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Preface

This book describes new theoretical advances made in recent years that yielded new
analytical solutions of the rotating shallow-water equations. The intended reader-
ship of the book consists of graduate students and scientists in the fields of geo-
physical fluid dynamics, physical oceanography, dynamical meteorology, and
applied mathematics who study or employ the shallow-water equations. The new
dispersion relations and meridional amplitude structures of the waves derived in this
book can be applied to observations in the atmosphere and ocean and they also
provide alternatives to the spherical harmonics basis of global-scale spectral
numerical models. The book originates from years of teaching courses in dynamical
meteorology and physical oceanography at the Hebrew University of Jerusalem as
well as at the University of Miami and Johns Hopkins University during my sab-
batical stays there. In textbooks of Physical Oceanography and Dynamical
Meteorology the theory of Kelvin, Inertia-Gravity (Poincaré) and Planetary
(Rossby) Waves are developed starting from a different set of equations for each
wave type instead of a single set of equations in which a certain parameter is set to a
specific value or limiting value (e.g., zero, one, infinity). An additional issue with
the traditional approach is that equatorial waves cannot be obtained from the
mid-latitude waves by setting to zero the central latitude in the solutions for
mid-latitude waves. This can be readily verified by realizing that the harmonic
meridional structure of mid-latitude waves’ amplitudes does not reduce to the
Hermite functions structure of equator waves when the central latitude of the
mid-latitude theory is set to zero.

In this book, I attempt to bridge the gap between equatorial wave theory and
mid-latitude wave theory by developing a Schrödinger eigenvalue equation whose
eigenvalues yield the phase speeds and the eigenfunctions yield the amplitude
structure of both Inertia-Gravity and Planetary waves. This Schrödinger equation
formulation was originally applied in 1966 by Taro Matsuno in his development of
wave theory on the equatorial β-plane. The same approach is extended to
mid-latitude wave theory which is traditionally developed on the f-plane for all
waves except Rossby waves for which the theory is developed on the mid-latitude
β-plane. In the unified approach, all waves are developed on the latter plain. In this
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approach, Kelvin waves are a particular wave type that solves a degenerate case
where the second-order eigenvalue problem degenerates to a first-order equation
that determines the amplitude meridional structure, while the dispersion relation is
determined from a wave equation in the zonal direction that is identical to the wave
equation for gravity waves of the shallow water equations in one-dimension without
rotation.

In contrast to Cartesian coordinates where the Schrödinger eigenvalue equation
approach to shallow water waves offers an alternate (perhaps more elegant, general,
and accurate) derivation to the traditional harmonic derivation, the application of
this approach in spherical coordinates yields analytical results that cannot be
derived otherwise. The first to recognize the importance of formulating an eigen-
value equation for the rotating shallow-water equations over a sphere was
Michael S. Longuet-Higgins who successfully derived such equations in his sem-
inal 1968 paper on “Laplace Tidal Equations Over a Sphere.” His detailed analysis
and extensive numerical calculations (which is amazing considering the meager
computing power that was available to him in the 1960s) of the exact equation
make it clear that no progress can be made on the subject without first simplifying
the eigenvalue equations. The necessary simplification was recently achieved for
parameter values typical to earth by maintaining terms in the spherical problem that
have counterparts on a plane. The accuracy of the solutions of the resulting sim-
plified eigenvalue equation on a sphere provides the justification for the approxi-
mation more than the formal asymptotic expansion.

My research associate, Dr. Andrey Sigalov, along with my graduate students at
the Hebrew University of Jerusalem, Shira Rubin, Yair De-Leon, and Ofer Shamir,
have contributed greatly to the development of the ideas presented here and to the
analysis and numerical calculations that are integral elements of the theory and its
presentation to the readers of this book. I am indebted to them for their help in
making the theoretical advances and consider them my partners in this endeavor.
Though they share with me the major theoretical advancement, I am solely
responsible for errors that have not been uprooted from this monograph. My col-
league and close friend Prof. Hezi Gildor of the Hebrew University of Jerusalem
encouraged me to write this book. I am grateful to him for the impetus he provided
to me when the idea of writing this book was first conceived and for his encour-
agement during the time when this book was written. The Bogen Family
Foundation supported my sabbatical stay at University of Pennsylvania during the
spring semester of 2015 during which this book was completed.

Jerusalem
June 2015
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Chapter 1
Introduction

This chapter reviews the state of the shallow water wave theory as it appears in
textbooks on the subject, which was developed in recent decades. In this traditional
theory, the meridional structure of the amplitude of the zonally propagating waves
is described only by harmonic functions (sin, cos, or exponentials) in mid-latitudes.
This mid-latitude amplitude structure differs qualitatively from that on the equa-
torial β-plane where the structure is described by Hermite functions. In sharp
contrast to these two planar theories, no explicit/analytic expressions exist for
zonally propagating waves on a sphere and the meridional amplitude structure can
only be calculated numerically for known values of both the zonal wave number
and the phase speed (or frequency). The governing equations employed in the
derivations of the waves’ dispersion relation and meridional amplitude structures
employ somewhat different approximations that vary with the geometry under study
(e.g., a mid-latitude f-plane, a β-plane, or a sphere) and with the type of wave and in
order to obtain a coherent scenario for all of these geometries and wave types, it is
useful to start with a review of the existing theories.

The vectorial form of the linearized shallow water equations (SWE) in the
presence of rotation (that adds the Coriolis term to the acceleration in the
momentum equations) is:

@V
@t

þ f k̂ � V ¼ �grg

@g
@t

¼ �Hr�V;
ð1:1Þ

where V is the horizontal velocity vector (i.e., the velocity along a plane perpen-
dicular to the unit vector k̂ oriented parallel to the radial/vertical direction) whose
components in the zonal (λ, longitude, East) and meridional (ϕ, latitude, North)
directions are u and v, respectively; f is the latitude-dependent Coriolis frequency
(¼ 2X sin/, where Ω is earth’s rotation frequency); H is the constant mean
thickness of the fluid; η is the deviation of total height, h, from H (i.e., h = H + η is
the actual upper surface of the fluid, which varies in space and time); and g is the
gravitational constant (or the reduced gravity in an equivalent barotropic, two-layer
fluid). The set (1.1) is also known as Laplace tidal equation (LTE) as it describes the

© The Author(s) 2015
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horizontal dynamics in response to tidal forcing (e.g., the gravitational potential in
the ocean or the thermal forcing in the atmosphere) that affects directly the
dynamics in the vertical (radial in the case of a sphere) direction only.

Equation (1.1) provides the very basic description of small amplitude fluid
dynamics in the presence of rotation. The first (vectorial) equation is the application
of Newton’s second law of motion to a unit volume of fluid of constant (potential)
density in a rotating frame of reference (where the frequency of rotation is Ω)
subject to the pressure gradient force when the pressure is in hydrostatic balance.
The second equation guarantees the conservation of mass when the fluid is assumed
to be incompressible. This set is nothing but Euler’s equations for a
two-dimensional flow where the linearized acceleration in the rotating frame
includes the Coriolis term that accounts for the transformation to an inertial frame
where Newton’s second law of motion should be applied.

Wave solutions of (1.1) were found in a variety of coordinate systems, physical
setups and geometries. Most of the theoretical advances in this field were made in
Cartesian coordinates that are relevant to a tangential plane to earth’s ellipsoidal
surface at some latitude ϕ0 (Fig. 1.1). This is a natural outcome given the relative
simplicity afforded by this coordinate system compared to the much more complex
spherical coordinates. In mid-latitudes, the tangential plane in which the Coriolis
frequency, f, is taken to be a constant, f0, is called the f-plane; when f is assumed to
vary linearly with the northward coordinate, y, i.e., when f ¼ f0 þ by (where b ¼
@f =@y is taken to be a constant) the same plane is called the β-plane. Wave theories
were also developed on the unbounded equatorial β-plane (where f0 is set equal
to 0), on the whole sphere, and on a general two-dimensional curved surface of

Fig. 1.1 The tangential plane
to earth at the central latitude
ϕ and the Cartesian coordinate
system (East, North) = (x, y)
in this plane. The
perpendicular (vertical)
coordinate, z, is aligned
parallel to earth’s radius that
passes through the tangential
point with positive values
directed away from earth’s
center

2 1 Introduction



unspecified geometry (i.e., an invariant theory). In the next subsections, I sum-
marize the classical (and in cases overly simplistic) results obtained in various
setups in these coordinate systems.

1.1 Cartesian Coordinate

In Cartesian coordinates (x, y) where x points eastwards (and the velocity com-
ponent in this direction is u) and y points northwards (and the velocity component
in this direction is v), system (1.1) takes the form:

@u
@t

� f0 þ byð Þv ¼ �g
@g
@x

;

@v
@t

þ f0 þ byð Þu ¼ �g
@g
@y

;

@g
@t

¼ �H
@u
@x

þ @v
@y

� �
:

ð1:2Þ

In this set, f0 ¼ 2X sin/0 and b ¼ @f =@y ¼ 2X cos/0=a where ϕ0 is the central
latitude at which the plane is tangential to earth and a is earth’s radius (see Fig. 1.1).

1.1.1 Waves in a Mid-latitude Channel

Three wave types are known to exist in a mid-latitude zonal channel of width L, i.e.,
when the meridional domain extends from y ¼ �L=2 to y ¼ L=2 and the northward
velocity component, v, is required to vanish at y ¼ �L=2 on the β-plane. The wave
types are derived by letting the solution for u, v, and η in (1.2) vary in the form
Re Aeiðkxþny�xtÞ� �

where A is a (possibly complex) constant amplitude and where
the meridional wave number n is quantized so as to guarantee that v vanishes at
y ¼ �L=2 (e.g., when A is real, n ¼ 2N þ 1ð Þp=L where N is an integer number:
N ¼ 0; 1; 2; 3; . . .). The designation Re{} is omitted when it is trivially implied by
the context, and when the relative phases of different functions have to be noted the
real sin and cosine functions will be used instead of the complex exponential form.
The dispersion relation ω(k, n) and the relations between the amplitudes of u, v and
η provide the defining characteristics of the various wave types. For a detailed
derivation of the mid-latitude waves, the reader is referred to textbooks, e.g., Vallis
(2006), Pedlosky (1987) and Cushman-Roisin (1994).

The first wave type is Kelvin waves that are derived by letting v = 0 everywhere
in (1.2) so the boundary conditions at y ¼ �L=2 are trivially satisfied for any value
of the meridional wave number, n, i.e., n is not quantized and can be complex.
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Setting v = 0 in the first and last equations of (1.2) and eliminating one of them
yield the dispersion relation of gravity waves of a non-rotating system:

x ¼ �
ffiffiffiffiffiffiffi
gH

p
k , Cg � x

k
¼ �

ffiffiffiffiffiffiffi
gH

p
; ð1:3Þ

where Cg is the (gravity wave) phase speed in the x-direction. Specifically,
cross-differentiating the first and last equations to eliminate either u or η yields the
second-order wave equation htt ¼ gHð Þhxx where θ is either η or u so the

(x, t) variation of u and η is given by eik x�Cgtð Þ, while the y-dependence of their
amplitudes is identical since for v = 0 the first equation in (1.2) yields Cgu ¼ gg.
The second equation in (1.2) then determines the y-dependence of the amplitudes of

u and η which is given by: e�
1
Cg

R
f0þbyð Þdy ¼ e�

1
Cg

f0yþby2

2

� �
. With Cg ¼ � gHð Þ1=2, the

zonal velocity and height fields of these waves are given by (η0 is an arbitrary
amplitude of η(x, y, t)):

v ¼ 0;

u ¼ g
Cg

g0e
�1
Cg

f0yþby2

2

� �
eik x�Cgtð Þ;

g ¼ g0e
�1
Cg

f0yþby2

2

� �
eik x�Cgtð Þ:

ð1:4Þ

The two signs of Cg define two waves: the amplitude of the wave with Cg ¼
þ gHð Þ1=2 [ 0 decays when y increases so its amplitude is maximal at y ¼ �L=2,

while the amplitude of the wave with Cg ¼ � gHð Þ1=2\0 decays with the decrease
in y so its amplitude is maximal at y ¼ þL=2.

The second type of waves is Inertia-Gravity waves (also known as Poincaré
waves) and these waves are derived from (1.2) by setting u; v; gð Þ ¼
u0; v0; g0ð ÞRe ei kxþny�xtð Þ� �

where the (high) frequency satisfies x� f0 � bL=2 so
the local acceleration is larger than the nearly constant, Coriolis frequency.
Substituting these expressions in (1.2) and requiring that the resulting linear
equations for the amplitudes u0, v0 and η0 have a nonzero solution then yields the
dispersion relation of these waves:

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH k2 þ n2ð Þ þ f 20

q
: ð1:5Þ

The frequency in (1.5) is the Pythagorean sum of the inertial frequency f0 and the

gravitational frequency gHð Þ1=2K given in (1.3) where K ¼ k2 þ n2ð Þ1=2 is the total
wave number, so for large k, (1.5) approaches (1.3). The u, v and η fields are given
by:

4 1 Introduction



u ¼ v0
x2 � gHk2

xf0 sin
Np
L

yþ L
2

� �� �
� nkgH cos

Np
L

yþ L
2

� �� �� �
cos kx� xtð Þ;

v ¼ v0 sin
Np
L

yþ L
2

� �� �
sin kx� xtð Þ;

g ¼ v0
x2 � gHk2

kf0H sin
Np
L

yþ L
2

� �� �
þ xnH cos

Np
L

yþ L
2

� �� �� �
cos kx� xtð Þ;

ð1:6Þ

where Np=L;N ¼ 1; 2; 3. . . is the meridional wave number, n and v0 is an arbitrary
normalization constant. Note that the denominator of the expressions for u and
g i:e:; x2 � gHk2 never vanishes since according to (1.5) it equals the definite
positive combination gHn2 þ f 20 .

The third wave type is Planetary waves (also known as Rossby waves) that are
also obtained from (1.2) by setting u; v; gð Þ ¼ u0; v0; g0ð Þ ei kxþny�xtð Þ, but with low
frequency, x 	 f0, so the latitude-dependent part of f, i.e., βy (which is bounded by
βL/2), cannot be neglected. To first order in β (assumed to be a small parameter), the
dispersion relation of these waves is:

x ¼ �bk

k2 þ n2 þ f 20
gH

; ð1:7Þ

which vanishes for β = 0, in which case it degenerates to the steady geostrophic
balance on the f-plane. To zeroth order in β, the u, v and η fields are:

u ¼ �Np
L

1
k
v0 cos

Np
L

yþ L
2

� �� �
cos kx� xtð Þ;

v ¼ v0 sin
Np
L

yþ L
2

� �� �
sin kx� xtð Þ;

g ¼ � f0
gk

v0 sin
Np
L

yþ L
2

� �� �
cos kx� xtð Þ;

ð1:8Þ

where Np=L; N ¼ 1; 2; 3; . . . is the meridional wave number, n and v0 is an arbi-
trary normalization constant. In this solution, both v and η vanish at y ¼ �L=2
though only v is required to do so.

Figure 1.2 shows the dispersion relation of the three wave types: Top panel:
Non-dispersive Kelvin waves, (1.3), and Inertia-Gravity waves, (1.5); Bottom
panel: low-frequency Planetary waves, (1.7). The scales of the ordinates in the two
panels are drastically different.

Three remarks should be made with regard to the above expressions by the
classical mid-latitude theory.

1. Both Kelvin waves and Inertia-Gravity waves are traditionally derived from
(1.2) by setting β = 0, i.e., on the f-plane. While the extension of Kelvin waves
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to the β-plane in (1.4) is fairly simple, this is not all the case for Inertia-Gravity
waves and it is unclear how the dispersion relation of these waves and the
y-structure of their amplitude will be altered for β > 0.

2. The expressions for the dispersion relation and amplitude structure of Planetary
waves contain only the two constant f0 and β, while the original set of equations,
(1.2), contains a y-dependent coefficient, f(y), that varies linearly with y. While
in general, a linear function is fully describable by two constants, the solutions
of a differential system with non-constant coefficients can never be harmonic
functions (the reader should consider sinðnyÞ and cosðnyÞ) since these functions
solve only differential equations that have constant coefficient.

3. As mentioned above, the solution (1.8) for Planetary waves is accurate only to
zeroth order in β and setting β = 0 in the dispersion relation of these waves,
(1.7), shows that (1.8) degenerates to the steady geostrophic solution on the
f-plane for b ¼ 0 ¼ x. Corrections to (1.8) were calculated in Heifetz et al.
(2007) by decomposing the solution into the geostrophic part, (1.8) with x ¼ 0,

Fig. 1.2 The dispersion relations x=f0 as a function of kRd ðfor Rd ¼ gHð Þ1=2=f0 ¼ 600 kmÞ for
the indicated meridional mode numbers, n, for Kelvin and Poincare waves (upper panel) and
Rossby waves (lower panel) in a 1500 km wide channel centered on 45°

6 1 Introduction



and an ageostrophic part which is proportional to β. By solving higher order
terms in β encountered when (1.8) is substituted in (1.2), Heifetz et al. (2007)
showed that for small values of b ¼ 1=2bL=f0 (i.e., when the maximal relative
change in f across the channel is small), the correction terms have the form of
low-order polynomials in y times sinðnyÞ and cosðnyÞ.

1.1.2 Waves on the Equatorial β-Plane

The equatorial case is obtained from (1.2) by setting /0 ¼ 0, i.e., f0 ¼ 0 and
b ¼ 2X=a. A complete theoretical study of case of an infinite (i.e., unbounded)
β-plane is given in Matsuno (1966) and no modifications to this seminal and
thorough contribution were brought up since its publication nearly 50 years ago. At
about the same time, Lindzen (1967) rederived Matsuno’s results on Planetary and
Inertia-Gravity waves in the forced problem in which a more realistic form of the
vertical variation is included, while Holton and Lindzen (1968) added the special
Kelvin wave solution to that same problem by setting v = 0. With proper scaling,
the eigenvalue equation that determines the frequency and meridional variation of
the amplitudes of the zonally propagating wave solutions is precisely that of
Harmonic Oscillator of Quantum Mechanics. The immediate implication of this
elegant formulation is that the amplitude eigenfunctions are Hermite functions (i.e.,
Hermite polynomial multiplied by a Gaussian) and the eigenvalues equal 2n + 1,
where n = 0, 1, 2, … is the meridional mode number. These eigenvalues determine
the phase speeds of Planetary and Inertia-Gravity waves via the roots of a cubic

polynomial whose coefficients include the zonal wave number, k, and Cg ¼ ðgHÞ1=2.
Kelvin wave with the same dispersion relation as in (1.3) can be formally obtained
from this dispersion relation by setting n = −1 but can be also developed directly
from the original equations by setting vðyÞ ¼ 0.

The n = 0 case of a westward-propagating wave of Matsuno’s theory yields a
special wave type that has no counterpart in the mid-latitude theory—the mixed
mode. On the dispersion diagram shown in Fig. 1.3, this mode appears as an
Inertia-Gravity wave at small k (intersecting the frequency ordinate at a finite value)
and as a Planetary wave at large k (approaching the abscissa as k tends to infinity).
The nature of the transition from an Inertia-Gravity wave to a Planetary wave at the
wave number where the wave’s phase speed equals −Cg is not quite clear.

