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Review

Fascination with Chloroplasts and Chromosome Pairing

Diter von Wettstein

During the second half of the twentieth century biological research could be
characterized as a period of strong convergence. Genetics, physiology, bio-
chemistry and other sub-disciplines of biology were joined in the common
goal of clarifying the molecular processes behind the function of organelles,
cells, organs and organisms. The whole chain from the information con-
tained in the genome to the properties and function of an organism was and
is analysed with sophisticated methods.

It has been a pleasure and privilege to contribute to these ventures and at the
outset I would like to mention and thank my mentors in the different disciplines.
They taught me to carry out research and to ask important questions: Erwin
Biinning and Adolph Butenandt in Tiibingen, Jacob Seiler and Albert Frey-
Wyssling in Ziirich, Ake Gustafsson in Stockholm, Frank Stahl and Salvador
Luria at Cold Spring Harbor, and Paul Stumpf at Davis and Mogens Westergaard
in Copenhagen. But the results could likewise not have been achieved without
the imaginative and enthusiastic efforts of co-workers, students, postdoctoral
fellows and visiting scientists. They include 54 students who completed their
master’s degree and 65 their PhD, and I will try to review some of their work
here. During my time at the Carlsberg Laboratory, the Department of
Physiology hosted 115 postdoctoral fellows and visiting scientists; they provided
much of the inspiration that guided innovation and progress.

In this review I would like to discuss two areas of my interests:

1. Biosynthesis of the photosynthetic membrane and chloroplast biogenesis.
2. Chromosome pairing, the mechanism of crossing-over and genome
analysis.

1 Biosynthesis of the photosynthetic membrane and chloroplast
biogenesis

My interest in the development of chloroplasts and chlorophyll biosynthesis
began when I became an assistant to Ake Gustafsson in Stockholm in 1951

Progress in Botany, Vol. 67
© Springer-Verlag Berlin Heidelberg 2006




4 Review

and joined the multidisciplinary Swedish Group of Mutation Research he
had created and was leading with great success. One of my tasks was to
analyse mutation rates, and spectra, in the M, generation of barley grains
treated with various ionising radiation and chemical mutagens. This was
done by a test he had devised in the 1930s and consisted of counting the
white, yellow, light-green or tiger-striped lethal seedling mutants emerging
from thousands of spikes planted in the greenhouse during the winter sea-
son. These tests were done to find the most efficient treatments for inducing
mutants suitable for barley breeding programs. Interestingly, now there is
hardly a cultivar that does not contain an induced mutant among its ances-
tors, but at the time it was considered that all induced mutations were detri-
mental and therefore useless in plant breeding, a view propagated by
Herman J. Muller and L. J. Stadler. Due to the tireless efforts of Ake
Gustafsson and a few others like Bob Nilan in Pullman it was shown that
induced mutations could yield improved cultivars — Muller and Stadler
overlooked the fact that the majority of spontaneous mutations were also
detrimental, and that mutations are still a major factor in the evolution of
genes to organisms. The discussions for and against were not unlike the
present discussions concerning the use of transgenic plants in breeding. As
history repeats itself, the time will come when transformed cultivars will be
as accepted and considered as “traditional” as crop plants containing
induced mutations.

Encouraged by the successful efforts of Beadle and Tatum in analysing
metabolic pathways by knock-out mutations, it seemed to me that all these
hundreds of interesting mutants should be useful for a detailed analysis of
the development of chloroplasts and pigment biosynthesis. I thus started to
collect representatives of the different types of mutants and to conduct
crosses to determine allelic relationships by complementation tests. At that
time electron microscopy of thin sections started to reveal the ultrastructure
of animal and plant cells. So I took my mutants and spent a few days every
week at Arne Tiselius’s Biochemistry Institute at Uppsala University, where
Hékan Leyon had constructed a microtome and developed embedding pro-
cedures, and where I could use the third electron microscope built by
Siemens in 1940. It had been acquired by The Svedberg and was installed
next to his ultracentrifuges. The mutants turned out to be very useful for
characterizing the development of chloroplast structure as presented in a
summary (von Wettstein 1959). In higher plants, chloroplasts develop from
proplastids in the light or via the etioplast pathway after an initial dark
period. The primary thylakoid layers are formed by alignment of vesicles
budded from the inner membrane of the plastid envelope. In contrast to the
in depth knowledge obtained since then of the organization of the photo-
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synthetic membrane and the import of the protein components into the
chloroplast and their targeting to the thylakoids, progress in learning how
the lipid bilayer membranes are formed is less apparent (von Wettstein
2001). This may change with the discovery by Kroll et al. (2001) and
Westphal et al. (2001) of a function of the vesicle-inducing protein in
plastids (VIPP).

In pea chloroplasts the 37-kDa VIPP protein is located both in the vicin-
ity of the chloroplast envelope and the thylakoid membranes and was con-
sidered by Li et al. (1994) as a candidate for the transfer of galactolipids from
their site of synthesis at the chloroplast envelope to the thylakoids. Daniella
Kroll and co-workers (Kroll et al. 2001) studied a recessive Arabidopsis
T-DNA insertion mutant with severe disturbances in the photosynthetic
electron transport chain and the formation of the thylakoids. The insertion
was identified in the gene encoding VIPP and the mutant could be rescued
by transformation with the VIPP cDNA. The cause for the disturbed devel-
opment or maintenance of the thylakoids was the failure of the mutant to
bud the vesicles from the inner chloroplast envelope membrane, which
transfer lipids from the inner envelope to the thylakoid membranes. In the
transformants the process of vesicle budding was re-established and the thy-
lakoid organization normalized. The companion paper by Sabine Westphal
and co-workers (2001) identifies VIPP I genes in the genomes of Synechocystis,
Anabaena, Synechococcus and Nostoc. In these cyanobacteria, the protein is
located in the plasma membrane, but its disruption in Synechocystis by inser-
tion mutagenesis with a kanamycin cassette prevents ordered thylakoid for-
mation and light-dependent oxygen evolution.

The photosynthetic membrane in barley and other higher plants converts
solar energy into chemical energy, and as we now know, it uses six larger pro-
tein complexes for this purpose (Simpson and von Wettstein 1989; von
Wettstein et al. 1995) (Fig. 1). They are called the reaction centres of photo-
system I and II, the two light harvesting complexes of photosystem I and I,
the cytochrome b6/f complex and the chloroplast coupling factor (synthe-
sizing ATP). The polypeptides in these complexes bind and orient chloro-
phyll and carotenoid molecules and the different metals and molecules
which are required for energy channelling and electron transport. Circa one
half of the ~57 membrane proteins are encoded by genes in the nucleus and
the other half in the chloroplast’s own DNA genome. This cooperation
between the two genomes in the plant cell also takes place in the assembly of
the CO,-fixing enzyme, Rubisco, that is made up of two, different-sized sub-
units, of which the larger one is encoded in chloroplast DNA and the smaller
one in the nuclear chromosomal DNA. The following results of our research
are of special significance.
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In cooperation with the Biological Laboratories of Harvard University the
nucleotide sequence of the first plant gene, the structural gene for the large
subunit of Rubisco, was determined in 1980 (Mc Intosh et al. 1980; von
Wettstein 1981). Carsten Poulsen, Anthony Holder, Brian Martin and Ib
Svendsen had produced peptide maps of the large subunit of Rubisco of bar-
ley and the genus Oenothera and obtained partial amino acid sequences (von
Wettstein et al. 1978; Holder 1978; Poulsen et al. 1979). Lawrie Bogorad
called me one day in 1977 to say that he had heard that we had amino acid
sequences of the large subunit and to ask if I would share them with him,
since he wanted to sequence the maize gene and this would be of great help
to his project. “Sure,” I said, “and I would also like to send you Carsten
Poulsen with his Carlsberg fellowship to help with the sequencing.” After
supplying Carsten with a large supply of liquorice, he and Lee completed the
task. Peptide mapping of the large and small Rubisco subunits also led to the
identification of the pomato, the first somatic hybrid between potato and
tomato produced by Georg Melchers in Tiibingen (Melchers et al. 1978;
Poulsen et al. 1980; von Wettstein 1983). The most interesting aspect of the
analysis of these generic hybrids was the finding that they only retained the
tomato or potato chloroplast genome at an equal frequency, but not both.
We still do not know how this happens.

Over the years 357 barley mutants with defects in chloroplast development
and chlorophyll synthesis have been assigned to 105 gene loci. Together with
Albert Kahn, Ole Frederik Nielsen, Simon Gough and Naomi Avivi-Bleiser
(von Wettstein et al. 1974; Kahn et al. 1976) structural and regulatory genes
of chlorophyll synthesis were identified. Knud Henningsen, John Boynton,
David Simpson, Otto Machold, Gunilla Heyer-Hansen, Roberto Bassi, Bob
Smillie and Torsten Fester analysed the different categories of the mutants
with regard to their ultrastructure, pigment levels, thylakoid polypeptide
composition and photosynthetic capacity (Henningsen et al. 1993; Simpson
and von Wettstein 1980; Simpson et al. 1985; Smillie et al. 1978).

The mutants were used to localize the macromolecular photosynthesis
complexes, as recognized by freeze-fracture particles, to the different
domains of the chloroplast membranes (e.g. Simpson et al. 1989; Simpson
and von Wettstein 1989). Birger Lindberg Moller analysed the function of
the grana and stroma membranes by isolating and purifying these mem-
brane types, by separating the membrane polypeptides and reconstituting
them to give photosynthetically active membranes (e.g. Henry et al. 1982;
Moller and Hoj 1983; Moller 1985). The gene family encoding the light-har-
vesting proteins of photosystem I was also identified (e.g. Knoetzel et al.
1992). The first transcription map of a chloroplast genome was established
for barley (Poulsen 1983) and alternative transcription was demonstrated
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for the gene encoding the large subunit of Rubisco. The longer transcript is
used by the plant when a large amount of protein is synthesized in the light
(Poulsen 1984).

A single molecule of chlorophyll and haem is synthesized from eight
molecules of 5-aminolevulinic acid. In 1975 it was shown by isotope
labelling that higher plants, in contrast to animals and humans, synthesize
this non-protein amino acid from the intact carbon skeleton of glutamate
(Beale et al. 1975). Gamini Kannangara, Simon Gough, postdoctoral fel-
lows, students and visiting scientists have elucidated this three-step pathway
at the biochemical and molecular level over a period of 19 years (cf.
Kannangara et al. 1994; von Wettstein et al. 1995; von Wettstein 2000a, b).
This pathway is used by higher plants, algae, cyanobacteria, Escherichia coli
(not recognized for over 30 years), as well as a number of other bacteria.
Animals and humans, yeast and photosynthetic bacteria form 5-aminole-
vulinate by condensation of glycin and succinate. Entirely surprising was
the discovery that the glutamic acid has to be activated by ligation to a glu-
tamyl tRNA before it can be reduced to glutamate-semialdehyde and there-
after transaminated by an aminomutase to 5-aminolevulinic acid (Schon
et al. 1986). It is so far the only known case in which a tRNA participates in
the conversion of a low molecular weight compound. In higher plants this
tRNA is encoded in chloroplast DNA and also has to serve for the transla-
tion of mRNA on chloroplast ribosomes. The three enzymes are encoded in
nuclear DNA, and have to be translated on cytosolic ribosomes and
imported into the chloroplast.

The importance of the pathway for chlorophyll synthesis is demonstrated
by transgenic tobacco plants expressing an antisense gene for the glutamine
semialdehyde aminotransferase (Hofgen et al. 1994). The barley enzyme that
requires the glutamyl tRNA as substrate was purified and a partial amino
acid sequence obtained (Pontoppidan and Kannangara 1994). This work
identified the structural gene for this enzyme as the HemA gene, already
cloned and sequenced in many organisms but not recognized as encoding
glutamyl RNAS" reductase. Finally this interesting enzyme was expressed as
a fusion protein in E. coli (Vothknecht et al. 1996, 1998). It turned out that
haem, a prominent inhibitor of chlorophyll synthesis, binds to the N-terminal
extension of the protein that is characteristic for plant enzymes, but absent in
bacteria.

In 1994 Lucien Gibson, Ph.D. student with Neil Hunter, University of
Sheftield, arrived and brought with him plasmids that contained the bchH,
bchD and behl genes from Rhodobacter spheroides. Lucien, Robert Willows
and Gamini Kannangara expressed the proteins of these three genes in E. coli
and demonstrated for the first time that the association of these three pro-
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teins in vitro inserts the Mg atom into protoporphyrin IX (Gibson et al.
1995; Willows et al. 1996). Reconstitution of Mg chelatase activity required
only ATP, Mg** and protoporphyrin. This opened the way to learn more
about how the metal ion is incorporated into the porphyrin ring. The inser-
tion of Mg?" into protoporphyrin IX proceeds in two stages. In the first stage
subunits BchD (70 kDa) and Bchl (40 kDa) undergo activation by complex
formation in the presence of ATP and Mg?*. The protein—protein interaction
of these two subunits was subsequently confirmed for the tobacco subunits
with the yeast two-hybrid system (Grife et al. 1999). Thereafter Mg** is
inserted into the protoporphyrin IX substrate that is bound to the large sub-
unit BchH (140 kDa).

The information of the nucleotide sequence of the Rhodobacter genes per-
mitted the identification, cloning and molecular characterization of the cor-
responding barley and other higher plant genes and their mutants (Jensen
et al. 1996; Kannangara et al. 1997; cf. von Wettstein 2000b). That three dif-
ferent gene products are required for the insertion of Mg** into protopor-
phyrin IX was originally found with xantha mutants at three gene loci in
barley that accumulate protoporphyrin IX when fed 5-aminolevulinate
(Gough 1972; von Wettstein et al. 1974; cf. von Wettstein 2000a). They
belong to the first mutants isolated and analysed in 1953. Gene Xantha-fcor-
responds to bchH, Xantha-gto bchD and Xantha-h to behl.

One of the post-genomic challenges is to determine the function of the
genes discovered in genome sequencing projects. Usually > 50% of the
genes uncovered in the sequenced genomes have no significant matches to
proteins or cloned genes in the databases for other organisms. Furthermore,
while such matches can hint at similar functions they do not prove the
function of the gene in question. To determine the precise function of a
gene its cloning is required, frequently carried out by positional cloning.
While this is expedient with small genomes like that of Arabidopsis it is dif-
ficult with large sequenced or un-sequenced genomes like those of small
grain cereals. Due to the availability of the transcript-deficient barley
mutant xantha-h>’ we were able to develop the microarray method for tran-
script-based cloning of genes only known through their mutant phenotype
(Zakhrabekova et al. 2002).

Libraries of genomic clones or cDNA clones or expressed sequence tag
clones representing several thousand genes are microarrayed on glass slides.
Each clone occupies a round spot on the slide. cDNAs made from the
mRNAs of the transcript-deficient mutant and its wild type is differentially
labelled with green and red fluorescing nucleotides, respectively, and
hybridized in equal amounts to the microarrayed clones. Because of the
absence of the mutant transcripts, pure red fluorescence from a spot will
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result from wild type DNA and identify the gene sought This technique also
worked with the xantha-f 27 and xantha-f 40 mutants, which display non-
sense-mediated mRNA decay, a surveillance system developed by organisms
to reduce the abundance of mRNA with nonsense codons (Gadjieva et al.
2004). It can be exploited to clone genes through mutants with reduced tran-
script abundance. This then will allow functional identification of a major-
ity of the ca. 1,000 barley genes for which > 8,322 mutants have been
identified through Ake Gustafsson’s and Udda Lundqvist’s efforts and are
conserved in the Nordic Gene Bank.

The three-dimensional structure of the ATP-binding subunit Bchl of
Rhodobacter capsulatus solved at a resolution of 2.1 A by Michel Fodje and
Salam Al-Karadaghi in combination with the molecular genetic analyses of
Mats and Andreas Hansson has allowed remarkable insights into the molec-
ular basis of the insertion of Mg?* into protoporphyrin IX (Fodje et al.
2001). It provides the starting point for clarifying the mechanism by which
Mg?* is inserted into the chlorophyll molecule.

BchlI belongs to the chaperone-like “ATPase associated with a variety of
cellular activities” (AAA) family of ATPases. Its structure could be com-
pared with those of other members of this protein family, such as the heat
shock protein 100 of E. coli, the delta-prime subunit of DNA polymerase III
clamp loader complex and the hexamerization domain D2 of the
N-methylmaleimide-sensitive membrane vesicle fusion protein. The
domains of these proteins are highly conserved, but are located in different
ways in the overall structure. Bchl also contains loop structures forming a
deep positively charged groove that might be involved in interaction with the
other subunits of Mg-chelatase. Electron microscopy of Bchl in solution in
the presence of ATP revealed that it forms in the same way as hexameric ring
structures of other AAA proteins. The primary structure of the BchD sub-
unit consists of an AAA module at the N-terminal portion and an integrin I
domain in the C-terminal half. An acidic, proline-rich region links the two
domains and is predestined to bind to the positively charged cleft of Bchl.
Both Bchl and BchH (the protoporphyrin-binding subunit) contain integrin
I domain-binding amino acid sequences. Most likely the hexamer ring of
Bchl is connected to a hexameric ring of the BchD-AAA module via the pro-
line-rich domain. The integrin Bchl domains bind to BchH linking por-
phyrin metallation by BchH to ATP hydrolysis by Bchl.

Among the seven mutant alleles of the barley xantha-h gene encoding the
smallest subunit of magnesium chelatase (corresponding to Bchl) four are
recessive and three are semi-dominant. The homozygous mutants are yellow,
because of a lack of chlorophyll. The heterozygotes of the recessive mutants
are fully green whereas the heterozygotes carrying the semidominant allele
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are pale to yellow-green. The recessive mutations prevent transcription of the
gene (Jensen et al. 1996), while the semidominant alleles are mis-sense muta-
tions leading to single amino acid substitutions (Hansson et al. 1999).
Identification of the mutated residues in the Bchl three-dimensional struc-
ture located all three of them in the interface between two neighbouring sub-
units in the AAA* hexamer and close to the region forming the ATP-binding
site. The three amino acid changes were made by site-directed mutagenesis in
the Bchl gene of R. capsulatus and the subunits expressed in E. coli.
Combination of wild type BchD and BchH subunits with modified Bchl sub-
units were deficient in ATP hydrolysis and Mg-chelatase activity. However
mixtures of the mutated and wild type Bchl subunits could form oligomeric
complexes with the D and H subunits. The oligomerization is ATP depend-
ent but results in complexes lacking Mg-chelatase activity. Furthermore the
presence of mutant Bchl subunits in the oligomer did not inhibit the ATPase
activity of the wild type subunits but prevented the insertion of Mg?* into
prototoporphyrin IX. It is suggested that a small amount of hexamers con-
sisting only of wild type subunits rescues the heterozygous plants. It remains
to be seen if disruption of ATP hydrolysis in the mixed hexamers prevents the
conformational change expected to permit chelation of Mg?*.

2 Chromosome pairing, mechanism of crossing-over and genome
analysis

The ascomycete Neottiella rutilans turned out to be an excellent object with
which to study the assembly and disassembly of the synaptonemal complex,
the 200-nm-wide ribbon between the paired pachytene chromosomes, by
electron microscopy of serial sections. Jane Mink Rossen and Mogens
Westergaard had shown that the DNA replication in this organism before
meiotic prophase occurs in the crozier nuclei prior to karyogamy, which laid
to rest the textbook theory of chromosome pairing in connection with a
DNA replication at meiotic prophase. In this ascomycete the chromosomes
are always at a condensed chromatin stage, also during mitosis and meiosis,
which makes it a highly favourable subject for ultrastructural studies
(Westergaard and von Wettstein 1966). In a study of all stages of meiosis of
Neottiella (Westergaard and von Wettstein 1970; von Wettstein 1971, 1977)
it was demonstrated that after a rough alignment of the homologous chro-
mosomes to within 300 nm, the lateral components (protein and RNA) are
laid down between the two sister chromatids of each chromosome (Fig. 2).
This causes the appearance of the leptotene chromosome as undivided in the
light microscope. At the same time the central region pre-assembles in the
nucleolus and is then transported together with recombination nodules into
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prior to caryogamy
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Fig. 2. Formation of the synaptonemal complex and chiasmata during meiosis in an
ascomycete (Neottiella)

the space between the roughly aligned homologues. The two sister chro-
matids relocate, so that that the lateral components are positioned lateral to
the chromatin of the chromosome. In the pairing fork the central region
material is organized alternately on one or the other lateral component, and
the synaptonemal complex is completed by attachment of the free lateral



14 Review

component of the homologue (Fig. 3). It was also demonstrated that at
diplotene short pieces of the complex remain and constitute the chiasmata.
It was concluded that the molecular pairing of the DNA of two non-sister
chromatids and recombination takes place inside the syaptonemal complex
at the domains, which subsequently are retained as chiasmata at diplotene
(Westergaard and von Wettstein 1972).

Thereafter, Seren Rasmussen and Preben Bach Holm (1984) together
with postdoctoral and visiting scientists set out to investigate in various
species and special cytogenetic situations the concept that the synaptonemal
complex is a vector for chromosome pairing and disjunction as evidenced
by: (1) the universality of its occurrence in eukaryotic organisms displaying
four-strand crossing-over, (2) the evolutionary stability of its structural
organization, and (3) its role in the formation of chiasmata, the microscopic
counterpart of crossing-over. They also sought and found some solutions to
the question: how could it be that crossing-over and gene conversion can
occur in principle between or within any genes along the giant DNA double
helix spanning from one telomer to the other, but in the individual bivalent

Fig. 3. Reconstruction of bivalent 22 of Neottiella at synapsis from electron micrographs of a
serially sectioned zygotene nucleus. (Modified from von Wettstein 1977)
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of one meiocyte, there are only one, two or, more rarely, three to six
crossover events?

By three-dimensional reconstruction from electron micrographs of seri-
ally sectioned meiotic nuclei or by spreading of the synaptonemal complexes
on an air-water interphase and subsequent contrasting with phospho-
tungstic acid or ammoniacal silver ions, meiosis was analysed in the human
male and female, the male mouse, in the silkworm Bombyx mori, in
Drosophila melanogaster, in the higher plants Lilium longiflorum, maize, bar-
ley, wheat and Lolium, in the ascomycetes Neurospora and Sordaria, in the
basidiomycetes Coprinus and Schizophyllum, and in the Phycomycetes
Allomyces and Blastocladiella. Both standard genotypes, autopolyploids and
chromosome structural rearrangements were studied. The following infor-
mation was obtained (von Wettstein 1984; Rasmussen and Holm 1984):

1. The concepts of the assembly and disassembly of the synaptonemal
complex as a vector for pairing and disjunction were confirmed in these
species.

2. In Sordaria, Lilium and maize a complete lateral component is assem-
bled at leptotene before the formation of the synaptonemal complex ensues.
In Coprinus, Bombyx and human spermatocytes and oocytes the lateral
components are first laid down close to the telomeres and pieces of the
synaptonemal complex are formed in these regions before the lateral com-
ponents are completed. In Sordaria the rough alignment of all homologues
into pairs takes place after karyogamy and prior to the formation of the
synaptonemal complex. In most other organisms with long/and or many
chromosomes studied up until now, the alignment of homologues takes
place progressively, segment by segment, during leptotene and zygotene (e.g.
Bombyx, maize, wheat, lily and human meiosis). The reconstructions have
shown, that in the majority of diplont organisms, the homologous chromo-
somes at premeiotic interphase are widely separated within the nucleus. The
biochemical apparatus required for the alignment of the homologous chro-
mosomes to within a distance of 300 nm during zygotene is still under inten-
sive investigation as is that for the analogous phenomenon of somatic
pairing present in some groups of insects.

3. The three dimensional reconstructions of zygotene nuclei established
that the joining of chromosome segments with the synaptonemal complex
at this stage requires genetic homology, and that precise site-to-site match-
ing with the synaptonemal complex can take place interstitially at several
independent places within a long pairing bivalent. The reconstruction of an
early zygotene nucleus of lily by Preben Holm (1977) with 12 partially
synapsed bivalents revealed between five and 36 independent initiation sites.
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The long stretches of unpaired lateral components between the synaptone-
mal complex segments were not aligned and their homologous regions were
separated by distances of up to 30 um, i.e. a distance almost equivalent to the
diameter of the nucleus. The close agreement of the length of two lateral
components in each of the 12 partially paired bivalents showed that the lat-
eral component, and thus the chromosome length is determined before the
site-to-site synapsis is initiated. From the large number of reconstructions of
zygotene nuclei in several species, it became evident that the length of a par-
ticular chromosome pair varies in different meiocytes of the same individ-
ual, while the lateral components of homologues within the nucleus are of
equal or nearly equal length. Extensive interstitial initiation of synaptonemal
complex assembly was also found in maize, wheat, rye and human oocytes,
while in human spermatocytes, Bombyx, Coprinus and Sordaria there were
few interstitial initiation sites. It was demonstrated extensively that multiva-
lent formation with the synaptonemal complex is unavoidable in polyploids
and translocation heterozygotes at zygotene in all organisms studied and
that the synaptonemal complex can be used for the identification of struc-
tural chromosome rearrangements, where classic light microscopy failed.

4. In classic cytological analyses, chromosome and bivalent interlocking
was considered a rare accident that could be increased in frequency by treat-
ing meiocytes with various physical and chemical agents; in hindsight this
was an erroneous conclusion derived from studies of diplotene to metaphase
I stages. If zygotene is analysed by three-dimensional reconstruction from
serial sections, both chromosome and bivalent interlockings are frequently
encountered with a frequency of four per nucleus. They are resolved by chro-
mosome breakage and precise reunion of the broken ends prior to pachytene.
This has been documented for all species investigated, including human sper-
matocytes and oocytes. It can be stated that every plant and every human
being has developed from gametes, in which one or several chromosomes had
been broken and precisely repaired. Unfortunately this mechanism does not
protect against radiation-induced chromosome breakage.

5. Non-homologous pairing was recognized by McClintock (1933) in
pachytene nuclei containing unbalanced or structurally heterozygous chro-
mosome complements, and was also shown to occur in normal sporocytes.
Synaptonemal complexes of normal size have indeed been found early on in
non-homologously paired chromosomes or chromosome segments in hap-
loid tomato, petunia, snapdragon, barley and wheat or in foldback paired
univalent chromosome segments. Such non-homologously paired regions
do not give rise, however, to chiasmata or translocations. This puzzle was
solved by investigation of diploid, triploid and autotetraploid Bombyx
females. These lack crossing-over and somatic pairing but disjoin their 28
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bivalents by retaining the synaptonemal complex in amplified form until the
beginning anaphase movement when the complexes are left behind in the
metaphase plane. This was described at the end of the last century as elimi-
nation chromatin. I studied such preparations under the light microscope
during my student days with Jakob Seiler at the Institute of Technology at
Ziirich. Remembering this I thought that the elimination chromatin might
be discarded synaptonemal complexes and discussed the matter with the
eminent Russian silkworm geneticist Boris Astaurov at a meeting in
Dushambe. This led to a visit of Seren Rasmussen in Moscow, where appro-
priate material was made available for electron microscopic studies, and to
the proof that indeed the “elimination chromatin” consists of discarded
synaptonemal complexes. But this also opened the way to study homologous
and non-homologous chromosome pairing without the complication that
crossing-over might introduce. In triploid females typical trivalents are
formed with the synaptonemal complex and exchange of pairing partners,
but at early pachytene the trivalents are reorganized into 28 bivalents com-
pletely paired with synaptonemal complexes and 28 univalents which now
display fold back pairing and non-homologous association with synaptone-
mal complex formation. It thus became clear that at early zygotene strict
homology is required for pairing with the synaptonemal complex, but at the
transition from zygotene to pachytene synaptonemal complex formation no
longer requires DNA homology and permits extensive rearrangement of the
synaptonemal complex in multivalent associations leading to an optimiza-
tion of bivalent formation. This is directly demonstrated by the analysis of
autotetraploid Bombyx females. At zygotene, quadrivalents, trivalents and
univalents are frequent, whereas at pachytene, nuclei with 56 bivalents
paired with the synaptonemal complex from telomere to telomere are found
and the eggs of these females are fertile. In Bombyx males meiosis occurs
with crossing-over and disjunction with the aid of chiasmata; the synap-
tonemal complexes are shed in a normal way at diplotene. Analysis of
autotetraploid males revealed an average of 13.3 quadrivalents and 25.1
bivalents at zygotene, while at pachytene the mean number of quadrivalents
was reduced to 8.7 and that of bivalents correspondingly increased to 37.1.
This and other observations revealed that an established crossing-over effi-
ciently prevents conversion of multivalents into bivalents, but the correction
mechanism is effective also in chiasmatic meiosis. In humans it was demon-
strated by the analysis of early and late pachytene stages of a man with a bal-
anced translocation 46,XY, t(5p—22p+). It has to be pointed out that these
rearrangements play a crucial role in auto- and allopolyploid plants, as they
permit correction of multivalents into bivalents, the mechanism responsible
for disomic inheritance in polyploids.
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Ernie Sears had discovered that a major or two controlling genes for chro-
mosome pairing in wheat are located in the middle of the long arm of chro-
mosome 5B. In the absence of chromosome 5B or its long arm, or in
karyotypes with extra copies of the chromosome, the disomic inheritance
breaks down due to crossing-over and chiasma formation between the
homoeologues in hexaploid wheat or in hybrids between wheat and related
species. Plant breeders use such hybrids in order to transfer disease-resistant
genes from related species into wheat. Palle Hobolth, Preben Holm, Glyn
Jenkins, Bente Wischmann and Xingshi Wang analysed chromosome pairing
and chiasma formation at diplotene in euploid wheat, in lines nullisomic
and monosomic for chromosome 5B, and in lines monoisosomic, diiso-
somic and triisosomic for the long arm of chromosome 5B. Also analysed
were trihaploid wheat with and without chromosome 5B and wheat-rye
hybrids nullisomic for 5B (Hobolth 1981; Jenkins 1983; Holm 1986;
Wischmann 1986; Wang 1988; Wang and Holm 1988; Holm and Wang
1988). Analyses of euploid wheat revealed that chromosome pairing and
synaptonemal complex formation at zygotene primarily occurred between
homologues, but in most nuclei one or more quadrivalents, pentavalents or
hexavalents had formed due to pairing partner exchange. Nearly all multiple
associations were corrected before pachytene. Among lines with zero to six
copies of the long arm of chromosome 5B, only in lines with two copies was
pairing of bivalents with the synaptonemal complex achieved to 97%, while
it was reduced from 90 to 25% in the karyotypes deviating from the diploid
number of chromosome 5B. The arrest in completion of pairing at the var-
ious levels during zygotene still permits primarily homologous crossing-
over and chiasma formation, but due to the lack of correction of multiple
associations homoeologous crossing-over occurs.

6. Recombination nodules attach to the synaptonemal complex from
zygotene to pachytene. In Bombyx males and in Coprinus, as in Neottiella,
recombination nodules associated with the synaptonemal complex at
pachytene are converted into the chromatin chiasmata at diplotene, diakine-
sis and metaphase I. Thus, a recombination nodule at pachytene and a
retained segment of synaptonemal complex at diplotene can mark the site of
a reciprocal exchange, a crossing-over. At the end of zygotene, about twice as
many recombination nodules are present as there are chiasmata found at
diplotene. Quantitative determinations in combination with computer
modelling by Seren Rasmussen, revealed that the nodules at zygotene are
distributed at random, leaving many bivalent arms without a nodule. A sub-
sequent redistribution of the recombination nodules minimizes the number
of bivalents and bivalent arms without a nodule. Two sources for positive
chiasma interference, as observed in a majority of organisms with four-
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strand crossing-over, are suggested: the availability of a limited number of
recombination nodules restricts the number of reciprocal exchanges in a
bivalent arm. Preferential attachment of recombination nodules to certain
domains of the synaptonemal complex along the bivalent arm, coupled with
the mechanism that after zygotene direct nodules to domains devoid of
recombination nodules, will reduce the chance of adjacent crossovers. The
number and chromosomal distributions of recombination nodules are in
good agreement with crossing-over frequencies in Neurospora and
Drosophila, considering the transitory nature of the nodules in the latter
species.

Dramatic differences in the length of the synaptonemal complex were
revealed in Homo sapiens, where the length of the female complement from
zygotene to the end of pachytene exceeds that of the male by a factor of 2. In
this case the difference is not accompanied by a comparable difference in
chiasma frequencies (as has been found in special lines of maize). The num-
ber of crossovers in the male has been estimated to be about 70 by cumulat-
ing the number of recombination nodules throughout pachytene, while the
mean number of chiasmata at diakinesis totals 50. The average number of
chiasmata at diakinesis in oocytes is 44, while the number of recombination
nodules at pachytene is 60 compared to 75 in spermatocytes (Bojko 1985).

Gene conversion has been found in all organisms in which appropriate
genetic fine structure analysis has been possible. It varies in frequency
depending on the chromosome and species investigated, but it can be more
frequent than reciprocal exchanges. It was therefore suggested that the ran-
domly distributed recombination nodules at the end of zygotene effect gene
conversions, but abort when reciprocal exchange and chiasma formation do
not follow. This dual function of the recombination nodule would be in line
with the present concept that crossovers and gene conversions arise in asso-
ciation with hybrid DNA by a common mechanism.

Much of the work referred to here has been made possible by grants
awarded by Euratom of the European Community. By 1988 these programs
had come to an end and the research arm of the European Community
asked me to participate in the yeast genome-sequencing project. While
reluctant at first, because it would defer biochemical studies of meiosis, I felt
that it would provide the Carlsberg Laboratory with the opportunity to
establish a highly efficient nucleotide sequencing team under the leadership
of Seren Rasmussen and Jean Sage, who had been the laboratory’s champion
for serial sectioning of meiotic nuclei. We thus participated in establishing
the complete nucleotide sequence of chromosomes III, XI and X in yeast
(Oliver et al. 1992; Dujon et al. 1994; Galibert et al. 1996). The gene density
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variations and the regular alternations of high and low G+C contents dis-
covered along the chromosome arms may well form a basis for the preferred
domains at which crossing-overs are positioned as found in the analyses of
meiotic prophase. The many new genes discovered by the cooperative spirit
of more than 40 laboratories have served plant molecular biology and genet-
ics of yeast well. This work also spearheaded the sequencing of other eukary-
otic genomes, including that of Homo sapiens.

In the following I would like to provide a brief up-to-date review of the
recent progress in the molecular analysis of chromosome pairing and cross-
ing-over, primarily achieved by cloning genes from meiotic mutants in yeast
and by fluorescent in situ hybridizations (FISH) with tagged antibodies for
synaptonemal complex proteins and DNA recombination enzymes. Shirleen
Roeder (1997) and Denise Zickler and Nancy Kleckner (1998, 1999) have
presented the results in comprehensive reviews.

The Zip1 protein from Saccharomyces cerevisiae and the Scp1/Synl pro-
teins of rat, hamster, mouse and human with a primary structure of
875-1,000 amino acids and a coil-coil domain form the transverse filaments
that synapses the lateral components into the synaptonemal complex. Null
mutants assemble only lateral components. Zip2 protein co-localizes with
Zipl at sites where central regions polymerize. Zip3 co-localizes with the
other two Zip proteins and interacts with the proteins involved in DNA
recombination (Agarwal and Roeder 2000). It is a candidate constituent of
recombination nodules inserted during polymerization of the central
region. Electron microscopic analyses have shown that half of the central
region with the central component attaches first to one lateral component in
the pairing fork. Then the free surface of the central region associates with
the homologous segment of the other lateral component (von Wettstein
1977). Further studies can now determine how the Zip proteins accomplish
the assembly of the complex between the homologous lateral components.

Proteins of the lateral component Corl in hamster and ScP3 in rat carry
coiled coil domains. They localize to the lateral components of unsynapsed
chromosomes and remain with chromosome cores until metaphase I. In
yeast Red1 is associated with unsynapsed and synapsed lateral elements but
in a discontinuous pattern. It is required for the formation of the lateral ele-
ments and dissociates from the chromosomes, when the synaptonemal com-
plex is disassembled.

Double strand breaks have been identified at recombination hotspots in
S. cerevisae (Sun et al. 1989) and led to support the double strand-break
repair model of meiotic recombination (Szostak et al. 1983; Sun et al. 1991).
Exonucleolytic digestion at the double strand break exposes single stranded
tails with 3" termini, which invade an homologous DNA double strand.
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Repair synthesis followed by branch migration produces two Holliday junc-
tions. Resolution of the junctions in opposite direction results in a recipro-
cal crossing-over between markers that flank the region of strand exchange.
A non-crossover (gene conversion) is formed when the strands are cleaved
between the two Holliday junctions. In yeast many of the intermediates pos-
tulated by the model have been demonstrated physically, and mutants block-
ing the different steps in the repair process have been identified [cf. Fig. 6 in
Roeder (1997) and references cited therein]. The enzyme that cleaves the
double strand DNA is Spol1, a type II topoisomerase that causes the break
by a trans-esterification reaction, which covalently links the 5" termini to the
Spoll protein. This reaction provides the possibility for reversal of the dou-
ble strand break, if a suitable homologous DNA invasion partner for recom-
bination is not found (Keeney et al. 1997). Apart from Spoll, mutations in
eight different genes (Rad50, Mrell, Xrs2, Mer2, Mei4, Rec102/104/114)
lead to failed induction of double strand breaks. Mutations in the genes
Rad50, Mrell and Com1/Sae2 prevent the exonucleolytic 5" to 3’ digestion
to yield single stranded tails by their covalent linkage to protein.

In yeast, four genes (RAD51, RAD55, RAD57 and DMC1) encode DNA
strand exchange enzymes with homology to the bacterial RecA enzymes.
Mutations in all four of them lead to defects in the repair of the single strand
tails after their invasion into a homologous double strand molecule. Isolated
Rad51 protein accomplishes strand exchange in vitro when supplied with a
single stranded DNA binding protein and the Rad55 and Rad57 protein.
Rad52 and Rad54/Tid1l promote the annealing of complementary single
strands. These repair processes would lead to the formation of a joint mole-
cule with two Holliday junctions one on each side of the repaired DNA
strand exchange. Such joint molecules have been isolated by two-dimen-
sional gel electrophoresis (Collins and Newlon 1994; Schwacha and Kleckner
1994, 1995). Cleavage of the molecules with Holliday junction-cleaving
enzymes of bacteria yielded duplex DNA molecules, half of which were
recombinant for the flanking markers as might be expected for random res-
olution of the two Holliday junctions.

The single strand tails formed by the meiotic recombination pathway in
budding yeast starting with double strand breaks are involved in a genome-
wide search for homology leading to chromosome pairing as revealed by
detection of sequences at ectopic locations (e.g. Lichten et al. 1987). This is
in contrast to observations made using FISH that demonstrate homologue
pairing in the absence of meiotic recombination (e.g. Loidl et al. 1994). In
this context the analysis of the Hop2 protein is of relevance (Tsubouchi and
Roeder 2003). Mutation or deletion of this protein causes synaptonemal
complex formation between non-homologous chromosomes and accumu-
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lation of complexes of organized central region material. Also double strand
breaks are not repaired. The strand-exchange enzymes Rad51 and Dmcl
accumulate to aberrantly high levels on the chromosome. Disruption of the
Rad51 and Dmcl genes suppresses the homologue-pairing defect of hop2
mutations. Additionally over-expression of Rad51 can suppress the defi-
ciency of double strand-break repair caused by mutation in the Dmcl gene.
The conclusion is that double strand breaks and recombination are required
for homologous pairing and that non-crossover and axial association lead-
ing to crossing-over can be obtained by two pathways, one involving
Dmcl1+Rad51 followed by Hop2+Mnd1 and one by Rad51 alone.

The SPOI1 gene of Sordaria macrospora has been identified recently
(Storlazzi et al. 2003). A knockout mutant and a mutation changing the
active site tyrosine of the double strand-breaking transesterase were mole-
cularly constructed, as was a transformant expressing green fluorescent
protein (GFP)-tagged enzyme (Spoll-GFP). The enzyme appears on the
chromosomes during karyogamy of the two haploid nuclei and is present as
numerous foci on the leptotene chromosomes during presynaptic align-
ment as well as during synapsis. Then the number of foci decreases and at
mid to late pachytene Spoll-GFP is spread over the entire nucleus.
Antibodies against Rad51 mark 60-50 foci from late leptotene to early
zygotene, considered as markers for double strand breaks. Some of these are
processed into crossing-overs seen as ~21 chiasmata at diplotene. This then
is reminiscent of the transient appearance and random location of recom-
bination nodules at zygotene in Bombyx males and human meiocytes and
their reduction, relocation and conversion into chiasmata from pachytene
to diplotene. The Sordaria spoll knockout deletion displays only a few
Rad51 foci and a ~500-fold reduction in the number of chiasmata.
Crossing-over between two spore colour markers is reduced from 44 to 2%.
The lateral elements of the synaptonemal complexes are formed normally,
but presynaptic co-alignment, so characteristic for Sordaria homologues
and synaptonemal complex formation is absent. Most remarkably, exposure
of young fruiting bodies of the knockout mutant to 200 Gy of y-rays led to
the appearance of many Rad51 foci at leptotene, restoration of homologous
synapsis and formation of chiasmata. Thus y-ray-induced double strand
breaks can substitute for the double strand breaks formed by the trans-
esterification reaction of the Spoll topoisomerase. It is likely that the
homologous pairing and synaptonemal complex formation in Bombyx
females and polyploid plants also is initiated at leptotene and zygotene by
topoisomerase-formed double strand breaks, but that these organisms have
evolved mechanisms to prevent the consequences of multivalent formation
at diplotene by untimely resolutions into reciprocal crossing-overs. This is
clearly demonstrated by the reorganization of multivalent associations with



Fascination with Chloroplasts and Chromosome Pairing 23

the synaptonemal complex into optimal bivalent formations at pachytene.
With the cloned genes available it will now be possible to determine
whether these repair processes involve reversal of the trans-esterification
reaction or inhibition/elimination of enzymes converting the double strand
breaks into reciprocal crossing-overs.

3 Perspectives

1. Regarding the biosynthesis of the photosynthetic membrane and
chloroplast biogenesis, many exciting new discoveries are being built on the
knowledge I have briefly reviewed. Especially interesting are advances made
by Kenneth Hoober, who has uncovered with the aid of loop forming, syn-
thetic peptides, the fifth ligand that has to be provided to the Mg atom of
chlorophyll by amino acid side chains or backbones in the reaction centres
of photosystem I and II and in the light-harvesting proteins of algae and
plants. We are beginning to understand why the different chlorophyll species
a, b, c and d have evolved.

The protein domains with diverse functions in microbes, animals and
humans that turned up in the complex inserting Mg into protoporphyrin IX
during chlorophyll synthesis reminds us that there are only ~30,000 genes in
the genomes of Arabidopsis, rice, barley, cows and humans. Thus the
domains of this limited number of genes are “re-used” for many different
functions. Clearly DNA homologies from genome sequencing projects pro-
vide an initial indication of possible functions, but detailed biochemical,
physiological and crystallographic analyses are required more than ever to
really understand the function of individual genes and proteins in the con-
text of the cell biology of a species.

2. The research results of Storlazzi and her co-workers on chromosome
pairing and the mechanism of crossing-over in Sordaria provides a new link
in the DNA double strand-break-repair process of meiotic recombination
together with the cell biology results of chromosome synapsis with the
synaptonemal complex and formation of chiasmata from nodules effecting
cross-overs. Intriguing questions will be solved using recombinant proteins
made from the cloned genes of the components of the synaptonemal com-
plex which are now available. Examples of this are:

1. How is the equal length of the lateral components of a pair of homo-
logues established in a nucleus?

2. What proteins are involved in moving the double strand breaks to find
homologous partners and how are these attached to the recombination
nodules or to the lateral components of the synaptonemal complex?
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3. How does the synaptonemal complex requiring DNA homology at
zygotene differ in its molecular structure from that reorganized at later
stages to optimize “bivalent” associations, even if these combine non-
homologous chromosome segments?

4. At what stage is the repair process or resolution of the two Holliday junc-
tions halted or aborted to allow delay until pachytene in order to ensure
that a bivalent does not get more than one or two crossing-overs per chro-
mosome arm but also that every pair at least obtains one to ensure dis-
junction. Three-dimensional crystal structures and use of additional
organisms will be helpful in these endeavours.

An Apology and Special Thanks

I would like to apologize to those students, colleagues, postdoctoral collabo-
rators and friends, including my wife Penny, whose inspiration, efforts and
results during the years in Stockholm, Copenhagen and Pullman I could not
include and mention. The space provided for the present publication pro-
hibited this. It will have to be done on another occasion.

Special thanks and appreciation are due to Inge Sommer, Lisbeth Svarth,
and Inger Braase who through their administrative and writing skills made
life easy for me, and also to the many guest researchers and students with
whom I have worked. I must also mention Nina Rasmussen for her excellent
graphics and the talented photogapher Ann-Sofi Steinholz. Equally impor-
tant for the scientific achievements discussed were the dedicated and enthu-
siastic laboratory technicians. I would like to mention on this occasion Ulla
Edén, Sven Moller, Klaus Barr, Kirsten Kristiansen, Bibi Stampe Sgrensen
and Bent Hansen.
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Recombination:
Cytoplasmic male sterility and fertility restoration
in higher plants

Renate Horn

1 Introduction

Cytoplasmic male sterility (CMS) is a widespread maternally inherited
trait in higher plants that results from the expression of novel, often
chimeric genes located in the mitochondrial genome (Schnabel and Wise
1998). In many cases, specific dominant nuclear genes, termed restorers of
fertility (Rf), have been identified that suppress the male sterility pheno-
type and restore fertility to plants carrying CMS mitochondrial genomes.
While the mitochondrial genes that are associated with male sterility have
been identified for a number of CMS systems, we have only now started to
learn something about the molecular features of restorer genes and the
proteins encoded by them (Schnable and Wise 1998; Hanson and Bentolila
2004).

For CMS/fertility restorer systems, two basic systems can be differentiated:
sporophytic and gametophytic (Tang et al. 1999). In the sporophytic system,
fertility restoration genes manifest their effects in the sporophytic tissues,
such as in tapetal cells or pollen mother cells. Fertility restoration can result
in the production of viable haploid pollen even though individual gametes
may not carry the fertility restorer gene. In contrast, gametophytic sterility is
expressed at the post-meiotic haploid stage, and viability of the gamete is
determined by the genotype of the gamete, hence the presence of the restorer
allele in the gamete.

Cytoplasmic male sterility and fertility restoration represent important
agronomic traits in crops such as maize, sunflower, rice and rapeseed, which
are essential for the production of hybrid seeds on a commercial scale.
Hybrid breeding allows exploitation of heterosis and by this leads to
higher yields and more yield stability. In addition to facilitating the com-
mercial exploitation of CMS-Rf systems, detailed studies of CMS and Rf
genes provide us with information that can increase our understanding of
nuclear-cytoplasmic interactions (Budar 1998).
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2 Mechanism of cytoplasmic male sterility
2.1 Open reading frames identified as cause of male sterility

Open reading frames associated with cytoplasmic male sterility often repre-
sent chimeric genes that seem to originate from multiple recombination
events involving frequently known mitochondrial genes as well as their 5’-
and 3’-flanking region in addition to sequences of unknown origin.

In maize, the chimeric T-urfl3 gene of the T-cytoplasm evolved through sev-
eral recombination events and consists of coding and 3’-flanking region of the
26S rRNA gene as well as nine amino acids of unknown origin (Dewey et al.
1987). The recombinations have placed the T-urfl3 adjacent to the 5'-flanking
region of the atp6 gene, which enables the transcription of T-urfI13. The T-
urf13 gene is located upstream of a conserved mitochondrial gene originally
termed orf221, which has recently been demonstrated to be the membrane-
bound gene product of the atp4 gene (Heazlewood et al. 2003). In the CMS-S,
two adjacent mitochondrial open reading frames orf355 and orf77 are associ-
ated with cytoplasmic male sterility (Zabala et al 1997). The 1.6 kb co-transcript
of orf355 and orf77 is present in microspores of CMS-S plants and absent in
microspores of male-fertile plants recovered from CMS-S plants by mitochon-
drial mutation. The orf77 contains three segments derived from the mitochon-
drial ATP synthase subunit 9 (atp9) locus (Zabala et al. 1997). Editing of the
cotranscript and the atp9 gene was investigated (Gallagher et al. 2002).

In Sorghum bicolor, the CMS-specific open reading frame of the 9E cyto-
plasm also represents a chimeric gene. At least two recombination events
lead to the enlargement of the coxI gene in the 5’-as well as in the 3’-region
in this CMS type (Bailey-Serres et al. 1986a,b).

In chive, the CMSI configuration is twice present in the mitochondrial
genome, but with different 5’-regions (Engelke and Tatglioglu 2004). The
two sequences are designated CMS -1 and CMS -2. The CMSI1 configura-
tion is derived in part from sequences of the essential genes atp9 and atpé.
Three open reading frames are predicted orf 780, orf744 and orf501 using the
three possible start codons, which encode predicted proteins of 29 kDa, 27.5
kDa and 19 kDa, respectively. The gene product of orf501 would correspond
to the size of the 18 kDa protein (based on the electrophoretic mobility)
associated with the CMS, phenotype (Potz and Tatglioglu 1993).

In petunia, the pcfgene consists of 5’-flanking and 5’-coding region of the
atp9 gene, coding sequences of the coxII gene as well as the sequences of an
open reading frame urfS (Young and Hanson 1987).

In rapeseed, for four CMS types (Polima, Ogura, Kosena and
Tournefortii-Stiewe) open reading frames associated with male sterility have
been characterized. In the Polima cytoplasm, the CMS-phenotype is caused
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by a new open reading frame orf224, which required at least three recombi-
nations events (Handa et al. 1995). This o0rf224 consists of the 5" flanking
region of orf158, also known as orfB (Hiesel et al. 1987), which could recently
be demonstrated to be the subunit 8 of F F-ATP synthase (Sabar et al.
2003), a part of the exon 1 of the ribosomal protein S3 (rps3 gene) and
unknown sequences (Handa et al. 1995). In the Ogura cytoplasm in rape-
seed, the CMS phenotype was correlated with a 2.5 kb Ncol fragment
(Bonhomme et al. 1992). On this fragment, three open reading frames
orf158, trnfM and orfl38 were identified. The orf138 was finally associated
with the male sterility (Bonhomme et al. 1992). The orf125 correlated with
the CMS phenotype of the Kosena cytoplasm is very similar to the orfl138
(Krishnasamy and Makaroff 1993; Bellaoui et al. 1999). These two open
reading frames only differ by two amino acid substitutions and a 39-bp dele-
tion (Iwabuchi et al. 1999). For the Tournefortii-Stiewe CMS, a chimeric
gene, orfl93, which encodes a predicted 22.7-kDa protein, exhibits partial
sequence identity to the atp6 gene and is regarded as candidate gene for male
sterility (Dieterich et al. 2003). However, orf193 is cotranscribed with one of
the newly identified atp9 genes and might also be translated uninterrupted
into a chimeric 30.2 kDa protein.

In Phaseolus vulgaris, the unique pvs-region of the CMS Sprite contains
three open reading frames, 0798, orf97 and o0rf239 (Chase and Ortega 1992;
Johns et al. 1992). The pvs-region, which is flanked by the atpA gene and
sequences of the cob gene, shows no homology to nuclear DNA, but to the
intron of the plastidal tRNA alanine and a short part of the 5-kb repeat in
maize. The development of the pvs-region is probably the result of several
recombination events.

In sunflower CMS PET1, the CMS-associated open reading frame
orfH522, which is localized in the 3’-region of the atpA gene, consists of the
first 57 bp of orfB (atp8) and of unknown sequences for the remaining part
(Kohler et al. 1991). The orfH522 is cotranscribed with the atpA gene on an
additional larger transcript (Kohler et al. 1991). For the PEF1 cytoplasm, de
la Canal et al. (2001) identified an insertion of 0.5 kb of unknown sequences
in the 3’-region of the atp9 gene as cause for male sterility. Multiple recom-
bination events involving known mitochondrial genes as well as sequences
of unknown origin seem to create the open reading frame associated with
inducing male sterility in higher plants.

2.2 CMS-specific proteins and possible functions

For a number of CMS systems, CMS-associated proteins could be identified
for the corresponding open reading frames correlated to male sterility. In
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other cases, only the presence or absence of a protein in the in organello
translation products of CMS systems compared to the fertile cytoplasm was
observed without any knowledge about the corresponding open reading
frame.

In maize, Dewey et al. (1987) identified an additional protein of 13 kDa
to be expressed in the T-cytoplasm, which is encoded by the unique cod-
ing region T-urfl3. The 13-kDa protein represents a prominent mitochon-
drially encoded protein, which confers sensitivity to the T-toxin. The
T-toxin produced by the T race of Cochliobolus heterostrophus, causing
the southern corn leaf blight, interacts with the protein, which is located
in the inner mitochondrial membrane in an oligomeric arrangement. This
induces the formation of a pore that makes the membrane leaky (Dewey
et al. 1987; Korth et al. 1991). The binding of the pathotoxin renders the
mitochondria incapable of performing oxidative phosphorylation (Kaspi
and Siedow 1993; Rhoads et al. 1995). For the disruption of pollen devel-
opment, it is assumed that the 13-kDa protein might interact with an
anther-specific substance in a way similar to that observed with the
T-toxin (Flavell 1974). For the CMS-C in maize, an additional 17.5 kDa
protein was identified. For CMS-S, complex changes were observed with
eight additional proteins that were all larger in size than 42 kDa (Forde and
Leaver 1980).

