assumed,

the decision is even more relaxed (6 mm). Generally it can
be shown that non-linearity and non-normal distributions
require MCM for correct uncertainty propagation through
the process.
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Part V

Multi-Mission Approaches with View to Physical
Processes in the Earth System



Completion of Band-Limited Data Sets
on the Sphere

W.-D. Schuh, S. Müller, and J.M. Brockmann

Abstract

In this study we propose the complementation of satellite-only gravity field models by
additional a priori information to obtain a complete model. While the accepted gravity
field models are restricted to a sub-domain of the frequency space, the complete models
form a complete basis in the entire space, which can be represented in the frequency
domain (spherical harmonics) as well as in the space domain (data grids). The additional
information is obtained by the smoothness of the potential field. Using this a priori
knowledge, a stochastic process on the sphere is established as a background model. The
measurements of satellite-only models are assimilated to this background model by a
subdivision into the commission, transition and omission sub-domain. Complete models can
be used for a rigorous fusion of complementary data sets in a multi-mission approach and
guarantee also, as stand-alone gravity-field models, full-rank variance/covariance matrices
for all vector-valued, linearly independent functionals.

Keywords

Complete models • Covariance functions • Smoothness of potential fields • Spherical
harmonics • Stochastic processes on the sphere • Variance/covariance estimation

1 Introduction

The observation of the Earth’s system is one of the most
important research topics of these days. Although huge
sets of data are already available, additional measurements
are still necessary to obtain a better understanding of the
Earth’s processes. Measurements from satellites have the
great advantage of delivering homogeneous data sets over
large areas (oceans or continents) or covering the whole
globe. Due to special measurement conditions with respect
to the satellite orbits as well as the observation technique,
such data sets often have a band-limited spatial or spectral
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Germany
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resolution. For example, gravity field model have, due to the
downward continuation process, only a restricted frequency
resolution. The global behavior of long-wavelength infor-
mation is well determined, whereas the short-wavelength
content is only weakly determined or not estimable. To avoid
unstable systems gravity field models are often restricted
to a special sub-domain, e.g. spherical harmonics up to a
maximal degree. Users of such models must keep in mind
that these models only describe a part (commission domain)
of the real phenomena and that also the omission domain
has to be taken into account. This fact is well known and
was often discussed (cf. e.g. Losch et al. 2002). One typical
example is the determination of the mean dynamic ocean
topography as the difference between the mean sea surface
height and the geoid height (Becker et al. 2011). The trace-
wise spatially highly resolved altimetric measurements have
to be combined with the spectral band-limited information
of the gravity field and computed on a predefined grid of an
ocean circulation model. Beside the different representations
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of the data, especially the different information content is
crucial for the modeling. To overcome the shortcomings of
band-limitation and incomplete information representation
two approaches are possible: A restriction of the model to a
least common sub-domain or an extension to the entire space
by additional a priori information.

Special filter processes are usually introduced to homoge-
nize all the available information with respect to a least com-
mon subspace (Jekeli 1981, 1996; Wahr et al. 1998; Swenson
and Wahr 2006). It goes without saying that with this filter
approach also valuable information of the signal is filtered
out. To avoid this drawback of the filter processes, a rigorous
fusion of the gravity field and a priori smoothness conditions
is here proposed to form a complete model. Kusche (2007)
showed an appropriate way to adapted smoothness con-
ditions regarding preprocessed unconstrained gravity field
models. In contrast to Kusche (2007), we extend our model
to the complete space including the commission as well as
the omission space.

The concept of our approach is characterized by the fol-
lowing items. As background model we introduce the Hilbert
space H1

� , as a complete and separable space for continuous
functions on the sphere � , with square integrable first deriva-
tives. We use an isotropic stationary stochastic process on the
sphere to represent this background model. This process can
be represented in form of random coefficients as well as in
form of a covariance function. This flexibility in representing
the stochastic process allows one now to treat this informa-
tion individually for the commission and omission space.
The spherical harmonics as base functions allow us, due to
the orthogonality relations, to split up the Hilbert space into
sub-domains. With respect to the gravity field models we
divide the space into three sub-domains: commission, tran-
sition and omission domain. The commission sub-domain
is mainly fixed by the real measurements (e.g. satellite-to
satellite tracking data, gravity gradient measurements, . . . ).
In the transition zone the information of measurements is
supported by the stochastic background process in form of
random coefficients, which are modeled by their expectations
and variances. This additional a priori information prevents
the well-known over-estimation of information content for
high frequencies. And finally, the omission domain up to
infinity is dominated only by the a priori knowledge about the
smoothness of the potential field modeled in form of covari-
ance functions. The shape of the covariance function is given
by the theoretical assumptions on the smoothness or by other
a priori information. For degrees up to 360, 720 or 2160 the
knowledge about the smoothness can be supported by high-
resolution gravity field models (e.g. EGM96, EGM08), but
up to infinity only theoretical assumptions, like smoothness