Channel theories have also been developed on the equatorial β-plane, but these
were primarily numerical (Cane and Sarachik 1976, 1977, 1979) or combined
numerical/analytical (Erlick et al. 2007). The latter study has demonstrated that the
mixed mode consists of two separate modes even in a channel that extends to
1.4 rad (channel half-width of 1.4a), i.e., far beyond the range of applicability of the
equatorial β-plane approximation.

Two fundamental issues need to be pointed out. The first point arises when one
compares the results of the equatorial β-plane with those in mid-latitudes. Even
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though the limit /0 ¼ 0 (i.e., f0 ¼ 0) is a regular limit of (1.2), this is not the case in
the solutions since by setting f0 ¼ 0 in the amplitude structures (1.6) and (1.8), one
does not obtain the Hermite functions of the equatorial theory (in fact, the Harmonic
Inertia-Gravity waves in mid-latitudes are hardly modified by setting f0 = 0). This
dissonance between the oscillatory solutions in mid-latitudes and fast decaying
Hermite functions on the equator is unrelated to the quantization of the meridional
wave number, n, in the mid-latitude channel theory—it only reflects the overly
simplistic manner in which the variation of f(y) is treated in the mid-latitude theory
where f(y) is taken to be a constant (= f0) even though its derivative (i.e., β) does not
vanish.

The second issue has to do with the relevance of the mixed mode of the infinite
equatorial β-plane to a channel and to a sphere. Since this mode remains separated
(i.e., there is no mixed mode) in a channel with walls located close to the poles, one
wonders whether this mode is relevant at all to a sphere. An alternative view is that

3
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Fig. 1.3 The dispersion relation of zonally propagating waves on the equatorial β-plane, eiðkxþwtÞ,
i.e., eastward-/westward-propagating waves have negative/positive frequencies, respectively (from
Matsuno 1966). Thin solid lines eastward-propagating Inertia-Gravity waves. Thin dashed lines
westward-propagating Inertia-Gravity waves. Thick solid lines Planetary (Rossby) waves. Thick
dashed line (n = −1) Kelvin wave. The westward-propagating n = 0 wave (positive frequency)
changes from thin dashed (Inertia-Gravity) to thick solid (Planetary) lines at the intersection point
with a reflection of the n = −1 line (Kelvin wave). Permission from Meteorological Society of
Japan: J. Met. Soc. Japan, 1966, 44(1), 25–43
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it is merely an artifact of the planar approximation to earth’s curved shape in which
sinð/Þ of the Coriolis frequency is expanded to first order, while the tanð/Þ term of
the divergence operator in the continuity equation (the second equation in (1.1), see
also the third equation in (1.9) below) is kept at zeroth order only in ϕ, i.e., the
linear y-term that arises from the expansion of tanð/Þ is neglected altogether.

1.2 The Eigenvalue Equation for Waves on a Rotating
Sphere

In spherical coordinate, the set (1.1) is known as LTE and it takes the form:

@u
@t

� 2Xv sin/ ¼ � g
a cos/

@g
@k

;

@v
@t

þ 2Xu sin/ ¼ � g
a
@g
@/

;

@g
@t

¼ � H
a cos/

@u
@k

þ @ v cos/ð Þ
@/

� �
:

ð1:9Þ

In the seminal study of Longuet-Higgins (1968), zonally propagating wave
solutions of this set, ei kk�xtð Þ, were transformed into various eigenvalue equations
by eliminating two of the three variables u, v and η. Since the first equation in the
set (i.e., the equation for the time evolution of u) does not contain derivatives with
respect to ϕ, the assumption of zonally propagating wave solutions results in a
2nd-order differential equation in ϕ for the meridional structure of the waves’
amplitude. By eliminating of u and v from (1.9), Longuet-Higgins (1968) derived
the following eigenvalue equation for η:

N gð Þ ¼ cg ð1:10Þ

where the linear second-order differential operator, N, is given by:

N ¼ 2X
x cos/

@

@/
4X2

4X2 sin2 /� x2
k sin/þ x

2X
cos/

@

@/

� �	 
�

þ 4X2k

x2 � 4X2 sin2 /

xk
2X cos/

þ sin/
@

@/

	 
�

and where the eigenvalue, γ, is defined by: c ¼ 4X2a2
gH : This parameter is also known

as Lamb number or Lamb parameter.
This formidable eigenvalue equation is too complex to be solved analytically,

but even if an eigensolution of this equation is somehow found and both the
eigenvalue cðk;xÞ and the corresponding eigenfunction gð/; k;xÞ (i.e., the
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function gð/Þ with given k and x) are known for any values of k and ω it is not
clear how to invert the cðk;xÞ relation to obtain the dispersion relation xðk; cÞ.
Solutions of the eigenvalue equation (1.10) were calculated numerically in
Longuet-Higgins (1968) and subsequently in Moura (1976), but with the exception
of some particular asymptotic cases (e.g., non-rotating or near the equator) these
numerical calculations have not yielded explicit expressions for the dispersion
relations and meridional structures of these waves.

1.3 Invariant Theory and Its Application to a Sphere
and a Spheroid

Invariant wave theories of the linear shallow water equations (LSWE) involve more
abstract tools that need to be adapted from the field of differential geometry and
applied to geophysical fluid dynamics. The geometry-independent wave theories
derived from these adaptations can then be applied to complex, but relevant,
geometries such as a sphere or a spheroid (i.e., an ellipsoid of revolution) for certain
types of waves. Müller and O’Brien (1995) were the first to employ a differential
geometry formulation of the LSWE and this formulation underscored the essential
role played by the prolate spheroidal angular wave functions (see Abramowitz and
Stegun 1972) in wave theory of LSWE on a sphere. However, the theory developed
in Müller and O’Brien (1995) failed to provide explicit expressions for the dis-
persion relation and the spatial structure of either Inertia-Gravity waves or Planetary
waves. Paldor and Sigalov (2011) formulated the LSWE on a smooth 2D
Riemannian surface of arbitrary shape with a general Coriolis parameter oriented
locally perpendicular to that surface. Though this is also implicit in the vector
formulation of the LSWE, e.g., (1.1), the tools available from 3D vector analysis are
not helpful in the investigation of 2D problems on curved surfaces. The 2D for-
mulation enabled the application of tensor calculus that yielded approximate
expressions for the dispersion relation and the meridional amplitude structure for
both Inertia-Gravity and Planetary waves where the distinction between the two
wave types is based on the magnitude of their frequencies. The general approximate
formulae obtained from the application of these ideas have yielded explicit
expressions on a plane and on a sphere where on a plane the resulting expressions
have degenerated to the known expressions while on a sphere they degenerate to the
particular expressions derived by Longuet-Higgins (1968). The same general
expressions derived by Paldor and Sigalov (2011) were subsequently applied by
Paldor and Sigalov (2012) to spheroids and this application demonstrated that the
errors introduced by approximating earth’s spheroid shape by a sphere are bounded
by earth’s eccentricity. The implication of this estimate is that the 0.3 % error
associated with earth’s eccentricity is too small to be of importance in the appli-
cations of the spherical wave theory to the rotating earth.
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1.4 A Unified Approach to Wave Theory of the Shallow
Water Equations

With the exception of the invariant approach described in Sect. 1.3 in each of the
setups described above in Sects. 1.1 and 1.2, the theory was developed using a
different eigenvalue formulation: Harmonic Oscillator of Quantum Mechanics on
the equator, a (nearly) constant coefficient equation in mid-latitudes and a highly
complex and unsolvable equation on the entire sphere. This is surprising in view
of the fact that the basic set, (1.1), is identical in all cases as is the form assumed for
the solution (zonally propagating wave) which makes one wonder whether a unified
approach that yields a similar, if not identical, eigenvalue equation in all the cases
outlined above can be developed.

While the unsolvable eigenvalue equation of waves on the entire sphere is
unique to the SWE in spherical coordinates the eigenvalue equation in a
mid-latitude channel is a genuine constant coefficient equation on the f-plane where
Inertia-Gravity and Kelvin waves exist. Even in the case of Planetary waves whose
frequency is linear with β, the solution behaves essentially as a solution of constant
coefficient equation in which two of the constants are f0 that replaces f(y) every-
where and bð¼@f =@yÞ which is assumed to be nonzero even though f is set to a
constant elsewhere. It is unlikely that any one of these approaches can be applied to
construct a general paradigm for waves on the rotating earth in all geometries: The
first is too complex to yield explicit solutions and the latter is too simple to provide
solutions other than purely oscillatory ones. Only the approach that leads to the
eigenvalue equation of equatorial waves, developed in Matsuno (1966) might be
generalized to yield wave solutions in other geometries (spherical) and setups
(bounded domains such as channels). This approach has also yielded exact solutions
of a second-order eigenvalue equation whose eigenvalues yielded expressions for all
three types of waves: Planetary, Inertia-Gravity and Kelvin though Kelvin waves
were derived as a singular case of the equation (i.e., the unphysical n = −1 case).

In order to generalize to other problems the approach employed by Matsuno
(1966) in his construction of the eigenvalue equation for waves on the infinite
equatorial β-plane, it is helpful to highlight the essential elements of this approach.

1. The eigenvalue equation is obtained by letting the solutions vary as zonally
propagating waves (i.e., eik x�Ctð Þ on the equatorial β-plane) which yields a
second-order eigenvalue equation in y.

2. In the planar equatorial problem, the eigenvalue equation has the form of a
time-independent Schrödinger equation in which the potential is given by the
square of the latitude-dependent Coriolis frequency.

3. The energy of the Schrödinger equation, En, yields expressions for the fre-
quencies of three wave types via the roots of a cubic C(En) relation. The three
families are as follows: eastward- and westward-propagating Inertia-Gravity
waves and westward-propagating Planetary waves.
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In the rest of this book the Schrödinger equation approach developed by
Matsuno (1966) on the infinite equatorial β-plane is generalized to a channels on the
mid-latitude and equatorial β-plane as well as to the entire sphere and to channels
on a sphere. In addition, the case of an infinite equatorial β-plane is re-examined as
the limit of an equatorial channel when the channel width becomes large. In
addition to providing explicit solutions on a sphere this new approach also yields
phase speeds and meridional structures other than those described above in planar
problems and for all wave types, including Harmonic equatorial waves (in addition
to the previously found Hermite waves) and Trapped (i.e., not Harmonic) waves in
mid-latitudes.
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Chapter 2
Waves in a Channel on the Mid-latitude
β-Plane

In this chapter, Trapped wave solutions of system (1.2) subject to the boundary
conditions vðy ¼ �L=2Þ ¼ 0 will be derived. The amplitudes of these waves decay
with distance from the channel wall located closer to the equator (i.e., y = −L/2 in
the Northern Hemisphere and y = +L/2 in the Southern Hemisphere) which will be
referred to as the equatorward wall. These Trapped wave solutions supplement the
Harmonic waves of Sect. 1.1.1 whose amplitudes spread over the entire channel.
Trapped waves dominate the solution when the channel width L is much larger than

the radius of deformation Rd ¼ gHð Þ1=2=ð2X sin/0Þ.
Before attempting to solve the set (1.2), it is instructive to non-dimensionalize it

in order to reduce the number of parameters that determine the solution. The scaling
procedure is not unique and one simple way of non-dimensionalizing (1.2) is to
scale time, t, on ð2XÞ�1; x and y on a, earth’s radius; u and v on 2Xa; and η on H,
the mean layer’s thickness. With this scaling sin/0 and cos/0 designate f0 and β,
respectively, while the non-dimensional y is the latitude angle measured relative to
/0 (since the latitude at a dimensional distance ydim is /0 þ ynondim ¼ /0 þ ydim=a).
These scales transform the set (1.2) to the non-dimensional form (where variables
are designated by the same symbols as their dimensional counterparts):

@u
@t

� sin/0 þ y cos/0ð Þv ¼ �a
@g
@x

;

@v
@t

þ sin/0 þ y cos/0ð Þu ¼ �a
@g
@y

;

@g
@t

¼ � @u
@x

þ @v
@y

� �
;

ð2:1Þ

where a ¼ gH=ð2XaÞ2 is the only parameter of this non-dimensional differential
system that plays the role of g in the dimensional system (1.2). This number is the
square of non-dimensional speed of Gravity waves and its inverse is known as
Lamb number or Lamb parameter. On earth, 2Xa ¼ 931 m/s and since the speed of

gravity waves, gHð Þ1=2, varies from 2 to 3 m/s in a baroclinic ocean to about
200 m/s in a barotropic ocean/atmosphere, the value of α varies between 5 × 10−6
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and 5 × 10−2. The boundary conditions imposed on the solutions of (2.1) are
vðy ¼ �d/=2Þ ¼ 0 where d/ ¼ L=a is the non-dimensional channel width
expressed as a meridional angle (i.e. in radians).

Since there are no x- or t-dependent coefficients in system (2.1) Fourier theorem
guarantees that its solutions can be written as the sum (more generally as an
integral) of zonally propagating waves that vary as A yð Þeikðx�CtÞ where k is the wave
number, C is the phase speed (so its frequency is x ¼ kC) and A(y) is
latitude-dependent amplitude. The amplitude structure function A(y) and the dis-
persion relation C(k) have yet to be determined. For such zonally propagating wave
solutions, system (2.1) becomes:

0 f ðyÞ a
f yð Þ
k2 0 a

k2
@
@y

1 � @
@y 0

2
64

3
75 ~u

~V
~g

2
4

3
5 ¼ C

~u
~V
~g

2
4

3
5 ð2:2Þ

where ~V ¼ iv
k ; f yð Þ ¼ sin/0 þ y cos/0; and the ~u yð Þ; ~V yð Þ; ~g yð Þ� �

column vector is
the y-dependent amplitudes of u, v and η (the tilde designation of the amplitudes
will be omitted from this point onwards since we will refer only to the amplitudes
when writing u, V and η).

An examination of the first equation in (2.1) or (2.2), i.e., the x-momentum
equation, shows that for traveling wave solutions, it yields the following algebraic
relation between u, v and η:

u ¼ f ðyÞ
C

V þ a
C
g ¼ sin /0 þ y cos /0

C
V þ a

C
g: ð2:3Þ

This algebraic (i.e., not differential) relation is a reflection of the fact that the
linearized x-momentum equation does not contain y-derivatives.

Substituting the expression for u, (2.3), in the other two equations in (2.2) yields
the second-order differential system:

dV
dy

¼ sin/0 þ y cos/0

C
V þ a

C
� C

� �
g;

dg
dy

¼ k2C2 � sin/0 þ y cos/0ð Þ2
aC

V � sin/0 þ y cos/0

C
g:

ð2:4Þ

This system can be transformed to a single, second-order, equation for either
V or η by eliminating the other variable. However, in the special case where the
constant coefficient of η in the dV/dy equation, a� C2ð Þ=C, vanishes, this elimi-
nation cannot be carried out since the equation for V decouples from the η-equation.
This special case yields Kelvin waves.
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2.1 Kelvin Waves

When C2 ¼ a, the coefficient of η in the dV/dy equation vanishes so V satisfies a
first-order equation and the only way for this solution to vanish at the two channel
walls, y ¼ �d/=2, is for V(y) to vanish everywhere. In this case, η can be solved by
setting V = 0 in the second equation whose solutions are the non-dimensional
counterpart of Kelvin waves in a channel, (1.4), that is,

V ¼ 0;

u ¼ a
C
g0e

� sin/0þcos/0yð Þ2
2C cos/0 eik x�Ctð Þ;

g ¼ g0e
� sin/0þcos/0yð Þ2

2C cos/0 eik x�Ctð Þ;

ð2:5Þ

where C ¼ �a1=2. As in the dimensional case, the amplitude of the
eastward-propagating wave ðC ¼ þa1=2Þ decays with the increase in y while that of
the westward-propagating wave ðC ¼ �a1=2Þ decays with the decrease in y.

2.2 Inertia-Gravity and Planetary Waves

In the general case, when C2 6¼ a, one can eliminate either V or η from (2.4) to
obtain a single second-order equation. However, since the boundary conditions
involve only V it is natural to eliminate η and retain V as the only dependent
variable of the sought equation. To eliminate η one differentiates the V-equation
with respect to y and employs the original equations in (2.4) to eliminate the terms
proportional to dg=dy and η from the resulting equation. It turns out that the
elimination yields an equation that has no dV=dy term and the resulting
second-order equation and its accompanying boundary conditions are:

d2V
dy2

þ x2

a
� cos/0

C
� k2 � sin/0 þ y cos/0ð Þ2

a

 !
V ¼ 0; V y ¼ � d/

2

� �
¼ 0:

ð2:6Þ

This is a classical eigenvalue problem (equation and boundary conditions)
whose solutions are determined by imposing the boundary conditions on the gen-
eral solutions of the differential equation. The general solution of the equation in
(2.6) is a linear combination of parabolic cylinder functions (Abramowitz and
Stegun 1972) but there is no explicit way of applying the boundary conditions to
this form of the solution. To advance, we first note that δϕ appears in the boundary
conditions of (2.6) so its role in determining the eigensolutions is more cumber-
some to identify compared with the parameters of the differential equation itself.
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The change of variables z ¼ 2y=d/ leads to a slightly modified problem in which
the boundary conditions are applied at z = ±1 regardless of the channel width, while
the parameter δϕ appears in the equation itself instead of in the boundary condi-
tions. In terms of z, (2.6) is written as:

e2
d2V

d2z
þ E � sin/0 þ zbð Þ2
� �

V ¼ 0; V z ¼ �1ð Þ ¼ 0; ð2:7Þ

where

e ¼ 2
ffiffiffi
a

p
d/

; E ¼ x2 � a cos/0

C
� ak2 and b ¼ d/

2
cos/0: ð2:8Þ

The eigenvalue problem (2.7) has the form of a time-independent Schrödinger
eigenvalue problem in one dimension in which E is the energy (or eigenvalue to use
a more mathematical notion), f 2 ¼ sin /0 þ bzð Þ2 is the potential and ε is the

counterpart of �h 2mð Þ�1=2 where m is the mass of the particle and ħ is Planck
constant, h, divided by 2π. It has an infinite number of discrete energy values (or
levels), En, where n ¼ 0; 1; 2; . . . and each level has an associated eigenfunction,
Vn zð Þ, that has exactly n zero-crossings in the z ¼ �1; 1ð Þ interval (i.e., in the inner
points excluding the boundaries at the endpoints z = −1 and z = 1).

