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Preface

Mineral and energy resources are increasingly being exploited to meet the
demands of a worldwide growing population and economy. Despite technological
developments, these raw materials cannot, or can only partly, be substituted by
renewable resources within the next few decades. Thus, the efficient recovery and
processing of mineral and energy resources, as well as recycling, are nowadays of
significant importance in many countries.

Geobiotechnology can significantly contribute to new developments in this field
and can be described as biotechnology in the geological context. This technology
mainly takes advantage of the biological activity relevant for geochemical pro-
cesses. Microorganisms control natural biogeochemical cycles and by doing so
they contribute to the formation and alteration of metal, oil, coal, and phosphor
deposits. Geobiotechnology comprises microbial processes in these deposits as
well as in mining and environment. The interactions of microorganisms with raw
materials enable an efficient geobiotechnological recovery of metals, oil and gas.

The five chapters of this volume describe and summarize the scientific
background and recent developments in metal bioleaching, bioextraction, bio-
mineralization and bioremediation as well as in microbial enhanced oil and gas
recovery (MEOR). Microbial processes in the underground and deposits, poten-
tially used for the storage of raw materials or residues, or use of geothermal energy
are also covered, including a chapter about basic mining legal principles.

The idea for this volume originated from the temporary working group
Geobiotechnology of the German organisation DECHEMA e.V. Since many
authors of this volume are active in this working group, geobiotechnological
processes and applications are often described using examples from Germany and
Europe.
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The chapter on coal biotechnology is authored by the late Giovanni Rossi.
He died in summer 2013 and could not live to see the publication. Giovanni Rossi
was a dear friend, esteemed colleague, consummate engineer and researcher, and a
pioneer in the field of biohydrometallurgy. We feel honored that he was able to
finalize his contribution to this book. We dedicate this book in memory of
Giovanni Rossi.

Axel Schippers
Franz Glombitza

Wolfgang Sand
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Starting Up Microbial Enhanced
Oil Recovery

Michael Siegert, Jana Sitte, Alexander Galushko and Martin Krüger

Abstract This chapter gives the reader a practical introduction into microbial
enhanced oil recovery (MEOR) including the microbial production of natural gas
from oil. Decision makers who consider the use of one of these technologies are
provided with the required scientific background as well as with practical advice
for upgrading an existing laboratory in order to conduct microbiological experi-
ments. We believe that the conversion of residual oil into natural gas (methane)
and the in situ production of biosurfactants are the most promising approaches for
MEOR and therefore focus on these topics. Moreover, we give an introduction to
the microbiology of oilfields and demonstrate that in situ microorganisms as well
as injected cultures can help displace unrecoverable oil in place (OIP). After an
initial research phase, the enhanced oil recovery (EOR) manager must decide
whether MEOR would be economical. MEOR generally improves oil production
but the increment may not justify the investment. Therefore, we provide a brief
economical assessment at the end of this chapter. We describe the necessary state-
of-the-art scientific equipment to guide EOR managers towards an appropriate
MEOR strategy. Because it is inevitable to characterize the microbial community
of an oilfield that should be treated using MEOR techniques, we describe three
complementary start-up approaches. These are: (i) culturing methods, (ii) the
characterization of microbial communities and possible bio-geochemical pathways
by using molecular biology methods, and (iii) interfacial tension measurements. In
conclusion, we hope that this chapter will facilitate a decision on whether to launch
MEOR activities. We also provide an update on relevant literature for experienced
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MEOR researchers and oilfield operators. Microbiologists will learn about basic
principles of interface physics needed to study the impact of microorganisms
living on oil droplets. Last but not least, students and technicians trying to
understand processes in oilfields and the techniques to examine them will, we
hope, find a valuable source of information in this review.

Keywords Anaerobic cultivation � Interfacial tension � Methanogenic hydro-
carbon degradation � Microbial enhanced oil recovery � Peak oil

Abbreviations

16S rRNA Ribosomal RNA of a sedimentation rate of 16 Svedberg
A Surface area of an oil droplet
alk Alkane hydroxylase gene
apsA Adenosine-50-phosphosulfate (APS) reductase gene
bbl Barrel (oil)
CARD-FISH Catalyzed reporter deposition, fluorescence in situ hybridization
cDNA Complementary DNA for an RNA strand
CMC Critical micelle concentration
dsrAB Dissimilatory (bi)sulfite reductase gene
DGGE Denaturing gradient gel electrophoresis
DNA Deoxyribonucleic acid
E Elasticity
EDTA Ethylenediaminetetraacetate
EOR Enhanced oil recovery
EPS Extracellular polymeric substances
f Frequency
FISH Fluorescence in situ hybridization
g Gravity force
DG Gibbs free energy
c Interfacial tension
HOT Hot oil treatment
licA Lichenysin A synthetase gene
l Viscosity
mcr Methyl coenzyme M reductase gene
MEOR Microbial enhanced oil recovery
MIC Microbial influenced corrosion
MPN Most probable number
mRNA Messenger RNA
nar Nitrate reductase gene
nir Nitrite reductase gene
nor Nitrite oxidoreductase gene
nos Nitric oxide synthase gene
nrf Nitrite reductase gene (to ammonium)
NTA Nitrilotriacetic acid
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OIP Oil in place
omc Outer-membrane cytochrome gene
omp Outer-membrane multicopper protein gene
P Pressure
PCR Polymerase chain reaction
PLFA Phospholipid-derived fatty acids
psia Pounds per square inch
qPCR Quantitative PCR
RNA Ribonucleic acid
RT-qPCR Reverse transcription-qPCR
SAC Surface active compound
sfp Surfactin synthesizing protein gene
SIP Stable isotope probing
srf sfp operon (sfp gene cluster)
h Contact angle
SSU Small subunit
T-RFLP Terminal restriction fragment length polymorphism
V Volume
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1 Introduction

Expanding worldwide wealth will result in an increased global energy demand of
49 % by 2035 compared with 2007 [1]. The worldwide need for energy from liquid
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hydrocarbons will likely increase from 1.9 9 1011 GJ (2010) to 2.3 9 1011 GJ y-1

(2035), from coal it will incline from 1.4 9 1011 to 2.2 9 1011 GJ y-1, and from
natural gas (methane) from 1.4 9 1011 to 1.7 9 1011 GJ y-1. At the same time,
new resources of fossil oil become more and more limited. The resulting limit of oil
supply is commonly known as peak oil, which was first predicted in the 1920s.
Despite impressive technological progress in oilfield exploration resulting in the
steady incline of fossil oil production (Fig. 1) the incremental production will not
keep pace with demand.

At the same time, up to two thirds of the original oil in place (OIP) in producing
oilfields remains impossible to extract using current recovery technologies [3] such
as enhanced oil recovery (EOR). Traditionally, this term is used for physical and
chemical methods aiming to increase oil recovery from matured oilfields. They are
relatively simple to apply (e.g., CO2 injection) but can also be expensive (e.g.,
costly polymers) and risky (e.g., when a polymer closes an extraction conduit or
CO2 escapes uncontrolled from a geological formation). Production and transport
of EOR chemicals are the main cost factors and could be lowered if these chemicals
were produced in situ, that is, at the oil droplet. Microorganisms are miniaturized
biochemical machines that are able to produce the desired compounds in situ. This
notion is not new [4]. Microbial enhanced oil recovery (MEOR) has been studied in
field trials since the 1950s but never experienced a breakthrough as an industrial
standard [5, 6]. This is not due to the lack of promising pilot studies [7] but due to
the low oil price throughout the last century (Fig. 2) and the availability of inex-
pensive and easy-to-control CO2-injection EOR.

The term MEOR encompasses several different approaches, including the five
listed below:

(I) The production of acids that can dissolve carbonates which will liberate the
entrapped oil in place (OIP).

(II) The production of gasses that can swell the OIP or reduce its viscosity, as
well increase the reservoir pressure.

(III) The production of organic solvents that can alter the rock wettability, reduce
the viscosity of the OIP or increase the viscosity of the water.

(IV) The production of biofilms or other biopolymers that increase the water
viscosity or block exhausted canals, thereby increasing the sweep efficiency.

(V) The production of surface active compounds (SAC) that reduce the interfacial
tension (c) between oil and water.

(VI) The production of methane from oil.

Herein, we discuss all of the above-mentioned methods, but focus on oil or
water viscosity and surface and interface properties as well as on methane pro-
duction (points II, III, V, and VI).

MEOR may require the injection of a microbial inoculum, a nutrient broth that
contains microorganisms [6, 7]. Alternatively, nutrients alone may be injected to
stimulate growth of certain members of the indigenous microbial community [9].
Inoculation would usually require additional carbon sources, however, the stim-
ulation of the indigenous microbial community allows for the production of

4 M. Siegert et al.



metabolites using OIP as substrate. Most reported incremental oil recovery was
achieved without the need of an inoculum (15,000 bbl with inoculum versus
98,000 bbl without inoculum, [7]). Since MEOR was first proposed [4], an
appreciable amount of literature has been published (for reviews see Refs. [6, 7,
10]). Although intensively studied with approximately 400 MEOR patents, only
118,000 bbl of incremental oil were reported from 400 MEOR field studies
worldwide since 1970 [7] as opposed to well-established CO2-injection EOR
which recovers more than 245,000 bbl incremental oil per day, in the United States
alone [11]. Although MEOR is still in its infancy, Youssef et al. [7] found that
96 % of all studied MEOR projects were successful. Obviously, MEOR can be an
alternative to existing OIP extraction methods.

2 Microbial Life in Oilfields

Bastin [12] was the first to report microbial life in oilfields. Examination of
microbial life in oil- and gasfields requires aseptic sampling but such sampling
techniques were not developed until the 1990s. Consequently, little was known
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about indigenous microbial life in oilfields. The first sulfate-reducing isolates were
obtained from producing wells of oilfields in the Soviet Union during the late
1980s and the early 1990s [13, 14]. At the same time, the first methanogenic
archaea (methanogens) were isolated from a Californian oilfield, suggesting an
indigenous origin [15]. Voordouw et al. [16] were the first to use the 16S rRNA
gene cloning technique to discover sulfate reducing, sulfide oxidizing, and fer-
mentative microorganisms in samples taken from producing wells of a Canadian
oilfield. The introduction of better aseptic sampling techniques for cultivation [17]
and the rapid development of molecular biology methods resulted eventually in the
discovery of unexpected microbial populations [18, 19]. Moreover, some unique
microbial genera such as Geotoga and Petrotoga were isolated exclusively from
oil reservoirs [20]. Other closely related microorganisms were detected in distinct
oilfields [21, 22]. Today it is generally accepted that microbial communities
inhabit oil reservoirs and have a considerable impact on reservoir geochemistry.
The occurrence of biodegraded petroleum in oilfields is the most apparent mani-
festation of microbial in situ activity [23]. Moreover, production of hydrogen
sulfide is a consequence of microbial activity in reservoirs and can result in
considerable damage to production equipment [24]. Sulfate present in injected
seawater stimulates the growth of sulfate-reducing microorganisms that use
hydrogen generated during steel corrosion or directly corrode steel production
equipment [25], known as microbially influenced corrosion (MIC). Whether these
microorganisms penetrate reservoirs or only populate production equipment has
not been unequivocally clarified. Using appropriate sampling techniques, indige-
nous microorganisms may be distinguished from those introduced.

2.1 Environmental Conditions in Oil Reservoirs

Fossil hydrocarbons (petroleum, crude oil) originate from complex organic matter
(kerogen) that formed via biological CO2 fixation [26, 27]. Kerogen is reduced to
petroleum during late diagenesis in the source rock. When petroleum escapes from
the source rock, for example, due to tectonic activity, it migrates closer to the
surface. Before deep drilling became economically feasible, only oil reservoirs in
about 100–200 m depth could be extracted. Today, deep reservoirs are accessible as
drilling depths of 8 km below the seafloor and more can be reached. The migration
into layers of different geological settings is also the reason for the high diversity of
oil reservoirs. Temperatures higher than 80 �C are frequently observed in oil res-
ervoirs [23]. Such temperatures inhibit anaerobic hydrocarbon degradation in oil
reservoirs [18, 23]. Biodegradation and the corresponding increase of fatty acid
concentrations were not observed at reservoir temperatures higher than 80 �C [28].
Nevertheless, hyperthermophiles were found to live at 85 and 102 �C in an Alaskan
oilfield [29]. However, they may not have been indigenous to the reservoir or are
not restricted by the ‘‘temperature limit’’ for anaerobic hydrocarbon degradation.

6 M. Siegert et al.



Diagenesis gives all oil reservoirs a reduced redox state; that is, electron acceptors
are depleted. Under such conditions, methanogenic hydrocarbon degradation pre-
vails. Methanogenesis with hydrocarbon substrates is energetically possible but
energy gains decrease when the oxidation state of the hydrocarbon substrate
increases, that is, with the presence of aromatic rings (Table 1). This is reflected in
the absence or strongly reduced contents of aliphatic hydrocarbons from biodegraded
oilfields [30]. To prevent massive OIP degradation during MEOR, electron acceptors
other than oxygen, for example, nitrate or sulfate, may be injected into reservoirs to
stimulate microbial growth [31]. A general disadvantage of adding electron accep-
tors is the potential for accelerated corrosion of production equipment.

In deep oil reservoirs, water sometimes contains high amounts of dissolved salts
ranging from 0.1 % to saturation [32]. Microorganisms are usually adapted to
specific salinity and pH conditions (Table A.1). For this reason, isolates or
enrichment cultures originating from the oilfield that may undergo MEOR treat-
ment should be used.

Oil companies use computer models to calculate in situ pH including CO2 and
H2S partial pressure. Reservoirs are characterized by a wide pH range. Many
oilfield isolates tolerate a broad pH spectrum and grow very well under slightly
alkaline conditions (Table A.1). In a slightly alkaline pH range biosurfactants and
surfactants that are already present in the reservoir perform better. However,
microorganisms that are to be injected into an oil reservoir must be able to grow
under reservoir pH. Hence, the best MEOR strategy is to isolate microorganisms
and culture them under reservoir conditions to demonstrate their applicability as
shown in numerous laboratory studies [33–41]. Unfortunately, such studies often
use aerobic strains or strains that grow anaerobically using organic matter such as
sugars, yeast extract, and others. This is due to short-term research projects that
only allow incubations with easily degradable substrates.

Table 1 Gibbs free energies (DG�) of methanogenic hydrocarbon degradation

Hydrocarbon Reaction0 DG�0
(kJ mol-1)

Hexadecane 4 C16H34 þ 45 H2O! 49 CH4 þ 15 HCO�3 þ 15 Hþ –212.84
Octadecane 4 C18H38 þ 51 H2O! 55 CH4 þ 17 HCO�3 þ 17 Hþ –186.85
Ethylbenzene 4 C8H10 þ 33 H2O! 21 CH4 þ 11 HCO�3 þ 11 Hþ –81.71
Naphthalene C10H8 þ 12 H2O! 6 CH4 þ 4 HCO�3 þ 4 Hþ –68.06
1-Methylnapthalene 4 C11H10 þ 51 H2O! 27 CH4 þ 17 HCO�3 þ 17 Hþ –66.97
2-Methylnapthalene 4 C11H10 þ 51 H2O! 27 CH4 þ 17 HCO�3 þ 17 Hþ –65.16
Anthracene 4 C14H10 þ 69 H2O! 33 CH4 þ 23 HCO�3 þ 23 Hþ –64.20

Energies displayed were calculated for physiological standard conditions (DG�0, per mole
hydrocarbon, pH 7, gases 1 atm, dissolved compounds 1 M, equilibrium)

Starting Up Microbial Enhanced Oil Recovery 7



2.2 Oil Reservoir Microorganisms

Surprisingly, microorganisms isolated from distant oil reservoirs are often closely
related [22, 42]. Only prokaryotes were isolated from oilfields so far and
eukaryotes, such as yeasts were not reported indicating that they do not play a
significant role in oilfields. Due to long isolation procedures of anaerobic hydro-
carbon degrading microorganisms, the isolates reported were predominantly aer-
obic (Table A.2). Of all hydrocarbon degrading isolates (Tables A.1 and A.2)
83 % were aerobes, 13 % anaerobes, and 4 % grew aerobically and anaerobically.
Of all oilfield isolates (including non-hydrocarbon degraders), only 3 % grew
aerobically and anaerobically and the majority (68 %) were obligate anaerobes.
Most hydrocarbon degrading microorganisms were isolated from either contami-
nated or even pristine sites (89 %, Table A.2). Of all hydrocarbon degraders, 37 %
used aliphatic substrates (oilfield isolates 58 %), 39 % aromatic compounds (oil-
field isolates 4 %), and 7 % used both (oilfield isolates 17 %). The shift towards
aliphatic hydrocarbons among oilfield isolates is also reflected in the observation
that many oilfields show severe patterns of biodegradation [43, 44]. We define
oilfield isolates as microbial pure strains obtained directly from drill cores or
drilling equipment as well as from oil–water separators and other equipment
directly installed at extraction or injection wells. Surprisingly, aerobes were iso-
lated from oilfields as well (29 %, Table A.1). Anaerobes grew either on aliphatic
or aromatic compounds and many aerobes could use both. OIP degrading
microorganisms work syntrophically to gain energy and build up biomass. Two
types of biomass producing microbial communities inhabit oil reservoirs. One type
decomposes oil and allows the parallel development of heterotrophic nonhydro-
carbon degraders. Both hydrocarbon degraders and nonhydrocarbon degraders
convert their substrates into CO2 and methane. Another community type comprises
autotrophs that synthesize biomass by CO2 fixation using inorganic energy sources
such as H2, H2S, and minerals. Again, heterotrophs coexist within the autotrophic
community. Typical indigenous species belong to the heterotrophic, hydrogeno-
trophic, and CO2 utilizing genera Thermotoga, Petrotoga, Thermoanaerobacter,
and Thermococcus. Others are methanogens such as Methanobacterium, Met-
hanococcus, and Methanoculleus (Table A.1; Refs. [19, 28]). Bacillus has been
reported to be indigenous as well [45]. It often remains unclear whether sulfate
reducers were indigenous before drilling, albeit detected in some reservoirs [19,
28]. Results obtained from sequencing 16S rRNA marker genes suggest that in
producing oilfields, many oil reservoir species are actively involved in sulfur
cycling [19, 46–48]. This is in good agreement with isolates obtained from pro-
ducing oilfields (Table A.1).

8 M. Siegert et al.



2.3 Microbiological Sampling Techniques for Oil Reservoirs

To study the microbiology of oil reservoirs, it is crucial to consider an appropriate
sampling strategy. In the majority of the cases, sampling is restricted to production
water directly obtained from wellheads or pipelines with the advantage of reducing
labor and costs [19, 49]. With this method, however, microorganisms that inhabit
production equipment are included in the sample. This is undesired because
microbial processes in subsurface reservoirs and not in the production equipment
are relevant for MEOR. In oil producing reservoirs, microorganisms were intro-
duced by drilling and flooding. Therefore, the actual microbial community of
producing reservoirs is a mix of microorganisms introduced during production
operations and indigenous microorganisms present before any human activity.
Aseptic sampling methods should be employed but are hardly applicable in pro-
ducing reservoirs due to economic constraints. Most oilfield isolates were obtained
from production equipment such as production wells or oil–water separators
(Table A.1).

One way to obtain microbial communities indigenous exclusively to the res-
ervoir is to sample from the production liner as reported by Kotlar et al. [50]. The
authors used Xpand pressure flasks that could withstand pressures up to 100 bar
for their sample recovery. Another study compared communities of production
equipment and indigenous communities in cultivation experiments [51]. The
results revealed a shift of microbial activity from sulfate reduction to methano-
genesis after a sterilization treatment of the well, indicating that the indigenous
community was methanogenic and sulfate reducers were introduced during
operation. Also the number of cells at the well bottom decreased from
2.5 9 105 cells ml-1 to 104 cells ml-1. The well sterilization method has the
advantage that subsequent culturing experiments can reveal the actual in situ
physiology. However, the use of vast amounts of highly reactive bleach is ques-
tionable if employed on large scale.

Although more expensive, direct subsurface sampling of drill cores is the
preferred alternative (i) to minimize the contamination risk and (ii) to collect
barotolerant microorganisms that live under actual reservoir conditions. Because
an immediate pressure decrease can result in cell rupture and therefore in cell
death [52], a slow and controlled sample depressurization to atmospheric pressure
was recommended [50]. Indigenous microorganisms are then allowed to slowly
adapt to the lower hydrostatic pressures. Furthermore, core samples of a virgin
oilfield can be taken [45, 46, 53].

Spark et al. [46] differentially assessed the microbial diversity after DNA
extraction. They compared drilling mud communities (only introduced microor-
ganisms) with those found in drill cores. Sampling inner core material is an
inexpensive standard procedure to obtain pristine core material [54]. Although
obtaining drill cores from mature oilfields would give the most reliable results
needed for MEOR, it may be uneconomical especially for oilfields that operate at
the economic limit. An honest cost–return assessment should be made. Ultimately,
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the community differentiation method of Spark et al. [46] could also be used to
distinguish microbial communities within producing oil reservoirs without addi-
tional drilling. For example, biosurfactant producing Bacillus cells were injected
into the Bebee oilfield (OK, USA) and could be recovered at production wells [55].
This experiment demonstrated that, using technically simple methods, intrinsic and
introduced microbial populations can be differentiated under production conditions
if the introduced population is known.

Whatever the sampling strategy is, it is important to maintain aseptic conditions
by using autoclaved or dry sterilized sampling equipment (bottles, tubing, filters,
spatula, syringes, etc.) and to keep samples under anoxic conditions. Strictly
anaerobic microorganisms can be killed by oxygen due to their lack of protective
enzymes [56]. Several anaerobes, like some Desulfovibrio species, have adopted
such protection mechanisms or even make use of oxygen at low concentrations [57,
58]. However, due to the anoxic nature of oilfields, it is necessary to minimize oxygen
intrusion by a nitrogen or argon atmosphere. This atmosphere can be provided in
inflatable gas bags (e.g., for opening drill cores) or by a gas flow that covers the
sampling area (e.g., for liquid samples). Liquid samples are stored and transported in
rubber-sealed and nitrogen-flushed bottles. An anaerobic glovebox is an appropriate
alternative to store and proceed on core samples also during field work.

2.4 Characterization of Microbial Populations in Oilfields

2.4.1 Enrichment and Isolation of Microorganisms from Oilfields
or Coal Deposits

Basso et al. [51] were the first who thoroughly investigated differences between
communities that settled on production equipment and the well bottom. In sub-
sequent culturing experiments, the number of sulfate-reducing microorganisms
and heterotrophs decreased whereas hydrogenotrophic methanogens increased,
reflecting the nutrient limited conditions in the reservoir fluids. A simple test to
associate in situ major microbial groups with physiology is the most probable
number (MPN) method. This method determines the abundance of microorgan-
isms capable of growing under certain physiological conditions (e.g., nitrate/

10-3 10-6 10-9 10-12

Headspace

Medium

Inoculum

Fig. 3 Dilution-to-extinction
method for the isolation and
enrichment of living
microorganisms in samples
from oilfields. The sample is
diluted to extinction so that in
the last dilution no growth
occurs. Knowledge of the
original microbial load (cell
number) determines the
greatest dilution
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sulfate reducers). From the abundance of microbial groups linked to physiology
one can assess the importance of the investigated pathway. Using MPN in pro-
duction fluids, aerobic microorganisms can be distinguished as well. Although
isolated from oilfields (Table A.1), aerobic microorganisms may be introduced
[28]. This is because of the reduced redox state of petroleum reservoirs. The MPN
technique is in principle a high-throughput dilution-to-extinction method that can
be used
for a broad spectrum of growth conditions (Fig. 3). To better assess microbial
physiology, however, rate measurements—by determining reaction products or
depletion of substrates—are necessary.

For example, environmental samples are used to inoculate 96 or 384 microwell
plates [59, 60]. Anaerobic conditions are maintained by placing plates in an
anaerobic glovebox or anaerobic bags [61]. The incubation conditions (e.g.,
nutrients, salts, temperature, pH, etc.) mimic either the conditions of the injection
fluid (e.g., aerobic) or the reservoir (e.g., anaerobic). Other high-throughput
instruments for metabolic screening have been commercialized to decrease
workload (e.g., Biolog, Hayward, CA, USA). As an alternative to the dilution-to-
extinction method, tilted 1 % agar tubes can be prepared to streak out enrichment
fluids using an inoculation loop (Fig. 4).

Transfers of isolates can be carried out using a laminar flow bench to maintain
sterility under aerobic conditions. If anaerobic microorganisms are to be isolated,
the work must be conducted rapidly in order to minimize oxygen penetration into
the medium. The headspace should be flushed immediately after closing the tube
and an oxygen scavenger may improve the results. Another simple test for the
potential microbial life in oil reservoirs is to grow microorganisms on injected or
produced fluids [62]. This is achieved by cultivation of fluids in sealed serum
bottles or so-called Hungate tubes with an appropriate gas phase (oxic or anoxic
mixture of gases) adjusted to reservoir conditions (Fig. 5; [63]).

Inoculation
loop

Liquid medium

Agar

Gas in Gas outAnaerobic headspace

Fig. 4 Isolation technique using tilted 1 % agar tubes. This technique works in both directions
and can be used as a complementary method to the dilution-to-extinction method (Fig. 3).
Headspace and medium must be anaerobic which is achieved by flushing with oxygen-free gas
and by adding an oxygen scavenger to the medium/agar
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Serum bottles are closed using butyl rubber stoppers and aluminum caps.
Complete sets of bottles (50 ml to 1 l) and Hungate tubes (15–20 ml) along with
stoppers and aluminum seals can be purchased from various suppliers (e.g., Bellco
Glass, Chemglass, Wheaton, Geo-Microbial Technologies, etc.). For cultivation of
larger volumes (250–2,000 ml) bottles of 45 mm orifice diameter may be used that
are sealed with black butyl rubber stoppers (Wheaton, Millville, NJ, USA) and
tightened with heat-stable (up to 180 �C) screw caps with holes (Corning,
Tewksbury, MA, USA). All rubber stoppers should be cleaned using soap, acid,
and by autoclaving them in distilled water. This procedure should be repeated with
a new portion of water until the water remains clean after autoclaving. This
procedure is required for new rubber stoppers. Stoppers may be reused and can be
cleaned in dishwashers for laboratory. It is important to use thick rubber stoppers
of high quality that are ideally PTFE coated. Uncoated butyl rubber stoppers
normally contain compounds that are used for growth by aerobic microorganisms
[64]. Moreover, thin rubber stoppers leak out hydrogen gas that is used for
methanogenesis. Serum bottles should not be filled up completely with liquids,
leaving the headspace for gas phase (50:50 %v/v or 60:40 %v/v). This gives the
possibility for addition of various liquid or gaseous compounds and also for taking
gas or liquid samples. Horizontal incubation at reservoir temperature with little
shaking (\50 rounds per minute) improves gas exchange. To avoid contact of
petroleum compounds with the stopper, it may be necessary to incubate without
shaking by positioning bottles in a way that prevents contact of rubber stoppers
with the medium [65].

Gas in Gas outGas in

Autoclave

Fig. 5 Preparation of anaerobic enrichment cultures using Hungate tubes [63]. An oxygen-free
gas is bubbled through the medium and then autoclaved. After autoclaving, excess oxygen that
was still dissolved in the medium is removed by flushing the headspace with a gas that may
contain the substrate (volatile hydrocarbons, CO2). Then the medium is completed by addition of
carbonate, phosphate, trace elements, vitamins, and other compounds that are not heat-stable,
easily precipitate, or evaporate [67]. Ultimately, oxygen scavengers (e.g., sulfides) may be added
to remove trace oxygen
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Cultures must be incubated in the darkness to inhibit growth of phototrophs
which can produce oxygen or other toxic compounds. For cultivation under anoxic
conditions, headspaces must be flushed with sterile (\0.2 lm PTFE or polysulf-
onate syringe filters) pure nitrogen gas or mixtures of nitrogen and carbon dioxide
for about 5–10 min (Fig. 5). Passing the gas through copper chips removes trace
oxygen [66]. Copper chips can be regenerated in a hot stream of H2. Gas manifolds
(Northern Brewer, Roseville, MN, USA; Glasgerätebau Ochs, Bovenden,
Germany) facilitate the preparation of multiple reactors in parallel. Depending on
the amount of bicarbonate dissolved in the analyzed fluids, the proportion of
carbon dioxide in the mixture (to buffer the pH) can vary from 10 to 20 %v/v. For
detection and enrichment of aerobic microorganisms the gas phase may be 100 %
or less sterile air. Using less than 100 % air, oxygen-limiting conditions can be
mimicked. Addition of various electron donors (oil, individual hydrocarbons) and
acceptors (oxygen as air, sulfate, nitrate, and others) might be useful for estimating
possible scenarios for specific physiological groups of oilfield microorganisms for
MEOR treatment (stimulation, inhibition). Products of microbial metabolism
(gases, dissolved organic and inorganic compounds) are monitored by appropriate
analytical methods (gas chromatography, HPLC, colorimetry, etc.).

All additions and sampling are carried out without opening bottles using sterile
syringes with needles penetrating rubber stoppers. Sterile disposable syringes with
plastic barrels are sufficient for such experiments. It is advisable to avoid syringes
with a rubber piston on the plunger whenever possible working with oily fluids.
Liquid hydrocarbons are easily stacked on or swell the rubber resulting in inac-
curacy and difficulty of the syringe handling. However, syringes of 5 and more
milliliter volume with pure plastic plungers are normally not tight enough and
should be avoided with high internal pressure, for example, methanogenesis. In
such cases it is possible to use syringes with rubber pistons carefully avoiding
contact between the rubber surface of the plunger and petroleum compounds. Gas-
tight glass syringes with Teflon plunger and Luer lock tips may be used for the
addition of hydrocarbons. Suppliers of these syringes are various companies
dealing with products for laboratories (e.g., SGE Analytical Science, Victoria,
Australia). For larger volumes of removed liquids or gases, these should be
replaced by adding an equal volume of sterile gas to maintain internal pressure.
Syringes should be flushed with sterile anoxic gas before usage because their
‘‘dead volume’’ contains air. Addition of this amount of air may change redox
conditions of the experiments or can be toxic for anaerobic microorganisms such
as methanogens [68]. If available, the easiest way is to allow gas exchange of
sterile wrapped equipment in an anaerobic glovebox (e.g., Coy Glovebox, Grass
Lake, MI, USA; MBraun, Garching, Germany). However, experiments usually do
not require expensive equipment such as an anaerobic glovebox. The gassing
techniques described above can be established quickly in any laboratory with the
help of high-pressure bottles of purified inert gas, double-stage pressure regulators
(to reduce gas pressure down to 1 bar or less), and some metal and plastic tubing
(oxygen can penetrate silicon tubing) for higher and lower pressures of gases,
respectively. To sterilize gas, single-use sterile PTFE-filters (\0.2 lm) or a sterile
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Fig. 6 Assembly of a gassing syringe to be hung in a hot solution: 1 curved needle; 2 5-ml syringe
with Luer lock tip and with a glass barrel filled with cotton; 3 black butyl rubber stopper for closing
serum bottles; 4 metal Luer lock female connector; 5 two-way metal stopcock; and 6 Luer lock
male tubing connector made from polypropylene is connected to a gas line by plastic tubing

Table 2 Recipes for isolation and growth media modified after Ref. [67]

Fill up to 950 ml water Freshwater Brackish Saltwater Seawater

KH2PO4 0.20 0.20 0.20 0.20
NH4Cl 0.25 0.25 0.25 0.25
KCl 0.50 0.50 0.50 0.72
KBr 0.09 0.09 0.09 0.09
CaCl2 9 2H2O 0.10 0.10 0.15 1.40
MgCl2 9 6H2O 0.4 0.4 3.0 5.7
MgSO4 9 7H2O – 0.5 3.4 6.8
NaCl 1 10 20 26
Supplements for all media
pH 6.8–7.2
After autoclaving
Headspace N2/CO2 80/20 or 90/10 %
NaHCO3 (8.4 %) 30 ml
Trace elements 10 ml
Vitamins 10 ml
Optional NaNO3 (1 M) 5 ml
Na2S (1 M)a 0.5 ml
Na2CO3 (1 M) 1 ml

Concentrations are g l-1 if not indicated otherwise. Note that for the freshwater medium the
trace elements solution already contains sufficient sulfate (Table 3). Bicarbonate may be adjusted
between 5 and 45 mM final concentration. Here, 30 mM are used. Note that for enrichment of
non-sulfate reducing microorganisms sulfate is replaced by an equimolar amount of the chloride
salt. Nitrate is added only for nitrate reducers. For mimicking in situ conditions, not more than
1 ml vitamins and trace elements should be added. Mg, Ca, Na, and so on are essential for
microbial metabolism and should be added with the trace elements when not supplied with the
base medium
a An oxygen scavenger other than Na2S may be used (see text)
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glass barrel of 5 or 10 ml syringe with Luer lock tip, filled with cotton, can be
connected to tubing and used for flushing bottles and syringes (Fig. 6). It should be
equipped with a bent hypodermic needle, 17–21 gauge [66, 67, 69].

Salinity and pH must be adjusted to reservoir conditions. Often, seawater is
injected into depleted oilfields to extract remaining OIP. Because seawater may not
be available in the laboratory, artificial seawater recipes have been developed that
provide controlled standard conditions (Table 2, [67]). To prepare such media, a
stepwise procedure must be followed. First, non-precipitating and heat-stable salts
are dissolved in de-ionized water. This usually means that phosphates, carbonates,
vitamins, and trace elements (Table 3) must not be added before autoclaving.

