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Abstract

Tectonic inheritance deals with the influence of pre-existing or pre-rift elements on
the geometry, genesis and propagation of rift-related faults. Inheritance strongly
controls the architecture of continental rifts and passive margins. Experimental
results demonstrated the importance of layering and mineralogical anisotropy in
extensional deformations. For low-to-intermediate angles of the anisotropy to the
maximum compression direction, faults formed within anisotropic rocks parallel to
the pre-existing weakness. For high angles, the faults breach the weak planes but
follow them in segments. Rocks usually are anisotropic and respond to extension
more easily than to compression. Shallow anisotropies at the brittle upper crust are
either pervasive or discrete. While foliations and layers define ‘pervasive’ fabrics,
widely spaced isolated zones of weakness such as faults and shear zones define the
‘discrete’ ones. Pervasive fabrics govern the overall trend of the rifts in passive
margins. The discrete fabrics form oblique to rifts or as transfer zones between
propagating rift segments. Rheology of the pre-rift lithosphere controls the archi-
tecture of rifts and passive margins predominantly for levels deeper than the upper
crust. The parameters controlling the architecture of rifts and passive margins are
strength, crustal and lithospheric thicknesses, thermal state and strain rate. The first
three factors are soft-linked. For example, the strength of the lithosphere depends on
its composition, thickness and temperature (van der Pluijm and Marshak 2004). The
thickness of the lithosphere—thicker for mobile belts and thinner for cratons—
depends on the thermal age (=age of last tectonothermal event). Lithospheric
thickness thus influences its thermal state also. Generally, rifting in thicker litho-
sphere diminishes rift shoulder topographies, whereas rifting in colder and thinner
lithosphere forms *3–5 km elevated rift shoulders. Warmer lithosphere produces
rifts narrower and faster than those within colder lithosphere. In this work, we bring
together the concepts of the inheritance of pre-rift shallow (pervasive and discrete
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fabrics) and deep (lithosphere rheology) elements. Citing examples from
intra-continental and rifted passive margins, we show that the process of tectonic
inheritance remains active throughout the rifting episode.

Keywords Tectonic inheritance � Pre-existing anisotropies � Pervasive fabrics �
Discrete fabrics � Lithosphere rheology � Rifting

Highlights

1. Tectonic inheritance of pre-existing anisotropies in rifting is universal.
2. Pervasive fabrics have a mode of influence different than discrete/isolated

fabrics.
3. Lithosphere rheology is important in controlling the geometry, genesis and

architecture of rifted basins.

xii Abstract



Chapter 1
Introduction

…inherited fault zones can clearly influence the pattern of
continental deformation at length scales greater than the
thickness of the lithosphere.

Sutherland et al. (2000)

1.1 General Aspects

Rifts are elongate zones of crustal/lithospheric extension. These could extend for
thousands of kilometers and are controlled by fold belts within the basement (Gibson
et al. 2013). Rifted passive margins/trailing margins (Dennis 1987) depict a range of
attitudes, lengths, linkage and segmentation of rift bounding and minor faults (Stuart
et al. 2006; Tugend et al. 2013). Rift zone geometries are controlled by litho-layers
and extension rates besides geomorphological processes (Ramirez-Arias et al. 2012;
Buiter 2014; Huismans et al. 2014). Typical structure of continental rifts are
sediment-filled (half/) grabens (Fig. 1.1; Bott 1995; see Morley 1999a for detailed
geometries of the East African Rift System). The grabens are bound by segmented,
generally listric, normal faults. Adjoining faults may dip oppositely. The area
between the two normal faults is called an ‘accommodation zone’ or a ‘transfer zone’
(Fig. 1.1; Bosworth 1986; Rosendahl 1987), such as that found in the Gulf of Mexico
basin (Palmes 2005), the Suez rift (Moustafa 1996), and the Bay of Biscay-Pyrenees
region (Tugend et al. 2014). Review and comparison of passive rifts are available in
Melankholina (2008), Melankholina and Suschevskaya (2008), Levell et al.
(2010) etc. Role of inheritance in rifting has been described as repetitive throughout
geological time in the North American Atlantic by Thomas (2014).

How rifts get segmented, propagate discontinuously and evolve is decided by
pre-existing structural features within the basement (e.g. Branco Farnandez et al.
2010). This control is called ‘tectonic inheritance’ (Fossen 2013). In one way, the
entire Wilson cycle is controlled by inheritance (Vetel and Le Gall 2006; Stuart et al.
2006; Adet et al. 2011). Rotation of plates can reactivate prior structures (Geoffroy
et al. 2014). Role of heterogeneities in controlling structures in rifts, passive margin

© The Author(s) 2015
A.A. Misra and S. Mukherjee, Tectonic Inheritance in Continental Rifts
and Passive Margins, SpringerBriefs in Earth Sciences,
DOI 10.1007/978-3-319-20576-2_1
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and hyperextended rift systems contributing to inheritance have been identified in
numerous studies (e.g. Cloetingh et al. 1995; references in Morley 1999b, c; Morley
et al. 2004; Bellahsen and Daniel 2005; Corti et al. 2007; Aanyu and Koehn 2011;
Bellahsen et al. 2013; Cappelletti et al. 2013; Manatschal et al. 2015 etc.). ‘Tectonic
heritage’ (Missenard et al. 2007), and ‘reworking’ and ‘reactivation’ (Ashby 2013)
are also used synonymously with inheritance. Older rifts might be inherited in later
orogeny (Nirrengarten et al. 2014), and we do not discuss those aspects here.
Variations in isostasy, depth of strong layer etc. for the entire (mega-) regional
passive margin have been noted (Pazzaglia and Gardner 2012). One of the factors for
such varied structural styles is the tectonic inheritance of pre-existing anisotropies in
the pre-rift lithosphere (Mosar 2003; Leroy et al. 2013). Rifts (and transform/shear
margins) can inherit from pre-existing fracture zones (Greenroyd et al. 2008;
Tsikalas et al. 2012) or from prior (strike slip) fault zones (Masini et al. in press),
foliations, lineaments, bedding planes and shear zones (Cloetingh et al. 1995;
Morley 1999b, c). Inherited structures can also act as detachments (Gouiza and Hall
2013), and can control mantle exhumation (Sutra and Manatschal 2012), sedimen-
tation pattern and sub-basin formation/crustal segmentation (Correira et al. 2012;

Fig. 1.1 a Schematic
diagram of common
geometries of continental rifts
with oppositely dipping
faults. The accommodation/
transfer zones (AZ) may form
horsts (H), grabens (G), or
relay ramps (RR) depending
on the position and dip of the
two faults. HG half grabens.
b Sketch of a rifted half
graben showing rift shoulder
uplift, demarcated by the
rising of the rift shoulder
above the “regional
elevation”

2 1 Introduction



Soares et al. 2012) within the rift, and may form shortcut structures (Mora et al.
2009). How volcanos distribute when rifting starts (Isola et al. in press), and mode of
uplift in orogens (Vernon et al. 2014) can be decided by inheritance.

Transfer zones can run parallel to the pre-existing fabrics (Withjack and Schlische
2005). Such a zone could have been inherited from fractures in older basement rocks
(Montenat et al. 1986), or from pre-existing grabens (e.g. Madritsch 2014). For
example, complex transfer zones or ‘graben shifts’ related to conjugate fault sets in
Pattani basin in the Gulf of Thailand were attributed to structural inheritance in two
stages (Kornsawan and Morley 2002). Thus, an optimally oriented fracture in the
basement can influence faults in the superjacent rocks under a stress regime. In a
generalized language, therefore, one brittle structure can inherit another brittle
structure. Transfer zones could inherit form previous structures (Corti et al. 2002;
Heffner 2013).Continental rifts may abort and never form oceans, e.g. Cambay rift
(India) or may split continents to form conjugate passive margins or either side, e.g.
Iberia-Newfoundland conjugate passive margins (Shelley et al. 2005). The accom-
modation zonesmay be normal faulted and appear as horsts or relay ramps (Fig. 1.1a).

Inheritance of previously existing structures take place for strong mechanical
anisotropy, less flow of heat, and for favourable angle between existing structure
and the applied stress (Edel et al. 2007). As stress direction changes temporally,
some pre-existing faults may reactivate after some time (Morley et al. 2007), as
possibly happened in the Ethiopian rift (Muluneh et al. 2014). Anisotropy in sed-
iment composition, phase transition of minerals etc. add to anisotropy leading to
inheritance for passive margins to develop (Cloetingh and Negerdank 2010).
However, when studied in greater detail, the degree of anisotropy created by some
of them, foliations in particular, may not be significant as expected initially (e.g.
Kocher and Mancktelow 2006; reviewed by Mukherjee 2014a). However, the
difference in the degree of influence made by various anisotropies need to be
studied in detail. The mechanical anisotropy can be brought within the lithosphere
also by either an underlying stack of nappes (produced during orogeny; Mattioni
et al. 2006), or by accretion (Tetreault and Buiter 2013). Faults strongly inherited
may not obey length-slip linear relation (review in Morley et al. 2007).

Analogue models proved that the geometries of rift systems change significantly
by pre-existing fabrics (e.g. Corti 2004; Aanyu and Koehn 2011; Chattopadhyay
and Chakra 2013; also see Holdsworth et al. 2013), and lithospheric rheological
contrasts (e.g. Cappelletti et al. 2013) along with thermal state and strength profile
of the pre-rift lithosphere control the basin dynamics (Fig. A1; Buck 1991;
Cloetingh et al. 1995). Experiments demonstrated that anisotropies affect
strength of rocks (e.g. Donath 1961; Youash 1969). Fractures/fissures (Nogueira
and Marques 2012; Sonnettea et al. 2012; Autin et al. 2013) and even thrust faults
(Tavarnelli et al. 2004) within basins can concentrate due to inheritance. Inheritance
may alter geometry of rifts and dip of faults (Rocher et al. 2003; Le Pourhiet et al.
2004, 2006; Mattioni et al. 2006; Labails et al. 2009; Heffner 2013). Faults may
change trend when they inherit an existing fault in the basement. For example, from
the passive margin of Egypt, few ENE trending faults inherited from E-W faults.
Rifts that criss-cross each other are inherited products (Cawood et al. 2001). The
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depth and orientation of heterogeneity in the lithosphere decides the orientation and
pattern of inherited faults (Mattioni et al. 2006). However, if the rheological con-
trast is too high between adjacent lithologies, the interface does not reactivate, such
as the Rio Grande rift (Philippon et al. 2013a, b). Inherited faults might join
mutually by tear faults (Bollati et al. 2012).

Inheritance is scale-independent (Holdsworth et al. 2013) and localizes shear
stresses along anisotropies in the pre-rift lithosphere. Klyuchevskii (2014) con-
sidered anisotropy/weak planes and stress change together as ‘rifting attractor
structures’ that fundamentally governs the rifting. The main processes can be
clustered at shallow depth where continental lithosphere reactivates and reworks at
deeper depth (Holdsworth et al. 2001; Fig. 1.2).

Refining tectonic understanding of passive margins in the context of inheritance
is important, which is not well understood till date (Bellingham et al. 2014).
Although the concept of passive margin can be traced back to geosynclinal theory
in terms of ‘miogeosynclines’, the idea of inheritance was not incipient in the latter
theory (Bond and Kominz 1988). Passive margins are important locales for
hydrocarbon exploration (such as Beydoun et al. 1992; Davies et al. 2004),
earthquakes and landslides (GEOPRISM, internet reference). These are also sites
where fluids flow (Fevre and Stampfli 1992) and modify flow pattern (Holdsworth
et al. 2013). Structural trend produced by inheritance can also be the selective site
for metamorphic evolution (Beltrando et al. 2014).

Here we focus continental rifts (Fig. 1.3) to cite examples and skip the oceanic
types. We discuss parameters like strength, crustal- and lithospheric thicknesses,
effective elastic thickness, thermal state and strain rate in this context. We do not use
‘inheritance’ in the sense of ‘remnant’ nuclear chemistry in rocks (Stroeven et al.

Fig. 1.2 Processes of inheritance and its relation with lithospheric layers, strain distribution,
rocks/fabrics, rheological control and strength profile of the continental lithosphere. Notice no
sharp boundaries exist for these processes, fabrics and properties. This scheme is built for a
three-layered lithosphere comprising of a brittle upper continental crust, a ductile lower crust and
lithospheric mantle. p pervasive fabrics; d discrete fabrics. Modified from Holdsworth et al. (2001)
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2002 and many other), and avoid inherited topography in basins (Doré et al. 2002) as
well. Unlike Mora et al. (2009), Strzerzynski et al. (2010) etc., we do not discuss
inheritance specifically in the context of inversion tectonics where normal fault planes
act as reverse faults under favourable stress regime and/or guided by sedimentation
pattern (Dubois et al. 2002; Copley et al. in press). We selectively review the East
African Rift System (EARS; Morley 1999a, c), Tertiary rift basins in Thailand
(Morley et al. 2004), Brazilian passive margin (de Matos 1992; Ashby et al. 2010;
Ashby 2012; review byMohriak and Fairstein 2012), and East Indian passive margin
(Nemĉok et al. 2007) andWest Indian passive margin (Misra et al. 2015b; this study).

Besides their width and geometry (Schoettle-Greene and Pysklywec 2014),
passive margins govern subsequent orogeny (as referred in Chabli et al. 2014;
Mohn et al. 2014; Schoettle-Greene and Pysklywec 2014) and tectonic heteroge-
neity along the orogenic trend (Jammes et al. 2014). Sheared margins can be
inherited from one- (Woodcock 2012) or more than one previous orogenies
(El Harfiet al. 2006). More than one set of structural trends from grabens might be
inherited from prior orogeny (Bache et al. 2010)/tectonism (Huetra et al. 2012). The
latest orogenic imprints are usually inherited strongly in the subsequent rifts (Harry
et al. internet reference).

