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Foreword

Plant Disease Epidemiology: Facing Challenges of

the 21st Century

Plant disease epidemiology deals with diseases in
plant populations. During the past century, it has
become a vibrant field of science, achieving signif-
icant conceptual innovations with important im-
pact on the management of plant diseases. Plant
disease epidemiology mobilises concepts and
methods from ecology, genetics, environmental
physics, botany, and mathematics. It deals with
cultivated and non-cultivated plants in environ-
ments where human activities have had large, or
lesser, impact. As in many other fields of science,
plant disease epidemiology faces important, some-
times new, questions. By and large, many of these
questions emerge from changes in human societies
and changes in the status of the planet on which we
live.

Global climate is changing at a rapid rate: will it
render plant diseases more, or less, harmful to man-
made and spontaneous ecosystems? There is much
debate on this issue, because global climate has
varying, sometimes very large effects on the local
environment of growing plant canopies, and be-
cause the physical micro-environment and its var-
iation strongly influence plant diseases and their
consequences on ecosystem functioning and per-
formance; in addition, changes in global climate
trigger many profound changes in the way ecosys-
tems, cultivated or not, are managed. Interest-
ingly, much of the early literature on botanical
epidemiology dealt with climate-disease or climate-
pathogen relationships – in fact these kinds of
relationships have long been perceived as the bulk
of epidemiological research by many. Plant disease
epidemiologists thus have a strong scientific tradi-
tion in studying climate-pathogen-disease rela-
tionships. Can such an asset be mobilised by the
epidemiological community to answer questions
about the effect of climate change on plant diseases?

Global trade, and thus, trade of plant products,
have increased at an unprecedented rate during the

20th century, and will continue to expand in the
next century. Exchanges of plant materials at very
different scales, local to global, have profound ef-
fects on plant diseases. Plant disease epidemiolo-
gists have become experts in assessing the risk of
irruption of novel pathogens in plant communities,
the consequences it may have on ecosystems, and
ways to manage such perturbations. The concepts
related to biological invasions or population dis-
placements certainly are not new to plant pathol-
ogists: the epidemiological community in fact
contributed to craft them in the past century. New
threats may now also exist, whereby exotic or
novel plant pathogens would intentionally be
introduced: these threats must be dealt with. The
consequences of plant pathogen transport are
many: on local performances of spontaneous
ecosystems and agricultural ecosystems; on farm-
ers’ livelihoods; on local, national, and regional
economies; and perhaps more importantly, they
can have adverse consequences on trade regula-
tion. Will plant disease epidemiologists provide
answers to such pressing questions?

Biodiversity, a buzzword of the past century, is
also of global concern. The decline in global bio-
diversity that is currently taking place has been
referred to as the sixth great extinction process our
planet has experienced during its history, but this
time, it is man-made. Generations of plant
pathologists, and especially of plant disease epi-
demiologists, have been dealing with biodiversity.
The huge diversity of life that resides in the rhi-
zosphere and the phyllosphere are causes both of
diseases in plants, and of their suppression. Much
current research is addressing ways of harnessing
such biodiversity not as enemies – of which
pathogens are an inherent part – but rather as
important biological allies to control disease epi-
demics. The diversity of plants is another facet of
global biodiversity, and there are concerns about
the decline in the genetic diversity of crop plants. It
is from this diversity that possibly the most potent
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instrument for disease management has been
developed by plant pathologists: genetic host plant
resistance. Will we run short of resistance genes
against major plant pathogens? Host plant diver-
sity, and the disease resistance genes it harbours,
can be deployed over time and space, according to
epidemiological principles. In-depth knowledge of
the characteristics of individual pathogens causing
specific diseases that must be controlled has been
mobilised to develop appropriate strategies at the
plant population, field, landscape, and sub-re-
gional levels. Major successes have been achieved
using such strategies, and the end of the past
century has seen their recognition by the scientific
community. Will epidemiologists succeed in the
future in fully sharing these technologies with the
farmer so that they are more fully utilised?

Food security was a central concern of the
global agricultural research community in the
middle of the 20th century, but apparently, not
anymore. However, the world population still
increases, and is expected to do so for several
decades. One out of six human beings living on
earth today suffers from lack of food. Many of
today’s poor live in cities, with no access to land
and agriculture, and most of the projected in-
crease in the world population will take place in
the world’s largest cities. Pests, including plant
pathogens, cause losses in pre-harvest yield in the
range of 20–40%; estimates of post-harvest losses
are inadequate, but it is a fair assumption that
they are often higher than 10 or 20%. Why are
our estimates – the raison d’être of plant pathol-
ogy – still so vague today? Seldom do economists
currently address the issue of food security – why?

Is it so that globalised exchanges, novel biological
technologies, and the self-regulating mechanisms
of trade, will be sufficient to fulfil the needs of
future generations? Will these not have negative
side-effects, and will they truly prevent the current
over exploitation of natural resources, water and
land in particular?

Sustainable production and crop protection
systems need to be devised, which could exploit
scarcer resources sparingly, and if possible en-
hance the resource base. Can these production and
protection systems be designed so that they gen-
erate healthy, high-quality products that would
find niche markets both locally and globally, and
so provide farmers with the income they require,
and offer consumers products that suit their needs
and their incomes? Plant disease epidemiologists
alone cannot provide answers to such questions,
but certainly could significantly contribute to these
new strategies.

The five-day International Plant Disease Epi-
demiology Workshop (held 10–15th April, 2005,
in Landernau, France, the ninth of a series) re-
ported in this special issue of the European
Journal of Plant Pathology, obviously could not
address all of these issues, and others, with all the
depth good science demands. However it provided
a unique opportunity for scientists interested in
this field to meet and face challenging questions,
contribute to animated debates, and reflect on the
future development of the science of plant disease
epidemiology.

SERGEERGE SAVARYAVARY

MIKEIKE COOKEOOKE
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Abstract

Epidemiology involves the study of the temporal, spatial, and spatio-temporal dynamics of disease in
populations, and the utilization of results of experiments and surveys to describe, understand, compare, and
predict epidemics. Such understanding and description of epidemics can lead directly to the development
and evaluation of efficient control strategies and tactics. Mathematical and statistical models are key tools
of the epidemiologist. Recent advances in statistics, including linear and nonlinear mixed models, are
allowing a more appropriate matching of data type and experimental (or survey) design to the statistical
model used for analysis, in order to meet the objectives of the investigator. Coupled ordinary and partial
differential equations, as well as simpler growth-curve equations, are especially useful deterministic models
for representing plant disease development in fields in time and space over single seasons or many years,
and their use can lead to appraisal of control strategies through metrics such as the basic reproduction
number, a summary parameter that may be calculated for many general epidemic scenarios. Recently,
compelling arguments have been made for the use of Bayesian decision theory in developing and evaluating
real-time disease prediction rules, based on measured disease or weather conditions and either empirical or
mechanistic models for disease or control intervention. Through some simple calculations of predictor
accuracy and (prior) probability of an epidemic (or the need for control), the success of any predictor can
be quantified in terms of the estimated probability of random observations being epidemics when predicted
to be epidemics or not epidemics. Overall, despite the many contributions in epidemiology over the past
four decades, more effort is still needed to convince those outside of epidemiology to more fully use
epidemiological results and insights into the development and evaluation of disease controls.

Introduction

In 1963, van der Plank made a most compelling
case for the importance of botanical epidemiology,
both for understanding plant diseases at the pop-
ulation scale and for determining disease man-
agement strategies (van der Plank, 1963). He also
made the bold statement at the time that ‘epide-
miology is here to stay.’ Individual disciplines en-
joy ‘ups and downs’ of popularity, of course, and
epidemiology is no exception. The tremendous

growth in the discipline within plant pathology
during the 1960s, 1970s, and 1980s (e.g., Campbell
and Madden, 1990; Kranz, 1990; Jones, 1998;
Zadoks, 2001) has been eclipsed by growth in the
larger field of molecular biology over the last two
decades. Nevertheless, more than 40 years after
van der Plank’s book (1963), botanical epidemi-
ology is still here, and still of utmost importance in
giving a sound theoretical and practical basis for
disease management. This view may not always be
held outside of the discipline, however, and it
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remains a challenge for epidemiologists to con-
tinue to make the compelling case that epidemi-
ology matters.

Until molecular biology or more traditional
breeding results in durable resistance to all plant
pathogens on all crops, coupled with the accep-
tance of the new cultivars by growers and the
public, there will be plant disease epidemics, and
many of these will result in substantial reductions
in yield. There is certainly increasing use of crop
GMOs around the world (James, 2003), but cul-
tivars with very broad-acting and durable resis-
tance have yet to be developed. Moreover, the
public opinion against their use remains strong in
many regions; thus, it would be naı̈ve to expect
‘super resistant’ cultivars in the foreseeable future.
Use of fungicides and other chemicals in a pro-
tectant or curative manner is only practical for
some crops and some diseases, and there is
increasing societal pressure to (drastically) reduce
the use of these chemicals in many regions. Thus, a
scientific basis for applying or not applying
chemicals is needed, and the decision clearly in-
volves knowledge (or prediction) of the disease
dynamics under different environmental condi-
tions. The development of resistance to fungicides
and antibiotics continues, and new cultivars have a
finite lifetime.

No control tactics are known that will totally
eliminate epidemics in crops and forests where the
pathogen is present over large areas. Biological
and cultural controls may be very beneficial,
depending on the pathosystem (Maloy, 1993), but
variability of control efficacy may be high with the
former, and grower acceptance may be low with
the latter (e.g., unwillingness to rotate crops).

The public and the scientific community have
been definitely reminded of the importance of
epidemiology, and the research tools that epi-
demiologists can bring to a problem, in recent
years. A few examples are given. With increasing
world trade of agricultural commodities as well as
international travel, the risk of pathogen invasion
of new countries or regions is well recognized
(NRC, 2002), and predictions of the risk of inva-
sion involve many epidemiological characteristics
of pathogens, such as survival probabilities and
reproductive potential (Madden and Wheelis,
2003). Moreover, the decision to attempt to erad-
icate or not also involves knowledge of disease
epidemiology. The cases of citrus canker in Flor-

ida, karnal bunt in Arizona, and plum pox in
Pennsylvania, U.S., are three examples of disease
invasions (Gildow et al., 2004; Gottwald et al.,
2001; Rush et al., 2005).

New pathogens (or pathogens new to a given
crop) continue to be discovered, as well as strains,
races, or biotypes of previously known pathogens.
The new very aggressive biotype of African cas-
sava mosaic virus in Africa is an example of a
newly evolved isolate (Legg, 1999; Strange and
Scott, 2005) that is proving very difficult to con-
trol. Sudden oak death, caused by Phytophthora
ramorum, is a newly identified disease of oak and
several other plant species, which is spreading
naturally and (unfortunately) with the assistance
of man, in the U.S. and elsewhere (Rizzo et al.,
2002).

For diseases such as sudden oak death or Asian
soybean rust (newly introduced into the U.S.),
there is a great need to know the extent of spread
from current locations (e.g., from the point of
introduction) to other locations. For any disease
that is locally concentrated (e.g., around the point
of a new introduction), or does not yet exist in a
country or region, ethically one cannot deliber-
ately introduce the pathogen where it does not
occur in order to study spore movement and
resulting disease intensity. Thus, modelling is a key
research tool for understanding risks based on key
epidemiological characteristics or traits of a dis-
ease (Madden and van den Bosch, 2002; Madden
and Wheelis, 2003). Epidemiology as a discipline
depends heavily on the tools of mathematical and
statistical modelling (Campbell and Madden,
1990), so epidemiologists are, in general, quite
prepared to tackle the problem of disease spread
through modelling. Model parameters for these
types of situations can be obtained from observa-
tions where the disease of interest does occur
naturally.

Most practicing epidemiologists would strongly
support van der Plank’s (1963) statement that
epidemiology sets the strategy for disease control,
and numerous examples can be given where epi-
demic knowledge leads to better control (Zadoks
and Schein, 1979; Fry, 1982; Maloy, 1993). Fur-
thermore, epidemiological principles and results
can also lead to specific control recommendations,
through the process of disease forecasting or risk
prediction (Hardwick, 1998; Hughes et al., 1999),
as demonstrated 45 years ago (Waggoner, 1960).
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However, as pointed out recently by Jeger (2004),
many controls are utilized and evaluated without
explicit consideration of disease dynamics in fields.
Although there is great danger in basing conclu-
sions on disease intensity measured at one time in
an epidemic (especially for polycyclic diseases; see
Campbell and Madden, 1990), this unfortunately
happens too often. Thus, epidemiologists still need
to be pro-active in working with others in devel-
oping and evaluating disease control measures.

In the remainder of this article, I discuss a few
developments that I consider to be very important
in the development of plant disease epidemiology.
Many more topics could have been covered. I have
two major themes. One deals with the advance-
ment in our theoretical understanding of the
population-dynamic processes of disease spread in
space and increase in time, coupled with the
improvements in relating certain models (or their
parameters) to empirical results (i.e., model fit-
ting). The other theme deals with the prediction of
plant disease on a real-time basis, or prediction of
the need to impose a control measure, based on
principles from probability theory. Citations are
deliberately sparse, and are mainly to major re-
views of topics rather than to all the (many)
important original papers published over the last
few decades. I assume throughout that modelling
and statistical data analysis are methodological
foundations for understanding epidemics and uti-
lizing any gained knowledge in disease control.

Temporal and spatial dynamics of disease

Growth curve modelling and analysis

Van der Plank (1963) used the monomolecular and
logistic equations as heuristic models of monocy-
clic (simple interest) and polycyclic (compound
interest) disease epidemics. These models continue
to be the benchmarks for quantification of epi-
demics, especially over single growing seasons.
However, plant pathologists discovered in the
1960s and 1970s that these two models did not
necessarily provide an adequate description (based
on statistical principles of model fitting) for many
disease progress curves (Campbell and Madden,
1990). Several alternative models were proposed or
developed, some of them flexible in the sense that
different degrees of skewness could be represented

with the same model (depending on a realized
value of a shape parameter). A feature of these
models is that they are all based on a single re-
sponse variable (disease intensity, y) in relation to
continuous time, which can be obtained as a
solution for the rate of change of y with time, dy/dt
[e.g., dy/dt=rLy(1)y) for the logistic model]. In
some cases, the solution can be expressed as a
linear model, e.g., logit(y)=a + rLt, where a is a
transformation of disease intensity at time 0, rL is
the per capita rate parameter, and logit(y) is a
linearizing transformation of y.

A good fit of an empirical model, or even a
perfect fit, to data collected over time, is not proof
of any mechanism for population growth (Camp-
bell and Madden, 1990; Zadoks, 2001). But a good
fit of a particular model for several disease pro-
gress curves could lead one to hypothesize about
mechanisms, and then test the hypothesis with
additional data or experiments. Moreover, using a
model that provides a (reasonably) good fit to data
is extremely important to accurately compare
epidemics; among other things, using an inappro-
priate model will lead to biased estimates of the
rate parameter and its standard error (Neter et al.,
1983).

One clear trend in botanical epidemiology is the
dramatically increasing complexity of statistical
models and methods that have been applied to all
epidemiological data over the last few decades (e.g.,
Gilligan, 2002; van Maanen and Xu, 2003). This is
a natural development given the fact that epide-
miology is a science of populations, and popula-
tions can only be adequately characterized and
compared using the methodology of statistics. Al-
though I am sure there are some who feel that the
emphasis on mathematics and statistics obscures
the understanding of the biology of epidemics, I
would make the opposite claim, and declare
emphatically that mathematical and statistical
modelling are foundations for understanding epi-
demics. I further believe that, with some excep-
tions, the use of statistical analysis is actually still
inadequate in most of epidemiological research,
and certainly in most of plant pathology research!
Many investigators still only: measure disease at a
single time, do not match the chosen form of data
analysis to the type of disease intensity variable
(discrete for incidence, continuous but unequal
variance for severity, ordinal for many disease
rating scales); do not base their analysis on the
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chosen experimental design; or perform inefficient
(and sometimes uninformative) analyses. An
example of the latter is the still common practice of
performing a separate data analysis for each
assessment time during an epidemic rather than
simultaneously analyzing treatments (between-
subject factors) and time (within-subject factors),
and their interactions. Garrett et al. (2004) and
citations therein can lead the reader to some of the
important recent advances in statistical data anal-
ysis of relevance in plant pathology.

It has been known for many years (Madden,
1986) that disease values collected over time in the
same experimental or sampling unit (e.g., plot) are
serially correlated and that the variation in disease
over time within plots is different from the varia-
tion between plots. This may be in part due to the
cumulative nature of disease progress curves (see
pp. 521–522 in Schabenberger and Pierce, 2002,
for general discussion of cumulative processes over
time). Serial correlations, sometimes called tem-
poral autocorrelations, are especially troublesome
in the comparison of treatments. My recent studies
now show, however, that fitting of appropriate
population-growth models to disease progress
data often reduces the correlation of residuals to
near zero for individual disease progress curves,
reducing the need to directly utilize cumbersome
adjustments to standard errors for calculated rates
(unpublished). However, in the larger setting of
multiple disease progress curves, corresponding to
multiple treatment factors and blocks, there will
always be non-zero correlations of observations
within the plots by the nature of the experimental
design (Schabenberger and Pierce, 2002). How-
ever, the structure of the correlations and vari-
ances may be quite complex, due to the cumulative
process of disease development, but simple vari-
ance-covariance models can adjust for this prop-
erty. For disease progress models that can be
expressed in linear form through the use of a
transformation of y [e.g., logit(y)], linear mixed
models provide a tremendous (and still underuti-
lized) tool for a thorough analysis of the epidemics
(Garrett et al., 2004). Most plant pathologists
(including epidemiologists) are not aware of the
major advances made in mixed model analysis in
statistics, a field that encompasses classical ANO-
VA and regression, and many other topics in a
unified manner (Schabenberger and Pierce, 2002;
Garrett et al., 2004). Instead of estimating disease

progress model parameters for each epidemic, with
a follow-up analysis of variance, through mixed
models one can simultaneously estimate the dis-
ease progress parameters and their appropriate
standard errors based on the explicit features of
the design. The former approach (e.g., estimated
slope for each plot, and then an ANOVA of these
slopes), still common with researchers, is known to
be the least powerful approach to detect differ-
ences in treatments (Wolfinger, 1996). Through
these mixed-model methods, random effects (such
as locations, blocks, and possibly genotypes), and
their interactions with fixed effects (treatments)
can be appropriately estimated and realistic infer-
ences made.

Many population dynamic processes can be
expressed only in nonlinear form (e.g., y=f(t; a,b),
where f(d) is a nonlinear function). The recent
advances in nonlinear mixed models (Garrett
et al., 2004) can be applied to these situations, but
the range of experimental designs is much more
limited (currently), and considerably larger data
sets are required to estimate and compare param-
eters. Nevertheless, statistically savvy and moti-
vated epidemiologists can make considerable
progress here.

Mechanistic modelling (linked differential
equations)

Van der Plank (1963) clearly realized that models
such as the logistic were inadequate for a biologi-
cally meaningful characterization of disease pro-
gress in time. His approach was to use a so-called
differential-delay equation in order to represent
polycyclic disease development. This model relates
dy/dt to the infectious disease intensity rather than
to total disease intensity, with infectious disease
estimated based on assumed fixed-duration latent
and infectious periods. Although the use of dif-
ferential-delay equations serve as a good founda-
tion for developing computer simulation models
with fixed time steps, such equations are extremely
cumbersome for mathematical analysis, making it
difficult to explore implications of different bio-
logical properties of hosts and pathogens, or of
different control strategies, on long-term disease
development. Eventually, plant pathologists dis-
covered the mathematical elegance of linked or
coupled differential equations for characterizing
disease progress (Jeger, 1986a, b; van Maanen and
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Xu, 2003). The approach – which was utilized as
long ago as 1911 for representing malaria epi-
demics (Ross, 1911) – is to use two-to-several
differential equations, with some variables of
interest and parameters appearing in more than
one of the equations. The beauty of this approach
is that new terms can be easily added, as needed, to
meet the objectives of the investigator and the
details of the pathosystem, and asymptotic and
steady state results (such as disease persistence)
can be explored quantitatively. Furthermore, even
though analytical solutions cannot generally be
obtained (i.e., one cannot write out y as a function
of parameters and time without the use of the
integral symbol), numerical solutions are now easy
to obtain with many mathematical programmes
such as MATHCAD and MATHEMATICA.

Statistical software such as PROC MODEL of the
SAS/EST system allows direct parameter estimation
of one or more parameters for these types of
models (Madden et al., 1987). The approach is
iterative and computationally intensive, but read-
ily accomplished by those who have a good
understanding of nonlinear models and statistics.
However, unlike the case for models with analyt-
ical solutions (linear or nonlinear; see previous
sub-section above), one cannot easily incorporate
the features of the experimental design (e.g., split
plot, etc.) into the model fitting. Rather, one gen-
erally needs to estimate parameters for each indi-
vidual epidemic (e.g., each field or plot) and then
perform t-tests or analysis of variance on the
estimated parameters (depending on the experi-
mental design).

A relatively simple coupled differential equation
model for a polycyclic disease with no plant mor-
tality is given by:

dH

dt
¼ �bHI

dL

dt
¼ bHI� xL

dI

dt
¼ xL� lI

dR

dt
¼ lI

ð1Þ

where H, L, I and R are the densities of disease-
free (healthy), latently infected, infectious, and
post-infectious (removed) individuals (e.g., plants,
leaves, roots, or even sites on leaves), 1/x is the

mean latent period, 1/l is the mean infectious
period, and b is the per capita transmission rate
(new diseased individuals per diseased individual
per healthy individual per unit time). For fungal
(or oomycetes) diseases, b is the product of spore
production per time unit per infectious individual,
the probability that a spore comes in contact with
a healthy individual, and the probability that a
spore in contact with a healthy host individual
causes an infection. Total disease at any time is
determined as Y=L+I+R, and disease intensity
as a proportion is given by y=Y/(H+L+I+R). If
initial disease intensity is very low, then at t=0,
initial total host density is virtually the same as
initial healthy host density,H0. The product bH0 is
analogous to van der Plank’s (1963) corrected
basic infection rate (new diseased individuals per
diseased individual per unit time).

A fundamental result with this model is that
disease will increase (i.e., an epidemic will occur)
only if bH0/l>1. The expression to the left of the
inequality is known as the basic reproduction
number, R0 (Diekmann and Heesterbeek, 2000).
This composite parameter also indicates the final
intensity of disease (after a long time) and the
initial exponential rate of increase (see Segarra
et al., 2001, for details). An example realization of
the model in equation 1 is shown in Figure 1 for
the situation with R0=2.5. Final disease is less
than 100%, and is estimated by iteratively solving
y¥=1-exp()R0y¥). Control strategies are devel-
oped or evaluated by finding combinations of b,
x, and l that give R0 < 1; specific control tactics
(e.g., host resistance, protectant fungicide, cura-
tive fungicide) can then be directed at reducing b,
etc.

An advantage of the equation 1 formulation is
the easy expansion for other situations. For in-
stance, a simple-interest disease component
(infections from resident inoculum throughout the
epidemic, rather than just at the start) can be
incorporated by using the pxH term, where x is the
density of inoculum and p is a simple-interest rate
parameter. One can consider x to be constant or to
change (typically, decline over time), so that dx/
dt=Jx. When x does not change, then px is
equivalent to the monocyclic rate parameter (rM)
of the monomolecular model. The pxH term is
subtracted from dH/dt and added to dL/dt in
equation 1. A pure simple-interest epidemic results
if b=0; otherwise, a composite of polycyclic and
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monocyclic processes occurs over time, very
typical for root diseases (Gilligan, 2002). Host
mortality can be incorporated by using a death-
rate parameter g. Then gH, gL, gI, and gR are
subtracted from the right hand sides of the equa-
tions for dH/dt, dL/dt, dI/dt, and dR/dt, respec-
tively. Host growth can be incorporated in various
ways. One approach is to consider just a single per
capita growth rate (X) for disease-free individuals,
and add the term X to the right hand side of the
dH/dt equation. Suppose, further, that host size
(e.g., number of citrus trees in a region) is fixed
(say, at Hmax), and that new trees are only planted
if others die. Then, the growth rate is also the
mortality rate, and new host individuals can be
expressed as X=gHmax; the combined growth/
mortality for H can then be written as g(Hmax)H).

A more general epidemic model can be writ-
ten as

dH

dt
¼ �bHI� pxHþ gðHmax �HÞ

dL

dt
¼ bHIþ pxH� xL� gL

dI

dt
¼ xL� lI� gI

dR

dt
¼ lI� gR

dx

dt
¼ �#x

ð2Þ

Note that in this example, total host size
(H+L+I+R) does not change, even though there
is continuous loss and addition of the host indi-
viduals (with a balance between the additions and
losses). This can be seen by noting that
Hmax=H+L+I+R and adding the rates: dH/
dt+dL/dt+dI/dt+dR/dt=0. The model can be
written in different ways to unlink the growth and
mortality, to incorporate more complicated link-
ages, and to account for more than one disease or
more than one host genotype at a time, but the
example is useful to show one model formulation.
When p=0 (no simple interest component), an R0

can be defined for many host-growth/mortality
model situations. For instance, with p=0 (no
simple-interest component), R0=[bHmax/
(l+g)]Æ[x/(x+g)]. An example realization of this
model is shown in the lower frame of Figure 1.
Note that Y (=L+I+R) and H oscillate a little
before settling down to the steady states. The
steady-state level of disease at a given R0 is lower
for the dynamic host than the fixed-host situation
(equation 1); without the simple-interest compo-
nent, the steady state Y is 1)(1/R0).

This approach of using a dynamic (but fixed
total) host population size has been used in plant
disease epidemiology (e.g., Madden et al., 2000),
and even more so in medical epidemiology
(Anderson and May, 1991) to determine whether
or not an epidemic can occur (i.e., a disease inva-
sion) as well as the persistence (or not) of disease
long term. With primary infections occurring
throughout the epidemic (p>0), the concepts be-
come a little more complicated, but there may still
be a threshold (combination of parameters) that
must be met for disease to persist (see review in
Gilligan, 2002, and references cited therein).

Many other biological features can be incorpo-
rated in the model of equation 2. For instance,
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Figure 1. Density of healthy (H), latently infected (L), infec-

tious (I), and post-infectious (R) individuals (on a proportion

scale), together with total disease (Y=L+I+R), based on

equation 1 (upper frame) and equation 2 (lower frame). Mean

latent period (1/x) was 7, and mean infectious period (1/l)
was 10 time units. Upper frame: bH0=0.25 per time unit.

Lower frame: bH0=0.35 per time unit, g=0.02, and p=0 (no

simple-interest component). Because of proportion scale, y

and Y are the same here.

8



since most plant viruses are transmitted by
arthropod vectors, the rate of change in H and L
does not directly depend on infectious plant indi-
viduals (I) but on infective vectors per plant (Z).
Thus, the contact rate term, bHI in the first two
equations of the model must be replaced by bHZ,
where Z is the density of infective vectors per
plant. Other components would be unchanged.
There is also a need to add equations for the
dynamics of the vector population, including
virus-free and infective vectors. Details are given in
Madden et al. (2000) and Jeger et al. (2004). Other
expansions can incorporate disruptions caused by
harvesting and/or planting for a multi-season time
scale, as well as host responses to infection (e.g.,
Gilligan, 2002; Madden and van den Bosch, 2002).

The models shown so far are all deterministic.
These can all be expressed in stochastic form,
which is useful if one is specifically interested in
heterogeneity of epidemics, small population sizes,
or the epidemic outcome for individual plants or
plant units. Gilligan (2002) and Gibson et al.
(1999) provide more details. The mathematics
definitely becomes more difficult with stochastic
models.

Some spatial aspects of epidemics

There are two different threads to the character-
ization of the spatial component of plant disease
epidemics. One thread deals with dispersal and
resulting disease gradients, and the use of observed
gradients to elucidate the form of the contact
distribution (Campbell and Madden, 1990), the
probability of a unit of inoculum at one location
(n) coming in contact with a host individual at
location s. This approach has been especially
valuable for determining the rate of disease
expansion from a focus, both within fields and
higher spatial scales (e.g., continents) (van den
Bosch et al., 1999). The contributions of van den
Bosch and Zadoks (see Zadoks, 2001), Ferrandino
(1993), and Aylor (1999) are especially noteworthy
for aerial pathogens, and of Gilligan and col-
leagues (2002) for root diseases.

One of the advantages of the coupled differential
equation approach of the previous section is that it
can be directly expanded to account for disease at
any location as well as any time. With two physical
dimensions, it is now necessary to be explicit in
notation about time t and location s. With two

dimensions, we need to use partial derivatives
rather than ordinary derivatives. Expanding
equation 1, we can write the spatio-temporal
model as:

@Hðt;sÞ
@t

¼�bHðt;sÞ
Z1

�1
Iðt;nÞDðs�nÞdn

@Lðt;sÞ
@t

¼bHðt;sÞ

�
Z1

�1
Iðt;nÞDðs�nÞdn�xLðt;sÞ

@Iðt;sÞ
@t

¼xLðt;sÞ�lIðt;sÞ ð3Þ

@Rðt;sÞ
@t

¼lIðt;sÞ

where all parameters are as defined before, and
D(s)n) is the contact distribution, which is simply
a scaled version of a disease gradient. Example
contact distributions include the exponential, Pa-
reto, Cauchy, and normal. Unlike with the simpler
purely temporal model(s), the rate of decline in
healthy host individuals at location s (and the rate
of increase in latently infected host individuals at
s) is explicitly based on the integration of the
contributions of infectious individuals at all loca-
tions (all n values). The specific contribution at n
to disease at s is the product of magnitude of
infectious individuals at n multiplied by the
probability that a unit of inoculum (say, spore) at
n reaches location s (based on the contact
distribution).

Both so-called wave-like and non-wave-like
disease expansion is documented, where the
velocity of disease expansion into new areas is
constant or increases with time, and supported by
the theory summarized in equation 3. The velocity
of expansion (or the acceleration of expansion) is
generally proportional to ln(R0), so that there is no
spread if R0 £ 1. The form of the contact distri-
bution makes the difference in type of expansion.
An example realization is shown in Figure 2 for
non-wave-like expansion. The linkage of temporal
population dynamics of disease and focus expan-
sion rates is of fundamental importance because it
shows (qualitatively and quantitatively) how
reproduction (infection) and contact probabilities
(dispersal) fully determine spatio-temporal
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outcomes, given a set of initial conditions. Control
strategies are based, once again, on reducing R0 to
below 1, as well as reducing the scale of the contact
distribution (spread parameter of the dispersal
gradient) to a low value.

Equation 3 can be expanded for host growth,
simple-interest dynamics, and so on, just as equa-
tion 1 was expanded to equation 2. It is (much)
more difficult to work with partial differential
equations than with ordinary ones, and finding
numerical solutions can even be tedious. When the
epidemic starts with a single focus (say, at the edge
or centre of a region), then mathematical progress
can be made, usually with additional assumptions
(van den Bosch et al., 1990).

When there are several initial foci of infections,
or unknown number and locations of initial inoc-
ulum, spatio-temporal differential-equation mod-
els, such as equation 3, are much less useful for

studying epidemics because there is no single
spatial starting point. With many original starting
points (foci with disease at time 0), numerical
solutions to equation 3 – or solutions to stochastic
analogues of equation 3 (Xu and Ridout, 1998;
van Maanen and Xu, 2003), – can be used to de-
scribe epidemics and explore implications of bio-
logical and physical features on disease progress,
but it is more difficult to develop general principles
or characterize expansion rates. Moreover, fitting
a model such as equation 3 to data is generally
impractical with standard statistical programmes.
Thus, in epidemiology – as in ecology (Pielou,
1977) for that matter – more statistical (rather
than mathematical) approaches have been gener-
ally followed to study spatial aspects of epidemics
(Madden and Hughes, 1995, 2002; Hughes et al.,
1997). This is the second thread of spatial char-
acterization of epidemics. Concepts of clustering,
aggregation, and regularity are utilized in terms of
many different (but interrelated) statistical meth-
ods such as indices of dispersion, correlation, semi-
variograms, and distance statistics. This concep-
tual approach goes back to Cochran (1936) and
Bald (1937) in plant pathology. A further advan-
tage of the statistical approaches is that results (or
concepts) are often directly useful for developing
sampling plans, for either estimating disease
intensity or making a decision regarding a control
intervention (Madden and Hughes, 1999; Hughes
et al., 2002).

The interrelationships between spatial aggrega-
tion of disease and temporal dynamics is gradually
becoming more apparent. Using stochastic simu-
lation, Xu and Ridout (1998) nicely showed how
initial conditions, reproduction, and spatial con-
tact distribution affect disease dynamics. A more
theoretical approach has been to incorporate
spatial properties of epidemics without explicitly
using a spatial dimension (i.e., using models simi-
lar to equation 1). Models of this type are some-
times called spatially implicit, in contrast to the
spatially explicit ones such as equation 3. The
approach generally involves using a nonlinear
function of I and/or H in the contact term, where
the function depends on degree of aggregation
(Zhang et al., 2000).

In recent years there has been considerable
progress in bringing the two threads together
(Gibson, 1997; Keeling et al., 2004), through the
ingenious use of stochastic models and parameter
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Figure 2. Density of diseased individuals (Y=L+I+R) vs.

distance from a line source at 10-day time increments based

on the numerical solution of equation 3. H0=1000. Mean la-

tent period (1/x) was 7, and mean infectious period (1/l) was
10 time units. bH0=0.4 per time unit. A Pareto distribution

was used for the contact distribution. The horizontal distance

between pairs of successive curves at a single Y value (e.g.,

0.1), divided by 10 gives the velocity of disease expansion.
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estimation. The results are primarily for the situ-
ation where individual plants are spatially refer-
enced, and disease intensity is measured as a
binary variable (diseased or healthy). There is still
more work to do in this area, both in terms of
testing the new approaches and for expanding
approaches for other spatial situations (e.g., spa-
tial referencing of just sampling units, not indi-
vidual plants) and other measures of disease
intensity (e.g., severity).

General thoughts on spatio-temporal disease
dynamics

There is no doubt that through the expansion of
models such as equations 1–3, as much detail as
desired can be incorporated into models of plant
disease epidemics (van Maanen and Xu, 2003).
Such expansions require both knowledge of the
pathosystem and knowledge of mathematics to
realistically link model structure and parameteri-
zation to meaningful population-dynamic proper-
ties of the disease. Even with a model with just a
few parameters, such as equation 3, mathematical
insight may no longer be feasible unless starting
conditions are restricted (e.g., one initial focus).
Once other complicating factors are introduced,
such as incorporation of environmental effects on
the parameters (i.e., turning parameters into new
variables that are functions of environment and
new parameters), results will be limited to inter-
pretation of numerical simulations with the
model(s).

Although a model can be made indefinitely
complex to represent an indefinitely complex bio-
logical system (such as plant pathosystem), such a
model would violate the important principle of
parsimony – keeping the model as simple as pos-
sible for the objectives of the investigator. Models,
by definition, are simplifications of reality, which
are useful for many purposes, including descrip-
tions, comparisons, statistical inference, predic-
tion, and developing understanding. Constructing
models that are more complex than needed to meet
the needs of the investigator – whether or not the
basic biological knowledge is available for the
construction of the model – is inefficient and can
lead to faulty conclusions because of unrecognized
(possibly erroneous) properties of the complicated
model. The conclusions of Jeger (1986a) regarding
the value of models with (relatively) small numbers

of parameters and variables compared with large
multi-variable and multi-parameter systems mod-
els is relevant here.

Thus, for many objectives, relatively simple
models – such as the logistic, exponential, and
monomolecular disease progress models, and
empirical regression equations – will continue to
be indispensable tools for the epidemiologist
(Jeger, 2004). Although these models clearly are
approximations, so are more complicated models.
As stated by Bertrand Russell, ‘Although this may
seem a paradox, all exact science is dominated by
the idea of approximation’ (Auden and Kronen-
berger, 1966). Whether or not a model is too much
of an approximation will always depend on the
needs of the investigator.

Decision making in epidemiology

The case for disease forecasting

As stated by Gilligan (1985), ‘Of the potential
benefits of mathematical modelling to improving
the efficiency of control of crop disease, prediction
stands foremost.’ Sometimes predictions or fore-
casts can be based explicitly on the rate parameter
of a model such as the logistic or exponential (or
even more complicated mechanistic model), as
done with EPIPRE (Hardwick, 1998). That is, one
can either use rL to predict disease intensity some
time period into the future based on either: (1)
calculated rL from previous estimates of disease in
the current epidemic; or (2) predicted rL based on
environment (etc.), where the equation was devel-
oped in other studies. However, predictions need
not necessarily be tied to population growth
models in an explicit manner. A wide range of
empirical models (often derived from regression or
discriminant analysis) are utilized to simply iden-
tify conditions leading to a disease outbreak or a
large reduction in yield (Madden and Ellis, 1988;
Campbell and Madden, 1990). In fact, the pre-
diction model (risk algorithm) may actually be
derived without any formal statistical analysis; a
good example of this is the collection of early
prediction models for late blight of potato
(Hardwick, 1998).

Epidemiologists continue to develop new pre-
diction systems for plant diseases, usually used for
scheduling fungicide applications, that is, for
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decision-making in real time regarding the need for
a control intervention (e.g., spray or not spray)
(Madden and Ellis, 1988). A major development in
this area over the last decade has been the appli-
cation of formal Bayesian decision theory to either
the construction or evaluation of the prediction
systems. Growers and others (e.g., crop consul-
tants) make numerous decisions before, during,
and after growing seasons, such as when and
where to plant, which cultivar to grow, whether to
treat seeds with fungicide, and whether or not to
apply a pesticide at any given time. Each decision
can be correct or incorrect, and Bayesian decision
theory provides a framework for making decisions
objectively (e.g., spraying a crop) and for evalu-
ating decisions that have been made.

The key contributions in plant pathology have
been by J. Yuen, G. Hughes, and some of their
colleagues (Yuen et al., 1996; Hughes et al., 1999;
Yuen and Hughes, 2002; Yuen, 2003). A very re-
cent and thorough example is Turechek and Wil-
cox (2005). The approach outlined below is
explicitly used in the disease predictive system for
Sclerotina stem rot of oilseed rape (Twengström
et al., 1998), and qualitative aspects of the ap-
proach are used implicitly by most investigators
developing and using predictive systems. I would
argue, however, that a fuller utilization of the
quantitative aspects of the approach will lead to
better predictive systems and more efficient use of
the ones already developed. The Bayesian-decision
method centres on the determination of the prob-
ability of a disease outbreak (or need for a control
intervention) before and after using the predictor.
This approach has much in common with medical
diagnostic research, where the prediction of a
disease epidemic here is analogous to the diagnosis
of an individual for a given disease condition. Both
areas involve decisions (predictions of disease in a
field or region, or the prediction of a disease status
of an individual) that can only be made with some
error. Plant disease prediction for crops has an
additional level of uncertainty compared with
medical diagnosis, since the decision is made for an
entire population (e.g., a field of a given crop, or
even a region where the crop is grown) rather than
just for the individual.

Decision theory for disease prediction in plant
pathology can be explained best with a detailed
example. De Wolf et al. (2003) developed a model
(their Model B) to predict major epidemics of

Fusarium head blight of wheat in north America.
The model, which is really a prediction rule in this
scenario, was developed based on an analysis of 50
location-years for the disease in several parts of the
U.S. The predictive system has evolved in several
ways since the 2003 publication (L.V. Madden,
unpublished), with many more observations ana-
lyzed as well as the development of newmodels, but
I restrict the discussion here to the data and results
of the published paper. Eighteen of the location-
years were considered to be major epidemics (i.e.,
requiring control, if available), simply called epi-
demics for convenience. One can thus consider the
so-called prior probability of an epidemic (E+) to
be estimated or predicted as Prob(E+)=18/
50=0.36. Of course, the data set for analysis here is
not necessarily representative of all locations for an
indefinite period of time, but we use this calculated
prior probability for now since other information
was not available. Yuen (2003) discusses the use of
location-dependent prior probabilities. With Fusa-
rium head blight of wheat, there is a little more than
a one in three chance overall that an epidemic will
occur in a given location and year in the U.S. With
no other information, such as measured weather
variables or inoculum levels in the atmosphere or on
crop debris, onewould predict no epidemic – that is,
one would bet against an epidemic at a given loca-
tion and year, (even though one would sometimes
lose the bet). This idea could be applied not just at a
yearly time scale. For apple scab, one could deter-
mine the proportion of days (or weeks, for instance)
where an infection period occurs in the spring. This
can be considered the estimated prior probability of
the need to apply a fungicide, independent of any
other information (e.g., ignoring weather data).

Returning to Fusarium head blight, the proba-
bility of no epidemic (E)) in the DeWolf et al. data
set is given by Prob(E))=32/50=0.64=1–0.36.
For ease of calculations, it is convenient to deter-
mine the odds from the probability. In general, ifA is
some event, then odds(A)=Prob(A)/[1-Prob(A)]. If
the odds are known, the probability is obtained
from Prob(A)=odds(A)/[1+odds(A)]. With the
example, the odds are: odds(E+)=0.36/[1–
0.36]=0.563, and odds(E))=0.64/[1–0.64]=1.778.
Note that the odds(A)=1 when Prob(A)=0.5.
Probabilities above ½ give odds above 1, and
probabilities less than ½ give odds below 1. The
main symbols used in this part of the article are
summarized in Table 1, for convenience.
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Table 1. Some of the notation used regarding decision theory for disease prediction

Symbol Description

Prob(E+) Prior probability of an epidemic (or major epidemic, or for the need for a

control intervention).

Prob(E)) Prior probability of no epidemic (or for the lack of need for a control

intervention)

odds(E+) Prior odds of an epidemic: Prob(E+)/[1)Prob(E+)]

odds(E)) Prior odds of no epidemic: Prob(E))/[1)Prob(E))]
Prob(P+|E+) Probability of an actual epidemic being correctly predicted using some

specified disease forecasting or predictive system; the conditional probability

of a prediction of an epidemic (i.e., Z > threshold) given that an epidemic has

occurred.

Prob(P)|E)) Probability of an actual non-epidemic being correctly predicted using some

specified disease forecasting or predictive system; the conditional probability

of a prediction of a non-epidemic (i.e., Z < threshold) given that an epidemic

has not occurred.

Prob(P+|E)) Probability of an actual non-epidemic being incorrectly predicted to be an

epidemic; [=1)Prob(P)|E))]; the conditional probability of a prediction of

an epidemic given that an epidemic has not occurred.

Prob(P)|E+) Probability of an actual epidemic being incorrectly predicted to be a non-

epidemic [=1)Prob(P+|E+)]; the conditional probability of a prediction of

a non-epidemic given that an epidemic has occurred.

Z Indicator of the risk of an epidemic (or the need for a control intervention).

Can be derived with statistical or non-statistical methods.

TPP True positive proportion (sensitivity); proportion of epidemics correctly

predicted. An estimate of Prob(P+|E+)

TNP True negative proportion (specificity); proportion of non-epidemics correctly

predicted. An estimate of Prob(P)|E))
FPP False positive proportion; proportion of non-epidemics incorrectly predicted

to be epidemics [=1)TNP]. An estimate of Prob(P+|E)).
FNP False negative proportion; proportion of epidemics incorrectly predicted to be

non-epidemics [=1)TPP]. An estimate of Prob(P)|E+)

J A measure of accuracy [= TPP + TNP – 1=TPP – FPP], known as

Youden’s index.

Prob(E+|P+) Posterior probability of an epidemic given that one is predicted. Also known

as the positive predictive value, PV(+).

Prob(E)|P)) Posterior probability of no epidemic given that one is not predicted. Also

known as negative predictive value, PV()).
Prob(E-|P+) Posterior probability of no epidemic given that one is predicted [=1)Pro-

b(E+|P+)].

Prob(E+|P)) Posterior probability of an epidemic given that one is not predicted

[1)Prob(E)|P))].
LR(+) Likelihood ratio of a positive prediction (i.e., prediction of an epidemic), TPP/

FPP.

LR()) Likelihood ratio of a negative prediction (i.e., prediction of a non-epidemic),

FNP/TNP.

ROC Receiver operating characteristic curve, a plot of TPP vs. FPP. Can be written

mathematically as TPP=f(FPP).

odds(E+|P+) Posterior odds of an epidemic given that one is predicted (see equation 4).

odds(E)|P)) Posterior odds of a non-epidemic given that one is not predicted (see

equation 5).

CR Cost ratio, approximately equal to the cost of a false positive (CFP) divided by

the cost of a false negative (CFN)

LR*(+) Instantaneous likelihood ratio; the slope of the tangent to the ROC curve at

any (FPP, TPP) point. Also given as first derivative f¢(FPP), of the model for

the ROC curve (see equation 8 for example).
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The question that arises in the context of disease
forecasting or predictive systems is: can one sub-
stantially change the predicted probability of an
epidemic (or the odds) based on other informa-
tion? De Wolf et al. (2003) used logistic regression
to develop a risk algorithm (an equation in this
case) for predicting an epidemic. The following
predictor was obtained:

Z ¼ �3:725þ 10:5ðX1X2Þ
where X1 is number of hours that temperature is
between 15 and 30 �C for the 7 days prior to wheat
flowering, and X2 is the number of hours that
temperature is between 15 and 30 �C and relative
humidity is at least 90% for the 10 days starting at
flowering, and Z is the predicted logit of the
probability of an epidemic given the two weather
variables. For other pathosystems, Z could rep-
resent a direct measurement of, for instance, hours
of wetness, rather than being a function derived
from other variables. Z could also represent an
estimate of disease intensity (e.g., measured disease
early in a growing season) that is used to predict
final disease or crop yield (see Turechek and Wil-
cox, 2005; Yuen and Hughes, 2002).

It turns out that the chosen threshold to use for
predicting an epidemic with this data set is
Z=)0.40 (recall that Z is a logit); for a given
location-year, if Z is above the threshold, then
predict an epidemic (and label this P+), otherwise
predict no epidemic (and label this P)). Using this
rule, 15 of the 18 known epidemics were correctly
predicted, giving a true positive proportion of
TPP=15/18=0.833. Also, 27 out of the 32 known
non-epidemics were correctly predicted, giving a
true negative proportion of TNP=27/32=0.844.
One can also calculate the proportion of known
non-epidemics predicted to be epidemics, which is
the false positive proportion, FPP=5/32=0.156.
Finally, the proportion of known epidemics pre-
dicted to be non-epidemics is the false negative
proportion, FNP=3/18=0.167. It can be shown
that FPP=1-TNP, and that FNP=1-TPP. All of
these calculations are based on the known (or as-
sumed) status of each observation in the data set.
Overall accuracy could be reported as (15+27)/
50=0.840. However, this metric depends on the
TPP and TNP values as well as the fraction of
observations in each category, and can thus be a
misleading indicator of model (predictor) success if

the fraction of epidemics is fairly far from ½. A
better overall measure of accuracy is given by
Youden’s index, J=TPP+ TNP – 1=TPP – FPP;
J equals 1 for a perfect predictor. For the example,
J=0.677.