In Sorghum bicolor, Bailey-Serres et al. (1986b) investigated the in
organello translation products of a number of CMS systems. For CMS Milo,
they identified an additional 65 kDa protein, for CMS 9E an additional 42
kDa protein and the absence of a 38 kDa protein (Dixon and Leaver 1981).
For CMS IS 112 and MS M35-1(B), additional proteins of 12 kDa and 82
kDa, respectively, were detected (Bailey-Serres et al. 1986b).

In petunia, Nivison and Hanson (1989) identified the gene product of
the CMS-associated pcf gene by using antibodies produced against a syn-
thetic oligopeptide. The 43 kDa protein encoded by pcfis post-translation-
ally processed at the N-terminus to give a 25-kDa protein (Nivison et al.
1994).

In rapeseed, a 19-kDa protein was identified as the product of the CMS-
associated orf138 of the Ogura cytoplasm (Grelon et al. 1994), and for the
Juncea CMS type a 32 kDa protein was related to the male sterile phenotype
(Landgren et al. 1996). The orf125 of the Kosena CMS encodes a 17 kDa pro-
tein (Iwabuchi et al. 1999). An antibody produced against ORF125 was used
to demonstrate that the accumulation is reduced in fertility restored hybrids
(Koizuka et al. 2000).

Also in Phaseolus vulgaris, antibody allowed to detect the postulated gene
product of the CMS-associated pvs-orf239. Apart from the predicted pro-
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tein of 27.5 kDa, a second protein of 21 kDa could be identified, which
might be a degradation product. However, different to all other CMS sys-
tems, in which the CMS-specific proteins are also expressed in the vegeta-
tive tissue, the 27.5 kDa protein in Phaseolus vulgaris can only be detected
in the pollen mother cells and the developing microspores (Abad
et al.1995).

In sunflower, a new open reading frame orfH522 in the 3’-flanking region
of the atpA gene could be associated with the CMS phenotype PET1 (Kohler
etal. 1991; Laver et al. 1991). Using specific antibodies against the gene prod-
uct of orfH522 it was demonstrated that orfH522 encodes the 16-kDa protein
(Monéger et al. 1994; Horn et al. 1996) which represents the only difference
between the in organello translation products of fertile and male-sterile lines
(Horn et al. 1991). The 16-kDa protein is membrane-bound (Horn et al.
1996) and its expression is specifically reduced in the anthers of fertility
restored hybrids (Monéger et al. 1994). The 16-kDa protein seems to be
involved in initiating premature programmed cell death in tapetum cells via
release of cytochrome C by the mitochondria (Balk and Leaver 2001).
Comparing the mitochondrially encoded proteins of 28 CMS sources in sun-
flower, nine additional CMS sources could be identified that also have the
same CMS mechanism as PET1 (Horn et al. 1996). This was a surprise, as
these PET1-like CMS sources had different origins (Horn and Friedt 1999).

According to Serieys (1996), these cytoplasmic male sterile germplasms
had been produced by either different interspecific crosses involving H. argo-
phyllus (ARG1), H. neglectus (NEG1), H. exilis (EXI2), H. anomalus (ANOL1),
and two subspecies of H. praecox (PRR1, PRH1), or by mutagenesis of two
maintainer lines for the PET1 cytoplasm (MUT1 and MUT?2). In addition,
one of the CMS types that arose spontaneously (ANN10) expressed the 16-
kDa protein. All these PET1-like CMS cytoplasms showed the same organi-
zation at the atpA locus (Horn and Friedt 1999).

Apart from these PET1-like CMS sources, other groups of CMS cyto-
plasms could be identified which expressed new proteins (Horn and Friedt
1999). ARG3 and RIG1 showed an additional 16.9-kDa protein but missed
a 17.5-kDa protein common to the other cytoplasms. ANN1 and ANN3
expressed three specific proteins of 34.0, 16.9 and 16.3 kDa in common.
A protein of 12.4 kDa was unique for PET2 and GIGI. Although no spe-
cific open reading frame has been identified for those proteins yet, investi-
gations of the mitochondrial DNA level as well as the differential fertility
restoration pattern support the grouping of the CMS sources (Horn 2002,
Horn et al. 2002).

CMS-associated proteins were also identified in Allium schoenoprasum
(Potz and Tatglioglu 1993), Beta vulgaris (Boutry et al. 1984), Nicotiana
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tabacum (Hakansson et al. 1988), Triticum aestivum (Boutry et al. 1984),
Daucus carota (Scheike et al. 1992) and Vicia faba (Boutry et al. 1984).

The reported molecular weights of proteins associated with cytoplasmic
male sterility range from 12 kDa to 82 kDa. For some of the identified pro-
teins, their presence or absence is only characterized by the comparison to
the fertile cytoplasm but no direct correlation or verification of their
involvement was yet performed by looking at the effects of the restorer genes
on their expression.

3 Mechanism of fertility restoration
3.1 Genetics and functions of fertility restorer genes

The effect of restorer genes on transcripts and proteins of CMS-associated
open reading frames has been studied intensively. Table 1 gives an overview
about the functions described for restorer genes, so far. Most of the restorer
genes seems to act on the RNA level or even translation or post-translational
level. In addition, different marker systems (RAPD, AFLP, RFLP, SSR) have
been applied to map restorer genes, to obtain markers for marker-assisted
breeding and markers for positional cloning approaches in order to isolate
restorer genes. Table 2 gives an overview about the marker analysis per-
formed with regard to restorer genes. For some species the localization of
different restorer genes in the genome is known.

In maize, fertility restoration of the T-cytoplasm requires two dominant,
complementary nuclear encoded restorer genes, RfI and Rf2 (Levings and
Dewey 1988). Approaches to clone the restorer genes RfI and Rf2 were made
via map-based cloning as well as transposon-tagging. First, both genes could
be mapped with closely linked RFLP-markers in five mapping populations
(Wise and Schnable 1994). The RfI gene mapped on chromosome 3 between
the molecular markers umc97 and umc92, Rf2 was located between the
markers umc153 and susl on chromosome 9.

In parallel to the marker-assisted approach, the restorer gene Rf2 was successfully identified
by transposon-tagging (Schnable and Wise 1994). As a first step, 178,300 plants carrying the
transposon families Cy and Spm were screened for a mutated Rf2 allele (Rf2-m). As mutated
Rf2 alleles lost the ability to restore fertility, a functional product of the Rf2 genes seems to be
required. The seven Rf2-m alleles obtained by transposon-tagging are independent events
according to the corresponding RFLP-analyses.

The cloned Rf2 gene represents an aldehyde dehydrogenase, which acts
by detoxifying toxic substances in the tapetum and by this allows the pro-
duction of functional pollen (Cui et al. 1996; Liu et al. 2001). Complete (or
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Table 1. Overview of the function described for restorer genes

Species CMS

Restorer gene

Function

Reference

Bean CMS- Fr Loss of CMS-specific ~ Janska and Mackenzie
Sprite region (1993)
Fr2 Post-transcriptional ~ Abad et al. (1995)
Maize CMS-T Rf1 RNA-processing or Kennell and Pring (1989)
post-transcriptional
Rf2 AIDH, physiological ~ Cui et al. (1996)
function
Petunia RM Rf Reduced transcript Pruitt and Hanson
amounts (1991)
Rapeseed  Polima Rfp1/Rfp2 RNA-processing Handa and Nakajima
(1992)
Ogura Rfo Post-transcriptional ~ Krishnasamy and
Makaroff (1994)
Rice CMS-BT  Rf-1 RNA-processing Iwabuchi et al. (1993)
Sunflower PET1 Rf1 RNA stability Monéger et al. (1994)

partial) restoration of fertility in presence of the T-cytoplasm is only possi-
ble if the Rf2 gene is combined with one of three other restorer genes: RfI,
Rf8or Rf". Each of them results in a specific change of the processing of the
T-urfl3 transcript (Wise et al. 1999). Also for the RfI gene in maize, the
identification of transposon-tagged mutated alleles was successful (Wise
et al. 1996). All four rfl-m alleles in the male sterile plants cosegregated
with an increased steady-state accumulation of the 1.6- and 0.6-kb-tran-
scripts of the T-urfl3. These transcripts represent processing derivates of
the 2.0 or 1.8 kb transcripts, which are characteristic for the T-cytoplasm
(Dewey et al. 1987). A functional gene product of the RfI gene seems to be
necessary, as in the case of the Rf2 gene, to change the transcript pattern of
the T-urfl3 gene and to reduce the CMS-specific polypeptide. Rf8 leads to
the accumulation of two transcripts of 1.42 and 0.42 kb, Rfx of T-urf13-
transcripts with 1.4 and 0.4 kb (Dill et al. 1997). The 5-ends of the two
transcript groups are only 22 nucleotides apart and show a conserved
sequence motif 5'-CNACANNU-3".

In the S-cytoplasm of maize, apart from the transcripts of 2.8 and 1.6 kb,
which are typical for the CMS-specific region orf355-orf77, new additional
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Table 2. Mapping activities and marker systems used for restorer genes

Plant species CMS system Restorer gene  Marker system Reference
Beta vulgaris ssp. CMS H RIH RAPD, RFLP Laporte et al.
maritima (1998)
Brassica napus CMS polima Rfp1/Rfp2 RAPD, RFLP Jean et al.
(1997)
CMS ogura Rfo RAPD, RFLP Delourme et al.
(1998)
Gossypium CMS-D2 Rfl RAPD, SSR Liu et al.
hirsutum (2003)
CMS-D8 Rf2 RAPD, STS Zhang and
Stewart (2004)
Helianthus annuus ~ PET1 Rf1 RFLP Gentzbittel
et al. (1995,
1999)
RFLP, RAPD, Berry et al.
AFLP (1995), Horn
et al. (2003),
Kusterer et al.
(2005)
PEF1 RF1-PEF1 RAPD, Quillet et al.
isoenzyme (1995)
Hordeum vulgare ~ msml Rfmla RAPD, STS Matsui et al.
(2001)
Petunia hybrida RM Rf RAPD, AFLP Bentolila et al.
(1998),
Bentolila and
Hanson (2001)
Phaseolus vulgaris ~ CMS-Sprite Fr, Fr2 RAPD He et al.
(1995b)
Oryza sativa CMS-BT Rf-1 RFLP Kurata et al.
(1994),
Ichikawa et al.
(1997)
PCR-marker Komori et al.
(2003)
CMS-HL Rf5 SSR Huang et al.
(2000)
Rf6(1) SSR, STS Lui et al. (2004)
CMS-L Rf2 RFLP Shinjyo and

Sato (1994)
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Table 2. Continued

Plant species CMS system Restorer gene  Marker system Reference
CMS-WA Rf3 RAPD, RFLP Zhang et al.
(1997)
Rf4 SSLP, RFLP Yao et al.

(1997), Jing
et al. (2001),

Zhang et al.
(2002)
Secale cereale CMS G Rfgl RAPD, RFLP Borner et al.
(1998)
CMS P Rfp1/Rfp2 AFLP, SCAR Stracke et al.
(2003)
Sorgum bicolor Al (milo) Rf1 AFLP, SSR Klein et al.
(2001)
A3 Rf4 AFLP Wen et al.
(2002)
Zea mays CMS-T RfI/Rf2 RFLP Wise and
Schnable (1994)
Rf8 AFLP Wise et al.
(1999)
CMS-S Rf3 RFLP Kamps and

Chase (1997)

transcripts of this region of 0.75, 1.1 and 2.1 kb were observed in developing
microspores in the presence of the restorer gene Rf3 (Wen and Chase 1999).
The Rf3 gene seems to have an influence on the processing of the CMS-spe-
cific transcripts. The Rf3 gene responsible for restoring fertility in the pres-
ence of the S-cytoplasm in maize was mapped on the long arm of
chromosome 2 in a distance of 4.3 cM from the whp Locus and 6.4 cM prox-
imal to the RFLP-marker bnl17.14 (Kamps and Chase 1997).

In rice, so far six restorer genes for CMS cytoplasms have been localized
in the genome (Shen et al. 1998; Huang et al. 2000). The restorer gene Rf-1
is responsible for fertility restoration of the gametophytic cms-BT (also
known as cms-bo) system (Shinjyo 1984). Rf-1 mapped close to the marker
G4003, and 3.7 cM from ORS33 on chromosome 10 (Akagi et al. 1996).
In between, a candidate gene was isolated for Rf-1 (Kazama and Toriyama
2003; Komori et al. 2004). The restorer gene Rf2 of the CMS-L system is on
chromosome 2 (Shinjyo and Sato 1994). Genetic studies of the sporophytic
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cms-WA system in rice showed that two restorer genes are necessary for fer-
tility restoration: Rf3 on chromosome 1 and Rf4 on chromosome 10 (Yao
et al. 1997; Zhang et al. 1997, 2002). Rf4 mapped close to the S10019 region,
and 0.9 cM from the marker Y3-8. For the gametophytic cms-HL system, the
restorer genes, Rf5 and Rf6(t), could be localized on chromosome 10 in the
lines MY23 and 93-11, respectively. Linkage analysis revealed that these
genes are cosegregating with the SSR-markers, RM3150 and RM5373,
respectively and therefore are localized in some distance from RfI and Rf4,
which are also on chromosome 10 (Liu et al. 2004).

A 105-kb BAC-clone, which carries the Rf6(t) locus, was isolated from the rice BAC library.
The candidate gene region was delimited to a 66 kb region by a combination of physical fine
mapping and BLASTX searches of the marker sequences in the genomic database
(http://btn.genomics.org.cn.rice).

In rye, the restorer gene Rfgl of the male sterility inducing G-cytoplasm
was mapped on chromosome 4RL distal of three RFLP markers (Xpsr119,
Xprs167, Xpsr899) and four RAPD markers (XP01, XAP05, XR11, XS10)
(Borner et al. 1998). Rfgl might be allelic to the gene, which is responsible
for fertility restoration of the P-cytoplasm and to Rfc4, which restores in rye
addition lines of chromosome 4RL the fertility in hexaploid wheat with the
T. timopheevi cytoplasm (Borner et al. 1998).

In Phaseolus vulgaris, two restorer genes, Frand Fr2, allow fertility restora-
tion of CMS-Sprite by two different mechanisms. Fr2 suppresses the expres-
sion of the CMS-associated pvs-region (Abad et al. 1995), whereas Fr leads
to an irreversible elimination of this region (Janska and Mackenzie 1993). In
presence of both genes, the expression of the pvs-region is reduced, however
the region is not eliminated, as the gene product of the pvs-region seems to
be necessary for this (He et al. 1995a). In case of a spontaneous reversion to
fertility the precursor molecule, which contains pvs-orf239, remains present
in sub-stoichometric amounts in the reverted genome (Janska et al. 1998).
Using “bulked-segregant” analyses (Michelmore et al. 1991), four RAPD
markers closely linked to the restorer gene Fr could be identified (He et al.
1995b). These markers were integrated into the existing map for bean
(Vallejos et al. 1992). Apart from the Fr- and the Fr2 gene two additional
restorer genes, Fr,, ... and Fry,,.., showing the same function as the Fr2
gene, were identified (Jia et al. 1997). All four genes mapped on the same
linkage group, so that Fr2, Fr,, ... and Fry,,.. are probably allelic.

In petunia, an AFLP-marker ECCA/MCAT and the RAPD markers OP51,
OP704, OP413 as well as OP605 were identified as closely linked to the Rf
gene (Bentolila et al. 1998). OP704, CT24 and ECCA/MCAT hybridized with
the same MIul fragment, which had a size of 650 kb. As the genetic distance
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between the markers OP704, CT24 and ECCA/MCAT was estimated to be
1.6 cM the ratio between physical and genetic map was calculated with 400
kb/cM for the genome region around the Rf gene in petunia. The restorer
gene has been isolated in between (Bentolila et al. 2002).

In rapeseed, the two restorer genes, Rfpl and Rfp2, involved in fertility
restoration of the CMS Polima, are localized at the same gene locus on chro-
mosome 18. It is assumed that they represent alleles of this locus (Jean ez al.
1997). For the Ogura CMS-system, Delourme et al. (1998) identified 30
markers (RFLP and RAPD), which cosegregated with the restorer gene Rfo
in the cross R40 X Yuda. The Rfo gene has also been cloned, recently (Brown
et al. 2003; Desloire et al. 2003).

In Beta vulgaris ssp. maritima, RELP and RAPD markers could be identi-
fied, which were linked with the restorer gene R1H of the H-type of mito-
chondria. The closest RFLP marker pKP753 maps at a distance of 1.7 ¢cM to
the gene, the next RAPD marker K11 on the other side with 5.2 ctM
(Laporte et al. 1998).

In sunflower, two restorer genes, Rfl and Rf2, seem to be necessary for
fertility restoration of the PET1 cytoplasm (Serieys 1996). However, one of
the restorer genes is also present in most of the maintainer lines, so that in
most cases only RfI is introduced into the hybrids by the restorer line
(Leclercq 1984). The restorer gene RfI for the PET1 cytoplasm specifically
reduces the cotranscript of atpA and orfH522 in the anthers of fertility
restored hybrids. The degree of polyadenylation seems to play a role for the
degradation of the mRNA by the mitochondrial RNase 2 (Gagliardi and
Leaver 1999). One of the two restorer genes in sunflower may control the
polyadenylation of the atpA-orfH522 cotranscript (Gagliardi and Leaver
1999). The restorer gene RfI mapped on linkage group 13 of the sunflower
general genetic map (Tang et al. 2003; Kusterer et al. 2005). Three AFLP
markers, E32M36-155, E42M76-125 and E44M70-275, and three RAPD
markers, OP-K13_454, OP-Y10_740 and OP-H13_337, were closely linked
to the restorer gene RfI.

1000

The RAPD markers were successfully converted into two STS markers and one CAPS marker,
which are now available and used in marker-assisted breeding (Horn et al. 2003; Kusterer
et al. 2005). A sunflower BAC library (Ozdemir et al. 2002, 2004) has been used to identify
BAC clones around the restorer gene RfI. For other CMS cytoplasms such as PEF1, PET2 or
ANN4 (Horn and Friedt 1997), restorer lines could be identified but the restorer genes have
not yet been mapped on the sunflower general genetic map.

The investigations on the location of restorer genes in genomes of differ-
ent plant species indicate that restorer genes for different CMS-types seem
to be distributed over the whole genome, but in some cases they are also
located on the same chromosome or may be alleles of one gene.
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3.2 PPR genes function as restorer genes

All up-to-date isolated restorer genes, with one exception, the Rf2 gene of
maize (Cui et al. 1996), belong to a family of genes that contain a pentatri-
copeptide repeat (PPR) motif (Table 3). PPR motif carrying proteins show a
characteristic tandem array of repeats of a degenerated motif of 35 amino
acids. PPR-containing proteins are encoded by a gene family in Arabidopsis
thaliana that contains over 450 members, with the number of repeats vary-
ing from 2 to 26 (Aubourg et al. 2000). The majority of these proteins are
predicted to be targeted either to mitochondria or to chloroplasts. It is
assumed that PPR proteins specifically interact with RNA in organelles and
play a role in RNA processing or translation (Small and Peeters 2000).

The first restorer gene of the PPR-type was cloned from Petunia
(Bentolila et al. 2002). Applying molecular marker techniques the genomic
region containing the restorer gene was delimited to a BIBAC of 37.5 kb
(Bentolila et al. 1998; Bentolila and Hanson 2001). Transgenic approaches
were then used to identify the restorer gene from the candidate genes. The
restorer gene encodes 592 amino acids and is targeted to mitochondria via a
signal sequence. This Rf-PPR592 restored fertility in transgenic plants carry-
ing the Petunia CMS cytoplasm. The abundance of the CMS-associated PCF
protein was considerably reduced in these plants. Rf-PPR592 contains 14
copies of the pentatricopeptide motif, representing 87% of the coding
region. The Rflocus in Petunia shows a complex genomic structure and con-
tains a second PPR gene (Rf-PPR59I) coding for a protein of 591 amino
acids with an unknown function. The homolog gene in rf/rf lines shows a

Table 3. Overview of the up to date cloned restorer genes of the PPR-type

Species CMS-type Restorer gene  PPR motifs Reference

Petunia hybrida ~ RM Rf 14 Repeats Bentolila and Hanson
(2001), Bentolila et al.
(2002)

Oryza sativa cms-BT Rf-1 18 Repeats Kazama and Toriyama

(2003), Akagi et al.
(2004), Komori et al.
(2004)

Raphanus sativus  Kosena Rfk1 16 Repeats Imai et al. (2003),
Koizuka et al. (2003)

Raphanus sativus ~ Ogura Rfo (g26) 16 Repeats Brown et al. (2003),
Desloire et al. (2003)
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deletion in the promoter region compared to Rf-PPR592 and differences in
the predicted amino acid sequence (Bentolila et al. 2002).

In rice, cms-BT (cms-bo), male sterility is caused by an aberrant atp6 gene
(B-atp6) in the mitochondrial genome. This B-atp6 is transcribed into a 2.0
kb transcript that contains apart from the atp6 gene a unique sequence of
orf79 located in the 3 region of atpé6. In presence of the restorer gene Rf-1
two transcripts of 1.5 kb and 0.45 kb are formed by processing the 2.0 kb
transcript (Iwabuchi et al. 1993, Akagi et al. 1994). Sequence analysis of the
cDNA demonstrated that the processed B-atp6-RNA is as effectively edited
as the N-atp6-RNA. The Rf-1 gene seems to be involved in processing, which
also has an effect on the post-transriptional editing process of atp6
(Iwabuchi et al. 1993). Several research groups were able to clone the Rf-1
gene by combining a map-based cloning strategy and a candidate gene
approach (Kazama and Toriyama 2003; Akagi et al. 2004; Komori et al.
2004). Kazama and Toriyama (2003) were the first to identify PPR8-1, cod-
ing for a PPR-protein, as candidate gene for Rf-1. Using a transgenic
approach, they could demonstrate that this gene participates in processing of
the transcripts of atp6. The protein encoded by PPR8-1 promotes the for-
mation of the 0.45 kb RNA from the transcript of the B-atp6 gene in the
same way as Rf-1 is supposed to act. However, this group did not investigate
whether the introduction of PPRS8-1 results in fertile regenerated plants.
PPR791 (Rf-1), which was cloned by Komori et al. (2004) following a fine
mapping strategy (Komori et al. 2003), is identical to PPR8-1. The Rf-1 gene
was predicted to encode a 791 aa protein, containing 16 PPR-motifs, 14 of
which are in a tandem array (Komori et al. 2004). The recessive allele (rf-1)
encodes a truncated protein of 266 amino acids because a 1-bp deletion in
the putative coding region leads to a frame shift and a premature stop codon.
The 574 bp deletion located in the 3’-region of the coding sequence proba-
bly does not play a role for the function of the restorer gene.

Komori et al. (2004) obtained the clone, which contained PPR791, by conducting comple-
mentation tests in which this clone resulted in fertile transgenic plants. Komori et al. (2004)
identified three additional PPR genes in the region that showed 90.1%, 80.9% and 94.1%
homology to the restorer gene PPR791, respectively. Akagi et al. (2004) identified nine PPR
genes around the Rf-1 locus. These duplicates may have played diversified roles in RNA pro-
cessing and/or recombination in mitochondria during the co-evolution of these genes and
the mitochondrial genome (Akagi et al. 2004).

For rapeseed, a restorer gene of the PPR type could be isolated for the
Ogura-CMS as well as for the Kosena-CMS. The Rfo gene from Raphanus
sativus can restore male fertility in rapeseed carrying the Ogura cytoplasm.
Unlike petunia Rf, Rfo does not affect the transcripts of the corresponding
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CMS-associated mitochondrial gene, orf138. Rfo appears to act at either the
translational or post-translational level leading to a reduction of the orf138
gene product in flowers and leaves (Krishnasamy and Makaroff 1994;
Bellaoui et al. 1997). Cloning of the Rfo gene was facilitated by using the syn-
teny between Raphanus and Arabidopsis, although Arabidopsis does not have
a PPR gene corresponding to the restorer gene Rfo (Brown et al. 2003;
Desloire et al. 2003). Brown et al. (2003) identified g26, encoding a 687-
amino acid protein with a predicted mitochondrial targeting sequence, as
candidate gene for Rfo.

The flanking genes, g24 and g27, also contain multiple PPR motifs, but
both lack the third repeat of g26. The predicted proteins encoded by the
three genes are similar in length: g24p and g27p are 686 and 654 amino acids
long, respectively, in comparison to the 687 amino acids of the Rfo gene
product (g26p). Transformation using a clone containing ¢26 resulted in fer-
tile regenerated plants (Brown et al. 2003). Desloire et al. (2003) also identi-
fied three PPR genes, PprA, PprB and PprC, on the Raphanus BAC-clone 64.
Sequence analysis of PprC suggested that PprC is a pseudogene. In conclu-
sion, Rfo is likely to correspond to PprA or PprB or both.

Analyses of the Kosena CMS mtDNA revealed that Kosena CMS carries
orfl125 (Iwabuchi et al. 1999), which encodes a 17-kDa protein and has a
sequence homologous to that of orf138, except for two amino acid substitu-
tions and a 39-bp deletion in the orf138 coding region. The accumulation of
ORF125 and ORF138 is associated with the CMS phenotype in Brassica
napus (Grelon et al. 1994; Iwabuchi et al. 1999). The Rf gene regulates the
protein expression at translational level (Koizuka et al. 1998). Two nuclear
loci, RfkI and Rfk2, with dominant alleles are capable of restoring fertility in
the Kosena CMS radish (Koizuka et al. 2000). Although the amount of
orfl25 transcript is unchanged in the presence of the Rfkl dominant allele,
ORF125 protein accumulation is considerably reduced (Iwabuchi et al. 1999;
Koizuka et al. 2000). Pursuing a positional cloning strategy, the region of the
fertility restorer locus RfkI was delimited to a 43-kb contig in Kosena radish
(Raphanus sativus L.), which is covered by four lambda clones and one cos-
mid clone (Imai et al. 2003). To identify RfkI, subclones covering the 43-kb
region were introduced into a B. napus CMS line via Agrobacterium-medi-
ated transformation. The orf687, which encodes 687 amino acids with a pre-
dicted molecular weight of 76.5 kDa, was identified as RfkI. The recessive
allele contains 11 base substitutions. Five of the base substitutions result in
four amino acid substitutions, all within the region of PPR repeats (Koizuka
et al. 2003). The sequence of the protein ORF687 encoded by Rfk! is identi-
cal to the protein, g26p. Thus, although there are differences in the mito-
chondrial CMS determinants between radish Kosena and Ogura cytoplasm,
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fertility restoration of both systems can be conferred by genes encoding the
same polypeptide (Brown et al. 2003).

The fact that a number of restorer genes show PPR motifs will consider-
ably facilitate the isolation of candidate genes for restorer genes in other
species (Koizuka et al. 2003).

4 Conclusions

Functional mitochondria are obviously vital for pollen development. CMS
systems and the corresponding fertility restorer genes provide interesting
possibilities to study the role of mitochondria in pollen development and the
interaction of nucleus and mitochondria in this scenario. Whereas the causes
of cytoplasmic male sterility have already been analysed in detail on the
molecular level, the isolation of the restorer genes has just started. The iden-
tification of restorer genes belonging to the PPR gene family might open the
possibility of better progress in cloning of further restorer genes by combin-
ing map-based cloning with candidate gene approaches. However, only the
future will show whether all the restorer genes belong to the same type or
whether other types of restorer genes will be identified. For these genes, the
cloning procedure will be more time consuming and not for all plants trans-
poson-tagging systems are available, which would be an alternative to the
universally applicable map-based-cloning strategy. Although CMS-associ-
ated open-reading frames and the encoded proteins have been identified the
function and role of these proteins, apart from the maize T-URF13 protein,
is still unresolved. Isolation and studies of the function of the restorer gene
might allow a better understanding of the processes involved. However, in
general it seems that any disturbance of the mitochondrial function is fatal
for a process with high energy demands as the development of pollen in
higher plants.

The molecular analyses on cytoplasmic male sterility and fertility restora-
tion have also provided molecular markers that allow fingerprinting of
hybrids and assessment of purity of hybrid seeds based on PCR-based strate-
gies for commercial applications (Komori and Nitta 2004; Nandakumar
et al. 2004).
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1 Introduction

Completing the primary genomic sequence of Arabidopsis thaliana was a
major milestone, being the first plant genome and well established as the
premiere model species in plant biology. Since working drafts of rice (Oryza
sativa L.) genome became available (Yu et al. 2002), it has become the sec-
ond-best model organism in plants representing monocotyledons.
Understanding how the genome sequence comprehensively encodes deve-
lopmental programs and environmental responses is the next major chal-
lenge for all plant genome projects. This requires functional characterization
of genes, including identification of regulatory sequences. Several functional
genomics approaches were initiated to decode the linear sequence of the
model plant Arabidopsis thaliana, including full-length cDNA collections,
microarrays, natural variation, knockout collections, and comparative
sequence analysis (Borevitz and Ecker 2004). Genomics provides the essen-
tial tools to speed up the research work of the traditional molecular geneti-
cist, and is now a scientific discipline in its own right (Borevitz and Ecker
2004).

Beside their importance in basic research, markers have entered the field
of application in their own right. Frisch (2005) calculated that selection for
recombination between a target gene and flanking markers is highly effec-
tive even when the marker is rather distant from the target gene. He expects
a saving of three backcross generations even with a marker distance of 50
cM. Marker-assisted background selection can be used even for such large
distances, since recombinants occur with increasing distances with a higher
probability (Frisch et al. 1999). Hoisington and Melchinger (2005) elabo-
rated factors on which a superior selection via markers, and in particular
complex QTL in maize breeding, depend, compared with phenotypic selec-
tion: the heritability of the trait, the population size of the mapping popu-
lation employed in QTL mapping, the genetic architecture of the trait, and
the total budget of a breeding program. At least some of the early predic-
tions of the usefulness of molecular markers could be verified (Mohler and
Singriin 2005).

To convert plant genomics into effective economic and environmental
benefits, the knowledge gained must be “translated” into crop varieties with
improved characteristics or efficient breeding tools. Functional markers
(FMs) are a good “translator” of new knowledge from emerging technolo-
gies into improved crop cultivars, or “varieties” (Thro et al. 2004). A con-
cept for definition, development, application, and prospects of FMs in
plants has recently been published (Andersen and Liibberstedt 2003). FMs
are derived from polymorphic sites within genes causally involved in phe-
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notypic trait variation. Once genetic effects have been assigned to func-
tional sequence motifs, FMs derived from such motifs can be used for fix-
ation of gene alleles (defined by one or several FM alleles) in a number of
genetic backgrounds without additional calibration. In contrast, the value
of anonymous genetic markers such as random DNA markers (RDMs =
microsatellites, AFLPs, RFLPs etc.) depends on the known linkage phase
between marker and target locus alleles (Liibberstedt et al. 1998). Thus
(quantitative) trait locus mapping is necessary for each cross de novo, as
different subsets of QTL are polymorphic in individual populations, and
linkage phases between marker and QTL alleles can disagree even in closely
related genotypes. FM development requires (1) functionally characterized
genes, (2) allele sequences from such genes, (3) identification of polymor-
phic, functional motifs affecting plant phenotype within these genes, and
(4) validation of associations between DNA polymorphisms and trait vari-
ation.

Because of its economic importance, and its vigorously active transpos-
able elements, maize has been a focus of interest for plant biologists for
many decades. From its early role as a model for the analysis of plant trans-
posons and for gene tagging, maize has, like Arabidopsis and rice, recently
become the focus of plant genomic research (Varotto and Leister 2002).
Here, our major objectives are: (1) with a focus on the major crop maize, to
summarize the current status of genomics projects, and (2) to discuss the
perspectives of exploitation of this information in terms non-GMO breed-
ing strategies (see Fig. 1).

2 Structural genomics in maize and rice

Projects addressing systematic sequencing of the maize genome con-
tributed large amounts of publicly available sequences during the past few
years. More than 417,000 expressed sequence tag (EST) sequences have
been released into the public domain (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html). Additional EST sequences have very
recently been made available by private companies (http://www.ncga.com/
research/MaizeSeq/). Even more genomic, as compared to the public
EST sequences, have been generated within the last 2 years in the context
of systematic sequencing of the maize genome (http://pgir.rutgers.edu/).
More than 680,000 ends of BAC clones have been sequenced (http://pgir.-
rutgers.edu/). Additionally, about about 900,000 genomic sequences have
been obtained by methyl filtration and high Cot approaches (http://
www.tigr.org/tdb/tgi/maize/release4.0/assembly.shtml). Finally, more than



56 Genetics

Genomics and Plant Breeding

QTL mapping Mutants Synteny Expression profilin

Candidate genes{----- -+ Transgenes

Association studies TILLING

Functional markers

Fig. 1. Diagram indicating how genomics tools can benefit plant breeding

150,000 sequences flanking transposon insertions have been generated
(http://www-sequence.stanford.edu/group/maize/maize2.html). Together
with systematic genetic and physical mapping (http://www.maizemap.
org/), including a genetic high resolution map and more than 400,000 fin-
gerprinted BAC clones arranged in 760 contigs (http://www.genome.
arizona.edu/fpc/maize/), these more than 2 million sequence reads provide
an excellent basis for gene identification by (i) sequence homology, (ii)
synteny to rice or other grasses, and (iii) forward genetic approaches (e.g.
map-based gene isolation). Map-based approaches in particular will bene-
fit from the systematic sequencing of BAC contigs planned for the next
years (http://www.maizegdb.org/genome/npgil.pdf). A new project for
large scale sequencing of maize has been launched in the USA, building
upon the recently established resources (http://www.maizegdb.org/). The
resources available for maize genomics research were briefly summarized
in Table 1.

Rice has been put forward as a model for crop plants, allowing valuable
comparisons to a model dicotyledon (Arabidopsis thaliana) and the most
important monocotyledons such as maize, wheat and barley (Bennetzen
2002; Schmidt 2000). More than 6000 DNA markers have been mapped in
rice, with approximately one marker every 0.25 c¢M, or every 75-100 kb
(Tyagi et al. 2004). SNPs will provide a rich source of DNA based markers
since in rice one SNP per 89 bp among various genotypes or one SNP every
232 bp between two randomly selected lines has been reported (Nasu et al.
2002). For physical mapping of the rice genome, various libraries consist-
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ing of large insert clones in vectors such as YACs (Burke et al. 1987), P1-
derived artificial chromosomes (PACs) (Ioannou et al. 1994) and BACs
(Shizuya et al. 1992), as well as the availability of anchored genetically
mapped DNA markers, greatly facilitated the construction of extended con-
tigs. Presently, emphasis is being laid to integrate cytological, genetic and
physical maps.

Four versions of the genome sequence from two subspecies of Oryza
sativa have been released over a short span of time (Buell 2002; Delseny
2003). The vast amount of structural and functional data of the rice
genome generated earlier (Sasaki 1998; Sasaki and Burr 2000) provided a
strong backbone for the International Rice Genome Sequencing Project
(IRGSP), which was started in 1998 (Sasaki and Burr 2000). IRGSP released
sequence data up to the phase 2 level (ordered regions of sequences, which
can contain gaps) in December 2002 (http://rgp.dna.affrc.go.jp/rgp/
Dec18_NEWS.html;http://www.tigr.org/new/press_release_12-18-02.shtml).
Furthermore, rice genome projects were carried out by Monsanto (Barry
2001) and Syngenta (Goff et al. 2002). These agribusinesses and the IRGSP
focused on the sequencing of the japonica cultivar Nipponbare, with its
already available molecular and genetic resources. The fourth project con-
ducted at the Beijing Genomics Institute (BGI, http://btn.genomics.
org.cn/rice/; Goff et al. 2002) focused on sequencing the tropical indica cul-
tivar 93-11. Bioinformatic tools have been used to annotate and analyse the
three whole genome draft sequences (two of japonica and one of indica) of
rice. Highly accurate annotated complete sequences of chromosomes 1, 4,
and 10 have been made available (Sasaki 2002; Yu et al. 2002, 2003). The
final “finished” sequence data, i.e. refined data without gaps, was expected
by the end of 2004 (http://www. tigr.org/new/press_release_12-18-02.shtml),
setting the stage for future research on rice, similar to the completed sequence
of the human genome (Collins et al. 2003). Genome-wide sequencing was pre-
ceded by expressed sequence tag (EST) sequencing, as this provides not only
an inexpensive sampling method for the expressed fraction of a genome, but
also a quantitative profile of expression levels in specific tissues. Currently,
there are approximately 266,000 rice ESTs deposited in the GenBank
(http://www.ncbinlm.nih.gov/dbEST/dbEST_summary.html).

3 Comparative genomics: synteny between maize and rice
One of the cornerstones in the application of molecular markers was the

demonstration that large chromosome regions and even whole chromosomes
have conserved gene orders across related species within plant families
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(Moore et al. 1995). Macrosyntenic relationships between genomes of related
species have been displayed in concentric circle models (Moore et al. 1995),
with particular emphasis on grass genomes (Devos and Gale 1997).
Conservation of gene order has led to the concept of model species in the
context of expensive plant genomics projects: once the genome of one species
within a plant family or even wider taxonomic unit has been sequenced and
the function of genes within this species determined, this information can be
exploited for isolating orthologous genes in any related species (reverse
genetic approach). Moreover, candidate genes underlying QTL in non-model
species would become accessible via synteny relationships to model species
(forward genetic approach). The synteny and model species concept has
proven successful, such as for isolation of a rust resistance gene in wheat
(Huang et al., 2003) and a vernalization response gene in ryegrass (Jensen
et al. 2005). Even between the evolutionary distant species Arabidopsis and
rice, significant microsynteny in small chromosome segments has been dis-
covered (Salse et al. 2004). However, in other studies, rearrangements or dele-
tions impaired the exploitation of synteny for isolation of target genes
(Brunner et al. 2003).

The original synteny studies were based on RFLP mapping across species
using cDNA probes (Moore et al. 1995). Grass genomes were expected to be
organized in a limited number of chromosome blocks. More recent avail-
ability of complete genome sequences in Arabidopsis and rice as well as
sequenced BAC contigs in other species as well as comprehensive (mapped)
EST collections led to re-evaluation of the synteny concept (Delseny 2004).
These sequencing projects revealed numerous polyploidization events after
speciation even in the small genome species Arabidopsis thaliana (Blanc et al.
2003), but also in rice and maize (Salse et al. 2004). Furthermore, large
genomes such as the maize genome have been invaded by retrotransposons,
resulting in reshuffling of original ancestral genomes due to duplications,
deletions, illegitimate recombination etc. (Delseny 2004). Since these events
occurred after speciation of maize, substantial differences have been
reported between larger allelic sequence stretches even within maize among
different inbred lines (Fu and Dooner 2002; Brunner et al. 2005). An in-
silico alignment of genomic rice sequence with mapped maize EST
sequences identified larger collinear chromosome regions between rice and
maize in agreement with previous studies (Salse et al. 2004). However, fine-
scale analysis revealed, besides several duplicated regions, numerous internal
rearrangements within syntenic chromosome blocks. In conclusion, rice can
be used to identify candidate genes in a target region identified in maize.
However, the order and number of genes might be altered at the microsyn-
teny level between rice and maize.
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4 Functional genomics in maize

“Functional genomics” aims at the functional characterization of genes. The
main characteristics of genes determined by functional genomics relates to
(i) mRNA expression patterns in diverse treatments, tissues, stages, (ii) bio-
chemical classification, and (iii) morphological or phenotypic effects.
Several high-throughput approaches have been established to explore the
function of genes, as well as to monitor their expression in relation to vari-
ous other genes of maize. However, systematic assignment of an “agronomic
function” to gene variants requires expensive field trials.

Positional cloning of genes underlying QTL will benefit substantially
from the availability of physical maps and sequences from whole chromo-
somes or large chromosome regions, as has been the case for rice (Borevitz
and Chory 2004). If knock-out alleles at QTL lack clear phenotypes, map-
based gene isolation will be the major route for isolating respective genes.

Maize transposons play an important role as tool in maize gene discovery.
The Ac/Ds and MuDR/Mu maize transposons were widely used in mutagen-
esis experiments (Walbot 2000). Whereas Mutator transposons are well
suited for global mutagenesis and gene discovery, Ac/Ds is most convenient
for multiple rounds of mutagenesis at a defined target gene (Walbot 2000).
New genomics approaches, employing strategies for screening by PCR and
for plasmid rescue, are now providing indexed collections of mutations and
the sequences flanking transposon insertion sites. Users can identify trans-
poson-generated mutants in specific genes after querying a database rather
than searching a cornfield. Comprehensive resources mainly based on the
Mutator transposon have been and are being established (http://www.
mutransposon.org/project/), both for forward and reverse genetic screening
of traits and genes, respectively. For example, the NSF-funded Maize Gene
Discovery Project uses RescueMu plasmid rescue to create immortalized col-
lections of insertion sites in E. coli (Lunde et al. 2003). Over 70,000
RescueMu flanking sequences have been sequenced, while cataloging mutant
seed and cob phenotypes of 23,000 maize ears, 6200 families of maize
seedlings, and 4000 families of adult maize plants carrying MuDR/Mu and
RescueMu insertion alleles. To obtain seed, users could first search the
website database for insertions into genes of interest and then perform PCR
or hybridization on column libraries to ascertain which plant has the muta-
tion (Lunde et al. 2003).

Recently, RNAi (RNA interference) has emerged as the method of choice
to validate gene function in the context of plant development. The essence
of RNAI is the delivery of double-stranded RNA (dsRNA) into an organism,
or cell, to induce a sequence-specific RNA degradation mechanism that
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effectively silences a targeted gene (Waterhouse and Helliwell 2003). An
important aspect of using RNAIi in plant genomics is the delivery of the
silencing-inducing dsRNA. This RNA can be delivered by stably transform-
ing plants with transgenes that encode dsRNA. It can also be transiently
delivered by bombarding plants with nucleic-acid-coated beads, by infiltrat-
ing plant cells with transgene-carrying Agrobacterium tumefaciens or by
infecting plants with a virus, either on its own or together with a satellite
virus (Waterhouse and Helliwell 2003). However, transformation of maize is
still not possible at high throughput. Alternatively, virus-induced gene
silencing has been proposed for rapid in-vivo gene function tests in maize
based on maize streak virus, wheat streak mosaic virus, or barley stripe
mosaic virus (Robertson 2004).

Besides mutagenesis- and genome-based approaches, further high-
throughput tools have been established to identify and characterize candi-
date genes for traits of interest, such as mRNA expression profiling.
Transcript profiling methods can be divided into two classes: (1) direct
analysis, including procedures involving nucleotide sequencing (EST
sequencing, SSH, SAGE) and fragment sizing (e.g. cDNA-AFLP; Baldwin
et al. 1999); and (2) indirect analysis (macro- or microarray based expres-
sion profiling), involving nucleic acid hybridization of mRNA or cDNA frag-
ments (Donson et al. 2002).

These methods have been extensively implemented in diverse maize
research fields, such as, water stress, embryogenesis, UV radiation, plant
defences (see Table 2 for a brief summary). Microarray-based expression
profiling in particular perfectly matches the ambition in genomics of multi-
parallel approaches, studying ideally all genes of an organism in one experi-
ment simultaneously. It has been the predominant method for the parallel
analysis of gene expression in functional genomics research. In maize, pub-
licly available microarrays contain currently PCR fragments from more than
10,000 different ESTs (http://www.maizegdb.org/microarray.php), whereas
long oligo microarrays include 58,000 different oligonucleotides
(http://www.maizearray.org/). We used maize unigene microarrays to iden-
tify 497 differentially expressed genes associated with SCMV resistance in
the near isogenic line (NIL) pair F7* and F7 (Shi et al. 2005). Since current
maize microarrays do not include all maize genes, complementary
approaches are required to identify, e.g. rare transcripts. Auxiliary tech-
niques include subtraction hybridization (Sargent 1987) and related meth-
ods, such as suppression subtractive hybridization (SSH) (Diatchenko et al.
1996). The SSH procedure enriches cDNA libraries for low-abundant and
differentially expressed mRNAs by normalization (Diatchenko et al. 1996).
Shi et al. (unpublished data) have used SSH combined with macroarray
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hybridization to successfully identify genes differently expressed in near iso-
genic lines in the context of a virus resistance in maize.

Continued progress in developing and applying tools for functional
genomics approaches will generate data on the function of hundreds or
thousands of maize genes. The prospects for identification of genes affecting
agronomic characters can be expected to increase substantially within the
next decade.

5 Genomics and biodiversity: functional markers in maize

Assignment of an “agronomic function” to short sequence motifs can be
achieved by candidate gene based association studies (Risch 2000). This
approach is limited by linkage disequilibrium (LD), i.e. haplotype structures
in the gene(s) of interest. However, for several genes a generally low LD was
detected in maize (Remington et al. 2001; Flint-Garcia et al. 2003), including
examples in elite materials (Zein and Wenzel, unpublished data). Thus, can-
didate gene-based association studies are promising in maize. In heteroge-
neous genotype collections, associations identified for specific sites might be
confounded with effects from other genome regions, especially in the case of
population stratification (Pritchard et al. 2000), which needs to be taken into
account for interpretation of results from association studies.

In a pioneering study, Thornsberry et al. (2001) demonstrated the feasi-
bility of association studies in maize to identify sequence polymorphisms
within genes affecting characters of agronomic significance. While taking
population structure into account, nine SNP or INDEL polymorphisms
were shown to significantly affect flowering time in a set of 92 diverse maize
lines. In part, these results were confirmed in a collection of European elite
inbred lines (Andersen et al. 2005). The major reason for non-significance of
some of the nine polymorphisms identified by Buckler was probably the
much narrower genetic material investigated by Andersen et al. (2005) as
compared with Thornsberry et al. (2001).

First reports on association studies for genes involved in cell wall biosyn-
thesis indicate that these pathways are promising targets for identification of
polymorphic sites associated with forage quality, and thus FM development
(Barriere et al. 2003). Zein and Wenzel (unpublished data) investigated the
sequence variation at the Bm3 locus in a collection of 42 European maize
inbred lines, contrasting with respect to stover DNDF and relevant for
hybrid maize breeding in Central Europe. For association with forage qual-
ity, stover digestibility was determined in six environments between 2001
and 2003 in Germany (heritability >0.9). One INDEL polymorphism within
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the intron revealed significant association with stover digestibility
(Liibberstedt et al. 2005). In the study of Guillet-Claude et al. (2004a), poly-
morphisms both in the AIdOMT (=Bm3) and the CCoAOMT2 but not
CCoAOMT1 coding genes showed significant association with maize
digestibility. Moreover, polymorphisms in the maize peroxidase gene
ZmPox3 were also significantly associated with maize digestibility (Guillet-
Claude et al. 2004b). Similarly, different genes involved in kernel colour,
composition, and starch production have been studied at the level of allelic
diversity or association studies (Whitt et al. 2002; Palaisa et al. 2003; Wilson
et al. 2004). These studies led to the identification of INDEL or SNP poly-
morphisms associated with yellow endosperm colour (Y1 gene), kernel
composition (genes bt2, shl, and sh2), starch pasting properties (genes ael,
sh2), and amylose levels (ael, sh1) (Palaisa et al. 2003; Wilson et al. 2004). In
conclusion, availability of qualified candidate genes can effectively converted
into informative molecular markers by means of association studies. In
maize, comprehensive association studies are ongoing in the group of E.
Buckler (http://www.maizegenetics.net/), where 18 genes have been studied
in a panel of 102 maize genotypes, and within Genoplante (e.g. Guillet-
Claude et al. (2004a)). An overview of alle sequencing or association study
conducted in maize is shown in Table 3.

Alternatively, TILLING (McCallum et al. 2000) can be employed to relate
sequence polymorphisms with phenotypic variation. Variants for virtually
all genes of interest in a fixed genetic background can be produced by TILL-
ING (McCallum et al. 2000). The advantage of TILLING as compared to
association studies is that isogenic lines are compared, avoiding statistical
artifacts due to population structure effects. The disadvantage of TILLING
is that establishing a comprehensive TILLING population covering most
genes is quite laborious. Therefore, TILLING populations are usually
restricted to one or few genetic backgrounds and the alleles fixed within the
respective “background genotypes”. Thus, if a knock-out allele is fixed at a
locus of interest, it might be not possible to identify revertants. Two TILL-
ING populations for maize have been produced at Purdue (http://genome.
purdue.edu/maizetilling/) in B73 and W22 background, available for the
maize research community. Within the next few years, 150 maize genes will
undergo systematic studies using this resource. (http://genome.purdue.edu/
maizetilling/). In the longer run, establishment of homologous recombina-
tion as established in moss (Physcomitrella patens) (Schaefer and Zryd 1997)
would be desirable to generate isogenic genotypes with defined polymorphic
differences and, if possible, in any genetic background.

One major recent finding in maize is that of “non-shared sequences”
when comparing allelic genome regions (Brunner et al. 2005). In contrast to
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Table 3. Overview over allele sequencing / association studies conducted in maize

Gene Plant material Trait Association Reference
Kernel properties
Phytoene synthase 75 inbred lines Endosperm + (Palaisa et al.
(Y1) (worldwide origin) color (yellow, 2003)
orange, white)
Pasting +
characteristics
Amylose extenderl Amylose +
(ael) content
Kernel +
composition
Brittle endosperm?2 Pasting +
(bt2) characteristics
102 inbred lines Kernel +
(worldwide composition
origin)
Shrunkenl (shl) Pasting (Wilson et al.
characteristics + 2004)
Amylose +
content
Kernel +
composition
Shrunken2 (sh2) Amylose +
content
Sugaryl (sul) - -
Waxyl (wx1) - _
Amylose extenderl ? -
(ael)
Brittle endosperm2 30 inbred lines, ? - (Whitt et al.
(bt2) 10 ssp ? - 2002)
Shrunkenl (shl) parviglumis ? -
Shrunken? (sh2) Tricapsum ? -
Sugaryl (sul) dactyloides -
(Mexico)
Waxyl (wxl) ?
Adh1 36 maize
Stearoyl-ACP- genotypes - - (Ching et al.
desasturase (mainly US 2002)
origin)

Acetyl-CoAC-
acyltransferase
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Table 3. Continued
Gene Plant material Trait Association Reference
Whole plant digestibility
Peroxidase ZmPox3 37 inbred lines Cell wall + (Guillet-
temperate regions  digestibility Claude et al.
germplasm) 2004b)
Caffeoyl-CoA 3-O- 42 inbred lines DNDF + (Liibberstedt
methyltransferase (European (digestible et al. 2005)
(COMT) origin) neutral
detergent fiber)
Caffeoyl-CoA 3-O-
methyltransferase
(CCoAOMT?2) +
Caffeoyl-CoA 3-O- 34 inbred lines Cell wall (Guillet-
methyltransferase digestibility Claude et al.
(CCoAOMT1) - 2004a)
Aldehyde O- -
methyltransferase
(AldOMT)
Morphology
Dwarf 8 (d8) 92 inbred lines Plant height + (Thornsberry
(US origin) Flowering date + et al. 2001)
71 inbred lines Plant height  + (Andersen
et al. 2005)
Dwarf 8 (d8) (European origin) Flowering date +
12 Zea and
Tripsacum lines
Terminal earl (tel)  (US,Middleand  Morphology  — (White and

Indeterminate (id1)

Teosinte branched1
(tb1)

Dwarf8 (d8)
Dwarf3 (d3)

Teosinte branched1

(tb1)

South American)

102 inbred lines
(worldwide)

24 ssp. mays,
22 ssp.

parviglumis,

13 ssp. mexicana,
1 ssp. diplo-
perennis

Doebley 1999)

(Remington
et al. 2001)

(Clark et al.
2004)
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Table 3. Continued

Gene Plant material Trait Association Reference

Teosinte branched1

(tb1) 11 archeological ? - (Jaenicke-
cobs (Mexico) Despres et al.
2003)
Prolamine box
binding factor (pbf) ? -
Sugaryl (sul) ? -

the original assumption of sequence variation among genes in identical
order explaining for phenotypic variation between genotypes, a surprisingly
high level of genomic rearrangements has been found when comparing large
stretches of allelic DNA in maize. Therefore, more often then expected,
allelic regions will not just be sequence variants but a “functional” allele will
pair with a deletion for the respective locus. Moreover, different composition
of neighbouring regions might affect expression of the gene of interest by
regulatory elements acting over long-distance or through altered chromatin
structure (Brunner et al. 2005). For these reasons association studies might
have to take the composition of neighboring regions into consideration.

6 Conclusions and outlook

In plant breeding, FMs would be superior as compared with anonymous
markers for selection of, e.g. parent materials to build segregating popula-
tions, as well as subsequent development of inbred lines. FMs would also be
useful for variety registration based on presence/absence of specific alleles at
morphological trait loci currently used to discriminate varieties. Rapid
progress in maize genomics will shift the current bottleneck for FM devel-
opment from the availability of candidate genes and the availability of allele
sequence information to the assignment of “agronomic function” with
sequence polymorphisms, which is currently not systematically considered
in functional genomics projects. First reports on association studies in maize
are promising. The number of sequence polymorphisms useful for FM
development can be expected to increase substantially within the next 5-10
years with the availability of further association studies and the completion
of TILLING experiments.
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Extranuclear inheritance:
Gene transfer out of plastids

Ralph Bock

1 Introduction: the evolutionary significance of gene transfer

The emergence of eukaryotes from prokaryotes is considered one of the
major evolutionary transitions, and has triggered a dramatic increase in
complexity of life on earth (Szathmary and Smith 1995). Szathméry and
Smith define three features shared by all major transitions in evolution:

(i) Loss of independent replication by formerly independent entities
becoming parts of larger units.
(ii) Appearance of division of labor.
(iii) Significant changes in the way in which (genetic) information is stored
and transmitted (Szathmary and Smith 1995).