Passive margins can influence rheological properties of an overlying foreland
basin during inversion (Watts 2001). Sedimentation pattern in rifted basins could be
controlled by inheritance (Purser and Bosence 1998). Two oblique fabrics in the
lithosphere can reactivate and govern the location and the geometry of depo-centers
inside the rift (Michon and Sokoutis 2005). Basin evolution (Leeder 1982) is
controlled by inheritance, which eventually weakens the passive margins/rift zones
(Audet and Bürgmann 2013).

1.2 Gaps in Knowledge

Although tectonic inheritance has been well-studied in compressional settings (e.g.
Miller et al. 2001) and a few arc systems (Comas et al. 2014), a concise work on
passive margins in relation to inheritance does not exist (Watts 2012). For example,
role of inheritance in producing amagmatic/magma-poor and magmatic/magma-rich
passive margins is unknown (Bott 1995; Rodgers and Bally 2012; Seiler et al. 2013).
Put in another word, what fraction of deformation was controlled by inheritance in
magma-rich passive margin is unclear (Olsen 1995; Vetell and Le Gall 2006).
Recently, Sutra and Manatschal (2012) pointed out qualitatively link between
inheritance and magma poor rifts. The quantification does not exist. Specifically,
whether and how the magmatic NE Greenland margin (Helwiget et al. 2012) is
linked with Caledonian orogeny is not known. How exactly inherited rifts initiates is
unclear (GEOPRISM, internet reference). Notwithstanding some of the reviews on
passive margins do mention the role of inheritance (e.g. Le Pichon and Sibuet 1981;
Odegard 2005; Levell et al. 2010; Le Pourheit et al. 2013; Reber et al. 2013; Alves
et al. 2014), they do not address those issues.

6 1 Introduction



Chapter 2
General Aspects

Foliations, lineations and fractures can develop into inherited structures
(Coussement et al. 1994). Basins/margins that underwent inheritance attain mature
stage quite faster than those without inheritance (Holdsworth et al. 2013). Rock
deformation tests confirmed that the faults/shears formed experimentally in aniso-
tropic rocks disobey the common failure criteria, the Coulomb failure criterion and
the Anderson’s theory of faulting, for certain angular relations between the
anisotropy and stress orientation. Those faults/shears rather follow/inherit aniso-
tropies in such cases (like Donath 1961; Youash 1969; Shea and Kronenberg 1993;
reviews by Paterson and Wong 2005). Thus, the geometries of faults that are
inherited from prior structures within passive margins could be non-Andersonian
(Brun and Autin 2013), e.g. steeply dipping reverse faults and low dipping normal
faults are possible. Along with mantle plumes, inheritance work in non-unique
ways in shaping individual rifts (Achauer and Masson 2002).

Inheritance/reactivation of faults along more than one direction (Montenat et al.
1986) is quite possible that can separate basins into segments (Branco Farnandez
et al. 2010). Secondly, specific set of faults have been identified from rift basins to
be product of inheritance (San’kov et al. 1999). Rifts and suture lines can parallel
and inherit from basement discontinuity (de Graciansky et al. 2011). Suture zones
in the basement can define trends of inherited rifts (Al-Amri 2013). Transfer zones
can run parallel to the pre-existing fabrics (Withjack and Schlische 2005). Such a
zone could have been inherited from fractures in older basement rocks (Montenat
et al. 1986), or from basins/depressions in the pre-rift basement (Madritsch 2014).
For example, complex transfer zones or ‘graben shifts’ related to conjugate fault
sets in Pattani basin (Gulf of Thailand) were attributed to structural inheritance in
two stages (Kornsawan and Morley 2002). Thus, a fracture in the basement can
inherit/influence fault in the superjacent rocks under a stress regime. In a gen-
eralized language, therefore, one brittle structure can inherit another brittle struc-
ture. Transfer zones could be inherited form previous structures (Corti et al. 2002;
Heffner 2013).

However, the rift axis need not always parallel weak inherited crustal lineaments
(Beaumont and Ings 2012). Also note that a lineament might get reactivated mul-
tiple times (Copley et al. 2014). Extensional direction for rifting may not parallel
planes of pre-existing weakness in the basement (Odegard 2005). The passive
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margin then cuts the trend of the mobile belt at high angles e.g. in the equatorial
Atlantic conjugate margins of Africa and South America (see Sect. 4.2.3). The
propagation direction of basins need not exactly parallel the inherited structure
leading to transtension (Odegard 2005; Pereira et al. 2012; Gernigon et al. 2013;
Holdsworth et al. 2013).

Inheritance in the context of extensional tectonics has been described by pre-
vious workers by a number of terms. Below we use Morley (1999a, b) for
pre-existing fabrics in the shallow crustal domains, and Cloetingh et al. (1995) and
Holdsworth et al. (2001) for those in the deeper realms in the context of lower
crustal strength and mantle anisotropy.

8 2 General Aspects
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Chapter 3
Influence of Pre‐existing Anisotropies
on Fault Propagation

3.1 Fracture Criteria

Brittle failure of rock follows as cohesion of the material is lost and the rock
ruptures along a surface/zone. This plane, called the brittle fracture plane, is the first
required structure for subsequent faulting within rocks. Experiments show that two
basic types of fractures are generated by brittle failure viz. tension-/Mode-I fractures
and shear-fractures/Mode-II fractures. The tension fracture planes or tensile joints
develop perpendicular to the minimum principal stress axis (r3) and is governed
primarily by the Griffith failure criterion. In confined-compression experiments,
conjugate shear-fractures develop at an acute angle on both sides of the maximum
principal stress axis (r1) and is governed by the Coulomb failure criterion (Fig. 3.1;
see Fossen (2010); Davis et al. (2012) for details). The Coulomb fracture criterion
for a given rock predicts the state of stress at which it is at the verge of failure i.e. a
“critically stressed” rock. This is also known as the Mohr‐Coulomb failure criterion
(Fig. 3.1). It states:

rs ¼ c þ lrn ð3:1Þ

here

l ¼ tanu ð3:2Þ

u: angle of internal friction
where, rs: critical shear stress, rn: normal stress; μ: frictional constant or coefficient
of internal friction, is the cohesion on the plane across which the normal stress, i.e.
rn = 0. c: also known as the ‘cohesive strength’ and has its equivalent T, critical
tensile strength in the tension domain, i.e. for rn\0 (Fig. 3.1). Thus, the failure
properties of rocks depend on ‘c’ and ‘μ’ (as in Eq. 3.1). Additionally, the shear
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stress required to start a shear fracture depends on the normal stress on the newly
formed fracture plane (rn). With increase of rn, larger rs is required to break the
rock.

The Coulomb (or Mohr-Coulomb) failure criterion for isotropic rocks always
considered the maximum and minimum principal stresses (r1, r3) and ignores the
intermediate principal stress (r2), which inherently lies on the fracture plane. The
attitude of the fracture can be expressed as:

Fig. 3.1 σN: normal stress,
σS: shear stress. a The
Coulomb fracture criterion
occurs as two straight red
lines in the Mohr space.
The circles represent
examples of critical states of
stress. Blue line the
Griffith criterion. The
combination of the two is
sometimes used: Griffith
criterion (GC) in tensile- and
Coulomb criterion (CC) in
compressional regime. C:
cohesive strength; T: tensile
strength (from Fossen 2010).
b The Griffith- and the
Coulomb fracture criteria
superimposed on
experimental data. The
criteria are placed so that they
intersect the vertical axis (σS)
together with the Mohr
envelope. Neither of the
criteria fit the data accurately.
The Griffith criterion works
well for tensile stress (left to
origin), but shows a too low
slope in the entire
compressional regime. The
Coulomb criterion approaches
the envelope for high
confining pressure: right side
of the diagram (from Fossen
2010 and references therein)
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u ¼ ð45� � a=2Þ ð3:3Þ

where φ: angle of internal friction of the rock; α: angle between the fracture and the
maximum principal compressive stress axis r1, and ranges in natural unfoliated
rocks from 25 to 35° (Paterson and Wong 2005; Zang and Stephansson 2010).
Majority of shallow crustal rocks have φ = 30° and so α = 30°. That denotes dip of a
normal fault to be 60°, which is in agreement with Anderson’s theory of faulting.
However it is to be noted that tan φ cannot be approximated directly as the coef-
ficient of friction in the physical sense (Handin 1969) although the values range
between 0.5 and 1.5 generally but tend to show higher values for coefficient of
sliding friction (Patterson and Wong 2005 and references therein).

Griffith (1924) described the relation between tectonic joints and pre-existing
cracks: the ‘Griffith cracks’ (see Fossen 2010; Davis et al. 2012). Griffith cracks are
(sub-) microscopic, and are modelled as ellipses with apertures much less than their
lengths, i.e. of high aspect ratios/ellipticity (Engelder 1987; Pollard and Aydin
1988; Blenkinsop 2000). On extension, stress concentrates at the edges of
the cracks and cracks propagate to interconnect under tensile or shear stresses
forming either macro-fractures or faults (Fossen 2010). The Griffith failure criterion
states:

r2s þ 4Trn � 4T2 ¼ 0 ð3:4Þ

where σs: critical shear stress, and T: tensile strength. The Griffith criterion holds
only for tensile and hybrid stresses (rn < 0; Fig. 3.1). For rn > 0, the Coulomb law
of failure suits (Fossen 2010). Griffith (1924) demonstrated that random
intra-granular/trans-granular cracks/micro-defects determine the brittle strength of
rocks.Thus the experimental tensile strengths of rocks are much less than their
theoretical magnitudes (Davies et al. 2012). Note that the depth-wise increase in
brittle strength of rocks is linear (Ratheesh-Kumar et al. 2014 and references
therein).

In the context of anisotropic rocks i.e. rocks having preferred orientation of
weakness planes (e.g. foliated rocks), the resulting strength anisotropy influences
the brittle behaviour of the entire rock significantly. So, the Mohr–Coulomb failure
criterion was modified by Jaeger and Cook (1967) for anisotropic materials, as
follows. The cohesion (c1) for rock material having anisotropies/discontinuities can
also be defined as a continuous variable (Δc), which changes depending on the
angle (θc) between anisotropy plane and the maximum principal stress axis (σ1), for
different rock samples:

c1 ¼ Dc cos 2ða� hcÞ ð3:5Þ

where c: cohesive strength of isotropic rock, and α: angle between plane of shear
failure and maximum principal stress axis (r1). 0 < θc < 90°was assumed. ‘c1’ is least
when α = θc (Fig. 3.2), and is maximumwhen the plane of anisotropy/discontinuity is
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Fig. 3.2 Idealised Mohr circles explaining the relationship between stress state and
fracturing/faulting: a for initiation of fresh optimally oriented fractures in isotropic rock,
b activation of oblique fabrics anisotropic rock and c activation of incohesive faults of optimal and
non-optimal orientations (modified after Morley et al. 2004)
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Fig. 3.3 Relationship of oblique “isolated” pre-existing shear zones (bold grey lines) with newly
formed faults during extension. a Newly formed extensional faults abut against the pre-existing
shear; b the pre-existing shear zone forms a transfer /accomodation zone; c the newly formed
extension faults tangentially merge into the pre-existing shear zone. This condition forms one end
of a horse-tail structure (see Fossen 2010); d three pre-existing shear zones with varied spacings.
The faults geometries may also depend on the spacing between the shear zones. This situation here
is ideal for the formation of localized pull-apart basins; e the newly formed fault tangentially joins
the pre-existing shear zone and a series of extensional faults are formed at an angle along the shear
zone. Note that the extension faults parallel pervasive anisotropies if the angular relationship
between the extension direction and the anisotropy trends are favourable (adapted partly from
Morley 1999c)
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rotated 90° further. Thus, the frictional behaviour of rocks modifies as a function of
anisotropy. Its co‐efficient of internal friction changes (to say μ1). Thus, for aniso-
tropic rocks, the modified Coulomb‐Mohr failure criterion, is:

s1 ¼ c1 þ l1re ð3:6Þ

where τ1: shear strength, and σe: effective stress (Jaeger and Cook 1967).
An empirical failure criterion, the Hoek-Brown failure criterion (Hoek and

Brown 1980, 1988) has also been used (Ferril and Morris 2003) to analyze brittle
failure. This failure criterion equation forms an envelope, which consists of both the
tensile and the shear fields, thus avoid using different failure criteria for those fields.
Numerous other failure criteria model the strength of both isotropic and anisotropic
rocks (see Jaeger and Cook 1976; Lade 1993; Paterson and Wong 2005).
Nevertheless, simpler Mohr-Coulomb and Griffith criteria make them most versatile
till date. Notice that when a fresh fault is just about to form in an ideal alignment
with respect to the principal stress axes, for the case of Andersonian faulting (see
Eq. 3.2; Anderson 1951), the prevalent stress state needs to overcome the isotropic
cohesive shear strength of the whole rock (Teufel and Clarke 1984).

Strength anisotropy due to discrete or pervasive fabrics in country rock affects the
whole rock strength, and attains c1 < c (Ranalli and Yin 1990). Note, these
anisotropies/discontinuities can also prevent fault/fracture propagation if the tensile
strength of the intact rock cannot be surmounted. This may occur when the frictional
shear/tensile strength of those anisotropies/discontinuities is relatively lower (Teufel
and Clarke 1984; Morley 1999). The angular relationship between the regional
extension direction and discrete/isolated fabrics also controls fracture/fault propa-
gation (Cliffton et al. 2002; Morley et al. 2004). Those anisotropies/discontinuities
can prohibit the fault propagation across their surfaces. As a result the rift bounding
faults may not continue through the oblique-trending discrete fabrics. Furthermore,
the rift related faults can also orient along a principal oblique trend (Fig. 3.3).

Lab experiments deduced the relation between deformation and pre-existing
anisotropies (e.g. Bott 1959; Jaeger 1959; Donath 1961; Youash 1969; Brace and
Kohlstedt 1980; Kohlstedt et al. 1995; reviews by Paterson and Wong 2005; Saedi
et al. 2014). These studies built the subsequent concepts on the role of pre-existing
anisotropies in rifting and on the structures of rifted passive margins. The role of
pre-existing fabrics influencing the dynamics of continental rifts has been discussed
ever since the development of plate tectonic theory ~1960s (Wilson 1966).