The TPP is often called the sensitivity of a pre-
dictor or sensitivity of a model, and is an estimate
of the probability of an actual epidemic being
correctly predicted, Prob(P+|E+). Likewise,
TNP is often called the specificity of a predictor (or
of a model), and is an estimate of the probability
that a non-epidemic is correctly predicted,
Prob(P)|E)). FPP is the estimate of the proba-
bility that an actual non-epidemic is incorrectly
predicted to be an epidemic, Prob(P+|E)); FNP is
the estimate of the probability that an actual epi-
demic is incorrectly predicted to be an non-epi-
demic, Prob(P)|E+). The following table
summarizes the metrics and the estimates for the
example.

Although TPP and TNP are very similar here,
this is not necessarily the case.

The effectiveness of a predictor can be expressed
in another way, which is extremely useful for some
calculations below. The likelihood ratio of a po-
sitive prediction (i.e., prediction of an epidemic) is
estimated by: LR(+)=TPP/(1-TNP)=TPP/FPP.
Furthermore, the likelihood ratio of a negative
prediction (i.e., prediction of a non-epidemic) is
estimated by: LR())=(1-TPP)/TNP=FNP/TNP.
For the example, one obtains LR(+)=5.34 and
LR())=0.20. An accurate predictor has, in gen-
eral, large LR(+) (above 1) and small LR())
(close to 0).

The use of a threshold of )0.4 for Z gives an
overall high accuracy (high J), but this is not the
only possibility. This can be seen by the TPP and
TNP values over the full range of possible Z

Predicted fi
Actualfl

P+ P-

E+ TPP

Prob(P+|E+)

0.833

FNP (= 1)TPP)
Prob(P)|E+)

0.167

E) FPP (1)TNP)

Prob(P+|E))
0.156

TNP

Prob(P)|E))
0.844
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values, as shown by the insert of Figure 3. If one
chose a low threshold (say, )3.5), then all the ac-
tual epidemics would be correctly predicted
(TPP=1), since, essentially, all observations are
then predicted to be epidemics (all observations
have Zs larger than )3.5). There is a major con-
sequence of a low threshold, however, in that the
actual non-epidemics are also predicted to be epi-
demics (TNP=0 or FPP=1). The J value would
then be 0, a completely undesirable result. As the
threshold increases above )3.5 for a predicted
epidemic, TPP goes down, since it is now harder to
predict an epidemic, and increasing numbers of the
actual epidemics are predicted to be non-epidemics
(i.e., some actual epidemics have Z values less than
the threshold). However, TNP goes up with the
increasing threshold, as higher numbers of non-
epidemics are being correctly predicted (i.e., many
of the actual non-epidemics have Z values below
the threshold, as desired). Ultimately, with a very
high threshold, all actual non-epidemics are cor-
rectly predicted (TNP=1 or FPP=0), since the
threshold is higher than all the observations.
However, this means that all the actual epidemics
are also predicted to be non-epidemics (TPP=0,
FNP=1), since it is then impossibly hard to pre-
dict an epidemic (i.e., all actual epidemics have Z
values less than the high threshold). In between
these extremes, there are thresholds around )1 to 0
where both TPP and TNP are high.

The overall performance of any predictor can be
summarized with a receiver operating characteris-
tic (ROC) curve (Metz, 1978; Linnet, 1988;

Hughes et al., 1999), which is a plot of TPP vs.
FPP (see Figure 3), that is, a plot of sensitivity vs.
1-specificity. The curve goes from (0,0) at the lower
left corner to (1,1) at the upper right corner. The
upper corner represents the lowest threshold tested
(i.e., smallest Z value), corresponding to maximum
sensitivity (high TPP) but minimum specificity
(low TNP). The lower left corner represents the
highest threshold tested (i.e., largest Z value),
corresponding to minimum sensitivity and maxi-
mum specificity. If the predictor is of no value, the
ROC curve will give a straight line through these
two extremes, with a slope of 1. An ideal predictor
will give a curve that goes vary rapidly from (0,0)
up to a TPP value of 1 at an FPP barely above 0
(i.e., 0+). The maximum J over all possible
thresholds of Z for accuracy occurs at the point on
the ROC curve that is closest to the upper left
corner. The area under the ROC curve is an
overall measure of the prediction accuracy, with a
maximum of 1; for the example, the area is 0.9.

One can think of the ROC curve as representing
the model TPP=f(FPP). It can be shown that the
first derivative of this model [f¢(FPP)] is the
instantaneous value of LR(+) at any point FPP,
that is, the tangent to the TPP:FPP curve at any
FPP (Hughes and Madden, 2003). I call this like-
lihood ratio LR*(+). The more common calcu-
lation of LR(+), and the only one possible when
the ROC curve is not available, is the straight-line
slope over the interval from the point (0,0) to the
point (FPP,TPP), which equals LR(+)=TPP/
FPP (as indicated above).

Predictors in practice

All of the statistics shown so far deal with the
success of the predictor for known epidemics and
non-epidemics (i.e., for known status of the
observations). To assess the predictor in practice,
one must determine the probability that a random
observation of unknown status (a particular loca-
tion-year in the example) is an epidemic, given that
the predictor score is positive (Z > the threshold),
written as Prob(E+|P+), or the probability that a
random observation of unknown status is not an
epidemic, given that the predictor score is negative,
written as Prob(E)|P)). Note that the conditional
probabilities have been turned around from that
used in developing the predictor, where the
epidemic status was known; now, the prediction
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for the predictor model in De Wolf et al. (2003). Inset graph:

TPP and true negative proportion (TNP=1)FPP) vs. a full
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status is known and not the actual status of an
observation. To determine these and related
probabilities for the population of interest (i.e., all
location-years where the predictor is being used),
one invokes Bayes’ Theorem (Yuen and Hughes,
2002; Hughes and Madden, 2003), which can be
most easily written (and interpreted) in terms of
odds rather than probabilities.

The odds of an epidemic, given one is predicted
[odds(E+|P+)] depends on the accuracy of the
predictor, expressed as LR(+), and the prior odds
that an observation is an epidemic [odds(E+)].
This new odds value can be written as:

odds(E þ jPþÞ ¼ LRðþÞðodds(EþÞ ð4Þ
which is a simple direct product of the two terms.
The left-hand side of this equation is known as the
posterior odds of an epidemic (or a disease out-
break, or the need for a control intervention, etc.),
given that one is predicted. The posterior odds will
be high (relatively speaking) if the prior odds is
high (e.g., a relatively high proportion of location-
years for Fusarium head blight are epidemics) or if
LR(+) is high (i.e., high accuracy). For the
example, the posterior odds is given by: odd-
s(E+|P+)=5.34Æ0.563=3.0. The posterior prob-
ability can be determined by the transformation of
the odds (see above), which produces Pro-
b(E+|P+)=3.0/(1+3.0)=0.75. The posterior
probability can be calculated directly, without use
of prior and posterior odds (Yuen and Hughes,
2002), but the formula is cumbersome and less
intuitive.

In typical usage, we would only predict an epi-
demic if the posterior odds is above 1 [or Pro-
b(E+|P+) > ½]. In the example, the predicted
odds of an epidemic occurring when the model
predicts one is more than five times the average (or
overall) odds of an epidemic when the predictor-
variable information is not known (or not used).
The predicted posterior probability of an epidemic
when one is predicted (0.75) is a little more than
double the prior probability (0.36) when no
information is known (or used). Note that a pre-
dictor is only valuable if LR(+) is larger than 1 in
this simple situation. When LR(+)=1, the prior
and posterior odds are the same, as well as the
prior and posterior probabilities, which means that
using the predictor is not giving the user any
additional information about the chance of an

epidemic – one is no more certain of the epidemic
status of a random observation when the predictor
is used compared to when it is not used.

One can also determine the posterior probability
that an observation is not an epidemic when an
epidemic is actually predicted, Prob(E)|P+), by
first calculating the posterior odds: odds(E)|-
P+)=odds(E))/LR(+). Note that Prob(E)|P+)
is also given by 1-Prob(E+|P+). For the example,
Prob(E)|P+)=0.25. Thus, there is still a reason-
able probability (¼) that an observation is not an
epidemic even when one is predicted, with the gi-
ven accuracy of the model. Another valuable term
is the posterior probability that an observation is
not an epidemic, given that a non-epidemic is
predicted, Prob(E)|P)). This can be readily
determined from:

odds(E� jP�Þ ¼ odds(E�Þ=LRð�Þ ð5Þ
With the example, the posterior odds is estimated
by: odds(E)|P))=1.778/0.20=8.98. The posterior
probability is thus: Prob(E)|P))=8.98/
(1+8.98)=0.90. In other words, the probability
that there will not be an epidemic when an epi-
demic is not expected (= 0.9) is increased com-
pared to the prior probability of a non-epidemic
(0.64) when no other information is available. Fi-
nally, the posterior probability of an epidemic gi-
ven that a non-epidemic is predicted,
Prob(E+|P)), can be determined from 1-Pro-
b(E)|P)), or by first calculating the posterior odds
as: odds(E+|P))=odds(E+)LR()). For the
example, one obtains Prob(E+|P))=0.10, mean-
ing that there is only a small probability that a
random unknown observation is actually an epi-
demic when a non-epidemic is predicted. Because
of the properties of the predictor model and the
prior probability of an epidemic, in the example
one would have somewhat more confidence in
predictions of non-epidemics than in predictions of
epidemics.

The predictor is clearly of value based on the
achieved likelihood ratios and the prior odds (or
prior probabilities). The point of interest here is
how the success of the predictor depends on the
prior odds of an epidemic (which comes directly
from the prevalence of epidemics). For instance,
consider what would happen if epidemics were
much less common than assumed originally, but
one still wanted to use the developed predictor.
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I call this scenario B (and the original
scenario above as A). Assume the prior
probability of an epidemic is Prob(E+)=0.05,
which gives: odds(E+)=0.053, Prob(E))=0.95,
odds(E))=19.0. For Fusarium head blight this is
unrealistically low, but the value is used for dem-
onstration purposes. The likelihood ratio is un-
changed since this is a property of the predictor,
not the prior probability. The posterior odds of an
epidemic then is calculated from equation 4 as
odds(E+|P+)=5.34Æ0.053=0.28, resulting in a
posterior probability of an epidemic when one is
predicted of Prob(E+|P+)=0.28/(1+0.28)=0.22
(Table 2). The posterior probability of an obser-
vation not being an epidemic when one is pre-
dicted is very high, equal to Prob(E)|P+)=1–
0.22=0.78. The other posterior probabilities are:
Prob(E)|P))=0.99, and Prob(E+|P))=0.01 (i.e.,
there is a very low probability that a random
observation is an epidemic when one is not pre-
dicted). Using environmental data in the form of
the predictor (Z), the probability that a random
observation (a location-year) is an epidemic clearly
increases when one is predicted (from the prior
probability of 0.05 to the posterior probability of
0.22). However, there is still considerably less than
a 50% chance that an observation is an epidemic
when one is predicted, and there is nearly an 80%
chance (posterior probability of 0.78) that an
observation is a non-epidemic when one is pre-
dicted. In other words, use of the current predictor
(with the selected threshold of Z for a positive
prediction) would be of little value in disease
management when epidemics are rare – most
control interventions would be wasted since most
of the predicted epidemics would turn out to be
non-epidemics. This shows in general that disease
forecasting may not be of direct value for rare

diseases, unless one has a predictor with an ex-
tremely high overall accuracy (very large LR(+)).

With an imperfect predictor (i.e., TPP < 1,
TNP < 1), there is uncertainty in any predictions
of epidemics. Given that epidemics do not occur
that often (hypothetically, when
Prob(E+)=0.05), the evidence must be stronger
than that obtainable from the use of the predictor
to conclude (at least with more than a 0.50 prob-
ability, or more than an odds of 1) that an epi-
demic will occur when predicted. However, if
LR(+) was 20 (i.e., a much more accurate pre-
dictor), then the posterior odds would be 1.06
(when prior odds of an epidemic was 0.053), and
the posterior probability would be 0.51. Under
these circumstances, the use of the predictor would
be of greater value in management. However,
finding such accurate predictors in plant pathology
may be very difficult.

There is an alternative to improving the overall
prediction accuracy for rare diseases. One can use
a different threshold of Z for an epidemic, which
can be demonstrated with the Fusarium head
blight results. As shown in Figure 3, TPP declines,
and TNP increases, as the threshold increases. If
one used a threshold (on the logit scale) of +2
(instead of )0.4), one would obtain TPP=0.39,
TNP=0.99, FPP=1–0.99=0.01, and FNP=1–
0.39=0.61; the likelihood ratios would be
LR(+)=39.0 and LR())=0.62. I call this sce-
nario C (see Table 2). Using a higher threshold
means moving down the ROC curve (Figure 3)
towards the lower left corner. By using a high
threshold, almost all the known non-epidemics are
correctly predicted (more specifically, almost all
the known non-epidemics have Z values less than
the new higher threshold; TNP � 1), but only 40%
of the known epidemics are correctly predicted

Table 2. Evaluation of disease predictor for Fusarium head blight of wheat (see De Wolf et al., 2003) under various scenarios of

prior probability of an epidemic and threshold used for predicting an epidemica

Scenario Prob(E+) Threshold TPP TNP LR(+) LR()) Prob(E+|P+) Prob(E)|P))

Ab 0.36 )0.4 0.833 0.844 5.34 0.20 0.75 0.90

B 0.05 )0.4 0.833 0.844 5.34 0.20 0.22 0.99

C 0.05 +2.0 0.39 0.99 39.0 0.62 0.67 0.97

D 0.85 )0.4 0.833 0.844 5.34 0.20 0.97 0.47

E 0.85 )1.7 0.944 0.656 2.74 0.085 0.94 0.67

aSee text and Table 1 for explanation of symbols and notation, as well as for terms not given in table.
bScenario A is the nominal (or standard) use of the predictor as described in the article.
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(TPP � 0.4) because many of these cases have Z
values below the new threshold. In other words, it
is now more difficult to correctly predict a known
epidemic. Although this may seem to be undesir-
able, the low prior probability of an epidemic
(0.05) means that the posterior probability of an
epidemic when one is predicted to occur is actually
improved (i.e., predicted epidemics are more likely
to actually be epidemics). Using the numbers in
this paragraph (including a prior probability of an
epidemic of 0.05), Prob(E+|P+)=0.67 (substan-
tially higher than the 0.22 posterior probability for
scenario B), which means that in only about one
third of the time, on average, would a predicted
epidemic actually correspond to a non-epidemic
[i.e., Prob(E)|P+)=1–0.67=0.33]. When one re-
quires stronger evidence for an epidemic [a higher
threshold, giving a larger LR(+)], there is less of a
chance that the prediction of an epidemic is wrong.
There is a slight cost here to using the higher
threshold – the posterior probability of an obser-
vation being a non-epidemic when predicted to not
be an epidemic is reduced to Prob(E)|P))=0.97,
compared with 0.99 with the nominal predictor
threshold (scenario B). This is due to the increase in
LR()) compared to the original choice of thresh-
old. Here, very little was lost in identifying non-
epidemics by changing the threshold for a positive
prediction (since it is, relatively speaking, easy to
predict non-epidemics when epidemics are rare).

One can also consider the implication of much
more common occurrence of epidemics. For in-
stance, if the prior probability of an epidemic is
Prob(E+)=0.85 (much higher than realistic for
Fusarium head blight), one obtains: odds(E+)=5.67,
Prob(E))=0.15, odds(E))=0.176. Consider the
predictor used at the nominal threshold ()0.4),
which gives, once again, LR(+)=5.34 and
LR())=0.2. I call this scenario D (Table 2). One
obtains the following posterior probabilities: Pro-
b(E+|P+)=0.97, Prob(E)|P+)=1–0.97=0.03,
Prob(E)|P))=0.47, and Prob(E+|P))=0.53.
Here, the predictor works very well for predicting
epidemics (there is only a 3% chance that an
observation is a non-epidemic when one is pre-
dicted), but works less well for predicting the non-
epidemics. Based on Prob(E+|P)), about half the
observations predicted to be non-epidemics are, on
average, actually epidemics. In the absence of a
more accurate predictor model [that would give a

combined higher LR(+) and lower LR())], one could
move the threshold to a lower value (see Figure 3),
which corresponds to a higher TPP and lower TNP
(the opposite direction than used when epidemics
were rare). A lower threshold means moving up the
ROC curve towards the upper right corner.

With a threshold of )1.7, one obtains:
TPP=0.944, TNP=0.656, FPP=1–0.656=0.344,
and FNP=1–0.944=0.056; the likelihood ratios
would be LR(+)=2.74 and LR())=0.085. This
is scenario E (Table 2). By making it easier to
predict known epidemics (i.e., lowering the
threshold of Z for deciding in favour of an
epidemic) when epidemics are common, one does
not change the predictions of epidemics very
much; that is, because of high prevalence of
epidemics, Prob(E+|P+)=0.94, only slightly
less than under scenario D]. However, it is much
more likely that an observation predicted to be a
non-epidemic is, in fact, a non-epidemic. That is,
Prob(E)|P))=0.67, compared to 0.47 for sce-
nario D. But there is still a fairly high proba-
bility that a random observation is an epidemic
when a non-epidemic is predicted [Pro-
b(E+|P))=0.33].

The above evaluation was totally presented in
terms of commonness of epidemics (or of the need
to control, in general), measured by estimated
prior odds, and the accuracy of the predictor for
known cases, measured by likelihood ratios. The
entire evaluation can be recast in terms of costs for
each of the four possible decisions (true positive,
true negative, false positive, and false negative), or
more simply, the costs of the two incorrect deci-
sions (false positives and false negatives) (Linnet,
1988). Hughes and Madden (2003) give a detailed
account of this for regulatory problems (invasive
organism risk analysis) rather than for disease
forecasting. In brief, if CFP and CFN are the costs
of a false positive and a false negative prediction,
respectively, then define CR as the ratio of these:
CR � CFP/CFN (see Table 1). CR actually depends
also on the costs of true positives and true nega-
tives, but relative to the costs of the errors, it is
quite practical to consider these other costs as nil.
Then, the decision rule that minimizes the average
cost of using the predictor can be shown to be:

odds(E þ jPþÞ > CR, then predict an epidemic;

odds(E þ jPþÞ<CR, then predict a non-epidemic:
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The posterior odds is calculated from equation 4,
based on the prior odds and accuracy of the pre-
dictor (the likelihood ratio). The lower the CR, the
lower the posterior odds needed to predict an
epidemic. A low CR would occur when the costs of
false positives (such as the cost of spraying a crop
where the fungicide application is not needed) is
relatively low compared to the costs of false neg-
atives (such as the yield loss due to the disease that
occurs because a needed fungicide spray was not
used). As shown by Hughes and Madden (2003),
the optimum threshold of Z to use for minimizing
costs of using a predictor can be determined based
on CR. In particular, one can write:

LR�ðþÞopt ¼ CR/odds(EþÞ ð6Þ
where the left-hand side is the optimum LR*(+) in
which to make epidemic predictions (a function of
TPP and FPP, which are properties of the pre-
dictor). Equation 6 is easy to calculate. The right
hand side is based on commonness of epidemics
and the relative costs of predictor errors (simply as
a ratio, so that absolute values of the costs are not
needed), but does not involve the accuracy of the
predictor. It should be re-emphasized that the
predicted LR*(+) here is the ‘instantaneous’
change in TPP with change in FPP (slope of the
tangent to the TPP:FPP curve at FPP), given as f ¢
(FPP). To translate equation 6 into an exact pre-
dicted combination of TPP and TNP (or FPP =1-
TNP), one must first have a specific model for the
ROC, TPP=f(FPP), in order to obtain f ¢ (FPP) at
the optimum point (Hughes and Madden, 2003).
An example is equation 4 in Hughes and Madden
(2003). The fit of this model to the ROC curve in
Figure 3 using nonlinear least squares results in
the following equation:

TPP ¼ 1þ e�4:42 FPP�2:37 � 1
� �� ��1=2:37

ð7Þ
As shown in Figure 4, the model provides a good
fit to the TPP values. The first derivative of
equation 7 is given as:

which is based on equation 5 in Hughes and
Madden (2003). As required because of the shape
of the ROC curve, f ¢ (FPP)=LR*(+) declines
with increasing FPP (Figure 4; right-hand axis).
Mathematically, one can solve the f ¢ (FPP) equa-
tion for FPP, and then obtain TPP based on
f(FPP) (equation 7). From this combination of
TPP and FPP (which gives TNP and FNP), one
can determine the standard LR(+) (= TPP/FPP)
and use equation 4 for risk assessment.

The use of equations 6 and 7 can be demon-
strated with the Fusarium head blight data. Pre-
viously, an epidemic was predicted in practice if
odds(E+|P+) was greater than 1. This is equiva-
lent to specifying that the cost ratio, CR, equals 1,
where both types of errors are equally costly.
Using odds(E+)=0.563, as stated previously, one
finds from equation 6 that LR*(+)opt = 1.78
when CR=1. Graphically, one finds this value of
f ¢ (FPP) in Figure 4, and then determines the
corresponding FPP and TPP at this value. One can
see that FPP � 0.18 and TPP � 0.81 at f ¢
(FPP)=1.78 in the graph, which are similar to the

f 0ðFPPÞ ¼ 1þ e�4:42 FPP�2:37 � 1
� �� ��1=2:37

e�4:42FPP�2:37

FPP 1þ e�4:42 FPP�2:37 � 1
� �� � ð8Þ

0.00 0.20 0.40 0.60 0.80 1.00

False positive proportion (FPP = 1-TNP)

0.00

0.20

0.40

0.60

0.80

1.00

T
ru

e 
po

si
tiv

e 
pr

op
or

tio
n,

 T
P

P
 =

 f(
F

P
P

)

0.01

0.1

1

10

D
er

iv
at

iv
e,

 f 
'(F

P
P

)=
LR

*(
+

)

LR*(+)

Predicted 

Observed

Figure 4. Left-hand axis: An ROC curve (true positive pro-

portion, TPP, vs. the false positive proportion, FPP) for the

predictor model in De Wolf et al. (2003), together with pre-

dicted TPP from equation. Right-hand axis: derivative of

equations 7 and 8 vs. FPP, the instantaneous likelihood ratio

[LR*(+)].

19



values used in the nominal situation described in
Table 1 (with a Z threshold of )0.4; scenario A).
(There will be some discrepancy because
equation 7 is not a perfect fit to the ROC curve.)
With the TPP and FPP values here, LR(+) � 4.5,
and the posterior odds of an epidemic when one
is predicted is 4.5Æ0.563=2.5, giving Pro-
b(E+|P+)=0.71 (close to the value found at
slightly different TPP and TNP values in Table 1).
It is important to emphasize that the posterior
odds of an epidemic (or non-epidemic) are actually
calculated with LR(+), not with the instantaneous
rate LR*(+).

Now consider the situation in which a false
negative decision is four times as costly as a false
positive decision (CR=CFP/CFN=1/4=0.25).
With the nominal prior odds of an epidemic, one
finds that LR*(+)opt=0.25/0.563=0.444. From
Figure 4, one can see that this derivative occurs at
FPP � 0.32 (or TNP � 0.68) and TPP � 0.94. An
increased TPP and decreased TNP compared to
the nominal situation (with CR=1) is higher up
the ROC curve (towards the right-hand corner),
which means that an epidemic is predicted to occur
at a lower Z threshold (Figure 3). That is, there is
a less stringent criterion to predict an epidemic.
Using the listed sensitivities and specificities here,
one obtains LR(+)=0.94/0.32=2.94, and
LR())=(1–0.94)/0.68=0.088. The posterior odds
of an epidemic when one is predicted then is
odds(E+|P+)=2.94Æ0.563=1.66, giving a pos-
terior probability of Prob(E+|P+)=1.66/
(1+1.66)=0.62. It can be shown that the posterior
probability of a non-epidemic when a non-epi-
demic is predicted is Prob(E)|P))=0.95. One is
more certain about the true epidemic status of a
random observation when non-epidemics are pre-
dicted compared to when epidemics are predicted.
Also, Prob(E+|P+) is lower here than when
CR=1, but this reduction in certainty of epidem-
ics is required to minimize the average cost of
making predictions.

In general, as demonstrated in the previous
paragraph, as CR declines at a given prior prob-
ability of an epidemic, one moves up the ROC
curve towards the right-hand corner (higher TPP
and FPP; lower TNP and FNP), which means that
a lower Z threshold is used for predictions of
epidemics. Loosely speaking, with high cost of
false negative decisions, one would not want to
make too many of these errors (i.e., one would

want a low FNP). Conversely, as CR increases
(e.g., false positives are more costly than false
negatives), one moves down the ROC curve to-
wards the left-hand corner (lower TPP and FPP;
higher TNP and FNP), which means that a higher
Z threshold is used for predictions of epidemics.
Loosely speaking, with high cost of false positives,
one would not want to make too many of these
errors (i.e., one would want a low FPP). The ap-
proach outlined here can also be coupled with
consideration of different prior probabilities of
epidemics, as presented previously in this section.
It is quite possible for a given pathosystem that
there are combinations of prior probabilities and
costs of false predictions that one would always
assume that an epidemic will occur or always as-
sume that an epidemic will not occur. The deci-
sion-theory approach provides the formal
mechanism for evaluating these scenarios.

The analyses discussed here are just the begin-
nings of the possibilities for applying risk assess-
ment to disease prediction (Yuen and Hughes,
2002; Yuen, 2003). In fact, only the initial aspects
of this approach have been formally applied to
Fusarium head blight forecasting at this stage;
costs of decisions and consideration of prior
probabilities of epidemics for this pathosystem will
be addressed more formally after a more accurate
prediction system is developed for known epi-
demics and non-epidemics. Other areas requiring
research for plant diseases in general include:
having more than a dichotomy of decisions (such
as spray, do not spray, and wait-and-see what
happens); dealing with more than a dichotomy of
predictions (such as predicting the degree of ex-
pected damage from a disease, predicting spraying
once or weekly for the rest of the season); dealing
with more than a dichotomy of measured out-
comes (such as intensity of disease on a continuum
for different predictions, for either binary predic-
tions or a continuum of predictions); and dealing
with multiple diseases or pests.

Discussion

Botanical epidemiology has advanced on many
fronts in the years since van der Plank’s first book
was published in 1963, and the discipline continues
to be a foundation for understanding and pre-
dicting diseases at the population scale. I have
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chosen to outline just two out of many possible
broad topics where substantial advances have
been, and continue to be, made. Many of the
speakers and poster presentations at the 9th
International Workshop on Plant Disease Epide-
miology reported in this special issue of the
European Journal of Plant Pathology have dealt
with other valuable topics.

The use of growth-curve and mechanistic pop-
ulation dynamic models, especially the coupled
(ordinary and partial) differential equations out-
lined in this article, provide a flexible and powerful
methodology for representing the temporal, spa-
tial, and spatio-temporal dynamics of diseases,
and provides the framework to elucidate general
thresholds for epidemic occurrences (disease
invasion), long-term persistence of disease, veloc-
ity at which disease expands from foci, and the
initial rates of disease increase over time. Many of
these qualitative and quantitative properties of
epidemics can be summarized by the basic repro-
duction number (R0).

The coupled differential equations (or other
model formulations, such as stochastic difference
equations) can be made extremely complicated,
and care should be taken to keep the principle of
model parsimony in mind when modelling epi-
demics! Strategies for disease control can be
readily explored by finding the combination of
disease properties (e.g., latent and infectious peri-
ods, transmission rate) that result in a R0 less than
1. This approach is less useful for real-time pre-
diction of epidemics, or for determining the need
to intervene with a control measure, because pre-
cise estimates of parameters under specific envi-
ronmental conditions are often not available.
Usually, simpler prediction equations (such as
regression equations, discriminant functions, or
ad hoc rules) are used to actually make predic-
tions. This use of more descriptive equations can
be further justified by the fact that even very
complicated mechanistic models often result in
simple exponential-type population increase when
disease intensity is not high (see Segarra et al.,
2001).

The incorporation of probabilistic decision the-
ory into disease predictions (whether these come
from empirical rules or equations, or even popu-
lation-dynamic models) is the second topic I cov-
ered where key advances have been made recently
(Yuen and Hughes, 2002). Although most plant

pathologists, including epidemiologists, clearly are
not yet thinking formally or explicitly in terms of
prior and posterior odds, and likelihood ratios, the
concepts follow directly from intuitive under-
standings of how prediction rules are applied when
there is some inaccuracy in the predictors and
when epidemics and non-epidemics (or the need to
intervene or not with a control method) are not
equally common in a given area. The next gener-
ation of advances in this area will deal more with
the costs of decisions (correct or incorrect), and in
addressing some of the biological and environ-
mental interactions in more complicated patho-
systems, possibly involving multiple diseases (and
crops simultaneously) (McRoberts et al., 2003).

Whether one is working with elaborate popu-
lation-dynamic models or testing prediction rules
for decision making, I accept as an axiom that
appropriate statistical methods be used to fit
models to data, compare results within and be-
tween studies, and test hypotheses. Developments
in linear and nonlinear mixed models, for instance,
are drastically improving the matching of the sta-
tistical methods to the data and experimental de-
sign, and intended inferences of the investigator
(Schabenberger and Pierce, 2002). There is also
growing evidence that Bayesian methods are also
useful for developing prediction equations (Mila
and Carriquiry, 2004), and not just in evaluating
the performance of predictors (as demonstrated in
this article). Except for the most quantitative of
the botanical epidemiologists, more effort is still
needed to encourage plant pathologists to keep
abreast of developments in statistics and utilize the
appropriate old and new techniques (Garrett
et al., 2004).
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Abstract

This article reviews recent developments in plant disease risk assessment. The role of risk assessment as an
application area in macrophytopathology and its contribution to the development of macroscale disease
study are discussed. This article also discusses the concepts and components of risk assessment for different
end points and the assessment framework of different potential ranges of a new pathogen: establishment
range, suitability range, damage range, and dispersal range. Different end points generate risk information
suitable for decision makers at different levels. New insights gained from selected major diseases, especially
from risk assessment due to the recent global movement of soybean rust, are presented. The role of
pathologists in presenting risk information has extended beyond the professional research domain and has
become critical in influencing decision-making, evident by soybean rust in both South and North America.
The bias components of risk communication are defined, and different levels of receivers for risk infor-
mation are identified based on their interpretation capability of risk information, bias potential, and
utilization of risk information. Lack of predictability of dispersal potential contributes to uncertainty of
risk assessment for airborne diseases. Potential research areas in disease risk assessment are discussed.

Introduction

Risk assessment is part of botanical epidemiology.
Some principles of disease risk assessment can be
found in disease epidemic forecasting in the early
development stage of epidemiology. In the 1970s,
threat analysis was used in regulatory plant
pathology to determine quarantine subjects. Now,
different terms such as threat analysis, risk analy-
sis, or risk assessment are used for studies to
determine the epidemic potential of exotic, new,
and emerging diseases. Over the last ten years,
advances in computer computation have made
quantitative analysis with large sets of climatic
data possible, along with risk assessment of exotic
diseases (Yang et al., 1991). The most systematic
study is on soybean rust, Phykoposora pachyrhizi.
Since the introduction of Asian soybean rust into
the New World, tremendous resources and effort
have gone toward assessing the risk of soybean
rust. This article reviews recent developments in
risk assessment of exotic and emerging new dis-
eases with special reference to soybean rust.

Definition of risk assessment

In a narrow sense, risk assessment involves deter-
mining the potential epidemiological and eco-
nomic impact of emerging or new diseases
(domestic or foreign). The information is critical to
decision makers at higher levels, for example, in
deciding policies to deal with risk mitigation and
risk preparation at regional or national levels. In a
sense, risk assessment is the application of epide-
miology to regulatory plant pathology or to dis-
ease management. A study of risk assessment is a
macroscale, long-term disease prediction that
encompasses assessment of establishment poten-
tial, entry potential (when the range of a disease
expands beyond a political border), and epidemic
potential (epidemic frequency and epidemic
severity or extent of the disease), and the potential
losses in a region or country once an epidemic
occurs. Risk assessment is an epidemiological
study to predict future occurrence of a disease
by using non-experimental approaches, often
involving computer modelling. The modelling
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results are not repeatable with extrapolation from
limited field studies or published data.

In a broad sense, risk prediction or risk assess-
ment has been extended to predicting the seasonal
occurrence of endemic diseases, especially in hor-
ticultural and high-value crops (Luo et al., 2001).
Research in this area involves predicting the
upcoming season’s disease occurrence in a defined
production area. Use of the term ‘disease risk’ for
disease forecasting reflects advances in disease risk
communication at the farm-level. Yang (Yang,
2003) recently outlined a conceptual example of
risk prediction according to a temporal and spatial
scale that uses risk information (Table 1). In this
article, I exclude the seasonal prediction of the
outbreak risk of an endemic disease in a region for
disease management practices.

Need for risk assessment

The rapid development of risk assessment reflects
the adaptation of plant pathology to new global
agriculture trends, the consequence of which leads
to an increased risk of new diseases. The first trend
is frequent seed and plant material movement by
international companies. For example, some soy-
bean and corn seeds planted in the US Midwest
are now produced in South America. The move-
ment of large amounts of germplasm is thus
unavoidable and could facilitate the movement of
plant pathogens and consequently the introduc-
tion of new diseases. Assessments are made for
regulatory decision-making, and several studies
are underway in this area. The second trend is
climate change (IPCC, 2001). Climate change has
been shown to be a driving force in the long-term
dynamics of plant diseases (Yang and Scherm,
1997); new diseases and re-emerged diseases have

been attributed to climate change (Rosenzweig
et al., 2001). Such changes can result in the emer-
gence of new threats from minor diseases or to
range expansion of a disease to production regions
where the disease previously was not a concern.
Expansion of the damage range of soybean
bean pod mottle virus into the US North Central
Region and sudden death syndrome (SDS) into the
northern United States are recent examples. The
increase of SDS prevalence in US north central
region has been associated with increased planting
of soybean in early spring, a production measure
associated with warmer springs. The third trend is
the change in farming practices, exemplified by the
expansion of no-tillage systems.

As an applied research area, disease risk
assessment has recently gained importance in the
political arena of biosecurity (Madden and Van
den Bosch, 2002;Madden and Wheelis, 2003).
Because biosecurity-related risk assessment is new
and is highly relevant to political issues, risk
assessment in this area will likely embed bias
potential, and contributions of research from this
area to risk assessment are needed.

Risk assessment and macrophytopathology

Macrophytopathology is the study of disease
occurrence patterns and disease management at
the macroscale (Zeng, 2003). A narrower defini-
tion is the study of statistical patterns of disease
distribution, disease range, and epidemic frequen-
cies on large spatial and temporal scales. Ecol-
ogically, macrophytopathology addresses the
questions when, where, and why a new disease
emerges and becomes a major production threat.
Such a study can be used to predict the damage

Table 1. Comparison of purpose and scales of risk information among different users of risk information for Sclerotinia stem rot

of soybean, caused by Sclerotinia sclerotiorum, in the North Central region of the United States (from Yang, 2004)

User Purpose Temporal scale Spatial scale

Farmers Chemical control In-season Fields/farm

Variety selection Coming season Fields/farm

Tillage Coming season Fields/farm

Extension In-season Fields/area

Agronomists Advice Coming season Fields/area

Seed/chemical Marketing strategies Next year Regional

Companies Breeding decisions Next few years Regional

Product development Years/decade(s) Regional

Government Funding decision Years Regional
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potential of a disease (Yang, 2003). A theoretical
framework of macrophytopathology has not yet
been developed. The concept of risk assessment
predates macrophytopathology. Risk assessment is
the application of epidemiological methodology to
predict the long-term risk of new or emerging
diseases. With such information, disease risk can
be mitigated by managing the movement and dis-
tribution of a new disease on a macroscale (Mag-
arey, personal communication). Regulatory
measures are effective approaches for risk mitiga-
tion. Strategically, a sound assessment helps make
decisions in developing resistance programmes,
such as screening for resistance germplasm.
Development of resistant varieties is an expensive,
long-term investment and would not be initiated
until the entry of the disease.

It has been suggested that macrophytopatholo-
gy is basically the same as geophytopathology as
initially proposed by Weltzien (Weltzien, 1972).
Conceptually, macrophytopathology is different
from geophytopathology in two respects. In his
review, Weltzien used the idea of geophytopa-
thology in which ‘documentation, analysis, and
prognosis of plant epidemics seem to be an
appropriate theme for maps as basic contribu-
tions.’ For geophytopathology, the study began in
advanced stages of epidemiology and uses quan-
titative epidemiological approaches to study dis-
ease occurrence patterns on a large scale. At the
time geophytopathology was proposed, botanical
epidemiology as a discipline or field was in its
cinfancy. In macrophytopathology, new informa-
tion technology is integrated with sophisticated
modelling techniques to handle vast climatological
data. It also includes disease management on a
macroscale. The core area of macroscale study,
risk assessment, is the application of theories and
methods of epidemiology. In the context of mac-
rophytopathology, risk assessment is equivalent to
disease forecasting in the conventional scale of
plant disease study. Weltzien (1972) did foresee
the potential of geophytopathology for disease
management, but it has yet to be demonstrated in
macrophytopathology.

Disease range concepts and risk assessment

The concept of disease range was proposed byYang
and Feng (Yang and Feng, 2001) to describe the

two-dimensional distribution of the occurrence of a
disease over a geographic area. When an exotic
disease is introduced into a new geographic region
or a new disease emerges, assessment of the poten-
tial range of the disease is to determine the geo-
pathosystem range,which is directly associatedwith
impact assessment. Epidemiologically, a disease
range is related to the following four other ranges
important to the ultimate impact of a disease.

1) Establishment range, or year-round survival
range, in which a pathogen can sustain itself
from one growing season to the next by
completing disease cycles. For a soil-borne
disease, the establishment range is the same
as the disease range. For an airborne disease,
the establishment range is smaller than the
disease range, and the establishment region
serves as the source area of inoculum for
other regions during a season. For example,
with wheat rust in the United States, the
establishment range is the overwintering
range of wheat rust fungi in southern Texas
and Louisiana.

2) Suitability range defines a geographic area
where the conditions are suitable for disease
to occur, which is important for airborne dis-
ease risk assessment. A range suitable for a
disease to occur does not necessarily mean
the disease will occur in all areas defined by
the range because of the uncertainty of inoc-
ulum availability. The airborne inoculum
may never reach certain areas defined in the
region. Assessment based on this range rep-
resents the maximum risk.

3) Dispersal range defines the geographic area
into which airborne diseases can spread sea-
sonally from overwintering areas defined by
the establishment range. Dispersal range of a
disease does not mean range of inoculum
spread, which is far larger than seasonal dis-
ease dispersal range. Recent studies show
that air currents can, within a season, carry
the spores of soybean rust from Brazil to al-
most anywhere in the Western Hemisphere.

4) Damage range is a region where the disease
can cause significant economic yield loss in a
frequency that warrants implementation of
production measures. Sometimes, it can be
referred to as the endemic region of a dis-
ease. Geographically, the physical sizes of
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these ranges for an airborne disease have the
following order: establishment range < dam-
age range < dispersal range < suitability
range. For soil-borne diseases, the establish-
ment range should be equal to the suitability
range and no smaller or larger than the dam-
age range (establishment range = suitability
range > damage range).

Components in risk assessment

The fundamental parameters of potential risk of a
new or exotic disease to crop production in a
geographical region are disease range, frequency
of potential epidemics, and intensity of epidemics
in terms of economic losses. Epidemiologically,
risk assessment for a new disease consists of the
following exercises, each of which can be inde-
pendent. Negative results of each assessment
indicate the non-threatening status of a new dis-
ease. These components are establishment poten-
tial, suitability of the environment to disease
occurrence, dispersal potential, and yield-loss
potential. In risk assessment, almost all assessment
starts with a suitability assessment, and the order
of assessment procedures is determined by the
availability of techniques and data at the time
when the assessment is made. Because effects of
temperature and dew are known key factors in
determining the infectivity of a plant pathogen,
these factors are investigated first in epidemiolog-
ical studies and therefore are available for the
environment suitability assessment of risk assess-
ment. For soybean rust, there are three critical
components of uncertainty: 1) suitability of cli-
matic conditions for rust epidemics in soybean
production areas, 2) likelihood of establishment of
the fungus in North America, and 3) the seasonal
dispersal potential of the pathogen from over-
wintering regions to major soybean production
regions.

Establishment assessment

This assessment addresses the question: once an
exotic pathogen is introduced, can it survive from
season to season in a country or geographic
region, and if so, where? If the disease cannot be
established in the region or in an area of reachable

distance during the growing season, the pathogen
should not be considered a threat. For this
assessment, the key aspects are to determine the
availability of alternate hosts of the pathogen and
its overwintering potential in a non-host growing
season. Quantification of the source strength early
in spring may be important to mid-term season
disease forecasting for airborne diseases.

Suitability assessment

This assessment determines the suitability of the
climate in the studied geographic region or coun-
try. Suitability assessment is almost always the first
assessment to address in risk analysis. If the
climate is unsuitable for the occurrence of the dis-
ease, no further assessment is needed. The normal
approach for this assessment is to use a disease
model together with climatic data to assess the
epidemic potential in the region. Sometimes, the
epidemic potential is further fed into a yield-loss
model to determine the maximum yield loss po-
tential of a disease. When long-term climatic data
are available, determination of potential epidemic
frequencies and severity, a higher level of assess-
ment, are useful to policy makers. If severe epi-
demics of a disease have a frequency one-in-eight
or ten years, the disease may not be a major pro-
duction concern. However, suitability assessment
is almost always made with an assumption that
initial inoculum is available early in a growing
season. Therefore, the estimated risk would be
greater than the real loss if the disease is airborne
because initial inoculum of an airborne disease is
not always available. Risk estimated from such an
assessment represents maximum risk.

Dispersal potential assessment

This assessment applies to a disease caused by
an airborne pathogen that establishes regionally in
a country but poses a threat to the rest of the
production area. The damage level of the disease
depends on the yearly reintroduction potential of
inoculum. It is not a concern for soilborne dis-
eases, however, once the establishment assessment
is completed. For soybean rust, the pathogen
overwinters in southern Florida and Texas, which
is far from the major US soybean production
region. For risk assessment, this is the last com-
ponent to study because epidemiology does not
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provide methodology for such an assessment. For
soybean rust, this uncertainty has been a factor in
decision-making in Argentina where the disease
can overwinter only in the northern production
regions. Figure 1

Conceptually, risk assessment for exotic, new, or
emerging diseases could be generalized according
to the types of assessment (Figure 2). The outcome
of each assessment and its usefulness depend on

the type of assessment. Information from the
establishment assessment is significant for quar-
antine purposes. The risk from the suitability
assessment is the maximum risk useful for policy
decision-making in which accountability is a con-
cern. The maximum risk could be far from the real
losses because of a lack of inoculum in a season or
missing a dispersal component in the study. For
epidemiologists, the challenging part is to deter-
mine the most likely losses, which is information
useful for industry, whose concern is on the impact
of a new disease on its profitability. The arrow in
Figure. 2 indicates the most likely losses assessed
with comprehensive epidemiological information.
Depending on the availability of information/data
and skills provided to an assessment, the assessed
risk may be higher or lower than the most likely
risk. Over time, the assessed value from a risk
assessment should approach the most likely risk.

Examples of assessment for a soilborne disease

Risk assessment of soybean sudden death syn-
drome (SDS) caused by Fusarium solani f. sp.
glycines is an example of an emerging disease. This
soilborne disease was first reported in Arkansas in
the early 1970s and caused endemic production

g

Figure 1. Flow chart showing the process of a risk assessment

study. To have a completed risk study, the last step of risk

interpretation and communication by the modellers is essen-

tial.

Figure 2. Conceptual framework of risk assessment for exotic, new, or emerging diseases, showing the types of assessment, out-

come of each type, and users of each outcome. The arrow indicates the most likely losses assessed with comprehensive epidemio-

logical information.
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problems in the southern states (Roy et al., 1997).
It was initially domestic and no establishment
assessment was needed. Because it is soilborne, the
dispersal assessment was also not applicable. The
need for a potential impact assessment was not
realized until 1993 when the disease was found in
Iowa, a leading soybean production state. The
soybean industry needed to know the level of the
threat from this disease to the North Central Re-
gion, which produces 78% of US soybean, so that
the funding agencies could prioritize investment of
research funds. A risk assessment for SDS was
conducted using Climex, computer software
developed by CSIRO (Sutherst and Maywald,
1991), with disease parameters generated from
experiments conducted under controlled condi-
tions (Scherm and Yang, 1999). The assessment
predicted that the disease would cause more losses
in the north central region than in the southern
United States where the disease originated. The
assessment has proved correct. By 2002, SDS had
spread into Canada and Minnesota and was
ranked the number one damaging fungal disease in
the north central US soybean production. When
data were presented in 1995 at a regional soybean
conference, SDS immediately gained the attention
of the soybean industry. Breeding for resistance to
SDS had started before the disease became a
production problem in the US North Central Re-
gion. Now, many seed companies have resistant
varieties available to growers. Without this risk
assessment, which promoted resistance breeding
and management research, current disease preva-
lence levels and the frequency of epidemics would
probably be higher.

Example of assessment for an airborne disease

Suitability assessment

Risk assessment of soybean rust, caused by the
fungus Phakopsora pachyrhizi, to US soybean
production is the best example for an airborne
disease. The assessment started in the early 1980s
and was one of the earliest risk assessment pro-
grammes. Risk assessment of this disease has con-
tributed to the development of general concepts
and quantitative methodology. For suitability
analysis, research efforts were divided into two
phases: 1) understanding infection components

based on research in a containment facility at Fort
Detrick in Federick, MD, and in fields in Asia,
which provided baseline information for disease
modelling; and 2) development of computer mod-
elling to quantitatively assess the potential effects
of rust on soybean yield in the United States.

Research under controlled conditions focused
on determining the importance of each epidemic
component or subcomponent in the soybean rust
disease cycle and on quantifying its response to
host and environmental variation. The compo-
nents—spore germination, infection, latent period,
lesion expansion, sporulation, and senescence of
uredia—were studied by several researchers at Ft.
Detrick and elsewhere (Keogh, 1974; Marchetti
et al., 1976; Bromfield et al., 1980; Meching et al.,
1989); Patil et al., 1997; Hundekar and Hiremath,
2001). The effects of dew duration and tempera-
ture on infection have been quantified as a two-
dimensional relationship from which an infection
model was developed to estimate infection
(Marchetti et al., 1976). These studies provided
critical background information for building epi-
demiological models for risk assessment. The field
experiments were conducted at the Asian Vegeta-
ble Research and Development Centre in southern
Taiwan. Soybean can grow year-round in this
area, and disease occurs most of the year, except
during the winter. These data allowed analysis of
the seasonal variation in rust epidemics.