Clearly, the evolution of the eukaryotic cell fulfills all three criteria: it
involved the association of smaller independently replicating entities to form
a larger whole by combining altogether three organisms and their genomes in
one and the same cell (Fig. 1). In an endosymbiosis-like process, the pre-
eukaryotic host successively engulfed two symbionts: an o-proteobacterium
that gave rise to mitochondria and a cyanobacterium that gave rise to plas-
tids. The endosymbiotic uptake of the two eubacterial cells was followed by
the gradual integration of the endosymbionts into the metabolism of the host
cell by establishing a division of labor and inventing sophisticated regulatory
networks to co-ordinate the host’s gene expression with that of the endosym-
bionts. This process was accompanied by a drastic restructuring of all three
genomes (Fig. 1) and involved (i) the loss of dispensable genetic information
(such as genes for bacterial cell wall biosynthesis), (ii) the elimination of
redundant genetic information (for example, genes for amino acid biosyn-
theses present in all three genomes), (iii) the acquisition of new gene func-
tions to co-ordinate gene expression and metabolism in the three genetic
compartments (for example, by establishing new signal transduction chains),
and (iv) the massive translocation of genetic information between the three
genomes (Fig. 1; Martin and Herrmann 1998). The main direction of this
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gene transfer has been from the endosymbionts’ genomes to the host genome
(Fig. 1), leading to a dramatic reduction in genome size and gene content of
both plastid and mitochondrial genomes. As a consequence, contemporary
organellar genomes are greatly reduced and contain only a small proportion
of the genes that their free-living ancestors had possessed. Whereas eubacte-
rial genomes usually carry a few thousand genes (the cyanobacterium
Synechocystis, for example, has approximately 3200 genes; Kaneko et al. 1996;
Kaneko and Tabata 1997; Kotani and Tabata 1998), higher plant plastid
genomes (plastomes) harbor only about 130 genes (Sugiura 1989; Wakasugi
et al. 2001) and plant mitochondrial genomes have an even lower coding
capacity of approximately 60 genes (Unseld et al. 1997; Knoop, 2004).

The massive translocation of genetic information between the nuclear,
plastid and mitochondrial genomes represents a hallmark of the evolu-
tionary shaping of the plant cell following the endosymbiotic uptake of the
eubacterial progenitors of the two types of cell organelles. This review dis-
cusses the transfer of genetic information from the plastid genome to the
two other genomes of the plant cell in the nucleus and the mitochondrion.

1. The currently available information regarding functional and non-functional
gene transfers from the plastid genome to the nuclear and mitochondrial
genomes is summarized.

2. Novel experimental approaches aiming at the reconstruction in the labo-
ratory of gene transfer processes from the plastid to the nuclear genome
are reviewed.

3. Possible mechanisms of intercompartmental DNA translocation are
highlighted and the implications of frequent gene transfer out of plastids
for the biosafety of plants with transgenic plastids are discussed.

2 Gene transfer from the plastid to the nuclear genome

Two types of plastid sequences are found in the nuclear genome of higher
plants: (i) functional nuclear genes of plastid origin and (ii) presumably
non-functional plastid sequences referred to as “promiscuous DNA”.
Functional gene transfer events involve the translocation of plastid-
encoded genes into the nuclear genome followed by acquisition of func-
tionality of the formerly plastid genes in the nuclear environment (Fig. 2).
Once the transferred gene has become functional in the nucleus, the plas-
tid-encoded original is no longer needed and can degenerate through
accumulation of deleterious mutations. Presence in the plastid genome of
pseudogene-like remnants of transferred genes is generally taken as an
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indication of the transfer event having taken place relatively recently
(Shimada and Sugiura, 1991; Millen et al., 2001). However, these are excep-
tional cases and the vast majority of genes from the cyanobacterial
endosymbiont that was transferred to the nuclear genome have disappeared
completely from present-day plastid genomes (Fig. 2). By contrast, non-
functional transfer events involve plastid sequences that (i) are still present
and fully functional in the plastid genome and (ii) are highly unlikely to
function in the nucleus because they are not expressed there. To what extent
such ‘promiscuous’ DNA sequences are intermediates of functional gene
transfers is currently unknown.

2.1 Functional gene transfer from the plastid to the nuclear genome

Sequencing of the entire genome of the model plant Arabidopsis thaliana (The
Arabidopsis Genome Initiative 2000) has made it possible to determine the
extent of functional gene transfer from the plastid to the nuclear genome.
Bioinformatics analysis of 25,000 protein-coding genes revealed the presence of
approximately 4500 cyanobacterial genes in the nucleus of Arabidopsis (Martin
et al. 2002) indicating that as much as 18% of all plant genes were acquired
from the cyanobacterial ancestor of plastids. It is important to note that not all
gene products of transferred plastid genes are re-targeted to the plastid com-
partment, but instead can function in the cytosol or even in the mitochondrion.
In fact, the majority of Arabidopsis genes of cyanobacterial origin are targeted
to subcellular compartments other than the plastid (Martin et al. 2002).

In some cases, it has been possible to reconstruct the molecular events
involved in functional gene transfer processes from the plastome to the
nuclear genome. The infA gene encoding the plastid translation initiation
factor 1 provides a particularly interesting example of evolutionary recent
gene transfer events (Millen et al. 2001). It had long been known that infA,
while being a functional gene in the plastid genome of the liverwort
Marchantia polymorpha and rice, exists as a pseudogene in the tobacco plas-
tome (Shinozaki et al. 1986; Ohyama et al., 1986; Hiratsuka et al. 1989;
Shimada and Sugiura 1991). Presence of an intact infA in some higher plant
plastomes and retention of a highly homologous pseudogene in tobacco
strongly suggest that the infA pseudogene in tobacco represents an evolu-
tionary intermediate on the way to complete elimination of the gene from
the plastid genome (Fig. 2).

A systematic phylogenetic study of infA structure in angiosperm plastid genomes revealed
that the gene has repeatedly become non-functional in approximately 24 separate lineages of
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angiosperm evolution. A search for nuclear infA copies in four of these lineages resulted
in identification of expressed nuclear infA genes whose gene products are targeted to plas-
tids. Molecular analysis of the nuclear loci (exon-intron structure, transit peptide sequence)
provided strong evidence for four independent gene transfer events (Millen et al. 2001).

Multiple recent gene transfer events as demonstrated for the infA gene
indicate that the transfer of plastid genes to the nucleus is a still ongoing
process, and that the gene content of present-day plastomes represents by no
means an evolutionary static state of affairs.

2.2 Non-functional gene transfer from the plastid to the nuclear
genome

Pieces of plastid and mitochondrial DNA are often found in nuclear genomes
and, assuming accidental escape from the organelle, these sequences are com-
monly referred to as promiscuous DNA. Promiscuous DNA sequences in the
nucleus lack any apparent function, but, on an evolutionary timescale, may
provide the raw material for converting organellar genes into functional
nuclear genes (Fig. 2). Furthermore, promiscuous DNA of mitochondrial ori-
gin has recently been implicated in DNA repair in yeast by patching broken
chromosomes (Ricchetti et al., 1999; Yu and Gabriel, 1999).

In most higher plants, the nuclear genome harbors a significant amount of
promiscuous DNA of plastid origin (Timmis and Scott 1983; Scott and
Timmis 1984; Ayliffe and Timmis 1992; Ayliffe et al. 1998; reviewed in
Thorsness and Weber 1996; Timmis et al. 2004). Data obtained for the rbcL
region of the tobacco plastid genome suggest that there is a minimum of 15
nuclear plastid DNA insertions that contain at least a proportion of the rbcL
gene (Ayliffe and Timmis 1992). Many of the integrants are rather large, span-
ning several kb of plastid DNA, and it has been suggested that, in an extreme
case, the size of the integrated tract may even exceed the size of the 156 kb plas-
tid genome monomer (Ayliffe and Timmis 1992), indicating that more than
one plastome copy contributed to the insertion. Interestingly, nuclear genome
size and amount of promiscuous plastid DNA in the nucleus appear to be neg-
atively correlated, as comparably little promiscuous plastid DNA is found in
the small genome of the genetic model plant Arabidopsis (Ayliffe et al., 1998).

3 Gene transfer from the plastid to the mitochondrial genome

The mitochondrial genome (chondriome) of land plants has a circular
map (Oda et al. 1992; Brennicke et al. 1996; Unseld et al. 1997), although



Extranuclear Inheritance: Gene Transfer out of Plastids 81

linear genome molecules may be predominantly present in vivo (Bendich
and Smith 1990; Oldenburg and Bendich 1998, 2001). Plant mitochondr-
ial genomes are generally far bigger than animal chondriomes and display
considerable size variation, ranging from 186.8 kb in the liverwort
Marchantia polymorpha to more than 2000 kb in some Cucurbitaceae
species (reviewed, for example, in Knoop 2004). However, the gene numbers
in land plant chondriomes display only little variation and there is no cor-
relation between genome size and coding capacity. Almost any size
increase can be attributed to the accumulation of additional non-coding
DNA, which is predominantly found in large intergenic spacers, but to
some extent also in introns (Kao et al. 1984; Albertazzi et al. 1998). Much
of this seemingly non-functional DNA lacks any homology to known
sequences, making it currently impossible to trace back its evolutionary
origin. However, in some instances, striking homology with chloroplast
genes revealed that DNA transfer from the plastid to the mitochondrion
has contributed significantly to the genome size of present-day plant mito-
chondria. In many cases, this mitochondrial DNA of plastid origin seems
to be non-functional and hence truly “promiscuous”. There are, however,
several examples where transferred plastid genes have been utilized to
make functional mitochondrial genes.

3.1 Non-functional gene transfer from the plastid to the mitochondrial
genome

The first example of plastid genes residing in a plant mitochondrial genome
was described in 1982, when Stern and Lonsdale found that the plastid and
mitochondrial genomes of maize (Zea mays) share a 12 kb DNA fragment
(Stern and Lonsdale, 1982).

This fragment appeared to stem from the inverted repeat region of the chloroplast genome
and contained the 16S rRNA gene, most of the spacer between the 16S and the downstream
23S rRNA gene [this spacer harbors two intron-containing tRNA genes, tRNA-Ile(GAU) and
tRNA-Ala(UGC) and a large region upstream of the 16S rRNA gene (Stern and Lonsdale
1982)]. Analysis of maize lines carrying different cytoplasms revealed that, although the
transferred plastid fragment was present in all of them, there was significant length varia-
tion that could be accounted for by internal deletions (Stern and Lonsdale 1982). This may
indicate an evolutionary tendency to lose transferred promiscuous DNA due to the lack of
functional constraints.

It soon became clear that the presence of promiscuous DNA of chloro-
plast origin is not a curiosity but rather a typical feature of higher plant
mitochondrial genomes (Schuster and Brennicke 1987, 1988; Nugent and
Palmer 1988; Jubier et al. 1990; Nakazono and Hirai 1993). An analysis of the
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completely sequenced rice (Oryza sativa) chondriome revealed that as much
as 6.3% of this mitochondrial genome is of plastid origin (Notsu et al. 2002).
There is significant variation between species regarding which regions of
the plastome are found incorporated into the chondriome. The picture is
further complicated by the recent finding that during evolution, multiple
independent transfer events may have occurred. For example, the plastid-
encoded gene for the large subunit of Rubisco, rbcL, has been repeatedly
transferred to the mitochondrial genome and a phylogenetic study has iden-
tified at least five independent transfer events in angiosperms (Cummings
et al. 2003).

It seems unlikely that these transferred (photosynthesis-related) gene
sequences are functional inside the mitochondrion, and most of the
promiscuous plastid DNA sequences in mitochondrial genomes can be
regarded as pseudogenes. Even in those cases where complete genes were
transferred, the coding sequences often have accumulated mutations and
the transcripts, although sometimes detectable, are not properly
processed (Zeltz et al. 1996). Also, to date no evidence for active transla-
tion of transcripts from promiscuous plastid DNA fragments has been
provided.

A 6.8 kb plastid DNA insertion in the rice mitochondrial genome comprises almost the com-
plete rpoB operon (Nakazono and Hirai 1993), which consists of three genes for subunits of
the E. coli-like plastid RNA polymerase: rpoB, rpoCI and rpoC2. However, several lines of
evidence make it highly unlikely that there is a functional E. coli-like RNA polymerase in rice
mitochondria:

(i) The gene for the essential a-subunit of the RNA polymerase (rpoA) was not transferred

from the plastome to the chondriome;

(ii) Most of the rpoC2 coding region is missing from the promiscuous fragment in the
chondriome (Nakazono and Hirai 1993; Zeltz et al. 1996);

(iii) The rpoB coding region has accumulated several point mutations (Zeltz et al. 1996);
and

(iv) The three RNA editing sites undergoing post-transcriptional C-to-U conversion in the
plastid rpoB transcript are not edited in mitochondria (Zeltz et al. 1996; Bock 2000,
2001a) leading to additional amino acid sequence deviations between the plastid and
mitochondrial rpoB versions.

Remarkably, no promiscuous plastid sequences are found in the mitochon-
drial genomes of the liverwort Marchantia polymorpha (Oda et al. 1992a,b)
and the green algae Chlamydomonas reinhardtii and Chlamydomonas eugame-
tos (Denovan-Wright et al. 1998). This could indicate that either the compe-
tence to take up plastid DNA or the capability to tolerate promiscuous plastid
sequences in the chondriome has appeared relatively late in plant evolution.
The recent spectacular finding that higher plant mitochondria are capable of
actively importing DNA via the permeability transition pore complex
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(Koulintchenko et al. 2003) may provide us with a first clue about the mecha-
nism of DNA transfer from the plastome to the chondriome. Whether or not
this DNA import capacity is restricted to higher plant mitochondria and thus
could explain the absence of promiscuous plastid DNA from lower plant
chondriomes remains to be investigated.

3.2 Functional gene transfer from the plastid to the
mitochondrial genome

Most plastid genes are likely to be useless when transferred to the mito-
chondrial genome. This is because the majority of protein-coding genes on
the plastid genome are involved in photosynthesis. However, what plastids
and mitochondria have in common is a prokaryotic-type genetic apparatus
and, in theory, at least some components of the gene expression machinery
should be exchangeable between the two organelles. Indeed, this seems to be
the case for tRNA genes. The mitochondrial genomes of angiosperms con-
tain four tRNA genes, tRNA-Met(CAU), tRNA-His(GUG), tRNA-Asn(GUU)
and tRNA-Trp(CCA), that clearly come from the plastid genome (Binder
et al. 1990; Ambrosini et al. 1992; Weber-Lotfi et al. 1993; Veronico et al.
1996; Unseld et al. 1997) and appear to have replaced the homologous mito-
chondrial tRNA genes. Besides tRNAs, no other example of transferred
chloroplast genes that have become functional in the mitochondrion is
known, possibly suggesting that a transferred small RNA gene, like a tRNA,
can become functional more easily than a protein-coding gene or a large
RNA gene (such as an rRNA gene) that has co-evolved with dozens of inter-
acting proteins.

Interestingly, plastid-derived tRNA genes are not found in the completely
sequenced mitochondrial genome of the bryophyte Marchantia polymorpha
(Oda et al. 1992a,b), indicating that plant mitochondria had a full set of
tRNA genes derived from the o-proteobacterial endosymbiont before these
tRNA gene transfer events have occurred. Thus, it seems reasonable to
assume that the transfer of a functional tRNA from the plastid genome
allowed for the subsequent loss of the corresponding mitochondrial tRNA
gene. Whether or not such replacements of mitochondrial by chloroplast
tRNA genes occurred by chance is currently unknown. It seems difficult to
envisage that there could have been any selective advantage of recruiting
plastid tRNAs for mitochondrial translation. In theory, evolutionary opti-
mization of the resident mitochondrial tRNAs and their expression by
playing with mutations should be a simpler and more efficient strategy
for shaping the translational apparatus of plant mitochondria. However,
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making functional mitochondrial tRNAs out of transferred plastid DNA
fragments may be easier to accomplish than we currently anticipate:
Chloroplasts and mitochondria both have a bacteriophage-like RNA poly-
merase that is nuclear-encoded. If the mitochondrial enzyme would recog-
nize the promoters of plastid tRNAs, then transferred plastid tRNA genes
would immediately be functional in the mitochondrion. Some higher plants
like Arabidopsis thaliana and Nicotiana sylvestris (Hedtke et al. 2000;
Kobayashi et al. 2001, 2002) even have three nuclear genes for organellar
RNA polymerases with one of them being targeted to mitochondria, a sec-
ond to plastids and the third one being even dually targeted to both plastids
and mitochondria (Hedtke et al. 2000; Kobayashi et al. 2001). Whether or
not this dually targeted RNA polymerase is capable of transcribing plastid
and mitochondrial tRNA genes is currently unknown, but it seems conceiv-
able that similar (if not identical) RNA polymerase activities and similar
promoter structures in both organelles have facilitated the replacement of
mitochondrial by plastid tRNA genes during evolution.

An interesting case of reutilization of a promiscuous plastid DNA
sequence in the mitochondrial genome has been described in rice. Here, a 4
kb plastid fragment inserts 355 bp upstream of the mitochondrial nad9
gene. The nad9 gene is transcribed from multiple promoters. Surprisingly, all
of the altogether seven mapped transcription initiation sites are located
within the plastid-derived sequence (Nakazono et al. 1997). Some of the
putative promoter sequences harbor the canonical CRTA motif described
for mitochondrial promoters in higher plants. It is noteworthy in this respect
that a highly similar promoter consensus sequence is recognized by the bac-
teriophage-like RNA polymerase in plastids (Liere and Maliga, 1999).
However, whether or not any of the promoters utilized in mitochondria is
also active in rice plastids, is not yet known.

4 Gene transfer from the mitochondrial to the nuclear genome

Following their endosymbiotic uptake, a-proteobacteria underwent a simi-
larly drastic genome reduction as the cyanobacterial endosymbiont, indicat-
ing that massive translocation of genetic information has taken place also
during mitochondrial evolution (Fig. 1). There are many reasons to believe
that the mechanisms of functional gene transfer from the mitochondrion to
the nucleus are similar to if not largely identical with gene transfer events
from the plastid to the nuclear genome. Although the scope of this review are
gene transfer processes involving genetic information from plastids, a few
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interesting examples for transfer of mitochondrial sequences exemplarily
shall be mentioned.

A gigantic mitochondrial insertion of 620 kb was identified in chromosome
2 of Arabidopsis thaliana (Stupar et al. 2001). Remarkably, the size of this inser-
tion is far bigger than the entire mitochondrial genome of Arabidopsis (367 kb;
Unseld et al. 1997). Fine mapping revealed that, although the insertion is not
co-linear with the chondriome due to structural rearrangements, it probably
encompasses the entire sequence of the Arabidopsis mitochondrial genome.
Duplications of two regions of the chondriome account for the size increase of
the integrated mitochondrial genome sequence (Stupar et al. 2001).

A 3.9 kb mitochondrial DNA insertion into the Arabidopsis polyubiquitin
gene appears to be one of the most recent integration events identified to date
(Sun and Callis 1993). The insertion is present in the polyubiquitin locus of
the ecotype Columbia but absent from all other ecotypes, indicating that it
occurred after diversification of the species Arabidopsis into distinct ecotypes.
The lack of sequence homology between the nuclear integration site and the
borders of the mitochondrial sequence suggests that integration occurred via
non-homologous recombination (Sun and Callis 1993).

Another interesting transfer event of mitochondrial DNA to the nucleus
involves part of a group II intron within the mitochondrial cox2 gene of the
monocotyledonous species Ruscus aculeatus (Kudla et al. 2002). A 154 bp
piece of this mitochondrial intron was found to be part of an intron in a
nuclear gene (adhB), suggesting that cox2 intron sequences were transferred
to the nuclear genome and reused there to build a spliceosomal intron
(Kudla et al. 2002).

While the above examples are readily explained by DNA-mediated transfer,
there is also evidence for an RNA/cDNA-mediated transfer mechanism
(Nugent and Palmer 1991; Covello and Gray 1992; reviewed in Henze and
Martin 2001). Absence of introns and lack of mitochondrial RNA editing sites
(in that Ts are present where Cs undergo C-to-U editing in mitochondria) are
generally taken as indications for reverse transcription of fully processed mito-
chondrial mRNAs followed by integration of the ¢cDNA into the nuclear
genome. Interestingly, mitochondrial pseudogenes are sometimes found as
putative intermediates in the evolutionary replacement of mitochondrial
genes by a transferred nuclear copy (Covello and Gray 1992; Kadowaki et al.
1996; Fig. 2). In several cases, it has also been possible to reconstruct how
transferred mitochondrial genes became functional in the nucleus by captur-
ing promoters and transit peptide sequences for re-targeting of the cytosoli-
cally made protein products into the mitochondrial compartment (Figueroa
et al. 1999; Kubo et al. 1999; Kadowaki et al. 1996)
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5 Gene transfer from the nuclear to organellar genomes

While plastid genomes seem to be largely resistant to promiscuous DNA,
a significant proportion of the mitochondrial genomes in higher plants is
made up of foreign sequences. These sequences not only come from the
plastome, as discussed above, but can also be derived from the plant’s
nuclear genome (Marienfeld et al. 1999). The nuclear contribution to the
rice chondriome is even larger than that of the plastome: as much as
13.4% of the sequence of the mitochondrial genome has been identified to
be of nuclear origin (Notsu et al. 2002). Analysis of the Arabidopsis chon-
driome sequence revealed that most of this promiscuous nuclear DNA is
derived from retrotransposons (Brennicke et al. 1996; Knoop et al. 1996;
Unseld et al. 1997). Nuclear retrotransposons are subdivided into three
classes termed the Tyl/copia, the Ty3/gypsy and the non-LTR/LINE fami-
lies. Interestingly, fragments from all three classes are represented in the
mitochondrial genome of Arabidopsis. The predominant insertion of
retrotransposons might be mechanistically linked to the DNA transfer
process in that the relatively small and freely mobile transposition inter-
mediates may be taken up more readily by the mitochondrion than chro-
mosomal DNA. Large deletions, accumulated frame-shift mutations and
in-frame stop codons clearly render all retrotransposon sequences identi-
fied to date in plant mitochondrial genomes non-functional (Knoop et al.
1996).

Like promiscuous DNA of chloroplast origin, nuclear DNA is not present
in the mitochondrial genome of the liverwort Marchantia polymorpha (Oda
et al. 1992a,b) and the chondriomes of the two sequenced Chlamydomonas
species (Denovan-Wright et al. 1998), lending further support to the idea
that lower plants may lack the capacity to take up (or maintain) promiscu-
ous DNA.

Yet another source of foreign DNA in the mitochondrial genome
appears to be horizontal gene transfer from other organisms. Horizontal
gene transfer has been suggested to occur both between mitochondrial
genomes of higher plant species (Bergthorsson et al. 2003; Won and
Renner 2003; Davis and Wurdack 2004) and between non-plant organ-
isms and higher plant mitochondria (Vaughn et al. 1995; Marienfeld
et al. 1997). Virus-mediated gene transfer (Marienfeld et al. 1997) and
host-parasite interactions (Davis and Wurdack 2004; Nitz et al. 2004)
have been postulated to promote such horizontal transfers of genetic
information.
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6 Experimental approaches to investigate gene transfer
to the nucleus

Until recently, gene transfer from organellar genomes to the nucleus was
mainly indirectly inferred from hybridization experiments, DNA sequencing
projects or molecular phylogenetic studies. Gene transfer was believed to
occur only on an evolutionary timescale and thought to be far too infre-
quent to be caught in the act by the experimentalist.

Things changed when transgenic tools for cell organelles became avail-
able and stringent selection schemes for gene transfer events were worked
out which allowed the process to be monitored in real time. An organelle
transformation technology first became available for yeast mitochondria
(Johnston et al. 1988; Butow and Fox 1990) and subsequently, was also
developed for chloroplasts (Boynton et al. 1988; Svab et al. 1990; Svab and
Maliga 1993). How can the technology be employed to pick up gene trans-
fer events? The general experimental setup is illustrated in Fig. 3. Along
with the selectable marker gene usually required to generate transgenic
organellar genomes, a second selection marker is integrated that is driven
by nucleus-specific expression signals (Fig. 3). As they are of eukaryotic
type, these expression signals (promoter and transcription terminator) are
not efficiently recognized by the organellar gene expression machinery,
which is prokaryotically organized. Consequently, the resistance trait
encoded by the second selection marker is not expressed. Marker gene
translocation into the nuclear genome, however, would activate the marker
gene resulting in expression of the resistance and facilitating growth in the
presence of the selecting agent (Fig. 3). Using this experimental strategy, it
has indeed been possible to detect gene transfer events from organellar
genomes to the nucleus in yeast mitochondria (Thorsness and Fox 1990)
and, more recently, also in tobacco chloroplasts (Huang et al. 2003a;
Stegemann et al. 2003; Fig. 3).

In two parallel studies, a kanamycin resistance gene embedded in a
nucleus-specific expression cassette was used to determine the gene transfer
frequency from the plastid to the nuclear genome (Fig. 3). Cells from tobacco
plants with transgenic chloroplasts (“transplastomic plants”) were subjected
to selection for kanamycin resistance. In one of the studies, this was done by
placing leaf explants on a plant regeneration medium and subjecting them
to stringent selection for kanamycin resistance (Stegemann et al. 2003),
whereas in the other study, wild-type plants were fertilized with pollen
from a transplastomic plant (Huang et al. 2003a) and the resulting seeds
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Fig. 3. Experimental strategy to detect gene transfer events from the plastid to the nuclear
genome. The upper panel shows the physical map of a region of the tobacco chloroplast
genome (modified after Stegemann et al. 2003). Genes above the line are transcribed from the
left to the right, genes below the line are transcribed in the opposite direction. The lower
panel shows the restriction fragment cloned from this region and used for construction of a
plastid transformation vector. The intergenic spacer between the tRNA-glycine and tRNA-N-
formyl-methionine genes was used to insert two selectable marker genes: a chimeric spectin-
omycin resistance gene (aadA) carrying plastid-specific expression signals (a promoter
derived from the ribosomal RNA operon and a 3’ untranslated region taken from the plastid
psbA gene) and an nptll gene driven by nuclear expression signals (35S promoter and termi-
nator from the cauliflower mosaic virus CaMV). While the aadA gene is required to success-
fully select chloroplast transformants, the kanamycin resistance gene is not efficiently
expressed in transgenic chloroplasts. Gene transfer of the nptIl out of the plastid into the
nuclear genome activates nptIl gene expression resulting in high level kanamycin resistance
(Stegemann et al. 2003). Therefore, gene transfer events can be identified by large-scale selec-
tion experiments for kanamycin-resistant cell lines (Stegemann et al. 2003) or seedlings
(Huang et al. 2003a).

were germinated in the presence of kanamycin. Both studies provided strong
experimental evidence for an ongoing gene transfer from the plastid to the
nuclear genome and measured a surprisingly high transfer frequency. The
frequency in vegetative cells was estimated to be approximately one transfer
event per 5 million cells (Stegemann et al. 2003), whereas in pollen grains,
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the frequency was even higher (one transfer event in 16,000 pollen grains;
Huang et al. 2003a; for a plausible mechanistic explanation of the different
frequencies see below). Roughly, these frequencies are in a similar range to
the rate of mitochondrial gene transfer to the nuclear genome in yeast
(determined to be approximately 2 X 107 per cell per generation; Thorsness
and Fox, 1990). It should be noted that these estimates, despite being shock-
ingly high, are conservative ones: for technical reasons and limitations of
the selection schemes, part of the gene transfer events that have occurred
go undetected in these experiments suggesting that the real transfer
frequency might be even higher than what has been calculated from the
experimental data.

A molecular analysis of the nuclear loci created by newly transferred plas-
tid DNA sequences revealed several interesting features (Huang et al., 2004):

(i) Long tracts of plastid DNA (between 6 and >22 kb) are integrated into
the nuclear genome.
(ii) The nuclear loci harboring transferred plastid sequences can have a
complex structure and can be composed of multiple ptDNA fragments.
(iii) Microhomologies of 2—5 bp are found at the integration sites.
(iv) ptDNA integration is likely to proceed via non-homologous recombi-
nation (Huang et al. 2004).

Perhaps the most dramatic conclusions from these gene transfer experi-
ments concern the genetic heterogeneity of cell populations in an individual,
a given tissue or organ: Clearly, a single tobacco leaf has more than 5 million
cells. Finding a plastid DNA transfer frequency of at least one event per 5
million leaf cells suggests that the cells in one and the same leaf are not
genetically uniform, but instead may differ with respect to the pattern of
organellar DNA insertions in their nuclear genomes. Consequently, similar
to transposon mobilization, the frequent integration of organellar DNA into
the nuclear genome may contribute substantially to intraspecific and intra-
organismic genetic variation. Moreover, if one assumes that with a certain
probability, transferred plastid DNA sequences will become integrated into
coding regions, promiscuous organellar DNA must also be considered as a
possible cause of somatic mutations.

The successful development of systems suitable to study gene transfer in
the laboratory and in real time now facilitates in-depth investigation of the
evolutionary mechanisms underlying the transfer of genetic information
from organellar genomes to the nucleus. This in turn will allow experi-
mental reconstruction of an important aspect of genome evolution in
eukaryotes.
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7 Mechanisms of gene transfer from the plastid to the nucleus

Although the relative contributions of DNA-mediated versus cDNA-medi-
ated gene transfer processes to the evolutionary translocation of organellar
genes to the nucleus are debatable (Timmis et al. 2004), it is now well estab-
lished that organellar nucleic acids can escape to the nucleus and integrate
there into chromosomal DNA at a significant frequency. Irrespective of the
transferred genetic information being DNA or cDNA, any attempt to explain
the mechanisms of gene transfer from organellar genomes to the nucleus
must address one crucial question: How do nucleic acids escape from the
plastid and how can they get into the nucleus? It should be borne in mind
that, at least in dividing cells, the nuclear envelope does not pose a serious
obstacle to gene transfer into the nuclear genome because it dissolves during
mitosis and meiosis and thus, released plastid DNA (or cDNA) floating in
the cytoplasm could readily get in physical contact with chromosomes. In
contrast, the escape of DNA from the plastid seems more difficult to envis-
age, since the double membrane of the plastid is believed to be impermeable
to nucleic acids. Theoretically, at least three possible mechanisms of DNA
release from the plastid must be considered: (i) active export, (ii) occasional
passive release, for example by DNA molecules slipping out of the plastid
during organelle division, or (iii) release during organelle degradation. At
present, there is no definitive support for either mechanism. However, sev-
eral lines of circumstantial evidence may lend support to the idea that it is
chloroplast destruction that releases the DNA from the organelle, which
then can integrate into the nuclear genome. First, the frequency of gene
transfer to the nuclear genome was found to be significantly higher in pollen
(Huang et al. 2003a) than in vegetative leaf cells (Stegemann et al. 2003).
Although it cannot entirely be ruled out that the different frequencies
measured in the two studies can be attributed to differences in the experi-
mental setups (Huang et al. 2003a; Stegemann et al. 2003), a higher fre-
quency in pollen would be compatible with the idea that plastid
disintegration promotes gene transfer to the nucleus. This is because plas-
tids are excluded from pollen transmission and uniparentally maternally
inherited in most angiosperm species (Birky Jr 1995; Hagemann 2002).
At least in a number of plant species, the elimination of plastids from
sperm cells during pollen grain maturation has been demonstrated to
involve plastid degradation (Hagemann 2002), a process that can be
expected to result in the massive release of plastid DNA into the cytosol
which in turn may lead to a drastically increased rate of ptDNA integration
into the nuclear genome.
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Another line of evidence has come from a study aiming at detecting gene
transfer events in Chlamydomonas reinhardtii, a unicellular green alga that
possesses only one single big chloroplast. Using a similar experimental
approach as taken to detect plastid-to-nuclear gene transfer in tobacco cells,
a bleomycin resistance gene driven by nucleus-specific expression signals was
integrated into the chloroplast genome of Chlamydomonas followed by selec-
tion for antibiotic resistance (Lister et al. 2003). Although large numbers of
algal cells (>10°) were subjected to this screening for bleomycin resistance, no
evidence of gene translocation to the nucleus could be detected suggesting
that plastid-to-nuclear gene transfer in Chlamydomonas, if it occurs at all, is
far more infrequent than in higher plants. Again, this provides indirect evi-
dence for gene transfer being promoted by organelle degradation, because the
Chlamydomonas cell most probably cannot afford losing its one and only
chloroplast. The chloroplast provides an essential cellular compartment in
that it harbors a large number of biochemical pathways (including fatty acid,
heme and amino acid biosyntheses). Moreover, the expression of chloroplast
genome-encoded genes appears to be essential in both tobacco (Drescher
etal. 2000; Ahlert et al. 2003) and Chlamydomonas cells (Boudreau et al. 1997;
Rochaix 1997). Chloroplast degradation is, therefore, most probably lethal in
Chlamydomonas, which could provide a simple explanation for the failure to
detect any gene transfer event in the laboratory. Interestingly, this explanation
is also supported by a preliminary bioinformatics analysis of the draft version
of the fully sequenced Chlamydomonas nuclear genome which detected no
promiscuous DNA of chloroplast origin, confirming that gene translocation
from the plastid to the nuclear genome is much rarer in Chlamydomonas rein-
hardtii than in higher plants (Lister et al. 2003) and again suggesting that the
transfer of nucleic acids out of organelles into the nucleus may be dependent
upon organelle destruction.

Many other open questions remain to be addressed. Is the integration of
organellar DNA into the plant’s nuclear genome linked to the repair of DNA
double-strand breaks as has been proposed for the integrations of mitochondr-
ial DNA into the yeast genome (Ricchetti et al. 1999; Yu and Gabriel 1999)? If
so, will DNA damage further enhance the frequency of gene transfer? How can
a transferred organellar gene acquire functionality in its new environment that
requires eukaryotic expression signals? How does the nucleus cope with all this
immigrant genetic information? Has the nucleus evolved elimination mecha-
nisms that prevent it from getting swamped with organellar DNA? How does
gene transfer from plastids to mitochondria occur? Certainly, the new experi-
mental systems based on transplastomic technologies provide a rich platform
for future research on the mechanisms of intercompartmental gene transfer.
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8 Implications for plastid biotechnology

Recent technological progress has made it possible to integrate foreign genes
into the plastid genome (Svab and Maliga 1993; Sidorov et al. 1999; Ruf et al.
2001; reviewed, e.g. in Bock 2001b; Bock and Khan 2004; Maliga 2004). One
of the great attractions of placing transgenes into the plastid genome rather
than in the nucleus is that this so-called transplastomic technology provides
an effective strategy for transgene containment (Daniell 2002). This is
because plastids are uniparentally maternally inherited in many higher
plants and most agriculturally important crops, so that plastid transgenes
are usually not transmitted via pollen. In this way, the technology may help
to allay concerns over uncontrolled spreading of transgenes from fields with
transgenic plants to neighboring fields with non-transgenic plants. The
experimental findings that plastid genes and transgenes can escape to the
nucleus at high frequency (Huang et al. 2003a; Stegemann et al. 2003) have
evoked controversial discussions about the significance of this finding and
the level of transgene containment achievable by chloroplast transforma-
tion. Initially, raised technical criticisms concerning a possible co-transfor-
mation of the plastid and nuclear genomes (Daniell and Parkinson 2003)
proved unsubstantiated (Huang et al. 2003b; Stegemann et al. 2003) and
were unequivocally disproven by experimental data (Stegemann et al. 2003).
However, the most critical question remains: does transgene escape to the
nucleus pose a serious threat to the biological safety of transplastomic plants
and if so, is there anything we can do about it?

The frequency of gene transfer measured experimentally is certainly in
the range that is highly significant for plant growth at the field level.
However, the experimental setup used to demonstrate gene transfer to the
nucleus is radically different from a normal plastid transformation experi-
ment in that a plastid transgene (nptlI) was equipped with nuclear expres-
sion signals (Fig. 3). Normally, transgenes intended to be expressed from the
plastome are tethered to plastid-specific, prokaryotic-type expression sig-
nals: a plastid promoter, a Shine—Dalgarno sequence serving as binding site
for prokaryotic 70S ribosomes and a 3" untranslated region folding into a
stemloop-type RNA secondary structure and conferring transcript stability.
Thus a typical plastid transgene is not expected to be expressed when trans-
ferred to the nucleus. As in most gene transfer lines selected from the trans-
genic experiments (Huang et al. 2003a; Stegemann et al. 2003; Fig. 3), the
plastid-specific antibiotic resistance gene (aadA) was co-transferred to the
nucleus together with the nptII (Fig. 3), this scenario could be tested directly
by assaying the gene transfer lines for their resistance to spectinomycin and
streptomycin (after having crossed out the transgenic chloroplasts;
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Stegemann et al. 2003). All lines turned out to be sensitive to both drugs,
indicating that there is no significant gene expression from the plastid
expression signals in the nucleus (Huang et al. 2003a; Stegemann et al. 2003).
Of course, it is conceivable that the plastid transgenes could be expressed if
it lands in a favorable nuclear location, for example downstream of a strong
nuclear promoter. However, this probability is likely to be orders of magni-
tude lower than the measured gene transfer frequency. Nonetheless, the
possibility of transgene escape to the nucleus should be taken into consider-
ation when designing containment strategies based on plastid transforma-
tion. A number of straightforward tools are available that can be used to
prevent the escape of plastid transgenes to the nuclear genome, or make sure
that a transferred plastid transgene, even when landing downstream of a
nuclear promoter, cannot be expressed. Below, three such strategies, which
could be employed alone or in combination, are briefly discussed.

A strategy suitable to suppress transgene escape would be the incorpora-
tion of nucleus-specific suicide cassettes close to or within the plastid trans-
gene. Such suicide genes can be, for example, genes for ribosome-inactivating
proteins, RNases or proteases that either are not expressed in the plastid
(because they carry nuclear expression signals or their gene products require
nucleus-specific processing or modification steps, such as spliceosomal
intron removal or protein glycosylation) and/or have no targets or substrates
inside the plastid compartment.

A suitable strategy to prevent the expression of escaped plastid transgenes
in the nucleus would be, for example, to make transgene expression depend-
ent on plastid-specific RNA maturation processes. Group II intron splicing
and RNA editing are good candidate processes here and their suitability for
driving RNA processing-dependent plastid transgene expression has been
demonstrated already experimentally (Bock and Maliga 1995; Chaudhuri
et al. 1995; Chaudhuri and Maliga 1996).

Introns are present in a number of plastid-encoded genes. In higher
plants, most plastid introns belong to the so-called group II introns with the
single exception of the tRNA-Leu(UAA) gene that harbors a group I intron
(Kuhsel et al. 1990). Both group I and group II introns are radically different
from the nuclear spliceosomal introns in that they fold into a complex RNA
secondary structure (Michel et al. 1989; Sharp 1994; Michel and Ferat 1995)
and need organelle-specific trans-acting factors (splicing factors) for the
splicing reaction to occur. The splicing of all plastid group II introns requires
the assistance of proteinaceous splicing factors some of which appear to be
intron-specific whereas others are somewhat more general and are involved
in the splicing of a subset of plastid introns (Jenkins et al. 1997; Vogel et al.
1999; Jenkins and Barkan 2001; Till et al. 2001; Ostheimer et al. 2003).
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Incorporation of a plastid group II intron into a transgene makes faithful
transgene expression dependent on splicing (Bock and Maliga 1995) and,
moreover, restricts expression to the plastid compartment where the essen-
tial splicing factors are present. In this way, insertion of a group II intron into
a plastid transgene (Bock and Maliga 1995) is a suitable strategy to prevent
nuclear expression of escaped plastid transgenes.

RNA editing in plastids proceeds by cytidine-to-uridine conversion at
highly specific sites (for review see, e.g. Bock 2000, 2001a). As several RNA
editing sites have been found that create a start codon for translation by con-
verting a genomically encoded ACG codon into a functional AUG initiator
codon (Hoch et al. 1991; Kudla et al. 1992; Bock et al. 1993; Wakasugi et al.
1996, fusing an ACG codon in an editable sequence context with the coding
region of the plastid transgene of interest will make transgene expression
dependent on RNA editing (Chaudhuri et al. 1995; Chaudhuri and Maliga
1996) and also will restrict transgene expression to the plastid compartment,
since C-to-U RNA editing is absent from the nucleocytoplasmic compart-
ment in higher plants. It should be noted, however, that this strategy may not
reduce the risk of unwanted nuclear expression of escaped plastid transgenes
to zero since in-frame insertion of the transgene into an active nuclear gene,
in theory, could give rise to a functional fusion protein.

In summary, nuclear escape of plastid transgenes is unlikely to pose a
serious threat to the containment level provided by plastid transformation.
Moreover, appropriate construction of transformation vectors can help to
install additional safeguarding mechanisms that (i) reduce the frequency of
transgene escape, and (ii) prevent nuclear expression of escaped plastid
transgenes.
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Molecular cell biology:
Epigenetic gene silencing in plants

Roman A. Volkov, Nataliya Y. Komarova, Ulrike Zentgraf,
Vera Hemleben

1 Introduction

The highly organized arrangement of the DNA in the cell nucleus and
structurally defined compartments within the nucleus are important pre-
requisites for a timely and spatially correct gene expression and for the
functioning of the eukaryotic cell. Since it is known that nuclear DNA is
wrapped up into a nucleoprotein chromatin complex forming the period-
ically arranged nucleosomes, the factors involved in chromatin stabiliza-
tion and remodeling during different stages of cell activity have attracted a
lot of interest (Reyes et al. 2002). During the 1980s, much emphasis was
laid on the unraveling of gene structure and regulation of transcription
catalyzed by RNA polymerases mediated and stimulated by transcription
factors. In the last decade, the structural organization of the chromatin
within the cell nucleus during different stages of the cell cycle underwent
a revival in research activity, and gene silencing was investigated in more
detail.

The central component of chromatin, the nucleosome, contains the
highly conserved histone proteins, which are now known to be subject to a
wide range of post-translational modifications and which act as recognition
sites for the binding of chromatin-associated factors. Earlier it was already
known that, in addition to these histone modifications (Loidl 2004), DNA
methylation could also have a dramatic influence on gene expression
(Bowler et al. 2004). Detailed cytological investigations with improved mul-
ticolor fluorescent in-situ hybridization (FISH) techniques (Lichter 1997)
elucidated the higher order structure of the chromosomes; recently more
and more information has been gained regarding this structural organiza-
tion, not only at the chromosome level of a mitotic or meiotic cell, but
mainly at the eu- and heterochromatic interphase stage of the cell nucleus
(Tariq and Paszkowski 2004).

Recent studies have demonstrated that many important aspects of plant
development are accompanied by heritable changes in gene expression
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that do not involve changes at the nucleotide sequence level. Rather, these reg-
ulatory mechanisms involve modifications of the chromatin structure giving
access of target genes to regulatory factors that can control their expression.
Epigenetic mutation, heritable developmental variation not based on a
change in nucleotide sequence, is widely reported in plants. Heritable pat-
terns of gene activity and gene silencing arise through the formation and the
propagation of specific chromatin states that restrict or permit gene expres-
sion. The developmental and evolutionary significance of such epigenetically
controlled mutations remains an interesting field in plant biology.

In this review article, we would like to concentrate on the role of DNA
modification and chromatin packaging and factors involved in structural
rearrangements resulting in epigenetically controlled gene silencing and/or
modification and modulation of gene activity, such as DNA methylation at
cytosines catalyzed by DNA methyltransferases, histone methyltransferases,
histone acetyltransferases/deacetylases and chromatin remodeling factors.
The role of small RNAs interacting and interfering with transcription prod-
ucts and the subsequent influence on developmentally processes will be dis-
cussed, as well as epigenetically regulated de- and reactivation of ribosomal
RNA genes in nucleolar dominance and of transposable elements, since var-
ious recent studies indicate a clear correlation between DNA methylation,
histone modification, chromatin remodeling and RNA interference.

2 Molecular mechanisms of gene silencing
2.1 Methylation of cytosine and DNA methyltransferases
2.1.1 Cytosine methylation

Methylation of cytosine at the fifth position of the pyrimidine ring (5mC;
Jost and Saluz 1993; Colot and Rossignol 1999) is the most common modi-
fication of DNA in higher eukaryotes. The presence of modified nucleotides
increase the amount of genetic information encoded by DNA sequence. The
patterns of 5mC can be stably inherited providing a molecular basis for an
“epigenetic memory”. It has become apparent that cytosine methylation can
tulfill pleitropic functions depending on the organism and the genomic
location. In prokaryotes, methylation of cytosine and adenosine is used for
cell protection via the restriction-modification system, which maintains spe-
cific methylation patterns of the host cellular DNA and destroys foreign
unmethylated DNA. In addition, an important role in DNA repair and repli-
cation was demonstrated (for review, see Messer and Noyer-Weidner 1988;
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Noyer-Weidner and Trautner 1993). In contrast, methylation of DNA in
eukaryotes appears to have diverse functions, including gene silencing,
genomic imprinting, transposon inactivation, regulation of tissue specific
expression and epigenetic inactivation of chromosomal domains.

In addition to the symmetric CG motifs, which are the main target of
cytosine methylation in vertebrates, plant DNA is also methylated at sym-
metric CNG as well as asymmetric CHH sequences (where N is any
nucleotide and H is A, C or T). In addition, density of methylation versus
methylation at specific sites should be distinguished (Gruenbaum et al.
1981; Bender 2004; Tariq and Paszkowski 2004).

5mC is non-randomly distributed through the genome, but mainly concen-
trated in repeated sequence elements including 5S and 35S rRNA genes
(rDNA), satellite DNA elements (Hemleben et al. 1982), transposons and
endogenous viruses, which are present in an inactive form in heterochromatin.
In contrast, protein coding sequences are usually unmethylated (Guseinov et al.
1975; Bennetzen et al. 1988; Bennetzen 1996; Kovarik et al. 2000; Mathieu et al.
2002a,b; Kato et al. 2003; Palmer et al. 2003; Rabinowicz et al. 2003; Lippman
et al. 2004). Accordingly, methylation of heterochromatic B chromosomes in
Crepis capillaries is higher than that of A chromosomes (Luchniak et al. 2002).
In plants, compared with animals and fungi, the proportion of 5mC is higher,
usually ranging from 5% to 25% of total cytosine (Matassi et al. 1992), and one
reason for that appears to be increased fractions of repeated sequences in
plants, which is especially high in large genomes. Accordingly, a positive corre-
lation between genome size and 5mC content was found (Bender 2004;
Rangwala and Richards 2004). However, in several species with a small genome,
a high content of 5mC was also found, e.g. in rice (33%; Thomas and Sherratt
1956) or in nettle (19%; R.A. Volkov, G.P. Miroshnichenko, A.S. Antonov,
unpublished results). Methylation of cytosine at many loci can be stably trans-
mitted through mitosis and meiosis, indicating that 5mC patterns are repeat-
edly reproduced during the cell cycle. Changes in cytosine methylations have
also been demonstrated, i.e. during plant development (see below).
Respectively, two aspects (i) maintenance of already existing patterns and (ii) de
novo establishment of cytosine methylation could be distinguished.

2.1.2 DNA methyltransferases
In all eukaryotes, methylation of cytosine occurs post-replicatively, directly at

the replication fork and also later during cell cycle progression (e.g. Vanyushin
and Kirnos 1988). In plants, at least three classes of methyltransferases (MT)
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provide transfer of a methyl group from S-adenosyl-L-methionine to carbon 5
of cytosine within DNA helix (for review, see Finnegan and Kovac 2000).

The first class of MT represents the METI family, which comprises
genes homologous to the DNMT1, a maintenance MT in the mouse. The
observation that some motifs are conserved between DNMT1 and
prokaryotic MT allowed the isolation of homologous proteins from
plants (Bestor et al. 1988; Finnegan and Dennis 1993). In spite of the
sequence similarity, eukaryotic MT of the first class are larger than
prokaryotic enzymes because they contain a large relatively variable N-
terminal domain in addition to the C-terminal conservative catalytic
domain. In mouse, the N-terminal domain directs the enzyme to the
nucleus, targets it to the replication fork and provides discrimination
between unmethylated and hemi-methylated DNA (Bestor et al. 1992;
Leonhardt et al. 1992; Bestor and Verdine 1994; Liu et al. 1998). Similar
functions were also suggested for the homologous plant MTs (Finnegan
and Kovac 2000). The METI gene of Arabidopsis belongs to a small multi-
gene family, which includes up to five members (Finnegan and Dennis
1993; Genger et al. 1999). The METI gene appears to be predominantly
transcribed in meristematic, vegetative and floral tissues, whereas other
members of the multigene family seem to be only weakly or not expressed
(Genger et al. 1999). Several METI homologs were identified in carrot,
pea, tomato, tobacco, maize and rice (Finnegan and Kovac 2000; Nakano
et al. 2000; Teerawanichpan et al. 2004).

In transgenic Arabidopsis and tobacco plants expressing METI homologs in antisense
orientation, methylation of cytosine was reduced preferentially in CG dinucleotides, indi-
cating that METI is a functionally active enzyme (Finnegan and Dennis 1993; Finnegan
et al. 1996; Nakano et al. 2000). Regarding the sequence similarity to mouse DNMT1, a
maintenance function of METI in plants, i.e. methylation of the newly synthesized DNA
strand during cell cycle, was suggested (Finnegan and Dennis 1993; Finnegan et al. 1996).
This was confirmed by observations that transcripts of tobacco, NtMETI (Nakano et al.
2000), as well as of rice, OsMET1-1 and OsMETI-2 (Teerawanichpan et al. 2004), are local-
ized in actively proliferating tissues. Recent studies of Arabidopsis MET1 loss-of-function
mutants containing a structurally disrupted MET1 catalytic domain confirm the require-
ment of MET1 to maintain CG methylation, and show in addition that the enzyme also
contributes to CG de novo methylation (Aufsatz et al. 2004).

The second class of MT is represented by the plant specific chro-
momethylases (CMT), which contain a chromo-domain imbedded into a
C-terminal methyltransferase domain (Henikoff and Comai 1998). The
chromo-domain, which was identified early in several groups of proteins in
animals and plants, is sufficient for protein targeting to heterochromatin
(Paro and Harte 1996; Ingram et al. 1999). Similar to MT of class I, CMT
also possess a variable N-terminal domain, which, however, lack a sequence
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similarity to the METI, suggesting distinct functions of CMT. Three CMT
genes are present in the genome of Arabidopsis. Among them, CMT?2 is
highly transcribed in comparison with the two other members of the gene
family (Genger et al. 1999; Finnegan and Kovac 2000). In Arabidopsis, CMT3
is involved in methylation at CNG motifs (Bartee et al. 2001). In a loss-of-
function mutant of maize, carrying a Mu insertion in the ZMET?2 gene cod-
ing for a CMT, methylation of cytosine was remarkably decreased in CNG
trinucleotides, especially in heterochromatic DNA such as centromeric,
ribosomal and knob repeats, whereas methylation of CG dinucleotides was
not altered (Finnegan and Kovac 2000).

Domains rearranged methyltransferases (DRM), which demonstrate sim-
ilarity to mammalian de novo DNMTS3, belong to the third class of plant
MT. DRM genes were first described for Arabidopsis and maize (Cao et al.
2000). These proteins demonstrate a novel arrangement of the motifs
required for DNA methyltransferase catalytic activity. Interestingly, the
N termini of DRM contain a series of ubiquitin-associated (UBA) domains,
which may be involved in ubiquitin binding, providing a possible link
between DNA methylation and ubiquitin/proteasome pathways. In
Arabidopsis, DRM genes are required for the initial establishment of methy-
lation of cytosines in all known sequence contexts (Cao and Jacobsen
2002a), and for the maintenance of asymmetric DNA methylation (Cao and
Jacobsen 2002b). At some loci, DRM act redundantly with CMT3, so that
only in drml drm2 cmt3 triple mutants all asymmetric methylation is lost.
Similarly, in tobacco, NtDRMI is able to methylate cytosine effectively at
non-CG motives in non-methylated substrates both in vivo and in vitro.
Remarkably, methylation activity for hemimethylated substrate was lower,
indicating that the NtDRM1 is a de novo MT, which actively excludes CG
substrates. Transcripts of NtDRM1 were found in all tissues and during the
cell cycle in cultured tobacco cells (Wada et al. 2003).

In addition, sequences encoding predicted proteins with similarity to other eukaryotic MT,
such as MASCI of Ascobolus and DNMT?2 of mouse, were identified in the Arabidopsis data-
base (Finnegan and Kovac 2000), suggesting that respective classes of MT may be present in
plants.