3.2 Rock Deformation Experiments

Planar pre-existing structures/features in basements not only affect the strengths of
rocks but also control the attitude of fractures/faults. The possible strength anisot-
ropy is significant: the cohesive strength of intact rock is commonly around 100 bar,
whereas that in the fault zone rarely exceeds 10 bar (e.g. Sibson 1977). Sibson
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Fig. 3.4 Results of rock deformation experiments: a shows the influence of slaty cleavage on the
shear fracture orientation, which follows the strength anisotropy, compressive experiments on slate
(reproduced from Donath 1961 and Morley 1999c). b Variations in tensile strength for different
lithologies with relation to layering (reproduced from Youash 1969). c Anisotropy coefficients (for
degree of anisotropy) of rock types in (a), defined as the ratio of differential stresses (σ1 − σ3)
measured in the z (θc = 90°) and x45z (θc = 45°) orientations (σz/σx45z) (reproduced from Shea and
Kronenberg 1998)
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Fig. 3.5 Relationship of differential stress (σ1 − σ3) and layering (θc) in different lithogies
(reproduced from Patterson and Wong 2005), for a phyllite b slate c–d shales
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(1977) performed experiments with cylindrical cores of slate. The experiments
suggest that when the stress was applied, the fracture orientation strongly correlated
to the cleavage orientation (Fig. 3.4a). From lab experiments, Donath (1961)
showed that fractures developed along varying orientations depending on the
angular relationship between slaty cleavages (θc) and the axis of maximum com-
pressive stress (σ1). Rocks show maximum compressive strength when cleavage
planes and maximum compressive stress (σ1) orient orthogonally (θc = 90°).
A minimum strength is observed for θc = 30°. Fractures develop along cleavages
when 15° < θc < 45°. Fractures disregard the cleavages if θc > 45° (Fig. 3.4a). The
‘strike’, i.e. the intersection line between the fracture plane and the (horizontal) base
of the cylindrical core, parallels the cleavages.

Youash (1969) demonstrated that rocks show only 25–75 % of tensile strength
when loaded at 0°–60° to pre-existing anisotropies than those loaded at 90°
(Fig. 3.4b). Compressive tests on anisotropic dolomitic limestone (McGill and
Raney 1970) indicate that faults parallel the pre-existing anisotropy when the angle
between the maximum stress direction and the laminae ranges 13–51°.

Shea and Kronenberg (1993) performed compressional deformation tests on
schists and gneisses for varying (15–75 %) mica content at θc = 45° and 90° to test
the influence of mica in rock anisotropy. They defined degree of anisotropy
(Fig. 3.4c) in terms of ‘anisotropy coefficient’, which is the ratio of the compressive
strength of the rock for θc = 90° and 45°. The same lithology shows varying degrees
of anisotropy at different confining pressures. Additionally, they concluded that
anisotropic strength decreases with increase in mica content in foliations. It was
shown that for θc within 30°–45°, the strength attains minimum magnitude and is
independent to lithology (Fig. 3.5). A number of studies (Jaeger 1959; Handin and
Stearns 1964; Lane and Heck 1964; references in Sirieys 1966; Okusa 1971)
introduced anisotropy by a process resembling saw-cut in an isotropic rock. The
rocks showed shearing along the induced anisotropy over a large range of θc values.
Only for θc within 0°–90°, the rock shears across the anisotropy. In case of
insignificant shear stress along the anisotropy plane due to the specific orientation
of the plane, the rock does not fracture.

3.3 Bearing on Rift Systems

At the shallow crustal levels, pre-existing fabrics can control the geometry and
location of rifts by diverting or preventing fracture propagation (e.g. Lezzar et al.
2002). Continental rifts evolve through multiple phases (Fig. 3.6): from a distributed
deformation to a localised one (Manatschal et al. 2007). In the earliest pre-riftphase,
fracture systems develop, sometimes as deep as to detach on the ductile lower crust
(Fig. 3.6a, b). During this stage, the pre-existing anisotropies of the basement and/or
the pre-rift sedimentary rocks control the fractures/faults trends depending upon the
strength, geometry, spacing and orientation of those heterogeneities. Rift zone
geometries are also controlled by litho-layers and extension rates besides
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geomorphological processes (Ramirez-Arias et al. 2012; Buiter 2014; Huismans
et al. 2014). Spacing of faults inherited from basement faults tend to be spaced
maintaining some relation (Montési and Zuber 2003b). Also, not all regularly spaced
faults are inherited (Montési and Zuber 2003b). Relationship between the aniso-
tropies in the pre-rift basement and the trends of the faults have been noted in many
studies (Morley 1999b, c; Corti 2004; Morley et al. 2004; Aanyu and Koehn 2011;
Chattopadhyay and Chakra 2013). Peacock and Sanderson (1992) reported that
faults run along the anisotropies. When those anisotropies are aligned, possibly 45°–
90° to the regional extension direction (σ3), normal faults develop (Morley 1999c).
Some non-optimally/obliquely aligned anisotropies are disregarded and some, like
those having the least strength, later develop into sheared segments or oblique rifts
(e.g. Morley et al. 2004). In the next important stage of stretching, crust and the
lithospheric mantle extend laterally (Manatachal 2004; Lavier and Manatschal 2006;
Manatschal et al. 2007; Whitmarsh and Manatschal 2012) (Fig. 3.6c, d). The
fractures/faults, which started earlier, active at forming large fault blocks.The steep
fractures/faults may be disregarded to follow the “modified Mohr-Coulomb failure
criterion” (Eq. 3.7) but the strikes/trends are usually maintained (Fig. 3.2b; Morley
1999c). During this stage, individual faults segment strongly and soft link into relay
structures/accommodation or transfer zones. Further extension links these faults by
breaking down relay structures and hardlink transfer faults (Versfelt and Rosendahl
1989; McClay et al. 2002). These result in rhombic basin geometries. If the stress
regime changes during rifting, non-optimally oriented fractures/faults of the early
extensional stage may reactivate, based on change in coefficient of internal friction
(μ) and cohesion (c1) (Morley et al. 2004).

In an array of faults with different trends but similar μ and c1, i.e. those closest to
the mechanically ideal Andersonian orientations for failure in response to stress,
reactivate favourably (Fig. 3.2). The lithosphere thins subsequently by deep mantle
reaching faults (Fig. 3.6e) and the basin subsides rapidly (also see Fowler 2005).
The thinning faults (e.g. Peron-Pinvidic et al. 2013) also follow the same regional
trends as set by the previous rifting phases. The deformation progresses from
distributed in the pre-rift to early rift into a localised one in the thinning stage, and
the weakest faults evolve as thinning faults.

b Fig. 3.6 Schematic diagram to illustrate evolution of a continental rift system for a five layer
lithosphere (refer to the strength profile). a Pre-rift situation where lithosphere is just subjected to
extension and will form faults in the future stretching phase, along the dotted lines. b In the
shallow crust (>15 km) the extension is accommodated by numerous tectonic joints, normal to it;
pre-rift sediments in pale yellow. c Stretching mode, when extension is maximum, faults (deep
blue lines) form in the brittle (or strong) upper crust, detaching on the weak middle crust. The
strong lower crust-upper mantle also gets faulted in response to the extension. Rift-basins bound
by stretching faults characterise the deformation in the uppermost crust. d The tectonic joints
formed in the previous phase are inherited in this phase in the upper crust to form the stretching
faults. The steep joints may be disregarded in preference to low-dipping normal faults, although
the strikes maintain. e Thinning mode, where the lithosphere actively thins across a necking zone,
which comprises of thinning faults (light blue lines). Note, extension is lesser compared to
stretching mode (reproduced from Manatschal et al. 2007 and Fossen 2010)
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On the other hand, in case of oblique fabrics, the rift faults in all the phases show
oblique slip of varying magnitudes (Versfelt and Rosendahl 1989; Morley et al.
2004). The basin geometries evolve by interfering pre-existing oblique fabrics with
orthogonal extension commonly resemble those evolved through purely strike-slip
extension (Clifton et al. 2000).
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Chapter 4
Pre-existing Fabrics

4.1 General Discussion

Continental rifts are not random and generally tend to follow the mobile belts
(Fig. 4.1), diverging around the cratons (Tommasi and Vauchez 2001). Mobile belts
are fossilized orogens, which possess numerous weak brittle and ductile planes viz.
faults, shear zones, foliations etc. Holdsworth et al. (2013) categorized inheritance
to be ‘lithosphere-scale control’ when thickness of crust, thermal age etc. are
important; and ‘grain-scale control’ when depth, stress, composition of rocks, size
of grains, intensity of fabrics developed, and presence and role of fluids play
importance. However, a better accepted classification of factors that give inheritance
is: (i) discrete (large, widely spaced anisotropies), and (ii) pervasive (small, closely
spaced and present in the entire rock volume) as proposed by Morley (1999c).
Whether or not orogeny is active, olivine in the lithospheric mantle attains a lattice
preferred orientation, which effectively localises strain during extension (Tommasi
and Vauchez 2001 and references therein). Repeated reactivation of mobile belts
makes them weaker than the cratons (Cloetingh et al. 1995). Thus rifting facilitates
more in mobile belts than in cratons (Cloetingh et al. 1995; Rey 2001; Corti et al.
2007). Also, mobile belts form positive topographies and after compressive stress
stops, they collapse gravitationally and initiate rifts (Rey 2001) e.g. in Basin and
Range Province, North America.

4.2 Pervasive Fabrics

Pervasive fabrics- slaty cleavages, close-spaced joints or beddings, laminations, flow
layers of pre-rift sedimentary or volcanic rocks, and foliations such as schistosity and
gneissosity- may persist throughout the rock volume and contrast strength within the
rock body. Due to primary- (and secondary) ductile shear planes (Passchier and
Trouw 2005), mylonites are prone to brittle reactivation (Holdsworth et al. 2001;
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Mukherjee and Koyi 2010a, b; Mukherjee 2013a, b, c; Mukherjee 2015a; Mukherjee
and Biswas 2015; Mukherjee et al. 2015; Mulchrone and Mukherjee 2015a, b).
These fabrics usually follow the regional trends of foliations within the metamorphic
basement. Pervasive fabrics affect large rock volumes even at the micro-scale
(Morley et al. 2004) or possibly still beyond. Rocks having pervasive fabrics show
minimum strengths throughout the entire volume (Sect. 3.2). As a result, trends of
newly formed faults get optimally aligned (Sect. 3.3). Experiments established
relations amongst fault trends, anisotropies and strength of anisotropic rocks
(Sect. 3.2; see Figs. 3.3, 3.4, 3.6). Pervasive fabrics control the general trend of the
rift faults. Therefore, most rift systems and passive margins parallel pervasive fabrics
e.g. in the East African Rift System, the N and S Atlantic (Morley 1999b; Fig. 4.1).
Detail research work at Atlantic margin is on progress on the role of inheritance in
hyper extended rifts (Chenin et al. 2014; Mohn et al. 2014a). Pre-existing pervasive
fabrics in pre-rift rocks also affect overlying lithology during extensional deforma-
tion by forming new fractures that parallel the pre-existing pervasive fabrics (Cortés
et al. 2003). In such cases, transfer faults may locally parallel the anisotropy
(Chattopadhyay and Chakra 2013). Pre-existing pervasive fabrics and offset angles
between rift zones strongly influence structure of transfer zones between propagating
rifts (Corti 2004).

Field observations by Peacock and Sanderson (1992) studying effects of
anisotropy in sedimentary layers gave results similar to those from the lab (e.g.
Donath 1961; Youash 1969; Shea and Kronenberg 1993) and theoretical analyses
(e.g. Ranalli and Yin 1990). Analogue models showed that most of the rift faults,
not just the bounding faults, initially follow the pervasive fabrics and may breach
the trend later to form faults at high-angles to the fabric (Aanyu and Koehn 2011).
The relationship of pervasive fabrics, extensional faults and stress state is shown in
Fig. 4.2. Mathematical models by Dyksterhuis et al. (2007) revealed the followings:
(i) initial weakness within the lithosphere governs rifting significantly; (ii) a single
focused weak zone creates symmetric and narrow rifts; and (iii) diffuse weak zones
create wider rifts; (iv) prior weak faults create asymmetric rifts. Manifestation of
shearing on passive margins that inherited structures from bottom is under study
(Salvi et al. 2013).

b Fig. 4.1 Schematic plate reconstruction diagram at 200 Ma before present showing a the
Caledonian-Hercynian mobile belts in north Atlantic conjugate margins and b the Pan-African
mobile belts in South Atlantic conjugate margins. Note the parallelism maintained between the
passive margins and the mobile belts. Grey circles with bold broken outlines demarcate the
approximate position of mantle plumes; NAGF Newfoundland-Azores-Gilbraltar fault zone
(modified after Tommasi and Vauchez 2001). Cratons are shown in grey. NAC North American
Craton (those stable for the last *1 Ga shown here), AM Amazonia, WA West Africa, SF São
Francisco, CO Congo, PP Paranapanema, AN Angola, RA Rio Alba, RP Rio de la Plata, KA
Kalahari, TA Tanzania. The orogens are shown with dashed lines indicating structural trends.
1 Araçuaí, 2 Ribeira, 3West Congo, 4 Dom Feliciano, 5 Kaoko, 6 Damara, 7 Gariep, 8 Sierra de la
Ventana, 9 Cape Fold Belt, Perm-Carb: Late Carboniferous-Permian mobile belts (modified after
Almeida et al. 2013 and references therein)
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Model lithosphere inside stiffer material reactivates quicker than that within the
plastic material (Chenin and Beaumont 2013). When the crust is attached with a
flexible mantle, offset basins develop solely within weak zones, and such basins
develop only when the flexible crust is not attached/coupled with the mantle
(Chenin and Beaumont 2013).