From the data compiled from field and green-
house studies, a computer simulation model,
SOYRUST was developed. This simple disease
model includes most weather variables that influ-
ence disease epidemics. The model was validated
with data from Taiwan, and predictions matched
observations. SOYRUST was integrated, as a
subroutine, into the soybean growth model SOY-
GRO (Wilkerson et al., 1985), developed at the
University of Florida to simulate disease progress
during the production season and to predict yield.
With the assumption that spores are available
early in the growing season, the simulation results
showed that considerable yield loss could occur in
some areas of the United States. In recent years,
USDA–APHIS generated a US risk map by using
continuous moisture measurements and dew days
data. The general consensus is that the environ-
mental conditions in the US soybean production
regions are suitable for the occurrence of this dis-
ease (Bromfield, 1984).

g g y
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Establishment assessment

Predicting the year-round survival of the soybean
rust fungus is important for determining avail-
ability of spores in the spring and for determining
potential dissemination into major soybean pro-
duction regions during a growing season from an
overwintering area. Models were used to predict
where climatological conditions are suitable for
the year-round persistence of P. pachyrhizi
worldwide. Long-term meteorological averages
were used to assess stress by using the CLIMEX
software developed by Sutherst and May-
wald(1985). Integration of stresses was used to
predict the likelihood of survival of P. pachyrhizi
within a location (Pivonia and Yang, 2004). The
assessment shows that areas presumed suitable for
year-round survival of P. pachyrhizi in the Western
Hemisphere extend from southern Brazil to

southern Texas and Florida. In the United States,
the fungus is likely to overwinter in areas where
climatic conditions in winter are similar to those in
southern China. During mild winters, the coastal
region of the Gulf of Mexico is also in the P.
pachyrhizi year-round survival zone (Figure. 3).
The reported occurrence of soybean rust in kudzu
plants near Tampa, Florida, in February of 2005
validated the assessment.

Dispersal assessment

Several means existed for long distance spread of
airborne diseases, such as the tobacco blue model
to assess spore movement from the Caribbean to
the southeastern US. For soybean rust, there are
several means for northward movement. Clima-
tological models have been integrated with epide-
miological models for prediction of soybean rust

Figure 3. Illustration of the potential range of soybean rust, P. pachyrhizi, in North America with a focus on the United States

(Yang, 2003). The establishment range is indicated by the probability of overwintering, which is the US coastal area. The suitabil-

ity range is estimated to extend to from Gulf Coast to northern border of the US in east of Rocky Mountain. The dispersal range

and the damage range are yet to determined.
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movement. Such integration could be a potential
research area to generate new directions for epi-
demiological research. The MM 5 model is a glo-
bal circulation model for air particle movement
and high split model for rust prediction. The
model has been used to correctly predict the 2004
season rust spore movement to Argentina and
Colombia. In August 2004, it also predicted the
spore movement from Colombia to the southern
US before the disease was found in Louisiana.

Risk communication

To plant pathologists, risk communication is rela-
tively new in the framework of risk study compared
with plant disease risk analysis. Elements of risk
communication consist of receivers of risk infor-
mation, interpretation of the uncertainty, and
delivery of the information with an approach or
method according to information receivers and the
capability to digest risk information of receiver
aspects. To the risk communicators who are often
plant pathologists, it is crucial to understand the
epidemiological principals used in the assessments.
Most models are built with certain assumptions
that are critical to risk interpretation. Without
stating the underlining assumption while discussing
the risk, the risk level can be overestimated, which
often occurs when risk information is disseminated
by non-pathologists. For soybean rust, when cita-
tions are made for the study of USDA economic
assessment or yield loss (Yang et al., 1991), the
writers often reported figures of potential losses
from a risk assessment without providing the
assumptions addressed by authors in their studies.

Receivers of risk information

After the risk assessment is made, the information
is disseminated to the public. There are several
levels of receivers: policy makers, scientists in
chemical or seed companies for product develop-
ment, managers of funding agencies, producers for
day-to-day farm operation, and crop advisers in
private and public domains. Based on the decision
levels, the risk information is generated differently
in terms of temporal and spatial scales (Table 1)
(Yang, 2003). For decision-making, the temporal
scale ranges from decades to weeks, and the spatial
scale ranges from the entire country to individual

farms. The capability of digesting risk information
varies, and the purpose of taking risk information
differs. Therefore, interpretations of the risk on the
receiver sides are different. Receivers of risk
information can be grouped by three levels based
on their knowledge and interpretation of disease
risk.

Level 1. This level consists of pathologists or
groups of professionals who have in-depth
knowledge of plant pathology. Detailed outcomes
on risk assumption can be explained and the
uncertainty of the information is fully understood
by receivers. This level includes industry experts in
chemical and seed companies whose annual prof-
itability relies on decision with a measured risk.
The setting for risk information delivery includes
professional meetings through presentations by
authorities on specific topics, and this level has no
bias in interpretation of disease risk.

Level 2. This includes decision makers at the
policy-making level at the public domain, such as
government officials or society leaders who have
limited understanding of assumptions or who
overlook the assumptions made for assessment for
political liability and address the maximum risk.
Bias interpretations of the risk assessment are not
uncommon. To make a better argument for mak-
ing policies, the maximum risk is used most fre-
quently for accountability reasons. The example is
the frequent use of soybean rust economic assess-
ment of US $ 7.2 billion (Kuchler et al., 1984) in
decision-making, although a later much smaller
figure (�US $ 1–2 billion) has been made in a new
risk assessment.

For high-level policy makers, decision-making is
based on political rational and accountability,
which has a tendency towards self-protection and
therefore naturally embeds bias of select use of risk
information. For soybean rust, decisions at higher
levels were likely made using the worse-case sce-
nario. Economic calculation is less essential com-
pared with the producers or profit-driven
businesses. Finally, risk communication varies
from culture to culture. Some cultures are more
sensitive to disease risk than others. For soybean
rust, the response of industry to soybean rust in
the United States has been much greater than in
South American countries.

Level 3. This includes laypersons or producers
who have a limited knowledge of plant pathology.
Some highly competitive producers, however, have
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good plant pathology knowledge and should be
considered in level 1. For level 3, communication is
made through indirect approaches. Information is
delivered mostly through media, agricultural mag-
azines, or radio, where normally the maximum risk
of a disease is presented without further explana-
tion. Risk is often selectively stated by media to
achieve sensational effects. In the dissemination of
soybean rust information, only maximum yield
losses of assessments (loss of 80%) were used,
without providing the dispersal assumptions used
in the assessment. Unfortunately, producers are
handlers of risk in production, and risk information
indirectly delivered to them decreases the effec-
tiveness and quality of risk management. Overre-
actions to soybean rust were common among the
US soybean producers in the first two years.

It is important to disseminate risk information
differentiated by simplicity or complexity to dif-
ferent receivers to avoid confusion or panic and to
maintain the credibility of the research commu-
nity. One example was the early release of spore
dispersal assessment. In 2003 winter, a USDA
trajectory analysis for the Western Hemisphere
was prematurely released. The results showed that
air parcels carrying fungal spores from lower ele-
vations in Brazil soybean production regions could
reach the United States. Unfortunately, this
statement was interpreted by receivers as indicat-
ing the possibility of soybean rust occurrence in
the coming season in the United States, which
caused unnecessary panic in some US growers who
consequently purchased fungicides for the pre-
dicted arrival of spores during the next season.

Future research for risk assessment

Our knowledge in epidemiology has enabled us to
assess environmental suitability, establishment
potential, and survival potential after the intro-
duction of a plant disease. By adding yield loss
models, yield loss potential can be determined. The
outcome of risk assessment from the above-men-
tioned components represents the worst-case sce-
nario. For soilborne diseases, the establishment
range of a disease is equivalent to the distribution
range or the range suitable to disease occurrence,
with the damage range being smaller than the
pathogen distribution range. Assessment with the
worst-case scenario may not approach the realistic

maximum damage of a soilborne disease. How-
ever, for airborne diseases, the establishment range
of a disease would be no larger than damage range
and smaller than the suitability range, depending
on the dispersal potential of the disease. To have a
more realistic assessment, the long-distance conti-
nental dispersal potential of the airborne disease
needs to be predicted.

Dispersal potential is a key uncertainty in pre-
dicting the risk of an exotic airborne disease,
which is important in determining the entry risk
and damage risk after establishment. For the
example of soybean rust, uncertainty of the disease
risk depends on our understanding of dispersal
potential of the disease. Before entry of this dis-
ease, dispersal information was critical to deter-
mine when the disease would arrive in the United
States. Such information is critical for chemical
companies to determine when to stockpile fungi-
cide for disease control. For commodity groups,
entry time is used to embargo the importation of
soybean from occurrence countries, a temporary
strategy to raise the local market price.

Once a disease establishes in the new country, its
damage potential to the production region de-
pends on the seasonal dispersal of airborne spores
from overwintering regions into major production
regions. Models for the dispersal potential are still
in their infancy, and the prediction needs to
determine the source area and its relationship to
inoculum density in the receiving region, after
long-distance dispersal. Such a relationship should
exist in a pathosystem as demonstrated by Zeng
(1988) in wheat stripe rust.

Latent period after entry. There are two critical
times after the entry of an exotic plant pathogen
into a new geographic region: time of first detec-
tion and time of first outbreak. For risk mitiga-
tion, when the pathogen can be detected after
entry and when the first outbreak would occur are
key questions. Practically no introduced diseases
have produced severe, region-wide epidemics in
the first season of detection in the United States.
Similarly, soybean rust in South America did not
cause economically significant losses in the 2000–
2001 growing season after it was first found in
southern Brazil and Paraguay. It caused losses
>$125 million in the second year of detection
(Yorinori et al., 2003). However, predicting when
an introduced pathogen would become prevalent
after subsequent entry and reach outbreak levels is
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critical to disease prevention or risk management.
The available response period depends on detec-
tion efficiency—and the earlier the better.

References

Bromfield KR, Melching JS and Kingsolver CH (1980) Viru-

lence and aggressiveness of Phakopsora pachyrhizi isolates

causing soybean rust. Phytopathology 70: 17–21.

Bromfield KR (1984) Soybean rust. Monograph No. 11. Am.

Phytopathol. Soc., St. Paul, MN.

Hundekar AR and Hiremath PC (2001) Development, preva-

lence and seasonal severity of soybean rust caused by

Phakopsora pachyrhizi Syd. Karnataka Journal of Agricul-

tural Science 14: 71–75.

IPCC (2001) Agriculture in a changing climate: Impacts

and adaptation. In: Watson RT, Zinyowera MC and Moss

RH (eds) Climate Change 1995. Impacts, Adaptations

and Mitigation of Climate Change: Scientific-Technical

Analyses (pp. 427–467) Cambridge University Press,

Cambridge.

Keogh RC (1974) Studies on Phakopsora pachyrhizi Syd.: The

Causal Agent of Soybean Rust. M.S. Thesis, University of

Sydney, Sydney, Australia.

Kochman JK (1979) The effect of temperature on development

of soybean rust. Australian Journal of Agricultural

Research 30: 273–277.

Kuchler F, Duffy M, Shrum RD and Dowler WM (1984)

Potential economic consequences of the entry of an exotic

fungal pest: The case of soybean rust. Phytopathology 74:

916–920.

Luo Y, Morgan DP and Michailides TJ (2001) Risk analysis of

brown rot blossom blight of prune caused by Monilinia

fructicola. Phytopathology 91: 759–768.

MaddenLVandVandenBoschF (2002)Apopulation-dynamics

approach to assess the threat of plant pathogens as biological

weapons against annual crops. Bioscience 52: 65–74.

Madden LV and Wheelis M (2003) The threat of plant

pathogens as weapons against US crops. Annual Review

of Phytopathology 41: 155–176.

Marchetti MA, Markle GM and Bromfield KR (1976) effects of

temperature and dew period on germination and infection

by uredospores of Phakopsora pachyrhizi. Phytopathology

66: 461–463.

Meching JS, Dowler WM, Koogle DL and Royer MH (1989)

Effects of duration, frequency, and temperature of leaf

wetness periods on soybean rust. Plant Disease 73:

117–122.

Patil VS, Wuike RV, Thakare CS and Chirame BB (1997)

Viability of uredospores of Phakopsora pachyrhizi syd. at

different storage conditions. Journal of Maharashtra Agri-

cultural University 22: 260–261.

Pivonia S and Yang XB (2004) Assessment of potential year-

round establishment of soybean rust throughout the world.

Plant Disease 88: 523–529.

Rosenzweig C, Iglesias A, Yang XB, Epstein PR and Chivian E

(2001) Climate changes and US agriculture: The impacts of

warming and extreme weather events on productivity, plant

diseases, and pests. Global Change and Human Health 2:

90–103.

RoyKW,Rupe JC, HershmanDE andAbney TS (1997) Sudden

death syndrome of soybean. Plant Disease 81: 1100–1111.

Scherm H and Yang XB (1995) Interannual variations in wheat

rust development in China and the United States in relation

to the El nino/southern oscillation. Phytopathology 85:

970–976.

Scherm H and Yang XB (1999) Risk assessment for sudden

death syndrome of soybean in the north-central United

States. Agricultural Systems 59: 301–310.

Sutherst RW and Maywald GF (1985) A computerized system

for matching climates in ecology. Agricultural Ecosystems

and Environment 13: 281–299.

Sutherst RW and Maywald GF (1991) Climate modeling and

pest establishment. Plant Protection Q. 6: 3–7.

Weltzien HC (1972) Geophytopathology. Annuual Review of

Phytopathology 10: 277–298.

Wilkerson GG, Jones JW, Boote KJ and Mishoe JW (1985)

SOYGRO, University of Florida, Gainesville.

Yang XB, Dowler WM and Tschanz AT (1991) A simulation

model for assessing soybean rust epidemics. Journal of

Phytopathology 133: 187–200.

Yang XB and Feng F (2001) Ranges and diversity of soybean

fungal diseases in North America. Phytopathology 91: 769–

775.

Yang XB and Scherm H (1997) El Nino and infectious disease.

Science 275: 739.

Yang XB (2003) Risk assessment: Concepts, development and

future opportunities. Plant Health Progress, http://

www.plantmanagementnetwork.org/sub/php/review/2003/

concepts/.

Yorinori JT, Pavia WM, Frederick RD, Costamilan LM,

Bertagnolli PF, Hartman G, Godoy C and Nunes J Jr

(2003) Epidemics of soybean rust (Phakopsora pachyrhizi)

in Brazil and Paraguay from 2001 to 2003. Phytopathology

93:S103.

Zeng S (1988) Inter-regional spread of wheat yellow rust in

China. Phytopathologica Sinica 18: 219–223.

Zeng (2003) Discussion on the macro-phytopathology. Review

of China Agricultural Science and Technology 5: 3–7.

34



Ecological genomics and epidemiology

K.A. Garrett1,*, S.H. Hulbert1, J.E. Leach2 and S.E. Travers1
1Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; 2Department of
Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO, 80523, USA;
*Author for Correspondence (Fax: +1-785-532-5692; E-mail: kgarrett@ksu.edu)

Accepted 13 October 2005

Abstract

The huge amount of genomic data now becoming available offers both opportunities and challenges for
epidemiologists. In this ‘‘preview’’ of likely developments as the field of ecological genomics evolves and
merges with epidemiology, we discuss how epidemiology can use new information about genetic sequences
and gene expression to form predictions about epidemic features and outcomes and for understanding host
resistance and pathogen evolution. DNA sequencing is now complete for some hosts and several pathogens.
Microarrays make it possible to measure gene expression simultaneously for thousands of genes. These
tools will contribute to plant disease epidemiology by providing information about which resistance or
pathogenicity genes are present in individuals and populations, what genes other than those directly
involved in resistance and virulence are important in epidemics, the role of the phenotypic status of hosts
and pathogens, and the role of the status of the environmental metagenome. Conversely, models of group
dynamics supplied by population biology and ecology may be used to interpret gene expression within
individual organisms and in populations of organisms. Genomic tools have great potential for improving
understanding of resistance gene evolution and the durability of resistance. For example, DNA sequence
analysis can be used to evaluate whether an arms race model of co-evolution is supported. Finally, new
genomic tools will make it possible to consider the landscape ecology of epidemics in terms of host
resistance both as determined by genotype and as expressed in host phenotypes in response to the biotic and
abiotic environment. Host phenotype mixtures can be modeled and evaluated, with epidemiological pre-
dictions based on phenotypic characteristics such as physiological age and status in terms of induced
systemic resistance or systemic acquired resistance.

Introduction

The field of plant disease epidemiology has incor-
porated new technologies and perspectives on
biology as they have become available, from
computer simulation modeling to automated
environmental sensing. Over the past decade, the
study of DNA within all areas of biology has gone
through a revolution, providing new types and
new quantities of genomic data for epidemiologi-
cal analyses. Given the advent of new technologies
associated with rapid analysis and miniaturization,
informatics, and molecular biology, it is now
possible to expand the scale of studies of both
agricultural and wild species to include entire
genomes. The high-throughput advances associ-

ated with genomics and other ‘‘-omics’’ (e.g. pro-
teomics, metabolomics) have allowed an
unprecedented collaboration among scientists
working at different biological scales and have
fostered a new science, ecological genomics. In this
‘‘preview’’, we discuss how these new approaches
may dovetail with plant disease epidemiology.

Epidemiology has already benefited from
information about the population genetics of
pathogens, as reviewed by Milgroom and Peever
(2003). By simultaneously studying how pathogen
gene frequencies change within and among popu-
lations as a result of both natural selection and
gene flow, and how pathogen populations grow
and spread, it has been possible to track disease
outbreaks (e.g., Zwankhuizen et al., 1998),
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develop predictions about sources of inoculum and
pathogen life cycles (e.g., Cortesi et al., 2000;
Cortesi and Milgroom, 2001), understand the
evolution of virulence (Escriu et al., 2000a, b,
2003), and make predictions about the durability
of resistance in crop genotypes (Escriu et al.,
2000a, b). Ultimately, modeling plant disease epi-
demics and pathogen evolution depends on a
complete understanding of both plant and patho-
gen traits that influence the dynamics between a
pathogen and its host. To completely understand
any trait and its significance in a dynamic interplay
between species requires the simultaneous use of
molecular, cellular, organismal, population and
ecological approaches. Past efforts to combine
epidemiology and population genetics have come
up against an upper limit on the number of eco-
logically important genes that could be surveyed
or lack of information on gene function and sig-
nificance. Yet, host plants, as well as pathogens,
exist in a matrix of hundreds or thousands of other
taxa and their genes. Population changes in
pathogens, reproduction and dispersal will all
depend on the interactions among these organisms
that can influence the dynamics of resistance evo-
lution and direct effects on pathogen populations
(Antonovics, 2003).

The developing synthesis of a functional
genomics approach combined with a population
and ecological perspective promises to lead to new
avenues of research and understanding of plant/
pathogen interactions. Evolutionary and ecologi-
cal functional genomics or EEFG (Feder and
Mitchell-Olds, 2003) has as a goal to understand
ecological and evolutionary processes that main-
tain genotypes and phenotypes. The emphasis so
far has been on wild species, but agricultural sys-
tems offer both an important application and
relatively well-characterized systems for experi-
mentation. The field of ecological genomics will
address new types of questions beyond applica-
tions based on molecular markers. Microarrays
allow synoptic measurements of gene expression in
tens of thousands of genes. Real-time PCR allows
highly accurate quantitative evaluation of gene
expression at many time steps. It will also be
possible to identify hundreds or even thousands of
organisms simultaneously from individual samples
as microarrays are developed with sequences rep-
resentative of desired sets of species, potentially
including non-culturable species. Advances in

sequencing allow analysis of great numbers of
‘‘markers’’ with added information about their
likely role through reference to databases such as
GenBank (Black et al., 2001), thus revealing the
gene content of particular organisms.

Functional genomics, or the use of genomic
technologies (e.g. microarrays) to find genes and
polymorphisms that affect traits of interest and to
characterize the mechanisms underlying those
effects, has been applied effectively in agricultural
contexts and has potential in natural systems.
Functional genomics moves beyond simple
sequence analysis to evaluate the function of par-
ticular DNA sequences through, for example, gene
knockout mutants or gene activation mutations.
These techniques have natural applications for the
study of resistance and virulence, but might also be
usefully applied in the study of other
epidemiological features. By simultaneously scan-
ning thousands of plant genes for changes in
expression in response to variables of interest (e.g.
stress, infection) it has been possible to identify
candidate loci or suites of genes and molecular
mechanisms involved in the phenotypic expression
of key traits of economically important crop spe-
cies (Frick and Schaller, 2002; Jones et al., 2002;
Mysore et al., 2003). A great deal has been learned
about plant defense against disease through the
use of functional genomics and model plant sys-
tems such as Arabidopsis (Wan et al., 2002; Schenk
et al., 2003; Whitham et al., 2003a).

An intriguing area of epidemiology that will
develop with the availability of new tools for
studying gene expression is the study of pheno-
typic resistance and its responses to the biotic and
abiotic environment. Infection with an incompat-
ible pathogen, or a virulent pathogen that causes
cell death, can make a plant more resistant to
subsequent infection by the same or different
pathogens, a phenomenon designated systemic
acquired resistance (SAR; Durrant and Dong,
2004). The SAR response in Arabidopsis confers
resistance to several diseases (Ryals et al., 1996).
Resistance to pathogens can also be influenced by
non-pathogenic organisms; systemic changes in
disease resistance in response to colonization by
rhizosphere-colonizing Pseudomonas bacteria have
been well-documented and are commonly referred
to as induced systemic resistance (ISR; Iavicoli
et al., 2003; Cui et al., 2005). Dissection of the
SAR and ISR signaling systems in Arabidopsis
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indicate they are controlled by different pathways
and signaling molecules with some common com-
ponents. Understanding which genes are expressed
during specific defense responses can provide
indications of what pathways are activated in dif-
ferent biotic environments (Pieterse and van Loon,
1999). Tools are now available to begin studying
these phenomena more widely in epidemiology.

This paper will address the following topics in
ecological genomics. (1) Population genetics and
population genomics can inform epidemiology to
further our understanding of epidemics and to
provide insights for disease management. We will
also consider how studies of gene expression can
potentially add predictive power at finer spatial
and temporal scales than was possible in the past.
(2) Models of populations and communities may
apply to analogous systems of gene expression
within organisms and in populations of organisms
to inform a ‘‘population biology’’ of gene expres-
sion. (3) Genomics can contribute to understand-
ing of resistance gene evolution and durability of
resistance. (4) The landscape ecology of host
populations and communities, in terms of both

genotypic and phenotypic resistance, can now be
studied more thoroughly as it affects epidemics. In
addressing these topics, we will emphasize genes
that influence the relationship between plant host
and pathogen, but the same general concepts
would apply to interactions between plant species,
between plants and insect herbivores, etc.

How population genetics and population genomics

can inform epidemiology

Epidemiology has traditionally used information
about host species, pathogen and vector species,
and environmental variables such as temperature
and precipitation to predict epidemic progress.
These models can be adapted to incorporate much
more detailed information about the genomic
status of the host and pathogen communities
considered in the context of a broadly defined
environment, i.e., defined to include abiotic com-
ponents and potentially the complete community
metagenome of soil (Rondon et al., 2000) or other
systems (Figure 1). Information about the soil

Pathogen genome(s)Pathogen genome(s)

Abiotic environment
(and biotic environment)

Abiotic environment
(and biotic environment)

Host speciesHost species

Pathogen speciesPathogen species

Host genome(s)Host genome(s)
Community metagenome
and abiotic environment
Community metagenome
and abiotic environment

Figure 1. The traditional disease triangle depicts prediction of epidemics based on interactions between pathogen species, host spe-

cies, and the abiotic environment. It is now much easier to obtain information about the complete genotype and current gene

expression of host and pathogen, and there is even the potential to obtain this information for complete communities such as those

in soil, the rhizosphere, and the phyllosphere, as well as endophytic communities. Models about a hierarchy of features of ‘‘geno-

mic status’’ might be experimentally evaluated in this context. For example, ‘‘The host landscape is sufficiently described to predict

epidemic features and outcomes by information about... d ... host community composition (in terms of species).’’ d ... a specific

subset of the host genotype sequence(s).’’ d ... the host genotype sequence(s).’’ d ... a subset of host gene expression.’’ d ... com-

plete profiles of host gene expression (now and/or in the past).’’

37



metagenome may contribute to an understanding
of disease suppressive soils that develop over time
as microbial populations respond to the buildup of
pathogen populations. For example, soils sup-
pressive to the wheat take-all pathogen and potato
scab have been described, with fluorescent pseu-
domonads and streptomycetes, respectively, being
the likely causes of suppressiveness (Weller et al.,
2002). Advances in genomics also make it possible
to characterize the genomic status of host plants at
a much finer temporal and spatial scale than in the
past (Table 1). The addition of gene expression as
a response variable or predictor variable in epi-
demiological models has the potential to shift the
scale of inquiry to hours and millimeters. Moni-
toring the expression of genes in specific defense
pathways, or individual genes that reflect the
expression of the pathways, could be used to pre-
dict the outcome of pathogen infection in indi-
vidual plants or plant organs. For most diseases,
progress in determining the efficacy of different
defense responses for controlling specific patho-
gens and how the responses become distributed
throughout the plant must be made before this
information is useful. Then epidemiologists will
need to perform a range of exploratory field
studies to identify the forms of predictors that are
most useful for inclusion in more detailed follow-
up studies. For example, if the early induction of
senescence-related gene pathways were observed to
occur, would this be related to reduced epidemic
potential at a field scale?

Characterizations of populations may include
the composition of both qualitative features pro-
duced by different genotypes and quantitative
features produced by different levels of gene
expression in what may be the same genotype.
Evaluation of qualitative features might be per-
formed using marker or sequence studies, while
evaluation of quantitative features might be
performed using microarrays or real-time PCR.
Studies of gene expression in agriculturally
important host plants have expanded remarkably,
with microarrays now available for several major
crop species. These allow host resistance to be
assessed as an outcome of gene expression. In
addition, the expression of plant genes in response
to non-pathogenic microorganisms may be highly
relevant to epidemiology, as it may provide an
understanding of how plants select for rhizosphere
flora that are antagonistic to pathogens, for
example (Smith and Goodman, 1999). Microarray
analyses can be used to identify sets of coregulated
genes and their common regulatory elements (e.g.,
Maleck et al., 2000; Chen et al., 2002), which may
both reveal different response pathways and allow
selection of smaller sets of indicator genes to
represent particular stress response pathways.
Microarrays developed using genes from one plant
species may also be applied, with some caveats, in
studies of related species; for example Travers
et al. (in preparation) have applied maize micro-
arrays to study gene expression in the related
tallgrass prairie grasses Andropogon gerardii and

Table 1. The temporal and spatial scale of variation in different components of host genomic status

Component of host

genomic status

Temporal scale Spatial scale

In annual monoculture

Species Cropping season Size of field in many

conventional systems

Genotype Cropping season Size of field in many

conventional systems

Gene expression Less than one hour

to cropping season

Part of one individual

to size of field

In unmanaged systems

Species Days to decades One individual to majority

of plant community

Genotype Days to decades (potential

for somatic mutation)

One individual to majority

of species (in clonal species)

Gene expression Less than one hour or until

phenotype expressed (days

for defense reaction, months

for flowering, etc.)

Part of one individual to majority of area
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Sorghastrum nutans, and have identified statisti-
cally significant responses to simulated climate
change in native field populations.

New genetic information can be used to refine
state transition models such as Susceptible-In-
fected (SI) models (e.g., Otten et al., 2003). Rather
than modeling host individuals as simply ‘‘sus-
ceptible and uninfected’’ or ‘‘infected’’, more
details about the state of individuals could be in-
cluded. The first simple modifications might
include broad genotypic resistance and suscepti-
bility. Further refinement could include transi-
tional states of greater or lesser susceptibility
based on physiological age, and probabilities of
exposure to other organisms that would induce
resistance. Matrix-based models of probabilities of
transitions from one state to another could be
applied to predict long-run states such as disease
severity or survival of different genotypes. Such
models could potentially be applied to develop
both epidemiological theory and better disease
management schemes. In the short-run, they could
be used to ask questions about the incremental
benefits of adding information about host pheno-
type to epidemic models. In the long-run, these
models could contribute to a much deeper under-
standing of epidemic dynamics.

The more complete genetic information from
DNA sequencing can be used to study long-
standing questions of population structure, host
specificity, and phylogenetics. Due to the growth
of sequence databases and the reduction in PCR
amplification and sequencing costs, determining
the sequence of a specific gene in a microorganism
is often the most efficient way to determine the
species of the microorganism. Databases now
carry information on a huge number of organisms,
and matching an unknown sequence to the
sequences in a database like GenBank takes only a
few minutes, although one must keep in mind
that not every sequence accession in GenBank is
annotated correctly. Reduced sequencing and
DNA amplification costs make the identification
of components of large microbial populations
feasible. Entire fungal or bacterial communities
can be characterized taxonomically by incorpo-
rating new techniques such as ‘‘shotgun sequenc-
ing’’ of a community’s collective genome and using
genome database searches to identify species and
predict gene function (Venter et al., 2004). At a
finer scale, sequencing specific genes in pathogen

mutants may give insight into cost of virulence
(Vera Cruz et al., 2000; Ponciano et al., 2004).
Sequencing can also be used to evaluate the po-
tential repertoire of resistance genes available, to
the extent that sequence similarity can predict
functional similarity (Bai et al., 2002). Examples
include NBS-LRR genes, the largest class of dis-
ease resistance genes. Plant genome projects have
indicated there are approximately 150 in
Arabidopsis and more than three times this number
in rice. Information about the number of resis-
tance genes available may contribute to resistance
gene deployment strategies. The identification of
sequences associated with resistance genes may
also be applied to related plant species to answer
long-standing questions about the number and
type of resistance genes in natural populations
(Gilbert, 2002). Microbial genome projects are
providing similar estimates of the number and
types of effector proteins in a single organism, such
as the number of gene products transferred into
plant cells by the type III secretion system of
Pseudomonas syringae strain DC3000 (Collmer
et al., 2002; Alfano and Collmer, 2004; Rohmer
et al., 2004; Chang et al., 2005). These are not only
important proteins that make the bacteria suc-
cessful pathogens, but also the targets of
plant disease resistance proteins. These are just a
few examples of how partial and whole genome
sequencing projects can contribute to under-
standing host–pathogen interactions.

Studies of gene expression in pathogens are still
limited, but, where available, are being used to
understand expression of genes during plant colo-
nization, and under various cultural practices. As
more whole genomes are sequenced, microarrays
using various platforms are becoming available for
several pathogens. As examples, arrays exist for the
rice blast fungus and for several bacterial plant
pathogens. Techniques other than microarrays are
also being applied to understand gene expression;
for example, serial analysis of gene expression
(SAGE) has been applied to study gene
expression in response to rice blast infection
(http://www.mgosdb.org/). Microarrays can also
be used in comparative genomics studies of closely
related pathogens using full genome sequences. For
example, the gene content of the human pathogen
Yersinia pestis has been studied as an indicator for
adaptation (Chain et al., 2004). Genomes have
been evaluated to determine what is missing in a

39



fastidious, xylem limited species like Xylella
fastidiosa by comparison to other less fastidious
bacteria (Van Sluys et al., 2002). The genomes of
Xanthomonas oryzae pv. oryzae and X. oryzae pv.
oryzicola are being compared for insights into why
the first is systemic in xylem while the second grows
in mesophyll (A. Bogdanove, pers. comm.).

The greater availability of genetic information
will allow plant pathologists to move ‘‘beyond the
inoculation experiment’’ in studies of the genetic
features of host–pathogen interactions. In the past,
painstaking and expensive analyses of genetic
expression in host–pathogen interactions have
generally been applied to studies of pathogens
introduced to hosts either in highly conducive
environments, in the case of rust fungi, for exam-
ple, or directly inoculated into host tissues, in the
case of many bacterial pathogens. In contrast, it
would be extremely interesting and valuable to
have a greater understanding of the genetic basis
for the broad range of other epidemiological fea-
tures that are important in determining popula-
tion-level interactions between host and pathogen.
For example, from the standpoint of the pathogen,
aside from direct effects on virulence or aggres-
siveness, what are the genes most important for
features such as survival in soil or on plant sur-
faces, tolerance for temperature extremes, dis-
persal capability, or other specialized features such
as conversion from production of urediniospores
to production of teliospores in rust fungi? At lar-
ger epidemic scales, the genetic characteristics
most important to dispersal might be those that
affect survival of propagules under challenging
environmental conditions. These characteristics
would help determine whether the long-distance
transport events so important to establishment of
epidemics in new areas occur or not. From the
standpoint of the host, what genes are most
important for predicting epidemics aside from
direct resistance genes, including features such as
the probability of escape through faster or slower
movement through developmental stages, ‘‘leak-
ing’’ of compounds in the phyllosphere or rhizo-
sphere, and architectural features that affect
microclimate? Such information would be useful
both for applied crop plant breeding programs and
for understanding resistance profiles in natural
plant populations.

There is the potential to identify genes predictive
of epidemiological features using ‘‘comparative

genomics’’ to inform ‘‘comparative epidemiol-
ogy’’. For example, Kranz (2002) discusses several
disease parameters influenced by host plant resis-
tance that together predict epidemic rates and
outcomes: disease intensity, incubation period,
latent period, infection efficiency, disease effi-
ciency, infection rate, lesion size, infectious period,
and sporulation intensity. In comparative epide-
miology, the differences in these parameters
between host–pathogen systems can be evaluated
both in terms of their typical values and the fre-
quency distribution of these values in response to
typical forms of resistance. The availability of gene
expression data will also make it possible to study
disease parameters as a function of measures of
gene expression, given a particular genotype
(Figure 2), in the same way that the expression
levels of key genes associated with the initiation of
flowering have been used to predict flowering time
(Welch et al., 2003, 2005).

There is a basic need in epidemiology for
improved diagnostic systems and genomic ad-
vances will greatly expand the tools available. For
example, as models of the risk of invasion by
particular plant pathogens are constructed, their
validation depends on researchers’ ability to
determine precisely the abundance of pathogens in
a range of environmental settings. In their simplest
form, such studies require the ability to detect and
identify particular species of pathogens. Diagnosis
may also be taken to more sophisticated levels
through the ability to detect particular genotypes,

Expression level of one or more genes
related to disease resistance
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Figure 2. Schematic of possible relationships between gene

expression levels and epidemic parameters such as latent peri-
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in particular, those that are capable of causing
disease. Presence of genes for these traits, such as
genes related to pathogenicity, toxin production,
and other epidemiological features, if known,
could be used to more reliably measure genotypes
in a population responsible for disease. A partic-
ularly important application might be the identi-
fication of disease, through evaluation of host or
pathogen, when infection is still at very low levels,
to allow for early management that might, for
example, allow an invasive pathogen to be eradi-
cated before it has become well-established. Fur-
ther refinement for successful diagnosis of gene
expression may allow assessment of features such
as quorum sensing status (van Bodman et al.,
2003). The use of microarrays also opens the
possibility of synoptic rapid-throughput diagnostic
procedures for huge numbers of organisms for the
study of the community characteristics of systems
such as disease-suppressive soils, the phyllosphere,
and endophytic communities. These approaches
could bring great advances in understanding
microbial biodiversity, including the potential
to find new non-culturable putative pathogens
through scans for microbial genes used for taxo-
nomic classification or even genes associated with
pathogenicity. Epidemiologists might also make
good use of a genomic tool that would allow them
to study the past presence of pathogens through
on-going expression in host populations. Such a
measure of pathogen ‘‘footprints’’ could support
studies of long-term epidemics and changes in host
resistance over time. But it appears that an indi-
cator of past infection is not readily available in
plants, or at least researchers have not yet dis-
covered how to recognize it.

How models of populations and communities may

apply to systems of gene expression to inform

a ‘‘population biology’’ of gene expression

A null model for how models of populations and
communities apply to the study of gene expression
might be ‘‘consilience’’; that is, the null model
might be that the same models will apply across
scales, so tests could be developed to determine
where population models do and don’t adequately
explain patterns of gene expression.

Models from population biology can be applied
in the study of gene expression in three general

ways. First, at the smallest scale, genes may be
conceptualized to interact within a cell comparably
to the way that species interact within an
ecosystem (Mauricio, 2005). For example, it may
be useful to apply such models to the interactions
between different defense response pathways.
There is evidence the jasmonate (or ethylene) and
salicylic acid pathways affect somewhat different
pathogens and pests but also interact with each
other (Thomma et al., 1998; Glazebrook et al.,
2003). Depending on the response examined, they
may sometimes be viewed as complementary (van
Wees et al., 2000) and in other cases as in com-
petition (Spoel et al., 2003).

Second, an individual plant may be conceptu-
alized as a population of cells or organs across
which gene expression occurs. It is now possible to
measure gene expression in individual plant cells
(Kerk et al., 2003; Nakazono et al., 2003) so the
spatial pattern of expression through an individual
host can be measured and modeled at whatever
spatial grain is motivated by the experimental
questions. Spatial patterns of defense responses
between cells are relevant both to how effective
defense responses are to pathogen challenge and to
how the host responds to adjacent or subsequent
challenges by the same or other pathogens. Could
models of the dispersal of individuals through
ecological landscapes be usefully adapted to
describe the dispersal of gene products within and
between cells? State transition models could be
applied to individual plants in cases where it
makes sense to treat them as a set of units, such as
different tissues and organs, each of which would
have its own expression status. This could be
addressed using a variation on SI models. Predic-
tions based on these models might include the
predicted infection level as well as the predicted
plant growth rate.

Third, experiments in epidemiology might begin
with models within individuals, predicting infec-
tion levels based on the expression of particular
genes, and then expand on these to predict infec-
tion rates in plant populations based on the gene
expression rates in individuals. A null model for
such a study might be that the mean expression
level of individual hosts is fully predictive of the
level of infection in the population. In contrast to
the null model, it would be interesting to determine
whether the frequency distribution of the expres-
sion rates, and perhaps even their spatial pattern,
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in the different host individuals would substan-
tially improve predictions of epidemic features,
just as different patterns of disease severity across
individuals can result in different overall yields for
the same mean disease severity (Hughes, 1996).
Simulation modeling might be used for initial tests
of the sensitivity of epidemic outcomes to such
patterns of expression. Addressing questions such
as these with an understanding of mechanism will
require considerably greater understanding of the
relationships between gene expression and gene
product physiological function. This third scale is
addressed further in a later section.

The study of gene expression offers a new
method for measuring integrated effects of envi-
ronmental variation (Figure 3). Environmental
variables such as temperature and precipitation
are standard predictors of disease progress in epi-
demiological models (Jeger, 2004), and integrated
forms such as ‘‘growing degree days’’ are already
commonly used to predict growth stage as a model
component. Different types of host responses may
be integrated over different time intervals.
Growth stage, or more specialized responses like
the development of sun and shade leaves, are the
products of the cumulative effects of gene expres-

sion, as affected by environment, over a period of
time. Younger tissues might only experience
‘‘indirect’’ effects from past environmental condi-
tions, perhaps as an analog to maternal and
grandmother effects in individuals. Induced sys-
temic resistance might be an example of short-term
gene expression in response to non-pathogens
while systemic acquired resistance might be an
example of short-term gene expression in response
to pathogens or to chemical stimulants. The timing
of infection and its effects on losses in productivity
can also be evaluated through variations on
time-of-infection models for predicting yield
loss (Madden et al., 2000) that include explicit
descriptions of host gene expression in response to
infection. The schematic model in Figure 3 applies
most directly in agricultural systems in which a
genotype is generally maintained, at least for a
season, through removal of competitors. A more
complicated model might be developed in which
host genotypes can be replaced by other plant
genotypes. The schematic might also be adapted to
take into account the possibility of thresholds such
that long-term changes in phenotype could be
produced by short-term gene expression at critical
time points in development.

A. Environmental conditions over time

Current host
phenotype

Long-term gene expression

Medium-term gene
expression

Short-term
gene
expression

Long-term
phenotypic
characteristics

Medium-term
phenotypic
characteristics

Short-term
phenotypic
characteristics

Host
genotype

B. Pathogen community over time

Figure 3. The current host phenotype, at any spatial scale within a host individual, is a form of integration of the individual’s

environment, including the composition of the pathogen community, acting on the host genotype. Long-term phenotypic character-

istics would include features such as physiological age of leaves or roots, forms of specialization such as the development of sun or

shade leaves, and other characteristics that may influence disease resistance. Short-term characteristics might include features such

as upregulation of pathways contributing to induced resistance. Of course, host gene expression will also influence pathogen popu-

lations and even the abiotic microenvironment.
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How genomics can contribute to understanding

of resistance gene evolution and durability

of resistance

A major goal of agricultural plant pathology is the
development of durable resistance to plant
pathogens in agricultural species. ‘‘Durable resis-
tance’’ has been defined as resistance that is still
effective after it has been deployed over a wide
area, over a long period of time, in a disease-
conducive environment (Johnson, 1981). Without
durable resistance, plant breeders are forced to
continually incorporate new resistance genes in
crop varieties as pathogen populations adapt to
infect older varieties with previously deployed
resistance genes. An understanding of the evolu-
tion of host and pathogen genes affecting host–
pathogen interactions is needed to form strategies
for the durable deployment of resistance in agri-
culture. It has long been thought that under-
standing of the relative importance of the disease
effector proteins from bacterial and fungal
pathogens that are detected by R genes (i.e., the
products of avirulence genes) should provide in-
sight into which R genes might have more durable
effects, but this idea has had limited impact
because of the difficulty of identifying and char-
acterizing these effector protein genes. Compara-
tive genomic approaches for identifying these
genes and functional genomic approaches to ob-
tain ‘knocking-outs’ of their function is making
this increasingly feasible (Leach et al., 2001). Some
resistance genes, like mlo of barley (Buschges
et al., 1997), may confer resistance without inter-
acting with specific pathogen effector proteins.
These genes may provide non-specific resistance by
changing the physiology and gene expression of
the plant before pathogen challenge (Wolter et al.,
1993). Gene expression analysis has indicated
other resistance genes with suspected non-specific
effects may alter expression of defense genes
before pathogen challenge (Bowden and Hulbert,
unpublished). Such analysis should be useful in
identifying genes controlling non-specific and thus
durable resistance and also provide insight into the
possible physiological cost of the resistance.

The isolation and sequence analysis of several
resistance genes has provided insight into the evo-
lution of disease resistance in plants (Hulbert et al.,
2001). Some of the results of these analyses are
consistent with a classical evolutionary arms race

model, while others are not (Hulbert, 1998). High
levels of sequence variation have been observed at
most R gene loci examined. This is consistent with
the arms race model’s prediction that R genes
would evolve rapidly, creating novel alleles with
new specificities in response to pressure imposed by
rapidly evolving pathogen populations. Loci like L
of flax (Ellis et al., 1999), which is structurally
simple but has multiple resistance alleles, exhibit
extremely high levels of polymorphism compared
to most genes. At some R gene loci, the patterns of
nucleotide substitution between alleles or family
members show evidence of the types of diversifying
selection that might be predicted by an arms race
model. While polymorphic nucleotides are usually
synonymous (not affecting the encoded amino
acid) at most loci, the opposite is true of certain
regions of some R gene loci. This is most often true
in regions of R genes thought to code for the ligand
recognition part of the protein, like the leucine-rich
repeat regions (Parniske et al., 1997; Meyers et al.,
2003). Evidence of diversifying selection in other
regions of R genes, like the TIR domain-encoding
regions of the L alleles, has suggested they may also
be involved in recognition (Luck et al., 2000).

One interpretation of an arms race evolutionary
progression is that there should be little variation
at a given R gene locus at one point in time and
that most R gene alleles should be fairly recent in
their evolutionary origin. This would be expected
if new highly effective R genes arose periodically
and replaced the older ‘defeated’ alleles. The
polymorphic nature of many R gene loci indicates
this is apparently not the case for most of them. In
fact the partitioning of polymorphism between
functional alleles and non-functional alleles at the
Rpm1 and Rps5 loci of Arabidopsis indicated that
the classes of alleles have co-existed for a long
period (Bergelson et al., 2001; Tian et al., 2002),
probably the result of some form of balancing
selection. While actual estimates of the age of
specific resistance gene alleles are not available,
this may be an indication that some R gene alleles
are ancient. In contrast, no evidence that resis-
tance alleles are ancient has been obtained by
sequencing the same resistance allele from multiple
germplasm accessions. If resistance alleles are
indeed ancient, it should be possible to identify
versions that have accumulated extensive neutral
sequence polymorphisms. This has not yet been
the case in the limited experiments that have been
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conducted (Caicedo et al., 1999; Jia et al., 2003;
Smith et al., 2004). The low nucleotide diversity
among the functional alleles of these loci is con-
sistent with the idea that they could be recently
evolved, although other explanations are possible.

The sequence evidence collected to date implies
that different R gene loci are evolving in different
manners. For example, some appear to be under
strong diversifying selection while others do not.
The implications of an R genes’ evolutionary his-
tory for the stability of the resistance it confers is
not clear, but the ability to predict durability based
on genomic analysis would be quite useful for crop
improvement strategies. Molecular analyses of
resistance proteins and their corresponding aviru-
lence proteins have indicated that some physically
interact directly (Scofield et al., 1996; Tang et al.,
1996; Jia et al., 2000, Deslandes et al., 2003) while
others detect modifications of other host compo-
nents (Mackey et al., 2003; Axtell and Staskawicz,
2003). It is possible that whether an R gene rec-
ognizes effector (avirulence) genes directly or
protects host targets from modification by effector
proteins affects the type of selection pressure
driving its evolution (Ponciano et al., 2003). This
association, however, is not yet clear due to the
small number of interactions in which this type of
information is known. For R proteins that guard
other host components, it is not clear if the nature
of the host protein being guarded affects the
durability of the R gene, but it might be expected
that some targets are more important to the
pathogens ability to cause disease than others. The
nature of the effector gene, particularly how
essential it is to pathogenicity, has been proposed
by many to affect R gene durability and recent
data indicates this is true (Vera Cruz et al., 2000).

One response to the problem of rapid ‘‘break-
down’’ of resistance in agricultural systems has
been a shift by some plant breeders toward greater
use of minor resistance genes that each contribute
a small amount of resistance and are generally
thought to be more durable (Leung et al., 2003;
Liu et al., 2004). However, these genes, because of
their small effects, are more difficult to study in the
field and even to recognize by the phenotypes of
individual plants. The use of genetic markers has
made the incorporation of minor genes easier, but
the problem remains that, because we do not know
what genes are responsible for quantitative traits,
the association of the markers with the traits is not

absolute. Genomic tools will allow discovery of the
genes responsible for quantitative traits, and may
make it easier to determine whether resistance
governed by quantitative traits is truly more
durable; whether the effects of QTL are actually
less pathotype specific, or whether an apparently
more durable effect may be mediated by a weaker
selection on individual pathogen genes. To the
extent that function can be inferred from sequence,
the response of pathogens to particular minor
genes may be better predicted as this information
becomes available. It will be particularly useful if
comparative genomics would allow predictions of
the interactions between minor resistance genes
and their responses to abiotic and biotic environ-
ments. Functional genomics may also contribute
to the identification of new minor resistance genes.
QTL analysis or the identification of quantitative
trait loci provides a powerful tool for assessing the
fitness consequences for genes including resistance
genes. For example, Newcombe and Bradshaw
(1996) used it to identify genes of large effect that
changed the resistance of poplar to pathogenic
Septoria populicola with community level effects.

The study of pathogen and host co-evolution in
natural plant populations is also important for
understanding what role pathogens may have
played in structuring plant communities. In studies
demonstrating the importance of genetic variation
in host plant species within a larger community
that includes pathogens, hybridization of host
plants (e.g. willows, sagebrush, oaks) has led to
fundamental changes in the species composition of
the entire community (reviewed in Whitham et al.,
1999). This ‘‘extended phenotype’’ effect would be
reflected in the context of epidemiology by the
dying out of some pathogens and replacement with
others (Whitham et al., 2003b). Agricultural sys-
tems and unmanaged systems offer an interesting
contrast, because the selection pressures in un-
managed systems are ‘‘direct’’ while selection
pressures in agricultural systems are mediated by
human decision-making.