conditions with respect to the Hilbert space H1
� can be used

(Meissl 1971; Schuh and Becker 2010).
The main point is now that we construct with this

approach a complete model which enables us to express any
functionals and also their variance/covariance information in
a consistent way. All functionals of this model are unbiased
estimable functionals and can therefore be used without filter
processes for data assimilation as well as for hypothesis
testing. Because of the completeness with respect to the
frequency domain, all vector-valued functions with linear
independent functionals (e.g. profiles, gridded data, . . . )
possess an invertible variance/covariance matrix.

This paper is organized in the following way. The con-
struction of stochastic processes on the sphere is discussed
in Sect. 2 before we introduce the model building process
and the separation into sub-domains in Sect. 3. An example
with a GRACE and combined GRACE/GOCE field provides
a proof of concept in the final section. A summary concludes
this article.

2 Stochastic Processes on the Sphere

Consider an arbitrary square integrable function u.#; �/
on the unit sphere � . Because of the completeness of
the orthonormalized Laplace’s surface spherical harmonics
NC`m.#; �/ and NS`m.#; �/ this function can be written in form

of a spherical harmonic synthesis

u.#; �/ D
1X
`D0

X̀
mD0

� Nc`m NC`m.#; �/C Ns`m NS`m.#; �/	 : (1)

Treating the spherical harmonic coefficients Nc`m and Ns`m as
random variables NC`m and NS`m the function u.#; �/ becomes
a random process U.#; �/ on the sphere,

U.#; �/ D
1X
`D0

X̀
mD0

� NC`m NC`m.#; �/C NS`m NS`m.#; �/	 : (2)

We will assume now that the random variables have zero
expectations, i.e.

E
˚ NC`m� D E ˚ NS`m� D 0 ` D 0; : : : ;1; m D 0; : : : ; `

(3)

are mutually uncorrelated, i.e.

˙
˚ NC`m; NCsr

� D 0
˙
˚ NS`m; NSsr

� D 0
)

if s ¤ ` or r ¤ m or both

˙
˚ NC`m; NSsr

� D 0 in any case (4)
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and have constant variances per degree, i.e.

˙
˚ NC`m� D ˙ ˚ NS`m� WD 1

2`C 1˙ fS`g (5)

where ˙ fS`g D E
˚S2` � with the random variable

S2` D NC2`0 C
X̀
mD1
NC2`m C NS2`m : (6)

The stochastic process (2) can be characterized by the expec-
tation E fU.#; �/g D 0 and the stationary, isotropic covari-
ance function

Cov
˚U.#; �/I U.# 0; �0/

� D
1X
`D0

˙ fS`gP`.cos / ; (7)

which depends only on Legendre polynomials P` as func-
tions of the spherical distance  between .#; �/ and .# 0; �0/
(cf. e.g. Meissl 1971, Sect. 4; Moritz 1980, Sect. 34). In many
applications the estimated degree variances

N�2l D Nc2`0 C
X̀
mD1
Nc2`m C Ns2`m (8)

as a single realization of the stochastic variable S2` is used
to fix E

˚S2` � D ˙ fS`g, or ˙ fS`g is substituted by
deterministic quantities.