Anoxic stock solutions of various substrates can be prepared in serum bottles
using a modified vacuum-vortex technique described by Wolfe and Metcalf [70].
Efficient vacuuming can be improved by stirring and solutions become anoxic after
three vacuum-stirring steps. For trace elements solutions, non-chelated solutions
may be used for sulfate reducers and chelated for nitrate reducers [65]. The che-
lator nitrilotriacetic acid (NTA) is biodegradable and ethylenediaminetetraacetate
(EDTA) is not. Vitamins and trace elements are sterilized by filtration (0.2 lm
PTFE syringe filter) and stored refrigerated (4 �C) in the darkness. An oxygen
indicator such as resazurine (1 mg l-1 final concentration) may be added. The

Table 3 Possible recipes for trace elements (left) and vitamins (right) added to isolation or
enrichment media

De-ionized water 1 l De-ionized water 1 l

NTA 1.5 g Pyridoxin 9 2HCl 50 mg
or Na2EDTA 9 2H2O 2.6 g Thiamin 9 2HCl 10 mg
or HCl (25 %)a 4 ml B12 (Cyanocobalamine) 10 mg
MnSO4 9 2H2O 0.5 g p-Aminobenzoic acid 10 mg
FeSO4 9 7H2O 1 g Riboflavin 5 mg
NiCl2 9 6H2O 0.2 g Nicotinic acid 5 mg
CoCl2 0.1 g Ca–D(+)-pantothenate 5 mg
CaCl2 9 2H2O 0.1 g Lipoic (thioctic) acid 5 mg
ZnSO4 0.1 g D(+)-biotin 2 mg
CuSO4 9 5H2O 0.01 g Folic acid 2 mg
AlK(SO4)2 0.01 g
H3BO3 0.01 g
Na2MoO4 9 2H2O 0.01 g
Na2SeO3 9 5 H2O 0.01 g
Na2WO4 9 2 H2O 0.01 g

To prepare the trace elements solution, NTA or Na-EDTA is dissolved in water by adding KOH
until the pH is 6.5. Then the minerals are added and the pH is adjusted to 7 using KOH and the
volume is completed to 1 l. Both solutions are bubbled with N2 and filter sterilized into sterile
N2-flushed serum bottles using\0.2 lm PTFE filters. Note that when modifying the composition,
sulfur is an essential element. Ni concentration can be decreased to 0.02 g if methanogens are not
of interest
a For hydrochloric acid, pH-adjustment is not required
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obtained solution is gassed with argon, N2, or a mixture of N2 and CO2 (usually
80:20 to buffer the pH, Fig. 5).

After sealing and autoclaving, the remaining oxygen has been expelled from the
medium into the headspace and is removed by flushing the headspace again with a
desired sterile gas mix penetrating the stopper (Fig. 5) or by opening the hot vial in
sterile laminar flow and hanging in a sterile gas flow using the outlet as depicted
in Fig. 6. Then the medium must be completed by adding filter-sterilized trace
elements, vitamins, phosphates, and carbonates to the medium (Table 2). Cellulose
acetate filters must be avoided as released cellulose and acetate may act as surfactant
or substrate. The pH of the final medium may be adjusted to neutral or slightly
alkaline conditions using saturated NaCO3 solutions or to acidity using CO2 gas.
Trace oxygen can be removed using oxygen scavengers such as Na2S (0.1–1 mM
final), Na2S2O4 (Na-dithionite; 1 mM final), FeS (prepared by precipitating FeCl2
and Na2S solutions; 0.5 mM final), Ti(III)-citrate (prepared by mixing Na3-citrate
with TiCl3 and NaCO3-neutralization [71]; 0.5 mM final), dithiothreitol (a carbon
source, 1 mM final, [72]) or cysteine-HCl (a carbon source, 10 mM final). It must be
considered that some oxygen scavengers add nutrients or surfactants to the medium.
Using OIP as a carbon substrate for microorganisms makes the additional supply
with another carbon and energy source, such as molasses, unnecessary [62].

Once several enrichment or pure cultures have been obtained, screening for
SAC produced by the enrichments or isolates can begin. A simple test is the slide
detachment test where crude oil is streaked onto a glass slide used for microscopy,
inoculated with a microbial culture and then incubated for several weeks under
reservoir conditions (Fig. 7). Cultures that produced SAC detach crude oil from
the glass slide and are selected for further investigation. Even simpler but less
specific for certain types of crude oil is the plastic Petri dish test. A drop of an
enrichment or pure culture is placed on a hydrophobic plastic Petri dish (Fig. 8).
SAC decrease the surface tension of the culture medium which becomes visible as

IncubateCrude oil

Glass slide

Fig. 7 The glass slide test. Crude oil that has been streaked on the surface of a microscope glass
slide will be detached if SAC are produced by microorganisms used as inoculum

Medium
with cells

Plastic
Petri dish

Low surface
tension

Fig. 8 The plastic Petri dish
test. As a result of decreased
surface tension, microbial
cultures producing SAC have
greater wetting areas (drop
diameter) on a plastic Petri
dish
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a greater wetting area (drop diameter) on the Petri dish. Using oil-coated glass
Petri dishes makes this test even more specific [73].

2.4.2 Identification of Key Microorganisms Using Molecular
Biology Techniques

Anaerobic culturing techniques often require special training and equipment and
results are sometimes obtained after months or even years. More rapidly, the
indigenous community may be characterized by molecular biological methods for
identifying major microbial groups. This is important because environmental
microbial communities are largely dominated by microorganisms with yet uncul-
tured relatives [74]. The diversity can be addressed by a multitude of well-established
methods and reliable kits are commercially available. Most of these methods are
based on specific DNA probes that bind to their complementary, evolutionary more
conserved regions in genes of interest. Depending on the scientific objectives, one
could either choose group-specific genes for certain phylogenetic classification (e.g.,
16S rRNA genes to distinguish Geobacteraceae, Desulfobacteraceae, Planctomy-
cetales, Methanosarcinales, etc.) or so-called functional genes. These are genes that

Table 4 Anaerobic microbial processes in oil reservoirs and their respective functional genes

Microbial
process

Catalyzed reaction Functional target gene References

Nitrate
reduction

Nitrate reduction narG, nitrate reductase [77, 78]
Nitrite reduction nirK/nirZ, nitrite reductases [78, 79]
Nitrous oxide

reduction
nosZ, nitrous oxide reductase [78, 80]

Sulfate
reduction

Adenosine-50-
phosphosulfate
(APS) reduction

apsA, APS reductase Reviewed
in [81]

(bi)sulfite reduction dsrAB, dissimilatory
(bi)sulfite reductase

Reviewed in
[81, 82]

Methanogenesis Conversion of
methyl group
to methane

mcrA, methyl coenzyme M reductase [83–85]

Hydrocarbon
degradation

Fumarate addition bssA, benzylsuccinate synthase;
assA, alkylsuccinate synthase;
nmsA, naphthylmethylsuccinate
synthase

[86]

Aromatic ring-cleaving
hydrolysis

bamAa, 6–OCH–CoA hydrolase [87, 88]

Aldehyde:ferredoxin
oxidoreduction

bamBa, aldehyde:ferredoxin
oxidoreductase

[87]

Note that the presence of one subunit of an enzyme indicates the presence of the entire process
a bam benzoic acid metabolism
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encode for enzymes directly catalyzing biogeochemical reactions (Table 4). Func-
tional genes are investigated when microbial populations corresponding to a certain
metabolic pathway are of interest (e.g., nitrate reduction, methanogenesis, sulfate
reduction, or hydrocarbon degradation). Other genes of interest encode for surfactant
producing enzymes, such as the srfA3/licA and sfp genes [75, 76]. Available methods
can be categorized into (i) the enumeration of microorganisms (e.g., by cell staining
and microscopy or gene quantification), (ii) the diversity of microbial communities
as well as phylogenetic affiliation of sequences (requires DNA extraction and/or
microscopy), and (iii) the detection of a metabolically active subpopulation (requires
RNA extraction).

A variety of different nucleic acid stains is available on the market (SYBR
Green�; DAPI, 2-[4-amidinophenyl]-6-indolecarboxamidine; acridine orange,
3,6-bis[dimethylamino]acridine), that intercalate into the DNA, fluoresce and
therefore allow the visualization of cells under a fluorescence microscope [89, 90].
Fluorescence in situ hybridization (FISH) is used to detect group-specific mem-
bers. In this case, a nucleic acid probe (a so-called oligonucleotide, a short nucleic
acid polymer of specific sequence, referred to as ‘‘oligo’’) is labeled with a fluo-
rescing dye. The probe hybridizes only with the complementary target rRNA
sequence of a cell mix and the fluorescent tag is than detected by fluorescence
microscopy [91]. For the visualization of low copy targets a modified FISH
method, catalyzed reporter deposition FISH (CARD-FISH), is suggested, where an
enzyme-mediated reaction causes a signal amplification [92].

Polymerase chain reactions (PCR) allow for the amplification of specific DNA
regions of extracted total DNA. In principle, DNA probes (‘‘oligos,’’ primers) bind
to complementary sequences of the investigated gene (template) that can then be
copied to detectable amounts by a DNA-synthesizing enzyme (DNA polymerase).
The primer binding resembles the key and lock principle. Quantitative real-time
PCR (qPCR) can furthermore reveal DNA copy numbers by the use of standards
(DNA extracts of resembling genes) and fluorochrome-tagged probes (reviewed in
[93, 94]). For example, qPCR was successfully applied to quantify sulfate-
reducing microorganisms in the Dan and Halfdan oilfields’ production fluids
(North Sea) to monitor the potential for microbially influenced corrosion (MIC;
[95]). The abundance of certain microbial groups (e.g., methanogens or sulfate
reducers) is a good indicator for the respective microbial processes. qPCR has
been applied to identify various microbial groups in soil and marine sediments
(e.g., Refs. [54, 96, 97]) but reliable data for different oil reservoirs data are
insufficient [98–100]. Although qPCR is reliable, cheap, and well established,
another recently developed approach not using polymerase enzymes gives the
same quantitative information. This NanoString� method also works with heavily
degraded mRNA or formaldehyde fixed environmental samples [101].

Microbial diversity analyses further provide information about bacterial and
archaeal species present in the sample. Today, usually two DNA sequencing
methods are used to determine the nucleotide sequence within a DNA molecule.
Sanger sequencing is inexpensive (approximately US $250 per sample returning
100 sequences) but labor intensive (2–3 weeks for laboratory and computer work)
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and requires a cloning procedure, during which genetically modified organisms are
produced. In contrast, pyrosequencing is less expensive (approximately US $120
per sample), less laborious, and gives in-depth results (up to 5,000 sequences for
one sample). In the past, sequence lengths often did not reach 400 base pairs which
are necessary for reliable phylogeny on genus level [102] as opposed to Sanger
sequencing which routinely reaches[900 base pairs. Samples for pyrosequencing
can be combined, reducing the price and the number of sequences obtained.
Pyrosequencing is also quantitative as it is not biased by intermediate PCR reac-
tions prior to the actual sequencing PCR. Genetically modified organisms are not
produced. Using sequencing techniques, it is possible to assign many sequences to a
phylogenetic group by incorporation into a phylogenetic tree (Fig. 9).

A sequencing approach that also addresses functional diversity is the con-
struction of a metagenome (DNA) or a metatranscriptome (RNA). Metagenomic
analyses became popular in recent years due to decreasing sequencing cost.
Unfortunately, this drop did not trigger a comparable metagenomic flood for oil-
field microbiology, possibly because gene annotation still requires hand-picking
[42]. For a metagenome, the same problem as for any other DNA targeting method

Fig. 9 Phylogenetic tree obtained from the Silva SSU Ref database version 95 of which all
uncultured strains were removed. Additionally, all groups in which no oilfield clones were
detected were removed as well. Oilfield clones were taken from Refs. [19] and [7]. The bar
indicates 0.1 change per 16S rRNA nucleotide
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occurs. DNA samples include fossil and therefore inactive DNA as well and can
make false predictions. Or, the random primers used do not include present genes
as was the case for the predicted absence of nitrate reduction from a metagenome
[103], which was then observed using cultivation techniques [104]. This example
shows that complementary methods should be employed to achieve a certain level
of confidence. Sequencing costs are permanently dropping and quick community
identification can precede further culturing experiments. New sequencing tech-
niques such as Illumina sequencing may further reduce sequencing costs [105].

Widely used in biomedical research are microarray techniques where known
nucleotide probes are attached to a high-density microarray. Target-probe hybrid-
ization can be detected by fluorescence signals. A number of applications exist for
phylogenetic 16S rRNA (gene) and functional gene levels. Such arrays were indeed
used for environmental samples in recent studies (e.g., Refs. [106, 107]).

Using denaturing gradient gel electrophoresis (DGGE; [108]) or terminal
restriction fragment length polymorphism (T-RFLP; [109]) it is possible to com-
pare ‘‘fingerprints’’ of microbial communities in petroleum affected sites [110].
Gene amplicons are needed and profiling is either based on variable content of the
nucleic acid guanine that binds with cytosine (G/C-content) for DGGE or the
position of restriction sites (DNA/RNA regions that bind highly specific restriction
enzymes) closest to the labeled end of the amplicons for T-RFLP. Although
inexpensive, these methods can only give information about the diversity. Infor-
mation about the identity must be interpreted with care as nucleotide sequences are
not produced or may not be representative.

Characterizing microbial communities using 16S rRNA on the DNA or RNA
level is insufficient for identifying potential biogeochemical reactions (with the
exception of methanogens) because substrate utilization is independent of rRNA.
For an oilfield operator, however, it is of interest to stimulate or suppress meta-
bolically active subpopulations (e.g., methanogens, sulfate reducers, hydrocarbon
degraders, biosurfactant producers, etc.). Marker genes, such as srfA3/licA and sfp,
are known to encode for biosurfactant-functioning glycol- and lipopeptides [75,
76]. Because RNA is rapidly degraded, it is characteristic for active cells. RNA is
used as a template in reverse transcription PCR (RT-PCR) for the synthesis of
complementary DNA (cDNA, which is more stable than RNA) by reverse trans-
criptase enzymes and DNA polymerases that use RNA as a template. In a sub-
sequent PCR, cDNA can be used as a template for all methods described above.
Alternatively, stable isotope probing (SIP) links microbial identity to function
[111]. Added 13C-labeled substrates are incorporated into cell components such as
DNA. After nucleic acid extraction, isotopically heavy 13C-containing fractions
are separated by ultracentrifugation using a density gradient. Using SIP, micro-
organisms were identified in hydrocarbon degrading food webs [112, 113] or
hydrocarbon seeps [114]. Furthermore, other techniques including spectroscopy,
spectrometry, or radiography are combined with molecular detection tools: (i)
FISH-microautoradiography, FISH-MAR, (ii) FISH-Raman microspectroscopy,
FISH-RAMAN, and (iii) FISH-secondary ion mass spectrometry, FISH-SIMS
(reviewed in [115]). All methods visualize and quantify incorporated isotopes and/
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or radioactive signals after feeding isotopically labeled substrates in single-cell
resolution. However, these techniques require highly skilled personnel, are labor-
intensive and costly (equipment, isotopes, supplies, etc.). All nucleic acid-based
methods are restricted to published sequences, therefore only sequences analogous
to known species can be detected. New branches of unknown unaffiliated
sequences cannot be reliably classified if isolated and described pure strains do not
exist. SIP can help to overcome this problem as it relates substrate degradation to
16S rRNA gene sequences, and thus to the identification of the responsible
organisms.

Alternatively, lipid biomarkers can be used. Phospholipid-derived fatty acids
(PLFA, cell membrane components) are used to estimate microbial biomass and
can be assigned to certain microbial groups [116]. Nonetheless, phylogenetic
resolution is limited and correlation to underlying microbial processes is often
highly speculative compared to nucleic acid-based methods.

In principle, all of the afore-mentioned techniques work well for many envi-
ronmental samples. However, oil samples confront the investigator with specific
challenges and requirements. Deep subsurface microbial habitats that are often hot
and depleted in electron acceptors are characterized by relatively little living
biomass [23, 54]. Cell counts ranged from 104 cells g-1 in the oil-saturated zone
to 107 cells g-1 in the oil–water transition zone of a core taken from a Canadian
oilfield [117]. Low DNA or RNA extraction yields affect the efficiency of
molecular methods. For production fluids, large volumes can be concentrated to
enrich microbial cells on\0.2 lm filters prior to DNA extraction. In contrast, cell
accumulation by centrifugation is not recommended in particular for high-salinity
samples because higher mass densities lead to loss of microbial cells. Further
enrichment of genomic DNA may be achieved after DNA extraction by sodium
acetate precipitation [118]. However, because additional precipitation may
be incomplete, subsequent quantitative methods should be critically evaluated.
Qualitative investigations will not be affected.

Only little information for DNA extraction directly from the oil phase or the oil–
water interface is available [119]. Extraction of microbial cells from oil can be
performed using organic solvents, such as n-hexane, methanol, or isooctane [120].
This depends on oil maturation [121]. A second method for DNA extraction uses
buffer systems, such as the Winogradsky solution [122, 123]. Alternatively, micro-
organisms can be extracted from the oil into the water phase followed by filtration
and DNA extraction of the residue [124]. Again, an underestimation of extracted
DNA may be the result of additional extraction steps. Recovery experiments by using
control strains (as internal standard) are recommended for quantitative methods.

For coal, the material is ground up and extraction can be improved using bead
mill. Prior to grinding, maceration with 100 mM phosphate buffer might improve
results [125]. Alternatively, a combined splitting and drilling method can be used
to ensure an uncontaminated sampling surface [126]. Otherwise coal surfaces are
cleaned with ethanol or bleach. Subsequent DNA extraction can be carried out
using commercially available kits for soil or sediment samples.
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Crude oil typically fluoresces in the range of 300–600 nm depending on its
carbon structure and additives [127]. Fluorochromes, as used in molecular biology,
have an excitation signal maxima ranging from 390 to 740 nm [128]. In conse-
quence, remaining oil components in the extraction eluates may autofluoresce and,
therefore, interfere with the detection signal of the excited fluorochrome emission.

3 Selecting an Appropriate MEOR Approach

Among the five different MEOR strategies mentioned in the introduction, the
alternation of surface or oil–water interface properties (to release OIP as it is) and
methanogenesis (where OIP is converted into natural gas, methane) seem to be the
most promising approaches. In the first part we introduce methanogenic hydro-
carbon degradation by which OIP or coal components are consumed to form
methane. This is the easiest way to recover fossil energy from non-extractable OIP
but the product methane is cheap. Methanogenesis may be stopped at some point
when oil is swollen enough to recover more valuable components as well. If the
degradation of OIP is not desired, more complex modifications of the oil–water
interface properties are required which are introduced in the sections covering
biosurfactant production, viscosity alteration, and pore space plugging.

3.1 Conversion of Oil or Coal into Natural Gas (Methane)

Microbial conversion of underground carbon (oil, coal) to methane appears to be
the easiest way to extract energy from such deposits because energy can be cap-
tured from the gas phase. Fermentation and methanogenic processes have been
proposed as strategies to enhance energy recovery from stranded energy assets
(i.e., reservoirs where over 70 % of the resource had to be left in place due to
extraction limitations) by stimulating microbial activity. Methanogenic reactions
are exergonic (Table 1), therefore they come at the price of energy loss for bio-
mass accumulation. Several European and North-American countries as well as
China are investigating microbiological conversion of residual crude oil and coal
into biogenic methane to extend the lifetime of their existing fossil fuel resources.
Today’s proven oil reserves are estimated at 1,200 billion barrels (Gbbl) based on
a mean recovery of 35 % of OIP (roughly a 40-year supply based on current global
consumption of 85 Mbbl day-1). Increasing the recovery rate to 50 % would
produce incremental 520 Gbbl, extending production from current reserves at
current consumption rates by \17 years. Sustaining energy production must,
however, go hand in hand with emissions mitigation. This will involve strategies
such as carbon capture and storage but can also be facilitated by a switch to lower
emission fossil fuels. For every kWh of energy produced, methane generates
0.569 kg of CO2, whereas oil produces 0.881 kg of CO2 and coal 0.963 kg of CO2
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[129]. Stimulating the microbial conversion of oil to methane could therefore
reduce CO2 emissions per kWh by one-third. This holds true under the premise
that CO2 generated in the conversion process would not be released into the
atmosphere.

Major world oil reserves, such as the Athabasca oil sands, other foreland basins,
as well as many offshore reservoirs, contain heavily biodegraded crude oil [130].
The occurrence of biodegraded oil is indicative of indigenous subsurface microbial
communities. Therefore, in situ biodegradation in petroleum reservoirs is a
globally significant biogeochemical process. Removal of aliphatic and aromatic
hydrocarbons during in situ biodegradation enriches heavy oil fractions containing
heterocyclic sulfur-, oxygen- and nitrogen-rich compounds [43]. It severely
decreases oil quality. Factors controlling in situ biodegradation and the specific
microorganisms responsible remain poorly understood. Geological conditions
limit aerobic catabolism due to negligible contact between meteoric oxygen-rich
waters and deep fossil fuel deposits. The discovery of anaerobic hydrocarbon
degradation in various laboratory microcosm experiments (e.g., Refs. [131–136])
and field-scale evidence from biodegraded reservoirs [30, 43] support the
hypothesis that anaerobic processes are responsible for subsurface crude oil and
coal biodegradation. Inasmuch as electron acceptors for anaerobic metabolism such
as nitrate and oxidized metal species (Fe[III], Mn[VI]), are largely absent or
sequestered (e.g., as iron silicates), sulfate reduction and methanogenesis are the
most relevant processes for in situ biodegradation of crude oil. Sulfate can occur
naturally in formation waters of reservoirs rich in soluble evaporite minerals (e.g.,
halite) or when seawater is injected. Such sedimentary minerals form as a result of
dehydration during the formation of hydrocarbons. Methanogenesis is predominant
in the absence of sulfate. Because methanogens cannot directly decompose com-
plex organic matter they are dependent on symbionts that produce hydrogen, C1

compounds, or acetate [137–139]. Substrates degraded by sulfate reducers are more
divers and include hydrocarbons. Sulfate reducers can therefore provide interme-
diates needed by methanogens. It was shown that either inoculation [140]
or stimulation [141] might be feasible approaches to produce methane from
hydrocarbons. In the inoculation experiment, the authors used a preincubated
hydrocarbon degrading methanogenic mixed culture to inoculate sandstone cores of
a mature oilfield in Oklahoma [140]. They observed methane formation rates from
OIP between 3.4 and 9.0 llCH4

goil
-1 day-1. In the stimulation experiment, naturally

enriched hydrocarbon degrading communities of contaminated harbor sediment
were used [141]. The authors could show that the stimulation of the naturally
enriched community led to methane formation rates of 2.5 mlCH4

ghexadecane
-1 day-1

when ferrihydrite was added compared to 1.1 mlCH4
ghexadecane

-1 day-1 with sulfate.
However, the stimulation study also showed that naphthalene (a polyaromatic
hydrocarbon, PAH) was degraded three orders of magnitude slower than n-hexa-
decane or ethylbenzene and that electron acceptors did not accelerate this process.
Hence, the relatively small proportion of n-alkanes in the inoculation experiment
did not affect the overall oil degradation rates and might be the reason for the
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observed lower rates [140]. It remains unclear how PAH degradation could be
accelerated as the microorganisms and degradation processes are poorly under-
stood. Aromatic ring reduction seems to be the overall rate-limiting step [142].
Another way to accelerate methanogenic hydrocarbon degradation is the addition of
trace elements and vitamins [143].

Assuming that light crude oils consist of approximately 10–15 % of n-alkanes
or mono-aromatics (benzene, toluene, ethylbenzene, and xylenes; BTEX), the
microbial degradation of this fraction would convert 50 % of these into methane.
Hence, approximately an additional 5–10 % of the total oil mass could be
recovered. Thus, the induced conversion of oil or coal into methane can increase
the production lifetime of these reservoirs. Additionally, the conversion of oil
hydrocarbons into methane may have beneficial side effects such as a change of oil
viscosity or oil swelling. This is further discussed in Sect. 3.2.

This example of MEOR will depend on a better knowledge of syntrophic
microbial consortia in the reservoirs. A better understanding of the factors
affecting microbial communities in petroleum systems will have the benefit of
potentially resolving some of the uncertainties associated with earlier MEOR
attempts. Culturing or molecular biology approaches are appropriate and have
been discussed in Sect. 2.4.

3.2 Oil Swelling by Microbial Production of Gases

Microbially produced gases can swell oil by decreasing its density and increasing
its volume, and thus facilitate oil displacement [144]. The in situ production of
gases to swell OIP may leave a fraction unaltered. It can therefore be an interesting
alternative to the complete conversion of OIP to methane while being easier to
control than the production of SAC. In recent years, CO2 was successfully used to
swell and recover OIP upon cycled injection with N2 [145]. However, the main
mechanism behind CO2 injection as EOR method is the displacement of OIP
adhered to minerals by CO2 binding [146]. In addition to CO2, methane is pro-
duced by microorganisms inhabiting oil reservoirs. Methane has a solubility of
0.10 ml ml-1 brine at 11 bar and 45 �C [147], 0.24 ml ml-1 at 49 bar, 50 �C and
0.84 ml ml-1 at 113 bar, 50 �C [148] showing an almost linear increase with
pressure. Four milliliter methane dissolve in 1 ml gasoline at 8.4 bar [149]. The
higher methane solubility in gasoline compared with brine was responsible for a
volume increase of the gasoline by 1 %. It seems unlikely that swelling by
dissolved methane at such pressures could facilitate oil displacement. However,
under high-pressure reservoir conditions, oil swelling might drive oil out from pore
space due to a higher solubility of methane. The formation of methane hydrate in
the water phase can be neglected due to the low temperatures needed for hydrate
formation. An undersaturated reservoir with a bubbling point of 58 bar (835 psia)
and a pressure of 386 bar (5,600 psia) would be favorable for MEOR by gas
production [144]. How methanogenesis can be stimulated is described in Sect. 3.1.
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To avoid complete destruction of OIP by methanogenic consortia, methanogenesis
may have to be inhibited. This can be achieved by using inhibitors such as methyl
fluoride (CH3F, 1.0–1.2 %) for acetoclastic methanogenesis or 2-bromoethane-
sulfonic acid (BES, 8 lM–5 mM) for general methanogenesis [150]. Oxygen [68]
and nitrate [141] also inhibit methanogenesis but accelerate hydrocarbon degra-
dation. Many facultative anaerobic hydrocarbon degrading strains listed in
Table A.2 are also nitrate reducers.

N2 is produced by nitrate reducers. This could increase reservoir pressure, as
suggested in Refs. [151–153]. At the same time, reports of increased actual res-
ervoir pressure upon MEOR treatment are scarce. In a review, Belayev et al. [151]
mentioned an increase of well pressure (top of the well) in a well stimulation
experiment of the Sernye Vody oilfield, Russia, by 1.5 bar. It seems unlikely that
this pressure increase could be maintained throughout a reservoir where injection
and production wells are separated. Moreover, the small pressure increase is
insufficient and cannot account for oil displacement. In a study of an example oil
reservoir in the North Sea the increase of reservoir pressure (not oil swelling) was
regarded as irrelevant for MEOR due to the formation of a gas phase needed for
pressure generation of several orders of magnitude [144]. This gas phase would
then potentially block sweeping fluids.

3.3 Detaching Residual Hydrocarbons from the Mineral
Matrix (Capillary Number NCA)

For petroleum engineering, the ability of microorganisms to remove adhered
hydrocarbon from the mineral matrix (i.e., the porous medium that contains
petroleum) offers remarkable opportunities. In particular, microorganisms are able
to reduce the force that retains hydrocarbons in microcapillaries of the porous
medium. This force is best described as the capillary number Nca [154]:

Nca ¼
lw � vw

cow

ð1Þ

The viscosity lw is the viscosity of the water phase and vw is its volumetric flux.
The interfacial tension c between oil and water is cow and the resulting capillary
number is dimensionless. In most reservoirs, the capillary number is around 10-7

[144]. An increase of Nca by three orders of magnitude is required to displace oil
from capillaries of 10–100 lm dimensions [155]. This cannot be achieved by
increasing the water viscosity or the volumetric flux. Therefore, a three orders of
magnitude decrease of cow will displace entrapped oil from pore space. Gray et al.
[144] reported some typical c values for hydrocarbons and water and found that in
1 out of 16 cases c was decreased below 0.06 mN m-1 by microorganisms and
their products at neutral pH. Others reported biosurfactants to decrease cow by up
to five orders of magnitude using the spinning drop measurement method [156].
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Because such low c values were rarely reported, thorough investigation of oilfield
microorganisms regarding their interfacial action is inevitable for any MEOR
treatment aiming to detach OIP. Detaching OIP is less destructive than conversion
to methane but more difficult to control. In the following, we introduce basic
techniques that help to address this topic.

3.3.1 Determination of the Interfacial Tension c

In order to increase Nca, biosurfactants are used to decrease cow (Eq. 1). Generally,
c can be measured using different techniques: the Wilhelmy plate method, the
pendant drop method, the spinning drop method, and the laser scattering method.
To choose between the different tensiometers it is useful to understand their basic
functioning (for reviews see Refs. [154, 155]). The Wilhelmy plate method is the
classical method and allows for the measurement of c � 1. In principle, a metallic
plate is suspended vertically in a two-phase liquid (Fig. 10).

The force F that is applied to this plate can be measured directly and is used
along with the contact angle h and the perimeter l of the wetted area to calculate
the interfacial tension between both immiscible liquids:

c ¼ F

lcos (hÞ ð2Þ

Liquid 1

Liquid 2

Interface

F2

F1

θ

l

Fig. 10 The Wilhelmy plate method. A liquid body can be imagined as cubes that are being held
in place by repulsive and attractive forces. When these forces are balanced (e.g., in a hydrophilic
liquid) no phase separation occurs. When these forces are imbalanced, phase separation becomes
visible and the difference between these forces can be measured using the Wilhelmy plate. This
difference also determines the interfacial tension c. Note that l is the wetted perimeter of the
Liquid 2-wetted area
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The disadvantage of this method is that relatively large amounts of both liquids
are needed. The pendant drop method is easy to handle and reliable. The two
phases are the drop that is inflated into the surrounding medium (Fig. 12). In
addition to the easy handling, this method also allows for incubating an undis-
turbed surface, for example, to observe the formation of biofilms or to measure the
elasticity [157]. The principle of drop tensiometers (pendant drop or spinning
drop) is based on measuring of the drop curvature deformation as a result of c
changes (Dc) using the Laplace–Young equation for capillary pressure [155]:

DP ¼ P1 � P2 ¼ 2c
1
r1
� 1

r2

� �
ð3Þ

The difference between the two pressures P1 and P2 on each side of the drop,
DP, directly correlates with c, depending on the difference between the corre-
sponding radii r1 and r2 (Fig. 11). That is, the greater the difference between the
two radii, the greater the pore constriction, the less DP depends on c. When both
radii are equal (the porespace is not confined), only c determines DP.

Ideally, an oil drop in water has a perfectly spherical shape because the pressure
of the liquid of the higher density holds the other liquid in shape like a water drop
in air without gravity. When the interfacial tension c is the greatest, the oil drop
will have an ideal spherical shape of the lowest surface area and the sinus of the
contact angle at the full radius h = 90� will be 1:

2p� c sin(hÞ ¼ Vðqo � qwÞ � gþ px2P ð4Þ

V is the known volume of the drop, q is the known density of either oil (qo) or
water (qw), g is the known gravity, px2 is the area of the drop of the diameter x, and
P is the pressure between the drop and the surrounding water. This pressure
difference can be assumed to be the same between the water and the oil drop and
will therefore be 0. Changing c will lead to a measurable change of the contact
angle h:

c ¼ Vðqo � qwÞ � g

2p� sin ðhÞ ð5Þ

Oscillating the drop volume V using a certain frequency f will lead to a change
of the area A, the contact angle h, and the interfacial tension c (Fig. 12). The

P1 P2

water oil

r1 r2ΔP

Fig. 11 Model of oil
displacement through
confined pore space. The
interfacial tension is defined
in the Laplace–Young
equation (Eq. 3) and
determines the pressure
difference DP
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derivation of the oscillating A and h ultimately allows the calculation of the
elasticity E using Eq. (6). This is important to consider because elasticity can
diminish the effect of c reduction (Sect. 3.3.2).

Briefly, one can easily imagine that changing the oscillation frequency f will
lead to a change of E, given there is elasticity. Moreover, f influences the elastic
‘‘response’’ of the drop that is covered by an elastic skin. When f is high, the
inflation speed is high along with the difference in pressure and the force that is
applied on the surface. This results in little elastic ‘‘response’’ because the elastic
forces on the surface of the drop, withstanding the applied forces, are smaller than
the applied forces. The result is a shorter delay of the elastic response, measurable
as a shift in the phase angle a between the oscillations applied by the inflating
instrument (e.g., a pendant drop tensiometer) and the real in- and deflation fre-
quency of the drop.