2.2 Histone modifications
2.2.1 Histones as targets for post-translational modifications

In the nuclei of all eukaryotic cells, genomic DNA is highly folded, con-
strained, and compacted by histone and non-histone proteins in a dynamic
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structure called chromatin. The activity of chromatin is regulated by epige-
netic events often mediated by covalent modifications of nuclear proteins.
Chromatin is composed of nucleosomes, each of which contains approxi-
mately 145 bp of core DNA wrapped around an octamer of basic histone
proteins (two sets of histones H2A, H2B, H3 and H4). Histone H1 interacts
with linker DNA sequence between adjacent nucleosomes (Fischer et al.
1994; Luger 2003; Loidl 2004).

Histone proteins represent not only a structural component of chro-
matin, but are also actively involved in regulation of gene expression,
which is connected with differential post-transcriptional modification of
histone molecules at different places in the genome. Several modifications
have been reported, including acetylation, methylation, phosphorylation,
carbonylation, biotinylation, glycosylation, ADP ribosilation, ubiquitinila-
tion and sumoylation. All core histones can be targets of modifications at
distinct amino acid residues, preferentially within terminal extensions,
and several modifications can be simultaneously present in the same his-
tone molecule. Modifications in some positions were found in different
groups of eukaryotes, whereas other modifications are plant-specific.
Interestingly, two individual molecules of the same histone class within a
nucleosome can be differentially modified. Therefore, a huge number of
combinations of different modifications within a single nucleosome is
possible, allowing establishment of a very specific histone modification
landscape through the genome (Jenuwein and Allis 2001; Turner 2002;
Wagner 2003; Loidl 2004). All modifications change the chemical proper-
ties of histone molecules, which results in rearrangement of chromatin
organization. Some of these modifications may be necessary for histone
turnover, e.g. ubiquitinilation as a target for subsequent proteolytic degra-
dation, whereas other appears to play a role in modulation of transcrip-
tion. In particular, the importance of two modifications of core histones,
acetylation and methylation discovered 4 decades ago (Allfrey et al. 1964),
was intensively studied recently.

2.2.2 Acetylation of histones

Acetylation is the best characterized modification of histones. Through
this modification, histone acetyltransferase (HAT) catalyzes transfer of
acetyl group from acetyl-CoA to the free amino groups of lysine (Lys) in
the N-terminal extension of core histones. In plants, acetylation of his-
tone H3 was found at Lys 9, 14, 18, and 23, and of histone H4 at Lys 5, 8,
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12, 16 and 20. Histones H2A and H2B are acetylated to a lower extend
(Waterborg 1990, 1992; Reyes et al. 2002). These modifications can be
reverted by histone deacetylase (HDAC). Both enzymes, HAT and HDAC,
are encoded by multigene families in Arabidopsis (Pandey et al. 2002).

Various HAT demonstrating obvious sequence similarity in their cat-
alytic domains interact with similar proteins in different species and
appear to have similar functions in all eukaryotes. According to subcellu-
lar localization, HAT can be classified into nuclear (type A) and cytoplas-
mic (type B) varieties (Roth et al. 2001). Type A comprises four distinct
classes of HAT: (i) the MYST family; (ii) the p300/CBP co-activator fam-
ily; (iii) the TAF250-related family; and (iv) GCN5 family (Marmorstein
2001; Pandey et al. 2002). Open reading frames homologous to members
of all these groups were identified in the Arabidopsis genome, and HAT
activity was demonstrated for representatives of p300 and GCN5 families
(Bordoli et al. 2001; Stockinger et al. 2001). Plant type B cytoplasmic HAT
appears to be heterodimeric complexes involved in acetylation of histone
H4 at positions 5 and 12 before its incorporation into nucleosomes
(Lusser et al. 1999).

In plants, at least three classes of HDAC can be distinguished: (i) the
RPD3/HDAI1 family; (ii) the sirtuin family related to yeast SIR2; and (iii) the
HD2 family (Pandey et al. 2002). The last group comprises plant specific
deacetylases, which are unrelated to the other HDAC gene families but dis-
tantly related to cis-trans isomerases, a group of enzymes with distinct func-
tion (Lusser et al. 1997; Dangl et al. 2001; Khochbin et al. 2001; Pandey et al.
2002). In Arabidopsis, at least five HDAC of class I are present. HDA19 is
expressed at high levels in leaves, stems, flowers and young siliques and
appears to be involved into transcriptional repression via acetylation of his-
tone H4 affecting different developmental processes (Wu et al. 2000; Tian and
Chen 2001). HDAG6 seems to have a more specific function in gene silencing
(Murfett et al. 2001). A plant-specific HDAC of class III is represented by the
maize HD2. This protein is localized in the nucleolus, indicating a possible
role in the regulation of rRNA genes. Four genes (HDA3, HDA4, HDA11, and
HDA13) demonstrating high sequence similarity with the maize HD2 were
found in Arabidopsis (Wu et al. 2000). One of these genes, HDA3, appears to
be involved in embryo development.

It was reported that at least in animals, HAT and HDAC could modify not only histones,
but also other proteins (Gu and Roeder 1997; Chan et al. 2001; Vervoorts et al. 2003; Zhang
et al. 2003). Hence, at the moment it is unclear if HAT and HDAC are predominantly his-
tone modifiers or rather protein acetyltransferases/deacetylases with broad specificity
(Loidl 2004).
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2.2.3 Methylation of histones

Methylation of histones is catalyzed by histone methyltransferase (HMT),
which transfer a methyl group to arginine or lysine residues, mostly within
the N-terminal extensions of histones H3 and H4 (Loidl 2004). Arginine
residues can be mono- or dimethylated, symmetrically or asymmetrically, by
protein arginine methyltransferases (PMMT), whereas lysines are modified
by members of the SET-domain HMT family to mono-, di- or trimethylated
level (Kouzarides 2002; Santos-Rosa et al. 2002; Lachner et al. 2003). Histone
methylation occurring at the same site can correlate either with repression
or activation of transcription, depending on the target gene, individual
HMT involved or the level of methylation (Santos-Rosa et al. 2002; Loidl
2004). Combinations of active (H3-Lys4, H3-Lys36, H3-Lys79) or repressive
(H3-Lys9, H3-Lys27, and H4-Lys20) modifications are specific for different
chromosomal subdomains. In mammals, H3-Lys9 trimethylation, H3-Lys27
monomethylation (Peters et al. 2003; Rice et al. 2003), and H4-Lys20
trimethylation (Schotta et al. 2004) are features of constitutive heterochro-
matin. Also in Drosophila and Arabidopsis, heterochromatin is characterized
by high levels of dimethylated H3-Lys9, whereas an increased level of
dimethylated H3-Lys4 was found for euchromatin of Arabidopsis (Schotta
et al. 2002; Jasencakova et al. 2003).

Interestingly, a high level of dimethylated H3-Lys9 in constitutive heterochromatin was
found in species with small genomes. In contrast, dimethylated H3-Lys9 appears to be ran-
domly distributed in plants with large genomes, suggesting that in these plants dispersed
repetitive sequences are silenced also within euchromatic regions with a high level of methy-
lated H3-Lys4 (Houben et al. 2003).

Originally, HMT Su(var)3-9 was identified in Drosophila (Rea et al. 2000;
Schotta et al. 2002). The gene belongs to a large group of suppressor of posi-
tion-effect variegation, Su(var) loci, which comprise more than 50 genes
(Reuter and Spierer 1992; Ebert et al. 2004). Molecular characterization of
about 15 Su(var) genes revealed that this group of genes encode not only
HMT, but also other components of heterochromatin, such as the zinc fin-
ger protein Su(var)3-7 (Delattre et al. 2000; Jaquet et al. 2002), the chromo-
domain protein HP1 (Eissenberg et al. 1990; Eissenberg and Elgin 2000) and
HDACI1 (DeRubertis et al. 1996; Mottus et al. 2000). HMT Su(var)3-9 and
its yeast and human homologs contain a SET domain, which is necessary for
specific methylation of Lys9 in histone H3, a modification required for
heterochromatin formation (Nakayama et al. 2001). In the genome of
Arabidopsis 37 SET domain proteins were identified (Baumbusch et al.
2001), ten of which demonstrate homology to Su(var)3-9, i.e. represent
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putative HMT. For one of them, SUVH4 (KRYPTONITE, KYP), histone
methyltransferase activity was shown: the SUVH4 (KYP) methylates his-
tone H3 at Lys 9 (Jackson et al. 2002). Loss of SUVH4 as well as of
SUVHI causes only a weak reduction of heterochromatic histone H3-Lys9
dimethylation, whereas in SUVH2 null plants levels of mono- and dimethyl
H3-Lys9, mono- and dimethyl H3-Lys27 and monomethyl H4-Lys20 are sig-
nificantly reduced (Naumann et al. 2004). Several SET-domain genes were
also detected and partially characterized in tobacco (Shen 2001), spinach
and pea (Trievel et al. 2002), maize (Springer et al. 2002), and rice (Liang
et al. 2003).

2.3 Cross-talk between DNA methylation and modifications of histones

Available data show that certain modifications of histone proteins as well as
methylation of cytosines in DNA appear to be non-randomly distributed
between euchromatin and heterochromatin. But are they rather causally con-
nected? Formation of transcriptionally inactive heterochromatin is associated
with hypermethylation of DNA at CG sites and with histone H3-Lys9 methy-
lation, both in mammals and plants (Jenuwein and Allis 2001). In Neurospora
and Arabidopsis, the methylation status of histone H3 at Lys9 determines
patterns of DNA methylation (Tamaru and Selker 2001; Tamaru et al. 2003).
However, a feedback loop from DNA methylation to histone methylation is
less well understood. To answer the question whether CG methylation of
DNA can affect H3-Lys9 methylation, Arabidopsis mutants with a partial loss
of function of MET 1, which is necessary for maintenance of CG methylation,
were investigated. However, the results obtained were partially in conflict
(Johnson et al. 2002; Soppe et al. 2002), and the most probable reason for the
discrepancy seemed to be an incomplete loss (about 50%) of CG methylation
in the mutant studied (Vongs et al. 1993; Bartee and Bender 2001; Kankel
et al. 2003). Recently, other MET1 gene mutants of Arabidopsis, which
demonstrate complete elimination of CG methylation, were characterized
(Saze et al. 2003). In the metI strain, a clear loss of histone H3-Lys9 methyla-
tion in heterochromatin was found. Interestingly, the demethylation of his-
tone H3 occurred without any detectable activation of transcription at
heterochromatic loci and without alterations in heterochromatin structure
(Tariq et al. 2003).

Interplay between the DNA and histone H3 methylation was also stud-
ied using a SUPERMAN(SUP)/clark kent (clk) model in Arabidopsis. The
SUP and clk represent two epigenetically distinct alleles of a floral devel-
opmental gene, which significantly differ in expression although both
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alleles are identical in the nucleotide sequence. The switch from active
SUP to inactive clk correlates with cytosine methylation at CG, CNG and
CHH sites (Jacobsen and Meyerowitz 1997). In order to find genes con-
trolling the SUP/clk switch, gene-silencing suppressor screens were per-
formed, resulting in isolation of 16 mutants exhibiting wild type
phenotype (Lindroth et al. 2001; Jackson et al. 2002). These mutants can
be classified into three classes. The first class combines nine mutations in
a gene coding for plant specific DNA-MT of class II, CMT3. The cmt3
mutants show a strong decrease of cytosine methylation at plant-specific
symmetric CNG or asymmetric CNN, but not at CG sites (Lindroth et al.
2001). The second class includes three mutants with a defective SET-
domain histone methyltransferase SUVH4(KYP). Similar to the cmt3
mutants the loss-of-function kyp mutants demonstrate a reduced cytosine
methylation at non-CG sites (Jackson et al. 2002), indicating that KYP-
dependent methylation of histone H3 can direct CNG methylation by
CMTS3.

2.4 Chromatin remodeling

To regulate gene activation/silencing via chromatin remodeling, other pro-
teins distinct from the described above appear to be necessary. One of these
proteins is a heterochromatin protein 1 (HP1), a conserved heterochro-
matin-associated protein found in animals, fungi and plants. The HP1 con-
tains a chromo-shadow domain and a chromo-domain, which specifically
recognize Lys9-methylated H3, resulting in association of HP1 with hete-
rochromatin (Bannister et al. 2001; Lachner et al. 2003). Oligomerization of
HP1 via the chromo-shadow domain seems to be necessary for maintenance
of heterochromatin structures and gene silencing (Jenuwein 2001). The
Arabidopsis HP1 homolog, LHP1 (LIKE HP1) can interact with histone H3
methylated at Lys 9 (Jackson et al. 2002) and with the CMT3 (Lindroth et al.
2001).

A model of epigenetic gene silencing that summarizes available data
about the interplay between DNA and histone modifications during SUP/clk
transcriptional switch (see above) was proposed (Fig. 1; see Jackson et al.
2002; Lachner 2002). Accordingly, the active state of SUP locus is connected
with histone acetylation. As a first step, HDAC removes the acetyl groups,
and then SUVH4(KYP) mediates methylation of histone H3 at Lys9, which
is required for binding of LHP1. Subsequent recruitment of CMT3 by LHP1
results in methylation at CNG sites and shut down expression of the gene. In
this silencing pathway, histone H3 methylation at Lys9 is placed upstream of
DNA methylation.
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Fig. 1. Model for epigenetic gene silencing via histone deacetylation/methylation and DNA
cytosine methylation at non-CG sites under the control of the AGO4/siRNA pathway. For
details see chapter 2.4 and 2.5. Ac histone acetylation; Me histone methylation; 5mC 5-
methylcytosine; HDAC histone deacetylase; KYP histone methyltransferase KRYPTONITE;
LPH1 like heterochromatin-associated protein 1; CMT3 chromomethylase 3; DRM2 domains
rearranged methyltransferase 2; SDE4 SILENCING DEFECTIVE 4, a protein of unknown
function; AGO4 ARGONAUTE 4 protein; RAIRP RNA-dependent RNA polymerase; DCL
DICER-like enzyme; siRNA small interfering RNA. Modified from Jackson et al. (2002),
Lachner (2002) and Zilberman et al. (2004)
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A further link between DNA methylation, chromatin remodeling and
gene silencing is provided by the methyl-CG-binding domain (MBD) pro-
teins, which were first identified in animals (Hendrich and Bird 1998;
Ballestar and Wolffe 2001). The MBD proteins function in transcriptional
repression binding to methylated CG sites and recruiting HDAC complexes
(Ahringer 2000; Ng et al. 2000) and HMT activity (Fuks et al. 2003). Recent
studies demonstrated that during DNA replication in mammals, MBD1
recruits a histone H3-Lys9 methylase SETDBI to the large subunit of the
chromatin assembly factor CAF-1 to form an S phase-specific CAF-
1/MBD1/SETDBI complex that facilitates methylation of H3 at Lys9 during
replication-coupled chromatin assembly. The data suggest a model in which
H3-Lys9 methylation by SETDBI is dependent on MBD1, which is heritably
maintained through DNA replication to support the formation of stable
heterochromatin at methylated DNA (Sarraf and Stancheva 2004). The
Arabidopsis genome contains 12 putative genes encoding proteins with
domains similar to MBD, of which at least three bind symmetrically methy-
lated DNA. The AtMBD genes are active and differentially expressed in
diverse tissues (Berg et al. 2003).

Thus, several groups of proteins such as HAT, HDAC, HMT, LHP, DNA-
MT and MBD proteins cooperate to establish specific patterns of modifica-
tions of histones and DNA, which appear to modulate the local chromatin
organization and control expression/silencing of respective genes. Are these
modifications per se sufficient to change the chromatin structure or, alterna-
tively, are some other proteins required for recognition, interpretation and
maintenance of the modification patterns? The first direct evidence confirm-
ing the second possibility was obtained by isolation of Arabidopsis mutants
suffering on decreased DNA methylation (ddm; Vongs et al. 1993). In the
ddm1i-2 mutant plants about 70% of methylation was lost, although MT
activity was the same as in wild type plants. Hypomethylation was initially
observed only for repeated sequences, and after several generations of selfing
also for unique sequences (Vongs et al. 1993; Kakutani et al. 1996, 1999).

The DDM1 gene encodes a member of the SNF2/SWI2 family of the ATP-
dependent chromatin remodeling factors (CRM; Peterson and Herskowitz
1992; Varga-Weisz 2001), which represent multiprotein complexes able to
modify DNA-histone interactions by introducing superhelical torsion into
DNA (Havas et al. 2000). Activity of CRMs can change nucleosome position
or spacing (sliding) or accessibility to nucleosomal DNA, or provoke histone
eviction, resulting in all of the cases in an increase of chromatin fluidity
(Reyes et al. 2002).

Demethylation of DNA in ddml mutants is accompanied by a shift
toward euchromatin and transcriptional derepression, which are associated



Molecular Cell Biology: Epigenetic Gene Silencing in Plants 113

with histone H3 methylation at Lys4 and depletion of methylation at Lys9
(Grendel et al. 2002). It was proposed that the loss of DDM1 function nega-
tively affects chromatin remodeling, resulting in the alteration of histone H3
methylation. Respectively, the loss of 5mC in heterochromatic sequences
occurred because no H3-Lys9 methylation is present to guide the cytosine
methylation machinery. Remarkably, in the ddm1 mutants there is no signif-
icant change in the overall abundance of Lys9-methylated histon H3 in con-
trast to the significant reduction in 5mC. Apparently DDM1 is not required
for methylation of histone H3 at Lys9, but it seems to be necessary to restrict
the histone methylation to specific regions in the genome, which can explain
ectopic cytosine methylation observed in euchromatic regions in ddml
mutants (Jacobsen et al. 2000).

A chromatin remodeling machinery associated with transcription activation was
described in Arabidopsis: FAcilitates Chromatin Transcription (FACT) complex, consisting
of the Spt16 and SSRP1 proteins. The FACT subunits co-localize to cytologically defined
euchromatin of the majority of cell types in embryos, shoots and roots, but never in ter-
minally differentiated cells such as mature trichoblasts and root cap. FACT localizes to
inducible genes only after induction of transcription, e.g. HSP70 and salicylic acid-
inducible PR-1, and the association of the complex with the genes correlates with the level
of transcription, indicating that FACT assists transcription elongation through plant chro-
matin (Duroux et al. 2004).

2.5 RNA silencing

Generally, RNA silencing describes a series of events that leads to the tar-
geted degradation of cellular mRNA and thereby to the silencing of corre-
sponding gene expression (Fig. 2). One of the first papers describing RNA
silencing was published as early as 1928, although the phenomenon could
not be explained at that time. Virus infected tobacco plants showed symp-
toms only on the initially infected leaves, whereas the upper leaves had
somehow become immune to this virus and resistant to secondary infection
(Wingard 1928). Now it has become clear that RNA silencing was involved.
The different mechanisms are summarized in Fig. 2.

Introduction of a gene into the host genome can initiate RNA silencing
of a gene that is homologous to the integrated gene. After transcription of
the introduced gene, double-stranded RNA (dsRNA) is formed, which is
cut into smaller dsRNA species called small interfering RNAs (siRNAs).
This degradation is accomplished by an RNaselll-like enzyme termed
DICER. The siRNAs are then incorporated into a multiprotein complex
termed RNA-induced silencing complex (RISC). RISC gets activated and a
helicase function separates the two siRNA strands so that the remaining
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strand guides the sequence-specific cleavage of the single-stranded comple-
mentary target RNA, most likely by proteins of the ARGONAUTE (AGO)
family (for review, see Baulcombe 2004; Susi et al. 2004). At least some of
the ten AGO homologues in Arabidopsis may be associated with effector
complexes of RNA silencing that might be adapted to silence genes in spe-
cialized cells or at particular developmental stages as indicated by the ago7
mutant, which shows alterations in the timing of the phase change between
juvenile and adult leaves (Hunter et al. 2003; Vaucheret et al. 2004).
Recently, nuclear RISC complexes have been described (Cerutti, 2003), and
two of the four DICER enzymes that have been identified in the Arabidopsis
genome, DICER-like 1 (DCL1) and DICER-like 4 (DCL4), contain nuclear
localization signals (Schauer et al. 2002). Therefore, the processing reaction
of RNA by DICER enzymes might proceed not only in the cytoplasm but
also in the nucleus.

Another pathway is the silencing of endogenous messenger RNA by micro
RNA (miRNA; Fig. 2). MiRNAs are generated from endogenous hairpin pre-
cursors, which are encoded by their own genes. These hairpin structures are
diced by DCLI1 into short ds siRNA-like miRNA intermediates. Mature
miRNAs are 21-22 nt single stranded RNAs that negatively regulate gene
expression by base pairing to specific mRNA, resulting in either RNA cleav-
age or arrest of protein translation (Baulcombe 2004; Susi et al. 2004).

-
-

Fig. 2. RNA-dependent gene silencing. In plants, RNA silencing can be divided into two
main pathways: developmental regulation and defense against parasitic nucleic acids. In the
initiation step of developmental regulation, short, imperfect double-stranded (ds) RNA pre-
cursors are cleaved by DICER-LIKE1 (DCL1) into 21-22 nucleotide (nt) single stranded
RNAs. Subsequently, miRNAs are recruited into the RNA-induced silencing complex
(RISC), which regulates the endonucleolytic cleavage or translational arrest of target mRNAs
by the perfect or near-perfect base pairing between siRNAs or miRNAs and the targeted
sequences. The defense pathways are also initiated by cleavage of ds or highly structured
viral, transgene and transgenic aberrant RNAs into 21-22 nt (short) and 24-26 nt (long)
siRNAs. Viral RNA-dependent RNA polymerase (RARP) produced large amount of ds viral
RNAs that are cleaved into short ds siRNAs. By contrast, dsSRNAs (which are generated from
aberrant transgenic or viral transcript by a plant RARP without short siRNA guides) are
processed to short and long ds siRNAs. These siRNAs are distinct in size and function, and
probably arise from separate DICER activities. Short siRNAs activate RISC for target cleav-
age or translational arrest and also guide plant RARP to amplify dsRNAs, which are cleaved
again to short and long siRNAs. Moreover, these short siRNAs are also responsible for short-
distance signaling, whereas the long siRNAs are probably involved in long-distance silencing
and transcriptional silencing. (Modified from Silhavy and Burgyan 2004; Susi et al. 2004;
Baulcombe 2004)
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RNA silencing is linked to chromatin remodeling. In fission yeast, hete-
rochromatin formation at centromere boundaries is associated with siRNA
(Volpe et al. 2002). Also in Arabidopsis, the AGO4 protein appears to be
required for silencing of the SUP locus, because the ago4-1 mutant reactivated
silent SUP alleles and decreased CNG and asymmetric DNA methylation as
well as histone H3 methylation at Lys9. In addition, accumulation of 25-
nucleotide siRNA, which corresponds to the retroelement AtSN1 as well as his-
tone and DNA methylation, was blocked in the ago4-1 mutant, suggesting that
AGO4 and long siRNAs direct chromatin modifications, including histone
methylation and non-CG DNA methylation. The AGO4 of Arabidopsis prob-
ably encodes a component of a silencing system that generates long siRNA. The
system also includes a DICER-like enzyme, an RNA-dependent RNA poly-
merase and an unidentified product of the SDE4 locus. The long siRNA guide
KYP-dependent histone methylation and CMT3- and DRM-dependent DNA
methylation to specific regions of chromatin (Fig. 1; Zilberman et al. 2003).

In plants, RNA silencing appears to serve as a defense mechanism against
viral pathogens and also to suppress the activity of virus-like mobile genetic
elements and transgenes. However, not all transgenes are silenced. No case of
silencing was observed in 132 independent transgenic lines with various sites
of T-DNA integration. Below a certain number of identical transgenes in the
genome, gene copy number and expression were positively correlated.
Expression was high and stable over several generations, and expression lev-
els were comparable among independent lines carrying the same copy num-
ber of a particular transgene. However, if the transcript level of a transgene
surpassed a gene-specific threshold, RNA silencing was induced. It is pro-
posed that the RNA sensing mechanism described is a genome surveillance
system that eliminates RNA corresponding to excessively transcribed genes,
including transgenes, and so plays an important role in genome defense
(Schubert et al. 2004).

During infection by a conventional RNA virus, the entire process of RNA silencing is
probably cytoplasmic with the general trigger of the double-stranded replicative interme-
diate, which is cleaved into siRNA (see Fig. 2). Specific degradation of single-stranded (+)
or (—) viral RNA occurs by RISC-mediated cleavage. In addition, further double-stranded
RNA might be produced by an RNA-directed RNA polymerase (RARP) resulting in the gen-
eration of secondary siRNAs. This might also result in a phenomenon called transitive
silencing signifying the spread of silencing to neighboring genes (Hutvagner and Zamore
2002).

In some plant systems, there are additional silencing processes such as sys-
temic spread of silencing and RNA-directed methylation of homologous
genomic DNA (reviewed in Wassenegger 2000; Bender 2001; Rangwala and
Richards 2004). Methylation of genomic DNA also occurred when the
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silencing was induced by an RNA virus that replicates exclusively in the cyto-
plasm (Jones et al. 1998), suggesting communication between the cytoplasm
and the nucleus (Mlotshwa et al. 2002). Therefore, dsRNA generated in the
cytoplasm can potentially play a dual role by initiating post-transcription
gene silencing (PTGS) and by entering the nucleus to direct methylation of
homologous DNA sequences. It is conceivable that the small RNAs also
guide DNA methyltransferase to homologous sequences in the genome
(Mette et al. 2000). Interestingly, a characteristic for RNA-directed DNA
methylation is a very dense methylation of cytosine sites at the target locus
also at non-CG sites, and the removal of the RNA trigger leads to the even-
tual loss of cytosine methylation at these non-CG sites, although CG methy-
lation can still be maintained by the methylase MET1 (Jones et al. 2001;
Aufsatz et al. 2002; Chan et al. 2004).

Furthermore, the finding that silencing is not cell autonomous but can
spread from cell to cell, also over long distances, suggests the existence of an
as yet unidentified mobile silencing signal as a component of the RNA
silencing pathway (Mlotshwa et al. 2002). In contrast to animals, plant RNA
silencing is more complicated, since different classes of siRNAs, short (21-22
nt) and long (24-26 nt) siRNAs, can be distinguished (Fig. 2). Whereas the
long siRNAs are dispensable for sequence-specific mRNA degradation but
correlate with systemic silencing and methylation of homologous DNA, the
short siRNA class correlates with mRNA degradation but not with systemic
signaling or methylation (Hamilton et al. 2002).

3 Cellular processes regulated via gene silencing/chromatin
remodeling

3.1 Control of developmental processes

Originally, chromatin remodeling factors were identified as genetic modifiers
of developmental mutations in plants. These mutations result in lethality in
metazoans, whereas mutant plants are viable and a wide range of develop-
mental and physiological processes is affected.

In Drosophila, chromatin remodeling provides one way in which on/off states of gene
expression can be fixed and inherited through mitotic division (Lawrence and Struhl 1996).
Genetic and biochemical analyses have elucidated that fixation of the chromatin state during
development is conferred by Polycomb group proteins (PcG). Two main classes of PcG were
originally described as repressors of homeotic genes in Drosophila: (i) PRCI and (ii) the extra
sex combs (ESC)-E(z) complex (for review see Francis and Kingston 2001). In plants, represen-
tatives of the second group were identified (Reyes et al. 2002), suggesting that the PcG-mediated
cellular memory system is an important mechanism of transcription control in plants as well.
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Genetic screens for mutations causing parent-of-origin effects on seed
development in Arabidopsis revealed lesions in FERTILIZATION INDEPEN-
DENT ENDOSPERM (FIE, Ohad et al. 1996, 1999), FERTILIZATION INDE-
PENDENT SEED 2 (FIS2, Chaudhury et al. 2001) or MEDEA (MEA,
Grossniklaus et al. 1998; Kiyosue et al. 1999) loci. Molecular cloning and
investigation of expression patterns of MEA, FIE and FIS2 revealed that they
are homologs of the animal PcG complex and are necessary to prevent tran-
scription of target genes involved in regulation of endosperm development
(Luo et al. 2000; Spillane et al. 2000; Yadegari et al. 2000). MEA is coding for
a SET-domain protein closely related to Drosophila ENHANCER OF ZESTE,
FIE encodes a WD-40 protein with high similarity to EXTRA SEX COMB,
and FIS2 is a C2H2 zinc finger homolog of Drosophila SUPPRESSOR OF
ZESTE. It has been shown that the MEA-FIE complex can bind PHERES1
(PHE1), a MADS-domain protein that is expressed transiently after fertil-
ization and controls seed viability. PHE1 gene expression dramatically
increases in mea, fie or fis2 mutants, and its expression continues until the
mutant seeds abort, suggesting that the MEA-FIE complex is required for
repressed state of PHEI during seed development (Kohler et al. 2002, 2003).

In Arabidopsis, FIE is expressed ubiquitously throughout development (Ohad et al. 1999)
and probably participates in the formation of distinct PcG complexes at multiple developmen-
tal stages. It has been shown that FIE, in addition to its function in the central cell and develop-
ing seed, mediates the PcG complex formation that suppresses flowering during early plant
development, controlling several floral meristem and floral homeotic genes such as LEAFY,
AGAMOUS and PISTILLATA (Kinoshita et al. 2001). FIE can interact with other PcG proteins
to repress floral gene expression during embryo and seedling development. One example is
EMBRYONIC FLOWER?2 (ENF2), a zinc finger PcG protein similar to FIS2. Genetic analysis
showed that EMF?2 is epistatic to flowering time genes such as CONSTANT (CO), APETALAI
(API) and FLOWERING LOCUS T (FT), suggesting that EMF2 plays an early role in repressing
the transition to reproduction (Chen et al. 1997; Haung and Yang 1998; Yoshida et al. 2001).
Another PcG proteins involved in developmental regulation are CURLY LEAF (CLF), which
prevents inappropriate expression of the MADS box homeotic gene AG in leaves (Kinoshita
et al. 2001; Yoshida et al. 2001) and VERNALIZATIONZ2 (VRN?2), coding for a FIS2-like zinc fin-
ger PcG protein, which control the transition from vegetative growth to reproduction by repres-
sion of FLOWERING LOCUS C (FLC) in temperate biennial plants (Sheldon et al. 1999; Gendall
et al. 2001).

Recent studies on Arabidopsis developmental mutants revealed a number
of loci being under control of the chromatin remodeling machinery.
Representatives of jumonyji/zinc-finger-class of transcription factors EARLY
FLOWERING 6 (ELF6) and RELATIVE EARLY FLOWERING 6 (REF6) are
involved in control of photoperiod-independent and FLC flowering path-
ways, respectively, whereas repression of FLC expression is accompanied with
histone modifications (Noh et al. 2004). The PHOTOPERIOD-INDEPEN-
DENT EARLY FLOWERING 1 (PIE1) is a further chromatin remodeling
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protein similar to the SWI2/SNF2 ATP-dependent protein family, which is
required for appropriate expression of FLC and plays a role in petal develop-
ment (Noh and Amasino 2003). Several other homologs of SWI/SNF com-
plex proteins have been characterized to control developmental processes in
Arabidopsis. SPLAYED (SYD) was identified to act as LEAFY (LFY)-
dependent repressor of the meristem identity switch in floral transition in
response to environmental stimuli (Wagner and Meyerowitz 2002).

AtBRM, a homolog of BRAHMA, an ATPase identified from Drosophila as a chromatin
remodeling protein, has been described to interact with CHB4 (AtSWI3C) protein to reg-
ulate reproductive development in the photoperiod-dependent flowering pathway (Farrona
et al. 2004). Another member of the SWI3 family, CHB2 (AtSWI3B), seems to play a global
role in the regulation of expression of genes involved in plant growth and development
(Sarnowski et al. 2002; Zhou et al. 2003)

Silencing of endogenous messenger RNAs by miRNAs is an important
regulatory mechanism during plant development. These miRNAs nega-
tively regulate gene expression by base pairing to specific mRNAs, resulting
in either RNA cleavage or arrest of protein translation (Papp et al. 2003).
It has been estimated that the Arabidopsis genome has about 100 miRNA
loci. However, the range of targets is not restricted to “developmental” genes
because there are also miRNAs that increase or decrease in abundance
following cold or drought stress or sulphur starvation (Jones-Rhoades et al.
2004).

Interestingly, unrelated suppressors from multiple viruses were shown also to inhibit miRNA
activities and trigger an overlapping series of severe developmental defects in transgenic
Arabidopsis. This suggests that interference with miRNA-directed processes may contribute to
the pathogenicity of many viruses (Chapman et al. 2004). These developmental defects were
remarkably similar, and their penetrance correlated with inhibition of miRNA-guided cleavage
of endogenous transcripts and not with altered miRNA accumulation per se (Dunoyer et al.
2004).

3.2 Ribosomal DNA transcriptional regulation and nucleolar
dominance

Higher plants often contain more repeated sequence elements in the genome
than other eukaryotes. The relative content of repeated sequences correlates
with genome size, and it amounts up to 90% of the total nuclear DNA in
plants with large genomes (e.g. Allium). The majority of the repeated
sequence elements represent retrotransposons and/or satellite DNA elements
(Hemleben et al. 2000). They are mostly highly methylated and transcrip-
tionally silenced. In contrast, genes coding for rRNA, which also belong to the
repeated sequences, are transcriptionally active and ultimately necessary for
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surviving of the cell. The nuclear loci coding for the 18S, 5.8S and 25/28S
rRNA (35S rDNA) are arranged in head-to-tail tandem arrays, often com-
prising between 500 and more than 30,000 members depending on the plant
species (Hemleben et al. 1988). The transcribed genes can be cytologically
distinguished as nucleolus in interphase nuclei or as secondary constrictions
(SC) or nucleolus organizer region (NOR) in mitosis/meiosis (Heitz 1931;
McClintock 1934; for review, see Leweke and Hemleben 1982; Hemleben and
Zentgraf 1994; Moss and Stefanovsky 1995). In the transition area from fib-
rillar centers to the dense fibrillar component (FC/DFC) of the nucleolus, the
genes for the 18§, 5.8S and 25/28S rRNA are commonly transcribed by RNA
polymerase I (pol I) as a large precursor, which in plants is approximately 35S
in size (35S pre-rRNA); this 35S pre-rRNA is then step-wisely processed into
the respective mature rRNAs (Volkov et al. 2004). The 5S rDNA is also
arranged in head-to-tail tandem arrays. Usually, 5S rDNA is located at other
regions of the genome as 35S rDNA and is transcribed by RNA polymerase
III (pol III) into 5S rRNA (Paule and White 2000; Mathieu et al. 2003).

Similar to other eukaryotes, plants often contain much more 35S rDNA
repeats than are used for the production of cellular rRNA. Respectively, only
a fraction of rDNA is transcriptionally active at any time. Functional activ-
ity of 35S rDNA is regulated at two levels, (i) by controlling the number of
active 35S rDNA repeats existing in open chromatin state (dosage control)
and (ii) by modulating pol I initiation frequency (for reviews, see Hemleben
et al. 1988, 1998; Grummt and Pikaard 2003; Volkov et al. 2004).
Accordingly, transcriptional silencing of rDNA often correlates with methy-
lation of cytosine (Flavell et al. 1988; Sardana et al. 1993; Torres-Ruiz and
Hemleben 1994; Chen and Pikaard 1997a,b; Houchins et al. 1997; Santoro
et al. 2002), although several exceptions were also described (Macleod and
Bird 1982; Chen and Pikaard, 1997; Papazova et al. 2001). A special case of
regulation of functional activity of 35S rDNA represents the phenomenon of
nucleolar dominance, often occurring in interspecific hybrids. By nucleolar
dominance, rDNA inherited from one of the parental species appears tran-
scriptionally active, whereas rDNA of the other crossing partner is silenced
(Pikaard 2000; Volkov et al. 2004).

In Arabidopsis, presumably inactive rRNA repeats exhibit hypomethylated
promoters and are associated with H3-trimethyl-Lys4 and pol I. In contrast,
promoters that are hypermethylated associate with H3-dimethyl-Lys9 and
are presumably silenced. Hence, concerted changes in the density of cytosine
methylation at the rDNA promoter and specific histone modifications dic-
tate the on and off states of the rRNA genes. A key component of the tran-
scriptional switch is HDT1, a plant-specific histone deacetylase that localizes
to the nucleolus and is required for H3-Lys9 deacetylation and subsequent
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H3-Lys9 methylation. The data support a model in which cytosine methyla-
tion and histone deacetylation are each upstream of one another in a self-
reinforcing repression cycle. A similar regulation mechanism is used for gene
dosage control and nucleolar dominance (Lawrence et al. 2004).

Recently, it was shown that the silI mutant of Arabidopsis represents a defect allele of
HDAG6. The sill mutation results in reactivation of certain transcriptionally silent trans-
genes and endogenous repeats and also influences histone acetylation levels. Remarkably,
significant hyperacetylation of histone H4 restricted to NOR was found in the mutant
plants, whereas total level of H4 acetylation was only slightly increased. These alterations
correlated with an increase of histone H3 methylation at Lys4, modification of rDNA
methylation pattern, and a concomitant decondensation of rDNA chromatin. Nevertheless,
the changes at rDNA loci seem to occur without major changes in transcription rates.
Together, the data indicate that HDA6 might play a role in regulating activity of rRNA
genes, and this control might be functionally linked to silencing of other repetitive tem-
plates and to the presumptive role of HDA6 in RNA-directed DNA methylation (Probst
et al. 2004).

Thus, regulation of the number of potentially active rDNA repeats (dosage
control) is accomplished via chromatin remodeling. Also in hybrids, modu-
lation of transcription/silencing of parental rDNA represents a manifestation
of the dosage control (Lawrence et al. 2004). However, it remains illusive
which molecular mechanism provides differential inactivation of one of the
parental rDNA. In hybrids of Solanum differential expression of parental
rDNA correlates with the number of conserved repeated sequence elements
(CE) downstream of the transcription start and with cytosine methylation
(Volkov et al. 1999a; Komarova et al. 2004). Interestingly, computer simula-
tion shows that each of CE can form a double-stranded stem-loop RNA
structure (Volkov et al. 1999b, and unpublished results), which could be a sig-
nature of RNA-directed DNA silencing (Wassenegger et al. 2000; Matzke et al.
2004). It is tempting to postulate that these sequence elements downstream
of the transcription start could represent targets for RNA-directed DNA
methylation/silencing involved in regulation of rDNA transcription.

Studies on Nicotiana, Secale and Arabidopsis showed that 5S rDNA repre-
sents a highly methylated multigene family (Fulnecek et al. 1998, 2002).
However, in contrast to 35S rDNA, transcription of these genes by RNA poly-
merase III appears not to be modulated by DNA methylation (Mathieu et al.
2002a, b), but chromatin remodeling events are involved (Mathieu et al. 2003 ).

3.3 Silencing of transposons

An important role of RNA silencing at the chromatin level is probably pro-
tecting the genome against damage caused by active transposons or by extreme
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amplification of repetitive elements (for review, see: Lippman and Martienssen
2004) leading to heterochromatin formation. Heterochromatin is found near
centromeres and telomeres, but interstitial sites of heterochromatin (knobs)
are common in plant genomes and were first described in maize as regions that
contain repetitive and late-replicating DNA components.

As shown in Drosophila, heterochromatin influences gene expression, a heterochro-
matin phenomenon called position effect variegation (see above). Similarities between
position effect variegation in Drosophila and gene silencing in maize mediated by “control-
ling elements” (that is, transposable elements) led in part to the proposal that heterochro-
matin is composed of transposable elements, and that such elements scattered throughout
the genome might regulate development.

Recent progress in understanding the silencing of transposable elements
in the model plant Arabidopsis has revealed an interplay between DNA
methylation, histone methylation and siRNAs. However, DNA and histone
methylation are not always sufficient to maintain silencing, and RNA-based
reinforcement can be needed to maintain as well as initiate it (Zilberman
and Henikoff 2004).

In the genus Ipomoea, especially in three species, I. nil (the Japanese morning glory), L.
purpurea (the common morning glory), and I tricolor, numerous mutations affecting
flower pigmentation were found to be caused by the insertion of DNA transposable ele-
ments in the genes for the anthocyanin pigmentation (Iida et al. 2004). The flecked, speck-
led, r-1, and purple mutations in I. nil were caused by insertions of Tpnl and its relatives in
the En/Spm superfamily, Tpn2, Tpn3, and Tpn4, into the genes for anthocyanin coloration
in flowers, i.e. DFR (dihydoflavonol reductase)-B, CHI (chalcone isomerase) and CHS
(chalcone synthase)-D, respectively. Similarly, the flaked and pink mutants of I purpurea
have distantly related elements, Tip100 and Tip201, in the Ac/Ds superfamily inserted into
the CHS-D and F3’H (flavonol 3" hydroxylase) genes, respectively. The flower variegation
patterns can be determined by the frequency and timing of the excision of these trans-
posons, and their stable insertions produce plain colored flowers without generating pig-
mented spots or sectors. Both genetic and epigenetic regulation appeared to play
important roles in determining the frequency and timing of the excision of the trans-
posons.

From studies of the endogenous Arabidopsis transposon CACTA (Kato
et al. 2004), it was proposed that the inheritance of epigenetic gene silencing
over generations could function as a transgenerational genome defense
mechanism against deleterious movement of transposons. Previously, it was
reported that silent CACTA1 is mobilized by the DNA hypomethylation
mutation ddml (see above). CACTA activated by the ddml mutation
remains mobile in the presence of the wild-type DDM1 gene, suggesting that
de novo silencing is not efficient for the defense of the genome against
CACTA movement. The defense depends on maintenance of transposon
silencing over generations. In addition, the activated CACTA1 element



Molecular Cell Biology: Epigenetic Gene Silencing in Plants 123

transposes throughout the genome in DDM1 wild type plants. Furthermore,
the CACTAI element integrated into both the ddmi-derived and the
DDM]I-derived chromosomal regions in the DDMI wild-type plants,
demonstrating that this transposable element does not exhibit targeted inte-
gration into heterochromatin, despite its accumulation in the pericen-
tromeric regions in natural populations.

It was shown that heterochromatin in Arabidopsis is determined by trans-
posable elements and related tandem repeats, under the control of the chro-
matin remodeling ATPase DDM1. Small interfering RNAs correspond to
these sequences, suggesting a role in guiding DDM1 (Zilberman et al. 2003,
2004). Transposable elements can regulate genes epigenetically, but only
when inserted within or very close to them.

In a number of organisms, transgenes containing transcribed inverted repeats (IRs) that
produce hairpin RNA can trigger RNA-mediated silencing, which is associated with 21-24
nucleotide siRNAs. In plants, IR-driven RNA silencing also causes extensive cytosine methyla-
tion of homologous DNA in both the transgene “trigger” and any other homologous DNA
sequences (“targets”). Endogenous genomic sequences, including transposable elements and
repeated elements, are also subject to RNA-mediated silencing. The RNA silencing gene AGO4
is required for maintenance of DNA methylation at several endogenous loci, e.g. for the estab-
lishment of methylation at the endosperm development associated gene FWA (Lippman et al.
2004). Mutation of AGO4 substantially reduces the maintenance of DNA methylation trig-
gered by IR transgenes, but AGO4 loss-of-function does not block the initiation of DNA
methylation by IRs (Zilberman et al. 2003, 2004). AGO4 primarily affects non-CG methylation
of the target sequences, while the IR trigger sequences lose methylation in all sequence con-
texts. Finally, AGO4 and the DRM methyltransferase genes are required for maintenance of
siRNAs at a subset of endogenous sequences, but AGO4 is not required for the accumulation
of IR-induced siRNAs or a number of endogenous siRNAs, suggesting that AGO4 may func-
tion downstream of siRNA production.

4 Conclusions and perspectives

In a eukaryotic cell of a differentiated organism, not all genes are actively
transcribed; mechanisms of gene silencing acting also on single-copy genes
have been extensively analyzed in recent years. Therefore, it became obvious
that epigenetically controlled gene silencing and modulation of gene activity
play a pivotal role, and basic mechanisms such as DNA methylation, histone
modifications and a complex pattern of chromatin remodeling factors are
involved in combination with RNA interference mechanisms not only at the
constitutive heterochromatin, but also at various loci resulting in faculta-
tively regulated gene silencing.

The task for the future remains to unravel the processes where internal and
external factors meet to obtain a co-integrated picture of the regulation of cell
activity and cooperation of this activity within a multicellular organism.
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Genetics of phytopathology:
Secondary metabolites as virulence determinants
of fungal plant pathogens

Eckhard Thines, Jestis Aguirre, Andrew J. Foster, Holger B. Deising

1 Introduction

The kingdom fungi comprises a highly diverse array of species. Where
species diversification has been studied in detail, fungal species can be 6
times as numerous as those of flowering plants. On this basis, since
approximately 270,000 flowering plants are known today, it is estimated
that more than 1.5 million fungal species may exist (Carlile and
Watkinson 1994; Hawksworth 2001)). Fungi are able to colonize a broad
range of substrata; they may live as saprophytes, associated with plants as
mycorrhiza and as pathogens of plants, animals and microorganisms (Dix
and Webster 1995). As saprophytes, fungi contribute to the ecological bal-
ance of the environment by degrading organic materials, such as decaying
plant material, dung and organic pollutants. In mycorrhiza, fungi provide
phosphate for the associated plant while they gain carbohydrates in
exchange (Smith and Read 1997). However, many plant-associated fungi
do not provide any mutual benefit for the colonized hosts. Whereas
biotrophic fungi rely on the living host for nutrient provision, others
(necrotrophs) often kill and exploit the surrounding tissue. The high bio-
diversity of fungal species is also reflected by exceedingly rich diversity of
metabolism and the corresponding metabolites that affect the attacked
plant.

A large group of pathogens known as necrotrophs secrete phytotoxic
secondary metabolites to kill the host tissue and to avoid initiation of
defense responses. Secondary metabolites have been defined as metabolic
products not essential for growth and without obvious function for the
producing cell during its life cycle (Aharonowitz and Demain 1980).
Secondary metabolite production depends both on the genotype of the
organism and the environmental conditions under which growth takes
place, for example the composition of the medium used to culture the
organism (Weinberg 1974; Bu'Lock 1975). So far, several thousand sec-
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ondary metabolites have been identified from natural sources, with
sponges and corals being the most prolific producers of secondary
metabolites (Berlepsch 1980; Faulkner 1993). The majority of secondary
metabolites identified to date, however, derive from bacteria, fungi and
plants.

The existence of such a large number of chemically highly diverse
metabolites has led to various speculations as to why secondary metabo-
lites are produced. A general hypothesis was provided by Zihner et al.
(1983), who suggested that secondary metabolites evolved continuously
in a “biochemical playground” of the cell. Beneath the supply of precur-
sors and energy from the primary metabolism, the closely related inter-
mediary metabolism, differentiation and morphogenesis determine the
evolution of secondary metabolism. In fact, fungi exhibit high mutation
rates, due to exposure of air-borne spores to UV light, which, in combi-
nation with short generation times may result in extremely efficient and
well-regulated intermediary and secondary metabolism, allowing them to
colonize a broad range of living or dead substrata. It should be empha-
sized that secondary metabolites not only function as toxins required for
plant colonization, but also provide an advantage for the colonization of
the substratum for fungi sharing the environment and competing for
nutrients with many other microorganisms. Plants are very frequently
colonized by endophytic fungi that do not cause disease symptoms. In
contrast, plant pathogenic fungi cause necrosis, rotting, chlorosis or
bleaching of different tissues of their host plants. Toxic secondary
metabolites synthesised by the fungus in vivo have been identified as
essential determinants of pathogenicity. They are secreted into and spread
in plants by diffusion and either act as virulence factors, i.e. they can
intensify disease symptoms, or as pathogenicity factors, i.e. they are exclu-
sively responsible for the development of disease symptoms. For decades,
the only known agents conferring specificity in interactions between
microbes and plants were host-selective toxins (Walton and Panaccione
1993; Walton 1996). Host-selective toxins (HS-toxins) are active only on
host plants carrying genetically determined sensitivity for the particular
toxin (see below).

The majority of the phytotoxic secondary metabolites produced by
plant pathogenic fungi belong to the non-specific or non-host-specific
toxins (NHS-toxins). NHS toxins are poisonous to all plants. As many
plants are susceptible to NHS-toxins the most destructive pathogens in
agriculture produce these compounds. This review provides insight into
biosynthesis and evaluation of fungal secondary metabolites as disease
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determinants in plants. For each of the diverse groups of chemicals we
will focus on one or a few toxins and give examples of their mode(s) of
action.

2 Secondary metabolism and its biochemical precursors

Even though several thousand secondary metabolites from fungal
sources have been identified to date, the pathways involved in second-
ary metabolism are still not very well understood compared with those
of intermediary metabolism (Zdhner et al. 1983). Primary metabolism is
relatively well understood and involves a limited number of well-known
intermediates and enzymes. Certain enzymes and genes involved in sec-
ondary metabolism are currently the focus of intensive investigations,
with polyketide synthases and non-ribosomal polypeptide synthases
representing excellent examples. The major source for energy in most het-
erotrophic organisms is glucose, usually derived from complex carbohy-
drates in the environment. The breakdown of glucose however, does not
just provide energy, but also provides the precursors necessary for sec-
ondary metabolism. Figure 1 illustrates the carbon fluxes through pri-
mary and intermediary to secondary metabolism. Glucose degradation
via the pentose phosphate cycle, as well as triose and pentose forma-
tion, results in a tetrose (erythrose-4-phosphate), which can react with
phosphoenolpyruvate to yield shikimic acid. Triose generated via glycoly-
sis is converted to pyruvate, and subsequently to acetyl-coenzyme A,
which is possibly the most predominant building block in fungal second-
ary metabolism. Condensation of three acetyl-coenzyme A-units gives
rise to mevalonic acid, the key intermediate in terpene biosynthesis.
Additionally, acetyl-coenzyme A can condense with oxalacetate, by
which carbon enters the tricarboxylic acid cycle. This cycle also func-
tions as a source for carbon skeletons for several amino acids (Turner
1971).

Certain enzymes of primary metabolism catalyse the formation of
products that can be channeled into the pathways of secondary metabo-
lites. Despite the fact that only few relatively simple biochemical precur-
sors originate from intermediary metabolism, secondary metabolites are
of enormous chemical diversity. Secondary metabolites can be catego-
rized according to the key intermediates they derive from. Major building
blocks for the assembly of fungal secondary metabolites are acetyl-coen-
zyme A, shikimate, amino acids and glucose. Acetyl-coenzyme A is used
as a building block for polyketides, polyenes terpenoids, steroids and
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carotenoids, while shikimate precursors lead to the assembly of aromatic
secondary metabolites. Peptides and alkaloids derive from amino acids,
and simple sugars are used to form glycosides. An overview of the biosyn-
thetic pathways leading to the formation of fungal secondary metabolites
is given in Fig. 1.

The following section gives four important pathways as examples of how
secondary metabolites act as virulence determinants of fungal plant
pathogens. Phytotoxic and non-toxic polyketides, terpenoids, glycosids and
aromatic compounds including molecular evidence for their role in patho-
genesis will be discussed in detail.

3 Fungal secondary metabolites as phytotoxins and virulence
determinants

Secondary fungal products can either act as directly phytotoxic compounds or
as compounds that mediate the generation of toxic molecules. Furthermore,
secondary metabolites may be non-toxic but add structural features obligately

Primary and intermediary metabolism Secondary metabolism
Glucose———» Glucose-P » Glycosides
‘ ¢ Polysaccharides
Glycolysis Pentose-P Kojic acid
cycle /
M
i Tetrose
Triose-P / » Shikimate ——» Aromatic compounds
\ i ———» Alkaloids
Pyruvate » Aromatic amino acids Oligopeptides
) ) ) . —» Depsipeptides
Aliphatic / branched amino acids Modified amino acids

P MalonyI-OoA\/Fattyacids —» Acetylenes

Acetyl-CoA » Polyketides
Mevalonic acid —» Farnesyl-PP —» Sesquiterpenoids
Citric acid \M . .
cycle Geranyl-PP — Diterpenoids

T~

M
Aminoacids Geranyfarnesyl-PRP» Sesterterpenoids

v
Squalene —» Triterpenoids

Fig. 1. Metabolic pathways leading to the major groups of secondary metabolites; after
Zihner et al. (1983).
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required for fungal virulence or pathogenicity. Examples for all of these modes
of action can be found among the polyketides (Fig. 2), and it is therefore not
surprising that this group of secondary metabolites has received significant
attention during the last decades.

3.1 Polyketides

Polyketides are a group of secondary metabolites possessing remarkable
diversity in their structure as well as in their function. Turner (1971) clas-
sified these molecules according to the number of C, units in the mole-
cule chain in tetraketides, pentaketides, hexaketides, etc. These
metabolites are ubiquitous in distribution and have been reported in
fungi, bacteria, plants, sponges, molluscs and insects (O’Hagan 1992). In
addition to several virulence or pathogenicity factors (see below), fungal
polyketides include pigments, signaling molecules, carcinogenic mycotox-
ins (e.g. aflatoxin) and the anticholesterol compound lovastatin (Kroken
et al. 2003), and references therein). Polyketide biosynthesis is carried out
by polyketide synthases (PKSs), which are highly specialized, large multi-
functional enzyme complexes catalyzing different sequential enzymatic
reactions. Based on their molecular structure and function, three types of
fungal PKSs can be distinguished (Gokhale and Tuteja 2001). Fungal type
I PKSs consist of large multifunctional proteins involved in the biosyn-
thesis of toxins, such as aflatoxin. Type II PKSs are functionally homolo-
gous to bacterial fatty acid synthases. They typically catalyze the synthesis
of compounds that require aromatization and cyclisation, but not exten-
sive reduction. Type III PKSs are mainly involved in the biosynthesis of
secondary metabolites, such as stilbenes, precursors for flavonoids and
chalcones in plants and bacteria.