The above relations and their tectonic manifestations are observed globally.

4.2.1 East African Rift System

The East African Rift System (EARS) (Fig. 4.3), considered also by some as
magma-rich/magmatic rift (Moores and Twiss 1995; Allen and Allen 2013), is one
of the most well-studied region for the influence of pre-existing anisotropies on the
rift structure (reviews in Morley 1999c; Ebinger 2012), especially at its western
branch (Klerkx et al. 1998). A * E − W extension has been deciphered from the
northern and central parts of this rift system (Saria et al. 2014). The Tanganyika
craton, bifurcating the rift into the Eastern- and Western- branches, comprises of
ortho- and para-gneisses with some basic to ultrabasic rocks (Anhaeusser et al.
1969) of *3000–3600 Ma age (Spooner et al. 1970; McConnell 1972; Kroner
1977). The mobile belts: Ruwenzori, Kibaran, Ubendian, Usagaran and
Mozambique (Fig. 4.3) show three major deformation phases (Tack et al. 2010).
Those are: (i) The Eburnean deformation (2100–1800 Ma) at Ubendian mobile belt,
which formed the 140° trending ductile pervasive fabric south to the Tanganyika
craton, (ii) the Kibaran orogeny at *1400–900 Ma (Tack et al. 2010) that shaped
N/NNE trending ductile fabric north to the Lake Tanganyika; and (iii) the
Pan-African orogeny at *600 Ma that deformed the mobile belts in the region.

1

3 (SHmin) 

2 (SHmax) 

Fig. 4.2 Schematic block diagram depict relation of pervasive fabrics, stress state and extensional
faults. σ1: maximum compressive stress axis; σ3: minimum compressive stress axis; SHmin:
minimum horizontal compression; SHmax: maximum horizontal compression. See Sect. 3.2 for
details, modified from Morley 2010
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Interestingly, the prior Pan-African orogeny controlled the geometries of the later
grabens in the EARS (Michon and Sokoutis 2005). The rift trends follow those of
the mobile belts. The Western branch is convex towards W, and foliations trend
dominantly NE-SW in N and NW-SE in S (Fig. 4.3). The western branch swerves
N-S south of the Ubendian belt. The eastern branch is convex towards E and turns
NE-SW north of the Lake Turkana. The Eastern Branch is older, starting rifting
possibly in Eocene and abandoned around Mio-Pliocene. The presently
activeWestern branch started rifting in late Miocene. Both these branches consist of
large asymmetric half grabens with <6–7 km of fluvio-lacustrine/lacustrine/
fluvio-deltaic sediments with volcanics/volcaniclastics (Morley 1999a). The main
extensional faults (e.g. Lokichar-, Lothagam-, Lagh Bogal-, Lupa faults) parallel the
foliation trends of the Precambrian basement (Morley 1999a, c). The Lake
Kivu-Lake Edward region is however unique because NE, NW, E-W trending
pervasive foliation meet here. Nevertheless, the Kivu and Edward rift faults follow
the overall convex W-wards trend of the Ubendian-Kibaran mobile belt (Fig. 4.3).
The eastern- and western branches (Fig. 4.3) warp in response to the Precambrian
trend and paralleling the Proterozoic mobile belts, which swerve around the
Tanzanian craton (Fig. 4.3; Rosendahl 1987; Versfelt and Rosendahl 1989; Corti
et al. 2007). This swerving geometry governed the kinematics and the geometry of
rifts within the East Africa Rift System (Corti et al. 2006).

The Tanganyika craton apparently acted as a resistant core forcing the Eocene to
Miocene EARS initiation to follow surrounding Proterozoic mobile belts. The
Rukwa rift (Fig. 4.3) formed an oblique rifted segment in response the NW-SE
trend of the Precambrian pervasive fabrics and the E-W to NW-SE regional stress
directions (Morley et al. 1992; Ring 1994; Morley 2010). Oblique/broken transform
rifted margins are in general linked to inheritance of oblique fabrics (Manatschal
et al. 2013). The other segments of the EARS are predominantly orthogonal rifts. In
the youngest (possibly Pleistocene or younger), incipient branch (Kinabo et al.
2008; Bufford et al. 2012) of the EARS, the Okavango Rift zone in NW Botswana,
basement fabrics and pre-existing faults control the NE-SW trend of the rift related
normal faults (Modisi et al. 2000; Alvarez Naranjo and Hogan 2013). The limbs of
meta-sedimentary tight folds and foliation in meta-rhyolites define its basement
fabrics. This example shows that the pervasive fabrics exert a strong influence on
defining the overall geometry of the rift system in the sense that nucleation of the
initial rift faults parallel the strike of the pervasive anisotropies. In the EARS,
complex rift geometries are seen because rift segments propagate and the pervasive
fabrics breach (Aanyu and Koehn 2011). Analogue modelling suggested that such
interactions were either shear (mostly simple/non-coaxial shear) or extensional,
depending on the angular relation between the transfer faults and the extension
direction (σ3).
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Fig. 4.3 Main structural features of the eastern and western branches of the East African Rift
(after Morley 1999a; Corti et al. 2007 and references therein). Rift zones parallel mobile belts and
swerve around the strong Tanzanian craton. Lakes: A Albert; E Edward; K Kivu; M Malawi; Ta
Tanganyika; Tu Turkana; V Victoria. IO Indian Ocean
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4.2.2 Thailand Tertiary Rift System

The Thailand Tertiary rift zone covers the Northern Intramontane-, Central plains-
and Gulf of Thailand provinces in Myanmar (Burma), Thailand, the Lao People’s
Democratic Republic, Cambodia and Vietnam in SE Asia (see Barber et al. 2004).
This rifted zone is a part of the Thai-Malay mobile belt, which extends from N
Thailand to Sumatra (Figs. 4.4 and 4.5; Polachan et al. 1991). This mobile belt
formed when the Shan Thai- and Indochina craton collided in Late Triassic
(Figs. 4.4 and 4.5; Atlas of Mineral Resources of the ESCAP Region: Mineral
Resources of Thailand 2002; Ridd et al. 2011). Both these cratons resemble the
broad stratigraphy in terms of Precambrian metamorphic basement overlain by
Palaeozoic marine meta-sediments: quartzite, phyllite and schist, and
meta-volcanics: meta-tuff and some ultrabasic rocks (review in Ridd et al. 2011).
The Thailand Tertiary (Middle –Late Miocene) rift province consists of pull-apart
basins formed on N-S trending oblique-slip faults and NW and NE trending con-
jugate strike-slip zones (Figs. 4.4 and 4.5; Polachan et al. 1991). These onshore and
offshore basins formed in the Late Oligocene Period in response to India-Asia
collision *55 Ma back (Yin 2006) and the resultant strike-slip displacement due to
escape tectonics between the Shan-Thai and Indochina continental blocks (Figs. 4.4
and 4.5) (Polachan et al. 1991; Leloup et al. 2001). However Morley et al. (2000,
2001, 2004) and Rhodes et al. (2002) favoured an E-W extension in the region due
to strike-slip faults, which followed pre-existing weaknesses in the pre-rift lithology
combined with some strike slip movement during basin inversion in Late Tertiary.
NE-SW striking bedding planes with dip *40–70° in intensely folded pre-rift
Triassic sediments strongly influenced the trends of the rift faults. The faults tend to
parallel beddings (Morley et al. 2004). The bedding controlled NE-SW faults
formed relatively earlier than Tertiary faults and prevented rift orthogonal N-S
faults to propagate (Morley et al. 2004).

4.2.3 South Atlantic Passive Margins

The S Atlantic passive margins formed in Jurassic (*180 Ma) along mobile belts
and avoided cratons (Figs. 4.1b and 4.6). This separation formed the conjugate SE
Brazil and West Africa passive margins and opened the Atlantic Ocean. The São
Francisco- and Congo-Angolan cratons were part of the same lithospheric unit prior
to Jurassic. The dominant lithologies of these Archaean (3600–2000 Ma) cratons
are tonalite-tronjhemite-granodiorite associations with calc-alkaline plutons,
greenstone belts and Paleo-proterozoic metasedimentary successions (Shelley et al.
2005). The Ribeira-, Araçuaí- and Dom Felicano belts are a part of the Mantiqueira
Orogenic System (Figs. 4.1b and 4.6) with the West Congolian-, Kaoko- and
Gariep belts as the African counterparts (Shelley et al. 2005). The Ribeira- and
Araçuaí mobile belts separate the São Francisco- and Congo cratons; and the
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Ribeira- and Dom Feliciano belts are sandwiched between the Angolan- and Rio de
Plata cratons with the Luis Alves craton trapped in between (Brito Neves and
Cordani 1991; Trompette 1997; Cordani et al. 2003; Fuck 2007; Fuck et al. 2008)
(Figs. 4.1b and 4.6). The Luis Alves craton (Fig. 4.1b) was a rather small

Fig. 4.4 Regional tectonic elements of SE Asia (after Polachan et al. 1991). The Indochina block
was extruded towards the SE due to escape tectonics because of the India-Eurasia collision. The
Thai-Malay and Shan-Thai blocks accommodated this deformation by strike-slip movements of
blocks. This is a result of the N-S compression and E-W extension. Black rectangle marks the area
shown in Fig. 4.5
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Fig. 4.5 Locations of the rift basins of Thailand showing the major faults and rift basins. Note the
parallelism of Tertiary rift faults with the Mesozoic Loei-Petchabun fold trends, especially N of the
Mae Moh basin and around the Phitsanulok basin. Modified after Morley et al. (2004)
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continental block, which was marginally affected during the Pan-African- or the
Brasiliano orogeny (Fuck 2007; Fuck et al. 2008). The *NE-SW Ribeira- and
Dom Feliciano belts are almost coast parallel and continue underneath the thinned
continental crust beneath the offshore Santos Basin (Schmitt et al. 2008). These
belts are characterised by Archaean to Paleo-proterozoic basement with Meso- to
Neo-proterozoic and Eo-Cambrian meta-sediments with pre- and post-collisional
granites. This collision, a part of the Brasiliano/Pan-African orogeny, was dextral
transpressional and formed NW verging fold-thrust belts and nappes and NW
trending shear zones (Ebert and Hasui 1998; Trouw et al. 2000). The Ribeira belt
continues northwards as the *N-S Araçuaí belt, which also parallels the coastline

Fig. 4.6 Simplified tectonic map of NE Brazil showing the major shear zones and rift basins
Rectangle shows the location of Fig. 4.15. 1 Post-rift sedimentary cover, 2 Cretaceous basins,
3 Palaeozoic basins, 4 Precambrian crystalline basement, 5 strike-slip ductile shear zones, 6 thrust
faults, 7 Cariri–Potiguar trend; IC Icó, IG Iguatu RP Rio de Peixe (reproduced from Kirkpatrick
et al. 2013)
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of the offshore Campos basin. The Araçuaí belt consists of Palaeoproterozoic
basement, amphibolite or granulite facies Neoproterozoic passive margin to fore-
land strata with Brasiliano/PanAfrican granites (625–530 Ma), deformed by an
array of*NNW striking dextral transpressional zones (Cruz and Alkmim 2006 and
references therein).

In the SE Brazil and West Africa conjugate passive margins (Fig. 4.1b), the
trends of the rifts follow strongly the Precambrian basement fabric, while the dips
of the former vary considerably (Ashby et al. 2010; see also Fig. 8 of Almeida et al.
2013). Rifts swerve around cratons and follow the trends of mobile belts and
resemble the EARS (see Ashby 2012; Almeida et al. 2013). Notably the passive
margin strongly parallels the pervasive fabric of the Mantiqueira Orogenic System
and bend around the São Francisco- and Congo-Angolan cratons (Fig. 4.1b). In the
Portiguar basin (Fig. 4.6), NE Brazil, the influence of the pervasive fabrics is
presumably scale dependant. In other words, at regional scale, the rift faults follow
the basement fabrics. However, at scales of hundreds of meters, the rift faults seem
to cross-cut the pervasive foliation (Kirkpatrick et al. 2013). Further south, the Dom
Feliciano and Kaoko mobile belts control the *NE trend of the passive margin
(Fig. 4.1b). However on its conjugate counterpart of the passive margin i.e. the
Damarapaleo-suture (630–510 Ma) between the Congo and Kalahari cratons in the
African plate occurs at a high-angle to the west African passive margin and also to
the mobile belts of the Mantiqueira Orogenic System in S America. This means that
this fabric possibly did not influence the genesis of this passive margin. Such trends
oblique to the overall rift trend are also seen in the EARS e.g. the pervasive fabric in
the EARS trends *E-W west of Lake Kivu in the Western Branch (Fig. 4.3).

