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Preface

Bursty dynamics is a common temporal property of various complex systems in
nature but it also characterises the dynamics of human actions and interactions. At
the phenomenological level, it is a feature of all systems that evolve heteroge-
neously over time by alternating between periods of low and high event frequen-
cies. In such systems, bursts are identified as periods in which the events occur at a
rapid pace within a short time-interval while these periods are separated by long
periods of time with low frequency of events. As such dynamical patterns occur in a
wide range of natural phenomena, their observation, characterisation and modelling
have been a long-standing challenge in several fields of research. However, due to
some recent developments in communication and data collection techniques, it has
become possible to follow digital traces of actions and interactions of humans from
the individual up to the societal level. This led to several new observations of bursty
phenomena in the new but largely unexplored area of human dynamics, which
called for the renaissance to study these systems using research concepts and
methodologies, including data analytics and modelling. As a result, a large amount
of new insight and knowledge as well as innovations have been accumulated in the
field, which provided us a timely opportunity to write this brief monograph to make
an up-to-date review and summary of the observations, appropriate measures,
modelling and applications of heterogeneous bursty patterns occurring in the
dynamics of human behaviour.

Lyon, France Marton Karsai
Pohang, Korea (Republic of) Hang-Hyun Jo
Espoo, Finland Kimmo Kaski

July 2017
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Chapter 1
Introduction

To begin with, one defines bursty behaviour or burstiness of a system as intermittent
increases and decreases in the activity or frequency of events. Such a dynamical
system showing large temporal fluctuations cannot be characterised by a Poisson
process with a single temporal scale. Rather it can be considered as a result of
non-Poissonian dynamics with strong temporal heterogeneities on various temporal
scales.!

There are a number of systems in Nature that evolve following non-Poissonian
dynamics. One of the commonly known examples is the emergent dynamics of
earthquakes [17, 55, 58, 59, 255], in which the times of shocks occurring at a given
location show bursty temporal patterns, as illustrated in Fig. 1.1a. The occurrence of
such events is governed by the modified Omori’s Law [234], which states that the
frequency of aftershocks decreases as a power law and can lead to a broad inter-event
time distribution of shocks, when observed over a longer period of time. Another
example of a natural phenomenon exhibiting bursty temporal patterns is solar flares
induced by huge and rapid releases of energy [193, 297]. It has been shown that the
stochastic processes underlying these apparently different phenomena show such
universal properties that lead to the same distributions of event sizes, inter-event
times, and temporal clustering [59]. These kinds of heterogeneities in the behaviour
of systems emerging from different origins have been explained in the frame of self-
organised criticality (SOC) [16], which provides a commonly accepted example of
a theory for describing the burstiness of a system.

Non-Poissonian bursty dynamics is in general characterised by the heterogeneous distribution of
inter-event times passing between the consecutive occurrences of a given type of event. In contrast
a system with Poissonian dynamics, inter-event times are distributed exponentially. However, many
empirical inter-event time distributions are broad and follow a log-normal, Weibull, or power-law
form, implying that the underlying mechanisms behind them maybe different than a Poisson process.
See more about this question in Chap. 2.

© The Author(s) 2018 1
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Fig. 1.1 a Sequence of earthquakes with magnitude larger than two at a single location (south
of Chishima Island, 8th-9th October 1994). b Firing sequence of a single neuron from a rat’s
hippocampal. ¢ Outgoing mobile phone call sequence of an individual. The shorter the time between
the consecutive events are, the darker color is coded. (Source: This figure is adopted from Ref. [144]
and itis licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License)

Also in case of neuronal firing its sequences are featured as having bursty temporal
patterns [82, 148, 150, 277], as depicted in Fig. 1.1b illustrating a firing sequence
of a single neuron observed in-vitro in a rat’s hippocampus. Consecutive firings of a
single neuron but also of groups of neurons evolve in spike trains, in which the short
high-activity periods are separated by periods without any activity. Moreover, it has
been suggested that neuronal firing patterns might be the result of integrate-and-fire
mechanism [96], commonly assumed to occur in self-organised critical systems. This
theory accounts for bursty patterns evolving at the single neuron level, but at the same
time could explain collective firing patterns in a connected network of neurons.

Further examples of burstiness have been observed in the context of biological
evolution passing through bursty patterns [222, 280] both on short and long time-
scales with consistent patterns in the times of divergence across taxonomic groups.
Here it has been argued [280] that changes for short temporal scales (of the order
of ~1 million years) are constrained fluctuations and do not accumulate over time,
while for long temporal scales (~1-360 million years) the evolution yields bursty
patterns of increasing divergence due to radial phenotypic changes.

Burstiness is also seen in the contexts of ecology and animal dynamics where
heterogeneous temporal patterns characterise the dynamics of single animal move-
ments or even the evolution of larger ecological systems [31, 34]. Several examples
have shown [235, 258, 295] that the dynamics of animals, e.g., in initiating con-
flicts [235], communication, foraging [258], predators waiting in ambush [295], or
the displacement of monkeys or mice [38, 209] form complex self-similar temporal
patterns reproduced on multiple time scales very similarly to examples observed in
human behaviour. In addition bursty temporal patterns of switching between con-
trasting activities have been found in case of humans [22] and animals as well as
in mammalian wake-sleep patterns and in the stop-start motion of fruit flies [242].
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Based on these observations, it has been proposed [242, 258] that such dynamics
can be commonly investigated with priority queuing models, which were developed
primarily to understand human behaviour, but could also be used more generally to
make an association between the activity dynamics of animals and humans.

Apart from the above examples, scale-invariant bursty temporal patterns have also
been found in several man-made systems. One example is written text, in which suc-
cessive occurrences of the same word display deviations due to burstiness from the
Poisson behaviour and are well characterised by a stretched exponential or Weibull
distribution function [9]. In case of engineering systems perhaps some of the best
examples of bursty behaviour are in the context of package-based traffic and wire-
less communication signals, which were found to evolve through non-Poissonian
dynamics [49, 116, 173, 227]. Due to their importance in package overload and
resource management, thorough methodology has been developed to detect and pre-
dict bursty package arrival patterns, while several communication protocols were
proposed to avoid such situations [162]. As a final example of man-made system
behaving burstily we mention financial markets, in which non-Poissonian dynamics
characterises time series of returns of financial assets, stock sales, order books, and
other transactions. The characterisation of such phenomena falls within the scope of
econophysics [185], which has successfully applied methods borrowed from statis-
tical physics and signal processing to understand the dynamics of financial systems.

Although the above mentioned examples represent vastly different systems they
are all similar in showing bursty dynamical patterns at the phenomenological level.
Due to these apparent similarities the expectation is that these systems can be studied
with similar methodologies in terms of measuring and analysing their properties as
well as developing analytical theories and modelling to describe their behaviour.
Perhaps some of the best examples of these commonly applied developments are the
concepts of self-organised criticality for 1/f noise [16, 27, 40, 59, 117, 239], priority
queuing processes [21, 51], and self-exciting point processes [94, 196]. These have
been successfully used to model several of the above-mentioned systems, suggesting
common mechanisms, like integrate-fire, prioritising, or reinforcement processes, to
be acting in the background. Moreover, the burstiness can appear at different scales
of the system or levels of its organisation. In some cases it characterises the dynamics
of single units, like the firing of a neuron, movement of an animal, earthquakes at
a given location, or bursty overload of a single communication router. However, in
other examples burstiness appears as the mesoscale or system-level phenomena, like
the collective firing of networked neurons, collective migration of animals, emerging
earthquakes in a larger area, or correlated bursty traffic in communication networks.
All in all, these examples provide evidence of some form of universality and multi-
scale feature of burstiness, which commonly appears in Nature, man-made systems,
and also in human dynamics, as we will next explain in more detail.
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1.1 Bursty Human Dynamics

Let us now shift our focus from bursty behaviour in physical, biological, ecological
and man-made technological systems, on burstiness appearing in human behaviour,
social relations, and various other endeavours of human sociality. In the observation
of these systems the technological development plays an ever-increasing role, by
having facilitated novel means for people to connect, communicate and interact with
each other, at the same time leaving behind digital footprints of these events. All
these have already affected and continue to mold our social actions and behaviour
including the functions and services of our societies to the level that we can speak
about the techno-social behaviour of people. In addition, the vast amounts of digital
footprint data, which people generate using information communication technology
(ICT), reflect their social interactions as part of their life course and as members of
society.

In studying social systems the researchers have earlier confronted a quite insur-
mountable obstacle of the lack of data on human behaviour at multiple scales and
channels of communication. The availability of large-scale data and recent advances
in complex systems research, computational and data science, computer science,
network science, and social science would facilitate the quantitative analysis and
description of individual and social behaviour in a rather unprecedented way and
detail. Advances in these areas were limited by the difficulties of getting access or
collecting large amounts of detailed data (Big Data), which is necessary for vali-
dating theories and developing quantitative approach. However, we are more and
more in the position to follow the dynamics of multiple and simultaneous actions
and interactions of individuals, the interaction dynamics of groups and communi-
ties, and even the evolution of large-scale social systems. All this is possible with
access to large amount of anonymised data (for privacy preservation) collected from
communication logs or personal electronic devices. This in turn allows us to observe
directly the dynamics of millions of individuals or even to detect the emergence of
collective behaviour “in vivo” with minimal observational bias or intervention. As
we will discuss below these advances have already led to various observations of
bursty temporal patterns in several aspects of human dynamics.

Bursty behaviour has been found at different levels of human dynamics. At the
behavioural level the timings of actions by individuals were shown to present het-
erogeneous temporal patterns, while similar dynamics have been observed in dyadic
social interactions, or even in collective social phenomena. Among the first obser-
vations was the study of Eckmann et al. [65], who reported a broad inter-event
time distribution with a power-law tail by analysing the dataset for email corre-
spondence recorded at a university domain. A few months after that Barabasi pub-
lished his paper entitled by “The origin of bursts and heavy tails in human dynam-
ics” [21], where he proposed a priority queuing model to explain the broad inter-event
time distributions. This seminal paper initiated an avalanche of studies to observe,
characterise, and model bursty phenomena detected in a number of human activities.
Various examples of burstiness were found, like emails [21, 65], letter
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correspondence [218], mobile phone calls and short messages [144], web brows-
ing [62], printing [89], library loans [286], job submission to computers [159], and
file transfer in computer network [227], or even in arm movements of human sub-
jects [52], just to mention a few. To demonstrate a typical signal of bursty activity
we show the outgoing mobile phone call activity of a single person in Fig. 1.1c. In
addition, further examples were identified at the group or societal level, such as the
emergence of causal temporal motifs [164], the evolution of mass demonstrations,
revolutions, global information cascades, and wars [36, 275]. For further information
about these phenomena we refer the reader to a popular science book by Barabdsi [22],
which gives an entertaining summary about several of these observations.

In his original modelling study Barabdsi suggested that bursty activity patterns
could be the consequence of prioritising tasks [21, 218, 286]. In other words people
do not execute their “to-dos” in a random fashion but assign importance to each
task at hand. This induces intrinsic correlations between different tasks and results
in bursty patterns of completed activities. Since then alternative and fundamentally
different approaches have been proposed. One of the main alternative concepts was
suggested by Malmgren et al. [183, 184], who argued that “human behaviour is
primarily driven by external factors such as circadian and weekly cycles, which
introduces a set of distinct characteristic time scales, thereby giving rise to heavy
tails”. This approach assumes no intrinsic correlations in human activities but models
the dynamics as alternating homogeneous and non-homogeneous Poisson processes.
The third main modelling concept assumes strong correlations between consecutive
events and employs memory functions [88, 284], self-exciting point processes [130,
191], or reinforcement mechanisms [ 145, 290] in simulating bursty activity patterns.
Finally, several other modelling ideas were suggested assuming self-organised criti-
cality [275], local structural correlations [207], some dynamical process like random
walk [78], contact process [215], or voter model [68] to introduce heterogeneous
temporal patterns at the individual or system levels.

All these efforts lead to the situation in which bursty human dynamics became a
well-recognised research area, with wide-ranging studies, arich set of methodologies,
and several modelling concepts. Based on these advancements more far-reaching sci-
entific questions have been addressed about the effects of non-Poissonian patterns
of individuals on collective dynamical processes, whether they are ongoing or co-
evolving with bursty action and interaction patterns of individuals. A typical example
is the diffusion of information in a temporal social network where individuals inter-
act in a bursty fashion but are connected together in a network where information
can diffuse globally. The main question here is whether bursty dyadic interactions
enhance or slow down the speed and/or control the emergence of globally spreading
processes, like information diffusion, epidemics, or random walk [105]. Beyond the
conventional modelling and simulation techniques of such processes, data-driven
models and random reference systems [142, 201] were recently shown to be very
successful in addressing such questions.
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1.2 About This Monograph

As we briefly summarised above the fascinating phenomenon of bursty dynamics
of various human activities has been investigated widely over the last decade. All
these studies contributed to this field that emerged with a broad set of observations,
methodologies, modelling, and applications. Although there are still several open
questions, this field became specialised enough to benefit from a structured review
of already established results. This has been the main reason to motivate us to write
this monograph. Over the last ten years categorically different interpretations were
proposed to explain bursty patterns in human dynamics. Thus to inform the reader
about all the concepts and ideas, beyond a categorical summary of earlier results,
our secondary aim has been to introduce various explanations objectively and report
the related scientific discussions.

After this brief introduction we have organised our work in five chapters. First
in Chap.2 we summarise the relevant methodologies developed to observe, char-
acterise, and measure the non-Poissonian dynamics of human activities. After the
reader is familiarised with these techniques, in Chap.3 we turn to collect a number
of related empirical observations of human bursty phenomena in various systems
and at different organisational levels. In Chap.4 we give a systematic summary of
modelling concepts and principles, and finally in Chap.5 we discuss several stud-
ies addressing the effects of bursty behaviour on different dynamical processes. We
close the monograph with a Chapter to summarise, discuss, and conclude as well as
to propose some directions for future research.

To the reader of this monograph we want to emphasise that we focus exclusively
on heterogeneous temporal patterns in human dynamics. Thus the observations and
methodologies herein for studying other systems are out of our scope. More precisely
we focus on systems where the observed phenomena directly reflect the dynamics
of human actions or interactions. Hence we do not discuss the dynamics of systems
that are only indirectly related to human actions, like in the case of financial or
transportation systems. We also remark that although our aim has been to complete
as comprehensive review as possible of the field of human bursty behaviour, we might
have unintentionally missed some related articles, which we apologise for. Also note
that a review paper has been written recently about related topics [276], however
using a language which is not common in the international scientific community.
Thus we hope that our work gives a valuable contribution to the field and helps
students and experts who are interested to learn about bursty human dynamics.


http://dx.doi.org/10.1007/978-3-319-68540-3_2
http://dx.doi.org/10.1007/978-3-319-68540-3_3
http://dx.doi.org/10.1007/978-3-319-68540-3_4
http://dx.doi.org/10.1007/978-3-319-68540-3_5

Chapter 2
Measures and Characterisations

In order to investigate the dynamics of human social behaviour quantitatively, we first
introduce it as a time series and we show how it is characterised by means of various
techniques of time series analysis. According to Box et al.[37], a time series is a
set of observations that are made sequentially in time. The timing of an observation
denoted by ¢ can be either continuous or discrete. Since most datasets of human
dynamics have recently been recorded digitally, we will here focus on the case of
discrete timings. In this sense, the time series can be called an event sequence, where
each event indicates an observation. In this series the ith event takes place at time ¢;
with the result of the observation z; that can denote a number, a symbol, or even a set
of numbers, depending on what has been measured. The sequence of {(#;, z;)} can be
simply denoted by z,. Some events could occur in a time interval or with duration.
For example, a phone call between two individuals may last from few minutes to
hours [105]. In many cases as the time scale for event duration is much smaller than
that of our interest, the event duration will be ignored in our monograph unless stated
otherwise.

In most cases a time series refers to observations made at regular timings. For a
fixed time interval #;,, the timings are set as t; = fo + i fori = 0,1,2,---. In
many cases, fy and f;, are fixed at the outset thus they can be ignored for time series
analysis. An example of a time series with regular observations is the daily price of a
stock in the stock market, constituting a financial time series [185]. Such time series
are often analysed by using traditional techniques like the autocorrelation function
with the aim to reveal the dependencies between observed values, which often show
inhomogeneities and large fluctuations in them.

One also finds many cases in which the timings of observations are inhomoge-
neous, like in case of emails sent by a user[21]. The fact that the occurrence of
events is not regular in time leads to temporally inhomogeneous time series, poten-
tially together with the variation of observed value z;. In these cases we can talk about
two kinds of inhomogeneities in observed time series. On the one hand, fluctuations
are associated both with temporal inhomogeneities and with the variation of obser-

© The Author(s) 2018 7
M. Karsai et al., Bursty Human Dynamics,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-68540-3_2



8 2 Measures and Characterisations

vations. On the other hand, inhomogeneities can be associated only with the timings
of events, not with observation values. This is the case of several recent datasets, e.g.,
those related to communication or individual transactions. In such datasets events
are typically not assigned with content due to privacy reasons, thus only their timings
are observable. In the following Sections we will mainly focus on the latter type of
time series.

We remark that the time series with regular timings but with irregular observed val-
ues could be translated into time series with irregular timings. This can be done, e.g.,
by considering only the observations with z, > zy,, where zy, denotes some thresh-
old value. Then the time series can be generated, which contains only observations
with extreme values, like crashes in the financial markets. In the opposite direction,
the time series with irregular timings can be also translated into that with regular
timings, e.g., by binning the observations over a sufficiently large time window f,,.
More precisely, one can obtain the time series with regular timings as follows:

D S 2.1

kty <t<(k+1)t,

for all possible integers k. This constitutes a coarse-graining process for the time
series.

2.1 Point Processes as Time Series with Irregular Timings

A time series with irregular timings can be interpreted as the realisation of a
point process on the time axis. To introduce these interpretations, let us first dis-
regard the information contained in the observation results z,, as it is not generally
accessible, and consider only the timings of events. On the one hand, the event
sequence with n events can be represented by an ordered list of event timings, i.e.,
ev(t;) = {ty, t1, - - - , t,—1}, where t; denotes the timing of the ith event. On the other
hand, the event sequence can be depicted as a binary signal x(¢) that takes a value
of 1 at time ¢ = #;, or 0 otherwise. For discrete timings, one can write the signal as

n—1
NOEDI S 2.2)
i=0

where § denotes the Kronecker delta.
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2.1.1 The Poisson Process

The temporal Poisson process is a stochastic process, which is commonly used to
model random processes such as the arrival of customers at a store, or packages at a
router. It evolves via completely independent events, thus it can be interpreted as a
type of continuous-time Markov process. In a Poisson process, the probability that
n events occur within a bounded interval follows a Poisson distribution

Ate™*

n!

P(n) = (2.3)
where A denotes the average number of events per interval, which is equal to the
variance of the distribution in this case. Since these stochastic processes consist of
completely independent events, they have served as reference models when studying
bursty systems. As we will see later, bursty temporal sequences emerge with fun-
damentally different dynamics with strong temporal heterogeneities and temporal
correlations. Any deviation in their dynamics from the corresponding Poisson model
can help us to indicate patterns induced by correlations or other factors like memory
effects.

Throughout the monograph we are going to refer to two types of Poisson processes.
One type, called the homogeneous Poisson process, is characterised by a constant
event rate A, while the other type, called the non-homogeneous Poisson process, is
defined such that the event rate varies over time, denoted by A (). For more precise
definitions and discussion on the characters of Poisson processes we suggest the
reader to study the extended literature addressing this process, e.g., Ref. [84]. We
remark that the Poisson processes and their variants have been studied in terms of
shot noise in electric conductors and related systems [29, 42, 179].

2.1.2 Characterisation of Temporal Heterogeneities

The temporal irregularities of an event sequence can be characterised in terms of
various quantities. For this, a schematic diagramme and a realistic example of such
event sequences are respectively depicted in Figs.2.1 and 2.2a, where the example
has been generated using a model for bursty dynamics [130].

2.1.2.1 The Inter-event Time Distribution

In order to formally introduce these measures let us first consider an event sequence
ev(t;) and define the inter-event time as

T =t —ti—q, 2.4)
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Fig. 2.1 Schematic diagramme of an event sequence, where each vertical line indicates the timing
of the event. The inter-event time 7 is the time interval between two consecutive events. The residual
time 7, is the time interval from a random moment (e.g., the timing annotated by the vertical arrow)
to the next event. In most empirical datasets, the distributions of t are heavy-tailed

which is the time interval between two consecutive events at times #;_; and ¢; for
i =1,---,n — 1. Then we obtain a sequence of inter-event times, i.e., ief(7;) =
{r1, -+, 74—1}, where n > 2 is assumed. By ignoring the order of 7;s, we can
compute the probability density function of inter-event times, i.e., the inter-event
time distribution P (7). For completely regular time series, all inter-event times are
the same and equal to the mean inter-event time, denoted by (), thus the inter-event
time distribution reads as follows:

P(t) =48(r — (1)), (2.5)

where § () denotes the Dirac delta function. Here the standard deviation of inter-event
times, denoted by o, is zero.

For the completely random and homogeneous Poisson process, it is easy to
derive [84] that the inter-event times are exponentially distributed as follows:

P(r) = %e*’/ 8 (2.6)

where o = (7). Note that the event rate introduced in Eq. (2.3) is A = 1 /(7).
Finally, in many empirical processes in nature and society, inter-event time dis-
tributions have commonly been observed to be broad with heavy tails ranging over
several magnitudes. In such bursty time series the fluctuations characterised by o
are much larger than (7), indicating that P (t) is rather different from an exponen-
tial distribution, as it would derive from Poisson dynamics. Bursty systems evolve
through events that are heterogeneously distributed in time. It leads to a broad P(7),
which can be fitted with either power law, log-normal, or stretched exponential dis-
tributions, just to name a few candidates. Most commonly, many empirical analyses
show that P(t) could be described in the power-law form with an exponential cutoff
as
P(t) >~ Ct % /%, (2.7)

where C denotes a normalisation constant, « is the power-law exponent, and t, sets
the position of the exponential cutoff. Refer to an example of the power-law P(7)
in Fig. 2.2b. The power-law scaling of P(t) indicates the lack of any characteristic
time scale, but the presence of strong temporal fluctuations, characterised by the
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Fig. 2.2 a An example of the realistic event sequence generated by a model with preferential
memory loss mechanism for correlated bursts [130] using the parameter values of © = 0.1, v = 2,
and ¢ = &7, = 107°. The bursty behaviour of the event sequence can be characterised by b inter-
event time distribution P(7), ¢ bursty train size distribution P;(E) for time window At, and d
autocorrelation function A(#;) with time delay 7;. In addition, the burstiness parameter and memory
coefficient of the event sequence were estimated as B ~ 0.483 and M ~ 0.038, respectively

power-law exponent ov. Power-law distributions are also associated to the concepts
of scale-invariance and self-similarity as demonstrated in Ref. [212]. In this sense,
the value of « is deemed to have an important meaning, especially in terms of
universality classes in statistical physics [232]. Interestingly, as will be discussed in
Chap. 3, anumber of recent empirical researches have reported power-law inter-event
time distributions with various exponent values.

Nevertheless, we note that although recent studies disclosed several bursty systems
with broad inter-event time distributions, it is not trivial to identify the best functional
form of distribution fitting the data points and to estimate its parameters like the value
of power-law exponent. For the related statistical and technical issues, one can see
Ref. [50] and references therein. In addition, the effect of finite size of the observation
period on the evaluation of inter-event time distributions has recently been discussed
in Ref. [158].

2.1.2.2 The Burstiness Parameter
The heterogeneity of the inter-event times can be quantified by a single measure
introduced by Goh and Barabdsi [79]. The burstiness parameter B is defined as

the function of the coefficient of variation (CV) of inter-event times » = o /(1) to
measures temporal heterogeneity as follows:

B= =7 2.8)
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Here B takes the value of —1 for regular time series with ¢ = 0, and itis equal to O for
random, Poissonian time series where o = (7). In case when the time series appears
with more heterogeneous inter-event times than a Poisson process, the burstiness
parameter is positive (B > 0), while taking the value of 1 only for extremely bursty
cases with 0 — oo. This measure has found a wide range of applications because
of its simplicity, e.g., in analysing earthquake records, heartbeats of human subjects,
and communication patterns of individuals in social networks, as well as for testing
models of bursty dynamics [74, 79, 123, 130, 154, 177, 292, 303, 305].

However, it was recently shown that the range of B is strongly affected by the
number of events n especially for bursty temporal patterns [153]. For the regular time
series, the CV of inter-event times, r, has the value of 0 irrespective of n as all the inter-
event times are the same. For the random time series, one getsr = /(n — 1)/(n + 1)
by imposing the periodic boundary condition to the time series. This case basically
corresponds to the Poisson process. Finally, for the extremely bursty time series, one
has r = </n — 1, corresponding to the case when all events occur asymptotically at
the same time. This implies the strong finite-size effect on the burstiness parameter
for time series with moderate number of events. We also remark that B = 1 is realised
only when n — oo. Let us assume that one compares the degrees of burstiness of
two event sequences but with different numbers of events in them. If the measured
values of B are the same for both event sequences, does it really mean that those
event sequences are equally bursty? This is not a trivial issue. Thus, in order to fix
these strong finite-size effects, an alternative measure has been introduced for the
burstiness parameter in Ref. [153]:

B = vn+1r—+n—1 (2.9)

T WnF 1l =2r+n—1
which was devised to have the value of 1 forr = «/n — 1,0forr = /(n — 1)/(n + 1),

and —1 for r = 0, respectively. The authors claimed that using this measure, one can
distinguish the finite-size effect from the intrinsic burstiness characterising the time
series.