The landscape ecological genomics of host

populations and communities, in terms of both

genotypic and phenotypic resistance

Once meteorological measurements could be col-
lected using automated systems, epidemiologists
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were faced with the question of what temporal
scale of resolution was needed for understanding
epidemic progress. Information about variation in
temperature at the scale of minutes is not generally
needed for predicting epidemic features. But whe-
ther predictions are improved by resolving differ-
ences in temperature at the scale of days or weeks
will vary from one host–pathogen system to
another, based on characteristics such as pathogen
generation time, and requires attention for the
construction of good models. Information about
variation in meteorological features across space is
still not so readily collected at very fine scales,
though the increasing availability of ‘‘smart dust’’
and other tiny wireless sensor networks may change
that (e.g., http://webs.cs.berkeley.edu/). The same
question of appropriate scale of variation to
include for modeling will arise for the new spatial
maps of meteorological features. Similarly, the
potentially huge amount of information about gene
expression will require research to determine what
scale of variation is important to include in pre-
diction of epidemics for particular host–pathogen
systems. The cost of microarray analyses limits the
number of samples in time and space for now, but
as costs become less limiting, epidemiological re-
search will focus more on determining optimal
scales of variation in expression data to include in
predictive models.

Plant disease epidemiology has developed models
of disease foci and how these foci expand in time
and space (Zadoks and Vandenbosch, 1994;
Waggoner and Aylor, 2000), including studies of
the spatial pattern of disease used to draw infer-
ence about modes of dispersal and to devise opti-
mal sampling strategies. Landscape ecology also
offers methods for studying spatial features with
models for describing the relationships between
organisms in landscapes and for describing the
connectivity of features (With, 2002). In agricul-
tural systems, the spatial pattern of host genotypic
resistance is sometimes manipulated through the
construction of intercropping systems and/or use
of mixed genotypes within a crop species (Garrett
and Mundt, 1999; Zhu et al., 2000; Mundt, 2002).
And, of course, most unmanaged systems include
a mixture of plant species that, with few exceptions
(e.g., Phytophthora cinnamomi), do not tend to
share the same pathogen species. Mixtures of
susceptible and other genotypes make models of
disease spread through space somewhat more

complicated. Some models have assumed that
epidemic ‘‘waves’’ move out from an initial point
with constant velocity to simplify the modeling of
the system, while other researchers predict that
epidemic waves accelerate (Scherm, 1996; Cowger
et al., 2005).

A genomics approach applied to epidemiology
could explore multiple spatial and temporal scales
as well as levels of detail in genomic status, per-
haps employing cellular automata models (e.g.,
Kleczkowski et al., 1997; Figure 4). Within a host
individual, the local phenotype might be at the
scale of a leaf or of a cell. Local gene expression
might be at the point of infection; for example,
within compared to beyond a green island of host
tissue formed around an infection by a rust fungus.
Regional gene expression within an individual
might be expression in tissues adjacent to infec-
tion. Within a host individual and its immediate
environment, a wide range of pathogens may be
present, specializing on different host tissues.
Competition between particular pathogens may
play out differently depending on the time of
infection and the type of plant tissue (Adee et al.,
1990; Al-Naimi et al., 2005). The question for
epidemiologists will be what spatial and temporal
resolution is needed for predicting epidemics with
the new and upcoming abundance of data, as op-
posed to averaging over host and pathogen indi-
viduals’ genomic status across space and time.

In host populations, ‘‘expression foci’’ in which
host individuals share altered gene expression
patterns may form around inoculum sources, with
properties related to those of disease foci. Gene
expression changes in hosts in response to expo-
sure to pathogens and other microbes may range
from increased resistance through SAR or ISR to
increased susceptibility because of weakened tissue
integrity. The effect of exposure to pathogens that
do not infect has the potential to be substantial, at
least temporarily; Calonnec et al. (1996) estimated
that the infection efficiency of Puccinia striiformis
was reduced by 44% when plants were previously
exposed to an ‘‘inducer race’’ of the pathogen. At
increasing distances from a primary inoculum
source, exposure to inoculum may have occurred
at more recent time points, potentially resulting in
waves of different expression patterns surrounding
the initial source areas. Spatial patterns of abiotic
features, such as differences in topography that
produce cooler or wetter local conditions, may
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also produce expression foci relevant to epidemics.
Studies of gene expression in landscapes may
develop distinctions analogous to the distinction
between a dispersal gradient and a disease gradi-
ent. Disease gradients may differ markedly from
dispersal gradients if the success rates per unit of
inoculum are low, particularly if the reproductive
rates of the pathogen are density dependent
(Garrett and Bowden, 2002). There may be similar
effects for gene expression, such that thresholds of
exposure to pathogen inoculum, for example, must
be exceeded before substantial gene expression
results. At much smaller spatial scales, gene
expression in bacterial populations may give in-
sights into quorum sensing and its implications for
density dependent reproduction (van Bodman
et al., 2003).

Epidemiologists have developed the terms
autoinfection and alloinfection to describe infec-
tion of a target host individual by inoculum pro-
duced on the same target host individual vs.
infection by inoculum produced on other host
individuals, respectively (Robinson, 1976). The
rate of autoinfection can be an important predic-
tor for epidemics of non-systemic disease in mixed
genotype host populations. If some host genotypes
are susceptible and others are not, the reduction in

epidemic rates on susceptible genotypes that would
be predicted by the presence of other genotypes
will be reduced if autoinfection rates are high;
more inoculum will land on susceptible host indi-
viduals rather than being lost through dispersal to
non-hosts (Garrett and Mundt, 1999; Mundt,
2002). It may prove useful to develop analogous
concepts for gene expression, so that ‘‘autoinduc-
tion’’ of gene expression would occur when mi-
crobes associated with a particular plant
individual disperse to other organs within that
individual to induce SAR, ISR, or other reactions.
By comparison, ‘‘alloinduction’’ would occur
when microbes are dispersed to a different plant
individual to induce these reactions. Higher rates
of alloinduction compared to autoinduction would
tend to result in higher mean levels of SAR or ISR
in populations, and the rate of alloinduction
would be a function of host size and the dispersal
properties of the relevant microbe populations.

Feedback between host and pathogen would
occur as pathogens disperse, infect or elicit other
responses in plants, and then disperse further
through a landscape of phenotypic resistance that
has potentially been altered in response to previ-
ous dispersal. Good models of such a sys-
tem would require the ability to predict plant

Genotype

Host individual

Local phenotype

Local gene expression

“Organ-wide” gene expression

“Plant-wide” gene expression

Host
landscape
Host
landscape

Pathogen
landscape

Environmental
landscape

Figure 4. Each host individual is potentially influenced by the landscape of hosts, pathogens, and other biotic and abiotic environ-

mental features. Within a host individual, these influences may play out through ‘‘plant-wide’’, ‘‘organ-wide’’, or more local gene

expression, depending on the scale of variation of each feature in the landscape and how it acts upon the host individual. ‘‘Plant-

wide’’ gene expression might include responses to factors such as drought and disease that alters water relations within the host.

‘‘Organ-wide’’ gene expression might include responses to factors such as stem or petiole lesions. Local gene expression might in-

clude responses such as localized forms of induced resistance. Models related to spatial scale and scale of genetic detail that could

be experimentally evaluated as predictors of epidemic features include the following, presented in a hierarchy of increasing com-

plexity. ‘‘The host landscape is sufficiently described to predict epidemic features and outcomes by information about... d ... the

abundance of host species’’ d ... the abundance of host genotypes’’ d ... the abundance and spatial pattern of host species’’ d ...

the abundance and spatial pattern of host genotypes’’ d ... the mean level of gene expression among host individuals’’ d ... the

spatial pattern of gene expression among host individuals’’ d ... the spatial pattern of gene expression within host individuals.’’
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phenotypic resistance levels in response to the
biotic and abiotic environment, pathogen pheno-
types in response to ‘‘non-host’’ environmental
features, plant phenotypic responses to exposure
to pathogens, etc. (Figure 1). Of course, one
challenge is simply to be able to describe the cur-
rent level of phenotypic resistance of a host indi-
vidual. Adding the spatial pattern of host
genotypes provides additional modeling chal-
lenges. The level of aggregation of susceptible
hosts will produce a particular ‘‘genotype unit
area’’ (Mundt and Leonard, 1986), or area occu-
pied by a single host genotype, and help to deter-
mine the extent to which microbial populations are
spread between host species/genotypes or tend to
be dispersed within host species/genotypes. This
pattern of host genotypes will also influence the
pattern of expression in response to microbes
associated with a particular host genotype. The
combination of host genotype spatial patterns and
the spatial pattern of the biotic and abiotic envi-
ronment will result in a host ‘‘phenotype mixture’’.
Just as the effects of genotype diversity vary for
different host–pathogen systems (Lannou et al.,
1994; Mundt et al., 1995; Ngugi et al., 2001;
Mitchell et al., 2002; Cox et al., 2004), the com-
plex communities of plants and microbes involved
in induced resistance may experience different
patterns of spatial effects on induction. Models of
epidemics in genotype mixtures will be useful in
this context, but new models will also be needed.

Conclusion

Epidemiology will benefit from new genomic
technologies in several ways. New diagnostic
techniques will make the development of a ‘‘com-
munity epidemiology’’ more practical, through
providing the ability to characterize thousands of
microorganisms simultaneously as well as identi-
fying particular genes and alleles. New techniques
will make it easier to extend genetic analyses of
pathogens beyond virulence genes, by facilitating
the study of the population structure and evolution
of genes important for other important features
such as the ability to survive in non-conducive
environments. Functional genomic analysis of
pathogen virulence genes and host resistance and
defense response genes will enable better
predictions of the durability of resistance. New

genomic tools will also allow great advances in the
study of phenotypic resistance. It will finally be
possible to thoroughly evaluate the many ideas put
forward about age-related resistance and the effects
of the biotic and abiotic environment on pheno-
typic resistance. Conversely, epidemiology pro-
vides the context for understanding the role and
significance of pathogen genes and plant genes re-
lated to pathogen reproduction and also provides
models for evaluating landscapes of plant pheno-
types.
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Abstract

The concept of scale has only recently gained recognition as a central theme in ecology. The rise in
significance of scale in ecology can be attributed to the increase in hypothesis-driven experimental ecology
over the last quarter century, and the realization that experimental results do not sufficiently explain past,
or predict future observations in nature. Plant pathologists, who rely heavily on hypothesis-driven research,
have confronted these same issues for nearly a century. In this paper, I will provide a concise presentation
and discussion of the important concepts of scale and how they apply to the discipline of plant pathology.

Introduction

The concept of scale has only recently gained
recognition as a central or unifying theme in
ecology. In an extensive review of the ecological
literature, Schneider (2001a) showed a dramatic
increase in publications of scale-related research
during the 1990s. The rise in importance of scale
can be attributed to the increase in hypothesis-
driven, experimental ecology over the last quarter
century and the realization that experimental
results do not sufficiently explain past or predict
subsequent observations in nature.

Plant pathologists have confronted these same
issues for nearly a century. With few exceptions,
this important component of systems, observation,
and analysis has been conveniently – unknowingly
is perhaps a better choice of words – disregarded,
sometimes to the detriment of the hypothesis.
Unfortunately, the common leap from laboratory/
glasshouse to the field without sufficient consider-
ation of how outcomes may differ vastly when
rescaled is a theme repeated to this day. Scaling is
generally of little concern to the organismal biol-
ogist where processes under study are often clearly
defined by the organism’s size.

In what follows, I will provide a concise pre-
sentation and discussion of the important concepts
of scale. Most of what I will present is drawn from
the ecological literature, as ecologists are generally
at the forefront of advancing concepts and our
knowledge of scale. Three books that have helped
shape my understanding of scale are ‘Quantitative
Ecology: Spatial and Temporal Scaling’ by Schneider
(1994), ‘Ecological Scale: Theory and Applica-
tions’ edited by Peterson and Parker (1998), and
‘Scaling Relations in Experimental Ecology’ edited
by Gardner et al. (2001). I recommend these books
to anyone wishing to gain an ecological perspec-
tive on scale.

Definitions

‘‘Scale has a good start on contesting niche as one
of the vaguest yet most often used words in ecol-
ogy’’ (Wiens, 2001). Scale can be defined correctly
in a number of ways. The definition that likely
comes to mind when used in everyday conversa-
tion is that of cartographic scale. Cartographic
scale is the ratio of the distance on a map to the
distance on the ground (Schneider, 2001a). An-
other common usage defines scale as the
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‘‘. . .physical dimensions of observed entities and
phenomena’’ (O’Neill and King, 1998). Merriam
and Webster offer this definition of scale ‘‘to
arrange in a graduated series’’ (Merriam-Webster
online dictionary). In practice, most ecologists
would argue against this latter definition because,
unlike the previous two, the notion of quantifiable
measurement (i.e., distance, dimension) is not
stated explicitly. A number of ecologists have ar-
gued recently, and I agree, that any definition of
scale must consider scale as a quantity and involve,
or at least imply, measurements or measurement
units (O’Neill and King, 1998).

Hierarchical scale equates the organizational le-
vel in a hierarchy to independent or individual
scales. Hierarchical scale forms the essence of
hierarchy theory (Allen and Starr, 1982) where it is
argued that ecosystem processes operate in a way
such that upper level processes, structure, etc. reg-
ulate and/or constrain processes at lower scales in a
quantifiable manner. Some ecologists have argued
that hierarchical levels should not be thought of as
scales because ‘level’ is often an arbitrary, ambig-
uous or unquantifiable term (O’Neill and King,
1998;Wiens, 2001). Again, the notion of quantity is
not defined explicitly in the definition, e.g., in what
units does one quantify the ‘leaf’ level? (Turechek
and Madden, 2001).

An idealistic goal in experimental design is to
conduct an experiment where measurements or
observations are taken at the organisms or phe-
nomenons ‘characteristic scale’. This is defined as
the system scale at which all relevant ecological
and biological processes of a population or com-
munity occur. This ideal, however, is likely not
achievable as biological processes occur and
interact over a range of scales. A better way to
approach this concept is to envisage ecological
phenomena occurring within upper and lower
limits (Schneider, 1994). Even still, this may be
easily definable for certain phenomena, such as
spore dispersal, but not others, e.g., patterns of
plant disease.

Scaling concepts

Given an acceptable definition, a logical next
question is how to apply the term scale in practice.
In other words, what exactly needs to be scaled?
Dungan et al. (2002) distinguished three categories
to which scale-related terms are applicable. The

first category is the phenomenon (process or
structure) under study. For example, the spatial
pattern of plant disease and the processes that
generate it. The second is the experimental or
sampling units used to acquire information or data
about the phenomenon under study. The third is
the analyzes used to summarize the data to
describe the phenomenon. From herein, I will refer
to these as the system scale, observational scale,
and analysis scale, respectively.

In all cases, scale is bounded by grain at the
lowest extreme and extent at the other. When
applied to the systems scale grain refers to the
smallest ecological unit to which a phenomenon
affects a structure or process; extent is the total
area affected by the phenomenon, process, or
structure. Applied to the observational scale grain
refers to the resolution of measurements (Dungan
et al., 2002). The frequency of sampling in space
and/or time determines the resolution of the data.
Extent refers to the range over which experimental
measurements are taken (Wiens, 2001). For
example, consider measurements of precipitation.
This is an important variable in many disease
forecasters and one where estimates often need to
be sufficiently accurate. The recording frequency
of the rain gauge (i.e., hourly, daily, weekly, etc.)
sets the temporal resolution or grain. The duration
of time over which precipitation is measured
determines the extent. Applied to the analysis
scale, calculating means and grouping sampling
units coarsens grain; subsampling reduces the
extent. These are a few examples of how analytical
tools alter scale (O’Neill and King, 1998).

The scope is defined at the observational scale
for experimental design, surveys, model building,
etc. as the ratio of extent to grain, and is an
important and useful measurement for comparing
scales across studies. ‘‘Scope can be thought of as
the number of steps, once we know the step size’’
(Schneider, 1994). For example, the temporal
scope of an experiment is the ratio of the time from
the beginning to the end of the experiment, to the
time-step of a single measurement. The spatial
scope of a survey is the ratio of the maximum
length or distance between measurements relative
to the minimum length or distance of a single
measurement.

Disease surveys are used commonly in plant
pathology to estimate some unknown value or
quantity of a population, typically disease severity
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or incidence (Turechek and Mahaffee, 2004). In
the terminology of survey sampling, the scope of a
survey is the ratio of the sampling frame to the
sampling unit, where the sampling unit is the
smallest item sampled and the sampling frame is
the total number of possible sampling units in the
survey area. It is always the case that the precision
of the estimate increases, and the uncertainly
decreases, as the number of samples or observa-
tions is increased. Thus, the challenge is to collect
an ample number of samples to sufficiently mini-
mize uncertainty under the logistical and natural
constraints that often limit the scope of most de-
signed surveys.

For example, a typical raised-bed field of
strawberry will contain about 43,750 plants ha)1.
An individual strawberry plant could be consid-
ered the sampling unit in a sampling frame of
43,750 plants. In a survey for Colletotrichum
crown rot (caused by C. acutatum) a sample of 500
plants gives a sampling fraction (i.e., the ratio of
the number of samples taken to the sampling
frame) of 500/43750 or 1.14%. The inverse of the
sampling fraction represents the magnification
factor (MF). The magnification factor magnifies
the result of the sample into an estimate for the
entire population. For example, say 20% of the
sample (100 plants) was diagnosed with crown rot.
Multiplying the number of diseased plants by the
MF (i.e., 87.7) informs us that we should expect to
find 8770 plants with crown rot in the population,

assuming a random distribution of infected plants.
The magnification factor can be reduced by sam-
pling more plants, but at a cost. Cluster sampling
allows the sampler to observe a greater number of
plants with the same number of sampling units
(Hughes et al., 1996). This, in effect, will reduce
the MF at the cost of decreasing resolution and,
consequently, will give a reduced scope. The ben-
efit of the trade-off needs to be determined for each
study and can be represented in a scope diagram.

A scope diagram is one way of displaying or
comparing the scope among different phenomena,
events, or studies. Schneider (1994) demonstrates
how a simple line diagram can be used to represent
the scope of a survey. The line can be partitioned
into two components, one representing the scope
of the sample and the remainder the inference
component of the sample represented by MF. This
simple diagram can be used to compare survey
strategies and help decide the best approach.
Continuing with the strawberry example, assume
that in a hectare of strawberries a single plant
occupies a space of 0.1 m2. Figure 1 depicts the
scope diagrams for three 100 unit samples where:
(1) single plants are observed or collected in a
random sample, (2) groups of 10 plants are col-
lected in a cluster sample, and (3) 10 m2 grids are
observed via aerial sampling. In this example, the
number of samples collected or observed remains
the same, but the size of the sampling unit changes
resulting in a smaller magnification factor and a

Figure 1. Scope diagrams for three 100 unit samples where: (1) single plants are observed or collected in a random sample, (2)

groups of 10 plants are collected in a cluster sample, and (3) 10 m2 grids are observed via aerial sampling. The starting point of

each diagram represents the grain or resolution of the data at the observational scale, and the ending point represents the extent of

the study (the sampling frame). The sample size is denoted by N and the magnification factor by MF.
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reduced scope. Scope diagrams can be much more
complex. Seem (2004) gives a good example of
scope diagram and its applicability in disease
forecasting.

Scaling in practice

The practice of scaling involves relating measure-
ments made at one scale to measurements or pre-
dictions made at another. A scale-dependent
process is one in which the process (e.g., rate) or
property (e.g., density) changes with a change of
grain or extent. An example of scale dependency
encountered often in plant pathology is scale-
dependent patterns of plant disease, i.e., patterns
differing with sampling unit size and/or extent of
the survey. Although these scaling dependencies
can be represented through various modelling
procedures (Allen, 2001), episodic dynamics, non-
Euclidean structures, and/or biotic discontinuities
that are typically associated with ecological pro-
cesses or phenomena make modelling (scaling) a
challenge.

Episodic dynamics generally make it difficult to
scale temporal events. For example, 30 mm of
rainfall over the course of an hour implies a rain-
fall rate of 0.5 mm min)1; an increase in disease
severity from 3 lesions/leaf to 52 lesions/leaf over
the period of 7 days implies a rate of disease
progress of 7 lesions day)1. The process of calcu-
lating rates masks the fact that precipitation and
lesion development occur as concentrated events
(episodes) over some defined time period. Non-
Euclidean structures (such as landscape surfaces)
and patchy or heterogeneous environments gen-
erally make it difficult to scale spatial properties
because they lead to fractal dimensions (i.e.,
greater than a plane, but less than a volume). For
example, wind patterns contributing to larger scale
patterns of spore dispersal and microclimatic var-
iability are directly affected by variations in
topography in a largely unpredictable manner,
much more so than if these events were to occur
over a strictly two-dimensional surface.

Biotic boundaries or discontinuities further
contribute to modelling headaches. For example, a
change of 3 �C from 27 to 30 �C straddles the
critical temperature for conidial germination of
Podosphaera macularis, the causal agent of hop
powdery mildew (Mahaffee et al., 2003). Other
biotic boundaries are often much more difficult to

define and are not necessarily constrained by
quantifiable units (Naeem, 2001). For example, the
taxonomic groupings of race, subspecies, species,
genus, and sometimes higher groupings can often
be ambiguous. At the population level, the
boundaries between patches, communities, meta-
populations, etc. is often blurred due to fluctua-
tions in growth, decline, and interactions among
populations.

Considerations in experimental design

‘‘The near absence of prescriptions for incorpo-
rating scale in experimental design may partially
explain why explicit consideration of scale is not
more prevalent in the design of terrestrial field
experiments’’ (King et al., 2001). Readers inter-
ested in a statistical treatment of this topic are re-
ferred to two chapters by Dutilleul (1998a, b). I will
touch on a broader aspect of design: the desire to
have experimental results relate directly to natural
observation. Every experiment is subject to a
compromise between what Manly (1992) defines as
internal vs. external validity (Naeem, 2001).
‘‘Internal validity concerns whether the apparent
effects or lack of effects shown by the experimental
results are due to the factor being studied, rather
than some alternative factor. External validity
concerns the extent to which the results of an
experiment can be generalized to some wider
population of interest.’’ Naeem (2001) groups
experiments into three general classes: (1) field, (2)
model-ecosystem (micro-, meso-, and macrocosm),
and (3) simulation. Field experiments have the
highest level of external validity and, consequently,
the lowest level of internal validity. Conversely,
simulation experiments have the highest level
of internal validity and lowest level of external
validity.

More often than not, the type of experiment and
the choice of scale (determined by plot size,
duration, sampling extent, etc.) are a function of
pragmatism. Available funding, personnel, exper-
imental costs, measurement technology, etc. play a
more central role in the design of experiments than
does the theoretical consideration of scale and
validity. In any event, it is likely (and is often the
case) that to gain a full understanding of a process,
sets of experiments that span the range of what
Naeem (2001) refers to as the ‘‘scale-validity ma-
trix’’ must be conducted. That is, a reasonable set

56



of field, microcosm, or simulation experiments
conducted at different spatial, temporal, and pos-
sibly biotic scales are often necessary to fully
interpret a process or to explain what was
observed naturally.

Multiscale analysis

In the (failed) quest for a ‘characteristic scale’,
multiscale analysis has evolved to play a central
role in scaling. Multiscale analysis is defined as an
analysis with respect to multiples of a unit of
measurement (Schneider, 1994). In general, this
type of analysis is done by first defining subsystems
within a system. In a survey, this might be
accomplished by superimposing a grid over the
region of study or spatially referencing sampling
units in the survey area. As one example, summing
the components of the subsystem, grid, or sam-
pling units (with correction factors introduced as
needed) can be used to scale to larger areas
(Schneider, 2001b). Quantities can be summed by
either juxtaposing or superposing values. Sum-
mation by juxtaposing values extends the range of
scale; summation by superposing leaves the scale
unchanged. Summing the number of diseased
plants in a series of contiguous plots is an example
of juxtaposing; summing the number of newly
diseased plants to the number of previously dis-
eased plants in a single plot is an example of
superposing.

The variance plays a central role in multiscale
analysis. ‘‘One of the major research challenges in
ecology is understanding the creation and erosion
of spatial variability as a function of spatial scale.
Included in this challenge is the question of the
degree to which variance generated at one scale is
transformed into variance at another scale’’
(Schneider, 1994). Across many disciplines,
including plant pathology, methods have been
developed for relating and/or predicting variance
across scales (Hughes et al., 1997; Turechek and
Madden, 2003). However, the mere ability to
model these relations should not be mistaken as an
understanding of how these relations came to be.
For the most part, the mechanisms or biological
processes generating these differences are only
partially understood.

The sample variance is only one measure of
spatial variability and has limited interpretation in
multiscale analysis. Variances can also be calcu-

lated from grouped or lagged measurements or
observations. (The term lag refers to the interval or
spacing between neighbouring units.) Imagining a
grid; grouping occurs when contiguous squares of
the grid (sampling units) are combined to form
larger units and the quantities are combined via
juxtaposition (added); under these conditions the
resolution of the data changes. Variances are
obtained by re-calculating the variance of the
combined quantities, and comparing it to the ori-
ginal or ungrouped variance and to variances
calculated from successively larger groupings. The
blocked quadrat-variance methods, such as the
two-term local quadrat variance (TTLQV) method
and the paired-quadrat variance (PQV) method,
are examples of analyses that use grouped vari-
ances (Ludwig and Reynolds, 1988). Lagging, on
the other hand, results from calculating deviances
between grid components (sampling units) at
increasingly greater separations (lags) across the
grid. Again, these variances are compared to the
original sample variance as well as to variances
calculated at different lag distances. Autocorrela-
tion and semivariogram analyses are examples of
analyses that use lagged variances (Cressie, 1991).
Variances calculated according to the lag
manoeuvre can be used to calculate variances that
would be obtained via grouping using a Fourier
transformation (Schneider, 1994).

Scaled quantities cannot be treated as unitless
numbers. The process of summing, multiplying,
and taking derivatives of scaled quantities should
not be done independently of the unit. For
example, the sum of 52 lesions/leaf and 6 diseased
trees/orchard is non-sensical. Biologically inter-
pretable sums of scaled quantities are referred to
as ensemble quantities (Schneider, 1994). Spatial
and temporal averages, variances, and covariances
are typical ensemble quantities. This definition
differs from the traditional in which an ensemble
refers to a collection of ‘realizations’ of an event or
process; the ensemble average, for example, is the
mean of the realizations. Although this concept is
evident in plant pathology research, the terminol-
ogy is infrequently used (one exception is
Ferrandino, 2004).

Statistical tools

Over the past 20 years, the variety of statistical
tools available for multiscale analyses has
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increased tremendously; many have been applied
to characterize spatial patterns of plant disease.
The tests, however, can be categorized based on
the general type of analysis, point-pattern vs.
correlation (Upton and Fingleton, 1985), or on
whether the data consist of mapped or unmapped
observations (Diggle, 1983). The point-pattern
approach is based on the location of individuals
over an area of interest and analyses are conducted
either using the distances between individuals
(Perry, 1995; Ferrandino, 1998), or using the
counts of individuals within sampling units such as
quadrats (Pielou, 1977; Madden and Hughes,
1995). The latter methods include the distribu-
tional approach that involves fitting observed
frequencies of counts per sampling unit to well-
defined statistical distributions (e.g., Poisson,
negative binomial, binomial, and beta-binomial).
The methods based on counts per sampling unit
provide direct measurements of heterogeneity of
the data at the scale of the sampling units and
below, but they do not explicitly define the spatial
arrangement of the sampling-unit counts unless
several sampling units are grouped in a series of
steps (Ludwig and Reynolds, 1988).

Spatial autocorrelation and semivariograms
(Cressie, 1991) use lagged variances to produce
explicit information on the degree of association of
disease intensity among sampling units. Unlike the
distributional methods, these methods yield dif-
ferent results for different arrangements of counts
within a field, although they are not specifically
developed for counts within sampling units. Spa-
tial Analysis by Distance IndicEs (SADIE) is a
class of tests developed recently to quantify spatial
pattern in the spirit of spatial autocorrelation, but
uses data in the form of counts (Perry, 1995; Xu
and Madden, 2004). The correlation-based meth-
ods characterize pattern at the scale of the
sampling unit and above. The results from
point-pattern and correlation-type analyses can
jointly be used to better interpret patterns and
possibly describe the biological phenomenon
responsible for generating the observed pattern
(Turechek and Madden, 1999).

Simulation and randomizations have also been
used to study scale-related processes. For example,
Turechek and Madden (2001) used Monte–Carlo
methods and randomizations to determine how
the variability of strawberry leaf blight at a lower
scale impacted the variability at higher scales.

Willocquet and Savary (2004) designed a simula-
tion model to determine how varying auto-, allo-
leaf, and allo-plant-deposition rates of infective
propagules affected epidemic development
observed at the plant and leaf level (in both
examples, measurement units are implied). As
discussed above, simulation studies have a high
degree of internal validity and allow researchers to
explore a range of conditions that may otherwise
take years to observe.

Conclusion

The intent of this paper was to provide an over-
view of scale-related concepts and how they might
apply to plant pathology. Although I did not
provide prescriptive advice on how to include scale
in designed studies, I hope I made it obvious where
scaling is naturally applied in our discipline. I also
hope that I impressed the importance of being
vigilant in reporting the scale (grain, extent, and
scope) of experiments and surveys to allow for
drawing valid comparisons across studies.

To summarize briefly, before designing any
experiment or survey, it would be prudent to
acquire preliminary data on the structure of the
population under study so that sampling units (i.e.,
grain) and the extent of the study can be appropri-
ately chosen (Legendre and Legendre, 1998).
Realize that this information may indicate that a
single study may not be sufficient to gain a full
understanding of the process or characteristic under
study. It is also important to consider the units of
measurement and how easily information can be
rescaled. Pathologists should avoid describing the
scale of study as, for example, the ‘leaf scale’ unless
a unit of measurement is clearly implied. In many
cases, it is likely that the scale can be defined within
some narrow range of values, and these should be
used to identify the scale (grain) of study. Lastly, be
aware that many field studies or surveys of disease
are the result of the interaction between two popu-
lations: the population of the host and the popula-
tion of the pathogen. The scale at which the host
population exists should be an important consid-
eration of the pathogen population, because the
host represents the possible extent of the pathogen.
For example, knowing the scale of spore dispersal
distance is not very informative unless the distance
significantly overlaps the range of the host. Con-
sidering these aspects of scale in the design of an
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experiment will help to minimize the possibly large
discrepancies in scale between what is observed and
what is being tested.
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Abstract

We review trends and advances in three specific areas of theoretical plant epidemiology: models of temporal
and spatial dynamics of disease, the synergism of epidemiology and population genetics, and progress in
statistical epidemiology. Recent analytical modelling of disease dynamics has focused on SIR (susceptible–
infected–removed) models modified to include spatial structure, stochasticity, and multiple management-
related parameters. Such models are now applied routinely to derive threshold criteria for pathogen
invasion or persistence based on pathogen demographics (e.g., Allee effect or fitness of fungicide-resistant
strains) and/or host spatial structure (e.g., host density or patch size and arrangement). Traditionally
focused on the field level, the scale of analytical models has broadened to range from individual plants to
landscapes and continents; however, epidemiological models for interactions at the cellular level, e.g.,
during the process of virus infection, are still rare. There is considerable interest in the concept of scaling,
i.e., to what degree and how data and models from one scale can be transferred to another (smaller or
larger) scale. Despite assertions to the contrary, the linkages between epidemiology and population genetics
are alive and well as exemplified by recent efforts to integrate epidemiological parameters into population
genetics models (and vice versa) and by numerous integrated studies with an applied focus (e.g., to quantify
sources and types of primary and secondary inoculum). Statistical plant epidemiology continues to rely
heavily on the medical and ecological fields for inspiration and conceptual advances, as illustrated by the
recent surge in papers utilizing ROC (receiver operating characteristic), Bayesian, or survival analysis.
Among these, Bayesian analysis should prove especially fruitful given the reliance on uncertain and sub-
jective information for practical disease management. However, apart from merely adopting statistical
tools from other disciplines, plant epidemiologists should be more proactive in exploring potential appli-
cations of their concepts and procedures in rapidly expanding disciplines such as statistical genetics or
bioinformatics. Although providing the scientific basis for disease management will always be the raison
d’être for plant epidemiology, a broader perspective will help the discipline to remain relevant as more
resources are being devoted to genomic and ecosystem-level science.

Introduction

It is perhaps somewhat atypical that this com-
mentary on theoretical plant epidemiology is
authored by a group of investigators who consider
themselves experimentalists rather than theoreti-
cians. However, our role as dispassionate

observers allows us to take a bird’s-eye view of
recent developments in the area and assess their
impact on the science and practice of plant
pathology without being influenced by predeter-
mined notions.

The Encyclopaedia Britannica defines a scien-
tific theory as a ‘systematic ideational structure of
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broad scope, conceived by the human imagination,
that encompasses a family of empirical (experien-
tial) laws regarding regularities existing in objects
and events, both observed and posited’ (Anon.,
2005). In practice, this ‘systematic ideational
structure’ is usually formalized as a model, either
conceptual or mathematical. Both forms of models
have been influential in plant epidemiology (Jeger,
2000; Zadoks, 2001). Although theory can be
developed without mathematical models, the two
concepts are often used synonymously in the epi-
demiological literature.

One of the most commonly voiced criticisms
surrounding the use of theory and mathematical
models in the broader ecological literature has
been the lack of interaction between modellers and
experimentalists during model development, test-
ing, and validation (Caswell, 1988; Hall, 1988b).
Theoretical epidemiology has largely escaped this
controversy, presumably because some of the most
influential epidemiological modellers in plant
pathology (or at least some members of their
laboratories) are superb experimentalists in their
own right. The resulting synergism between mod-
els and experimental data in advancing theory is
typified in the work of JM Jeger and CA Gilligan,
among others (e.g., Jeger, 2000; Gilligan, 2002). It
is important to note that testing and validation of
models need not occur at the same time for a
model to be useful. For instance, the theory of
dispersive epidemic waves (focal epidemics that
spread with increasing frontal velocity) was for-
malized by Ferrandino (1993) based on physical
principles of spore transport, with limited empiri-
cal support. Although additional observational
(Scherm, 1996) and experimental (Frantzen and
van den Bosch, 2000) backing for this theory was
presented in the interim, it took more than a dec-
ade after publication of Ferrandino’s paper until
large-scale disease gradient experiments by Cow-
ger et al. (2005) demonstrated convincingly that
epidemics of wheat stripe rust spread consistently
with increasing frontal velocity.

In what follows we consider current trends in
three specific areas of theoretical plant epidemiol-
ogy: models of temporal and spatial dynamics of
disease, the synergism of epidemiology and popu-
lation genetics, and advances in statistical epide-
miology. The purpose here is not to provide a
comprehensive review, but rather to give selected
examples illustrating these trends. Inevitably, these

examples reflect our personal views of what is
interesting and important in theoretical epidemi-
ology. We limit our discussion largely to work
published since the last International Workshop
on Plant Disease Epidemiology in Ouro Preto,
Brazil, in 2001. Selected aspects of theoretical
work carried out during the 1990s have been syn-
thesized recently (Jeger, 2000; Gilligan, 2002).

Models of temporal and spatial disease dynamics

The development of mathematical models to
describe disease dynamics has been and continues
to be the mainstay of theoretical epidemiology.
Recent research in the area has focused on incor-
porating spatial structure, elucidating the conse-
quences of stochasticity and spatial scale,
identifying threshold criteria for pathogen or
strain establishment, and predicting the effects of
selected management strategies on disease
dynamics. A detailed account of the use of ana-
lytical models to address these objectives has been
given by Gilligan (2002). Based on his review and
the subsequently published literature, a number of
trends may be inferred.

SIR models have entered the mainstream and be-
come more versatile
In its most basic form, an SIR model consists of a
set of linked differential equations describing the
dynamics of susceptible (healthy), infected, and
removed (post-infectious) host tissue; commonly,
the infected tissue is divided into exposed (latently
infected) and infectious compartments, leading to
an SEIR model (Madden, 2005). This type of
analytical model, first formalized by Kermack and
McKendrick (1927) for human diseases, was
popularized by Jeger (1982) for use in plant epi-
demiology. Almost 20 years later, Segarra et al.
(2001) formally derived the SEIR model for plant
epidemics from the more general Kermack–
McKendrick model based on first principles. In
addition, Segarra et al. (2001) provided a detailed
comparison of the behaviour of the latter two
models with that of Van der Plank’s widely used
differential-delay equation (Van der Plank, 1963).

Recent work has added considerable complexity
to SIR-type models (Gilligan, 2002), including
demographic and environmental stochasticity
(Park et al., 2003; Gibson et al., 2004; Otten et al.,
2004a), seasonal disturbance and multi-year
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disease dynamics (Madden and van den Bosch,
2002), dynamics of host growth and susceptibility
(Gibson et al., 2004), virus vectoring mode and
vector performance (Madden et al., 2000; Holt
and Colvin, 2001), interactions with biocontrol
agents (Gibson et al., 2004), spatial structure and
metapopulation dynamics (Park et al., 2001,
2003), and the presence of pesticide-resistant sub-
populations (Hall et al., 2004), among others. The
inclusion of stochasticity and spatial structure is
especially significant as models featuring these
attributes can produce qualitatively very different
predictions regarding pathogen establishment and
persistence than their deterministic mean-field
counterparts. Most importantly, invasion thresh-
olds in stochastic models are higher and the
pathogen or strain may be unable to persist fol-
lowing successful invasion due to chance events,
especially at low population densities (Gilligan,
2002).

The increased complexity of contemporary SIR
models adds realism and allows their application
to a wider range of problems. Indeed, models are
now routinely formulated to accommodate
parameters useful in exploring specific manage-
ment strategies (Jeger, 2000; Gilligan, 2002; Stacey
et al., 2004). For instance, a linked African cassava
mosaic virus–whitefly vector model (Jeger et al.,
2004) includes four management-related parame-
ters, namely the roguing rate of infected host
plants, the insecticide-induced death rate of the
vector, and the virus acquisition and transmission
rates of the vector, both of which are determined
by the level of host resistance. Analysis of this
model indicated that roguing applied once per
month in combination with a modest level of host
resistance (specifically one that reduces the prod-
uct of acquisition rate and transmission rate below
80% of the value of the susceptible host) is suffi-
cient to eradicate the disease, while a combination
of roguing and insecticide application is less
effective. This example illustrates that analytical
models have come a long way in their capacity to
provide specific management recommendations
that have traditionally been considered in the
realm of more complex simulation models.

Nonetheless, a few words of caution are
appropriate as there are some well publicized
examples from the broader ecological literature
where the extension of theoretical models to
management has met with disastrous results (Hall,

1988a). Perhaps we need to remind ourselves
occasionally that the purpose of theory is to
explain rather than to predict, and that theoretical
problems without practical applications are just as
legitimate as empirical studies that do not con-
tribute to the development of new theories.

Broadened scale of investigation
With few exceptions, epidemiological models have
traditionally focused on the field scale, a logical
choice considering the importance of individual
fields as the spatial unit for tactical disease man-
agement by growers. In recent years, however, the
scale of analysis has broadened to include both
finer and larger scales. At one end of the spectrum
is the individual plant scale, where theoretical
models have been developed, for instance, to
describe transmission of Rhizoctonia solani from
an infected to a healthy plant based on models of
hyphal and colony growth of the fungus through
soil (Stacey et al., 2001; Otten et al., 2004b). At the
cellular level, effects of phenomena such as viral
cross-protection (Zhang and Holt, 2001) and syn-
ergism among different viruses (Zhang et al., 2000;
Naylor et al., 2003) have been modelled with
respect to their effects on field-level disease
dynamics. However, epidemiological models that
explicitly describe molecular processes and inter-
actions within individual plant cells, e.g., during
virus replication or virus- or transgene-induced
gene silencing, are still lacking in plant pathology,
even though they are common in medical epide-
miology (e.g., Phillips et al., 2001).

At the other end of the spectrum are models for
disease development at landscape (Park
et al., 2001, 2003; Otten et al., 2004a; Stacey et al.,
2004) and continental (van den Bosch et al., 1999)
scales. With the rising interest in area-wide pest
management and the increasing exotic species
problem (Scherm and Coakley, 2003), this scale of
investigation will become more important in the
future. In landscape models, spread among fields
has been implemented via percolation theory (Ot-
ten et al., 2004a), cellular automata (Gilligan,
2002), or in a metapopulation framework (Park
et al., 2001, 2003) in which habitable patches are
made up of aggregates of susceptible fields. The
models allow for the analysis of disease spread in
relation to within-patch pathogen dynamics, the
strength of coupling among patches, and patch
size, density, and arrangement.
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Closely related to the issue of scale is the con-
cept of scaling, i.e., to what degree and how data
and models from one scale can be transferred to
another (smaller or larger) scale. This has been an
active area of research in both theoretical and
statistical epidemiology (Turechek, 2005). For
instance, statistical procedures to extrapolate dis-
ease incidence data from a lower hierarchical level
(e.g., leaves) to a higher level (e.g., shoots) and vice
versa have been developed (Hughes et al., 1997;
Hughes and Gottwald, 1998; Madden and
Hughes, 1999; McRoberts et al., 2003; Turechek
and Madden, 2003) and are now increasingly being
applied to develop more efficient sampling and
disease assessment protocols through approaches
such as cluster sampling and group testing. In a
recent example, Xu et al. (2004) used a distribu-
tion-based approach to derive relationships be-
tween the incidence of spikelet infection and the
more easily determined incidence of ear infection
for the Fusarium head blight pathosystem on
wheat. These particular relationships may be use-
ful for making decisions in cases where manage-
ment thresholds are based on the incidence of
infected spikelets.

On a more process-based level, Stacey et al.
(2001) developed a mathematical model to scale up
from the behaviour of individual hyphae (of
R. solani in this example) to fungal colony growth
through soil and to infection of individual plants.
The approach was based on a spatially explicit
model of hyphal expansion incorporating the
relationships between hyphal growth and fungal
biomass as well as between fungal biomass, prox-
imity of the mycelium to a susceptible root, and
the probability of disease transmission. A sto-
chastic, cellular automaton-based model for scal-
ing up from individual plants to plant populations
infected with R. solani had been developed previ-
ously (Kleczkowski et al., 1997), and it may be
possible to combine this probabilistic model with
the more detailed fungal growth-based model of
Stacey et al. (2001) to arrive at estimates of both
the mean and variance of the spatio-temporal
dynamics of R. solani.

In the broader ecological literature, fractal
geometry has been applied for scaling among dif-
ferent spatial or temporal hierarchies if the pattern
or process of interest is scale-invariant, i.e., repeats
itself at progressively larger scales (Brown et al.,
2002; Li, 2000). In practice, scale-invariance is

suggested by a straight line in a log–log plot of
the measure of interest against the scale of
observation. The slope of the line is interpreted as
the fractal dimension, which summarizes the
properties of the pattern across scales. In general,
scale-invariance might be expected for organisms
occurring at a population density near their lower
critical threshold, e.g., due to human intervention
(Cousens et al., 2004). In a recent pest manage-
ment-related example, Cousens et al. (2004)
counted numbers of five agricultural weeds in up
to 202,500 contiguous 0.2�0.2-m quadrats in a
single arable field. Counts from adjacent quadrats
were pooled into progressively larger quadrats
with up to 90 m-long sides. This allowed for the
calculation of incidence values for different quad-
rat sizes and an understanding of how these inci-
dence values vary with scale. Calculation of the
fractal dimension showed that spatial patterns of
those weed species that were most aggregated and/
or occurred at the lowest densities were scale-
invariant, indicating that patterns observed at
small scales repeated themselves at progressively
larger scales. Although there are theoretical rea-
sons why such scale-invariance would be unlikely
for plant pathogens (e.g., different mechanisms for
long- vs. short-distance dispersal along with
changes in the physical environment at different
spatial scales), it would be interesting to test the
null hypothesis of scale-variance for different types
of pathogens, e.g., those causing aerial vs. soil-
borne or monocyclic vs. polycyclic diseases. Scale-
invariance, if it occurs in plant pathogens, would
allow for extrapolation and prediction over a wide
range of spatial scales with potentially useful
applications in areas such as precision agriculture.

Ferrandino (2004) recently proposed a sampling
approach for disease incidence based on a nested
fractal design, i.e., one in which sampling points at
distances of, say, 1, 2, 4, 8, and 16 m are repre-
sented equally. Using simulated spatial epidemics,
he showed that this design was more efficient in
detecting aggregation than either regular, random,
or spatially clustered sampling designs, in addition
to providing spatial information over a wider
range of scales.

Fascination with thresholds
Van der Plank (1963) expressed his threshold
theorem as iRc>1, which states that an epidemic
will not occur unless the product of infectious
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period i and basic corrected infection rate Rc

exceeds 1. For consistency with the medical and
ecological literature, the theorem has been rewrit-
ten as R0>1, where R0 is the basic reproductive
number, i.e., the number of new infected individ-
uals resulting from one introduced infected indi-
vidual (Madden, 2005). Although the interest in
thresholds for plant epidemics has been long-
standing (e.g., Jeger and van den Bosch, 1994a, b),
we note a recent surge of activity in this area,
mostly derived from analyses with SIR-type
models. This has included derivation of threshold
criteria based not only on pathogen demographics
(e.g., fitness of fungicide-resistant strains; Hall
et al., 2004), but also on host spatial structure
(e.g., host density, patch size, and coupling among
patches; Bailey et al., 2000; Gubbins et al., 2000;
Park et al., 2001; Otten et al., 2004a). One of the
reasons for the current preoccupation with
thresholds in plant epidemiology is the wider
availability of stochastic models, which allows for
the calculation of not only the risk of pathogen
invasion, but also the probability of subsequent
persistence in the face of chance events that can
lead to extinction at low population densities.

Apart from stochastic forces, the establishment
of a pathogen following its successful introduction
may be limited by certain demographic features,
such as the difficulty to find a compatible mating
partner at very low population densities for species
with an obligate sexual cycle (Taylor and Hastings,
2005). This feature leads to an intermediate opti-
mum in the relationship between population
growth rate and population density (Allee effect;
Figure 1). In a deterministic population model of
the heterothallic Karnal bunt fungus Tilletia
indica, inclusion of an Allee effect resulted in a
teliospore threshold for establishment about two
orders of magnitude higher than in a version of the
model without this constraint (Garrett and Bow-
den, 2002). This finding has potentially important
implications for risk assessments of T. indica and
other quarantine pathogens with an obligate
sexual cycle.

Pathogen population biology

Epidemiology is a holistic discipline (Zadoks,
1990), and the development of epidemiological
theory thus requires an interdisciplinary approach.
This includes not only mathematics and statistics,

but also concepts and tools from population
genetics. The main focus of population genetics is
to understand the evolutionary processes driving
and maintaining genetic variation within and
among populations (McDonald, 2004). Because
host and pathogen populations consist of distinct
genetic entities, the fundamental theory of their
population dynamics in space and time must
coincide with that of their genetic composition.
Conceptually, there is thus a considerable overlap
between epidemiology and population genetics.
Here, we take an heuristic look at the interplay
between the two disciplines in the development
and application of epidemiological theory and
highlight areas that may best be served by an
interdisciplinary approach. An in-depth review of
the nature of the synergy between epidemiology
and population genetics is outside the scope of this
paper but is available elsewhere (Milgroom, 2001;
Milgroom and Peever, 2003).