4.2.4 East and West Indian Passive Margins

The *2000 km Late Jurassic-Early Cretaceous east Indian passive margin (Rao
2001) is *N-S in the Cauvery and Palar-Pennar basins and NE-SW in the
Krishna-Godavari and Mahanadi basins along the E coast of India formed due to
rifting of India from Antarctica (Bastia and Radhakrishna 2012; Murthy et al.
2012; Roy et al. 2015; Fig. 4.7). Two mobile belts- the Meso-proterozoic Eastern
Ghats Mobile Belt (EGMB) and the Paleo-proterozoic Southern Granulite Terrain
(SGT) involved in the separation of India and Antarctica (e.g. review by Chetty and
Santosh 2013). The NE trending EGMB is characterised by a suite of lithologies,
where charnockites, khondalites, enderbites, leptynites, basic granulites, quartzites,
calc-alkaline gneisses, marble, meta-volcanics are dominant (Valdiya 2010 review).
The deformation is manifest by mainly NE (e.g. Sileru Shear Zone), with minor N-S
trending (e.g. Nagavalli Shear Zone), ductile shear zones due to NW verging thrust
sheets with *NE-SW foliations (Chetty and Murthy 1993, 1994, 1998; Chetty
et al. 2003b; Chetty 2010). The SGT is present in the southernmost part of pen-
insular India and resemble EGMB in lithology. The deformation in this mobile belt
is represented by *E-W crustal scale shear zones (e.g. Palghat-Cauvery Shear
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Zone, Moyar Shear Zone) with minor NE /NW (e.g. Bhavani Shear Zone,
Achankovil Shear Zone) trending ones (e.g. Chetty and Santosh 2013). The mobile
belts are also exposed in Sri Lanka and Antarctica (Napier Complex) (Collins et al.
2014). The Cuddapah Basin is a Meso- to Neo-proterozoic sedimentary basin,
which formed due to sedimentation in the foreland of the EGMB (Naqvi and
Rogers 1987; review by Valdiya 2010; Chetty 2011). The characteristic crescent
shaped basin (Figs. 4.7 and 4.8) occurs at the boundary of the Krishna-Godavari
and the Cauvery-Palar Basins along the Indian east coast. These mobile belts and
meta-sedimentary lithologies are accompanied by three cratons in the peninsular
India viz. Dharwar-, Bastar- and Singhbhum cratons. The Archaean (*3300–
2550 Ma) Dharwar craton is characterised by granites and gneisses, meta-volcanics
and thick meta-sedimentary sequences and traversed by numerous *NNW-SSE
intra-cratonic shear zones and foliations (e.g. Chadwick et al. 2003). The Dharwar
craton covers most of the Peninsular India and lies below the Cretaceous-Paleocene
Deccan volcanic province (e.g. Chenet et al. 2007; Misra et al. 2014) in the N. The
3500–2500 Ma Bastar craton comprises of granites, gneisses and meta-volcanics
and meta-sediments (e.g. Roy and Prasad 2003). The *3600–2800 Ma Singhbhum

Fig. 4.7 Reconstruction of Madagascar, India, Sri Lanka and Antarctica showing the major shear
zones, mobile belts and cratons. MN Mahanadi basin; KG Krishna Godavari basin; CY Cauvery
basin; NVSZ Nagavali–Vamsadhara Shear Zones; NRBF Napier Rayner Boundary Fault; CSZ
Cauvery Shear Zone; BSZ Betsimisaraka Suture Zone; BRSZ Bongolava–Ranotsara Shear Zone;
BDC Bundhelkhand Craton; BC Bastar Craton; SC Singhbhum Craton; DC Dharwar Craton; CUD
Cuddapah Basin; GR Godavari Rift; MR Mahanadi Rift; LR Lambert Rift; RC Rayner complex;
EGMB Eastern Ghats Mobile Belt; SGT Southern Granulite Terrane; CITZ Central Indian Tectonic
Zone (reproduced from Chetty and Santosh 2013)
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craton includes granites, tonalitic gneisses, meta-volcano-sedimentary complexes
and minor charnockites-khondalites (Saha et al. 2004).

The E Indian passive margin also follows closely the trend of the Precambrian
foliations of the EGMB and SGT. The major rift-fault trends also parallel the
foliations (Fig. 4.8). The passive margin follows the N-S trend in the Cauvery and
Palar-Pennar basins, bends following the Cuddapah basin trend (Figs. 4.7 and 4.8)
and follows the NE-SW trend of the Eastern Ghats mobile belt in the
Krishna-Godavari and Mahanadi basin in Indian east coast. The east India passive
margin avoids obviously the major cratons viz. Dharwar-, Singhbhum- and Bastar
cratons (Fig. 4.8).

The W Indian passive margin also follows the NNE foliation trend of the
Western Dharwar gneisses (Fig. 4.9). But, this margin did not develop along any
mobile belt and separated the *3300–2500 Ma Antongil-Masora cratons of
Madagascar (Fig. 4.10) in west from the Dharwar craton of India (Veeraswamy and
Raval 2004; Schofield et al. 2010). The Paleo-proterozoic to Neo-proterozoic
Bemarivo mobile belt lies immediately N of the Antongil craton with the
Andaparaty thrust in between (Schofield et al. 2010; Key et al. 2011) (Fig. 4.10).
Note that there is a conspicuous *NNW trending crustal-scale lithological
boundary between the Dharwar craton and the Closepet Granite (Fig. 4.9), which
also parallels the passive margin. Whether such deep litho-contacts influence the
trend of the rifts requires more study. The western edge of the Dharwar craton
weakened by repeated Neo-proterozoic to Late Paleozoic reworking of the adjacent
mobile belts (Key et al. 2011) and strain localized and fragmented it (Veeraswamy
and Raval 2004). The northern part of the western continental margin of India
formed as a result of India-Seychelles rifting (Misra et al. 2015a) also shows
inheritance of the Dharwar trend in the trend of brittle shears and dykes (Misra et al.
2015b).

4.3 Discrete Fabrics

Discrete/isolated fabrics are planar to curvi-planar elements e.g. ductile shear zones
(Mukherjee 2012; Mukherjee and Biswas 2014) or fault planes that lead to
anisotropy in terms of strength and material properties with respect to the

b Fig. 4.8 Map of the major tectonic segments of the Indian east coast and the structural features of
the adjacent onshore (modified fromNemčok et al. 2013 and references therein). There are six
major segments: a the NE–SW-trending Cauvery rift zone; b the NNW–SSE-trending dextral
Coromondal transfer zone; c the NE–SW- to ENE–WSW trending rift units of the Krishna–
Godavari rift zone; d the NNE–SSW-trending North Vizag transfer zone between the Krishna–
Godavari and Mahanadi rift zones; e the NE–SW-trending Mahanadi rift zone; and f the
NNW– SSE-trending dextral Konark transfer zone. Tectonic lines (denoting predominantly
foliation) in grey lines and cratons in grey shaded areas; BDC Bundhelkhand Craton; BC Bastar
Craton; SC Singhbhum Craton; DC Dharwar Craton; CUD Cuddapah Basin; EGMB Eastern Ghats
Mobile Belt; SGT Southern Granulite Terrane
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Fig. 4.9 Major tectonic elements of the western continental margin of India, showing the on-land
pervasive fabrics as thin brown lines, predominantly foliation planes in Precambrian rocks. Thin
black lines faults in the Kerala-Konkan shelf. Kdl Kurduwadi lineament; Bh Bhima Shear; Ctd
Chitradurga Shear Zone; Mer Mercara Shear Zone; Moy Moyar Shear Zone; Bh Bhavani Shear
Zone; Pl-Cy Palghat-Cauvery Shear Zone; Ack Achankovili Shear Zone; CpG Closepet Granite
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Fig. 4.10 Map showing the major Precambrian tectonostratigraphic units of Madagascar,
(reproduced from Schofield et al. 2010 and references therein). APT = Andaparaty Thrust;
AB–MO = Anaboriana–Manampotsy Belt; AN = Antongil Craton; BE = Bemarivo Belt;
MA = Masora Craton; NT = Antananarivo Craton; IT = southern mobile belts including the Itremo
Group; VO = Vohibory Unit
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surrounding rocks (Morley 1999b). Deformation event(s) develop discrete/isolated
fabrics such as brittle/ductile fault/shear zones, joints etc. These fabrics act as weak
planes in rocks.

Notice that “fabric” refers here a crustal-scale geological feature and thrusts have
been described as ‘discrete fabric’. The second point to note is that the meaning of
‘discrete fabric’ differs from ‘discrete foliation’ (in the sense of Twiss and Moores
2007). ‘Discrete’ in both casesmeans isolated/wide-spaced at the scale of observation.

In contrast to pervasive fabrics, discrete fabrics influence only at large-scale:
they control transfer zone geometries, prevent propagation of rift-bounding faults
and segment the rift systems depending upon their anisotropic strength. Discrete
fabrics do not govern the overall trend of all the rift faults and rather develop faults
of unique and similar trend. Whether or not discrete fabrics govern the dip of rift
faults is not yet worked out. Depending on their density and attitude, discrete
fabrics segment and localise rift zones (Delvaux and Barth 2010). Discrete fabrics
weaker than the rock volume reactivate during extension. Some of the disconti-
nuities affect not only the attitude of faults under extension, but also their lengths
(Versfelt and Rosendahl 1989; Morley 1999b; Morley et al. 2004). A fault may
continue partly or entirely along the pre-existing fabric depending upon the strength
of the fault along strike (Morley et al. 2004).

In rifting, basin-bounding normal faults develop with their strikes paralleling
preferential pre-existing discontinuities. The basin formation is accentuated by
selective extensional reactivation of the youngest and weakest fabrics. Here, the
‘weakest’ fabric is not the one with weakest isotropic strength, but are those which
are most favourable to shear failure depending on the angular relationship between
the fabric and the extension direction (Fig. 3.6) (Donath 1961; Swanson 1986;
Morley 1999c).

When weakest fabrics reactivate, strain focuses at weak planes and rift-bounding
faults propagate laterally. These fabrics have near-zero cohesion and almost no
friction for stress needed to propagate rift-bounding faults (Versfelt and Rosendahl
1989; Nemčok et al. 2007). The dip of pre-existing discrete fabric also has bearing
in reactivation. In analogue models and natural prototypes, fabrics reactivate as
normal faults if they dip at > 40° (Faccena et al. 1995).

Discrete anisotropies in the basement rocks influence the fracture pattern in
younger overlying cover showing parallel relationship (e.g. Cortés et al. 2003). This
might be because the discrete fabrics reactivate and do not produce new faults
depending on the following factors (i) The deviation in the attitude of the
pre-existing fabric from the ideal attitude of fresh faults due to the prevalent stress
field (Fig. 3.6) (Morley 1999b; Morley et al. 2004; Morley 2010). (ii) The difference
in strength between the pre-existing fabric and the rock devoid of such fabrics
(McGill and Raney 1970; Ranali and Yin 1990; Ranalli 2000). The strength depends
on coefficient of friction, cohesion, depth, pore fluid pressure (Sect. 3.1). Figure 3.2
present failure of intact rock and weaker rock associated with pre-existing shear
zones in the Mohr space. For pre-existing weak zones, the discontinuities with
favourable orientations reactivate (McGill and Raney 1970; Ranalli and Yin 1990)
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(Fig. 4.11). (iii) The sense of slip on reactivation of the fabric (Morley et al. 2004).
The rift faults, which were controlled initially by pervasive fabrics, interact with the
new set of fractures developed by interference with discrete fabrics (Fig. 4.12). Such
interactions may reorient rift faults under the same extensional regime (Morley et al.
2004). These faults may be oblique to < 80° to the overall regional extension
direction. There are methods (stated below) to decipher whether faults/fractures
formed or reactivated. Field-based paleostress analyses (e.g. Misra et al. 2014) may
be best when relative chronology of stress markers like superposed slickensides,
abutting tectonic joints etc. are available (e.g. Nickelsen 2009). Such studies can
specify attitude of newly formed fractures/faults based on paleostress tensor
(Bosworth and Strecker 1997; Morley 1999; Delvaux and Barth 2010; Žalohar and
Vrabec 2007). An analytical technique is used, which differentiates strength between
the intact rock and that of the pre-existing fabrics (Ranalli and Yin 1990).

Pre-existing discrete anisotropies also control geometry and slip-sense of faults
in transfer zones (Acocella et al. 1999). Those faults tend to be strike-slip when the
angle between the extension direction and the axis of the transfer zone is < 50°
(Fig. 4.13; Acocella et al. 1999). When the angle (γ) between the normal of the
extension direction and the anisotropy is < 90°, narrow transfer zones develop. For
γ > 90°, wider transfer zones sub-parallel to the extension direction form (Acocella
et al. 1999).

Fig. 4.11 An example case (for sandstone) for reactivation of anisotropies with a favourable
angular relationship with the stress state, represented by the Mohr circle; ρ = density of rock; μ =
co-efficient of sliding friction; φ = angle of internal friction; μ* = modified μ due to anisotropy; φ*
= modified φ due to anisotropy; reproduced from Paterson and Wong (2005)
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Fig. 4.12 Sketch depicting interaction of newly formed faults and oblique pervasive anisotropies
(pre-existing shear zone, represented by thick grey line). a Active fabric, where the shear sense
along the shear zone during later reactivation remains constant throughout the shear zone. The
extensional faults mostly abut against or seldom merge tangentially into the pre-existing shear
zone. b Passive fabric, where the sense of shear along the shear zone is not constant during later
reactivation. The extensional faults mostly merge into the pre-existing shear zone tangentially
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Pre-existing discrete fabrics control dominantly (i) geometry of primary rift
faults and their temporal evolution, (ii) the geometry of transfer faults, (iii) the
secondary faulting associated with primary rift faults, and (iv) and the location of
depocenters/deepest parts of basins controlled by the rift faults (Dooley and
McClay 1997; Bellahsen and Daniel 2005). Based on their response to extensional
stresses, discrete fabrics can either be active or passive (Morley 1999c). The active
discrete fabrics constitute dominant regional strike- or oblique-slip fault zones
cutting across all other fabrics. Such fault planes sub-parallel the regional extension
direction (Fig. 4.12a). The amount of slip and shear sense remain constant along the
fault length (Morley 1999c). The passive discrete fabrics are unrelated to the
extension direction. Segments of such fabrics may parallel some other faults with
none or weak linkage (soft linked) (Fig. 4.12b). Such faults do not have large slips
and may show opposing oblique-slips across the fault plane (Fig. 4.12b) (Morley
1999b). The fault patterns generated by discrete passive oblique fabrics vary sig-
nificantly. They can prevent fault propagation, so that rift parallel faults either turn
or terminate at the oblique fabric; or short rift-parallel faults may parallel an oblique
fabric (Fig. 4.12b). Active- and passive discrete fabrics thus do not link directly to
the composition, geometry etc. of the fabrics that define them. Rather they play role
in segmentation of the margin or limiting extents of individual grabens.