2.1.2.3 The Memory Coefficient

So far, we have ignored any possible correlation between inter-event times for the
sake of simple description. As a first approximation to quantify dependencies between
consecutive inter-event times, a joint distribution P (t;, T4, - - , Tj4x) of arbitrary
number of consecutive inter-event times can be directly studied in a non-trivial fash-
ion as introduced in Ref. [130]. For a simpler description of such dependencies,
Goh and Barabadsi [79] introduced the memory coefficient M to measure two-point
correlations between consecutive inter-event times as follows:
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n—2

(i = (D) (Tig1 = (1)2)

-2 0102 ’
i=1

(2.10)

with (t); (respectively (t),) and o (respectively 0,) being the average and the stan-
dard deviation of inter-event times {t;|i = 1,--- ,n — 2} (respectively {z;+]i =
1,---,n — 2}). Beyond only considering consecutive inter-event times, this mea-
sure can be extended to capture correlations between inter-event times separated by
exactly m — | intermediate inter-event times (m > 1). As a general form, the memory
coefficient can be written as follows:

(i (Tl 1)(Tz+m - <T)2)

n—m—1 - o107
i=

M, (2.11)

with the corresponding definitions of (t);, (7)», 01, and 05. Then, the set of M,, for
all possible m may fully characterise the memory effects between inter-event times.

Note that an alternative measure, called the local variation, was introduced origi-
nally in neuroscience [254]. The local variation is defined as

n—2

1 3(t — 1i41)°
V= E , 2.12
n—2%4 (5 +741)° .12

i=1

which takes the values of 0, 1, and 3, respectively, for the regular, random, and
extremely bursty time series. This measure has also been used to analyse datasets
describing human bursty patterns [12].

We also introduce an entropy-based measure for the correlations between con-
secutive inter-event times that applies only to the power-law inter-event time distri-
bution [15]. If the inter-event time distribution is a power law as P(t) o« t~* for
T > Tnin, to €ach inter-event time 7; one can assign a number r; as follows:

T l—a
ri=1-— , (2.13)
Tmin

which will be uniformly distributed between [0, 1). Then the correlation between
consecutive inter-event times is measured in terms of the mutual information using
the joint probability density function P (r;, ri41):

P(ri, rit1)
I(r,-;ri 1)E P(r,-,ri 1)10 |:— . (214)
* ZZ R PPl
If 7; and ;4 are fully uncorrelated, so are r; and r;, leading to the zero value of
the mutual information defined above.
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2.1.2.4 The Autocorrelation Function

The conventional way for detecting correlations in time series is to measure the
autocorrelation function. For this, we use the representation of event sequences as
binary signals x () as defined in Eq. (2.2). In addition, for a proper introduction we
need to define the delay time 7,;, which sets a time lag between two observations of
the signal x(¢). Then the autocorrelation function with delay time ¢; is defined as
follows:

e@x(t +12) — (x(0)7

A =
(1) (O — ()2

, (2.15)

where (-), denotes the time average over the observation period. For more on the
autocorrelation function, see Ref. [37]. In the time series with temporal correlations,
A(ty) typically decays as a power law:

Atg) ~ 1,7 (2.16)
with decaying exponent y . One can see an example of the power-law decaying A(z;)

in Fig.2.2d. In addition, note that one can relate A(#;) to the power spectrum or
spectral density of the signal x (¢) as follows:

2
P(w) = ‘ / x(O)e'”dt| / A(tg)e "M dty,, (2.17)

which appears as the Fourier transform of autocorrelation function. We are mostly
interested in the power-law decaying power spectrum as

P(w) ~w ™ (2.18)

with 0.5 < «, < 1.5, then the time series is called 1/f noise. 1/f noise has been
ubiquitously observed in various complex systems [18], hence extensively studied
for the last few decades.

The scaling relation between o and y has been studied both analytically and
numerically. Let us first mention the relation between «,, and y. If A(ty) ~ t, Y for
0 < y < 1, then from Eq. (2.17) one finds the scaling relation:

ay=1-7. (2.19)

When the inter-event times are i.i.d. random variables with P(7) ~ t~%, implying no
interdependency between inter-event times, the power-law exponent «,, is obtained
as a function of « as follows [8, 180]:

a—1forl <a <2,
oy, =13 —afor2 <a <3, (2.20)
0 fora > 3.
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For this result, the following inter-event time distribution was used:

a—1 —a
| =T forO<a <t <b,
Pty = [ 0 otherwise. @21)
Combining Eqgs. (2.19) and (2.20), we have
a+y=2forl <a <2, (2.22)

a—y=2for2 <o <3,

which have also been derived in Ref. [281]. The above power-law exponents can
be related via the Hurst exponent H, i.e., y =2 —2H [135] or o, = 2H — 1 [8,
248]. This indicates that the power-law decaying autocorrelation function could be
explained solely by the inhomogeneous inter-event times, not by the interdependency
between inter-event times. In fact, the observed autocorrelation functions measure
not only the inhomogeneities in inter-event times themselves but also correlations
between consecutive inter-event times of arbitrary length. Thus, it is required to
distinguish these effects from each other, if possible, for better understanding of
bursty behaviour. For this, another measurement has recently been introduced, called
bursty train size distribution, to be discussed below.

2.1.2.5 The Bursty Train Size Distribution

The above mentioned ambiguity of the autocorrelation function called for another
way to indicate correlations between consecutive inter-event times. A method has
been proposed by detecting correlated bursty trains as introduced in Ref. [144]. A
bursty train is a sequence of events, where each event follows the previous one withina
time window At. At actually defines the maximum time between consecutive events,
which are assumed to be causally correlated. In this way, an event sequence can be
decoupled into a set of causal event trains in which each pair of consecutive events
in a given train is closer than A¢, while trains are separated from each other by an
inter-event time 7 > At. To obtain the size of each bursty train, denoted by E, we can
count the number of events they contain, as depicted in Fig.2.3. Note that this notion
assigns a bursty train size E = 1 to standalone events, which occurs independently
from any of the previous or following events, according to this definition. The relevant
measure for temporal correlation is the bursty train size distribution P, (E) for a
fixed At. If events are independent, P, (E) must appear as follows:

At E-1 At
|:/ P(T)d{| |:1 —/ P(T)dl’] (2.23)
0 0

L e ElE(AD (2.24)
E.(At)

Pai(E)

&2
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E=2 E = E=1 E=4 E=1 E=

Fig. 2.3 Schematic diagramme of an event sequence, where each vertical line indicates the timing
of the event. For a given time window At, a bursty train is determined by a set of events separated
by T < At, while events in different trains are separated by © > At. The number of events in each
bursty train, i.e., bursty train size, is denoted by E. In most empirical datasets, the distributions of
E are heavy-tailed

where E.(At) = —1/1n F (At) with the cumulative distribution of inter-event times
F(Ar) = OAI P(7)dt. Since F(At) is not a function of E in this case, the functional
form of P () is irrelevant to the functional form of P,,(E), which appears with an
exponential distribution for any independent event sequences. Thus any correlation
between inter-event times may lead to different forms of Px,(E), implying that
any deviation from an exponential form of P,,(E) indicates correlations between
inter-event times. Interestingly, several empirical cases have been found to show the
power-law distributed train sizes as

Py(E) ~EP, (2.25)

with the power-law exponent g for a wide range of Ar [119, 144, 145, 152]. For
the demonstration of such observations, see Fig.2.4a—c adopted from Ref. [144].
This phenomenon, called correlated bursts, has been shown to characterise several
systems in nature and human dynamics [144].

Finally, we mention the possible effects of interdependency between inter-event
times on the scaling relations between power-law exponents of inter-event times and
autocorrelation function as presented in Eq. (2.22). For example, one can compare
the autocorrelation function calculated for an empirical event sequence with that
for the shuffled event sequence, where correlations between inter-event times are
destroyed, as shown in the lower right panels in each of Fig. 2.4a—c. By doing so, the
effects of interdependency between inter-event times can be tested. Such effects of
correlation between inter-event times on the scaling relation should be studied more
rigorously in the future as they are far from being fully understood. So far only a few
studies have tackled this issue, e.g., see Refs. [130, 144, 248, 281].

2.1.2.6 Memory Kernels

We also introduce the memory kernel as one of the measurements for the bursty
temporal patterns [12, 57, 191]. The memory kernel ¢ (7) relates the past events,
either being endogenous or being exogenous, to the future events. This measure,
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Fig. 2.4 The characteristic functions of human communication event sequences. The bursty train
size distribution Pa;(E) with various time windows At (main panels), the inter-event time dis-
tribution P (7) (left bottom panels), and autocorrelation functions A(zy) (right bottom panels) are
calculated for different communication datasets. (a) Mobile phone call dataset: The scale-invariant
behaviour was characterised by power-law functions with exponent values @ ~ 0.7, B >~ 4.1, and
y =~ 0.5 (b) Almost the same exponents were estimated for short message sequences taking values
a >~ 0.7, B ~39and y =~ 0.6. (c) Email event sequence with estimated exponents o =~ 1.0,
B ~2.5and y = 0.75. A gap in the tail of A(#y) on figure (c) appears due to logarithmic binning
and slightly negative correlation values. Empty symbols assign the corresponding calculation results
on independent sequences. Lanes labeled with s, m, h and d are denoting seconds, minutes, hours
and days, respectively. (Source: This figure is adopted from Ref. [144] and it is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License)

which represents the effect by the past events, has been empirically found to have

the power-law form as
¢ (1) ~ 110, (2.26)

where 7 is the elapsed time from the past event and 6 denotes the power-law expo-
nent characterising the degree of memory effects. However, in general, memory
kernels are also assumed to follow different functional forms, e.g., hyperbolic, expo-
nential [191], or power-law [130]. They are commonly applied in modelling bursty
systems using self-exciting point processes [196]: For a given set of past events
occurred before the time 7, the event rate at time ¢ reads as follows:

MO =V + D ¢t — 1), 2.27)

it;<t

where V (t) is the exogenous source, and #; denotes the timing of the ith event. We
are going to discuss more in details in Sect.4.1.2.2.
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2.1.2.7 Other Characteristic Measures

In addition to the conventional measures of bursty behaviour that we already intro-
duced, we here mention some less recognised ones. There indeed exist a number
of traditional measures and techniques in nonlinear time series analysis [136, 185].
Among them we here introduce the detrended fluctuation analysis (DFA), origi-
nally devised for analysing DNA sequences [228]. For a given time series x(¢) for
0 <t < T, with its average value (x), the cumulative time series is constructed by

y(@) = / (x(t') = (x))dr'". (2.28)
0

The total time period T is divided into segments of size w. For each segment, the
cumulative time series is fit to a polynomial y,,(¢). Using the fit polynomials for all
segments, the mean-squared residual for the entire range of time series is calculated
as follows:

T
F(w) = \//0 (@) — yu(®)]2dt, (2.29)

which typically scales with the segment size w as w'!. Here the scaling exponent H
is called the Hurst exponent [41].

2.2 Inter-event Time, Residual Time, and Waiting Time

As for the terminology for burstiness, there is a common confusion between the
definitions of inter-event time, waiting time, and residual time. Here we would like
to clarify their definitions and relations to each other.

For a given event sequence, the inter-event time 1 is defined as the time between
two consecutive events. However, the observations of an event sequence always
cover a finite period of time, which has to be considered in the terminology. So let
us assume an observer who begins to observe the time series of events at a random
moment of time, and waits for the next, firstly observed event to take place. The time
interval between the beginning time of the observation period and the next event
has been called the residual time t,, also often called the residual waiting time or
relay time [133]. A similar definition of the residual time is found in queuing theory
in a situation when a customer arrives at a random time and waits for the server to
become available [54, 56]. The residual time then is the time interval between the
time of arrival and the time of being served, thus it corresponds to the remaining or
residual time to the next event after a random arrival. The residual time distribution
can be derived from the inter-event time distribution as

P(z,) = L/oo P(v)dr, (2.30)
(T) Js,
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and the average residual time can be calculated as

00 2
(Tr) :/ 7, P(t.)dt, = E (2.31)
0 ()

This result explains a phenomenon called the waiting-time paradox, which has impor-
tant consequences on dynamical processes evolving on bursty temporal systems that
we will discuss in details later in Sect.5.1.1.1. As we mentioned earlier, a common
reference dynamics to quantify the heterogeneity of a bursty sequence is provided by
a Poisson process. Thus we may consider a normalised average residual time after
dividing (z,) by the corresponding residual time of a Poisson process (7,”), which is
simply (7). This can then be written as

m) (@) 1| (o} _ B*+1
W) T2 2 [(E) i 1} R 232

where o is the standard deviation of P(t) and B is the burstiness parameter as
defined in Eq. (2.8). Consequently this ratio can equally well be seen as a measure
of burstiness.

Contrary to the above definitions, waiting times are not necessarily derived from
series of consecutive events, but they can rather characterise the lifespan of single
tasks. The tasks wait to be executed for a period depending on their priorities as
well as on the newly-coming other tasks. In this way the waiting time t,,, also often
called response time or processing time, is defined as the time interval a newly arrived
task needs to wait before it is executed. For example, in an editorial process, each
submitted manuscript gives rise to one waiting time until the decision is made [91,
127, 205] and the waiting time distribution is obtained from a number of submitted
manuscripts. However, the heavy tail of the waiting time distribution, P (z,,), implies
the heterogeneity of the editorial system, but not necessarily the bursty dynamics
of the process itself. On the other hand, the waiting time can be deduced from
an event sequence, e.g., of directed interactions, like the time between receiving
and responding to an email or letter. In these cases, a close relation between P (7)
and P(t,) seems to appear. Actually, it has been argued that in case of a process
with heterogeneous waiting time distribution, the inter-event time distribution is also
heterogeneous and vice versa, and can be characterised by the same exponent [21,
70, 176, 286]. Waiting times will be duly addressed later in Sect.4.1.1, where they
appear as the central quantity in the definition of priority queuing models [2, 21].

2.3 Collective Bursty Phenomena

So far we have been discussing measures to characterise bursty behaviour at the level
of single individuals. However, individuals form egocentric networks and connected
to a larger social system, which could show bursty dynamics and be characterised at
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the system level. Since individual dynamics is observed to be bursty, it may effect
the system-level dynamics and the emergence of any collective phenomena, while
also the contrary is true: If the collective dynamics is bursty, it must affect the tempo-
ral patterns of each individual. The structure of social systems has been commonly
interpreted as social networks [35, 293], where nodes are identified as individuals
and links assign their interactions. Thanks to the recent access to a huge amount
of digital datasets related to human dynamics and social interaction, a number of
empirical findings have been cumulated to study the structure and dynamics of social
networks. Researchers have analysed various social networks of face-to-face inter-
actions [63, 72, 306], emails [65, 161], mobile phone communication [30, 219],
online forums [66, 108], Social Networking Services (SNS) like Facebook [279]
and Twitter [168], as well as even massive multiplayer online games [270, 272].
These studies of social networks show that there are commonly observed features
or stylised facts characterising their structures [115, 151, 206], see also the sum-
mary in Table I in Ref. [125]. For example, one finds broadly distributed network
quantities like node degree and link weight [4, 221], homophily [194, 210], com-
munity or modular structure [71, 83], multilayer nature [32, 156], and geographical
and demographic correlations [131, 220, 223] to mention a few. All these characters
play important roles in the dynamics of social interactions.

At the same time, such datasets lead to the observation of mechanisms and cor-
relations driving the interaction dynamics of people. This is the subject of the recent
field of temporal networks [101, 105, 106, 190], which identifies social networks as
temporal objects, where interactions are time-varying, and code the static structure
after aggregation over an extensive period. Temporal networks are commonly inter-
preted as a sequence of events, which are defined as triplets (i, j, t), indicating that
a node i interacts with a node j at time . The analysis of event sequences of large
number of individuals can disclose the mesoscopic structure of bursty interaction
patterns, and enable us to characterise burstiness at the system level as well.

2.3.1 Bursty Patterns in Egocentric Networks

The interaction dynamics of a focused individual or an ego can be exploited from the
global temporal network by extracting all event sequence where the ego i participates
as:

xi(0) =D a0, (2.33)

JEA

where A; denotes the neighbour set of the ego i. In other works, the event sequence
x;(t) builds up from interaction sequences on single links, x;;(¢), which together
define the dynamics of the egocentric network. Our first question is how the bursty
interactions of an ego are distributed among the different neighbours.

We have already discussed that by observing an individual, her bursty activities
may evolve in trains where several events follow each other within a short time win-
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Fig. 2.5 Schematic example of the event sequence of an individual A with her various contexts
(neighbours) B, C, and D. The collective inter-event time t (@ is defined as the time interval between
consecutive events of any contexts of the ego i = A. The contextual inter-event time 7/ is defined
between events of the same context, e.g., j = B

dow At. This is especially true for communication dynamics, where interactions
like mobile calls, SMSs or emails sent or received by an ego, exhibit such patterns.
However, the question remains whether such bursty communication trains are the
consequences of some collective interaction patterns in the larger egocentric net-
work, e.g., to organise an event or to process information, or on the contrary, they
evolve on single links induced by discussions between only two people. One can eas-
ily figure this out by decoupling the entangled egocentric dynamics to single links
and see how the bursty train size distribution P(E) changes before and after this
process. If the first hypothesis is true, as long trains of an ego are distributed among
many links, after decoupling the trains should fall apart and their size distribution
should change radically. On the other hand, if the second hypothesis is true, their
size distribution should not change considerably. Using mobile phone call and SMS
sequences, it has been shown in Ref. [145] that after decoupling, P (E) measured on
single links are almost identical to ones observed in individual activity sequences.
In support of this observation it has been found that ~80% of trains evolve on sin-
gle links, almost independently from the train size. Consequently, this suggests that
long correlated bursty trains are more like the property of links rather than nodes
and are commonly induced by dyadic interactions. This study further discusses the
difference between call and SMS sequences and finds that call (respectively SMS)
trains are more imbalanced (respectively balanced) than one would expect from the
overall communication balance of the social tie.

One can adopt the same picture to understand the contribution of bursty patterns
on links to the overall inter-event time distribution of an ego. This question was
addressed by Jo et al., who proposed an alternative explanation for bursty links
related to contextual dependence of behaviour. In their interpretation, the context of
anevent [121, 128] is the circumstance in which the event occurs and can be a person,
a social situation with some convention, or a place. In case of social interactions,
for an ego i the context of social interactions can be associated to a neighbour j
in the egocentric network. Then the question is how much contextual bursts, which
evolve in the interaction sequences of single links x;; (t), determine collective bursts
observable in the overall interaction sequence x; () of the ego i. This question can
be addressed on the level of inter-event times. As depicted in Fig.2.5, let us denote
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collective inter-event times in x;(¢) as v, while contextual inter-event times in
xij (1) as T Ttis straightforward to see that a contextual inter-event time comprises
typically of multiple collective inter-event times as follows:

7 =", (2.34)
k=1

where n — 1 is the number of events with contexts other than j between two con-
secutive events with j. For example, one finds n = 3 in Fig.2.5 between the first
and second observed interactions with context B. The relation between P (t ) and
P (t) for uncorrelated inter-event times has been studied analytically and numeri-
cally in Ref. [128], where both P (7)) and P(z") are assumed to have power-law
forms with exponents o’ and «, respectively. For deriving the scaling relation between
«’ and «, another power-law distribution is assumed for  in Eq. (2.34), i.e., the num-
ber of collective inter-event times for one contextual inter-event time, as P(n) ~ n~".
The distribution of n is related to how the ego distributes her limited resource like
time to her neighbours. Then one can write the relation between distribution functions
as follows:

o0
PED) =" P F, ("), (2.35)
n=1
. n 00 . . .. n .
F,l(r(”))EH/ dr’ P(r")s 'C(”)—Z‘Ek(l) , (2.36)
k=17T0 k=1

where F, denotes the probability of making one T/ as a sum of n s, and 7o is the
lower bound of inter-event times 7). By solving this equation, the scaling relation
between «’, «, and 7 is obtained [128]:

o =min{(@ — Dy — 1) + 1, a, n}. (2.37)

This result provides a condition under which the statistical properties of the ego’s
own temporal pattern could be described similarly to those of the ego’s relationships.

Note that this terminology can be generalised for event sequences not only on
links but for an arbitrary set of neighbours associated to the same context A. In this
case the contextual event sequence can be written as

xa(t)= D xij (), (2.38)
i,jeA

where the summation considers individuals i and j who both belong to the same
context or group of A. Then one can study the relation between statistical properties
at different levels of contextual grouping. For example, empirical analysis using
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online forum dataset was recently performed to relate individual bursty patterns to
the forum-level bursty patterns in Ref. [224].

In another work Song et al. [257] proposed scaling relations between power-
law exponents characterising structural and temporal properties of temporal social
networks. In terms of structure they concentrate on the distribution of node degrees
and link weights observed over a finite time period. Here the node degree indicates
the number of neighbours of a node, while the link weight is defined as the number of
interaction events between two neighbouring nodes. Both of these distributions can be
approximated as power-laws with exponents &; and ¢,,. To characterise the dynamics
of the network they consider individual activity a;, defined as the total number of
interactions of an ego i within a given period, and inter-event time distributions, but
not in real time but event times and not of egos but of social ties. In this case inter-
event time is defined as the number of events between two consecutive interaction
of the ego and one specific neighbour (similar to n in Eq. (2.34)). Distributions of
these dynamical quantities can be also approximated by power-laws with exponents
assigned as 1 + «, for activity and 1 4 «, for inter-event times. They first show that
the degree of a node i, denoted by k;, observed for a period [#;, ;] is increasing as

ki(ti, o) ~ a;(t1, )" (2.39)

They argue that the power-law exponent k; measured for an ego i, what they call the
sociability, satisfies the condition

Kitor; =1, (2.40)
where «; ; denotes the inter-event time exponent observed in the interaction sequence

of the ego i. They further argue that the degree and weight distribution exponents
can be determined by the dynamical parameters as

8k=1+min[ Ya_ é] 6y =2 —@,, (2.41)
l1—a; a;lna

where o; and a denote average values, while u is a parameter capturing the vari-
ability of sociability k. The authors support these scaling relations by introducing
the scaling functions to scale the corresponding distributions obtained from various
human interaction datasets.

2.3.2 Bursty Temporal Motifs

Taking off from the egocentric point of view, bursty temporal interaction patterns
can appear not only centered around a single ego but also between a larger number
of people. Such patterns are formed by causally correlated sequence of interactions,
which appear within a short time window between two or more people. These tem-
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Fig. 2.6 a A directed temporal network between four nodes a, b, ¢, and d with four events, ey, e2,
e3, eq, respectively at t = 15, 18, 24, and 33. By assuming that Ar = 10, e; end e4 are adjacent but
not At-adjacent. b—d All 2-event valid temporal subgraphs. e An invalid subgraph because it skips
the event e; that for node a takes place between e and e3

poral motifs are arguably induced by group conversations, information processing,
or organisation like a common event, etc., and can be associated to burstiness at the
mesoscopic level of networks. The emergence of such group-level bursty events is
rather rare and it strongly depends on the observed communication channel and the
type of induced events. However, it has been shown that some of them appear with
a significantly larger frequency as compared to random reference models.

Temporal motifs are defined in temporal networks. For a schematic example, see
Fig.2.6a. Here interactions between nodes occur in different timings and they are
interpreted as events assigned with time stamps. For a more detailed definition and
characterisation of temporal networks we refer the reader to Refs. [105, 190]. Tem-
poral motifs consist of At-adjacent events in the temporal network, which share at
least one common node and happens within a time window Az. Two events that are
not directly Az-adjacent might be Az-connected if there is a sequence of events con-
necting the two events, which are successive in time and Az-adjacent. A connected
temporal subgraph is then a set of events where each pair of events are Az-connected,
as depicted in Fig. 2.6b—e. To define temporal motifs we further restrict our definition
on valid temporal subgraph where for each node in the subgraph the events involving
the node must be consecutive, e.g., as in Fig. 2.6b—d. Note that for the final defini-
tion of temporal motifs we consider only maximal valid temporal subgraphs, which
contain all events that are Az-connected to the included events. For a more precise
definition, see Refs. [163, 164]. Also note that an alternative definition of temporal
motifs has been proposed recently, where motifs are defined by events which all
appear within a fixed time window [225].