However, using a pendant drop tensiometer one can measure only relatively high
c values (usually not lower than 1 mN m-1). This is because the oil drop easily
detaches when c becomes too low due to the density difference and the drop
migrates to the surface. Unfortunately, c values above 10-2 mN m-1 are not suf-
ficient for oil displacement [155]. To solve this problem, a variation of the pendant
drop method is the spinning drop method. Here the Laplace–Young equation is used
as well (Eq. 3). The costs for a spinning drop tensiometer can vary between US
$20,000 and 40,000. It is more expensive than a pendant drop tensiometer but
values as low as 10-6 mN m-1 can be measured. This is achieved by a freely
floating oil drop within the aqueous medium. The medium rotates with a drop inside
a capillary and the injected drop does not contact the boundaries of the capillary.
The spinning drop is extremely deformed so that studying an undisturbed surface
becomes impossible. Moreover, c cannot be measured continuously without rota-
tion because a new drop must be injected each time the measurement has been
halted. A novel technology that combines the features of an undisturbed surface
with the measurement of low interfacial tensions is laser scattering tensiometry
(SINTEF, Trondheim, Norway). Laser scattering instruments are usually employed

oil

θ

water

A

air

P1 P2

Fig. 12 Principle of the
pendant drop method. The oil
drop is inflated from the
needle tip at bottom into the
aqueous phase. Using the
contact angle h and the
surface area A, the elasticity
E or the interfacial tension c
can be calculated using
Eq. (6) or (5), respectively
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to measure the shape and size of particles and can be used for oil droplets as well.
The lowest c measured using laser scattering is 10-2 mN m-1. However, this
technology is still under development and not commercially available yet.

3.3.2 Impact of Oil Droplet Elasticity: Gel Formation

The production of SAC that decrease c is naturally accompanied by an increase of
elasticity E [158]. Consequently, higher pressure must be applied for droplet
deformation and oil displacement. The mechanism of droplet elasticity is not well
understood and the behavior of stiff oil droplets is not predictable yet [144]. One can
picture surfactants as coating oil droplets, determining the droplet’s elasticity. When
a drop is deformed during its passage through a pore constriction, by applying
pressure on one side of the drop in order to displace it, the surface area A of this drop
will change along with its c. The relation between c and the resulting pressure
difference DP is described in the Laplace equation (Eq. 3). The radius r1 of the drop
curvature is greater than r2 on the confined (right) side of the pore constriction
(Fig. 11). It is obvious that when c becomes very low, that the difference in pressure
DP decreases, thereby facilitating drop displacement. At the same time, c is directly
linked to E. An increase of the drop elasticity (i.e., interfacial relaxation time) could
impede drop displacement. This is because the elasticity of a drop, covered by a skin
of surfactant molecules, depends on the change of c (dc) when the area of the drop
changes (dA), for example, during in- and deflation of the drop [159]. This depen-
dence is expressed in the Gibbs formula:

E ¼ dc
d lnðAÞ ð6Þ

where E is the elasticity, c is the interfacial tension, and A is the area of the drop that is
deformed. The unit of the elasticity is the same as of c, N m-1. For example, when
ln(A) increases by 0.01 due to the expansion of the drop surface on the confined side
of the drop (the right side in Fig. 11) at a given elasticity of 50 mN m-1, c will
increase by 5 mN m-1. Then the increase of c constrains drop mobility although a
surfactant had decreased c before. In conclusion, using microbial cells to study their
effect on c may have nothing to do with the actual c when these cells produce
biosurfactants or form a surface biofilm [144]. This is because a coated oil drop does
not have an interface with water when cells grow on its surface.

Crude oil naturally contains compounds having the same effect on the inter-
facial tension and the elasticity [158]. These compounds may have a polar head
group and a lipophilic tail as well, for example, naphthoic acid. Because these
compounds are characterized by a great variety, one can assume that they form
patterns or patches on the drop surface. These mutually interact, ultimately
resulting in the formation of a fractal gel covering the surface of an oil drop [160].
Gels are impermeable for other compounds and deforming the drop will not
change its permeability. This could lead to stable oil–water emulsions. Such
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emulsions impose economic risks to oilfield operators because it becomes difficult
or even impossible to decrease c or separate oil from water. Gels of intrinsic
surfactants increase the relaxation times of oil drops and therefore may impede
their displacement from the porespace. Due to the heterogeneous nature of the
intrinsic oil surfactants, the elastic response is the same at all oscillation fre-
quencies. In other words, a wide range of frequencies will not break gels. This can
indeed be measured as a relatively constant phase angle at different oscillation
frequencies [159]. Increasing the hydrophobicity of the aqueous phase or altering
the viscosity may affect droplet elasticity. Indeed, detachment of cells was
observed when 2-propanol was added to a cell-coated oil hexadecane suspension
[161]. Other amphiphilic solvents may have a similar effect on oil–water emul-
sions. Some typical organic solvents produced by microorganisms are, for
example, acetone and butanol, excreted by certain Clostridia [162].

3.3.3 Biosurfactants and Other Surface Active Compounds in MEOR

Surfactants are amphiphilic molecules that accumulate at interfaces, decrease c, and
form micelles [163]. They can be classified by properties such as their critical
micelle concentration (CMC), their ratio of the hydrophobic to the hydrophilic
regions (hydrophile–lipophile balance), their chemical structure, and charge,
among others. Due to these properties, surfactants affect the way molecules interact
with interfaces. In natural ecosystems most microbial activities occur at interfaces
that may be liquid or solid. Hence, it is not surprising that surfactant synthesis (then
called biosurfactants) is common among microorganisms (for reviews see Refs.
[163, 164]). There is a great variety of chemical structures because biosurfactants
can be peptides or esterified lipids. Biosurfactants coat surfaces by forming a
molecular monolayer skin and decrease c. Naturally, these biosurfactants serve
various functions, such as cell motility, attachment to, or detachment from surfaces,
biofilm formation, pathogenesis, antimicrobial activity, modification of cell surface
properties, ingestion of hydrophobic substrates, and so on.

A classic example for a biosynthetic SAC that is not a biosurfactant is acetone. It is
soluble in water and in benzene. Its short lipophilic tail does not allow the formation
of an elastic skin, characteristic for biosurfactants. This is also the case for other
short-chain alcohols and ketones typically produced by microorganisms [165]. Fatty
acids may be further esterified with hydrophilic head groups which often increase
their solubility in water. Typical hydrophilic head groups are carbohydrates, pep-
tides, phosphates, and sulfates or a combination of them. Some powerful biosur-
factants including their c are listed in Table A.3. The most important biosurfactants
have been reviewed by Banat et al. [166] and more recently by Mulligan [167] and
Rosenberg [164]. In brief, well-described biosurfactants are: surfactin (a lipopeptide)
of Bacillus species as well as viscosin (lipopeptide) and rhamnolipids (glycolipides)
of Pseudomonads. Bacillus sp. biosurfactants could decrease c to \0.1 mN m-1,
needed to mobilize oil in suspension [168], in micromodels [169], and in an oilfield
[55]. However, in another field study of the Changqing oilfield in China c was
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reduced to values greater than 10 mN m-1 in four out of six inoculated wells. This
was insufficient for substantial additional oil displacement, showing that an
extrapolation from the lab to the field is not always possible [170].

Bacillus sp. also produces high-molecular-weight compounds that may act as
biosurfactants [171]. Generally, such compounds are polymers of various origin
including carbohydrates, nucleic acids, proteins, and lipids. These, when excreted
by cells, form extracellular polymeric substances (EPS, [163, 164]). EPS are the
building blocks of biofilms that hold microbial cells attached to their organic or
inorganic substrates. A well-studied polysaccharide is the emulsifier RAG-1 which
is produced by several species of Acinetobacter (Table A.3; [172]). RAG-1 was
able to stabilize an emulsion of aromatic and aliphatic hydrocarbons.

Useful tools to study the action of polymers in the lab are micromodels.
Micromodels are two-dimensional artificial porous media that help visualizing
loading and unloading the porespace with any liquid [33]. The fabrication of a
micromodel costs usually less than US $1,000 and additional equipment for
high-pressure injection is commercially available. Micromodels are therefore a
good alternative to core flooding experiments especially because the process can
be visualized.

It was shown in numerous reports that (bio-)surfactants facilitate hydrocarbon
degradation [169, 173–175], even when they were synthesized by a nonhydro-
carbon degrading species [176]. Biodegradation may be desired (to produce bio-
surfactants) or not (to maintain oil quality). However, that accelerated
biodegradation of OIP can be facilitated by biosuractants is not a general rule. For
example, the biodegradation of crude oil by a mixed consortium of Enterobacter
and Pseudomonas was not significantly improved when a biosurfactant was
present [177]. Owsianiak et al. [178] demonstrated that biodegradation of oil
hydrocarbons was dependent on composition and concentration and the added
biosurfactant stabilized the hydrocarbon–water emulsion. Hence, for stimulating
biosurfactant producing microorganisms, one must also consider the oil compo-
sition (e.g., chain length, aromatic fraction). Also the carbon and nitrogen source
of the biosurfactant producing microorganisms determines biosurfactant produc-
tion and c decrease [177]. Additionally, oil composition also controls the type of
bio-degrading microorganisms inhabiting the oil drop (Table A.2). Alkane
degraders may quickly convert alkanes to fatty acids that act as biosurfactants by
removing the aliphatic fraction from the oil [164]. Organic ring reduction on the
other hand proceeds via another mechanism and the end product is CO2 if the
carboxylated intermediate is not excreted [179, 180].

A number of aerobic and anaerobic hydrocarbon degrading microorganisms
were isolated (Table A.2). Aliphatic or aromatic hydrocarbons serve as energy and
carbon sources. Alkanes are often incorporated into biomass as cell inclusions
[181–186] or membrane fatty acids [114, 187–190]. As such, the converted oil
hydrocarbons may be released as polar lipids upon cell lysis and serve as bio-
surfactants [170]. Some alkanes also serve as substrates for the production
of biosurfactants by yeasts and some prokaryotes (reviewed in [164]). Direct
degradation products of aliphatic hydrocarbons are their carboxylates. Aliphatic
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carboxylates gave oil recoveries of 60–80 % [191]. Also the incorporation of
aromatic [112, 192, 193] and polyaromatic hydrocarbons [194–196] into biomass
has been reported. Aromatic compounds and their derivates are biodegraded via
their respective carboxylates [197]. Many benzoate derivates are powerful sur-
factants [198]. Also polyaromatic carboxylates (e.g., naphthalene carboxylic acids)
are powerful pH-dependent surfactants that are often found in crude oil. The
production of such intrinsic biosurfactants may be stimulated by the addition of
nitrate as electron acceptor [199]. Ultimately, dead cells or cell debris comprising
nonionic SAC and polar lipids could act as surfactants or solvents resulting in
increased oil droplet mobility [200]. Sequential feeding and starvation (to lyse
cells) may be a simple method to produce such a mix of biosurfactants and would
not require injection of specific biosurfactant producers.

However, injecting biosurfactant producing microorganisms into an oilfield
may be profitable if the process of microbial growth can be controlled. One
comparative MEOR study clearly demonstrated the migration of injected biosur-
factant producing Bacillus strains within the Bebee oilfield, OK, USA [55].
Bacillus strains can produce surfactin (Table A.3). This was well studied using
Bacillus subtilis and other bacilli [166]. Bacilli have the advantage that they can be
grown quickly in the lab under oxic conditions but strive as well under anoxic
conditions such as Bacillus mojavensis JF2. Albeit capable of reducing the c
between the aqueous phase and hexadecane below 1 mN m-1, surfactin was rarely
employed in MEOR studies beyond c measurements [201]. One study compared
the efficiency of lipopeptide producing microorganisms in three injection and the
respective production wells [55]. The authors used an inoculum of two Bacillus
strains along with nutrients (glucose, nitrate, and trace elements) for two wells.
Sufficient biosurfactant production for oil displacement (up to 90 mg l-1) was
observed in the production fluids along with the injected microorganisms of the
inoculated wells. The total carbon balance was 107 % thus moderately exceeding
the injected amount of nutrients. Also the surface tension of the inoculated wells
decreased from 66 and 72 mN m-1 to 57 and 56 mN m-1, respectively. It was
assumed that this decrease caused the EOR observed.

Reduction of c by biosurfactants may be further improved by the addition of co-
surfactants, such as organic solvents (alcohols, aldehydes and ketones, organic
acids, amines, and the like [155, 191]). 2,3-Butanediol was used as co-surfactant
along with a partially hydrolyzed polyacrylamid viscosifier in an experiment with
B. mojavensis JF2 [202, 203]. Up to 45 % residual oil recovery was achieved using
this method and c was reduced to 0.9 mN m-1 [204]. Such an additional c
reduction by three orders of magnitude was shown for the glycolipid producing
Rhodococcus strain H13 [156]. In this study, 0.5 % n-pentanol reduced c against n-
hexadecane from 1.4 mN m-1 to 6.0 9 10-5 mN m-1 (Table A.3). The Rhodo-
coccus strain was able to synthesize the trehalose lipid surfactant directly from
several n-alkanes, including n-hexadecane. Some publications reported increased
oil recovery of about 30–60 % in core flooding experiments, claiming solvent
production to be the reason (for a critical review see [144]). These observations
must be interpreted carefully because an increase of pressure could have been the
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underlying mechanism as this is easier to achieve in the small volume of a core,
compared with an actual oil reservoir [144].

3.3.4 Salinity, pH, and Temperature and Porous Medium Effects
on Biosurfactant Performance

Direct conversion of n-alkanes into the biosurfactant surfactin was reported for the
B. subtilis strain C9 [205]. The c-decreasing performance of this biosurfactant was
strongly dependent on the salinity and the pH of the solution [203, 206, 207]. It
was shown that the optimum pH for surfactin was 6.0 and that 5 % NaCl increased
the interfacial activity compared with 0.5 % NaCl [207]. Depending on the sur-
factant/co-surfactant formulation, optimal salinities for oil displacement ranged
from 1 to 5 % in another study [191]. Other surfactants seem to have their opti-
mum at alkaline pH, for example, between 8 and 9 [191] or at 10, [177]. In phase
mixing experiments it was discovered that an optimum salinity of 7 % was
required for best mixing brine and crude oil [206]. The c value could be reduced to
0.025 mN m-1 by a rhamnolipid between toluene and the brine at an optimal
salinity of 3 % (Table A.3; [208]). In contrast, an adverse effect of higher salinity
on the surface tension reduction by two different Bacillus strains and one Pseu-
domonas strain was observed but was the least negative for Bacillus cereus [169].
Increasing c values along with higher salinities were also observed in a study with
Enterobacter cloacae and Pseudomonas sp. and their cell free supernatants [177].

Another factor influencing c reduction is temperature. Zekri et al. [209] demon-
strated an additional c reduction by three orders of magnitude when the temperature of
a biosurfactant producing microbial solution rose above 60 �C. However, this was
likely due to the thermophilic nature of the cultures and their higher activity. Inter-
facial activity depending on temperature was also observed in a study of a biosur-
factant producing consortium of E. cloacae and Pseudomonas sp. [177]. In the range
from 20 to 70 �C, the greatest c reduction was observed at 40 �C. This effect was
dependent on cell growth and surfactant production because the cell free surfactant
solution was stable over a wide temperature range from 4 to 121 �C. In conclusion, the
biosurfactant that is to be produced in the oilfield must be active under the given
conditions, such as pH, salinity, and temperature. Only Bacillus biosurfactants
(surfactin, lichenysin A) have been characterized sufficiently (structure, activity,
genetics) to allow a forecast about their activity in the field [76, 207, 210–214].

Another issue is that 0.1 to 1 mg biosurfactant adsorbs effectively to 1 g rock
and is lost for oil displacement [144]. However, this can be circumvented by the
production of ‘‘sacrificial’’ biosurfactants that block the mineral matrix which may
lead to a 25–30 % reduction in adsorption of the more effective surfactants [144]. It
is also obvious that the local production of biosurfactants at entrapped oil droplets
will reduce these losses and will therefore likely improve the carbon balance.
Moreover, biodegradation of biosurfactants by competing microorganisms can
result in additional losses [47]. The wettability of the rock surface is crucial for the
adsorption of oil and surfactants. This depends on the mineral composition of the
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rock. Wettability plays a minor role for oil displacement from sandstone formations
[144]. In the case of carbonates and clays, the rock wettability is crucial for oil and
surfactant adsorption. Changing the wettability of carbonate rocks using biosur-
factants, solvents, or polymers (biofilms) seems an interesting option. In contrast,
the wettability may become insignificant when oil droplets are coated with a biofilm
of hydrocarbon degrading microorganisms [157, 215, 216]. Consequently, it has
recently been proposed that microorganisms coating oil droplets increased the oil
production in a commercial MEOR application [217].

3.4 Effects of Oil and Water Viscosity

Entrapped oil and surrounding water have different viscosities. This is one of the
factors that make these two fluids immiscible and retain the oil in reservoir pores.
An increase of the water viscosity or a decrease of the oil viscosity may enhance
oil displacement. Microbial products that increase the water viscosity are biofilms
and other biopolymers, fatty acids, or long-chain alcohols. On the other side, the
viscosity of the oil can be reduced by organic solvents such as short-chain
hydrocarbons, alcohols, ketones, organic acids, or gases.

3.4.1 Increasing Water Viscosity

Microbial isolates obtained from the Tinggi and Semangkok oilfields in Malaysia
were able to increase the viscosity of their culture medium from 1.01 to 3.8 cP
[218]. A field study in the Chinese Fuyu oilfield could also show an increase of the
viscosity of the formation water [41]. An increase of the viscosity to 100 cP in the
culture medium was described using the polymer producing strain Clostridium sp.
TU-15A [39]. Such a hundredfold increase in combination with a tenfold c
decrease would increase the capillary number to a value needed for oil displace-
ment [155]. Although this combined approach appears to be promising in theory,
laboratory or field studies investigating this strategy are scarce. Nonetheless, the
increase of the viscosity of the aqueous phase alone could reduce the volumetric
flow and the overall production, thereby increasing the chance to extract more OIP.

1 The term ‘‘biocracking’’ refers to thermal cracking, usually used in the refining industry to
break large hydrocarbon molecules into smaller ones, which is essentially what microorganisms
do at much lower temperature.
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3.4.2 Examples of Oil Viscosity Decrease

Microbial cracking or biocracking1 of long-chain paraffins along with an
increasing short-chain/long-chain ratio was observed in numerous field and lab-
oratory studies (e.g., Refs. [170, 219–221]). This was usually accompanied by c
and oil viscosity reduction. In a core flooding experiment using samples from the
Changqing oilfield in China, low carbon number products such as CO2, CH4,
C2H6, C3H8, i- and n-alkanes up to C7, and alkenes were produced [170]. The
production of hydrocarbons by microorganisms is well known and might be a
viable approach to reduce the OIP viscosity (for review see [222]). Ethane pro-
duction was demonstrated from ethyl-coenzyme M in a sludge experiment [223] or
directly from ethanol by Methanosarcina barkeri [224]. The biological reduction
of C2+ chain alcohols is also thermodynamically feasible under reservoir condi-
tions [225]. Also de novo synthesis of (cyclic) alkenes was shown for some pro-
karyotes [226–228].

The production of gases seems another viable option to reduce oil viscosity.
CO2 was believed in the Fuyu oilfield in China to have contributed to oil swelling
as well as viscosity reduction and ultimately to increased oil production [41].
Although during the study the suspected CO2 production was not determined, it is
routinely used in EOR to drive out residual OIP from porespace [145]. CO2 is
soluble in crude oil and known to decrease its viscosity. Also, methane is a
common product in biodegraded oilfields and can reduce the oil viscosity as well
[23]. At 79 bar and 50 �C, the solubility of crude oil in methane is 13.6 mg l-1 but
depends on the respective oil composition [229]. The solubility of crude oils in
water with 3 % salinity was between 8 and 20 mg l-1 and between 50 and
400 lg l-1 of the weathered fraction, respectively [230]. The effect of methane on
OIP solubility in water has not been studied yet, but an increase seems likely.
However, due to the high solubility of crude oil in methane, crude oil viscosity will
decrease resulting in higher porespace mobility [231]. Methanogenic hydrocarbon
degradation from various aliphatic and aromatic compounds is exergonic under
physiological standard conditions (Table 1). Its degradation can be stimulated by
inoculation, as shown in a sandstone core experiment [140], or by accelerating b-
oxidation of intermediate fatty acids [141]. b-Oxidation rates of intermediate fatty
acids appear to be the bottleneck in reduced environments such as oil reservoirs as
it requires an efficient electron sink [232], but can be encountered by the addition
of electron acceptors [141]. However, nitrate inhibits methane production, but its
microbial turnover product N2 may dissolve in the OIP and decrease its viscosity
[233]. For accelerated degradation of aromatic compounds, ring reduction is
involved. It has been demonstrated for toluene that an electron accepting anode
can accelerate its degradation [234], but it remains unclear if this works for more
complex ring structures that are usually observed in residual oil. Although it is
possible that microorganisms metabolize long-chain hydrocarbons into shorter
hydrocarbons via biomass synthesis, microcosm studies demonstrating biocracking
in oilfield samples must demonstrate this in each specific setting.
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3.5 Porespace Alteration by Plugging or Rock Dissolution

Generally, the mechanism of microbial rock colonization is poorly understood.
However, it is reasonable to assume that greater porespace allows greater substrate
fluxes and hence a faster colonization by microorganisms. Thus, reservoir zones of
large pore sizes can be colonized and plugged faster than zones of little porosity.
Highly permeable reservoir zones of low sweep efficiency are characterized by
high flux rates and low OIP concentrations whereas the major part of the OIP may
reside in impermeable zones with low fluxes. The concept of selective plugging
allows microorganisms to block the highly permeable zones to direct the sweep
fluids to less permeable zones with higher oil saturations. Three biological
mechanisms can block high permeable zones: (i) the formation biofilms, (ii) the
formation of highly viscous organic matter [235], or (iii) the precipitation of
inorganic minerals.

Porespace alteration received much attention throughout the last three decades
but the relevance of MEOR was demonstrated in several laboratory and field
studies [39, 209, 236–240]. The preconditions for successful applications were
briefly reviewed by Gray et al. [144]. These are: high travel velocities of the
injected fluids as well as injected microorganisms that survive under reservoir
conditions and out-compete the indigenous community. Moreover, the produced
polymer must not be biodegradable. Ideally, the injected microorganisms do not
degrade petroleum to minimize the risk of colonizing the low permeability zones
laden with hydrocarbons. This would possibly have the unintended effect of
blocking the extractable OIP. Based on Stiles permeability calculations [241],
Gray et al. [144] concluded that a porosity of less than 6 % would be suitable for
microbial plugging. Plugging reservoir fractures would have better prospects. The
advantage of this method is that it could be applied to any depleted oilfield when
the injected microorganisms were previously isolated from the same field [242].
For economic reasons, marginal wells should be the primary target [144]. The
selective plugging method was successfully applied during multiwell pilot studies,
for example, Refs. [242–244], and was recently reviewed in detail by Youssef
et al. [7]. In addition to polymers produced by microorganisms, the precipitation of
inorganics, so-called mineral plugging, could be a feasible strategy [236]. It is well
known that microorganisms are able to accelerate precipitation processes to form
solid carbonates [245–248] or sulfides [46, 249].

In addition to plugging, rock dissolution can liberate entrapped OIP. It was
demonstrated that certain microorganisms (e.g., Cryptoendolithic lichens [250])
are able to alter the surface of sandstone under aerobic conditions by producing
oxalic acid and thereby mobilize iron compounds [250–252]. This could increase
the porosity of a reservoir if similar compounds are formed under anaerobic
conditions. Moreover, the microbial production of acids hydrolyzes carbonates. It
was demonstrated in core flooding experiments that carbonate dissolution may
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indeed liberate oil from carbonate formations [5]. In some carbonate reservoirs this
mechanism was believed to be the reason for higher porosity [152, 253–255].

4 The Economy of MEOR

In 1987, the price of one bbl oil was US $16.50 (Fig. 2). By that time, Burchfield
and Carroll Jr. [256] calculated a breakeven of costs and yield after four months
MEOR treatment, carried out as single well stimulation. During the following
10 years, the oil price remained stable and Portwood [257] estimated average
MEOR treatment costs of US $0.50 per bbl and US $2.00 for each incremental
bbl. This means that all produced oil would cost an additional US $0.50 per bbl
and the costs for each incremental bbl alone would be US $2.00. For example, a
well produces 3 bbl day-1 and after MEOR treatment of US $2.00 day-1 the
production inclines to 4 bbl day-1. The total production costs inclined by
US $2.00 day-1, which are divided by the total amount of produced bbls. If the
production costs were US $16.00 per bbl before MEOR, the costs were US $16.50
after MEOR commenced. At an oil price of US $16.50 in 1987, this was the
breakeven. In March 2013, the oil price was US $91.02 for WTI and US $110.40
for Brent (Fig. 2). Considering this and a cumulative inflation of only 50 %
between 1995 and 2012, the MEOR process is only a small investment compared
with potential gains. Similar conclusions were made for a 7-year MEOR project
conducted on the La Ventana oilfield [258]. The authors calculated additional
treatment costs of US $1.39 to 2.35 per bbl, costs that were reported from other
field tests and conventional EOR methods as well [259]. Based on laboratory
experiments, Vadie et al. [260] used 0.12 % KNO2 and 0.06 % NaH2PO4 to
stimulate growth of indigenous microorganisms and observed a declining water
cut compared to a control well. The same formulation was used in a recent
commercial MEOR treatment, claiming an average sustained surplus of oil pro-
duction of 200 % with treatment costs of US $6.00 per incremental bbl [217]. The
use of indigenous microorganisms was also suggested in a critical survey evalu-
ating the economy of MEOR because the likelihood of thriving under reservoir
conditions is greater than for laboratory strains [259]. Successful field experiments
employing inexpensive nitrate were conducted in Canada, China, and the United
States [233]. KNO3 can be purchased for US $200–500 per ton and NaH2PO4 for
US $500–800 per ton. It should be approximated in reservoir core experiments
how much is needed for successful oil detachment because the addition of too
much nitrate bears the risk of OIP degradation. Another study compared bio-
cracking with conventional hot oil treatment (HOT, a classical EOR method where
hot water or steam is injected [261]) and an average reduction of the treatment
costs from US $4.01 per bbl for HOT to US $2.02 per bbl was achieved [262].
This was in good agreement with estimated costs for MEOR in a mature Argentine
oilfield of US $2 for each incremental bbl, based on a field pilot study [263]. In

Starting Up Microbial Enhanced Oil Recovery 37



1998, a pilot MEOR study in the Changqing oilfield in China resulted in an overall
profit of US $83,000 treating 27 wells [170].

In the case of biosurfactant production, Gray et al. [144] estimated that 204 tons of
biosurfactant are needed to recover 145,000 bbl of incremental oil when the residual
OIP was 30 % and the incremental oil recovery was 15 %. In the same report the
authors calculated that 146 kg alkanes must be converted to yield 1 bbl incremental
crude oil [144]. Glucose and a microbial inoculum may be injected but in this case
204 kg of glucose ? microbial cells are necessary to yield one bbl of crude oil.
Taking only materials into account, very low treatment costs (US $1.6 per bbl), were
reported from an inoculation study using biosurfactant producing Bacillus strains in
an oilfield in OK, USA [55]. Treatment costs of less than US $1 per bbl were reported
from an oilfield in California, USA, again, not considering public co-funding [233].
If the surfactant can be recovered and reinjected, then the costs for the MEOR
treatment may further decrease. Considering that cell debris may act as surfactant as
well, the alkane to crude oil ratio may considerably decrease.

It must be noted that most economic estimations were made for marginal
oilfields often owned by minor producers and producing at the economic limit.
Although it was suggested that such oilfields may be ideal for MEOR treatment
[144], large oilfields such as the Beatrice and Gullfaks oilfields in the North Sea or
Chinese oilfields like Dagang and Chaqing were MEOR treated as well. The effect
of MEOR was difficult to assess in a North Sea MEOR study [264]. Still, the North
Sea Beatrice field has produced oil for more than 15 years beyond the expected
closure, probably due to a combination of MEOR treatment and oilfield upgrading.
Economic data from other oilfields are difficult to interpret because success reports
are sometimes hardly different from propaganda. Nevertheless, MEOR appears to
be successfully applied in numerous cases in Chinese oilfields [265].

5 Conclusions

A recent review of 10 MEOR field applications concluded that the best results
were obtained in reservoirs with a high water cut ([75 %v/v), low salinity
(10 mol %), and temperature (\55 �C; [266]). This review reported a success of
80 %, however, an extensive recent MEOR survey of 403 laboratory and field
studies, including well stimulation, reported 96 % successful projects [7]. In
another recent MEOR field study, the authors concluded that no difference in oil
recovery is to be expected when MEOR starts with waterflood or at a later stage
[144]. The aforementioned surveys were made by MEOR experts who were likely
strong supporters of MEOR. Moreover, it is traditionally difficult to publish
negative results. Hence, all MEOR studies and reviews have to be interpreted very
carefully. Nevertheless, some critical reviews are available [144, 259].

Despite decades of laboratory research and many successful field trials, MEOR
is not yet accepted as a routine EOR procedure by the oil industry. There is still a
degree of skepticism due to the lack of reliability and the difficulty in predicting
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the results of MEOR procedures. Moreover, investigators did not agree on a
universal MEOR mechanism. Here, we suggest that the production of methane or
biosurfactants in situ or offsite in bioreactors might be the most promising MEOR
strategies. Generally, too little is known about microbial processes in oilfields. It is
therefore necessary to study these processes using classical culturing techniques in
combination with established methods targeting DNA or RNA. Stable isotope
probing can shed light on key players in such processes. Better and cheaper tools
to investigate the activity of microorganisms at oil–water interfaces must be
developed. It still remains challenging to control microbial processes in oil and
coal deposits. Nevertheless, some promising tools to study complex microbial
processes are available and should be used.
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See Tables A.1, A.2 and A.3.
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Relevance of Deep-Subsurface
Microbiology for Underground Gas
Storage and Geothermal Energy
Production

Claudia Gniese, Petra Bombach, Jana Rakoczy, Nils Hoth,
Michael Schlömann, Hans-Hermann Richnow and Martin Krüger

Abstract This chapter gives the reader an introduction into the microbiology of
deep geological systems with a special focus on potential geobiotechnological
applications and respective risk assessments. It has been known for decades that
microbial activity is responsible for the degradation or conversion of hydrocarbons
in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a
typical characteristic of such deep ecosystems. The understanding of the respon-
sible microbial processes and their environmental regulation is not only of great
scientific interest. It also has substantial economic and social relevance, inasmuch
as these processes directly or indirectly affect the quantity and quality of the stored
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oil or gas. As outlined in the following chapter, in addition to the conventional
hydrocarbons, new interest in such deep subsurface systems is rising for different
technological developments. These are introduced together with related geomi-
crobiological topics. The capture and long-term storage of large amounts of carbon
dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas
reservoirs, is considered to be an important option to mitigate greenhouse gas
emissions and global warming. On the other hand, the increasing contribution of
energy from natural and renewable sources, such as wind, solar, geothermal
energy, or biogas production leads to an increasing interest in underground storage
of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are
often produced in a nonconstant manner and renewable energy may be produced at
some distance from the place where it is needed. Therefore, storing the energy
after its conversion to methane or hydrogen in porous reservoirs or salt caverns is
extensively discussed. All these developments create new research fields and
challenges for microbiologists and geobiotechnologists. As a basis for respective
future work, we introduce the three major topics, that is, CCS, underground
storage of gases from renewable energy production, and the production of geo-
thermal energy, and summarize the current state of knowledge about related
geomicrobiological and geobiotechnological aspects in this chapter. Finally, rec-
ommendations are made for future research.

Keywords CCS � Deep biosphere � Geothermal energy � Hydrocarbon reservoir �
Renewable energy � Underground gas storage

Abbreviations

16S rRNA Ribosomal RNA of a sedimentation rate of 16 Svedberg
AOM Anaerobic oxidation of methane
bbl Barrel (oil)
CARD-FISH Catalyzed reporter deposition-Fluorescence in situ hybridisation
CCS Carbon capture and storage
cDNA Complementary DNA
CLEAN CO2 large-scale enhanced gas recovery in the Altmark Natural Gas

Field
CO2CRC Cooperative Research Centre for Greenhouse Gas Technologies
COE Cost of electricity
CO2-EGR EGR using CO2

CO2-EOR EOR using CO2

CO2MAN CO2-reservoir management
CO2SINK CO2 Storage by injection into a saline aquifer at Ketzin
DAPI 40,6-Diamidin-2-phenylindol
DGGE Denaturing gradient gel electrophoresis
DNA Deoxyribonucleic acid
DOC Dissolved organic carbon
dsrAB Dissimilatory (bi)sulfite reductase gene
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EGR Enhanced gas recovery
EOR Enhanced oil recovery
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mcr Methyl coenzyme M reductase gene
MEOR Microbial enhanced oil recovery
MIC Microbially influenced corrosion
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P Pressure
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PDS Bottom-hole positive displacement sampler
PLFA Phospholipid-derived fatty acids
qPCR Quantitative polymerase chain reaction
RECOBIO Recycling of sequestrated CO2 by deep subsurface microbial-

biogeochemical transformation, RECOBIO-1 and RECOBIO-2
are two successive projects
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RT-qPCR Reverse transcription-quantitative PCR
SAC Surface active compound
SC-CO2 Supercritical carbon dioxide
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1 Carbon Capture and Storage (CCS)

1.1 Introduction to Carbon Capture and Storage

Mitigation of greenhouse gas emissions without interference with economic
growth is the main concern of climate-change initiatives to prevent global
warming. Unfortunately, observations of a 100-year period between 1906 and
2005 already show an increase of the global temperature of 0.74 ± 0.18 �C.
Changes in climate are noticeable and include extreme weather such as droughts,
heavy precipitation, heat waves, and intensity of tropical cyclones [45].