In the special case where /0 ¼ 0 Eq. (2.7) reduces to the equatorial wave
problem so in this Schrödinger eigenvalue problem formulation the equatorial
problem is a regular limit of the mid-latitude one, which is the focus of Chap. 3. For
general /0 6¼ 0 Eq. (2.7) can be divided through by sin2 ϕ0 which results in the
mid-latitude eigenvalue problem:

e2
d2V

d2z
þ E � 1þ zbð Þ2
� �

V ¼ 0; V z ¼ �1ð Þ ¼ 0; ð2:9Þ

where the parameters of this differential equation are

e ¼ 2
ffiffiffi
a

p
d/ sin/0

; E ¼ 1

sin2 /0
x2 � a cos/0

C
� ak2

� �
and b ¼ d/

2
cos/0

sin/0
:

ð2:10Þ

The classical wave theory outlined in the Introduction constitutes the particular
b = 0 case of (2.9) which is a legitimate mathematical limit but its consistency with
the inclusion of a cos f0=C in the expression for E in (2.10) is not obvious since the
latter term originates from the differentiation of f yð Þ ¼ sin/0 þ y cos/0 so its
presence in E implies that the potential, f2, is not constant. However, despite its
possible inconsistency the b = 0 case provides a check on the numerical calculations
below and establishes a connection with the classical/harmonic theory. With b = 0
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(2.9) becomes a constant coefficient equation, so the solution is VðzÞ ¼
V0 sin

nþ1ð Þp
2 zþ 1ð Þ

� �
where V0 is an arbitrary normalization constant. This special

form of the general solution satisfies the boundary conditions at z = ±1 provided
En ¼ 1þ ðepðnþ 1Þ=2Þ2. This particular form of V(z) is precisely the
non-dimensional counterpart of the solution for v(y) in (1.6).

Another particular case in which an analytical solution of (2.9) exists is b = 1. In
this case the potential 1þ bzð Þ2¼ 1þ zð Þ2 vanishes at the equatorward wall, z = −1,
i.e., the channel extends from the equator to latitude d/. When the z = (−1, +1)
domain is doubled to z = (−3, +1) the potential (1 + z)2 becomes a symmetric parabola
whose minimum is located at z = −1. In this case, (2.9) turns into the well-known
eigenvalue equation of Harmonic Oscillator of Quantum Mechanics. The symmetry
of solutions of the Harmonic Oscillator is determined by the mode number n, i.e.,
symmetric solutions have even n and antisymmetric solutions have odd n. Since
eigenfunctions of the Harmonic Oscillator are solutions of (2.9) only if they vanish at
z = −1 the eigenfunctions relevant to (2.9) must be antisymmetric (so they vanish at
the mid-point z = −1) i.e., those with odd n. The conclusion based on this comparison
with the Harmonic Oscillator, where the eigenvalues are Em ¼ 2mþ 1ð Þe, is that for
b = 1, the eigenvalues of (2.9) are the eigenvalues of Harmonic Oscillator with oddm,
i.e., m ¼ 2nþ 1 so En ¼ 4nþ 3ð Þe.

Numerical solutions of either (2.9) or (2.7) can be obtained straightforwardly
using a variety of methods, e.g., shooting methods and finite-difference or collo-
cation methods (the latter methods turn the differential eigenvalue problem into a
matrix eigenvalue problem). These numerical methods yield solutions of En and Vn

for any pair of ε and b values.
An example of such numerical solutions of (2.9) that yield E0ðe; bÞ is shown in

Fig. 2.1 (see Paldor et al. 2007). It clearly demonstrates that for large ε the contours
are nearly horizontal so E0 at b > 0 is well approximated by its value at b = 0. In
contrast, at small ε the value of E0 is very sensitive to the value of b. This finding
and the definition of ε in (2.10) suggest that the harmonic theory that applies
formally at b = 0 yields accurate estimates of the eigensolutions for b > 0 only in
sufficiently narrow channels where the width, δϕ, is of the order of the radius of
deformation a1=2 sin/0.

The definition of E in (2.10) implies that each En value is associated with
3 values of Cn given by the roots of the cubic polynomial:

k2C2 � En sin2 /0 þ ak2
� �� a cos/0

C
¼ 0: ð2:11Þ

These three roots can be approximated by noting that the absolute value of two
of them (one positive and one negative) is large while that of the third root is small.
For the small root, we neglect the C2 term and obtain the approximate expression
for the phase speed of the slowly propagating Planetary (Rossby) wave:
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CRossby
n � � cos/0

k2 þ sin2 /0
a En

: ð2:12Þ

The approximate expression for the two fast Inertia-Gravity waves is obtained by
neglecting a cos/0=C which yields the approximate expression:

CPoincare
n

� �2� aþ En
sin2 /0

k2
: ð2:13Þ

When the explicit approximate dispersion relation of Planetary waves, (2.12), is
combined with the effect that b has on the contours of E0 in Fig. 2.1, it becomes
evident that estimates of E0 based on setting b = 0 (where En > 1 for all ε) are

Fig. 2.1 Numerically calculated contours of E0ðe; bÞ, the first (n = 0) eigenvalue of (2.9). The
analytical solutions En ¼ 1þ ðpe nþ 1ð Þ=2Þ2 � 1 along b = 0 and En ¼ ð4nþ 3Þe along b = 1 are
fully confirmed by these numerical results. For 0 � b\1 and for sufficiently small
e the values of E0 are appreciably smaller than 1. For large e (e.g., e[ 0:5), E0 varies only
slightly with b. Permission from American Meteorological Society: J. Phys. Oceanogr. doi:10.
1175/JPO2986.1
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associated with lower phase speeds than those of b > 0 (where En can be much less
than 1). The opposite conclusion holds for Inertia-Gravity waves and (2.13).

It should be noted that while the phase speed of Inertia-Gravity waves in (2.13)
differs from that of Planetary waves in (2.12) the eigenfunction V(y) in (2.9) of the
two waves is identical because the two waves belong to the same eigensolution of
the eigenvalue equation. Since the expressions that relate u(y) and η(y) to V(y) and
dV/dy involve the phase speed, C (i.e., (2.3) for u and the first equation in (2.4) for
η), these functions are not identical in the two waves.

Before turning to an analysis of the eigenfunctions Vn associated with the
eigenvalues En we turn our attention to Inertial waves that do not exist in the
harmonic theory.

2.3 Inertial Waves

The difference between the values of E0 for b = 0, where E0 > 1 and b > 0, where E0

can be smaller than 1 brings about a fundamental difference between these two
cases when it comes to Inertial waves. As explained in the Introduction, these
waves should be thought of as a limiting case of Inertia-Gravity waves when no
pressure gradient forces act on the fluid, i.e., when the total wave number, k2 þ n2,
vanishes in (1.5). In the harmonic, b = 0, theory these waves cannot satisfy the two
boundary conditions at the channel walls (see the discussion at the end of Sect. 3.9
in Pedlosky 1987) and they are therefore regarded as “spurious solutions” of the
differential equations.

As implied by their names the frequency of Inertial waves is the Coriolis fre-
quency, f0, so in the present non-dimensional formulation becomes x2 ¼ sin2/0

and in this case (2.10) implies that sin2 /0 1� Eð Þ ¼ akðk þ cos/0=xÞ. Therefore,
for k ¼ 0 these waves can exist only when E ¼ 1 while in the case where k þ
cos/0=x[ 0 (i.e., either x ¼ þ sin/0 or x ¼ � sin/0 and k[ cot/0) E should
be smaller than 1 so Inertial waves cannot exist for E > 1. In the b = 0 case,
En ¼ 1þ ðpe nþ 1ð ÞÞ2=4[ 1 and therefore no Inertial waves can exist in this
case and the only solution of eigenvalue problem (2.9) is the trivial V = 0 which is
the foundation of the conclusion reached in Pedlosky (1987). In contrast, Fig. 2.1
clearly shows that contours with E0 � 1 do exist provided b > 0. Thus, in terms of
the eigenvalue problem (2.9) Inertial waves with either k = 0 or k > 0 are “spurious
solutions” only for b = 0, i.e., in the harmonic theory but these waves are legitimate
solutions of the Trapped wave theory where E0 � 1 eigenvalues exist for b > 0.
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2.4 Analytic Solutions of the Eigenvalue Problem
and Eigenfunctions

In order to obtain analytic insight into the structure of the eigenfunctions and in
order to derive explicit expression for En when b > 0 we note that in the β-plane
approximation second-order terms in f(y) (i.e., second-order terms in the expansion
of sin ϕ near ϕ0) are neglected. Therefore, terms of order y2 should be neglected in
the potential of (2.6), i.e., the b2z2 term should be neglected in the potentials of (2.7)
and (2.9) for these equations to be consistent with the neglect of second-order terms
in the expansion of f(y) on the β-plane. The neglect of b2z2 is consistent with the
restriction on values of b ¼ bL=f0 ¼ L cot/0=2að Þ which has to be smaller than 1
but larger than 0. Since eigensolutions of two Schrödinger eigenvalue problems
with close potentials are always close to one another analytic insight can be gained
by approximating the potential in (2.6) by a linear function in y (and that of (2.9) by
a linear function of z).

When b2z2 is neglected in (2.9) this equation becomes:

e2
d2V

d2z
þ E � 1þ 2zbð Þð ÞV ¼ 0; V z ¼ �1ð Þ ¼ 0; ð2:14Þ

and the parameters in this equation maintain their original definitions, (2.10). The
elimination of b2z2 yields an equation that can be transformed (by dividing
Eq. (2.15) through by ε2 and defining a new independent variable) to have only two
parameters, E � 1ð Þ=e2 and 2b=e2, instead of three (ε, E and b) in (2.9). This
reduction in the number of parameters that determine the solution of the equation
greatly simplifies the analysis of these solutions.

The linear potential in (2.14) suggests that the differential equation can be
transformed to an Airy equation (see Sect. 10.4 in Abramowitz and Stegun 1972).
As was shown in Paldor and Sigalov (2008) transforming the independent variable
z to new independent variable Z defined by

Z ¼ ð4b2e2Þ�1=3ð2bz� E þ 1Þ ð2:15Þ

transforms the differential Eq. (2.14) to Airy equation

d2V
dZ2 � ZV ¼ 0: ð2:16Þ

As a solution of a second-order differential equation, V(Z) in (2.16) can be
expressed as a linear combination of two independent solutions: Ai(Z) and Bi(Z).
One can get a rough idea on the qualitative behavior of Airy functions by replacing
the coefficient Z in front of V in (2.16) by a constant in which case the behavior of
the solutions of the modified, constant coefficient, equation is well known. When
the “constant” Z is positive the solutions decay/grow while when it is negative the
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solutions oscillate periodically. Similarly, at Z > 0 Ai(Z) decays while Bi(Z) grows
both at a rate faster than exponential and at Z < 0, both solutions oscillate but are
not periodic. The zeros of Ai and Bi can be easily found either in tables such as that
given in Abramowitz and Stegun (1972) or by resorting to readily available
mathematical packages such as MATLAB or Mathematica. A sketch of these two
solutions is shown in Fig. 2.2.

The final step that completes the transformation of the differential equation is the
application of the boundary conditions. To satisfy the boundary condition V
(z = −1) = 0, the point Z(z = −1) has to be set to the nth zero of Ai;�nn, which
ensures that VðZðz ¼ �1; E ¼ EnÞÞ ¼ Aið�nnÞ ¼ 0. The requirement Zðz ¼
�1;E ¼ EnÞ ¼ �nn in the transformation: Z ¼ ð4b2e2Þ�1=3ð2bz� E þ 1Þ yields

�nn ¼ ð4b2e2Þ�1=3ð�2b� En þ 1Þ which can be inverted to the following explicit
expression for the nth eigenvalue:

En ¼ 1� 2bþ 2beð Þ2=3nn ¼ 1� d/ cot/0 þ 2
cos/0

ffiffiffi
a

p

sin2 /0

� �2=3

nn ð2:17Þ

where nn is the absolute value of the nth zero of Ai. The first five nn’s are n0 ¼
2:3381; n1 ¼ 4:08795; n2 ¼ 5:5205; n3 ¼ 6:7867 and n4 ¼ 7:9441 and while the
value of nn increases with n the difference between two successive zeros of Ai
nn � nnþ1 decreases with n.

To satisfy the boundary condition at the poleward wall, V(z = +1) = 0, the value
of Z at z = +1 has to be sufficiently large (and positive) such that Ai(Z(z = 1)) is
small enough to be regarded as 0. This boundary condition limits the applicability
of the present theory to wide channels only. Since Ai 2ð Þ � 0:035 and since

Fig. 2.2 The two independent solutions of Airy equation, (2.16), Ai(Z) and Bi(Z). While Bi
(Z) grows faster than exponential in the Z > 0 half-plane Ai(Z) decays to zero there faster than
exponential. Both functions oscillate a-periodically in the Z < 0 half-plane
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Ai 2ð Þ=Bi 2ð Þ� 0:01, the choice Z z ¼ 1ð Þ� 2 guarantees both that V is negligibly
tiny at the poleward wall and that the contribution of Bi, the exponentially growing
solution of Airy equation, is uniformly negligible throughout the entire channel (the
negligible contribution of Bi is an essential element in the determination of En

based on the location of the zeros of Ai only). Substituting Z� 2 in the general

Z(z) transformation given in Eq. (2.15) Z ¼ ð4b2e2Þ�1=3ð2bz� E þ 1Þ, with z = 1
and E = En (where En is given by (2.17)) yields:

nn þ 2� 4b 2beð Þ�2=3¼ 42=3b1=3e�2=3: ð2:18Þ

Substituting ε and b from (2.10) into (2.18) yields, nn þ 2� d/ 2 sin/0 cos/0
a

� �1=3
which can be inverted to yield the following lower bound on the value of the
channel width, d/, above which the Trapped wave theory applies:

d/� nn þ 2ð Þ a
sin 2/0

� �1=3

: ð2:19Þ

According to the values of the first five nn’s given above, the coefficient ðnn þ 2Þ
on the RHS of (2.19) varies between 4.3 for n = 0 and 9.9 for n = 4. At n = 20,
n20 þ 2 is 22 and at n� 20 nnþ1 � nn, the difference between successive zeros of
Ai, is less than 0.5 (and it decreases further with n). Thus, with an error of no more
than a factor of 2 and for not-too-large mode number, n, one can set ðnn þ 2Þ to 10.
For /0 in the mid-latitudes sin1=3 2/0 is very close to 1 as sin

1=3 2/0 varies between
0.95 and 1 when /0 varies between 30° and 75°. Consequently, the present theory
is valid for channel widths satisfying d/� 10a1=3 so for a baroclinic ocean where
a � 5� 10�6 the present theory is valid provided d/[ 0:17 rad, i.e., less than 10°,
or 1000 km, of latitude. This is close to the latitudinal range over which the b-plane
approximation is valid—at larger ranges, the linearity of f(y) cannot be justified
while at lower ranges, the f-plane approximation (where f(y) is assumed constant) is
valid. In contrast, in a barotropic ocean (and atmosphere) where a � 5� 10�2 the
channel width has to satisfy d/[ 1 rad even for n = 0, which is much larger than
the range of validity of the b-plane approximation. The conclusion from this dis-
cussion is that the present Trapped wave theory is applicable to a baroclinic ocean
on the b-plane.

Similar arguments can be made for delineating the regime of channel width
where Harmonic waves can be expected to prevail. An upper bound on the channel
width below which Harmonic wave theory is valid can be estimated by noting that
if the poleward wall, z = 1, is located at Z = 0 then, as is evident from Fig. 2.2, the
two Airy solutions oscillate throughout the entire channel and in such an oscillatory
regime the purely oscillatory Harmonic waves provide an accurate solution. For the
n = 0 mode and at 45°, (2.19) yields d/� 4:3a1=3 as the lower bound on the
channel width above which Trapped waves can be expected to prevail while for
d/� 2:3a1=3 Harmonic waves should prevail. Thus, in a barotropic ocean where
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a ¼ 0:05, the first Harmonic mode prevails at all physically acceptable widths (i.e.,
smaller than 0.85 rad ≈50° so the channel extends from above 20° to below 70°),
while in a baroclinic ocean where a ¼ 5� 10�6 the first Trapped mode prevails at
all channels with widths exceeding 0.0735 rad, i.e., wider than about 4°, which is
hardly the range that justifies the application of the β-plane approximation (the f-
plane suffices).

For values of a and d/ satisfying (2.19) the dispersion relations of Planetary and
Inertia-Gravity waves are obtained by substituting (2.17) in (2.12) and (2.13),
respectively:

xRossby
n � � cos/0k

k2 þ sin2 /0
a En

¼ � cos/0k

k2 þ sin2 /0
a � d/

2
sin 2/0

a þ a�2=3nn sin 2/0ð Þ2=3
ð2:20Þ

and

xPoincare
n

� �2� ak2 þ sin2 /0En ¼ sin2 /0 þ ak2 � d/
2

sin 2/0 þ a1=3nn sin 2/0ð Þ2=3:
ð2:21Þ

These dispersion relations should be compared with their classical dimensional
counterparts, (1.5) for Planetary waves and (1.7) for Inertia-Gravity waves. The
comparison clarifies that in both waves the arbitrary (i.e., independent of the radius
of deformation) meridional wave number of the harmonic theory, n ¼ 2N þ 1ð Þ 	
p=L (where L is the channel width) is replaced in the Trapped wave theory by two
terms: The first terms is proportional to the channel width, d/, and the second term
(proportional to a�2=3 in the case of planetary waves) has the coefficient nn which
determines the meridional mode number, n, as the number of zeros that V(y) crosses
inside the channel, i.e., the mode number and channel width appear in different
terms of the dispersion relation instead of nL = constant in the Harmonic theory.

Numerical solutions of the eigenvalue problem associated with zonally propa-
gating waves in a mid-latitude channel (including Kelvin, Planetary, and
Inertia-Gravity waves) can be obtained by solving system (2.2) numerically.
A powerful method of solution of such differential-matrix eigenvalue system is the
Chebyshev spectral collocation method on a grid (see e.g., Trefethen (2000), Poulin
and Flierl (2003) and De-Leon and Paldor (2009) for more details) in which the
u;V ; gð Þ system, (2.2), is solved as a matrix eigenvalue problem of linear algebra by
transforming the differential @=@y operators to an algebraic form (as in the case
when derivatives are written as differences). The eigenvalues of this matrix
eigenvalue problem are the phase speeds, C, while the corresponding eigenvectors
consist of the three amplitudes u(y), V(y), and gðyÞ.

A numerical solution of the eigenvectors in a channel with b = 0.15 and
ε = 0.055 (so the channel width, d/, is 36 deformation radii, a1=2=sin/0) where the
present theory applies is presented in Fig. 2.3, reproduced from Paldor et al. (2007).
Consistent with the analytical conclusions reached above, the V(y) eigenfunction is
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identical in Planetary and Inertia-Gravity waves (recall that there is a single V
(y) eigenfunction to (2.14) or (2.16)), while the u(y) and η(y) of the former waves
differ from those of the latter because of the different phase speeds of the two wave
types i.e., the values of C given in (2.12) and (2.13) affect the relation between η
and V and dV/dy in (2.4) and that between u and V and η in (2.3). The trapping of V
(y) near the equatorward wall anticipated from the behavior of the regular Airy
function is clearly evident in these numerical results which cannot be recovered by
the harmonic theory outlined in the Introduction since E0 = 0.862, whereas in the
harmonic theory, E0 = 1.00187 in this case.