One way to detect temporal motifs is by interpreting them as static directed colored
graphs and find all isomorphic structures with equivalent ordering in a temporal net-
work [163]. The significance of the detected motifs can be inferred by comparing the
observed frequencies to those calculated in some reference models, where temporal
and causal correlations were removed. Such analysis has shown [163] that the most
frequent motifs in mobile phone communication sequences correspond to dyadic
bursty interaction trains on single links. On the other hand the least frequent motifs
are formed by non-causal events, suggesting strong dependence between causal cor-
relations and bursty phenomena.
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2.3.3 System Level Characterisation

Finally, we discuss methods to characterise bursty phenomena at the level of the whole
social network. Temporal inhomogeneity at the system level can be measured in terms
of temporal network sparsity [230]. This measure counts the number of microscopic
configurations associated with the macroscipoc state of a temporal networks. This
concept of multiplicity has been known in statistical physics. More specifically, in a
temporal network for a given time window, events can be distributed over the links
of the corresponding static structure. Here we denote a link between nodes i and
j as ij, and the set of all links as L. Thus, for a time window one can measure
the fraction of events on a given link ij, denoted by p;;, and compute the Shannon
entropy considering each link ij € L as:

Hp == pijlnpy, (2.42)

ijeL

which quantifies how heterogeneously events are distributed among different links.
After computing an average entropy (H, ) over several time windows, one can esti-
mate the effective number of links as

L™ = exp((H.)), (2.43)

which gives the number of links in a given time window assuming that the event
rate per a link is constant. Simultaneously measuring the effective number of links
in the empirical temporal network and in a random reference model where events
are uniformly distributed in time, one can introduce the notion of temporal network
sparsity:

Leff

eff
L ref

Ctemp = (2.44)

This measure indicates the overall distribution of events within a given time win-
dow as compared to the case with homogeneously distributed events. The smaller
value Zemp has, the more severe heterogeneities characterise the event sequence and
the more “temporally sparse” the network is. This measure turns out to have some
explanatory power for spreading dynamics on various temporal networks [230].

2.4 Cyclic Patterns in Human Dynamics

It is evident that humans follow intrinsic periodic patterns of circadian, weekly,
and even longer cycles [5, 122, 123, 184]. Such cycles clearly contribute to the
inhomogeneities of temporal patterns, and they often result in an exponential cutoff
to the inter-event time distributions. Identifying and filtering out such cyclic patterns
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Fig. 2.7 a An example of the deseasoning method applied to a mobile call series of a user, with
T = 1 week. The top shows the first two weeks of the call series colored in red (the first week)
and blue (the second week). Events for all weeks are collected in one week period to obtain the
event rate p(t) for 0 <t < T. After deseasoning, the events in each week are put back to their
original slot. b The original inter-event time distribution for individuals with 200 calls is compared
to the distributions with deseasoned inter-event times for various values of 7¢5. (Source This figure
is adopted from Ref. [123] and it is licensed under a (©IOP Publishing & Deutsche Physikalische
Gesellschaft (CC BY-NC-SA))

from a time series can reveal bursty behaviour of different origins than those cycles.
In order to characterise such cyclic patterns, let us consider a time series, i.e., the
number of events at time 7, denoted by x (¢), for the entire period of 0 < ¢ < T. One
may be interested in a specific cycle, like daily or weekly ones, with period denoted
by T(s. Then, for a given period of (s, the event rate with O < ¢ < T(5 can be defined
as
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- T/To T
pn) =~ Z;‘ x(t +kTs), X E/O x(t)dt. (2.45)

Such cycles turn out to be also apparent in the inter-event time distributions P (7).
For example, one finds peaks of P(tr) corresponding to multiples of one day in
mobile phone calls and blog posts [122, 155]. Note that such periodicities could be
characterised by means of a power spectrum analysis in Eq. (2.17), however here we
take another way.

Once such cycles are identified in terms of the event rate p (), we can filter them
by deseasoning the time series [123]. First, we extend indefinitely the domain of
p(t) by p(t + kT5) = p(¢) with an arbitrary integer k. Then using the identity of
p(t)dt = p*(t*)dt* with the deseasoned event rate of p*(1*) = 1, we can get the
deseasoned time #*(¢) as

t*(t)E/ p(thdt'. (2.46)
0

For the schematic example of the deseasoning method, see Fig.2.7a. In plain words,
the time is dilated (respectively contracted) at the moment of the high (respectively
low) event rate. Then the deseasoned event sequence of {r*(¢;)} is compared to the
original event sequence of {z;} to see how strong signature of burstiness or memory
effects remained in the deseasoned sequence. This reveals whether the empirically
observed temporal heterogeneities can (or cannot) be explained by the intrinsic cyclic
patterns, characterised in terms of the event rate. For example, if one obtains the
deseasoned inter-event time t;* corresponding to the original inter-event time 7; =
ti —ti—1 as

T =15() — 17 (ti-) :/i pHdt', (2.47)

i—1

then the deseasoned inter-event time distribution P(t*) can be compared to the
original inter-event time distribution P (7). This method was applied to the mobile
phone call series [123], as partly depicted in Fig.2.7b, where the inter-event time
distributions for the original and deseasoned event sequences show almost the same
shape for various values of 75. This indicates that there could be other origins for the
human bursty dynamics than the circadian and weekly cycles of humans. In order to
quantitatively study the effects of deseasoning, the burstiness parameter B has been
measured for both original and deseasoned mobile phone call series to find the overall
decreased yet positive values of B, implying that the bursts remain after deseasoning.
In addition, the memory coefficients M,,, bursty train size distributions P, (E), and
autocorrelation function A(#;) can be also measured by using the deseasoned event
sequence of {¢*(#;)} for the comparison to the original ones.

Itis straightforward to extend this method for the aggregated time series at different
levels of activity groups, including the whole population. For a set of individuals A,
the number of events in time ¢ is denoted by
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xa(t) =D xi(0), (2.48)

ieA

where x;(¢) is the number of events of an individual i at time . Then, for a given
period of T, the event rate with 0 < ¢t < T is defined as

T/Ts

T
oat) = X—i > xalt +kTe), X4 E/ x4 (t)dt. (2.49)
k=0 0

Using this event rate for the actual set of individuals A, one can get the deseasoned
time ¢}, (¢) as follows:

tj;(t)z/o oa(t)dt'. (2.50)

We remark that the fully deseasoned time series, i.e., for Ty = T, corresponds to
the time series represented in the ordinal time-frame, where real timings of events
are replaced by the orders of events. Now if Ts = T, we have the event rate for a
node i as p;(t) = Xlix,- (t) with X; denoting the total number of events of the node .

We assign the timing of the kth event between i and j by t,gij ) and get the deseasoned

inter-event time corresponding to r,fij ) = tliij - t,i’_”l as
@)
. I T ...
() _ Nt (@)
T = — xi(t)dt = —n;". 2.51
k X; /tk(”: (1) X, k ( )

Here n,(("’ ) is the contextual ordinal inter-event time, i.e., the number of events of
contexts other than j between two consecutive events with the context j. Thus, the
fully deseasoned real time-frame is simply translated into the ordinal time-frame. The
characterisation of bursts in terms of the ordinal time-frame has also been studied in
other contexts, e.g., in terms of activity clock [77], relative clock [311], and “proper
time” [69, 70]. In these works, the elapsed time is counted in terms of the number
of events instead of the real time.

2.4.1 Remark on Non-stationarity

So far, the time series has been assumed to be stationary, either explicitly or implicitly.
As the stationarity by definition indicates the symmetry under the time translation,
all non-Poissonian processes could be considered non-stationary, hence various time
series analysis methods mentioned cannot be applied to the bursty temporal patterns.
However, the definition of the stationarity can be relaxed by allowing a non-stationary
behaviour only for some specific time scale: For example, human individuals can
show a daily cycle in their temporal patterns, while they might keep their daily



2.4 Cyclic Patterns in Human Dynamics 29

routines for several months or longer. Then, their temporal patterns can be considered
stationary only at time scales that are longer than one day and shorter than several
months. This relaxed definition of stationarity could be yet misleading, given the
fact that most bursty phenomena show scale-free, hierarchical nature in terms of
time scales, while we can apply various time series analysis methods as long as the
time series looks stationary at least at some specific time scales. In this sense, the
deseasoning method or detrended fluctuation analysis and its variants can be useful
for removing the non-stationary temporal patterns from the original time series, hence
for allowing us to investigate the bursty nature of time series without being concerned
with non-stationarity issue. This is an important issue but has been largely ignored
in many works, except for some recent studies mostly in relation to the dynamic
processes on networks [102, 107].



Chapter 3
Empirical Findings in Human Bursty
Dynamics

There are a number of natural phenomena that show complex structural and dynami-
cal patterns as results of self-organisation and adaptive response to the environment.
Such fundamental characteristics are also found in social systems, in which the
behaviour of large number of interacting individuals induces complex and hetero-
geneous patterns at different organisational scales. Therefore, we find a number of
empirical evidences showing temporal inhomogeneities or bursty behaviour in human
dynamics, mostly due to the recent development of information-communication tech-
nology (ICT) and a number of accessible large-scale digital datasets. In this Chapter,
we provide a systematic introduction of empirical findings from diverse sources of
data. We will conduct the discussion at two main levels of organisation, (i) at the
level of individual activities and (ii) at the level of interaction-driven collective activ-
ities. The first category includes individual activities that do not necessarily concern
with direct interactions between individuals. This category also includes activities
by individuals but collected at a population or system level, in which individuals do
not explicitly coordinate or cooperate with others for their own actions. However,
as there is no clear-cut distinction between these two types of activities due to the
intrinsic sociality of humans, these categories must not be considered exclusive. We
will show the empirical findings in interaction-driven collective activities mainly
according to the interaction or communication channels. Finally, we will discuss
other bursty patterns that are not covered by the above two categories, i.e., the bursts
observed for financial activities, in human mobility patterns, and in the behavioural
patterns of animals like monkeys or fruit flies.

3.1 Individual Activities

We first overview the empirical findings of inhomogeneous temporal patterns or
bursts in individual activities not necessarily involving direct interactions between
individuals. We also include observations of bursts in individual activities at the
population or system level. Such findings and observations range from everyday life
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to professional activities, e.g., including job submissions to supercomputers [159],
print requests to the printer [89], and library loans by the faculty at a university [286].
Events like paper processing or updating times [91, 127, 205] and human arm move-
ments [52, 208] have also been analysed to show the existence of bursty behaviour.
In Table 3.1 we have summarized a number of empirical results of bursty behaviour
although it should not be considered as an exhaustive list.

In most cases mentioned above, the distributions P(r) and P(t,) have been
reported to have a heavy or power-law tail. To demonstrate such cases a few examples
of inter-event time distribution are presented in Fig. 3.1. Whenever the distribution is
described in terms of a power law, the power-law exponent is provided and its value
turns out to be quite diverse, i.e., ranging from 0.7 to 2. It should be noted, however,
that even in case of the same dataset one can find that the value of the power-law
exponent can vary from one individual to another, in other words describing the
behaviour in terms of a distribution of exponent values. This observation indicates
that the power-law behaviour in human dynamics is rather sensitive to the details of
the phenomenon in question, and hence it seems not supporting the perspective of
universality classes in statistical physics. It has been argued that the large variance
of individual characters may induce a heterogeneous inter-event time distribution at
the population level [120]. Researchers have also found other functional forms of
P(7) that match with the empirical datasets, like stretched exponential [33, 159]
and log-normal ones [205], which implies that different bursty phenomena may have
different origins or follow different mechanisms.

Heavy-tailed P(7) for individual activities may give some hints about the origin
of bursty dynamics of human individuals. For this reason one can ask a question:
Can the bursty dynamics observed in the individual activities be understood in terms
of the “purely” intrinsic property of those individuals, or in terms of the interaction-
driven extrinsic property? In other words, one can ask if the bursty dynamics of
individuals is the consequence of node burstiness or link burstiness. As human beings
are social, it is hard to say how much the behavioural datasets reflect purely individual
actions, when compared to the interaction-driven activities. This is an important yet
unresolved issue for understanding the origin of bursts in human dynamics.

3.2 Interaction-Driven Collective Activities

Next we present some empirical findings of interaction-driven collective activities
of several subcategories mostly according to the communication channel used in the
interaction. Among these cases face-to-face interaction is considered to be the most
direct and natural way of communication or interaction between human individuals as
in this case people must be spatially close to each other and the communication takes
place in real time. As for the other means of communication nearest to face-to-face
interaction are those based on real time video and voice links, like Skype and Hang-
out, as they provide the feeling of closeness or even intimacy between the individuals,
although they are not spatially close to each others. Then comes the communication



3.2 Interaction-Driven Collective Activities

33

Table 3.1 Empirical findings of individual activities. First column collects the paper where observa-
tions were reported, second column summarises the analysed dataset, and the last column provides
information about the analysis results, mostly for the statistics of inter-event times and waiting
times. In case of power-law distributions, « (,) denotes the corresponding exponent of inter-event
times (or waiting times), with errors in parentheses whenever available. The exponent of bursty train
size distribution is denoted by 8, while the decaying exponent of autocorrelation function is denoted

by y
Reference Dataset Finding
Paxson et al. [227] TCP connection packets from a2

Bellcore, U.C.B.

Kleban et al. [159]

Job submissions to
supercomputers, Blue Mountain
and Blue Pacific

Stretched exponential P(7)

Harder et al. [89]

Print requests to the printer at
Imperial College London

o = 1.76 for different thresholds
of file size, « = 1.3 for individuals

Vazquez et al. [286]

Library loans by the faculty at
University of Notre Dame

« distributed around 1

Nakamura et al. [208]

Locomotor activity, e.g., resting
periods, from 14 patients and 11
healthy control subjects

o = 1.92(6) for controls, 1.72(11)
for patients

Alfi et al. [6, 7]

Statphys23 registration statistics

Logarithmic singularity up to the
deadline

Coley et al. [52]

Inter-movement intervals of arms
of human subjects

Power-law P (t)

Goh et al. [79]

Various datasets in human
dynamics, texts, and cardiac
rhythms

High B and negligible M for
human activities

Baek et al. [15]

Linux command histories of six
users

o €[1.47,1.74]

Bohorquez et al. [34]

Conflicts from media, government
and non-governmental
organization, and academic studies

Heterogeneous numbers of
conflicts per day

Bogacheyv et al. [33]

Outgoing traffic of 3 HTTP
servers: two Canadian universities
and NASA Kennedy Space Center

Stretched exponential P(7)

Joetal. [127]

Paper updating intervals in
arXiv.org

oy € [0.76, 1.16] depending on
the number of authors

Mryglod et al. [205]

Paper processing times in Physica
A and others

Log-normal P(t,) with power-law
tails of oy, = 1

Hartonen et al. [91]

Paper processing times in JSTAT
and JHEP

No power-law in P(ty,)

Leeetal. [173]

WiFi connectivity of iPhone users
in urban areas

a=1.63

Hasan et al. [92]

Stay times from smart card
transaction dataset in London, UK

Heavy-tailed P (1)

Wang et al. [292]

Emergency calls in a Chinese city

o €[0.86,1.19], B =2.21
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Fig. 3.1 Individual activities: Examples of inter-event time distribution P (t) from the datasets for
a job submissions to a printer (Source [89], Copyright ©2005 Elsevier B.V. All rights reserved). b
library loans made by a single individual (Source [286], Copyright (2006) by the American Physical
Society). ¢ manuscripts submitted to Physica A (Source [205]), and d emergency calls in a Chinese
city (Source [292], Copyright ©2005 Elsevier B.V. All rights reserved.). In all cases, heavy tail
behaviour in P(7) is observed, most of which have been fitted with the power-law form in the
mentioned references

by using phones, especially mobile ones in recent years, as the interaction still takes
place in real time over the voice link providing some feeling of closeness or intimacy
though the communication is location-independent. After mobile phone communi-
cation come services like traditional posted letters, emails, and text messages or
SMSs, which are not means of real time interactions. The recently introduced web-
based messaging services, e.g., proposed by Social Networking Services (SNSs),
have become very popular lately especially for younger generations. It should be
noted, however, that people nowadays interact with each other using many of these
communication channels in parallel, simultaneously or intermittently. In Fig. 3.2 we
have collected a few examples of inter-event time distributions.
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Fig. 3.2 Interaction-driven collective activities: Examples of inter-event time distribution P(7)
from the datasets for a face-to-face interaction among high school students (Source [72]), b mobile
phone calls in a European country (Source [142], Copyright (2011) by the American Physical Soci-
ety), ¢ email communications in a university (Source [21], Adapted by permission from Macmil-
lan Publishers Ltd: Nature, 435:207-211, copyright (2005).), and d messages on an online forum
(Source [224], Copyright (2015) by the American Physical Society). In all cases, heavy tails of P(7)
are observed, most of which have been fitted with power-law form in the mentioned references

3.2.1 Face-to-face Interactions

To collect data from face-to-face interaction at large scale is challenging. However,
today’s communication technology and smart devices provide a solution as these
devices are able to communicate with each other, thus enabling to collect data from
face-to-face interactions, containing information of the proximity between individ-
uals. Examples of this approach are the SocioPatterns (www.sociopatterns.org) and
other similar projects [214], in which wearable sensors with Radio-Frequency Iden-
tification (RFID) are used to collect datasets of individual contacts in real environ-
ments, such as schools, museums, hospitals, and academic conferences [46, 114, 264,
265, 283]. Other studies have used Bluetooth devices [110], infrared modules [274],
or motes [93] that can also communicate with each other. Despite the advantages
of directly measuring the proximity between individuals, the number of nodes in
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Table 3.2 Empirical findings of interaction-driven activities based on face-to-face interaction. The
notations are the same as in Table 3.1

Reference Dataset Finding
Hui et al. [110] Face-to-face interaction logs inan IEEE  |a = 1.4
conference
Takaguchi et al. [274] Face-to-face interaction logs in offices in |« = 1.52
Japan
Starnini et al. [260, 261],| Face-to-face proximity datasets using Heavy-tailed P(7)
Zhao et al. [306] RFID in the frame of SocioPatterns
project
Sun et al. [269] Users’” encounters in public transit Daily peaks in P(t)
transaction in Singapore
Fournet et al. [72] Face-to-face encounters between high a =157
school students in France

those datasets is relatively small, i.e., of the order of hundreds. Thus, large-scale
conclusions may not be deduced from this approach.

A number of empirical findings concerning face-to-face interactions are sum-
marised in Table3.2. In some analyses, it was found that the inter-event times or
inter-contact times are power-law distributed with exponent between 1.4 and 1.6 [72,
110, 274]. The distributions of contact times or durations have been observed to show
heavy tails in their distributions [46, 72, 110, 114, 264, 265]. Since the “typical”
timescale of contact durations is much shorter than that of inter-contact times, the
contact durations can be ignored in the analyses of bursty patterns. Note that the
contact durations could be affected by the inter-contact times just before or after the
contacts, of which the latter resembles the recovery time of neurons after firing.

3.2.2 Mobile Phone-Based Interactions

Recently, mobile phones or handsets are utilised to accurately measure or sense
human behaviour. These personal devices, being equipped with a variety of sensors
like GPS and WiFi, are carried around by the users everyday and all day through, thus
they are capable to collect precise information about the communications, where-
abouts, and online activities of their owners. Moreover, since the number of users
or phone numbers in some datasets is up to several millions or even larger [12, 201,
219], they provide ways to overcome the issues due to the small sampling sizes.
The reliability of datasets collected from mobile phones was tested in the series of
studies conducted within the frame of Reality Mining project [3, 63, 64, 229]. It was
shown that the behavioural data are at least comparable to self-report survey data in
terms of friendship network and even capturing information that were missing from
self-reports [64]. Similar approaches were taken in the OtaSizzle project at Aalto
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Table 3.3 Empirical findings for interaction-driven activities using mobile phones, i.e., mobile
phone calls and Short Message Services (SMSs). The notations are the same as in Table 3.1

Reference

Dataset

Finding

Candia et al. [44]

Mobile phone calls (source not
mentioned)

a=0.9(1)

Wei et al. [296]

SMS records of volunteers in
the university

a €[1.52,2.09]

Wu et al. [298]

SMSs of individual users from
a mobile phone operator

Bimodal P(7) with power-law
regimes, where « («,,) centred
at 1.5 (2)

Miritello et al. [201]

Mobile phone calls from a
European operator in a single
country

Heavy-tailed P (1)

Zhao et al. [307]

SMSs in China

a € [1.1, 1.3] depending on
activity level

Karsai et al. [142, 144, 145]

Mobile phone calls and SMSs
from a European operator

a=0.76=4.1y=0.5for
callsando = 1.0, 8 = 3.9,
y = 0.6 for SMSs

Kivela et al. [157]

Mobile phone calls from a
European operator

Heavy-tailed P(7) and P(ty,)

Joetal. [123]

Mobile phone calls and SMSs
from a European operator

Heavy-tailed P (7) with daily
and weekly peaks

Jiang et al. [119, 120]

Mobile phone call dataset from
a Chinese cell phone operator

o = 0.873 for all users,
stretched exponential or

o € [1.5,2.6] for individuals,
exponential P, (E) for a
majority of individuals

Schneider et al. [251]

Surveys and mobile phone data
from Paris and Chicago

Heavy-tailed P(7) for
home/work, o = 0.49 for other
locations

Aoki et al. [12]

Mobile phone calls and SMSs
from a European cellphone
service provider

o = 1.176 (calls) and 1.388
(SMSs)

University [121, 137, 186] and Copenhagen Networks Study [249, 253, 266], where
multiple kinds of individual activities and interactions were recorded simultaneously
but from a relatively small group of volunteers. For other studies using mobile phone
datasets, see Ref. [30] and references therein.

Bursty dynamics has been observed in both mobile phone calls and Short Message
Services (SMSs). In a number of empirical results, one finds the heavy-tailed distri-
bution P (7), in particular with power-law scaling regime. The values of power-law
exponent « turned out to be dependent on communication channels, whether they
are for calls or for SMSs. We found that for calls the exponent value of o & 0.7 [144,
145] (1.2 in Ref. [12]) tends to be smaller than that observed in SMS sequences
witho = 1.0 [144, 145] (~1.4 in Ref. [12]). It was also found in Fig. 3.2b that P(7)s
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are the same as in Table 3.1
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Reference

Dataset

Finding

Oliveira et al. [218], Vazquez
et al. [286]

Letter correspondence of
Darwin, Einstein, and Freud

oy ~ 1.5

Lietal. [176]

Letter correspondence of a
Chinese scientist

a=ay =2.1(1)

Malmgren et al. [183]

Letter correspondence of 16
writers, performers,
politicians, and scientists

Heavy-tailed P(7)

Formentin et al. [69, 70]

Letters, emails, SMSs from
diverse sources

oy ~ 1.5

Barabasi [21], Eckmann et
al. [65], Johansen [132]

Emails in a university
(Universite de Geneve or
‘Weizmann Institute of Science)

a=1,04 =1

Malmgren et al. [184]

Email dataset as in [21]

Heavy-tailed P(7)

Individuals in Enron email
dataset

Gao et al. [75] o € [0.8,1.8]

Iribarren et al. [112, 113] Campaign propagation dataset

by emails

Heavy-tailed P (1)

for different activity groups collapse onto one curve when being normalised by the
average inter-event time for each P(t), which implies a strong similarity in human
behaviour across the different activity levels.

From another mobile phone dataset, Jiang et al. found that although the aggregate
P(7) follows a power law, a majority of individual users, i.e., more than 73%, show
Weibull distributions for inter-event times [119]. For other users in the “power-law”
group, the values of « varied from 1.5 to 2.6. In addition, bimodal distributions of
inter-event times have been observed in SMS datasets [298]: The distributions are
power-law for t < 7., and exponential for ¢ > t.. This functional form is different
from the power-law distribution with exponential cutoff, hence implying different
mechanisms to act in the background. For the power-law regime, the values of «
obtained at the individual level are distributed around 1.5. As shown in Refs. [144,
145], long-range memory effects have also been observed in terms of heavy-tailed
burst size distributions and power-law decaying autocorrelation functions both in
calls and SMSs. We note that such long-range memory effects have been investigated
only recently and phenomenologically. For more fundamental understanding, one
might need to obtain more information about the mobile phone users as typically
done in sociology, e.g., in Ref. [241].
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3.2.3 Communication by Posted Letters and Emails

In contrast to the face-to-face interaction and mobile phone call communication,
communication by posted letters, electronic mails or emails, and text messages or
SMSs does not take place synchronously in real time and may depend on the location
and distance between the senders and receivers. Hence their interaction patterns could
be very different from those in face-to-face and mobile phone call communications.
As we already discussed SMSs in the previous Subsection, here we consider posted
letters and emails.

Traditionally posted letters were one of the most important communication chan-
nels between people outside their daily proximity before various ICT-based commu-
nication channels like emails and mobile phones emerged. There are a few examples
of such datasets of letters being exchanged by historic figures, such as Darwin,
Einstein, and Freud, that have been analysed and found to have the heavy-tailed dis-
tribution of waiting times between letters being sent [218]. In these cases the waiting
time distributions have often been fitted using power-law forms [176, 218], while
alternative mechanisms excluding power-law forms have been studied in terms of
cascading non-homogeneous Poisson processes [183]. See the summary of empirical
findings in Table 3.4.