CO2 is the principal component of the greenhouse gases in addition to CH4,
N2O, hydrofluorocarbons (HFC), perfluorocarbons (PFC), and SF6 (Kyoto Proto-
col, 1998). Power generation using fossil fuels or biomass, cement production, and
other CO2-emitting industries are the main sources of CO2. This gas accounts for
64 % of the enhanced ‘‘greenhouse effect’’ [15, 44]. Therefore, removing CO2

from flue gases would help to maintain the global temperature rise to a maximum
of 2 �C.

In this respect, carbon capture and storage (CCS) can be a promising and fast
approach to reduce CO2 emission to the atmosphere. But this approach is limited
by availability and capacity of CO2 storage sites. Despite this limitation, CCS can
be a bridging technology that provides a gain in time until an energy supply with
renewable energies is secured. Moreover, storage of CO2 in deep geological for-
mations probably results in natural gas restoration in geological timescales pro-
vided that CO2 is transformed microbiologically to CH4.

In the special report of the Intergovernmental Panel on Climate Change on carbon
dioxide capture and storage [44], CCS is defined as ‘‘[…] a process consisting of the
separation of CO2 from industrial and energy-related sources, transport to a storage
location and long-term isolation from the atmosphere.’’ A detailed description of the
CCS technology is given in this special report. In brief, there are three main strat-
egies to capture CO2 from flue gases: (i) postcombustion, (ii) precombustion, and
(iii) oxy–fuel combustion [44]. In the postcombustion process, chemical sorbents are
used to recover up to 95 % CO2 from the flue gas, which contains mainly N2 and
3–15 vol % CO2. In the precombustion process, the fuel is first burned with oxygen,
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air, and/or steam to generate CO and H2. Then CO is converted to CO2 by the
addition of steam and finally CO2 is captured using absorption–desorption methods.
In the oxy–fuel combustion process, the combustion of the fuel is carried out by
using oxygen, either pure or mixed with a CO2-rich recycled flue gas, and results in
flue gas of up to 98 % CO2. After CO2 is enriched from the original flue gas by using
one of these capturing strategies, the gas is pressurized for the transport to CO2

storage sites via pipelines or trucks. The CO2 capture process accounts for an
increase of 20–90 % cost of electricity (COE) depending on the type of power plant
[44]. Further technological developments may reduce the extra costs in the future.
The sequestration of the original flue gas would cause much higher costs.

There are research and industrial projects worldwide that investigate CCS on
laboratory and field scales (pilot/demonstration plants) and perform EGR
(enhanced gas recovery), EOR (enhanced oil recovery), or ECBM (enhanced coal
bed mining) connected to CO2 storage. The IEAGHG [43] operates a database that
lists all research, development, and demonstration (RD&D) projects concerning
CCS. Among them, there are projects that store CO2 in saline aquifers, for
example, the Frio Brine Pilot Test (USA) and CO2SINK (Ketzin, Germany)
projects, which store CO2 in gas fields, for example, the In Salah Gas project
(Algeria) and CO2CRC Otway Basin project (Australia), and EOR projects, for
example, Weyburn CO2-EOR (Canada). In addition, a CO2-EGR approach was
planned for the gas field Altmark (CLEAN project, Germany). The almost
depleted gas field Altmark is the second-largest onshore gas field in Europe and
would be of great importance for CO2 storage if CCS is accepted by the German
government and society. In addition to research and development in CCS tech-
nology, industry and scientists have to include good public relations in their field
of duty. In particular in populated regions where CCS in deep geological forma-
tions is possible, residents must regularly be informed about the process, the
safety, and the risk management of the CO2 storage site.

Disposal of CO2 in the ocean and usage of CO2 for chemical processes are also
approaches to reduce emissions of CO2. But the most promising approach is the
injection of supercritical CO2 (SC-CO2) into deep geological formations, that is,
depleted oil and gas reservoirs, saline aquifers, or into unminable coal beds. In
general, geological formations have to fulfill two main requirements to be suitable
for long-term CO2 storage. First, the storage reservoir has to consist of a porous
and permeable rock, often sandstone, into which the CO2 can be injected. Second,
there has to be an impermeable cap rock and a succession of further seals up to the
surface (multibarrier system). Typical cap rocks and seals consist of mudstone,
siltstone, or salts (e.g., anhydrite). In particular, natural gas reservoirs have been
demonstrated to be gas tight at least concerning CH4 for geological timescales.
Therefore, CO2 storage in depleted gas fields is favored. These storage sites can be
operated up to a site-specific pressure level, which should remain below the initial
pressure level of the reservoir.

The worldwide storage potential has been estimated to be at least 200 Gt CO2,
and might even reach 2,000 Gt CO2 in sedimentary basins (e.g., oil and gas
reservoirs) [44]. For Germany, a summary of the distribution and the storage
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potential of sedimentary basins has been provided by May et al. [63]. There are
three main geological structures, which represent potential CO2 storage reservoirs
in Germany. These reservoirs comprise sandstones rich in (i) feldspar, carbonate,
and clay; (ii) iron minerals; or (iii) organic material. The formation waters are
often highly saline (up to 300 g/l) and consist of high ammonia content (up to
3,000 ppm). With depth, the brines are increasingly reductive, their content of
dissolved metal ions (e.g., iron) increases, whereas the content of sulfate decrea-
ses. Aside from these chemical conditions, the deep biosphere, which is likely to
be present in such geological formations, has to be adapted to high temperatures,
high pressure, and a low supply of electron acceptors, electron donors, or other
nutrients.

1.2 Geochemical Effects and Risks of CO2 in Storage Sites

The CO2 gas designated for storage can be accompanied by impurities such as
SOx, NOx, CO, H2S, NH3, O2, condensable water, and hydrocarbons [87].
Therefore, the potential impact of the impurities on the storage site and storage
process has to be considered. According to Knauss et al. [51], co-contaminant H2S
showed only minor effects on water–rock interaction, but SO2 leads to a drastic
drop of pH, which will lower the formation of carbonates. However, sequestration
of CO2–SO2 mixtures into storage sites that contain hematite (Fe2O3, red beds) has
been reported to result in dissolution of hematite and the release of ferrous iron
induced by SO2 [77]. This iron release will promote the formation of siderite
(FeCO3), which can cause an increase in the storage capacity of the reservoir, but
can also provoke a negative effect on the storage unit by lowering its permeability:

Fe2O3 þ 2 CO2 gð Þ þ SO2 gð Þ þ H2O! 2 FeCO3 þ H2SO4 ð1Þ

Once CO2 is injected into the storage reservoir, the gas can be trapped by four
mechanisms [38, 77, 78]:

(i) Hydrodynamic trapping: SC–CO2 is trapped below a cap rock of a depleted
gas or oil field. This can be connected to enhanced gas or oil recovery (EGR,
EOR), respectively.

(ii) Residual trapping: CO2 is trapped by capillary forces in the pores of the
reservoir rocks.

(iii) Solubility trapping/solution trapping: CO2 is dissolved in formation water as
H2CO3, HCO3

-, and other aqueous species.
(iv) Mineral trapping: CO2 is trapped as carbonate mineral (calcite, magnesite,

siderite, and dawsonite) in deep saline formations. In this respect, silicate
minerals are essential because their alteration enhances these mineral trap-
ping processes due to the supply of cations.
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Another trapping mechanism can be the absorption of CO2 by coal, which could
lead to a release of methane and is used in enhanced coal bed methane recovery.

It has to be considered that CO2 differs from other gases with respect to its
solubility, penetration, and reaction behavior. The permeability and penetration
behavior of the cap rock is also a crucial aspect for the safety and integrity of the
CO2 storage site. One possible risk could be leakage of CO2 via undetected
fractures and faults and via abandoned wells or failure during the injection process
[44]. However, CO2 exhibits a very good solubility (in contrast to CH4 and
especially to H2) and will be trapped in any overlying formation water if it leaks

Fig. 1 Schematic illustration of possible leakage pathways through an abandoned well.
a Between casing and cement; b between cement plug and casing; c through the cement
porespace as a result of cement degradation; d through casing as a result of corrosion; e through
fractures in cement; and f between cement and rock (from [33], with kind permission from
Springer Science and Business Media: [33], Fig. 1, Copyright Springer-Verlag 2004)
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vertically through one sealing unit. Leakage through anthropogenic artificial
barriers (cement, casing) may occur because of fatigue or alteration of the well
bore material due to chemical attack of highly corrosive SC–CO2 or high pressure
(Fig. 1 [33]).

Another risk, especially for CO2 storage in saline aquifers, could be contami-
nation of overlying groundwater with brines. The saline formation water could be
displaced upward due to a spacious pressure build-up. In this case, the pressure of
the storage formation would drop, could be detected with monitoring equipment,
and an emergency plan could be applied. In general, monitoring strategies have to
be operated before, during, and after CO2 sequestration to assess the baseline
conditions, to follow the storage process and detect process failure, and to control
long-term reactions and failure, respectively. The migration of CO2 in the storage
formation and the composition of the overlying groundwater and surface soils of
the storage site have to be controlled. In addition to geochemical reactions, also
biogeochemical reactions, that is, mineral–brine–CO2–microbe interactions have
to be considered.

1.3 Microbial Populations in Potential CO2 Storage Sites

Geological formations known to be suitable for CCS comprise a deep subsurface
biosphere, which is dominated by sulfate-reducing, iron-reducing, acetogenic, and
methanogenic microorganisms [60]. Microbial corrosion of tubing and cement of
well bores and souring of gas due to H2S production by sulfate reducers are well-
known problems of gas and oil industry [21, 34, 50]. In addition, clogging of well
bores and porespace of the geological formation can arise when H2S precipitates in
the presence of ferrous iron first to FeS and then to FeS2. These technological
problems clarify the need to consider biogeochemical reactions in addition to
geochemical reactions, although microbiologically mediated processes in the deep
subsurface are rather slow compared to microbial activities at the surface [17, 60].

Microbial reactions can have favorable and unfavorable effects on the capacity,
integrity, and safety of CO2 storage sites. Therefore, baseline monitoring of each
CCS operation should include the detection of the initial microbial community to
deduce possible microbial reactions in advance. In particular, a microbial
assemblage as biofilm on mineral surfaces can either inhibit or enhance mineral
dissolution [64]. Dissolution of minerals can decrease the storage capacity of the
reservoir and could additionally lead to exposure of fractures, which possibly form
connections to higher layers of the formation and affect the storage integrity. But
dissolution of minerals can also provide microorganisms with, for example,
electron acceptors. Biofilms can serve as protective coating of minerals decreasing
mineral dissolution and presenting nucleation sites to catalyze carbonate precipi-
tation [23]. On the surface of silica-based minerals, for example, the formation of
amorphous silica gels, whose crosslinking is facilitated in the presence of bio-
molecules, can lead to a self-sealing effect of microfissures and porespace of
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disturbed claystone and cements [36, 49]. Hence, self-sealing and enhanced car-
bonate formation may contribute significantly to integrity and safety of the storage
site and additionally stabilize the injected CO2 into solid carbonates [64]. Another
indirect way to favor carbonation can be the adjustment of physicochemical
conditions (e.g., increase of pH) due to metabolic activity in the deep subsurface.

The injection of CO2 into potential storage formations causes changes in res-
ervoir temperature and pressure, and also leads to considerably higher CO2 con-
centrations. All variations in the physicochemical conditions will stress the
indigenous biosphere of the storage formation. Beyond that, a sterilization can take
place at the center of the CO2 injection well. However, Mitchell et al. [66, 67] have
demonstrated that the resilience of biofilms to SC–CO2 is higher than that of
planktonic microorganisms.

Microbial monitoring before and during CO2 injection into a saline aquifer near
Ketzin (Germany) has revealed that the microorganisms adapted within five
months to higher CO2 concentrations and were even more metabolically active
[70]. Furthermore, during the propagation of CO2 in the storage reservoir, CO2

will form a plume that develops a gradient of CO2 concentrations. Thus, regions
with lower CO2 content can directly provide autotrophic microorganisms with
their carbon source and an electron acceptor. Heterotrophic microorganisms
probably metabolize organic compounds (e.g., organic acids, methylalkanes) that
were mobilized by SC–CO2 from the sandstone of the storage formation [85].
Hence, CCS can even stimulate microbial growth.

The consumption of CO2 due to microbial activity has reproducibly been shown
to be connected to a considerable increase in the formation of TOC (total organic
carbon) in experiments with a bioreactor and a sterile control reactor under ele-
vated H2 and CO2 partial pressure [26]. The experiments have been performed
with milled material of a drilling core, which originated from the gas field
Schneeren-Husum (Germany), and formation water collected at well heads of well
bores of this gasfield. Therefore, microbial transformation of CO2 into biomass
and organic compounds can additionally contribute to the storage capacity of a
reservoir.

One problem that may result from the stimulation of, in particular, sulfate-
reducing microorganisms is the increase in H2S production, which in turn can
affect the integrity of well bores and storage equipment via biocorrosion.

Methanogenic microorganisms form another microbial group to be considered,
which would transform injected CO2 either directly (autotrophically) or indirectly
(acetoclastically) to CH4. Although CH4 represents a far more potent greenhouse
gas than CO2 if it would leak from the reservoir, CH4 can possibly be used as an
energy source in geological timescales.

So far, the extent of the microbial impact on CCS on short-term and long-term
scales remains to be clarified. Even if no viable microorganism survives the CO2

injection, there would be biological residues such as endospores, organic clusters,
enzymes, or lysed cells that can have an influence on the CO2 storage performance
[62, 64]. There are many biogeochemical processes in the deep subsurface that are
not yet understood or have even been subjected to investigation. In this respect,
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one challenge is to obtain reliable samples of the deep subsurface biosphere. Then,
other challenging aspects are the very low doubling times of these microorganisms
and the creation of their physicochemical requirements for cultivation. Despite
these aspects, only a small number of CCS projects to date consider biogeo-
chemical processes [17].

In some projects, which store CO2 in hydrocarbon reservoirs, microbial mon-
itoring of surface soil (total cell counts, In Salah Gas project; Algeria [47]) or
microbial mats above the storage reservoir (microbial community compositon and
total cell counts, Sleipner project (Norway [98]) has been performed to survey
possible CO2 leakage. In contrast, formation waters of the Paaratte formation have
been sampled in situ at 1,400 m depth (60 �C, 13.8 MPa) for 16S rRNA gene
analyses in the framework of the CO2CRC Otway Basin project (Australia).
Bacterial sequences of the reservoir community have been related to the genera
Thermincola, Acinetobacter, Sphingobium, and Dechloromonas [72]. Microor-
ganisms, stained with the DNA-specific dye DAPI, have been reported to be
microscopically visible mainly as filamentous cells of 5–45 lm length. The
injection of a gas mixture of 75.4 mol % CO2 and 20.5 mol % CH4 to the Paaratte
formation started in 2008 [13].

Detailed microbial analyses have been performed for formation fluids of the
almost depleted natural gas reservoir Altmark (Permian—Upper Rotliegend,
Germany). This gas reservoir comprises extreme environmental conditions, for
example, in situ temperatures of 110 �C up to 130 �C and high salinity brines of
[300 g salts per liter.

The hydraulic isolated subfield block ‘‘Altensalzwedel’’ has been considered for
EGR and storage of 100,000 t CO2 in 3,000 m depth (Fig. 2). Although injection
of CO2 in the Altmark gasfield was not possible due to political obstacles and
public opposition, a comprehensive reservoir monitoring, which includes 16S
rRNA gene analyses and cell quantification of the deep subsurface biosphere, has
been performed during the CLEAN project [56].

Formation fluids of three different well bores of the subfield block ‘‘Alt-
ensalzwedel’’ (S10, S13, S17) have been sampled in situ using a double-ball lining
sampler. Analyses of bacterial 16S rRNA genes of these fluids have revealed that
the microorganisms at the site are related to hydrogenotrophic bacteria of Hy-
drogenophaga sp., Acidovorax sp., Ralstonia sp., and Pseudomonas sp. and to
representatives from saline, hot, anoxic, and deep environments [69]. In addition,
relatives of Diaphorobacter sp., a thiosulfate-oxidizing bacterium, were present in
the formation fluid of one well bore (S17), and an uncultured biocorrosive ther-
mophilic bacterium has been detected in fluids of two well bores (S13, S17). The
formation fluids of one well bore (S10) have also been sampled with a bottom-hole
positive displacement sampler (PDS). This sampling device can be inserted sterile
and closed into the well bore, can be opened in the depth to collect the formation
water in situ, and closed again to be moved out. In contrast, the double-ball lining
is a more open system for in situ sampling. However, the two different sampling
procedures have principally revealed the same microbial community structure in
the formation water of well bore S10. In addition to the microorganisms, which
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have also been found in the formation water sampled with the double-ball lining
sampler, additional 16S rRNA gene sequences similar to dissimilatory metal-
reducing bacteria (Pantoea sp. described by Francis et al. [32]), aromatic-
degrading and metal-corroding bacteria of deep-sediment origin (Sphingomonas
sp. [3, 99]), and extremophilic Fe(III)- and Mn(IV)-reducing bacteria (Bacillus sp.
[12]) have been found in formation water sampled with the PDS [56]. Cell
quantification using cell counting of SYBR Green-stained cells (mainly particle-
associated cells) and quantitative PCR analyses have shown only very low cell
numbers [69].

In the RECOBIO-2 project, the deep biosphere of three subfield blocks of the
Altmark natural gasfield, surrounding the ‘‘Altensalzwedel’’ subfield block, has
been investigated (Fig. 2) [42]. The formation waters of CLEAN and RECOBIO-2
sampling sites mainly differed in their concentration of sulfate, which was between
400–1,800 mg/l and almost no detectable sulfate, respectively.

Microscopic analyses using CARD-FISH and DAPI-stained cells also showed
rather low cell numbers of at most 105 cells/ml in the formation water samples.
There were only minor differences in the bacterial community composition in the
formation water, which had been sampled at the well head (produced) and in situ
(double-ball lining) of a well bore of the ‘‘Heidberg-Mellin’’ subfield block
[35, 41]. The 16S rRNA gene sequences were similar to representatives of sulfate-
reducing Desulfotomaculum sp., thiosulfate-reducing Thermoanaerobacterium sp.,

Fig. 2 Subfield blocks of the Altmark gasfield as indicated by grey shades (modified after [31]).
*Three subfield blocks, which have been the focus of the RECOBIO-2 project. **One subfield
block, which has been the focus of the CLEAN project
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elemental sulfur-reducing and fermenting Petrotoga sp., and to uncultured bacteria
found in, for example, geothermal water or petroleum reservoirs. A first 16S rRNA
gene sequence analysis of the archaeal community of the formation water sample,
which had been collected in situ, indicated the occurrence of members of hy-
drogenotrophic Methanomicrobiales.

The in situ-sampled formation water of a well bore of the ‘‘Salzwedel-Pec-
kensen’’ subfield block was more diverse and comprised 16S rRNA gene
sequences, which were assigned predominantly to uncultured bacteria detected in,
for example, volcanic deposits, petroleum reservoirs, geothermal water, or
hydrothermal vents. In addition, sequences have been affiliated with Desulfoto-
maculum sp., Thermoanaerobacterium sp., Petrotoga sp., and to Delftia sp. found
in PAH-contaminated soils. Interestingly, Desulfotomaculum sp. has also been
detected in the 16S rRNA sequence analysis of the living bacterial community of
the same formation water sample [41].

Projects storing CO2 in deep saline aquifers are, for example, Frio Brine Pilot
Test (USA), CO2SINK and CO2MAN (Ketzin, Germany), Sleipner (Norway), and
Nagaoka project (Japan). However, the deep subsurface biosphere has been con-
sidered only in CO2SINK and CO2MAN, two projects on the small-scale pilot
CCS test site in Ketzin, Germany.

Since 2008, CO2 has been injected (*60,000 t of mainly food-grade CO2) into
a saline aquifer, which is located in the ‘‘Roskow-Ketzin’’double anticline, at a
depth of 630–650 m below surface [53]. The CO2 plume reached the first of the
two observation wells two weeks after the start of CO2 injection. The drill mud
was removed from the injection well and the two observation wells using a N2 lift
at each well.

For microbial analyses, formation water of the first observation well has been
collected in situ using either a flow-through sampler or a double-ball lining before
and after CO2 injection and at the well head during the N2 lift. The microbial
community has been analyzed using 16S rRNA gene fingerprinting methods (PCR-
SSCP, DGGE) and cell counting with FISH and DAPI staining [70, 71]. Pre-
dominant microorganisms could be detected independently of the sampling pro-
cedure, which indicates negligible contamination effects during sampling. The
microbial community was dominated by anaerobic halophilic fermentative bac-
teria (Halanaerobium sp., Halobacteroidaceae) and sulfate-reducing bacteria
(Desulfohalobium sp., Desulfotomaculum sp.). Other members of the bacterial
community were affiliated with phenanthrene-degrading Comamonas sp., to Em-
pedobacter sp. from petroleum-oil contaminated soil and to oil-degrading bacteria
of Bacteroidetes. After CO2 arrival at the observation well, chemolithotrophic
microorganisms temporarily outcompeted chemoorganotrophic microorganisms.

Microscopic analyses revealed total cell numbers of 2–6 9 106 and
2–4 9 106 cells/ml of living microorganisms before N2 lift and CO2 injection in
formation water of the first observation well [70]. After N2 lift, there were hardly
any microorganisms detectable, but after CO2 injection, total cell numbers were
again determined to be 105 cells/ml. Moreover, after five months of CO2 injection,
total cell numbers again reached 2 9 106 cells/ml and comprised almost
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exclusively living microorganisms. Representatives of Alpha-, Beta- and Gam-
maproteobacteria, sulfate-reducing bacteria (Desulfovibrionales, Desulfotomacu-
lum cluster I, and other Firmicutes, Desulfobacteraceae), and methanogenic
archaea were detected using specific probes via FISH analyses.

Sulfate-reducing bacteria were detected in formation water of the injection well
and were shown to be responsible for a decrease in the sulfate concentration and an
increase in iron sulfide formation, which caused a decrease in permeability of the
injection well and could be removed by a N2 lift [102].

In addition, samples of drilling cores were investigated in long-term laboratory
experiments with synthetic brine (172.8 g/l NaCl, 0.62 g/l KCl, 8.0 g/l MgCl2 *
6H2O, 4.9 g/l CaCl2 * 2H2O) under in situ conditions (5.5 MPa and 40 �C) and
high CO2 partial pressure to detect indigenous microorganisms and to quantify
microbial activity [97]. The microbial community of the sandstone has been affil-
iated with members of Alphaproteobacteria (Rhizobium sp., Agrobacterium sp.),
Betaproteobacteria (Burkholderia sp., Hydrogenophaga sp.), and Actinobacteria
(Propionibacterium sp.). Except for Agrobacterium sp. and Hydrogenophaga sp.,
all other bacteria survived the exposure to CO2. Sulfate-reducing bacteria and
archaea were not detected in sandstone material. Mineral dissolution due to CO2

exposure caused an increase in porosities during long-term experiments [96].
However, after 24 months, porosities again decreased due to precipitation [30].

1.4 Conclusion and Perspectives

Carbon capture and storage can be a fast-acting approach to mitigate CO2 emis-
sions and can provide a gain in time for the development of energy-efficient
renewables. Hence, if all safety precautions were considered and a reasonable
handling secured, CCS could contribute considerably to prevent climate change.

Enhanced gas and oil recovery using CO2 or storage of natural gas are known,
long-performed, and CCS-analogue approaches. Therefore, findings from these
approaches can help to deduce geochemical and biogeochemical reactions in a
CCS operation. Nevertheless, research on CCS depends on pilot and demonstration
tests to gain detailed process knowledge.

An interdisciplinary approach combining geophysical, geochemical, and bio-
geochemical monitoring of the whole CCS operation (baseline, injection, long-
term storage) will be required to understand complex processes in the storage site
and to be able to react properly if any problems in operation occur. In this respect,
determination of the baseline conditions, the original microbial community com-
position, and knowledge of process behavior are essential to predict and then
prevent any failure in advance. For example, a decrease of injectivity has occurred
as an immediate consequence of microbial activity and has been recovered with a
N2 lift at the CCS pilot plant near Ketzin (Germany). During the Frio Brine Pilot
Test (USA), dissolved organic carbon (DOC) has increased by a factor of 100 from
1–5 to 500–600 mg/l after 20 days of CO2 injection [48]. The organic carbon,
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mainly formate, acetate, and toluene, can probably be extracted by SC–CO2 from
the rock of the geological formation, but can also be a result of microbiological
metabolism generating biomass and organic compounds.

During the RECOBIO-1 project 2005–2008, Ehinger et al. [26] already showed
that microbial activity can have an impact on the performance of CCS in depleted
natural gas fields. However, only four CCS pilot plant projects considered the deep
subsurface biosphere in their monitoring concept to date. These are CO2CRC
Otway Basin project (Australia), CLEAN project (Altmark, Germany), and
CO2SINK and CO2MAN projects (Ketzin, Germany). In the CO2SINK project,
recovery of microbial cell numbers and microbial activity was shown after CO2

injection into the subsurface saline aquifer near Ketzin.
In addition to the CLEAN project, the deep subsurface biosphere in formation

waters of well bores around the subfield block, which was formerly considered for
CO2 injection in the natural gasfield Altmark, was investigated in the RECOBIO-2
project 2008–2011.

In general, besides sulfate-reducing, metal-reducing, fermenting, and biocor-
rosive bacteria, many uncultured microorganisms have been detected by molecular
genetic analyses. Cultivation of microorganisms of the deep subsurface is chal-
lenging due to low cell numbers, low microbial activity after sampling and
extreme physicochemical requirements. However, cultivation approaches are
required, because successful enrichment, isolation, and description of so far
unknown microorganisms will further improve knowledge of biogeochemical
processes.

Carbon capture and storage provides not only a possible measure to promote
climate protection, but also valuable insights into subsurface environments.

2 Underground Gas Storage (Methane, Hydrogen) for Energy
Generation

2.1 Introduction to Underground Gas Storage

The underground storage of natural gas has its origin in the beginning of the
twentieth century when gas companies searched for a solution to balance out the
seasonal fluctuation in the demand for gas used for space heating of buildings [16].
Currently, around 630 underground gas storage (UGS) facilities are in operation
worldwide [29]. New interest in large-scale underground storage of energy has
been sparked by the expanding renewable energy production worldwide. The
increasing utilization of solar or wind sources [91, 92] leads to a high fluctuation in
energy production, which can be adapted to the actual demand by using the
electrical energy to form hydrogen or methane and subsequent storage of the
gases. Large volumes of storage capacities are required for this issue, which most
likely can be solved by underground storage [94].
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Although underground gas storage has been standard for engineering for dec-
ades, the impact of microbial processes on underground gas storage has hardly
been explored. An early example of the impact of microbial processes on under-
ground gas storage is provided by an underground town-gas reservoir near
Lobodice, Czech Republic, where conspicuous changes in the gas volume and
composition have been observed during a seven-month period of gas storage in the
1980’s. The gas volume decreased by 10–20 % in conjunction with an approxi-
mately 1.5-fold increase in the methane content and significant losses of hydrogen,
carbon dioxide, and carbon monoxide. Cultivation of microbial communities
present in the reservoir water and rocks revealed methanogenic archaea as drivers
of the changes in stored town gas. Changes in the carbon-isotope signature of
methane in the stored town gas supported the result [88]. As exemplified in this
study, microorganisms living in the deep subsurface can have profound effects on
underground gas storage with respect to gas loss and alteration of gas composition.
The consequences of this gas alteration are discussed below in more detail.

2.2 Microbiology of Gas Storage Sites

Underground gas storage is performed in depleted gas or oil reservoirs, aquifers,
and salt caverns. These reservoirs are characterized by temperatures above 35 �C
with a temperature increase of *3 �C per 100 m depth, high pressure ([7 MPa)
[29], absence of oxygen, and high salinity. Microbial life is widespread in the crust
of the earth and numerous mechanisms to deal with different environmental factors
have evolved [79, 82]. Microorganisms have been isolated that withstand hydro-
static pressure of 100 MPa [90], salt concentrations of up to 300 g/l [76], or tem-
peratures of 113 �C [10]. Therefore, UGS facilities cannot be considered simply as
a geological formation with unique physicochemical characteristics, but need to be
seen also as a microorganism habitat. Indeed, between 103–106 microorganisms per
ml reservoir water have been recorded in porous rock reservoirs [29, 46, 88] and
microbial life has also been proven in salt formations [95]. Here the questions arise
how microorganisms live in such habitats, which factors control the microbial
activities, and how the microbial processes affect the underground gas storage.

Free water is vital for microbial life so that the residual reservoir water serves as
habitat for microorganisms. Microbial life in deep geological storage systems, such
as oil and gas reservoirs, is controlled by the reservoir temperature, salinity,
abundance of essential inorganic nutrients, and appropriate energy resources [60].
The temperature is generally seen as the limiting factor for the presence of living
microorganisms, while the other factors control the size and activity of the microbial
populations [40, 61]. Despite the documented growth at 113 �C of the Archaeon
Pyrolobus fumarii [10], in situ observations indicate that microbial activity in oli-
gotrophic reservoirs is restricted to temperatures below 80–90 �C [100]. Microor-
ganisms gain their energy from complex electron transfer processes involving the
oxidation of organic and inorganic compounds and subsequent reduction of a
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terminal electron acceptor. The energy obtained is used for maintenance of
microbial metabolism and growth [60]. Currently, methane and hydrogen are both
considered as high-performance carriers of renewable energy, either directly pro-
duced in biogas plants or from the conversion of solar or wind energy. Both carriers
will increasingly replace natural gas, which is a hydrocarbon mixture consisting
primarily of methane and to a small extent of other low molecular hydrocarbons,
carbon dioxide, nitrogen, and hydrogen sulfide [74] in both pipeline and storage
systems. Hydrogen and methane as well as other low molecular hydrocarbons can
serve as electron donors for microorganisms [40], so that the gas stored in a
respective deep geological storage system provides sufficient energy sources for
microbial activity (Fig. 3). Therefore, the depletion in essential inorganic nutrients,
mainly phosphorous and nitrogen, and the availability of electron acceptors are
considered as regulating factors for microbial activity. Suitable electron acceptors
are ferric iron, manganese, sulfate, elemental sulfur, and carbon dioxide. Nitrate and
nitrite are generally only present in low amounts [46, 60]. The electron acceptors are

Fig. 3 Scheme of possible microbially mediated processes in underground gas reservoirs. Stored
gas diffuses in the reservoir and dissolves in residual water, where gas components such as
methane and hydrogen can be cosumed by microorganisms. Microorganisms derive nutrients
such as phosphorous and nitrogen from mineral dissolution reactions, hydrolysis of dead cells, or
from the nitrogen gas stored. Terminal electron acceptors are provided from marine evaporites,
the mineral matrix, coal and shale layers, or also, in the case of carbon dioxide, from the stored
gas itself. Volatile metabolic end products of microbial processes mix with the stored gas
resulting in a change of the gas
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provided from the embedded or overlying marine evaporates, the mineral matrix
(e.g., ferric iron containing siderite), coal, and shale layers or in case of carbon
dioxide also from the stored gas itself. Nitrogen is present as ammonium ions in the
water, which can be transported by reservoir water movements or diffusion or it can
be assimilated from the nitrogen gas by nitrogen-assimilating microorganisms.
Phosphor is considered as the much more likely limiting nutrient [40], which is
present organically or inorganically bound and is mobilized by hydrolysis of dead
cells or microbial-induced weathering of minerals such as phosphate-containing
silicates [8, 83].

Methane, and with regard to future storage concepts, also hydrogen can be
regarded as the dominant energy sources for microorganisms affecting the long-
term fate of these stored gases. Although the solubility of both gases in water
decreases with increasing temperatures and salinity [20, 101], the elevated pres-
sure has a far greater impact on the solubility resulting in high dissolved gas
concentrations in the water phase [5]. At elevated gas partial pressure, an increase
in microbial activities has been recorded, which is attributable to the high avail-
ability of gaseous substrates in the water phase [22, 24, 55, 75]. In principle,
anaerobic oxidation of methane (AOM) can proceed with sulfate as the terminal
electron acceptor. The process is believed to be mediated by a syntrophic con-
sortium of methanotrophic archaea and sulfate-reducing bacteria ([52] and refer-
ences therein) or by methanotrophic archaea alone [65]. Furthermore, there are
indications that methane oxidation is coupled with the reduction of manganese and
ferric iron [6]. Thus far there is no single study addressing the role of AOM in gas
reservoirs so that we can only speculate about its role.

Hydrogen plays a central role as an energy source in subsurface anoxic envi-
ronments and can be utilized by a wide range of bacteria and archaea ([68, 89] and
references therein). Hydrogen oxidation in such environments can be coupled to
the reduction of ferric iron, sulfate, elemental sulfur, or carbon dioxide [19, 89].
Ferric iron reduction results in iron mobilization because the highly water-insol-
uble Fe(III) is reduced to the much more soluble Fe(II) [59]. Reduction of sulfate
or elemental sulfur is highly undesirable in UGS because the formed hydrogen
sulfide creates a serious problem for the industry due to its toxicity to humans [81],
deterioration in quality, odor, souring, and corrosion of steel material of the well-
tubing [7, 73, 93]. Moreover, hydrogen sulfide reacts with ferrous iron to form iron
sulfide, which precipitates and can cause clogging of the operation equipment.
Microbial mediated formation of hydrogen sulfide has been found repeatedly in
gas and oil reservoirs [34, 80] pointing to the impact of sulfate reduction in UGS
facilities. When all other electron acceptors are depleted methanogenesis and/or
homoacetogenesis will appear, which are less favorable processes from a ther-
modynamic point of view [18]. In the course of methanogenesis, hydrogen oxi-
dation is coupled to the reduction of carbon dioxide under formation of
methane, a process which is exclusively mediated by archaea. Alternatively,
homoacetogenic bacteria catabolize hydrogen and carbon dioxide to acetate. Both
processes are widespread in the deep subsurface [54] and have been observed in
gas reservoirs [46, 88]. In addition to the particular importance of methane and
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hydrogen as energy sources, microbial growth might also be stimulated by drilling
fluids providing additional energy sources and nutrients as modeled by Baker [4].
This involves the risk of clogging of technical equipment by microbial biofilms or
damage by microbial corrosion [11].