Fig. 4.13 Schematic diagram showing the different parameters for setups relating to experiments
to study transfer zone geometries. a Imposed (initial) conditions and b observed (final) conditions;
VD Velocity Discontinuity (reproduced from Acocella et al. 1999)
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4.3.1 East African Rift System (EARS)

In the EARS, the effect of pre-existing discrete fabrics is evident from
oblique/sheared segments of the rift system, such as the NW trending Rukwa rift of
the Tanganyika-Rukwa-Malawi (TRM) segment. The normal and oblique slip faults
in the Rukwa rift parallel the pervasive fabrics in the Pre-Cambrian basement
(Fig. 4.3). The basin bounding Lupa fault (Figs. 4.3 and 4.14) formed by Tertiary
reactivation of Permo-Triassic Karoo rift faults. The Karoo rift faults and thus the
Lupa fault also follow the Precambrian pervasive fabric (Morley 1999b). N to Lake
Victoria, the NW trending *300 km Aswa Shear Zone (=Aswa Dislocation, Aswa
mylonite belt) of Neoproterozoic age is the most conspicuous oblique element in
the EARS (Chorowicz 1989; Grantham et al. 2003; Schlüter 2006). The Aswa
Shear Zone terminates the northernmost part of the western branch of the EARS.

The offset zone of the central Kenya rift (eastern branch of the EARS) also
coincides with the Aswa Shear Zone (Fig. 4.3). Both the oblique trends viz. the
Rukwa rift and the Aswa shear zone are sub-parallel, dextral and with minor
dip-slip components. They seemed to be discrete fabrics of active nature
(Chorowicz and Munkonki 1980). However, later studies (Grimaud et al. 1994;
Coussement 1995) revealed the fabric to be passive. Analogue models for the
EARS explained the role of discrete anisotropies in the mechanism of the individual

Fig. 4.14 Structural map (in two-way-time) on top of basement at the Rukwa basin. See Fig. 4.3 for
location (reproduced fromMorley 2010 and compilations therein). a Rose diagram of newly formed
faults; b Stereonet of poles of Pre-cambrian foliation surrounding the Rukwa basin; c Rose diagram
of SHmax orientations calculated from earth quake focal mechanisms around the Rukwa basin
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rifted grabens (Corti et al. 2007; Aanyu and Koehn 2011). The rift oblique grabens
such as Lake Rukwa (Figs. 4.3 and 4.14) develop lesser subsidence than rift per-
pendicular grabens like the Lake Tanganyika (Fig. 3.6).

The pre-existing E/ESE trending Sekaka shear zone, possibly of Neoproterozoic
age, caused termination of the Okavango rift at south (Modisi et al. 2000; Kinabo
et al. 2007, 2008). Therefore, pre-existing discrete fabrics prevented along-strike
rift-fault propagation. Such shear zones usually evolve into accommodation
(transfer) zones in rift evolution.

4.3.2 The Brazilian Rifts

Discrete fabrics affected the large-scale rift at the NE Brazilian passive margin.
Here, the pre-existing Neoproterozoic fault zones constitute the pre-rift structural
grain of the *620–580 Ma (van Schmus et al. 2008) Pan-African (locally,
Brasiliano) orogeny. NE trending fold belts and E/NE striking fault zones char-
acterize this structural grain (Corsini et al. 1991; de Matos 1992; de Castro et al.
2007; van Schmus et al. 2008). Out of these, the most prominent is the E trending
tens of km wide Neoproterozoic Patos- and Pernambuco- Shear Zones that pre-
vented the along axis propagation of the N trending Brazilian rifts. The Pernambuco
Shear Zone separates the southern Jatobá-Recôncavo-Tucano (JRT) rift system
from the central Araripe rift basin, which is separated from the northern Potiguar
basin by the Patos Shear Zone (de Matos 1992; Destro et al. 2003) (Figs. 4.6 and
4.15). Thus, the Patos- and the Pernambuco fault zones acts as a mega transfer zone
between the southern and the northern rifts. The NW-SE extension during
Cretaceous induced inversion and formed normal faults in the pre-existing trans-
pressional NE-SW segment of the Patos Shear Zone (see Fig. 13 of de Matos 1992).
The Cretaceous rift basins: Icó, Iguatu and Rio do Peixe basins in Brazil developed
interesting geometries. The basin bounding faults reactivated the Neoproterozoic
shear zones from isolated half grabens by transtension (Fig. 4.15). The Rio do Peixe
basin has three sub-basins named Brejo das Freiras, Souza and Pombal, all of which
also developed their main rift faults along the Neoproterozoic shear zones
(Fig. 4.15). The larger Brejo das Freiras and Souza sub-basins are separated by the
Santa Helena high, which formed since the NE trending Portalegre Shear Zone
interacted with the E trending Malta Shear Zone (de Castro et al. 2007). This shows
how pre-existing discrete fabrics control the geometry and extent of rift basins.

4.3.3 Tertiary Rifts of Thailand

In the Tertiary rifts of Thailand, the ENE-WSW Uttardit fault zone follows a
mega-scale discrete fabric: the Nan-Uttardit suture. The Uttardit fault zone parallels
Precambrian foliation trends of the Indo-Sinian orogeny near the Nan-Uttardit
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suture zone. The Nan-Uttardit suture zone is oblique (40–50°) to the regional
extension direction during late Paleogene–recent (Fig. 4.4; Fig. 9 of Morley et al.
2004). Due to this obliquity, the Uttardit fault zone slipped obliquely and retained
half-graben like geometries of orthogonal rift basins (Bal et al. 1992; Morley et al.
2004; Morley 2007). The sinistral strike-slip component of this fault zone manifests
maximum thickness of sediments of Uttardit basin against a transtensional bend in
the Uttardit fault zone. This indicates an oblique-extensional nature of the Uttardit
fault zone (see Fig. 10 of Morley et al. 2004; Fig. 4.5). Other basins e.g. the Chiang
Mai-, Phrae- and Fang basins show dissimilar geometries depending on the angular
relationship between the pre-existing anisotropy and the regional stress directions
(Fig. 4.16). This shows the profound influence of the discrete fabrics on the
geometry of the rift basins.

4.3.4 North Atlantic Passive Margin

The North Atlantic opening is a complex rift history starting from Paleozoic and
completing in early Cenozoic by breaking eastern Greenland from western Europe

Fig. 4.15 Map of the Rio de Piexe basin showing the Geology of the Rio do Peixe Basin
(modified from de Castro et al. 2007), located at the intersection of three structural domains: Orós–
Jaguaribe, Rio Piranhas, and Granjeiro. Early Cretaceous basins: Icó (IB) and Rio de Peixe (PR,
sub-basins: BF, Brejo das Freiras; SO, Souza; PO, Pombal). 1 Rio Piranhas Formation, 2 Sousa
Formation, 3 Antenor Navarro Formation; 4 pre-Brasiliano basement; 5 faults (J, Jaguaribe; RF,
Rodolfo Fernandes; PA, Portalegre; M, Malta; RP, Rio Piranhas); SH, Santa Helena High
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(Tsikalas et al. 2012 review; Khani et al. 2015). The west Norwegian margin is a
classic example of syn-orogenic to post-orogenic extension related to gravitational
collapse of Scandinavian Caledonian orogen (e.g. Andersen 1998; Fossen 2000). It
obviously follows that rifting continued along the orogenic belt. The extensional
tectonics reactivated the same faults as normal faults NW to N trending deep crustal
shear zones e.g. Hardangerfjord Shear Zone and the Bergen Arc Shear Zone
(discrete anisotropies). Such shear zones were compressional (indicated by reverse
faults) during the Caledonian orogeny (Osmundsen and Andersen 1994; Fossen
2000). Extensional faults also parallel *NE trending shears and litho-contacts
between Precambrian and Paleozoic in the Møre-Trøndelag Fault Zone/Complex
(MTFZ/C; Fig. 4.17; Doré et al. 1997; Lidmar-Bergstrom and Naslund 2002;
Nasuti et al. 2012). The MTFZ accommodated strike- to oblique-slip deformation in
Jurassic and thereafter in Cretaceous-Cenozoic the extension was precisely
orthogonal. This is because after Cretaceous, the MTFZ was perpendicularto the
regional extension direction, following the angular relationship between the Jan
Mayen Fracture Zone and the MTFZ (Fig. 4.17) (Doré et al. 1997; reviews by
Nasuti et al. 2012). During Jurassic, the MTFZ probably acted as mega-scale
transfer zone and inhibited along-strike fault propagation between the North
Sea-Viking Graben and the Møre-Vøring basin (Doré et al. 1997).

In the Paleozoic-Mesozoic North Sea rift (Fig. 4.18), pre-existing N-S and NW
trending shear zones of the Early Paleozoic Caledonian orogeny reactivated and
numerous new rift faults also formed depending on strain localization (Whipp et al.
2014). The North Sea rifted in two stages: an early E-W Permo-Triassic (possibly as
early as Devonian) and a subsequent N-S Late Jurassic extension (Whipp et al.
2014; Khani et al. 2015). The N-S earlier Permo-Triassic rift faults reactivated
during Jurassic and also formed new E-W trending fault systems (Fossen 2013).
Recent seismic data interpretation (by Khani et al. 2015) shows that physical
linkage occurs between the basement reflections and overlying Permo-Triassic
faults along strike, but only locally. Nevertheless, the basement structures have
played an important role in controlling the locations and trends of major rift related
faults in the overlying sediments. Interestingly, heterogeneities of a part of the
North Sea crust deciphered from geophysical studies could be due either to
inheritance or serpentinization (Fichler et al. 2011).

4.3.5 Eastern North American Rift System

The eastern North America preserves two tectonic stages of the Wilson cycle:
Iapetus Ocean opened at*530 Ma, contractional structures of the Rodinia assembly
at*1350–1000 Ma, and late Triassic opening of the Atlantic paralleled those of the
Pangea assembly of Ordovician-Permian Periods (reviews by Thomas 2006;
Withjack et al. 2012). Analyses of pre-existing pervasive-and discrete fabrics and
their relation with individual rifted grabens do not exist possibly because geometry
of the buried basins remained indeterminate (reviews by Withjack et al. 2012).
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Fig. 4.17 Tectonic elements map of the Norwegian passive margin. MTFZ Møre-Trøndelag Fault
Zone; JMFZ Jan Mayen Fracture Zone; VG Viking Graben. Brown lines denote rift faults (after
Norwegian Petroleum Directorate)
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However, a discrete fabric in the form of a dextral bend in the Grenville front
(Fig. 4.19a) was inherited as the Iapetan Alabama-Oklahoma transform (Fig. 4.19b)
(Thomas 2010). The WNW trending Bahamas fracture zone subsequently inherited
the Alabama-Oklahoma transform (Thomas 1988). During Mesozoic rifting,
high-angle reverse faults and strike-slip faults of Paleozoic and older age reactivated
as discrete fabrics during rifting between eastern North America and western North
Africa (Fig. 4.20; Swanson 1986; Huerta and Harry 2012; Withjack et al. 2012).
Geophysical studies also indicated a strongly anisotropic crust and upper mantle due
to orogeny that later inherited in the rifting events (e.g. Vauchez and Baruol 1996;
Pollitz and Mooney 2014).

Fig. 4.18 Structural elements map of the North Sea showing the major rift grabens with the rift
bounding faults (reproduced from Whipp et al. 2013)
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(a)

(b)

Fig. 4.19 Schematic illustrations of a The Grenville orogeny during the assembly of Rodinia;
b opening of the Iapetus Ocean during breakup of Rodinia (reproduced from Thomas 2006)
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Fig. 4.20 Schematic illustrations of a assembly of Pangaea due to the Appalachian-Ouachita
orogeny; b formation of the Atlantic Ocean following the breakup of Pangaea. (reproduced from
Thomas 2006)
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4.3.6 Rhine Graben

Pre-existing NE trending discrete anisotropies influenced the Upper Rhine Graben
(W Europe) selectively in its northern part up to Late Oligocene (Eden et al. 2007).
Regional stress reorientation from Oligocene onwards reactivated existing faults in
Upper Rhine Graben (Homuth et al. 2014). The anisotropies reactivated as sinistral
strike-slip faults and dip-slip to oblique-slip faults to form the Rhine Graben by
NW-SE extension during Mid Oligocene. In its S part, the Upper Rhine Graben
transferred strain towards W along the Rhine-Bresse Transfer Zone to the Bresse
Graben (Fig. 4.21) (Frisch et al. 2011; Jolivet et al. 2013).

Fig. 4.21 Fault map of the Central European rift system showing the relationship of the Upper
and Lower Rhine Grabens and the Bresse Graben. The presence of an accommodation zone
between the Upper Rhine and Bresse grabens helps the transfer of deformation towards the later
(adapted from Frisch et al. 2011)
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Fig. 4.22 Map of the Eastern Ghats Mobile Belt showing the major shear zones, 1 Sileru Shear
Zone; 2 Koraput–Sonapur Shear Zone; 3 Mahanadi Shear Zone; 4 Chilka Lake Shear Zone;
5 Digapahandi Shear Zone; 6 Aska Taptapani Shear Zone; 7 Banjanagar Shear Zone; 8 Balgura
Tel Shear Zone; 9 Vamsadhara Shear Zone; 10 Nagavali Shear Zone; 11 Narsipatnam Shear Zone;
12 Tuni–Eleshwaram Shear Zone; 13 Angul-Dhenkanal Shear Zone; and 14 Northern Boundary
Shear Zone;MR—Mahanadi Rift, GR—Godavari Rift (reproduced from Chetty and Santosh 2013)
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4.3.7 East and West Indian Passive Margins

The eastern continental margin of India formed during Late Jurassic to Early
Cretaceous by rifting and breakup of India and Antarctica (Rao 2001). This margin
formed along the Mesoproterozoic Eastern Ghats Mobile Belt (EGMB) in India and
the Napier complex in Antarctica (Chetty and Santosh 2013). In the mobile belt,
majority of the shear zones trend *NE and parallel the overall rift trend, apart from
the NNW trending Nagavalli- and Vamsadhara Shear Zones and NW trending
Mahanadi- and the Northern Boundary Shear zones (Fig. 4.22). These transverse
shear zones probably precluded the along strike propagation of the rift faults
(Fig. 4.8). The Nagavalli- and the Vamshadhara shear zone acted during
Neo-Proterozoic as large transfer zones in the form of the North Vizag Transfer
Zone (Fig. 4.8) between the Krishna-Godavari- and the Mahanadi rift zones
(Nemčok et al. 2013). The Proterozoic Mahanadi- and the Northern Boundary
Shear Zones reactivated during Permo-Triassic rifting in the Indian subcontinent as
the Mahanadi Rift (Fig. 4.22). The *NW-SE trend of these shear zones mismatch
with the NNW trend of the Konark transfer zone (Fig. 4.8) and the reason remained
indeterminate.