Recently, however, the usage of posted letters has dramatically dropped due to peo-
ple using emails for various purposes and contexts, e.g., for communications between
colleagues or friends, etc. This development has provided an unprecedented amount
of email data and plethora of email datasets rich of detailed and useful information
of social interactions and temporal patterns for the researchers to investigate. Many
of these datasets have been analysed to investigate the origin of bursts in human
dynamics, which has led to some debates on the issue. In the beginning, Barabasi
claimed that the inter-event time and waiting time distributions for email users show
power-law tails as P(t) ~ t~* with @ = 1 [21]. Similar analyses using the same
email dataset were previously performed in Refs. [65, 132]. Since then, there are
debates between different research groups about the origin of bursts [20, 267, 268].
Malmgren et al. suggested Poissonian explanation for heavy tails in the email com-
munication patterns [184] to argue that the bursts are the consequence of daily and
weekly cycles of humans with cascading behaviour whenever the email session is ini-
tiated. Later they also argued about the universality in human activity [183]. Despite
these debates, many issues were left unresolved, such as how cyclic patterns intrin-
sic in human behaviour interplays with other human factors like task executions.
For resolving this, a deseasoning method was applied to the mobile phone calls and
SMSs from a European operator, leading to the conclusion that the burstiness is
robust with respect to the deseasoning of circadian and weekly cycles [123]. Here
we should remark that the bursty dynamics observed in one communication chan-
nel, e.g., emails, could be driven by different mechanisms as ones observed other
communication channels, e.g., mobile phone calls and SMSs. Thus one needs to be
careful whenever translating the conclusions from one dataset into those for another
dataset.
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3.2.4 Web-Based Activities and Social Interactions

Since the World Wide Web (WWW) was invented by Tim Berners-Lee in 1989 [28],
it has grown enormously for the past few decades to find over one billion websites
today [111]. Nowadays it is not just a network made of hyperlinks between web pages,
but it functions as the platform for e-commerce, online forums [66, 279], and SNSs
like Twitter [168] and Facebook [279], etc. More recently the websites are accessible
not only from desktop computers but also from various mobile devices including
mobile phones and tablets. In this sense, the web-based datasets can be considered
to reflect well human behaviour of people’s information acquisition, entertainment,
and maintaining relationships, etc., despite the fact that the available datasets are
typically reflecting only some aspects of the reality. As all the interactions on the web
can be in principle recorded, such datasets, along with those from mobile phones,
opened a new avenue for social sciences. The analysis of the collected large data
corpus called for methodologies borrowed from other disciplines like computational
and even physical sciences. This is even more true for the modelling the possible
underlying mechanisms in producing the structure of the system and modelling its
dynamics [172].

In Tables 3.5 and 3.6, we present a number of empirical findings for bursts in var-
ious web-based activities including several individual activities. Here the interaction
between individual users could be message exchanges [61, 76, 141, 238, 247, 248,
300, 304] and discussions in forums, news groups, and Internet Relay Chat (IRC)
channels [76, 166, 224, 244, 304]. Individual activities include logging actions to
online games [95], web servers at universities [80], Wikipedia [238], and blogs [62,
286], as well as online queries [238], edits of articles on the web [169, 289, 303],
and jumps in the online game [271] to name a few.

On the basis of these studies we observe that the values of power-law exponent
of inter-event time distributions are very diverse, i.e., ranging from 0.2 to 2.5. It
turns out that the power-law behaviour depends on the activity level of users or
on the observation scale. For example, Zhou et al. showed by analysing the rating
patterns in Netflix that the group of more active users shows a larger value of e, i.e.,
less bursty temporal patterns [310]. More active users may have smaller averages
of inter-event times, not necessarily leading to the larger values of «. Thus, this
tendency or dependence of power-law behaviour on the activity level of users must
be investigated rigorously. For this, the interaction or network structure of individual
users can be relevant in understanding the complex bursty dynamics. The effect of
the observation scale on the power-law behaviour, from individuals to the groups
they form, and to the whole population they belong, was observed by Panzarasa and
Bonaventura [224]. By analysing messages posted in an online forum at a university,
they found that the inter-event time distribution at the individual level shows three
scaling regimes, i.e., for short, intermediate, and long inter-event times, as depicted
in Fig.3.2d. The scaling regime for the short inter-event times coincides with that of
the inter-event time distribution at the population level. As for the inter-event time
distribution at the group level, they argued that the group dynamics is governed by
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Table 3.5 Empirical findings of interaction-driven and some individual activities using web ser-
vices (part I). The notations are the same as in Table 3.1

Reference

Dataset

Finding

Henderson et al. [95]

Logging of users in networked
games, Quake and Half-Life

a=2.15

Dewes et al. [61]

Web-chat messages in the
University of Saarland

Power-law P(t)

Vazquez et al. [286], Dezs6 et
al. [62]

‘Web browsing in Hungarian
news and entertainment portal,
www.origo.hu

« distributed around ~ 1.1

Kujawski et al. [166]

Online forums and news
groups in Poland

o = 1.25 for a forum, 1.33 for
anews group

Goncalves et al. [80]

Logs of individuals to the web
server at Emory University

o =1 forone URL, o = 1.25
for all pages

Zhou et al. [310]

Rating by users in Netflix

o = 2.08 for the whole,
€ [1.5,2.5] depending on
activity level

Hu et al. [109]

Online music service in a
Chinese university

Heavy-tailed P(7)

Crane et al. [57]

YouTube video views

Time series into 4 classes:
exogeneous/endogeneous
critical/subcritical

Altmann et al. [9]

Frequent words in USENET
discussion groups

Stretched exponential P(7)

Rybski et al. [247]

Messages in online community
of men having sex with men,
messages between teenagers

Power-law decaying A(fy) and
Hurst exponent > 0.5

Radicchi [238]

Feedback messages in Ebay
and queries in America On
Line

a = 1.9 for both datasets

Radicchi [238]

Logging to English Wikipedia

o = 1.2 for the whole,
€ [1.1, 2.3] depending on
activity level

Rocha et al. [244]

Online posts by buyers and
sellers in the prostitution
network

o = 1.49(4) for sellers, 1.5(1)
for buyers

Ratkiewicz et al. [240]

Two traffic datasets of
Wikipedia

a = 0.8 (events if £ > 1)

a nontrivial reciprocal mechanism between users. In addition to the inter-event time
distributions, the long-range memory effects have also been measured in terms of
autocorrelation function, power spectrum, or Hurst exponent, e.g., in Refs. [123, 224,
247, 248, 303]. Finally, as for the interplay between bursty dynamics and network
evolution, Kikas et al. [152] analysed the correlation between service adoption and
bursty link creation of Skype users, while Myers and Leskovec [207] analysed Twitter
datasets to find that information diffusion also creates sudden bursts of new links that
in turn affect the users’ local network structure.
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Table 3.6 Empirical findings of interaction-driven and some individual activities using web ser-
vices (part II). The notations are the same as in Table 3.1

Reference

Dataset

Finding

Wang et al. [289]

Edits of articles in Chinese
Wikipedia and blog posting in
website of Nanjing University

a depending on activity level

Guo et al. [87] Logging of bloggers at a €[0.2,0.5]
sciencenet.cn
Szell et al. [271] Intervals between jumps in a=22

massive multiplayer online
game, Pardus

Rybski et al. [248]

Messages in an online
community POK

a = 1.5 indays, @ = 2.25in
seconds

Joetal. [121]

Web domain visits by all users
in OtaSizzle project

Heavy-tailed P(7)

Yan et al. [299, 300]

Messages in Chinese
microblog

o = 1.231 for one user, 1.323
for others

Yasseri et al. [302, 303]

Edits on 20 highly disputed
articles of Wikipedia

Daily patterns, o = 0.97,
y =0.56

Garas et al. [76]

Posts in Internet Relay Chat
(IRC)

a=1.53

Zhou et al. [311]

Datasets from AOL, Delicious,
SMS, and Twitter

a = 1.31, 1.12, 1.33, 1.05 for
each dataset

Zhao et al. [309]

Netflix, MovieLens, Delicious,
Ebay, FriendFeed, and Twitter

a € [1.17,2.15]

Mathiesen et al. [192]

Tweets mentioning brand
names

1/f noise

Zhao et al. [308]

E-commerce (Douban and
Taobao), and MPR

o € [1.41, 2.04] for
individuals

Karimi et al. [141]

Posts and messages in
Sweden’s online movie
community

Broad P(7)

Panzarasa et al. [224]

Messages on an online forum
at the University of California,
Irvine

a = 1.53(11),0.71(4),
1.87(5) for different scaling
regimes at the user level

Kwon et al. [169]

Edits on 418 featured articles
in English Wikipedia

Double power-law with @ = 1
for small t and 2 for large t

Zhang et al. [304]

Chatting messages at Tencent
QQ in China

ae[1.3,1.5]

Kikas et al. [152]

Social link creation and
removal in Skype

a ~0.85
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3.3 Other Bursty Patterns

As we remarked in the beginning of this Chapter, we primarily concentrate on direct
observations of bursty phenomena in human dynamics. Yet we would like to briefly
mention some related sets of observations, which may not be directly taken on human
activities or temporal behaviour, but certainly have relevance in the scope of bursty
human dynamics.

3.3.1 Financial Activities

‘We present the bursty patterns in financial interactions in Table 3.7. Examples include
financial trades in markets for future, stocks, and foreign exchange. In these cases,
the events are mostly defined by transactions, implying that the inter-event time
measures the time interval between two consecutive transactions. It has been found
that the inter-event time distributions are heavy-tailed. In case with power-law inter-
event time distributions, the values of the power-law exponent was found to range
from 1.3 to 3.47 [187, 286].

The inhomogeneous temporal patterns in economic and financial systems have
been extensively studied but mostly from the macroscopic perspective [185]. For the
microscopic approach, one can refer to the economic perspective that time is con-
sidered as tradable goods or cost [26, 213]. Based on this concept, one can discuss
about the optimal waiting time of agents when they must wait for the service or
goods, for example, as modelled in Ref. [124]. Hence such agents might be driven
by objectives like maximising the profit or utility, which may lead to different bursty
patterns than those for other human activities like communications. Or the economic
constraints like the limited time resource can also account for the bursts in communi-

Table 3.7 Empirical findings of financial activities. The notations are the same as in Table 3.1

Reference Dataset Finding
Mainardi et al. [182] Financial market datasets for | Stretched exponential P (t) for
BUND future small 7, power-law P (t) for
large ©
Raberto et al. [236] GE stock prices Stretched exponential P(7)
Masoliver et al. [187] US dollar-Deutsche mark o =347
future exchange
Vazquez et al. [286] Trade transactions by a stock |o = 1.3
broker at Central European
bank
Wang et al. [291] Time intervals between oy =2.5

contracts and payments of a
logistics company in Shanghai
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Fig. 3.3 Human mobility patterns: An example of displacement distribution P (r) (a) and inter-
event time distribution P (7) (b) from the mobility dataset inferred from the circulation of bank notes
in the United States of America (Source [39], Adapted by permission from Macmillan Publishers
Ltd: Nature, 439(7075):462-465, copyright (2006)). Both distributions are described by power-law
decaying behaviour

cations. These issues can be investigated for better understanding the origin of bursts
in human dynamics.

3.3.2 Human Mobility

An important aspect of human dynamics addresses their mobility in geographical
space as well as other abstract space. Their replacement is typically driven by every-
day routines such as going to work, returning home, or go shopping, or on a larger spa-
tial scale when sometimes they migrate to another city or country. Such commuting
and travel patterns emerge as a multiscale spatiotemporal phenomenon, which may
exhibit bursty patterns in space and/or time. Here events indicate individual move-
ments, thus each event may be described by a time and a distance of the individual’s
displacement r. One common observation is that the distribution of displacement of
individuals follows a power law as:

P@r)~r7*, (3.1

sometimes with exponential cutoff [13, 39, 81, 256]. Some values of w are
summarised in Table3.8, while note that evidences for exponentially distributed
replacement has also been found in other datasets [134, 178]. Spatial dynamics
with power-law distributed displacements is commonly called Lévy-flights and was
found to characterise the mobility of humans [39, 81] and foraging of animals [288]
in spatial space, and even in mental space as well [23].
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Table 3.8 Empirical findings of human mobility patterns. In case when the displacement distri-
bution P(r) is a power law, u denotes the power-law exponent characterising the displacement
distribution. Other notations are the same as in Table 3.1

Reference

Dataset

Finding

Brockmann et al. [39]

Circulation of bank notes in
the United States of America

n=1.59(2) and @ = 1.60(3)

Gonzalez et al. [81]

Mobile phone call dataset

n = 1.75(15)

Jiang et al. [118]

GPS data of taxis’ positions in
four cities/towns in Sweden

u = 2.5 for intracity, 4.6 for
intercity

Song et al. [256]

Mobile phone call dataset and

n=1.55(5) and @ = 1.8(1)

users of a location-based
service

Kang et al. [134] Mobile phone dataset from 8

Chinese cities

Exponential P (r)

GPS datasets of taxis in
Beijing

Liang et al. [178] Exponential P (r),
o € [0.5, 2.5] for individual

taxis
u=1.05

Yan et al. [301] Travel diaries of hundreds of

volunteers

Individual mobility patterns can also be characterised by the radius of gyration r,,
measuring how far an individual trajectory is from its center of mass. For this analysis,
the individual trajectory can be described by a sequence of locations, {ry, - -- , r,},
to calculate the radius of gyration as follows:

1
e= | D Ir =g, (3.2)

where the centre of mass of the trajectory is defined as

1 n
Ty = - Zr,-. (3.3)

The distribution of r, is found to decay as a power law [81], providing another
evidence for heterogeneous mobility patterns of humans.

Recently, the trajectory or the sequence of locations is measured with high time
resolution, enabling one to analyse such event sequences using the methods intro-
duced in the previous Chapter. However, there are only several empirical results
for inter-event time distributions. As each event denotes a displacement, the inter-
event time indicates the staying time in a location or the time interval between two
consecutive displacements. In all these cases heavy-tailed distributions P(t) were
found, some of them with power-law tails. For such cases the estimated values of
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Table 3.9 Empirical findings of bursty patterns of animals. The notations are the same as in
Table 3.8

Reference Dataset Finding

Sorribes et al. [258] Walking activities of flies, Weibull distribution of P(t)
Drosophila melanogaster

Boyer et al. [38] Movements of capuchin u=27anda = 1.6
monkeys

Proekt et al. [235] Movements of adult mice a=1.7

Wearmouth et al. [295] Waiting time of ambush ay = 1.58(36) for wild fish,
predators 1.59(38) for captive fish

« exponents are presented in Table 3.8. These results together with the observations
on heterogeneous replacement imply that human mobility is bursty in terms of time
and space as well.

3.3.3 Animal Behaviours

Here we briefly discuss some similarities found in studies of bursty behaviour of
animals with that of humans. The bursty behaviour is also observed in temporal
patterns of monkeys, mice, and fruit flies, as summarised in Table3.9. Sorribes
et al. [258] found the walking activity of Drosophila melanogaster to show Weibull
distributions of inter-event times. They argued that the bursty dynamics of fruit
flies are similar to that of humans in terms of positive burstiness parameter B in
Eq.(2.8) and near-zero memory coefficient M in Eq.(2.10). Boyer et al. [38] found
by analysing the displacements of capuchin monkeys that the power-law exponents
are u = 2.7 and o« = 1.6, respectively. On the other hand in case of human mobility,
the power-law exponents were found to be u & 1.6 and o = 1.8, as presented in
Ref. [256]. Furthermore, Proekt et al. [235] observed that displacements of adult
mice show the power-law P (t) with exponent « = 1.7. This value of « turns out
to be similar to the values for monkeys and humans, which could imply the same
underlying mechanisms or a kind of universality.
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Chapter 4
Models and Mechanisms of Bursty Behaviour

Bursty dynamical patterns characterise human behaviour not only at the individual
level but also at the level of dyadic interactions and even when it comes to collec-
tive phenomena at the network level. To get insight and capture these phenomena at
multiple scale, a number of models have been introduced, which sometimes lead to
seemingly conflicting interpretations. In this Chapter our aim is to give a compre-
hensive summary of all these efforts and let the reader to judge which one of them
seems to be the most suitable explanation of the same phenomena.

4.1 Models of Individual Activity

The first observations of human bursty patterns were commonly addressing the activ-
ity of individuals, although many observations were made from the datasets based on
social interactions at the dyadic level. All these studies were reporting heterogeneous
non-Poissonian dynamical patterns characterised by broad inter-event time distribu-
tions, which was explained in various ways, namely (i) due to intrinsic correlations
via decision making mechanisms or (ii) due to independent actions influenced by
circadian patterns or (iii) due to some other underlying mechanisms like reinforce-
ment or temporal correlations. In addition several combinations of these modelling
directions were proposed together with phenomenological models, which did not,
however, address the possible reasons behind the observed dynamics but only aimed
at reproducing signals with similar temporal features. Below we address in details
all of these modelling directions.

4.1.1 Queuing Models of Bursty Phenomena

As we have observed in Chap. 2, the bursty temporal patterns in human dynamics
can be characterised in terms of broad inter-event time or waiting time distributions,

The original version of this chapter was revised: Extra space between the text and punctuation
has been removed. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-
68540-3_7
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which in many cases have power-law tails with exponent « and ¢,,, respectively. The
values of @ and «,, turn out to be very diverse, implying that there could be various
underlying mechanisms behind the observed scaling behaviours. To understand the
differences in the scaling behaviour, Barabdasi proposed in his seminal paper the
idea that consecutive rational actions of an individual are driven by the execution of
prioritised tasks [21]. Here the model considers an agent with a priority list of / tasks,
each of them assigned with a priority value x; drawn from a distribution, denoted
by n(x). The priority values allow the agent to rank the tasks and execute them in
the rational order based on their priorities. Then the central quantity of this model is
the waiting time t,, for a task to be spent between its insertion to the queue and its
execution.

4.1.1.1 Cobham Priority Queuing Model

The priority queuing model was first introduced by Cobham [51], where the priority
list can contain an arbitrary number of tasks and the priority of each task is an integer
drawn from some distribution. The tasks are set to arrive with the rate A following
a Poisson dynamics with exponential arrival time distribution and they are executed
with rate p by always choosing the one with the highest priority. Since then, the
waiting time distribution for some case has been obtained [2], and also discussed in
Ref. [286], as follows:

P(t,) ~ 1= exp (-f—w> with = 4.1)
" T n(l — /p)*

where p = X/u denotes the control parameter of the process. If p < 1, the task
list is typically short as tasks are executed right after their arrival. Then P(t,) is
reduced to an exponential distribution as p — 0. On the other hand, in the limit of
p = 1 the waiting time distribution appears as a power-law function with exponent
a,, = 3/2 and an exponential cutoff. In this case most of the tasks are executed shortly
after their insertion, but some low priority tasks may be stuck in the list introducing
heterogeneity in the waiting time distribution. It has been shown that the queue length
[ performs a one-dimensional random walk with a bound at / = 0, implying a return
time distribution P(z,) ~ t, 2 that gives the origin of the same exponent value
for P(t,) [286]. Finally, if p > 1, the average queue length is increasing linearly
as (I(1)) = (A — w)t, and thus a fraction of tasks 1 — p~! will remains in the list
forever. Nevertheless, the waiting time distribution of the executed tasks still follows
the form of Eq. (4.1). We note that the predicted exponent value «,, = 3/2 is found
to fit well with the empirical observations of letter correspondence activities [218],
as were found typically with p = 1.1. Later, Grinstein and Linsker [85] obtained the
analytic solutions for the continuous distribution of priority: n(x) = 1 for x € [0, 1].
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4.1.1.2 Barabasi Priority Queuing Model

Another version of the model, motivated by the finite capacity of immediate memory
of humans [197], operates with a priority list of fixed size /. In addition it assumes
that occasionally agents may decide to perform a task with a lower priority before
doing all the high priority ones. This is realised by introducing a probability p that
in the current iteration the agent performs the highest priority task, otherwise, with
probability (1 — p) it selects a task randomly from the task list. In the limit p — 1 the
agent tends to choose always the task with the highest priority. This model results in
aprocess that has a power-law tailed waiting time distribution with exponent o, = 1,
and it matches with the empirical observations reported in Refs. [21, 218, 286]. On
the other hand, if p — 0, the agent performs a fully random selection strategy, in
which case the waiting times appear with an exponential distribution.

Note that in order to classify bursty systems based on these early modelling results
Vazquez et al. [286] suggested two universality classes with the above mentioned
two different exponent values characterizing power-law inter-event time distribu-
tions. Nevertheless, this picture turned out to be not completely consistent as further
empirical evidences and modelling results of other bursty systems were found with
various different exponent values as we have seen in Chap. 3 and will discuss below.

An exact stationary solution of this model for/ = 2 was provided by Vazquez [285]
with the general form of the waiting time distribution derived as

1I1—, T, = 1
P(z,) = 1—p? 1+ 7,—1 =\ T 4.2)
4p(tf—1) (Tp> - (Tp) , T, > 1.

which turned out to be independent of the priority distribution 7(x). In the limit of
p — 0, this solution reduces to the exponential form as

' 1\ ™
11913}) P(z,) = (§> , (4.3)

while in the limit of p — 1 the solution reads

1+ﬁ(1*71’1n(1 —p)), =1
o (I’T”> -1 <1, <1,

T,—1"

lim P(t,) = 4.4)
p—1

where t. = 1/In(2/(1 4+ p)) and the distribution is decaying with «,, = 1. Finally
in the case when 0 < p < 1, one finds a power-law distribution with exponential
cutoff as follows:

1—p?
P () ~ 4p 7, exp (—T—) 4.5)
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Fig. 4.1 Waiting time distributions of tasks in models with a arbitrary length and b fixed length
(I = 2) priority queues. In panel (a) the waiting time distribution with different values of p, i.e.,
0.9, 0.99, and 0.999, are scaled together and can be approximated with exponent «,, = 3/2 (solid
red line). In the inset P(t,) with p = 1.1 is shown. In panel (b) the results of the model with fixed
queue length of [ = 2 are shown with p = 0.9 (squares), 0.99 (diamonds), and 0.999 (triangles).
Solid lines depict the solution in Eq. (4.4). (Source: [286], Copyright (2006) by the American
Physical Society)

where the exponential cutoff is shifted towards larger t,, values as p — 1 (Fig.4.1).
Note that an exact non-stationary probabilistic description of this model was provided
by Gabrielli and Caldarelli [73] showing that for 0 < p < 1 the system relaxes
exponentially fast to the stationary solution. As p — 1 the relaxation slows down and
the system shows a non-stationary dynamics with a different exponent as described
above.

The general stationary solution of the model with arbitrary but fixed length / was
provided by Anteneodo [10]. Here a master equation formalism was used to obtain
the solution for the waiting time distribution as

1
P(zy) =/ dR(x)re, (x), (4.6)
0

where R(x) is the probability that a new inserted task has a priority smaller than
x, and ry, (x) assigns the probability that a new task, which was inserted at ¢ = 1,
with priority x, will be executed at time ¢ = #y + t,,. This latter probability can be
approximated as follows:

re, (0) = [1 =i (011 = FO)I™ 72 f(x) (4.7)

where f(x) is the average probability that a task is executed at time t > 7y + 1.
If f(x) = (1 — p)/l and p = O the integral in Eq. (4.6) correctly results
in the solution with exponential decay as P(t,) = (1 — 1/D)™~'/I, while if
p — 1 it leads to the asymptotic solution of a power-law with exponential cutoff
P(z,) ~ 1, exp(—1,/7.) witht. = 1/In[l/(l — 1+ p)] ~ 1/(1 — p). This solution
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also shows that the characteristic time 7, of the exponential cutoff is shifted to larger
values if p — 1 or when [ is increased.

Waiting times versus inter-event times.

Empirical observations typically provide either the waiting time t,, of a single task
like a response to the received letter, or the inter-event times t between similar
tasks like mobile phone calls. The difference between these observables has been
discussed in Sect.2.2. The models proposed above concern only the waiting times,
while assuming that inter-event times are characterised by the same form of distribu-
tions. However, the relation between the two quantities and their distributions is not
necessarily obvious. Following the arguments of Vazquez et al. [286], while in the
data we monitor the activities of an individual regarding a specific task only, in con-
trast the model simulates the execution of all tasks by an individual. Labelling tasks
in the model process and reinserting them after execution would allow us to mea-
sure their inter-event time distribution, which would scale similarly with the waiting
time distribution. A further argument says that inter-event times in communication
depend on the activity patterns of a pair of interacting individuals. In case when they
both prioritise their task lists, the effective inter-event time distribution would show
the same scaling form as P (t,,). Supporting these arguments Li et al. have reported
an empirical study using a dataset of letter correspondence to confirm the matching
exponents of the inter-event and waiting time distributions [176].

Criticism.

After the seminal paper by Barabdsi a few criticising comments were published [267]
that raised concerns about the data analysis, claiming that the observed inter-event
time distribution in Ref. [21] is better approximated by a log-normal distribution
rather than a power-law and that the model gives unrealistically high preference to
execute newly arriving tasks while keeping low priority tasks extremely long in the
queue. Further concerns were expressed in Ref. [149], criticising that the proposed
model completely disregards the semantic content of an individual correspondence
and the social context in which this correspondence takes place. As a response [217],
it has been argued that it is impossible to detect semantic and social context of cor-
respondence as the content of the messages are not available due to privacy reasons.
However, arguably prioritising should yet play a role in human correspondence as
not only the context but also the deadlines are driving individual decisions to perform
a task. Moreover, one does not need to obtain any knowledge about the prioritisation
mechanisms as the power-law waiting time distribution in the models is emergent
regardless of the functional form of the priority distribution.