In the following it will be shown that a stochastic process
on the sphere can also be formulated for deterministically
defined degree variances by utilizing the amplitude and phase
formulation. Recalling the relations between the Laplace’s
surface spherical harmonics NC`m and NS`m

NC`m.#; �/ D NP`m.cos#/ cosm�

NS`m.#; �/ D NP`m.cos#/ sinm� (9)

with the fully normalized Legendre functions NP`m we can
express (1) using the amplitude A`m and phase ˚`m notation

u.#; �/ D
1X
`D0

X̀
mD0

A`m NP`m.cos#/ cos .m�C ˚`m/ :
(10)

The connections between the parameters Nc`m, Ns`m and A`m,
˚`m are given by

Nc`m D A`m cos˚`m

Ns`m D �A`m sin˚`m

)
,
8<
:
A`m D

q
Nc2`m C Ns2`m

˚`m D tan�1 �Ns`mNc`m :
(11)

We generate now a stochastic process on the sphere by
introducing the following conditions. The amplitudes A`m
are constant quantities depending on the degree variances �2`
of degree `

A2`m D
2

2`C 1 �
2
` : (12)

The phases ˚`m are mapped into a vector ˚ by an appro-
priate numbering scheme. The random counterpart is defined
by P`m and P , respectively, where the probability density
function fP .p/ is defined by

fP .p/ D
1Y
`D0

Ỳ
mD0

fP`m .p`m/

fP`m .p`m/ D
8<
:
0 p`m � ��
1
2�
�� � p`m � �

0 � � p`m :

(13)

This means we have a uniformly distributed phase, for each
degree ` and orderm, and phases for different degrees/orders
are mutually independent. The stochastic process U.#; �/ on
the sphere is defined by

U.#; �/ D
1X
`D0

X̀
mD0

A`m NP`m.cos#/ cos .m�C P`m/ : (14)

The expectation

E fU.#; �/g D
Z 1

�1
u.#; �/fP.p/dP (15)

is fixed again by E fU.#; �/g D 0, and the covariance

Cov
˚U.#; �/;U.# 0; �0/

� D
Z 1

�1
u.#; �/ u.# 0; �0/ fP .p/dP

(16)

of this process, can be expressed again by the isotropic
covariance function

Cov
˚U.#; �/;U.# 0; �0/

� D
1X
`D0

�2` P`.cos /

DW cov. ; �2` / (17)

and depends only on the degree variances �2` and the spheri-
cal distance  (cf. appendix for a detailed derivation).

We see that the definition of a uniformly distributed phase,
independent for each degree and order, yields an isotropic
stochastic process. However, now the degree variances are
not represented as second moments of a stochastic variable,
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in contrast to the first stochastic process (7). The degree vari-
ances are defined by the amplitudes, are deterministic quanti-
ties, and can be fixed arbitrarily. This allows us to distinguish
rigorously between stochastic quantities, realizations and
deterministic quantities. As shown in Schuh and Becker
(2010), Table 1, the smoothness conditions for the Hilbert
spaces Hp

� are formulated as asymptotic restrictions �2` <
c

`2p�1 on the degree variances. This deterministic approach
coincides with the amplitude/phase formulation (10) of the
stochastic process.

Nevertheless, both representations of the stochastic pro-
cess in the spectral domain result in a stationary isotropic
covariance function. This allows for a representation of
the processes in the spectral domain by (2) and (14) as
well as in the space domain by (7) and (17). Due to the
orthogonality relations of the spherical harmonics (Moritz
1980, p. 21 (3–16)) the infinite Hilbert space can be separated
into subspaces, and in each subspace we can express the
stochastic process in an individually appropriate way.

3 Model Building and Separability

The Hilbert space H1
� is separated into different subspaces.

We divide the spaceH1
� into the commission space .H.c//

1

� ,

a transition space .H.t//
1

� , and into the omission space

.H.o//
1

� . While the content of the commission space is
dominated by the measurements, the content of the omission
space reflects basically the weak knowledge of the a priori
model.

In the transition space the observations are supported
by the a priori model, represented by a stochastic process
in terms of randomized spherical harmonic coefficients as
documented in (2). The degree variances of the correspond-
ing covariance function (7) are introduced as random vari-
ables defined by the spherical harmonic coefficients with
E
˚ NC`m� D E ˚ NS`m� D 0 and the variances

˙
˚ NC`m� D ˙ ˚ NS`m� D 10�10

`4
;

`tmin ; : : : ; `tmax

m D 0; : : : ; ` (18)

according to Kaula’s rule (Kaula 1966, p. 98 (5.51))

˙
˚ NS`� D 10�10.2l C 1/

`4
(19)

considering again the relation (5). `tmin and `tmax represent the
degree range of the transition zone.