It has been suggested that, over the past
20 years, a schism appears to have developed
between epidemiology and population genetics
(Milgroom, 2001; Milgroom and Peever, 2003).
Indeed, it is tempting to conclude that such a split
was a consequence of both disciplines becoming
more specialized as they responded to new tech-
nologies; epidemiology to the availability of
advanced modelling techniques and increased
computing power, population genetics to advances
in molecular biology. In practice, however, the two
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Figure 1. Graphical representation of the Allee effect showing

an intermediate optimum in the relationship between popula-

tion growth rate and population density, e.g., due to the diffi-

culty to find a compatible mating partner at very low

population densities for species with an obligate sexual cycle.
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disciplines often have been utilized jointly to
address applied epidemiological questions such as
source and type of primary inoculum (Gobbin
et al., 2003; Peever et al., 2004), dispersal of sec-
ondary inoculum (Cortesi et al., 2000; Cortesi and
Milgroom, 2001; Loskill et al., 2004), or host
specificity (Peever et al., 2000; Akimitsu et al.,
2003; Flier et al., 2003). A notable example in a
theoretical sense is the recent work by plant
pathologists on the appropriateness of the appli-
cation of measures of genotypic diversity to
microbial populations (Grünwald et al., 2003;
Kosman and Leonard, 2005). From these exam-
ples it should be obvious that plant epidemiology
can benefit greatly from concepts and tools
developed in population genetics (and vice versa),
including in studies designed to test theoretical
ideas.

Eriksen et al. (2001) used numerical simulations
to address a question that had been the subject of
vigorous theoretical discussions. The problem,
broadly put, was to determine the role of ascosp-
ores in development and microevolution of
septoria tritici blotch of wheat caused by My-
cosphaerella graminicola. Population genetics
studies in the United States in the 1990s had pro-
vided indirect evidence for sexual reproduction by
M. graminicola during the growing season
(McDonald et al., 1995; Chen and McDonald,
1996). An important question was how to deter-
mine the relative contribution of immigration
(gene flow) and sexual reproduction to the genetic
structure of the pathogen during the course of an
epidemic, and which of these two evolutionary
forces is of greater epidemiological importance
within a season. This was resolved, not without
some debate, through mark-release-recapture
experiments (Zhan et al., 1998) and a theoretical
analysis (a subject of two letters to the editor in
Phytopathology) of the data to estimate the rates of
recombination and migration (Brown, 2000; Zhan
et al., 2000). Nonetheless, these studies did not
answer the question of the relative contribution of
ascospores vs. pycnidiospores to disease develop-
ment, nor of the extent of genetic recombination.
Through simulation modelling Eriksen et al.
(2001) showed that the extended latent period of
pseudothecia compared with that of pycnidia leads
to the release of ascospores too late in the season
to have a major effect on final severity of septoria
tritici blotch epidemics in northern Europe.

However, ascospores contributed appreciably
to the genetic composition of the pathogen
population (as indicated by the proportion of
sexual descendants among lesions at the end of the
season), especially in dry conditions unfavourable
for the dispersal of pycnidiospores.

With regard to analytical modelling approaches,
one of the key challenges has been to integrate
epidemiological parameters into population
genetics models (and vice versa) while at the same
time keeping model complexity at a manageable
level. Jeger (1997) illustrated this by incorporating
host-pathogen gene-for-gene interactions into an
analytical SIR model. This resulted in a set of six
linked differential equations, one each for homo-
zygous and heterozygous genotypes of both host
and pathogen. Although the model was not very
tractable analytically, it allowed for the derivation
of threshold criteria for persistence of specific
pathogen and host genotypes. Subsequent simpli-
fication of the model allowed the effects of host
density dependence, fitness cost for virulence in the
pathogen, and fitness cost for host resistance to be
incorporated and analyzed.

Durability of host resistance, a key concept in
population genetics, also has been examined from
an epidemiological perspective (van den Bosch and
Gilligan, 2003). This analysis considered three
epidemiologically based measures of durability of
resistance: (1) time to invasion by a virulent
pathogen genotype; (2) time taken for the virulent
genotype to dominate the pathogen population;
and (3) time until a threshold proportion of the
host population becomes diseased (‘additional
uninfected crop growth days’). These metrics differ
conceptually from conventional population
genetics-based measures of resistance durability in
that they emphasize quantitative rather than
qualitative aspects, i.e., they focus on the duration
of resistance utility rather than the conditions
under which durability is maintained. The model
showed that if the virulent pathogen genotype is
not already present, and the time between intro-
duction (by mutation or immigration) and estab-
lishment is considered as a metric of resistance
durability, both low and high proportions of
resistant genotypes in the crop can prolong dura-
bility. This observation might explain the oft-
encountered difficulty in trying to predict the
durability of resistance genes (Hovmøller et al.,
1997; Brown, 2002; Burnett, 2003). The results
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also showed that the metric representing addi-
tional crop growth days without disease is
unaffected by the proportion of the resistant host
genotype in a cultivar mixture, thus concurring
with data from experimental field studies in which
varying the proportion of mixture constituents (of
sorghum in this case) had no effect on time of
disease onset (Ngugi et al., 2001).

Gudelj et al. (2004) investigated evolution of
sibling fungal plant pathogens from an epidemio-
logical perspective using adaptive dynamics
methodology. They focused on the role of multiple
host species involving a trade-off between the
evolutionary benefit of being specialized and its
cost (reduced virulence on other hosts). The results
showed that this infectivity trade-off accounted for
the evolution of only those pathogen siblings with
non-overlapping host ranges (i.e., a high degree of
host specialization such as observed with obligate
parasites), and that other mechanisms (ecological
and/or epidemiological) must account for the
evolution of generalists with overlapping host
ranges and that of groups containing both gener-
alist and specialist siblings.

Several important generalizations about the role
of spatial structure in host-pathogen coevolution
can be drawn from the work by PH Thrall and JJ
Burdon, who integrated population genetics and
spatio-temporal analysis of epidemics in natural
pathosystems (Burdon and Thrall, 1999, 2004).
Key among these is that disease patterns in host–
pathogen metapopulations are spatially and tem-
porally asynchronous, whereby the magnitude of
pathogen fluctuations varies between host popu-
lations but there is clustering of disease levels
among populations. This prediction is supported
by results of experimental studies (Burdon and
Thrall, 2000; Thrall and Burdon, 2000, 2003; Bock
et al., 2002; Thrall et al., 2002). Further, disease
persistence, and hence its impact on coevolution, is
higher at the local level. As a consequence, there is
a tight evolutionary link between resistance and
virulence of associated host–pathogen pairs
whereby pathogen virulence (ability to infect many
host genotypes) increases with increasing mean
resistance of the host sub-population (Thrall and
Burdon, 2003). These studies also provided evi-
dence for a trade-off between virulence and
aggressiveness (defined here as spore production
per pustule), whereby selection for the former is
favoured in resistant host genotypes while that for

aggressiveness is favoured in susceptible host
genotypes. Although the use of spore production
as a measure of aggressiveness may be subject to
debate, the study marks an important step toward
documenting a virulence-aggressiveness trade-off
for which previous evidence has been weak
(Mundt, 2002), especially in natural systems.

Statistical epidemiology

Apart from forming a crucial link between theory
and data, statistical concepts – in their own right –
may result in new theoretical knowledge about
plant pathosystems and plant epidemiology. For
instance, distribution-based methods to charac-
terize disease aggregation in a spatial hierarchy
(Hughes et al., 1997; Madden and Hughes, 1999)
have led to novel, testable hypotheses regarding
disease dynamics in time and space, e.g., for inci-
dence–severity relationships. With ever increasing
computing power and a better understanding of
how to utilize contemporary statistical tools, new
opportunities for the application of statistics in
plant epidemiology, both theoretical and applied,
continue to emerge.

Generalized linear mixed models
Garrett et al. (2004) highlighted several statistical
methods that are used relatively little but have the
potential to improve inference from a range of
epidemiological studies. Foremost among these
are mixed-effects models, i.e., models to analyze
data with fixed and random effects. At a theoret-
ical level, the nature and properties of generalized
linear mixed models (GLMMs) have been under-
stood for decades (McCulloch and Searle, 2001),
but until recently, without significant input from a
specialist statistician, mixed-effects modelling has
been very difficult in practice. Now, an increasing
number of articles in application-oriented journals
provide guidance for setting up mixed models and
for implementing them in off-the-shelf statistical
packages (Piepho, 1999; Madden et al., 2002;
Piepho et al., 2003; Spilke et al., 2005). One of the
most important advantages of these models is their
applicability to unbalanced designs, for which
exact statistical tests are usually not available.
Therefore, one needs to resort to approximate
methods such as the restricted maximum likeli-
hood approach. Even for experimental designs for
which traditional general linear models (GLMs)
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are appropriate, analysis using the GLMM can
produce more robust results when variances are
unequal and/or sample sizes are small (Piepho,
1999). Madden et al. (2002) evaluated various
GLMMs and recommended the fixed residual
variance model (which is also the simplest
GLMM) for analyzing disease incidence data from
designed experiments.

Survival analysis
Data on the occurrence and timing of events such
as sclerotium germination, disease onset, or leaf
abscission are routinely encountered in epidemio-
logical studies. With such time-to-event data, sev-
eral problems can arise that limit the usefulness of
traditional statistical methods: (1) the times are
unlikely to be distributed normally; (2) the data set
will likely contain censored observations, i.e.,
observations for which the event has not occurred
when the study was completed; and (3) the
response may be influenced by time-dependent
covariates, i.e., independent variables whose
values change during the study period. Because of
these properties, time-to-event data are now
increasingly being modelled using survival analysis
(Scherm and Ojiambo, 2004). This set of statistical
methods not only allows the comparison of time-
to-event distributions among treatment groups,
but also the development of models for the effects
of discrete and/or continuous covariates on event
times. Recently published examples include anal-
yses of the effects of landscape attributes on the
time to invasion by an exotic plant pathogen (Jules
et al., 2002); of orchard characteristics, environ-
ment, and disease status of neighbouring trees on
the time of virus infection of individual orchard
trees (Dallot et al., 2004); and of disease severity
and other leaf attributes on the time of premature
defoliation of diseased plants (Ojiambo and
Scherm, 2005).

Decision analysis
Important advances have been made in the area of
decision analysis for disease management, espe-
cially in relation to the quantitative evaluation of
risk algorithms such as disease forecasters (Yuen
et al., 1996; Hughes et al., 1999; Yuen and
Hughes, 2002; Madden, 2005). Increasingly, ROC
(receiver-operating characteristic) analysis is being
employed to optimize risk algorithms and thresh-

olds for making decisions. An ROC curve is a plot
of the true positive rate (sensitivity) as a function
of the false positive rate (1 – specificity) at all
possible decision thresholds of the risk algorithm.
This curve allows one to identify trade-offs be-
tween liberal and conservative thresholds in an
attempt to identify the most suitable decision
threshold for a given application. ROC analysis is
best suited for responses that are inherently
dichotomous, for instance the decision whether or
not to apply a fungicide. In a recent example,
Dewdney et al. (2002) used ROC analysis and
historical data to evaluate parameters of
MARYBLYT (a forecaster for fire blight of apple
and pear) and to identify where key improvements
were needed. MARYBLYT and Cougarblight
(another fire blight forecaster) have been com-
pared using ROC analysis and found to have
equivalent action thresholds and thus perform
similarly in their ability to predict blossom blight
(Dewdney et al., 2003).

ROC analysis also can be applied in situations
where the response is not dichotomous (Patil,
1991), for instance the decision on how much
fertilizer to apply or how many fungicide appli-
cations to make. However, in plant epidemiology,
ROC analysis of responses on a non-dichotomous
scale has yet to be demonstrated.

Bayesian analysis
The evaluation of plant disease forecasters based
on ROC analysis may be improved further when
conducted in a Bayesian framework (Yuen and
Hughes, 2002). This is accomplished by consider-
ing the prior probability of disease occurrence in
addition to the likelihood ratios for positive and
negative predictions by the risk algorithm. The
latter two are calculated directly from sensitivity
and specificity of the forecaster, while the former
may be based either on the historical prevalence of
the disease in the region of interest, or on growers’
subjective estimates of disease risk. In either case,
the result is a posterior probability of disease
occurrence given the prediction by the forecaster.
Yuen and Hughes (2002) illustrate this approach
by means of risk algorithms for eyespot of wheat
and Sclerotinia stem rot of canola (oilseed rape).

Apart from its application in the specific
example of ROC analysis discussed above, Bayes’s
theorem presents a general framework for incor-
porating uncertainty and prior information into
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epidemiological analyses and for updating current
knowledge as new information becomes available
(Mila and Carriquiry, 2004). The key feature is the
calculation of posterior probabilities for the
parameter of interest based on empirically derived
prior probabilities in conjunction with the condi-
tional probability of each possible outcome. This
use of prior probabilities represents a powerful
mechanism for incorporating subjective informa-
tion such as growers’ perceptions. This is illus-
trated in the work of Mila et al. (2003), who
examined the effect of soybean growers’ produc-
tion decisions on Sclerotinia stem rot incidence
using decision theory under uncertainty. Predic-
tions of stem rot incidence and soybean yield
based on regression-type models were updated
with growers’ subjective estimates of disease inci-
dence via Bayes’s theorem. The resulting posterior
probabilities were then used to derive management
criteria for profit maximization.

Economic criteria (which often exhibit consid-
erable uncertainty) and growers’ perceptions are
among the most important drivers affecting dis-
ease management decisions, yet they are routinely
ignored by plant pathologists developing decision
algorithms. The continued penetration of Bayesian
analysis into the epidemiological mainstream
should lead to a greater appreciation of the
importance of these drivers and – it is hoped –
their more widespread incorporation into disease
management models.

Statistical genetics and bioinformatics
As shown in the above examples, statistical plant
epidemiology has relied heavily on the medical and
ecological fields for inspiration and conceptual
advances. This trend will likely continue in the
future as plant epidemiologists become more
familiar with the theories and tools of statistical
genetics and bioinformatics. In a recent example,
Parsons and Te Beest (2004) used genetic algo-
rithms to optimize fungicide applications on win-
ter wheat relative to spray date as well as choice,
number, and dose of active ingredients. Genetic
algorithms use biologically derived concepts such
as inheritance, mutation, natural selection, and
recombination to ‘evolve’ a large population of
possible solutions (‘individuals’) to the best (‘fit-
test’) solution (‘survivor’). The evolution starts
from a population of completely random individ-
uals, and in each subsequent generation multiple

individuals are selected stochastically and
modified (mutated or recombined) to form a new
population. Although the concept of evolutionary
computing may be intuitively appealing to biolo-
gists, the approach is computationally intensive
and effectively treats the optimization problem as
a black box. Its theoretical and practical impact on
plant epidemiology remains to be seen.

Apart from merely adopting statistical tools
from other disciplines, plant epidemiologists
should be more proactive in exploring potential
applications of their concepts and procedures in
rapidly expanding disciplines such as statistical
genetics or bioinformatics. Conceptually, for
instance, there are many parallels between the
dynamics of plant pathogens in populations of
plants and those of genetic loci or markers within a
genome (Delwiche, 2004). The key here is to
remain imaginative and keep an open mind toward
broader applications, without being confined
to the organismal level that has historically
dominated statistical applications in plant
epidemiology.

Conclusions

Based on the selected examples given above there
can be little doubt that significant progress has
been made in theoretical plant epidemiology since
the turn of the century. New theories and models
continue to be developed, and sincere efforts are
being made to relate them to the broader field of
theoretical biology on one hand and practical
disease management on the other. As analytical
models of plant disease dynamics have become
more realistic, they also have become considerably
more complex, and solutions often can be
obtained only numerically. As such, the division
between analytical and simulation models, an
important distinction some 20 years ago (Jeger,
1986), is narrowing. It seems that we have come
back full circle to the medium-sized models
advocated by Botkin’s (1977).

Although theoretical problems need not be tied
to practical applications to be valid, the image of
theoretical epidemiology within the larger field of
plant pathology could benefit from a clearer doc-
umentation of its impact on practical disease
management. In medical epidemiology, such
evaluations are commonly achieved by comparing

69



model outputs with long-term morbidity data sets,
e.g., in the case of models for the impact of
vaccination on childhood diseases (Rohani et al.,
2000). We would like to call attention to the need
for similar analyses in plant epidemiology, espe-
cially with pathosystems for which long-term data
are available (e.g., the cereal rusts). Establishment
of additional long-term data collection standards,
even if only for a limited number of pathosystems,
would provide a more solid data base from which
to evaluate the impact of interventions suggested
by current theoretical knowledge.

While plant epidemiology, by definition, is
concerned with the study of populations of
pathogens in populations of plants, there exists
ample opportunity to broaden the scale of inves-
tigation and apply the concepts of theoretical
epidemiology to both sub-organismal and ecosys-
tem scales. Examples of such non-traditional
applications could include models of virus cross-
protection in individual plant cells, temporal and
spatial dynamics of molecular markers or of mol-
ecules such as mycotoxins, biotechnology risk
assessment, microbial forensics, or the quantitative
analysis of ecosystem health. We would argue that
plant epidemiologists, including theoreticians, are
not yet taking advantage of these new opportuni-
ties sufficiently. Although providing the scientific
basis for disease management will always be the
raison d’être for plant epidemiology, a broader
perspective will help the discipline to remain rele-
vant as more efforts and resources continue to be
devoted to genomic and ecosystem-level science.
Plant epidemiology, both theoretical and applied,
will remain as integrating a discipline as it has ever
been, but the individual components that require
integration are changing.
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Abstract

This paper begins with a broad review of food security in the developing world. I argue that technological
change has made a key contribution to improving food security wherever it has been achieved and that
plant sciences can contribute in the future. Potential contributions by plant scientists will have to be funded
through development assistance. A perspective on development assistance and the role of assistance to
agricultural research in particular provides a useful background to the consideration of how to set priorities
for research using information on what is needed and what can be done. Optimizing the contributions of
research entails five steps: (1) determine the specific objective, (2) identify alternatives to address the
objective, (3) choose a method by which to set priorities, (4) apply the selected method to quantify pri-
orities, (5) allocate available funds among the priority alternatives. Finally, it is important to take a long-
term view and continue supporting the research long enough to make a difference. The paper discusses
these steps, illustrates how such an approach might be applied and demonstrates the importance of
applying economic criteria to research resource allocation.

Introduction

There are nearly 800 million hungry people
including 185 million seriously malnourished pre-
school children in the developing world. All lack
adequate food, water and protection from food-
related disease, but without the great strides that
have been made in reducing hunger in Asia and
Latin America over the past 50 years, there would
be millions more. Unfortunately, progress has not
been achieved everywhere; in many African
countries food output per person has fallen over
the last decade and in India and Bangladesh large
numbers of hungry people remain despite the
substantial gains in per capita food production.

Analysis of food production growth of the
past 50 years shows that increases in land, la-

bour, irrigation and fertilizer have contributed to
the progress that has been made; in addition,
intangible factors like efficient marketing sys-
tems, dynamic production technology and higher
education have played an equally important role
in generating long-run growth in agricultural
production (Eicher and Staatz, 1998; Hayami
and Ruttan, 1985; Mellor, 1966). These intangi-
ble factors are the major differences between the
low-productivity, traditional production systems
that still prevail in much of Africa and the dy-
namic, high-input, high-output systems that
increasingly prevail in Asia. Development assis-
tance has contributed to Asia’s ability to keep
pace with its demand for food by helping Asian
scientists develop suitable new agricultural tech-
nology; appropriate development assistance
could help Africa begin the same process and
agricultural research could play a part (Sachs,
2005).
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This paper briefly reviews the process by which
most of the world has achieved food security,
identifies the focus of remaining needs, sketches
the contributions of development assistance and
considers how agricultural research priorities
should be established. It discusses five steps in-
volved in priority setting: determining the objec-
tive, identifying alternative activities, choosing a
method for setting priorities, implementing the
method, and allocating resources among the
alternatives according to the priorities established.
The importance of using economic considerations
along with crop loss estimates for establishing re-
search priorities is demonstrated.

Food security and development assistance

The long view

Before the middle of the nineteenth century
‘hunger and premature death’ was the norm for
most of humanity. Eighty percent or more of all
people in Europe, North America and elsewhere
in the world were farmers, as in today’s poor
countries. A gradual process of agricultural
development and demographic transformation
from 1800 to 1950 was required to largely
achieve food security in industrialized Europe
and North America nearly doubling life expec-
tancy from 35 to 68 years (Fogel, 2004). But in
1950 ‘hunger and premature death’ was the
norm in Egypt, India, China and most of the
rest of the developing world, with life expectancy
hovering around 40 years. Hunger, stunting,
nutritional deficiencies and diseases were wide-
spread. Then around the middle of the 20th
century this began to change for many poorer
countries; average food consumption increased
by 20%, real prices of food fell despite a dou-
bling of population and life expectancy increased
from 40 to 64 years (FAO, 2002). This remark-
able achievement took one-third the time re-
quired by the industrialized countries of the
north. Chronic food shortages, as manifested in
protein-energy malnutrition, fell in much of Asia
and Latin America, in large part because grain
yields and farm incomes increased through a
very similar process used in Europe, North
America and Japan during the previous
150 years. Products of the industrial and scien-

tific revolutions were applied to food production;
farm incomes grew and per capita food supplies
increased (Johnson, 2000).

Today the developing world has twice the
population it had in 1960, 150 million fewer
hungry people, real prices of food grain one-
third as high, and 20% more food available per
person. These great advances in food security
resulted from a combination of technology,
policies and institutions that encouraged pro-
duction growth in agriculture. As explained by
T.W. Schultz, developing world farmers while
poor, use the resources and technology available
to them efficiently, but without the innovations
in policy, institutions and technology needed to
generate the ability to accelerate food production
and the incentives to use those innovations they
are unlikely to increase production much faster
than needed to meet their own needs (Schultz,
1964).

Technology embodied in fertilizer and machin-
ery drove the increases in food security in the
industrialized countries from about 1850 onwards.
But when high rates of fertilizer were applied to
rice grown in the tropics at mid-20th century, they
caused the plants to grow rank and fall over rather
than produce more grain (Herdt and Mellor,
1964). It took the green revolution of the 1970s to
provide new varieties sufficiently productive under
tropical conditions to generate a growth spurt in
Asian agriculture.

Complementary policies to assure greater secu-
rity of tenure and more stable prices helped. As
farming becomes more technologically advanced it
requires capital investments like wells and build-
ings that are attached to the land. To encourage
farmers to make such investments they must have
assured rights to the land; alternatively, govern-
ments may invest in irrigation systems and other-
wise subsidize agricultural investments. The
institutions that assure land rights, incentive prices
and a steady stream of new technology are critical
for agricultural development. All these require-
ments can only be achieved in a stable, non-
oppressive political, social, and economic context.
Hence well-functioning governments that under-
stand the importance of agriculture, make the
necessary investments in agricultural infrastruc-
ture and human capital, and encourage a balance
between markets and the state, are critical (Hay-
ami, 2001).
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International contributions

Crop yields in the developing world have increased
substantially over the past 50 years. Wheat, maize
and rice yields have more than doubled in most
regions with greater increases in Asia and Latin
America than in Africa; yields of other crops like
sorghum and potato have also increased signifi-
cantly. New modern crop varieties together with
fertilizer and irrigation drove these gains; the
greater the adoption of these technologies, the
greater the yield increases. Fertilizer consumption
grew at over 10% per year in the 1990s and
reached 225 kg per hectare of arable land in East
and South East Asia and 110 kg in South Asia; it
was stagnant in Sub-Sahara Africa at less than
10 kg in 2000 (FAO, 2005a). From 1960 to 2000,
public breeding programmes in over 100 develop-
ing countries released over 8,000 new varieties of
the major food crops (Evenson and Gollin, 2003).
More than 35% of these varieties were based on
crosses made at the international agricultural re-
search centres funded by development assistance
and many of the others were made by plant
breeders trained at those centres or stimulated to
emulate or exceed the achievements of the centres.
Since the 1990s private, local and international
seed companies have begun creating varieties for
developing countries based on ‘platform’ varieties
generated by these public sector breeding pro-
grammes.

In sub-Saharan Africa there were limited con-
tributions from the green revolution. New varieties
of most crops did not exceed 30% of planted area
and fertilizer application rates remain at five to
10% of the levels used in Asia. Much of the output
increase that did occur was achieved by extending
the area under cultivation and mining the soil of
plant nutrients through shorter fallow periods.
Food production did not keep pace with popula-
tion growth and a decade-long drop in per capita
food production continues. Today, Africa faces a
food crisis and an environmental crisis, both
resulting from low input, low yield agriculture.

While technological change was central to agri-
cultural development, aid for technological change
has been a small fraction of agricultural aid and
agricultural aid has been a small fraction of total
aid. Between 1973 and 2005, total development
assistance varied between about $40 billion and
$60 billion annually in 2002 dollars, according to
data compiled by the Organization for Economic
Cooperation and Development (OECD Develop-
ment Assistance Committee). Development assis-
tance to agriculture from all wealthy countries
grew from $4.7 billion in 1973 to over $12 billion
per year in 1983–87 but since then has fallen back
to about the 1973–1977 amounts (Table 1). In the
most recent period around one-quarter of all aid to
agriculture went to what OECD calls ‘agricultural
sector policy, planning and programmes; aid to
agricultural ministries; institution capacity

Table 1. Official development assistance to agriculture sub-sectors, annual average constant $ 2002, million

1973–1977 1978–1982 1983–87 1988–1992 1993–1997 1998–2002

Agricultural policy & administration 421 359 857 1468 562 1614

Agricultural water resources 1097 2207 2114 1699 1061 660

Agricultural development & general 735 1251 2307 1188 1081 647

Forestry, not research 149 369 613 880 468 354

Crop production 331 1173 1028 724 388 258

Fisheries, not research 192 471 400 408 285 235

Research 63 275 456 375 184 201

Agricultural inputs 313 684 552 317 309 186

Agricultural land resources 204 253 795 417 271 178

Agricultural finance and coops 425 1127 1549 895 209 132

Extension 104 235 514 230 77 99

Livestock production + vet services 274 379 331 312 124 94

Agricultural services 426 544 1035 840 167 71

Agrarian reform 0 38 31 440 143 63

Total agriculture 4735 9371 12596 10201 5353 4813

Food Aid (not included above) 2681 2858 3000 1502 524 1383

Source: Extracted from OECD (2005), deflated by the total DAC deflator.
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building and advice; unspecified agriculture.’ The
second largest amount went to ‘agricultural water
resources,’ and the third largest to ‘integrated
projects’ and ‘farm development.’ Agricultural
research has received modest support over the
years, seldom exceeding 10% of agricultural aid. It
is, however, impossible to identify the develop-
ment assistance support for the plant sciences,
which presumably is a fraction of research.

The effect of agricultural development assistance

The effect of this development assistance varies
across sub-sectors of agriculture. Irrigation and
drainage projects were the largest sub-sector for
thirty years through the mid-1980s and evaluation
indicates aid for irrigation was usually effective.
USAID evaluations of irrigation projects showed
that while many problems had to be overcome, the
results encouraged continuing investment. For
example, a report that summarized the agency’s
30 year experience, including evaluations of AID’s
projects in Sudan, Senegal, Egypt, Morocco,
Turkey, Pakistan, Korea, The Philippines, and
Indonesia avoided any quantitative generalizations
about the rates of return to the aid investments but
indicated that while there was evidence that irri-
gation’s contribution to rice yields accounts for
about 30% of the factors involved in the Philip-
pines, it is dangerous to generalize about the re-
turns for other areas or other crops (Steinberg
et al., 1983).

A 1995 review of irrigation project evaluation by
the World Bank focused on 208 Bank-funded
irrigation projects. Evaluations rated 67% satis-
factory, comparable to the average of 65% for all
Bank-supported agriculture projects but worse
than the average of 76% for all Bank projects
(World Bank Operations Evaluation Department,
1995). A later review of the Bank’s strategy for
water management summarized results for 336
World Bank water projects completed from 1988
through to 1999 and indicated that their perfor-
mance was below the Bank average, based on the
assessment of project results along three related
dimensions – outcome, institutional development
impact, and sustainability of project benefits (Pit-
man, 2002). Just over 40% had satisfactory ratings
in 1988; that increased to 53% by 1996. By the
1990s the World Bank considered water projects as
part of the social support system rather than as

investments intended to generate additional in-
come and low economic rates of return were of
much less concern than several decades earlier.

Integrated agricultural or rural development
projects made up the second largest area of agri-
cultural development assistance in the 1960s and
1970s. USAID experience was positive but after
emphasizing such projects in many countries for
about a decade, they fell out of favour (Kumar,
1987). Such projects achieved roughly the same
rate of ‘success’ in World Bank evaluations as
irrigation projects. In 1993 the World Bank’s data
indicated an overall success rate of 49% for such
area development projects (World Bank Opera-
tions Evaluation Department, 1993). On average
they generated a 10.4% economic rate of return,
with just over half giving an economic rate of re-
turn over 10% (the other half characterized as
‘failures’ because they produced below 10%).
Failures in area development projects were most
frequent in Eastern and Southern Africa. Area
development projects went out of favour in the
1980s but recently have reemerged in the form of
participatory rural development and poverty alle-
viation work.

Projects to provide subsidized credit and build
agricultural cooperatives comprised the third
largest proportion of development assistance to
agriculture – over 10% of the development assis-
tance portfolio in the 1970s and 1980s. A summary
view of experienced analysts based on many eval-
uations of such projects found that despite the
optimistic expectations of their sponsors, the re-
sults of such programmes were disappointing.
Loan-default problems were serious, poor farmers
remained unable to obtain loans, and those who
did get credit were often unnecessarily and ineq-
uitably subsidized. Many agricultural banks and
other specialized formal lenders serving rural areas
were floundering as a result of the requirements of
the programmes and as a result often limited the
range of services they provide (Adams et al., 1984;
Meyer and Nagarajan, 1996). Credit projects lost
favour in the late 1980s and 1990s and currently
make up less than 3% of the agricultural assistance
portfolio.

Assistance to agricultural research absorbed
around 4% of agricultural development assistance
over the past 25 years. Many analytical estimates
of the economic rates of return to agricultural
research have been made and, contrary to the
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conclusion reached for other kinds of agricultural
assistance, over 95% of the studies show sub-
stantial positive economic return on investments
(Alston et al., 2000). Careful examination of nearly
300 studies reporting over 1800 individual rates of
return indicate no support for the idea that returns
have fallen over time, but rather that returns vary
in other ways that make intuitive sense. In par-
ticular, research on commodities with longer pro-
duction cycles like livestock and more diffuse
effects like natural resource management have
lower rates of return. Overall, the median rate of
return to agricultural research investments is
nearly 50% and the median rate of return to re-
search and extension combined is nearly 40%.
Studies examining the relationship of agricultural
growth to research, education, roads, and other
important factors in India and China reinforce the
importance of research for growth (Fan et al.,
1999, 2002; Rosegrant and Evenson, 1992). Much
attention has been focused on variety develop-
ment but it is clear that pathology, entomology,
epidemiology and other plant sciences play an
important role in the development of new crop
varieties.

Establishing priorities for plant science research

Plant scientists interested in contributing to food
security in the developing countries face a simple
question: ‘What should we do?’ International
assistance can most effectively address research
questions while control of epidemics is largely the
responsibility of national authorities and except
for certain critical pests like desert locust. In con-
trast, research has been one of the most effective
areas of development assistance. The question of
how assistance might be allocated to various re-
search options in the plant sciences is the subject of
the balance of this paper.

The question of ‘how’ to allocate research re-
sources is difficult to separate from ‘who’ should
allocate them and there are two views on who
should set priorities. One holds that priorities
should be set by those who do the research while
the other holds that priorities should be set by
those who benefit from it or by those who pay for
it. But ‘who’ largely implies ‘how.’ If researchers
decide, they will favour what they believe they can
most effectively do. If users decide they will favour

research on their ‘most important’ unsolved
problems; but if researchers have no way to
address the unsolved problems, there can be no
effective research. On the other hand if
researchers discover something for which users
have no need, it is of no value (although it adds
to knowledge and may be valuable ‘basic’ re-
search).

Having users decide seems eminently reason-
able, but in the case of publicly funded research,
becomes circular as the bureaucracy involved in
directly funding research seeks the optimal allo-
cation by appealing to both the users and doers of
research. Dalrymple (2005) provides a useful dis-
cussion distinguishing between researchers who
provide the supply of scientific goods and the users
who represent the demand for such goods. The
best approach would take both positions into ac-
count, perhaps through a process something like
that reflected in Figure 1.

Figure 1 identifies a ‘political-bureaucratic str-
ucture’ that interprets the latent demand for
innovations generated by farmers, consumers,
processors and other actors in the ‘ socio-economic
structure.’ This political-bureaucratic structure
might also be characterized as a decision-maker
who generates the actual demand for innovations.
This structure distributes funds to the ‘innovation-
producing institutions’ that pay researchers to
conduct research and thereby generate the supply
of innovations. As those innovations are used by
the socio-economic structure they generate actual
payoff. The supply and demand analogy has some
appeal, but even the elaborated view depicted in
Figure 1 breaks down because there is no equili-
brating price mechanism for publicly funded re-
search so supply and demand are not the right
terms. Nonetheless, it seems clear that the two
aspects – what new knowledge is needed by users
and what can be done – should be considered in
setting research priorities. In the procedure out-
lined here, both are. Five steps are required to
produce an answer to the question of how re-
sources should be allocated:

1. Determine the objective,
2. Identify alternatives, assemble data for each,
3. Choose a method for setting priorities,
4. Establish priorities among the alternatives,
5. Allocate available resources among alterna-

tives.
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Determine the objective

The objective of the whole exercise is presumed to
be to put available plant science research resources
to their ‘best use.’ That is, to optimize the use of
those resources in generating ‘something’ – but,
exactly what is the something? One option might
be to maximize added output and loss prevented for
all crops. But crops are different, so it is not
appropriate to simply add together the prevented
losses of grains, vegetables, coffee, and cotton. It is
easy enough to aggregate different crops by valu-
ing each agricultural product at its price and
adding to get total value of agricultural output.
However, production of different crops requires
different inputs. For example, it takes much more
capital to produce a ton of wine grapes than a ton
of rice; more to produce a ton of coffee than a ton
of lentils. Such differences in costs suggests the
objective to be maximized might be the value
remaining after subtracting the cost of inputs, in
other words the net value of farm output or net
farm income.

Some advocate that publicly-supported research
should have a special focus on the poor, arguing
that maximizing net farm income of the poorest

people should be the primary objective. One might
accommodate this concern by weighting the in-
come of the poor more heavily in setting priorities,
or consider only the farm income of the poorest
farmers, ignoring the income of others. If so, it is
important to define who the poor are. Some ana-
lysts focus on the one-fifth of the population with
the lowest incomes – the low income quintile. But
is this the low income quintile in each country or in
the developing world as a whole? An alternative is
to consider the contribution to equity – that is the
income of the poor relative to the wealthy. This is
sometimes done by considering the ratio of in-
comes of the lowest income quintile to that of the
highest income quintile. The Gini coefficient is a
measure of equity that reflects the relative income
of all units in the population, not just the highest
and lowest quintiles. However, it is seldom prac-
tical to use the Gini coefficient because of the
difficulty in obtaining the data to calculate it.

One might prefer to focus directly on the con-
tribution of research to nutritional adequacy of the
poor. Like the income of the poorest quintile, this
avoids data problems associated with measuring
equity but introduces complications associated
with defining nutritional adequacy. How can

Perceived
latent supply of

innovations

Actual
supply of

innovations

Effective (actual)
demand for
innovations

Latent
demand for
innovations

Actual
payoff

(ex post)

Socioeconomic Structure
Government policies, factor and 
product prices and markets, 
access to institutions (credit, 
information, education), state of 
technology, etc.

 Innovation-Producing 
Institutions
Public research institutes; public 
interaction with private sector; 
basic and applied research.

Politico-Bureaucratic Structure
Social pressure system; 
electoral-bureaucratic reward 
system; appropriation-legislative 
system.

Expected
payoff

(ex ante)

Figure 1. Generalized model of the supply and demand for technological innovation in the public sector.

Source: Adapted by Dalrymple (2005) from: Alain de Janvry, ‘‘Social Structure and Biased Technical Change in Argentine Agri-

culture,’’ in Hans Binswanger and Vernon Ruttan (eds.), Induced Innovation: Technology, Institutions and Development. Johns Hop-

kins University Press, Baltimore, 1978, pp. 301–303. Original referred to both technological and institutional innovation.
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improvements in calories be aggregated with gains
in vitamins or increased protein intake? An index
of contribution to nutrition might be devised but
in reality the contribution of any particular food to
any individual’s nutrition depends on that indi-
vidual’s current nutritional status, and, using such
a set of weights for aggregating different nutrients
is no less arbitrary than applying a set of prices to
aggregate across commodities and involves many
more computational steps.

These complexities and others lead to using
monetary terms to value the productivity of re-
search, which are in any case needed to account for
input costs. It introduces the challenge of defining
the price for each commodity and input. Com-
modity prices are different in every territory and
most fluctuate on a day-to-day basis and over
longer periods. Surprisingly, there is no readily
applicable set of international prices by which to
value agricultural commodities. The World Bank
tabulates monthly prices for rice, maize, wheat,
soybeans, rubber, sugar, but not for all agricul-
tural commodities.

Another issue is which price along the market-
ing chain should be used for aggregation. Price to
producers differs from price to consumers by the
amount of marketing costs. Marketing costs are
likely to be relatively similar among the grains but
marketing costs for perishable fruits differ signifi-
cantly from those for grains. Low income con-
sumers may have different relative values for
grains and fruits than high income consumers. A
commodity’s value in one country may differ from
its value in another. Finally, the poorest consum-
ers use a high proportion of their incomes simply
to obtain food so the purchase price of food is an
important factor in the real incomes of the poor.

For the purpose of this discussion it is assumed
that the issues identified above are resolved and
there is agreement among the stakeholders and
decision maker that the objective to be maximized
is the contribution of each alternative to the real net
income of the lowest income quintile in the least
developed countries. For convenience, call this the
real income of the poor.

Identify alternatives

It is essential to begin with a comprehensive list of
research alternatives. The allocation process re-
quires that similar information on all options be

considered together. An omitted option cannot
simply be added later because all interact and,
depending on relationships, an allocation to a new
option does not necessarily reduce all others in the
same proportion. The scope of alternatives will
depend on how broadly one defines the problem.
For example, if plant science is taken to include
the economics of plant protection, such matters
must be included as alternatives. If sociology re-
search on movements to ban chemicals in favour
of green agriculture is an alternative that might be
funded by the decision maker, then research on
such topics must be on the list. If plant breeding
for genetic resistance is an option, it must be in-
cluded. Whether such topics should be included in
allocating research resources for plant sciences is a
prior decision. Here we make the assumption that
the universe of alternatives can be defined along
the dimensions of: pest or causal organism, crops/
host plants, locations, tasks and approaches.

Manageable interest
In abstract terms, there is almost no limit to the
alternatives that might be considered. In practical
terms, however, one should restrict the alternatives
considered to the set over which the decision-ma-
ker has a manageable interest. A manageable
interest is the set of issues over which a decision-
maker can make and implement a decision. In
other words, a decision-maker with responsibility
for one province has a manageable interest in
alternatives for that province and should restrict
considerations to alternatives within the province,
while a decision maker with responsibility for a
nation must deal with all alternatives relevant for
that nation. Likewise, a decision-maker responsi-
ble for cereals should deal only with alternatives
relevant for cereals, while one with responsibility
for all crops has a much larger set of alternatives.

In recent times agricultural research decision-
makers have become more attuned to the views
of a broad range of people and groups who
express interests in food-related matters because
of their interests as consumers or simply as
members of civil society. These groups, together
with farmers, food processors, researchers, tax-
payers, research organizations and others are
considered as ‘stakeholders’ in the decisions
made about the allocation of public resources
and decision-makers often seek ways to incor-
porate stakeholder views into both the definition
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of alternatives and in setting priorities among
the alternatives.

Plant hosts
One dimension defining the universe is the set of
crops or plant hosts that will be included. It is
presumed that the interest is with plants of eco-
nomic importance, but this covers a wide range.
Even limiting consideration to agricultural crops is
challenging because there are many ‘minor’ crops
that are of importance in some particular situa-
tions. A recent global effort to define plants of
international agricultural importance resulted in a
list of 64 species (FAO, 2005b). For this exercise
the number of host plants is called: H.

Organisms included
A second dimension is the set of pest and disease
causal organisms to be included. That is, are all
plant diseases to be included – bacterial, viral,
fungal and idiopathic? What about nematodes?
Will vectors of all diseases be included or only
vectors of major diseases? If vectors carry human or
animal diseases as well as plant diseases, will re-
search on those animal diseases be included as part
of the allocation problem?Will priorities be defined
strictly for plant diseases or will non-vector insects
and weeds be included? In reality it is difficult to
separate out these causal organisms, especially be-
cause when a new epidemic breaks out the causal
organisms are largely unknown and inmany cases a
single event has multiple causes. For convenience of
discussion call the number of causal organisms: N.

Geography
The third dimension is geographic: over what set
of agroecologies, countries or territories are the
allocations to be made? Assuming an interest in
developing countries, are all developing countries
to be covered? The World Bank defines least
developed, low-income and middle-income devel-
oping countries. Should only countries with a de-
fined minimum amount of crop land be included?
Should the former Eastern Bloc countries in-
cluded? Given the importance of climate in plant
diseases, one might argue that it makes most sense
to use agroecological regions. Logical though it is,
the problem introduced by this is that most data
are available for political regions and must be
transformed into agroecological categories if they

are to be used in that way. For our discussion the
number of territories is called: G.

Possible research activities
Contemporary efforts to understand the challenges
plant diseases pose to the global food supply
roughly follow the above approach of identifying
the gains (and losses prevented) from controlling
specified sources of loss on specified plants in
specified countries. For example, the objective of
one ambitious study on the subject reports the scale
of losses caused by plant pathogens, animal pests
and weeds on eight crops in seven global regions
(Oerke et al., 1994). It seems appropriate to follow
this lead and define research activities through the
target intersections of causal organism, plant host
and location. For convenience we call the inter-
sections ‘research tasks,’ and their number is: R.

Hence:

R ¼ N�H� G ð1Þ
Diseases are controlled through host resistance,
pesticides and cultural practices, but all three are
probably involved in most successful control sys-
tems. Each of the technological control ap-
proaches may entail distinctly different activities.
For example, host resistance may be pursued
through conventional plant breeding or through
genetic engineering and may be polygenic or
monogenic (Sorho et al., 2005). Biological control
may be pursued using native or exotic organisms.
The technology for each approach requires quite
different resources and, most effective control en-
tails several approaches. The number of such
technologies is called: T.

The total possible number of research activities,
A, is then:

A ¼ T� R or: A ¼ T�N�H� G

ð2Þ
A useful notation is to allow each of the elements
T, N, H and G assume the form of a subscript that
runs from 1 to t; 1 to n; 1 to h and 1 to g. Then any
individual research activity can be designated as A
with the appropriate subscripts, or in general as:

Atnhg

The allocation problem is: to determine the pri-
orities for research among all possible research
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activities, that is, among all possible intersections
of causal organisms, host plants, geographies, and
technologies. To get some idea of the magnitude of
the allocation task, suppose that for the whole
developing world, there are 50 major causal
organisms, 25 plant hosts, 10 territories and 5
technologies, then there will be 62,500 research
activities among which to allocate resources. This
appears to be an overwhelming task, but of course,
some combinations will be ‘empty’ and others will
most efficiently be combined into one activity
thereby reducing the number of alternatives. Still,
the number will be large, requiring a systematic
procedure for organizing all the applicable infor-
mation.

Priority setting methods

Three broadly different methods have been used to
set priorities among research alternatives: scoring,
congruence and benefit:cost approaches (Norton
and Pardey, 1987). Each has a number of varia-
tions.

Scoring approaches
The simplest possible approach is to group alter-
natives in priority categories such as high, medium
and low or rate each alternative on a one to five,
one to ten, or some other numerical scale that di-
rectly indicates priority by the score of each
alternative. More challenging is ranking alterna-
tives numerically from the ‘most important’ to the
‘least important,’ giving each alternative a unique
numerical rank indicating its priority.

Often people are not comfortable with a single
number because they believe either there is ‘no
basis’ for making such a judgment or there are
several different dimensions to alternatives that
would rate differently. They prefer scoring or rat-
ing the contribution each alternative is expected to

make to several dimensions and then aggregating
those contributions. For example, individual
scores could be assigned to dimensions like output,
equity, geographic distribution, women’s income,
food security or others, and those scores aggre-
gated. The aggregation may be through simple
addition or alternatively through weighted aggre-
gation. Table 2 shows how such a system might
work.

The first section shows the scores for two re-
search activities; one is high on women’s income
and low on output and food security; the second
alternative scores high on output and food security
and the same as the first alternative on the other
three characteristics. The aggregate is the simple
average or the aggregated value using equal
weights. The second section illustrates the effect of
differential weights where equity and women’s in-
come have higher weights and other characteristics
have lower weights. With the unequal weights the
aggregate score of the first research alternative is
much closer to the second, reflecting the greater
weights given for two of the characteristics. In this
system both weights and the scores each contribute
to the aggregate score.

Any number of variations of scoring approaches
can be devised. For example one might use data on
production in geographic regions to score the
geographic characteristic and value of output to
score the output variable. A number of possible
weighting schemes may be devised; and a large
number of different characteristics may be used as
weights. The weights can be determined in a sep-
arate exercise from the scores so stakeholders can
be involved where they have special knowledge or
interests (e.g. in the scores) without completely
determining the outcome.

The same versatility that permits the intro-
duction of many characteristics and variations
on weighting is one of the limitations of scoring

Table 2. Illustration of alternative scoring approaches

Activity Output Equity Geo-graphic Women’s income Food security Aggregate score

Simple average

Score 1 2 2.5 3 4 2 2.7

Score 2 4 2.5 3 4 4 3.5

Weighted

Weight 0.1 0.3 0.1 0.4 0.1

Score 1 2 2.5 3 4 2 3.05

Score 2 4 2.5 3 4 4 3.45
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approaches. One must be careful not to design the
weights to skew the results in a particular direction
and recognize that the greater the number of
weighting characteristics, the more difficult it is to
trace the links between characteristics, weights and
aggregate score (Alston et al., 1995).

Congruence-based allocation
Another approach is based on the view that re-
search resources ought to be allocated in propor-
tion to the ‘importance’ of each activity as
reflected in the value of crop production or, in the
case of plant protection, the value of crop losses
attributed to various problems. This approach is
known as the ‘congruence’ method of allocating
research resources.

Using Y to represent production loss prevented
or yield increase obtained, for every Atnhg there is a
corresponding Ytnh. A critical relationship is the
contribution each research activity (Atnhg) is ex-
pected to make to increasing Ytnh and in turn, the
contribution that increased output makes to the
incomes of the poorest quintile. Implementing this
approach requires information like: applying $X
to Atnhg over a period of Y years will prevent losses
or increase production by Ytnh and raise real in-
come of the poor by $Ztnh per year over sub-
sequent years.