Extensions.

After the initial observations, other studies [144, 176] have identified empirical sys-
tems with diverse exponent values for the inter-event time distributions. Motivated by
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these observations some other extended models have been proposed. Masuda et
al. [188] assumed that in a time iteration, task arrival does not follow Poisson dynam-
ics, similarly to Refs. [21, 51], but n tasks are added in each time step with a number
sampled from a power-law distribution of n~7. This extension in turn led to the
exponent values of the waiting time distribution depending on the exponent y, the
average number of n, and the execution probability u. Further extensions address-
ing interacting priority queues of links [216] and coupled as a network [199] were
proposed providing alternatives to explain diverse exponent values. Their discus-
sion will be the subject of Sect.4.2. Finally, Gongalves and Ramasco [80] suggested
to extend the model such that multiple number of tasks are executed in each time
steps. They showed that the execution of three tasks leads to an emerging exponent
o = 1.25, which fits well with their observations for online browsing dynamics. Note
that other extensions of the queuing model were proposed by Mryglod et al. [205]
and Jo et al. [127], where time-varying priority was considered to model heteroge-
neous dynamics of editorial review processes with or without peer-review processes.
Finally, Cajueiro and Maldonado [43] considered the cost of keeping a non-processed
collection of tasks by introducing a discount factor, and they identified various pro-
tocols for executing tasks, depending on the discount factor, for minimising the cost
function.

4.1.1.3 Position Based Priority Lists

A somewhat different model was proposed by Vajna et al. [281] who defined a priority
list model assuming that the priorities of tasks depend on their position in the list.
More precisely they took a task list of size / with ordered positions starting from
i = 1tol. The list is filled with tasks of different types of activities. In each time
step a task is chosen based on its position in the list with a probability w; that is
decreasing as a function of i. Once a task is chosen, it jumps to the front of the list to
trigger the corresponding activity, and it pushes the tasks that preceded it to the right.
Once a task is in the front of the list it has the largest probability to be chosen again
in the next iterations. In this way, the heterogeneous inter-event times between the
consecutive executions of the same task are generated. Note that this model proposes
the observations of the inter-event times rather than the waiting times.

The authors have shown that this model is capable of inducing power-law decaying
inter-event time distributions with a tunable exponent between « € [1, 2] by using
various w; distributions. Furthermore, they generalised their results by using a power-
law decaying and an exponentially decaying priority distribution for w;, as well as
discussed the case of stretched exponential. In case of a finite list, they found that
P(7) decays as a power-law with an exponential cutoff, where the cutoff is the
consequence of reaching the end of the list but it disappears in the [ — oo limit.
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4.1.2 Memory Driven Models of Bursty Phenomena

Another modelling paradigm of bursty activity patterns concerns non-Markovian
correlations between consecutive actions of an individual. It assumes that memory
functions or reinforcement processes lay behind bursty signals in human behaviour.
In the following we are going to walk through modelling examples contributing to
this direction.

4.1.2.1 Processes with Simple Memory Functions

One of the first models of this kind was proposed by Vazquez et al. [281] who
aimed at modelling email and letter correspondence behaviour by assuming that the
subsequent actions of an agent is influenced by its previous mean activity rate. Their
model builds on the probability A(#)dt that an agent performs an action within the
time window [dt, t 4+ dt] formulated as

A = ? fo A@dr! (4.8)

where the parameter @ > 1 determines the degree and type of reaction to the past
perception. If a = 1, one obtains a stationary process with A(#) = A(0), while
if a # 1, the process is non-stationary either with acceleration (¢ > 1) or with
reduction (@ < 1). At the starting time t = 0 one assumes that an agent does not
consider what happened before and performs the actions for a period 7. The general
solution of Eq. (4.8) shows A(t) = Aga(t/ T)“~!, where ¢ is the mean number
of actions within 7. A(¢) is approximately a constant for short time intervals of T
and the dynamics follows a Poisson process with an exponential inter-event time
distribution. However, if a > 1, i.e., the system is in the accelerating regime, the
inter-event time distribution exhibits a power-law form, P(t) ~ (t/79)~%, where
790 = 1/(arp) and @ = 2+ 1/(a — 1) if 7y < © < T. On the other hand, in the
reduction regime, if 1/2 < a < 1 the P(t) does not show a power-law scaling,
while for 0 < a < 1/2 it appears again to follow a power-law with the exponent
a=1—-a/(l —a)ift K 1.

A somewhat similar model was introduced by Han et al. [88] to model actions
like web-browsing or video game playing, which are arguably driven by the adaptive
interest. In their paper they introduced two thresholds, 77 and 7, (where 71 < T),
to model the increased and the depressed activity rates by focusing on the probability
r(t) that the given action will occur at time 7. They measured the inter-event times
between consecutive occurrences of actions. While employing discrete time steps if
the (i 4+ 1)th event appeared at time ¢ the value of r is updated as r (1 + 1) = a(¢)r(¢),
where a(t) determines the actual activity rate. For convenience they choose the
T; = tiy1 — t; be the inter-event time between the ith and (i + 1)th events. Then
if ; < Ty, a(t) = ap and the process evolves with depressed rate. On the other



54 4 Models and Mechanisms of Bursty Behaviour

hand, if 7; > 15, a(t) = a; !"and the process evolved with an increased rate. Finally,
if Ty < t; < T or there was no event within time ¢ then a(t) = a(t — 1). This
model was found to induce bursty activity dynamics, characterised by a power-law
inter-event time distribution with exponent « = 1.

4.1.2.2 Self-exciting Point Processes

Another family of memory driven models for bursty processes are based on self-
exciting stochastic processes of Hawkes type [191]. Such models are able to repro-
duce heterogeneously distributed inter-event times and short-term temporal corre-
lations, commonly observed in case of human dynamics. The general definition of
Hawkes processes concerns the activity rate A(¢) defined as follows:

M=o+ D ¢t — 1), (4.9)

it;<t

where v sets the ground activity level, while ¢ (¢) is called the memory kernel, i.e., the
additional rate incurred by the past events. For more comprehensive account of the
Hawkes process, see the review [196]. There are several definitions of the memory
kernel function that have been considered to describe human bursty phenomena. For
example Masuda et al. [191] assumed an exponential form ¢ (t) = ae™?' to model
event clusters initiated by single events appearing with rate Ay. Such event trains
appeared with size ¢ = 1/(1 — (a/B)) on average and induced a stationary rate
of events A = chq with the condition that & < B. This way their model process
was fully determined by the parameters Ao, o, and 8, which could be estimated
by the maximum likelihood methods from the empirical data. In their study they
used two face-to-face conversation datasets recorded independently in two Japanese
companies, and after estimating the parameters of the interaction sequences of active
individuals they found surprisingly good match between the statistical characteristics
of the empirical and modelled activity signals.

In another work Jo et al. [130] applied a power-law memory kernel of the form,
¢ (t) = 1/t, to define a memory function for ¢ > t,, as follows:

my =S (4.10)

where the memory is kept only up to the wth latest events in order to take into account
the finite capacity of memory. This is called sequential memory loss mechanism. In
the model, the larger m (¢) is, it induces the higher probability of new events at time ¢.
As aresult, the heavy-tailed inter-event time distributions emerges, while long-range
correlations between inter-event times are limited by the control parameter w. For
more realistic consideration, instead of having w fixed, w can be a variable such
that for each newly occurred event, the value of w(¢) is reset to 1 with probability
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of glw(®)] = 1 — [w()/(w(t) + 1)]", otherwise w(z) is set to be increased by 1.
Here the larger w(z) implies the longer time for resetting the memory, hence more
consecutive events. This is called preferential memory loss mechanism. Here for
the intermediate range of v, they found more realistic features in terms of temporal
heterogeneities and higher order correlations, as exemplified by a power-law bursty
train size distribution P (E).

Note that a power-law memory kernel was also used by Crane and Sornette [57]
to model a somewhat different phenomenon, namely the cascade of social influence
diffusion in social networks. Such processes lead potentially to bursty cascades of
information adoption events at the population level with long lasting relaxation times
back to normal adoption rates.

4.1.2.3 Reinforcement Point Processes

Reinforcement mechanisms provide another way to consider memory effects in
dynamical processes, and they propose a possible explanation for the emerging bursty
patterns. Based on this idea Karsai et al. [145] introduced a model to capture not only
the heterogeneous individual communication dynamics but also the correlated bursty
event trains commonly observed in real systems. In their model they defined a two-
state dynamics, by considering an agent who can be either in a normal state A, for
which events are executed for longer time, or in an excited state B, where actions
appear with a higher rate. The timings of the consecutive events were determined
by a reinforcement process with the assumption that the longer the system waits
for an event, the larger the probability that it will keep waiting. Note that similar
assumption was taken in models of collective bursty dynamics [263, 306], which
will be discussed in Sect.4.3.2. In the model, the inter-event times are induced by a
reinforcement function of the form

T Ha.B
faB(1) = (m) (4.11)

that gives the probability to wait one time step longer in order to execute the next event
after the system has waited already time t since the last event. Here the exponents
ua and pp control the reinforcement dynamics in states A and B, respectively.
If us4 < wp the characteristic inter-event times in states A and B become fairly
different leading to the emergence of temporal inhomogeneities in the dynamics. In
addition the actual state of the system is determined by transition probabilities as
demonstrated in Fig.4.2b. To be more specific, the model is defined as follows: first
the system performs an event in a randomly chosen initial state. If the last event was
in the normal state A, it waits for a time induced by f4(7), after which it switches to
an excited state B with probability 7 and performs an event there, or with probability
1 — 7 it stays in the normal state A and executes a new normal event. In the excited
state the inter-event time for the actual event comes from f(7) and the probability
to perform the next event in the excited state is given by p(n) = (n/(n + 1))" as
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Fig. 4.2 The schematic definition and numerical results of the model in Ref. [145]. a P(E) distri-
butions of the synthetic sequence after logarithmic binning with window sizes At = 1,2, --- , 1024
and fitted power-law exponent 8 = 3.0. b Transition probabilities of the reinforcement model with
memory. ¢ Inter-event time distribution of the simulated process with a maximum inter-event time
7% = 106 and emerging exponent value @ = 1.3. d The average autocorrelation function with the
maximum lag of ' = 10* and emerging characteristic exponent y = 0.7. Results are averages
over 10(9)0 independent realisations with parameters s = 0.3, up = 5.0, v = 2.0, ¥ = 0.1 and
T =10

determined by the number of excited events n since the last event in state A and by
the reinforcement exponent v. Then the model induces power-law inter-event time
distribution with exponent « = w4 + 1 as shown in Fig.4.2c and also generates
correlated bursty trains whose size distribution is written as P(E) ~ E - with
B = v + 1, as can be seen in Fig.4.2a. Note that a similar model without memory
was also introduced in Ref. [160], which will be discussed in Sect.4.1.3.1.
Somewhat similar model was proposed by Wang et al.[290] to model the blog-
posting behaviour of individuals. Their objective was to introduce short term correla-
tions to capture the heterogeneous distribution of inter-event times and the power-law
decay of the memory coefficient as defined in Eq. (2.11). Their model assumes that
in each time step an agent can select one from n possible tasks in two possible ways,
i.e., randomly with probability » or with probability 1 — r it selects a recently per-
formed task again with probability #; /m. Here ¢; assigns the number of times a given
task i was performed in the last m time steps, which in turn defines the length of the
memory. By varying m they observe that for smaller values of m the inter-event time


http://dx.doi.org/10.1007/978-3-319-68540-3_2

4.1 Models of Individual Activity 57

distribution scales as a power-law with exponent « > 2, while for larger memory
lengths the exponent increases and the distribution relaxes into an exponential form.
In addition they argue that their model successfully reproduces the short term power-
law decay of the memory function and deviates from the empirical observations only
in the tail region.

4.1.3 Poisson Models of Bursty Phenomena

4.1.3.1 Infinite Automatons

One of the early models of bursty phenomena in human dynamics was proposed
by Kleinberg [160], whose aim was to understand heterogeneous and hierarchical
patterns of topic appearances in document streams. His subsequent aim was to pro-
vide a better organisation principle for large document archives, such as emails and
scientific publications. Based on the analogy of email correspondence he suggested
a model using an infinite-state automaton, with states determining the actual rate of
message arrival and with inter-state transitions determined by the upward difference
between states.

More precisely, he takes an automaton .27, which can be in states ¢; and performs
n + 1 events over a period of T. First of all he assumes that events in the state ¢;
occur with inter-arrival times sampled from a “memoryless” exponential distribution
fi(r) = a;e” %" witha; > 0.Inother words events in a given state behave as a Poisson
process. Each state g; is characterised by the arrival rate of messages a; such that
a; = (n/T)s' forstatesi =0, 1,---,wheres > lisa scaling parameter. In addition,
the automaton &/ can transfer from state ¢; to ¢; with cost « (i, j), where the cost
is proportional to (j — i) Inn for j > i, or simply zero for j < i. Subsequently the

ultimate aim here was to find a sequence of states ¢ = (¢, g, ..., ¢i,) for a given
sequence of inter-arrival times T = (ty, 17, ..., T,), such that the overall cost function
defined as
n—1 n
c(qlt) = (Zm,, zm)) +> -my, (n)) (4.12)
=0 =1

is minimal. A recursive solution of this model was provided in Ref. [160] and was used
to identify hierarchical structures in terms of state transitions (and thus in inter-arrival
times) in document streams. Note that the overall framework developed in this paper
can be viewed as drawing an analogy with models from queuing theory for bursty
network traffic [147], as well as the formalism of hidden Markov models [237].
The principal aim of this model was not to reproduce heterogeneous inter-arrival
sequences, but more to provide a possible reason behind their emergence and to give
applicable solutions in order to organise better streaming of documents.
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4.1.3.2 Heterogeneous Poisson Model

In reflection to the model by Barabasi [21] a simple explanation was proposed by
Hidalgo [97] to describe the emergence of a power-law inter-event time distribution
by using Poissonian agents that change the rates at which they perform an event in a
random or deterministic fashion. To be more precise, the event rate of an individual
is denoted by A and its distribution at the population level by f(A). It has been shown
that if f()) is heterogeneous, the asymptotic behaviour of the emergent inter-event
time distribution reads as:
Jf/r)

2

P(r) = (4.13)
Assuming a uniform distribution of the form f (1) ~ U [0, L], the inter-event time
distribution appears as P(t) o« 7% with o = 2. If f(A) ~ A", then one gets
P(tr) o« T~ which implies « = v + 2. Similar scaling would also hold if we
assume similar distributions of activity rates at the individual level [48, 97], or in case
of periodically varying activity rates of individuals. Although this model was meant
to describe natural phenomena it provides a simple explanation for bursty processes
in cases when human individuals are assumed to be Poissonian agents.

4.1.3.3 Bursty Model with Poissonian Cascades

An alternative and descriptive modelling framework of bursty phenomena in human
interactions was proposed by Malmgren et al. [183, 184]. In this approach it is argued
that “human behavior is primarily driven by external factors such as circadian and
weekly cycles, which introduces a set of distinct characteristic time scales, thereby
giving rise to heavy tails” [184], instead of rational decision making and correlated
activity patterns, proposed by Barabasi and others [21, 218, 286]. They proposed a
model, that captures individual email correspondence and builds on the intuition that
our activities are strongly determined by circadian and weekly patterns, while they
are grouped in cascades of actions in short active periods. For an illustration, see
Fig.4.3. In this model the dynamics is defined as alternating non-homogeneous and
homogeneous Poisson processes, which in turn gives rise to heterogeneous temporal
behaviour with good correspondence with empirical observations.

More precisely, the model accounts for periodic activity patterns by using a non-
homogeneous Poisson process with a time-dependent periodic rate of events p(¢) =
p(t + W), with period W. This rate function captures the convolution of daily and
weekly activity distributions of active interval initiation, p,(t) and p,,(¢) as follows

p (1) = Nypa(t) py (1), (4.14)

where N,, stands for the proportionality constant being the average number of active
intervals within one period W (here a week). Each event generated by p(¢) initiates
a secondary process that is a cascade of activity or active period, modelled by a
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Fig. 4.3 An example of a periodic and cascading stochastic process. a Expected probability for
starting an active interval during a particular day of the week p,,(¢). b Expected probability for
starting an active interval during a particular time of the day p,(¢). ¢ The resulting activity rate
p(t) for the non-homogeneous Poisson process. Here the form p(t) = N,, p,,(t) p4(t) is assumed,
where the proportionality constant N,, is the average number of active intervals per week. d A
time series of events generated by a nonhomogeneous Poisson process. Each event in this time
series initiates a cascade of additional events, called an active interval. e Schematic illustration of
cascading activity with N, additional emails sent according to a homogeneous Poisson process with
rate p,. f Observed time series. (Source: [184], Copyright (2008) National Academy of Sciences,
US.A)

homogeneous Poisson process with the rate p,. During an active period, N, additional
events occur, after which the activity of an individual is again governed by the primary
process defined in Eq. (4.14). Here the number of events N, is drawn from some
distribution p(N,). The inter-event time between events within an active period is
determined by p,, while the times between active periods are induced by p(¢). In
this way the process is fully determined by the parameters N,,, ps(t), pw (1), Pa,
and p(N,), which can be inferred from data by using simulated annealing. Fitting
this model on individual activity sequences gives a very close match between the
modelled and empirical inter-event time distributions [ 184], as shown in Fig. 4.4. This
suggests that Poissonian bursts provide an alternative description for individual bursty
activity patterns. In addition, in a complementary work [11] it is argued that email
correspondence patterns present no detectable correlations in terms of the ordering of
events as compared to randomly reordered time series. This is in contrast to what has
been suggested in Ref. [21]. They also concluded that the proposed Poisson model is
sufficient in describing the observed phenomena with spurious correlations. Finally
the same authors studied the estimation of the functional form of the inter-event time
and waiting time distributions in email activity logs [183, 268], with the conclusion
that they can be better approximated by log-normal distributions or the superposition
of two log-normal distributions rather than with a truncated power-law function as
suggested in Ref. [21]. They argue that the generative queuing model proposed by



60 4 Models and Mechanisms of Bursty Behaviour

o B B |

User 2570
P=0.73 4 -

b B |

User 2881
P=0.11 4 -

b B B |

User 2650
P=0.39 -

T Ty

User 467
P=0.28

Cumulative distribution

ok s sl s sl s

10° 10% 10" 10° 10' 10° 10° 10° 107 10" 10" 10' 10° 10° 10° 107 10" 10" 10" 107 10° 10° 10" 10" 10° 10' 10° 10°
Inter-event time, 1 [h]

Fig. 4.4 Comparison of the predictions of the cascading nonhomogeneous Poisson process (red
line) with the empirical cumulative distribution of inter-event times P (7) of email correspondence
(black line) for selected users. (Source: [184], Copyright (2008) National Academy of Sciences,
US.A)

Barabasi may not describe the observed log-normal waiting-time distributions as it
predicts power-law distributed waiting times.

Criticism.

Some criticism has been expressed about this modelling approach. Firstly, it has
been argued that even though this model gives a very close approximation with the
empirical data it is only descriptive. It does not provide any generative explanation
about the emergence of heterogeneous human dynamics but (a) provides a quite
precise approximation by fitting the model process using a large set of parameters; (b)
assuming circadian fluctuations to induces heterogeneity in human activity patterns.
However, it has been shown (see Sect. 2.4) that even after removing effects of such
periodic fluctuations the signal remains bursty, indicating that circadian patterns
cannot be the generative reason behind this phenomena [123, 311]; (c) assuming only
two states might be an over-simplification of human behaviour, while assuming two or
more types of active states give considerable better approximation of bursty behaviour
at the individual level [246]; and (d) although the model assumes that the action
dynamics of an individual consists of independent events, temporal correlations have
been detected in such signals [74, 144].

Extensions.

Recently two extensions of this model have been proposed. In one case, Jiang et
al. [120] modelled the communication activity of an individual by a two-states
Markov-chain Poisson process where an individual can be either in the normal state
(sn) or in the bursty state (s;). The interaction dynamics of an individual is deter-
mined by two Poisson processes &2, and &, with characteristic intensities A, and
Ap such that A, < ;. Assuming a normal initial state s,,, the dynamics of an individ-
ual is determined by &7, where an interaction is initiated with the probability A,1,,
where 1, denotes a characteristic time. The state of the next call is determined by a
conditional probability p(j|i) = p(i, j)/p(i) to switch to the bursty state, (in case
withi = s, and j = s3), or remain in the normal state (in case with i = s, and
J = sn). In the bursty state once the next call occurs with probability A,¢,, the next
state is determined by the conditional probability to switch to s, (where i = s, and
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Jj = s,), or to remain in the bursty state (where i = s;, and j = s;,). The parameters
tp, Ap, and A, can be estimated directly from empirical data just as in Ref. [184]. Just
like the model of Malmgren et al., this model can give a close approximation to the
interaction dynamics and inter-event time distribution of an individual.

Another extension was proposed by Ross and Jones [246] who suggested a model
based on observations on Twitter activity logs. In this model an individual can be
in one inactive state sp, or in two active states constituting a more bursty state sy,
corresponding to conversation type of communication, and a less bursty state s,, cor-
responding to broadcasting type of communication. In the inactive state s, inter-event
times are determined by an inhomogeneous Poisson process just like in Ref. [184]
with a time dependent intensity function 1 (¢). After performing an event in s the
node may switch to one of the active states s, and s, with probabilities p; and p»,
respectively. The number of events in active states is sampled from a geometric dis-
tribution with parameters different for s, and s,, and inter-event times are sampled
from an arbitrary distribution g(z|s;). The authors considered g(t|s;) being an expo-
nential, log-normal, or Weibull distribution, with parameters again depending on the
actual active state. After fitting this multi-parameter model with the empirical data,
they found closer match between the real and modelled inter-event time distributions
as in the case of the two-state model [184].

4.1.3.4 Non-homogeneous Poisson Process with Decreasing Interest

There is yet another model proposed by Guo et al. that studies inter-event time
distributions of dynamical systems, where the interest of people in doing something
is dependent on time [87]. Their hypothesis is introduced by an event rate

o
) =a+ —2—, 415
O =at+ 77 (.15)

which is decreasing until it reaches a stationary value a of personal interest. In
addition they show that in case of a non-homogeneous Poisson process with event
rate A(f) and independent stationary increments, the cumulative distribution of the
inter-event times appears as follows:

o 1
1—F(t)~b (‘c + E) e T as T — 00 (4.16)

for positive constants a, b, and «. This is a mixed distribution with exponential and
power-law features that approximates the Gamma distribution. To demonstrate their
analytic findings they come up with good fits between their model and the inter-event
time distribution of blog posts of four users of a popular Chinese blog space.
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4.1.4 Other Type of Models

Models of rational bursty consumers

In their study Maillart et al. [181] mapped the priority queuing process onto the
economic theory of consumption. In economic theory, the consumer is assumed to
maximise the total utility from consuming some units of wealth under the constraint
of the limited wealth, namely under budget constraint. Similarly, in priority queuing
processes the agent tries to maximise the total utility from consuming time t,, for
solving a task under the constraint of the limited total time, i.e., the time budget,
which is expressed by

> i =T, 4.17)

where N(T) is the number of tasks in a given time period of 7. Based on this
mapping, the authors use several strategies of executing tasks to find realistic waiting
time distribution with power-law tails.

In their paper Jo et al. [124] introduced an alternative economics-inspired model,
where an agent in an uncertain situation tries to reduce the uncertainty by communi-
cating with information providers, while the agent has to wait for responses. Here the
waiting time can be considered as cost. The authors showed that the optimal choice
for the waiting time under uncertainty gives rise to the bursty dynamics, characterised
by a power-law distribution of the optimal waiting time. More precisely, the risk-
averse utility function is assumed to be u(x,;) = — exp(—x;) + a with a > 0, where
the uncertainty of the state x, is described by a normal distribution with the zero
mean and variance of o2/¢". Here the parameter 7 controls the speed of decreasing
uncertainty. That is, the uncertainty decreases with time as the agent waits for the
information, while the cost of the spent waiting time is modelled as ¢(t) o o ~>/"¢,
where the parameter v controls the cost per unit time. Then the expected utility is
obtained as Efu(x,;)] — c(t), which is optimised to obtain the optimal waiting time
as follows:

7,(0) = Cloz/” W(CzaZ(U—n)/[V(n+1)])—1/f7 (4.18)

with coefficients C; and C,. Here W denotes the Lambert function. Then using
the distribution of uncertainty P(c) = e~ “, one obtains the optimal waiting time
distribution P (t,,) with power-law exponent, e.g., o, = 1 —n/2if v = 1.

Independent models.