In contrast to random coefficients as prior information in
the transition sub-domain, the prior information in the omis-
sion sub-domain is defined by the covariance function (17) of
the stochastic process. The degree variances are represented
as constant quantities. The sizes of these quantities are fixed

with respect to Kaula’s rule

�2` D
10�10.2`C 1/

`4
; ` D `omin ; : : : ; `omax (20)

where `omin and `omax defines the range of the omission sub-
domain.1

Due to the orthogonality relations (Moritz 1980, p. 21 (3–
16)) of the spherical harmonics, the subspaces are orthogonal
to each other for continuous sampling. In our case the dis-
crete satellite measurements have a very uniform distribution
of data points over the sphere and therefore our subspaces are
almost orthogonal, as will be seen later on.

4 Application and Simulations

To study the performance of complete models with state-
of-the-art gravity field models we assimilate the normal
equations of two gravity field models with the a priori model:
the static solution of the ITG-Grace2010s model (Mayer-
Gürr et al. 2010) and a combined GRACE/GOCE model
including 7 months of GOCE measurements (Pail et al.
2011). Many tests show that the exact definition of the
ranges for the commission, transition and omission domain
is not crucial. For the computation we used the following
partitioning strategies. In the case of the ITG-Grace2010s the
transition sub-domain is defined in the range between degree
151 up to 180, and in case of the combined GRACE/GOCE
model we choose 171 up to 250.

To assess the behavior of the different models we imple-
mented an error propagation into height anomalies with
the variance/covariance information of the particular gravity
field models. Tables 1 and 2 summarize the characteristic
values. For the ITG-Grace2010s (GRACE/GOCE) model
the standard deviation of the complete model of ˙41:7 cm

1For practical reasons we work with `omax D 18; 000. It is well known
that the variance cov.0; �2l / of the stochastic process using Kaula’s
degree variances (20) is finite and given by

cov.0; �2` / D 10�10

1X
`D1

2`C 1

`4

D 10�10

 
2

1X
`D1

1

l3
C

1X
`D1

1

l4

!

D 10�10 .2�.3/C �.4// ; (21)

where �.3/ and �.4/ denote the function values of Riemann’s zeta
function. R. Apéry proved in 1977 that �.3/ is irrational with a value of
�.3/ D 1:20205690315959 : : : (Hata 2000). Euler (1740) p. 133, §18
already derived �.4/ D �4

90
. These constants can be used to compute the

relative approximation error for the finite summation up to 18,000 with
1 � 10�4 (2 � 10�4) starting the omission space at 181 (251).
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Table 1 Characteristics of the
accuracies of height anomalies
for a point value of a complete
model with commission subspace
2–150 (2–170), transition space
151–180 (171–250) and omission
space

Commission Transition Model Omission All
ITG-Grace2010s (2–150) (151–180) kMixedk (2–180) (181–1) (2–1)

Without a priori information

std. dev. (m) 0.029 0.220 0.009 0.221 0.353 0.417

With a priori information in the range from 151–180

std. dev. (m) 0.026 0.121 0.007 0.124 0.353 0.375
GRACE/GOCE Commission Transition Model Omission All

(2–170) (171–250) kMixedk (2–250) (251–1) (2–1)
Without a priori information

std. dev. (m) 0.026 0.342 0.011 0.343 0.255 0.427

With a priori information in the range from 171–250

std. dev. (m) 0.026 0.158 0.007 0.160 0.255 0.301

The standard deviations (std. dev.) result from an error propagation using the model ITG-
Grace2010s and the combined GRACE/GOCE model respectively. All values are averaged
over the region �5ı to 5ı latitude and �5ı and 5ı longitude with a grid spacing of 0:1ı , but
to be precise, these values reflect the mean behavior of the point information and not mean
values over a specific region

Table 2 Characteristics of the accuracy of the geoid undulations for
mean values in a specific square area

ITG-Grace2010s GRACE/GOCE

Side length Model Omission All Model Omission All
of the area (2–180) (181–1) (2–1) (2–250) (251–1) (2–1)

0.000 0.124 0.353 0.375 0.160 0.255 0.301

0.500 0.112 0.265 0.288 0.137 0.157 0.208
1.000 0.076 0.123 0.145 0.069 0.040 0.079