Type I fungal PKSs are closely related to fatty acid synthetases (FASs).
Both are multifunctional enzymes with the same enzymatic domain struc-
ture, i.e. ketoacyl synthase (KS), acyl transferase (AT), ketoreductase (KR),
dehydratase (DH), enoyl reductase (ER), and acyl carrier protein domain
with a phosphopantetheine attachment site (PP domain). While KS, AT, and
PP domains are essential for all PKSs, some or all of the other domains may
be absent. In a sequential reaction, KR, DH, and ER domains catalyze reduc-
tion of a keto to a hydroxyl group, dehydration of the hydroxyl to an enoyl
group, and reduction of the enoyl to an alkyl group (Khosla et al. 1999;
Kroken et al. 2003).

Most fungal type I PKSs are iterative monomodular enzymes that use
their active sites repeatedly to synthesize a polyketide, adding an activated
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two-carbon molecule (i.e. a CoA ester) to the growing chain with each
condensation. However, as PKS can use 2—, 3— or 4-carbon starter blocks
(acetyl-, propionyl- and butyryl-CoA) and their activated derivates
malonyl-, methylmalonyl- and ethylmalonyl-CoA, highly variable and
complex polyketides are formed (Khosla et al. 1999). The non-iterative fun-
gal PKSs perform only one condensation cycle, synthesizing a diketide.
Genes encoding non-iterative PKSs seem to occur in a cluster along with a
PKS gene encoding an iterative PKS (Abe et al. 2002; Kroken et al. 2003).
The products of an iterative and a non-iterative PKS can be joined to form
a branched polyketide. Formation of branches adds to the diversity of
polyketides generated through the contribution of the three optional PKS
reducing domains and the use of different starter blocks.

Selective protein—protein interactions direct channelling of intermediates
between individual polyketide synthase modules. The C- and N-terminal
ends of adjacent PKS polypeptides are capped by short peptides of 20-40
residues. While matched sequences can facilitate the channelling of interme-
diates between PKS modules, mismatched sequences abolish chain interdo-
main transfer, without affecting the activity of individual modules. Thus, in
addition to substrate-PKS interactions and domain-domain interactions,
short interpolypeptide sequences represent a third determinant of selective
chain transfer (Tsuji et al. 2001).

Modern genetic methods and in particular the availability of complete
genome information of microorganisms have led to the identification of sev-
eral PKSs. In fact, a thorough phylogenomic analysis of type I PKS genes indi-
cated that ascomycetes of the subphylum Pezizomycotina, but not early
diverging ascomycetes like Saccharomyces cerevisiae or Schizosaccharomyces
pombe, had large numbers (7-25) of PKS genes (Kroken et al. 2003). Based on
these data, one may speculate that PKS genes play specific roles in filamen-
tous growth, morphogenesis, and pathogenicity or virulence. Two clades of
fungal PKSs (i.e. reducing and non-reducing PKSs), each falling into four
sub-clades, based on their different molecular organization, have been iden-
tified (Kroken et al. 2003). By means of genetic manipulation, genes involved
in the biosynthesis of polyketides have been functionally characterized.

In the following paragraphs, we will discuss biosynthetic aspects of the
synthesis of individual compounds (Fig. 2) or groups of compounds. If
molecular analyses of the role(s) of such compounds are available, we will
outline these as well.

A decarboxylative condensation is the key step in the chain elongation in
biosynthesis polyketide-biosynthesis. This reaction is analogous to the
chain elongation step of fatty acid biosynthesis, whereby PKSs and fatty
acid synthases show remarkable genetic, mechanistic and protein-structural
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similarities (Khosla et al. 1999). In contrast to fatty acid biosynthesis, in
which the chain elongation is followed by a conserved mechanism of ketore-
duction, dehydration and enoyl reduction, biosynthesis of polyketides has
no fixed scheme of reactions after the condensation. Variation in the chem-
ical reactions following the chain elongation contributes to the chemical
diversity of the emerging compounds.

3.1.1 Cercosporin

Different species of the genus Cercospora cause foliar diseases widespread
among cereals, grasses, field crops, vegetables and trees. About 5 decades ago,
the non-host-specific phytotoxin (NHST) cercosporin (Fig. 2) was identified
as a virulence factor in diseases caused by Cercospora in several plant species
(Kuyama and Tamura 1957). Mutants, obtained by spontaneous and UV-
induced mutations deficient in cercosporin production, produce few small
lesions on infected leaves in contrast to large necrotic lesions caused by the
wild-type isolates (Upchurch et al. 1991).

The biosynthetic origin of cercosporin from acetate has been demon-
strated by feeding experiments using “C- and '’C-labelled precursors
(Yamazaki and Ogawa 1972) (Fig. 1). The observed labeling pattern of cer-
cosporin from [1-*C]-, [2-1*C] and [1,2-!*C2]actetate was found to be con-
sistent with its formation from a heptaketide chain with decarboxylation
and oxidative dimerization, while the O-alkyl groups derive from formate
(Okubo et al. 1975; Turner and Aldridge 1983). The existence of PKS genes
in species of the genus Cercospora would fit with the view that that biosyn-
thesis of the molecule may proceed via the polyketide pathway (Chung et al.
2003).

The photodynamic pigment cercosporin is in fact not a host-selective phy-
totoxin, since the compound is also lethal to bacteria, most fungi and animals
(Daub and Ehrenshaft 2000). Following cercosporin production the com-
pound is excreted by the fungus and activated (Fig. 3). Cercosporin belongs to
a group of compounds activated by visible wavelength of light and generating
reactive oxygen intermediates (ROIs), which are toxic to living cells (Spikes
1989; Heiser et al. 1998). In plants, pathogen attack causes the rapid produc-
tion of ROIs (superoxide, hydrogen peroxide and hydroxyl radicals). In par-
ticular, H,0O, has been shown to play a key role in the orchestration of a
localized hypersensitive response during the expression of disease resistance
(Levine et al. 1994). While programmed cell death efficiently protects plants
against biotrophic pathogens such as powdery mildews or rusts (Kogel et al.
1994; Deising et al. 2002), some necrotrophic pathogens may thrive in an
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Fig. 3. Role of cercosporin in fungal pathogenesis. Light activation of cercosporin leads
to formation of reactive oxygen species, which cause damage to plant cells. The toxin thus
prevents activation of defense responses, and gains access to plant metabolites; after Daub and
Ehrenshaft (2000).

ROI-rich environment, and can therefore exploit this host defense mecha-
nism for their pathogenicity. The grey mold fungus Botrytis cinerea, for
example, may actively generate ROIs to trigger hypersensitive cell death,
which facilitates colonization of the host plants. In Cercospora, the secreted
and activated (oxidized) photosensitizer generates superoxide (O, ) and sin-
glet oxygen ('O,) in vivo, and in particular production of the latter is essen-
tial for the toxicity. ROIs derived from the toxin may cause membrane
peroxidation and leakage of nutrients from plant cells (Daub and Ehrenshaft
2000), or may present a signal triggering programmed cell death.
Interestingly, sugarbeets carrying superoxide dismutase transgenes exhibited
increased tolerance to pure cercosporin, as well as to leaf infection with the
fungus C. beticola (Tertivanidis et al. 2004). The fact that plant pathogenic
fungi belonging to at least eight different genera (Daub and Ehrenshaft 2000;
Heiser et al. 2003) synthesize photosensitizing prenylenequinone toxins may
be taken as an indication that formation of ROIs during pathogenesis is a
successful strategy during host colonization.

Some Cercospora species can tolerate up to millimolar concentrations of
cercosporin in the light, without observable toxic effects (Rollins et al. 1993).
Targeted disruption of the single genomic copy a gene encoding the
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cercosporin facilitator protein CFP resulted in a drastic reduction in cer-
cosporin production, greatly reduced virulence of the fungus to soybean,
and increased fungal sensitivity to exogenous cercosporin (Callahan et al.
1999). In contrast, over-expression of the CFP gene in Cercospora kikuchii
up-regulated production and secretion of cercosporin (Upchurch et al.
2001). These data indicate that efficient secretion of the toxin confers cer-
cosporin tolerance to Cercospora species. One may speculate that expression
of the cercosporin transporter gene could result in transgenic plants with
increased resistance Cercospora and to the toxin. The C. kikuchii cercosporin
export gene, CFP, has been introduced into Beta vulgaris by conjugation
with Rhizobium radiobacter, and was stably maintained during vegetative
propagation (Kuykendall and Upchurch 2004). Analysis of the relative sus-
ceptibility of CFP-transgenic sugar beet plants will allow the evaluation of
this new strategy in Cercospora disease management.

Using Saccharomyces cerevisiae as a model system, Ververidis et al. (2001)
identified two genes expressed in high-copy number vectors conferring cer-
cosporin resistance to an otherwise sensitive strain. One gene codes for the
well-characterized multidrug efflux transporter Snq2p. The other, CPDI
(Cercosporin Photosensitizer Detoxification), encodes a protein with simi-
larity to the FAD-dependent pyridine nucleotide reductases. Over-
expression of either of these proteins can also mediate resistance to
cercosporin and other singlet oxygen-generating compounds. The involve-
ment of Sng2p and Cpdlp in photosensitizer detoxification reinforces pre-
vious observations which suggested that resistance to cercosporin is
mediated by a mechanism involving toxin efflux and/or toxin reduction
(Daub and Ehrenshaft 2000; Ververidis et al. 2001). In previous studies, the
cellular resistance of Cercospora species to cercosporin has been correlated
with the ability to maintain cercosporin in a chemically reduced state (Daub
et al. 2000). Localization of reduced cercosporin in fungal cells has been
studied using a fluorescence assay and laser scanning confocal microscopy.
This assay showed a uniform green fluorescence, indicative of reduced cer-
cosporin, in the cytoplasm of hyphal cells treated with cercosporin (Daub
et al. 2000). The C. nicotianae pdxl and crgl genes have previously been
identified as genes required for resistance to the singlet oxygen-generating
toxin cercosporin (Chung et al. 2002). The pdx1 gene has been shown to be
involved in pyridoxine biosynthesis, and pyridoxine (vitamin B,) and its
derivatives are efficient singlet oxygen quenchers and potential fungal
antioxidants (Bilski et al. 2000). Thus, in addition to efficient secretion of the
toxin, maintenance of reduced conditions in cercosporin-producing hyphae
is essential for self-protection against ROIs.
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3.1.2 Zinniol

The genus Alternaria is responsible for some of the world’s most devastating
plant diseases, and at the same time is considered one of the most important
producers of fungal allergens (Rotem 1994; Cramer and Lawrence 2003).
Among the species of the genus Phoma, the causal agent of blackleg or stem
canker of oilseed rape, Phoma lingam (teleomorph: Leptosphaeria maculans),
a soil-borne fungus, is one of the economically most important oilseed rape
diseases around the world. Two distinct groups of the fungus are described as
toxin-producing aggressive and toxin non-producing non-aggressive. Both
fungi are true necrotrophs during certain stages of their life cycle.

Zinniol (Fig. 2) is a phytotoxic secondary metabolite isolated from Alternaria
and Phoma species (Cotty and Misaghi 1984; Sugawara and Strobel 1986).
Feeding experiments with [1,2-"°C, ]acetate led to the isolation of labelled zin-
niol from Alternaria solani and the observed pattern of intact acetate units is
consistent with a normal tetraketide origin with O-prenylation (Stoessl et al.
1979). Zinniol production is believed to be one determinant of pathogenicity
in the field, since the symptoms caused by the compound on detached leaves
match the disease symptoms in the field (Cotty and Misaghi 1984). It has been
reported that the presence of two hydroxymethyl-functionalities are essential
for the phytotoxic activity of Zinniol (Barash et al. 1981).

Zinniol belongs to the group of NHS-toxins and is therefore toxic to sev-
eral other plants. Many other NHS-toxins have been reported to have bind-
ing sites in the plasma membrane of plant cells. It was found that zinniol
binds to isolated membranes of carrot protoplasts in a saturable and
reversible manner. Furthermore, zinniol stimulates the entry of calcium into
chloroplasts and thereby leading to a perturbation which may have a lethal
effect for the cell (Thuleau et al. 1988).

3.1.3 Pyriculol and pyriculariol

The heptaketides pyriculol and pyriculariol (Fig. 2) have been isolated from
several species of the rice-blast fungus Magnaporthe grisea (anamorph
Pyricularia oryzae) and their impact in the disease has been discussed else-
where in detail (Nukina et al. 1981; Talbot 2003). Several other toxicity-
related toxins have been reported in M. grisea, most of which appear to be
non host-specific.

Interestingly, recently a putative PKS/peptide synthase has been identi-
fied and characterized by molecular genetic methods. It was shown that
strains carrying the gene ACEI encoding avirulence conferring enzyme 1
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are recognized by rice (Oryza sativa) cultivars carrying the resistance gene
Pi33. Analysis of the gene showed that it encodes a putative hybrid enzyme
between a PKS and a non-ribosomal peptide synthases. The gene is
expressed exclusively during penetration of plant leaves by the fungus. As
a single amino acid exchange in the putative catalytic site of the
B-ketoacyl synthase domain of Acel abolishes recognition of the fungus
and defense response in resistant rice varieties, it was suggested that the
secondary metabolite triggers a defense response in the plant (Bohnert
et al. 2004). Attempts to identify the Acel metabolite by liquid chromatog-
raphy tandem mass spectrometry analyses in barley leaves inoculated with
virulent or avirulent isolates of M. grisea were as yet unsuccessful (Bohnert
et al. 2004).

3.1.4 T-toxin

The linear long-chain polyketide (C35 to C41) T-toxin (Fig. 2) is produced
by race T of Cochliobolus heterostrophus, the causal agent for southern corn
leaf blight (Kono and Daly 1979). T-toxin is a well-studied host-selective
toxin that is well characterized regarding its mode of action. As extensive
reviews exist (Walton 1996; Wirsel et al. 2004), this toxin is only briefly dis-
cussed. C. heterosporohus race T attacks only corn carrying the cytoplas-
mically inherited gene tms, for pollen sterility (male sterile cytoplasma).
T-toxin binds to the specific protein URF13 unique to the inner cell wall
of T-cytoplasma rice. The protein is encoded by the gene T-urfl3 located
on the mitochondrial chromosome of the T-cytoplasma. Upon binding of
the T-toxin to the URF13-protein, pores are formed in the inner mem-
brane and subsequently NAD* and small molecules, e.g. calcium, leak out
of the mitochondrion (Siedow et al. 1995).

Following targeted disruption of the gene PKSI, encoding a polyketide
synthase occurring in race T but not in race O strains, T-toxin production
was eliminated and virulence was reduced. In the toxin-deficient mutant,
T-toxin is not necessary for pathogenicity of C. heterostrophus race T, since
the strain was still able to cause disease symptoms (Yang et al. 1996).

3.1.5 Non-toxic polyketides essential for pathogenicity
Apart from toxic secondary metabolites, fungi have been known for more

than 40 years to produce pigments known as melanins, predominantly dihy-
droxy phenylalanine (DOPA)-melanin and 1,8-dihydroxynaphthalene
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(DHN)-melanin (Langfelder et al. 2003). Melanin is incorporated into fungal
cell walls, and, depending on the fungal lifestyle, this polymer may act as a
reactive oxygen scavenger, add to the rigidity of the cell wall, or it may restrict
the pore size of appressorial cell walls. In mammalian pathogens such as
Cryptococcus neoformans or Aspergillus fumigatus, melanin has been shown to
quench free radicals and is thought to be an important virulence factor
(Langfelder et al. 2003). Results obtained from agar penetration assays with
melanin deficient isolates of the human pathogenic black yeast Wangiella der-
matitidis, and with a wild type isolate treated with the melanin biosynthesis
inhibitor tricyclazole indicated that melanin improves biomechanical charac-
teristics and may be important for virulence and disease progression in human
and animal mycoses (Brush and Money 1999). Apart from acting as a scav-
enger molecule for reactive oxygen species, melanin creates a semi-perme-
able membrane in the inner cell wall of specialized infection cells
(appressoria) of phytopathogenic fungi such as Magnaporthe grisea, differ-
ent Colletotrichum species or Phyllosticta ampelicida (Deising et al. 2000;
Wirsel et al. 2004). In melanized appressoria, an osmolyte is retained inside
the cell, whereas water is able to permeate the semi-permeable layer. As a
consequence of water uptake, an enormous turgor of up to 8 MPa is gener-
ated inside the appressoria which drives the infection peg though a pore at
the basis of the infection structure and through the plant cuticle (Howard
et al. 1991). The resulting force, which is exerted onto the host surface at the
appressorial base, is thought to be sufficient to allow forceful penetration of
the plant epidermis (Bechinger et al. 1999; Deising et al. 2000). Thus,
mutants deficient in melanin biosynthesis fail to penetrate the plant surface
and to colonize the host tissue. Inhibitors of DHN-melanin biosynthesis
have successfully been used as protectants against blast disease in rice fields
for almost 30 years. As fungi, but not animals or plants, use DHN as the
melanin precursor, key enzymes in the biosynthetic pathway of DHN
melanin are excellent targets for specific fungicides. These fungicides inter-
fere with the infection-related differentiation process in phytopathogenic
fungi, but they do not affect vegetative fungal growth.

3.2 Isoprenoids and terpenoids

The terpenes and steroids constitute a large group of secondary metabo-
lites, many of which exhibit significant biological activities (Turner 1971).
Some well-known examples of this group of chemicals synthesized by
fungi include the trichothecene mycotoxins, gibberellic acid, ergosterol
and B-carotene. They are biosynthetically derived from the C, “isoprene”
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unit (isopentenyl pyrophosphate, IPP), which itself is formed from acetate
via mevalonate (Fig. 1) (Bennett 1983). The synthesis of mevalonate
includes the condensation of three units of acetyl-CoA to 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA), followed by a reduction to mevalonate.
Two successive phosphorylation steps at C-5 of mevalonate catalyzed by
the mevalonate and the phosphomevalonate kinase and a decarboxylation
step lead to the basic C5 isoprene unit. IPP is added to prenyl pyrophos-
phate cosubstrates to form longer chains, such as geranyl pyrophosphate
(C,,), farnesyl pyrophosphate (C,;) and geranylgeranyl pyrophosphate
(C,,)- These intermediates may then selfcondense, be utilized in alkyation
reactions or undergo internal cyclization to create the basic skeletons of
various terpenoid families (McGarvey and Croteau 1995). Terpenes are
classified according their number of IPP-units, e.g. C10: monoterpenes,
C15: sesquiterpenes, C20: diterpenes, C25 sesterterpenes (Fig. 1) (Turner
1971).

3.2.1 Trichothecenes

Trichothecenes constitute a large family of epoxide-containing sesquiter-
penes, well known as mycotoxins commonly found as food and feed contam-
inants. Deoxynivalenon (or vomitoxin), nivalenol and T2-toxin (Fig. 2) are
the most prominent examples of this mycotoxin family. They are produced by
many fungal genra, including Fusarium, Trichoderma, Myrothecium, and
cause listlessness or inactivity, diarrhea, vomiting, dermatitis (upon skin con-
tact) and degeneration of the cells of the bone marrow, the lymph nodes and
intestines (Marasas et al. 1984; Joffe 1986). Since trichothecenes are of enor-
mous economic significance in agriculture, the biosynthesis and the mode of
action of the compounds has been well studied. Members of this toxin fam-
ily are known as potent inhibitors of eukaryotic protein biosynthesis, with
different members interfering with initiation, elongation or termination
stages (Bennett and Klich 2003). Within the molecule, the 12,13-epoxide-
moiety is essential for the inhibition of protein biosynthesis (McLaughlin
et al. 1977).

Apart from their importance as mycotoxins, many trichothecenes show
potent phytotoxic activity. Phytotoxic properties of individual trichothecenes
were discovered more than 4 decades ago [Brian 1961]. These early studies
indicated that diacetoxyscirpenol reduced root elongation of cress. At very low
concentrations trichothecenes, such as T2-toxin (Fig. 2) cause wilting, necrosis,
and inhibition of germination and elongation of pea, barley, tomato and wheat
seedlings (Cutler 1988; Wakulinski 1989).
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Toxic sesquiterpenes have, however, not been detected in muskmelon
seedlings infected with the trichothecene-producing strain Myrothecium ror-
idum. This finding led to the question as to whether the fungal toxins are
correlated with virulence of the pathogen. In order to investigate the role of
trichothecenes in plant pathogenesis, the biosynthesis of the terpenes was
blocked in Fusarium and Giberella strains by UV-induced or site-directed
mutagenesis. The UV-mutants of Fusarium sporotrichoides failed to produce
T2-toxin and they were found to be blocked at different steps of toxin
biosynthesis (Beremand 1987; Plattner et al. 1989). In a plant assay on
parsnip roots, only the wild type and a diacetoxyscirpenol-producing
mutant were highly virulent, whereas a trichodiene- and a calonectrin-
analogue producing mutant were significantly reduced in virulence. Further
assays revealed, that the mutants were able to complement each other in
restoring T2-toxin production in vitro and to partially restore virulence on
parsnip roots. It was therefore suggested that T2-toxin contributes to the vir-
ulence of E sporotrichoides on parsnip roots. In a candidate-gene approach,
the fox5 gene, encoding a trichodiene synthase putatively involved in diace-
toxyscirpenol biosynthesis in G. pulicaris, was disrupted. Mutants unable to
produce trichothecenes in culture were found to be significantly reduced in
virulence compared to the wild-type strain (Desjardins et al. 1992, 1993).
However, further experiments on potato tubers showed that toxin produc-
tion had no influence on virulence on this host.

Trichothecene-non-producing mutants were generated via transforma-
tion-mediated disruption of a gene (7ri5) putatively encoding a trichodiene
synthase. This enzyme catalyzes cyclization of farnesylpyrophosphate to tri-
chodiene and is the first enzyme in the trichothecene biosynthetic pathway.
Tri5 mutants showed strongly reduced virulence. Complementation of the
mutation in a Tri5-disrupted mutant restored the ability to produce tri-
chothecenes and wild-type or near wild-type levels of virulence on wheat
seedlings. These results provide further evidence that trichothecenes con-
tribute to the virulence of plant-pathogenic fungi (Proctor et al. 1997).

3.2.2 Ophiobolin A

The maize pathogenic fungus Helminthosporium maydis and other members
of the genus were found to produce the secondary metabolite ophiobolin A
(Fig. 2). The sesquiterpene causes leakage of electrolytes and metabolites
from cells in roots of maize seedlings (Tipton et al. 1977) and is believed to
cause the symptoms of brown spot disease in rice (Narain and Biswal 1992).
It was found that a possible inhibition of calmodulin in vivo was responsible
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for the phytotoxicity of the compound in maize roots (Leung et al. 1985).
Mode of action studies showed that ophiobolin A binds directly to calmod-
ulin (Leung et al. 1988). In bovine brain calmodulin-binding of the toxin to
a single lysine residue (Lys-75) was responsible for the inhibitory effect of
the compound. Since the structure of calmodulin is well conserved it is
believed that this proposed mode of action is also valid in plant cells (Au and
Leung 1998).

3.2.3 Colletotrichin

Several secondary metabolites have been identified from Colletotrichum
species, but only a few of them were shown to possess phytotoxic activity.
Colletotrichins (Fig. 2), secondary metabolites from C. nicotina, were iden-
tified as non-host specific phytotoxins. When the colletotrichins A, B or C
were applied to tobacco leaves, they induced symptoms similar to those of
tobacco anthracnose caused by C. nicotina (Gohbara et al. 1978). The chem-
ical structure of the compound consists of a unique norditerpene and a
polysubstituted y-pyrone. According to feeding experiments with labeled
precursors, the pyrone derives from a polyketide origin, while the terpene
part of the molecule is synthesized via geranylgernyl phosphate (Turner and
Aldridge 1983).

The colletotrichin A causes rapid loss of membrane integrity. Utrastructural
observations indicated that the plasmalemma was damaged by an unknown
mechanism (Gohbara et al. 1978). Other investigations showed that col-
letotrichins bind to the oxidized form of cytochrome and thereby inhibit the
electron flow in the mitochondrial respiration chain (Halestrap 1982). These
compounds may thus act via two independent mechanisms.

3.2.4 Fusicoccin

Fusicoccin A (Fig. 2) is a terpene phytotoxin produced by the fungus
Fusicoccum amygdali, a parasite of peach and almond trees (Agrios 1997).
It consists of a sugar and a terpene moiety, originally thought of as a degraded
sesterterpene. Incorporation studies revealed, however, that fusicoccin is a
diterpene rather than a sesterterpene (Turner and Aldridge 1983). Within
host leaves, fusicoccin activates the plasma membrane H*-ATPase by binding
to 14-3-3 proteins. In order to bind fusicoccin, the 14-3-3 protein requires the
presence of H*-ATPase (Baunsgaard et al. 1998), resulting in hyperpolariza-
tion of the plasma membrane, accompanied by an acidification of the cell
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wall. An irreversible opening of the stomata is thereby triggered, which causes
wilting of leaves and death of the plant.

3.3 Aromatic compounds and peptides

A large number of nitrogen-containing secondary metabolites have been
identified from fungal sources. Many of these compounds are biosynthe-
sized using common amino acids as building blocks. In this chapter we will
discuss phytotoxins whose carbon skeletons derive mainly from amino
acids.

3.3.1 Victorin

The host-specific HV-toxin (victorin) is an acyclic combination of glyoxylic
acid with five unusual amino acids (Fig. 2) produced by the pathogenic fun-
gus Cochliobolus (Helminthosporium) victoriae, which causes victoria blight
of oats. Only oat cultivars carrying the chromosomal marker Vb are suscep-
tible to the toxin (Wolpert et al. 2002). Victorin represents a pathogenicity
factor, since strains of the fungus deficient in toxin biosynthesis fail to cause
disease symptoms in host plants. Furthermore, the purified toxin provokes
all disease symptoms when applied to a susceptible host leaf. Resistance and
susceptibility of the plant are conferred by a dominant allele at the Vb locus.
This Vb locus appears to be either identical to the gene Pc-2 of oat plants or
closely linked. The gene Pc-2 is essential for the race-specific resistance
against the biotrophic rust fungus Puccinia coronata (Wolpert et al. 2002).

In vivo labelling experiments have shown that victorin C binds to a 100
kDa protein called victorin-binding protein. This protein is present only in
susceptible cultivars. The interaction of victorin and the Vb gene product
induced responses in Avena sativa characteristic of programmed cell death
(PCD) (Yao et al. 2002; Coffeen and Wolpert 2004), i.e. apoptotic DNA lad-
dering, heterochromatin activation and cell shrinkage (Wolpert et al. 2002).
Apart from the induction of PCD, victorin has been shown to contribute to
mitochondrial dysfunction (Curtis and Wolpert 2002).

In addition to the 100 kDa protein, the toxin binds to a 15 kDa protein
from both, susceptible and resistant oats. While both proteins seem to be
components of the glycine decarboxylase complex, it is unclear whether the
victorin binding protein is a product of the Vb locus. However, biochemical
studies have shown that victorin inhibits the activity of glycine decarboxy-
lase (Navarre and Wolpert 1995) and induces specific proteolytic cleavage



Genetics of Phytopathology: Secondary Metabolites as Virulence Determinants 151

of ribulose-1,5-bisphosphate carboxylase/oxygenase (Navarre and Wolpert
1999).

3.3.2 HC-toxin

In contrast to victorin, HC-toxin (Fig. 2), produced by the maize-pathogenic
fungus Cochliobolus (Helminthosporium) carbonum has been classified as a
virulence factor (for review, see Walton 1996). The cyclic tetrapeptide is pro-
duced by only one out of three races of the pathogen. This host-selective
toxin is not required for the pathogenicity of C. carbonum on maize, but
lesion size is increased upon infection with toxin-producing strains.
Resistance against toxin-producing races is conferred by a gene called Hm1,
responsible for reductive detoxification in resistant maize cultivars (Meeley
et al. 1992). The gene Hm1 encodes a carbonyl reductase, which reduces the
ketone function on the side chain of the 2-amino-8-0x0-9,10-epoxyoctde-
canoic acid. Deleting the Hm1 gene resulted in varieties highly susceptible
to both HC-toxin and HC toxin-producing races of C. carbonum (Walton
1996).

HC toxin is a cytostatic compound, as visualized by the inhibition of root
growth in susceptible maize in the presence of the toxin. The mode of action
of HC toxin is the inhibition of histone deacetylase (Brosch et al. 1995,
2001). The compound, as well as structurally related tetrapeptides, inhibits
histone deacetylases from a variety of organisms, but the enzyme of the pro-
ducing organism is relatively insensitive to HC-toxin (Baidyaroy et al. 2002).

3.3.3 Tentoxin

The cyclotetetrapeptide tentoxin (Fig. 2) is produced by Alternaria species
and acts in a non-host-selective manner. It has been shown to inhibit energy
transfer in chloroplasts during light dependent phosphorylation and causes
chlorosis in germinating seedlings of sensitive species (Prell and Day 2001).
In isolated thylakoids, tentoxin inhibits ATP synthesis at micromolar con-
centrations (Arntzen 1972). It acts as inhibitor of chloroplast F1-ATPase
(CF)) in susceptible plant species, but not on homologous enzymes from
chloroplasts of non-susceptible plants, bacteria or mitochondria (Pavlova
et al. 2004). Crystal structure studies revealed that tentoxin binds with high
affinity to the a/-subunit interface (Groth 2002). At higher concentrations,
the toxin binds to further low affinity binding sites, hereby re-activating ATP
hydrolysis (Pavlova et al. 2004).
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3.3.4 Fusaric acid

Fusaric acid (5-butylpicolinic acid) (Fig. 2) was first identified as a plant-
growth inhibitor from Fusarium moniliforme (Giberella fujikoroi) (Yabuta
et al. 1934). Natural compounds from fungal origin bearing a pyridine ring
are not very common. Radioactive labelling experiments have shown that
radioactive aspartate and acetate are incorporated in the pyridine ring
(Turner 1971). Fusaric acid was isolated from a number of Fusarium species
(Bacon et al. 1996), and is one of the first fungal metabolites linked with the
pathogenesis of Fusarium oxysporum which causes tomato wilt symptoms.
Whether fusaric acid is essential for pathogenesis in planta has not been
proven, however, it has been reported that the toxin was not responsible for
the formation of disease symptoms (Turner 1971). In addition to its sug-
gested role in plant pathogenesis, fusaric acid is a mycotoxin potentially toxic
to animals.

4 Regulation of secondary metabolism during pathogenic
development

Surprisingly few data exist directly documenting the regulation of secondary
metabolism during fungal pathogenesis. It is known that secondary metabo-
lite production is often closely linked to fungal morphogenesis, i.e. differen-
tiation of infection structures (Bennett 1983). The production of alkaloids,
for example, coincides with the formation of conidiospores in Penicillium
cyclopium and clamydospores in Claviceps purpurea. In Cephalosporium
acremonium, cephalosporin synthesis is concomitant with arthrospore
development (Zihner et al. 1983). These developmental processes are gener-
ally characteristic responses to nutrient deprivation and it is well docu-
mented that secondary metabolite production often occurs primarily within
the stationary phase (Bennett 1983). In C. carbonum, synthesis of the HC-
toxin is regulated during infection-related morphogenesis. Analysis of spore
germination fluids by plasma desorption mass spectrometry revealed that
spores induced to form appressoria in vitro synthesised and released the
toxin at a time coincident with maturation of appressoria. Spores incubated
under conditions that did not induce appressorium formation failed to pro-
duce toxin (Weiergang et al. 1996). Given these observations, one might
anticipate that pathways regulating secondary metabolite production may, at
least to some degree, share common components with pathways regulating
responses to nutrient deprivation and/or cellular differentiation. Evidence
for signalling components common to secondary metabolite formation and
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sporulation has come with the finding that both processes in A. nidulans are
negatively regulated by G-protein mediated signalling (Hicks et al. 1997).
The G-protein mediated signalling pathway also plays a critical role in dis-
ease related development in several fungi which cause disease of plants
(Bolker 1998), and there is now evidence that G-protein signalling also may
influence trichothecene production in Fusarium sporotrichioides (Tag et al.
2000). Targeted disruption of CZK3, a gene encoding a MAP kinase
homolog in Cercospora zeae-maydis, suppressed expression of genes pre-
dicted to participate in cercosporin biosynthesis and abolished cercosporin
production. The mutants grew faster on agar media than the wild type but
were deficient in conidiation and elicited only small chlorotic spots on inoc-
ulated maize leaves compared with rectangular necrotic lesions incited by
the wild type, indicating that cercosporin is a virulence factor in C. zeae-
maydis (Shim and Dunkle 2003). The above data raise the possibility that
conserved signalling pathways might also control the timely production of
other disease relevant secondary metabolites.

Melanin biosynthetic genes of Magnaporthe grisea and Colletotrichum lage-
narium appear to be transcriptionally activated by the putative transcription
factors Pigl and Cmrl, respectively (Sweigard et al. 1998; Tsuji et al. 2000).
Although structurally very similar, Cmr1 appears to regulate mycelial melanin
production while Pigl seems to regulate the production of the melanin
required for appressorium function in M. grisea. The control of the transcrip-
tion of the genes required for the biosynthesis of disease-related toxins is only
known in any detail for the HC-toxin biosynthetic genes of Cochliobolus car-
bonum. Transcription of these genes is controlled via TOXE, which encodes a
protein containing a bZIP basic region and four C-terminal ankyrin repeats
but lacking a true leucine zipper (Pedley and Walton 2001). TOXE has been
proposed to represent a member of a novel class of transcription factors
termed bANK proteins (Bussink et al. 2001). Whether this class of transcrip-
tion factors plays a conserved role in regulating toxin production is presently
unknown. TOXE has been shown to bind in vitro to the consensus sequence
ATCTCNCGNA present in the promoters of TOX2 genes, encoding HC-toxin
synthetase. Basic residues at the N-terminus and the C-terminal ankyrin
repeats of the transcription factor were shown to be essential for DNA binding
(Pedley and Walton 2001). TOXE is not known to regulate genes other than
those of the TOX2 cluster within which it resides. In this manner, TOXE resem-
bles the pathway-specific transcription factors TRI6 of Fusarium sporotri-
chiodes, and AfIR of species of Aspergillus, governing trichothecene and
aflatoxin biosynthesis, respectively (Woloshuk et al. 1994; Proctor et al. 1995;
Hohn et al. 1999). A structurally similar putative transcription factor,
OREFR, occurs within the cluster of genes responsible for the biosynthesis of the
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AK-toxin of Alternaria alternata (Tanaka and Tsuge 2000), although the role of
this gene in regulating expression of the genes within the cluster is not known.
In Fusarium verticillioides, the production of fumonisin is controlled by the
putative transcription factor Zfr1, whose activity in turn requires the presence
of the cyclin C like protein FCC1 (Shim and Woloshuk 2001; Flaherty and
Woloshuk 2004). In Aspergillus nidulans, a candidate global regulator of sec-
ondary metabolism, the nuclear protein LaeA, which positively regulates the
AlfR transcription factor, has been discovered recently (Bok and Keller 2004).
This factor is required for the expression of several secondary metabolite pro-
ducing gene clusters and, interestingly, putative LaeA homologs are present in
a number of other filamentous fungi, including important phytopathogenic
species such as M. grisea and F. sporotrichioides (Bok and Keller 2004). If these
LaeA homologues have a conserved regulatory function, not only would they
shed light on the control of secondary metabolite production in general, but
additionally their manipulation may present a future route towards the identi-
fication of novel fungal secondary metabolites with a role in plant disease.

Despite the great chemical diversity and effects of fungal secondary
metabolites, many of these share a common point of regulation. As indicated
by Fig. 4B, non-ribosomal peptide synthetases (NRPSs), polyketide syn-
thases (PKSs), hybrid NRPS/PKSs (Kroken et al. 2003; Lee et al. 2005) and
fatty acid synthases are involved in pathogenesis-related secondary metabo-
lism and therefore play a role in fungal pathogenicity or virulence. For these
groups of enzymes, activation by covalent attachment of the 4’-phospho-
pantetheine (P-pant) moiety of coenzyme A, and thus 4’-phosphopanteth-
einyl transferase (PPTase) activity, is essential (Fig. 4A) (Fichtlscherer et al.
2000; Mootz et al. 2002; Keszenman-Pereyra et al. 2003; Oberegger et al.
2003) (Fig. 4A). PPTases, due to their central role in fungal secondary
metabolism, may be regarded as key-elements in pathogenicity or virulence,
and could represent excellent fungicide targets.

5 Concluding remarks

Fungal secondary metabolism is characterized by an enormous diversity of
products and, consequently, of metabolic pathways and enzymes involved in
their synthesis. As several of these metabolites have been proven to be essen-
tial for pathogenicity, either biosynthetic or regulatory enzymes may be
excellent targets in chemical plant protection. The wealth of secondary
metabolites could also be used as a source of inhibitors of infection-related
morphogenesis. For example, different glisoprenins isolated from sub-
merged cultures of the deuteromycete Gliocladium roseum inhibited appres-
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Fig.4. Mechanism and role of 4’-phosphopantetheinyl transferases (4’-PPTases). A 4-PPTases
catalyze the posttranslational transfer of the 4’-phosphopantetheine moiety of CoA onto a
conserved serine residue within acyl- or peptidyl carriers. Thereby, the carrier proteins are con-
verted from their inactive apo form into the active holo form. The reaction is dependent on
Mg, and yields 3,5-ADP as a second product. After Mootz et al. (2001). B In order to synthe-
size secondary metabolites with relevance in pathogenesis (e.g. toxins, siderophores, melanin)
different enzymes such as non-ribosomal peptide synthases (NRPS), fatty acid synthases
(FAS), and polyketide synthases (PKS) require activation by 4’-phosphopantetheinylation.

sorium formation of M. grisea on inductive surfaces. As these compounds
did not exhibit phytotoxic activities, they may well serve as lead structures
for efficient rice blast fungicides (Thines et al. 1997). It is known that several
other fungal secondary metabolites exist that interfere with infection struc-
ture differentiation (Thines et al. 2004). These compounds may, in the
future, serve as highly specific fungicides directed against discreet stages of
the infection process. There is no doubt that new fungicides are urgently
required, as frequent occurrence of fungicide resistance drastically reduces
the number of useful fungicides that are available in modern agriculture
(Deising et al. 2002; Reimann and Deising 2005).
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Plant Breeding:
MADS ways of memorizing winter: vernalization
in weed and wheat

Giinter Theiflen

Abbreviations:

AGLn: AGAMOUS-LIKE GENE No. n

API: APETALAI

CAL: CAULIFLOWER

Col: Arabidopsis ecotype Columbia

CO: CONSTANS

ELFn: EARLY FLOWERINGn

FLC: FLOWERING LOCUS C

FLD: FLOWERING LOCUS D

FRI: FRIGIDA

FUL: FRUITFULL

Ler: Arabidopsis ecotype Landsberg erecta

LFY: LEAFY

MADS: acronym for the genes MCM1, AG, DEF, SRF (founding members of
the MADS-box gene family)

MAFn: MADS AFFECTING FLOWERINGn

PIEI: PHOTOPERIOD-INDEPENDENT EARLY FLOWERING]I
SOCI: SUPPRESSOR OF OVEREXPRESSION OF CONSTANSI
VIN3: VERNALIZATION INSENSITIVE3

VIPn: VERNALIZATION INDEPENDENCEn

VRNn: VERNALIZATIONn

1 Introduction

Flowering at the wrong time may seriously hamper reproductive success.
Therefore, flowering plants (angiosperms) have evolved multiple genetic
pathways to regulate the timing of the transition from vegetative develop-
ment to flowering in response to environmental stimuli and developmental
cues. Since plants live under very different environmental conditions and
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follow diverse life strategies, the mechanisms controlling the floral transition
vary a lot, often even within single species.

Flower development can be subdivided into several major steps, such as
floral induction, floral meristem formation, and floral organ development.
Precise genetic control of the different steps of flower development is
achieved by a hierarchy of interacting regulatory genes, many of which
encode transcription factors (for reviews, see Simpson et al. 1999; Theif8en
2001a; Mouradov et al. 2002). Close to the top of that hierarchy are “flower-
ing time genes’, which are triggered by developmental cues and environ-
mental factors such as plant age, day length and temperature. Flowering time
genes control the switch from vegetative to reproductive development by
activating “meristem identity genes” Meristem identity genes mediate the
transition from vegetative to inflorescence and floral meristems and work as
upstream regulators of “floral organ identity genes”. Combinatorial interac-
tions of these genes specify the identity of the different floral organs by acti-
vating organ-specific “realizator genes” (Theiflen 2001b). Most of the genes
controlling flower development belong to highly conserved gene families,
most prominently MADS-box genes encoding MADS-domain transcription
factors (Theiflen 2001b; Becker and TheifSen 2003; Kaufmann et al. 2005).

The analysis of natural variants (“ecotypes”) and of mutants that flower
later or earlier than wild type has revealed more than 80 gene loci that affect
flowering time in the model plant Arabidopsis thaliana (henceforth termed
Arabidopsis). These flowering time genes may contribute to two different
components of the floral transition: the production of flowering signals and
the competence of the shoot apical meristem to respond to these signals. The
flowering time mutants can be grouped into different classes defining differ-
ent pathways of floral induction. Arabidopsis is a facultative long-day plant
that responds to long days (indicating spring and summer) by flowering ear-
lier than when grown in short days. One class of mutants displays a reduced
response to changes in photoperiod (day length) when compared with wild
type. The corresponding genes may therefore participate in a “photoperiod
promotion pathway”. A second class of late-flowering mutants are unaffected
by changes in photoperiod. The corresponding genes thus may be involved in
an “autonomous promotion pathway”. This pathway monitors the signals of
an internal developmental clock that measures plant age. A third pathway that
mediates floral induction, the “gibberellic acid promotion pathway”, depends
on the plant hormone gibberellic acid. Here we are concerned with a fourth
pathway, which confers susceptibility to an extensive exposure to cold.

Many varieties of Arabidopsis and a wide range of other plants require
prolonged exposure to low temperatures to flower. In northern latitudes, this
requirement, often combined with responsiveness to long-day photoperiods,
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makes sure that the winter has passed and thus spring has actually arrived
before these plants invest their resources into flower formation (Henderson
et al. 2003; Amasino 2004). The Latin word for spring is vernum, and hence
the whole process has been termed vernalization. Vernalization requiring
plants are often winter annual or biennial plants, but also many perennials
require a promotion of flowering by cold.

Besides being an ecologically important trait, the requirement of vernaliza-
tion is also of great agronomical importance. In crop plants such as common
wheat (Triticum aestivum), a vernalization requirement distinguishes winter
varieties from spring varieties. A vernalization requirement may prevent some
otherwise beneficial varieties from being cultivated in areas without a pro-
nounced winter season, while winter varieties may exploit the growing season
more comprehensively (a potential advantage in cold climates).

Obviously, varieties that require vernalization and others that do not are
often found within the same species; even single gene changes can convert
plants without a vernalization requirement into plants that require vernal-
ization, or vice versa, suggesting that the genetic basis of vernalization is not
very complex. However, vernalization has some remarkable features, which
raises intriguing questions about its molecular mechanism. For example,
vernalization establishes a cellular memory that is stable through mitotic cell
divisions, but which is reset after meiosis, otherwise biennials would only be
biennial for one generation (Amasino 2004).

In recent years, researchers have begun to characterize the genes
involved, providing breakthroughs in our understanding of the molecular
mechanisms of vernalization in both the weed Arabidopsis and wheat, a
plant of prime agronomic importance. This demonstrated also both the
power and limitations of Arabidopsis as a flowering plant model system. So
let us see what has recently been learned about vernalization in weed and
wheat.

2 Vernalization in Arabidopsis
2.1 The major genes

Natural accessions of Arabidopsis have different requirements for vernaliza-
tion. The majority of ecotypes, especially those from higher latitudes, are
extremely late flowering if not exposed to longer periods of cold. The require-
ment for vernalization in these ecotypes, combined with a long-day promo-
tion of flowering, ensures that flowering occurs in spring to provide the
optimal conditions for seed set before the next winter season (Henderson
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et al. 2003). In contrast, ecotypes found at low latitudes, such as the Cape
Verde Island ecotype, and the laboratory ‘working horses’ Landsberg erecta
(Ler) and Columbia (Col), are early flowering even without cold exposure.

Genetic analyses that included pioneering work by Napp-Zinn (1955,
1957, 1987) more than half a century ago demonstrated that the differences
in flowering time and vernalization requirement between the different
ecotypes of Arabidopsis are mostly due to just two genetic loci, termed
FLOWERING LOCUS C (FLC) and FRIGIDA (FRI); both loci act synergisti-
cally to repress flowering (Clarke and Dean 1994; Koornneef et al. 1994,
1998; Henderson et al. 2003).

Molecular cloning of both FRI and FLC provided the starting point for
detailed studies on the molecular mechanism of vernalization, which is cur-
rently fueling an almost explosive increase in our knowledge about this
process. FRI encodes a novel protein with two potential coiled-coil domains
(Johanson et al. 2000). The role of FRI is to elevate the expression of FLC
(Fig. 1), but by which exact mechanism has remained unknown so far
(Amasino 2004). The FRI protein has a nuclear localization and is strongly
expressed in meristematic regions.

2.2 The central role of FLC

Molecular cloning of FLC (also known as FLF) revealed that it encodes a
MADS-domain protein that acts as a potent repressor of flowering (Michaels
and Amasino 1999; Sheldon et al. 1999, 2000). Expression of FLC, e.g. in trans-
genic plants, is sufficient to block flowering, and the role of FRI is to elevate
the expression of FLC to levels that block flowering. FLC blocks flowering by
inhibiting the expression of SOCI (also a MADS-box gene; formerly known as
AGL20) and FT, which are both promoters of flowering that upregulate the
floral meristem identity genes LEAFY (LFY) and APETALAI (API), respec-
tively (Fig. 1). At least in the case of SOCI, repression by FLC appears to be
direct, because the FLC protein binds, possibly together with other proteins, to
a cis-regulatory DNA sequence element termed “CArG-box” in the promoter
of the SOCI gene (Hepworth et al. 2002). In this way, FLC may prevent CON-
STANS (CO) from binding to a nearby promoter element. CO is a key gene in
the Arabidopsis photoperiod promotion pathway (Mouradov et al. 2002).
Vernalization promotes flowering by repressing FLC expression (Fig. 1).
The crucial role of FLC in the vernalization process is indicated by the
observation that there is a quantitative relationship between the duration of
cold treatment and the extent of down-regulation of FLC mRNA and pro-
tein (Sheldon et al. 2000). The vernalization-induced reduction in FLC
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Fig. 1. The role of vernalization in flowering pathways in weed (Arabidopsis; upper part) and
wheat (Triticum; lower part). Lines with arrows denote regulatory interactions resulting in
up-regulation of gene expression; lines with bars denote repression of gene expression.
MADS-box genes are boxed; boxes of the putatively orthologous SQUA-like MADS-box genes
are shaded. For Arabidopsis, only some of the many recently identified genes regulating FLC
expression are shown. For details, see text.

expression is mitotically stable and occurs in all plant tissues; FLC expres-
sion is restored in each generation, however, as is the characteristic resetting
of the requirement for low-temperature induction (Sheldon et al. 2000).
FLC thus shows all the characteristic features expected from a central player
in the vernalization process. Other vernalization-responsive late-flowering
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mutants, which are disrupted in genes that encode regulators of FLC, are
late-flowering due to elevated levels of FLC expression (Sheldon et al.
2000). This raises the question as to how expression of the FLC gene is reg-
ulated, especially with respect to exposure to low temperatures.

2.3 Complex regulation of FLC expression

Mutant analyses demonstrated that FLC is positively or negatively regulated
by a surprising number of genes, including FCA, FY, FPA, FVE (Rouse et al.
2002), VIP3 (Zhang et al. 2003), VIP4 (Zhang and van Nocker 2002), VIP5,
VIP6 (Oh et al. 2004), PIEI (Noh and Amasino 2003), ELF5 (Noh et al. 2004),
ELF7, ELF8 (He et al. 2004), FLD (He et al. 2003), FLK (Lim et al. 2004), VER-
NALIZATION1 (VRNI) (Levy et al. 2002), VRN2 (Gendall et al. 2001),
VERNALIZATION INSENSITIVE3 (VIN3) (Sung and Amasino 2004) and
HUA2 (Doyle et al. 2005). The still rapidly growing list of known regulators
of FLC not only includes genes involved in vernalization, but also genes of the
autonomous promotion pathway. Beyond its central role in vernalization,
FLC is thus a more general convergence point for flowering signals (Fig. 1).
Intriguingly, many of the genes that control FLC expression appear to
either alter chromatin structure or to be involved in RNA processing
(Henderson and Dean 2004). For example, VRN2 is related to the polycomb-
group protein SUPPRESSOR OF ZESTE-12, VIN3 contains a protein domain
termed PHD, and VIP5, VIP6, ELF7 and ELF8 are homologous to compo-
nents of the PAF1 complex of baker’s yeast. In fungi and animals relatives of
these proteins are involved in chromatin-remodelling complexes, which often
catalyze the modification of specific histone residues. These observations sug-
gest that vernalization functions via changes in histone modification and its
effects on gene expression, i.e. a “histone code” (Bastow et al. 2004). Work
along these lines is still in its infancy. However, examination of FLC chro-
matin has already revealed vernalization-mediated changes, such as reduction
in acetylation or increase in methylation of specific lysine residues in histone
3 (Bastow et al. 2004; He et al. 2004; Sung and Amasino 2004). Elevated
methylation of the respective lysine residues in histone 3 is associated with
the formation of stable heterochromatin in human and fruit fly cells, sug-
gesting that vernalization-mediated formation of heterochromatin at the FLC
locus might account for the vernalized state, at least in part (Amasino 2004).
However, vernalization might not be the only process that can lead to
heterochromatin formation at the FLClocus. Some alleles of FLC present in
certain rapid flowering varieties of Arabidopsis such as Ler are “resistant” to
upregulation by FRI. An example is the allele present in Ler, which has a
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transposable element inserted in one of its introns (Michaels et al. 2003).
The presence of this element renders FLC susceptible to silencing RNAs
(siRNAs) generated by homologous transposons elsewhere in the genome
(Liu et al. 2004). Targeting of the transposon by the siRNAs creates an
island of a chromatin modification (methylation of a specific lysine residue
of histone 3) typical for vernalization-induced heterochromatin at FLC (Liu
et al. 2004). In this way, transcription of FLC is shut down and flowering is
promoted as during vernalization, except that the long cold kiss of winter
is substituted by a hot cross-talk between transposable elements.

2.4 Role of other FLC-like genes

Null mutants of FLC are still responsive to vernalization, indicating that cold
can promote flowering by mechanisms other than the repression of FLC
(Michaels and Amasino 2001). There are five closely related paralogues of
FLC (FLC-like genes) in the Arabidopsis genome, termed MADS AFFECTING
FLOWERINGI (MAF1)-MAF5 (some of them, however, have also been pub-
lished under other names) (Becker and TheifSen 2003; Ratcliffe et al. 2003);
these genes are good candidates for providing functions similar to those of
FLC. The available experimental evidence suggests that MAFI-MAF5 are
indeed involved in the floral transition, where all except one (MAF5) may act
as floral repressors (Ratcliffe et al. 2003). Both MAFI and MAF5 appear to
contribute to the vernalization response, at least in some genetic back-
grounds, explaining how vernalization can promote flowering independent
of the repression of FLC (Ratcliffe et al. 2003).

An interesting twist in the tale of Arabidopsis vernalization became appar-
ent through detailed analysis of the MAF2 gene. maf2 mutant plants show a
pronounced vernalization response when subjected to relatively short periods
of cold. These brief cold periods are insufficient to elicit a strong flowering
response in wild type plants even though they result in a strong reduction in
FLC transcript and protein accumulation. MAF2 expression is less sensitive to
vernalization than that of FLC, and the gene exerts its activity as a floral repres-
sor independently or downstream of FLC transcription (Ratcliffe et al. 2003).
MAF2 prevents vernalization by short periods of cold, thus possibly compen-
sating for a decrease in FLC levels that occurs already after short cold expo-
sures. MAF2 might hence be part of a mechanism that exists to ensure that
vernalization does not occur in response to periods of cold that last only for a
few days (Ratcliffe et al. 2003). Having such a mechanism operating might be
advantageous for the plant, because a few cold days do not reliably indicate the
passage of winter; if these occur in the autumn and are followed by a number
of warm days, as is often the case in many habitats, without the MAF2-based
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mechanism flower development may set in before the ‘real winter’ has even
arrived and reproductive success will almost certainly be undermined.