The simplest way to model bursty activity sequences is by sampling inter-event times
from a given distribution. Note that although this method provides heterogeneous
activity patterns, it does not provide neither any understanding about the roots of
bursty phenomena nor it induces correlations between consecutive events, which in
turn remain independent. This method has been used in Ref. [107, 129] to study the
effects of node and link burstiness on the speed of information spreading in temporal
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networks, or in Ref. [144] to highlight the spurious behaviour of the autocorrelation
function in case of heterogeneous but independent activity signals and to detect the
presence of temporal correlations common in empirical cases.

Voter model.

An alternative definition of the voter model has been suggested by Fernandez-Gracia
etal. [68] where temporal heterogeneities arise as a consequence of new update rules.
In the model each node gets updated with a probability that depends on the time since
the last event of the node took place. Here, an event can be an update attempt (exoge-
nous update) or a change of state (endogenous update). In their paper they find that
both update rules can give rise to power-law inter-event time distributions. If the
update probability of a node is given as p(t) = b/t, where 7 is the time since the
last update, then the inter-event time distribution emerges in the form P(r) ~ 772,
In addition it is shown that for the exogenous update rule and the standard update
rules the voter model does not reach consensus in the infinite size limit, while for
the endogenous update there exists a coarsening process driving the system toward
consensus configurations.

Rank shift model.

This model, proposed in Ref. [240], addresses popularity dynamics of online con-
tents, which emerge with heterogeneous patterns in terms of the number of citation
events. In this model each task is in a list and assigned with a popularity, implemented
as a citation probability that decays as a power-law as the actual position of the given
task in the list. In addition the model accounts for exogenous effects that potentially
changes the popularity of a task suddenly and drastically. The simplest way to imple-
ment this mechanism is by introducing in the ranking model a re-ranking probability.
In this case at each iteration every item is moved to a new position towards the front of
the list, which is chosen randomly with equal probability between 1 (the top position)
and the task’s current rank j. As a consequence of these two mechanisms the model
induces power-law distributed number of citations of tasks with exponent close to
empirically observed ones in Wikipedia citations and online crawling data. It should
be noted that this model does not propose explanation for emergent bursty patterns
in terms of time, and also that it is somewhat similar to the one in Ref. [281] with an
important difference that its definition is not based on a priority queue.

Random reference models.

A set of models has been recently proposed that are not generative but yet address
temporal bursty behaviour. These models [105, 142, 201] apply various random
shuffling techniques on real event sequences to obtain statistical reference models
where selected temporal or structural correlations are vanished from the system.
This modelling techniques are commonly used to remove bursty activity patterns
from empirical signals to study their effects on data-driven models of dynamical
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processes. These models, in a way, “Poissonise” a temporal event sequence either by
shuffling times between events or by assigning a random time to each event selected
uniformly from a given period 7. The use and advantage of these models will be
discussed in details in Chap. 5.

Self-organised critical systems.

Finally, there is a very interesting proposition by Tang et al. [275] in order to model
retrospectively the bursty dynamics of the emergence of wars in ancient China.
They argue that the dynamics of wars is driven mostly by short term correlations
between the last and next following events and they can be related to the Bak-Sneppen
evolutionary model with self-organised criticality.

4.2 Models of Link Activity

4.2.1 Interacting Priority Queues

The bursty models we have discussed so far in Sect. 4.1 attempt to model the action
dynamics of single individuals, while neglecting the fact that the tasks are com-
monly carried out in human-to-human interactions. Examples can be found in any
type of communication or communication driven activities, where as a consequence
bursty patterns appear between connected peers and thus they are associated more
to links [145] rather than to individual dynamics. This problem was addressed by
Oliveira and Vazquez [216] who introduced a model based on the definition by
Barabasi [21] but considering two priority queues A and B with fixed sizes /4 and
I p, respectively. They assumed two types of tasks to be present in each queue, a single
interacting task / and /; — 1 non-interacting tasks O with j = A, B. Each task is
assigned with a random priority x drawn from the uniform distribution in [0, 1] to
obtain

(4.19)

3

where fo;(x) denotes the highest priority among /; — 1 non-interacting tasks. Then
l; — 1 non-interacting tasks with priorities uniformly distributed in [0, 1] can be
reduced to one non-interacting task with priority fo;(x) as only the highest priority
task is relevant. Initially, the priorities are assigned to the tasks as described earlier.
In each time step, both agents select the task with highest priority in their lists.
If both agents select the task / then it is executed, otherwise each agent executes
the task O. Each executed task is assigned with a new priority drawn from the
distribution f;;(x). This process leads to bursty patterns of task execution, which in
turn induces power-law distributed inter-event times with an exponent « depending
on the length of the priority queues. The exponent follows qualitatively the relation
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a =14 1/max{l; — 1}. Its maximum is o = 2 if the queues consists of two tasks,
then o = 3/2 for three tasks leading to « = 1 as [ increases. This suggests that there
are not only two “universal” exponent values, e.g., as proposed in Ref. [286], but «
can take several other values depending on the length of the priority queues. Note
that the authors provided a definition of coarse grained models to achieve large scale
simulations with large inter-event times and reliable scaling exponent estimations.
They also showed that the emerging cutoff of the inter-event time distribution is a
consequence of the finite simulation window thus the power-law functional form of
P(7) is asymptotically true.

An extended definition of the above model was proposed by Min et al. who
considered two scalable interaction protocols and a network of individuals with
priority queues [199]. They identified the above model definition as the AND-type
protocol where I tasks are executed only if they obtain the largest priority at the same
time. They show that this protocol commonly leads to frozen states when applied
to queues connected in a network. They argue, however, that an OR-type protocol
would be more reasonable for the tasks, which require simultaneous actions of two
or more individuals though the action can be initiated primarily by one of them.
Examples are phone calls or instant messages where the task of answering of an
incoming interaction jumps usually to the top of one’s priority queue immediately
when one receives a call or a message. The iteration of the model starts by choosing a
random node i. If its highest priority task is /;;, the two tasks /;; and [;; are executed
regardless of the priority value of /;;; in the other case if O; is the highest priority task,
only that is executed. Priorities of all the executed tasks are randomly reassigned.
This model process does not drive to a globally frozen state yet the P(t) exhibits
power-law tails, however with an exponent that depends on the network size N as
well as the network topology in a diverse way.

4.2.2 Models with Combined Mechanisms

Wu et al. [298] proposed a combined model of Poissonian and priority induced
bursts to explain the bimodal shape of the inter-event time distribution, typical in
SMS communications. They argue that this phenomenon is a consequence of the
interplay between processes effective at different time scales and determined by three
important ingredients, namely (a) a Poisson process responsible for the initiations
of bursts, (b) execution of competing tasks of an individual, and (c) interactions.
They identify two types of tasks, an interaction task (I) and other tasks (O), and
they consider each interaction task whether it is an initiation or a response action.
Based on data analysis of individual SMS interaction patterns, they found that the
inter-event time distribution of an individual can be described best by a power-law
distribution if T < 7 and by an exponential if T > 1y, where 7p >~ 20 min.

Based on these observations they propose a model defined as two interacting
priority queues to mimic the interaction dynamics of two individuals. They first
consider the priority queues of tasks of individuals in which the tasks in the queue
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are executed one by one with the probability /T = x“ in a ranked order by their
randomly chosen priority x € (0, 1). In addition they introduce a processing time
t; determining as the time scale by which tasks are executed and added to the list.
Interacting tasks (I) are added to the list with a small rate A; = A#; in a Poissonian
fashion. Next they consider the interaction between individuals: This occurs when
one of the agents A (or B) executes an I-task, which will add an I-task to the list of B
(A) with a corresponding probability Pp (or P4). All the I-tasks are randomly initiated
by an individual and responding to other tasks will be put to the waiting list with a
random priority x, subsequently competing for the execution with the O-tasks. Thus,
the model is controlled by three important parameters for each user, i.e., A;, «;, and
P;, each of which is related to the Poisson process, decision making, and interaction,
respectively. Fitting these parameters with empirical sequences allows the model
successfully reproducing the bimodal shape of inter-event time distributions between
interactions of an individual. This suggests that all the three ingredients are necessary
in explaining this phenomenon.

4.3 Network Models of Bursty Agents

4.3.1 Zero-Crossing Random Walk Model

Beyond a single node or link dynamics, other models have been proposed to simulta-
neously capture the topological and temporal features of agents interacting in a larger
network. The first among these models was proposed by Gotz et al. [78] whose aim
was to simulate the posting dynamics of bloggers, which in turn induces a reference
network between blogs and postings with particular topological features. In their
model they associate a blogger with a random walker in one dimensional space, who
posts each time when it returns to its original position, hence it is called zero-crossing
model. In the beginning of the process a blogger A starts a walk from position 0 and
in each time step, with probability 1/2, adds or subtracts a unit from its position.
Whenever, the position of A becomes 0 it creates a post P which, with probability
1 — pr,is a new conversation, or otherwise a comment on another post. In the latter
case, with probability 1 — pg, the blogger comments on one of the posts of a blog it
has already commented on (exploitation mode), or otherwise chooses a new blog to
comment on (exploration mode). Subsequently in the selected blog B to refer a post
Q is chosen with a probability weighted by the number of times this post has been
earlier referred. Finally for each post R reachable from post P, for each path p from
P to R create a link from post P to post R with probability p'Lp )5 Here ppr denotes
the probability for expanding a link and | p| is the path length. The authors show that
the structure of the simulated blog post network emerges with a power-law in-degree
distribution and cascade size, while the inter-event times between consecutive posts
of ablogger are distributed as P (7) ~ v /2. In addition the emerging activity signals
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are self-similar with fractal dimension 0.5, comparable to the empirical observations
presented by the authors.

4.3.2 Reinforcement Models of Group Formation

A model based on reinforcement mechanisms was proposed by Stehlé et al. [263]
and Zhao et al. [306] to simulate social group formation in bursty contact networks.
Their model simulates interacting agents forming disconnected groups, which evolve
by successive mergings and splittings. These actions are driven by underlying rein-
forcement processes summarised by the authors as “the longer an agent interacts
with a group, the less that agent is likely to leave the group and the more an agent
is isolated the less likely the agent is to interact with a group.” More precisely their
model considers N agents, which either can be isolated or belong to a group defining
an instantaneous contact network. Each agent is characterised by two variables: the
number p; of actually contacted agents (its group size minus one) and the time #; when
pi changed for the last time. At each time step ¢ an agent i is randomly chosen. If
the agent is isolated, it changes state with probability by f (¢, #;) and chooses another
isolated agent j with probability I7(t, ¢;), such that they form a pair and update their
state variables p;, #;, p;, and ;. On the other hand if 7 is part of a group it changes
its state with probability b; f (¢, #;). When the state changes, the agent can become
isolated with probability A, or otherwise it introduces an isolated node j selected
with probability I7(t, ¢;). If a node leaves or a new node is introduced to a group, all
participating nodes update their state variables accordingly. The parameters by and
b determine the tendency of the agents to change their state between being isolated
and in a group, while X controls the tendency either to leave groups or in contrary to
make them grow. In addition, the model dynamics strongly depends on the functions
f and I1. For simplicity, choosing them to be identical and to decay as a power-law
like

ft—1)=MHe—10)=0+0)"", t=0—-1)/N (4.20)

leads to system dynamics governed by reinforcement processes. This way the mod-
elled system can reproduce several realistic features observed in real interaction data,
such as power-law distributed interaction and inter-event times and duration of triadic
interactions, and that the stability of groups decreases with their size.

4.3.3 Evolving Networks with Interacting Priority Queues

Joetal. [126] introduced an evolving network model, which integrates different inter-
action strategies, inspired by the Kumpula model for social network evolution [167],
with interacting priority queues defined above. In their model N agents are given,
each with a priority queue of two tasks / and O with priorities randomly assigned
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from a uniform distribution. At each time step ¢ every node selects its highest priority
task. If it is an 7-task, the node i selects a target node for interaction either (a) from
the whole population with probability p,,, (b) from its next nearest neighbours with
probability p, ,, or (c) from its neighbours with probability 1 — p., — p,, weighted
by their link weight w;;. The next nearest neighbour j of the node i is defined as a
node satisfying {f;x, tjx} = {t — 2, t — 1} with an intermediate node k, implying that
i and k interacted at time ¢t — 2, and k and j interacted at time ¢ — 1. In both cases
of (a) and (b), links between nodes are created with unit weight either randomly,
representing the focal closure mechanism, or by closing a triangle, representing the
triadic closure mechanism. The case of (c) represents the reinforcement mechanism
as existing links are selected and their weights are reinforced. After a target node
J is selected an interaction between i and j takes place if the target j has not been
involved in any event at this time step ¢. After an interaction the priority of 7-task
of node i is updated. In addition, at each time step each node can forget all of its
existing connections with probability p,,, , i.e., memory loss, to become isolated. By
measuring the inter-event times between two consecutive /-tasks of a given node
the system exhibits a broad inter-event time distribution with an exponential cutoff.
In addition the emerging network structure shows several realistic features such as
Granovetterian community structure [83], high clustering, assortative degree corre-
lations, and broad link-weight distributions. It is worth to note that similar interaction
dynamics has been observed in a variant of this model without priority queues, pos-
sibly suggesting that the source of heterogeneous dynamical behaviour could be also
a consequence of the link-weight reinforcement process.

4.3.4 Dynamic Networks with Memory

A conceptually different type of evolving network model was proposed by Colman
and Greetham [53] who used a different memory kernel to induce bursty interaction
sequences of agents in an evolving network. To generate event sequences with power-
law distributed inter-event times they defined a discrete-time stochastic process,
which generates an infinite sequence of binary random variables X, taking values 1
(0) if an event takes place at time ¢ (or not). To determine X, an agent has a memory
capacity of size M, represented by m,(¢t) forn = 1,2,---, M. Each m,(t) can
have a value of 1 or 0. Using the definition of k, = 224:1 m,(t), the kernel f(k,)
determines the probability to execute an event in time step 7. The new event occurs,
ie., X; = 1, with probability f(k;), otherwise no event occurs, i.e., X; = 0. The
authors introduced two possible memory updating mechanisms: One is for a random
n' tosetm,, (t+1) by the value of X,, while keeping all others, i.e., m, (t+1) = m, (¢)
for n # n’. The other is basically shifting m, (t) by one position, i.e., m, (t + 1) =
my41(t) forn = 1,--- , M — 1, and setting my (t + 1) = X,. In this way, the
memory is kept up to the Mth latest realisations, similarly to the sequential memory
loss mechanism proposed in Ref. [130]. They propose to use a linear probability
kernel
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where x and € are positive real numbers. If x is large the system approaches a
Bernoulli process, while if x is small relative to M the inter-event time asymptotically
follows a power-law as P(t) ~ 7~ Using this dynamics for each agent they
introduce an evolving network model of N nodes and E edges, where each node is
assigned with a fitness value x sampled from a probability distribution p(x). The
network is originally a random structure and at each step anode i is randomly selected
with a probability given by its attachment kernel I7 (i, x;), a second node j is selected
in the same way and an edge is created between them. At the same time the oldest
edge is removed from the network keeping the average degree constant. Considering
the attachment kernel as X

MG x) = — % (4.22)

Z j (k i+ X j)

with k; denoting the degree of i, they show that if p (x) follows a power law the model
process induces a scale-free structure and since always the oldest link is removed,
M = E.Incaseof setting x;+€ = N(x)/2,Eqs. (4.21) and (4.22) become equivalent.
Thus if the fitness distribution is chosen such that (x) < (k), the interacting nodes
will exhibit bursty interaction patterns.

4.3.5 Activity Driven Network Models with Bursty Nodes

Activity driven models of time-varying networks is a family of generative temporal
network models, which can be used to simulate synthetic interaction sequences of
model agents with arbitrary level of complexity. In its simplest definition [231] the
model assumes that there are N independent agents, all assigned with an activity
potential a; drawn from an arbitrary distribution. The activity potential describes the
probability that an agent initiates an interaction with a randomly selected other agent
at each time step. Initiating the model with disconnected agents and simulating their
interactions over a transient period one can cumulate the emerging interaction struc-
ture and obtain a generative network structure. It has been shown that this cumulated
network structure emerges with a degree distribution, which scales as the originally
assumed distribution of activities. Further extension of the model leads to emerg-
ing weight heterogeneities [146], communities, weight-topology correlations [171],
etc. just to mention a few examples to demonstrate the potential of this modelling
framework.

This model has been extended in two ways to consider agents with bursty activity
patterns, in order to understand the effects of non-Poissonian dynamics on the emerg-
ing network structure. Although burstiness is not an emergent property in any of these
models, yet we briefly discuss them as they may be useful to study in the future the
effects of burstiness on emerging structures or ongoing dynamical processes.
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In one definition of Moinet et al. [202, 203] the timings of node activities are deter-
mined by a renewal process. Each agent i is assigned with a time-dependent activity
a; (1), which depends on the time t passed since its last activation. The activation of
each node follows a renewal process governed by a waiting time distribution P (t, ¢;),
where ¢ is a parameter determining the heterogeneity of the activation rate of the
agents, and assumed to be randomly sampled from a distribution 1(c). Assuming a
power-law waiting time distribution

P(t,c) =acct+ 1)@ 0<a<1 (4.23)

and a power-law heterogeneity distribution
B _
n(e) = —(c/co)” D (4.24)
0

with 8 > «, the degree distribution of the emerging network emerges as
Pi(k) ~ (cot) (k = (r)) == #/ (4.25)

where (r), is the average number of times a node becomes active up to time z.
Equation (4.25) leads to a relation between the power-law exponents of the degree,
waiting time, and heterogeneity distributions as y = 1 4 8/«, indicating dependen-
cies between the topological properties of the network and the distribution of renewal
events. Based on this the authors show that the model is affected by ageing effects
when the waiting time distributions have the power-law tail with ¢ < 1, which they
demonstrate using numerical simulations and empirical results measured in scientific
co-publication networks.

In another work Ubaldi et al. [278] also build on the activity driven network
but extended it with two mechanisms. First of all they introduced bursty dynamics
directly by assuming that inter-event times 7; for node i were drawn from a power-law
distribution of the form

P(1) = ;%r;““‘), 7 € (£, +00). (4.26)
1
Here &; is alower time cutoff for the minimum inter-event time of node i, which in turn
determines its characteristic time-scale as its activity & ~ 1/a;. If §; is distributed as
a power-law P (&;) ~ Ei”*l, for small &; values the induced node activities will also
be power-law distributed with a corresponding exponent of —(v 4 1). In this way
the burstiness directly governs the evolution of the network. Another mechanism
considered by the authors is a memory driven tie allocation process that enhances
repeated interactions of already existing ties. They show analytically and by means
of numerical simulations that the simultaneous control of the relative strength of
burstiness and the tie reinforcement leads to a non-trivial phase diagram determined
by the interplay of the two processes. They found two different dynamical regimes,



4.3 Network Models of Bursty Agents 71

one in which the burstiness governs the evolution of the network, and another in which
the dynamics is completely determined by the process of tie allocation. Interestingly,
if the reinforcement of previously activated connections is sufficiently strong, the

burstiness governs the network evolution even in the presence of large inter-event
time fluctuations.



Chapter 5
Dynamical Processes on Bursty Systems

The bursty temporal patterns in human interactions are important not only for under-
standing the dynamics of the egocentric and global social networks but also because
they have indisputable effects on the evolution of dynamical processes taking place
on them like random walks, information diffusion, epidemic and social contagion,
or various types of evolutionary games, just to mention a few. In the earlier studies
of these processes it was commonly assumed that they evolve over static structures.
In these cases links representing interactions between nodes, were always present in
the network, while the question was about the effects of structural heterogeneities
and correlations on the final outcome of the process in question [24]. However, the
recent availability of large digital datasets recording temporally detailed interactions
of individuals led to the advent of the new field of temporal networks [105]. In this
representation interactions are not taken to be static, but assumed to vary in time
and allow information to pass between connected nodes only at the time of their
interactions. Parallel to the foundation of the methodologies, models, and theories of
temporal networks, several studies addressed the effect of time-varying interactions
on the evolution of dynamical processes.

Importantly, it has been found that the bursty nature of human interactions has
dramatic effects on the unfolding of several modelled processes. First reported
observations were the results of data-driven simulations, where synthetic dynamical
processes were simulated on real and inherently bursty interaction sequences [142,
201, 245]. These observations together with early theoretical results [112, 157, 287]
disclosed a main puzzle, as burstiness was found to slow down the emergence of
several types of global phenomena, while in some other cases it appeared to show
opposite effects, leading to faster scenarios as compared to the Poissonian case. In
order to address these seemingly contradicting observations two general modelling
directions have been considered. On one hand, for data-driven simulations a new
modelling concept using random reference models (RRM) has been proposed (for
a brief discussion see Sect.4.1.4). These models define several ways of shuffling
interaction sequences to remove temporal and structural correlations in a controlled
way for identifying their effects on the simulated dynamical processes. On the other
hand, more formal approaches consider the effects of bursty characteristics, like
the heterogeneous inter-event time distribution, residual times, and local temporal
correlations to explain the observed behaviour.

© The Author(s) 2018 73
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All these results tend to draw a very heterogeneous picture, with some comprehen-
sive understanding about the effects of bursty interactions on dynamical processes,
but leaving some other problems to be opened in several ways for further research.
We have learned that the observed effects strongly depend on the actual datasets
in use and the model we chose to investigate. Thus, instead of providing a closed
theory about the effects of bursty patterns on dynamical processes, we first discuss
the different characteristics of bursty behaviour, which were found to be relevant in
various studies, and then we present the main findings on different types of dynamical
processes, which were investigated on bursty temporal networks of human interac-
tions.

5.1 Bursty Characteristics Controlling Dynamical
Processes

5.1.1 Inter-event Time and Residual Time Distributions

In human interactions the bursty dynamics has been characterised by a broad inter-
event time distribution P (7), which commonly appears as a power-law, potentially
with an exponential cutoff or in alog-normal form, as discussed in Chap. 3. Itindicates
that individual dynamics are typically non-Poissonian with events being separated by
heterogeneous inter-event times, unlike in case of Poisson dynamics with exponen-
tially distributed inter-event times. In this Section we are mostly interested in effects
induced by non-Poissonian dynamics, while the corresponding Poissonian system
will be used as a reference. Any dynamical process that unfolds in bursty temporal
networks can be effected by the broad P(t) such that short inter-event times tend
to help the rapid update of interacting nodes while long inter-event times act in an
opposite way, keeping information locally stuck for long period of times.

These effects can be easily verified by using appropriate random reference models
in data-driven simulations on bursty temporal networks. One of the most frequently
used RRM takes the event sequence of interacting individuals and shuffle the inter-
action times between events [142, 157, 201]. Shuffling in this way destroys any
temporal correlation in the original event sequence, including the bursty temporal
patterns, as it assigns a random time to each event over the observation time window
T . Note that an equivalent method would be to pick a random time for each event from
the window 7. Using both of these RRMs one can obtain a sequence of interactions,
which shows Poissonian dynamics and exponentially distributed inter-event times,
while keeping the network structurally unchanged. This removal of bursty patterns in
most observations fastens the emergence of a global phenomena, as demonstrated in
Fig.5.1a (time-shuffled curve with blue squares), which in turn suggests that bursti-
ness actually slows down the dynamical process [14, 60, 77, 140, 142, 157, 201].
On the other hand, some exceptions have also been reported [243, 245, 273], where
the same procedure indicates that burstiness accelerates some diffusion processes.


http://dx.doi.org/10.1007/978-3-319-68540-3_3

5.1 Bursty Characteristics Controlling Dynamical Processes 75

1.0} 02, |
,/ DCW one
0.8} N / DCB
DCWB
=061 .
= =z | 1
= &y
~ 0.4}
@ orig
¢ DCWB
0.2r A DCB ]
m  DCW
v D
0-05° 100 200 07400 600 800
t (in days) t; (in days)

Fig. 5.1 Demonstration of RRM in case of Susceptible-Infected or SI spreading on mobile com-
munication networks. a Average fraction of infected nodes (/(t)/N) at each point in time for the
original event sequence (o) and null models: equal-weight link-sequence shuffled DCWB (¢), link-
sequence shuffled DCB (A), time-shuffled DCW (0J) and configuration model D (V). b Distribution
of full prevalence times P (t ) due to randomness in the initial conditions. (Source [142], Copyright
(2011) by the American Physical Society)

As we will discuss below, heterogeneous inter-event times have different effects on
the early and late stage dynamics, which tends to give to some extended explanation
of these seemingly contradicting observations.

5.1.1.1 The Waiting-Time Paradox

One simple mathematical argument, known as the waiting-time paradox (a.k.a the
bus paradox, or hitch-hiker’s paradox) provides a simple explanation about the effect
of temporal heterogeneity on the speed of any dynamical processes. It concerns a
single point process capturing the interaction dynamics of an individual i (or a social
tie, or the arrival of buses to a stop, etc.), where events are assumed to be independent,
following each other with inter-event times sampled from the distribution P(t). The
waiting-time paradox states that if information (random walker, virus in epidemics,
rumour, etc.) arrives to node i from another node, it needs to wait on average longer
than the half of the average inter-event time before it can leave node i and pass to
another node j. This is true for point processes with any level of temporal hetero-
geneity, including Poisson and bursty systems, even if the arrival time is uniformly
distributed during two consecutive events of node i.