2.3 Implications and Future Perspectives

Overall, microbial activities lead to a loss of the stored gas, especially of hydrogen.
Little is currently known about the extent. For example, in the course of metha-
nogenesis, 4 mol hydrogen and 1 mol carbon dioxide are required to produce
1 mol methane and 3 mol water, which, for the operator of a UGS facility, means a
substantial loss in the stored gas. Although the heating value of methane is with
35.9 MJ/m3 higher than that of hydrogen (10.7 MJ/m3), methanogenesis also
means a loss in calorific power.

One may speculate that the highest microbial activity occurs near the gas–water
contact where a plentiful supply of electron donors is given, but high microbial
activity also occurs at the mineral–water contact. From shallow aquifers, it is
known that sessile bacteria contribute over 90 % of the total bacterial community
and only less than 10 % exist in the planktonic lifestyle [2, 37, 39]. The first
cultivation experiments with samples from an underground town gas reservoir
showed a much higher activity of methanogenic archaea using water and rocks
from the reservoir compared to the sole use of water [88].

To summarize, the major microbial-induced risks associated with underground
gas storage are (i) loss of the gas and thereby calorific loss; (ii) damage of tech-
nical equipment by biocorrosion and clogging through precipitates and biomass;
and (iii) risk to operational safety and deterioration in quality by hydrogen sulfide
formation. Therefore, the understanding of microbial activities in the deep
underground is crucial for an economically successful operation of UGS. Micro-
biological studies are required to shed light on the identity of indigenous bacteria,
their metabolism and activity, and factors controlling the type of microbial pro-
cesses. This should be done in close cooperation with UGS operators, hydroge-
ologists, geologists, and chemists ensuring a comprehensive understanding of the
complex processes in the deep subsurface.

3 Geothermal Energy Production

3.1 Geothermal Energy

Geothermal energy is the heat generated in the Earth. In geothermal plants, this
energy is used as a source for heat supply (T [ 60 �C) or to drive geothermal
power plants (T [ 120 �C).
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The use of geothermal energy is generally subdivided into the operation in
shallow depth (down to 400 m) and the operation in great depth (2,000–4,000 m).
Shallow geothermal energy can be exploited principally worldwide and is often
installed in private households for autonomous heat supply. Deep geothermal
energy, on the other hand, is most efficient in regions where large temperature
reservoirs exist (T [ 100 �C), which are sufficient for electricity production.
Worldwide, five countries use geothermal energy to produce around 20 % of their
electricity (Costa Rica, El Salvador, Iceland, Kenya, and the Philippines) [9].
However, those are not the countries with the highest geothermal capacities. Even
higher capacities are found in the United States of America (Table 1).

The productivity of a geothermal plant depends on a variety of factors,
including the chemical composition of the thermal water, the water temperature,
and the water production rate. Another important, yet rarely considered factor is
the microbiology. In the subsurface, the majority of the microorganisms live
attached to the rocks. However, microorganisms can also become detached and
carried off with the produced thermal water and thus enter geothermal power
plants. Therefore, the interaction of microbiological processes with geothermal
plants should be considered from both sides. First, how do microorganisms
influence the use of geothermal energy and second, how does the use of geo-
thermal energy influence the subsurface microbiology (Fig. 4).

3.2 Geothermal Energy and its Effects on Subsurface
Microbiology

3.2.1 Shallow Geothermal Energy

For the extraction of shallow geothermal energy, closed loop systems are installed
(Fig. 4). The fluid inside the system extracts heat from the underground, which is
used in different ways depending on the season: in winter, heat is extracted from
the underground and used for heat supply of buildings; in summer, when the
ambient temperature is higher than the underground temperature, the cold fluid is
used to cool buildings. Subsequently, the warmed water is re-injected into the
underground. As a consequence, the aquifer temperature range (of 10–12 �C)
decreases and increases, respectively, and microorganisms will have to manage
temperature fluctuations of ± 6 �C [14, 86].

Changes in temperature not only affect the metabolic activity of microorgan-
isms, but also the composition of the overall microbial community. In summer,
locally increased temperatures (e.g., at injections sites) can promote growth of
mesophilic bacteria whereas heat extraction in winter promotes microbial species
that grow at lower temperatures (psychrophilic microorganisms). Temperature
fluctuations also affect the chemical composition of the groundwater as it changes
the solubility of solids, liquids, and gases, including potential organic and
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Table 1 Top 15 countries using geothermal energy

Source www.iea.org
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inorganic substrates. Therefore, different substrate spectra will become available.
For example, increased temperature will lower the solubility of oxygen (and other
gases) and lead to a limitation of oxygen-dependent metabolic pathways.

3.2.2 Deep Geothermal Energy

Deep geothermal energy plants operate as open loop systems (Fig. 4) where hot
water is extracted from the deep subsurface and is re-injected after passing the heat
exchanger. The microbial community in greater depths considerably differs from
that in shallow depth [57]. Despite the extreme conditions encountered in deep
habitats (high temperatures and pressures, high salinity), deep aquifers have been
shown to harbor a live and active biosphere [84]. Such ecosystems are often
dominated by thermotolerant and thermophilic bacteria and archaea with mainly
anaerobic metabolisms (e.g., fermenting, methanogenic, sulphate-reducing
microorganisms) [1, 27, 71]. The deep subsurface also harbors populations of
spore-forming bacteria, which are able to survive adverse conditions (e.g., heat,
drought, substrate limitation) by formation of endospores. Metabolically, spores
are largely inactive, but might germinate when temperature and nutrient supply
conditions change and thereby influence the quality of geothermal water.

The operation of geothermal plants faces problems that mainly arise from the
activity of sulfate-reducing bacteria. Sulfate reducers are capable of oxidizing iron
ferrous metals, which results in corrosion of tubings and pipes [25, 28]. Also,

Influence on microbiology
• temperature fluctuations
• corrosion inhibitors
• antifreeze agents
• pesticides

Microbial influence on geothermal 
energy production
• biofilm formation
• corrosion

10-12°C

60-150°C

depth< 400 m

depth> 2000 m

Influence on microbiology
• temperature fluctuations

Microbial influence on geothermal 
energy production
• corrosion
• clogging

Fig. 4 Mutual influence of microbiology and geothermal energy in both shallow (close loop,
left) and great (open loop, right) depth, exemplified for heat extraction from shallow and deep
aquifers
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formation of sulfidic precipitates (e.g., FeS) can lead to clogging and therefore to
reduced water production rates [58]. Both corrosion and clogging can cause
serious economic problems based on reduced performance of the geothermal plant.

3.3 Further Research

Temperature is an important factor that influences both microbial viability and
metabolic activity. Therefore, research should focus on the effects of geothermal-
induced temperature fluctuations on the chemical groundwater composition,
nutrient supply, and the microbial community in both shallow and great depths.

Concerning the exploitation of shallow geothermal energy, potential leakage of
fluid additives into groundwater raises questions concerning degradability and
toxicity of the released substances, and the associated effects on microbial com-
munity composition. Also, the preservation of high groundwater quality is
important because shallow groundwater is a source of drinking water (in Germany,
75 % is produced from it).

In the deep subsurface, most concerns arise from clogging and corrosion
mediated by sulfate-reducing microorganisms. Sulfate reduction rates should be
determined in order to estimate the extent of economic damage caused by these
processes. Concerning spore-forming microbial populations, investigations are
needed that address the effect of temperature fluctuations and/or changes in
nutrient supply conditions on both the formation and germination of endospores.
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Bioremediation via in situ Microbial
Degradation of Organic Pollutants

Carsten Vogt and Hans Hermann Richnow

Abstract Contamination of soil and natural waters by organic pollutants is a global
problem. The major organic pollutants of point sources are mineral oil, fuel com-
ponents, and chlorinated hydrocarbons. Research from the last two decades dis-
covered that most of these compounds are biodegradable under anoxic conditions.
This has led to the rise of bioremediation strategies based on the in situ biodeg-
radation of pollutants. Monitored natural attenuation is a concept by which a
contaminated site is remediated by natural biodegradation; to evaluate such pro-
cesses, a combination of chemical and microbiological methods are usually used.
Compound specific stable isotope analysis emerged as a key method for detecting
and quantifying in situ biodegradation. Natural attenuation processes can be initi-
ated or accelerated by manipulating the environmental conditions to become
favorable for indigenous pollutant degrading microbial communities or by adding
externally breeded specific pollutant degrading microorganisms; these techniques
are referred to as enhanced natural attenuation. Xenobiotic micropollutants, such as
pesticides or pharmaceuticals, contaminate diffusively large areas in low concen-
trations; the biodegradation pattern of such contaminations are not yet understood.
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1 Introduction: Distribution of Organic Pollutants

Environmental pollution by organic compounds is a major global problem. Due to
the global use of a multitude of chemicals, urban and/or industrial areas are fre-
quently contaminated by organics, forming polluted sites of different magnitudes
[81]. In industrialized countries, pollution of soil and groundwater is mainly caused
by industrial and commercial operations, municipal and industrial waste treatment,
or inadequate storage of chemicals [18]; pollutants can originate from point sources
such as waste pits, landfills, mine tailings, buried containers, or leaking storage
tanks. In the USA, almost 300,000 polluted sites were reported [94]. Nearly

124 C. Vogt and H. H. Richnow



3 million sites are suspected to be polluted in Europe; around 250,000 of them
require clean-up activities [18]. More than 20,000 sites are large-scale polluted
megasites, usually characterized by multiple contaminant sources, complex con-
taminant cocktails, and high contaminant concentrations in soil and groundwater.
The number of sites in Europe needing remediation may increase by 50 % by 2025,
if trends of current investigations continue. In contrast, only 80,000 sites have been
remediated in the last 30 years [18]. In Germany, more than 20,000 polluted sites
have been identified by Bund/Länder-Arbeitsgemeinschaft Boden-schutz [52];
around 8,000 of them are currently remediated or monitored. Similar to the situa-
tion in Europe, the number of suspected contaminated sites exceeds the number of
known contaminated sites by more than one order of magnitude [52].

Heavy metals and mineral oil are the main soil contaminants in Europe ([18];
Table 1). Important organic contaminants include polycyclic aromatic hydrocar-
bons (PAHs), aromatic hydrocarbons (benzene-toluene-ethylbenzene-xylenes,
BTEX), phenols, and chlorinated hydrocarbons (CHC); globally, these compounds
affect 90 % of contaminated sites, although their relative contributions may vary
greatly from country to country [18]. Frequently detected contaminants in
groundwater at polluted sites are chlorinated short-chain aliphatics, chlorinated
aromatics, BTEX, and phenols (Table 2; [67, 68, 77]).

In contrast to point pollutions usually characterized by relatively large con-
centrations, organic contaminants are distributed in smaller concentrations over
huge areas due to diffusive sources; such compounds have been termed micro-
pollutants or emerging contaminants [81]. For example, pesticides used in agri-
culture can be widespread in low but potentially hazardous concentrations, causing
chronic effects. The European Commission has listed 33 priority pollutants in the
field of water policy; 11 of them are pesticides [25] (Table 3). Many pesticides
belong to the category of persistent organic pollutants (POPs), which are toxic and
resistant to environmental degradation. POPs are globally distributed by long-range
transport processes and tend to bioaccumulate in human and animal tissue due to
their high solubility in lipids. Thus, the production and usage of the most hazardous
POPs has been globally limited or banned by the Stockholm Convention. The
Stockholm Convention on Persistent Organic Pollutants is an international

Table 1 Overview of main contaminants affecting soil in Europe [19]

Compound class Frequencya

Heavy metals 37.3
Mineral oil 33.7
Polycyclic aromatic hydrocarbons (PAHs) 13.3
Aromatic hydrocarbons (BTEX) 6
Phenols 3.6
Chlorinated hydrocarbons 2.4
Others 3.6
a The ranking is calculated on the basis of the frequency (%) of contaminants reported to be the
most important in the particular investigated site. The listed compound classes cover 100 %
frequency
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environmental treaty effective since May 2004; it has been signed by 152 states.
Currently, more than 20 POPs are listed or proposed to be listed by the Stockholm
Convention ([87], Table 3).

Other more polar and water-soluble micropollutants such as drugs, hormones,
or pharmaceuticals—compounds that are not completely removed during waste-
water treatment and thus contaminate natural waters [81]—make up the group of
emerging contaminants. Less persistent compounds, such as hormones or drugs,
are biotically or abiotically transformed to various products, which can accumulate
and can become even more toxic than the parent compounds [11]. Mixtures of low
concentrated pollutants can be more toxic than single compounds due to syner-
gistic effects, which are difficult to predict and thus complicate the evaluation of
chemicals in the environment [3].

Table 2 Frequently detected organic contaminants in groundwater [67, 68, 77] and general
biodegradability

Chemical class Compound Applications Biodegradation
assessment

Highly
chlorinated
aliphatics

Tetrachloroethylen (PCE)
trichloroethylen (TCE)
1,1,1-trichloroethane
carbon tetrachloride

Dry cleaning fluids,
degreasing
solvents

Anoxic conditions,
reductive
dehalogenation:
electron donor needed
Slow or absent
biodegradation under
oxic conditions

Less chlorinated
aliphatics

1,1-dichloroethane
1,2-dichloroethene
vinyl chloride
methylene chloride

Solvents, pesticides,
landfills,
biodegradation
by-products,
plastics

Oxic conditions; slow or
absent biodegradation
under anoxic
conditions (electron
donor needed here)

Less chlorinated
aromatics

Chlorobenzene
dichlorobenzenes

Solvents, industrial
use

Oxic or anoxic conditions
(electron acceptor
needed here);
chlorobenzene usually
persistent under
anoxic conditions

Low molecular
weight
hydrocarbons

BTEX, PAHs
alkanes

Crude oil, refined
fuels, dyestuffs,
solvents, coal tar

Aerobic biodegradation
faster than anaerobic
biodegradation

Low molecular
weight
oxygenated
hydrocarbons

Alcohols, ketones, esters,
ethers, phenols

Solvents, paints,
pesticides,
adhesives,
pharmaceuticals,
fermentation
products,
detergents

Aerobic biodegradation
faster than anaerobic
biodegradation

MTBE, ETBE Fuel oxygenates Aerobic biodegradation
possible; very slow
anaerobic
biodegradation
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Table 3 List of organic priority substances or groups of organic priority substances in the field
of water policy [25], and POPs listed by the Stockholm Convention (by May 2013)

Name of the substance Origin Usage, sources Priority
substance
EC

Listed by
Stockholm
convention

Alachlor Anthropogenic Pesticide X
Aldrin Anthropogenic Pesticide X
Anthracene, fluoranthene,

naphthalene, other
polyaromatic hydrocarbons

Natural Coal tar,
combustion

X

Atrazine Anthropogenic Herbicide X
Benzene Anthropogenic Crude oil,

gasoline,
petrochemical

X

Polybrominated diphenylether Natural Flame retardant X X
Cadmium and its compounds Anthropogenic Industry X
Chlordane Anthropogenic Pesticide X
Chlordecone Anthropogenic Pesticide X
Chlorinated naphthalines Anthropogenic Various

industrial
products

Proposed

Chlorinated paraffins (short-
chained)

Anthropogenic Various
industrial
products

Proposed

Chloroalkanes, C10-13 Anthropogenic Chemical
industry

X

Chlorfenvinphos Anthropogenic Insecticide X
Chlorpyrifos Anthropogenic Insecticide X
DDT Anthropogenic Insecticide X
1,2-Dichloroethane Anthropogenic Chemical

industry
X

Dichloromethane Anthropogenic Solvent X
Dieldrin Anthropogenic Insecticide X
Bis (2-ethylhexyl) phthalate Anthropogenic Plasticizer X
Diuron Anthropogenic Herbicide X
Endrin Anthropogenic Insecticide X
Endosulfan and its isomers Anthropogenic Insecticide X X
Heptachlor Anthropogenic Insecticide X
Hexabromobiphenyl Anthropogenic Flame retardent X
Hexabromocyclodecane Anthropogenic Flame retardent X
Hexachlorobenzene Anthropogenic Fungicide X X
Hexachlorobutadiene Anthropogenic Solvent X Proposed
Hexachlorocyclohexane (a, b, c-

isomer)
Anthropogenic Pesticide X X

Isoproturon Anthropogenic Herbicide X
Mirex Anthropogenic Insecticide X

(continued)
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2 Biodegradation and in situ Bioremediation: Principles
and Practice

2.1 Biodegradation of Organic Pollutants: Principles

Biodegradation has been defined as ‘‘the biologically catalyzed reduction in
complexity of chemicals’’ [2]. This can lead to the conversion of carbon, nitrogen,
phosphorous, sulfur, or other elements bound within the original organic chemical
to inorganic products, which is named mineralization. If a compound is biologi-
cally transformed into products that are not metabolized or only very slowly
further metabolized, a transformation has taken place. The transformation of
hazardous chemicals into harmless chemicals is certainly a desirable biodegra-
dation process, but sometimes the opposite is observed: a toxic compound is
transformed into an even more toxic one, which accumulates in the environment.
For example, the anaerobic dechlorination of higher chlorinated ethenes can lead
to the accumulation of vinyl chloride, which is more toxic and volatile than its
precursors [61]. Also, pesticides can be transformed to compounds that are more
toxic than the parent molecule; the transformation of aldrin to dieldrin is one
example [46].

Table 3 (continued)

Name of the substance Origin Usage, sources Priority
substance
EC

Listed by
Stockholm
convention

Nonylphenols, octylphenols Anthropogenic Surfactant,
industry

X

Pentachlorobenzene Anthropogenic Chemical
industry

X X

Pentachlorophenol Anthropogenic Pesticide,
desinfectant

X Proposed

Perfluorooctane sulfonic acid
(PFOS) and perfluorooctane
sulfonyl fluoride (PFOS-F)

Anthropogenic Various
industrial
products

X

Polychlorinated biphenyls (PCBs) Anthropogenic Industry X
Polychlorinated dibenzofurans

(PCDFs)
Anthropogenic Industry X

Polychlorinated dibenzo-p-
dioxins (PCDDs)

Anthropogenic Industry,
combustion

X X

Simazine Anthropogenic Herbicide X
Toxaphene Anthropogenic Insecticide X
Tributyltin compounds Anthropogenic Biocide X
Trichlorobenzenes Anthropogenic Chemical

industry
X

Trichloromethane Mainly natural Chemical
industry

X

128 C. Vogt and H. H. Richnow



Microorganisms are able to transform or mineralize almost every naturally
occurring organic molecule, thereby driving the carbon cycle through organic
matter decomposition. In contrast, synthetic anthropogenic chemicals containing
nonbiotic functional groups or structures can be persistent because microorganisms
have not evolved the biochemical machinery for degradation. Notably, anthropo-
genic compounds can be transformed or even mineralized in the environment, as
some organisms have evolved enzymes with a rather broad substrate specificity. For
example, the anthropogenic gasoline additives methyl tert-butyl ether (MTBE) or
ethyl tert-butyl ether (ETBE) are widespread contaminants in the USA and Europe;
they can form large contaminant plumes due to their high water solubility and
recalcitrance to biodegradation. However, it has been observed that both MTBE
and ETBE can be initially oxidized by several microorganisms using different
monooxygenases with broad substrate spectra [57]. Meanwhile, a certain number of
microorganisms were isolated, which were capable of mineralizing MTBE or
ETBE while using it as a carbon and energy source (reviewed by Rosell et al. [75]).

A well-known enzyme performing many reactions is toluene dioxygenase: the
enzyme from Pseudomonas putida strain F1 has been shown to catalyze at least
109 different reactions [92]. Sometimes, xenobiotics are even transformed by
enzymes with a rather narrow substrate spectrum, as shown for the reductive
dehalogenation of aliphatic and aromatic halogenated organics [89]. Additionally,
due to their often short generation times and capabilities to change and exchange
genetic information, microorganisms are able to evolve or acquire new degrada-
tion pathways in short time periods. This has been shown by the evolution of an
aerobic chlorobenzene mineralizing strain at a chlorobenzene polluted site [101].

Generally, polluted sites are characterized by a cocktail of contaminants rather
than a single compound. Contaminant cocktails are degraded by microbial com-
munities consisting of several physiologically and/or phylogenetically different
organisms. A particular species of that community typically mineralizes or
transforms only a few constituents of the contaminant cocktail; therefore, degra-
dation of the whole cocktail is due to the teamwork of a multitude of species. In
anoxic systems, single contaminants are often mineralized by two or more species;
if this behavior is necessary for the compound’s mineralization, it is termed syn-
trophy [48]. Organic pollutant mineralization driven by syntrophic relationships is
a significant process in highly reduced environments [85].

Besides being not biodegradable due to its physical–chemical properties, the
persistence of a compound in a given environmental system can have different
causes. A prerequisite for biodegradation is the presence of microorganisms that
are actually able to degrade the compound. Several contaminant degraders might
be ubiquitous, but not all. For example, aerobic benzene mineralizers are probably
widespread, whereas anaerobic benzene mineralizers are not [106]. The contam-
inant must be also (bio)available for the degraders; organic molecules might be not
bioavailable due to sorption to solids, the presence in nonaqueous phase lipids
(NAPLs), or entrapment within the physical matrix of the environmental system
[2]. Certain hydrophobic compounds, such as PAHs or higher molecular weight
alipahic hydrocarbons, are not water-soluble and can strongly sorb to sediment
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particles. Such behavior can prevent, for example, a sustainable remediation of
PAH-contaminated habitats [107]. The concentration of the contaminant in the
environment is important: high concentrations might be toxic for the degrader
population, whereas on the other hand a certain threshold concentration exist for
each contaminant representing a level below the contaminant cannot be biode-
graded [2]. The environmental conditions itself can support or impede biodegra-
dation. Degraders are active in a certain temperature range; if the temperature is
beyond this range, biodegradation will cease. Freshwater-adapted degraders might
not be active in saline environments, and halophilic degraders are certainly
inhibited in freshwater environments. Acidic or alkaline conditions will inhibit
many degraders as they are adapted to neutral pH values. If a habitat is limited in a
certain electron acceptor or nutrient, biodegradation might not occur, despite the
presence of a suitable degrader community. In anoxic environments, the accu-
mulation of fermentation metabolites can prevent the syntrophic degradation of a
given contaminant by thermodynamic means; for example, this was described for
benzene degradation at anoxic sites that were co-contaminated with ethanol [13].
In polluted aquifers, protists grazing on pollutant-degrading microbial communi-
ties can impact overall biodegradation rates [70].

A key environmental parameter for organic contaminant degradation is the
availability of sufficient oxygen. Naturally occurring compounds and also several
xenobiotics are usually quickly degraded or mineralized in the presence of air
(aerobic conditions). In the case of high contaminant concentrations in aqueous
systems, such as groundwater, oxygen is usually rapidly consumed by aerobic
degraders, leading to prevalent anoxic conditions in the contaminated area. Until
the late 1970s, it was hypothesized that most chemicals, even naturally occurring
hydrocarbons, are not degradable under anoxic conditions [6]. Today, we assume
that most chemicals can be transformed or mineralized in the absence of oxygen,
although degradation rates, growth rates, and growth yields of anaerobic degraders
are usually much lower than those of their aerobic counterparts. Several chemical
compound classes, such as highly halogenated organics, are even preferably
transformed under anoxic conditions [89]. Environmentally important electron
acceptors for the anaerobic oxidation of organic molecules are sulfate, carbonate,
iron, and nitrate.

In summary, detoxification of contaminated sites is mainly driven by micro-
organisms, and thus understanding the biochemistry and microbiology of con-
taminant-degrading microorganisms is essential for assessing natural attenuation
processes.

2.2 Biodegradation of Organic Pollutants: A Short Overview

As outlined in the introduction, mineral oil components are major environmental
pollutants. Mineral oil consists of more than 17,000 structurally different hydro-
carbons and nitrogen, sulfur, or oxygen-containing derivatives [36]. Due to their
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hydrophobic nature, mixtures of these compounds form NAPLs if present in high
concentrations (illustrated in Fig. 1), complicating in situ biodegradation because
compounds concentrated in NAPLs are poorly bioavailable. Nevertheless, mineral
oil is generally biodegradable under a range of environmental conditions. Under
aerobic conditions, such as in sea water, several mineral oil components can be
quickly transformed and eventually mineralized if not limited by nutrients (par-
ticularly phosphorous and nitrogen) and bioavailability constraints [36]. In the
presence of oxygen, hydrocarbons are usually activated by monooxygenases or
dioxygenases, introducing one or two hydroxyl groups into the molecule [33, 54];
the formed alcohols are water soluble and thus bioavailable for further degradation
steps. Ring cleavage of aromatics is as well catalyzed by oxygen-dependent
dioxygenases [28, 33, 97]. Recent research results indicate that many oil com-
ponents can be also mineralized under strictly anoxic conditions, although deg-
radation rates are generally lower compared to aerobic conditions [42, 45, 108,
109]. In the absence of oxygen, hydrocarbons can be activated by carboxylation
[10, 16, 65], hydroxylation [43, 49], or fumarate addition [37, 56]. Aromatic
compounds are generally converted to benzoyl coenzyme A (benzoyl-CoA), which
is further reduced by different benzoyl-CoA reductases [33, 71].

Prominent frequent and hazardous petroleum hydrocarbons are BTEX com-
pounds, PAHs, and phenols due to their toxicity and global distribution; hence,
anaerobic biodegradation of these compounds has been intensively studied in
recent decades. BTEX compounds were shown to be mineralized under a range of
different electron acceptor conditions (reviewed by Weelink et al. [105]). Field and
laboratory data indicate that toluene is primarily degraded, followed by xylene,
ethylbenzene, and benzene [5, 105]. Several anaerobic toluene degraders have
been isolated; those activate toluene without exception by fumarate addition to the
methyl moiety, producing benzyl succinate as the first intermediate. The enzyme
catalyzing this reaction, benzylsuccinate synthase (BSS), has been used as a model
enzyme for elucidating the biochemical mechanism of the fumarate addition

gasoline 

Abb. .
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Groundwater flow 
direction 

DNAPL point pollution NAPL point pollution 

Fig. 1 Examples for point pollutions by DNAPLs and NAPLs. Modified from [101]
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reaction, which is widespread and used to activate several aliphatic and aromatic
compounds [37, 108]. Also, all yet isolated anaerobic xylene degraders activate
xylene isomers (m-xylene, o-xylene, p-xylene) by fumarate addition; notably,
m-xylene is most readily degraded, whereas p-xylene is the worst degraded [105].
Ethylbenzene activation by fumarate addition has been also described for a marine
sulfate reducer [50]. A few nitrate reducers were isolated, however, which initiate
ethylbenzene degradation by an anaerobic hydroxylation step catalyzed by the
enzyme ethylbenzene dehydrogenase [43, 49]. Benzene is the most toxic of the
BTEX compounds: It is listed by the European Union as priority pollutant
(Table 3) and is often persistent under anoxic conditions [5, 44]. Nevertheless,
anaerobic benzene mineralization has been detected in the field and in laboratory
cultures, mostly enrichment cultures reviewed by Vogt et al. [103]. It is currently
not yet clear how benzene is activated in the absence of oxygen.

Among the PAHs, mineralization by stable enrichment cultures or pure cultures
has been reported for naphthalene and phenanthrene under sulfate-reducing or
iron-reducing conditions [16, 47, 63, 66, 110]. Cultures were achieved especially
with naphthalene as substrate under sulfate- or iron-reducing conditions; growth
was shown to be very slow in those cultures. It is not understood whether PAHs
with four aromatic rings can be anaerobically mineralized; the results for naph-
thalene and phenanthrene indicate, however, that any mineralization might pro-
ceed tremendously slowly. Notably, high-molecular-weight polycyclic or
heterocyclic aromatic compounds might be co-metabolically transformed by
anaerobic aromatics degraders to more polar metabolites, such as by carboxylation
reactions [76]. In different sulfate-reducing enrichment and pure cultures, PAH
degradation was shown to be initiated by a carboxylation step [16, 65, 110].

Phenol and its derivatives differ considerably from pure hydrocarbons due to
their generally higher water solubility, which makes them much more bioavailable.
Phenols contain one or more reactive hydroxyl groups and were shown to be
biodegraded under various electron acceptor conditions [71, 78]. Phenol is acti-
vated by an energy-dependent carboxylation step [9]. Notably, phenols are pre-
dominantly degraded by oxidative pathways under nitrate-reducing conditions and
by reductive pathways under strictly anoxic conditions [71, 78].

Due to their common industrial applications, short-chained chlorinated ali-
phatics and chlorinated aromatics are frequent groundwater contaminants
(Table 2). Furthermore, several POPs and pesticides are organochlorides
(Table 3). Halogenated hydrocarbons are hydrophobic, poorly water-soluble, and
heavier than water, thus forming dense nonaqueous phase liquids (DNAPLs) that
sink in an aquifer (Fig. 1), reducing the bioavailability of the target compounds
and hampering in situ biodegradation. The xenobiotic chlorinated organic sub-
stances listed in Tables 2 and 3 occurring in high concentration at industrial sites
or being distributed on a large scale in low concentrations have natural analogues
typically present in low concentrations in pristine environments; the huge number
(more than 3,800; [34]) and global distribution of such naturally synthesized
halogenated organic molecules is probably the key to understand why several
microorganisms are able to degrade xenobiotic chlorinated compounds. Due to the
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high number of natural halogenated organics, microorganisms have evolved sev-
eral different enzymatic systems transforming halogenated compounds [27]: oxi-
dative dehalogenation catalyzed by mono- or dioxygenases, halide elimination,
halide substitution, and reductive dehalogenation, which is the main reaction
mechanism under anoxic conditions. The mentioned reactions can be metabolic or
co-metabolic. As a rule of thumb, less chlorinated compounds are preferentially
degraded under aerobic conditions, and higher chlorinated compounds are often
degradable only under anoxic conditions [60, 84]. During reductive dehalogen-
ation, the halogenated compound is used as an electron acceptor and not as a
carbon source. Hydrogen is used by many reductive dehalogenating microorgan-
isms as the preferred or even exclusive electron donor [57, 84], leading to a
requirement of a hydrogen source from cooperating fermenting microorganisms.
Because the potential energy release of reductive dehalogenation is considerably
higher than that of sulfate reduction or methanogenesis [84], for example,
reductive dehalogenating microorganisms can successfully compete for hydrogen
in sulfate-reducing or methanogenic environments, which is an important aspect
with regard to bioremediation. Members of the genus Dehalococcoides turned out
to be key organisms for the reductive dechlorination of several widespread and
toxic aliphatic and aromatic chlorinated compounds [1, 58, 89, 95]. De-
halococcoides were shown to dechlorinate even polychlorinated dibenzo-p-dioxins
and dibenzofurans [12], which are compound classes containing acute toxic
congeners [38].

Micropollutants are often not mineralized but transformed to various products
that are more abundant than the parent compounds [11, 24, 81]. Transformation
can occur metabolically in human or mammalian cells, during advanced waste-
water treatment processes, or abiotically or biologically in the environment [24].
Generally, the in situ biodegradation patterns of micropollutants, such as pesti-
cides, are currently not well understood [26]; for many of the priority substances
listed in Table 3, the main in situ biodegradation pathways are not well
understood.

3 Bioremediation

Bioremediation means the degradation of environmental pollutants by microor-
ganisms. Generally, only point pollutions are bioremediated by specific technolo-
gies, as diffusively spread compounds are difficult to control due to their wide
distribution and relatively low concentrations. Bioremediation technologies are
usually separated as ex situ and in situ techniques. During ex situ bioremediation, the
contaminated material is removed from the contaminated site by excavation (soil) or
extraction techniques (groundwater, pump-and-treat) and treated elsewhere, such as
in a bioreactor [53] or by composting. Ex situ bioremediation can be useful if soil or
groundwater is contaminated by toxic organic compounds in areas threatening
residents or sensitive ecosystems, or if toxic contaminants are insufficiently
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bioavailable, such as PAHs. Biodegradation of pollutants in excavated soil might be
stimulated by inoculation with pollutant-degrading microorganisms or by the
addition of nutrients or oxygen (e.g., [88]). However, ex situ bioremediation tech-
nologies have major shortcomings [68]. Ecosystems are destroyed by excavation of
soil and sediments; furthermore, workers and nearby residents might be exposed to
elevated levels of contaminants during excavation. Due to often unfavorable
hydrological boundary conditions, not all contamination might be removed from a
contaminated aquifer by pump-and-treat. In addition, both soil excavation and
pump-and-treat are usually expensive and cost valuable resources.

As described above, research of the last two decades has indicated that many
organic contaminants can be biologically transformed or mineralized under a range
of environmental conditions. Therefore, in situ bioremediation approaches are
increasingly being used for point source decontamination. In situ bioremediation
can be divided in two classes: (i) technologies by which in situ biodegradation is
actively enhanced, and (ii) the monitoring of ongoing in situ biodegradation
without enhancement of natural attenuation processes. The former is termed
enhanced natural attenuation (ENA), whereas the latter is termed monitored nat-
ural attenuation (MNA).