3 Vernalization in winter varieties of wheat

Due to the small size of its completely sequenced genome (Arabidopsis
Genome Initiative 2000), short life cycle, low requirements for growth space,
and easy transformability, Arabidopsis is generally considered THE “model
plant”. The detailed insights into the vernalization process in Arabidopsis
sketched above thus raise the question as to which extent the same mecha-
nisms apply to other flowering plants, such as winter varieties of cereals. The
fact that neither FRI-like nor FLC-like genes have been found so far in the
draft sequence of the complete rice genome (Feng et al. 2002; Goff et al. 2002;
Sasaki et al. 2002; Yu et al. 2002) may represent an “autapomorphy” of a sub-
tropical grass that does not require adaptation to cold winters and hence has
lost the corresponding genes; alternatively, the system present in Arabidopsis
might be a relatively recent evolutionary achievement, and vernalization
might work quite different in grasses. So let’s move ‘from weed to wheat’ to
see how cereals “feel the chill before the bloom” (Henderson and Dean 2004).

Common wheat, or bread wheat ( Triticum aestivum), belongs to the most
important crop plants for human consumption on a global scale. Since vari-
eties with different growth habits are available, wheat can be grown in very
different environments. Winter wheats are sown in the fall and require ver-
nalization in order to flower, thus avoiding damage of the temperature-
sensitive floral meristems and organs by the cold. In contrast, spring wheats
can be sown in the spring, since they do not require vernalization, and hence
can be cultivated in climates without cold winters.

In diploid wheat (Triticum monococcum), two major genes are involved in
the vernalization response, termed VRNI and VRN2 (note that they are
unrelated to the genes with similar names in Arabidopsis) (Yan et al. 2003,
2004). Most of the variation in vernalization requirement in the agronomi-
cally important polyploidy wheats, such as common wheat, is controlled by
the VRNI locus, which divides wheats into winter and spring varieties (Yan
et al. 2003). In both diploid wheat and barley (Hordeum vulgare), VRNI is
dominant for spring growth habit, whereas VRN2 is dominant for winter
growth habit. Similar epistatic interactions and chromosomal locations indi-
cate that wheat and barley vernalization genes are orthologous (Yan et al.
2003, 2004, and references cited therein).

Both VRNI and VRN2 have recently been molecularly cloned by positional
approaches in Triticumn monococcum, which is a remarkable achievement in a
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huge genome rich in repetitive DNA such as that of wheat (Yan et al. 2003,
2004). VRNI represents a MADS-box gene with high similarity to the floral
meristem identity genes API from Arabidopsisand SQUAMOSA (SQUA) from
Antirrhinum; it is hence a member of the MADS-box gene subfamily termed
SQUA-like genes (for a recent classification of MADS-box genes, see Becker
and Theiflen 2003). In Arabidopsis, expression of AP1 is sufficient to trigger the
transition to flowering (Mandel and Yanofsky 1995), suggesting that VRNT is
an activator of flowering and that its upregulation is part of the vernalization
response of wheat. In line with this idea, prolonged cold exposure upregulates
VRNI1 expression in winter wheat, but not in spring varieties (Yan et al. 2003).
VRN?2 is a repressor of VRNI whose expression is repressed by vernaliza-
tion. VRN2 encodes a putative zinc finger transcription factor; a short region
of the protein probably involved in nuclear localization has similarity to the
flowering time gene CONSTANS (CO) and other CO-like genes from
Arabidopsis. CO is a key gene in the Arabidopsis photoperiod promotion
pathway (Mouradov et al. 2002). Expression of VRN2 is downregulated dur-
ing vernalization, in line with the gene being a repressor of flowering.
Accordingly, loss-of-function mutations in VRN2 inhibiting the activity of
the gene in winter wheat produce spring varieties (Yan et al. 2004).
Downregulation of the VRN2 gene is concomitant with an increase in VRNI
expression, consistent with the epistatic interaction between the two genes.
VRNI alleles from spring varieties have a deletion of 20 nucleotides in the
putative promoter region of the gene and hence are not repressed by VRN2.
Whether the respective DNA sequence constitutes a binding site for a tran-
scriptional repressor and whether that repressor is VRN2 is not known so
far—repression of VRNI by VRN2 could thus also be indirect (Fig. 1).

4 Evolution of the vernalization requirement

The increasing insights into the phylogeny of flowering plants and the
molecular mechanisms of vernalization also significantly further the under-
standing of the evolution of the vernalization requirement. The lineages that
led to extant Arabidopsis (a higher eudicotyledonous angiosperm) and wheat
(a monocotyledonous angiosperm) separated relatively early during flower-
ing plant evolution, according to recent molecular data about 140—-160 mil-
lion years ago (Chaw et al. 2004). Major groups of angiosperms may have
evolved in warm climates in which a vernalization response was not
required, and the ability to respond to vernalization may have originated
independently as different plant groups colonized habitats with a winter sea-
son (Amasino 2004). This makes it appear likely that the absence of a ver-
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nalization response is the ancestral state in the angiosperms, and that ver-
nalization requirements originated independently in the lineages that led to
Arabidopsis and wheat. The clear differences in the molecular components of
vernalization between Arabidopsis and wheat strongly corroborate that view
(Fig. 1). For example, the central floral repressors in both systems have been
recruited from different gene families, MADS-box genes (FLC in
Arabidopsis) and CO-like genes sensu lato (VRN2 in wheat). The VRNI gene
from wheat is a distantly related homologue of FLC from Arabidopsis within
the family of MIKC-type MADS-box genes; however, both genes are clearly
not orthologues, but members of different subfamilies of MIKC-type genes,
termed SQUA- and FLC-like genes, respectively (Becker and Theiflen 2003).
Neither have FLC-like genes ever been found so far in any monocot genome,
including the completely sequenced rice genome, nor has a SQUA-like gene
ever been found being involved in vernalization outside of the grasses. For
example, there are three functional SQUA-like genes in the Arabidopsis
genome, AP1, CAULIFLOWER (CAL), and FRUITFULL (FUL, also known as
AGLS) (Becker and Theiflen 2003). Phylogeny reconstructions suggest that
the ancestral function of SQUA-like genes was in specifying inflorescence or
floral meristem identity, which is maintained in many extant genes, and that
additional functions in specifying organ identity of sepals and petals (API),
or fruit valve identity (FUL) are probably derived (Theiflen et al. 2000;
Becker and Theiflen 2003). Importantly, none of these genes is involved in
vernalization. So the involvement of the wheat gene VRN in vernalization
is probably a recent addition to the growing list of SQUA-like genes that
underwent neofunctionalization events during evolution. The gene may rep-
resent an ancestral reproductive meristem identity gene that might have
been recruited for vernalization when it got under the control of a floral
repressor (VRN2) responding to cold treatment.

On the other hand, comparison of vernalization in Arabidopsis and wheat
shows also striking similarities (Fig. 1). For example, vernalization in both sys-
tems works via the repression of floral repressors probably encoding tran-
scription factors (FLC and VRN2, respectively), even though these are encoded
by members of different gene families. In both Arabidopsis and wheat, MADS-
box genes have obtained crucial functions during the vernalization-response
(Fig. 1). Even though these are from different subfamilies and the similarities
in both systems are quite probably the result of convergent evolution, this
observation adds to the remarkable versatility of MIKC-type MADS-box genes
in controlling diverse steps of flower development, from very early to very late
ones (Theifen et al. 2000; TheifSen 2001a). The predominance of MIKC-type
genes in the control of flower development might be based on the special
domain structure of MIKC-type proteins that facilitates the formation of mul-
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timeric protein complexes. These might be especially well suited for the accu-
rate recognition of target genes as required during the evolution of increas-
ingly complicated developmental processes (such as flower development)
generating increasingly complex and diverse structures (such as inflorescences
and flowers) (Kaufmann et al. 2005). When and at what taxonomic level the
Arabidopsis-type vernalization system originated is not clear.

All extant grasses (Poaceae) probably evolved from subtropical ancestors
that, like rice, had no vernalization requirement (Yan et al. 2004). Functional
conservation of the VRN2 gene of wheat was corroborated by comparison
with other systems that are, however, evolutionary quite closely related.
Downregulation of the VRN2 gene by RNA interference (RNAi) in winter
hexaploid wheat (variety Jagger) resulted in plants with an upregulation of a
VRNI gene orthologue and earlier flowering (Yan et al. 2004). Moreover,
screening of a collection of barley varieties from different parts of the world
showed presence of the VRN2 gene in all winter varieties and complete dele-
tion of the gene as well as a similar gene in close vicinity in all but one spring
variety (Yan et al. 2004). Thus, the wheat-type vernalization system may have
originated in the lineage that led to extant Pooideae (including wheat and
barley) after the lineage that led to extant Ehrhartoideae (including rice) had
branched off.

In addition to these insights into long-term processes the recent molecu-
lar data also revealed microevolutionary (intraspecific) events in both
Arabidopsis and wheat. Allelic variation at the FRI locus is an important
determinant of flowering time in wild Arabidopsis populations (reviewed by
Henderson et al. 2003). Many non-vernalization responsive, early flowering
varieties carry recessive null alleles of FRI. Molecular analyses of FRI alleles
in wild accessions indicated that the early flowering lifestyle originated sev-
eral times independently from winter-annual, vernalization-responsive
ancestors in Arabidopsis, possibly, e.g. to enable more than one generation of
plants per year (Henderson et al. 2003). An alternative route to the evolution
of summer-annual flowering behavior in Arabidopsis was provided by the
origin of weak (but not null) alleles of FLC (Michaels et al. 2003). Molecular
analyses suggest that weak FLC alleles have arisen independently at least
twice during the course of the evolution of Arabidopsis (Michaels et al.
2003), e.g. by the insertion of a transposable element into an intron (see
above). Caicedo et al. (2004) have recently shown that a latitudinal cline in
flowering time under over-winter conditions in the field is generated by
epistatic interactions between FRI and FLC.

Spring varieties evolved in parallel in wheat, barley and rye (Secale
cereale), possibly by loss of VRN2-binding sites in the promoter of VRNI
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(Yan et al. 2003), and also by loss-of-function mutations at the VRN2 locus
(Yan et al. 2004). Thus the wide adaptability of temperate cereals was facili-
tated at least to considerable extents by mutational events at just two genetic
loci.

5 Future prospects

Vernalization appears to be a suitable system to study as to how the evolu-
tion of genes, gene regulatory mechanisms and phenotypic traits brings
about plant adaptation at different time scales. Nevertheless, many basic
questions about the molecular mechanisms of vernalization still remain to
be answered even within the prime model system Arabidopsis, such as: what
is the primary cold sensor, and how is the duration of cold measured at the
molecular level? In a strict sense, all components that have been identified so
far in both Arabidopsis and wheat are just targets of the vernalization path-
way (Amasino 2004).

However, studies on vernalization are not only of interest for basic
research; also its agronomic implications are profound. Quite a number of
major field crops, including onion (Allium cepa), beet (Beta vulgaris), cau-
liflower (Brassica oleracea), carrot (Daucus carota), pea (Pisum sativum)
and spinach (Spinacia oleracea) require vernalization. In addition to
wheat, barley and rye, the list of vernalization requiring crops includes
even more major cereal grasses, e.g. oat (Avena sativa) (Henderson et al.
2003). The increasing knowledge about the control of flowering by envi-
ronmental cues, both in eudicots and cereal grasses, might provide the
tools to match crops in a better way to their environment and hence to
increase productivity, e.g. by transgenic technology or marker assisted
breeding (Theiflen 2002).

Even though there appear to be no FLC-like genes in the rice genome,
ectopic expression of the Arabidopsis gene FLC delays flowering in rice, and
the up-regulation of the SOCI orthologue of rice, OsSOCI, at the onset of
flowering initiation is delayed in the transgenic lines expressing the
Arabidopsis FLC gene. This suggests that some components of the flower-
ing pathways are shared between rice and Arabidopsis, and that it might be
possible to manipulate flowering time in cereals employing Arabidopsis
genes (Tadege et al. 2003). However, the increasing knowledge about the
molecular details of vernalization in cereals itself will also facilitate
approaches employing homologous rather than heterologous genetic
tools.
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6 Concluding remarks

There are two distantly related angiosperm model systems with completely
sequenced genomes and powerful tools for functional genomics available
now, Arabidopsis and rice (Theiflen and Becker 2004). However, for inves-
tigations on vernalization in wheat, they were only of limited help, because
Arabidopsis has a system that originated independently of and is hence
quite different from that of wheat, and rice has no vernalization-require-
ment at all. The investigators of wheat vernalization thus had to go
through the laborious and time consuming efforts of positional
approaches in a large genome (rather than a candidate gene approach) to
molecularly clone the major genes involved (Yan et al. 2003, 2004). This is
not to say that the rice genome sequence, which is largely collinear with
those of all other grasses and hence is considered the reference genome for
the world’s most important crop plants (Shimamoto and Kyozuka 2002),
was not helpful. On the contrary, genomic resources of rice facilitated con-
siderably cloning of the VRNI gene (Yan et al. 2003). However, when it
comes to the specific mechanistic details of a physiological process, ver-
nalization shows not only the power, but also the severe limitations of the
model system attitude in current research.

No one knows how many different systems of vernalization work in our
crops, or in plants in general. Knowledge about Arabidopsis, rice and wheat
may provide inspiration concerning general mechanisms involved (such as
chromatin remodelling), but will not necessarily provide us with good can-
didate genes in other systems, especially outside of the grasses (Poaceae) and
Brassicaceae (the plant families where wheat and Arabidopsis, respectively,
belong to). To understand even better the evolution and agronomic poten-
tial of vernalization there thus will hardly be an alternative to detailed, com-
parative studies in a number of well-chosen systems. Let us prepare for the
fact that a number of them will be no ‘model plants’ in a strict sense.
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Biotechnology:
Engineered male sterility in plant hybrid breeding

Kerstin Stockmeyer and Frank Kempken'

1 Introduction

The exploitation of hybrid crop varieties in agriculture has enabled enor-
mous increases in food productivity because of increased uniformity and
hybrid vigour. Because of the hybrid vigour or heterosis, hybrids are char-
acterized by increased resistance to diseases and enhanced performance in
different environments compared with the heterozygous hybrid progeny
(called F1 hybrids) over the homozygous parents (Lefort-Buson et al.
1987). Heterotic hybrid varieties in major crops such as wheat, cotton and
rice show more than 20% yield advantage over the conventional ones
under the same cultivation conditions. The increased vigour, uniformity
and yield of F1 hybrids have been exploited in most crops where the polli-
nation system allows for economical and convenient cross hybridization
(Basra 2000).

In hybrid seed production, one line is designated as the female parent
and the other as the male parent. The production of hybrid seeds requires
a pollination control system in order to prevent unwanted self-pollination
of the female line. Especially for those crop species with hermaphrodite
flowers, this can be a great challenge. Many methods exist to prevent self-
pollination of the female line during hybrid seed production: application of
male-specific gametocides, such as mitomycin and streptomycin (Jan and
Rutger 1988), some inter- and intraspecific crosses (Hanson and Conde
1985), mechanical removal of male flowers or anthers, or use of genetic
cytoplasmic (CMS) or nuclear-encoded male sterility. Naturally occurring
genetically male sterile plants generally maintain fully normal female func-
tions. The phenotypic characteristics of male sterility are very diverse from
the complete absence of male organs, the abortion of pollen at any step of
its development, the failure to develop normal sporogenous tissues, the
absence of stamens dehiscence or the inability of mature pollen to germi-
nate on compatible stigma.

The generation of, mainly nuclear-encoded, male sterility is the basis of
new reliable and cost-effective pollination control systems for genetic engi-
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neering that have been developed during the past decade. Thereby the
propagation of the male-sterile female parent lines is an important aspect
for the successful application of these systems for large-scale hybrid seed
production.

2 Natural male-sterility systems in plants

In order to prevent self-pollination of the female line, its pollen fertility must
be controlled to permit fertilization only by pollen from the male parent.
A simple way to establish a female line for hybrid seed production is to iden-
tify or create a line that is unable to produce viable pollen, like some maize
(Laughnan and Gabay-Laughnan 1983) or rice (Kadowaki et al. 1988) lines.
Therefore, this male-sterile line is unable to self-pollinate and seed forma-
tion is dependent upon pollen from the male line.

2.1 Cytoplasmic male sterility (CMS)

The mitochondrion serves essential functions as a centre for energy
metabolism in the development of eukaryotic organisms. Pollen develop-
ment in plants appears to be particularly influenced by mitochondrial
function. Rearrangements of the mitochondrial DNA leading to unique
chimeric genes sometimes result in the inability of the plant to produce
fertile pollen (Fig. 1). This process, known as cytoplasmic male sterility, is
particularly useful for the production of hybrid varieties with increased
crop productivity and has been extensively reviewed previously (Hanson
1991; Schnable and Wise 1998; Kempken and Pring 1999). The associa-
tion of CMS with abnormal mitochondrial gene expression has been
established in many plant species including maize (Levings 1990), petu-
nia (Bino 1985) and sorghum (Pring et al. 1995; Xu et al. 1995a). It is
thought that the disruption in pollen development is a consequence of
mitochondrial dysfunction associated with the chimeric genes.
Incorporation of the derived proteins into the mitochondrial membrane
or into multiprotein enzyme complexes may lead to the impairment of
mitochondrial function. A unique feature of CMS is that expression of the
trait is influenced by nuclear fertility restorer (RF) genes (Schnable and
Wise 1998; Kempken and Pring 1999). Nuclear restorer genes can sup-
press the effect of the sterile cytoplasm and restore fertility to the next
generation.



180 Genetics
&

o

%80 o®

s Ve
° {

&

Fig. 1. Fertile and sterile sorghum pollen. Iodine-potassium stain of sorghum pollen from a fer-
tile and sterile line: (A) Dark stained fertile pollen indicating starch production. (B) Unstained
pollen from the sterile line.

Cytoplasmic male sterility has been utilized in some important crops,
such as sunflower, rice and sorghum, to prevent unwanted pollinations, but
CMS mutants and restorer systems are not available for all crops used in
agriculture. In some cases CMS has been associated with increased disease
susceptibility. As an example, the T-cytoplasm of maize and its susceptibility
to race T of the southern corn leaf blight (Bipolaris maydis) led to an epi-
demic in the USA in 1970 (Wise et al. 1987). CMS is transmitted only mater-
nally and all progeny will be sterile. These CMS lines must be maintained by
repeated crossing to a sister line, the maintainer line, that is genetically iden-
tical except that it possesses normal cytoplasm and is male fertile. Fertility
restoration is essential in crops such as corn or sunflower where the har-
vested commodity from the F1 generation is a seed.

2.2 Nuclear male sterility

Anther and pollen development and fertilization processes have been the
subjects of much investigation (Goldberg et al. 1993). Many nuclear genes
involved in pollen development have been identified as mutants leading
to pollen abortion and male sterility. This nuclear (or genic) male steril-
ity is useful for hybrid seed production, but it has limitations due to the
need to maintain female parent lines as heterozygotes and the segregation
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of fertile and sterile plants each generation. Nuclear male sterility in
plants includes both spontaneous and engineered sterility. Spontaneous
mutations leading to nuclear male sterility commonly occur in plants
with a high frequency. Such mutations can easily be induced with chemi-
cal mutagents or ionising radiation. Nuclear male sterility is usually con-
trolled by a pair of recessive genes (msms). These recessive mutations
generally affect a huge number of functions and proteins, which for
example are involved in male meiosis (Glover et al. 1998). In many crops
nuclear male sterility does not permit effective production of population
with 100% male sterile plants. This fact seriously limits its use in hybrid
seed production.

3 Methods of producing male-sterile plants

Many different strategies to produce male-sterile plants by interfering
with the development and the metabolism of the tapetum (Mariani et al.
1990; van der Meer et al. 1992; Hernould et al. 1998) or pollen (Worrall
et al. 1992) in transgenic plants have been reported since the first trans-
genic male sterility system was described. Male sterility was further
induced by using sense or antisense suppression to inhibit essential genes
(Xu et al. 1995b; Luo et al. 2000) or by expressing aberrant mitochondr-
ial gene products (Hernould et al. 1993; He et al. 1996; Gomez-Casati
2002). However, any of the available strategies has drawbacks such as
interference with metabolism or general development or restriction to
specific species. Thus, a universal and dominant male sterility system with
efficient effect on pollen growth offering the possibility to efficiently
restore fertility would be a great advantage for the production of hybrid
seeds.

3.1 Selective destruction of tissues important for the production
of functional pollen

In these systems a gene encoding a protein that is able to disrupt cell function,
for example a ribonuclease that destroys the RNA of the tapetal cells (Mariani
et al. 1990; Burgess et al. 2002) or the diphtheria toxin A-chain (Koltunow
et al. 1990), is tissue-specific expressed. The tapetum serves as a good target
for those expression strategies, because it plays a critical role in the process of
pollen formation by secreting important substances for the pollen. In some of
these systems, sterility or fertility can be chemically regulated. For example,
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inducible sterility can be obtained through the expression of a gene encod-
ing a protein catalysing the conversion of a pro-herbicide into a toxic herbi-
cide only in male reproductive tissues. Kriete et al. (1996) induced
male-sterility in transgenic Nicotiana tabacum plants by tapetum-specific
deacetylation of the externally applied non-toxic compound N-acetyl-L-
phosphinothricin (N-ac-Pt). They constructed transgenic tobacco plants
expressing the argE gene from Escherichia coli under the control of the tape-
tum-specific tobacco TA29 promoter. The argE gene product represents an
N-acetyl-L-ornithine deacetylase, which removes the acetyl-group from N-
ac-Pt resulting in the cytotoxic compound L-phosphinothricin (Pt, glufosi-
nate). The application of N-ac-Pt led to empty anthers, resulting in
male-sterile plants. Another example for tissue-specific cell ablation is the
use of a bacterial phosphonate monoester hydrolase as a conditional lethal
gene (Dotson et al. 1996). The pehA gene from Burkholderia caryophilli, a
glyphosate metabolizing bacterium, was expressed in Arabidopsis thaliana
using a tapetum-specific promoter. The treatment of transgenic plants with
the protoxin glyceryl phosphate led to male sterility, because of the hydroly-
sis to glyphosate, which is a potent herbicide inhibiting the biosynthesis of
aromatic amino acids. Another example for such a chemical control is the
inducible expression of a male-sterility gene by the application of a chemi-
cal (Mariani et al. 1990; Goft et al. 1999). In order to induce fertility, the
expression of a fertility restorer gene that can complement the male sterility
or of a repressor of the male sterility gene can be chemically controlled
(Cigan and Albertsen 2000). An alternative method for fertility restoration
was suggested by Luo et al. (2000). They used a site-specific recombination
system FLP/FRT from yeast to restore fertility in Arabidopsis plants that were
male sterile because of the antisense expression of the pollen- and tapetum-
specific gene bcpl. Mariani et al. (1992) restored fertility of male-sterile
plants, which were generated through the use of the bacterial extracellular
ribonuclease barnase (Paddon et al. 1989), by expressing a specific inhibitor
of barnase, called barstar.

3.2 Changing of levels of metabolites needed for the production
of viable pollen

Another approach to induce male sterility in plants is metabolic engineering
of the carbohydrate supply. Carbohydrates are important for anther and
pollen development. The extracellular invertase Nin88 mediates phloem
unloading of carbohydrates via an apoplastic pathway. Tissue-specific anti-
sense repression of #nin88 in tobacco caused male-sterility, because early
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stages of pollen development were blocked (Goetz et al. 2001). McConn and
Browse (1996) demonstrated that Arabidopsis triple mutants, that contained
negligible levels of trienoic fatty acids, such as jasmonate, were male-sterile
and produced no seed. In that case the fertility could be restored through
exogenous application of jasmonate.

4 Strategies for the multiplication of male-sterile lines

Although the described systems have provided important informations
about anther and pollen development and ways to interfere with it, their
potential use for commercial hybrid seed production is often limited
because of the lack of cost-effective and efficient methods to multiply the
engineered male-sterile plants (for an overview of multiplication strategies,
see Perez-Prat und van Lookeren Campagne 2002).

4.1 Herbicide application for selection of male-sterile plants

A strategy for the propagation of male-sterile plants is to combine the gene
conferring dominant male sterility to a herbicide resistance gene (e.g. Denis
et al. 1993). After crossing the heterozygous male-sterile plants with a wild-
type line in the same genetic background the male-sterile progeny can be
selected by herbicide application. It is important to eliminate all the fertile
plants in order to prevent any self-pollination, because this would lead to
impure hybrid seeds.

4.2 Reversible male sterility

One approach to multiply male-sterile plants is to produce plants that are
conditionally fertile. During female parent multiplication, male-sterile
plants are treated with a fertility-restoring chemical and can be self-fertil-
ized. For the production of hybrid seeds, chemical application is not
required and the plants remain sterile. This system has some advantages
over the selection of male-sterile plants by herbicide application, for exam-
ple that the chemical has to be used during female parent multiplication
and not during hybrid seed production and it can be applied to a smaller
acreage.

Based on conditional male fertility several pollination control systems
have been described. An example for the regulation of male fertility is the
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manipulation of hormones in male reproductive tissues. Huang et al.
(2003) induced male-sterile plants through tissue-specific expression of
CKX1 and gai genes that are involved in oxidative cytokinin degradation
and gibberellin signal transduction. In this dominant male sterility system,
the male-sterile phenotype is achieved in transgenic plants that are
homozygous for the transgene and it is reversible by exogenous hormone
applications.

Alternatively, fertility can be induced through environmental condi-
tions. In rice TGMS (thermo-sensitive genetic male sterility) and PGMS
(photoperiod-sensitive genetic male sterility) mutants male sterility is
influenced by temperature and photoperiod length (He et al. 1999; Dong
et al. 2000). The temperature occurring just after panicle initiation is the
most critical in the expression of fertility and sterility. Most rice TGMS
lines are male fertile at temperatures under 25°C and sterile at higher tem-
peratures (Sun et al. 1989). The seeds of TGMS lines are multiplied by self-
ing when exposed to the right temperature at the critical growth stage.
PGMS lines are fertile under natural short day and male sterile under long
day conditions. In this system, the male-sterile female line can be propa-
gated by growing it under environmental conditions that restore fertility.
This approach requires no restorer lines and no chemical treatment.
However, controlled environmental conditions are needed to avoid the
plants to be constantly challenged by unfavourable fluctuations in their
environment.

Other conditional male fertility systems are based on a repressor of the
male sterility gene or on the inducible expression of a fertility restorer gene
that complements the defect (Cigan and Albertsen 2000).

4.3 Use of maintainer lines

The propagation of nuclear male-sterile plants can also be achieved through
a crossbreed with a maintainer plant, that is male fertile but produces 100%
male-sterile progeny when used to pollinate male-sterile plants. Perez-Prat
and van Lookeren Campagne (2002) developed pollen lethality and colour
maintainer lines that are useful for propagating both dominant and recessive
male-sterile lines. The maintainer plants are genetically identical to the
nuclear male-sterile plants except for a transgenic maintainer locus that ren-
ders it male fertile.

This system does not need chemical application, but otherwise a fertility
restorer gene is required and, in the case of colour maintainers, seed sorting
might also be needed.
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5 Conclusion

The use of hybrid crops is a very important advance in agriculture in recent
years, because hybrids have increased yield, wider environmental adaptabil-
ity and are more insect and disease resistant. One strategy that has been uti-
lized for hybrid crop production is male sterility. Biotechnology has enabled
new methods to obtain male-sterile plants and the development of several
new pollination control systems that could be useful for hybrid seed pro-
duction. However, the inability to propagate the male-sterile female parent
line in a cost-effective and efficient way limits the potential application for
the commercial production of hybrids. Future research should take into
account the importance of developing solutions for this propagation,
because for many crops it is the limiting factor for the production of hybrids
on a large scale.

References

Basra AS (ed) (2000) Hybrid seed production in vegetables: rationale and methods in selected
crops. Food Products Press, Binghamton, New York

Bino RJ (1985) Histological aspects of microsporogenesis in fertile, cytoplasmic male-sterile
and restored fertile Petunia hybrida. Theor Appl Genet 69:423-428

Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson
N (2002) A novel, two-component system for cell lethality and its use in engineering
nuclear male-sterility in plants. Plant J 31:113-125

Cigan AM, Albertsen MC (2000) Reversible nuclear genetic system for male sterility in trans-
genic plants. US patent number 6072102

Denis M, Delourme R, Gourret JP, Mariani C, Renard M (1993) Expression of engineered
nuclear male sterility in Brassica napus. Plant Physiol 101:1295-1304

Dong NV et al. (2000) Molecular mapping of a rice gene conditioning thermosensitive genic
male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet 100:727-734

Dotson SB, Lanahan MB, Smith AG, Kishore GM (1996) A phosphonate monoester hydrolase
from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plant. Plant
] 10:383-392

Glover J, Grelon M, Craig S, Chaudury A, Dennis L (1998) Cloning and characterisation of
MS5 from Arabidopsis: a gene critical in male meiosis. Plant J. 15:345-356

Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, T. R (2001) Induction of male steril-
ity in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA
98:6522-6527

Goff SA, Crossland LD, Privalle LS (1999) Control of gene expression in plants by receptor
mediated transactivation in the presence of a chemical ligand. US patent number 5880333

Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practi-
cal applications. Plant Cell 5:1217-1229

Gomez-Casati D, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A
mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in
engineered male sterile Arabidopsis thaliana. FEBS Lett 532:70-74

Hanson M (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet
25:461-486



186 Genetics

Hanson MR, Conde MF (1985) Function and variation of cytoplasmic genomes: lessons from
cytoplasmic-nuclear interactions affecting male sterility in plants. Int Rev Cytol
94:213-267

He S, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associated mito-
chondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA
93:11763-11768

He YQ, Yang J, Xu CG, Zhang ZG, Zhang Q (1999) Genetic bases of instability of male steril-
ity and fertility reversibility in photoperiod-sensitive genic male-sterile rice. Theor Appl
Genet 99:683-693

Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in
transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc
Natl Acad Sci USA 90:2370-2374

Hernould M, Suharsono, Zabaleta E, Carde JP, Litvak S, Araya A, Mouras A (1998)
Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants.
Plant Mol Biol 36:499-508

Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003)
Transgenic studies on the involvement of cytokinin and gibberellin in male development.
Plant Physiol 131:1270-1282

Jan CC, Rutger JN (1988) Mitomycin C- and streptomycin-induced male sterility in culti-
vated sunflower. Crop Science Madison: Crop Science Society of America 28:792-795

Kadowaki K, Osumi T, Nemoto H, Harada K, Shinjyo C (1988) Mitochondrial DNA poly-
morphism in male-sterile cytoplasm of rice. Theor Appl Genet 75:234-236

Kempken F, Pring DR (1999) Male sterility in higher plants—fundamentals and applications.
Prog Bot 60:139-166

Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and
spatial gene expression patterns occur during anther development. Plant Cell 2:1201-1224

Kriete G, Niehaus K, Perlick AM, Piihler A, Broer I (1996) Male sterility in transgenic tobacco
plants induced by tapetum-specific deacetylation of the externally applied non-toxic com-
pound N-acetyl-L-phosphinothricin. Plant ] 9:809-818

Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev
Genet 17:27-48

Lefort-Buson M, Guillot-Lemoine B, Datté Y (1987) Heterosis and genetic distance in rapeseed
(Brassica napus L): crosses between European and Asiatic selfed lines. Genome 29:413—-418

Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease
susceptibility. Science 250:942-947

Luo H, Lyznik LA, Gidoni D, Hodges TK (2000) FLP-mediated recombination for use in
hybrid plant production. Plant J 23:423-430

Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male
sterility in plants by a chimaeric ribonuclease gene. Nature 347:737-741.

Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans ]
(1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants.
Nature 357:384-387

McConn M, Browse J (1996) The critical requirement for linoleic acid in pollen development,
not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403-416

Paddon CJ, Vasantha N, Hartley RW (1989) Translation and processing of Bacillus amylolig-
uefaciens extracellular RNase. J Bacteriol 171:1185-1187

Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge
of propagating male-sterile plants. Trends Plant Science 7:199-203

Pring DR, Tang HV, Schertz KF (1995) Cytoplasmic male sterility and organelle DNAs of
sorghum. In: Levings CS IIT , Vasil IK (eds) The molecular biology of plant mitochondria.
Kluwer Academic Publishers, Dordrecht, pp 461-495

Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility
restoration. Trends Plant Science 3:175-180



Biotechnology: Engineered Male Sterility in Plant Hybrid Breeding 187

Sun ZX, Min SK, Xiong ZM (1989) A temperature-sensitive male sterile line found in rice.
Rice Genet Newslett 6:116-117

van der Meer IM, Stam ME, van Tunen AJ, Mol JNM, Stuitje AR (1992) Antisense inhibition
of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253-262

Wise RP, Pring DR, Gengenbach BG (1987) Mutation to male fertility and toxin insensitivity
in T-cytoplasm maize is associated with a frameshift in a mitochondrial open reading
frame. Proc Natl Acad Sci USA 84:2858-2862

Worrall D, Hird DL, Hodge R, Wyatt P, Draper J, Scott R (1992) Premature dissolution of the
microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell
4:759-771

Xu GW, Cui YX, Schertz KF, Hart GE (1995a) Isolation of mitochondrial DNA sequences that
distinguish male-sterility-inducing cytoplasms in Sorghum bicolor (L.) Moench. Theor
Appl Genet 90:1180-1187

Xu H, Knox RB, Taylor PE, Singh MB (1995b) Bcpl, a gene required for male fertility in
Arabidopsis. Proc Natl Acad Sci USA 92:2106-2110

Kerstin Stockmeyer and Frank Kempken'

Abteilung fiir Botanik mit Schwerpunkt Genetik und Molekularbiologie,
Botanisches Institut und Botanischer Garten,
Christian-Albrechts-Universitit zu Kiel, Olshausenstr. 40, D-24098 Kiel,
Germany

!Correspondence: e-mail: fkempken@bot.uni-kiel.de



Physiology



Membrane turnover in plants

Ulrike Homann

1 Introduction

The plasma membrane of plant cells has long been viewed as a rather static
system. However, recent studies have uncovered the importance of exo- and
endocytosis and membrane cycling for physiological functioning in a variety
of different plant cell types. It is now clear that the plasma membrane is a
dynamic system and subject to a constant exchange with intracellular com-
partments. This review attempts to summarize recent results on membrane
turnover in plant cells and to introduce possible regulatory mechanisms of
this process.

2 Membrane turnover during polarized cell growth

Cell growth is associated with irreversible increase in cell volume and surface
area. It requires secretion of cell wall components and addition of new
plasma membrane material. During non-polarized cell growth, this process
occurs uniformly over the whole cell whereas in tip growing cells it is
restricted to the apex. Polarized cell growth can be extremely fast with exten-
sion rates of more than 200 nm/s for pollen tubes. It is obvious that such a
rapid growth relies on a highly active secretory system. However, it also
requires fast membrane retrieval. Estimations from electron microscopy
studies clearly demonstrated that delivery of secretory vesicle membrane to
the tip may well exceed the amount of membrane material necessary for cell
growth (Picton and Steer 1983). The total vesicle production rate in pollen
tubes is maintained under similar conditions even when the growth rate
changes (Picton and Steer 1983). In extreme cases, only 10% of the delivered
membrane material is used for extension of the plasma membrane. Thus,
there is a large demand for endocytosis during tip growth. Similar results
were found for growing coleoptile cells. By comparing the area of vesicle
membrane delivered to the cell surface with the membrane area required
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for growth Phillips et al. (1988) found that at least 65% of the delivered
membrane must be recycled. Membrane turnover is therefore most likely an
integral part of cell growth in general.

2.1 Regulation of exocytosis

Studies on growth of pollen tubes and root hairs have so far mainly focused
on the regulation of vesicle delivery. From these investigations, two major
regulatory components have emerged: polarized ion gradients and fluxes, in
particular of calcium and protons and a dynamic cytoskeleton (for review,
see Hepler et al. 2001). Briefly, a tip focused Ca®* gradient, which is estab-
lished in polarized plant cells, is essential for growth. It presumably partici-
pates in exocytosis of secretory vesicles, although the exact mechanism and
interacting proteins have not yet been identified. The Ca®* gradient oscillates
with the same frequency as the oscillation in growth rate, but phase shifted.
In pollen tubes, an internal pH gradient that oscillates in relation to growth
has also been observed (Feijé et al. 1999). In addition, GTP-binding proteins
and kinases that act along the secretory pathway of tip growing cells have
been identified (Moutinho et al. 1998; Molendijk et al., 2001; Cheung et al.
2002; éamaj et al. 2002; Preuss et al. 2004).

Actin microfilaments are crucial for the delivery of secretory vesicles to
the apex of the cell. They are organized in longitudinally oriented bundles
up to the so-called “apical-clear zone” where secretory vesicles accumulate
prior to fusion with the plasma membrane (Hepler et al. 2001). In addition,
actin is supposed to be involved in the establishment of cell polarity and the
regulation of tip extensibility (Miller et al. 1999; Vidali and Hepler 2001). In
agreement with the central role of actin in the control of tip growth, numer-
ous actin binding proteins have been identified in pollen tubes and root
hairs (Chen et al. 2002; §amaj et al. 2002; Fan et al. 2004; Limmongkon et al.
2004).

2.2 Endocytosis during tip growth

In contrast to the detailed information on regulatory components of the
secretory pathway much less is known about endocytosis in tip growing
plant cells. Recent investigations have led to the conclusion that clathrin
plays an important role in endocytosis, not only in animal, but also in plant
cells (for review, see Holstein 2002). During clathrin-dependent endocyto-
sis, a complex structure of clathrin and associated proteins is assembled at
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specialized sites, called coated pits, in order to concentrate surface proteins
and to drive the invagination of the plasma membrane. This finally leads to
the formation of clathrin-coated endocytic vesicles. Clathrin-coated pits and
clathrin-coated vesicles have been observed in a variety of plants (Robinson
1996), including the subapical region of growing root hairs and pollen tubes
(Emons and Trass 1986). In addition, components of the clathrin coat could
be immunolocalized to the tip of pollen tubes (Blackbourn and Jackson
1996). These observations suggest that clathrin-dependent endocytosis
operates in polarized growth. A number of proteins that may be involved in
both cytoskeleton dynamics and endocytosis have recently been localized in
tips of root hairs (for review, see gamaj et al. 2004). However, their exact role
in endocytosis remains largely speculative.

New insights into the dynamics of membrane turnover in growing pollen
tubes have recently been gained from the application of FM dyes, mainly
FM4-64 and FM1-43. These dyes are increasingly used to study endocytosis
and vesicle trafficking in living plant cells. They partition into the outer
leaflet of the membrane and are believed not to penetrate through the
membrane. FM-dyes fluoresce significantly only after incorporation into
membranes. This makes the dye an ideal candidate for the investigation of
endocytosis in living cells. However, recent studies also demonstrated that
precautions have to be taken when the dye is used to probe for vesicle traf-
ficking in plant cells and analysis of FM-stained images is not always
straightforward. Depending on the cell type and time of incubation, differ-
ent organelles along the secretory and endocytic pathway may become
stained by the dye (Bolte et al. 2004). In guard cells, FM1-43 and FM2-10
were found to label not only endocytic structures but also mitochondria
(Meckel et al. 2004). In addition, long incubation times and/or high concen-
trations of FM-dyes may result in irreversible damage to cells (Meckel et al.
2004). Nevertheless, FM dyes provide a valuable tool for dissecting vesicle
trafficking. When applied to growing pollen tubes, FM4-64 resulted in a dis-
tinct staining pattern in the tube apex (Parton et al. 2001). This staining pat-
tern corresponds to the previously identified cone-shaped “apical-clear
zone” where secretory vesicles accumulate prior to fusion with the plasma
membrane. A similar staining pattern was found in Arabidopsis root hairs
incubated in FM4-64 (Ketelaar et al. 2003). In pollen tubes and root hairs the
cone-shaped distribution of FM4-64 was visible after about 5 and 15 min,
respectively. Considering that cytosolic structures stained by FM4-64 are
supposed to correspond to endocytic vesicles or endosomes, these results
seem at first glance difficult to explain. However, taking into account a fast
recycling of secretory vesicles, the result can be interpreted as follows.
During tip growth, a large amount of membrane material is retrieved via
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endocytosis. Most of these FM-stained vesicles are not transported along the
endocytic pathway to the vacuole, but are quickly recycled to deliver new cell
wall material. This will then lead to the accumulation of FM-stained secre-
tory vesicles found in the tip of pollen tubes and root hairs.

2.3 Coupling between exo- and endocytosis

The delivery of cell wall material and retrieval of excess membrane material
during growth requires a coordinated regulation of the rate of exo- and
endocytosis. How this coupling is achieved in tip growing cells is still
unknown. It is worth noting that a tight coupling between exo- and endocy-
tosis is most likely not only important for tip growing cells, but for cell
growth in general and during maturation of cells. After the cell has stopped
enlarging, the building of a thick cell wall still requires delivery of large
amounts of cell wall material and consequently membrane material. This
membrane material must be retrieved via endocytosis.

Possible mechanisms for the coupling between vesicle fusion and recy-
cling can be derived from studies on neurotransmission. During synaptic
transmission a large amount of vesicles filled with neurotransmitter fuse
with the plasma membrane. In order to sustain neurotransmitter release,
these vesicles need to be recycled. There are two routes for cycling of synap-
tic vesicles, a slow and a fast track (for review, see Galli and Hauker 2004).
Recycling via the slow track takes about 40-60 s and involves clathrin-medi-
ated endocytosis. The other fast recycling pathway allows cycling of vesicles
within less than a second. This pathway may require similar mechanisms of
exo- and endocytosis as the slow track but function at a higher rate.
Alternatively, the fast track could involve the so-called “kiss-and-run”
mechanism. This mechanism is characterized by successive rounds of tran-
sient opening and closing of the fusion pore without complete incorpora-
tion of the vesicular membrane into the plasma membrane. Such a
mechanism is not only found in neurons, but has been identified in a vari-
ety of cell types (Schneider 2001), including plant cells (Weise et al. 2000).
Using patch-clamp capacitance measurements, Weise et al. (2000) observed
transient and permanent fusion of vesicles in Zea mays coleoptile proto-
plasts. It has been suggested that delivery of cell wall components occurs
mainly via transient fusion, while tension-driven exocytosis (see also
below) accommodates for surface area increase (Morris and Homann
2001).

The advantage of transient fusion is a rapid cycling between a fusion and
a non-fusion state. During transient opening of the fusion pore secretory
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products can be released, while the vesicular matrix is retained for re-use in
subsequent cycles. Slow and fast cycling of vesicles generally exist in one cell.
How the cell shifts from the slow to the fast track is not fully understood. In
synapses, high cytosolic Ca** concentration has been shown to alter the
mode of exocytosis to the kiss-and-run mechanism (Ales et al. 1999).
Despite the detailed understanding of the mechanisms involved in exo- and
endocytosis in neurons the question of how the rate of exocytosis is adjusted
to an increase or decrease in endocytosis has not been fully answered. Recent
investigations show that synaptotagmin, a Ca?*-binding protein that is
required for Ca**-stimulated exocytosis, is also involved in the control of endo-
cytosis (Nicholson-Tomishima and Ryan 2004). Synaptotagmin interacts with
both the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attach-
ment protein receptor) complex, which is essential for membrane fusion, and
the clathrin adaptor complex AP-2. This suggests that synaptotagmin plays an
important role in coupling the rate of exocytosis to endocytosis. SNARE pro-
teins have also been identified in different plants and are supposed to function
at all fusion steps along the secretory and endocytic pathway. In addition,
homologs of synaptotagmin can be found in the Arabidopsis genome (Craxton
2001), even though their role in exo-and/or endocytosis is not clear. Thus, all
components necessary for fusion and fission of vesicles in neurons can be
found in plant cells. One may therefore suggest that the cycling of vesicles in
tip-growing plant cells may involve similar mechanisms as described for neu-
rons. However, in plant cells the rates of exo- and endocytosis have to be
adjusted in relation to cell growth, whereas in neurons endocytosis ensures that
the pool of secretory vesicles is not depleted during repetitive excitation and
that cells do not grow during neurotransmitter release. In addition, vesicle
cycling in neurons and tip-growing plant cells happens on different time scales,
i.e. seconds versus minutes. It is therefore most likely that further investigation
on the membrane turnover during polarized growth will also reveal completely
new regulatory mechanisms. Membrane tension, which has so far only been
suggested to be involved in surface area changes of guard cells and osmotically
treated protoplasts, may be one of these regulatory components (see below).

3 Guard cell functioning and tension modulated exo- and
endocytosis

Guard cells mediate opening and closing of the stomatal pores, which regu-
late gas exchange in plants. During stomatal movement, guard cells undergo
over a period of minutes large osmotically driven changes in cell volume and
consequently surface area. These large changes in surface area of up to 40%
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(Raschke 1979) cannot result from stretching of the existing membrane, as
the maximum possible stretching of membranes is limited to about 2%
(Wolfe et al. 1986). In addition, the large turgor pressure of up to 4 MPa
(Raschke 1979) prevents plant cell plasma membrane from maintaining
infoldings that could provide excess surface area. Alterations in surface area
must therefore be accomplished by addition and removal of membrane
material to and from the plasma membrane, respectively.

3.1 Exo- and endocytosis during osmotically driven surface area changes

To investigate osmotically driven changes in surface area, patch-clamp
capacitance measurements have been applied to guard cell protoplasts. This
technique allows the examination of exo- and endocytosis in single living
protoplasts in real time. Results from these measurements demonstrated
that osmotically induced swelling and shrinking of guard cell protoplasts are
associated with incorporation and removal of membrane material into and
out of the plasma membrane, respectively (Homann 1998). High resolution
capacitance measurements that allow the detection of single exo- and endo-
cytotic events indicated that fusion and fission of vesicles with a diameter of
around 300 nm mainly accommodates for changes in surface area (Homann
and Thiel 1999). These results were confirmed by fluorescence imaging of
guard cell protoplasts with confocal laser scanning microscopy (CLSM).
Staining of the plasma membrane with the fluorescent membrane probe
FM1-43 revealed fast vesicular retrieval of plasma membrane into the cyto-
plasm during shrinking of the cells (Kubitscheck et al. 2000).

Adjustment of surface area in response to osmotic imbalance also plays
an important role in cold acclimation of plants. During freezing ice forma-
tion occurs initially only extracellularly. The chemical potential of ice is
lower than that of water, which leads to water efflux and large reduction in
cell volume. During thawing, the process is reversed and cells swell. The fast
adjustment of surface area in response to osmotic imbalance is a prerequi-
site for cold acclimation. Wolfe et al. (1985) found that cold-acclimated
plants can swell without rupture to about twice the volume of those from
non-acclimated plants. Measurements of membrane tension in these cells
led to the hypothesis of tension-sensitive surface area regulation (Wolfe et al.
1985). This is in agreement with results derived from membrane capacitance
measurements of guard cell protoplasts. An increase in membrane tension as
a result of osmotically induced water influx or evoked by application of
hydrostatic pressure resulted in an increase in exocytotic activity which was
Ca** independent (Homann 1998; Bick et al. 2001).
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3.2 Surface area regulation and membrane tension

Tension-sensitive exo- and endocyotis have been implicated to be an
important component of surface area regulation not only in plant but also
in animal cells (Morris and Homann 2001). In general, cells seem to detect
and respond to derivations around a membrane tension set point. An
increase above this set point results in addition of membrane material to
the plasma membrane until the membrane tension set point is restored.
Upon decrease in membrane tension excess plasma membrane material is
retrieved to re-establish the resting tension. More detailed investigations
revealed that the effective membrane tension is not identical to the bilayer
tension alone but is strongly influenced by the interaction between the cor-
tical cytoskeleton and the plasma membrane (Raucher and Sheetz 1999).
Moreover, measurements on guard cell protoplasts implicated that stretch-
ing of the plasma membrane leads to the reinforcement of the actin
cytoskeleton (Bick et al. 2001). This in turn results in stabilisation of the
plasma membrane and desensitisation of pressure-driven vesicle fusion.
The mechanisms by which cells sense changes in membrane tension are not
yet known. Neither have the signal transduction pathways been identified
that link changes in membrane tension to changes in the rate of exo- or
endocytosis.

Considering the striking similarities between tension-sensitive exo- and
endocytosis in plant and animal cells (Morris and Homann 2001), it seems
likely that this mechanism was developed early in evolution. One may spec-
ulate that cells were exposed to large changes in environment and therefore
had to establish a mechanism that would prevent rupturing of the plasma
membrane under hypoosmotic conditions.

An important but yet unresolved question in tension modulated surface
area changes is the origin and quality of the membrane material which is
added and removed in the course of this process. In guard cells the addition
of membrane material could often be detected immediately after applica-
tion of hydrostatic pressure (see Fig. 1 in Bick et al. 2001). This indicates the
existence of an intracellular reservoir of membrane material that is
instantly available for incorporation into the plasma membrane. Guard cell
protoplasts can undergo several cycles of swelling and shrinking. It is there-
fore most likely that the membrane material that is retrieved from the
plasma membrane during surface area decrease is reused in subsequent cell
swelling. To address the question of the quality of the membrane that is
added and removed during surface area changes the fate of two types of K*
channels, the K* inward and K* outward rectifier, was investigated in guard
cell protoplasts (Homann and Thiel 2002; Hurst et al. 2004). The K* channels
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are localized in the plasma membrane of guard cells and play an important
role in guard cell functioning. Parallel measurements of membrane capaci-
tance and conductance in guard cell protoplasts implied that the vesicular
membrane, which is inserted and retrieved during pressure-driven changes
in surface area, carries active K* channels (Homann and Thiel 2002;
Hurst et al. 2004). From the parallel increase in current and capacitance,
the number of K* channels added for a given increase in surface area could
be estimated (Homann and Thiel 2002). This led to the conclusion that
only about one of nine vesicles that fuse with the plasma membrane
contains a K* channel (Homann and Thiel 2002). Together, the results
imply that membrane turnover during guard cell functioning is associated
with turnover of plasma membrane material and membrane proteins, in
particular K* channels.

3.3 Role of tension modulated exo- and endocytosis

Work on maize coleoptile cells provides evidence that tension driven exocy-
tosis and Ca?* stimulated exocytosis can exist as two independent exocytotic
pathways in one cell (Thiel et al. 2000). Ca* recruits membrane from a small
pool, whereas the tension driven pathway is Ca** independent and draws
membrane from a much larger reservoir. Ca**-stimulated exocytosis is pro-
posed to be a key element in hormone stimulated cell growth (Thiel et al.
1994), but the osmotically evoked increase in surface area suggests that ten-
sion-driven exocytosis also plays a role in cell elongation (Thiel et al. 2000).
Recent studies on surface area changes in turgid guard cells demonstrate that
reversible internalization of membrane material is not limited to plant pro-
toplasts. Using the plasma membrane marker FM4-64, Shope et al. (2003)
demonstrated that a decrease in surface area under hyperosmotic conditions
is correlated with the internalization of the membrane dye. The internaliza-
tion of plasma membrane material was reversed upon swelling of guard cells
in hypo-osmotic conditions. Endocytic vesicles could not be identified, sug-
gesting that these vesicles may be too small to incorporate a sufficient
amount of dye for detection with the fluorescent microscope. The regulatory
mechanism underlying the reversible internalization of plasma membrane
material in turgid guard cells may be similar to that found in swelling and
shrinking protoplasts. Even though a large expansion or even rupturing of
the plasma membrane is prevented by the cell wall the rather flexible wall of
guard cells (Willmer and Fricker 1996) may still allow for stretching of the
plasma membrane. During opening of the stomatal pore, osmotically driven
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water influx and subsequent increase in cell volume may result in sufficient
stretching of the plasma membrane to stimulate tension-driven exocytosis
(Fig. 1). In the process of stomatal closure, loss of water and decrease in cell
volume would be accompanied by a decrease in membrane tension that
would stimulate endocytosis (Fig. 1).

Changes in membrane tension may also occur at the very tip of growing
pollen tubes or root hairs. The cell wall at the tip of these cells is mainly com-
posed of pectins, and is thus highly plastic (Li et al. 1996). The plasma mem-
brane at the tip may therefore be subject to a much higher tension than in
the rest of the cell. This could directly contribute to an increased rate of exo-
cytosis at the tip. It would also explain why endocytosis in pollen tubes is
believed to occur mainly in an area just behind the apex and not at the very
tip (Parton et al. 2001).

/ H,0 influx

0O membrane tension
O\® increases

stimulation of exocytosis
closing( F opening
H,0 efflux \

membrane tension v
decreases A

stimulation of endocytosis

Fig. 1. Model for tension-driven exo- and endocytosis during stomatal movement.
Alterations in surface area during stomatal movement must be accomplished by addition and
removal of membrane material to and from the plasma membrane. This may be achieved via
tension driven exo- and endocytosis: During opening of the stomatal pore, osmotically driven
water influx causes stretching of the plasma membrane which stimulates exocytosis. In the
process of stomatal closure loss of water leads to a decrease in membrane tension and stimu-
lation of endocytosis
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4 Constitutive exo- and endocytosis
4.1 Constitutive turnover of K™ channels

Recent studies on membrane trafficking in plant cells have demonstrated
that the plasma membrane of non-growing and un-stimulated cells is not
static but subject to continuous membrane turnover. Investigations of
membrane turnover in turgid guard cells revealed a constitutive internal-
ization of small vesicles with a diameter of <270 nm (Meckel et al. 2004).
Endocytosis of these vesicles occurred under constant osmotic pressure
within a timescale of minutes. In guard cells transiently expressing the K*
channel KAT1 a subset of endocytic vesicles carried the ion channel
(Meckel et al. 2004). This points to a constitutive turnover of K* channels
in guard cells. KAT1 was also found in putative endosomal compartments,
which might correspond either to prevacuolar compartments or recycling
endosomes (Meckel et al. 2004). In contrast to KAT1, the protein TM23, a
plasma membrane protein with a 23 amino acid long transmembrane
domain of the human lysosomal protein LAMP1, was not constitutively
internalized (Meckel et al. 2005). This difference in constitutive endocyto-
sis may be explained by a lack of a motif that is recognized by the endocytic
machinery. This would imply the existence of a corresponding motif in the
K* channel KAT1. However, such an endocytic signal motif has not yet been
identified. The physiological function of a constitutive turnover of the K*
channel is not clear. It may act as a quality control ensuring that only func-
tional channels stay in the plasma membrane. Changes in constitutive
turnover could also affect the ion channel concentration and thus have a
strong impact on membrane transport properties. In animal cells, variation
in the stability of ion channels in the plasma membrane were, for example,
found to affect water absorption of epithelia cells (Rotin et al. 2001) and
have been implicated in functional plasticity of neurotransmission
(Luscher and Keller 2004).