In order to understand better this paradox we need to recall the dependence we
already discussed in Sect.2.2 between the residual time 7, and the inter-event time
distribution P(t) [157]. Let us assume that we have two connected nodes i and j
and i receives information at a uniformly random point in time #;. In this setting the
residual time 7, is defined as the random variable that represents the time between
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this random time fy of information receiving and the time of the next event occuring
between i and j. As we have seen in Eq.(2.30), the residual time 7, of the link
is obviously determined by the inter-event time distribution of events of the actual
link. Note that the inter-event times and residual times have the same distributions
when the process is Poissonian, while for bursty processes they both appear with
power-law tails with exponents related as P(t) ~ 7% and P(z,) ~ @~V [170].
We have also seen in Eq.(2.31) that the mean residual time can be derived as

72)

= 5.1
(7) = (5.1

—

[\

Consequently, the value of 7, depends heavily on the first and the second moment
of the inter-event time distribution, or equivalently, on the average and fluctuation of
event rates taking place on a link. In case the point process is maximally regular, i.e.
P(7) is a delta function, (%) = (r)? and we obtain the intuitive result

()

(t,) = R (5.2)

However, in case of a Poisson process with P(t) = (t)~'e~"/() we obtain (r?) =
2(t)?, which leads to a twice larger mean residual time when compared to the regular
case. If the inter-event time distribution is broader than exponential, e.g., a power-
law distribution, the deviation from the regular case is even bigger. We consider
P(t) = (a— l)r(‘,"*lr_“ with the lower bound of inter-event times, ty. If the power-
law exponent « is larger than 3, both (t) and (r?) are finite, and the relation

oa—2

(1) = mfo

(5.3)

is obtained. On the other hand, if « < 3, the diverging (2) leads to the diverging
mean residual time (z,) [157].

As we are primarily interested in the effects of the shape of the inter-event time
distribution on (7, ), itis natural to use the Poisson model as a reference. Thus we may
consider a normalised mean residual time as it has been introduced in Eq. (2.32). This
quantity measures the ratio of the second moment to the square of the first moment
of the inter-event time distribution. Generally, the broader the distribution is, the
larger the second moment is as compared to the square of the first moment. Hence,
Eq. (2.32) indicates that the more bursty an event sequence is, the longer the residual
times are. In case of a power-law P (t) distribution, this ratio becomes infinite when
the power-law exponent « = 3 while it decreases with increasing o > 3, reaching 1
when o = 2+ +/2. Thus, for power-law inter-event time distributions in this regime,
the mean residual times are longer than those for the Poissonian reference case.


http://dx.doi.org/10.1007/978-3-319-68540-3_2
http://dx.doi.org/10.1007/978-3-319-68540-3_2
http://dx.doi.org/10.1007/978-3-319-68540-3_2
http://dx.doi.org/10.1007/978-3-319-68540-3_2

5.1 Bursty Characteristics Controlling Dynamical Processes 77
5.1.1.2 Ordering of Events

In social networks the ties may show very different activity levels, which in turn can
lead to different residual time distributions for each link. This has a consequence
for several dynamical processes where the ordering and the timing of interactions
determine the path of diffusion.

Random walk processes are considered as generic models for diffusion and are
commonly studied on static or temporal networks. One of the variants of these models
is defined on temporal networks and is called greedy random walk, where a single
random walker is diffusing in the network hopping from one node to another, only at
the time of their temporal interactions. The walker is greedy because after arriving
to a node i it leaves immediately via the next event towards some node j. In this
way the probability that the walker at node i will end up to a specific neighbour j
depends on one hand on P;;(7,), but also on the residual-time distribution P (z,) of
any other k neighbour of i. If an event towards k appears earlier than towards j, the
random walker will necessarily hop to node & instead of node j. The probability that
the random walker will end up on j, can be written as:

PEY @) = e [] [ paterar, (5.4)

ket j

where the product denotes the probability that no event appeared earlier than the one
with j.

Spreading processes are also largely influenced by the ordering and timing of
the interactions [252], which determine time-respecting paths in a temporal struc-
ture, along which information, disease, or rumor can travel. Spreading processes are
commonly modelled by assuming that the nodes of a network can be, e.g., in three
mutually exclusive states: Susceptible (S), infected (I), or recovered (R). The suscep-
tible node (S) can become infected (I) with the infection rate ,5 due to the interaction
with an infected neighbour. The infected node can spontaneously recover with the
recovery rate fi, corresponding to the transition from I to R. In other model defini-
tions, the infected node can return back to the susceptible pool. Thus, what matters
for spreading is that an interaction event of an infected node i with a susceptible node
J occurs earlier than an infected node recovers. This happens with the probability

P () = Pi_i(fr)/ ri(t)dt, (5-5)

where r; (¢) is the probability that the infected node i recovers after time ¢.
Consequently, in case of a random walk the relative behaviour of the residual
time distributions on neighbouring links is important, while in case of spreading
the relative behaviour of residual time distribution and recovery time distribution. It
indicates that not only the heterogeneous temporal behaviour but also the ordering
of events are crucial [170]. If ties with low activity and bursty interaction dynamics
occupy important positions in the network (like bridges between communities), they
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may have a large impact on the final outcome of spreading as they are able to keep
spreading local inside well connected communities with active links.

5.1.1.3 Early and Late Time Effects of Burstiness

Heterogeneous inter-event times may have different effects when considering the
early and late time behaviour of a dynamical process. Recently much effort has
been devoted to clarify how the burstiness of events influences the spreading speed,
partly by using empirical data analysis [77, 113, 142, 201, 245, 287] and partly
by model calculations [105, 112, 129, 243, 282, 287]. In those studies the bursty
character of an event sequence was found to slow down the late time dynamics
of spreading. However, for the early time dynamics, conflicting results have been
reported [189]. In studies by Vazquez et al. [287] and Karsai et al. [142] the bursti-
ness is found to slow down spreading, while other works point towards the opposite
direction [113, 243, 245]. In the following we address separately the early and late
time effects of heterogeneous temporal behaviour by means of modelling the deter-
ministic Susceptible-Infected (SI) processes at these two extremes. The SI processes
are a specific case of SIR models where recovery is not possible (& = 0), thus once
anode is infected it keeps its state until the end of the process. More specifically, we
consider a deterministic SI process where infection pass between connected nodes
with probability 1, which corresponds to the fastest possible spreading scenario,
determined exclusively by the ordering and timing of temporal interactions.

Early time effects:

The early stage dynamics of a spreading process is mainly driven by small inter-event
times, which generally leads to the faster spreading for non-Poissonian dynamics as
compared to Poisson-like cases. Since at the early time of spreading most of the nodes
are still susceptible one can safely assume in the modelling that finite size effects
do not play a role and an infected node can always find a susceptible neighbour. To
understand this limit we follow the argumentation of Jo et al. presented in details in
Ref. [129].

Let us consider a system with NV nodes, which perform instantaneous interactions
with dynamics modelled by a renewal process [67] with an arbitrary inter-event time
distribution P (7), which is the same for every node in the whole population. Note
that P(t) determines only the activation times of nodes, irrespective of whether
the nodes are susceptible or infected. Whenever an infected node becomes active, it
chooses randomly another node from the remaining N — 1 nodes and if the chosen
node is susceptible, then it becomes infected. Here the probability of choosing a
susceptible node is 1 in the infinite size system as the dynamics starts from a single
infected node. The newly infected node remains inactive as long as its residual time t,
before it becomes active and selects randomly a node to infect. The early stage of the
spreading dynamics is sensitive to the variation of the initial distribution of active or
inactive nodes. Note that this model is related to a class of Bellman-Harris branching
processes [90, 112, 113], which have been used to address similar phenomena.
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Fig.5.2 Schematic diagram of the infections by an already infected node (a) and by a newly infected
node (b). Vertical lines and vertical arrows denote activation timings of nodes and infections from
infected nodes (solid horizontal line) to susceptible nodes (dotted horizontal line). Inter-event times
7, v/, and t” are independent of each other, and so are residual times 7, 7,, and 7/

We investigate the spreading dynamics starting from one infected and active node
at time ¢ = 0. Hence the number of infected nodes is initially /y(f) = 1 and remains
unchanged for a time interval t until the next event of the initially infected node
takes place. At t = t, Iy(t) can be written as the sum of two numbers: One is for
the infecting node and its subsequent infected nodes, which can be denoted by an
independent and identical copy of I but starting at t = 7, i.e., [j(t — ). The other is
for the newly infected node and its subsequent infected nodes, similarly denoted by
I (t — 7), where I] is an independent and identical copy of I, to be defined below.
Thus we get

1 ift <1,
Io(t) =1 ) ) (5.6)
L -+t —1) ift>1.

Since the newly infected node must wait a residual time 7, as in Fig.5.2b, the
number of infected nodes starting from one infected and inactive node can be written
as

ift <7,
Lt =1, ” . (5.7
Iyt —o)+ 1/t — 1) ift > 1,
where 1”s are independent and identical copies of /. The generating function for
Io(t) is defined as Fo(z, 1) = D ;.o Prllo(t) = k]z¥, and we get

z ift <,
Fo(z,t) = 5.8
e [Fo<z,r—r>Fl(z,t—r) ifr =, o
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where F(z, t) is the generating function defined for 7 (¢). By taking the expectation
value over t with P(7), we obtain

Folz, 1) = 2 / P(r)dr + / Foz.t = DF (ot — D) P(DdT.  (5.9)
t 0

We can use the generating function to calculate the average number of ny(t) =
({o(2)) as

0Fp(z, 1)

no(t) = 2z

=/OO P(t)dt—i—/ [no(t —t)+n1(t—1)]P(7)dT (5.10)
t 0

z=1

where n(t) = (I,(t)). Taking the Laplace transform gives

N 1—P(s) . R
fio(s) = ———— =+ liio(s) + i1 ($)IP(s), (5.11)
~ 1_ ﬁr(s) ~ ~ ~
Ar(s) = — =+ lg(s) + 1P (), (5.12)

where P (s) and ]3, (s) denote the Laplace transforms of P(t) and P (t,), respectively.
This straightforwardly leads to

P(s)

—, (5.13)
(s —(r)"H[1l = P()]

N 1
no(s) = 5 +

where we have used the relation f’, (s) = # [1— P (s)]. Then, ny(¢) can be calculated
by taking the inverse Laplace transform of 71y(s). Note that this solution has been
obtained for arbitrary inter-event time distributions, which enables us to evaluate the
effect of burstiness on spreading for both Poissonian and non-Poissonian cases.

In order to investigate the effect of the lower bound of inter-event times, we
consider the shifted power-law distribution with exponential cutoff defined as

a—1

T
P P — _T/T"Q — s 5.14
(™) Fi—ay)’ © (t —70) (5.14)

where I is the upper incomplete Gamma function, 6 is the Heaviside step function,
and y = 1p/7, with 79 and 7. being the lower bound and the exponential cutoff of
P (1), respectively. The Laplace transform of P(t) in Eq. (5.14) is as follows:

(I —a, y(ste + 1))

P(s) = (st + D*! r ) (5.15)
rad—ay)
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To investigate the early time dynamics of n¢(¢), we consider the case whens > 1.
By expanding the incomplete Gamma function, we obtain

)
T

no(t) ~ 1+ A (ef>° —e )9(; ), (5.16)

Lyl -

where A = T Ty with x = 79/(t). The spreading rate Cy at t = 71, is

obtained as

1 ylemy
o xT(0—a,y)

=1,

dn()

0 (5.17)

C()(-x’ y’“) = <T>

By considering the inter-event time distribution in Eq. (5.14), a Possonian dynam-
ics corresponds to the case when o = 0, while we obtain non-Poissonian interaction
dynamics of « > 0. Using this parameterisation, Eq. (5.17) leads to

Co(x,y,a) = Co(x, y,0), (5.18)

suggesting that non-Poissonian bursty activity always accelerates the early time
spreading dynamics as compared to the shifted Poissonian case with the same mean
() and lower bound 7 of the inter-event time distribution [129].

Note that the accelerating effect of bursts on the short-term dynamics of SI
processes has been observed by means of numerical simulations in independent
studies by Rochaet al. [243] and Horvéthet al. [107].

Late time effects:

As we mentioned earlier, a spreading process may behave differently in the late
time limit as long inter-event times may slow down the process to reach the full
prevalence. In order to better understand this limit we present here the argumentation
of Min, Vazquez, and others [198, 200, 287], which utilises branching processes in
a somewhat similar way as we discussed for the early time limit.

In this case the deterministic SI process is diffusing on a temporal network with
an underlying static tree-like structure. Its dynamics if determined by the generation
time A, which is defined as the time interval between the infection of a node and the
transmission of the infection to one of its neighbours. In this model if an infection
starting from a single node at time ¢ = 0, the average number of new infected nodes
at time ¢ can be expressed as

D
n(t) = > 248" (). (5.19)

d=1

where z, is the average number of nodes in d contacts away from the seed node, and
D is the maximum of d. g*/(t) is the dth order convolution of g(A) corresponding
to the probability density function of the sum of d residual times, i.e., g*! (1) = g(t)
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for the immediate neighbour of the seed, and g*¢(1) = fot g(t)g* 1 (t — t"dt' in
general.

The long time behaviour of n(f) can be obtained by using Eq. (5.19), e.g., for
the case where g(A) ~ A~ with 1 < v < 2, corresponding to the stable Lévy
regime [198, 200], we obtain g*d(t) ~ t7" in the limits of t — oo and d > 1
independently of the network structure. This corresponds to the asymptotic scaling
of the prevalence as

nt) ~t7", (5.20)

which means that in case of heterogeneous activity patterns the system slows down
in the long-time limit with prevalence, which decays with the same exponent as the
generation time distribution.

Next we assume that the interaction dynamics of nodes is dictated by a renewal
process, generating independent events with an arbitrary inter-event time distribution
P(7). Inthis case if anode i is infected at time #; and having a susceptible neighbour
J» the generating time that the node j receives the infection from node i corresponds
to the residual time 7, between #; and their next interaction at ¢;. As we shown in
Eq.(2.30), the residual time distribution can be easily derived from the inter-event
time distribution. Therefore, for the activity patterns of uncorrelated events with
P(t) ~1t7* (2 < o < 3) we obtain

n(t) ~ =@, (5.21)

This can be compared to the case where the renewal process follows a Poisson
dynamics with an exponentially decaying prevalence, which can be obtained along
the same logic.

Note that the same conclusion can be drawn following the same argumentation
used for the early time behaviour [129], provided that the network size is assumed to
be finite. In addition several numerical studies have confirmed this result [129, 198,
200, 287] or more generally, showed that SI spreading slows down in the long time
regime due to burstiness [142, 200, 201, 287].

The non-stationarity of the interaction dynamics provides another way to address
the early versus late time behaviour of dynamical processes. As it has been shown
by Rocha et al. [243] a non-stationary contact dynamics may induce a rapid SI
spreading with more infected nodes for early times as compared to a system with
Poisson dynamics. The same was concluded by Horvathet al. [107] who showed
that power-law governed, non-stationary processes of young age can cause very
rapid spreading, even for power-law exponents that would result in slow spreading
in the stationary state. Consequently, the age of the processes has a strong influence
on the outcome of spreading if the inter-event time distribution is heavy-tailed.
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5.1.2 Triggered Event Correlations

Another important character of bursty temporal networks, influencing dynamical
processes, is the existence of causal correlations between the events sharing at least
anode in common. Such triggered event pairs are the responsible for the emergence
of mesoscopic temporal motifs [163] in which a larger number of correlated events
are performed in a bursty fashion between two or more individuals. This kind of
behaviour has been observed in human communication systems [142, 157, 201, 252]
and were shown to enhance the diffusion of information locally, and to accelerate
globally the spreading dynamics at the early time limit.

Random reference models provide a straightforward way to study the effects of
triggered event correlations on the global spreading dynamics. Taking an empirical
temporal network one can obtain the sequence of interactions on each link. In order to
remove only triggered event correlations between neighbouring links we can shuffle
the network by re-assigning the entire interaction sequence of each link to randomly
selected other links with the same number of events [142]. In this way the synchro-
nisation of events, i.e., triggered causal correlations, between neighbouring links are
destroyed, while the system remains otherwise unchanged. Note that another equiv-
alent method would be to add a random offset time to each event time on a link while
applying temporal periodic boundary conditions [14]. As it is shown in Fig.5.1a and
b (DCWB model assigned with green rhombus), triggered event correlations turn out
to accelerate the process in the early stage while slowing down in the long run.

This effect has been identified in several works using numerical modelling and
analytical calculations. Kiveldet al. [157] have studied the case of an SI spreading
process between three nodes connected by two links. In this toy system an event on
one link may induce a triggered event on the other link with a given probability p,
or the events are performed independently otherwise. Interesting quantity here is the
average triggered relay time (t;), which indicates the average time that information
needs to wait to pass over the second link if it arrived at an earlier time on the first
link. They show that

(1) = (1 PRz 1) (1), (5.22)

where n is the number of events on the second link. Equation (5.22) indicates that
if p = 0, i.e., all events are independent on the two links, the mean triggered relay
time is equal to the mean residual time. However, for p > 0, the greater the number
of triggered events is, the shorter the triggered relay times are on average, which
indicates that information spreading takes place faster.

Miritelloet al. have addressed the same problem [201] using data-driven simu-
lations on real interaction sequences of mobile phone communication events. They
considered a Susceptible-Infected-Recovered (SIR) spreading process with the infec-
tion rate B and a constant recovery time Ar. They addressed the effects of causally
correlated event pairs taking place within a short time on two neighbouring links
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(x, 1) and (i, j). They have considered the case when the spreading reaches the node
i from an arbitrary neighbour * (other than j) at time #y, after which it could infect the
node j if any event occurred between i and j before it is recovered at time 7y + Af.
They mapped this problem to a static link percolation problem [211] and showed
that the average transmissibility, i.e., the probability that the infection passes over a
triggered event on link (i, j) is

B(nij)  for @ <1

(5.23)
1-P; for Bx~1

Tii (B, At) = [

where (n;;) denotes the average number of events between i and j after i becomes
infected and before it is recovered, and P;; denotes the probability that there is no
such event during the period of At.

Using the data analysis and random reference models they have shown that due
to the correlation between events on neighbouring links, the number of events in a
tie following an incoming call is always larger for the real-time data than for the
time-shuffled case, corresponding to a Poisson process. Consequently, for small j,
the average transmissibility and the size of the epidemic cascades are always larger
in the real case than the time-shuffled case. In contrast, the bursty nature of the
communication makes the tail for the real inter-event time distribution heavier than
an exponential distribution found in time-shuffled case. Thus, if the recovery time is
large enough, P;; is larger in the real-time data than in the shuffled-time data, leading
to smaller spreading cascades.

In another study, Starniniet al. modelled random walk processes on empirical
temporal networks of face-to-face interactions [260]. They found that the random
walker explores more slowly the network with longer mean first-passage time on
the empirical sequences than that for the mean-field solution assuming Poissonian
dynamics. They have argued that the temporal correlations between consecutive con-
versations constitute a unique reason for this slowing down over the heterogeneously
distributed conversation lengths.

5.1.3 Effects of Link Burstiness

In the previous Section we have discussed the importance of triggering effects, and
causal correlations between events on neighbouring links. However, causal correla-
tions not only appear between events on different links of the same individual, but
more commonly they evolve between events on the same social tie [163]. Such cor-
relations are responsible for the emergence of long bursty trains of interactions (see
Sects.2.1.2.5 and 2.3.1), which were shown to be induced by dyadic conversations
rather than between a larger group of people. Consequently, causally correlated event
trains reflect the characteristics of links rather than those of the nodes [145]. Here we
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summarise the studies, which address the effects of bursty links rather than nodes on
dynamical processes.

In their modelling study of SIR and SIS processes on a real temporal network,
Holme and Liljeros [103] considered whether the bursty link dynamics or merely
the life span of links matters. Assuming a finite observation time window 7 they
considered two interpretation scenarios of link dynamics: The ongoing link picture
assumes that observed link has been created earlier and survived longer than the
observation time window. In this case the important temporal structure is the time
between events over the link. On the other hand, the link turnover picture suggests
that a large fraction of links are created and broken during the observation. This
picture is motivated by the observations that the time between the beginning of T
and the first event on a given link, and equivalently between the last event and the end
of T is longer than one would expect from the observed inter-event time distribution
P(7). Then the question is whether the life span of links or the precise timing of
bursty interactions matters more for the final outcome of the simulated spreading
process. They argued by defining null models and performing large-scale numerical
simulations on 12 empirical temporal networks. They found that by assuming that
the events on a link occur regularly with the same inter-event time over T, i.e.,
by destroying the inter-event time distribution, the epidemic outbreak size does not
change considerably. On the other hand, what matters more are the beginning and
ending of the life span of a given link. If these are destroyed by letting all links
begin or end simultaneously, the epidemic outbreak size changes radically. This
alone does not disqualify the ongoing link picture with burstiness being important in
disease spreading, but suggests that the creation and dissolution of ties should also
be considered in studying epidemic model as they may considerably affect the final
outcome of the epidemics.

In another work by Saramiki and Holme [250], they simulated a greedy random
walks on 8 empirical temporal networks. This process is particularly sensitive to
temporal-topological patterns involving repeated contacts between sets of nodes.
This is evident by the small coverage a random walker takes when compared to a
temporal reference model. This shows that in empirical temporal networks greedy
walks often get stuck within a small set of nodes. This is because of non-Markovian
contact patterns on single links, such as bursty trains of so-called ping-pong callings
between two individuals.

5.1.4 Other Bursty Characters

As we have discussed earlier, data analysis and modelling studies suggested that peri-
odic circadian fluctuations could potentially explain the fat-tailed inter-event time
distributions of human interactions. We have also discussed some pro and con argu-
ments and concluded that such periodic patterns may not play deterministic roles. In
order to evaluate the exclusive impact of daily patterns on spreading dynamics, some
work has been done by using mobile phone communication sequences and random
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reference models [142]. From the call data sequences a weighted aggregated network
structure can be obtained by taking individuals (as nodes) and link them if they called
each other during the observation period, with link weights defined as the number of
their dyadic interactions. In order to study the effects of circadian fluctuations one
can use this static structure and generate an interaction sequence on each link by two
Poisson processes that conserve the original link weights: One is a homogeneous
Poisson process with a constant rate A, and the other is a non-homogeneous Poisson
process whose instantaneous rate A(f) follows the daily pattern as calculated from
the call statistics on the hourly basis. Simulating SI dynamics for both cases reveals
that the difference between the spreading curves on networks with homogeneous and
non-homogeneous Poisson link dynamics is negligible, demonstrating that the daily
pattern has only a minor impact on the spreading speed.

We would like to point out that it is not only the microscopic bursty features that can
influence the dynamical processes but also the heterogeneous temporal characters,
which appear in the interaction dynamics at the system level. As described in Chap. 2,
the temporal sparsity of a network can capture its overall burstiness by measuring
for a given time window the effective number of links divided by that for a reference
system, where the timings of events on each link are randomised. Perotti et al. [230]
have shown that spreading velocity of an SI process is strongly correlated with the
sparsity of the underpinning temporal network. They found that the smaller the
temporal sparsity of the network is, the more heterogeneous the bursty temporal
patterns appear to be. This has a direct implication on the dynamical processes on
a temporal network. They simulated an SI spreading dynamics on various kinds of
empirical temporal networks and measured the slow down coefficient defined as
the actual spreading speed divided by that for the reference systems. The smaller
value of slow down coefficient implies the slower spreading. They observed that the
slow down coefficient is almost linearly dependent on the temporal sparsity, which
indicates that the burstiness at the system level slows down the spreading dynamics.

Medvedev and Kertész [195] studied how bridging interactions between nodes
in a population speed up the SI spreading on temporal networks of mobile phone
communication. They categorised people into three groups: White nodes (customers
of the provider with ZIP code), grey nodes (customers of the provider without ZIP
code), and black nodes (customers of other providers). For the spreading dynamics
they considered only grey and black nodes who have at least two connections to
white nodes as they can be identified as bridges for spreading processes between
white nodes. They found that such bridges speed up the spreading even if their
interactions are bursty, independently of the city population.

5.1.5 Dominant Characters

Having discussed various characteristics of bursty behaviour, which were shown to
influence the dynamical processes, we yet need to consider which of them are the
most dominant. This is not an easy problem and sometimes it turns out to drive
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to seemingly contradicting observations on different datasets. The real interaction
sequences are not only bursty, but also correlated in time and with the interaction
structure that consists of communities and ties with heterogeneous activities. All
these correlations play some roles simultaneously during the unfolding of dynamical
processes. Hence to say something exclusively about the effects of burstiness is
challenging.