3.1 Monitored Natural Attenuation

The knowledge that the main organic pollutants are principally biodegradable
(Table 2) led to the opinion that in situ bioremediation might be an option for many
contaminated sites. The NRC of the USA stated in 1993 that in situ bioremediation
is a scientifically valid and technically feasible technology if ongoing biodegra-
dation reactions are clearly documented with several lines of evidence from the
field [67]. Soon after this report, MNA was increasingly employed as a clean-up
strategy at sites in the USA [68]. In 1999, the US-EPA defined the concept of
monitored natural attenuation in the Office of Solid Waste and Emergency
Response directive in more detail [93]. Notably, natural attenuation processes
comprise per definition not only biodegradation and chemical degradation, but also
a variety of physical or chemical mechanisms such as dispersion, dilution, sorption,
volatilization, and (bio)chemical stabilization, which reduce the toxicity, mobility,
or concentration of contaminants in soil and groundwater. However, biodegradation
is considered to be the primary mechanism for the removal of the mass of con-
taminants [17]. In Germany between 2002 and 2008, the Federal Ministry of
Education and Research funded several pilot studies regarding the effectiveness of
MNA, resulting in a catalog of recommended procedures and monitoring methods
[64]. Today, MNA is an accepted remediation strategy in many other European
countries, although differences in application levels exist [17]. Nevertheless, due to
the various microbiological and environmental parameters by which biodegrada-
tion rates can be influenced (outlined in Sect. 2.1), MNA is a concept that needs to
be proven at every particular contaminated site. Typically, MNA lasts for some
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time, often several years to decades; thus, MNA is usually not an option for polluted
sites characterized by short distance to humans, sensitive receptors, or sensitive
ecosystems.

The keys for the successful operation of MNA at a site are the assessment of
conceptual model of the flow and transport processes (hydrogeological model),
and the use of reliable methods for verifying and quantifying in situ biodegradation
processes. Several methods have been developed and used since the beginning of
MNA operations (reviewed by Bombach et al. [10], Illmann and Alvarez [41],
Scow and Hicks [83]): chemical methods such as geochemical approaches, tracer
tests, metabolite analysis, compound-specific isotope analysis (CSIA), and
microbiological methods such as in situ microcosms, detection of specific genes,
and degradation tests using laboratory microcosms or columns. Generally, a
combination of chemical and microbiological methods is used for proving natural
attenuation processes at a specific site. Monitoring the pollutant concentrations in
the source and the plume is always essential. Biogeochemical ‘‘footprints’’ may
indicate in situ biodegradation of pollutants at the contaminated area, such as the
consumption of electron acceptors (e.g., sulfate, nitrate), the accumulation of
reduced electron acceptors (e.g., sulfide, methane), or the production of specific
metabolites typical of a distinct pollution degradation pathway. The degradation
potential of a site can be assessed by laboratory degradation tests with sediment or
groundwater from the polluted site as well as the detection of genes coding for
enzymes involved in specific pollutant degradation pathways. A more direct
approach is the use of in situ microcosms, which enable proving the metaboliza-
tion of 13C-labelled target pollutants within the aquifer [86].

A novel noninvasive method, which combines qualitative and quantitative
aspects of in situ biodegradation, is CSIA; due to its advantages, it has been
increasingly used for proving natural attenuation processes, reflected also by a
guideline published by the US-EPA [96]. CSIA exploits the fact that due to
energetic constraints, stable light isotopes react usually slightly faster during
biochemical transformation reactions than the corresponding stable heavy iso-
topes. As a consequence, residual specific organic contaminants get enriched in
stable heavy isotopes (e.g., 13C, 2H, 37Cl, 15N) in the course of in situ biodegra-
dation, a process termed compound-specific stable isotope fractionation, which
can be analyzed by isotope ratio mass spectrometry (IRMS). The principles of
CSIA in the context of in situ biodegradation have been described in several
excellent reviews (e.g., [21, 39, 62, 80]).

Because physical removal processes such as dilution, sorption, or volatilization
do not cause significant isotope fractionation, CSIA is a strong tool for proving
in situ biodegradation. If the range of stable isotope fractionation of a specific
biodegradation reaction has been determined by laboratory reference experiments
with model microorganisms, CSIA may allow quantifying in situ biodegradation
[29, 35, 90, 98, 99, 100]. In addition, by combining the analysis of two or more
different stable isotopes within a molecule (two-dimensional CSIA), specific
pathways of in situ biodegradation can be identified. For example, the strong
hydrogen isotope fractionation linked to the anaerobic degradation of benzene leads
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to distinct dual hydrogen versus carbon isotope plots, allowing unambiguously
detecting this reaction at benzene-contaminated field sites ([30–32]; Figs. 2 and 3).
Isotope fractionation has been reported for transformation of most of the main
organic contaminants listed in Table 2: BTEX, MTBE and ETBE, chlorobenzenes,
chloroethenes, chloroethanes, or carbonchlorides (reviewed by Hunkeler and
Morasch [40]), demonstrating the great potential of CSIA as a key MNA approach.
Nevertheless, especially for aerobic biodegradation reactions catalyzed by mono-
or dioxygenases, isotope fractionation can be below the detection limit; hence, the
absence of any isotope fractionation at a field site is not a proof that a compound is
not biodegraded. For example, the aerobic biodegradation of MTBE and ETBE can
lead to either strong carbon and/or hydrogen isotope fractionation or to insignificant
carbon and hydrogen isotope effects, depending on the type of enzyme (P450 or
AlkB based, others) catalyzing the first reaction step of the degradation pathway
[75]. Notably, this first step is similar for the different involved enzymes, a
hydroxylation of the methyl group of the ether, showing that the simple relationship
of ‘‘similar reaction = similar isotope pattern’’ does not exist; a similar observation
has been made for the activation of toluene under anoxic conditions catalyzed by
subtypes of the enzyme benzylsuccinate synthase [51, 104]. Thus, laboratory
degradation experiments with reference cultures expressing distinct degradation
pathways are a prerequisite for assessing biodegradation by CSIA at contaminated
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sites. Besides characterizing in situ biodegradation, CSIA enables the detection and
differentiation of contaminant sources [69, 79].

In summary, MNA is a reasonable technology if a site can be safely and
sustainable remediated in an acceptable timeframe by natural attenuation pro-
cesses. However, MNA often provides evidence that natural attenuation processes
are too slow, slowed down, or even absent. In all these cases, stimulating natural
attenuation processes by ENA is a reasonable option.

3.2 Enhanced Natural Attenuation

ENA takes advantage of stimulating in situ biodegradation by technical measures.
Prior to any stimulation attempts, identification of bottlenecks and limitations of
in situ biodegradation by MNA is essential. Depending on the type, mixture, and
concentrations of pollutants and the site characteristics (e.g., hydrogeological
conditions, geographic location, and age of plume), in situ biodegradation can be
inhibited due to several reasons: limited availability of electron acceptors, donors,
or nutrients; absence of biodegrading microbes; toxic or interfering pollutant or
metabolite concentrations; and unfavorable pH values, salinity, temperatures, or
redox conditions. Due to such different potential limitations, several ENA concepts
have been attempted.

Because aerobic biodegradation is much faster than anaerobic biodegradation
for many organic pollutants, several techniques have been developed to inject
oxygen into the contaminated zone, even before MNA or ENA were accepted
remediation concepts (e.g., [55]). These treatments were named differently, such as
bio-venting, bio-sparging or air-sparging; typically, air, pure oxygen or hydrogen
peroxide is used as an oxygen source. A major shortcoming of all these approaches
is the low water solubility (approximately 10–15 mg/L under aquifer conditions)
and the high chemical and microbiological reactivity of molecular oxygen, typi-
cally preventing a sustainable and fast biodegradation of organic pollutants in
groundwater. Oxygen may not be solely used by microbes to activate and min-
eralize organic pollutants, but also for microbial and/or chemical oxidation of
inorganics that are usually present in contaminant plumes, such as sulfide, ferrous
iron, and others. As a consequence, oxygen must be supplied in much higher
quantities than theoretically needed for the stoichiometric degradation of con-
taminants because all oxidation reactions beside contaminant degradation have to
be taken into account. However, injecting air into contaminated groundwater can
be reasonable if a pollutant is not or only very slowly degraded under anoxic
conditions, but efficiently under microaerobic conditions, such as with chloro-
benzene [7].

Often, injecting water-soluble salts that are usable for anaerobic pollutant
degraders as electron acceptors, such as sulfates or nitrates, is an effective approach
[4, 14]. Especially during in situ biodegradation of oil spills, the nutrients
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phosphorous and nitrogen may be limited due to significant growth of hydrocarbon-
degraders; thus, the addition of nitrogen- and phosphorous-containing fertilizers
can accelerate the degradation processes [91]. The remediation of oil spills might be
also enhanced by adding biosurfactants or detergents, which generally improve the
bioavailability of NAPL-forming oil components [91]. Such additions have to be
handled with care, as detergents might increase the toxicity of the affected oil
mixtures, as was shown for the detergent Corexit [74] which was massively applied
during the Deepwater Horizon oil spill.

As outlined in Sect. 2.2, highly chlorinated compounds such as tetrachloro-
ethene are reductively dechlorinated, whereby hydrogen is the most appropriate
electron donor; also, acetate is beneficial for the growth of the reductive dechlo-
rinating organisms. In practice, electron donors have been injected to contaminated
field sites, which slowly released hydrogen and organics including acetate, turning
the redox conditions to strongly reducing (e.g. polylactate ester HRC, emulsified
vegetable oil, chitin, or biomass), finally leading to natural attenuation of the
chlorinated target compounds [58].

Recently, the anaerobic degradation of BTEX was shown to be accelerated by
the addition of ammonium acetate in a field experiment; acetate degradation
resulted in strongly reducing conditions and promoted apparently the growth of
anaerobic BTEX degraders [73], which might be a general strategy for enhancing
anaerobic hydrocarbon degradation. On the other hand, acetate and hydrogen can
inhibit the syntrophic degradation of hydrocarbons by thermodynamic means, as
shown for benzene degradation [13, 15, 72]. Therefore, acetate and hydrocarbons
are probably not simultaneously degraded, leading to lag-phases of hydrocarbon
degradation in such approaches. Generally, biodegradation patterns of contaminant
mixtures are difficult to predict due to possible negative or positive effects of the
mixture itself upon the degrader microbial community. Furthermore, the accu-
mulation of toxic metabolites or dead-end products can seriously affect enhanced
natural attenuation processes. For example, oxygen injection into groundwater
contaminated by aromatics or haloaromatics can lead to the accumulation of
(halo)catechols due to fast ring oxidation by dioxygenases followed by slow
subsequent metabolic oxidation reactions. Halocatechols are toxic because they
can react with several biomolecules [82]; for 4-chlorocatechol, a dead-end enzy-
matic transformation to the antibiotic protoanemonin has been even reported [8].

It is possible that at certain locations, the number of specific pollutant degraders
is too low to be significantly stimulated in acceptable time periods. Here, inocu-
lating the contaminated site with specific degraders is a reasonable ENA concept,
which is termed bioaugmentation. For example, at tetrachloroethylene or per-
chloroethylene-contaminated sites, cis-1,2-dichloroethene (cDCE) can accumulate
as end product of reductive dechlorination due to the inactivity or absence of
cDCE dechlorinating microorganisms. Reductive dechlorination of cDCE to
nontoxic ethene—and hence successful bioremediation—was achieved by bio-
augmentation with microbial cultures capable of this reaction [23, 59]. The success
of bioaugmentation concepts depends on the ‘‘ecological robustness’’ and the
mobility of the introduced microorganisms, as they have to compete with
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indigenous microbial communities and cope with site-specific hydrogeological
conditions [20].

Generally, any bioaugmentation and biostimulation strategies require a deep
understanding of the ecology of contaminant degradation at a specific site and
need possibly a number of trials at the laboratory and pilot plant scale in prepa-
ration of a full field-scale remediation approach.

4 Conclusions and Outlook

The main organic pollutants—mineral oil and CHC—can be biodegraded by
indigenous microorganisms. Research in recent decades has shown that especially
anaerobic degradation reactions are driving natural attenuation processes at sites
polluted by NAPLs or DNAPLs. Thus, MNA and ENA have become in situ
remediation technologies in industrialized countries due to their noninvasive,
sustainable, and cost-effective characteristics. Nevertheless, each contaminated
site is unique with regard to hydrogeological conditions, contaminant cocktails,
and potential hazards for humans and ecosystems, so that MNA and ENA should
not be considered as standard practice per se. The analysis and quantification of
processes controlling contaminant distribution in aquifer–soil systems require
comprehensive site assessments, knowledge, and efforts. CSIA is a key monitoring
method of MNA and ENA, as its application principally allows identification of
distinct in situ degradation pathways, quantification of in situ biodegradation, and
analysis of contaminant source apportionment. Multiple isotope analysis allows
very precise elucidation of in situ biodegradation mechanisms. Recent and future
method developments of stable isotope mass spectrometry will even extend the
area of CSIA applications, such as chlorine and bromine stable isotope analysis of
halogenated pollutants or liquid chromatography–IRMS based stable carbon
analysis of polar organic pollutants. The development of CSIA applications for
low-concentrated pesticides and other micropollutants is a challenging goal for
future studies, although first steps in that direction have been taken [22]. The
microbial degradation of micropollutants is currently not well understood, espe-
cially under anoxic conditions.
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The Microbial Desulfurization of Coal

Giovanni Rossi

Abstract The chemical structure of coal macerals is usually characterized by the
presence of inorganic and organic sulfur. Inorganic sulfur consists mostly of iron
sulfides, the so-called ‘‘pyritic sulfur,’’ whereas organic sulfur is covalently bound
to the carbon atoms of the coal macromolecule. Comminution of coal to sizes that
liberate the iron sulfide grains makes their removal with mineral beneficiation
processes theoretically possible, but practically profitless. Microbial removal of
pyritic sulfur has been extensively investigated over the last 50 years and the very
promising results obtained have encouraged the design and construction of a semi-
commercial pilot plant in the framework of Project JOULE 0039 funded by the
European Commission. The results of the 1-year operation of this plant are
reported here, the most significant being the 90 % pyrite removal achieved in five
stirred tank bioreactors operating with a 40 % solids suspension and the pyritic
iron solubilization rate of 36 mg dm-3 h-1. Taking into account the very high
price of the kWh in Italy, a rough estimate of the overall costs is in the range from
25 to 30 € per tonne of dry coal. So far the development of a microbial process for
organic sulfur removal has shown to be much more difficult and less successful,
although significant progress in laboratory research is reported.
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1 Chemical and Physical Occurrence of Sulfur in Coal

Much work has been carried out by researchers worldwide to elucidate the
chemical structure of the so-called ‘‘coal macerals’’ which is the name commonly
given by petrographers to the complex organic materials occurring in coal in
various petrographic types. This research—mostly related to coal liquefaction—
was (and probably still is) aimed mainly at the identification of the macromole-
cules forming the macerals, also with a view to characterizing the form of the
foreign matter contained therein, with special regard to sulfur.

Thus, there is currently complete consensus that sulfur occurs in coal in two
forms: ‘‘inorganic’’ or ‘‘pyritic’’ and ‘‘organic’’ sulfur. Actually, minor amounts of
sulfur can sometimes occur as sulfate sulfur as the result of oxidation of the
inorganic sulfur, or even as elemental sulfur [5, 24].

The inorganic sulfur occurs mainly in the form of iron sulfides [47], by far the
most frequent ones being pyrite and marcasite (altogether [90 %). An exhaustive
review on the compounds of iron and sulfur can be profitably consulted [59].
According to a recent publication [22], less than 0.05 % of total sulfur in coal is
present as sulfates. total sulfur and sulfur form distribution is often variable [11].
However, The possible compounds that can be formed by sulfur and iron are
shown in Table 1 [59, 61–63]. They are crystalline or microcrystalline and can
occur variously aggregated in coal. Pyrite in coal can be found either as macro-
scopic occurrences (which can be detected with the naked eye) or microscopic
forms (which can only be observed under an optical microscope). The most
common forms of macroscopic pyrite are the so-called ‘‘sulfur balls’’ or nodules,
roughly spherical in shape, which can range in size from a few millimeters to some
decimeters, lenses with thicknesses ranging from a few millimeters to several
centimeters and up to several decimeters in lateral extent, and veins with variable
thickness and extent. The most common forms of microscopic pyrite are (i) finely
disseminated pyrite grains (Fig. 1) called euhedral when they are well-formed
crystals with sharp, easily recognized faces; (ii) clusters of fine-grained pyrite,
called ‘‘framboids’’ (Fig. 2) from the French word framboise for raspberry; and
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(iii) veinlets (Fig. 3) a few micrometers thick with length in the micrometers
range. Excellent descriptions can be found in the literature [24, 52, 71, 80].

The organic sulfur is combined with the coal substance. Organic sulfur atoms
may be covalently bound to the atoms of the carbon matrix as thiols, sulfides,
disulfides, thiopyrones ( [21]; cited by [11]), and complex thiophenic ring systems;
several coals contain aromatic heterocyclic compounds with the C–S bond; typical
of these compounds seems to be dibenzothiophene (DBT [33, 46]). Thioether
bridges [81] have also been shown to exist. According to Ghosh and Prelas [22]

Table 1 Iron sulfides occurring in coals

Name Composition Fe (%
by
mass)

Fe-to-
S
ratio

Crystal
system

Properties

Mackinawite FeS 63.53 1.742 Tetragonal Metastable material
Cubic FeS FeS 63.53 1.742 Cubic Highly unstable phase

precursor
Troilite FeS 63.53 1.742 Hexagonal Stoichiometric end

member of the Fe1-xS
group

Pyrrhotite Fe1-xS
approximately
Fe7S8 x [ 0.2

60.38 1.524 Monoclinic Nonstoichiometric stable
group, approxinately
F7S8

Pyrrhotite Fe1-xS
approximately
Fe10S11 x [ 0.2

61.29 1.583 Hexagonal Nonstoichiometric stable
group, approxinately
F10S11

Smythite Fe9S11 58.76 1.425 Hexagonal Metastable phase related to
the Fe1-xS group

Greigite Fe3S4 56.64 1.306 Cubic Metastable FeIIIFeIIsulfide;
the thiospinel of iron

Pyrite FeS2 46.55 0.871 Cubic Stable iron (II) disulfide
known as ‘‘fool’s gold’’

Marcasite FeS2 46.55 0.871 Orthorhombic Metastable iron (II)
disulfide

Adapted with permission from Rickard and Luther [59], Copyright 2007 American Chemical
Society

Fig. 1 Micrograph of pyrite
grains (white areas) in coal
matrix. Reflected light, oil
immersion
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sulfur in coals ranges from less than 1 % (low sulfur coals) to about 7 % (high
sulfur coals) and organic sulfur ranges from 30 to 70 % of the total sulfur [5].
Figure 4 (modified and redrawn from [70]) is an idealized picture of a coal
‘‘macromolecule’’ that simply gives an idea of how sulfur can be physically and
chemically present in coal.

1.1 The Removal of Pyritic Sulfur

Pyritic sulfur is chemically independent of the coal matrix as it is simply dis-
seminated within it and thus physically separated from the coal macerals.

Pyritic sulfur can be removed by conventional mineral processing methods,
usually gravity separation or flotation, although some researchers claimed to have
successfully applied magnetic separation [47]. The condition for the successful
application of mineral dressing processes is the complete liberation of the pyrite
grains. This sets a limit on the mesh-of-grind required, as any middlings represent
a drawback in the sense that their inclusion in the product reduces its commercial
value whereas their rejection decreases coal recovery.

For the benefit of readers who are not familiar with the technical expressions of
minerals beneficiation, mesh-of-grind is defined as ‘‘the optimum particle size

Fig. 2 Micrograph of
framboidal pyrite (white
areas) in coal matrix.
Reflected light, oil immersion

Fig. 3 Micrograph of pyrite
veinlet (white areas) in coal
matrix. Reflected light, oil
immersion
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resulting from a specific grinding operation, stated in terms of percent of material
passing (or alternatively being retained on) a given size screen. The mesh-of-grind is
the liberation mesh decided as correct for commercial treatment of the material [1].

In addition, it should be noted that the technical difficulty and process costs of
gravity separation and even flotation increase with decreasing mesh-of-grind. Lower
limits can be considered as 1 mm for gravity separation and 74 lm for flotation.

In the 1940s and early 1950s it was discovered that a number of microbial
strains [16, 44, 75] were able to enhance the kinetics of metal sulfides, including
pyrite solubilization in water (for review, [61]). One of those strains that proved to
be particularly effective is the acidophilic, mesophilic, and chemolithoautotrophic
Acidithiobacillus ferrooxidans. In a simplified (somewhat improper) way, it can be
said that these micro-organisms act as biological catalysts of pyrite oxidation and
solubilization. The biologically catalyzed oxidation of pyrite can be described by
the overall reaction

2FeS2 þ 7:5O2 þ H2O! 2Fe3þ þ 4SO2�
4 þ 2Hþ

Fig. 4 Shinn’s model of coal. The distances are not in scale. The drawing is indicative only of
the existence of the pyrite inclusions. Black arrows point to the covalently bound sulfur atoms
(Modified and redrawn from Shinn [70], Copyright 1984 with permission from Elsevier)
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Evidence was provided of the net production of one H+ per mol of FeS2 oxi-
dized and of the end products Fe 3+ and 2SO�2

4 . Details on this process can be
found by the interested reader in Chapter ‘‘Biomining’’. Overviews of the bacteria
from a number of different taxonomic groups, namely, the genera of Thiobacillus
(Acidithiobacillus), according to the recent new classification proposed by Kelly
and Wood [37] and Leptospirillum and archaea, several of which are involved in
the removal of inorganic and organic sulfur compounds from coal, can be found in
Karavaiko and Lobyreva [33], Schippers [67], Johnson and Hallberg [31], and
Hedrich et al. [27]. Mixed cultures warrant investigation as they may prove
somewhat beneficial, as indicated for the case of metal sulfide bioleaching [53].

The resort to microbiological mediation overcomes the drawbacks of conven-
tional mineral processing methods mentioned above, as the exposure of just part of
the pyrite grains’ surfaces is clearly sufficient to grant access of the microbial cells
thereto, thus ensuring solubilization of the whole pyrite grain, reducing the need
for fine grinding. In this regard coal porosity plays an important role: the exposure
of part of the pyrite grains at the pores’ edges (Fig. 5 [28]) being sufficient for their
biosolubilization.

Also worthy of note is the fact that the action of micro-organisms is favored
whenever they are able to excrete the extracellular polymeric substances (EPS)
(Chapter ‘‘Biomining’’) that acts as a bridge between the cell and the pyrite grain
[60]. This should also be taken into account when selecting the type of bioreactor
to be used, as described later. The EPS is possibly mechanically not very strong.
The author is not aware of any ‘‘ad hoc’’ publications on this subject, however, a
paper [45] on a similar subject could provide some indications. When economi-
cally convenient and the degree of intergrowth of pyrite with coal is on the order of
the centimeter, comminution can be reduced and bioleaching can be performed in
coal piles or heaps [8].

Fig. 5 Schematic of porosity
in coal. Only attached
bacteria are shown, but active
swimming also occurs. Most
pyrite particles may be much
larger than the bacterial cells.
Drawing not in scale
(Modified and redrawn from
[28] Copyright 1987 with
permission from VCH
Verlagsgesellschaft mbH)
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1.2 The Removal of Organic Sulfur

Organic sulfur atoms are covalently bound to the atoms of the carbon matrix as
thiols, sulfides, disulfides, and complex thiophenic ring systems. Several coals
contain aromatic heterocyclic compounds with the C–S bond; typical of these is
dibenzothiophene [33, 46]. The removal of organic sulfur therefore requires the
preliminary breakage of those C–S bonds. Let us first recall, for the benefit of those
readers who are not biochemists, that metabolic pathways are a series of chemical
reactions, occurring within a microbial cell, mediated by enzymes. In pyrite solu-
bilization the micro-organism gets the energy needed for its metabolism mainly
from the oxidation of pyritic iron in the divalent state. Hence, its metabolic pathway
had already been identified in early bioleaching times. For the organic sulfur
compounds identifying the metabolic pathway is more complex. In effect,
depending on the compound in which sulfur is chemically bound, the pathway can be
quite different. For this reason, model compounds have been, and continue to be,
investigated.

As far as the author is aware, no pilot testing of organic sulfur removal from
coal has been undertaken thus far. Therefore an overview of the most significant
research conducted to date and the results obtained are considered useful, chiefly
because some of them appear to be somewhat controversial.

The origins of research on organic sulfur removal by means of micro-organisms
date back to the 1950s, and concerned investigations aimed at removing organic
sulfur from petroleum. Research on the compounds contained in crude oil pro-
duced evidence of the presence of dibenzothiophene and this compound was
selected as a model compound for laboratory investigations into the possibilities of
C–S bond disruption via microbial attack, and the formation of water-soluble
compounds.

A number of micro-organisms have been claimed over the years to be capable
of breaking the C–S bonds in coal: Beijerinckia [43], Pseudomonas sp. [30, 32, 41,
51], Acinetobacter [29], Desulfovibrio desulfuricans, Rhodococcus rhodochrous
[25], Sulfolobus [34, 35], Brevibacterium, Cunninghamella elegans [17], Esche-
richia coli, Rhizobium [20].

The papers published by Isbister [29], Isbister and Doyle [30], and by Kilbane
[38] raised a great deal of interest at the time, as they claimed to have obtained
very encouraging results working with mutant strains on DBT and also on coal.
However, their findings were not subsequently confirmed.

In the late 1990s a comprehensive collaborative coal desulfurization project (Jouf
0039, Microbial Desulfurization of Coal) was launched, funded by the European
Commission which included as partners Germany’s Deutsche Montan Technologie
(D.M.T., Essen), Italy (Geoengineering Department of the University of Cagliari,
and the Italian Agency for Hydrocarbons, Ente Nazionale Idrocarburi (E.N.I.), The
Netherlands (University of Delft), and the United Kingdom (Stevenage Research
Laboratories). Within the framework of this project, the possibilities of organic
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sulfur removal were thoroughly investigated. In a series of papers [77–79] the
researchers from the German team produced evidence of having isolated a mixed
culture, named FODO, consisting of an Alcaligenes denitrificans subspecies and a
Brevibacterium species capable of utilizing dibenzothiophene as the sole sulfur
source for growth, and benzoate was used as the carbon source, and a pure Brevi-
bacterium sp. culture able to use dibenzothiophene as the sole source of carbon,
sulfur, and energy for growth. The remarkable feature of this work was that for the
first time evidence was provided of a sulfur-specific attack on DBT by a two-species
bacterial community that utilizes DBT as the sole source of sulfur. The proposed
pathway—developed after the metabolites of dibenzothiophene degradation were
identified as dibenzothiophene-5-oxide, dibenzothiophene-5-dioxide, and benzoate
by co-chromatography, UV spectroscopy, and gas chromatography mass spec-
trometry analyses—is shown in Fig. 6. Table 2 summarizes some of the most sig-
nificant results of organic sulfur bioremoval and points out that the best results were
obtained when Brevibacterium sp. or Pseudomonas sp. were used.

Fig. 6 Metabolic pathway of
DBT degradation by
Brevibacterium sp. DO
according to Van Afferden
(Modified and redrawn from
Van Afferden et al. [79],
Copyright 1990 with
permission from Springer)
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For DBT degradation the metabolic pathway 4S shown in Fig. 7 was proposed
by Kodama et al. [42]. Another pathway, called the 2S pathway (Fig. 8), termed
the ‘‘oxidative’’ pathway, is a carbon-targeted reaction and, as such, has little
relevance for coal desulfurization technologies [82].

As far as the 4S pathway is concerned, Andrews and Datta [3] presented an
analysis of the choice mechanism for sulfur removal from DBT and showed that
the free energy values of the intermediaries of the 4S pathway as calculated by the
chemical thermodynamics methods, imply that this process is generally thermo-
dynamically favorable with the exception of the step from DBT-5-oxide to sul-
fone. This conversion requires about 100 kJ/mole and, as the amount of energy
involved is fairly large, the reaction does not occur spontaneously, unless some
external agent takes part in the process. Therefore, according to these authors it
only can be said that DBT as a model compound can lead to misleading
conclusions.

Organic sulfur bioremoval was also tackled, very likely using the shaken flasks
technique, using unspecified fungi [18] with results that the authors claimed to be
better than those obtained with Sulfolobus but on which more information would
be desirable.

Table 2 Summary for organic sulfur bioremoval

Organism Organic sulfur
removal (%)

Substrate for adaptation/
enrichment

Reference

Pseudomonas janji
DDC279

[95 DBT [41]

Bacterial mixed culture 30 DBT [13]
Acidithiobacillus

ferrooxidans
56 – [23]

Pseudomonas sp. 47 DBT [29]
Sulfolobus acidocaldarius 10 DBT [36]
Defined bacterial species \7 Thiophene, cysteine, benzene,

sulfonic acid
[40]

Bacillus sp. 36 DBT [12]
Pseudomonas sp.
Micrococcus sp.
Pseudomonas putida 37 DBT [58]
Hansenula sp. \46 Cysteine, methione [72]
Cryptococcus albidus Thiophene, DBT
Gram-negative bacteria 0 DBT [73]
Bacterial mixed culture 33 DBT [66]
Brevibacterium sp.

(named ‘‘DO’’)
[95 DBT and thiamine [79]

Fungus \20 Not specified

Modified from Klein et al. [39], Copyright 1994 with permission from Elsevier
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2 Semi-Commercial Coal Biodepyritization Operation

The encouraging results of around half a century’s basic research on coal biode-
pyritization justified the move to continuous testing, initially at the laboratory scale
and subsequently at the semi-commercial pilot scale. The first laboratory-scale
continuous biodepyritization plant was designed and operated in the late 1980s at
Deutsche Montan Technologie (DMT) in Germany [6, 76]. The predominant
micro-organism in the mixed culture employed was A. ferrooxidans: the equip-
ment consisted of a cascade of eight 20-dm3 Pachuca-type units which achieved
pyrite conversions of up to 70 %. The authors claim that, at a slurry density of

Fig. 7 Metabolic pathway ‘‘4S’’ and its thermodynamic parameters (Modified and redrawn from
Andrews and Datta [3], Copyright 1991 with permission from EPRI)
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20 % (w/w), about 700 mg of ferrous iron were solubilized in 80 h. The Pachuca
reactors were originally developed and commercially applied by the hydrometal-
lurgists; their name derives from the Mexican city of Pachuca, where they were
first used for precious metals leaching. A Pachuca tank is a cylindrical tank with a
conical bottom. It contains a pipe that is coaxial with the leaching tank and open at
both ends; compressed air is introduced at the lower end of this pipe, which
behaves as an air lift. The density of the pulp within the pipe is less than that of the
pulp surrounding it because the column of air bubbles contained in the pipe, and
the pressure of denser pulp, causes the pulp in the central pipe to rise and overflow,
thus circulating the entire charge’’ [1].

They are substantially air-lift reactors (Fig. 9a) and were thoroughly investi-
gated ([65, 69]; [68]). Figure 9b shows a diagram of the Pyrex glass Pachuca
bioreactors designed and constructed by DMT.

Almost contemporaneously, a technoeconomic analysis of the continuous
biodepyritization process was published by the research team at the University of
Delft [7] and a proposal for scale-up of reactors for coal depyritization was also
published [2]. To be precise, it should be mentioned that a bench-scale

Fig. 8 Metabolic pathway ‘‘2S’’ (Modified and redrawn from Kilbane [38], Copyright 1990 with
permission from Elsevier)
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depyritization test was recently carried out [56] confirming the feasibility of the
process but with less attractive results than those obtained by the DMT. More
recently, Cardona and Marquez [9] applied bioleaching to coal depyritization,
although operating on 10 % solids suspensions. Interestingly, these workers used a
consortium of native micro-organisms.

The first semi-commercial continuous biodepyritization operation was designed
at the end of the 1980s by the partners in the EU Project JOUF-0039 (Microbial
Desulfurization of Coal). The plant, erected in an area of the chemical complex of
the Italian Agency EniChem, on the outskirts of the town of Porto Torres in
Northern Sardinia, had a capacity of 50 kg raw coal per hour and consisted of three
main sections: a comminution bay, a bioreactor bay, and a reject water purification
and disposal system. These are described in the following (Figs. 10 and 11).

2.1 The Comminution Bay

The comminution bay consisted of a 4,000-kilo head bin wherefrom the raw coal,
maximum size 100 mm, was conveyed by a belt feeder at a mass flow rate reg-
ulated by an automatic scale.