An obvious starting point is to know the Ytnh –
the yield loss or potential yield increase – for each

of the A intersections defined in (1) above. Intui-
tively, crop losses are the amount of crop lost to
various pests or because production factors are
used at less than maximum output levels. Here the
focus is on losses from pathogens and pests. As
with most seemingly simple concepts, complexities
lie below the surface, as the literature on crop
losses makes clear. Figure 2 illustrates this point.

For any crop a physiologically defined theoret-
ical yield potential can be associated with any
genotype and climate regime, unimpeded by limi-
tations of water, nutrients and pests. In any
practical situation there is some unavoidable crop
loss, given the impossibility of controlling all fac-
tors that lead to losses. This defines an attainable
yield. In general, attaining that yield requires
expenditures on inputs or control measures in ex-
cess of the profitable levels and so one can define
economically non-recoverable loss and hence an
economic yield. That is the level one would expect
to observe if all farmers applied all crop loss
control measures at the economically optimal le-
vel, but generally the actual yield is somewhat
below that level. The actual yield reflects the yield
response to crop protection actually used that is,
the prevented loss. Still lower, assuming some
effectiveness of current practices is the yield with-
out crop protection. The distance between these
differently defined yields reflect the various loss
concepts.

Yield without protection

potential
loss

Attainable yield

Theoretical yield potential

actual loss

Actual Yield

Prevented loss 
(response to
protection)

unavoidable crop loss

Zero yield

Economic yield

economically non-recoverable loss

Figure 2. Conceptual model for crop loss assessments (adapted from Oerke et al., 1994 modification of Zadoks and Schein, 1979).
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Of course, except for actual yield, all the yield
levels and losses identified above are concepts that
cannot be observed under production agriculture.
But the concepts are so intuitively helpful that
some broadly accepted conventions have been
developed that permit estimates to be generated.
In studies of crop losses, ‘attainable yield’ is de-
fined or computed using crop growth models
taking into account the climate, water availability,
yield potential of varieties grown, rates of fertilizer
application and other cultural techniques like
seedbed preparation and crop density (Oerke
et al., 1994). The difference between the estimated
attainable yield and actual yield provides an esti-
mate of ‘actual loss’ attributed to pests and
pathogens. It is also possible to estimate the
‘prevented loss’ from knowledge about the plant
protection measures used and their effectiveness.
In many cases the results from plant protection
experiments are used in making such estimates.

An alternative, more participatory approach to
using crop modelling and experiments is to draw
on the knowledge of farmers who are producing
crops in the areas of interest. Clearly, those who
make their livelihoods through farming have an
interest in anything that reduces yields and they
would seem an important resource for identifying
yield losses and potentials for increases. As intui-
tively appealing as this is, a review of the literature
reporting such activities identifies at least six lim-
itations (Dalrymple, 2005). First, farmers are likely
to be highly influenced by their immediate and
highly visible problems and are likely to have a
short-term outlook and be less concerned with or
aware of the opportunities offered by longer-term
research. Second, farmers are more likely to favour
research that generates benefits they receive rather
than broadly-adapted research that generates
product price reductions and benefits to consum-
ers. Third, in most developing nations elites
dominate and will naturally direct attention to
research that favours them over less powerful
groups. Fourth, those who favour participatory
approaches in setting priorities generally ignore
consumers and consider only farmer participation,
despite the evidence showing that consumers are
the main beneficiaries of much agricultural re-
search. Fifth, as the geographic scope of the allo-
cation exercise is enlarged it becomes increasingly
difficult to get a comprehensive and unbiased view
from farmers and consumers. Finally, the wide

diversity of clientele and the complexity of the
systems necessary to integrate the number and
diversity of client views make such approaches
inherently difficult to structure. These difficulties
could, of course, be overcome and estimates of the
relative importance of conducting research in each
of the Atnhg could be generated using participatory
methods. In practice, more efforts seem to have
been devoted toward participatory research than
toward participatory priority setting.

Estimated crop losses
An important stimulus to crop loss measurement
was given by several major symposia on the sub-
ject in the last century. The first was organized in
the 1960s by the Food and Agriculture Organiza-
tion (FAO, 1967) and a second took place in the
1970s in honour of E.C. Stakman (Teng and
Krupa, 1980). A more recent study of crop losses
(Oerke et al., 1994) provides access to a large
amount of systematically organized information.
This work was designed to stimulate research on
the causes of losses, improve methods to protect
crops, enhance the effectiveness of control meth-
ods, integrate plant protection with other man-
agement practices to optimize methods of crop
production, and help generate support for research
on effective crop protection. Table 3 provides a
summary.

The immense amount of work and detailed,
country-by-country, crop by crop information that
lies behind the table cannot be overstated. Based
on that work, global crop losses are estimated to
be about 75% as large as actual production, with
the losses almost equally attributed to pathogens,
pests and weeds. The lowest estimated losses,
about 30%, are in Europe and North America,
while Africa and Asia each are estimated to lose
nearly 50% of their attainable production. Nearly
60% of global losses occur in Asia, far more than
in any other region. This is because Asia produces
nearly half of global agricultural production and
has a higher rate of loss than other regions.

Using a simple congruence approach to set pri-
orities based on these data would suggest that 60%
of research resources should be allocated to pre-
venting losses in Asia and within that allocation,
the resources allocated to pathogens, animal pests
and weeds should be in the ratio of approximately
14:18:14, the proportion of loss to the three main
causal agents. The balance of available resources
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would be allocated similarly, following the pro-
portion of losses in each region to each source.

One can argue that congruence with crop losses
is a good approach if dollars spent on every Atnhg

have the same effectiveness in increasing the in-
comes of the poor (given that objective). This is
likely to hold if no Atnhg are ‘harder’ or ‘easier’
than others so that a given amount of money spent
on each would make the same contribution to the
value of each crop and that each commodity
makes the same contribution to real incomes of the
poor. But, the relationship between research input
and loss prevented is likely to be complex – some
research challenges are harder than others. The
research continuum from basic through applied to
adaptive implies that a higher degree of uncer-
tainty is associated with ‘more basic’ research
activities that are likely to take longer. ‘More dif-
ficult’ research problems are likely to require more
resources and time to generate usable results but
are also likely to have the potential to generate
higher returns. The contribution of losses pre-
vented for a commodity important in the con-
sumption of the poor or in generating income for
the poor is more important for the objective than
for a commodity not important to the poor.
Technologies not well-suited for adoption by the
poor would contribute less than those especially
well-suited.

Input–output function of Atnhg

The relationship between research input, expressed
in researcher time and funds, and the expected

findings or ‘solutions’ that prevent loss, is defined
as the research input–output function. The input–
output function for each Atnhg should reflect the
difficulty and time required to find a solution
through that activity; input–output functions for
different activities will reflect differences in the
difficulty or time needed for various Atnhg. The
input–output function provides an estimate of
what research may actually contribute towards the
objective while crop loss estimates represent the
opportunity for research to contribute – these are
the two key factors: what can be done and what is
needed. In Dalrymple’s terms, the input–output
function reflects the supply of research findings
while increased real incomes of the poor from the
crop loss thereby prevented reflect the demand for
research findings.

To illustrate: a set of pesticides can be screened
for their effectiveness against a particular pest in a
relatively few growing cycles, say in a matter of 2–
5 years. If the pesticide has been approved, a
control practice can be recommended to farmers
shortly thereafter. An alternative approach, the
development of cultivars with genetic resistance to
the pest, may take 6–10 years from the beginning
of research to release to farmers. Even if the two
activities give the same yield effect and remain
effective for the same period, they have different
input–output functions. Some kinds of research
may have a greater inherent requirement for inputs
such as laboratory equipment, experimental fields
and labour; costs of land, labour and capital vary
across locations and other factors affect the cost of

Table 3. Estimates of crop losses, in financial terms (US$), occurring during the production of the eight principal food and cash

crops in the years 1988–1990, by continent

Continent Actual

production

Loss (%) of production

due to

Loss, overall

$ bn. % Pathogen Animal pests Weeds % $ bn. % of global total

Africa 13.3 4.0 15.6 16.7 16.6 48.9 12.8 5.3

N. America 50.5 15.1 9.6 10.2 11.4 31.2 23.0 9.4

L. America 30.7 9.2 13.5 14.4 13.4 41.3 21.8 8.9

Asia 162.9 48.6 14.2 18.7 14.2 47.1 145.3 59.6

Europe 42.6 12.7 9.8 10.2 8.3 28.2 16.8 6.9

U.S.S.R. 31.9 9.5 15.1 12.9 12.9 40.9 22.1 9.1

Oceania 3.3 1.0 15.2 10.7 10.3 36.2 1.9 0.8

Total 335.2 100.0 13.3 15.6 13.1 42.1 243.7 100.0

Source: Oerke et al. (1994, p. 749); final column added by the author of this paper. Prices used in valuing production (by Oerke et al.)

were: wheat: US$ 136.2/t; rice: US$ 209.1/t; barley: US$ 79.5/t; maize: US$ 98.1/t; potatoes: US$ 128.7/t; soybeans: US$ 236.1/t;

cotton: US$ 490.6/t; coffee: US$ 1934.4/t.
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any particular research activity, but these differ-
ences can be incorporated in an input–output
function.

A number of things can be inferred about the
relationship between research input and expected
prevented yield loss or expected output (Ytnhg).
First, at the beginning of the process and with zero
input, expected prevented loss is zero. Second, no
matter how great the resources or time taken, there
is some maximum value of expected Ytnhg

depending on actual losses or yield potential for
each Atnhg,. Third, at the beginning of the research
with small inputs the probability of finding a
successful ‘solution’ is small and therefore the ex-
pected prevented Ytnhg is small. The expected value
likely increases slowly until some critical minimum
amount of resources are applied and at that point
increases rapidly over some range of research in-
puts. Beyond some level of resources the expected
Ytnhg is likely to begin to increase at a declining
rate.

Figure 3 illustrates a few of the many possible
input:output relationships consistent with the
inferences stated above. Each curve portrays the
relationship for a different research activity de-
signed to prevent losses experienced in a particular
intersection defined by equation (1). Research in-
put consists of money, people and time reflected
on the horizontal axis as cost per year. Curves A1
and A2 use the same research approach but with
more resources applied each year in the case of A1,
so the solution is expected to be found sooner.
Both are expected to generate knowledge to pre-
vent the entire loss. Curves B1 and B2 represent a

different approach expected to be less successful in
preventing the yield losses; B2 is expected to take
less time than B1 but the latter will ultimately
prevent more of the losses, although not as much
as the approach used in A1 and A2. Intuitively,
such ideas seem consistent with the ways scientists
think about research alternatives and incorporate
more information in the allocation process than
the congruence approach.

Benefit:cost
In addition to incorporating the effects of different
input–output relationships, benefit:cost ap-
proaches can incorporate variations in resource
use, time lags and uncertainty into priority setting.
To illustrate, the following example may be help-
ful. Suppose two different research activities could
be targeted at preventing a $900,000 annual crop
loss. Suppose the first, Atnh1, costs $50,000 a year,
will be completed in 5 years and is expected to
prevent half the potential loss while Atnh2 costs
$25,000 a year, will take 10 years and is expected
to prevent 80% of the potential loss after 10 years.
In both cases the technologies are assumed to re-
main effective for 10 years after introduction.
They are illustrated in Table 4.

The first line in the Table shows the research
cost per year (all numbers in ‘000). For simplicity
cost is assumed to be constant for a defined
number of years, but that assumption is easy to
relax. The research is aimed at preventing the po-
tential loss depicted in the second line. The percent
expected prevented loss shown in the third line is
the concept introduced in Figure 3, in percentage

$/yr research input

% expected 
prevented
loss

actual loss A1 A2

B1

B2

b2 a1 b1 a2

A1: Process 1, high input/yr
A2: Process 1, low input/yr
B1: Process 2, high input/yr
B2: Process 2, low input/yr
a1…b2: optimal input levels

Figure 3. Hypothetical research input/output relationships.

87



terms for ease of computation. For a greater re-
search cost the expected prevented loss will be
achieved sooner and possibly to a greater extent so
that for every different research input:output
relationship the values of the first and the third
lines of the table will be different. The fourth line is
the quantity of loss prevented (LP), the product of
lines 2 and 3. The time path of expected farmer
adoption is incorporated in line 5 of the analysis
and reflects the percent of line 4 that is realized
each year. If adoption of the results of various
Atnhg takes different time paths, incorporating the
adoption lag will differentially affect the benefits
obtained in any year. The sixth line is the product
of lines 4 and 5 and reflects the expected amount of
loss prevented each year. Multiplying this line by
the output price would give value but for sim-
plicity here we assume a price of 1 per unit of
output. The seventh line is line 6 minus line 1, the
value of expected net benefit in the year in which
benefits are expected to be obtained. Net benefits
are, of course, negative in years 1 through 5 until
results are obtained; zero in year six when the re-
search is completed but the results have not yet
been adopted; and are assumed to reach 30%,
60% and finally 90% over the next three years as
adoption occurs. Thereafter net benefits are con-
stant for the next 6 years after which the technol-

ogy is assumed to be obsolete and no longer
prevents yield losses (one could, of course, have a
technology with slowly declining benefits). Line 8
shows the ‘present value’ of expected net benefits,
a concept designed to reflect the idea that pre-
venting losses sooner rather than later is better and
that money spent today in preventing such losses is
worth more than money spent for the same pur-
pose in the future. The ‘discount rate’ reflects the
relative value of solutions today compared to
solutions in the future. If it makes no difference
when the solution is obtained the discount rate is
zero, but in most cases, people would prefer
solutions sooner rather than later and the stronger
that desire, the higher the discount rate. Of course,
all the relationships and parameters in the table
are illustrative and the result of simplifying
assumptions.

The top part of the table illustrates the early
return case: $50,000 is expended each year for
5 years, at which point the expected results are
obtained. In years 6 through 15 the loss prevented
could be $450,000 but because adoption takes time
the expected loss prevented is as shown in line 6.
The expected net benefit, the difference between
cost and expected LP, is equal to cost in the first
5 years; afterwards costs go to zero and net benefit
is the loss prevented. The values in line 7 are

Table 4. Illustration of the calculation of present value of net benefits of two research alternatives at a discount rate of 10%

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alternative 1

1. Cost 50 50 50 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. Potential loss 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900

3. % exp. Prev loss 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0

4. Loss prevented 0 0 0 0 450 450 450 450 450 450 450 450 450 450 450 0 0 0 0 0

5. Adoption % 0 0 0 0 0 0.3 0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

6. Expected LP 0 0 0 0 0 135 270 405 405 405 405 405 405 405 405 0 0 0 0 0

7. Exp. net benefit )50 )50 )50 )50 )50 135 270 405 405 405 405 405 405 405 405 0 0 0 0 0

8. PV of net benefit )45 )41 )38 )34 )31 76 139 189 172 156 142 129 117 107 97 0 0 0 0 0

NPV 1134

Alternative 2

1. Cost 25 25 25 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 0 0

2. Potential loss 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900

3. % exp. Prev loss 0 0 0 0 0 0 0 0 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

4. Loss prevented 0 0 0 0 0 0 0 0 0 720 720 720 720 720 720 720 720 720 720 720

5. Adoption % 0 0 0 0 0 0 0 0 0 0 0.3 0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

6. Expected LP 0 0 0 0 0 0 0 0 0 0 216 432 648 648 648 648 648 648 648 648

7. Exp. net benefit )25 )25 )25 )25 )25 )25 )25 )25 )25 )25 216 432 648 648 648 648 648 648 648 648

8. PV of net benefit )23 )21 )19 )17 )16 )14 )13 )12 )11 )10 76 138 188 171 155 141 128 117 106 96

NPV 1161
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‘discounted’ at 10% to get the present value (PV)
in line 8 and those values are added together to get
their sum for the entire period, called the net
present value or NPV. In the bottom panel alter-
native 2 is shown. In terms of Figure 3, alternative
1 might be represented by a curve like B2 while
alternative 2 is more like curve B1.

In the numerical example the NPV of the first
alternative is 1134 and the NPV of the second is
1161. Thus, even though the first alternative has a
shorter time to solution (5 vs. 10 years), the second
has a slightly greater present economic value, in
part because it is lower cost (25 vs. 50) and in part
because it prevents a greater proportion of the
potential loss (80% vs. 50%).

Each of the numbers that goes into the compu-
tation has an impact on the NPV. For example, if
the discount rate is 5% rather than 10%, the NPV
of the first alternative is 1936 and of the second is
2506 – with a lower discount rate the NPV of the
first alternative increased by 70% and that of the
second by 115%, illustrating the differential effect
discount rate has on more distant income. In the
extreme case, if future costs and benefits are not
discounted then the NPV is simply the sum of the
stream of expected net benefits; in this case 3395
and 5582.

With the discount rate at 10%, if the time to
success and adoption are shortened by one year
and obsolescence still occurs after 10 years, then
the NPV of the first alternative is 1266 rather than
1134. If the solution using the second alternative is
found after 8 years rather than 10 and adoption
and obsolesce patterns are unchanged, its NPV is
1543 rather than 1161. If, in the second alternative,
costs increase to 30 in year two, 35 in year 3, 40 in
year 4, 45 in year 5 and 50 in year 6 and beyond,
NPV becomes 1068 rather than 1161. Hence, dif-
ferent time paths to success or adoption or costs
generate different patterns of returns and higher or
lower NPV. While the approach seems complex
and requires the specification of numerical values
to concepts that normally are little more than
‘hunches’ of scientists, it has successfully been
applied to help guide resource allocation in a
$110 million programme (Herdt, 1991).

Elaborations to benefit:cost
Increases in output that are large relative to cur-
rent supply may have the effect of reducing the
price of the commodity in question. In fact, the

global long term downward trend in grain prices
has been ascribed to the success of research in
increasing the productivity of grain production in
many locations throughout the world. In contrast,
the prices of food legumes show no such long term
decline, in part because there have been relatively
modest productivity gains.

By incorporating appropriate assumptions
about the way consumers respond to additional
supplies (demand elasticities) it is possible to esti-
mate the impact of a productivity gain on prices
and incorporate that into the estimates of benefits
and costs. In addition it is possible to calculate
how much of the productivity gain remains in the
hands of producers and how much goes to con-
sumers. Economists call these the producers’ sur-
plus and consumers’ surplus and commonly use
such concepts in estimating the benefits from
technological change (Alston et al., 2000); they can
also be used in research resource allocation.

An additional elaboration has been developed
to accommodate the idea that it is difficult to give a
point estimate of the likelihood that any particular
research activity will be successful. This incorpo-
rates a ‘triangular distribution’ into the input–
output function using estimates of the maximum
likelihood of success, the minimum and the most
likely probability of success (Mills, 1998). These
numbers are then aggregated into a single one used
as the ‘probability of success’ in the table.

Allocate resources among alternatives

As illustrated, priorities can be established in sev-
eral ways, from categories to rankings to benefit:
cost (with or without considering economic sur-
plus) to subjective scores. Regardless of the
method the result will be a set of numbers repre-
senting the priority of each Atnhg. However, no
matter which approach is used, that set of numbers
does not imply any specific allocation of resources.
Any of the sets of numbers could be used to allo-
cate resources proportionately, but each would be
arbitrary, given what is recognized about the re-
search input–output function. Alternatively, the
numbers generated can be interpreted as a ranking
of importance if a technique is consistently ap-
plied, however such a ranking still does not
translate into a particular resource allocation.

Various options might be used to translate
the priority into an allocation. One extreme would
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be to allocate all available resources to the top
ranked activity – a position not likely to get much
sympathy. In a strict capital budgeting problem
where the NPV is independent of the size of the
investment, funds would be allocated to the alter-
native with the highest NPV, then the second
highest, etc. until all funds are used up. Another
option is to argue that all alternatives should get
equal allocations. This may be the most politically
appealing and would make much of steps three
through to five unnecessary! However, using some
concepts from economic theory, one can easily
show that a non-equal allocation can generate
higher benefits.

Economic theory shows that the optimal pattern
of investment would be to invest in each alterna-
tive just the amount that provides an equal incre-
mental (in economic jargon, marginal) return to
each alternative and at the same time uses up all
the available resources. Applying this concept re-
quires data on the marginal return to each alter-
native, which can be derived as follows. A larger
annual investment in a particular alternative is
likely to shorten the time until success (although
there is a limit to how short the time can get). On
the other hand, a smaller annual investment is
likely to lengthen the time to success (although if
the annual investment gets too small the proba-
bility of success may become zero). The following
illustrates what larger or smaller annual invest-
ments would do for one research alternative.

Suppose that with a larger annual investment
($50,000) the research phase can be shortened from
10 to 8 years and adoption speeded up so that 10%
of farmers adopt in the 8th year and 40% in the 9th,
etc. As a consequence the NPVwould increase from
1161 to 1605 (details not shown). On the other
hand, if the annual investment is smaller ($10,000)
and the research phase is consequently stretched
out to 15 years with a similar relative pattern of
adoption as originally, then the NPV falls to 517.
Following this procedure one can estimate the
NPVs that correspond to a series of different annual
research investments for a given research alterna-
tive. These values can be plotted as in Figure 4,
alternative 2. In a similar way, for each research
alternative there exist a series of NPVs corre-
sponding to different levels of research investments.

Figure 4 shows NPV curves for three research
alternatives. Alternative 2 is the case we have been
following with NPV of 1161 at $25/year, 1605 at

$50/year and $517 at $10/year. Although we
computed the NPV for alternative 1 only for one
investment level in Table 4, other levels would
generate a series of NPVs to trace out the curve
shown. A similar curve of NPV vs. annual research
investment is shown for one additional alternative
and could be plotted for every possible research
alternative.

Such curves provide the key to solving the re-
source allocation problem. Notice that each curve
is increasing but at some point the rate of increase
falls and the curve eventually flattens out as
researchers run out of good ideas to investigate
and the work becomes less productive. In other
words, the increase in NPV for higher and higher
increments of investment eventually declines (and
may even become zero or negative). Economic
theory says that the greatest total expected gain
will be obtained when the additional NPV from
each alternative is equated and all resources are
used. This can be illustrated as follows.

Suppose the research manager has $150 to invest
each year among the three alternatives shown in
Figure 4. If it is invested equally, $50 in each
alternative, Alternative 1 generates an expected
NPV of 1134, alternative 2 an expected NPV of
1605 and alternative 3 an expected NPV of 1175.
The total of the three is 3914. On the other hand, if
instead of equal allocation, alternative 3 gets $75/
year its NPV goes up quite a lot (the curve is steep)
and if at the same time alternative 1 gets $25/year
its NPV goes down by a lesser amount (its curve is
less steep).

The changes in NPV are given in Table 5; each
column shows the change in NPV from the lower
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Figure 4. Hypothetical net present value (NPV) of three re-

search alternatives.
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investment level to the specified one. For example,
the first $10 of investment generates additional
expected NPV of $625 in alternative 1, $517 in
alternative 2 and $400 in alternative 3. Consider
$50 invested in each alternative: switching $25
from alternative 1 to alternative 3 reduces expected
NPV from alternative 1 by $200 and increases
expected NPV from alternative 3 by $225 – a net
increase of $25. Of course, if the research decision
maker had more funds available, say $225, it
would be better to invest $50, $75 and $100 in
alternatives 1, 2 and 3 respectively. The differences
are modest because the three curves are quite
similar; the more different the input–output curves
are, the greater will be the difference in expected
output from applying the economic decision rule
compared to equal allocation.

In this example, the three alternatives (Atnh1,
Atnh2, Atnh3) all apply to preventing losses from a
single Ytnh of 900 per year. Incorporating all pos-
sible Ytnh and all possible research alternatives to
prevent those potential losses would provide a full
solution to the allocation problem that follows the
rule suggested by economic theory and would
maximize the expected value of prevented losses.
Of course, implementing such an allocation pro-
cedure requires input–output functions for all
possible research alternatives and a computational
algorithm to solve the entire system. But with
modern computers this is possible.

Summary

In 1800 most people in most countries were
chronically hungry, life expectancy was 35–
40 years and misery was the accepted lot of most
people. By 1950 a few countries in Europe and
North America had achieved a remarkable
improvement in living standards; food production
and consumption reached adequate levels for most
and people lived to their mid-60s on average. But
in Asia, Africa, most of Latin America and the

Middle East, things were not much changed from
150 years earlier. Poverty, short lives, high rates of
hunger and low-yield, low technology agriculture
prevailed except for a few enclaves. A remarkable
change has occurred since 1950. The world’s
population has doubled but there are 150 million
fewer hungry people; per capita food availability
in the developing world has increased by 20% and
the real price of food worldwide has fallen by half.
World food production has more than kept pace
with growing food demand. Still, there are far too
many poor, hungry and ill-clothed people in
developing countries, with by far the greatest
proportion in sub-Saharan Africa and South Asia.

Technology, policies and institutions designed to
encourage economic growth of agriculture and en-
sure the poor are included in growth are the
important necessary conditions to overcome hun-
ger and poverty. Far from being tradition-bound
and resistant to change, millions of farmers in poor
countries have accepted new technologies in the
form of seed varieties, fertilizers and irrigation and
driven the rate of food production ahead of the
demand for food. Experience shows that such
technology must be carefully designed to fit the
situations where it is to be used, but once systems
for doing such research became operational, a green
revolution spread through Asia and Latin America.
But the necessary combination of policies, tech-
nology and government institutions have proven
elusive in sub-Saharan Africa. That part of the
word remains the challenge for the 21st Century.

Development assistance from wealthy countries
has contributed in significant ways to help improve
conditions in poor countries with agricultural re-
search among the most successful of aid efforts.
The technology and cultivation practices devel-
oped by the international agricultural research
centres of the CGIAR spread widely through Asia,
the Middle East and Latin America and provided
the basis for a green revolution in many countries.
While poverty still is the lot of too many, food
availability and incomes are much improved.

Plant science research has contributed to the
improved management and control of many plant
pests and diseases but crop losses continue to
claim over 40% of potential production having an
estimated value of nearly $250 billion. Appropri-
ately directed research could develop systems and
products to save much of that potential. In order
to best allocate available research resources to

Table 5. Change in NPV from changing annual research in-

vestment

Investment 0 10 25 50 75 100 125

Alternative 1 625 309 200 50 20 0

Alternative 2 517 544 444 195 100 50

Alternative 3 400 410 365 225 100 75
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address those challenges, decision makers must:
carefully define objectives; specify possible
research alternatives in quantitative terms; choose
among several different approaches for setting
priorities; apply the method to establish priorities;
and allocate the resources among alternatives. The
optimal allocation of research resources can only
be established by applying economic principles to
estimates of the research input–output functions
that quantify how alternatives are expected to
prevent crop losses.

Most allocations simply take the previous year’s
resources and make small adjustments; some
allocations use scoring approaches; some allocate
resources in proportion to value of production,
contribution to incomes of the poor or in pro-
portion to the value of crop losses. These intui-
tively appealing procedures all have the drawback
of failing to take into account either the likely
degree of success research may have in addressing
each alternative or the importance of each possible
solution to poor farmers and consumers.

Economic principles offer tools that can incor-
porate many considerations important to stake-
holders. Allocations that use marginal productivity
variations on benefit:cost approaches require large
amounts of data and require researchers to make
their assumptions explicit. These are difficult to
apply and are seldom used. However, they would
keep decision makers from overlooking poten-
tially large contributions to the ultimate goal of
improving the lives of the poor through agricul-
tural research. The paper demonstrates that two
aspects related to future research – what can be done
and what is needed by users of new knowledge –
should be considered by any decision-maker in
setting research priorities and that using economic
principles together with such information generates
a higher expected return on research investments
than alternative methods.
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Abstract

New concepts in phytopathometry continue to emerge, such as the evolution of the concept of pathogen
intensity versus the well-established concept of disease intensity. The concept of pathogen severity, defined
as the quantitative measurement of the amount of pathogen per sampling unit has also emerged in response
to the now commonplace development of quantitative molecular detection tools. Although the concept of
disease severity, i.e., the amount of disease per sampling unit, is a well-established concept, the accuracy
and precision of visual estimates of disease severity is often questioned. This article will review disease
assessment concepts, as well as the methods and assessment aides currently available to improve the
accuracy and precision of visually-based disease severity data. The accuracy and precision of visual disease
severity assessments can be improved by quantitatively measuring and comparing the accuracy and pre-
cision of rates and/or assessment methods using linear regression, by using computer-based disease
assessment training programmes, and by developing and using diagrammatic keys (standard area
diagrams).

Introduction

‘‘How can plant pathologists apply advanced statistical
procedures or develop quantitative predictive models
based upon disease assessment data of unknown accu-

racy and precision?’’ David R. Mackenzie, 1979

The efficient application of any integrated disease
management programme requires accurate and
precise information concerning the quantitative
measurement of the disease and/or pathogen
population, yet the accuracy and precision of
quantitative disease/pathogen assessments in plant
pathology is often taken for granted (Main, 1977;
Zadoks and Schein, 1979; Gaunt, 1987; Kranz,
1988; Nutter et al., 1991; Nutter and Schultz,
1995; Nutter and Gaunt, 1996). Accurate and
precise disease (or pathogen) assessments provide
a quantitative link between disease management

theory and practice (Shokes et al., 1987; Nutter
et al., 1991; Nutter and Schultz, 1995). An integral
component of studying the interactions of host
and pathogen populations in time and space is the
ability to accurately discriminate between levels of
injury (disease intensity) caused by plant
pathogens.

Disease intensity is a generic term for the
amount of disease in a host population. Disease
intensity can be either the independent variable or
the dependent variable in stimulus–response
models; however, in both cases, disease intensity
needs to be quantified with a high degree of
accuracy and precision if meaningful predictive
models are to be developed (Nutter, 1990; O’Brien
and van Bruggen, 1992; Nutter and Gaunt, 1996;
Guan and Nutter, 2003). For example, quantifying
disease intensity–crop yield (loss) relationships
demands a high degree of accuracy and precision
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with regards to disease assessments because disease
intensity is used as the independent variable (X) in
single-point or area under the disease progress
curve (AUDPC) – crop yield (loss) regression
models (Guan and Nutter, 2001, 2004). The stim-
ulus (disease intensity) must be measured accu-
rately in order to develop yield response or yield
loss models that have adequate predictive
capabilities.

The symbol Y is often used to represent a
measure of disease (or pathogen) intensity because
disease intensity assessments are often graphed on
the y-axis with respect to time (X-axis). The
graphical representation of disease intensity versus
time is referred to as a disease progress curve,
whereas the graphical representation of pathogen
intensity versus time is referred to as a pathogen
progress curve (Nutter, 2001). A disease (or
pathogen) progress curve is the signature of an
epidemic and represents the integration of all host,
pathogen, and environmental effects (including
pathogen vectors and disease management tactics)
that occur during the period of host–pathogen
interaction (Campbell and Madden, 1990; Nutter,
1997b).

Quantification of disease intensity also requires
a high degree of accuracy and precision when
disease intensity is the dependent variable (Y) to
quantify the rate of disease progress with respect
to time (X), or the change in disease intensity with
respect to distance (X). In both cases, X (time or
distance) can be measured with great accuracy,
and therefore, the accuracy and precision of dis-
ease intensity assessments (Y) directly affect how
much of the variation in Y can be explained by X
in such models.

Disease assessment defined

The branch of plant pathology that deals with the
theory and practice of quantitative disease (and/or
pathogen) assessment is known as phytopathom-
etry (Main, 1977; Zadoks and Schein, 1979;
Campbell and Madden, 1990). Disease assessment
is defined as the act (or process) of quantitatively
measuring disease intensity (Campbell and Mad-
den, 1990; Nutter et al., 1991; Nutter and Gaunt,
1996). In plant pathology, there are two basic and
distinct populations that can be quantitatively as-
sessed: the pathogen population and the disease
population (Nutter, 1997b, 1999). Because plant

disease epidemics result from the interaction of
host and pathogen populations in time and space,
as affected by the environment, quantification of
the disease population usually involves an assess-
ment of visible injury (disease symptoms). This is
true because disease injury is often directly pro-
portional to the size of the pathogen population
(Nutter et al., 1991; Nutter and Guan, 2001). On
the other hand, pathogen assessments can be
obtained by directly measuring the pathogen
population (e.g. the number of spores, sclerotia,
nematodes, etc.) per unit area or volume, or the
use of a detection method to determine the pres-
ence or absence of a pathogen for each sampling
unit (e.g., ELISA or PCR to detect the presence of
a pathogen in or on a sampling unit). Thus,
researchers can perform disease assessments or
pathogen assessments (or both); however, these
terms should not be used interchangeably because
they represent different populations being assessed
(Nutter, 1997b, 1999, 2001).

Disease versus pathogen intensity

Disease intensity (Y) is a general (generic) term
used for quantifying the amount of disease in a
population (Campbell and Madden, 1990; Nutter
et al., 1991; Nutter and Gaunt, 1996). In plant
pathology, the three most common measures of
disease (and pathogen) intensity are: (i) preva-
lence, (ii) incidence, and (iii) disease severity. Dis-
ease prevalence is a term that is often used
interchangeably (and mistakenly) with disease
incidence. Prevalence is defined as the number of
geographical sampling units (fields, farms, coun-
ties, states, regions, etc.) where a disease or path-
ogen has been detected, divided by the total
number of geographical sampling units assessed
(Zadoks and Schein, 1979; Campbell and Madden,
1990; Nutter et al., 1991; Nutter and Gaunt, 1996).
It is important to distinguish disease prevalence
from pathogen prevalence. Disease prevalence
measures the proportion (or percentage) of geo-
graphical sampling units (fields, counties, coun-
tries, etc.) where a disease (expressing symptoms)
has been found to occur, divided by the total
number of geographical sampling units inspected
or surveyed, whereas pathogen prevalence is a
measure of the number of geographical sampling
units where the pathogen has been detected (e.g.,
by direct plating, inspections for the presence of
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pathogen signs, ELISA, PCR, etc.), divided by the
total number of geographical sampling units that
were inspected, tested, or indexed (Nutter, 2001).
Prevalence data are often multiplied by 100 to
express as a percentage. A single diseased or in-
fected plant (or plant part) is all that is required to
change the status of a geographic sampling unit
from negative ()) to positive (+), provided the
sensitivity of the method is sufficient to detect the
presence of a pathogen in a bulked (diluted)
sample. Bulking samples is particularly useful
when pathogen incidence is low because the
number of bulked samples tested or indexed is
often less than the number of individuals sampled
and processed, thus reducing the cost of detection
per sampling unit (Nutter and Gaunt, 1996;
Nutter, 1997b).

Disease incidence is defined as the number of
sampling units (e.g., leaflets, leaves, stems, tillers,
whole plants, seeds, etc.) that are diseased
(expressing symptoms), divided by the total num-
ber of sampling units sampled and assessed (Nut-
ter et al., 1991; Nutter, 1997b, 1999). As with
prevalence, it is important to make a clear dis-
tinction as to whether incidence is based on
detection of the pathogen or on the basis of disease
(visual symptoms) in a host population (Nutter,
2001). Progress curves based on pathogen detec-
tion (indexing) methods, such as ELISA, may
closely mirror progress curves based on disease
symptoms (Padgett et al., 1990; Nutter 2001);
however, in many instances, the use of different
disease assessment or pathogen detection methods
may result in progress curves with quite different
shapes and rates (Nutter, 1997b, 2001).

Disease severity is a measure of the amount of
disease per sampling unit and it is this particular
type of measurement that this article will focus
upon (Nutter et al., 1991; Nutter, 1997b).
Researchers should clearly define disease severity
by providing not only a descriptive definition, but
also an operational definition that includes the
dimensions that were used to assess disease. In
plant pathology, disease severity is most often
operationally defined as the diseased leaf area (l2),
divided by the total leaf area of a leaf or sampling
unit (L2)�100, i.e., (l2/L2�100) to obtain percent-
age disease severity (James, 1971; Nutter et al.,
1991). Other common measures of disease severity
include the number of lesions/leaf (or sampling
unit), the number of lesions/cm2 of leaf (or other

sampling unit), or the area of non-green tissue of a
sampling unit divided by the total area of the
sampling unit� 100 (Nutter, 2001). Disease
severity could be also defined as the volume of a
disease-induced gall (using the equation and
dimensions for a cylinder or a sphere, etc.), as is
done in human epidemiology for cancerous tumors
(Nutter, 1999).

The concept of pathogen severity is becoming
more widespread as new methods are developed to
quantify the amount of a pathogen present in a
sampling unit. Examples include the use of quan-
titative PCR methods to estimate the amount of
virus (or pathogen) present per gram of leaf tissue,
or the number of nematodes per gram of root
tissue. In spite of advances concerning the concept
of pathogen severity, the majority of severity
assessments employed today usually involve visual
estimates of disease severity (l2/L2�100), and yet, a
number of critical questions still remain. At the
top of the list of such questions is: how can we do
better to improve the accuracy and precision of
visual disease assessments? This article will address
specific ways to improve the accuracy and preci-
sion of diseases assessments. These are: (i) use of
regression to quantify the precision of disease
raters and/or assessment methods, (ii) the use of
computer-based assessment training programmes,
and (iii) the use of standard area diagrams
(diagrammatic keys) in colour.

Use of linear regression to assess and compare the
precision of assessment methods

The expenditure of time and money to develop,
evaluate, and compare disease assessment methods
can prevent serious flaws (e.g., rater bias) in data
acquisition. Disease assessment methods should
provide accurate and precise information that sat-
isfies the goals and needs of the research (Nutter
and Gaunt, 1996). Campbell and Madden (1990)
have defined precision as the lack of variation in
disease estimates when the same sampling units are
evaluated by other raters. However, this definition
of precision excludes another potential source of
error, i.e., the repeatability of individual raters
(Nutter et al., 1993). Shokes et al. (1987) proposed
using a test-retest procedure using correlation
analysis to quantify rates repeatability; however,
this method provides a measure of precision
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(agreement) among raters and does not quantify
the degree of bias among raters.

Simple linear regression provides a powerful
method to quantify the degree of error (bias) due
to raters or assessment methods (Nutter et al.,
1993). Regression analysis has been used to
determine the relative precision of a visual assess-
ment method (disease severity) and a remote
sensing assessment method (reflectance at 600 nm)
in which a hand-held, multispectral radiometer
was employed (Nutter et al., 1993). The disease
assessed was dollar spot of bentgrass (caused by
Sclerotinia homoeocarpa). The precision of differ-
ent disease assessment methods and raters can be
evaluated and compared by operationally defining
intra-rater repeatability and inter-rater reliability
(Nutter and Schultz, 1995). Intra-rater repeat-
ability for different assessment methods can be
determined by regressing one set of measurements
(Y) (obtained by each rater) with a repeated set of
measurements (X) performed on the same set of
sampling units. The parameters and statistics used
to compare the intra-rater repeatability of different
assessment methods and/or raters are: slope,
intercept, coefficient of determination (R2), coeffi-
cient of variation (CV), and the standard error of
the estimate for Y (SEEy) (Nutter et al., 1993;
Nutter and Schultz, 1995). A slope significantly
less than or greater than 1.0 would indicate the
presence of systematic bias and the greater the
deviation from 1.0, the greater the systematic bias
for a specific rater and/or method. This is because
for each 1% increase in estimated disease severity
the first time a set of sampling units is assessed,
there should be a corresponding 1% increase in
estimated disease severity when the same set of
sampling units are assessed a second time by the
same rater or method (Nutter et al., 1993). An
intercept significantly different from zero indicates
the presence of another form of bias that is con-
stant for all disease levels evaluated. The use of R2,
CV, and SEEy values to quantify and compare the
precision of disease assessment methods or raters
has been previously described (Nutter et al., 1993;
Nutter and Schultz, 1995; Nutter, 2001). Likewise,
linear regression can be used to quantify precision
among raters or methods (inter-rater reliability) by
having two or more raters (and/or methods) assess
the same set of sampling units, and then evaluating
the slopes, intercepts, R2, CV, and SEEy values
(Nutter et al., 1993).

Disease assessment training with computer
programmes

The accuracy and precision of disease severity
assessments have come into question due to the
measurable bias that different raters have shown
when evaluating the same set of diseased sampling
units (Sherwood et al., 1983; Forbes and Jeger,
1987; Kranz, 1988; Nutter et al., 1993). Accuracy
can be defined as the measure of the closeness of a
disease assessment to the true value (Nutter et al.,
1991; Zadoks and Schein, 1979). When assessing
disease severity, the stimulus (X) is the actual dis-
ease severity of a sampling unit and the rater’s
estimate of disease severity (Y) is the response. For
each 1% increase in actual severity, we would ex-
pect a rater to also to estimate a 1% increase, i.e.,
the slope should be equal to 1.0 (no systematic
bias) and the intercept should not be significantly
different from zero (no constant bias present).
Accuracy cannot be properly evaluated unless the
researcher is confident that the actual (true) dis-
ease severity can be measured absolutely. This is
easily achieved using computer-generated images
of diseased leaves because the computer can be
programmed to calculate the number of non-green
(diseased) pixels in an image, divided by the total
number of pixels in the image� 100 to obtain a
true measure of percentage disease severity (Nutter
and Litwiller, 1998; Nutter et al., 2000). The use of
computer programmes to enhance learning has
become widely accepted for several reasons
(Nutter, 1997a). One advantage of computer-aided
disease assessment training is that a full range of
disease severity levels can be presented as stimuli
to which operators of the programme respond.
Nutter and Worawitlikit (1990) built upon the
computer-based disease assessment training con-
cept by developing a computer programme to as-
sess diseases of peanut called Disease.Pro.
Recognizing the tremendous potential to improve
the accuracy and precision of disease assessments
through computer-based training programmes,
Nutter and Litwiller (1998) later developed a more
generic disease assessment training programme
(Severity.Pro) that allowed the user to select from
a menu of leaf shapes (alfalfa, apple, barley,
cucumber, grape, tomato, etc.) and lesion types
(anthracnose, blotch, downy mildew, target spot,
powdery mildew, etc.) to mimic almost any foliar
pathosystem. Severity.Pro was recently rewritten
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in Java to be more compatible with present-day
operating systems.

The most current version of Severity.Pro all-
ows raters to: (i) choose whether or not they
want the actual severity to be immediately dis-
played (feedback), (ii) choose the number of
leaves to be assessed and the size of the lesions
that will appear on diseased leaf images (small,
medium, large, or random), (iii) view graphs of
the absolute error (Y) versus the actual severity
(X) (absolute error is defined as the estimated
severity minus the corresponding actual severity),
and (iv) regress the rater’s severity estimates (Y),
against the actual disease severities (X). These
changes allowed for a more powerful training
tool because: (i) raters can take a pre-test (with-
out feedback before training) to provide a base-
line of how different disease severity levels are
perceived, (ii) the data can be viewed in graphical
form and analyzed by regression, (iii) raters can
execute a drill and practice session and receive
feedback as to the actual level of disease severity
immediately after the estimated severity is keyed
in, (iv) rater improvement and, more importantly,
the degree of rater improvement can be
documented by having raters take a post-test
(without feedback after training) and then com-
pare pre- and post-test regression parameters and
statistics, and (v) the results of pre- and post-tests
can also be used to evaluate and compare rater
performance.

Computer-based disease assessment training
programmes provide a useful platform for teach-
ing disease assessment theory and hands-on prac-
tice. For example, the results of computer training
for six raters using Severity.Pro are shown in
Table 1. The six raters evaluated computer-gen-
erated images of grapevine leaves infected by
downy mildew by assessing 30 images before and
after training. In pre-tests, one rater (Rater 2)
generally overestimated downy mildew severity
throughout the range of the severities tested, with
rater error being as high as 21% (solid circles,
Figure 1a). Following training, Rater 2’s estimates
were within 5–10% of the actual severity levels
(open circles, Figure 1a). Figure 1b shows that this
rater also had a constant bias of 6.8% prior to
training (Y-intercept) and that this bias was
reduced to near zero ()0.14%) after computer-
based training using Severity.Pro. Based on R2

values, the precision of Rater 2 was also signifi-
cantly improved following training (R2 was 95%
following training compared with 85% prior to
training). As a group, five of the six raters dem-
onstrated improvement in precision following
computer training, as measured by improvement
in the coefficients of determination (R2) (Table 1).
Three of the raters had R2 values that were 6–11%
higher after training. The other three raters (rater
1, rater 4, and rater 6) were already highly precise
and their R2 values increased 2, 1, and 0%,
respectively.

Table 1. Y-interceptsa, slopesb, coefficients of determination (R2)c, and standard errors of the Y-estimate (SEEY)
d for six raters be-

fore training (pretest) and after training (posttest) using a computer programme that simulates downy mildew of grapevines (adap-

ted from Nutter, 2001)

Rater Pretest Posttest

Intercept Slope R2 SEEY Intercept Slope R2 SEEY

1 )7.19 1.11 0.94 2.74 )1.52 1.01 0.96 1.95

2e 6.83 1.02 0.85 3.80 )0.14 0.94 0.95 1.97

3 )6.30 0.91 0.91 2.83 7.21 0.83 0.97 1.41

4 1.89 1.06 0.91 2.97 0.61 0.82 0.92 2.25

5 )1.13 1.27 0.84 4.69 )8.46 1.05 0.94 2.61

6 1.77 1.01 0.97 1.62 )3.10 1.03 0.97 1.76

Improved 3/6 2/6 5/6 5/6

aY-intercepts that deviate from zero indicate the presence of a constant source of rater bias with regards to accuracy.
bSlopes that deviate from 1.0 indicate the presence of a systematic source of rater bias with regards to accuracy.
cThe higher the coefficient of determination (R2), the higher the precision of rater estimates.
dThe lower the standard error of the Y-estimate, the higher the precision of rater estimates.
eData for Rater 2 are shown in graphical form in Figure 1 as this data would appear in the disease assessment computerized training

programme Severity.Pro (Nutter and Litwiller, 1998).
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As stated earlier, the standard error of the
Y-estimate is another important measure of rater
precision. This statistic provides information con-
cerning the degree of error associated with a pre-
dicted value of Y. Therefore, the lower the SEEY,
the higher the precision (Nutter and Schultz,
1995). For five of the six raters, SEEY values
decreased following disease assessment training by
an average of 40% (3.41 to 2.04). Rater 6 showed
no significant change in pre-test versus post-test
SEEY values because this rater was already very
precise (i.e., rater 6 had very low SEEY values in
both pre- and post-training tests). Thus, comput-
erized disease assessment training programmes
provide an important educational tool that can be
used to teach disease assessment theory and
concepts, as well as to substantially improve both

the accuracy and the precision of disease assess-
ment data.