In contrast, when the channel is sufficiently narrow, the Trapped wave theory
does not apply and one can expect the theory outlined in the Introduction to apply.
An example for this case is shown in Fig. 2.4 which repeats the calculation shown
in Fig. 2.3 but for a channel width that equals the deformation radius. As in Trapped
waves, the V eigenfunctions are identical for Planetary and Inertia-Gravity waves,
but the u and η functions are not. The main feature of the eigenfunctions in this case
is that they spreads all over the channel and are not trapped near the equatorward
wall. The theory outlined in the Introduction prevails in this case since E0 = 10.871

Fig. 2.3 The numerically calculated y-dependent amplitude eigenfunctions of the three wave
types in a wide channel (e ¼ 0:055, i.e., the width, d/, equals 36 deformation radii, a1=2= sin /0).
Ordinates are the cross-channel coordinate: y ¼ z 	 d/ and abscissas are arbitrary amplitudes
(normalized in Rossby and Poincaré waves such that max{V} = 1). Permission from American
Meteorological Society: J. Phys. Oceanogr. doi:10.1175/JPO2986.1
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where the value of b does not affect the solution according to the results shown in
Fig. 2.1, so the b = 0 results yield accurate estimates for all values of b. These results
are relevant to a channel width of d/ ¼ 0:3 only for barotropic ocean with α = 0.05,
while in a baroclinic ocean where α = 5 × 10−6 and at 45° latitude, the channel width
where this mode exists is only 0.003 rad or about 0.17° (a dimensional width of less
than 20 km!). The numerical solutions underscore the inaccuracy of the theory
outlined in the Introduction for Rossby waves since the u(y) eigenfunction of
Planetary (Rossby) waves does not vanish at the channel walls in contradiction to the
expressions given in (1.8) (note that V(y) in Eq. (2.2) and in Figs. 2.3 and 2.4 is
shifted by p=2 relative to v(y) in (1.8) so V(y) has the same y-dependence as u(y)).

To summarize this chapter that focuses on waves in a mid-latitude channel on the
b-plane it is instructive to compare the phase speed of Trapped Planetary (Rossby)
waves, (2.20), with that of Harmonic Planetary waves (1.7). Dividing (1.7) by 2Ωak
yields an expression for the non-dimensional Harmonic phase speed CHarm which
can be compared with the phase speed of Trapped waves, CTrap, obtained by
dividing (2.20) by k. To enable the comparison, we fix the central latitude, /0, to 45°
(so sin 2/0 ¼ 1 and sin2 /0 ¼ 1=2) and assign the radius of deformation,

Rd ¼ gHð Þ1=2=f0, the typical baroclinic value of 25 km so gHð Þ1=2=2X ¼ 17:7 km
and a ¼ 17:7=6400ð Þ2� 7:6� 10�6. The zonal wave number, k, of a wave with

Fig. 2.4 The y-dependent amplitude eigenfunctions in a narrow, e ¼ 2, channel (i.e., the channel
width, d/, equals the deformation radius, a1=2= sin/0). Ordinates, abscissas and normalizations
are identical to those in Fig. 2.3. Permission from American Meteorological Society: J. Phys.
Oceanogr. doi:10.1175/JPO2986.1
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640 km wavelength, has a non-dimensional value of k ¼ 2p 6400=640 ¼ 20p so
k2 � 4� 103 � a�1 � 1:5� 105. For these values of /0, k

2 and α, the resulting
expression for the ratio between Trapped and Harmonic phase speeds of Planetary
waves is

CTrap

CHarm
¼

k2 þ sin2 /0
a þ nþ1ð Þ2p2

d/ð Þ2

k2 þ sin2 /0
a þ nn 	 sin 2/0

a

� �2=3
� d/

2
sin 2/0

a

� � ;

�
1þ 2a nþ1ð Þ2p2

d/ð Þ2

1þ 2nna1=3 � d/

ð2:22Þ

where the index n = 0, 1, 2… is identical in the numerator and denominator (i.e.,
n was increased by 1 relative to its value in (1.7) so as to match the values of n in
(2.17) and (2.20)).

The phase speed ratio, (2.22), is plotted in Fig. 2.5 as a function of the channel
width d/ ¼ L=a for n = 0, 1, and 2 and it shows that the phase speed of Trapped

Fig. 2.5 The ratio between the phase speeds of the first three Trapped modes to those of the
corresponding Harmonic modes
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waves is larger than that of Harmonic waves in sufficiently wide channels. For
/0 ¼ p=4 and a ¼ 7:6� 10�6, the right-hand side (RHS) of (2.19) is very close to
0:02 	 ðnn þ 2Þ so for n = 0, 1, and 2, the Trapped wave theory applies to channels
of widths exceeding 0.087, 0.12, and 0.15 rad, respectively, consistent with the
location of the minima of the three curves shown in Fig. 2.5. The monotonic
increase of the three curves in Fig. 2.5 at δϕ larger than the minimal widths and the
fact that in their ascending branches, the ratios are larger than 1 suggest that when
wide channels are used to approximate an infinite ocean, the phase propagation of
Trapped Planetary waves is appreciably faster than that of Harmonic waves,
exceeding a factor 2 in very wide channels.

Having completed the derivation of the Trapped wave theory in a channel on the
mid-latitude β-plane it is quite natural to examine the same problem in a channel on
the equatorial b-plane as a limiting case of the mid-latitude theory when ϕ0 is set
equal to 0. This is the subject of the next chapter.
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Chapter 3
Waves in a Channel on the Equatorial
β-Plane

Having found both Harmonic and Trapped waves in a mid-latitude channel it is
natural to ask why is it that in an equatorial channel only Trapped waves (the
Hermite function waves that are trapped to the equator) were found in Matsuno
(1966) while Harmonic waves have not been found there. A related question is what
type of solutions exists in an equatorial channel in view of the fact that Matsuno’s
theory was developed on the unbounded equatorial β-plane which is inconsistent
with both the neglect of higher-order terms in the expansion of sinϕ and the planar
approximation to the spherical earth. In the present formulation an equatorial
channel is simply addressed by setting /0 ¼ 0 in (2.7)—the eigenvalue equation in
a channel on the mid-latitude β-plane—which transforms this equation to:

e2
d2V

d2z
þ E � zbð Þ2
� �

V ¼ 0; V z ¼ �1ð Þ ¼ 0; ð3:1Þ

where the parameters ε, E, and b are defined by setting cos/0 ¼ 1 in (2.8); i.e.,

e ¼ 2
ffiffiffi
a

p
d/

; E ¼ x2 � a
C
� ak2 and b ¼ d/

2
: ð3:2Þ

The eigenvalue problem (3.1) can be simplified so as to combine the three
parameters E, ε, and b to two parameters by dividing the differential equation
through by e2 which does not affect the boundary conditions. The eigenvalue
problem then becomes:
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 !

V ¼ 0; V z ¼ �1ð Þ ¼ 0; ð3:3Þ

in which E=e2 is determined by the single parameter of the potential b=e and the
two are defined by:
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The differential Eq. (3.3) is similar to that studied in Matsuno (1966) but in
Matsuno’s work the boundary conditions were applied at infinity. The modified
“wall” problem was studied by Erlick et al. (2007) who showed that with this
change in boundary conditions, ðb=eÞ2 can be eliminated from the potential by

transforming the independent variable from z to ðb=eÞ1=2z and dividing the equation
through by ðb=eÞ (so the eigenvalue changes from E=e2 to E=ðbeÞ ¼ E=a1=2 which
makes the problem independent of δϕ). However, this transformation filters out the
narrow channel solution derived next based on the boundness of the domain in
(3.3), where �1� z� 1 ði:e: z2 � 1Þ:

According to the definitions of the parameters given in (3.4), the narrow channel
solution is relevant in the limit b=e / d/ð Þ2! 0. When terms of order ðb=eÞ2 are
neglected in (3.3), the potential ðbz=eÞ2 vanishes and the equation becomes a
constant coefficient equation whose solution is VðzÞ ¼ A sinðE1=2z=eþ hÞ where
A is an arbitrary normalization amplitude and E1=2=e and θ are determined by the
boundary conditions Vðz ¼ �1Þ ¼ 0; i.e.,

VnðzÞ ¼ A sin
nþ 1ð Þp

2
zþ 1ð Þ

� �
; n ¼ 0; 1; 2; . . . ð3:5Þ

and the eigenvalues are given by:

E1=2
n

e
¼ nþ 1ð Þp

2
, En ¼ nþ 1ð Þp

d/

� �2

a; n ¼ 0; 1; 2; . . .: ð3:6Þ

The second solution is encountered when b=e / d/ð Þ2 is O(1) in which case the
differential equation in (3.3) is the known equation of Harmonic Oscillator of
Quantum Mechanics (see, e.g., Schiff 1968). However, the boundary conditions in
the latter problem are applied at y = ±∞ whereas in (3.3) they are applied at z = ±1.
The slightly different boundary conditions in (3.3) will be handled shortly but for
now we note that the solutions of the Harmonic Oscillator differential equation in
(3.3) are Hermite functions:

VnðzÞ ¼ A � Hn
d/
2

1
a

� �1=4

z

 !
� e

�
d/
2

� �2 1ffiffiffi
a

p z2

2 ; n ¼ 0; 1; 2; . . .: ð3:7Þ

where Hn is the Hermite polynomial of order n and A is an arbitrary normalization
constant. The eigenvalues associated with the eigenfunctions (3.7) are:

En

e2
¼ 2nþ 1ð Þ b

e
, En ¼ 2nþ 1ð Þbe ¼ 2nþ 1ð Þa1=2: ð3:8Þ

In order for the Hermite functions in (3.7) and the eigenvalues in (3.8) to be an
eigensolution of the eigenvalue problem (3.3) the eigenfunctions have to vanish at
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walls, z = ±1. Regardless of the value of n, the solution for V in (3.7) vanishes at the
walls z = ±1 provided the exponent on the RHS of (3.7), b=ð2eÞ, is larger than, say,
3 since in this case Vðz ¼ �1Þ=V 0ð Þ� e�3 � 0:04 � 1; i.e., the value of V at the
walls is two orders of magnitude smaller than its maximal value at the equator,
z = 0. The definition of b/ε in (3.4) implies that the condition b=ð2eÞ[ 3 is
equivalent to ðd/Þ2 [ 24a1=2, which is satisfied when d/� 5a1=4.

The exact expressions for the eigenvalues (3.6) and (3.8) in narrow and wide
channels, respectively, can be combined to a simple but fairly accurate parame-
terized expression for all channel widths that degenerates accurately to the exact
expressions for b=e � 1 and b=e 	 1.
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; ð3:9Þ

which yields the explicit solution for the eigenvalues En when b and ε are substi-
tuted from (3.2):

En ¼ 2nþ 1ð Þ3a3=2 þ nþ 1ð Þ2p2a
d/ð Þ2

 !3
0
@

1
A

1=3

: ð3:10Þ

Figure 3.1 shows the first three eigenvalues, E0=e2, E1=e2, and E2=e2, obtained from
numerical solutions of (3.3) as functions of b=e. The n = 2 curve is also compared
with the parameterized expression (3.10). The numerical solutions also agree very
well with the asymptotic solutions (3.6) and (3.8) at small and large b=e, respec-
tively and an inspection of the curves in this figure shows that these analytic
expressions provide very accurate approximations to the eigenvalues in their
respective range of applicability.

Focusing on the n = 0 mode, where the Hermite function is a Gaussian, the
results shown in Fig. 3.2 demonstrate that, as anticipated earlier based on the rate of
decay of the eigenfunction, when b=e[ 6, the error by the wide channel solution is
of order 0.01 (and decreasing with further increase of b=e) while the accuracy of the
narrow channel solution is a few percent when b/ε < 1. Thus, the “infinitely” wide
channel approximation employed by Matsuno (1966) applies when b=e ¼ ðd/Þ2=
ð4a1=2Þ[ 6; i.e., d/� 5a1=4. Since the equatorial β-plane approximation applies for
d/\0:5 Rad (i.e., when the channel walls are located at about �0:25 Rad
� �15
), the validity of the wide channel solution is limited to a� 0:5=5ð Þ4¼ 10�4

which is 500 times smaller than the typical value in a barotropic ocean,
a ¼ 5� 10�2. The definition of a ¼ ðCg=2XaÞ2 (where Cg is the speed of gravity
waves) implies therefore that Matsuno’s unbounded equatorial
β-plane theory does not apply to fluids in which Cg ≥ 10 m/s.
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The explicit expressions derived above for the energy, En, as a function of α and
δϕ can now be applied to obtain the dispersion relations, C(k) (or kC(k)), of
Planetary and Inertia-Gravity waves from the cubic E(C) relation in (3.2).

Fig. 3.1 Numerical solutions of Eq. (3.3) and the analytic asymptotic relationships between E=e2

and b=e—(3.6) and (3.8), shown by the straight dashed lines for n = 2. The parameterized global
approximation (3.10) for n = 2 is also shown by the thin solid line near the n = 2 curve

Fig. 3.2 The dependence of E0=e2 on b=e and the two asymptotic approximations (3.6) and (3.8) for
narrow and wide channels. The error of the wide channel solution is small to within 1 % only when
b=e� 6
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Substituting the wide channel expression for E0 given in (3.8) into the cubic xnðEnÞ
relation (3.2) (recall: x ¼ kC) yields:

x2
n �

ak
xn

� ak2 ¼ a1=2 2nþ 1ð Þ: ð3:11Þ

Up to a factor of a1=2 and accounting for the different sign of k or x (Matsuno
assumed that the waves vary as eiðkxþxtÞ while here the waves are assumed to vary
as eiðkx�xtÞ) this equation is identical to Matsuno’s Equation (8). Consequently, all
of Matsuno’s results that were derived on the unbounded equatorial β-plane apply
to the wide channel asymptote, d/� 5a1=4, of the channel theory. In the limits of
large ωn and small ωn in (3.11), the approximate expressions of the dispersion
relations are as follows:

x2
n ¼ ak2 þ a1=2 2nþ 1ð Þ ð3:12Þ

for Inertia-Gravity waves and

xn ¼ � ak
ak2 þ a1=2 2nþ 1ð Þ ð3:13Þ

for Planetary waves. The n = 0 case is unique in that the high-frequency negative
root of (3.12) can be close to the low-frequency root of (3.13) for certain combi-
nations of α and k so the approximate expressions (3.12) and (3.13) do not
approximate the values of these frequencies accurately. However, for n = 0 the
exact cubic equation in (3.11) can be decomposed to:

0 ¼ x3
0 � x0 ak2 þ a1=2

� �� ak ¼ x0 þ a1=2k
� �

x2
0 � a1=2kx0 � a1=2

� �
: ð3:14Þ

The first root of this special n = 0 polynomial x0 ¼ �a1=2k ði:e:C ¼ �a1=2Þ is the
“anti-Kelvin” mode, i.e., the westward propagating Kelvin wave which is one of the
singular cases where the V equation of the (V, η) system, (2.4), decouples from the η
equation and the only solution that satisfies the boundary conditions at the channel
walls is V = 0 everywhere. Setting ϕ0 = 0 in (2.5) clarifies that in this V = 0 case

with C = −α1/2 < 0, the solution for η(y), e�
y2

2C, increases fast with distance from the
equator and according to (2.3), when V = 0, so does the meridional variation of u.
Due to its rapid growth with y this root is a singular solution on the unbounded
β-plane as well as in the wide channel asymptote of the channel theory but is
physically acceptable in the narrow-channel asymptote of the channel theory.

The other two roots of (3.14) are as follows:

x0ð Þ1;2¼
a1=2

2
k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4a�1=2

p� �
: ð3:15Þ
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The positive root, ðx0Þ1, is the eastward propagating Inertia-Gravity wave whose
frequency tends to +α1/4 when k → 0 and to þa1=2k for k → ∞. The negative root,
ðx0Þ2, of this equations is the mixed mode that has a negative, nonzero, value of
−α1/4 when k → 0 as in the westward propagating Inertia-Gravity modes (where
the dispersion curve intersects the k = 0 ordinate at nonzero value) and tends to 0
when k → ∞ as in Planetary waves. By differentiating ðx0Þ2 with respect to k, it
can be easily verified that the increase of ðx0Þ2 from −α1/4 at k → 0 to 0 at k → ∞
is monotonic since the derivative is positive at all k. The intersection point of this
mixed mode with the spurious anti-Kelvin mode, x0 ¼ �a1=2k, occurs at
2a1=2k2 ¼ 1; i.e., kint ¼ 2�1=2a�1=4 at which wavelength the frequency is
ðx0Þint ¼ � 2�1=2

� �
a1=4. This intersection point is taken to be the point where the

mixed mode changes its character from an Inertia-Gravity mode to Planetary mode
(i.e., the point in Fig. 1.3 where the positive n = 0 mode changes from dashed to
solid). However, as discussed above, the x0 ¼ �a1=2k root is, in fact, a spurious
solution of the dispersion relation on the unbounded plane due to the indefinite
increase of η(ϕ). It is unclear whether the mixed mode exists as a continuous single
mode in cases where the anti-Kelvin mode is either a genuine (and not spurious)
mode or when it is not a solution of the dispersion curve at all (e.g., the
narrow-channel asymptote or a sphere).

In summary, three conclusions can be drawn from the present channel theory.
The first is that there exist Harmonic wave solutions in a narrow channel on the
equatorial β-plane just as they exist in a narrow channel on the mid-latitude β-plane.
The second conclusion is that the unbounded equatorial β-plane theory does not
apply to a barotropic ocean since it is only relevant when d/� 5a1=4 which in a
barotropic α is too wide for the first-order expansion, sin/ � /, to be valid. The
third is that the mixed mode exists when the anti-Kelvin equatorial wave is a
spurious solution of the dispersion relation that belongs to a singular eigenfunction.
In contrast, when the anti-Kelvin mode is either a genuine solution or does not exist
as a root of the dispersion relation, such as in a channel or on a sphere the mixed
mode disappears. In the latter cases, the intersection between these two modes at kint
(which implies that the two modes coalesce) has to be carefully examined by taking
into account the unstable nature of coalescence between two real waves over a
certain wavelength range and given the uncertainty regarding the different nature of
both the anti-Kelvin wave and the mixed mode at k > kint and k < kint.
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Chapter 4
Planetary and Inertia-Gravity Waves
in an Equatorial Channel on a Sphere

4.1 Introduction

Some of the issues encountered in the preceding chapter in the development of
wave theory in a channel on the equatorial β-plane might be resolved when the
β-plane approximation is relaxed and the same problem is studied in an equatorial
channel on a sphere. This problem will not suffer from the limitation associated
with the linear expansion of Coriolis frequency, sin/, but the price we should
expect to pay for the more general approach is the much more complex form of the
shallow water equations in spherical geometry in which the GRAD and DIV dif-
ferential operators contain latitude-dependent coefficients. Another reason for
studying the problem of an equatorial channel on a sphere is that this setup is an
intermediate step that should be studied prior to studying the shallow water
equations on the entire rotating sphere.