Fig. 9 a Pachuca-type bioreactor: principle: A air injector, F Feed inlet, O depyritized coal
suspension outlet. b Pachuca-type bioreactor: DMT model (Modified from Beyer et al. [6],
Copyright 1986 with permission from Springer)
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After removal of any tramp iron by means of a magnetic separator, the coal was
crushed in a hammer mill to a top size of 4 mm. Further size reduction to the
desired mesh-of-grind was performed in a wet ball mill, fed by a conveyor with the

Fig. 10 Porto Torres biodepyritization pilot plant: Coal comminution bay. 1 head bin, 2 belt
feeder, 3 automatic scale, 4 magnetic separator, 5 hammer mill, 6 belt conveyor, 7 wet ball mill, 8
preparation tank (Modified and redrawn from Rossi [62], and Loi et al. [49], Copyright 1993 with
permission from Elsevier)

Fig. 11 Porto Torres biodepyritization pilot plant: bioreactor and coal dewatering bay. 1
propagator, 2 pump, 3–9 stirred tank bioreactors, 10 pump, 11 rake thickener, 12 diaphragm pump,
13 settling pond, 14 to stock-pile (Modified and redrawn from Rossi [62], and Loi et al. [49],
Copyright 1993 with permission from Elsevier)
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ground product of the hammer mill. The coal (a batch of 200 tonnes) used for the
first run, designed to last a whole year, was supplied by the Seruci coal mine in the
Sulcis subbituminous coal basin located in southern Sardinia [10]. Part of the
pyrite contained in this coal is very finely intergrown with the matrix and pyrite
exposure requires grinding to 100 % passing 40 lm. Table 3 shows the typical
composition of this coal. The ground product flowed from the ball mill by gravity
to a 4 m3 preparation tank where the solids concentration was adjusted to the
desired value. The required nutrients and sulfuric acid solution for adjusting and
maintaining the pH of the suspension in the 2.10–2.35 range, optimum acidity for
Acidithiobacillus ferrooxidans, were then added.

2.2 The Bioreactor Bay, Depyritized Coal Stockpile, and Reject
Water Disposal

The thus-prepared suspension was pumped to a 7.5-m3 mixing tank, a ‘‘propa-
gator,’’ and inoculated with a microbial strain of A. ferrooxidans (very likely a
community also containing some Leptospirillum ferrooxidans [61]) supplied by
the biohydrometallurgy laboratory of the University of Cagliari, and from there
conveyed to the bioreactors. Pyrite biosolubilization was carried out in six 7.5-m3

stirred tank bioreactors, 4 m high and 2 m in diameter, arranged in cascade. Each
bioreactor was provided with a 1-m diameter six-bladed Rushton-type impeller
[19] driven by an electric motor coupled to a speed variator. The cylindrical
bioreactor tanks were equipped with four baffles at 90� from one another and water
jackets, where water at the desired temperature could be circulated in case of need.

Impeller speed and the instantaneous power consumption of each motor were
monitored on the control panel and recorded. More details on these reactors and on
the energy consumption at the various solids concentrations of the coal suspen-
sions can be found in Orsi et al. [55] and Loi et al. [48, 49].

Table 3 Characteristics of
Sulcis coal

Parameter Percent

Total moisture 7.33
Volatile content 42.95
Ash 11.44
Fixed carbon 45.61
Total carbon 61.70
Hydrogen 4.54
Nitrogen 1.15
Oxygen 14.53
Total sulfur 6.64
Sulfate sulfur 0.27
Pyritic sulfur 1.74
Organic sulfur 4.63
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As anticipated by other researchers [2, 6], solids concentration is a critical
technical and economic parameter in bioleaching in general [26, 54, 57, 62, 63]
and especially in coal biodepyritization [4, 8, 48, 49]. In fact, owing to the rela-
tively low economic value of coal, high solids concentrations need to be pursued,
resulting in smaller machine sizes and consequently lower headroom requirements
and investment costs. However, it seemed that, with current bioreactors, 20 %
solids was an insurmountable limit. It was therefore considered expedient to
thoroughly investigate this parameter, and runs lasting at least 15 days each were
carried out at 6.5, 13.5, 14.6, 19, 29.5, and 41.5 solids concentration.

Pyrite removal increased with the number of bioreactors in the cascade and
achieved 90 %, for all runs, in the fifth bioreactor, any increase in the next bio-
reactor being negligibly small. Most probably, the 10 % pyrite that remained in the
coal consisted of pyrite grains too minute to be liberated at the mesh-of-grind of
the ball mill; observations under the optical microscope produced evidence of the
existence of this kind of middlings. It was therefore considered quite reasonable to
carry out all calculations on the basis of a cascade comprising five bioreactors. For
a suspension flow rate of 250 L h-1, the average residence time was calculated to
be 8.25 days and the iron pyrite solubilization rate 36 mg dm-3 h-1, corre-
sponding to a pyrite solubilization rate constant of 1.53 9 10-2 h-1. The power
requirement per bioreactor operating with a 40 % solids pulp was 4.0 kW, with
cos u = 0.76 in alternating currents (cos u is the power factor, where u is the
phase difference between electromotive force and current); in electric power
contracts a clause frequently sets forth that if a customer permits the average
power factor of the load used to fall below a specified value, a penalty charge will
be made [1]. Hence, the power required for depyritizing 100 kg h-1 coal at 40 %
solids in the bioreactor section was calculated as 4.0 9 5 = 20 kWh, that is,
200 kWh per tonne dry coal. This is already a very encouraging economic result.
However, at the present cost of electricity the cost of the power requirement is still
too high, at least in some countries. More information on plant performance and on
the calculations can be found elsewhere [48, 49].

The depyritized coal suspension was finally pumped to a thickener. As the pH
of the liquid phase of the suspension was below 1.7, it was necessary to dispose of
the latter in a settling pond for separation of the clarified liquid phase. In effect, the
solid phase does not need to be completely dessicated, one of its most convenient
uses being as coal–water mixtures; however, owing to the high acidity of the liquid
phase—which can obviously be harmful to the machinery—the percentage of the
latter should be kept under strict control. A diaphragm pump was used to pump the
thickened solids out of the thickener and convey them to a stockpile.

It should also be observed that the processed coal contains less ash than the
feed, but it appears to have undergone considerable oxidation (Table 4).

In the biohydrometallurgy laboratory, the problem of the bioreactor’s headroom
and power requirement has been addressed and a novel type of bioreactor, named
‘‘Biorotor’’ [50, 64] was designed, developed, and tested. This bioreactor, con-
sisting of a cascade of rotating drums, is characterized by very gentle stirring with
minimal shear stresses within the suspension hence with very low stresses on the
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EPS layers. Two preliminary tests, carried out with 40 % solids suspensions, one
consisting of a mineral sulfides feed, and the other of the same Sulcis coal used in
the pilot plant, proved to be very encouraging, yielding the same percent sulfide
removal and lower power requirements.

The development of a bioreactor suitable for depyritizing coal suspensions with
solids concentrations higher than 40 % and lower power requirements and very
moderate stirring obviously warrants attention.

3 Concluding Remarks and Outlook

The feasibility of pyritic sulfur bioremoval has been ascertained at the laboratory
scale and confirmed by testing in a semi-commercial pilot plant on a somewhat
difficult to process subbituminous coal from the Sulcis basin (Sardinia, Italy). The
results of the pilot plant operation described above are very encouraging, although
the costs of power per tonne of coal processed appear to be high, at least at current
electricity prices. Bioreactors tailor-made for the biodepyritization process would
likely require less power than the conventional stirred tank reactors installed in the
plant. Evidence has been provided, in several decades of research conducted
worldwide, that mesophiles are the most suitable micro-organisms, although
process kinetics can be enhanced at high temperatures using thermophiles [14, 15,
34, 35]. In actual fact, as temperature is increased, so the detrimental effects of
jarosite precipitation emerge as solubilization kinetics slow down. One area that
has received little attention up to now, but that warrants careful investigation, is
microbial consortia.

Research on bioremoval of organic sulfur has not enjoyed the same success,
notwithstanding the major efforts undertaken in all industrial countries also on
account of its being very closely related with the problem of organic sulfur
removal from liquid fossil fuels. Most past and ongoing research is carried out in
the laboratory and concerns model compounds, especially DBT. The choice of
DBT has received some criticism on the grounds of chemical thermodynamics
calculations referred to the 4S metabolic pathway proposed as the mechanism of
choice for removing sulfur from DBT. Thus it is recommended that investigations
on other model compounds and on bacterial consortia should be completed.

Table 4 Comparison of the biodepyritization product and the feed sample

Coal characteristic features Coal feed sample Depyritized coal Variation (%)

Pyritic sulfur (%) 2.36 0.23 -90.25
Ash (%) 15.28 9.31 -39.07
Fixed carbon (%) 40.82 47.51 +16.96
Upper calorific value (kJ kg-1) 25.937 26.041 +0.40

Modified and redrawn from Loi et al. [48, 49], Copyright 1994, with permission from Elsevier
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At the end of the Alghero Symposium, a ‘‘Strategic Document’’ was drawn up
by a team of experts in compliance with the request by EC executives who had
supported the EC sponsorship. This document is an interesting outlook for future
research as one can infer from the following excerpt reproducing its introduction.
As an exercise during the Fourth International Symposium on the Biological
Processing of Fossil Fuels, the Organizing and Executive Committee attempted to
generate a document that would assist investigators in identifying research areas
which are market-driven and have a higher probability of receiving support. This
exercise was deemed of high importance since there has been a drastic decline in
funding of the classical research that has been represented by this symposium.
Members of the International Scientific Committee, Organizing and Executive
Committee, and symposium participants collaboratively discussed a variety of
strategic issues related to the biological processing of fossil fuels. These discus-
sions focussed on four key issues:

1. state-of-the-art of biological-based processing,
2. technical and economic bottlenecks to the successful commercialization of

biological-based processes for fossil fuels,
3. R&D programs which could overcome such bottlenecks, and
4. market forces which drive the development of biological-based processes. Each

of these issues were considered in the context of four major research areas:

1. gas processing, including metals, SO2, NOx, syngas, CO2, H2S and HCI
2. biodesulphurization processes, including coal and oil
3. metal-related processes, including coal, ash and oil, and
4. biosolubilization, bioliquefaction and biogasification.

Information was extracted from the six technical sessions and two workshops in
order to synthesize a synopsis of the relevant issues [74].
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Description of Basic Mining Legal
Principles

Reinhard Schmidt

Abstract The Federal Mining Act manages access, via the system of mining
concessions, to areas free for mining natural resources that do not belong to the
surface property and deposits’ owner. These cover especially important natural
resources for the economy, including coal, ore, salt, crude oil and natural gas, and
also terrestrial heat. For mining operations there exist, however, the same decrees
for natural resources in the property of the surface owners, which are predomi-
nantly higher-value industrial minerals such as roofing slate, basalt, quartz sand,
and clays for the fireproofing industry. In the case of mining laws, administrative
procedures such as issuing mining concessions, approving operating plans, and
issuing permits or licenses to explore according to water rights or the Federal
Immission Control Act, those authorities and departments in whose remit the
projects fall are dealt with by the Mining Authority. This means that the Mining
Authority is the only state point of contact for the applicant, essentially an ‘‘all-in-
one’’ service as it will itself instigate any further participation procedures required.
The classic licensing procedure of mining is the operations plan procedure,
whereby the operator submits an operating plan to the Mining Authority, which
then examines it to ensure it fulfills mandatory legal safety objectives. If necessary
these safety objectives can be met during licensing of the operating plans by
stipulating additional requirements, Depending on the subject and validity period
there are overall operating plans having the widest possible remit with compre-
hensive participation by the authorities and basic operating plans that form the
basis for every mining works. There are also special operating plans, which owing
to the dynamics of mining, resolve matters that suddenly become necessary or
when the basic operating plans as originally conceived were not relevant. The
closing-down operating plan is the designated tool for closing down works and for
the rehabilitation of the land; in the case of underground mining and mine bore-
holes an operating history must also be submitted. For those projects that have a
significant effect on the environment, an obligatory overall operations plan with
mining law project approval procedure and integrated Environmental Risk

R. Schmidt (&)
Technical University Bergakademie Freiberg, Institut für Bergbau
und Spezialtiefbau, Freiberg, Germany
e-mail: karin.kuettner@mabb.tu-freiberg.de

Adv Biochem Eng Biotechnol (2014) 142: 169–195
DOI: 10.1007/10_2013_197
� Springer-Verlag Berlin Heidelberg 2013
Published Online: 13 July 2013



Assessment (UVP) are necessary. The point at which this is required is stipulated
in the UVP-mining decree, for example if the mining area of an open-cast pit is
more than 25 ha. Alongside the UVP, the procedure is also equipped with public
participation and through its ‘‘concentrating effect’’ replaces further licensing
procedures according to other laws. The Mining Authority combines supervision
and licensing, which are usually inseparable due to the operations plan procedure,
as well as aspects of occupational safety and of the protection of the environment.
In view of this administrative concentration these should not be fragmented. The
‘‘all-in-one’’ service meets the requirements of a modern public-oriented admin-
istration, has only a few points of contact, and can therefore work efficiently.

Keywords Federal Mining Act � Operation Plan Procedure � Environmental Risk
Assessment (UVP) � Mining Concessions � German Reunification Act � Mining
Authorities � Water rights � Immision Control Act � Mining Supervision

Contents

1 The Federal Mining Act.................................................................................................. 171
2 The Setting Up of and Duties of Appropriate Authorities

and Organizations’ Legal Framework ............................................................................ 176
3 Mining Authorities in Germany...................................................................................... 176
4 Water Rights.................................................................................................................... 179
5 Immissions Control Act .................................................................................................. 179
6 Waste ............................................................................................................................... 179
7 Abandoned Mines............................................................................................................ 180
8 Participation Procedure of Other Authorities and Enquiries from Third Parties ......... 180
9 Vocational Training......................................................................................................... 180
10 Mining Concessions ........................................................................................................ 180
11 Cooperation Between Mining-Appropriate Authorities and Other Authorities ............ 181
12 Operating Plans and Operations Plan Procedure ........................................................... 183
13 Basic Operating Plan....................................................................................................... 184
14 Environmental Risk Assessment of Mining Procedures................................................ 185
15 Mining Supervision ......................................................................................................... 187
16 Rights and Duties of Supervisory Technical Officials .................................................. 189

16.1 Mining Authorities ............................................................................................... 189
17 Mining Employer’s Liability Insurance Association ..................................................... 190
18 Rights and Duties of Mining Companies ....................................................................... 190

18.1 Responsibilities..................................................................................................... 190
19 Mining Charts .................................................................................................................. 191
20 Rights ............................................................................................................................... 192
21 Duties of Those People Responsible for Safety in Mining Operations ........................ 192
22 Evaluation ........................................................................................................................ 194
23 Conclusion ....................................................................................................................... 195

170 R. Schmidt



1 The Federal Mining Act

The legal basis for exploration, mining, and processing of classic mineral deposits
in Germany is the Federal Mining Act (Bundesberggesetz-BBergG) passed on
August 13th, 1980 and newly amended July 31st, 2009. The Act, with its basic
decrees, came into effect January 1st, 1982, and replaced the numerous applicable
old state acts that had coexisted up until this point. These originated from the
period between the middle of the 19th century (1865 in Prussia) and 1978 in
Lower-Saxony. Through the enactment of the Federal Mining Act, the fragmented
mining laws in the former Federal Republic at that time were subjected to a federal
uniform decree.

Significant proven decrees were taken over from the most important previous
act, the Prussian General Mining Act 1865 (Allgemeines Berggesetz- ABG),
including:

• The designated scope for exploration, mining, and processing widened, how-
ever, to include reclamation.

• The catalogue of the economically most important deposits.
• The operations plan procedure as a dynamic and pre-emptive licensing proce-

dure in mining, concomitantly as an instrument of works supervision.
• The objectives (safety and health of the employees, prevention of risks to the

community, therefore protection of important transport routes from extensive
caving, protection of valuable mineral deposits from ruthless exploitation or
improper mining) which were to be achieved with the aid of the operations plan
procedures, extended, however, to include current concerns such as protection of
the environment and waste.

• The mining concessions, a system of mining permits for exploration and
exploitation in areas free for mining for mineral deposits, that are not owned by
the landowner.

• The system of responsible individuals (formerly supervisors), personal
requirements, and delegatable duties.

• Mining damages rights to compensate for unavoidable damage caused by
mining activities.

New additions to the act included the following.

• Reclamation, which is an explicit article of the mining law operations plan
procedures and not of the universally valid environmental protection laws.

• The extension of the remit to include terrestrial heat and underground con-
tainerless storage and disposal as well as (for the time being) underground cavity
structures; the latter was resolved in §130, however, it was later revoked.

• The reorganization of mining concessions; the former system of prospecting,
requesting a license to explore or to produce, was replaced by a license to
explore and license to produce and mine property to exploit in areas free for
mining mineral deposits; if the reasons for refusal have not been satisfied or
have been dealt with, there is a legal entitlement to be issued permission.
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• Data gathering by the states, of field and production output for exploration
(according to size) and exploitation (according to quantity) in areas free for
mining mineral deposits.

• Authorization to determine zone restrictions.
• The so-called securing of the raw materials clause in §48 paragraph 1 sentence

2: if there are competing public interests of equal importance, mining will be
given priority.

• Equal treatment of areas free for mining and mineral deposits of landowners in
the property of the surface owner in many areas.

The Federal Mining Act is revised regularly via a range of amendments and
articles and brought into line with current legal positions. Only a few important
decree regulations have been changed.

• The most important change was the introduction of an obligatory overall operation
plan, requiring a project approval procedure with public participation and an
integrated Environmental Risk Assessment (Umweltverträglichkeitsprüfung-
UVP) via the Act of Dcember 2nd, 1990. The inclusion of UVP procedures helped
realize European law into national law.

The aim of many European decrees is predominantly the protection of the
environment, occupational safety and health protection, and the removal of trade
barriers within the European Union. In the field of protection of the environment
the above-described implementation of the obligatory overall operation plans with
project approval procedure and UVP for those projects was realized, which placed
a particular burden on the environment.

The second area, in occupational safety and health protection, the General
Federal Mining Decree (Allgemeine Bundesbergverordnung-ABBergV) of October
23rd, 1995 came into force that year, and included, among other provisions, the
European legal demand for a safety and health protection document with a hazard
assessment for every company.

• Other changes of the BBergG dealt with deletion of the ambit for construction in
rock cavities or tunnel building in the older §130.

• Even outside the limits of mining act project approval procedures, public par-
ticipation in an ‘‘unofficial’’ operations plan procedure can be authorized by the
Mining Authority, if it is foreseeable that more than 300 people will be affected
by the project (§48 Paragraph 2).

The Federal Mining Act was preceded by a longwinded co-ordination process
among all parties involved (mining trade association, industrial unions of mining
and energy), federal departments (economy, work, domestic affairs, and justice),
and also the states via the Federation-Federal States Committee for mining, and
finally the Federal Council. Among other things, the catalogue of natural resources
covered by this law was extremely controversial. The father of the BBergG,
Dr. Hans Zydek, head of the department in the leading Federal Ministry of the
Economy, had initially listed in his draft bill of 1975 all natural resources
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excluding water. Until then only those natural resources of special significance to
the economy were listed in the ambit of the Prussian ABG, and those that did not
belong to natural resources in areas free for mining, were listed individually,
including coals, ores, and salt, and later crude oil and natural gas. In a Reich’s
decree of December 31st, 1942, the so-called ‘‘New Year’s Eve decree,’’ strate-
gically important natural mineral resources such as fireproof clays, fireproof
quartz, kaolin, spars, bauxite, diatomite, and other ‘‘in the property of the surface
owner natural resources’’ were also placed under mining supervision. The suit-
ability of clays and quartz for fireproof products was set at 1580 �C, so that coarse
clay for brick production was no longer included. Essentially, after participation of
the industrial associations, the catalogue listed in the Federal Mining Act so-called
areas free for mining and in the property of the surface owners’ natural resources
limited itself to this status quo, with a small exception, that fluorspar and barite
were included in the group of areas free for mining natural resources and the
catalogue of the property of the surface owners’ natural resources extended to
roofing slate, basalt lava, and trass (volcanic breccia).

Consequently, the majority of stone, earthen, and therefore building and mass
commodities were not mentioned in the individually listed areas free for mining
and in the property of the surface owners’ natural resources, but as a third category
of the so-called ‘‘surface property and deposits’’ natural resources’ owner, and as
before was not in the ambit of the Federal Mining Act, except underground
exploitation.

This marked the failure of the intended comprehensive legal simplification,
because of the quantity of shingle and building sands, approximately 250 million t
annual production as well as 200 million t broken hard rock produced in Germany,
10 million t quartz sand, and 1.5 million t gypsum, which heavily outweighed
production of those natural resources listed in the Mining Act (compare Fig. 1).

The legal position and also the jurisdiction for approval and supervision of
surface property and deposits’ owners of raw materials vary immensely. The state
Industrial Inspectorates as well as the Employers’ Liability Insurance Associations
are responsible for the supervision of occupational safety, whereas the supervision
of environmental protection comes under the aegis of the environment depart-
ments, district offices, or regional councils. In addition to this split in the super-
visory jurisdiction, the approval system is also confusing to outsiders.

• Surface mining, therefore excavation or a concentration of surface area of more
than 300 m2 and 2 m in height or depth, are considered building constructions
according to the Federal Building Code and the state building decrees subject to
this code. The authorities responsible for issuing permits are the towns and
municipalities.

• If hard rock is mined with explosives or flame jet in quarries, then these works
are subject to licensing under the Federal Immission Control Act (BImSchG) and
4. BImSchV. The relevant authorities are the district offices or municipalities not
associated with a county.
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• If gravel or gravel sand is extracted by dredging below groundwater level, for
example, with the aid of suction excavators, a permit regarding water rights is
required. The district office acts as the lower water board, and for larger projects
covered by Environmental Risk Assessment (UVP) either the regional councils
or those commissioned by the federal state governments as higher federal state
authorities are responsible.

• In North-Rhine Westphalia there is in addition to these laws an Excavation Act,
and the District Offices are charged with its enforcement.

• The UVP obligation is in accordance with the UVP laws or decrees of the
federal states, which have realized EU law.

At first in the GDR, as in the former FRG, the old federal state laws in all their
variety remained in force. However, the GDR Constitution in 1949 and the 1969
GDR Mining Act had determined that all mineral raw materials whose exploitation
was of economic importance, irrespective of the property of surface owners, were
now public property; the natural resources, however, were eventually only listed
because of a decree from August 15th, 1990.

The German Reunification Act of August 31st, 1990 extended the ambit of the
Federal Mining Act to include the new federal states, however, providing that the raw
materials within the context of the GDR §3 Mining Act and the relevant decrees
passed, are natural resources in areas free for mining within the context of the Federal
Mining Act. Several others, therefore those unlisted natural mineral deposits are,

Fig. 1 Annual Production of Raw Materials in Germany
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according to this provision, the property of the surface owner’s natural resources in
the context of the Federal Mining Act, and were only small mineral deposits limited
in size and worth and the smallest of companies. The decree governing conferment of
mine property of August 15th, 1990, two months prior to reunification, adequately
clarified the catalogue of natural resources. This covered not only coals, oil, gas, salt,
spars, and industrial minerals but also nearly all raw building materials in the stone
and earthen sectors. Consequently, there were only two categories in the former
GDR, as opposed to three in West Germany:

• Predominantly areas free for mining.
• Few were the property of the surface owner’s natural resources.

This meant that, contrary to the situation in the former FRG, nearly all natural
resources including building and mass commodities in the stone and earthen
sectors were considered areas free for mining and the companies were subject to
mining supervision. In the background of this provision was the assessment that
the building sector after reunification would be an important boost to the economy
and the production of the necessary raw materials should not be hindered by
unresolved questions of property ownership.

Consequently there was a transfer boom of mining authorizations (mining
property permits), which were sold by the Treuhandanstalt (Privatization Agency)
within the context of the privatization concept of the last GDR government to
private investors as well as a large number of applications for new licenses and
permits. After quick processing by the mining authorities in the new federal states,
production of stone and earthenware materials between 1991 and 1995 in some
cases tripled. Production figures subsequently fell once more due to the building
recession and competition between newly formed powerful companies increased.

One consequence of the different mining laws in West and East Germany were
the countless legal cases heard at the highest level as well as initiatives from
parties and federal state governments because of a considerable clash of interests,
in particular of surface property and deposits’ owners in the East, especially the
Farmers Association, which did not own any mass commodities, and the munic-
ipalities (Cities and Municipalities Conference) who should have been responsible
for enforcing this act according to building laws, which henceforth, however, were
enforced by the federal state mining authorities.

This process was concluded by an Act to simplify the legal status of mineral
deposits (Gesetz zur Vereinheitlichung der Rechts-verhältnisse bei Bodenschätzen,
April 15th, 1996) which could not rescind the German Reunification Act, but
prevent its future application on this issue. For constitutional reasons, all permits
issued until this point were granted a right of continuance, so that the vast majority
of the companies’ (ca. 80 %) overall production (ca. 95 %) remained under mining
supervision and only new projects and the few formerly in the property of the
surface owners’ natural resources that according to the new Act were too small.

In view of the fact that in the former GDR nearly all the stone and earthen
mining is under the mining authority, only the data gathered here are accurate.
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2 The Setting Up of and Duties of Appropriate Authorities
and Organizations’ Legal Framework

As concerns mining supervision, the Federal Mining Act states in §69 paragraph 2,
that mining is subject to supervision by the appropriate authority (mining
authority).

In §142 it is stated that the federal state governments or those authorities
designated by them to implement this Act, themselves appoint the appropriate
authorities. The implementation of the Federal Mining Act is therefore realized
differently by the federal states.

3 Mining Authorities in Germany

In the postwar period in the three occupied zones in western Germany, mining
along with agriculture was the most important sector for rebuilding the country
after being defeated in the war. The Western allies favored federalism when
politically rebuilding Germany, as it had a long tradition and had only been
completely eliminated during the period of the Third Reich from 1933 to 1945. In
1947 the federal states, then in 1949, the Federal Republic of Germany and, in the
Soviet occupied zone, the GDR were founded. The mining authorities had up until
this time (except under the Third Reich) always been state authorities; their tra-
dition dated back to the medieval concessions of the mineral royalties. The oldest
available document concerning the office of a so-called Master of Mines comes
from Freiberg, dated 1241.

With the support of the occupying powers, the mining authorities were re-estab-
lished according to a federal pattern. In the main it involves a three-tiered adminis-
trative structure with the Supreme Mining Authority (Department of Trade and
Industry), and the higher (Chief Mines Inspectorate) and lower administrative levels
(Mines Inspectorate). City states or states with little mining acceded via treaties to the
Chief Mines Inspectorate of neighboring federal states, for instance, the Chief Mines
Inspectorate in Clausthal-Zellerfeld acted on behalf of the federal states of Lower
Saxony, Schleswig–Holstein, Hamburg, Bremen, and initially even West Berlin. In
the Soviet-occupied zone and eventually in the GDR, Mining Authorities were dis-
banded and transformed into Technical Mining Inspectorates, which basically had to
yield to the goals of the centrally planned economy. After numerous serious mining
accidents in the GDR, a designated authority for mining supervision was set up once
more in 1959. It included a Supreme Mining Authority in the Council of Ministers of
the GDR in Leipzig, which at the end oversaw six Mining Authorities.

After reunification, despite early efforts to form cross-national Mining
Authorities—for example, in Lower Saxony—due to the growing self-confidence
of the new federal states this was only possible between Brandenburg and Berlin.
Initially the federal states of Saxony, Bran-denburg, and Thuringia founded their
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own Chief Mines Inspectorates and Mines Inspectorates, which were in part later
restructured in several stages via administrative reforms in order to reduce per-
sonnel. The current situation of the Mining Authorities of the federal states, whose
binding element is the Federal Government–Federal State–Conference for Mining
at the Federal Ministry for the Economy and Technology, is illustrated in Fig. 2.

The Supreme Mining Authority is always the Department of Trade and Industry
or the Economics Senate with the exception of Hesse and Thuringia, and recently
also Baden-Württemberg and Schleswig–Holstein, where the Environment Min-
istry is the Supreme Mining Authority.

The main task of the Mining Authorities is the formulation of natural resources
and energy political goals of the federal state governments. The Supreme Mining
Authorities (which, along with the regional councils actually belong to the middle
tier, but are responsible for the whole state, and are therefore described as
‘‘higher’’ authorities) formulate mining decrees and technical guidelines of general
significance. In addition to this they issue mining permits for areas free for mining
natural resources and carry out extensive official administrative procedures. The
lower Mining Authorities are responsible for directly overseeing the companies

Fig. 2 Mining Inspectorates, Federal Government—State Committee for Mining at the Federal
Ministry for the Economy and Technology
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and the more basic irregular licensing procedure, especially the operations plan
procedure.

In the last ten years, the following changes have occurred at the middle level.

• Two tiers (excluding Saarland) meaning that beneath the Ministry level there is
only one statewide competent authority (if necessary with branches), which
combines the tasks of the higher and the lower administrative levels, for
example, in Thuringia and Saxony, and temporarily as an intermediate stage in
Lower Saxony and Brandenburg,

• Merging the Mining Authorities with the geological services of the federal
states, for example, in Brandenburg–Berlin, Saxony–Anhalt, Lower Saxony,
Rheinland–Pfalz as an intermediate stage, and also temporarily in Baden–
Württemberg,

• Closing the Mining Authorities as special authorities and incorporating them
into regional councils, for example, in Bavaria, Hesse, and Baden–Württem-
berg, and in North-Rhine Westphalia.

The background to this total disbandment was due in part to the insignificance
of mining in Bavaria or Baden–Württemberg. In Hesse and North-Rhine West-
phalia it was a result of state politics. Merging mining and geology, however,
combines different modes of operations: implementation by the Mining Authority
and predominantly scientific work by the geology department. Both are respon-
sible for securing natural resources, which in view of the current world market, has
been given a totally new perspective. Therefore this merger is a sensible step,
reducing bureaucracy while maintaining the independence of these authorities.

The cooperation of several federal states on the basis of treaties, as adopted in
Lower Saxony, Brandenburg, and in former times in the Saarland together with
Rheinland–Pfalz, is considered beneficial by all experts.

The incorporation of higher authority responsibilities into a general adminis-
tration cannot adequately satisfy current demands of securing natural resources.
Furthermore, far-reaching decisions in a general administration are normally made
according to the current political climate. Natural resources-relevant decisions
require a long-term perspective and independence when considering the different
interests, and must not be screened beforehand within the same authority, for
example, such as environmental and regional development.

The oldest mining administration of Germany in Freiberg Saxony kept the
name Oberbergamt (Chief Mines Inspectorate) for historical reasons. It has been
retained in the new two-tiered mining administration because the description dates
back to 1542 and was a nucleus for many other institutions. The founding of the
University of Applied Sciences Mining Academy Freiberg in 1765, the oldest
mining university in the world, can be traced directly back to the director of the
Chief Mines Inspectorate. Its predecessor, the Stipendienkasse of 1702, was the
oldest state teaching establishment for mining worldwide. In the nineteenth cen-
tury, the state geological office was created by outsourcing the department Ge-
ognostische Landesuntersuchung (land exploration). Even the term nachhaltigkeit
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(sustainability) was coined by the Freiberger Oberberghauptmann v. Carlowitz
1713 (Chief Mines Captain) and originates from the Chief Mines Inspectorate.

4 Water Rights

In addition to these basic responsibilities designated in the Federal Mining Act, the
Mining Authority is responsible for the implementation of the Water Resources
Act (WHG) in mining facilities whereby the Mining Authority takes the place of
the Water Authority. Licenses to explore are nevertheless only to be issued with
the consent of the Water Authority. Typical examples are licenses to explore the
use of groundwater before lowering the groundwater level for open-cast pits or
discharging water from purified processing water into public waters and the
planning approval of open-cast pits for dredging below groundwater level while
exposing strata where the groundwater flows.

5 Immissions Control Act

Additionally, the Mining Authority is responsible for the implementation of the
Federal Immissions Control Act (BImSchG) in works subject to mining supervi-
sion. This covers predominantly irregular permits for setting up and operating
processing plants, for example, crushing and sifting plants, and also regular per-
mits, for example, for rotary kiln units to clean contaminated ground within the
remit of rehabilitating lignite processing facilities.

6 Waste

There is an exception clause in the Act for Promoting Closed Substance Cycle
Waste Management and Ensuring Environmentally Compatible Waste Disposal, in
favor of the Federal Mining Act when unavoidable mining waste is created during
exploring, mining, and processing mineral deposits. According to this Act, waste is
to be disposed of without any danger to the public within the framework of mining
law operating plans. These can be used for a variety of mining-technical purposes
because of their geotechnical properties.

Concomitantly it is possible to use nonmining mineral waste for these appli-
cations. Recycling mineral waste ensures, according to a ruling of the European
Court in 2003 and of the Clay Quarry ruling of the Federal Constitutional Court in
2005, a totally adequate waste recycling within the meaning of the Waste Act.
Many mines are used throughout the FRG to dispose of waste, also regulated by
the WHG.
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7 Abandoned Mines

When the reclamation works in the closure plans have been completed and the
works are longer expected to present a danger to the life and health of a third party
or the general public, mining supervision ends according to §69 Paragraph 2 and
in the event of any subsistence is not renewed.

In such cases concerning historically abandoned mines without any legal suc-
cessor, the Chief Mines Inspectorates becomes a ‘‘Special Regulatory Authority’’
by the states and is therefore responsible for public safety and order in abandoned
mines and other underground cavities. Because public safety and order are state
responsibilities, the Mining Authorities award contracts to secure and reclaim
affected areas.

8 Participation Procedure of Other Authorities
and Enquiries from Third Parties

The Mining Authority represents the concerns of securing natural resources and
public safety in official statements concerning planning schemes and licensing
procedures of other authorities acting as a public welfare agency.

9 Vocational Training

The Mining Authorities are responsible for both the work experience qualifications
before and during mining studies as ‘‘hardworking miners’’ as well as probationary
service in the higher civil service in mining and mine-surveying as mining
trainees/mine surveyor trainees after completing their university education. In
addition to North-Rhine Westphalia and Lower Saxony, Saxony because of its
close links to the Technische Universität Bergakademie Freiberg, also belongs to
the leading states (in terms of education and training) in Germany.