The west Indian passive margin is unique since it did not break along any mobile
belt but separated the Archean craton into the Western Dharwar Craton, in India,
and the Antongil and the Masora cratons in E Madagascar (Schofield et al. 2010)
(Fig. 4.10). The Anaboriana–Manampotsy (AM) mobile belt (Fig. 4.10) immediate
W to the Antongil-Masora cratons was avoided i.e. the passive margin did not form
along it. The continental breakup between India and Madagascar at *90 Ma
reactivated several shear zones e.g. the NNW trending Chitradurga Shear Zone
(Sharma 2009) (Fig. 4.9) of the western Dharwar craton and the continents sepa-
rated along one of them (Raval and Veeraswamy 2003). Interestingly, a segment of
the West Indian passive margin also parallel the NNW trend of the Closepet granite
(Fig. 4.9). Repeated tectonism along the Anaboriana–Manampotsy mobile belt
probably weakened the Western Dharwar-Antongil-Masora craton. Possibly, the
cratonic boundary became weaker than the mobile belt itself and thus broke the
craton instead of along the mobile belt (Raval and Veeraswamy 2003). The *E to
NW trending shear zones of the Southern Granulite Terrain e.g. the Palghat-
Cauvery- Shear Zone, Moyar-, Bhawani-, Achankovil- shear zones (Santosh and
Sajeev 2006), cumulatively active during Neo-Proterozoic (Santosh and Sajeev
2006), possibly have little influence on the passive margin architecture. Neither the
LateCretaceous-Early Paleocene off-shore faults nor the Western Ghats Escarpment
deviate significantly from the NNW trend (Fig. 4.9).

52 4 Pre-existing Fabrics



Chapter 5
Role of Lithosphere Rheology on Rift
Architecture

5.1 General Discussion

Extensional geodynamics is controlled strongly by rheology- most important being
strength and pore fluid pressure (Buck 1991; Vilotte et al. 1993; Bassi et al. 1993;
Bassi 1995; Cloetingh et al. 1995; Ranalli 2000; Corti et al. 2003 and references
therein; van Avendonk et al. 2009), and thickness of the pre-rift lithosphere
(Cloetingh et al. 1995; Hirth and Kohlstedt 1995; van Avendonk et al. 2009). The
other obvious parameters are extensional stress rates, duration and change in
direction of extension. Rheology considerably varies spatially and temporally and
segments rifts and passive margins (Ranalli 2000).

5.2 Lithospheric Strength

Lithospheric strength inversely relates to its thickness and temperature (Lynch and
Morgan 1987) and also to its composition (Kusznir and Park 1987). Mobile belts,
which are fossil orogens, have a warmer and thicker (>*80 km) lithosphere than
“Normal” crust. They have much warmer geotherm than Acrhean cratons (Fig. 5.1),
The strength profiles in the “normal”, mobile belt and cratonic lithospheres are
characteristic (Fig. 5.1). The mobile belt lithospheres or Alpine lithosphere
(e.g. Cloetingh et al. 1995) usually have very low crustal tensile- and compressive
strength in the crust and upper mantle. ‘Normal’ and cratonic lithosphere are equally
strong.

Reorientation of stress axes can uplift rift shoulders (Favre and Stampfli 1992).
The cratonic lithospheric mantle shows large strength to depths of >80 km.
Generally, rifting along mobile belts, e.g. South Atlantic passive margins, causes
low topography rift shoulders. Whereas, high topography rift shoulders develop
when cratons break e.g. the Saudi Arabian Red Sea margin or the Trans-Atlantic

© The Author(s) 2015
A.A. Misra and S. Mukherjee, Tectonic Inheritance in Continental Rifts
and Passive Margins, SpringerBriefs in Earth Sciences,
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Mountains (Cloetingh et al. 1995; Ollier and Palin 2000). The high topography rift
shoulders of western India and Madagascar passive margins also represent such a
case (Ratheesh Kumar et al. 2014). More precisely, the rift shoulder topography
depends on the necking depth/level of necking for a layer (Braun and Beaumont
1989), which in other words, is the depth of a strong zone (Fig. 5.1; Watts 2012).
This depth, same as the ‘intrinsic’ necking depth of Braun and Beaumont (1989), is
defined by a layer of strong olivine-rick mantle beneath the Moho, which would
remain straight without isostasy (Braun and Beaumont 1989). The necking depth, in
turn, is related to faulting in the brittle- and thinning in the ductile layer (Mohn et al.
2012). Shallow depth/level of necking can uplift significant proportion of mantle,
and vice versa (Watts 2012). The rift shoulder uplifts when the intrinsic necking
depth exceeds the actual isostatic cratonic necking depth (Fig. 5.2b). Thickness of
crust, and the difference in density between mantle and crust decide the force for
shoulder uplift (Buck 2007). The topography diminishes in the reverse case such as
in Alpine lithosphere (Fig. 5.2d) (Braun and Beaumont 1989; Weissel and Karner
1989; Kooi et al. 1992; Cloetingh et al. 1995). However, places such as South
Africa previously thought to be elevated by inheritance may not be so (Japsen et al.
2006). With the same stretching model i.e. equal stretch factors: β (McKenzie
1978), δ (Royden and Keen 1980), or α (Turcotte and Schubert 2002) values,
different degrees of necking strongly affect Moho depth predictions, rift shoulder
development, basement topography, thickness ratios of syn-rift and post-rift sedi-
ments and free air gravity anomalies (Kooi et al. 1992; Cloetingh et al. 1995;
Figs. 5.2 and 5.3).

Strength profiles show that the strongest layer lies near the top of the lower crust
for Alpine lithosphere i.e. at the brittle ductile transition zone at *8–15 km depth

Fig. 5.2 Schematic diagrams illustrate the concept of necking depth/level. a and b: Cratonic
lithosphere; c and d: mobile belt/orogenic lithosphere; a and c: intrinsic necking levels devoid of
isostasy; b and d: state of the lithosphere under regional isostasy. Green asthenospheric mantle;
Yellow sediments; Grey lithosphere. Note the strength profile for the strongest level in the
lithosphere. This strong layer marks the level of necking; modified from Buck (1991) and
Cloetingh et al. (1995)
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and a temperature of *250–300 °C (Kooi et al. 1992), which is the zone of
maximum lithospheric strength (Fig. 5.1). Following this concept, stable cratons
with a cold geotherm (Fig. 5.1) and strong sub-crustal mantle pinches near the
uppermost mantle. On the other hand, mobile belts with thicker orogenic litho-
sphere and higher geotherm (Fig. 5.1) would have low strength lithosphere as
represented in the strength profiles in Fig. 5.1 and necking depth near the
brittle-ductile transition zone (Cloetingh et al. 1995; Fig. 5.2).

Subsequent studies revealed that though the simple concept above is true,
considering the strongest layer in the lithosphere as the level of necking is not that
straightforward (e.g. van der Beek et al. 1995; Spadini et al. 1995). For example,
the lithosphere may consist of two or more strong layers where the brittle-ductile
transition zone and mantle are equally strong. Thus, stress can localize at many
levels within the lithosphere. Again, crustal composition controls the thickness and
sometimes the occurrence of ductile layer in the lower crust. For a felsic compo-
sition, a thicker ductile zone persists than that for intermediate or basic composition
(Ranalli 2000; Afonso and Ranalli 2004). In such a condition, the ‘effective level of
necking’ will be demarcated by the weakest layer enveloped between the strongest

Fig. 5.3 Modelling predictions (for a 50 Ma old margin) for crustal structure, gravity and general
basin stratigraphy illustrated for a a local isostatic model and b–d models with different levels of
necking (0, 15, 30 km), implementing the same stretching model. Different levels of necking
predict differently Moho depth and basement topography, rift shoulder development, thickness
ratios of syn-rift and post-rift sediments and free air anomalies (reproduced from Cloetingh et al.
1995)
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layers (e.g. Spadini et al. 1995; Handy and Burn 2004). Gravitational instabilities
may occur in the lithosphere when a large volume (>43 %) of continental mantle of
the thick lithosphere in mobile belts drags into the convective asthenospheric
mantle (Rey 2001). The thickened crust then collapses gravitationally (Fig. 5.4) and
may rift continents e.g. the Basin and Range province, N America (Rey 2001;
Montési and Zuber 2003a). Lithospheric layers of varying rheology deform and
spread at different rates during orogenic collapse (Fig. 5.4).

In such situations, the pre-existing faults of favouring trends (see Sect. 4.2)
reactivate. Such faults are either listric (Fig. 4.2) or discontinuous/segmented.
Extrusive doming of the low viscosity middle layer can also form metamorphic core
complexes (Kaisa et al. 2013).

Forward modelling revealed pre-rift lithospheric parameters viz. effective elastic
thickness (Te; detail in Watts 1992; Burov and Diament 1995), level of necking, and
strain rate (Cloetigh et al. 1995; Pourhiet et al. 2015) control the necking depth and
consequently the rift geometry. Figure 5.5 summarises the correlations found from
their modelling. The thermal state of the lithosphere governs its pre-rift rheology.
The plots (Fig. 5.5) show possible correlation of necking depth with pre-rift
crustal/lithospheric thickness and strain rate. The depth of necking is shallow for
higher depth (60–80 km) of pre-rift crust but such a correlation is weaker for lith-
osphere (Cloetingh et al. 1995). Effective elastic thickness (Te) (see Appendix) does
not correlate with the level of necking. Te can represent rigidity (Ratheesh-Kumar
et al. 2014 and references therein).

Note the Saudi Arabian Red Sea margin is an outlier in the plot of effective
elastic thickness versus necking depth and it also has a significantly large

Fig. 5.4 Modeling results show evolution of the lithosphere following homogeneous orogenic
thickening (reproduced partly from Rey 2001). Convergence continues for 30 Ma, immediately
followed by convective thinning of the mantle. The relative thickening and thinning are
represented in the left hand side fc-fl plots; fc: ratio of the final thickness of the crust to that of the
reference crust; fl: ratio of the final thickness of the lithosphere to that of the reference lithosphere.
Convective thinning is shown for mantle removal of 97 km. Here, necking instability arises and
possibly develops a spreading centre

5.2 Lithospheric Strength 57

http://dx.doi.org/10.1007/978-3-319-20576-2_4
http://dx.doi.org/10.1007/978-3-319-20576-2_4


rift-related *3 km uplift. The Trans-antarctic also shows >5 km rift shoulder uplift
(Cloetingh et al. 1995). The anomalous nature of the Saudi Arabian Red Sea margin
is a product of other tectonic process like volcanism leading possibly a very fast
extension: 5 Ma from rift initiation until breakup (Cloetingh et al. 1995). Prior
deformations can either strengthen or weaken the lithosphere. Change in strength
may fracture the lithosphere locally (Autin et al. 2013). Most orogens are weaker

Fig. 5.5 Correlation illustrations for the relationships between different parameters a necking
depth and pre-rift crustal thickness; b necking depth and pre-rift lithosphere thickness; c EET and
necking depth; and d necking depth and strain rate. Closed dots and squares indicate data from
Alpine/Mediterranean basins and intracratonic rifts, respectively. Numbers in diagrams 1 Gulf of
Lion 2 Valencia Trough 3 Southern Tyrrhenian Sea 4 Pannonian Basin 5 North Sea Basin 6 Baikal
Rift 7 Saudi Arabia Red Sea Margin 8 Transantarctic Mountains 9 Barents Sea margin 10 East
African Rift 11 Western Black Sea 12 Eastern Black Sea (Cloetingh et al. 1995). Note the
anomalous position of the Saudi Arabia Red Sea margin (7) in these diagrams; ε̇: strain rate
(reproduced from Cloetingh et al. 1995)
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than adjacent crust due to repeated reactivations (Miller et al. 2001). But, some
orogens may be harder than adjacent crust and might not rift e.g. the Urals did not
rift during Jurassic to early Paleocene Gondwana breakup (Krabbendam 2001).

5.3 Temperature and Strain Rate

A narrow-, wide- and core complex mode of rifting happens in progressively hot
and weak lithosphere (e.g. Buck 1991). Based on numerical modelling, Buck
(1991) concluded that width of rifts depends on the thermal state of the lithosphere.
He considered wide rifts form in hot lithosphere of 80 mWm−2 of surface heat flow
and narrow rifts in cold lithosphere of 60 mWm−2 heat flow (Fig. 5.6). Wide rift
may also form if the weak crust decouples from mantle (Hopper and Buck 1996).
For high crustal thickness and very high Moho temperatures, core complexes may
form as in the Basin and Range province (Corti et al. 2003 and references therein).
Bassi’s (1995) dynamic model demonstrated that cold brittle lithosphere thins
rapidly under extension to develop narrow rifts. In contrast, warm ductile litho-
sphere develops wider (>100 km) rifts. Models indicate that pre-rift rheology has a
greater control on the geometry of rifted margins than the strain rate (Buck 1991;
Bassi 1995). The strength difference between the lower crust and the upper mantle
at Moho is best developed in regions with moderate geotherm (i.e. for 700–900 °C
at Moho) and decreases with any change in Moho temperature (Ranalli, 2000).
A ‘normal’ geothermal gradient of 22–41 °C km−1 and a heat flow of
24–77 mWm−2 were reported from south China offshore passive margin region
(Liao et al. 2010). The amount is somehow lower than 55–102 mWm−2, which is
required normally through mantle plume to initiate rifting (Gliko et al. 1978).
Boreholes drilled for hydrocarbon exploration can provide information on tem-
perature and geothermal gradient (as in Liao et al. 2014). Strain rate influences
greatly the heat diffusion and strain localisation during extension (Corti et al.
2003 and references therein). Lower the strain rates, wider the rifts. At lower strain
rates, deformed crust cools substantially faster and strain localisation front may
move laterally towards the position of future breakup widening the rifts. In contrast,
for higher strain rates (Fig. 5.1), strain concentrates at specific locations faster and
develops narrow rifts (Kuznir and Park 1987).