As in the previous chapters, the dimensional system (1.9) is non-dimensionalized
by scaling the u, v, η, and t variables on the same scales as in Chap. 2: u; v; on 2Xa; t
on ð2XÞ�1; and η onH. The latitude and longitudes angles, ϕ and λ, are pure numbers
when expressed in Radians, so they need not be scaled. With these scales, the
non-dimensional form of system (1.9) in spherical coordinates is:

@u
@t

� v sin/ ¼ � a
cos/

@g
@k

;

@v
@t

þ u sin/ ¼ �a
@g
@/

;

@g
@t

¼ � 1
cos/

@u
@k

þ @ v cos/ð Þ
@/

� �
:

ð4:1Þ

As in the equations derived in the preceding chapters, the only non-dimensional

parameter in these equations is a ¼ gH=ð2XaÞ1=2 and as in all zonal channel
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problems the boundary conditions imposed on the solutions of this system are the
vanishing of the meridional velocity component at the channel walls, i.e., vð/ ¼
�1=2d/Þ ¼ 0 where d/ is the channel width. Letting the solution of system (4.1)
vary as ei kk�Ctð Þ (so the wave’s frequency ω equals kC) yields the following sys-
tem for the /-dependent amplitudes of u, V and η:

0 sin/ a
cos/

sin/
k2 0 a

k2
@
@/

1
cos/ tan/� @

@/ 0

2
64

3
75 u

V
g

2
4

3
5 ¼ C

u
V
g

2
4

3
5; ð4:2Þ

where V ¼ iv=k. Due to the inherent 2π periodicity of λ in spherical geometry the
admissible values of k must be integers. The matrixlike eigenvalue problem (4.2)
that contains ϕ-derivatives and not just functions or numbers is the spherical
geometry counterpart of the Cartesian system (2.2). Similar to (2.2) the eigenso-
lutions of (4.2) can be calculated numerically using, for example, a Chebyshev
collocation method to compute the eigenvalue C and the eigenvector
ðuð/Þ;Vð/Þ; lð/ÞÞ subject to the boundary conditions Vð/ ¼ �d/=2Þ ¼ 0.

Prior to presenting the numerical solutions of (4.2), it is instructive to draw some
analytic conclusions based on a transformation of this system to a second-order
eigenvalue equations similar to (2.6). The u-momentum equation (the first line in
(4.2)) can be inverted to express u as a linear combination of V and η:

u ¼
V sin/þ g a

cos/

C
: ð4:3Þ

This relationship can be used to eliminate u from the other two equations in (4.2)
to obtain the following second-order system in V and η which is the spherical
geometry counterpart of (2.4):

@

@/
V cos/

g

� �
¼ 1

C cos/

sin/ a� C2 cos2 /ð Þ
x2�sin2 /

a

� �
� sin/

" #
V cos/

g

� �
: ð4:4Þ

This system differs from its planar counterpart substantially as there are many
more ϕ-dependent terms in (4.4) than y-dependent terms in (2.4). The reason for this
difference results directly from the inherent complexity of spherical coordinates
where the (dimensional) length Dx associated with a fixed longitude angle, Dk,
is latitude-dependent Dx ¼ a cos/Dk which implies @=@k ¼ ða cos/Þ�1@=@x. The
non-dimensional form of this relation is @=@k ¼ ðcos/Þ�1@=@x, so the
non-dimensional wave number k and phase speed C of Cartesian coordinates
transform to k= cos/ and C cos/ in spherical coordinates while the phase kplanex
equals the phase kspherek (so the frequency x ¼ kC is unchanged by the change of
coordinates). Another difference between the two systems is the change from V as
the dependent variables in (2.4) to V cos/ in (4.4) which results from the presence
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of cos/ coefficients in the non-dimensional meridional component of the diver-
gence operator (this can be appreciated by considering a uniform meridional
velocity, V, for which DIV(V) is zero on a plane, while on a sphere it equals
V tan/). The last difference between (2.4) and (4.4) results from the expansion of
the non-dimensional Coriolis parameter f ¼ sin/ � sin/0 þ y cos/0 in Cartesian
coordinates while in the spherical system, (4.4), f appears in its exact form.

A similar transformation to that used in transforming (2.4)–(2.6) can also be
applied to (4.4) but the singular C2 ¼ a case that yields Kelvin waves in Cartesian
coordinates is more complex in spherical coordinates since setting in (4.4) C2 ¼ a
only implies that the coefficient of η in the equation for V cos/ vanishes at par-
ticular latitude in the channel but the equations remain coupled so the V cos/
equation cannot be solved independently of the η-equation as in Sect. 2.1.

Despite the difference between Cartesian and spherical coordinates associated
with the singular nature of Kelvin waves the elimination of η from (4.4) to obtain a
second-order equation for V cos/ can be done straightforwardly by following the
same procedure employed in Chap. 2. Accordingly, differentiating the equation for
V cos/ with respect to ϕ and substituting the expressions for η and @g=@/ from the
two first-order equations yields the following second-order equation for V cos/:

@2 V cos/ð Þ
@/2 � tan/

aþ C2 cos2 /
a� C2 cos2 /

� �
@ V cos/ð Þ

@/

þ x2

a
� 1
C
� sin2 /

a
� k2

cos2 /
þ tan2 /

aþ 2C cos2 /
a� C2 cos2 /

� �� �
V cos/ ¼ 0:

ð4:5Þ

Substituting wð/Þ, defined by,

w /ð Þ ¼ V /ð Þ cos/ a
C cos/

� C cos/
� ��1=2

ð4:6Þ

for V cos/ transforms Eq. (4.5) to the Schrödinger-like equation:

a
@2w

@/2 þ E � U1 /ð Þ � aU2 /ð Þ½ �w ¼ 0; ð4:7Þ

where

E ¼ k2C2 � a
C
¼ x2 � a

C
;

U1 /ð Þ ¼ sin2 /þ ak2

cos2 /
;

U2 /ð Þ ¼ 3
4
tan2 /

aþ C2 cos2 /
a� C2 cos2 /

� �2

� 1
2

aþ C2 cos2 /
a� C2 cos2 /

� �

� tan2 /
aþ 2C cos2 /
a� C2 cos2 /

� �
:

ð4:8Þ
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As in the planar cases studied in the previous chapters E is the energy of the
Schrödinger-like Eq. (4.7) and according to its definition in (4.8) every energy
value, En, is associated with three phase speeds given by the roots of the cubic:
k2C3 � EnC � a ¼ 0 (or in terms of frequency: x3 � Enx� ka ¼ 0Þ. The potential
of the Schrödinger-like Eq. (4.7) is U1 /ð Þ þ aU2 /ð Þ. The boundary conditions that
solutions of Eq. (4.7) are required to satisfy are the vanishing of the meridional
velocity v ¼ �ikV at the channel walls located at / ¼ �d/=2, i.e., wð/ ¼
�d/=2Þ ¼ 0 according to (4.6).

When the spherical eigenvalue Eq. (4.7) with the wð/ ¼ �d/=2Þ ¼ 0 boundary
conditions is compared to the planar problem (2.6) is becomes evident that the
differences between two equations described above (following the derivation of the
V cos/; gð Þ system (4.4)) explain the changes inE andU1ð/Þ in (4.8) compared to (2.
6) or (3.3) while U2 /ð Þ consists of terms that have no counterparts on the β-plane(s).
The terms inU2 /ð Þ originate from the terms of (4.4) that include C cos/ coefficients
and their derivatives. These “purely spherical” terms are the source of the extra terms
in (4.5) including the first derivative term @ðV cos/Þ=@/ that have no counterpart
in (2.6).

The spherical geometry is expected to modify the dispersion relations and
eigenfunctions of the planar waves but not to generate new types of waves because
from a physical perspective each wave type originates from a different balance of
forces and these forces exist, perhaps in slightly different forms, in the two
geometries. Thus, the “purely spherical” potential U2 /ð Þ can be expected to alter
the planar theory only marginally. A more formal justification for the neglect of
U2 /ð Þ is that it is multiplied by α which on earth is smaller than 1, ranging from
5 × 10−6 in a baroclinic ocean to 5 × 10−2 in a barotropic ocean, so the full potential
in (4.7), U1ð/Þ þ aU2ð/Þ, can be safely approximated by U1 /ð Þ. The neglect of
aU2ð/Þ is uniformly valid when C2\a (i.e., Planetary waves) since in this case the
denominator of the three U2 /ð Þ terms: a� C2 cos2 / is definite positive at all ϕ
(i.e., it never vanishes) so aU2 /ð Þ can be safely neglected compared to U1 /ð Þ. In
the case of the fast-moving Inertia-Gravity (Poincaré) waves with C2 [ a, the
denominator of the three U2 /ð Þ terms, a� C2 cos2 /, vanishes only at high enough
latitudes where the eigenfunction wð/Þ is zero. Thus, in the context of the present
equatorial channel problem where the domain is bounded by �d/=2 the singularity
of U2ð/Þ at sufficiently high latitudes does not seriously limit the applicability of
the results. These heuristic arguments have to be substantiated quantitatively to
validate the approach taken below in developing the spherical theory by neglecting
aU2ð/Þ.

The approximate system obtained by neglecting aU1ð/Þ in (4.7) is the
Schrödinger equation:

@2w

@/2 þ
E
a
� U1 /ð Þ

a

� �
w ¼ 0; ð4:9Þ

where E and U1ð/Þ are defined in (4.8).
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Given the symmetry of U1ð/Þ and the bounded ϕ-domain, /j j � d/=2,
an expansion of U1ð/Þ to second order in ϕ can be expected to yield estimates that
are correct to order /4. The resulting eigenvalue problem that approximates (4.9)
then becomes:

@2w

@/2 þ
E
a
� k2 � 1þ ak2

a

� �
/2

� �
w ¼ 0; w / ¼ � d/

2

� �
¼ 0: ð4:10Þ

Figure 4.1, adaped from De-Leon et al. (2010), compares several thousand
solutions of this approximate system with those of the exact system (4.2) for two
d/=2 values (0.05 and 0.4 rad); four α values ranging from 10−6 to 10−3; and
several hundred values of k for the three phase speeds. These results clearly show
that for these baroclinic α values, the neglect of aU2ð/Þ as well as the expansion of
U1ð/Þ to second order in ϕ entail minute changes to the numerically calculated
phase speeds and the combination k2C2=a� 1=C.

Having established numerically the accuracy of the approximate eigenvalue
Eq. (4.10), we can now turn to its analytic inferences. The quadratic form of the
approximate potential suggests that a similar transformation to that used in deriving
the eigenvalue equation on the equatorial β-plane, (3.3), can also be used here.

Fig. 4.1 Values of k2C2/α − 1/C obtained from numerical solutions of (4.2) versus values of E0(k,
α)/α obtained from numerical solutions of the approximate system (4.10). Several thousand points
are shown in this plot in which the C values belong to Rossby waves and the two Poincaré waves.
Data include 4 α-values ranging from 10−6 to 10−3 and k-values ranging from 1 to several hundred.
Channel widths, δϕ/2, are 0.05 and 0.4. Permission from Co-Action/TellusA: doi:10.1111/j.1600-
0870.2009.00420.x

4.1 Introduction 39

http://dx.doi.org/10.1007/978-3-319-20261-7_3
http://dx.doi.org/10.1111/j.1600-0870.2009.00420.x
http://dx.doi.org/10.1111/j.1600-0870.2009.00420.x


Toward that end we transform ϕ, the independent variable of (4.10), to the inde-
pendent variable: z ¼ /=ðd/=2Þ in terms of which (4.10) is written as:

@2w
@z2

þ d/
2

� �2 E
a
� k2

� �
� d/

2

� �4 1þ ak2

a

� �
z2

" #
w ¼ 0; w z ¼ �1ð Þ ¼ 0:

ð4:11Þ

This eigenvalue problem is the spherical counterpart of the planar problem (3.3)
and when the constants that appear in the two problems are compared it becomes
evident that the eigenvalues ðx2=a� 1=C � k2Þ � ðd/=2Þ2 are identical in the two
problems, while the coefficient of z2 in the planar problem studied in (3.3),
ðd/=2Þ4ð1=aÞ, is modified in the spherical problem to ðd/=2Þ4ð1=aþ k2Þ. This
additional k2 term in the coefficient of the potential originates from the latitude
dependence of the zonal wave number on a sphere as explained in the discussion of
the difference between (4.4) and (2.4). In addition to this difference in the coefficient
of z2 in the potentials of the two problems the two problems also differ in the
dependent variable which is V in the planar problem and Ψ (related to V cos/ by (4.
6)) in the spherical problem.

Aside from the somewhat different expressions of the coefficient of z2 in (4.11)
compared to that of (3.3) the solutions are expected to be identical in the two
problems. Since the potential vanishes for narrow channels the asymptotic solutions
of (4.11) are identical to (3.5), i.e.,

wnðzÞ ¼ A sin
nþ 1ð Þp

2
zþ 1ð Þ

� �
; n ¼ 0; 1; 2; . . . ð4:12Þ

and the associated eigenvalues are given by (3.6) so the energy levels of (4.8) can
be derived from the solutions of (3.2) obtained in Chap. 3:

En ¼ k2C2
n �

1
Cn

¼ a k2 þ nþ 1ð Þp
d/

� �2
 !

; n ¼ 0; 1; 2; . . . ð4:13Þ

The wide-channel asymptotic solution of (4.11) is obtained from (3.7) and (3.8)

by substituting ð1=aþ k2Þ1=2 for a�1=2 in the coefficient of z2 in (3.3) (in which b/ε
is given by (3.4)) which yields the wide-channel asymptotic solutions on a sphere:

wnðzÞ ¼ A � Hn
d/
2

1
a
þ k2

� �1=4

z

 !
� e� d/

2ð Þ2z22
ffiffiffiffiffiffiffi
1
aþk2

p
; n ¼ 0; 1; 2; . . . ð4:14Þ

The associated eigenvalues are found from the known relation between the
eigenvalues and the coefficient of z2 in the Harmonic Oscillator of Quantum
Mechanics:
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d/
2

� �2 En

a
� k2

� �
¼ 2nþ 1ð Þ d/

2

� �2 1
a
þ k2

� �1=2
 !

; n ¼ 0; 1; 2; . . .

Substituting the definition of E from (4.8) and rearrangement yields:

x2
n

a
� k
xn

� k2 ¼ 2nþ 1ð Þ 1
a
þ k2

� �1=2

; n ¼ 0; 1; 2; . . . ð4:15Þ

This cubic relation is the spherical counterpart of (3.11), the wide-channel
relation on the β-plane.

Figure 4.2, adapted from De-Leon et al. (2010), shows the transition in the
structure of the V(ϕ) eigenfunctions of the n = 0 mode from harmonic in the
narrow-channel asymptote, (4.12), to Gaussian in wide-channel asymptote (4.14).
In this figure α is varied while δϕ/2 is held fixed at 0.2 but a similar transition occurs
for fixed α when d/=2 in varied.

Given the similarity between the eigensolutions derived in the problem on a
sphere and those derived in Chap. 3 on the β-plane the only point that requires
further consideration is the n = 0 modes that were derived in Chap. 3 as a particular
case where the cubic is decomposed into an exact form that substitutes the
approximate forms based on high/low frequency.

Fig. 4.2 The transition of V(ϕ) from harmonic to Gaussian when α is decreased from 10−2

(narrow-channel asymptote) to 10−5 (wide-channel asymptote) when δϕ/2 = 0.2. Permission from
Co-Action/TellusA: doi:10.1111/j.1600-0870.2009.00420.x
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As is the case of the β-plane, on a sphere too, the roots of (4.15) can be
characterized based on the magnitude of ω0 but a decomposition of the cubic (4.15)
with n = 0 to the spherical counterpart of (3.14) is impossible. The reason for this is
that while the RHS of (4.15) depends on k, the RHS of (3.11) is independent of it
and this independence on k enables the exact decomposition of the latter that yields
(3.14) for n = 0. To examine the possibility that two of the three frequencies of
(4.15) intersect for some combination of k, n and α, we multiply the equation
through by xna�1=2k�3 which yields the cubic:

X3 � X � X 2nþ 1ð Þ F2 þ a1=2F
� �1=2� �

� F ¼ 0; ð4:16Þ

where X ¼ xn
ka1=2 and F ¼ 1=ða1=2k2Þ. Since X3�X

Xþ1 ¼ X2 � X, X þ 1 is a root of (4.16),

i.e., x0 ¼ �a1=2k is a root of (4.15), if and only if ð2nþ 1ÞðF2 þ a1=2FÞ1=2 ¼ F, and
when the square of this condition is divided through by F ≠ 0 one obtains
4n nþ 1ð ÞF ¼ � 2nþ 1ð Þ2a1=2 which can be satisfied only when the two sides equal
0, i.e., when n = 0 and α = 0. The origin of the a1=2F term in (4.16) can be traced
back to the αk2 term in the coefficient of z2 in (4.11), i.e., the ak2=cos2 / term in the
potential U1ð/Þ in (4.8). In contrast, as is evident from (3.4), in the planar problem
k does not affect the potential and it appears only in the expression of energy. Since
the latitude dependence of k2=cos2/ is inherent to the spherical geometry and is the
very basic difference between Cartesian and spherical coordinates the existence of
the anti-Kelvin mode in the dispersion relation seems to be unique to Cartesian
coordinates.

Though it is not possible to derive explicit approximate expressions for the three
roots of (4.16) it is possible to examine whether the two negative roots intersect one
another for certain values of the coefficients of this cubic. For such an intersection to
take place the frequency of the negative Inertia-Gravity wave must equal that of the
Planetary wave at some wave number k. Since the sum of the three roots of any cubic
equals the negative of the coefficient of X2, which is 0 in (4.16), the two intersecting
negative roots of (4.16) should be identical in their absolute values and each of them
equals half the positive root. Thus, an intersection of the two negative roots implies
that the cubic (4.16) has the form ðX � 2X1ÞðX þ X1Þ2 ¼ 0 where X1 is the absolute
value of the negative double root. Equating the coefficients of X0 and X1 in the two

forms yields the relations 2X3
1 ¼ F and 3X2

1 ¼ 1þ 2nþ 1ð Þ F2 þ a1=2F
	 
1=2

,
respectively. Since both relations have to be satisfied for the two negative roots of
(4.16) to intersect one obtains:

3
F
2

� �2=3

� 2nþ 1ð Þ F2 þ a1=2F
� �1=2

¼ 1: ð4:17Þ

In the planar case studied in Chap. 3 an intersection of modes occurs for n = 0. In
contrast, the calculations of the two sides of (4.17) shown in Fig. 4.3 demonstrate
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that the intersection condition, (4.17) with n = 0, is not satisfied for any acceptable
nonzero value of α. Thus, on a sphere, no mode crossing occurs even for n = 0 and
even for baroclinic α value of 5 × 10−6.

The dispersion diagrams, x kð Þ, of the three waves given in (4.15) are shown in
Fig. 4.4 for α = 5 × 10−6 and in Fig. 4.5 for α = 5 × 10−2 both for n = 0,1,…5. For
the baroclinic α in Fig. 4.4 the n = 0 Rossby mode and the n = 0 Poincarè mode
nearly intersect near k = 15, but the zoom-in panel shows that a gap exists between
these modes. As anticipated by the results of Fig. 4.3, the gap between the two
modes widens with the increase in α and at α = 5 × 10−2 the separation between the
two modes is clearly discernible even in the large-scale plot of Fig. 4.5.