Use of standard area diagrams to improve the
accuracy and precision of disease severity
assessments

Disease assessment keys, also known as diagram-
matic keys or standard area diagrams are pictorial
diagrams that depict the true amount of injury
(usually disease severity) on individual sampling
units (quadrats, whole plants, leaves, fruit, tubers,
etc.). Disease severity of each individual diagram is
expressed as a percentage of the total surface area
of each sampling unit (disease area/total area of
the image� 100) (Nutter and Esker, 2001). Stan-
dard area diagrams (SADs) provide raters with a
series of reference images that are accepted to be
the truth in terms of the actual amount of injury
(severity) depicted on each disease diagram. Clive
James developed and marketed the first series of
black and white standard area diagrams (James,
1971). More recently, Nutter and Litwiller (1998)
developed and tested a computer programme
(Severity.Pro) that generates standard area dia-
grams in colour. Thus, Severity.Pro provides a
powerful tool to generate, capture and print dis-
eased leaf images with known severity levels in
colour (Nutter et al., 1998). This enables
researchers to create a series of pictorial colour
diagrams that can be used as an assessment aid to
improve the accuracy and precision of disease
assessment data. Although it has long been as-
sumed that the use of standard area-diagrammatic
keys will help to improve the accuracy and preci-
sion of visual disease severity assessments per-
formed by raters (James, 1971; Horsfall and
Cowling, 1978; Kranz, 1988), only recently have
definitive studies been conducted to demonstrate
that the accuracy and precision of disease assess-
ments are actually improved when standard area-
diagrammatic keys are used (Godoy et al., 1997;
Nutter et al., 1998; Leite and Amorim, 2002;
Gomes et al., 2004). As part of a class exercise for
students enrolled in a course in plant disease epi-
demiology at Iowa State University, 10 raters were
asked to assess 30 diseased leaf images (repre-
senting a range of disease severities) of downy
mildew of grape, both with and without the use of
colour-standard area diagrams (Nutter and
Litwiller, 1998). When individual rater estimates
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Figure 1. Improvement in the (a) absolute error (estimated

minus actual disease severity) and (b) accuracy (slope, inter-

cept) and precision (R2, SEEy) of Rater 2 (from Table 1),

before and after disease assessment using the computer
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were regressed against the true disease severity
levels as calculated by the computer programme, it
was found that rater estimates of disease severity
were much closer to the actual (true) severity levels
when raters used standard area diagrams as an
assessment aid to assess disease severity (Nutter
and Esker, 2001).

As an example, Figure 2 shows a typical situa-
tion regarding accuracy and precision of visual
assessments performed by one rater with, and
without, the use of standard area diagrams for
grapevine downy mildew. When using the stan-
dard area diagrams, this rater had greater accuracy
(less systematic and constant bias) as indicated by
a slope closer to 1.0 (1.05) and a Y-intercept closer
to zero ()0.28%) compared to the slope (0.86) and
intercept (5.34%) when not using the standard
area diagrams. Moreover, R2 values were higher

and SEEy values were lower when standard area
diagrams were used, indicating there was a signif-
icant increase in the precision of the assessment
data when using the standard area diagrams.

As a class, statistical analyses for accuracy
showed that eight of the ten raters achieved
intercepts closer to zero (less constant bias) and
that seven of the ten raters achieved slopes closer
to 1.0 (less systematic bias) when standard area
diagrams were used (Nutter and Schultz, 1995).
Statistical analyses for precision showed that seven
of the ten raters achieved higher coefficients of
determination (R2), and eight of the ten raters had
lower standard errors of the estimate for Y (SEEy)
when standard area-diagrammatic keys were used
as an assessment aid. Thus diagrammatic standard
area-assessment keys can substantially improve
both the accuracy and the precision of visual
disease assessments.

Summary and conclusions

The potential for rater bias (under- or over-esti-
mation of the actual level of disease severity) is an
ever-present concern that should receive serious
consideration by researchers when raters are
making visual disease assessments and will use that
information as the basis to develop stimulus–re-
sponse models, or to evaluate and compare disease
management tactics, strategies, or integrated dis-
ease management systems (Zadoks and Schein,
1979; Gaunt, 1995; Nutter, 1997b, 1999, 2001).
Rater bias, however, can be effectively reduced.
Disease assessment training programmes using
computer-generated images of disease leaves have
been shown to improve both accuracy and preci-
sion (Nutter and Schultz, 1995; Nutter and Parker,
1997; Nutter and Litwiller, 1998). Moreover,
studies by Godoy et al. (1997), Gomes et al. (2004),
Nutter (2001), and Nutter and Esker (2001) have
documented that the use of standard area diagrams
as an assessment aid for visually assessing disease
severity can also significantly improve the accuracy
and precision of disease severity assessment data.
The use of both computer-based disease assessment
training programmes and standard area diagrams
to improve the accuracy and precision of disease
assessment data are not mutually exclusive, as both
methods should be used to obtain the best disease
assessment data possible. Finally, the use of
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Figure 2. (a) Estimated severity of grapevine downy mildew

compared with actual (true) severity when assessing computer

images without the use of standard area diagrams and (b)

Estimated versus actual severity when using standard area

diagrams. Improvements were apparent as both systematic

and constant bias were reduced.
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regression to evaluate and compare the accuracy
and precision of: (i) colour disease assessment
protocols (e.g., use of a linear scale versus a loga-
rithmic disease assessment scale) (Nutter and Es-
ker, 2005), (ii) disease assessment instruments (e.g.,
image analysis or remote sensing sensors and
instruments) (Nutter, 1990; Guan and Nutter,
2004), and/or (iii) disease raters, can provide
researchers with statistical methods to determine
the accuracy and precision of disease assessment
data (Nutter et al., 1993; Nutter and Littrell, 1996;
Nutter, 1997a; Guan and Nutter, 2003). Thus,
researchers can and should place greater focus
upon evaluating, comparing, and selecting the best
disease assessment protocols, instruments, and/or
raters that best meet the goals of the research.
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Relation between soil health, wave-like fluctuations in microbial populations,
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Abstract

A healthy soil is often defined as a stable soil system with high levels of biological diversity and
activity, internal nutrient cycling, and resilience to disturbance. This implies that microbial fluctuations
after a disturbance would dampen more quickly in a healthy than in a chronically damaged and
biologically impoverished soil. Soil could be disturbed by various processes, for example addition of a
nutrient source, tillage, or drying-rewetting. As a result of any disturbance, the numbers of hetero-
trophic bacteria and of individual species start to oscillate, both in time and space. The oscillations
appear as moving waves along the path of a moving nutrient source such as a root tip. The phase
and period for different trophic groups and species of bacteria may be shifted indicating that suc-
cession occurs. DGGE, Biolog and FAME analysis of subsequent populations in oscillation have
confirmed that there is a cyclic succession in microbial communities. Microbial diversity oscillates in
opposite direction from oscillations in microbial populations. In a healthy soil, the amplitudes of these
oscillations will be small, but the background levels of microbial diversity and activity are high, so
that soil-borne diseases will face more competitors and antagonists. However, soil-borne pathogens
and antagonists alike will fluctuate in time and space as a result of growing plant roots and other
disturbances, and the periods and phases of the oscillations may vary. As a consequence, biological
control by members of a single trophic group or species may never be complete, as pathogens will
encounter varying populations of the biocontrol agent on the root surface. A mixture of different
trophic groups may provide more complete biological control because peaks of different trophic
groups occur at subsequent locations along a root. Alternatively, regular addition of soil organic
matter may increase background levels of microbial activity, increase nutrient cycling, lower the
concentrations of easily available nutrient sources, increase microbial diversity, and enhance natural
disease suppression.

Abbreviations: BCA – biocontrol agent; CFUs – colony forming units; DGGE – denaturing gradient gel
electrophoresis; FAME – fatty acid methyl esters; GFP – green fluorescent protein

Introduction

Health is a necessary condition for the survival of
individual living organisms, communities, ecosystems,
and for nature in general. Ecologists have long

recognized that the state of health of terrestrial,
edaphic and aquatic ecosystems is important.
However, it is not so easy to define, let alone
measure, ecosystem health. This is also true for
soil, which is considered as a living system, where
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many physical and chemical properties are medi-
ated by biota, which are primarily responsible for
its health (Brussaard et al., 2004). The living
components of a soil possess both stable and
dynamic characteristics. Recently, we proposed to
use the resistance and resilience of microbial
communities in response to a disturbance as
quantitative indicators for soil health (van
Bruggen and Semenov, 1999, 2000).

Soil as a productive system was developed and
continues to develop jointly with plants that
inhabit the soil. The condition of the soil, includ-
ing its microbial community, reflects the condition
of the (past) vegetation. In agricultural ecosys-
tems, especially in conventional farming systems,
most natural plants are considered weeds.
Decreasing the vegetation diversity leads to
pauperization of soil inhabitants, decreasing of
interconnectedness and functional interchange-
ability. An extremely simplified vegetation, such as
a monoculture, selects a specific microbial com-
munity, including plant pathogenic microorgan-
isms and sometimes also their parasites or
antagonists. However, such a simplified ecosystem
may be very sensitive to the slightest disturbance
and cannot be considered healthy.

High quality soil is the main production
resource for many societies. However, this re-
source is disappearing at an alarming rate due to
loss of organic matter as a result of erosion, oxi-
dation, compaction, and biological impoverish-
ment. In particular, agricultural systems with
minimal biological diversity and large inputs of
synthetic fertilizers and pesticides have problems
with poor soil health and associated plant diseases.
Action must be taken urgently to restore the bal-
ance of the soil ecosystem and its health status.

In this review we present a dynamic view of
microbial populations, soil health, and disease
suppression. In the following paragraph an intro-
duction is given on soil health and its connection
to disease suppression. The next two paragraphs
deal with temporal and spatial oscillatory responses
of bacterial communities to various disturbances.
Then, we demonstrate that soil-borne pathogens
respond with similar oscillations to a disturbance
from a growing root. Next, agricultural manage-
ment practices to control soil-borne diseases, like
the use of organic amendments, tillage and bio-
control agents, will be discussed from the point of
view of dynamic microbial oscillations. Finally,

conclusions will be presented regarding soil health,
microbial oscillations and soil-borne diseases.

Soil health and disease suppression

Rapport (1995) defined a healthy ecosystem as an
ecosystem with the following characteristics: (1)
integrity of nutrient cycles and energy flows, (2)
biological diversity, (3) interconnectedness
between functional units, (4) stability and resil-
ience when faced with a disturbance or stress, and
(5) limited plant and animal disease outbreaks. A
soil ecosystem is considered healthy if it has a good
balance of mineral and organic substances and
living components. Such a balance is reached when
an ecosystem comes to a climax condition, char-
acterized by high biodiversity and low concentra-
tions of easily available organic and inorganic
nutrients (van Bruggen and Semenov, 1999, 2000).
To maintain soil health, it is necessary to promote
high primary productivity, high microbial bio-
mass, activity and diversity, high nutrient turnover
rates, and low residual nutrient pools; in other
words, oligotrophic conditions. In particular, los-
ses of mineral nitrogen and dissolved organic
carbon from soil and soil biological complexity
have been used to assess the functioning of soil
ecosystems (Liiri et al., 2002).

Soils of natural ecosystems are generally
thought of as being healthier than those of agro-
ecosystems. Indeed, cultivated soils generally have
lower microbial diversities and more severe disease
problems than they had as a natural habitat (Ko,
1982; Buckley and Schmidt, 2001). Organically
managed soils, where synthetic fertilizers and
pesticides are not used, are closer to natural soils
than conventionally managed soils even though
soil fertility is maintained by regular additions of
organic materials (van Bruggen, 1995; van
Bruggen and Termorshuizen, 2003). Especially
chlorinated pesticides have had negative impacts
on microbial diversity (Mas et al., 1996). Although
some authors found no differences in soil micro-
bial diversity between organically and conven-
tionally managed soils (Lawlor et al., 2000;
Franke-Snyder et al., 2001), most researchers
reported a higher biological diversity for organi-
cally than for conventionally managed soils with
respect to various taxa, namely bacteria (Sivapalan
et al., 1993; Drinkwater et al., 1995; Mäder et al.,
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2002; van Diepeningen et al., 2005), arbuscular
mycorrhizal fungi (Ryan et al., 1994; Oehl et al.,
2003), nematodes (Mulder et al., 2003; van Die-
peningen et al., 2005), earthworms (Mäder et al.,
2002), and arthropods (Drinkwater et al., 1995;
Mäder et al., 2002). Also, a higher microbial
activity (Workneh et al., 1993; Mäder et al., 2002)
and microbial biomass (Workneh and van Brug-
gen, 1994; Mäder et al., 2002; Mulder et al., 2003)
were found in organically managed soils.

High microbial biomass, activity, and diversity
in natural or agricultural soils have been associ-
ated with suppression of soil-borne plant diseases
(Nitta, 1991; Workneh and van Bruggen, 1994;
Mäder et al., 2002). This kind of suppression
may be due to general competition or antago-
nism, which may be non-specific and active
against a wide range of soil-borne pathogens
(Gerlagh, 1968; Whipps, 1997). However, in a
few cases, no relationships were found between
microbial biomass, activity or diversity and dis-
ease suppression. Boehm et al. (1993, 1997)
found that the level of Pythium root rot sup-
pression in peat mixes was not related to
microbial biomass, activity or diversity but to the
composition of the rhizosphere bacterial popu-
lation. The seemingly unpredictability of disease
suppression in relation to microbial community
parameters may be due to a greater specificity of
the relationship between pathogen and antago-
nist than sometimes thought, due to influences of
varying soil physical and chemical characteristics
(Hoper and Alabouvette, 1996), or due to vari-
ation in soil microbial communities in time and
space (van Bruggen and Semenov, 2000).

Soil microbial populations generally fluctuate,
and start to oscillate regularly in response to a
disturbance, such as addition of organic material to
soil (van Bruggen and Semenov, 2000). The
amplitude of the waves in microbial populations (a
measure of stability of the soil ecosystem), their
frequency, and the time needed to return to initial
conditions before organic amendment (a measure
of the resilience of the system) may be used as
indicators for soil health (van Bruggen and Seme-
nov, 1999, 2000). The strongest wave-like response
of microbial communities occurs in soils low in
organic matter (Semenov et al., 1999). In high-or-
ganic matter soils with higher microbial biomass
and activity, wave-like responses are also notice-
able but the amplitudes and periods of these waves

are less pronounced (Semenov et al., 1999). Sta-
bility and resilience of microbial communities after
exposure to a disturbance could possibly also be
related to disease suppression (van Bruggen and
Semenov, 1999, 2000). Indeed, soils with a higher
biological diversity and activity, such as natural or
organically managed agricultural soils are fre-
quently more suppressive to soil-borne diseases
than conventionally managed agricultural soils
(van Bruggen, 1995; van Bruggen and Termorshuizen,
2003).

Temporal wave-like fluctuations of microbial

populations

Fluctuations in soil microbial populations have
been observed many times, both in laboratory
experiments and in the field with native bacterial
communities (Aristovskaya, 1980; Zvyagintsev
and Golimbet, 1983; Semenov, 2001). Under nat-
ural conditions, microbial fluctuations in soil
appear irregular, and generally do not correlate
with variations in external environmental charac-
teristics, such as temperature and moisture content
of the soil.

Irregular fluctuations can turn into regular
oscillations with distinct waves after a disturbance
such as addition of fresh organic matter to soil
(Doebeli and Ruxton, 1997, 1998; Clarholm, 1981).
Soil is generally low in easily available nutrients,
especially fallow arable soil. Any disturbance pro-
viding a nutrient impulse under these conditions,
such as incorporation of fresh organic matter or
rewetting after drying, is likely to initiate a wave-
like response of the microbial community (van
Bruggen and Semenov, 1999; Caldéron et al.,
2000). Hints of wave-like fluctuations were ob-
tained in a field experiment after incorporation of
cover crop debris into soil (van Bruggen and
Semenov, 2000), but the observations were too
sparse for time series or harmonical analysis
(Shumway, 1988) to prove that regular oscillations
occurred.

Only recently, we demonstrated the occurrence
of regular oscillations over time using appropriate
statistical techniques (Zelenev et al., 2004). Tem-
poral oscillations of microbial populations (CFUs
and microscopic cell counts) were observed for one
month in soil amended with fresh plant material
(grass–clover) incubated at constant temperature
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and moisture. Bacterial populations fluctuated
with different periods and amplitudes, depending
on the specific conditions of each experiment, but
immediately after the disturbance they revealed
remarkable oscillations with large amplitudes. The
patterns of the oscillations were quite predictable,
always with a small and large peak within one
week after incorporation of a grass–clover mixture
in soil (Zelenev et al., 2004).

Various mechanisms underlying oscillations in
microbial populations could be envisaged. Ecolo-
gists would first of all think of predator–prey
interactions. Total bacterial-feeding nematodes did
not oscillate, but increased monotonously in the
second week after grass–clover incorporation into
the soil (Zelenev et al., 2004).Daily changes in active
numbers of bacterial-feeding nematodes did oscil-
late with a frequency similar to that of bacterial
oscillations due to intermittent activation of the
dormant juveniles (Dauerlarvae). However, the re-
sponse of bacterial-feeding nematodes was still too
slow to explain the decline after the first peak in
bacterial populations within two days after the
incorporation of grass–clover material (Zelenev
et al., 2004). Similarly, protozoa were likely to be
too slow to be responsible for the first decline in
bacterial populations, suggesting that bacteria ini-
tiate the oscillations, and that their predators follow
suit (Zelenev et al., 2004). During the experiments
with grass–clover amended soil, various chemical
and physical parameters were measured, such as
ammonium and nitrate concentrations, pH, and
redoxpotential.Noneof these parameters oscillated
over time (Zelenev et al., 2004). In a simulation
model, bacterial populations started to oscillate due
to a temporary shortage of easily available substrate
(Zelenev, 2004). Indeed, substrate availability is a
plausible explanation for initiation of the oscilla-
tions. Yet, local oxygen deprivation after intensive
bacterial growth has not been excluded but remains
as a potential mechanism underlying the initiation
of bacterial oscillations.

Another aspect of the mechanisms underlying
bacterial oscillations is whether all taxa oscillate
simultaneously, or if each peak represents a dif-
ferent microbial community corresponding with
different organic components that are decom-
posed subsequently, or if there are repetitive
successions within each peak. This question was
addressed in another time-series experiment with
and without grass–clover incorporated into a

sandy soil. The response of copiotrophic bacterial
CFUs (de Vos and van Bruggen, 2001; Zelenev et
al., 2005) to the disturbance was determined daily
over a period of nine days, both for the grass–
clover (GC) and the non-amended control series
(CO). Copiotrophic bacteria are fast-growing
bacteria, with a relatively low substrate affinity
and high half saturation constant. Copiotrophic
CFUs oscillated over time in a wave-like fashion
after amendment of the soil, whereas in the non-
amended soil the CFUs fluctuated only very
slightly (Figure 1). Microbial communities were
characterized daily by determining DGGE pro-
files using eubacterial primers, FAME composi-
tion, and physiological profiles (Biolog, Hayward,
CA, USA) on mixtures of copiotrophic colonies
removed from agar plates (de Vos and van
Bruggen, 2001). The patterns of DGGE bands
(Figure 2), fatty acid composition and Biolog
profiles indicated a succession in taxonomic and
functional groups over time. Discriminant analy-
sis of the DGGE band intensities, percentages of
individual fatty acids, and intensities of physio-
logical reactions on Biolog plates (Figure 3)
showed that there were repetitive cycles in the
succession of bacteria over time: communities at
times when CFUs increased were more similar to
each other than to those when CFUs decreased
and vice-versa (de Vos and van Bruggen, 2001).

In an attempt to relate amplitudes and periods of
the oscillations (representing stability and resilience
of the soil ecosystem) to soil health, grass–clover
mixtures were added to c-irradiated and non-irra-
diated soils, a filtered (0.8 lm) soil suspension was
added to the irradiated soil, and microbial popu-
lations were enumerated daily. In the c-irradiated
soil the amplitudes and periods of the wave-like
fluctuations in microbial communities in response
to the disturbance by grass–clover were larger than
those in the non-irradiated soil, supporting the
notion that non-irradiated soil is healthier (Zelenev
et al., 2004). The amplitudes of microbial popula-
tions were also generally higher in conventionally
than in organically managed soils (unpublished
results) and higher in a fallow soil than in a cover-
cropped soil after addition of the same amount of
cover crop plant material (van Bruggen and
Semenov, 2000). Thus, the amplitude and period of
microbial oscillations after a disturbance may in-
deed be good indicators for soil health (van Brug-
gen and Semenov, 2000; Orwin and Wardle, 2004).
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Soil health is also frequently associated with
limited disease outbreaks (Rapport, 1995; van
Bruggen and Semenov, 2000), and indeed, root
disease suppression is generally greater in non-
irradiated than in c-irradiated soil (Workneh and
van Bruggen, 1994), in natural than in agricultural
soil (Ko, 1982), and in organic than in conventional
agricultural soil (van Bruggen, 1995; van Bruggen
and Termorshuizen, 2003). This leads to the fol-
lowing questions: do plant pathogens also fluctuate
in soil after a disturbance, and are the amplitudes
greater in less healthy soils? Incorporation of

vetch/oats cover crop debris in fallowed versus
cover-cropped soil resulted in temporal fluctuations
in copiotrophic bacterial CFUs over the next five
weeks (van Bruggen and Semenov, 1999, 2000), and
in similar fluctuations in damping-off incidence of
tomato seedlings (caused by naturally occurring
Pythium ultimum and Pythium aphanidermatum) in
soil samples taken daily from the same experiment
(Figure 4). The oscillations showed similar periods
but were shifted in time: disease incidence increased
when copiotrophic – and possibly antagonistic -
populations decreased. It would be interesting to
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Figure 1. Wavelike fluctuations in numbers of copiotrophic bacteria isolated from sandy soil zero to nine days after incorporation

of a grass–clover (GC) mixture and the relative stable numbers in the non-amended control soil.

Figure 2. DGGE patterns of PCR products derived from DNA from copiotrophic bacterial colonies. The numbers represent the

number of days after the incorporation of a grass/clover mixture in soil (GC) and in a non-amended control soil (CO). M repre-

sents a set of eubacterial marker strains. The urea/formamide denaturing gradient was between 40% and 48%. Note that the bac-

terial composition of CO does not change in time, while the composition of GC changes over time, the composition being similar

after 0, 5 and 9 days and different on the other days.
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investigate if the decline in bacterial CFUs and the
increase in Pythium infections were associated with
a decrease in oxygen availability.

Spatial wave-like fluctuations of microbial

populations in the rhizosphere

Distribution patterns of microbial populations
within root systems have been investigated

extensively (Schippers and van Vuurde, 1978; van
Vuurde and Schippers, 1980; Scott et al., 1995;
Kim et al., 1997; Semenov et al., 1999). High
microbial densities have generally been observed
close to the root tip and in middle and upper
sections of the roots, and patterns in microbial
density along roots have been thought to be a di-
rect reflection of patterns of exudation and
sloughing off of cortex cells (Rovira, 1973; Schip-
pers and van Vuurde 1978; van Vuurde and
Schippers, 1980; McCully and Canny, 1985). This
is a rather static viewpoint in which growth and
death of microbial populations is not explicitly
considered. After a series of experiments on the
distribution of microbial populations along roots,
we arrived at a very different and dynamic concept
of microbial community development in the rhi-
zosphere, namely that bacterial communities re-
spond to the influx of nutrients from a root tip
with growth and death cycles at any location
where the root tip passes, resulting in wave-like
patterns along each root (Semenov et al., 1999;
van Bruggen et al., 2000; Zelenev et al., 2000).

In the above-mentioned experiments, wheat
plants (Triticum aestivum L.) were grown in 60 or
90 cm long root observation boxes with soil high
or low in fresh organic matter. After two, three,
and five weeks, 2 cm root sections were cut at 4 cm
intervals. Copiotrophic and oligotrophic bacteria
were isolated from the rhizosphere and corre-
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Figure 4. The CFUs of copiotrophic bacteria and the percentage damping-off of tomato seedlings caused by Pythium ultimum and
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sponding bulk soil on carbon-rich and carbon-
poor media, respectively (Semenov et al., 1999).
For the first time, wave-like distributions of bac-
terial populations were demonstrated along plant
roots using harmonics analysis (Semenov et al.,
1999). Peaks in oligotrophic populations were
slightly shifted upwards on the root compared to
those of copiotrophic populations, indicative of
the possibility that oligotrophs would follow
copiotrophs in a succession starting from the tip.
There were no (cross) correlations of either bac-
terial group with number of mature lateral roots
per section, or with concentrations of soluble total
organic carbon (TOC) in the rhizosphere
(Semenov et al., 1999). The oscillations shifted
from week to week, and were justifiably called
‘moving waves’.

To ascertain that the spatial pattern in microbial
populations was not related to lateral root for-
mation, we did an experiment with an artificial
nutrient source moving through soil. A tube,
through which a solution with sugars and amino
acids was pumped, was pulled at a speed of 1 or
4 cm per day through a dialysis sleeve buried in
soil. This experimental setup gave the expected
wave-like patterns in bacterial populations along
the path of the moving nutrient source similar to
the patterns in real rhizospheres along wheat roots
(van Bruggen et al., 2000). Oscillations in space
were transformed to oscillations in time, taking the
moving rate of the tube into account. This resulted
in oscillations with similar periods, regardless of
the moving rate of the tube, indicating that the
periods are dictated by growth and death rates of
the bacteria, not by the growth rate of a root.

These experiments led to the so-called moving-
wave hypothesis for bacterial populations in the
rhizosphere: ‘Waves originate from bacterial
growth on nutrients from the root tip, followed by
death when nutrients become exhausted and re-
growth from recycled carbon sources plus sub-
strate from soil organic matter’. This hypothesis
was visualized by means of the results of a simu-
lation model (Zelenev et al., 2000). We envisage
the following scenario. As the root tip moves into
bulk soil, releasing nutrients, dormant bacteria
(and probably fungi) are activated, grow, and then
die as nutrients become exhausted; dead bacteria
lyse and a new generation grows on recycled
nutrients (plus additional substrate from soil and
roots). Thus, there are growth and death cycles at

any point where the nutrient source passes result-
ing in waves in space (Figure 5).

Not only total bacterial communities, but also
individual bacterial strains exhibit wave-like fluc-
tuations along roots. The biocontrol agent Pseu-
domonas fluorescens 32-gfp, marked with the green
fluorescent protein gene, was added to soil samples
from neighbouring conventional and organic farms
at Heelsum, the Netherlands, and re-isolated from
the rhizosphere along the total length of wheat
roots after three weeks of growth. Both CFUs on
selective media and fluorescent microscopic counts
oscillated significantly and similarly along the
length of the roots (Semenov et al., 2004). The
oscillations had a much greater amplitude and
period in the conventionally than in the organically
managed soil (Figure 6). In the last soil, P. fluo-
rescens 32-gfp populations were zero towards the
root tip. The reason was the lower survival of P.
fluorescens 32-gfp in the organically than in the
conventionally managed soil, presumably due to
more intense competition in the organic soil.
Apparently, when root tips reached a depth of 10–
35 cm below soil level, the majority of the intro-
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duced cells had died, so that no cells or CFUs were
detected in this region at the time of sampling.

Furthermore, we investigated if the bacterial
communities fluctuated as a whole along the
wheat root or whether there is a succession in
bacterial composition from peak to peak or
within peaks (van Diepeningen, pers. comm.).
Therefore, rhizosphere microbial communities
along roots of wheat were studied in detail (20–25
rhizosphere and bulk soil samples along the total
root length) by colony enumeration and DGGE
analysis of extracted DNA in the same organic
and conventional soils used for the experiments
with P. fluorescens 32-gfp. Similar to our previous
findings, the numbers of copiotrophic and oligo-
trophic bacteria oscillated with significant har-
monics along each root, independent of soil
moisture or lateral roots. The oscillations and
rhizosphere effects were more pronounced in the
conventionally managed soil. For amplified eu-
bacterial 16S rDNA fragments from DGGE
analysis three different groups could be distin-
guished: those fluctuating in intensity in phase
with CFU oscillations (19.2% of the total num-
ber of bands, representing 37.4% of the total
band intensity); those fluctuating in intensity in

opposite phase with CFU oscillations (26% of
the total number of bands, representing only
25.0% of the total band intensity), and remaining
bands whose intensity showed no relationship
with CFU oscillations or that were restricted to
certain root zones (54.8% of the total number of
bands, representing only 37.5% of the total band
intensity). Discriminant analysis of the bacterial
populations in root sections with increasing and
decreasing phases in the oscillations showed that
the community compositions of waxing popula-
tions are more similar to each other than to those
of waning populations, especially in convention-
ally managed soil (Figure 7). Again the succes-
sion appeared to be cyclic, in space as well as
over time.

Two measures of bacterial biodiversity in soil,
species richness S and the Shannon index H, were
calculated based on the DGGE data. Both
biodiversity measures oscillated with significant
harmonics along the root in opposite phase to
total bacterial CFUs. The bacterial diversity along
the root was negatively correlated with the num-
bers of oligotrophic and copiotrophic bacterial
CFUs in the conventional soil and with oligo-
trophic bacterial CFUs in the organic soil
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organic soil. The amplitudes of P. fluorescens in the organic soil were lower than in the conventional soil and P. fluorescens could

not be detected any more around the organic root tip, probably due to a reduced survival in the organic soil compared to the con-

ventional soil.
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(Table 1). This indicates that a limited number of
fast growing taxa were growing and dying over
time and in space.

Besides fluctuations in the vertical direction
along the root, running waves of bacterial popu-
lations have also been observed in the horizontal
direction away from the root surface. Kozhevin
(1989) observed fluctuations in cells of introduced
Bradyrhizobium japonicum 1021 perpendicular to
the length of soybean roots (Glycine max) at a
microscopic scale (up to 1 mm from the root sur-
face), using immunofluorescence. The pattern of
the oscillations shifted over time, and these

spatial–temporal distributions were described as
‘running waves’ of bacteria literally moving
towards the root surface (Kozhevin, 1989). In
seawater, chemotactic bacteria were shown to oc-
cur in concentric spheres with alternating higher
and lower bacterial densities around point sources
of diffusing nutrients, forming wave-like patterns
both in space and over time at scales of a few lm
and seconds. These patterns were attributed to the
combined effects of molecular diffusion of the
attractant, congregation and subsequent dispersal
of the motile bacteria (Blackburn et al., 1998), and
were simulated by nonlinear diffusion-reaction
models. The running waves observed by Kozhevin
(1989) may also be the result of diffusion-reaction
mechanisms.

As mentioned by Kozhevin (1989), there must be
a connection between bacterial oscillations in space
and time. Indeed, we demonstrated that spatial
wave-like fluctuations of microbial populations
along the path of a moving nutrient source could be
transformed to spatial moving waves by taking the
rate of root growth into account (van Bruggen
et al., 2000). The connection between spatial and
temporal oscillations was used to create a simula-
tion model to describe and predict microbial
dynamics in the rhizosphere (Zelenev et al., 2000).
This model could also be used to predict the dis-
tribution of infections by pathogens in a root sys-
tem, since infection could possibly take place more
easily when microbial abundance and activity
decline, at the waning phases of microbial waves.
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Figure 7. Discriminant analysis of populations in the increasing and decreasing parts of the wave-like oscillations in the rhizo-

sphere of wheat, in an organic and conventional sandy soil. Soil samples originated from neighbouring organic and conventional

farms. The conventional soil had a higher available N and K content and a higher pH than the organic soil. Organic C contents

were similar.

Table 1. Cross-correlation coefficients (CCF) between oligo-

trophic and copiotrophic bacterial CFUs at various depths in

the rhizosphere of wheat grown in conventional and organic

soil, and band intensity in DGGE gels of amplified 16S

rDNA fragments from DNA isolated from corresponding rhi-

zophere samples

CCF laga

Conventional soil Oligotrophic CFUs )0.552b 2

Copiotrophic CFUs )0.635 2

Organic soil Oligotrophic CFUs )0.466 )1
Copiotrophic CFUs n.s.c

Soil samples originated from neighbouring organic and con-

ventional farms. The conventional soil had a higher available N

and K content and a higher pH than the organic soil. Organic C

contents were similar.
aOne lag corresponds to 1.5 cm.
bSignificant at P=0.05.
cNot significant.
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Wave-like fluctuations of plant pathogens

in the rhizosphere

The occurrence of microbial growth and death
cycles at any point along a root could have
important consequences for infection by plant
pathogens. Infections by plant pathogenic fungi
are rarely uniformly distributed in the root sys-
tem. Some fungi preferentially infect in the
vicinity of the root tip, while others infect pri-
marily older sections of the roots. Given that
there are wave-like patterns of saprotrophic
microbial populations in space and time in the
rhizosphere along roots, and that pathogens often
have a saprotrophic phase before infecting a host,
it is likely that there are also wave-like patterns in
root infections. Indeed, when sclerotia of Rhi-
zoctonia solani were placed uniformly along the
total length of wheat roots growing in root
observation boxes, the proportions of root sec-
tions (of eight roots) from which R. solani were
isolated showed wave-like fluctuations when
detrended data were plotted versus distance from
the root tip (van Bruggen et al., 2002). Similarly,
the proportions of root sections from which
naturally occurring Pythium ultimum was isolated
were distributed in a wave-like fashion along the
root (Figure 8). The first peak in Pythium infec-
tions was closer to the root tip than that of R.
solani (van Bruggen et al., 2002). In the same
experiments, copiotrophic bacteria were enumer-
ated at the time of inoculation with R. solani, one

week before isolation of the pathogens from root
sections. For comparison of peaks in infection
with those in bacterial populations, the bacterial
curves were shifted 14 cm to the right since the
root tip moved down 2 cm day)1 during the week
since the bacterial populations had been assessed.
Both pathogens oscillated in a different phase
relative to the bacterial oscillations. There were
negative correlations between densities of copio-
trophic bacteria and R. solani infections at 0 cm
lag, while there were positive correlations between
copiotrophic bacteria and Pythium infections at a
lag of 6 cm (Figure 8). Infection by R. solani was
probably inhibited when large bacterial popula-
tions were encountered on the root surface at the
time of inoculation. It is not known when P. ul-
timum infection took place, but possibly a few
days after passing of the root tip, when the first
wave of copiotrophic bacteria was already
declining. This shift in Pythium infection relative
to the first peak in copiotrophic bacteria after
passing of the root tip is similar to the shift in the
Pythium damping-off peak relative to the first
peak in bacterial CFUs after grass–clover incor-
poration in soil, as discussed in a previous section
of this paper.

In addition to the oscillations in root infections
along the length of a root, there is the probability
of root infection by plant pathogens located at
increasing distances from the root surface that
can fluctuate in space. The probability of infec-
tion generally declines with perpendicular
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distance of propagules from the root, but the
decline is generally not monotonous (Mol and
van Riessen, 1995; Gilligan and Bailey, 1997).
Gilligan and Bailey (1997) placed propagules of
R. solani at 1–4 mm intervals for a maximum
distance of 15 mm horizontally from the host
(radish seed) and calculated probability of infec-
tion with distance from the host. Close to the
host, there was frequently a small peak in the
probability of infection, followed by a decline in
this probability with distance from the host. After
detrending and estimating some missing data by
linear interpolation, we re-analyzed their data
with harmonics analysis. Most of the data pre-
sented by Gilligan and Bailey (1997) actually
declined in a wave-like fashion with distance from
the host (Figure 9). Harmonics analysis showed
that there were significant waves in the horizontal
direction, similar to the waves found for B. ja-
ponicum by Kozhevin (1989). Similarly, the data
of Mol and van Riessen (1995) on the probability
of infection by Verticillium dahliae seemed to
decrease in a wave-like fashion with increasing
distance from the root surface of various crop
species and potato cultivars; unfortunately, the
published data were not suitable for harmonics
analysis.

The realization that wave-like patterns of sap-
rotrophic and pathogenic microorganisms occur
both in the horizontal and vertical direction in the
rhizosphere, led to a new view of root infection in
relation to microbial population dynamics. Al-
though not demonstrated, it is likely that wave-like
distribution patterns of the microbial community
are generated along any roots, including lateral
roots, initiated from the growing root tips.

Exudation from root tips leads to creation of
waves both in the vertical direction (macro-waves
along the root) and in the horizontal direction
(micro-waves perpendicular to the root).

The reasons for fluctuating probabilities of
infection with distance of propagules from the root
are not clear. If propagules of a pathogen are
randomly or regularly distributed in space and a
root passes releasing exudates, then hyphae grow-
ing towards the roots arrive at different distances
from the tip depending on their original distance
from the host. Upon arrival at the root surface they
encounter more or less bacteria, depending on the
phase of bacterial waves, so that they have a lower
or higher chance of infecting the host. This would
result in fluctuating probabilities of infection with
distance from the root, and waves of infection
along the length of the root.

Alternatively, if there are waves of nutrients
moving into the rhizosphere as a result of waves in
substrate utilization and release at the root surface
or due to a day–night rhythm in exudation, the
probability of infection may also fluctuate. If
zoospores, for example, are pulled three steps for-
ward and one backward as the waves pass, syn-
chronization of zoospores would take place, so that
they arrive in waves at the root surface just behind
the root tip. These horizontal dynamics of patho-
gens would result in waves of infection along the
root as the root tip moves on (provided that the
root tip does not die from Pythium infection).
Thus, the occurrence of microbial growth and
death cycles at any point along a root does indeed
seem to have important consequences for infection
by plant pathogens along the root.

Management of soil-borne disease taking microbial

oscillations into account

Based on the premise that microbial communities
in healthy soils have strong resistance and resilience
against disturbances and suppress disease out-
breaks (Rapport, 1995), we would need to manage
microbial communities so that the amplitudes of
the oscillations (resistance) and the time to return
to quasi-stationary conditions (resilience) are
minimized. To accomplish this, we would need to
enhance the biological buffering capacity of a soil
by enhancing the background level of microbial
activity and food web complexity, for example by
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regular additions of relatively stable organic matter
to soil. On the other hand, we may want to stim-
ulate a specific part of the microbial community to
antagonize certain plant pathogens by applying
appropriate external disturbances to stimulate
oscillations and succession, for example by tillage.
In this paragraph, we will only discuss those
management strategies that influence short-term
oscillations of microbial populations, and sapro-
trophic growth and infection by plant pathogens.
Management practices that affect long-term pop-
ulation dynamics of microbial communities, such
as crop rotation, will not be discussed here.

Organic matter management

Soil organic matter has generally not been man-
aged explicitly by conventional farmers. Addition
of synthetic fertilizers over many years has resulted
in loss of organic matter by stimulating decompo-
sition of native soil organic matter and enhancing
microbial respiration. Combined with the negative
effects of synthetic pesticides on components of the
microbial communities and associated food webs,
conventionally managed soils are generally bio-
logically impoverished. Any addition of substrate
for microbial growth such as crop residues, dead
organisms after tillage, or root exudates, will result
in large oscillations in microbial populations,
including fast-growing plant pathogens with sap-
rotrophic abilities such as Pythium spp. (van
Bruggen and Semenov, 2000).

Large pools of mineral nitrogen in soil may even
exacerbate the fluctuations. Soil and plant nitro-
gen concentrations can have a profound effect on
both ecosystem health and disease severity: high
levels of nitrogen in the soil, particularly in the
form of nitrate, may enhance several fungal dis-
eases (Workneh et al., 1993; van Bruggen, 1995;
Tamis and van den Brink, 1998, 1999; Clark et al.,
1999).

Several things can be done to restore the bio-
logical buffering capacity and enhance internal
nutrient cycling in soil. Regular addition of fairly
stable organic matter, including solid animal
manure, composts of plant and animal origin, and
lignified roots of deep-rooted plants such as alfalfa,
rye or grass–clover would enhance microbial bio-
mass, activity, and diversity, and food web com-
plexity in soil (Sivapalan et al., 1993; Ryan et al.,

1994; Workneh and van Bruggen 1994; Mäder
et al., 2002; Schjønning et al., 2002; van Diepen-
ingen et al., 2005). It would also enhance suppres-
sion of many soil-borne pathogens (van Bruggen,
1995; van Bruggen and Termorshuizen, 2003). For
example, densities of Phytophthora and Pythium
propagules in soil were lower and those of the
antagonist Trichoderma higher in soils amended
with various organic materials (composted cotton-
gin trash, composted yard waste, or cattle manure)
than with synthetic fertilizer (Bulluck et al., 2002).
Wave-like responses of these pathogens to intro-
duction of the organic materials were not investi-
gated.

Considering the reaction to a disturbance by
incorporation of a winter cover crop or weeds into
soil, sowing of a subsequent crop needs to be timed
so that the inoculum of a facultative saprotrophic
pathogen is not at its peak at that time. The
quality of the organic matter in terms of easily
available substrate and the C:N ratio, and the
activity of the microbial community will determine
if facultative saprotrophic pathogens can multiply
in this material. Pathogens such as Pythium and
Rhizoctonia species multiply easily in fresh sub-
strate, and may cause serious damping-off prob-
lems when a crop is sown within three to four
weeks after incorporation of fresh plant material
(van Bruggen and Semenov, 2000). For example,
when a mixture of vetch and oats was incorpo-
rated in soil that had been fallow or had been
cover-cropped, damping-off of tomatoes by
Pythium species was most severe seven days after
incorporation of the plant material, and five days
after the first peak in copiotrophic bacteria
(Figure 4). The peaks in bacterial CFUs and
damping-off incidence were higher in the previ-
ously fallowed soil than in the cover-cropped soil,
indicating that the cover-cropped soil was more
stable (van Bruggen and Semenov 1999, 2000). In
another study where a vetch–oats cover crop was
incorporated in organically and conventionally
managed soils, in vitro growth of P. aphanidermatum
peaked after 7–10 days while that of R. solani
peaked after 21–35 days (Grünwald et al., 1997,
2000). Microbial measurements were generally
lower and in vitro growth of the pathogens higher
in the conventionally compared to the organically
managed soils, but these differences were tempo-
rarily nullified after cover crop incorporation
(Grünwald et al., 2000).
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Different from the effects of cover crop
incorporation, high-nitrogen-containing organic
amendments such as cattle and poultry manure or
soy meal had an immediate suppressive effect on
several root pathogens and nematodes, as a result
of ammonia release immediately after initiation of
microbial decomposition (Lazarovits et al., 2001).
Bulluck et al. (2002) also documented immediate
suppressive effects of various types of compost and
cattle manure applied at moderate to high rates on
southern blight of tomatoes. However, these
materials may not be suppressive to Pythium,
which thrives well under high ammonium concen-
trations (van Bruggen and Semenov, 1999).

After repeated applications of organic materials,
higher organic matter and microbial activity in
bulk soil would result in a ‘masking of the rhizo-
sphere effect’ (Gilbert et al., 1994), reduce the
microbial oscillations along roots, and limit sub-
strate concentrations seeping into soil, thereby
reducing the attraction of root pathogens to the
root surface and decreasing the chance of infection
by many pathogens. Reducing the amount of
easily available mineral nutrients and soluble car-
bon compounds by reducing fertilizer applications
and the addition of stable carbon sources, would
lead to oligotrophication. This promotes mycor-
rhizal infections, which can also suppress various
root diseases (Sharma et al., 1992; Ryan et al.,
1994). Whether mycorrhizal infections also occur
in wave-like patterns along the roots is not known.

Tillage

No-till or reduced tillage has been promoted in
recent years primarily to reduce soil erosion.
However, tillage practices also have pronounced
effects on survival of fungi and micro- and macro-
fauna in soil. Deep tillage can enhance the bacteria
to fungi ratio and eliminate predatory nematodes,
affecting especially the k-strategists (Berkelmans
et al., 2003). No-till or reduced tillage is often
associated with higher microbial biomass and
activity and a more complex food web in the upper
soil layers compared to regular tillage, i.e. plowing
(van Diepeningen et al., 2005).

Tillage is a form of disturbance resulting in clear
fluctuations in microbial activity and biomass.
Caldéron et al. (2000) showed clear fluctuations in
microbial biomass during the first eight days after
simulated tillage in the laboratory, namely mixing

of soil samples collected from a grassland and a
vegetable field. Such a disturbance may also give
facultative saprotrophic pathogens a chance to
grow, but wave-like fluctuations may be dampened
sooner than in the case of a disturbance by fresh
plant materials. A report on a lower incidence of
Pythium damping-off of sugar beet in a farm with
reduced tillage than in a conventional farm with
regular tillage (El Titi and Richter, 1987) is in
agreement with the notion that reduced tillage
decreases the chance that Pythium would grow
explosively in fresh substrate after tillage. On the
other hand, pathogens that survive in stubble could
become problematic in no-till fields. Roget (1995)
demonstrated that after conversion from regularly
tilled to no-till wheat production Rhizoctonia root
rot increased in the first few years. However, this
increase was followed by a decline in Rhizoctonia
root rot after about five years of no-till.

(Partial) soil sterilization

It is well known that soil-borne plant pathogens can
wreak havoc when introduced into steamed green-
house soil or fumigated field soil due to the exis-
tence of a biological vacuum (Bollen, 1974;
Kreutzer, 1965). Any disturbance of a recently
sterilized (or c-irradiated) and re-colonized soil
leads to wild fluctuations in microbial populations
(Zelenev et al., 2004), and may lead to similar
fluctuations in facultative saprotrophic plant
pathogens. A good alternative to soil sterilization
may be biological soil disinfestation (Blok et al.,
2000), which does not result in enhanced disease
pressure when pathogens are re-introduced, and
provides long-lasting disease control (Goud et al.,
2004).

Mixed cropping

Mixed cropping – a system where two or more
crops are grown in the same field – can enhance
food web diversity and decrease severity of
foliar plant diseases (Finckh and Wolfe, 1997).
Although positive correlations between above-
ground and below-ground biodiversity have
seldom been demonstrated (De Deyn et al., 2004),
suppression of root disease (Burdon and Chilvers,
1976; Villich, 1993) and enhanced soil microbial
diversity in mixed cropping systems have some-
times been found (G.A. Hiddink, pers. comm.).
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Microbial composition in the rhizosphere is
strongly dependent on plant species (Smith et al.,
1999). Thus in a mixture of roots of different
species it may be more difficult for a pathogen to
find its host and the saprotrophic phase of
pathogens may be limited by a greater variety of
antagonists.

Cultivar selection

Choice of crops and cultivars will influence the
microbial communities that are selectively enhanced
or suppressed in the rhizosphere by the quality of
root exudates (Grayston et al., 1998; Kowalchuk
et al., 2002; Garbeva et al., 2004). Differential
interactions between plant genotypes and benefi-
cial microorganisms have been demonstrated for
species of mycorrhizal fungi, rhizobia, and general
plant growth-promoting rhizobacteria (PGPR)
(Smith et al., 1999). PGPR have been used as
biofertilizers and biological control agents (Ger-
mida, 1996). They can be directly antagonistic
towards plant pathogens or can stimulate systemic
induced resistance in the plant (Kloepper et al.,
1997).

Besides exudate quality, exudation rates can
also vary per cultivar, and these rates determine to
a large extent the amplitude of the ensuing
microbial oscillations. However, plant breeders
have generally not taken exudation rates and
exudate quality into account. There would be a
great opportunity to select cultivars for their
ability to stimulate specific microbial communities
that can contribute to disease suppression.

Biological control

Many microorganisms have been found with bio-
logical control potential against various plant
pathogens. Biological control agents may use a
variety of inhibitory and suppressive mechanisms:
(1) competition for resources and space, (2) anti-
biotic production, (3) removal of pathogenicity
factors produced by the pathogen, (4) production
of degrading enzymes that target the pathogen and
(5) the induction of resistance in the host plant
(Whipps, 2001). However, many biological control
agents perform poorly under field conditions
(Fravel, 1999) and only few biocontrol species
have been registered for field use (Copping, 2001).
Biocontrol of soil-borne pathogens has been more

successful under controlled environmental condi-
tions using simplified potting mixes presumably
low in microbial diversity (Fravel, 1999). More-
over, inoculation of soil with a single strain of a
biocontrol agent rarely leads to a high level of
protection and often the positive effect is incon-
sistent (Weller, 1988; Koch, 1999). Better results
have been obtained with combinations of strains
or species (e.g. Pierson and Weller, 1994; Guetsky
et al., 2001, 2002; Szczech and Shoda, 2004).