10 Mining Concessions

For exploration in areas free for mining natural resources, listed in §3 Para. 3
BBergG, those raw materials of special importance to the economy such as coals,
ores, salts, crude oil, and natural gas, according to §6 at the place already sited, a
license to explore and a license to produce for the production or mining property
(lordship) are necessary. The mining concessions are allocated irrespective of the
surface and deposits’ owner. The mining company is obliged to seek consent of the
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owner of the surface and mineral deposits when wishing to mine on land they do
not own.

A license to explore (for exploration) and a license to produce (for production)
must be issued if the requirements for a refusal listed in §§11 and 12 BBergG are
not met. Therefore the applicant has a legal entitlement, but the issuing authority
has only limited discretionary powers. A license to produce can be converted into
mining property (lordship), resulting in essentially the same rights, but easier to
borrow against, over a longer term, from the banks.

In order to ascertain rights of ownership of apparently ‘‘unowned’’ areas free for
mining mineral deposits, a license to produce must be applied for from the Mines
Inspectorate. This application must list the ‘‘prospective’’ natural resources as well
as the location and size of the area for which a license to produce is being applied.
Additionally, the proposed technical procedure of the development and production
are to be outlined in a work plan. The work plan is of particular importance in
ascertaining primacy among competing applications, whereas the date of appli-
cation is immaterial to precedence. The issued license to produce is a state con-
cession for the appropriation and extraction of the natural resources and protects
the holder from competition. It grants in disputes with the surface property and
deposits’ owner the right to demand Grundabtretung (acquisition procedure). This
constitutes compulsory purchase in the event that an amicable agreement cannot
be reached, if the raw materials extraction is in the public interest, for example, in
supplying the economy with natural resources or preventing redundancies.

The goal of a license to produce is the extraction of the raw materials and not
hoarding permits in order to eliminate the competition. For this reason the license
to produce is only valid for three years, during which an operating plan to com-
mence procedures must be submitted. If this is not adhered to, then the license to
produce expires. If the stated extraction goals, submitted in the operations plan are
achieved (i.e., buildings constructed, plant operated), the license to produce is
normally limited to 50 years, with the possibility of an extension.

11 Cooperation Between Mining-Appropriate Authorities
and Other Authorities

According to §15 BBergG, the Mining Authority before considering an application
(in this case for mining concessions) must give the authorities an opportunity to
express their views, whose responsibility it is to ensure that public interests are
fully realized. For mining concessions procedures these were the regional councils
and the administrative districts. The legislator does not explicitly stipulate the
participation of the municipalities, which in Saxony in order to keep the peace
nevertheless have, per departmental decree, voluntarily been included in the
procedures since 1994.
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The duty to ensure participation of other appropriate authorities for their
respective sectors, but also for other administrative acts of the Mining Authority, is
set in law. In particular the following has been established in the operations plan
procedure, according to §54 Paragraph 2: if through the measures intended in an
operating plan the remit of other authorities or the municipalities as planning agents
is infringed, these must then be included in the decision-making process by the
appropriate authority before the operating plans are approved. The participation of
third parties has not been allowed for in the Federal Mining Act, although they can
be included according to the Administrative Procedures Act §13 Paragraph 2
sentence 1, if their legal interests can be affected by the outcome of the procedures.
In Saxony organizational participation is mandatory as per §57 of the Saxonian
Nature Conservation Act and §60 of the Federal Nature Conservation Act.

In the event that more than 300 people are affected, §48 Paragraph 2 BBergG
also allows for public participation in irregular procedures (operating plans). This
right (of the decree), which had been incorporated into the Federal Mining Act
since the Moers–Capellen ruling of the Federal Constitutional Court of 1989, was
first exercised in the federal state of Saxony, in the case of an operating plan to
raise the groundwater level within the course of lignite rehabilitation by LMBV.

In addition to ‘‘participation’’ in the procedures of the Mining Authorities, an
‘‘understanding’’ according to the Water Resources Act is necessary, which
essentially means official approval must be obtained from the water authority. If
this cannot be achieved, an agreement has to be reached on a higher level (Mayor’s
Office/Regional Council or Department of Trade and Industry/Department of the
Environment).

A peculiarity of cooperating with other authorities is found in the ‘‘securing of
natural resources’’ clause in §48 paragraph 1 sentence 2. When implementing
statutory provisions care must be taken that exploration and extraction are impe-
ded as little as possible. In practice this means that mining will be given priority in
a situation of conflicting public interests; when considering pros and cons mining
must be prioritized. This also means for the other authorities, that they have to
assume mining interests will override others, if no predominantly public interests
militate against or even forbid mining (§48 Paragraph 1 sentence 1), for example,
on land that as per decree has been officially dedicated for public purposes. Among
other things, these decrees take into consideration that a mining project is bound
geographically to the mineral deposit, as a result of which there is significantly less
planning freedom than in other projects in trade and industry.

A hallmark of the ‘‘lignite’’ states of North-Rhine Westphalia, Brandenburg,
Saxony–Anhalt, and Saxony is the lignite planning procedure, which is carried out
at the same time as the mining law operations plan procedure. In contrast to the
operations plan procedure, the lignite plan is not drawn up by the mining company,
but by the Lignite Planning Office of a regional planning association. They focus
particularly on land use planning concerns. These factors come together in a lignite
plan, which combines the varied public interests of the planning region. The plan
is passed in an ‘‘association meeting,’’ presided over by the district administrators
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of the planning region, and then approved by the supreme appropriate authority for
land use and planning, the Ministry of the Interior.

As all lignite mines in Saxony had already been approved before the BBergG
came into effect on October 3rd, 1990, no mining project approval procedure with
UVP could be carried out due to the provisional regulations, which federal and
state higher courts later confirmed. From a mining law perspective these compa-
nies are operating on the basis of general operating plans, and the Mining
Authority required the submission of facultative overall operation plans. For this
reason the lignite plan is of particular importance as a vocalization of public
interests in the region.

The Mining Authority, under its own basic responsibility, safeguards all aspects
of occupational safety and health protection. Participation of Industrial Inspecto-
rates or the Employers Liability Insurance Associations is therefore not intended in
the licensing procedure. However, there is cooperation, in particular with the
Employers’ Liability Insurance Associations and also with the business associa-
tions and unions, as social partners, when drafting technical rules or mining
decrees.

12 Operating Plans and Operations Plan Procedure

The mining law operations plan procedure is a centuries-old instrument. During
the period of the directive (directorial principle) it also served to control company
constraints. It gradually developed into an inspective (inspectorial principle),
reducing the remit of mining supervision to policing duties, such as safety, health
protection, surface land conservation, and ensuring public welfare, and was
retained for well-considered reasons in the mid-nineteenth century. The official
explanation for its retention in the Prussian ABG of 1865 clearly lists benefits that
have not changed to this very day:

• An orderly business can only be directed on the basis of a plan.
• The prior submittal of this (operating) plan to the Mining Authority as a license

application has not significantly increased bureaucracy.
• It combines, however, approval action with supervision by giving the Authority

via the operating plan detailed insight into the company, making frequent
inspections no longer necessary.

• A prior submittal of the operating plans lies in the interests of both the company
and Mining Authority.

The operating plan, a typical mining permit instrument, was also integrated into
the Federal Mining Act of 1980 which because of its dynamic operating mode
could respond immediately to unforeseen occurrences at a mining company.

Approval of the operating plans is linked to a catalogue of ‘‘protection goals,’’
commensurate with the specific responsibilities of the Mining Authority: occu-
pational safety and health protection, providing for environmental protection,
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securing mineral deposits within the remit of relevant procedures, and ensuring
public welfare. On the other hand there is a legal entitlement to be given approval
if these criteria are met, therefore the authority has only limited discretionary
powers.

Subject to the matters of control the legislator has created several kinds of
operating plans in §§52 ff.

13 Basic Operating Plan

The legal basis for running a mining company is the basic operating plan (§52
paragraph 1). A basic operating plan, from which the actual permitted activities of
the company emanate, is necessary in each case in order to exercise the right
conferred by a mining concession (license to explore/license to produce/mining
property, ‘‘lordship’’) in areas free for mining mineral deposits, or on the property
of the surface owners’ natural resources (obtained via purchase or contract to use
the property). It is normally valid for two years, therefore the procedure corre-
sponds to the dynamic operating mode of the mines whereby the number of miners
varies constantly according to actual mining progress.

The legislator has designated the following types of operating plans, from the
setting up to operating to closing a mining operation, in the following order.

1. Overall Operations Plan

The overall operations plan considers the large-scale parameters of the projects,
when necessary in competition with other public and private interests and serves in
particular to bring about a wide participation as early as possible, of authorities and
departments and sometimes also associations. Preferably it should stay valid for a
long time, thereby allowing for the setting up, operating, and closing down of new
projects. This ensures the effects on third parties and also the environment are
transparent.

1.1 The facultative overall operation plan, already stipulated by the legislator in
the first draft of the Federal Mining Act, is to be presented to the Authority upon
request. In practice it serves, among others, uniquely to enable as wide a partic-
ipation as possible, thereby simplifying, in this respect, the subsequent procedure
of the basic operating plans, from which as described the actual permitted activ-
ities emanate.

1.2 In the widest reaching amendment to the BbergG, the legislator introduced
the obligatory overall operation plan in 1990. This must be submitted by projects
that present a particular environmental challenge. The ‘‘relevance threshold’’ of
the ‘‘challenge’’ is formulated in the UVP-Mining Decree of 2005, for example, by
open-cast pits which are currently a mining area of over 25 has; Germany followed
EU guidelines and the modus operandi of the other member states. From 1998 to
2005 the threshold of over 10-hectares mining area for open-cast pits was far more
restrictive, and at its most extreme before 1998, a total works area of over 10 ha.
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The obligatory overall operation plan is to be submitted before beginning the
projects and must also cover setting up. Approval may be given in stages for very
practical reasons; because of the highly complex procedures and the time required
there is the option of starting prematurely. Such a case would be when a positive
response, due to the submitted documentation, can be expected, the projects are in
the public interest, and the applicant has agreed that in the event of a refusal, to
restore everything to its former condition.

2. Next in the line is the basic operating plan, which covers the actual execution of
the work to be carried out (already described above).

3. For individual schemes that suddenly become necessary and could not be
addressed in the basic operating plan, there exists the instrument of the special
operating plan, which to a significant extent takes into account the dynamic
operating mode of mining. The special operating plan is not limited in time, but
in scope, that is, to a single scheme. Possible schemes falling within this remit
are, for example, erecting a fire dam around a fire area, the re-driving of a
dropped part of a drift, or inspection of a conveyor belt or a ramp.

4. For projects that have several operations, such as the siting of a central
stockpile for a common coal mix and storage yard or a common mine drainage
station, there is the option of joint operating plans.

5. Closing down the operations, which entails ceasing production and reclaiming
the surface area used, must be outlined in the closing-down-plan. The plan
remains valid until official supervision of the mine ends, therefore when it can
be expected that the site/operation no longer presents a hazard. All reclamation
procedures must be completed. The end result must be usable ‘‘blank’’ land.

Rehabilitation does not automatically mean restoration of the former condition,
but the orderly landscaping of the land surface affected by the mining, keeping in
mind public interests (§4 paragraph 4 a. a. O.). It is quite possible that public
interest, for example, as formulated by the District Offices as the lower environ-
mental protection authority, would prefer to see a lake in a disused open-cast pit
hole instead of the former agricultural land or woods, or using a former clay pit as
a landfill site.

The closing-down plan of underground mines or boreholes must be accompa-
nied by an operations history, which gives future generations information about
the remaining mineral deposits, quality characteristics, and intended purpose, and
particularities during processing, making it easier to decide whether to reopen the
mines if the economic climate has changed.

14 Environmental Risk Assessment of Mining Procedures

Along with the obligatory overall operation plan described in above 1.2, an
Environmental Risk Assessment (Umweltverträglichkeitsprüfung-UVP) according
to §57a paragraph 2 and §57c is necessary, which must consider the effects of the
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project on the environment. The environmental risk assessment consists of a
macroscopic (state planning) part, which usually is granted from the appropriate
authorities for regional development and state planning in the form of a precursory
nonindependent regional planning procedure. In Saxony these are the regional
councils. In the microscopic part the results on the basis of official statements of
the authorities involved are to be considered by the Mining Authority accordingly
and integrated into the decision. The final decision is made by the planning
approval authority, the Mining Authority. In several federal states this responsi-
bility was occasionally realized by the highest authority, the Department of Trade
and Industry.

The procedure itself is a mining laws project approval procedure. As such it has
a concentrating effect, therefore all concerns (excluding nuclear) are considered in
one official statement. This also encourages an intermediary examination, ensuring
that the interaction of different factors is taken into consideration; consequently,
unlike the case of the normal irregular operations plan procedure along with an
operating plan permit, for example, there is another BImSch-permit for water
treatment or a water authority license to explore to tap the groundwater in order to
drain it.

The disadvantage of an insufficient concentration effect in a normal operations
plan procedure is offset by speed and adaptability. To balance this out the Mining
Authorities of the federal states have been given special responsibilities for im-
mission control, water, and waste, which are clearly defined, also helping to
encourage an intermediary examination without, however, fulfilling the demand-
ing formal requirements of the project approval procedure.

In addition to this the project approval procedure is linked to public partici-
pation. After participation of the authorities, as a result of which the application
documents can be changed, the projects are made public in the media and put on
display for public inspection, for example, in the town hall. Private individuals
who feel this project infringes upon their rights can raise their objections within
the predetermined period. In a hearing, to which the person raising the objections,
applicant, technical authorities, and when necessary an expert are all invited, these
objections can be discussed and if possible also eliminated, with the results then
incorporated into the planning approval decision.

On occasion procedures other than the mining law procedure can be UVP-
binding. These include official procedures according to the Federal Immission
Control Act, as long as these projects are listed in the catalogue of the 4. BImSchV
in column 1; the projects in column 2 of this decree require only an irregular
procedure.

Project approval procedures according to water and waste legislation, which are
also UVP-binding, can also be linked to mining projects. Often they are, but
usually once mining has ceased. If, for example, after production has ceased in a
large lignite open-cast mine, and the remaining hole should be formed into a
permanent lake, project approval procedure according to the Water Resources Act
(Wasserhaushaltsgesetz-WHG) is necessary. The actual planning approvals
authority according to water rights varies in the federal states. In Brandenburg, for
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example, the Mining Authority is also the planning approvals authority according
to WHG in the above case. If a landfill site is to be opened in an open-cast pit after
production has ceased, this would require under certain circumstances UVP as part
of the waste legislation project approval procedures.

Scoping meetings are an additional advance Authority service to coordinate the
approvability of a project with the authorities and the applicant before procedures
officially begin. At this point it is also clarified which documentation is to be
submitted with the plan.

15 Mining Supervision

Mining supervision is carried out, as already described, by those offices designated
by the federal state governments. Since the mid-19th century when the inspection
principle was taken over from France, this has included reducing the policing
function duties, especially employee health and safety protection and protection of
the environment, as well as securing natural deposits.

Responsibility for operating safety lies strictly with the mining company, and is
subject to the control of the supervisory authorities. In practice the above-men-
tioned safety objectives are achieved within the scope of state implementation. The
mining authority/mining supervision covers the following aspects.

1. Supervisory Function

The supervisory function is performed by the higher and executive mining
technical office of the Mining Authority. These are university-qualified mining
engineers and in addition to this in several federal states with extensive mining,
also mining inspectors, usually experienced staff or technicians who carry out
works inspections. The mining inspectors are instructed by a social-political
advisor, who is a trained engineer and realizes the specific concerns of work safety.
He is also the contact person for the works council member of the mining works.

2. Permits

As already discussed in operating plans, granting permits is a further important
aspect of state duties. The peculiarity in mining is that, as described previously, the
operations plan procedure as a classic licensing procedure of mining is also an
effective instrument of mining supervision, because through the submission of the
operating plans detailed works information and descriptions are given directly to
the Mining Authorities. In mining legal terms, supervision and granting conces-
sions are therefore inseparable, which is often stipulated from outside in particular
by environmental authorities and classic administration departments from the
Mining Authority.

One result of the special remit is that in mining there are usually also licensing
procedures according to water, immissions, and waste rights all in the hands of the
Mining Authority, which then involves the appropriate subject office. For water
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rights procedures it also ensures an ‘‘understanding’’ is reached. The mining
company is offered an all-in-one service, conforming to the current administra-
tion’s postulate of ‘‘one address.’’ The European Union called this German system
‘‘Best Practice.’’

Outside of mining projects and mining supervision, which cover licensing
procedures according to different legislation (building laws, BImSchG, WHG,
surface mining act, waste industry act, and the circulation act), such a unity of
supervision and approval, does not exist. Licensing authorities are usually the
district offices as the lower, or the regional, councils as the higher immission
control, water, or waste authorities, or the Council Building Authorities. The State
Industrial Inspectorate is responsible for supervision and, irrespective of this, the
Employers’ Liability Insurance Associations for occupational safety, and the State
Environmental Departments.

A unity of supervision and licensing is therefore only guaranteed by the Mining
Authorities. The environment authorities often criticize mining supervision,
because this takes place outside their direct authority. The Mining Supervision’s
assessment criteria of the protection of the environment are, however, the same as
the environment authorities’: they are laid down in the relevant subject laws as
well as in the technical rules and regulations of LAGA (federal states working
group waste) and LAWA (federal states working group water) and are applied
similarly. One difference is, however, that supervision by the environmental
authorities initially ignores occupational safety and health protection.

3. Regulatory Jurisdiction

In addition to the listed responsibilities of supervision and licensing, a part of
the regulatory jurisdiction lies with the Mining Authorities. Mining has specific
dangers due to its dynamic operations, such as rock burst, firstfall and slumping,
water penetration, gas, dust, and danger of burning or explosion. Consequently the
specific rules and regulations of the mining decrees, and not the accident regu-
lations of the Industrial Employers’ Liability Insurance Associations apply. These
are in part passed by the Federation (BMWT), and in part by the federal states. The
authorization by the Federal Mining Act includes the decree of the higher Mining
Authorities. The first priority of the Mining Authorities is to ensure an orderly and
safe operation of the plants and approve the operations plan via commitments to
generally recognized technical rules. In the states there are special mining decrees
for individual mining branches, for example, hard coal mining, lignite mining, ore/
spar, and abandoned mines as well as crude oil and natural gas exploitation.
Decrees of general importance, such as for hoisting plant and inclined conveyors,
and the electrical mining decree, are harmonized as far as possible in the federal
states via the federal states mining committee. They are therefore passed in con-
formity, which is of particular importance for cross-border mining. Industrial
medicine is also covered by decree.
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16 Rights and Duties of Supervisory Technical Officials

16.1 Mining Authorities

Responsible companies and individuals have a duty of disclosure to the technical
supervision officials of the Mining Authorities and the obligation to submit doc-
umentation when requested.

The individuals charged with supervising mining by the Mining Authorities are
authorized (§70) to enter works premises, offices, and facilities of the respondents,
as well as watercraft (e.g., a floating dredger), carry out tests, inspections, and take
samples with them, and are allowed to inspect the business and production
documentation.

In order to prevent imminent danger to public safety and order, the above-
mentioned land and premises may also be entered outside normal company
working hours and also when they serve as accommodation as well. This limits the
basic right of inviolability of the home (Art. 13 Grundgesetz–GG) accordingly.
The latter applies especially when investigating accidents, in which case the
technical members of the Mining Authorities are auxiliary officials from the public
prosecutor’s office. In addition to this, the relevant Authority can sanction specific
measures in individual cases, in order to protect life, health, and property of
employees or third parties when necessary. The authority of the decree is also
necessary, in the event of an operation being closed down without an authorized
closing-down procedure plan and also in an emergency, if no responsible party can
be found, to ensure the above-mentioned requirements are met.

In the event of unapproved activities, exploration and extraction in areas free
for mining mineral deposits without a concession or running a company without an
operating plan or permit, members of the technical service of the Mining
Authorities can stop production, and in the field of the continental shelf even
decree that all facilities be removed. Explosives and ignition charges can be
secured and used in the event of a missing permit or unauthorized use.

The Mining Authority can forbid an operator employing a responsible
employee in the field they have been assigned to, if they deliberately or with gross
negligence contravene their responsibilities, or other facts come to light and
misgivings arise about the necessary reliability, expertise, and physical suitability.
If an operator does not respond to this order, all production can be stopped. This
also applies if misgivings arise as to the operator’s reliability.

The Mining Authority can order action to be taken to save injured people or
those in danger in situations where there is a danger to both employees and third
parties. Normally the rescue system is the responsibility of the operations manager
in co-operation with the Chief Rescue Officer of the mine rescue brigade.

The Mining Authority takes the place of the Industrial Inspectorates officials
(who are only responsible for other industries) in the fields of technical and
organizational safety of operations, and for ensuring health protection.
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17 Mining Employer’s Liability Insurance Association

The technical supervisory officials of the Mining Employers’ Liability Insurance
Association (BGRCI-Berufsgenossenschaft Rohstoffe, Chemische Industrie), in
contrast to other sectors in mining, do not have a supervisory or directive function.
They work in a consultative capacity in the fields of occupational safety and health
protection, as well as the prevention of occupational illness, accident recuperation,
rehabilitation, compensation, and annuities payment to bereaved families and
occupational illness of deceased insurants. In addition to this the BGRCI maintains
research institutes and clinics. The Mining Employers’ Liability Insurance Asso-
ciation also organizes and maintains central offices for mining rescue in Clausthal-
Zellerfeld, Hohenpeißenberg, and Leipzig; the central offices Friedrichsthal (Saar)
and Herne (Ruhr) are maintained by the German Hardcoal Authority (Ruhrkohle
AG–RAG) and subject to the Mining Authority.

In the former GDR there are also many building raw materials extraction works
subject to the Mining Authority. The Quarry and Underground Mining Employer’s
Liability Association is the institution responsible for the social pension fund and
accident insurance, which in these particular cases also do not have a supervisory
or directive function. They nevertheless work in close cooperation with the Mining
Authorities in a consultative capacity.

18 Rights and Duties of Mining Companies

18.1 Responsibilities

Since the Federal Mining Act came into force, the responsibility for orderly
management as well as safety and order in the operations is the responsibility of
the mining company. This includes, in particular, adherence to generally recog-
nized rules of safety equipment, even if these are not official legislation, as well as
other accepted work, scientific expertise, industrial medicine, and work-hygiene
rules (§61).

The operator may delegate part of his responsibility, such as managing the
operations or processes to other responsible individuals. These individuals must
receive written appointment and the Authority notified. Prerequisites required to
carry out these duties by the responsible individual are their reliability, expertise,
and physical suitability. All these are to be verified, for example, by a copy of
criminal records, certificates from a college/university, and a certificate of mining
suitability from a doctor qualified to do this.

When the operator delegates a responsible person to manage the works, his own
personal ‘‘reliability’’ suffices. The operator is also responsible for circumstances
or in situations that could pose a direct threat to the life or health of employees or
third parties, and at his own expense must take suitable action to alleviate danger
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or rescue the injured. This also applies to accident assistance agreements with
mine rescue brigades from nearby operations and the appropriate equipment.

19 Mining Charts

The operator must maintain mining charts for every extraction works and under-
ground explorations- operations, kept up to date within the mandatory time period.
Mining charts include an overview of the mine, other information such as outlines,
maps, and plans. The mining charts must be drawn up and completed by a mine
surveyor (Markscheider) recognized by the Mining Authorities. The mine surveyors
are graduate mining land surveyors with a university degree. When applying their
expertise they are completely autonomous and enjoy, like notaries, public faith.

In contrast to many of the mining regulations of the federation and the federal
states, which each had individual safety aspects dealt with in detail in the various
mining branches, the General Federal Mining Decree (ABBergV) should be viewed
as a covering law for safety and health protection in mining. It therefore replaces a
range of old mining decrees in the old federal states of Western Germany. In the
eastern federal states a decree will be issued that supersedes some of those time-
limited (in part due to the German Reunification Act till 1995), yet still applicable
former GDR mining decrees.

The background to the ABBergV decree is the implementation of European law
into national law, in particular the (framework) directive 89/391/EEC concerning
the implementation of measures to improve safety and health protection from July
12th, 1989, and a further 13 individual directives, for example, for drilling wells,
underground works, use of working equipment, protective clothing, safety mark-
ings, handling of loads, and visual display units.

The ABBergV emphasizes the personal responsibility of the operator for safety
and health protection and codifies the responsibilities and rights of the employees.
A particular focus of the ABBergV is the introduction of the safety and health
protection documents, which have hazard assessment at their core. This hazard
assessment is to be carried out in three stages: ascertaining the dangers, assessing
them, and having a written record of the results of the assessment.

In addition to the technical measures ensuring safety and health protection in
the works, a range of organizational measures has also added to the responsibilities
of the operator in the ABBergV.

• The operators have to take into consideration specific dangers, accident pre-
vention, and contingencies in case of emergency.

• The design of the workplace, bearing in mind the natural conditions, must
conform to basic ergonomic and safety standards guidelines. This includes
choice, use, and maintenance of working equipment, personal protective
equipment, and health and safety protection marking at the workplace in those
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cases in which the risk or dangers cannot be avoided just by technical or
organizational measures alone.

20 Rights

In order to ensure the highest possible extraction of the deposit, the mining
company has the right:

• For the land it requires, whose owners are not prepared to sell or sign a utili-
zation contract, to demand acquisition procedure according to §77 ff. BBergG.
This is bound to an official administrative procedure via the Mining Authority.
In practice, an acquisition procedure is considered when setting up open-cast
pits on conferred areas free for mining natural resources or when setting up
necessary surface installations, for example, a shaft site for underground mining.
The surface property and deposits’ owner has to tolerate underground mining
beneath his property and has no right of appeal (German Civil Code Bürgerli-
ches Gesetzbuch–BGB §§905 and 1004).

• To ensure maximum extraction of the deposit, the mining company has the
right, outside their field, to construct auxiliary drifts on fields not their own, for
example, for mine drainage or ventilation, use mine openings not their own for
the above-mentioned purposes, and demand Zulegung, thereby also extracting
natural in neighboring fields that would otherwise not have been extracted.

• The mining company can use the provisions concerning the ‘‘concessions
without latitude’’ mining concessions and operating plans to their advantage. In
the event of absence or elimination of impediment or reason for denying
approval they have a legal entitlement to a concession.

• Within the scope of the securing natural resources clause in §48 paragraph 1
sentence 2 BBergG, the mining company may assume that in the event of a
conflict of interests the Mining Authorities will decide in favor of mining.

21 Duties of Those People Responsible for Safety
in Mining Operations

As mentioned above, the mining company operator is responsible for safety and
order in the works. The option of delegating part of this responsibility does not
absolve him or her from this obligation, to ensure that those duties delegated to the
‘‘responsible persons’’ are unambiguous, cover all salient points, and have a
clearly defined remit. In addition to this the responsible persons must be provided
with all necessary documentation and operating plans.

If the Federal Mining Act primarily addresses the operator, the General Federal
Mining Decree (ABBergV) also has decrees governing the actions of the
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responsible persons and the employees. Form and scope of the supervision by the
responsible person have been consolidated in the ABBergV insofar as that some-
body must be responsible for every occupied workplace. Inspection frequency and
regulations governing the individual workplace are all clearly defined.

‘‘Responsible persons’’ must not only be able to fulfill their obligations, but
organizational measures within the company must guarantee that all obligations
are met.

If employee representation in the company is not mandatory according to the
Works Act, the individual employees have the right, according to ABBergV §7, to
be heard.

Only those procedures may be delegated to them that are commensurate with
their knowledge, experience, and physical abilities. Dangerous procedures may
only then be carried out when a ‘‘responsible person’’ has authorized this. There
must be a written procedure and those employees concerned must be acquainted
with it.

The employees are to be informed immediately about specific dangers during
emergencies and also about protective measures. As protective measures in a
company often do not suffice, the General Federal Mining Act also lays down that
the employees must behave in a safe manner. They have as far as possible to look
out for their own safety and for the safety of others who could be affected by their
actions or what they forget to do to ensure that working equipment and the per-
sonal protective equipment are used as intended, and specific incidents reported
immediately.

In addition to these responsibilities, the employees also have different rights,
such as of proposal, of complaint, and a right to cease all work in the event of
immediate significant danger. An employee must not be disadvantaged in any way
should he or she make use of these rights.

In addition to these in-house procedures, which are regulated by the Federal
Mining Act and the General Federal Mining Act, there is also the further instru-
ment of the works safety staff and company doctors.

On the basis of a decree passed by the federal states, (‘‘Mining Decree gov-
erning safety and company doctors,’’ BVOASi) the operator must set up a works
safety office and a works doctor’s service to help carry out the duties of improving
occupational safety, which includes averting work-related health risks and pro-
moting accident prevention in the company.

These can be organized as external or in-house services. These services are
unnecessary if the workforce is too small, or if the operator himself has partici-
pated in the relevant information, further training, and qualification courses.

The works safety office consists of qualified personnel for occupational safety
and safety engineers and technicians, auxiliary personnel samplers and measuring
assistants, and the concomitant facilities. Its duty is to advise the operator and
‘‘responsible persons’’ in managing the company; obtaining work equipment in
particular, hazardous substances; to advise of deficiencies found (or anticipated)
during regular inspections; to suggest improvements; and to collate employee
suggestions.
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In addition to this they are obligated to investigate the cause of work accidents
and occupational illnesses, and be involved in briefings and maintenance of work
safety facilities. These duties can also be carried out by ‘‘responsible persons.’’
Within the confines of these special duties the qualified personnel for occupational
safety are, however, completely autonomous. A prerequisite for this task is the
relevant expertise; personnel are chosen only by special appointment. The quali-
fied personnel for occupational safety are notably contact persons for the social-
political advisory councils and pit Inspectors of the Mining Authorities.

The works medical office must have at least one company doctor as well as
auxiliary personnel. They are obligated to advise the operator when planning,
constructing, and maintaining production, social, and sanitary facilities. They are
involved when obtaining working equipment, choosing and testing personal pro-
tective equipment, in questions of work physiology, psychology, ergonomics, and
hygiene, and also carry out employee physical examinations.

In a works safety commission in companies with 21 employees and above, the
operator works manager, representatives of the works committee, qualified per-
sonnel for work safety, company doctors, and safety officers must all be included.
The commission must meet at least quarterly.

22 Evaluation

Germany cannot be described as a natural resources-deficient country. Even if the
well-publicized hard coal mining is not cost effective and has experienced a large
decline over recent decades, Germany is nevertheless the biggest lignite producer
in the world: in potash and rock salt mining Germany is, respectively, the third and
fourth largest producer. Even in a range of industrial minerals, German industry is
among the leaders. We are self-sufficient, notably in rock and earthen mining, and
in potash and rock salt mining, but nearly fully reliant upon imports for metals. We
produce about a third of those energy raw materials we require.

The Federal Mining Act forms the basis for exploration, exploitation, and
processing mineral raw materials. The ambit of this Act, however, includes only a
selection of mineral deposits of specific importance. The vast majority of building
raw materials in the stone and earthen sector, and concomitantly the highest
proportion of production (in tonnage) of the exploited raw materials are subject to
the substantially different decrees of the building, water, and immissions control
laws. Only in the former GDR, where until 1996, on the basis of the transition
regulations of the German Reunification Act, all mineral deposits mining excluded
water subject to mining supervision.

It must be noted here that a unified legal settlement—planned before the
enactment of the Federal Mining Act—for all natural resources excluding water
would be an advantage for companies, the economy, and administration from
today’s standpoint, just as, for example, all waters are subject to the regulatory
ambit of the Water Resources Act. This fragmentation is a consequence of the
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conflict of interests between the trade associations that existed when the Act was
enacted, which today despite a change in interests, can no longer be remedied.

Due to the repeal of the §130 BBergG concerning cavity mining, the unified
Mining Authority for setting up and operating underground cavities has been
dropped. Consequently, tunnel and underground railway construction, for exam-
ple, are subject to a partially fragmented jurisdiction for occupational safety and
protection of the environment as well as for supervision and approval, which is
now considered a disadvantage because the technical procedures and requirements
are the same as those for mining.

The authorities responsible for mining supervision, despite unified federal law,
are federal state authorities. Their structure is dictated not only by the scale of the
mining, but also by federal, state, and political considerations and has developed
very differently in the last 10 years. Federal states with little mining partially
transferred the responsibilities of the relevant administration via treaties to
neighboring federal states, nevertheless ensuring that the concerns of securing
natural resources are represented by powerful bodies. Other federal states have, in
contrast to this, disbanded their Mining Authorities as relevant administrations and
transferred the duties to general authorities such as regional councils. Conse-
quently the aspect of securing natural resources is no longer considered as
important as other competing public interests.

In order to combine overall congeneric state facilities, the Geology Department
was amalgamated with the Mining Authorities in several federal states. As subject-
specific tasks vis-á-vis the internal administration of the Mining Authority are
highly dominant, as wide a span as possible concentration of subject-specific tasks,
if necessary including the Geological Offices, is significantly more efficient than
pooling the tasks of the internal administration in general authorities.

23 Conclusion

A few powerful bodies with a broad remit also for water rights concessions,
immission control, and waste have clear advantages over many small working
units within the general administration. This speaks in favor of powerful inde-
pendent Mining Authorities with the widest possible remit, if necessary including
the Geological Office.

The legal responsibilities of the Mining Authorities include, in addition to the
above-mentioned, securing natural resources occupational safety and health pro-
tection as well as the environment. These are implemented by the state via
supervision and approval. Concentrating these responsibilities under one roof
increases efficiency, is public-oriented, and advantageous for the execution of
administrative procedures.
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