The near, but not actual, crossing of the Inertia-Gravity and Planetary n = 0
modes on a sphere shown in Figs. 4.4 and 4.5 provides a new perspective of the
emergence of the mixed mode, as well as the disappearance of the anti-Kelvin
mode, on the unbounded equatorial β-plane (Fig. 1.2). The anti-Kelvin mode is
omitted from the dispersion relation based on the singular behavior of its associated
eigenfunctions in the limit y ! 1. However, the existence of this mode in the
dispersion curves determines the point where the mixed mode transforms from
Inertia-Gravity at small k to Planetary at large k. In the planar approximation
k appears only in the energy and not in the potential (i.e., the planar counterpart of
the potential in Eq. (4.10) is /2=a which is independent of k). This independence of
the planar potential on k brings about the intersection between the n = 0
Inertia-Gravity and Planetary modes that forms the mixed mode even when the

Fig. 4.3 The LHS of (4.17) as a function of F for the indicated values of α and for n = 0 (solid
lines). The horizontal dashed line is “1”, the RHS of (4.17), that has to be intersected by the LHS
curves to satisfy the mode-crossing condition. The inset is a zoom in on the region where the
α = 5 × 10−6 curve nearly intersects “1” but does not
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anti-Kelvin mode is eliminated from the dispersion relation (so the mixed mode and
the anti-Kelvin mode do not intersect). In contrast, the spherical potential depends
on k so the anti-Kelvin mode does not appear at all in the dispersion relation and
each of the two negative n = 0 modes includes a small-k and a large-k segments.

Fig. 4.4 The dispersion relations of the three waves of (4.15) for α = 5 × 10−6 and n = 0, 1…5.
The right panel is a zoom in on the region of near intersection between the two n = 0 negative
modes and this zoom in clarifies that the dispersion curves of the two modes do not intersect

Fig. 4.5 As in Fig. 4.4 but for α = 5 × 10−2. The right panel is a zoom-in on the region where the
frequencies of the two n = 0 negative modes approach one another
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The finding outlined above regarding the disappearance of both the mixed mode
and the anti-Kelvin wave from the dispersion relation on a sphere suggests that the
presence of these modes in the dispersion relation on the unbounded β-plane might
result from the overly simplified setup of this theory where yj j ! 1 despite the
first-order expansion of the Coriolis frequency.

Reference

De-Leon Y, Erlick C, Paldor N (2010) The eigenvalue equations of equatorial waves on a sphere.
Tellus A 62A:62–70
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Chapter 5
Planetary and Inertia-Gravity Waves
in a Mid-latitude Channel on a Sphere

Having examined in the previous chapter the relationship between waves in an
equatorial channel on the b-plane and on a sphere it is only natural to do the same
for a mid-latitude channel. Though mid-latitude waves do not include a unique
wave such as the equatorial mixed mode it is still unclear whether or how the
inclusion of several latitude-dependent terms associated with the spherical geom-
etry will modify the planar solution derived in Chap. 2 in which only the Coriolis
frequency, f(y), was assumed to vary with latitude.

The equations derived in Chap. 4 for zonally propagating waves in spherical
coordinates apply also to the problem of a mid-latitude channel on a sphere
addressed in this chapter. The only difference between the two problems is in the
application of the V = 0 boundary conditions, which are applied in this chapter at /s
and /n, the equatorward and poleward channel walls, respectively. In contrast to the
different boundary conditions in the two problems the exact differential equation,
Eq. (4.5) (or its counterpart, Eq. (4.7)), the approximate differential equation,
Eq. (4.9), the definition of ψ, Eq. (4.6) and the definitions of E and U1 in Eq. (4.8)
are all relevant without any change to the present mid-latitude problem.
Accordingly, the approximate eigenvalue problem (equations and boundary
conditions) to be solved is:

a
@2w

@/2 þ E � sin2 /þ ak2

cos2 /

� �� �
w ¼ 0; w /sð Þ ¼ 0 ¼ w /nð Þ ð5:1Þ

where /s and /n are both positive (negative) in the Northern (Southern)
Hemisphere and where:

w /ð Þ ¼ V /ð Þ cos/ a
C cos/

� C cos/
� ��1=2

and E ¼ k2C2 � a
C
¼ x2 � a

C
:

ð5:2Þ

Note that the spherical eigenvalue problem (5.1) does not reduce to the planar
problem (2.7) when sin / is expanded to first order in /� /0 where /0 is, say, the
channel’s midpoint /s þ /nð Þ=2 due to the / dependence of the term k2= cos2 / in
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spherical coordinates (while the counterpart of this term on a plane is the constant
wavenumber k, incorporated in the expression for the energy). The potential of
(5.1), sin2/þ ak2=cos2/, can be expanded to first order in /� /s as was done in
the planar problem studied in Chap. 2. Carrying out this expansion in (5.1) and
dividing it through by α yields the spherical counterpart of (2.14):

@2w

@/2 þ
E
a
� sin2 /s

a
� k2

cos2 /s
� 2 tan/s

cos2 /s

a
þ k2

cos2 /s

� �
/� /sð Þ

� �
w ¼ 0:

ð5:3Þ

Defining

Z ¼ � E
a
� sin2 /s

a
� k2

cos2 /s

� �
b�2=3 þ /� /sð Þb1=3 ð5:4Þ

where b ¼ 2 tan/s
cos2 /s

a þ k2
cos2 /s

� �
and substituting Z for /� /s in Eq. (5.3)

transforms this equation into Airy equation:

@2w
@Z2 � Zw ¼ 0:

As in Chap. 2 (see the paragraph following (2.16)) the boundary condition
w /sð Þ ¼ 0 is satisfied by setting the equatorward boundary, /� /s, to be the nth
zero of Ai(Z). Letting Zð/ ¼ /sÞ ¼ �nn (where nn is the absolute value of the nth
zero of Ai(Z)) and E = En in (5.4) yields:

En

a
¼ sin2 /s

a
þ k2

cos2 /s
þ 2 tan/s

cos2 /s

a
þ k2

cos2 /s

� �� �2=3

nn: ð5:5Þ

The second boundary condition, w /nð Þ ¼ 0, is satisfied, provided that /n is located
at sufficiently large and positive values of Z such that the contribution of Bi(Z) to
the solution can be neglected, while Ai(Z) itself can be considered zero at that point.
Letting Zð/ ¼ /nÞ ¼ 2 and E = En in (5.4) yields the following threshold value of
channel width above which the Trapped wave theory is valid:

/n � /s � 2þ nnð Þb�1=3 ¼ 2þ nnð Þa1=3

2 tan/s cos2 /s þ ak2
cos2 /s

� �� �1=3
� ð5:6Þ

For ak2 � cos4/s this bound reduces to its planar counterpart, (2.19). As in the
planar problem, in narrow channels, where (5.6) is violated, harmonic solutions of
(5.1) are obtained by evaluating the potential in mid-channel, i.e., at /0 ¼
/s þ /nð Þ=2 in which case the equation becomes a constant coefficient equation.
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The analytic insight gained by analyzing the approximate Schrödinger equa-
tion (5.1) must be validated by comparing it to numerical solutions of the exact
eigenvalue system, (4.2), subject to the boundary conditions Vð/nÞ ¼ 0 ¼ Vð/sÞ.
The calculations of the dispersion relations of Rossby waves shown in Fig. 5.1 for
a ¼ 5� 10�6 and a fixed channel width of 0.7 rad show that the location of the
southern boundary (indicated in the insets of the figure in Radians) affects the
dispersion relation quite significantly (all the figures in this chapter were adapted
from De-Leon and Paldor (2009)).

In contrast, the results shown in Fig. 5.2 for the case in which the equatorward
wall is held fixed at /s ¼ 0:3 but the latitude of the northern wall is increased (i.e.,
the channel width increases with /n) clearly show that the dispersion relation is
unaffected by the increase in the channel width beyond a threshold width of about
0.3 rad for α = 10−3. These results that are obtained from numerical solutions of the
exact system (4.2) confirm the validity of the bounds in (5.6), which were derived
from the approximate equation (5.1).

The analytic estimate in (5.6) of the threshold value of /n � /s above which the
non-harmonic theory is valid also predicts a decrease in this threshold value when
k is increased. Conversely, in a channel of fixed width, Trapped waves will be
realized at large k and Harmonic waves at small k. These predictions are confirmed
by the results shown in Fig. 5.3 for a channel width /n � /s ¼ 0:1 rad and α = 0.1:

Fig. 5.1 Numerical calculation of the dispersion relation of Rossby waves based on the exact
eigenvalue system (4.2) subject to the boundary conditions Vð/nÞ ¼ 0 ¼ V /sð Þ. The value of /s
has a strong effect on the dispersion relations. Permission from American Meteorological Society:
J. Phys. Oceanogr. doi:10.1175/2009JPO4083.1
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Fig. 5.2 The numerically calculated dispersion relation of the exact system (4.2) for the indicated
values of /n and for /s ¼ 0:3. In agreement with the analysis of the approximate equation, (5.1),
in wide channels with /n � /s [ 0:3 rad; the width does not affect the dispersion relation.
Permission from American Meteorological Society: J. Phys. Oceanogr. doi:10.1175/
2009JPO4083.1

Fig. 5.3 The change in the meridional structure of the Vð/Þ eigenfunctions when k is increased
from 50 to 500 in a narrow channel. Though the channel is only 0.1 rad wide, it becomes a wide
channel for large k when αk2 dominates the denominator of (5.6). Permission from American
Meteorological Society: J. Phys. Oceanogr. doi:10.1175/2009JPO4083.1
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The transition from harmonic structure to trapped structure is clearly evident in this
channel when k increases from 50 to 500; that is, αk2 is increased by 100 (from 250
to 25,000) so the threshold value on the RHS of (5.6) decreases by 1001=3 to 4:64.

Furthermore, the eigenfunctions shown in Fig. 5.4, which were obtained from
numerical solutions of the exact system (4.2), clearly show the trapping near the
equatorward wall anticipated by the AiðZð/ÞÞ solution as well as the identical
meridional structure of Vð/Þ of the two Poincaré modes and the Rossby mode. This
identical latitudinal structure is a natural outcome of the unified Schrödinger
equation formulation (5.1) of wð/Þ for the three waves that is transformed to Vð/Þ
via (5.2). However, the identical latitudinal structure of Vð/Þ of the three waves
cannot be inferred from the exact set (4.2) in which each eigenvalue C is associated
with a different corresponding set of (u, V, η) eigenfunctions.

Having established the qualitative and quantitative relevance of the analytic
approximate solutions to the exact numerical results it remains to examine the
quantitative match between the dispersion relations ω(k) derived from the value of
En, (5.5), following the definition of C(E) given in (5.2) with the dispersion rela-
tions calculated numerically from the exact system (4.2). The results shown in
Fig. 5.5 confirm the validity of the approximate solutions at least in the range of
parameters where (5.6) is satisfied.

The three dispersion relations of Rossby waves in a zonal channel in
mid-latitudes: the Harmonic wave relation, the Trapped wave relation on the
β-plane and the Trapped wave relation on a sphere are compared in Fig. 5.6. It is

Fig. 5.4 The Vð/Þ eigenfunctions corresponding to the three values of C of two Poincarè modes
and the Rossby mode for the indicated values of α and k. The u and η eigenfunctions differ
between these modes since their relation to Vð/Þ involves C. Permission from American
Meteorological Society: J. Phys. Oceanogr. doi:10.1175/2009JPO4083.1
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Fig. 5.5 A comparison between the dispersion relation of the first Rossby mode n = 0 obtained
from exact numerical solution of (4.2) and the approximate analytical solutions. Permission from
American Meteorological Society: J. Phys. Oceanogr. doi:10.1175/2009JPO4083.1

Fig. 5.6 The three dispersion relations of the n = 0 Rossby mode in a wide mid-latitude channel.
The slopes of the ω(k) relations are the westward phase speed of the corresponding theory. The
fastest wave is the Trapped wave on a sphere and the slowest one is the Harmonic planar wave.
The lower panel is a zoom-in on the long-wave asymptote of the top panel. Permission from
American Meteorological Society: J. Phys. Oceanogr. doi:10.1175/2009JPO4083.1
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evident from this comparison that for the same channel width and value of α (i.e.,
0.7 rad and 10−6, respectively in the case of Fig. 5.6) the Harmonic wave theory
yields the slowest westward propagation speed while the Trapped wave theory in
the same channel on a sphere yields the fastest phase speed of the three. However,
much of the difference between the spherical theory and the harmonic planar one is
recovered by the planar Trapped wave theory.

Having completed the development of the Trapped wave theory in spherical
coordinates in a channel both on the equator and in mid-latitudes we now turn in the
next chapter to the application of the same idea of constructing an approximate
Schrödinger equation to the wave theory on the entire spherical earth. In this
problem, the boundary conditions of no flow through the channel walls do not apply
and, in addition, the domain is too large for an expansion of the dependent variables
near some specific latitude to yield plausible estimates.

Reference

De-Leon Y, Paldor N (2009) Linear waves in midlatitudes on the rotating spherical earth. J Phys
Oceanogr 39:3204–3215. doi:10.1175/2009JPO4083.1
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Chapter 6
Planetary and Inertia-Gravity Waves
on the Rotating Spherical Earth

In the preceding chapters the physical setup included a channel and in these
problems the boundary conditions that determine the eigensolutions (i.e., eigen-
values and eigenfunctions) of the eigenvalue problems are no-flow through the
channel walls. For these boundary conditions it was natural to transform the set of
two first-order equations, (2.4) for V ; gð Þ on a plane and (4.4) for ðV cos/; gÞ on a
sphere, to a single second-order equations for V or V cos/, respectively, i.e., in the
channel setup, η was eliminated from the set of two first-order equations. In con-
trast, on the entire spherical earth there is no clear preference to one of the two
variables and considerations other than those involving the wall boundary condi-
tions should determine whether to eliminate η or V cos/ in order to obtain the
second-order eigenvalue equation.

The eigenvalue equations for zonally propagating waves in spherical coordinates
is (4.4) for ðV cos/; gÞ since the only assumption involved in transforming the
linearized SWE set (4.1) to (4.4) is the wave structure eik k�Ctð Þ for u, V and η. Since
on a sphere the boundary conditions that solutions of (4.4) have to satisfy are
regularity of both V cos/ and η at the singular poles, where cos/ ¼ 0, one can also
eliminate V cos/ from (4.4) to obtain a single second order equation for η. Thus, in
contrast to all channel problems where the Schrödinger eigenvalue problem was
naturally derived by eliminating η on a sphere two eigenvalue problems can be
constructed by eliminating either η or V cos/ from system (4.4). Regardless of
which of these two variables is eliminated from (4.4) the resulting second-order
equation has the same generic form:

a
@2w

@/2 þ x2 � a
C
� sin2 /þ ak2

cos2 /

� �
þ aU2 /ð Þ

� �
w ¼ 0; ð6:1Þ

and the difference between the Schrödinger equations for V cos/ (obtained by
eliminating η) and that for η (obtained by eliminating V cos/) is manifested only in
the different expressions of U2ð/Þ and the different definition of ψ. The fact that the
eigenvalue equation (6.1) has the same form regardless of whether V cos/ or η is
eliminated implies that the approximate Schrödinger equation obtained by
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neglecting aU2ð/Þ relative to U1ð/Þ ¼ sin2 /þ ak2= cos2 / based on the fact that
on earth α ≪ 1 is identical in the two cases and has the form:

a
@2w

@/2 þ k2C2 � a
C
� sin2 /þ ak2

cos2 /

� �� �
w ¼ 0 ð6:2Þ

where k2C2 � a=C is the energy, E. As before each (eigen)value of the energy, En,
is associated with three-phase speed values that are the roots of the cubic equation
k2C3 � EnC � a ¼ 0.

Harmonic wave solutions are derived from (6.2) by eliminating the dependence
on ϕ of its potential, sin2 /þ ak2

�
cos2 /, i.e., by substituting this potential with

ak2, its constant value on the equator. The resulting equation is precisely that of
Harmonic waves solved in Chap. 4 and the only difference is that the boundary
conditions are applied at / ¼ 1=2p instead of / ¼ 1=2d/. Thus, the eigensolutions
(4.12) and (4.13) apply to the entire sphere when d/ is replaced by pðso z ¼ /=pÞ.
Given the singularity of 1

�
cos2 / at the poles these Harmonic wave solutions

derived by ignoring the ϕ-dependence of the potential are of little relevance to the
dynamics.

As for the more cumbersome Trapped wave solution following De-Leon and
Paldor (2011), and as was shown in Chaps. 4 and 5 when η is eliminated from (4.4),
ψ and U2 are given by:

w /ð Þ ¼ V /ð Þ cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

C cos/ � C cos/
q

and

U2 /ð Þ ¼ 3
4
tan2 /

a þ C2 cos2 /
a � C2 cos2 /

� �2

� 1
2

a þ C2 cos2 /
a � C2 cos2 /

� �
� tan2 /

a þ 2C cos2 /
a � C2 cos2 /

� �
:

ð6:3Þ

Similarly, when V cos/ is eliminated from (4.4) the definition of wð/Þ and the
expression for U2ð/Þ in (6.1), calculated in the same way as the expressions in
(6.3), turn out to be (see Paldor et al. 2013 for more details):

w /ð Þ ¼ g /ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aC cos/

x2 � sin2 /

s

and

U2 /ð Þ ¼ � 1
4
tan2 /� 1

2
þ 3 sin2 / cos2 /

x2 � sin2 /
� 	2 þ 1� 3 sin2 /

x2 � sin2 /
� 2
C

x2

x2 � sin2 /
:

ð6:4Þ
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Though the derivation of the approximate Schrödinger equation, (6.2), is based
solely on the assumption that a � 1 the validity of the resulting approximate
equation has to be verified by examining the singular cases where the denominators
of the neglected potentials U2ð/Þ in (6.3) and (6.4) vanish. The above relations
between ψ and either V cos/ or η imply that the regularity of V cos/ and η is
guaranteed at / ¼ �p=2 only when ψ vanishes at these points.

In addition to this polar singularity, the denominators of the neglected potentials
U2ð/Þ also vanish when x2 ¼ sin2 / and when a ¼ C2cos2/ and these two cases
have to be examined. For ω2 > 1, the denominator of the three last terms of U2ð/Þ in
(6.4), x2 � sin2/, never vanishes, and therefore, the neglect of aU2ð/Þ relative to
U1ð/Þ is uniformly valid in (6.4) at all latitudes in this high-frequency case. On the
other hand, for C2\a, the denominator of the three terms of U2ð/Þ in (6.3),
a� C2cos2/ never vanishes and therefore the neglect of aU2ð/Þ relative toU1ð/Þ is
also uniformly valid in (6.3) at all latitudes in this low-frequency case. Thus, the
eigensolutions of the approximate Schrödinger equation, (6.2), are expected to pro-
vide accurate approximations for both the phase speeds (via the values of the energy,
En ¼ k2C2 � a=C) and the meridional amplitude structure (via the eigenfunctions) of
zonally propagating waves on the spherical earth for the high-frequency
Inertia-Gravity waves as well as the slowly propagating Planetary waves. The
above classification of the two cases in which (6.2) is uniformly valid throughout the
entire sphere suggests that each of these cases corresponds to a slightly different range
of α, the only non-dimensional parameter, and these ranges of α and their physical
implications are described and examined separately in the remainder of this chapter.