4.2 Cycling of PIN proteins

Recent investigation on the functioning of the putative auxin export carrier
PIN1 have highlighted the importance of cycling for physiological function-
ing of membrane proteins in plants. The plant hormone auxin plays a cen-
tral role in the regulation of plant growth and development. Its function
depends on a polar transport of the phytohormone. This polar transport is
mediated by the asymmetric localization of PIN proteins. How the polarity
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of PIN proteins is established is not yet fully understood. PIN1 has been
shown to cycle between the plasma membrane and an internal compartment
(Steinmann et al. 1999; Geldner et al. 2001). Cycling of PIN was found to be
important for auxin transport, and the polarized localization of PINI
(Geldner et al. 2001, 2003). It is actin-dependent and can be blocked by
inhibitors which were thought to block specifically auxin transport, such as
TIBA (Geldner et al. 2001). The auxin transport inhibitors were also found
to inhibit trafficking of other membrane proteins. This led to the hypothesis
that cycling of PINI is essential for effective auxin transport. It is not yet
clear how cycling of PIN is connected to its function. One model suggests
that auxin is accumulated in PINT1 carrying vesicles. Fusion of these vesicles
with the plasma membrane would then lead to release of auxin (Baluska
et al. 2003). According to this model, cycling of PIN1 would allow vesicles to
be refilled with auxin. Alternatively, cycling may be associated with reversible
modifications of components of the auxin efflux machinery that are essen-
tial for auxin transport. So far, there is no direct evidence for either of these
models. The second big question arising from investigations of PIN local-
ization is how the polar distribution is established. Targeted trafficking to
subdomains of the plasma membrane may occur via sorting of proteins at
the Golgi and direct transport to the specific domains. Alternatively, estab-
lishment of polarity may involve recycling of proteins from the endosome.
The latter model is supported by studies that demonstrated that cycling of
PINTI is not only important for maintaining auxin efflux but also for the
polar distribution of the protein. Inhibitors such as brefeldin A (BFA) or
mutation of GNOM, an exchange factor for ARF GTPases (ARF-GEFs) that
regulate vesicle trafficking in a variety of organisms, resulted in the loss of
polar PIN localization (Geldner et al. 2001, 2003). BFA is known to inhibit
function of ARF-GEFs, which then results in a block of recruitment of vesi-
cle coat components and thus inhibition of vesicle budding from intracellu-
lar compartments (Robineau et al. 2000). The Arabidopsis protein GNOM is
a BFA sensitive ARF-GEF and is localized to endosomes (Geldner et al.
2003). Mutations in GNOM were found to result in developmental defects
that resembled those of BFA treated plants. Together with investigations of
BFA-resistant variants of GNOM, this led to the conclusion that GNOM is
required for PINT recycling between the plasma membrane and endosomal
compartments (Geldner et al. 2003).

Recently, another component that acts in the polar sorting of PIN pro-
teins has been identified. The serine—threonine kinase PINOID (PID) was
found to be essential for the polarized targeting of PIN proteins (Friml et al.
2004). The results suggest that PID acts as a switch, leading to apical or
subapical distribution of PIN depending on its presence above or below a
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certain threshold level. So far, it is unknown which proteins are targeted by
the PID kinase.

Judging from investigations on animal cells, it seems likely that a large
number of different factors which act on various points along the secretory
and endocytic pathway contribute to the distribution of proteins in the
plasma membrane. In animal cells the trafficking of the cystic fibrosis
transmembrane conductance regulator (CFTR), which localized to the api-
cal membrane of epithelial cells and vesicular targeting of the glutamate
receptor GLUT 4, has been extensively studied (for review, see Kleizen et al.
2000; Bryant et al. 2002; Bertrand and Frizzell 2003). A number of regula-
tory steps along the trafficking pathway of CFTR have been found to con-
tribute to normal epithelia functioning and control of polar CFTR channel
density. These regulatory mechanisms include control of ER and Golgi
export as well as exo- and endocytosis and cycling between the plasma
membrane and the recycling endosome (Betrand and Frizzell 2003).
Sequence homologies and analogous function between components
involved in GLUT 4 targeting and those implicated in auxin transport reg-
ulation have led to the hypothesis that similar mechanisms function in
cycling of transporters in animal and plant systems (Muday et al. 2003).
Future investigation will reveal which of the proposed mechanisms is
indeed related to cycling of proteins in plant cells and will certainly also
uncover plant specific control factors.
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Besides water:
Functions of plant membrane intrinsic proteins
and aquaporins

Ralf Kaldenhoff

1 Aquaporins in plants

Our view on the mechanism of membrane water transport has been
renewed by the molecular and functional characterization of aquaporins.
Further analysis of additional conductivities of the so-called MIPs (mem-
brane intrinsic proteins), in which aquaporins form a subclass, could easily
improve many concepts of plant physiology.

Functional assays of MIPs revealed conductivity to and specificity for
water and/or small solutes. The general biochemical mechanism of transport
and selectivity was understood after pore structure analysis of aquaporin
proteincrystals (Borgnia et al. 1999a,b). Aquaporins exhibit a characteristic
conserved arrangement with six transmembrane helices linked by three
extra- and two intracellular loops, N- and C-terminal domains protruding
into the cytoplasm and a highly conserved amino acid motif, asparagine-
proline-alanine (NPA), occurring twice in the pore region. Due to a suppos-
edly greater necessity for fine tuned water control, plant aquaporins are
particularly abundant with a greater diversity than the paralogs in meta-
zoans (Johanson et al. 2001). In Arabidopsis, for example, 35 MIP like iso-
forms were predicted from genome analysis. Some of them are, however,
assumed to be pseudogenes (Quigley et al. 2001). The plant aquaporins are
classified into four major subfamilies: plasma membrane intrinsic proteins
(PIPs), tonoplast intrinsic proteins (TIPs), Nodulin-26-like intrinsic pro-
teins (NLMs, NIPs), and small basic intrinsic proteins (SIPs) (Johanson and
Gustavsson 2002). The NLMs were the first aquaporins identified in plants,
and are located in the peribacteroid membrane of symbiotic root nodules.
Here they are believed to control transport of metabolites between the host
cytosol and bacteria (Fortin et al. 1987). However, these proteins are also
found in non-legume plants, and exhibit glycerol transport activity when
expressed heterologously in Xenopus oocytes (Dean et al. 1999; Weig and
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Jakob 2000; Ciavatta et al. 2001). The PIP subfamily can be further subdi-
vided into PIP1, PIP2 and PIP3. The proteins differ in the lengths of the
N- and C-termini, the former being longer in the PIP1s. The TIP subfamily
can be split into five subgroups (TIP1 to TIP5), in several higher plant
species (Johanson et al. 2001). With the exception of TIPs, analysis of
Physcomitrella patens ESTs showed a similar diversification into the PIP, TIP,
NIP and SIP as aquaporins of higher plants, indicating that gene duplication
events leading to the subfamilies must have occurred early during land plant
evolution (Borstlap 2002).

2 Plant aquaporins and water transport
2.1 Characterization of aquaporin function in Xenopus oocytes

For an initial characterization, aquaporin function is usually assessed in sin-
gle cell expression systems like Xenopus oocytes (Preston et al. 1992). These
cells possess relatively low intrinsic water permeability, are large in size,
manipulation by injection with capillary needles or isolation of membranes
is feasible, and oocytes are available in amounts of several hundred per sur-
gery. For an oocyte assay, a cDNA of a putative aquaporin is cloned into an
expression vector with a start site for an RNA polymerase close to Xenopus
translation consensus sites. In-vitro transcription of a cloned cDNA gener-
ates a cCRNA coding for the target protein. The cRNA is injected into the
oocyte and after an appropriate incubation time, the putative aquaporin
could be inserted into the oocyte plasma membrane, probably without an
aquaporin specific integration mechanism and simply because of the
hydrophobic nature of the proteins. Even aquaporins targeted to other
membranes, such as the plant tonoplast, were functionally integrated into
the oocyte plasma membrane (Maurel et al. 1995). An oocyte expressing the
putative aquaporin can now be subjected to hypo-osmotic conditions in
order to determine the membrane water permeability by following the cell
volume increase and determination of the swelling rate. In comparison to
controls that do not express further aquaporins, additional to the intrinsic
frog aquaporins, the contribution of the extra protein can be determined.
Regarding the initial swelling rate and the osmotic gradient, a membrane
water permeability coefficient can be calculated (Zhang and Verkman 1991).
It is given as P__ (osmotic permeability) or converted into P, (diffusive per-
meability). If the calculated permeability value is increased in comparison to
the values obtained for water-injected oocytes, the protein under investiga-
tion facilitates membrane water transport and fulfils one criterion of an
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aquaporin. A representative permeability coefficient for a control oocyte is
1x107% cm/s and 2x107 cm/s, e.g. for PIP1, up to 50x107° cm/s, e.g. for a
PIP2 from Samanea saman expressing in oocytes (Moshelion et al. 2002).
Major characteristics for an aquaporin mediated membrane water transport
are a low activation energy, a linear kinetic of water transport and a water
flux towards the lower water potential, which is independent of the chemi-
cal nature of the osmotic gradients.

Since all aquaporins are structurally related and share highly similar con-
sensus regions, particularly in the pore area, a similar function could be pos-
tulated. However, the osmotic water permeability (P,) as well as the
selectivity of aquaporins varies considerably. A combination of water per-
meability measurements in frog oocytes with quantitative immunoprecipi-
tation provided data on the single channel water permeability (P,) for
human aquaporins, e.g. 0.25 cm?/sx107* for AQP0O and 24 cm?/sx10™'
for AQP4 (Yang and Verkman 1997). Plant plasma membrane aquaporins
also displayed different aquaporin activity in oocytes (Chaumont et al. 2000;
Bots et al. 2005). Coexpression of ZmPIP1;2 and ZmPIP2;1 isoforms
induced a P, increase above that obtained for expression of a single aqua-
porin-species. A function of the C-terminal part of loop E in PIP interaction
was indicated by results of mutational analysis (Fetter et al. 2004). Also in the
plant, interaction or heteromer formation could be important, as was con-
cluded after analysis of PIP1 and PIP2 double antisense Arabidopsis plants
(Martre et al. 2002).

If the cells were kept in isoosmotic conditions and instead a gradient for
other substances such as urea, gases or glycerol was applied, facilitated trans-
port for the specific compound can be studied as long as it could be directly
determined or a correlated indirect effect on the molecules’ membrane
transport could be measured.

2.2 Other single cell systems

In a similar experimental set-up as for the Xenopus oocytes, other different sin-
gle cell systems were used to identify MIP function. For example, some yeast
laboratory strains do not express functional aquaporins and can be trans-
formed with a cDNA sequence coding for an aquaporin in a commercially
available expression vector. After digestion of the cell wall, yeast spheroblasts
were used for a swelling respective shrinking assay according to the principle
of the oocyte system or yeast plasma membrane vesicles were analyzed in a
stopped flow device (Laize et al. 1997; Lagree et al. 1998; Suga and Maeshima
2004). In addition, E. coli has been adopted for aquaporin functional analysis
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(Delamarche et al. 1999). Bacteria cells expressing the protein of interest were
subjected to a hyperosmotic shock and the change in cell shape was recorded
by electron microscopy. If an aquaporin was functionally expressed, the cyto-
plasm retracted due to rapid water loss and plasmolytic spaces were obtained.

2.3 Plant protoplasts for functional analysis of aquaporins

Employing plant protoplasts for the functional analysis has the advantage
that plant derived aquaporins can be studied in a homologous or at least in
a more similar system than oocytes, yeasts or E. coli. Various technical set-
ups were developed for determination of plant protoplast swelling kinetics.
From the technical point of view the most challenging task is the fixation of
the fragile protoplasts during the transfer to hypo-osmotic conditions. This
was achieved either by attachment to a pipette, gluing to glass slides or trans-
fer with the help of an oil coverage (Kaldenhoftf et al. 1995; Ramahaleo et al.
1999; Moshelion et al. 2002; Suga et al. 2002). Protoplast analysis was used
to determine the water permeability of specific plant tissues (Suga et al.
2002; Siefritz et al. 2004) or to characterize the effects of the inhibition of
aquaporin expression by mutation, respectively, after transformation. In this
regard the pressure probe is also a tool for analysis of hydraulic conductivity
of cells (Tournaire-Roux et al. 2003).

However, all plant techniques were restricted by the laborious techniques
to introduce a permanent transformation into plants, or screening for a
mutant. The fact that no aquaporin null plant system is at hand, such as, e.g.
those in yeast or E. colj, is also impeding a simple technical set-up for water
permeability analysis of specific aquaporins.

Inhibitor studies, e.g. with mercury, were used as a loophole for this
dilemma. However, interpretation of the obtained results remain difficult,
no matter which of the above mentioned techniques is applied to measure
water permeability. This is due to non-specific side effects of heavy metal
ions on metabolism, protein synthesis, or ion channels (Zhang and Tyerman
1999). In addition, plant aquaporins differ in sensitivity to mercury (Biela
et al. 1999) and heavy metal ions penetrate certain plant tissues and cells
imperfectly (Hill et al. 2004).

3 Effects of aquaporin water conductivity in plants

Despite the difficulties given by a comparable high diversity and large copy
number of aquaporin homologues in plants, the function of some plant
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aquaporins appears to be well studied with regard to water conductivity and
its relevance for plant physiology. It is extensively reviewed elsewhere
(Maurel 1997; Kaldenhoff and Eckert 1999; Tyerman et al. 1999; Luu and
Maurel 2005) and just adumbrated here.

Clear indications for a physiological relevance were obtained in trans-
genic plants with a modified expression of certain aquaporins or by analysis
of aquaporin mutations. First evidence for a function in cellular and whole
plant water transport came from plasma membrane aquaporin antisense
Arabidopsis plants. These developed a larger root system than comparable
controls (Kaldenhoff et al. 1998; Grote et al. 1999). Findings from experi-
ments with double antisense constructs targeted to a PIP1 and a PIP2 aqua-
porin indicated that these aquaporins play an important role in the recovery
from a water-deficient condition (Martre et al. 2002). Using antisense and
overexpression in tomato, a fruit ripening associated aquaporin was shown
to be important for organic acids and sugar composition of tomatoes (Chen
et al. 2001). The tobacco plasma membrane aquaporin NtAQP1 was found
to be important for root hydraulic conductivity and water stress resistance
(Siefritz et al. 2002). Results that imply a role of plasma membrane aqua-
porins in plant water management were also obtained from monocotyledon
species like barley (Katsuhara et al. 2003) or rice (Lian et al. 2004). Studies
with Arabidopsis PIP2 mutants demonstrated that besides the role for water
uptake (Javot et al. 2003), the regulation of aquaporins by pH is important
for a developmental adaptation to flooding (Tournaire-Roux et al. 2003).
Some reports specify a role of aquaporins during leaf movement, a process
with high rates of cellular water transport (Otto and Kaldenhoff 2000;
Moshelion et al. 2002; Siefritz et al. 2004). Constitutive overexpression of a
plasma membrane aquaporin from Arabidopsis in tobacco resulted in
increased growth rates under optimal irrigation (Aharon et al. 2003), which
was interpreted as the sum of effects on water uptake and photosynthesis
due to increased cellular water permeability.

4 Permeability to small non-ionic molecules
4.1 Glycerol

The aquaporin selectivity filter is not always producing exclusive strict water
conductivity. Some aquaporins exhibit an additional conductivity for glyc-
erol. A mechanism of water and glycerol transport by the E. coli GIpF glycerol
facilitator was obtained by cryo-electron microscopy and X-ray studies
(Fujiyoshi et al. 2002; de Groot et al. 2003). The data were used for molecular
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dynamics simulation similar to that performed for Aqpl (de Groot and
Grubmuller 2001). GIpF also contains the conserved NPA motifs at compa-
rable positions to the water selective aquaporins. However, the preference for
glycerol is achieved by aromatic amino acids at the periplasmatic side.
Tryptophan at position 48, phenylalanine at position 200 and arginine at
position 206 form a constriction, and the arginine residue builds hydrogen
bonds with two hydroxyl groups of the glycerol molecule. In this way, the
glycerol carbon backbone faces into the cavity assembled by the aromatic
amino acids mentioned above. Glycerol is separated from other linear poly-
ols and passes the pore in a single file. The GIpF pore is completely amphi-
pathic with polar residues opposed in a hydrophobic wall.

Plant NIPs exhibit similar selectivity to the GlpF. However, the NIP selec-
tivity filter differs (Biswas 2004). Computational analyses of this filter region,
the aromatic/Arg [ar/R] filter, lead to a classification of plant MIPs according
to pore size and amphiphilicity into eight subfamilies: one PIP, three TIP, two
NIP and two SIP. It was speculated that the specific features of the subfami-
lies result in divergent transport selectivity (Wallace and Roberts 2004).

The first plant aquaporins with glycerol permeability were found in soy-
bean root nodules (Rivers et al. 1997; Dean et al. 1999). The soybean nodulin
26 and Lotus japonicus LMIP2, showed a low intrinsic osmotic water perme-
ability and conductivity to uncharged polyols such as glycerol (Wallace et al.
2002). In addition, the PsNIP-1 from Pisum was shown to be an aquaglyc-
eroporin (Schuurmans et al. 2003). NIPs expressed in nodules were thought
to be part of a metabolite transfer system between the plant cytoplasm and
the symbiotic bacterioids (Rivers et al. 1997). The function of other NIPs,
which are expressed in non-symbiotic tissue or plants that generally do not
interact with N,-fixing bacteria remains rather speculative (Ciavatta et al.
2002).

Heterologous expression of two NIPs from Arabidopsis thaliana (ANLM 1
and AtNLM2) in baker’s yeast demonstrated a glycerol permease activity.
The transport was non-saturable up to 100 mM extracellular glycerol con-
centration (Weig and Jakob 2000). The urea-transporter mutant Dur3p was
used for complementation by CpNIP1, a Nod26-like protein from zucchini
(Cucurbita pepo L.), and by Arabidopsis thaliana delta-TIP or gamma-TIP
(Klebl et al. 2003).

42 CO,

It is generally accepted that gases, such as CO, or NH,, easily cross cell mem-
branes by dissolving in the membrane lipid. However, it has been suggested
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that their transport is facilitated by aquaporins because the gas permeability
of some cell membranes seems quite high, of others relatively low (Prasad
et al. 1998; Terashima and Ono 2002) and can be altered by inhibitors of
aquaporins (Cooper and Boron 1998; Niemietz and Tyerman 2000;
Terashima and Ono, 2002). Theoretically, these gas molecules are small
enough to traverse the central pore. Due to very high calculated CO, per-
meability values for biological membranes (48 cm/s) and supposedly exist-
ing unstirred layer effects, some authors think a gas transport facilitated by
aquaporins is unlikely (Hill et al. 2004). Experimental data, e.g. of plant
plasma membranes (Gimmler et al. 1990) or a cholesterol:lecithin bilayer,
were by a factor 10100 lower, but still relatively high in comparison to water
for instance (Gutknecht et al. 1977). The opinion that gas transport by pro-
teins is rather improbable was supported by experimental data showing no
differences, in animal lungs for example, if AQP1, AQP5 or both in combi-
nation were expressed or not expressed (Fang et al. 2002). In contrast, there
are experimental evidences from studies with Xenopus oocytes indicating
that the human AQP1 or the tobacco NtAQP1 increases CO, permeability
(Nakhoul et al. 1998a; Uehlein et al. 2003). This facilitated CO, transport
could be attributed to the gas channel function of aquaporins, effects on the
membrane lipid composition, or expression pattern of oocyte intrinsic genes
that could modify oocyte CO, permeability. Due to results of inhibitor stud-
ies and analysis of a mercury insensitive aquaporin mutant, these factors
could be excluded and a CO, conductivity for hAQP1 was suggested
(Cooper and Boron 1998). Physiological consequences of AQP1 facilitated
CO, transport are still a matter of debate (Cooper et al. 2002), because ani-
mals with an aquaporin gene knock-out did not show differences in CO,
exchange rates (Sun et al. 2001; Fang et al. 2002). On the other hand, results
obtained with human erythrocytes at low chemical gradients for CO,,
demonstrated that nearly the entire CO, transport across the membrane was
mediated by AQP1 and the HCO;—CI" transporter (Blank and Ehmke 2003).
It was concluded that these proteins might function as high affinity sites for
CO, transport across the erythrocyte membrane. Taken together, the situa-
tion in animals appears quite confusing. Diverse tissues, cells and mem-
branes with differing physiological functions were analysed and diverse
experimental set-ups were applied. As a consequence, the scientific discus-
sion with this regard is rather controversy.

In contrast to the situation in animals, data from physiological studies for
plant aquaporins indicate that a P_, is of physiological relevance. When
Vicia faba or Phaseolous vulgaris leaf discs were treated with sub-mM con-
centrations of HgCl,, the hydraulic permeability of the plasma membrane
was decreased by 70-80% as well as photosynthetic CO, fixation and the
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conductance for CO, from the intercellular spaces to the chloroplast stroma
(40% and 30% of controls). Although the HgCl, treatment should be con-
sidered with the same carefulness as in experiments investigating water
conductivity, it was assumed that the photosynthetic CO, uptake across
the plasma membrane of the mesophyll cells was facilitated by mercury-
sensitive aquaporins (Terashima and Ono 2002).

Plants with aquaporin knock-out or aquaporin overexpression show sev-
eral differences not only in water transport (Siefritz et al. 2002), but also in
CO, limited processes like photosynthesis. When grown under favourable
growth conditions, transgenic tobacco overexpressing an Arabidopsis PIP1b
showed significantly higher transpiration and photosynthetic rates than
non-transformed control plants (Aharon et al. 2003). However, these
authors did not relate the effects to an increase in CO, transport rates, but to
a facilitated water transport. Another study, also using an aquaporin from a
different species, was conducted with rice in order to confirm the hypothe-
sis that a PIP2 contributes to facilitated CO, transport (Hanba et al. 2004).
The transgenics overexpressed the barley aquaporin HvPIP2;1. Mesophyll
conductance (g) was determined for intact leaves by concurrent measure-
ments of gas exchange and carbon isotope ratio. The level of HvPIP2;1 was
found to be strongly related to g and the results were interpreted to suggest
that HvPIP2;1 has a role in CO, diffusion in rice leaves. A molecular charac-
terization of HvPIP2;1 was, however, not provided in this study. It remained
to be determined whether the correlation between aquaporin expression and
CO, permeability increase was just a side effect or causal to HvPIP2;1 CO,
conductance.

A molecular characterization of CO, conductance for a plant aquaporin
was performed in Xenopus oocytes with the tobacco NtAQP1 (Uehlein et al.
2003). Oocytes were injected with a NtAQP1 cRNA and a solution of car-
bonic anhydrase, an enzyme that accelerates the conversion of CO, to
HCO;,". In this experimental setup, CO, membrane transport rather than
the conversion reaction to HCO; is rate limiting for HCO; accumulation in
the oocyte (Gutknecht et al. 1977; Nakhoul et al. 1998b). Consequently,
CO, transport into the cells generated a decrease in intracellular pH. It was
found that CO, uptake rates in oocytes expressing NtAQP1 were 45%
higher and comparable with those of the human AQP1. It was concluded
that NtAQP1 has a function as a CO, membrane transport facilitator in the
oocyte expression system. The role for CO, transport in plants was studied
in tobacco expressing an NtAQP1 antisense construct or in plants with an
NtAQP1 coding region under the control of a tetracycline-inducible pro-
moter (Gutknecht et al. 1977; Gatz 1995) (TET-NtAQP1). Photosynthetic
C incorporation from “CO, was found to be dependent on NtAQP1
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expression: a low NtAQP1 level resulted in lower incorporation rates and
an increased NtAQP1 level resulted in higher incorporation rates com-
pared to controls. Other processes that are known to be regulated by CO,
steady state concentrations, such as stomatal movement and net photo-
synthesis in intact and detached leaves, were found to be dependent on the
level of NtAQPI1 expression in these plants. It was concluded that if a
relatively low CO, concentration gradient exists, as is the case between
a photosynthesising plant cell and the atmosphere, CO, permeability of
NtAQP1 is of substantial physiological significance. Additional yet unpub-
lished studies (J. Flexas, M. Ribas-Carb¢, J. Bota, J. Cifre, H. Medrano,
Palma d. Mallorca, Spain; B. Otto, R. Kaldenhoff Darmstadt, Germany) on
the NtAQPI antisense and NtAQP1 overexpressing plants showed that
other intrinsic factors that might change CO, transport rates, like rubisco
or carboanhydrase content respectively, were not changed. However, leaf
mesophyll conductance varied by about 30%, depending on the level of
NtAQP1 expression.

43 NH,

Like the debate about CO, conductivity of aquaporins and its implementation
on physiology, there is a great deal of lively discussion on NH, permeation.
Reports taking sides on aquaporin mediated NH, permeability (Nakhoul et al.
2001; Cooper et al. 2002) or providing facts against it were published (Zeidel
etal. 1994).

NH, uptake at low extracellular concentration in plants is catalyzed by
members of the ammonium transporter/methylammonium permease
(AMT/Mep) family (Ninnemann et al. 1994). Yet, no specific NH,/NH,
transporter, operating at elevated concentrations, has been isolated in any
organism. There is, however, evidence from inhibitor studies in plants in
favour of NH, permeability by aquaporins (Niemietz and Tyerman 2000).
Using functional complementation of a yeast ammonium transport mutant
(Dmep1-3), three wheat (Triticum aestivum) TIP2 aquaporins were char-
acterized, which complement the effect of the deletion mutation on
reduced ammonium supply (2 mM). When expressed in oocytes, an addi-
tional conductivity for the NH,* analogues methylammonium and for-
mamide was registered. Homology modelling of the TIP2 combined with
data from site directed mutagenesis and electrically measurements sug-
gested that NH, enters the pore, is protonated and released as NH,* (Jahn
et al. 2004). The specific TIP2 seems to fulfil the requirements for the pre-
dicted low affinity NH,* transporter. A physiological function has so far not
been circumstantiated.
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4.4 Boron

Boron is important as a micronutrient. The boron permeability of purified
plasma membrane vesicles obtained from squash (Cucurbita pepo) roots was
found to be 6 times higher than the permeability of microsomal vesicles and
boron permeation was partially inhibited by mercuric chloride or phloretin.
Expression of a PIP1 in oocytes increased the boron permeability by about
30% (Dordas et al. 2000).
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New insight into auxin perception, signal transduction
and transport

May Christian, Daniel Schenck, Michael Bottger, Bianka Steffens,
Hartwig Liithen

1 Growth stimulation: the classical effect of auxin

The auxin problem has been a classical question of plant physiology, ever
since the hormone was first identified (Went 1928) and isolated in the 1930s
(Kogl et al. 1934). Generations of researchers have trained their skills on the
mechanism of auxin action. However, the classical auxin effect is still not
completely understood. Obviously, micromolar concentrations trigger a cel-
lular programme that induces an enormous rise in rates of elongation
growth in shoots and coleoptiles. This effect is rapid, occurring after lag
phases of only 10-20 min (Dela Fuente and Leopold 1970). It is generally
accepted that the growth response is caused by a loosening of the cell wall
(e.g. Heyn 1931; Cleland 1967; for review, see Cosgrove 1999). But how does
the plant cell perceive the auxin signal? What is the nature of the signalling
chain? What kind of mechanism is responsible for gene expression and cell
wall loosening?

In recent years, there has been significant progress in our understanding of
auxin-induced gene expression. Having now a patchy idea of how auxin turns
on genes, the question is which of these genes are relevant for growth control.
Another field of rapid progress is the investigation of auxin transport, which
is a crucial prerequisite for the control of tropisms. This review will focus on
the new advances and will, in the end, try to define some open problems.

2 Auxin receptors

One paradigm of auxin research is the concept of an auxin receptor detect-
ing the auxin signal. Although auxin binding protein 1 (ABP1) has been
identified as one relevant auxin sensor, there is still space for other binding
proteins involved in auxin perception.
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2.1 Auxin binding protein 1 (ABP1)

Specific auxin binding to subcellular fractions of plant membranes was first
shown in the early 1970s in the pioneering work of Hertel (Hertel et al. 1972;
Dohrmann et al. 1978). The activity was localized in the endoplasmic retic-
ulum and was first purified to homogeneity by Lobler and Klambt (1985).
Auxin binding protein 1 (ABP1) was sequenced and cloned (Hesse et al.
1989). Meanwhile, sequence data from a variety of species are available (for
review, see Napier et al. 2002).

Figure 1 shows the structure of ABP1 and a number of synthetic oligopep-
tides and antibodies that were used in electrophysiological studies. It was
shown that anti-ABP1-antibodies inhibited auxin-induced membrane hyper-
polarization in tobacco protoplasts (Barbier-Brygoo et al. 1991) and also an
ATP-driven transmembrane current in maize protoplasts (Riick et al. 1993).
It was speculated from these data that extracellular ABP1 was an auxin recep-
tor for these electrophysiological effects. There were several problems with
this theory, however. Firstly, the amino acid sequence of ABP1 has a KDEL
motif at the C-terminus. This signal sequence marks the protein to be
retained in the lumen of the endoplasmic reticulum. How can a protein with
this cellular “return to sender” ZIP-code be functional at the outer surface of
the PM? Secondly, no transmembrane domains are predicted from the amino

Anti-ABP1-antibody

/ Putative \
auxin-binding
Auxin-binding  gomains
domain —— C-terminus
I Box a l Box b I Box ¢ KDEL
Internal peptide
SETPIHRHSCEE C-terminal peptide
D16-peptide YWDEQCIQESQK
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[Anti-intern- / D16] antibody

Fig. 1. Molecular structure of ABP1 and source of peptides and antibodies used in studies of
auxin signal transduction. The boxes a, b and ¢ are conserved domains involved in auxin
binding, whereas the C-terminus transmits the auxin signal to a yet unidentified trans plasma
membrane protein. Anti-ABP1-antibodies inhibit auxin action in protoplast systems. The
anti-box a-antibodies have auxin agonist activities, as have synthetical C-terminal peptides
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acid sequence of ABP1. ABP1 does not feel, look or smell like a typical hor-
mone receptor.

In order to overcome these conceptual problems the so-called docking
protein hypothesis was proposed (Fig. 2). Although most of the ABP1 is
trapped inside the cell, a small amount escaping the KDEL recycling may be
excreted to the apoplastic side of the plasma membrane. Upon binding
extracellular auxin, ABP1 is thought to undergo a conformational change,
facilitating binding to a hypothetical trans-membrane docking protein, from
where the signalling chain is started. This general concept was first outlined
by Kldambt as early as 1990, but the docking protein is still not identified. A
detailed description of Klambt’s original model and several variations is
included in our earlier review (Liithen et al. 1999). In this review, we will
focus on some more recent findings.

2.1.1 3-D structure of ABP1

ABP1 has been crystallized and a 1.9 A resolution structure has recently been
published (Woo et al. 2002) (Fig. 3). As was suggested earlier, ABP1 was
found to be a dimer. N- and C-terminus are linked by disulfide bridges

inside

goctki.ng / \
rotein / \

PM: H*-ATPase
/ modulation

Nucleus:

Gene expression ?

Fig. 2. Docking protein hypothesis. Upon binding auxin, the ABP1-auxin-complex attaches
to a not yet identified transmembrane docking protein, transmitting the auxin signal into the
cell
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C-terminus
B MDL

Fig. 3. Three-dimensional structure of ABP1, binding the synthetic auxin NAA, as derived
from X-ray diffraction data (Wu et al. 2002; PDB ID code: 1LRH). The figure was created
using Protein Explorer in conjunction with Chime 2.6 (Elsevier MDL) and Netscape as a
browser. A ABP1 dimer binding NAA, one monomer is hidden in this view. Note the auxin
binding site consisting of a Zn?* ion and the tryptophan residue 151 (W151).The C-terminus
sticks out of the structure and is coupled to the N-terminus via a disulfide bridge. B Detailed
view of the auxin binding domain of ABPI. The aromatic ring of auxin is in close proximity
of both W151 and the phenylalanine residue F65
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between cysteines (Fig. 3A). A Zn** ion is coordinatively bound to several
histidine residues, and also accounts for the binding to the carboxylic group
of the auxin molecule (Fig. 3B). The short helical structure at the C-termi-
nus, thought to link ABP1 to the docking protein, sticks out of the protein
complex.

Astonishingly, structures for the protein in complex and in the absence of
auxin do not differ very much. This may indicate that auxin binding causes
no dramatic conformational change in the molecule, probably because the
intermolecular movements are hampered by the disulfide bridges. It has
been suggested that crystallization prefers the bound state of ABP1, and that
in the native protein the C-terminal alpha-helix acts as a rigid rod conveying
movement to the protein’s surface. Auxin binding may pull the C-terminal
helix into the core of the protein, thus transferring the signal to the docking
protein (Fig. 3B). A role of a tryptophan residue close to the C-terminus
(W151) in this process has been proposed. The phenylalanine residue F65
might also be a part of the aromatic binding site. A possibility may also be
that auxin inserts between F65 and W151, thereby pushing the C-terminus
outward, facilitating its interaction with the docking protein. The KDEL
sequence alone is not essential for auxin binding or PM interaction (David
et al. 2001).

2.1.2 ABP1 mutants

An analysis of ABP1 knockout plants or overexpressors could decide the
much-debated question if ABP1 is the auxin receptor relevant for growth
control by simply putting them into an auxanometer. Aside from the fact
that building auxanometers for the tiny Arabidopsis hypocotyls is not an easy
task (Christian and Liithen 2000), this approach has not yet given a conclu-
sive answer.

A number of ABP1 mutants and transgenic ABP1 plants have been
described (Chen et al. 2001, 2003). In Arabidopsis, a knockout mutant was cre-
ated by T-DNA transformation (Chen et al. 2001). It was found that homozy-
gous plants were embryolethal. Although this demonstrates that ABP1 is an
important protein, it makes a direct investigation of auxin-induced growth in
a classical growth test impossible. Chen et al. therefore investigated the devel-
opment of wild type and abpl embryos and found that abpl develops nor-
mally until the early globular stages. During the mid-globular stages, several
tier cells start to elongate only in the wild type. After that, abpl embryo tier
cells form misoriented cross walls and are arrested in the globular stage. The
fact that critical cell elongation steps do not occur in abpl embryos is a telltale
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sign that ABP1 has to be somehow relevant for cell expansion, but rapid
growth responses to auxin have not yet been tested in these mutants.

In order to overcome the problem of embryolethality, Jones and cowork-
ers used DEX-inducible antisense plants (Chen et al. 2001). Treatment with
dexamethasone (DEX) drastically reduced the levels of ABPI expression in
BY-2 cells. Wild type cells develop an elongated shape, whereas DEX-
induced transformed cells do not elongate. DEX-induced cell cultures also
show a suppressed increase in fresh weight. These results also suggest a role
of ABP1 in growth control.

DEX-inducible Arabidopsis ABP1 antisense plants have also been created.
Using a CCD-auxanometer, our group investigated their auxin-induced
growth response, but found no difference to the wild type. However, it was
shown by the Jones group (Chen et al. 2001, 2003) that the ABP1 protein
level was near normal, although the ABP1 mRNA was dramatically reduced
in DEX-treated plants.

2.1.3 Indirect evidence for ABP1 as a growth relevant receptor at the single
cell level

The most convincing results for the receptor role of ABP1 came from stud-
ies of electrophysiological auxin responses of protoplasts (see above). The
“protoplast membrane hyperpolarization assay” (Barbier-Brygoo et al.
1991) responds to auxin, but is technically demanding and the physical
nature of the measured parameter is not clear. The situation is much better
for the whole cell patch clamp studies by Riick et al. (1993), which basically
confirmed the activity of anti-ABP1 antibodies on an auxin-induced trans-
membrane current. Both responses occur very early, long before the end of
the lag phase of the rapid growth response. Thus, it was unclear whether the
parameters measured in the electrophysiological systems were really linked
to the classical growth responses.

We investigated another single cell system, this time based on protoplast
swelling. Protoplasts were long known to swell upon auxin treatment (Keller
and Van Volkenburgh 1996). The time scale of this response is very similar to
that of the growth effect on organ level (Steffens and Liithen 2000). It has to be
stressed that the physical nature of protoplast swelling, which is due to subtle
changes in osmoregulation, is probably very different to turgor driven growth.

We could, however, show that protoplast swelling was generally inhibited
by pretreatment with anti-ABP1 antibodies. Antibodies directed against box
a, the putative auxin-binding pocket of ABP1 (Fig. 1), had auxin agonist
activity. Peptides with the C-terminal sequence of ABP1, which are supposed
to bind to the docking protein, induced an auxin-like effect (Steffens et al.
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2001). Taken together with earlier similar results from the electrophysiolog-
ical responses, these data clearly demonstrate that ABP1 is a receptor rele-
vant for auxin-induced protoplast swelling responses. But does that mean
that ABP1 has a role in growth control?

To address this question, our group used an auxin-insensitive signal
transduction mutant in tomato, diageotropica (Christian et al. 2003).
Hypocotyls of these plants do not respond to exogenously applied auxin,
and gravitropism is severely impaired (Muday et al. 1995). Protoplasts pre-
pared from dgt hypocotyls did not respond with a swelling to auxin, agonis-
tic anti-ABP1-antibodies (Christian et al. 2003) or the C-terminal peptide
(Schenck and Liithen, unpublished data). This shows that the mutation in
DGT interrupts a signalling chain that uses ABP1 as a receptor, as it impairs
the growth response. Although other interpretations are possible, one can
hardly escape the impression that ABP1 is somehow involved in the machin-
ery controlling growth, if it is not the only relevant auxin receptor.

On the other hand, there are studies of auxin-induced growth in the influ-
ence of inhibitors of the auxin efflux carrier that indicate that growth can
occur in the absence of extracellular auxin (Davies et al. 1974; Vesper and
Kuss 1990; Claussen et al. 1996). A similar line of evidence is based on an
analysis of mutants of putative auxin influx carriers (auxI, lax). They show
reduced sensitivity for those auxins that are taken up by carriers rather than
by diffusion (Bennett et al. 1996, 1998; Marchant et al. 2002). Therefore, all
available evidence supports models proposing a concerted action of extracel-
lular ABP1 and some kind of intracellular receptor. The decision in the life of
a cell to undergo an enormous irreversible increase in volume is a very seri-
ous one; it may well be that it is secured by more than one lock. Recent data
on protoplast swelling in pea protoplasts indicate that there are two distinct
pathways regulating this process, one of them being ABP1-dependent, the
other not (Yamagami et al. 2004).

The research in the last decade made clear that ABP1 is more than just a
red herring (Hertel 1995; Venis 1995), and made it very probable that it is
involved in growth control, perhaps without being the only player. An open
question is still how the signal is transmitted into the cell; the mysterious
docking protein is still not identified.

2.2 Other receptor candidates
2.2.1 ABP57

A Korean group recently isolated a soluble auxin binding protein from rice
(Kim et al. 2001) directly interacting with the plasma membrane ATPase.



226 Physiology

In assays of ATPase activity of isolated plasma membrane vesicles, this pro-
tein was able to stimulate ATPase activity in an auxin-dependent manner.
The very rapid direct stimulation of proton pumping observed in proto-
plasts may be in part mediated by this protein. On the other hand, ABP57
appears to be related to other proteins binding IAA like bovine serum albu-
min (in fact it was purified on anti-BSA affinity columns). BSA is known to
bind various aromatic substances like IAA and tryptophan. In addition,
ABP57 does not stimulate ATPase activity when the preparation is subject to
active synthetic auxins such as 2,4-D and NAA, which makes the relevance
of this candidate as a primary auxin receptor quite doubtful. It may however
have a function in modulating auxin action.

2.2.2 Receptor-like kinases (RLKs) — novel players in auxin perception?

In animal signalling, receptor tyrosine kinases (RTKs) play a pivotal role (see
Fantl et al. 1993 for review). Growth factors and hormones such as PDGE,
EGF and insulin are perceived by this class of receptors. In plant genome
databases, similar genes have been identified and were termed “receptor-like
kinases”. A gene family of such RLKs identified in Arabidopsis are the TMK
genes (Chang et al. 1992; Shiu and Bleecker 2001). Plant RLKs surprisingly
do not possess tyrosine kinase activity, but are serine-threonine kinases
(Zhang 1998). An unpublished observation from the Bleecker group links
TMKSs to auxin action. They created TMK-knockout mutants in Arabidopsis
using T-DNA-insertions. Tink1, tmk3, tmk4 triple mutants showed abnormal
hypocotyl and root growth. Root growth in these plants was completely
insensitive to auxin at concentrations of up to 30 wmol/l TAA (Dai et al.
2004). Auxin binding data of TMKSs have yet not been reported, and their
role in auxin signalling is not yet clearly defined. The available evidence,
however, makes them promising candidates for important players in auxin
action.

3 Auxin-induced gene expression

While there are at least some ideas how auxin is perceived by the cell, the
nature of the subsequent signalling steps is not known. Recent years have
brought, however, considerable progress in the understanding of the final
step of auxin signalling, the regulation of gene expression.

As in many other cases, mutant analysis has been used as a powerful tool
to identify key players in auxin signalling (Hobbie et al. 1994; Leyser 1997).
Several loci were found conferring auxin resistance and defining genes



New insight into auxin perception, signal transduction and transport 227

essential for a proper response. Many are supposed to be involved in, or were
transcriptionally dependent on, ubiquitin-mediated repressor degradation
(Gray et al. 2001; Ward and Estelle 2001; Zenser et al. 2001). In awareness of
this fact, the hunt for transcriptional regulators and mechanisms of auxin-
triggered proteolysis began to become a central point of auxin research
(Gray and Estelle 2000; Eckardt 2001; for review, see Kepinski and Leyser
2002; Leyser 2002).

3.1 Transcriptional regulators

Auxin mediates its several effects by controlling transcription of auxin-
induced genes. The helpers to keep expression under control are repressor
proteins (Kepinski and Leyser 2002; Leyser 2002) identified as members of
the Aux/IAA protein family (Abel et al. 1994; Ulmasov et al. 1997; Tiwari
et al. 2001). The products of the Aux/IAA genes are metabolically unstable
nuclear proteins (Abel and Theologis 1996).

Most of the Aux/IAA proteins contain four highly conserved domains
(Guilfoyle et al. 1998) (Fig. 4). Domain I is a potent transcriptional repression

A —m— Auxin-induced gene |—
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Fig.4. Aux/IAAsand ARFs are auxin-dependent transcription factors. A Auxin-induced gene
with an upstream auxin response element (AuxRE) in the promoter. B The ARFs (auxin
response factors) are activators or repressors of transcription, depending on composition
of their middle region. ARFs bind to AuxREs through a DNA-binding domain (DBD).
C Aux/IAAs are dominant repressors of ARF-enhanced transcription. Heterodimerization
between Aux/IAAs and ARFs occurs through domain IIT and IV. Domain II of Aux/IAAs con-
tains a degron sequence that is responsible for instability and high turnover rate of the pro-
tein. Additionally, this region facilitates SCFT™®!-binding, which is a prerequisite for protein
degradation
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domain (Tiwari et al. 2004), domain II confers instability to the protein
through a special degron sequence (Ramos et al. 2001). Gain-of-function
mutations caused an amino acid substitution within domain II, stabilizing
the respective protein by interrupting the turnover. This in turn leads to an
auxin-insensitive phenotype (Worley et al. 2000; Gray et al. 2001; Ouellet
et al. 2001; Ramos et al. 2001; Tiwari et al. 2001; Tian et al. 2002; Zenser et al.
2003). Domain II mutations in several Aux/IAA genes stabilized the corre-
sponding proteins (for review, see Reed 2001). Thus, the instability of
Aux/IAA proteins is essential for their function.

Domains III and IV are involved in homo- and heterodimerization with
other Aux/TAAs or auxin response factors (ARFs) and are required for auxin
responsiveness (Kim et al. 1997; Ouellet et al. 2001; Tiwari et al. 2003).

ARFs are transcriptional regulators that act in concert with Aux/IAAs. They
bind directly to DNA in the promoter region of auxin-induced genes through
a DNA-binding domain (DBD) and either activate or repress transcription,
depending on the central region of the ARF (Liscum and Reed 2002). A model
of auxin transcription factor functionality has been developed (Fig. 5): ARF
activators bind to a TGTCTC-sequence in the promoter region upstream of
auxin-induced genes, the so-called auxin response elements (AuxREs)
(Ulmasov et al. 1999; Hagen and Guilfoyle 2002). If auxin concentrations are
low, Aux/TIAA-repressors heterodimerize (Ulmasov et al. 1997; Tiwari et al.
2001) with ARFs and prevent transcription of relevant genes. Elevated auxin
levels cause instability of Aux/IAAs via an unknown mechanism. They dis-
sociate from DNA-bound ARFs, interact with SCF™™®! and are degraded by
the 26S proteasome (Hellmann and Estelle 2002). ARF activators then
homodimerize with free ARFs, enhancing transcription of auxin-induced
genes and transcription factors themselves, forming a feed-back loop (Leyser
2002).

This hypothetical mechanism would allow rapid fine tuning of auxin
responses. Additionally, the endless possible combinations of Aux/IAA-
repressors and ARF-activators as well as ARF-repressors allow a highly accu-
rate control of transcription at any time during the development and in
different tissues (Kim et al. 1997). This model also provides an acceptable
explanation for the fact that auxin has opposite effects in the aerial parts of
plants and roots. Beyond this, it implicates that auxin acts as a morphogen
(Liscum and Reed 2002; Bhalerao and Bennett 2003) and that auxin con-
centration is the crucial signal, starting signal transduction. Evidence came
from auxin transport mutant studies. It turned out that both functional
auxin influx and efflux carriers, and therefore the direction of auxin flux, are
essential for a proper auxin response (Bennett et al. 1998; Marchant et al.
1999, 2002).
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Fig. 5. Model for auxin-induced gene expression. Auxin response factors (ARFs) bind to
auxin response elements (AuxREs) in the promoter region of auxin-induced genes. At low
auxin concentrations, Aux/IAA proteins bind to the ARFs, blocking the expression of auxin-
induced genes. Increasing auxin concentration induces degradation of the Aux/IAA repres-
sors, thus triggering auxin-induced gene expression by removal of the blockade. Formation
of ARF-ARF homodimers might further increase the activation

Twenty-nine different Aux/IAAs and 23 ARFs have been found in
Arabidopsis (“Arabidopsis Genome Initiative 2000”; Hagen and Guilfoyle
2002). It remains unclear which of these proteins facilitate regulation of cell
elongation. The careful characterization of the rapidly increasing number of
relevant mutants or new biochemical approaches (Hayashi et al. 2003;
Armstrong et al. 2004) will help to deepen our understanding.

Loss-of-function mutants in the Aux/IAA gene family members showed
no visible phenotype, whereas most mutations in the ARF gene family mem-
bers result in visible phenotypes. It is suggested that the Aux/IAA proteins
have broader overlapping functions than the ARFs.

3.2 Protein degradation—an essential step in auxin signalling

Recent findings indicate that members of the Aux/IAA protein family interact
directly with SCFT™RL which is a part of the protein degradation machinery of
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the plant (Gray et al. 2001; Kepinski and Leyser 2004). Auxin appears to pro-
mote this interaction. Indeed, two members of the Aux/IAA family,
AXR3/IAA17 and AXR2/IAA7, are stabilized by mutations in parts of SCFTR!
or related proteins (Gray et al. 2001).

Ubiquitination labels a target protein for subsequent degradation by the
26S proteasome. In general, ubiquitin is initially activated by enzyme E1l
(Fig. 6, step A). In the following, it is transferred to the ubiquitin conjugat-
ing enzyme E2 (Fig. 6, step B) which acts in concert with the SCF-type ubig-
uitin ligase complex E3 SCF™®! (Zheng et al. 2002) to covalently bind
ubiquitin to the target protein (Fig. 6, step C). Gray et al. (1999) showed that
SCF™RI js essential for auxin response in Arabidopsis.

In Arabidopsis SCFT™®! contains an F-box receptor subunit (Fig. 6), TIRI,
which recognizes and interacts with substrate proteins (del Pozo and Estelle
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Fig. 6. Ubiquitin-mediated degradation of an Aux/IAA repressor through the SCF™™®! com
plex and the proteasome. The substrate (Aux/IAA) protein has to be labelled with a multiu-
biquitin-chain for recognition by the proteasome. A Activation of ubiquitin (Ub). B
Conjugation of Ub to the ubiquitin-chain. C Ligation of Ub to the substrate. D Passing on of
labelled repressor to the proteasome and following degradation. To fascilitate efficient activ-
ity of the SCF™™®! complex, it has to be modified at the cullin subunit (neddylation). a The
modifier (Nedd8), a RUB-like protein, is first activated by the heterodimer AXR1/ECRI1. b
The activity of SCFT™R! is regulated by neddylation and ¢ deneddylation. For explanations for
SCFTRI subunits, see text
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2000). TIR1 was identified to be important for auxin signalling by mutant
analysis. The auxin resistant phenotype of tirl and mutants of other com-
ponents of the SCF™R! linked ubiquitination to auxin signalling.
Overexpression studies of TIRI resulted in enhancement of auxin-induced
gene expression (Ruegger et al. 1998; Gray et al. 1999; del Pozo et al. 2002).

In addition, a cullin subunit (AtCUL) of SCF™®! and the RING-finger
protein RBX1 form a dimer, catalyzing ubiquitin chain formation (Seol
et al. 1999). The Skp1-like proteins ASK1 or ASK2, together with the cullin
AtCUL and RBX1, build the core of the SCF complex. The core compo-
nents associate with TIR1 through ASK1 or ASK2, bringing together the F-
box-bound substrate and the ubiquitin chain building/conjugating
cullin/RBX unit (Kishi and Yamao 1998; Wang et al. 2002). ASK1 together
with SnRK and a,, is involved in proteasomal binding of SCF™™! (Farras
et al. 2001).

The cullin is involved in another step of auxin-mediated proteolysis, the
conjugation of SCF™®! to the ubiquitin-related protein NEDD8/RUBI. This
so-called neddylation (Osaka et al. 1998; del Pozo and Estelle 1999; Deshaies
1999; Gray et al. 2000) and subsequent deneddylation (Fig. 6, steps b and ¢)
are required for regulation of SCF'™®! activity (Schwechheimer et al. 2001;
del Pozo et al. 2002; Eckardt 2003; Serino and Deng 2003; Wolf et al. 2003),
perhaps by modulating the binding and positioning of E2 or E2-ubiquitin
conjugate (Kawakami et al. 2001; Wu et al. 2002) or connection of SCF™®! to
the proteasome (von Arnim 2001). The COP9 signalosome (CNS), a highly
conserved complex cleaves the cullin-NEDD8/RUB conjugate (Lyapina et al.
2001).

Like ubiquitin, NEDD8/RUBI first has to be activated by a special enzyme
(Fig. 6, step a) (del Pozo et al. 2002). The RUB-activating enzyme is a het-
erodimer with homology to El. The amino-terminal half is called AXR1
(AUXIN RESISTANT 1), because loss of function confers auxin resistance to
the plants (Leyser et al. 1993; Timpte et al. 1995). ECR1 was identified to be
the missing C-terminal part of this enzyme (del Pozo et al. 1998). Mutants
of AXRI show slightly more severe auxin-related defects than tirl mutants.
The role of AXRI in auxin-mediated growth promotion is supported by the
fact that AXR1 is accumulated in dividing and elongating cells, but not pres-
ent in mature non-growing cells (del Pozo et al. 1998, 2002). These findings
brought the AXR1-part upstream of ubiquitination into play (del Pozo et al.
2002; Schwechheimer et al. 2002). In addition to the morphological pheno-
type of axrl, members of the Aux/IAA family of auxin-regulated genes are
not expressed normally in the mutant (Abel et al. 1994; Timpte et al. 1995).
It was obvious to assume that ubiquitination is involved in auxin-induced
gene expression.
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3.3 How does auxin regulate gene expression?