Combined thermal state of the lithosphere and strain rates manifest differences in
rift architecture. Numerical geodynamic models by van Avendonk et al.
(2009) demonstrated slow rifting in a cold lithosphere leads to narrow rifts, and
sparse melt generates in the end stages of rifting. Fast and hot rifting (Fig. 4.7 of
van Avendonk et al. 2009) widens rifts and its late phase characterises profuse
melting. Strain localizes slowly and several faults- some parallel to rift axis- acti-
vate coevally. In both the fast and slow cases, strain localises along crustal-scale
(brittle at top and ductile at bottom) shear zones, which evolve into the main rift
faults. However, less stretch is required for complete breakup. Thermal state of the
crust varies widely for similar crustal types e.g. the heat production of the
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Australian Proterozoic crust is—twice that of global averages (Taylor and
McLennan 1985). The mechanical strength of the lithosphere and thus rift archi-
tecture is strongly influenced by the unique thermal state of the crust (e.g. Sandiford
and Hand 1998).

Fig. 5.6 Mode boundaries in
Moho temperature (TM)—
strain rate space for dry quartz
crustal rheology with crustal
heat sources: a 40 km thick
crust b 60 km thick crust;
reproduced from Buck (1991)
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Chapter 6
Lessons from Analogue Models

Outcrop analogues of lower crust and mantle in the Alps (e.g. Manatschal 2004;
Manatschal and Müntener 2009; Mohn et al. 2011) and Pyrenees (e.g. James et al.
2009; Leleu et al. 2009; James et al. 2010) and deep regional seismic sections
reveal lithospheric processes. Nevertheless very few models (e.g. Bellahsen and
Daniel 2005; Corti et al. 2007; Chattopadhyay and Chakra 2013) addressed the
influence of pervasive fabrics since weak fabrics are difficult to generate on model
materials (Morley 1999a). Recently Curren and Bird (2014) tested the influence of
pre-existing close-spaced fractures in strike slip faulting. The fractures accommo-
date larger strains. The width of the Principal Deformation Zone (PDZ) is con-
trolled by the width of the zone of the pre-existing fractures. These experiments
form lesser number of long shears than in an isotropic case and the lateral extent of
the shears are bound by the pre-existing fractures. The fractures/joints/anisotropies
perpendicular to the extension direction undergo dilation or normal faulting. Other
orientations experience oblique to strike-slip movements. The base of the sand in
those analogue models is usually a rigid plate of acetate, plexiglass or rubber
(e.g. Tron and Brun 1991; Aanyu and Koehn 2011; Cappelletti et al. 2013). Unlike
these models, the crustal fabrics- pervasive and discrete- lie in the upper crust and
not at the base of the crust, and the ‘similarity factor’ in analogue model has been
questioned (e.g. Morley 1999a). In contrary, the discrete fabrics are modelled
accurately (e.g. Dooley and McClay 1997; Acocella et al. 1999; reviews by Corti
et al. 2003). Moreover, there is a sharp contrast in strength between the modelling
sand and the base plate, and also between the rubber sheet and the edge of the base
plate, which seems to control the results (Morley 1999a).

Geometry of the fault population for oblique rifts, the obliqueness of extension
(Ω) in particular, has been studied in analogue models (e.g. Tron and Brun 1991),
but without considering pervasive fabrics. When the angle between the fracture and
the maximum principal compressive stress axis (Ω) is 30–90°, faults not affected by
pervasive fabrics will tend to be orthogonal to the regional extension direction
(Morley 1999a from references therein; Fig. 6.1). For hyper-oblique extensions,
where Ω = 0–30°, faults not affected by pervasive fabrics run along the primary
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strike-slip orientation. Thus, analogue models showed that the degree of oblique
opening as the major control on fault geometry and evolution for oblique extension.
Other important factors are the number, spacing, relative strength, attitude and type
(pervasive/ discrete) of pre-rift fabrics.

Fig. 6.1 Analogue experiments for oblique rifting (from Tron and Brun 1991). Dotted lines:
extension direction, Ω: angle between the cut in the base plate and extension direction.
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Chapter 7
Summary

We review tectonic inheritance/tectonic heritage/reworking/reactivation in conti-
nental rifts and passive margins. Evolution of rifts by segmentation, genesis of
transfer zones, changes in geometry and attitude of faults, and concentration of
fractures and faults are controlled by inheritance. Depth and orientation of the
lineament dictates the inherited faults. Variation in isostatic state and depth of
strong layer, criss-crossing geometry etc. are the result. Inheritance acts uniquely
but sometimes non-homogeneously on individual passive margins and can reacti-
vate faults in several directions. Existing fractures/fissures and fault zones, meta-
morphic and sedimentary foliations, shear zones, lineations etc. in the basement can
get inherited provided an optimum rheologic contrast exist between the basement
and the overlying rocks under low heat flow and an optimum range of angle exists
between lineament and the stress direction. Rocks bearing these anisotropies behave
under deformation differently from isotropic rocks. In short, two major factors
determine whether new trends will develop or pre-existing fabrics will be reacti-
vated—(a) variations in trend between pre-existing fabrics and ideal trend of new
fractures with respect to principal stress directions, (b) difference in mechanical
strength between pre-existing fabric and surrounding undisturbed country rock
volume (e.g. Ranalli and Yin 1990).

The fabric pattern in the cover or overlying bulk rock, inherited from the
basement fabric pattern, i.e. deep seated fault trends depends on—(a) kinematic
nature of deep seated faults—normal, reverse or strike slip and (b) rheological
property of the overlying sequence. If the basement has strike slip faults, Riedel
shears (R, R′) and tensile fractures (T) fractures can be formed in the overlying
sequence. In case of normal and reverse faults in basement, trends are replicated in
the overlying sequence upon reactivation. Rheological property (single/multi layer)
of overlying sequence influences the width of the deformation zone within it,
overlying the basement fabric.

Inherited planes control fluid flow and metamorphism. A passive margin/rift
with inherited structures makes subsequent orogeny heterogeneous. Pattern and site
of sedimentation in the overlying foreland basin might be controlled by passive
margins with inherited structures. How inheritance controls the magma content in
rifts, and what is the link between specific rifts with orogeny is not well understood.
Inheritance acts uniquely on individual passive margins. Analogue models suggest
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that inherited structures may parallel pre-existing lineament. However, the rift axis
may not follow inherited lineament in the basement, nor is it guaranteed that rift
related extension direction will parallel the lineament. Also, the rift basin may not
propagate along the lineament. Inherited faults may or may not be regularly spaced.

The Coulomb‐Navier’s fracture theory holds true for isotropic rocks. Instead,
modified Coulomb’s failure criterion works for anisotropic rocks and are used more
frequently for such cases. Rift parallel faults may terminate against oblique discrete
fabrics and assume oblique trends. When the angle (θc) between the anisotropic
plane and the maximum principal stress ranges 15–45°, fractures parallel the
anisotropy. For θc > 45°, inheritance seems to be absent. Faults parallel pre-existing
anisotropy when the angle between the later and maximum stress direction ranges
13–51°. Degree of anisotropy in the rock depends also on confining pressure.
Normal faults form when regional extension direction makes 45–90° with the
anisotropy. Reactivation occurs because pre-existing fault zones are generally
weaker than the surrounding bulk rocks. Weakness results from (i) decrease in
cohesion between faulted zone and surrounding rocks, (ii) decrease in friction
coefficient and (iii) high pore pressure within the fault zone. All of these reduce
shear strength along pre-existing weak zones and reactivate the faults oriented to the
effective principal stress directions. Also, due to recurrent reactivation and thick-
ening, olivine crystals in the lithospheric mantle can develop a lattice-preferred-
orientation, which concentrate strain and positions rift zones.

Inheritance can be by structures that are either discrete: large and wide-spaced
anisotropies, or pervasive: small and close-spaced anisotropies throughout the rock
volume. Rifts and passive margins usually parallel pervasive fabrics. Faults may
follow previous anisotropy initially, but later develop an obliquity. Spread of rifts
could be decided by spread of anisotropies.

Interaction between normal faults and pre-existing crustal anisotropies such as
thrust planes affects the extensional processes. It is generally accepted the
pre-existing thrust system influences the geometry of the newly formed normal faults
—its location, dip and trend. The interaction has been summarised in three basic
situations (i) normal faults can crosscut the pre-existing thrust planes without any
inheritance, (ii) normal fault can branch out from thrust faults at a depth on weak
fault zone showing little inheritance and (iii) pre-existing thrust system can be fully
or partially reactivated resulting ramp and flat geometries by inheritance. Regional
rift systems almost always form along mobile belts that are presently inactive earlier
orogens. That is because the mobile belts are weaker due to their repeated defor-
mation viz. collision and extension. Graben geometries in the East African Rift
System (EARS) inherited from Pan-African orogeny. In this rift system, the four
major extensional faults follow the trend of the basement. The first order shape of the
rift was pervasive fabric controlled. An E-W extension in the Thailand Tertiary rift
zone followed the weaknesses developed before rifting. Attitude of pre-rift bedding
planes influenced this rift. Bedding controlled faults terminated propagation of a set
of rift related faults. Rifts in SE Brazil and West Africa conjugate passive margins
parallel the basement fabric. Like EARS, these rifts follow mobile belts. The rift in
the Potiguar basin parallels basement fabric but only regionally. The E Indian
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passive margin and the major rift faults parallel foliationsof the Eastern Ghat Mobile
Belt and the Southern Granulite Terrain. The W Indian passive margin parallels
foliation of the Western Dharwar gneisses. The contact between the Dharwar craton
and the Closepet Granite also follows the passive margin.

Discrete fabrics do not control the trend of all the rift faults. These fabrics can
segment rifts, preclude fault propagation, reactivate if they are weaker than the rock
volume, control secondary faulting and location of depocenter, and their dips can
decide the nature of faults. The width of the transfer zone depends on the angle
between the extension direction and the anisotropy. Discrete fabrics affected obli-
que/ sheared segments and grabens of the East African Rift System.

Pre-existing fault zones controlled the later Brazilian rifts. These rifts were
stopped propagating by two bounding shear zones. A suture zone acted as a discrete
fabric for the rifts in Thailand. Basins related to these rifts vary geometrically
because of the discrete fabric. Deep crustal shear zones in the Norwegian margin
reactivated shallower reverse faults as normal faults. Reverse faults in the west
Norwegian margin reactivated as normal faults. Faults reactivated in North Sea and
also formed a new fault set. A bend and a fracture zone in the eastern North America
inherited as transform structures. Reoriented stress directions reactivated faults in the
Upper Rhine Graben. Transverse faults in the east Indian continental margin stopped
propagation of rift faults. The Mahanadi rift is possibly bound to the N by a reac-
tivated shear zone. The E-W trending older shear zones in south India probably had
no role in West Indian passive margin. The topography of rift shoulder depends on
the level of necking. Faults within multiple lithology reactivates more easily.

When deformation occurs at continental scale and affects the entire lithosphere,
it is unlikely to have a crustal origin of structural inheritance. Rheological model
suggests that it is the mantle rheology that influences and controls the mechanical
behaviour of lithosphere. Mechanical anisotropy of lithospheric mantle may
develop from—(i) plastic anisotropy between single olivine crystal and aggregates,
observed in experiments and numerical simulations, (ii) strong crystallographic
orientation of olivine and some other minerals in mantle xenoliths and (iii) seismic
anisotropy (shear wave splitting, P-residuals etc.) and electrical conductivity
anisotropy. Mantle tectonic fabrics developed during orogeny are probably retained
for longer time periods if lithosphere is not strongly modified by deformation or
mantle upwelling etc. Deformation can make the lithospheric part weaker. Warmer
and ductile lithosphere develops wider rifts under lower strain rate. Mantle plume
can localise rift for a heat flow of 55–102 m Wm−2.

Tectonic inheritance in rift has significant impact in hydrocarbon exploration
(Mukherjee 2015b). Inheritance has bearing on trap definitions, sediment fairways,
localising basins, fracture delineations, fracture predictions etc. Inherited faults show
departure from usual trends and understanding the nature of inheritance will allow a
better analysis of the trends. In areas of unfit data, knowledge of tectonic inheritance
permits better appreciation of the structures. For naturally fractured reservoirs,
acquaintance with tectonic inheritance helps delineate sweet spots with higher
concentration of fractures and also gives an idea on the trends of the fractures.
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Appendix

1. Effective Elastic Thickness (Te): Te (elastic) = (Melastic 12(1 − ν2)/EK)1/3 A1
(Watts and Burov 2000)
Here Melastic: bending moment; ν: Poissons’s ratio; E: Young’s modulus; K:
curvature. Melastic and K together indicate the total flexure of the lithosphere. Te,
the effective elastic thickness, is considered to be the depth of a specific iso-
therm: most commonly, 450–600 °C.
Low geothermal gradient explains high values of Te of 70–90 km for cratons. Low
values of Te up to*40 kmusually denote either a young oceanic- or a thinned (rifted)
continental crust for higher geothermal gradients (Ratheesh-Kumar et al. 2014).

2. Lithospheric Strength Profiles: Lithospheric strength varies with depth and is
controlled by the temperature distribution within the lithosphere and the min-
eralogy (such as Burov and Diament 1995; Burov et al. 1998) (Fig. A.1).

3. Thermal Age: It is the last thermal event e.g. orogeny, metamorphism etc. the
lithosphere underwent (Rudnick et al. 1998).
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