These results with biocontrol agents can now be
interpreted in view of the general occurrence of
microbial oscillations in time and space in the
rhizosphere. Introduced biocontrol agents are
likely to oscillate similarly to the native soil
microbial communities. Densities of Pseudomonas
fluorescens introduced on wheat seed seemed to
form wave-like patterns along the length of the
root, the amplitudes tapering off towards the root
tip (Scott et al., 1995). In an experiment in our
laboratory with GFP labelled, phloroglucinol-
producing P. fluorescens mixed into soil we con-
clusively proved a wave-like distribution of this
bacterium along growing wheat roots (Figure 6),
similar to the oscillations of native bacterial pop-
ulations (Semenov et al., 1999). We also showed
that there is a succession in microbial communities
within each wave, repeating from wave to wave.
Thus, microorganisms that may be good antago-
nists in vitro, may take a different position in the
succession compared to the target pathogen, and
may therefore not be effective as biocontrol agents.
This might mean that biocontrol can only be
accomplished if waves in populations of the bio-
control agent coincide more or less with potential
waves in pathogen populations (unless there is
systemic induced resistance). Potential biocontrol
agents may need to be selected so that their pop-
ulations are maximal in the region along the root
where the target pathogen invades the root. Dif-
ferences in succession and position along the root
may also explain the greater success of biocontrol
mixtures than of single biocontrol agents (Guetsky
et al., 2001, 2002; Szczech and Shoda, 2004).

In organically managed soil with high micro-
bial diversity and activity (and therefore low
concentrations of easily available nutrients)
introduced biocontrol agents may survive less
compared to biologically impoverished conven-
tional soil (van Bruggen et al., 2000). The differ-
ence between the effectiveness of biocontrol
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agents in biologically impoverished soil versus
biologically diverse and active soils, may be ex-
plained by reduced availability of easily decom-
posable substrate in these latter soils. The
rhizosphere effect would be masked and microbial
oscillations subdued in such soils (van Diepenin-
gen, pers. comm.). In biologically impoverished
soils, high substrate concentrations can be ex-
pected where wildly oscillating microbial com-
munities are at a minimum; biocontrol agents
with a slightly different niche compared to the
majority of these oscillating communities may
have a chance to survive and even grow. How-
ever, they may not grow in a rhizosphere with
very diverse microbial communities. An intro-
duced phloroglucinol-producing, gfp marked P.
fluorescens strain declined faster in three organi-
cally managed soils than in three neighbouring
conventionally managed soils (van Bruggen et al.,
2004). The same strain showed only mild wave-
like oscillations along a wheat root in an organ-
ically managed soil compared to a conventionally
managed soil (Figure 6), and had less effect on
take-all disease of wheat in soils from three or-
ganic farms than in soils from three neighbouring
conventional farms with a lower microbial
diversity (van Bruggen et al., 2004). Thus, it is
questionable if inundative biological control can
be effective in soils with a high microbial bio-
mass, activity and diversity, and low levels of
easily available substrate.

Conclusions

In this review we showed that populations of dif-
ferent trophic groups of bacteria develop in a wave-
like fashion with repetitive growth and death cycles,
both in time and space after an impulse of readily
utilizable substrate. Oscillatory development of
bacterial populations may be a universal phenom-
enon after a disturbance, which could possibly be
used to compare soils in terms of stability and
resilience, and consequently soil health. Indeed, the
amplitudes of the oscillations are smaller and de-
cline more quickly in soils with a high microbial
biomass, activity and diversity, and low levels of
easily available substrate. These are characteristics
of soil health. It is argued that healthy soils are
more suppressive to soil-borne plant pathogens
than biologically impoverished soils.

Single species of saprotrophic bacteria, biocon-
trol agents and phytopathogenic fungi also show
wave-like fluctuations in bulk soil and along plant
roots. Different trophic groups and species may
fluctuate with different periods and phases. A
cyclic succession occurs in response to nutrient
input; in the waxing phases of successive oscilla-
tions, microbial communities are taxonomically
and physiologically more similar to one another
than to the communities in the waning phases.
This has consequences for the selection of bio-
control agents and cultivars. Introduction of a
single biocontrol agent to a soil may not lead to
the expected results due to wave-like fluctuations
in the rhizosphere of the biocontrol agent and the
target pathogen, if they are out of phase. A mix-
ture of biocontrol agents of different trophic
groups may be more successful.

The main strategies to control soil-borne dis-
eases can be classified into three categories: (1)
enhancement of general microbial biomass and
diversity resulting in a masking of the rhizosphere
effect, a reduction of the amplitude of wave-like
oscillations and an increase in natural disease
suppression, (2) removal of dormant propagules or
pathogens in their saprotrophic phase from their
food base by stimulating wave-like fluctuations in
populations of potentially competitive microor-
ganisms, for example by soil tillage, and (3) aug-
mentation of microbial communities by biocontrol
agents, which must be able to survive and grow in
the rhizosphere. The first strategy is the main
strategy used by organic farmers, while the second
and third strategies are typical for conventional
farms. In all cases, dynamic oscillations of micro-
bial communities and individual species must be
taken into account. This constitutes a new view of
plant disease control.
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Abstract

The study of multiple pathosystems has played a central role in the development of botanical epidemiology,
leading to a number of approaches and concepts. Multiple pathosystems are facts, which are experienced by
many non-cultivated, or cultivated, plant communities. The shapes and composition of multiple patho-
systems vary in space and time because of their inherent structure of relationships, and also in response to
management. Examples of variation in multiple pathosystems are given, of groundnut in Côte d’Ivoire, of
wheat in Brittany, and of upland rice in northern Laos. Variation in the yield-reducing effects of multiple
pathosystems is discussed, including interactions among disease elements, relationships with attainable
performances, and linkages with production situations. Progress has been achieved in understanding the
links between injury profiles, production situations, and attainable performances. Questions about
the functioning and consequences of multiple pathosystems are central to defining the scientific bases for,
the design of, and the implementing of IPM. The complexity of multiple pathosystems, however, remains a
deterrent, not a challenge, to many plant pathologists. Progress achieved in designing production systems
for hardy wheat in France, however, is very promising, because of the multidisciplinary science it involves,
and because of the promise to deliver it carries. The concepts of epidemiological guilds and of guilds of
harmful agents are offered as perspectives to address and manage syndromes of production and syndromes
of disease.

Relevance of multiple pathosystems in botanical

epidemiology

Multiple pathosystems as a research theme

The study of multiple pathosystems has played a
central role in the development of botanical epi-
demiology. As a subject, it is the equivalent in
botanical epidemiology of community ecology in
general ecology. Research in the field has led to the
development of a body of approaches, often sta-
tistical and multivariate, as the objective often has
been mostly descriptive, rather than explanatory.

Studies on multiple pathosystems (i) led to
attempts to understand and manage them (e.g.,
Jörg et al., 1987; Daamen et al., 1989; Bastiaans
and Daamen, 1994), (ii) resulted in analyses of
case-studies, and efforts dealing with specific cases
and contexts (e.g., Hamelink et al., 1988; Avelino,
1999), and (iii) often were perceived as practical
endeavours only. Studies of multiple pathosys-
tems, dealing with a complex subject, inviting
complex analyses, and leading to complex inter-
pretations, have arguably led to results that were
difficult to share. Arguably, this type of research
often addresses open-ended questions, not specific
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hypotheses. Its value however is multifold: first, it
provides a framework for other, hypothesis-spe-
cific, epidemiological research; second, it allows
the description so furthering hypotheses for future
research; and third, in some successful cases, it has
allowed escape from idiosyncrasies and has gen-
erated some useful generalisations.

‘‘No one can be a good observer unless he is a
good theorizer’’ (Charles Darwin, quoted from
Zadoks, 1972). There are very few plant popula-
tions that are exposed to one disease only. Multi-
ple pathosystems are where initial observations are
made, where incipient hypotheses are borne, where
these are tested, and sometimes result in success in
managing diseases. This paper is not intended as a
review of so vast a topic. Its aim is only to high-
light some important points, research issues, and
research avenues. Our purpose is to touch upon a
limited number, but very different, aspects of the
subject. References therefore are used only to
illustrate research themes and approaches, and are
given with no intention of offering a comprehen-
sive overview.

Multiple pathosystems as facts

Multiple pathosystems consist of a series of disease
elements that are present in the same host stand.

Over time, e.g., during the cycle of a field crop, a
number of diseases may appear, spread, decline,
and interact among themselves and the growing
crop. Figure 1 shows a series of principal compo-
nent analyses on three very different multiple
pathosystems. Principal component analysis is
used here as one convenient means to provide a
preliminary overview of very complex structures.
For instance, the multiple pathosystem of
groundnut in Côte d’Ivoire involves a series of
fungal pathogens (Savary, 1987a) affecting the
foliage (Cercospora arachidicola, Cercosporidium
personatum, Puccinia arachidis), shoots, and stems
(Corticium rolfsii, Aspergillus niger), and pods
(Botryodiplodia sp.). Another principal component
analysis highlights a series of wheat diseases in
Brittany: eyespot, brown rust, septoria blotch and
yellow rust. A third example illustrates an analysis
on upland rice injuries in northern Laos (IRRI,
1998), which involves an array of injuries by insects
(stem borers causing dead hearts and white heads,
root injuries by white grubs), foliage injuries
(caused by several species), disease injuries caused
by fungi (neck and leaf blast caused by Magna-
porthe grisea, brown spot caused by Cochliobolus
miyabeanus, sheath blight caused by Rhizoctonia
solani, sheath rot caused by Sarocladium oryzae),
and weed infestation by a number of species. Not
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Figure 1. Three multiple pathosystems portrayed by principal component analyses: groundnut diseases in savanna and forest envi-

ronments in Côte d’Ivoire, wheat diseases in Brittany, France, and upland rice in northern Laos. Left: Principal components analy-

sis on 209 farmers’ fields in several provinces (forest and savanna) of Côte d’Ivoire, 1982–1985; N: Aspergillus niger rot; Cr:

Corticium rolfsii rot; A: Cercospora arachidicola leaf-spot; P: Cercosporidium personatum (Phaeoisariopsis personata) leaf-spot; B:

Botryodiplodia pod rot; R: rust; Centre: wheat diseases in Britanny in a series of variety trials at varying levels of inputs, 2000,

2001, and 2003. Vectors indicate intensities of eyespot (Tapesia yallundae), of brown rust (Puccinia recondita), septoria

(Mycosphaerella graminicola), and yellow rust (Puccinia striiformis). Data are from 180 individual plots (2.6� 15 m) combining

four crop management practices with five wheat cultivars in the replications over the 3 years. Right: upland rice pests in northern

Laos, 1996 and 1997; LB: leaf blast; DEF: defoliating insects; NB: neck blast; DH: dead heart caused by stemborers; SHB: sheath

blight, SHR: sheath rot; BS: brown spot; WEED: weed infestation; WG: white grub injury. Proportion of variances accounted for

are indicated along each axis.
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all the disease elements that actually were present
in each of the three examples are represented. The
three data sets used here correspond to different
contexts for data acquisition (see legend of
Figure 1). The groundnut data were collected
during a multiyear survey in several provinces of
Côte d’Ivoire, on 309 different farmers’ fields (Sa-
vary, 1987a). The wheat data correspond to a series
of varietal trials at different levels of inputs con-
ducted over three different climatic years in Brit-
tany (Rolland et al., 2003). The upland rice data
were collected in a series of on-farm field experi-
ments, where different fertiliser regimes were tested
during two successive years (IRRI, 1998; Roder
and Savary, unpublished data).

Some of the analyses involve more disease ele-
ments than others, and one of them involves more
than just plant pathogens. Deriving conclusions on
the overall importance of diseases in each patho-
system from the mere number of elements would
of course be incorrect. These analyses only provide
a view of possible associations, suggesting rela-
tionships, or absence of relationships, among dis-
ease elements. The relationships that seem to
emerge from these summary analyses develop
against the background of a large number of fac-
tors, including crop development stage, or crop
management. For instance, a linkage appears in
the groundnut multiple pathosystem between N
(A. niger) and Cr (C. rolfsii); by contrast, there
seems to be independence between Cr and A
(Cercospora arachidicola) in the groundnut
pathosystem, and independence between NB and
LB (neck and leaf blast, respectively, both caused

by Magnaporthe grisea) in the upland rice patho-
system. Collinearity or non-collinearity of (dis-
ease) vectors may lead to forwarding hypotheses,
which in turn would require additional analyses.

Shapes of botanical pathosystems

Elements of multiple pathosystems

Multiple pathosystems have shapes, where indi-
vidual diseases display a particular role. Several
studies have shown that multiple pathosystems
vary in shapes. Only two of the many reasons for
change are illustrated here.

Change in age, i.e., development of the host
stand, is one strong reason for change in the shape
of multiple pathosystems. Figure 2 shows three
separate principal component analyses on the
groundnut–leaf-spot–rust pathosystem at three
different ages of the groundnut stands. Although
the analyses pertain to the same farmers’ fields,
comparison of analysis of Figure 2a (young
stands), 2b (middle-age stands), and 2c (stands
approaching or at harvest stage) indicate strong
variation in relationships among variables. In
young groundnut stands, a strong relationship
between rust (R) and early leaf-spot (A) is appar-
ent, both diseases being opposed to A. niger (N)
wilt. In middle-age fields, a very strong association
between rust (R) and late leaf-spot (P) is indicated,
both diseases being opposed to early leaf-spot (A).
In older fields, the relationship between rust and
late leaf-spot has become loose, although both
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Figure 2. Patterns of change in multiple pathosystems over time and host development: principal component analyses of disease

levels in farmers’ fields in Côte d’Ivoire. (a) Groundnut field at early development stages (first trifoliate leaf – flowering); (b)

groundnut field at medium development stages (flowering – pod filling); (c) groundnut field at final development stages (pod filling

– harvest stage). Symbols for disease vectors are the same as in Figure 1.
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remain opposed to early leaf-spot; and a linkage
between A. niger and early leaf-spot is detected,
which did not exist at earlier ages. These shifts in
relationships are reflections of the respective
dynamics of foliar diseases (rust and early leaf-
spot usually establish earlier in a crop stand than
late leaf-spot, while early leaf-spot generally de-
clines as crop maturity approaches), and of envi-
ronmental factors that favour certain diseases at
certain stages of the crop (humid environment and
contaminated seeds favour A. niger wilt and C.
rolfsii in the early crop stages; dense, green cano-
pies favour rust and late leaf-spot, whereas water
stresses and poor soil fertility favour late leaf-spot
in established stands; and more humid environ-
ments favour Botryodiplodia pod rot, late leaf-
spot, and rust while drier environments favour A.

niger wilt and early leaf-spot in older stands). One
important factor that drives relationships among
foliar diseases is disease-induced-defoliation. It
will be addressed later in this discussion.

Crop management is another major reason for
changes in shapes of multiple pathosystems.
Figure 3 is an illustration of the effects of four crop
management patterns in wheat experiments.
Strong shifts in disease vectors are detected in
Figure 3a–d, the transition from a to d corre-
sponding to intensified wheat production. While in
Figure 3a all diseases, except yellow rust, appear
closely associated, an opposition between eyespot
and both septoria leaf blotch and brown rust
develops in Figure 3b, which persists in Figure 3c,
but disappears in Figure 3d. Such sharp changes
must be attributed to changes in fertiliser inputs,
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Figure 3. Patterns of change in multiple pathosystems over crop management practices: principal component analyses of disease

levels in field trials in Britanny, France. (a) pattern of crop management A: fertiliser input with a target yield of 10 t ha)1; seeding

rate: 250 seeds m)2; use of a crop growth regulator; three fungicide applications; (b) pattern of crop management B: fertiliser input

with a target yield of 9 t ha)1; seeding rate: 250 seeds m)2; use of a crop growth regulator; two fungicide applications; (c) pattern

of crop management C: fertiliser input with a target yield of 8 t ha)1; seeding rate: 150 seeds m)2; no growth regulator; one fungi-

cide applications; (d): pattern of crop management D: fertiliser input with a target yield of 7 t ha)1; seeding rate: 150 seeds m)2; no

crop growth regulator; no fungicide applications.
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seeding rates, plant hormone use, and of course
fungicide use. Crop management, involving pesti-
cide use or not, has been found to be a major factor
for changes in shapes of multiple pathosystems, in
many diverse examples, including, e.g., wheat in
Australia (Stynes, 1980) and the Netherlands
(Daamen et al., 1989), lowland rice in Asia (Savary
et al., 2000a), pea in Idaho (Wiese, 1982),
groundnut in Côte d’Ivoire (Savary, 1987a), or
coffee in Honduras (Avelino, 1999).

Shapes of multiple pathosystems in space

The spatial distributions of four different pathogens
in the same crop stand are shown in Figure 4
(Lannou and Savary, 1991): rust (Puccinia

arachidis), early leaf-spot (Cercospora arachidico-
la), late leaf-spot (Cercosporidium personatum), and
web blight (Rhizoctonia solani) of groundnut. Sev-
eral techniques, including geostatistical and multi-
variate, were used to show, as the maps strongly
suggest, that (i) rust (Figure 2a) and web blight
(Figure 2d) are spatially strongly associated, (ii)
early leaf-spot (Figure 2b) is more severe where rust
is less severe, and (iii) late leaf-spot (Figure 2c) does
not intensify strongly where rust or early leaf-spot
severities are extreme. The maps, which were drawn
at the end of a cropping season, also show that two
very different types of epidemics developed in the
same stand, a typically focal epidemic (Figure 2d,
web blight), and three general epidemics
(Figures 2a, 2b and 2c, rust, early leaf-spot, and late
leaf-spot, respectively) which did intensify locally.

(a) (c)

(d)(b)

Figure 4. Patterns of change in multiple pathosystems over space: spatial distribution of four diseases a groundnut plot, Côte

d’Ivoire (Lannou and Savary, 1991, modified). (a) Groundnut rust, Puccinia arachidis; (b) Early leaf-spot, Cercospora arachidicola;

(c) Late leaf-spot, Cercosporidium personatum (Phaeoisariopsis personata), (d) Web blight, Rhizoctonia solani. Disease assessments

were made at 90 days after sowing. Rust, early leaf-spot, and late leaf-spot: severity (% diseased leaf area) scales; web blight: inci-

dence (% diseased plants) scale. From Lannou and Savary, 1991, modified.
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Analysis of spatial patterns in multiple patho-
systems may lead to a number of hypotheses, as in
the case of multiple infection of hop stands by
different viruses (Pethybridge and Turechek,
2003), which can lead to experimentally testing
spatial co-occurrence and variation of infections in
the host–vector–viruses system. In the case of
groundnut diseases, much of the spatial co-varia-
tion of disease intensities may be attributed to
competition towards vacant sites and defoliation
of diseased tissues by some of the pathogens.

Nelson and Campbell (1993) studied a far more
complex multiple pathosystem, which involves
eight fungal pathogens of white clover (Rhizoctonia
solani, Pseudomonas andropogonis, Stagonospora
meliloti, Cercospora zebrina, Curvularia trifolii,
Colletotrichum trifolii, Polythrincium trifolii, and
Uromyces sp.), in presence or absence of three virus
diseases (alfalfa mosaic virus, yellow vein virus,
and peanut stunt virus). They detected disease
aggregation of the fungal disease complex at sev-
eral scales (leaf, plant, population), which fluctu-
ated over time as foliation and defoliation
occurred, and which varied spatially as well.
Changes over time in the spatial aggregation of the
foliar disease complex were associated with chan-
ges in disease severity itself and defoliation. The
background of varying, multiple virus infection did
not seem to affect either the dynamics of the foliar
disease complex, or its spatial pattern.

Shapes of multiple pathosystems over time:
dynamics of multiple pathosystems

One approach to addressing the dynamics of
multiple pathosystems is by means of linked dif-
ferential equations. The equations themselves can
assume a number of shapes, but are in many re-
spects fairly similar. One important difference
however among seemingly analogous systems of
equations is the nature of the modelled diseases
variables, which often are proportions (severities
or incidences, i.e., disease densities) or less fre-
quently (as in the model used below), amounts of
diseased tissues. This difference has important
consequences on the meaning of parameters used.
Use of linked differential equations derives in
botanical epidemiology from the approach Van
der Plank (1963) introduced to the field, which
itself is related to earlier ecological models,
including especially the Verhulst-Pearl logistic

equation and systems of equations of the Lotka-
Volterra type (Pianker, 1983, cited in Madden
et al., 1987). Use of this approach has been
extensive in botanical epidemiology, and has been
based on both the development of simple equa-
tions that adequately describe disease progress
over time (see, e.g., Madden, 1980; Campbell and
Madden, 1990), and on tools to numerically inte-
grate sets of differential equations that constitute
simulation models (Zadoks, 1971; Zadoks and
Rabbinge, 1985).

The groundnut–leaf-spot–rust pathosystem
represents a good example to illustrate the ap-
proach. This system is fairly simple, having only
two disease components, rust and leaf-spot, but
leads to considering several processes and inter-
actions: (i) a biotrophic pathogen which multiplies
only on healthy, green tissues, (ii) a necrotrophic
pathogen (only Cercosporidium personatum is
considered here, but both C. personatum and
Cercospora arachidola could be considered collec-
tively) which causes extensive defoliation, which
(iii) compounds physiological (senescence) defoli-
ation, (iv) competition between the two pathogens
in their access to growing crop tissues, and (v) the
ability of one of the two diseases (leaf-spot) to
multiply from defoliated, infectious tissues (Savary
and Servat, 1991). Such characteristics are very
similar to another legume-based multiple patho-
system, the bean–angular leaf-spot–anthracnose–
rust system (Gomes Carneiro et al., 2000;
Bassanezi et al., 2001; de Jesus et al., 2001), which
has been extensively studied. A series of linked
differential equations representing the groundnut–
leaf-spot–rust pathosystem are given in Table 1,
corresponding to the overall model structure of
Figure 5. Parameters for the model (relative rates
of crop growth, of increase of both diseases, of
physiological defoliation, and of disease-induced
defoliation) were estimated (Savary and Servat,
1991) using a numerical integration procedure
coupled with a sequence of two optimisation pro-
cedures (Rosenbrock, 1960; Nelder and Mead,
1964), applied to a set of 15 epidemics where levels
of the both diseases were artificially manipulated
(Savary and Zadoks, 1992a).

Simulated outputs using optimised parameters
are shown in Figure 6a. A regular, logistic-shaped
increase of leaf-spot is combined with a faster in-
crease of rust, which declines in the later stage of
the epidemic; these are coupled with a regular
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accumulation of defoliated tissues, and a bell-
shaped green leaf area curve. When the relative
rate of rust increase is reduced (Figure 6b) or in-
creased (Figure 6c), a strong rust reduction, or
increase, respectively, is simulated, coinciding with
opposite behaviour of the leaf-spot epidemic.
When the relative rates of leaf-spot increase from
both non-defoliated and defoliated tissues are re-
duced (Figure 6d), the leaf-spot epidemic is
strongly reduced, while the rust epidemic is
strongly increased. When both these parameters
are increased (Figure 6e), the leaf-spot epidemic is
strongly increased, the rust epidemic is nearly
halved, and the amount of defoliation is increased.
A last set of tests, where the relative rate of defo-
liation induced by leaf-spot is varied is also shown.
When the leaf-spot induced-defoliation rate is de-
creased (Figure 6f), the amount of total defolia-
tion is barely altered, the leaf-spot epidemic

remains essentially unaffected, whereas the rust
epidemic is slightly enhanced. Increase of this
parameter (Figure 6g), on the other hand, leads to
only a slight increase in total defoliation, an
unaffected leaf-spot epidemic, but a reduction by
about 8% of the rust epidemic.

The overall picture this model gives is that the
system is quite sensitive to comparatively small
variation (10% or less) in parameter values. Leaf-
spot is behaving as a very strong competitor for
rust, especially through leaf-spot induced-defolia-
tion. Rust on the other hand can rapidly take
advantage of seemingly small increases in the
amount of available healthy tissues. These inter-
actions are strongly influenced by crop growth
(and the effects of diseases on crop growth), and
defoliation (especially through physiological
senescence). One interesting response of the system
is that a reduced retention (greater disease-induced

Table 1. Equations used in a rust–leaf-spot–groundnut multiple pathosystem simulation model

Equation Hypotheses

(1) Rate of increase of leaf area:

dL=dt ¼ RRL � Lf1� ½ðLþYþ Zþ totDÞ=Lmax�g
The rate of increase of leaf area is proportional to a relative

rate and the amount of (healthy) leaf, corrected for the fraction

of leaf growth, relative to a maximum. Leaf growth includes

defoliated tissues

(2) Rate of rust increase:

DY=dt ¼ RRY �Yf1� ½ðYþ ZÞ=ðLþYþ ZÞ�g
The rate of rust increase is proportional to a relative rate

and the amount of rust-diseased tissues, corrected for the

fraction of relative growth, relative to the current total leaf

tissues

(3) Rate of leaf-spot increase:

DZ=dt ¼ðRRZ � ZþRRZDZ �DZÞ
� f1� ½ðZþYÞ=ðLþYþ ZÞ�g

The rate of leaf-spot increase is proportional to both (1) a

relative rate for standing diseased tissues and the amount of

leaf-spot-diseased tissues and (2) a relative rate for defoliated

diseased tissues and the amount of defoliated infected tissues,

corrected for fraction of relative growth, relative to the current

total leaf tissues

(4) Rate of defoliation (healthy tissues)

dD=dt ¼ RRDS � LþRRDZ � ½Z=ðLþ Y þ ZÞ� � L
The rate of defoliation of healthy tissues is the sum of

senescence-induced (relative rate and healthy tissues) and

indirectly leaf-spot-induced (relative rate, proportion

leaf-spot-diseased, and healthy tissues)

(5) Rate of defoliation (leaf-spot-diseased tissues)

dDZ=dt ¼ (RRDS+RRDZ) � Z
The rate of defoliation of leaf-spot-diseased tissues is

proportional to a relative rate (senescence and leaf-spot

accumulated) and to the amount of leaf-spot-diseased tissues

(6) Rate of defoliation (rust-diseased issues)

dDY=dt ¼ (RRDS+RRDZ) �Y
The rate of defoliation of rust-diseased tissues is proportional to

a relative rate (senescence and leaf-spot accumulated) and to the

amount of rust-diseased tissues

Variables (dimensions in brackets): L: healthy leaf tissues [L2]; Y: rust-diseased tissues [L2] ; Z: leaf-spot-diseased tissues [L2]; D:

healthy, defoliated tissues [L2]; DY: rust-diseased, defoliated tissues [L2]; DZ: leaf-spot-diseased, defoliated tissues [L2]; RL: rate of leaf

growth [L2 T)1]; RY: rate of rust increase [L2 T)1]; RZ: rate of leaf-spot increase [L2 T)1]; RD: rate of defoliation of healthy tissues

[L2 T)1]; RDY: rate of defoliation of rust-diseased tissues [L2 T)1]; RDZ: rate of defoliation of leaf-spot diseased tissues [L2 T)1];

RRL: relative (intrinsic) rate of leaf growth [T)1]; Lmax: maximum leaf growth [L2]; RRY: relative rate of rust increase [T)1]; RRZZ:

relative rate of leaf-spot increase from non-defoliated tissues [T)1]; RRZDZ: relative rate of leaf-spot increase from infected defoliated

tissues [T)1]; RRDS: relative rate of defoliation (senescence) of healthy tissues [T)1]; RRDZ: relative rate of defoliation of (leaf-spot)

diseased tissues [T)1]; totD: accumulated defoliation [L2].
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defoliation) of leaf-spot infected tissues (Figure 6a
vs. 6g) leads to a reduced rust epidemic. Selecting
varieties that shed their leaves at low leaf-spot
severity might then be an efficient way of reducing
rust epidemics.

The white clover–foliar fungal diseases–viruses
system (Nelson and Campbell, 1993) renders the
groundnut–rust–leaf-spot system a comparatively
simple system to address. Nelson and Campbell
question the relevance of the approach illustrated
above, which in the case of the clover-based system

would require a set of at least 10 equations. If this
approach were to be taken, a complex model
structure would have to be designed, a large
number of parameters would have to be estimated,
and numerical solutions would become difficult to
interpret. The approach chosen by Nelson and
Campbell (1993) in their field work, however, was
not to consider each disease separately, but to
quantify the leaf disease complex as a whole. This
leads to the interesting avenue of perhaps consid-
ering groups of pathogens that share similar

L

Z Y

DZ DYD

totD

RL

RZ RY

RDZ RD RDY

RRL
Lmax

RRY

totD

RRZZ

RRZDZ

RRDS

RRDZ

Figure 5. Overall structure of a mechanistic simulation model incorporating two foliar diseases, rust and leaf-spot on groundnut.

State variables: L: healthy leaf tissues [L2]; Y: rust-diseased tissues [L2]; Z: leaf-spot-diseased tissues [L2]; D: healthy, defoliated tis-

sues [L2]; DY: rust-diseased, defoliated tissues [L2]; DZ: leaf-spot-diseased, defoliated tissues [L2]; Rates: RL RL: rate of leaf

growth [L2 T)1]; RY: rate of rust increase [L2 T)1]; RZ: rate of leaf-spot increase [L2 T)1]; RD: rate of defoliation of healthy tis-

sues [L2 T)1]; RDY: rate of defoliation of rust-diseased tissues [L2 T)1]; RDZ: rate of defoliation of leaf-spot diseased tissues

[L2 T)1]; Parameters: RRL: relative (intrinsic) rate of leaf growth [T)1]; Lmax: maximum leaf growth [L2]; RRY: relative rate of

rust increase [T)1]; RRZZ: relative rate of leaf-spot increase from non-defoliated tissues [T)1]; RRZDZ: relative rate of leaf-spot

increase from infected defoliated tissues [T)1]; RRDS: relative rate of defoliation (senescence) of healthy tissues [T)1]; RRDZ: rela-

tive rate of defoliation of (leaf-spot) diseased tissues [T)1]; totD: accumulated defoliation [L2].
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functional attributes in a community, and model
the dynamics of guilds of pathogens, rather than
of individual diseases.

One of the many criticisms of the linked
differential equation approach (see, e.g., Nelson
and Campbell, 1993) is its inability to account for
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Figure 6. Two foliar diseases dynamically interacting, simulated rust and leaf-spot epidemics on groundnut. Each simulation is rep-

resented by two graphs of outputs, healthy and (total) defoliated area (upper half) and rust and leaf-spot severities (lower half).

Numerical values of parameters are indicated in graphs b–g only when changes from reference (optimised) values (graph a) have

been used. Calculated areas under progress curves (AUPC) of the rust epidemic, of the leaf-spot epidemic, of the leaf area index,

and of the defoliated leaf area index are indicated. (a) simulated outputs with optimised parameter values for RRL (relative rate of

leaf growth; [T)1]), RRDS (relative rate of senescence defoliation of healthy tissues [T)1]), RRY (relative rate of rust increase

[T)1]), RRZZ (relative rate of leaf-spot increase from non-defoliated tissues [T)1]), RRZDZ (relative rate of leaf-spot increase from

infected defoliated tissues [T)1]), and RRDZ (relative rate of defoliation of leaf-spot diseased tissues [T)1]). (b) simulated outputs

for a reduced relative rate of rust increase (RRY). (c) simulated outputs for an increased relative rate of rust increase (RRY). (d)

simulated outputs for reduced relative rates of leaf-spot increase (RRZZ and RRZDZ). (e) simulated outputs for increased relative

rates of leaf-spot increase (RRZZ and RRZDZ). (f) simulated outputs for a reduced relative rate of defoliation induced by leaf-

spot (RRDZ). (g) simulated outputs for an increased relative rate of defoliation induced by leaf-spot (RRDZ).
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spatial patterns, and the essential effects of spatial
patterns on disease dynamics. Figure 4 is sufficient
evidence of the fact that the groundnut–leaf-spot–
rust system is no exception. The model summarised
here does however include implicit assumptions
pertaining to the distribution of disease on host
tissues. As in many pathosystems involving foliar
diseases, a very strong vertical aggregation occurs
in both the leaf-spot (Boote et al., 1980) and the
rust (Savary, 1987b) pathosystems. Such aggrega-
tion of diseases (and defoliation) along the vertical
dimension of a crop canopy must have very strong
consequences on the behaviour of the multiple
pathosystem. Considering the model outlined in

equations of Table 1 and the flowchart of Figure 5,
however, amounts to implicitly considering a
growing canopy with two layers: (i) a (healthy)
layer where defoliation is caused by senescence and
distance effect of leaf-spot disease, and (ii) a (dis-
eased) layer, where both rust and leaf-spot lesions
occur, and where defoliation is caused by both leaf-
spot and senescence effects.

The purpose of this type of model is to explore
interactions within a framework of thinking de-
fined, and limited by, a set of hypotheses.
Expanding the model to address additional, albeit
important, features of the considered system might
prevent the interpretation of simulation results,
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evaluation of the model, and its use. Further dis-
cussion on strategic models of this kind is given in
McRoberts et al. (2003).

Multiple pathosystems and damage to crops

Multiple injuries and the resulting damage

Consideration of multiple pathosystem, i.e.,
pathogens dynamically interacting among them-
selves and a growing canopy, inevitably leads to
questions regarding harmfulness of the multiple
pathosystem. The extent of damage (sensu Zadoks,
1985, i.e., yield reduction) caused by a multiple
pathosystem has scientific relevance of its own; it
also has very practical implications with respect to
the availability, efficiency, and deployment of
management options. Plant pathologists did not
study multiple pathosystems because of the inter-
esting interactions among competing pathogens
that may take place, and chose them because they
were good examples for community ecology
studies; they did not either address the issue with
the prime objective of selecting plants that would
be resistant against several diseases, or crops
whose yields would be stable in the presence of
several diseases. One simple, practical reason was
the need to assess the damage caused by several
injuries. Padwick (1956) made an early attempt to
such quantification, with the formula:

Percent yield loss

¼ f100
�½ð100�P1Þð100�P2Þ
� (100�PnÞ�=100n�1g

where Pi is the percent yield loss caused by an
individual injury i. Padwick’s model assumes that
the only interaction between diseases on yield is
competition for the crop’s resources. This amounts
to forwarding the hypothesis that one disease
cannot affect what other diseases have already in-
jured (Johnson et al., 1986). Padwick’s view
strongly contrasted with several later analyses,
whereby individual losses were merely accumulated
in a ‘loss profile’ (see, e.g., Pinstrup-Andersen
et al., 1976). Teng (1994) pointed to the fact that
this latter reasoning may lead to the impossible
result that diseases, or crop harmful agents in
general, may cause losses exceeding 100%.

Quantification, analysis, and modelling damage
is both the scientific-technical cornerstone for
disease management (James, 1974; Chiarappa,
1980; Madden, 1983; Teng, 1983; Zadoks, 1985;
Teng, 1987; Gaunt, 1995) and one of the very
important entry points for disease management
(see, e.g., Teng and Savary, 1992). This has been a
very broad and active field of research for many
decades. The subject has particular relevance when
considering multiple pathosystems (Madden and
Nutter, 1995), however, and a few points are dis-
cussed here.

Five directions

As opposed to an additive model for combined
effects of injuries on damage, the model developed
by Padwick was a useful starting point, from
which several directions of thoughts were ex-
plored.

(i) A first direction concerns the nature of dis-
ease interactions in their yield-reducing effect: very
often, a less than additive effect is observed, but
some injuries may synergistically increase yield
losses. Less than additivity has been demonstrated
in one of the best documented studies on damage
caused by a multiple pathosystem, the early
blight–verticillium wilt–potato leafhopper of po-
tato (Johnson, 1986; Johnson et al., 1986, 1987;
Johnson and Teng, 1990). Injuries caused by dis-
eases may, however, synergistically reduce yield.
Synergies in yield-reducing effects are found in
potato early dying caused by Verticillium dahliae
and Pratylenchus penetrans (Francl et al., 1990), as
well as in combinations of infections of wheat by
Septoria nodorum and Puccinia recondita (Van der
Wal et al., 1970). A first hypothesis therefore
refers to the direction, positive or negative, of
combined injuries on damage.

(ii) A second direction concerns the nature of
competition, which may only be for ‘resource’, as
Padwick’s model refers, or may involve other
mechanisms, resulting then in damage lower than
expected from Padwick’s model. Such is the case in
the potato–early blight–verticillium wilt–leafhop-
per studied by Johnson (1986) and Johnson et al.
(1986).

(iii) A third direction concerns the way damage
measurements are expressed. Damage is com-
monly reported as percentage. The reported
figures (percent losses) are therefore dependent on
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the level of the uninjured yield reference, and their
meaning will strongly depend on whether this yield
reference is low or high. One of many alternatives
to reporting damage as a proportion is expressing
it as a biomass, and the choice will depend on the
end-use of the information.

(iv) A fourth direction concerns the relation-
ships that link damage to the various injuries (the
damage function; Zadoks, 1985). The damage
function may involve the yield pertaining to a
given production situation as an explanatory var-
iable (the attainable yield; Rabbinge and De Wit,
1989). As is the case with the damage caused by
single harmful agents (see, e.g., Rossing, 1991, for
the grain aphid on wheat, and Rabbinge et al.,
1985, for powdery mildew in wheat), the amount
of damage caused by a multiple pathosystem may
depend on the level of attainable yield. This has
been exemplified in the case of the multiple
pathosystem of groundnut in Côte d’Ivoire
(Savary and Zadoks, 1992b), and in the more
complex and diverse multiple pathosystem of
lowland rice in Asia (Savary et al., 2000b).

(v) A fifth direction of thought follows the real-
isation that diseases, and any harmful agent in
general, belong to one or a few categories, based on
the type of injury mechanisms they trigger. Rabb-
inge and Rijsdijk (1981) and Boote et al. (1983)
defined the limited number of ways for a harmful
organism to hamper the physiological perfor-
mances of a growing canopy. This has particular
relevance when considering multiple pathosystems
for two reasons. First, it provides a basis for
designing experiments, developing field survey
procedures, and defining field measurements that
refer not to specific diseases (or harmful agents) but
to specific injuries. Diseases then are not measured
with respect to how fast they intensify, but rather to
how much they may affect the performances of a
crop. Further, they need not necessarily be mea-
sured individually, but collectively, as Nelson and
Campbell (1993) did. Second, this categorization
provides a framework for modelling mechanisti-
cally the physiological interactions between a crop
stand and a multiple pathosystem. This direction of
thought has been underpinning research involving
simulation models as tools for understanding
damage caused by diseases and means to reduce
them (Rouse, 1988; Rabbinge et al., 1989; Gaunt,
1995), including work conducted on multiple
pathosystems such as potato–early blight–verticil-

lium wilt (Johnson, 1986; Johnson et al., 1986,
1987; Johnson and Teng, 1990).

New developments have taken place, where
these five points are considered in the case of
lowland rice in Asia (Pinnschmidt et al., 1995;
Willocquet et al., 2000, 2002, 2004). Simulation
models have been developed that make use of the
concept of guilds of injuries (Pinnschmidt et al.,
1995; Willocquet et al., 2000, 2002) which have
been used to analyse and understand the yield-
reducing effects of several pathogens, insects, and
weeds in the same crop. A modelling structure has
been designed so that it can simultaneously handle
production situations (as drivers of attainable crop
performances) and injury profiles (as drivers of
multiple injuries) in the very combinations where
field characterisation had shown these (production
situation)� (injury profile) associations occur
(Willocquet et al., 2000, 2002)). Production situa-
tions and their associated injury profiles were then
used as the modelling context where disease and
pest management tools could be most efficiently
deployed, and where progress should be expected,
and so expressed in yield gains, instead of yield
losses (Willocquet et al., 2004).

Multiple pathosystems and integrated pest

management

A negative view

In his article on the functioning and performances
of tropical ecosystems, Janzen (1973) was express-
ing his frustration at science not achieving its goals
in vital fields of application: ‘‘Nearly all research in
tropical agriculture is highly reductionist, parochial,
and discipline-oriented ’’. At the time when Janzen
wrote, much of the synthesis tools that now are
available to plant pathologists did not yet exist.
A negative view, similar to Janzen’s, could be
expressed considering the very slow pace of pro-
gress that has been achieved in understanding,
analysing, and managing multiple pathosystems.
In spite of the availability of tools to address it, the
complexity of these systems remains a deterrent,
not a challenge, to many plant pathologists. But
the primary reason why progress has been so slow
is the weakness of communication among disci-
plinary fields (McRoberts et al., 2003).
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Questions about multiple pathosystems are
central to defining the scientific bases for, the
designing of, and the implementing of IPM.
Reductionism, in its many forms, and discipline-
oriented science, are the very same reasons that
hamper progress in IPM (Jeger, 2000), and it
would seem that Joni Mitchell’s song (‘‘Hey farmer
farmer. Put that DDT now. Give me spots on my
apples. But leave me the birds and the bees.
Please.’’; (McRoberts et al., 2003)) does not seem
to be fading away anytime soon.

A positive view

There has nevertheless been a change in the way
disease management has been addressed, scientifi-
cally and technically, over the past 50 years – the
time-span covering the cycle of the International
Epidemiology Workshops. One good example
appears to be the multiple pathosystem of wheat in
wheat-based systems of western Europe.

Initial steps were taken in the Netherlands with
the EPIPRE project which saw scientists sharing
experience with farmers, adapting theories to
practice, and farmers empowered in their disease
management decisions from epidemiological and
systems science (Zadoks, 1989).

This early farmers-driven project had a setting
different from that of today. Much work has been
accomplished since, and already was on its way
then, to show through long-term experiments
(Jordan et al., 1985; Webster, 1985; McRoberts
et al., 2000) that integrated production systems for
field crops tend to perform better financially than
high-input systems when commodity prices are low
(McRoberts et al., 2003). The notion that disease
management depends on production situations –
not only because multiple pathosystems are so
sensitive in their composition to crop management,
but simply because disease management is only
part of crop management, and so, necessarily de-
pends on the socio-economic dimensions of what a
production situation is – was no longer a theory but
a concept put into practice and a way to conduct
research.

The old, simple, idea that stable yield, and stable
yield characteristics, including multiple, incom-
plete, host plant resistance are criteria for selecting
varieties was revisited by G. Doussinault (Dous-
sinault, 1998; Doussinault et al., 2001). Selecting

for maximum yield and maximum grain protein
content under intensive production conditions,
i.e., high (nitrogen) fertiliser inputs and a pesticide
umbrella leads to ignoring a large fraction of ge-
netic resources available in a germplasm, and to
restricting progress within unrealistically favour-
able production situations. Hardy wheat varieties,
which yield-wise may perform somewhat below, or
nearly as well as, conventional high yielding cul-
tivars, but exhibit a number of incomplete resis-
tances and have fair performances with respect to
protein contents of the grain, are being tested in a
number of sites in France. Incomplete resistances
concern eyespot (Tapesia yallundae) and leaf
blotch (Mycosphaerella graminicola). Experiments
do not involve varieties only, but patterns of crop
management; they also lead to assessment of eco-
nomic performances. So far (over 3 years, 1999–
2002), reported results are very encouraging
(Rolland et al., 2003): under a low input regime,
hardy wheat cultivars yields are reasonably stable
(within 10 to 8 t ha)1), have acceptable grain
protein contents (10.5–11.5%), and are produced
at costs reduced from 400 to 150 euros ha)1

compared to an intensive production system. In 46
(i.e., 73%) of the 63 tested combinations of
(year� crop management pattern� cultivar), low-
input crop management with hardy varieties gen-
erated the highest net returns. Thus in about 73%
of the cases, host plant resistance to the wheat
multiple pathosystem is mobilised as a tool for
system stabilisation – instead of pesticides for
system perturbation, and yield-driven control.
Interestingly, the effort appears to be led by
breeders; that economists, agronomists, and
pathologists contribute to designing production
systems that suit a seed-based technology is mak-
ing an experience of this kind very promising, not
only because of the science it involves, but because
of the promise to deliver it entails.

Perspectives

Epidemiological guilds

The example of approach used above to model the
dynamics of simultaneous disease epidemics epi-
demics invites the question of how to best address
the temporal and spatial structure of multiple
pathosystems whose disease components may be
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numerous, or variable. Nelson and Campbell
(1993) addressed a very diverse multiple patho-
system. Aside from rendering their study doable,
their approach to quantify and analyse several
foliar diseases collectively is an important choice,
which carries the simplifying, and new, assumption
that several diseases may be considered as an
aggregate, from an epidemiological standpoint.
One approach to analysing complex, multiple
pathosystems may thus be grounded on the con-
sideration of epidemiological guilds, rather than of
individual pathogens. Definition of these guilds
and clustering individual disease components in
them could make use of results achieved from
comparative epidemiological work (Kranz, 1974,
1980). Simplification of this kind, if successful,
would have the merit of accommodating quanti-
tative epidemiological knowledge on individual
disease components, while also generating a com-
mon framework for understanding and manage-
ment of multiple pathosystems that differ in their
biological components, but share common epide-
miologically functional traits.

Guilds of harmful agents

This concept has proven useful. The notion that
harmful organisms share common injury mecha-
nisms (Rabbinge and Rijsdijk, 1981; Boote et al.,
1983) enables us to bring together organisms that
otherwise profoundly differ. This has found sev-
eral applications, in designing field quantification
methods, field experiments to measure damage,
and of course, simulation models. These in turn
have found strategic applications for research
prioritisation towards multiple pathosystems, for
assessing the impact of new crop management and
changes in production situations, and of disease
management tools. It also has allowed a shift of
thinking, from assessment of damage, to projec-
tion of yield gains (Willocquet et al., 2004), that is,
a shift from what has been lost because of current
practices, to what could be gained from future
options.

Syndromes of production, syndromes of disease

The term syndrome has two definitions (Babcock
Grove, 1961): (i) a group of symptoms or signs
typical of a disease, disturbance, condition, or le-
sion in animals or plants, and (ii) a set of con-

current things. Andow and Hikada (1989) used the
term to both describe different patterns of man-
agement of rice in Japan, and the plant health
consequences this difference in production situa-
tions has on rice diseases. Physicians do not differ
in their use of the word (e.g., Peto, 2001; Zimmet
et al., 2001). The detection of linkages between
production situations and injury profiles is analo-
gous to considering corresponding syndromes of
production and syndromes of diseases. This rep-
resents an avenue towards improving plant health,
i.e., better management of multiple pathosystems,
via improvements of management. Considering
epidemiological guilds and guilds of harmful
agents might be an interesting direction to take
towards that aim.
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and Bianchini A (2000) Dinâmica de area foliar, desfolha e

variaveis de area foliar sadia em feijoeiros com infecçoes
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odes d’enquête et étude descriptive: Les conditions cultu-

rales et les principales maladies. Netherlands Journal of

Plant Pathology 93: 167–188.

Savary S (1987b) The effect of age of the groundnut crop on the

development of primary gradients of Puccinia arachidis foci.

Netherlands Journal of Plant Pathology 93: 15–24.

Savary S and Servat E (1991) Un modèle simplifié de simulation
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