2.000 0.011 0.031 0.033 0.019 0.019 0.027

4.000 0.007 0.013 0.015 0.009 0.005 0.010

(˙42:7 cm) can be split up into the deviations ˙2:9 cm
(˙2:6 cm) in the commission zone,˙22:0 cm (˙34:2 cm) in
the transition zone and˙35:5 cm (˙25:5 cm) in the omission
zone. As a first point we can see that the introduction
of a priori information in the transition zone reduces the
standard deviation of the height anomalies to ˙37:5 cm
(˙30:1 cm). We can state that the standard deviation up to
180 (250) is reduced by the a priori information from ˙22
to ˙12 cm (˙34 to ˙16 cm), but the additional omission
error of˙35 cm (˙25 cm) yields again a very inferior overall
performance. Note also that the overall standard deviation of
the combined GRACE/GOCE model is larger than that of
the ITG-Grace2010s before adding a priori information. This
is a clear indication for the over-parameterization of high
frequencies in the transition zone for the GRACE/GOCE
model if no prior information is introduced. This is also
reflected by Fig. 1 by the increasing degree variances in the
transition zone. The mixed term defined by the norm of the
covariances between commission and transition space is very
small. As mentioned above, these sub-domains are almost
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The solid lines mark the degree variances of the signal in the combined
GRACE/GOCE model (black) in contrast to the complete model (gray).
The dashed lines reflect the accuracy of the signals. The dotted line
marks Kaula’s rule for the transition and omission sub-domain

orthogonal due to the regular data distribution on the sphere
within the gravity field models.

As expected the point values perform very poorly (cf. first
row in Table 2 with area-size 0.000) because the request
of a point value cannot be answered satisfyingly by the
band-limited gravity field information. But if we ask for
the standard deviation of averaged height anomalies in a
quadratic region we may expect accurate values. For this
experiment we compute point values on a 0:1ı grid with
variances and covariances, and compute the moving aver-
age over a square area with side lengths of 0.5ı, 1ı, 2ı
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Fig. 2 Covariance information for height anomalies from the com-
bined GRACE/GOCE model computed on a profile at the equator
(� D 0ı, � D 0ı : : : 5ı). The model is structured in a commission
space (2–170), a transition space (171–250) and an omission space
(251–1). The contributions of the commission and transition space is
summarized by the term ‘model’. To better understand the magnitude
of the variances this figure is equipped with two y-axes. The left one
reflects the variances and on the right one the square root values of the
left scalar are displayed

and 4ı. If we choose such a fine grid the information is
highly correlated. This is well documented by the shape
of the corresponding covariance function (cf. Fig. 2). For
the combined GRACE/GOCE model roughly up to degree
3 strong correlations appear. The omission part shows a
smaller correlation length than the commission part. Of
particular interest for the error behavior are the positive and
negative slopes. In positive areas an averaging process does
not gain high accuracy, because the positive correlations
counteract. By contrast, the negative parts of the covariance
function accelerate the benefits of an averaging process, and
the accuracy decreases disproportionately. The numbers in
Table 2 reflect exactly this behavior and give a comparison of
the resolutions and expected accuracies for the two models.

Summary and Conclusions

In this article the construction and advantages of complete
models are illustrated. A background stochastic process
forms the basis for a complete model. A priori information
defines the amplitude and smoothness of this background
field in terms of degree variances. This background model
forms a complete base which means that each square
integrable function is a member of this infinite space.
The stochastic process can be described equivalently in
the space domain by covariance functions and in the
frequency domain by spherical harmonic coefficients. Into
this background model the band-limited data sets from
satellite missions are assimilated in a sequential least

squares approach. The resulting model is complete again
and reflects exactly the strengths and weaknesses of the
involved information. In addition it has the following
properties:
• The variance/covariance matrices of all vector-valued

functions with linearly independent functionals (e.g.
for geoid undulations on a grid) have full rank, i.e. their
inverses exist. This allows for a rigorous assimilation
of gravity information into other Earth system models
with an arbitrary grid (e.g. ocean circulation models).

• All linear functionals are unbiased estimable functions,
because the complete model spans the entire space
and no nullspace is left. No additional computations
are necessary to prove that the linear functional is a
member of the commission sub-domain. This enables
us to define arbitrary problem dependent functions in
the space domain and compute the variance/covariance
information rigorously (e.g. the mass variation over
Greenland).