6.1 Baroclinic (i.e., “Thin”) Ocean

A sensible first step in the derivation of solution to (6.2) subject to the boundary
conditions ψ = 0 at / ¼ �p=2 is to simplify U1ð/Þ so as to obtain a Schrödinger
equation with known eigensolutions, i.e., an equation for which explicit expressions
already exist for both the energy levels En and the corresponding eigenfunctions wn.
As in the channel case studied in Chap. 4, the symmetry of U1ð/Þ, i.e., U1ð�/Þ ¼
U1ð/Þ implies that its power series (e.g., Taylor series) expansion contains only
even powers of ϕ. Retaining only second-order terms in the expansions of
sin2 / and 1

�
cos2 / transforms Eq. (6.2) into the known Schrödinger equation of

Harmonic Oscillator of Quantum Mechanics that is identical to the differential
equation (but with different boundary conditions) derived in (4.10):

a
@2w

@/2 þ E � ak2 � 1þ ak2
� 	

/2
 �
w ¼ 0: ð6:5Þ

The eigensolutions derived in Chap. 4 to this equation are also relevant to the
whole sphere but the range of validity of (6.5) and the effect of the boundary

6 Planetary and Inertia-Gravity Waves … 57

http://dx.doi.org/10.1007/978-3-319-20261-7_4
http://dx.doi.org/10.1007/978-3-319-20261-7_4
http://dx.doi.org/10.1007/978-3-319-20261-7_4


conditions of regularity at the poles instead of the no normal flow conditions at the
channel walls need to be examined. The eigensolutions of (6.5) include the energy
levels, En, and eigenfunctions, ψn, given by:

En ¼ ak2 þ 2nþ 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a2k2

p

and

wn ¼ Hn /
� ffiffiffi

c
p� 	

e�/2= 2cð Þ; n ¼ 0; 1; 2; . . .

ð6:6Þ

where Hn are Hermite polynomials of order n and c ¼ a
1þak2

� 1=2
.

Each of the energy levels in (6.6) is associated with a special latitude known as
the turning latitude, denoted here by /turn, where the coefficient of ψ in (6.5),
En � ak2 � 1þ ak2ð Þ/2

turn, changes sign from positive at /\/turn to negative at
/[/turn. Substituting the expression for En, (6.6), into the coefficient of ψ in (6.5)
and equating this coefficient to zero yield the following explicit expression for /turn:

/turnð Þ2¼ 2nþ 1ð Þ a1=2

1þ ak2ð Þ1=2
: ð6:7Þ

In accordance with the change of sign of the coefficient of ψ in (6.5) at
/ ¼ /turn, the eigenfunction corresponding to En; i.e., wnð/Þ, changes its behavior
there from oscillatory (but not necessarily periodic) at /\/turn to
decaying/increasing (possibly faster than exponential) at /[/turn.

Solutions of the differential Eq. (6.5) are eigenfunctions of the eigenvalue
problem only when they satisfy the boundary condition wnð/ ¼ �p=2Þ ¼ 0, and
therefore only the solutions that decay to zero in the ranges /turn\/\p=2 and
�/turn [/[�p=2 are acceptable as approximate eigenfunctions of (6.2). Since
the rate at which these solutions decay to zero with latitude at /j j[ /turnj j is fast,
given by the exponent of �/2=ð2cÞ which is close to �/2=ð2a1=2Þ for ak2 � 1, the
maximal latitude where these solutions are nonzero is very well approximated by
/turn. Thus, the parabolic expansion of U1ð/Þ that enabled the transformation of
(6.2)–(6.5) is only valid when /turn\1, so according to (6.7) the validity of (6.5) is
limited by:

/turn ¼
2nþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ k2

q \1; n ¼ 0; 1; 2; . . . ð6:8Þ

This condition is more restrictive than the a\1 condition employed to justify the
neglect of aU2ð/Þ from (6.1) since for any values of α and k it sets an upper bound
on the mode number, n, below which the approximate solution (6.6) is valid. In a
baroclinic ocean α = 5 × 10−6 (this is also the value of α for a 0.5 m deep layer of
fluid) and the foregoing theory applies to n < O(100). In the atmosphere where the
speed of gravity waves is an order of magnitude larger than in a baroclinic ocean,
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the value of α is 10−4 so the corresponding bound on n is n < O(10). In a barotropic
ocean where (gH)½ is about 200 m/s the value of α is 0.05 and the bound on n is 1
since at this value of α (6.8) is violated even for n ≥ 2 so the foregoing theory is
expected to apply only to n = 0 and n = 1. Large enough values of k can alter these
bounds somewhat, particularly at small α−1.

The analytical results derived in this section serve as a guide in the interpretation
of numerical solutions of the original exact differential system (4.2) for
�p=2�/� p=2 subject to the boundary conditions of regularity of u, V and η at
/ ¼ �p=2. The numerical solutions described below are also intended to validate
the analytical results and provide exact quantitative (and not just order of magni-
tude) estimates for the parameter values where the results of analytical theory of a
“thin” ocean apply.

Figure 6.1, adapted from De-Leon and Paldor (2011), verifies the approxima-
tions described above that involve both the neglect of aU2ð/Þ and the limitation on
n that results from the parabolic approximation of U1ð/Þ. Three values of α are
used: 10−2, 10−4 and 10−6 and in all three cases, the zonal wavenumber was set to
k = 10. The three potentials, U1ð/Þ þ aU2ð/Þ;U1ð/Þ and the parabolic approxi-
mation to U1ð/Þ—ak2 þ ð1þ ak2Þ/2, shown in the left panels, clearly demonstrate
that in all three cases U1ð/Þ provides an accurate approximation to U1ð/Þ þ
aU2ð/Þ throughout most of the �p=2\/\p=2. The two potentials differ from
one another only in the immediate vicinity of the poles at latitudes far beyond
/turn—the latitude where the eigenfunction wnð/Þ in (6.6) begins its
faster-than-exponential decay and where the parabolic potential ak2 þ ð1þ ak2Þ/2

ceases to provide a valid approximation to U1ð/Þ.
Thus, even for α = 10−2 (top row), the neglect of aU2ð/Þ does not invalidate the

foregoing theory. On the other hand, the approximation of U1ð/Þ by ak2 þ ð1þ
ak2Þ/2 is limited to low latitudinal mode numbers, n, that satisfy (6.8) and for
a ¼ 10�2 the theory applies to n < 2 only since for n� 2 /turn on the RHS of (6.8)
is not sufficiently smaller than 1. The panels on the right column of Fig. 6.1 show a
zoom in of the three potentials on the ϕ < 0.6 range where the approximation of
U1ð/Þ by ak2 þ ð1þ ak2Þ/2 should hold. Also shown are a few representative
energy levels associated with sufficiently small /turn. A conservative estimate of the
number of energy levels contained in this ϕ-range is provided by the index of the
highest energy level shown in each panel and this estimate can be somewhat
increased for a less conservative, but still fairly accurate, estimate.

The dispersion relations of Planetary waves and westward propagating
Inertia-Gravity waves derived from these estimates of the energy levels by com-
bining them with the definition of the energy in terms of the waves’ phase speeds,
E ¼ k2C2 � a=C, are shown in Fig. 6.2 for two values of α and for mode numbers
n = 1, 3, 7 (Planetary waves) and n = 1–8 (Inertia-Gravity). These calculations
demonstrate the high accuracy of the analytic estimates for sufficiently low values
of αn2 and a slight error can be detected in the n = 8 curve of α = 10−4 panel where
αn2 equals 0.0064 = 0.64 %.
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6.2 Barotropic (i.e., “Deep”) Ocean

As discussed above, in a barotropic ocean where H is about 4 km the value of α is
about 0.05 which is sufficiently small compared to 1 to justify the neglect of
aU2ð/Þ relative to U1ð/Þ so that the assumption needed to transform (6.1) to (6.2)
is valid at this value of α. Indeed, as expected, the numerically calculated graphs of
U1ð/Þ and those of U1ð/Þ þ aU2ð/Þ shown in Fig. 6.1 for α = 0.01 are very close

Fig. 6.1 Left column The exact and approximate potentials. The approximations of U1ð/Þ þ
aU2ð/Þ (red dashed line) by U1ð/Þ (thin solid blue line) are not accurate near the poles. The
approximations of U1ð/Þ by ak2 þ ð1þ ak2Þ/2 (thick solid line) are not accurate at latitudes
larger than about 0.6. Right column Zoom in on the potentials in the range �0:6�/� 0:6 and
several the energy levels for which /turn\ 0:6. As α decreases going from top to bottom the
number of energy levels with turning latitudes /turn\ 0:6 increases: For a ¼ 10�2 /turn\0:6 only
for n ≤ 2 (upper panel); For a ¼ 10�4 /turn\0:6 for n < 10 (middle panel) while for
a ¼ 10�6 /turn\0:6 even for n = 60 (lower panel). Permission from Co-Action/TellusA: doi:10.
1111/j.1600-0870.2010.00490.x
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to one another except for the immediate vicinity of the poles. However, according
to the constraint (6.8) at this value of α (6.6) provides acceptable approximate
eigensolutions of (6.2) only for n = 0 and 1 while at higher meridional mode
numbers the solutions of this equation have to be derived by solving it (including
the associated boundary conditions) directly since no exact or approximate solu-
tions have been previously derived. The derivation of these sought solutions of the
Schrödinger Eq. (6.2) when αn2 is not small follows the method described in Paldor
et al. (2013).

The starting point of the derivation of new solutions to (6.2) is handling the
singularity of U1ð/Þ at the poles. The development of the theory is facilitated by
defining l ¼ sin/ as the new independent variable of (6.2) in terms of which the
equation transforms to:

Fig. 6.2 The dispersion relations of mode numbers 1, 3, and 7 of Planetary waves and mode
numbers 1–8 of westward propagating Inertia-Gravity waves for the indicated values of α.
Permission from Co-Action/TellusA: doi:10.1111/j.1600-0870.2010.00490.x
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a 1� l2
� 	 @2w

@l2
� al

@w
@l

þ k2C2 � a
C
� l2 þ ak2

1� l2

� �� �
w ¼ 0: ð6:9Þ

The polar singularity of (6.2) appears in this equation as the l ¼ �1 singularity.
In order to address this singularity the sought eigenfunction is decomposed into
wðlÞ ¼ ð1� l2ÞdGðlÞ where the power δ has yet to be determined and where GðlÞ
is assumed to be a regular function that has a Taylor series expansion. The function
ð1� l2Þd that multiplies the regular function GðlÞ is the counterpart of the
Gaussian that multiplies Hermite polynomials in the Hermite function solutions of
the previous subsection. These two “envelope” functions guarantee that the ei-
gensolutions satisfy the regularity boundary conditions at the poles so GðlÞ (and in
the case of a baroclinic ocean the Hermite polynomials) has to satisfy only the
differential equation, thus determining the energy levels.

Substituting the assumed form wðlÞ ¼ ð1� l2ÞdGðlÞ in (6.9) and dividing the
resulting equation by að1� l2Þd�1 yields the differential equation:

1� l2
� 	2

G00 � 4dl 1� l2
� 	

G0 þ 4d d� 1ð Þl2G� 2d 1� l2
� 	

G

þ 2dl2G� l 1� l2
� 	

G0 þ E � l2

a
1� l2
� 	

G� k2G ¼ 0;
ð6:10Þ

where E ¼ k2C2 � a=C. For regular G, G′ and G″ setting μ2 = 1 in this equation
yields the quadratic equation for δ:

4d d� 1ð Þ þ 2d� k2
� 	

G ¼ 0: ð6:11Þ

The positive root of this equation, which is associated with a regular ψ(μ) at
μ2 = 1, is:

2d ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ k2

r
: ð6:12Þ

Since
ffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ k2

q
[max 1

2 ; k
� �

Eq. (6.12) guarantees that 2d�maxf1; kg for all

k and that this inequality is strict for k > 0. Since ð1� l2Þd ¼ cos2d / it turns out that
wð/Þ decays to 0 at the poles faster than cosk / for all k ≥ 1 and as cosϕ for k = 0.

Having determined the “envelope” function (1 − μ2)δ we now turn our attention
to GðlÞ. Using (6.11) to substitute ð4dðd� 1Þ þ 2dÞG for k2G (the last term on the
LHS) of (6.10) and dividing the resulting equation by (1 − μ2) yields the following
regular equation for G(μ):

G00 � l2G00 � 1þ 4dð ÞlG0 þ E
a
� 4d2

� �
G� 1

a
l2G ¼ 0: ð6:13Þ
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Although this equation is regular, in its present form it does not have polynomial
solutions of finite degree N. To see why this is the case, assume that μN is the
highest power in the solution, in which case the μ2G term (the last term on its LHS)
is proportional to μN+2 while all other terms have powers of μ smaller than, or equal
to, N. Thus, this μN+2 term cannot be balanced by any other term in the equation so
it has to be equal to zero which contradicts the initial assumption that the solution is
a polynomial of degree N. Since α < 1, the coefficient of the μ2G term in (6.13), 1/α,
is larger than 1 so it is unclear how to derive explicit expressions for the solutions of
this equation.

An alternative way of finding explicit expressions for the solutions of (6.13) is to
expand G(μ) as an infinite Taylor series. We thus let G lð Þ ¼ P1

j¼0 bjl
j where the

coefficients bj; j ¼ 0; 1; 2; . . .
� �

are to be determined by substituting this expansion
into (6.13). Collecting like powers of μ from all terms of this equation yields the
infinite series:

2b2 þ E
a
� 4d2

� �
b0 þ 6b3 þ � 1þ 4dð Þ þ E

a
� 4d2

� �
b1

� �
l

þ
X1
j¼2

jþ 2ð Þ jþ 1ð Þbjþ2 þ �j j� 1ð Þ � j 1þ 4dð Þ þ E
a
� 4d2

� �
bj � 1

a
bj�2

� �
l j ¼ 0:

ð6:14Þ

Equating to zero the coefficients of l j; j ¼ 0; 1; 2. . . in this equation yields the
recursion relations:

b2 ¼
4d2 � E

a

2
b0;

b3 ¼
1þ 2dð Þ2� E

a

6
b1;

:

:

bjþ2 ¼
jþ 2dð Þ2� E

a

h i
bj þ 1

a bj�2

jþ 2ð Þ jþ 1ð Þ ; j� 2:

ð6:15Þ

The energy levels are determined by requiring the coefficient of bn on the RHS
of the last general relation of this equation to vanish at some large n, i.e.,
En ¼ aðnþ 2dÞ2. For the infinite series G lð Þ ¼ P1

j¼0 bjl
j to converge at l ¼ �1,

the ratio bjþ2
�
bj has to be smaller than 1 and independent of j in the j → ∞ limit.

Denoting X ¼ bnþ2=bn � bn=bn�2 the last relation in (6.15) implies X ¼ 1
n
ffiffi
a

p so

X�!n!1
0 regardless of the value of α and the series converges rapidly for j > n. The

accuracy of this estimate of the energy levels:
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En ¼ a nþ 2dð Þ2; n� 0; ð6:16Þ

has to be determined numerically for various combinations of α and corresponding
n values since the derivation of this estimate is based on the assumption that
an2 � 1.

Since the eigenvalue equation, (6.9), is invariant under the change-of-sign of the
independent variable, μ, the solutions must be either symmetric or anti-symmetric.
The eigenfunction corresponding to En is proportional to Gn ¼

Pn
j¼0 bjl

j where the
bj′s are given by the recursion relation (6.15) with En substituted for E. The sym-
metry of Gn is determined by the value of n, so GnðlÞ is an even/odd function of μ
when n is even/odd. The even solutions are obtained by letting b0 = 1 (the value of
1 is an arbitrary amplitude) and b1 = 0 in (6.15) and the odd solutions by letting
b0 = 0 and b1 = 1. From their definitions it is obvious that wðlÞ;VðlÞ and vðlÞ in
the case of (6.3) and wðlÞ and gðlÞ in the case of (6.4) have the same symmetry
as Gn.

In the remainder of this section the theoretical results obtained above will be
applied to derive explicit expressions for the dispersion relations of barotropic
Planetary and Inertia-Gravity waves and for the meridionally dependent amplitudes
associated with these relations.

6.2.1 Dispersion Relation of Planetary Waves

The phase speed of Planetary waves, approximated by Cn ¼ �a=En, can be com-
bined with (6.16) to yield the dispersion relation of these waves in the n2 → ∞
limit:

Cn ¼ � a
En

¼ �1

nþ 2dð Þ2 ð6:17Þ

where 2d ¼ 1=2 þ 1=4 þ k2ð Þ1=2 according to (6.12) i.e., δ is a function of k only so Cn

is independent of α.
The results shown in Fig. 6.3 (the figures in this subsection were reproduced

from Paldor et al. (2013)) clearly demonstrate the accuracy of the analytical esti-
mates of En that were formally derived in (6.16) only for n → ∞ but seem to be
accurate even for n = 5, i.e., when αn2 = 1.25, which is only marginally larger than 1.
It should not come as a surprise that for small n (and k) values, where the condition
n2 →∞ is violated, the error of the analytic result is as high as 50 %. The frequency
of all modes was set to 0 at k = 0 (i.e., no calculations were performed for k = 0).

As is evident from (1.7) in planar Planetary wave theory the phase speed C is
independent of α (identified by gH) at wavelengths much shorter than the radius of
deformation (proportional to α½ in the scaling used here). The results derived in
(6.17) regarding the independence of Cn on α when n→∞ (and as long as α < 1 to
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ensure that αU2 can be neglected) extend this planar result to spherical geometry but
with a modified combination of n and k. This conclusion is confirmed in Fig. 6.4
where the exact C-values calculated numerically from (4.2) are compared to the
values given in (6.17) for n = 15 = k. As the value of a nþ 2d kð Þð Þ2 increases from

Fig. 6.3 The dispersion relation, ω = kC as a function of k, of Planetary waves. Approximate
expression from (6.17) (purple dashed curves) and the exact C calculated numerically from (4.2)
(blue solid curves). Permission from Cambridge University Press: J. Fluid Mech. doi:10.1017/jfm.
2013.219

Fig. 6.4 The asymptotic approach of the exact value of C (blue dotted curve) to the value given
by (6.17) (solid constant line at C = −1.0744) as α(n + 2δ(k)) is increased. Permission from
Cambridge University Press: J. Fluid Mech. doi:10.1017/jfm.2013.219

6.2 Barotropic (i.e., “Deep”) Ocean 65

http://dx.doi.org/10.1007/978-3-319-20261-7_4
http://dx.doi.org/10.1007/978-3-319-20261-7_4
http://dx.doi.org/10.1017/jfm.2013.219
http://dx.doi.org/10.1017/jfm.2013.219
http://dx.doi.org/10.1017/jfm.2013.219


2.25 at α = 0.005 to 90 at α = 0.1, the corresponding relative deviation of C from the
asymptotic value (6.17) decreases from about 0.08 to 0.003. The validity of the
n2 → ∞ theory is bolstered by the small (8 %) deviation of the value of C at
a nþ 2d kð Þð Þ2¼ 2:25 as well as by its monotonic approach to the value given by
(6.17) when a nþ 2d kð Þð Þ2 is increased.