It is still unclear which of these steps of the complex degradation is con-
trolled by auxin. The repressor could be phosphorylated by an auxin-
dependent protein kinase promoting association with SCF'™! (Deshaies
et al. 1999; Christensen et al. 2000; Colén-Carmona 2000; Harari-
Steinberg and Chamowitz 2004), or auxin-regulated neddylation could be
responsible for auxin-triggered proteolysis. A hypothesis bringing this
together was suggested by Harari-Steinberg and Chamovitz (2004). They
see the COP9 signalosome as a master docking station. The COP9 signalo-
some would organize a kinase, its substrate and a specific SCF complex
that would ubiquitinate the phosphorylated substrate, and pass it on for
degradation by the proteasome. However, recent findings by Kepinski and
Leyser (2004) and Dharmasiri et al. (2003) question the role of phospho-
rylation in auxin-induced repressor degradation. Alternatively, the
involvement of a peptidyl-prolyl cis/trans isomerase (PPIase) of the parvu-
line type, isomerizing proline residues within domain II, was proposed
(Dharmasiri et al. 2003). At this point, attention has to be directed towards
the tomato mutant diageotropica (dgt). Dgt is insensitive to exogenously
applied auxin (Kelly and Bradford 1986). The DGT gene encodes a
cyclophilin (LeCYP1) (Oh et al. 2002, 2003; Ivanchenko and Lomax 2004)
that has intrinsic peptidyl-prolyl cis/trans isomerase activity. Interestingly,
the dgt mutation affects the expression of a subset of auxin-regulated genes
(Nebenfiihr et al. 2000). In contrast, Kepinski and Leyser (2004) found no
clues for an involvement of PPIases. They propose that auxin acts through
modification of TIRI or a tightly bound protein rather than Aux/TAA
modification. In any case repressor degradation is followed by ARF-
enhanced gene expression.

The characterization of mutants using combined genetic, physiological
and genomic approaches is a promising way to unravel the clue of interact-
ing signalling pathways. One good example is again the diageotropica
mutant. Nemhauser et al. (2004) examined the interdependency of brassi-
nosteroid (BR) and auxin signalling. They discovered that the ARF-binding
TGTCTC sequence, previously identified as an auxin-responsive promoter
element, is also enriched in some genes expressed following BR-treatment
(Goda et al. 2004). Interestingly, the auxin-insensitivity of dgt is recovered by
combined treatment with auxin and BR (Park 1998). Looking at reduced
gene expression in dgt, the attention falls on IAA5. We found IAA5 on the list
of genes induced by both auxin and BR (Nakamura et al. 2003). Thus, IJAA5
must be an intersection between brassinosteroid and auxin signalling,
involved in growth control.
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4 Auxin-upregulated genes and their functions
4.1 Plasma membrane ATPase

According to the acid growth theory of auxin action, auxin causes a stimu-
lation of the plasma membrane proton pump, leading to cell wall acidifica-
tion, cell wall loosening, and turgor-driven growth (Ruge 1937; Hager et al.
1971). The debate on this classical theory of plant physiology has been dis-
cussed in our earlier review and elsewhere. At least a significant fraction of
auxin-induced growth is, without any doubt, triggered by acid-induced wall
loosening (Liithen et al. 1990; Cleland et al. 1991; Rayle and Cleland 1992).
Expansins, the biochemical basis of cell wall loosening, have been discovered
(Cosgrove 1998). In any case, auxin-induced proton secretion has been
detected in many systems. To increase proton pumping, ATPase activity can
be stimulated, or more ATPase protein can be incorporated into the plasma
membrane. Both mechanisms have been experimentally demonstrated.
Riick et al. (1993) could detect in a whole cell patch clamp configuration an
ATP-dependent current reflecting proton pump activity. They could stimu-
late this current with IAA treatment or by application of anti-ABP1-anti-
bodies. The fact that this current occurred without any delay indicates that
gene expression was not involved. Hence, stimulation of the ATPase by auxin
via a very short signalling chain must have taken place.

On the other hand, Hager and co-workers (Hager et al. 1991) could
demonstrate immunologically a rapid de novo synthesis of plasma mem-
brane ATPase protein in response to auxin. Apparently the cell increases the
density of proton pump molecules at the membrane. However, there are iso-
forms of ATPase that are not induced by auxin (Jahn et al. 1995). Frias et al.
(1996) could clone the ATPase isoform MHA2 and demonstrate auxin
induction both on the mRNA and the protein level. At least some promoters
of PM-ATPase genes carry AuxREs (Kirschke et al. 2000).

4.2 Kt*-inward channels

Compared with H*-ATPase, the auxin induction of K*-channel genes is
much better characterized. The discovery of our group that auxin-induced
growth of maize coleoptiles was K*-dependent (Claussen et al. 1997) and
was reversibly inhibited by K*-channel blockers triggered the molecular
investigation of K*-channel gene expression by the Hedrich group
(Philippar et al. 1999). They could clone from maize coleoptiles a potassium
inward channel ZMKI. It could be shown that auxin treatment induced a
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marked increase of ZMKI mRNA on time scales consistent with the growth
response (Philippar et al. 1999), and an increase in channel density was
monitored by means of electrophysiology (Thiel and Weise 1999). The
potential promoter region of the ZMKI gene contains an AuxRE.

ZMK1 expression appears to have a function in the control of gravi- and
phototropism. Phototropic bending was not only accompanied by a differen-
tial redistribution of auxin across the coleoptile, but also by a differential
expression of ZMK1 in the shaded flank of the organ (Philippar et al. 1999;
Fuchs et al. 2003). This is very much in line with the classical Cholodny—Went
theory of phototropism (Cholodny 1924). Similar results were also obtained
after gravistimulation (Philippar et al. 1999; Fuchs, personal communication).

In Arabidopsis the K*-inward channel gene KATI was shown to be
induced by auxin in a similar manner as ZMKI in maize (Philippar et al.
2004). In KATI-knockout mutants, K*-currents after auxin stimulation were
characterized by reduced amplitudes. Thus, this change in the electrical
properties of the K*-uptake channel in hypocotyl protoplasts resulted from
an auxin-induced increase of active KAT1 proteins. However, the growth
responses, measured by a CCD-auxanometer at high temporal resolution,
were not changed from the wild type to the mutant. Thus it remains unclear
whether KAT1 is involved in growth control. It may well be that potassium
sensitivity of growth differs from monocots to dicots. This can, however be
only investigated using ZMK1 overproducers or knockouts in a growth test.

4.3 Others

There are a number of families of classical auxin-induced genes. In most
cases, their function is not yet clarified. Since auxin action is a rapid process,
the “early” auxin response genes in particular are relevant. They fall into
three major classes: Aux/IAAs, SAURs and GH3 genes. A recent review by
Hagen and Guilfoyle (2002) covers them in detail, so that only a brief dis-
cussion will be sufficient here.

Aux/IAAs are key players in controlling auxin-induced gene expression,
and, in a kind of feedback regulation, are auxin-induced genes by them-
selves. They have already been discussed in detail in section 3.3, “How does
auxin regulate gene expression?”, in this article. Small auxin-upregulated
genes (SAURs) code for 20-35kDa proteins and are expressed rapidly after
auxin treatment, mRNAs show up within 2-5 min. Their function is still
unknown, but may be related in some way to calcium signalling, as their
amino terminal has been reported to bind calmodulin (Yang and Poovaiah
2000). On the other hand, auxin-induced growth in wheat coleoptiles is not
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accompanied by transients of cytosolic calcium, as recently demonstrated by
Nagel-Volkmann (unpublished data).

5 Polar auxin transport

The ability of cells to respond to auxin is not the only prerequisite of auxin
action. For auxin to be able to control crucial steps of plant development,
concentration gradients across tissues have to be established. In 1924 the
Cholodny—Went hypothesis proposed a differential distribution of auxin in
lateral direction after light or gravity stimulus of shoots and coleoptiles (see
Went 1974 for a personal retrospect on these pioneering days of auxin phys-
iology). This is one of the classical theories of plant physiology and, although
having been challenged in all the years, recent molecular evidence appears to
support it quite convincingly.

For plant growth and other developmental processes, the directed trans-
port from the site of biosynthesis, the growing shoot tip, to the site of auxin
action, the elongation zone is important. Auxin moves between cells in a
polar fashion. Old studies showed that auxin movement in shoots was nor-
mally strictly basipetal (reviewed in Goldsmith 1977). Auxin also moves in
an acropetal direction, as in new leaf primordia (Reinhardt et al. 2003). In
roots, the Cholodny—Went theory had serious problems, since it was known
that the gravity stimulus was perceived in the root cap, and that a root cap
inhibitor had to be postulated to explain gravitropism. Although auxin is
known to inhibit root growth, how could auxin fit to this role, being pre-
dominantly transported in the opposite direction? To find a way out of this
problem, Evans, Hasenstein and others suggested that auxin is transported
acropetally through the parenchyma of the stele, is gravitropically redistrib-
uted in the root cap and transported basispetally in the cortex through the
elongation zones, where it mediates root differential growth in root gravit-
ropism (for review, see Moore and Evans 1986; Evans 1991). Among the
workers in the field, this version of the Cholodny—Went theory was termed
the “orange juice cooler model” of auxin transport (Hasenstein, personal
communication).

But how does auxin transport work and which transport mechanisms
exist? A first breakthrough was the isolation of probable elements of the
auxin efflux carrier complex from Arabidopsis thaliana, the PIN proteins.
Other proteins believed to be involved in auxin efflux belong to the class of
the ABC transporters, whereas AUX/LAX proteins are candidates for an
auxin influx carrier. Taken together, these proteins constitute the polar auxin
transport machinery.
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5.1 How does auxin efflux work?
5.1.1 The PINs

In the 1970s and 1980s, it was proposed that auxin was taken up by diffusion,
but excreted by an auxin efflux carrier (Rubery and Sheldrake 1974). In order
to explain the polar direction of auxin efflux, it was suggested that these car-
riers are asymmetrically distributed across the cell. Auxin would be taken up
at the upper side of a cell and excreted at the lower. Thus, it would move in a
polar fashion slowly from cell to cell, precisely what has been shown experi-
mentally. The effect of phytotropins and other inhibitors of polar auxin
transport and the fact that they bind to plasma membrane preparations
strongly supported this electrochemical theory of auxin transport.

In the 1980s and 1990s, the auxin efflux carrier resisted all attempts of
isolation by methods of protein biochemistry; it appeared that it was a
multi-protein complex that falls into pieces upon solubilization. Molecular
biology brought new ways to analyse auxin efflux. There are some mutants
that show defects in auxin transport and are therefore excellent tools for
identifying auxin carrier candidates. One mutant pinformed 1 (pinl) has a
“pin-like” inflorescence. The phenotype resembles the effect of phy-
totropins on Arabidopsis development. Therefore, PIN proteins were soon
postulated to play an important role in auxin transport. The most popular
idea was that PIN1 and other members of the PIN protein family were iden-
tical to the auxin efflux carrier or (more probably) a component of it (Friml
and Palme 2002). This concept was underscored dramatically by the local-
ization of the PIN1 gene product, which was found at the lower cell surface
of shoot cells, and at the lower side of parenchyma cells in the root central
cylinder (Gilweiler et al. 1998) (Fig. 7). Auxin transport inhibitors block
rapid actin-dependent cycling of PIN1 between the plasma membrane and
endosomal compartments (Geldner et al. 2001) and inhibit trafficking of
membrane proteins that are unrelated to auxin transport. PIN1 cycling is
of central importance for directed auxin transport, and auxin transport
inhibitors affect efflux by generally interfering with membrane-trafficking
processes.

Another PIN family member, PIN4, is localized in developing and mature
root meristems. Pin4 mutants are defective in establishing and maintaining
endogenous auxin gradients. They fail to canalize externally applied auxin
and display various patterning defects in both embryonic and seedling roots.
PIN4 plays a role in generating a sink for auxin below the quiescent centre
of the root meristem that is essential for auxin distribution and patterning
(Friml et al. 2002b).
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PIN3 is expressed in gravity-sensing tissues of the root tip. Most PIN3
protein is accumulated in the lateral cell surface. In the root columella, PIN3
is positioned symmetrically at the plasma membrane. When cells are gravis-
timulated, it is rapidly relocalized laterally (Friml et al. 2002a). PIN3 is a reg-
ulator of auxin efflux and especially for lateral auxin transport which is
important for tropic growth.

The role of PIN2 is to regulate basipetal auxin transport and gravitropism
of roots (Rashotte et al. 2000). In terms of the “orange juice cooler model”,
it can be speculated that PIN1 is important for transporting the auxin down
the shoot and acropetally to the root tip, PIN4 for focussing it to the gravi-
tationally sensitive cells, PIN3 for redistributing it, and PIN2 for transport-
ing it basipetally through the root cortex to the elongtion zone. In this model
auxin acts as the root cap inhibitor (Fig. 7). The resulting distribution of
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in cortex

Al
T high auxin
| PIN 1 in cortex
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Fig. 7. Model of auxin transport in a root before and after gravistimulation. A Auxin flow in
a vertical root according to the “orange juice cooler model” of auxin transport. Acropetal
auxin transport occurs in the stele and is mediated by the PIN1 carrier. PIN4 focuses the
auxin stream to the region around the quiescent center. In the gravistimulated cell, auxin is
distributed laterally by PIN3, and then transported basipetally through the cortex cells, pass-
ing the elongation zone of the root. B Upon gravistimulation auxin is redistributed by PIN3,
and more auxin is directed to the lower half of the root than to the upper part. Cell elonga-
tion is inhibited in the lower half of the root, resulting in a positive gravitropic curvature
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auxin across the root may not only affect and mediate gravitropism, but,
given the strong effect of IAA on the proton pump, also differentially control
ion uptake in various root tissues. More than 40 years ago, Liittge and Weigl
(1962) showed that distribution of radioactive sulfate across root tips dis-
plays a very distinct pattern: sulfate can penetrate the root only up to the
plerome-peribleme border, i.e. to the central cylinder, although in this zone
of the root there are no anatomical limitations (e.g. Casparian bands) for
apoplastic entry into the inner root tissues. It would be interesting to know
if such putative ionic intake patterns are changed by auxin treatment or by
gravistimulation of the roots.

5.1.2 ABC transporters as efflux carrier candidates

Besides (or in conjunction with) the PINs, members of another family of
putative efflux carriers are ATP-binding cassette (ABC) transporters. They
were shown to be responsible for the control of hypocotyl cell elongation
under certain light conditions (Sidler et al. 1998). It has been speculated that
they are the real efflux carriers and that the PIN protein, being easily redis-
tributed and repositioned, regulate their activity. Analysis of mutants defec-
tive in Arabidopsis ABC proteins indicates that primary active transport
might participate in the control of auxin homeostasis (Luschnig 2002).

It is clear that the direction of auxin transport in stems results from basal
PINT localization within cells (Noh et al. 2003). Mutations in two genes
homologous to those encoding ABC transporters were recently shown
to block polar auxin transport in the hypocotyls of Arabidopsis seedlings.
Noh et al. (2004) showed that mdr (multi-drug resistance) mutants display
enhanced gravitropism and phototropism. These phenotypes resulted from
a disruption of the normal accumulation of PIN1 protein along the basal
end of hypocotyl cells. Lateral auxin conductance is increased as a result,
enhancing growth differentials responsible for the two tropic responses.

5.2 How does auxin influx work?

The influx of auxin is the other part of the auxin transport machinery.
Originally, it has been supposed that auxin is exclusively taken up passively
by diffusion. It was suggested that only the free acid of IAA can penetrate the
plasma membrane. In the cytoplasm (pH=7, pK  auxin=4.8) most of the
auxin occurs as the IAA™ anion, which can leave the cell only via the efflux
carrier. Auxin is thus accumulated by the so-called ion trap mechanism.
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Some early electrophysiological data (Rubery and Sheldrake 1974) sug-
gested the involvement of carriers in auxin uptake operating in concert with
the ion trap mechanism. As in the case of the efflux carriers, mutant studies
paved the way to the identification of promising candidates for such trans-
porters. One of them, AUX1 (Bennett et al. 1996), is located at the plasma
membrane (Swarup et al. 2004). It belongs to a family of amino acid/auxin
permeases. AUXI represents a polytopic membrane protein composed of 11
transmembrane spanning domains. In addition, a large auxI allelic series
containing null, partial-loss-of-function, and conditional mutations was
characterized to identify the functionally important domains and amino
acid residues within the polypeptide. Almost all partial-loss-of-function and
null alleles cluster in the core permease region, with one notable exception,
auxl-7, which modifies the function of the external C-terminal domain
(Swarup et al. 2004). AUXI1 activity appears to be required for polar and
phloem-based auxin transport in root and shoot tissues. For example,
basipetal transport via lateral root cap and epidermal tissues requires AUX1
for auxin influx, and PIN2 for auxin efflux, as discussed above (Rashotte
et al. 2000; Swarup et al. 2001). Also, processes other than gravitropism have
been linked to the interactions of auxin transport proteins. Acropetal auxin
transport, which is dependent on AUX1 and PIN1, leads to the positioning
of newly formed leaf primordia (Reinhardt et al. 2003).

As there are several PIN genes for controlling auxin efflux, there are sev-
eral auxin influx carrier genes: AUXI1 is only one member of a recently dis-
covered familiy of related genes termed LAX (Like Auxl), coding for a
number of additional auxin influx carrier candidate proteins (Parry et al.
2001). This diversity of genes controlling auxin transport gives the organism
the necessary degrees of freedom to fine-tune the delicate auxin distribution
across the plant.

AUX and LAX homologues have also been found in other plants.
Recently, Schnabel and Frugoli (2004) found ten PIN homologs in the
legume Medicago truncatula (MtPINs) and five LAX homologs (MtLAXj5),
which appear to have a functional role in nodule formation.

5.3 Auxin transport depends on K*

Auxin-regulated processes are often dependent on the presence of cations. In
roots of Arabidopsis auxin transport requires external potassium (Vicente-
Agullo et al. 2004). This finding was observed by disrupting a potassium
transporter (TRH1). Disruption of TRH1 affects root hair development and
the gravitropic root response. Rescue of the observed morphological defects
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by exogenous auxin indicates a link between TRH1 activity and auxin trans-
port. This hypothesis is supported by the findings that the rate of auxin
translocation from shoots to roots and efflux of labelled IAA in isolated root
segments were reduced in the trh1 mutant. The TRH1 carrier seems to be an
important part of auxin transport system in roots of Arabidopsis (Vicente-
Agullo et al. 2004).

6 Prospects

Despite the enormous recent progress, our understanding of auxin action
and transport remains patchy at best. Targets of future research could be the
signalling chain between perception and gene expression. Physiological data
also suggest that pinpointing the precise role of auxin in gravitropism, espe-
cially its interaction with ethylene and cytokinins (Aloni et al. 2004) may be
a promising field of research.

Note added in Proof

After Submission of this review two groups (Kepinski and Leyer 2005,
Dharmasiri et al. 2005) independently demonstrated that the F-Box protein
TIR1, a key regulator of auxin induced gene expression, binds auxin and
apparently acts as nuclear auxin receptor. This major discovery suggests that
auxin can directly control gene expression by binding to TIRI. It will be a
fascinating perspective for auxin research to explore possible crosstalk
between ABP1 and TIR1 signalling in growth control
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New insights into abiotic stress signalling in plants

Margarete Baier, Andrea Kandlbinder, Karl-Josef Dietz, Dortje Golldack

Plants respond and adapt to variable environmental conditions with a wide
range of cellular and metabolic changes that are triggered by signalling and
regulatory pathways. Recently, new insights into signalling networks
involved in abiotic stress adaptation have been gained by transcriptome
analyses that suggest the existence of both specific signalling and of cross-
talk between signal transduction pathways in response to environmental
changes. In the following, selected studies on cellular signalling induced by
abiotic stresses as high light intensities and elevated temperature, UV-B and
ozone, low temperature, salinity, and heavy metals focussing on transcrip-
tome studies will be reviewed.

1 Light and elevated temperature

In their natural habitat, plants experience changes in light intensity and
temperature that range from a limitation to an excess status. Long-term
physiological studies in wheat and radish (Zavorueva and Ushakova 2004)
demonstrated that the adaptability of plants to elevated temperature is
best in high light and worst in low light. Plants have evolved to the combi-
nation of the two stresses by responding synergistically to heat and high
light. This hypothesis is supported by transcriptome analysis comparing
Arabidopsis thaliana mRNA patterns in high light and heat-filtered high
light (Rossel et al. 2002). Most of the 66 co-regulated genes, including
APX2 (encoding a cytosolic ascorbate peroxidase), GPx6 (encoding a glu-
tathione peroxidase), an early light inducible protein (ELIP) and several
heat shock proteins, showed higher transcript level variation with unfil-
tered light.

The focus of this chapter is specifically on plant responses to moderate
and excess high light. For light quality sensing we would like to refer to excel-
lent reviews, e.g. by Schepens et al. (2004), Lin (2002) and Chamovitz and
Deng (1996). Light sensors such as cryptochromes and phytochromes are
important in quantitative light sensing in low light environments (Devlin
et al. 2003). However, in high light, their responsiveness is overwhelmed
(Bailey et al. 2001). A more sensitive perception system for light intensity is
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Fig. 1. Light controls ROS-dependent, ROS-independent and metabolic signals by driving
photosynthetic electron transport. The generation of photosynthates depends mainly on the
flux of photosynthetic electrons into reductive metabolism, while initiation of putative redox
signals like ROS-signals, thiol signals and signals linked to the redox state of NADP*/NADPH
is controlled by the interface of the photosynthetic light and dark reaction. Abiotic stressors,
e.g. high and low temperature, salt and heavy metals, affect signal initiation by imbalancing
the system.

photosynthesis. Depending on the absolute photosynthetic electron trans-
port rate as well as on photosynthetic electron transport relative to down-
stream reductive metabolism various ROS-dependent and -independent
redox signals and metabolite signals are induced to control nuclear gene
expression and transcript stability (Fig. 1).

1.1 Saturating light intensities and moderate excess light
At saturating light intensities, photosynthesis leads to accumulation of photo-

synthates, which are sensed and initiate metabolite-specific signalling cascades
(Coruzzi and Zhou 2001; Rook and Bevan 2003). Supported by intersystem
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photosynthetic redox signals, like the redox state of the plastoquinone pool
(Escoubas et al. 1995; Oswald et al. 2001), they control expression of genes
involved in photosynthetic electron transport (e.g. PetE; Oswald et al. 2001),
light harvesting (e.g. cab) and CO,-fixation (rbcS) (Krapp et al. 1993;
Escoubas et al. 1995). In carbohydrate sensing, hexokinase is involved (Moore
et al. 2003), which triggers SNF1-like kinases similar to the carbohydrate sig-
nalling pathway in yeast (Halford et al. 2003). However, in plants, the overlap
between carbon and light regulated genes is high indicating photosynthesis-
dependent signal initiation. The extent of co-regulation relative to specific reg-
ulation became evident in the genome wide cDNA array study performed by
Thum et al. (2004) with Arabidopsis thaliana. Compared to 1247 transcripts
co-regulated by light and carbon, only 201 transcripts were selectively regu-
lated by carbon and 77 by light. Promoter profiling led to identification of 16
different light-and-carbon-responsive cis-elements (LCR), responding to inde-
pendent or linked signal transduction pathways (Thum et al. 2004).

Besides photosynthate production, photosynthetic electron transport reg-
ulates the redox poise of redox carrier proteins like thioredoxin (Fig. 1). It
could trigger thiol-based signalling cascades involved in light-dependent
mRNA stabilization in polyribosomes as observed, e.g. for ferredoxin-1
mRNA (Tang et al. 2003). A third signalling pathway was shown recently by
analysis of 2-Cys peroxiredoxin-A promoter regulation (Baier et al. 2004).
It is driven by the acceptor availability at photosystem II. Like reduction of
thioredoxin, it is regulated by photosynthetic electron transport relative to
reductive metabolism, pointing out an important signalling function of the
interface between photosynthetic electron transport and downstream reduc-
tive metabolism.

The dovetailing of light and dark reaction makes photosynthetically con-
trolled signal initiation dependent on various abiotic stressors (Fig. 1). For
example, by speeding up or slowing down reductive metabolism, tempera-
ture affects the regeneration of photosynthetic electron acceptors. In ele-
vated temperature besides inactivation of enzymes, photoinhibition takes
place, which reduces the threshold for the light intensity in photooxidative
ROS-formation (Lavorel 1975) and might be a reason for the synergism of
high light and temperature effects observed by cDNA array analysis (Rossel
et al. 2002).

1.2 Excess high light

In excess high light, the regulatory capacities of photosynthetic electron
transport and chloroplast biochemistry are overtaxed (Niyogi 2000). In
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response, protection mechanisms are activated. First of all, the energy
uptake capacity is decreased by down-regulation of the transcript levels of
genes encoding light harvesting antenna (Kimura et al. 2003). Further sup-
pression of photosynthetic electron transport results from decreasing the
transcript levels for the two photosystems and the cytochrome b, f complex
(Kimura et al. 2003). Under the same conditions, the transcript levels for
ferredoxin and ferredoxin-NADP* reductase, whose corresponding pro-
teins control the interface between photosynthetic electron transport and
the reductive chloroplast biochemistry, only respond slightly (Kimura
et al. 2003), indicating that their regulation is not primarily responsive to
high light.

In all experiments using light intensities above 800 wmol quanta m™ s!
(Rossel et al. 2002; Kimura et al. 2003; Vandenabeele et al. 2004 ), consistently
the transcripts encoding antioxidant enzymes, PR-proteins and enzymes of
the phenylpropanoid metabolism accumulated. The individual results how-
ever strongly vary. Kimura et al. (2003) reported that the transcript levels for
chloroplast antioxidant enzymes hardly respond to high light, in contrast to
those for extra-plastidic antioxidant enzymes. The observation indicates that
the gene expression response of nuclear encoded chloroplast antioxidant
enzymes follows independent regulatory forces and is not sensitive to high
light. However, in its generalized form this conclusion contradicts previous
observations, e.g. the increase of the transcript amounts for chloroplast
superoxide dismutases (Kliebenstein et al. 1998) and all four chloroplast
peroxiredoxins (Horling et al. 2003).

Most transcriptome analysis performed so far showed that the overlap of
high light responses with regulation by other stresses is high. For example,
RD29A, ERD27, ERD10, KIN1, COR15a and Leal4 are up-regulated by any
of the high light, drought, cold and high-salinity stresses (Kimura et al.
2003). They are like the heat-shock protein HSP70 biomarkers for environ-
mental stress (Cho et al. 2004; Ireland et al. 2004), which can provide sys-
temic resistance against various physically different stressors. Putative
transcription factors involved are heat-shock factors (HSFs), which were
originally described in respect of their importance in heat responses. In
plants, HSFs stimulate, e.g. expression of genes for antioxidant enzymes, like
APx1 and APx2 (Panchuk et al. 2002). The various HSFs can either interact
synergistically or interfere with activators (Bharti et al. 2004). In contrast to
the general stress markers, e.g. four of the light-stress regulated-genes
described by Dunaeva and Adamska (2001) and the high-light induced
genes HSC70-G7, APx1, ELIP, GST1, CHS and HY5 identified by Rossel
et al. (2002) differentially respond to various stressors, demonstrating that
multiple high light signal transduction cascades exist.
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Many high light induced genes, e.g. the genes for antioxidant enzymes and
PR-proteins, are redox-regulated, suggesting that formation of reactive oxy-
gen species (ROS) are involved in signal initiation (summarized in Foyer et al.
1997a; Baier and Dietz 1998; Rodermel 2001). To analyse the importance of
photorespiratory H,O, in high-light-regulated gene expression, cDNA-array
hybridizations were performed in wild-type and catalase-deficient A. thaliana
in high light (Vandenabeele et al. 2004). Several transcripts, e.g. encoding heat
shock proteins and PR-proteins such as dihydroflavonol-4-reductase or pro-
teolytic enzymes, were more induced in the catalase-deficient plants than in
wild-type. The difference in the mRNA pattern confirmed that H,O, is
involved in triggering the high light-response. A function is especially indi-
cated for down-regulation of the transcript levels for genes involved in the
oxidative burst, including AtrbohC (Torres et al. 2002) and a Ca?*-ATPase
(Hrabak et al. 1996), and for the induction of the translation and proteolytic
machinery by F-box and WD40 proteins (Vandenabeele et al. 2004). Because
high-light driven expression of antioxidant enzymes, hypersensitive response
related and anthocyanin and phenylpropanoid biosynthetic genes (PAL, CHS
and dihydroflavonol-4-reductase) were reversed or at least mitigated,
Vandenabeele and coworkers (2004) proposed that elevated peroxisomal
H,O, levels (as in catalase-deficient plants) reverse the masterswitch for a
subset of genes. An alternative explanation for this response, however, could
be hardening of catalase-deficient plants. In the antisense lines, the low
catalase activity could have resulted in induction of catalase-independent
defences, as observed for the induction of peroxiredoxin-independent antiox-
idant protection in 2-Cys peroxiredoxin antisense lines (Baier et al. 2000). On
the other hand, the existence of H,O,-repressed besides H,O,-induced high-
light signalling pathways may reflect alternative, antagonistically triggered
signalling cascade (with presumably different thresholds). The regulatory
mechanisms could be similar to the mechanisms leading either to induction
of antioxidant defences or of oxidative bursts following pathogen attack.
In this context, it is interesting to note, that in the high light response the
transcript levels of many transcription factors known to be involved in
pathogen responses, such as WRKY, Myb, AP-2 type transcription factors and
NAGC, are induced (Vandenabeele et al. 2004 ).

Although in the response to high light, the precise signals, the signal
transduction pathways and targets are still not understood in detail, the trans-
criptome analysis performed in recent years supports the hypothesis that
photooxidative ROS formation is involved in signal initiation. Due to the
reactivity of most ROS in combination with the redox buffering capacity of
chloroplasts and the cytosol and the sink strength of mesophyll peroxisomes,
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however, long distance signal transduction by chloroplast ROS/H,O, is
unlikely. Putative second messengers are, e.g. mobile homo- and heterodithi-
ols (Foyer et al. 1997b; Baier and Dietz 1998) and oxolipids which derive, e.g.
from oxidation of membrane lipids (Montillet et al. 2004). Alternatively, pro-
tochlorophyllids have been discussed as signalling molecules in regulation of
cab-gene expression (Strand et al. 2003; Rodermel 2001). The idea is based on
work on the gun5 mutant, which is defective in the H-subunit of Mg**-
chelatase and shows de-repressed expression of cab genes (Mochizuki et al.
2001; Strand et al. 2003). However, in high light, negative regulation, includ-
ing excess light dependent expression of a helix-loop-helix transcription
factor Phytochrome-Interacting Factor 1 (PIF1), avoids accumulation of pro-
tochlorophyllides (Hugq et al. 2004). Recently, special attention has been paid
to the products of the 13-LOX-pathway. 13-LOX products accumulate early
in response to many stressors, while the 9-LOX pathway is more specific as,
e.g. induced by cadmium stress (Montillet et al. 2004). Consistent with the
hypothesis on a signalling function of 13-LOX products, transcriptome
analysis with plant material treated with the oxolipid jasmonic acid showed
accumulation of transcripts for PR proteins and antioxidative enzymes
(Schenk et al. 2000), similar to high light treated plants. However, APx2,
which is strongly responsive to excess light (Fryer et al. 2003), cannot be
induced by jasmonic acid (Chang et al. 2004). Its constitutive induction in a
low glutathione background (Ball et al. 2004) hints at sensing of other signals
related to the cellular redox homeostasis, presumably to the thiol redox poise.
Identification of the precise signals triggering nuclear gene expression in
response to high light, and especially identification of the mobile signals pass-
ing the chloroplast envelope and transmitting photosynthetic signals, will be
a great challenge for the next years.

2 Perception, signalling and transcriptional regulation
in response to UV-B and ozone

Effects of UV-B radiation and ozone on plants range from changes in growth
and development to more specific effects on primary metabolic functions,
such as decrease in photosynthetic activity, changes in pigment composition
and enzyme activities. These responses depend on the perception of the
specific environmental condition, signal transduction mechanisms, and
modification of gene expression.

In general, before environmental factors trigger a cellular response, they
have to be perceived by receptor(s) and the information has to be transduced
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via a signalling pathway. So far, no specific photoreceptor molecule has been
identified that perceives the UV-B signal. This is made more complex as UV-
B is strongly absorbed by a wide range of biologically active molecules such
as nucleic acids, aromatic amino acids, lipids and phenolic compounds
(Jordan 2002). Numerous authors have suggested the existence of a specific
UV-B photoreceptor, although the exact nature of such a receptor is still
unknown (Nagy and Schifer 2000; Wade et al. 2001; Brosché and Strid 2003;
Gyula et al. 2003). Recently, Stratmann (2003) proposed that UV-B co-opts
other stress signalling pathways by activating membrane-bound receptors
like the wound signalling receptor SR160 in plants. As ozone degradates rap-
idly in the apoplast to form various reactive oxygen species (ROS), e.g. H,0,,
O;7, and OH'". (Langebartels et al. 2002), only its primary reaction products
might be sensed by still unknown plasma membrane bound receptors (Baier
et al. 2005).

It has been reported that exposure to ozone and UV-B induces changes in
gene expression, and recent data suggest that these stresses share many com-
mon features via the generation of ROS (Surplus et al. 1998; A-H-Mackerness
et al. 1999). For instance, levels of ROS increase in response to UV-B pulses
(Allan and Fluhr 1997), as well as ozone, degrades rapidly in the apoplast to
form various ROS species (Kangasjirvi et al. 1994). Therefore, ROS might
act as a signal inducer for the expression of certain UV-B responsive genes
(A-H-Mackerness et al. 1999; 2001; Green and Fluhr 1995).

In addition to ROS, salicylic acid, jasmonic acid and ethylene are
involved as signal transduction intermediates in A. thaliana (A-H-
Mackerness et al. 1999). The involvement of jasmonic acid in UV-B and
ozone responses was shown using the A. thaliana mutant jarl, which is
insensitive to jasmonic acid. In this mutant, less PDF1.2 mRNA was accu-
mulated in response to UV-B irradiation. Furthermore, UV-B treatment
increased the level of jasmonic acid in A. thaliana, and the jarl mutant was
more sensitive to UV-B exposure than wild-type plants (A-H-Mackerness
et al. 1999). Based on analysis of jarl and the ozone-tolerant ethylene-
insensitive A. thaliana mutant ein2 after ozone-treatment, Tuominen et al.
(2004) postulated that early accumulation of ethylene stimulates spreading
of cell death and suppresses protection by jasmonic acid. Late accumulation
of jasmonic acid, however, inhibits the ethylene pathway and the propaga-
tion of cell death (Tuominen et al. 2004). In NahG plants, which are salicy-
late hydroxylase over-expressing A. thaliana transformants that do not
accumulate salicylic acid, UV-B induced increases in PR-1, whereas PR-2
and PR-5 mRNA accumulation were blocked, indicating that salicylic acid
is required for this response (Surplus et al. 1998). Further analysis of this
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mutant revealed that ozone-induced ethylene production depends on sali-
cylic acid (Rao et al. 2002). Ethylene has also been shown to be involved in
UV-B responses by using the ethylene-insensitive A. thaliana mutant etrl.
This mutant failed to up-regulate both PR-1 and PDF1.2 genes in response
to UV-B (A-H-Mackerness et al. 1999). The sensitivity to UV-B shown in
the jarl and etr]l mutants was only partly mimicked in ozone-fumigated
plants: jarl was more sensitive than wild type, whereas etrl plants were as
tolerant as the wild type (Overmyer et al. 2000).

In the transmission of secondary signals such as ROS, jasmonic acid, sal-
icylic acid and ethylene mitogen activated protein kinases (MAPK) are
involved. A. thaliana encodes 10 MAPKKKK, 80 MAPKKK, 10 MAPKK and
23 MAPK (Jonak et al. 2002; Yu et al. 2004), which form complex signalling
networks characterized by convergence and divergence at the level of the
MAPKSs and their upstream activating kinases. Cardinale et al. (2002) sug-
gested that one stress might activate several MAPKs, and a particular MAPK
might be activated by multiple stress signals. In A. thaliana, the MAP kinases
MPK3, MPK4 and MPK6 are activated by various abiotic stresses (Ichimura
et al. 2000; Kovtun et al. 2000). In a recent study, Moon et al. (2003) showed
that a nucleotide diphosphate kinase (AtNDPK2) is involved in ROS sig-
nalling and specifically interacts with the MPK3 and MPK6. MPK6 and
MPK3 are activated by the MAP kinase kinases MKK4 and MKK5 (Asai et al.
2002) and the MAPKKK ANP1 (Kovtun et al. 2000). In Lycopersicon peru-
vianum suspension-cultured cells, specific MAPKs, LeMPK1, LeMPK2 and
LeMPK3 were transcriptionally activated after UV-B treatment as well as
after wounding, but the activation kinetics of LeMPK1, LeMPK2 and
LeMPK3 were different in response to wounding and UV-B (Holley et al.
2003). Thus, differences in MAPK-mediated responses might be determined
by a combined effect of different active MAPKSs, different activation kinetics
and additional MAPK-independent signalling components.

2.1 Ozone and UV-B induced gene expression

New insights into the responses to UV-B and ozone signalling and the speci-
ficity of secondary messengers have been provided recently by transcriptome
analysis investigating responses to oxidative stress in wild type plants of
A. thaliana, tobacco and maize (Desikan et al. 2001; Brosché et al. 2002;
Izaguirre et al. 2003; Tamaoki et al. 2003a; Casati and Walbot 2004; Ulm et al.
2004), the analysis of transgenic plants and mutants with various genetic
backgrounds (Vranova et al. 2002; Casati and Walbot 2003; Tamaoki et al.
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2003b) and PCR-based suppression subtractive hybridization (Mahalingham
et al. 2003). Ulm et al. (2004) monitored the gene expression profile of UV-B
irradiated A. thaliana seedlings by using microarrays comprising almost the
full A. thaliana genome (>24,000 genes on the array). A set of early low-level
UV-B responsive genes, 100 activated and 7 repressed, was identified. 64% of
these genes are currently annotated as encoding proteins of known or puta-
tive functions. More than 30% of these UV-B-responsive genes encode tran-
scription regulators, including genes encoding transcription factors
implicated in response to abiotic stress (DREB2A, ABF3, ZAT10, ZAT12),
during development (CIA2, COL1, MYB13), in light responses (HY5, HYH)
and unknown functions (MYB44, MYB111, bHLH34, bHLH149, bHLH150
and two NAM-related proteins). Brosché et al. (2002) performed a micro-
array experiment with 5000 ESTs from A. thaliana and identified 70
UV-B-responsive genes. These encode photosynthesis-related proteins,
pathogenesis-related proteins (e.g. PR-1), antioxidant enzymes, enzymes
involved in flavonoid and lignin biosynthesis and signal transducers.
Izaguirre et al. (2003) analysed a set of approximately 250 wound- and
UV-responsive genes in field grown Nicotiana longiflora. The array hybridiza-
tion experiment revealed that 20% of insect herbivory-responsive genes such
as photosynthesis-related genes and a WRKY transcription factor were also
regulated by UV-B. Recently, Casati and Walbot (2003) examined changes in
transcript abundance for approximately 2500 maize ESTs after UV irridation
treatments in leaves of four maize genotypes that differ in flavonoid and
anthocyan content. They identified 304 genes that were responsive to UV-B
radiation, 268 gene transcripts being upregulated. These genes encode, e.g.
proteins involved in protein synthesis like cytoplasmic ribosomal proteins,
initiation and elongation factors. In contrast, only 36 genes were downregu-
lated after the treatment like transcripts encoding proteins related to photo-
synthesis and CO, fixation, such as Rubisco and proteins of both
photosystems I and II. Over the last decade, UV-related promoter elements
and candidate transcription factors have also been identified like ACE
(ACGT-containing elements that recognize common plant regulatory fac-
tors), MRE (Myb-recognition elements) (Jordan 2002) and a 11 bp GC-rich
promoter element found in SAD genes that are upregulated rapidly by UV-B
(Gittins et al. 2002).

By hybridization of A. thaliana ¢cDNA-macroarrays, Tamaoki et al.
(2003a) identified 205 ozone-responsive transcripts after 12 h exposure to
O, and comprehensively compared the involvement of ethylene, jasmonic
and salicylic acid signalling pathways on ozone-responsive gene expression.
Approximately 75% of the ozone-responsive transcripts were induced and
48 of 205 genes were suppressed by O,. Among the 109 transcripts with
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known functions, 11 are involved in signal transduction, for example,
calmodulin-3, calmodulin-like protein, cyclophilin ROC7, GTP-binding
protein GB3, putative serine threonine kinase and a putative MAP3K epsilon
protein kinase, 33 in metabolism like monodehydroascorbate reductase,
glutaredoxin and pyruvate kinase, 24 in cellular organization and biogene-
sis, 25 in cell rescue/defence (e.g. glutathione S-transferase, PR4), six in
energy, five in protein synthesis and degradation, three in transcription and
two in transport.

Utilizing a DNA array with 5000 ESTs and cDNAs from A. thaliana,
Brosché et al. (2002) found six genes (MEB5.2, PyroA, Ubq3, Lhcbé,
F5D21.10 and the gene for a RNA polymerase II subunit) that were regu-
lated under UV-B and ozone: PyroA, Ubq3 and RNA polymerase II subunit
were specifically increased by UV-B, MEB5.2 increased and Lhcb6, F5D21.10
decreased under both treatments. The PyroA is putatively required for resist-
ance towards harmful singlet oxygen radicals (Osmani et al. 1999), but the
functions of MEB5.2 and F5D21.10 have not yet been identified.

Via the generation of reactive oxygen species ozone and UV-B share
common features (A-H-Mackerness et al. 1999). For instance, several authors
reported that the pattern of gene expression for UV-B-induced stress is similar
to ozone (Matsuyama et al. 2002; Sdvenstrand et al. 2002), but different to
drought or wounding. In addition, by the comparison of 205 ozone-
responsive transcripts in response to drought, salinity, UV-B, low temperature,
high temperature and acid rain, Tamaoki et al. (2004) confirmed these findings.

Detailed functional characterization of transcripts and proteins identified
in transcriptomic and proteomic studies will provide further information on
physiological responses to ozone and UV-B in plants elucidating the steps of
signal perception and transduction.

3 Signalling and transcriptional regulation in response
to drought, cold, and salt stress

Drought, low temperature, and salinity are abiotic environmental factors that
greatly influence plant growth and development, and complex adaptational
responses are induced by these stresses on the physiological, biochemical, and
molecular level in plants. Freezing temperatures can cause membrane dam-
age, dehydration of cells that is associated with osmotic stress and that may
lead to generation of active oxygen species (Thomashow 2001; Xiong et al.
2002). Mechanisms of plant cold acclimation include, e.g. alterations in lipid
composition, accumulation of osmoprotective compounds as proline and
sucrose, as well as synthesis of hydrophilic and cryoprotective, respectively,
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polypeptides as COR15 that decreases lamellar- to hexagonal II phase transi-
tions (e.g. Steponkus et al. 1998; Gilmour et al. 2000; Cook et al. 2004).
Salinity affects intracellular ion homeostasis and water balance of plants, and
may also induce oxidative damage as a secondary stress effect (Golldack
2004). Strategies of salt adaptation include, e.g. regulation of Na*-influx
by transcriptional control of HKT1-type Na*-transporters and AKT1-type
K*-channels as well as vacuolar sequestration of Na* that is regulated by the
vacuolar H*-ATPase and the tonoplast NHX1-type Na*/H*-antiporter (Apse
et al. 1999; Golldack and Dietz 2001; Rus et al. 2001; Golldack et al. 2002,
2003). Salt-induced synthesis and cytoplasmic accumulation of compatible
solutes as polyols and sugars, proline, and quaternary ammonium com-
pounds, respectively, have a function in preventing cellular dehydration and
in structural stabilization of proteins and membranes (Popova et al. 2002,
2003).

Several shared transcriptional changes but also stress-specific responses to
drought, low temperature, and hyperosmotic treatment have been reported
indicating both cross-talks as well as specificity of stress sensing, signal trans-
duction, and regulation of cis- and trans-acting factors (Shinozaki et al. 2003;
Chinnusamy et al. 2004). Cis-acting elements that have been found in pro-
moters of drought-, cold-, and salt-responsive genes are the ABA-responsive
element (ABRE) and the dehydration-responsive element (DRE; C-repeat
element (CRT); Yamaguchi-Shinozaki and Shinozaki 1994; Thomashow
1999; Shinozaki et al. 2003). DRE-binding proteins that belong to the
ERF/AP2-type transcription factors have been identified with CBF1
(DREB1B), CBF2 (DREBIC), and CBF3 (DREB1A) that are responsive to
cold stress, and DREB2 that is induced by drought and salt stress (Shinozaki
et al. 2003). Over-expression of the cold-inducible rice homologue
OsDREBIA in A. thaliana induced expression of target genes of A. thaliana
DREBIA and increased tolerance to cold, drought, and salt stress in the trans-
genic plants indicating the existence of conserved DREB1A-homologous
pathways in distant plant species (Dubouzet et al. 2003). In A. thaliana,
regulation of intracellular Na*-homeostasis under salt stress includes the
SOS-pathway with the Ca**-sensor SOS3 and the serine/threonine protein
kinase SOS2 that activate the plasma membrane Na*/H* antiporter SOS1
(Chinnusamy et al. 2004).

Novel elements involved in signalling and transcriptional activation that
are induced by drought, cold, and salinity have been identified recently by
large-scale transcriptome analyses. Microarray-based studies led to identifi-
cation of transcription factors and signalling elements that had not been
related to these environmental stresses before, and enabled comparative
analyses of the signalling networks regulating transcriptional responses to
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these factors. In addition, by monitoring transcript profiles of transgenic
plants over-expressing stress-responsive signal transduction elements and
transcription factors, respectively, down-stream target genes of these adap-
tive regulating pathways could be identified, accordingly, new insights into
regulation of abiotic stress responses emerge.

3.1 bZIP transcription factors responsive to abiotic stress
treatment

A. thaliana ABF/AREB proteins that are members of group A bZIP tran-
scription factors bind to the ABRE element and have been isolated by yeast-
one hybrid screening (Choi et al. 2000; Uno et al. 2000; Jakoby et al. 2002).
Transcript levels of these ABRE binding factors increased by ABA treatment,
drought, and NaCl, and AREB1 and AREB2 activated ABRE-dependent
reporter gene activity in a transient assay in A. thaliana protoplasts (Choi
et al. 2000; Uno et al. 2000). Over-expression of ABF3 and ABF4 (AREB2)
caused enhanced drought tolerance and ABA hypersensitivity, and altered
transcript levels of ABA-responsive genes, e.g as rd29B and rabl8 in A.
thaliana (Kang et al. 2002). Using A. thaliana tull-length microarrays with
7000 cDNAs obtained from unstressed and stressed plants, Seki et al. (2002)
compared transcript profiles in response to drought, cold, and salinity. ABF3
that was included in the microarray showed increased transcript levels in
response to drought, NaCl and cold treatment, thus confirming and extend-
ing previous knowledge on this stress response factor (Seki et al. 2002). Kreps
etal. (2002) used a GeneChip microarray with approximately 8000 probes for
monitoring abiotic stress responses and reported increased transcript levels
of ABF3 at cold treatment, hyperosmotic mannitol stress and salt in A.
thaliana roots. Moreover, by use of microarray hybridizations stress-induced
transcription of other members of the family of bZIP transcription factors
could be detected that had not been reported before. Thus, expression of the
group S bZIP transcription factor AtbZIP60 increased by cold treatment,
drought and salinity (Table 1). In contrast, group S ATbZIP1 was specifically
up-regulated by drought and NaCl but was not regulated by low temperature
(Seki et al. 2002). Using a rice microarray including 1700 cDNAs, Rabbani
et al. (2003) compared transcript profiles under ABA-treatment, salt,
drought, and low temperature. The rice bZIP transcription factor OSE2,
which is homologous to the A. thaliana group A factor AtbZIP13, was
induced by drought stress and ABA, whereas a homologue to A. thaliana
group S AtbZIP53 was specifically induced by cold stress (Rabbani et al.
2003). In addition, function of AtbZIP53 as a transcriptional activator of
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Table 1. Transcription factors with stress-induced regulation of transcript levels. C cold
treatment, D drought, S salt stress, M hyperosmotic mannitol treatment

AGI and Transcrip-
Gene Arabidopsis  tional Transgenic
name Species orthologue regulation traits Reference
OsNAC6 Rice At1g01720 G, D, S, ABA Rabbani et al. (2003)
ANACO002  Arabidopsis Atlg01720 D, S Seki et al. (2002)
STZ Arabidopsis  At1g27730 C,D,S Drought Seki et al. (2002),
tolerance Fowler and
Thomashow (2002),
Sakamoto et al.
(2004)
ANACO13  Arabidopsis At1g32870 D, S Seki et al. (2002)
AtbZIP60  Arabidopsis At1gd2990 C,D,S Seki et al. (2002)
ANACO019  Arabidopsis At1g52890 D, S, ABA Drought Tran et al. (2004)
tolerance
ANACO029  Arabidopsis At1g69490 C Fowler and
Thomashow (2002)
ANACO041  Arabidopsis At2g33480 C Fowler and
Thomashow (2002)
ANACO055  Arabidopsis At3g15500 D, S, ABA Drought Tran et al. (2004)
tolerance
lip19 Rice At3g62420 C Rabbani et al. (2003)
ANACO072  Arabidopsis At4g27410 C,D,S,ABA  Hypersen-  Seki et al. (2002),
(RD26) sitivity to Fujita et al. (2004),
ABA, Tran et al. (2004)
drought
tolerance
ABF3 Arabidopsis  At4g34000 C,D,S,M Hypersen-  Seki et al. (2002),
(AtbZIP37) sitivity to Kreps et al. (2002),
ABA Kang et al. (2002)
ANAC092  Arabidopsis At5g39610 D, S Seki et al. (2002)
OSE2 Rice At5g44080 D, ABA Rabbani et al. (2003)
ATbZIP1  Arabidopsis At5g49450 D, S Seki et al. (2002)
ANACI102  Arabidopsis At5g63790 C,D,S Seki et al. (2002)
SCOF-1 Soybean C, ABA Cold Kim et al. (2001)
tolerance
ZPT2-3 Petunia C,D Drought Sugano et al. (2003)

tolerance
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hypoosmolarity-induced reporter gene expression in A. thaliana has been
shown indicating a regulatory role of members of bZIP transcription factors
in adaptation to hypo-osmotic conditions as well (Satoh et al. 2004).

3.2 Stress-induced regulation of NAC transcription factors and zinc
finger proteins

Transcription factors of the NAC-type family are well known for involve-
ment, e.g. in plant development, auxin signalling, and responses to biotic
stresses whereas less evidence had been presented for regulation by abiotic
stresses (Riechmann et al. 2000; Xie et al. 2000; Collinge and Boller 2001;
Ooka et al. 2003). Using GeneChip arrays representing approximately 8000
probes, Fowler and Thomashow (2002) reported transient decrease of tran-
script levels for two NAC-type proteins in cold-treated A. thaliana. In rice,
OsNAC6 was induced by ABA, cold, drought, and salt stress, whereas the
A. thaliana homologue ANAC002 was up-regulated under drought and
salinity (Rabbani et al. 2003; Seki et al. 2002). In A. thaliana, the NAC-
protein RD26 was induced by ABA, drought, and salt (Fujita et al. 2004).
Over-expression of RD26 in A. thaliana resulted in hypersensitivity to ABA
and stimulation of ABA-inducible transcripts suggesting a role of RD26 as
a transcriptional activator in ABA-dependent gene expression (Fujita et al.
2004). Expression, e.g. of the A. thaliana NAC transcription factors
ANACO019 and ANACO055 was induced by ABA, drought, and salt stress, and
conferred increased drought tolerance to over-expressing plants by up-regu-
lation of stress inducible genes (Tran et al. 2004).

Another group of transcription factors that have been shown recently to
control abiotic stress-induced regulatory pathways are Cys2/His2 zinc finger
proteins of the TFIIIA-type. The soybean C2H2-type zinc finger protein
SCOFEF-1 is specifically regulated by cold and ABA but not by drought and salt
stress (Kim et al. 2001). SCOF-1 induced ABRE-dependent gene expression
by enhancing the DNA binding activity of the bZIP transcription factor
SGBF-1 to ABRE (Kim et al. 2001). Expression of the petunia C2H2-type zinc
finger protein ZPT2-3 was induced by wounding, jasmonic acid, cold, and
drought, and constitutive over-expression of the gene increased drought
tolerance in the transgenic plants (Sugano et al. 2003). Using microarray
hybridizations, Fowler and Thomashow (2002) detected transient up-
regulation of the C2H2-type zinc finger protein STZ by cold, and Seki et al.
(2002) also reported enhanced expression in response to salt stress and
drought. With a microarray-based approach, Maruyama et al. (2004) iden-
tified up-regulation of STZ as a downstream gene of DREB1A/CBF3 in
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DREBI1A/CBF3 over-expressing plants that were characterized by improved
tolerance to drought, salt, and freezing. Over-expression of STZ in A. thaliana
caused tolerance to drought stress and function of STZ and also of the related
C2H2-type zinc finger proteins AZF1, AZF2, and AZF3 as transcriptional
repressors under drought, cold, and salt stress has been suggested (Sakamoto
et al. 2004).

4 Heavy metal toxicity and tolerance

Excess uptake into the symplast of (heavy) metal ions is deleterious to most
plant species (Clemens 2001; Hall 2002). Metal elements either play an essen-
tial role as micronutrients, for example Cu, or lack an essential function, for
example Cd. Originally the group of heavy metals was defined on the basis of
specific weight of the metal that should be above 5 g/cm’. However, other
metals with lower specific weight such as aluminium also are toxic to plan