Complete models are universally applicable as stand-
alone models as well as for assimilation purposes.
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Appendix

Expectation and Variance of a Stochastic
Process in Amplitude/Phase Notation
on the Sphere

The stochastic process U.#; �/ on the sphere is defined by

U.#; �/ D
1X
`D0

X̀
mD0

A`m NP`m.cos#/ cos .m�C P`m/ (22)

where the phases constitute random variables. The distribu-
tion is defined by

fP .p/ D
1Y
`D0

Ỳ
mD0

fP`m .p`m/

withfP`m .p`m/ D
8<
:
0 p`m � ��
1
2�
�� � p`m � �

0 � � p`m :

(23)
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This means we have uniformly distributed phases, for each
degree ` and orderm, and phases for different degrees/orders
are mutually independent.

We are interested in the expectation

E fU.#; �/g D
1Z

�1
u.#; �/fP.p/dP

D
1Z

�1

1X
`D0

X̀
mD0
A`m NP`m.cos#/ cos .m�C P`m/ fP .p/ dP :

Due to the independence of the phases the integral can be
rewritten as

1Z
�1

1X
`D0

X̀
mD0
A`m NP`m.cos#/ cos .m�CP`m/ fP`m.p`m/dp`m:

If we now interchange integration and summation and intro-
duce the individual distribution (23) we get

E fU.#; �/g D
1X
`D0

X̀
mD0

A`m NP`m.cos#/

� 1

2�

Z �

��
cos .m�C p`m/ dp`m

D
1X
`D0

X̀
mD0

A`m NP`m.cos#/
1

2�

� � sinm�C sinm�
�
:

Finally we see that

E fU.#; �/g D 0 : (24)

The variance of this process is given by

Cov
˚U.#; �/;U.# 0; �0/

� D
Z 1

�1

u.#; �/ u.# 0; �0/ fP .p/dP :

(25)

Because of the independence of the random variables this can
be written as

Cov
˚U.#; �/;U.# 0; �0/

�

D
1X
`D0

X̀
mD0

A2`m
NP`m.cos#/ NP`m.cos# 0/

�
Z 1

�1
cos .m�C p`m/ cos

�
m�0 C p`m

�

�fP`m .p`m/ dp`m: (26)

If we extend the first cosine term in the integral to
.m.�� �0/Cm�0 C p`m/, use the relation

cos.x C y/ cos.x � y/ D 1

2
.cos 2x C cos 2y/

and substitute

x D 1

2
m.� � �0/Cm�0 C p`m

y D 1

2
m.� � �0/

the integral can be solved and yields

1

2
sin
�
m.� � �0/C 2m�0 C 2p`m

� ˇ̌̌p`mD�
p`mD��C

C 1

2
cos

�
m.� � �0/

�
p`m

ˇ̌
ˇp`mD�
p`mD�� :

The first term vanishes because of the skew symmetry of the
sine and only the cosine term is relevant. Substituting this
result into (26) yields

Cov
˚U.#; �/;U.# 0; �0/

�

D
1X
`D0

X̀
mD0

1

2
A2`m
NP`m.cos#/ NP`m.cos# 0/ cos

�
m� �m�0� :

Applying the addition theorem

cos
�
m� �m�0� D cosm� cosm�0 C sinm� sinm�0

and recalling the definition of Laplace’s surface spherical
harmonics (9) the right hand side can be reformulated as

1X
`D0

X̀
mD0

1

2
A2`m

� NC`m.#; �/ NC`m.# 0; �0/

C NS`m.#; �/ NS`m.# 0; �0/
�
:

Introducing now the amplitudes defined in (12) we get

1X
`D0

X̀
mD0

1

2`C 1�
2
`

� NC`m.#; �/ NC`m.# 0; �0/

C NS`m.#; �/ NS`m.# 0; �0/
�
:

The decomposition formula or addition theorem for spherical
harmonics (cf. e.g. Moritz 1980, p. 23 (3–30))
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P`
�
.#; �/I .# 0; �0/

� D
1

2`C 1
X̀
mD0

� NC`m.#; �/ NC`m.# 0; �0/C NS`m.#; �/ NS`m.# 0; �0/
�

allows the for further simplification

Cov
˚U.#; �/;U.# 0; �0/

� D
1X
`D0

�2` P`
�
.#; �/I .# 0; �0/

�

where the function value of the Legendre polynomial
P`
�
.#; �/I .# 0; �0/

�
depends only on the spherical distance

cos between .#; �/ and .# 0; �0/

cos D cos# cos# 0 C sin# sin# 0 cos.� � �0/ : (27)

Finally this results in

Cov
˚U.#; �/;U.# 0; �0/

� D
1X
`D0

�2` P`.cos / D cov. ; �2` /:
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