6.2.2 Dispersion Relation of Inertia-Gravity Waves

The phase speed of Poincaré waves, approximated by Cn ¼ � Enð Þ1=2=k, can be
combined with the expression for the eigenvalue, En, found in (6.16) to yield the
following dispersion relation of Poincaré waves which is valid in the limit when
n2 → ∞:

Cn ¼ �
ffiffiffiffiffi
En

p
k

¼ �
ffiffiffi
a

p
nþ 2dð Þ
k

: ð6:18Þ

The validation of this dispersion relation of the positive Inertia-Gravity waves is
shown in Fig. 6.5 (the results for negative Inertia-Gravity waves are similar) where
this expression is compared with exact numerical calculations of Cðk; n; a ¼ 0:05Þ.
As expected, the accuracy of the analytic approximate expression for Cn given in
(6.18) increases with nþ 2d kð Þð Þ. The analytic solution (6.18) of the eigenvalue
equation, (6.9), is valid only when the following two conditions are satisfied:
(1) The term w= cos2ð/Þ ¼ cos2 d�1ð Þð/ÞGðsinð/ÞÞ is regular, i.e., only for k > 1,
and 2) the frequency ω = Ck is larger than 1, so the neglect of αU2 in (6.4) is valid
in �p=2�/� p=2. However, although the associated eigenfunctions obtained

Fig. 6.5 The dispersion relations, ω = Ck as a function of k, of the positive Inertia-Gravity wave.
Exact values of C (points) calculated numerically from (4.2); approximate values of C (solid lines)
from (6.18). Permission fromCambridgeUniversity Press: J. FluidMech. doi:10.1017/jfm.2013.219
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numerically for k = 1 are singular at high latitudes, i.e., condition 1 is violated (but
η(ϕ) calculated from system (4.2) is regular), (6.18) yields fairly accurate approx-
imations to C. This fit of the eigenvalues (and phase speeds) is accurate even for the
n = 2, k = 1 mode where the frequency is smaller than 1, i.e., condition 2 is violated.

6.2.3 Eigenfunctions

In addition to the approximate energy levels that were compared to their exact
counterparts in the preceding subsections, the analytic approximate eigenfunction
wðlÞ ¼ ð1� l2ÞdGðlÞ, where G(μ) is the polynomial approximation, truncated at
the chosen n and satisfying the recursion relation (6.15) with the bj−2 term omitted
from all expressions of bj+2 for 2 < j < n − 2 should also be compared to their exact
counterparts. These exact solutions of the eigenfunctions can be derived from
numerical solutions of (4.2) that for Planetary waves can be employed to yield ψ
from the V field by applying the V(ψ) transformation (6.3), while for Inertia-Gravity
waves, the exact numerical solution of (4.2) for η yields ψ by the η(ψ) transfor-
mation (6.3). The comparisons shown in Fig. 6.6 clearly demonstrate that the
accuracy of the analytic results is not limited to the eigenvalues only but prevails
also in the eigenfunctions. At (k, n) values higher than (5, 5), the exact and
approximate functions cannot be distinguished from one another.

Fig. 6.6 The exact (solid, dotted, dashed-dotted lines) eigenfunctions ψ(μ) of the three wave types
and the single approximate analytic ψ(μ) (dashed line). All eigenfunctions are normalized so the
maximum value is 1. The three exact functions of the indicated n and k cannot be distinguished
from one another while the approximate analytic function deviates very slightly from them.
Permission from Cambridge University Press: J. Fluid Mech. doi:10.1017/jfm.2013.219
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Chapter 7
Kelvin Waves on the Rotating Spherical
Earth

As was noted in Chaps. 4–6, where Planetary and Inertia-Gravity waves were derived
on a sphere, Kelvin waves cannot be derived in spherical coordinates by simply
setting C2 ¼ a since even with this substitution the coefficient of η in the equation for
@ðVcos/Þ=@/ [the upper right term in the matrix on the RHS of (4.4)] does not
vanish, so the two first-order equations remain coupled. This is in contrast to
Cartesian coordinates (both in mid-latitudes and on the equator) where the substi-
tution C2 ¼ a decouples the two equations by setting the coefficient of η in the
equation for @V=@y [the second term in the top line on the RHS of (2.4)] equal to zero.

This straightforward analytical assertion is supported by numerical integration of
system (4.4), which is exact for zonally propagating wave solutions, with C ¼ ffiffiffi

a
p

over the sphere. Letting C ¼ ffiffiffi
a

p
and l ¼ sin/ and defining tðlÞ � Vcos/ trans-

forms system (4.4) to:

a1=2 1� l2
� � @

@l
g
t

� �
¼ �l k2 � l2

a
al2 l

� �
g
t

� �
: ð7:1Þ

Upon expanding the solutions of these equations near the singular poles l ¼ �1 it
becomes evident that the regular solutions at the poles are given by:

g�!l2!1
1� l2
� �k=2

; t�!l2!1 �la

1þ k
ffiffiffi
a

p 1� l2
� �k=2

: ð7:2Þ

If C ¼ ffiffiffi
a

p
is indeed an “eigenvalue” of system (4.4) then system (7.1) should have

solutions that are differentiable throughout �1\l\þ1 and regular at l ¼ �1.
However, when system (7.1) is integrated numerically twice: the first time from
near l ¼ 1 to l ¼ 0 and the second time from near l ¼ �1 to l ¼ 0 (i.e., away
from the singular points) and the two calculated values of η(μ) at l ¼ 0 are matched
to yield η(μ) that is continuous throughout it turns out that @g=@l and hence
Vð/Þcos/ are discontinuous at the matching point l ¼ 0. An example of these
calculations is shown in Fig. 7.1 and the same calculations were repeated for a large
number of (α, k) values and in all of them the results were identical—no continuous
solutions of system (7.1) that satisfy the regularity condition (7.2) were found.
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In contrast to these results on a sphere the application of this numerical method to a
channel on the equatorial β-plane where V ¼ 0 at the channel walls, namely inte-
grating the governing equations (i.e., (2.4) with C ¼ ffiffiffi

a
p

and /0 ¼ 0) from the two
walls to the equator and matching the two values of η there always, yields the
analytical continuous eigenfunctions where η is a Gaussian and V ¼ 0 everywhere.
The successful application of this numerical methodology on the equatorial β-plane
validates the conclusion derived from its application to (7.1) subject to the
boundary conditions (7.2) that no waves with C ¼ ffiffiffi

a
p

exist on a sphere.
Having demonstrated both analytically and numerically that unlike Cartesian

coordinates there is no solution to the SWE on a sphere with either V ¼ 0 or
C ¼ ffiffiffi

a
p

, i.e., there are no Kelvin waves on a sphere, we still have to consider the
possibility that “Kelvin” waves exist on sphere but only as an asymptotic limit in
some small parameters such as α or C. In such an asymptotic theory both Vcos/
(or υ) and C2 − α are negligible only at the leading order. Indeed, such an
asymptotic theory for linear “Kelvin” waves on a sphere was developed by Boyd
and Zhou (2008) based on a simplified version of (4.4) obtained by employing a
smart “spherical equatorial” dynamics. However, since the approximate equation

Fig. 7.1 A numerical integration of system (7.1) starting with the regular solutions (7.2) at μ = −1
in the first integration and at μ = 1 in the second integration. The two integrations are matched at
μ = 0 to ensure that η(μ) is continuous. As is evident from these results, the integrations lead to
discontinuous @g=@l (and υ(μ) = V(ϕ)cosϕ)
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solved by Boyd and Zhou (2008) is also a genuine second-order eigenvalue
equation it is unclear whether the solution derived is a “Kelvin” wave or the n ¼ 0
Inertia-Gravity mode. As we shall shortly see, the n ¼ 0 mode of the Inertia-Gravity
waves is non-dispersive and passes through the origin of the ω(k) relation (but with
phase speed, i.e., the slope of the ω(k) curve, larger than

ffiffiffi
a

p
), so care should be

exercised in the development of such a “Kelvin” wave theory to ensure that the
solution obtained does not reproduce the n ¼ 0 Inertia-Gravity mode.

The subtlety of the issue at hand is demonstrated by examining the dispersion
relations of the first 8 modes with positive frequencies obtained from numerical
solutions of system (4.2). The dispersion relations are shown in Fig. 7.2 and the
curve of the mode with the lowest frequency highlights the dilemma regarding
“Kelvin” waves on a rotating sphere: Is this lowest curve a “Kelvin” wave or the
n ¼ 0 mode of the eastward propagating Inertia-Gravity waves? Obviously, if the
answer to this question is the latter of these two possibilities then no “Kelvin”
waves exist on a sphere since the frequency of Kelvin waves is lower than that of
the n ¼ 0 Inertia-Gravity mode.

To resolve this issue we consider the exact second-order eigenvalue Eq. (6.1)
derived in Chap. 6 for any zonally propagating SW wave on a sphere by eliminating
either Vcos/ or η from the two first-order equations—(4.4). Since to leading order
V has to vanish in “Kelvin” waves while η does not, the leading order dynamics of
Kelvin waves are describable by the η-equation, i.e., the equation obtained when
Vcosϕ is eliminated from (4.4) (see also Eq. (6.4)):

Fig. 7.2 The dispersion curves of the first eight, positive frequency, modes of system (4.2)
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0 ¼ a
@2w

@/2 þ x2 � a
C
� sin2 /þ ak2

cos2 /

� ��

þ a � 1
4
tan2 /� 1

2
þ 3 sin2 / cos2 /

x2 � sin2 /
� �2

 

þ 1� 3 sin2 /

x2 � sin2 /
� 2
C

x2

x2 � sin2 /

��
w;

ð7:3Þ

where ψ is related to η by:

w /ð Þ ¼ g /ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aC cos/

x2 � sin2 /

s
:

If “Kelvin” waves exist on a sphere, then they ought to be special solutions of
Eq. (7.3) that do not belong to the numerable series of regular solutions derived in
Chap. 6. Such special (or degenerate) solutions can only be associated with singular
cases in which the transformation leading to (7.3) is singular, i.e., only for
x ¼ kC\1, which for C � ffiffiffi

a
p

is only relevant to the limited zonal wavenumber
range k\1=

ffiffiffi
a

p
. This finite wavelength cutoff for the possible existence of special

solutions to (7.3) rules out the existence of a non-dispersive “Kelvin” wave on a
sphere and ensures that the continuous non-dispersive lowest dispersion curve in
Fig. 7.2 is the n ¼ 0 mode of the eastward propagating Inertia-Gravity waves.

Additional independent arguments leading to the same conclusion are obtained
by considering analytic approximations to the numerically calculated dispersion
curves in Fig. 7.2 and by examining the eigenfunctions associated with these
curves. A starting point for the analytical estimates is a derivation of the exact
dispersion relations for gravity waves on a non-rotating sphere. Without rotation,
the dimensional vectorial (i.e., geometry free) LSWE takes the form:

@V
@t

¼ �grg;

@g
@t

¼ �Hr � V :
ð7:4Þ

Differentiating the second equation WRT t and substituting the first equation yields:

@2g
@t2

¼ �Hr � @V
@t

¼ gHr � rg ¼ gHDg ð7:5Þ

where D ¼ r � r (i.e., the DIV operator applied to the GRAD of a scalar function)
is the Laplacian. On a sphere of radius a, the eigenfunctions of the Laplacian are the
Spherical Harmonics and the eigenvalues are �l lþ 1ð Þ=a2, where l ¼ nþ k� 0 is
the total wavenumber. Thus, the frequencies of (gravity) waves that vary with time
as eixt are given by:
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x2 ¼ l lþ 1ð Þ gH
a2

: ð7:6Þ

Even though there is no Ω in the non-rotating problem (7.4) it is still possible to
divide both sides of (7.6) by the (unspecified) term 4Ω2 whose meaning becomes
clear only when the frequencies are compared to those on a rotating sphere.
Dividing (7.6) by 4Ω2 yields the non-dimensional dispersion relations of
non-rotating gravity waves:

x2 ¼ a nþ kð Þ nþ k þ 1ð Þ; ð7:7Þ

in which the non-dimensional frequency equals the dimensional frequency of (7.6)
scaled on, the soon to be specified, 2Ω and l ¼ nþ k.

The exact dispersion relation on a non-rotating sphere (7.7) can be compared
to that derived in (6.18) for Inertia-Gravity waves on a rotating sphere

x2 ¼ aðnþ 2dÞ2 where 2d ¼ 1=2 þ ðk2 þ 1=4Þ1=2, which was derived in (6.12) for
an2 [ 1: For k � 1=2; 2d can be approximated by k þ 1=2, which yields the
approximate dispersion relation:

x2 � a nþ k þ 1=2ð Þ2: ð7:8Þ

Since nþ kð Þ nþ k þ 1ð Þ ¼ nþ k þ 1=2ð Þ2�1=4 for sufficiently large n + k, the
non-rotating frequencies in (7.7) are very close to the rotating ones in (7.8) and for
n + k = 5, the value of ω/α½ calculated with (7.7) differ by less than 1 % from that
calculated with (7.8): 30½ ≈ 5.48 versus 5.50. The near-exact match between the
exact dispersion relation of gravity waves on a non-rotating sphere, (7.7), and the
approximate relation for Inertia-Gravity waves on a rotating sphere, (7.8), at large
n + k and for n2a[ 1 will be applied to determine the nature of the numerically
calculated modes.

Before turning to the identification of the numerically calculated modes it is
worth noting that the LSWE is a third-order system in time and therefore the two
frequencies of (7.7) are supplemented by the third, ω = 0, eigenvalue. This third
ω = 0 frequency is not the trivial solution (i.e., the zero solution where both V and η
vanish). Instead, it describes a non-divergent steady zonal velocity, such as
V ¼ ðuð/Þ; 0Þ, balanced geostrophically by the non-vanishing steady η
eigenfunction.

Figure 7.3 shows a (slight) zoom-in on the dispersion curves shown in Fig. 7.2
along with the analytic expressions of (7.8) for (n, k) = (5, 5) and (n, k) = (7, 7).
Both rotating and non-rotating relations (7.7) (or (6.18)) and (7.8) fall within each
of the respective marker and the analytic estimates differ from the numerically
derived values by 2–3 % only. Clearly, if the lowest mode in Fig. 7.2 is a Kelvin
wave then the meridional mode number of the Inertia-Gravity modes above it
should be decreased by 1, so the curves next to the analytic markers should be n =
4, instead of n = 5, in the case of the datum at k = 5 and n = 6, instead of n = 7, in

7 Kelvin Waves on the Rotating Spherical Earth 73

http://dx.doi.org/10.1007/978-3-319-20261-7_6
http://dx.doi.org/10.1007/978-3-319-20261-7_6
http://dx.doi.org/10.1007/978-3-319-20261-7_6


the case of the datum at k = 7. In both points, decreasing n by 1 to enable the lowest
mode in Fig. 7.3 to be a “Kelvin” mode implies a much larger error of the analytic
estimates than the 2–3 % error encountered with the original values of n. It should

Fig. 7.3 An enlarged version of Fig. 7.2 along with the analytic estimates (7.7) and (7.8) for
α = 0.04 and (n, k) = (5, 5) and (7, 7). In accordance with the increase in accuracy of (7.8) with
k and n, the relative error of the analytic estimate decreases from 3 % at (n, k) = (5, 5) to 1.6 % at
(n, k) = (7, 7)

Fig. 7.4 The dispersion relations of Gravity waves on a non-rotating sphere and of Inertia-Gravity
waves on a rotating sphere. As anticipated theoretically, the two types of waves differ significantly
from one another only at low k and n. γ = α−½ is the square root of Lamb number
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also be noted that the slope of the lowest x kð Þ curve is larger by 4 % compared to
the expected phase speed of Kelvin waves, x ¼ k

ffiffiffi
a

p
, which is evident upon

examining the intersection of this curve with the right ordinate located at k = 10 that
occurs at ω = 2.08 instead of ω = 2.00 as expected for Kelvin waves withffiffiffi
a

p ¼ 0:2:
The exact dispersion relations of Gravity waves on a non-rotating sphere, (7.7),

are compared in Fig. 7.4 to the numerically calculated relations of Inertia-Gravity
waves on a rotating sphere (see Fig. 7.2). It is evident from this comparison that
rotation affects the dispersion relation of the first 6 modes displayed in this figure
only at low n and k, which is precisely the analytic conclusion derived above based
on the close agreement between the exact relation on a non-rotating sphere (7.7) and
the approximate relation on a rotating sphere, (7.8), at large k and n. In contrast to
the similarity between these dispersion curves of eastward propagating waves on a
rotating sphere and those on a non-rotating sphere the dispersion relation on a
rotating plane is fundamentally different in that all Inertia-Gravity modes are
asymptotic at large k to x ¼ k

ffiffiffi
a

p
—the dispersion curve of the eastward propagating

Kelvin wave (see Fig. 1.2 and Eq. (1.5)). This comparison implies that eastward

Fig. 7.5 The eigenfunctions corresponding to the lowest three modes of Fig. 7.2 at k = 5 and the
relation between a pair of eigenfunctions and the associated mode (inset). The number of η(ϕ)
zero-crossings increases by 1 when the mode number increases by 1, starting from no
zero-crossings in the lowest mode. This count implies that the lowest mode is the n = 0 mode of
Inertia-Gravity waves. Note V does not vanish identically
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propagating waves on a rotating sphere are close to those on a non-rotating sphere
more than to those on a rotating plane.

An examination of the eigenfunctions associated with the frequencies calculated
in Fig. 7.2 also supports the interpretation of the mode number of Inertia-Gravity
waves, n, based on the analytic expressions for the dispersion relations. The number
of zero-crossings of gð/Þ in Fig. 7.5 clearly equals n. Also, not only is Vð/Þ
different from zero but the number of its zero-crossings is the same as that
of @g=@/ (i.e., larger by 1 compared to the number of zero-crossings of gð/Þ),
which is consistent with the balance of terms in the η (i.e., second) equation of (4.4)
where for large C, the contribution of η to V is small compared to that of @g=@/
(i.e., tan/=C\1).

The foregoing numerically determined association between the number of
zero-crossings of η and the mode number in Fig. 7.2 as well as the accuracy of the
analytic expressions (that, as expected, increases with k) indicates that the lowest
mode in Fig. 7.2 is the n = 0 Inertia-Gravity mode and not a “Kelvin” wave (and
certainly not a Kelvin wave).
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