Once again a straightforward approach to distinguish between the effects of dif-
ferent structural and temporal correlations is provided by random reference models.
Comparing simulation results on random reference networks after removing some
correlations from the temporal network would tell us which bursty characteristics
affect the outcomes of dynamical processes and how. This type of analysis [100,
102, 142, 157, 201, 245] has shown that the most dominant character for control-
ling the speed of epidemic spreading is the temporal heterogeneity (burstiness) of
interactions. As we have explained via the waiting-time paradox, any level of tem-
poral heterogeneity has an overall slowing down effect. However, when compared
to Poissonian systems, bursty interactions accelerate spreading for early times while
slowing down for the later time dynamics [142, 157, 201, 245]. At the same time
triggered event correlations were found to be somewhat less dominant in enhancing
the spreading behaviour at the early time limit [142, 157, 201], while they were
found to slow down the diffusion of a random walker [250, 260]. In terms of the
structure, the weight-topology correlations were found to be important [142, 157,
245] as high activity links located inside communities may enhance spreading, while
low activity links, which are responsible for bridging communities and connecting
the network together, may have the opposite effects by keeping information local
due to their infrequent interactions [83].

Recently Delvenne et al. [60] have addressed a similar question regarding whether
temporal inhomogeneities or structural properties influence more diffusion on a tem-
poral network. To answer this question they provided a mathematical framework to
describe diffusion in linear multi-agent systems with N interacting nodes as follows:

Dx = Lx, (5.24)

where the vector x consists of variables x; denoting the state of node i, Lisan N x N
matrix describing the interaction structure between nodes, while D captures the time
evolution of variables. Assuming a random walker diffusing on the network, the
temporal inhomogeneity can be incorporated into a waiting time distribution p(At),
implying that the random walker hops from one node i to its neighbouring node j
after waiting the time Az on the node i. Then the above equation reads in terms of
the argument s of the Laplace transform:

(L — 1) x(s) = (L — 1) lx(t =0) + Lx(s), (5.25)
p(s) p(s) K

with Laplacian L. Here the mixing time 7y, i.€., the relaxation time to stationarity,
can be approximated as
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2_,,2
Tuix A~ max e, % T}, (5.26)

where 11, 02, and 7. are respectively the mean, the variance, and the exponential
cutoff of the waiting time distribution, while € is the spectral gap of L, representing
the structural property of the system. Therefore, the mixing time of diffusion on such
temporal networks can be dominated either by the temporal inhomogeneity or by the
structural properties. They analysed several empirical datasets and concluded that in
the absence of some temporal correlations, the characteristic times of the dynamics
are dominated either by temporal or by structural heterogeneities, as those observed
inreal-life systems. In systems where correlated temporal patterns are the dominating
factor, the aggregation of communities are not necessarily relevant in general, but
the temporal characteristics impose the natural description levels of the dynamics.

5.2 Dynamical Processes on Bursty Temporal Networks

In the second part of this Chapter we will discuss the representative dynamical
processes, which were investigated for bursty systems. Earlier we have discussed the
effects of different bursty characteristics on the dynamical processes. Here our focus
is more on identifying the dependencies of dynamical processes in the bursty temporal
patterns. We will summarise how the process-specific characteristics depend on the
bursty behaviour of the underpinning temporal network. We will address five different
classes of dynamical processes without going in details about their definitions and
critical behaviour. However, we refer the interested reader to books [24, 233] and a
review paper [226], where these processes and their dynamics on static networks are
addressed in detail.

5.2.1 Epidemic Spreading

As we have already discussed, several epidemic models like SI [86, 107, 129, 142,
157, 198, 200, 243, 262, 287], SIR [104, 112, 170, 201, 243, 312] and SIS [103,
170] have been studied on bursty temporal networks. These processes are commonly
characterised by the infection rate § and the recovery rate ji. Their long-term dynam-
ics has been described by a ratio Ry = B/, called the basic reproduction number.
This ratio gives the average number of infections that a single infected node generates
in a population. This number can also be used to characterise whether the process is
in a subcritical phase (Ry < 1), where the epidemic process vanishes spontaneously,
or in a supercritical/endemic phase (Ry > 1), where a considerable fraction of the
population is infected to evolve into a stationary state. We have seen earlier that het-
erogeneous temporal interaction patterns may influence the dynamics of a spreading
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process, thus it is straightforward to ask how they behave as the function of R in a
bursty system.

Iribarren et al. [112] addressed this question by modelling information propaga-
tion based on observations from an online email recommendation experiment. They
interpreted the spreading process in terms of a Bellman-Harris branching process
model. Precisely, in their model the average fraction of infected nodes at time ¢ is
written as

it)=1-G(@) + Ro/ i(t —1,)P(z,)dx, (5.27)
0

where G (t) = fot P (7,)dt, is the cumulative distribution of the residual time distrib-
ution. They showed that for processes with P(t,) decaying slower than exponential,
including bursty processes with log-normal and power-law tails, if Ry < 1 then
Eq. (5.27) is reduced to i(t) ~ ll__GR(é). This indicates that the spreading depends
mostly on those individuals whose residual time is the longest. Thus temporal het-
erogeneity has a profound impact on the dynamics of information spreading. It does
not depend on the mean value of 7, but on the tail of its distribution G(¢), which
drastically slows down the propagation of information. Interestingly, large temporal
heterogeneity has the opposite effect above the epidemic threshold (Ry > 1). In this
case the Bellman-Harris model predicts an initial exponential growth of the epidemic
spreading where information shows faster spreading than expected.

In another work, Miritello et al. [201] studied the effects of heterogeneous residual
times and triggered events on SIR processes. As we discussed earlier in Sect.5.1.2,
they found that in random networks the basic reproduction number!' is dependent on
the transmissibility, defined in Eq. (5.23), as

<(ZJ 91])2)1 - (Zj 2]2)1
(22 Tihi '

In case of homogeneous dynamics (.7;; = 7) Eq. (5.28) recovers the common
result Ry = .7 ((kl.z) /{k;) — 1) found in random networks. This is an important result
as Ry can be used to determine the critical point of the SIR spreading even in bursty
systems, while its value scales proportionally with the speed of the epidemics.

Rocha et al. [243] addressed various characteristics of spreading processes as a
function of the system’s stationarity and its temporal heterogeneity. In their system-
atic study they defined a temporal network model where nodes are activated by an
independent renewal process with exponential (homogeneous case) or power-law
(heterogeneous case) inter-event time distributions and contact each other randomly.
In addition they introduced node turnover processes by replacing nodes with dis-

Ro(B, At) = (5.28)

'In their work Miritelloet al. [201] called the basic reproduction number as the secondary repro-
duction rate, R, and defined as the the average number of secondary infections produced by an
infectious individual, which is the definition of Ry. Moreover, in their definition they referred to
other works [25, 211], which concerns Ry, thus we decided to adopt the notation Ry in Eq. (5.28),
rather than R; as in the original paper.
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connected new ones with a given rate in order to ensure that the system reaches a
stationary state. As for the fabric of this temporal network they simulated SI and
SIR models and measured the peak and volume of prevalence, and then estimated R
and the distribution of the epidemic outbreak sizes. They showed that the prevalence
curve at the early stages is characterised by a faster and steeper growth of infected
nodes in the case of heterogeneous contact patterns, while at the later stages its
characteristics depend more on the epidemics model, turnover rate, and other para-
meter values. In the absence of replacement of nodes, the prevalence of the infection
is generally higher for homogeneous contact patterns, however, for later times the
heterogeneous contact patterns slow down the spread of the infection. For some con-
figurations of the SIR dynamics, heterogeneous patterns provide a way to decrease
the global impact of the epidemic. In terms of Ry they found that it depends both
on the heterogeneity and the node turnover rate of the network. In general, hetero-
geneous temporal patterns tend to result in higher values of Ry, with the exception
in the case of stochastic SIR dynamics with the infection probability around 1. Note
that a similar picture has been presented by Zhu et al. [312] from SIR simulation
results on temporal scale-free networks.

Gueuning et al. [86] studied the SI spreading process on temporal networks but
with the probability p for the successful infection. This p is essentially related to the
infection rate B and it also determines the average residual time as

() 1—p
(t,) = m + T<T> (5.29)

In case when p = 1, the deterministic SI process is recovered, where the spreading
dynamics is determined by the waiting-time paradox as mentioned with Eq. (2.31)
in Sect. 2.2. On the other hand, if p < 1, the slowing-down effect of heterogeneous
interaction dynamics becomes weaker. As p — 0, what determines the spreading
is the average residual time rather than the tail part of residual time distribution. In
addition, the transmissability of interactions decreases for the increasing p in bursty
cases, indicating their important effects in hindering the epidemic spreading.

Another important characteristics of an SIR spreading is the quantity £2 that
describes the fraction of infected nodes in the population after the outbreak has
passed and the process reached its disease-free absorbing state. In static networks a
unique deterministic relation exists between Ry and §2, while Holme et al. [104] have
found that the relation is violated in case of temporal networks. They showed that
the different pairs of 8 and fi, leading to the same value of Ry, may lead to different
outbreak sizes. Hence the question is which structural and temporal features of a
temporal network determine the most the correlation between §2 and Ry. It has been
found that as a temporal quantity, the burstiness parameter B (defined in Chap.?2)
determines dominantly the correlation between these two quantities. Results showed
that the more heterogeneous the inter-event time distribution is, the less predictable
the value of §2 is from the corresponding R.

Finally, it should be noted that there have been some studies considering bursty
behaviour in order to design efficient immunisation strategies. While only system-
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level effects of burstiness have been addressed by using random reference models in
Ref. [262], an immunization strategy has been proposed in Ref. [174], which exploits
heterogeneous temporal behaviour by immunizing the last interacting neighbour of a
randomly selected node at arandom time. This strategy has been shown to be effective
in data recording face-to-face interactions, where the turnover of relationships is
large.

5.2.2 Random Walks

Random walks serve as a model dynamics that has extensively been used to study
bursty temporal networks. As we have discussed in Sect.5.1.1.2, a special model
variant called greedy random walks has lately attracted much attention as it is defined
on temporal networks and its dynamics is sensitive to temporal heterogeneity. The
temporal network is commonly defined as a static structure with interaction dynamics
on links defined as renewal processes with an arbitrary inter-event time distribution
but with parameters characteristic to each link. A single greedy random walker is
diffusing on such a network by moving between nodes via temporal interactions
whenever it is possible, i.e., after arriving to the node i it always takes the first
emerging link to move to another node. Two variants of greedy random walks have
been proposed by Speidel et al. [259]:

(a) In case of the active random walk, after the walker arrives at a node i, it
re-initialises the inter-event times of all the links. Then, the residual time, i.e.,
the time a walker waits on a node before the link appears, is equivalent to the
inter-event time.

(b) In case of the passive random walk, the re-initialisation of each link is not
assumed. Instead, a new inter-event time is chosen only for the link through
which the walker arrived at the node. Then the transition rates of the passive
random walk depend on the trajectory that the walker has taken, implying that
one has to account for the entire trajectory of the random walker to accurately
evaluate its behaviour [259].

Note that if the dynamics of links are driven by Poisson processes with exponen-
tially distributed inter-event times, the active and passive random walks are identical
and reduce to the usual continuous-time random walk on the static network.

5.2.2.1 Active Random Walks: Generalised Mean-Field Equations

In order to characterise these two models, we are interested in their steady state
behaviour and the mean recurrence time (7;};), i.e., the average duration it takes for
the random walker having initiated from the node i to return to i for the first time. The
steady state behaviour of the active random walk problem was studied by Hoffman
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et al. [98, 99]. They introduced the probability that a random walker makes a step
fromnode j to i accounting for all other processes on j in a similar way asin Eq. (5.4)
as

T;;() = P() x [ | (1 — /0 ij(r’)dr') : (5.30)
ki

where P;;(7) denotes the distribution of waiting times on a link between nodes i
and j. Using this probability they introduce a generalised Montroll-Weiss master
equation [204] describing the evolution of the probability mass function n;(¢) for a
walker to occupy node i in time ¢. In general this can be written as

ni(t) = / ¢i(t —t)q; (t)dt', (5.31)
0

where ¢;(t') is the probability that the walker arrived at the node i in time ¢’ < ¢
weighted by the probability ¢; (f —t’) of not leaving the node since then. The Laplace
transform reduces n; (¢) to a product in the Laplace space as

i (s) = §i()di (s). (5.32)
Here an expression for ¢3,- (s) can be obtained by taking the probability distribution

T:(t) = Zj.vzl T;;(t) to make a step from node i to any other node, which leads to
the probability density function of remaining at i for a time #:

¢i(1) =1— /Ot T (t"dt' (5.33)

with a Laplace transform as
$i(s) =571 = T, (). (5.34)
One can obtain an expression for g; (s) by considering that g; (t) = Z,fio ql.(k) (1)

where qi(k) () is the probability to arrive at the node 7 in time ¢ in exactly k steps.
Taking its Laplace transform and summing it over all k£ the authors yield

R -1
i) =(1-1) no), (5.35)
where [ is the identity matrix and ¢ and n are vectors. After substituting Eqs. (5.34)

and (5.35) into Eq. (5.32) they obtained a generalised Montroll-Weiss master equa-
tion [204] that applies to arbitrary network structures:

As) = s (1 — ﬁr(s)) (1 — f(s))_l n(0), (5.36)
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where the components of the diagonal matrix are given as (ﬁT) (s) = f}(s)&- i3
ij
Taking the inverse Laplace transform leads to

dn

== (T(t) « 2! {b;’(s)} - 5(:)) % K(1) % n(t) (5.37)

where .Z~! denotes the inverse Laplace transform and * is the convolution respect to
time. Here the memory kernel K characterises the amount of memory in the system.
Because of the convolution they conclude that the temporal evolution of ; (¢) depends
on the states of the system at all times since the initial setting. For further details on
the derivation see Refs. [98, 99].

The authors further obtained an effective transmission matrix T;; for the whole
network and found that if the dynamics of links are dictated by a Poisson process,
a random walk on the temporal network is equivalent to a Poisson continuous-time
random walk on a static network with links weighted by the number of interactions.
They also concluded that in the Poissonian case the stationary solution of the random
walk is a uniform vector. In contrast, if the dynamics of links is non-Poissonian, e.g.,
bursty, the stationary solution appears only in the limit 7, — oo and it is not uniform.
In terms of mean recurrence time, Speidel et al. [259] found that if inter-event times
on different links are identically distributed then (7;;) o 1/k;, i.e., it is inversely
proportional to the degree of nodes, thus determined by the structure and not by the
dynamics of the network.

5.2.2.2 Passive Random Walks

In case of the passive random walk problem, the inter-event and residual time dis-
tributions are not identical but related to each other as shown in Eq. (2.30). If P(z,)
has a heavy tail, the inter-event time picked for the last active link, which transferred
the walker from node j to node i, will most likely to be shorter than the residual
times on other links of the node i, leading that the walker will most likely return back
to node j. This behaviour of getting stuck in conversations between two nodes has
somehow already been observed empirically by Saraméki and Holme [250]. This
mechanism makes the system non-Markovian as the destination of the walker at any
node i depends on its origin and not only its actual state. Furthermore, it was shown
that unlike for the active random walk, the approximated steady state of the passive
random walk is the uniform distribution for any network and distribution of inter-
event times. Neither in this case the mean recurrence time depends on the distribution
of inter-event times as it appears as (7;;) o< N(t)/k;. It has also been shown that
the active random walk produces smaller mean recurrence times for each node than
the passive walk does when the inter-event time follows the power-law distribution.
In contrast, the mean recurrence times are larger for the active random walk than for
the passive random walk when inter-event time follows a less heterogeneous Weibull
distribution.
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5.2.3 Threshold Models

Threshold-driven contagion models define a family of dynamical processes, where
the infection of an individual is conditional to some individual threshold of pathogen
concentration or social influence, etc. In these systems individual thresholds together
with the temporal and topological structure of the network determine the spreading
dynamics. This is fundamentally different from the case of epidemic spreading, where
the process is stochastic and controlled by a single rate of infection, characteristic to
the modelled disease and not to the individual. Threshold models are important not
only due to their epidemiological relevance, but also because they capture mecha-
nisms that are recognised to drive social contagion phenomena, such as the spreading
of memes, adoption of innovations, and decisions to join collective actions [47].

A widely known threshold model for static networks was proposed by Watts [294],
which was recently extended for temporal networks [14, 138—140]. The model of
temporal networks assumes that nodes can be in two mutually exclusive states, sus-
ceptible or infected (also called adopted). Initially each node is susceptible except a
randomly selected seed node, which is set to be in infected state. During simulations
we follow the set of contacts in timely order and let each contact be an opportunity
for the nodes to learn about the state of their neighbours and to potentially change
state. A node i changes from susceptible to infected state if the ¢; number (or frac-
tion) of its observed infected neighbours overcomes a given threshold @. However,
nodes remember the state of their observed neighbours only for a finite time window
6. Thus a node gets infected at time ¢ only if it has ¢, > @ within a time frame
[t —0,1].

Karimi et al. [140] have studied two versions of this model simulated on six
different empirical temporal networks and on the corresponding random reference
models where they shuffled the interaction times to eliminate burstiness. In one case,
they defined ¢; as the fraction of infected neighbours among all neighbours observed
in 6 and found that the size of the infection cascade decreases by 6. As they explained,
longer memory time window means larger number of observed neighbours who are
mostly susceptible in the beginning of the process, thus they decrease the probability
of infection of the central node. In addition, they also showed that burstiness slows
down the emergence of infection cascades. On the other hand, in the model variant
where they define ¢; as the absolute number of infected neighbours observed in 6,
the cascade size increases with € and cascades evolve faster due to burstiness in most
of the empirical networks.

Backlundetal. [14] have studied yet two other model variants, where they assumed
that ¢; is defined as the fraction of a number of infected neighbours of node i with
static degree k; observed in 6. They simulated the process on large empirical tempo-
ral networks of mobile calls, SMS, emails, and face-to-face interactions. Similarly
to Karimi et al. they used the time-shuffled random reference model to address the
effects of burstiness and in addition a random offset model (see Sect.5.1.2) to elimi-
nate triggered event correlations. In one model variant, which they called stochastic
threshold model, they assumed a linear correspondence between ¢; of node i and
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the probability of its getting infected. Although the threshold rule does not directly
count the number of contacts from the same adopted neighbour, these interactions
still contribute indirectly because the stochastic rule is activated whenever a con-
tact occurs. The authors observed that this indirect effect of burstiness hinders the
infection rate because of increased waiting times on links and redundant repeated
events. Here multiple adopted neighbours drive the adoption, which are unlikely if
the bursty periods evolve only on links or between limited number of people. In this
case time shuffling destroys burstiness, and spreads events more evenly across time,
thus giving rise to an increased number of temporal paths ending at nodes within
short time windows.

History-dependent contagion is a slightly different type of threshold model, which
was studied by Takaguchi et al. on empirical bursty temporal networks [273]. In this
model each node i of a network is assigned with an internal variable v;, which rep-
resents, e.g., the concentration of pathogen in the individual, or her actual interest in
adopting something. An initially susceptible node becomes infected once the con-
centration v; reaches a threshold vy,, and keeps this state until the end of the process.
The initially zero concentration of a node, i.e., v; = 0, is increased by unity each time
the node interacts with an infected neighbour, and it is decreasing exponentially with
the rate t;, otherwise as the function of the time between consecutive interactions
(for more precise definition, see Ref. [273]). In order to study the effect of burstiness
on this process, simulations have been carried out on real face-to-face interactions
and email networks and on corresponding random reference systems where all tem-
poral heterogeneity were removed by shuffling interaction times. By measuring the
final infection size as a function of vy and t; in both real and randomised net-
works, it has been shown that in the original bursty temporal network the spreading
evolves faster, it reaches more nodes in its final state, and the parameter space of
global contagion is expanded, all compared to the reference systems. However, the
reachability ratio [105] of nodes were found to be smaller. As the authors explained,
this inconsistency may be caused by the competition between two opposite effects
by randomisation, which increases the reachability ratio of each node to enhance
spreading but eliminates the burstiness to suppress the epidemic.

5.2.4 Evolutionary Games

There is yet another set of dynamical processes that have been studied on bursty
temporal networks, namely different evolutionary games. All of the related studies
employed empirical temporal networks and random reference models to understand
how bursty temporal patterns affect the emergence of cooperation. Cardillo et al. [45]
studied the Hawk-Dove game and the Prisoner’s dilemma on face-to-face interac-
tion sequences. They used a snapshot representation of the temporal networks [105],
such that each snapshot represents the set of interactions appearing within a unit
time period between any individuals in the dataset. A random reference model was
defined by shuffling the snapshots, which provided a null model where the number of
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interactions per link and circadian fluctuations were kept, but temporal heterogeneity
and event correlations were destroyed. Simulating games on the original and shuffled
temporal networks showed that the temporal dynamics of social ties has a dramatic
impact on the evolution of cooperation. In fact they showed that the dynamics of pair-
wise interactions favours selfish behaviour, and the cooperation is seriously hindered
when the agent strategy is updated too frequently with respect to the typical time
scale of agent interaction, and when realistic link temporal correlations are present.

Similar conclusions were drawn by Li et al. [175] who studied the Prisoner’s
dilemma on similar real temporal networks. First they showed that the temporal
network enhances the emergence of cooperation when compared to corresponding
static structures. They also concluded that removing burstiness by shuffling inter-
action times in the dataset leads to improved cooperations. Thus they found that
burstiness actually slows down the emergence of cooperations just like in case of
many other dynamical processes.

5.2.5 Dynamical Process Induced Bursty Behaviour

Finally we would like to mention some studies, which propose potentially reversed
situations, where instead of burstiness influencing dynamical processes, it is induced
by them. More precisely, it has been shown that certain processes, such as the adoption
of products or information, may induce bursty patterns in the interaction behaviour
of individuals. We have already discussed one model study of Ref. [68] in Sect.4.1.4,
where in a voter model due to exogenous and endogenous update rules bursty pat-
terns of update frequencies occurred at the individual level. However, one can find
real world examples for similar phenomena. Kikas et al. [152] showed that in the
online social network of Skype, the link creation dynamics of individuals evolve
through long bursty trains, which are commonly triggered by the adoption of differ-
ent services. This in turn evolves as a complex contagion process on the fabric of the
emerging network [143].

In another study, Myers et al. [207] arrived at a similar conclusion by analysing
link creation and removal bursts in Twitter. They identified bursts by comparing link
addition rates to the average daily activity curves. They argue that link creation bursts
are commonly induced by external processes like retweet-bursts, content download,
or protests and helped people to evolve a more homogeneous egocentric network in
terms of interest. Furthermore, they showed that most of the new links created in
bursty periods closed triangles in the network, thus were responsible to shape the
structure locally to help the formation of communities.

Finally another direction of modelling was recently proposed by Odor [215],
showing that interaction dynamics of systems in the critical Griffiths phase? exhibits

2In a critical system disorder can smear the phase transitions, making a discontinuous transition
continuous or generating Griffiths phase, in which critical-like power-law dynamics appears over
an extended region around the critical point.
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slow bursty dynamics with power-law interconnection times. Various static
and dynamic network topologies including one-dimensional rings, generalised
small-world, and ageing scale-free structures were considered. On the top of these
structures dynamical processes were simulated, such as the contact process or
susceptible-infected-susceptible (SIS) dynamics, which are all known to exhibit a
Griffiths phase when the topological disorder exists. It was shown that the inter-
communication time between neighbouring agents appears with a power-law tail with
various exponent value depending on the system considered. These observations sug-
gest that in the case of non-stationary bursty systems, the observed non-Poissonian
dynamics can emerge as a consequence of an underlying hidden Poissonian network
process that is either critical or exhibits strong rare-region effects.



Chapter 6
Discussion

In this monograph we have presented an up-to-date overview of dynamical systems of
human behaviour that show bursty phenomena. These systems evolve through inho-
mogeneous temporal event sequences with periods of high event frequency alternat-
ing with low frequency periods. It is this dynamical feature that makes such systems
very interesting yet very challenging to understand and explain. Systems that show
bursty behaviour can not be characterised just as a Poisson process with a single
temporal scale and exponential inter-event time distributions. Instead, bursty sys-
tems show strong temporal heterogeneities such that their dynamics is deemed to be
non-Poissonian with broad inter-event time distributions.

Indeed, the quest to understand the bursty behaviour is interesting because it occurs
in a variety of systems of Nature but also in man-made systems. One of the best-known
examples of bursty behaviour is the dynamics of earthquakes, where the shocks at a
given location appear burstily with the frequency of aftershocks decreasing as a power
law and leading to a broad inter-event time distribution of shocks. From the theoretical
point of view the stochastic processes underlying this and some other apparently very
different phenomena like solar flares show universal features having the distributions
of sizes, inter-event times, and temporal clustering, explainable in general by the
theory of self-organised criticality (SOC). An example of a bursty system at different
scale is a single neuron or group of neurons firing spike trains with high frequency
separated by intervals of low frequency of activities, which is proposed to be the
result of integrate-and-fire mechanism, commonly assumed in case of SOC systems.
Further examples of bursty patterns can be found in switching between contrasting
activities as in case of sleep-wake patterns of animals and humans or stop-start motion
of fruit flies.

These few examples of systems showing bursty temporal patterns were presented
to define theoretical concepts and develop models towards understanding their behav-
iour. However, in case of human bursty behaviour these concepts and models may
be different especially when it comes to the behaviour of a collection of mutu-
ally linked individuals forming a social connectome [1] or a social network. This
issue of connectivity constituted yet another dimension and a challenge to study
bursty temporal patterns of human sociality in terms of quantitative analysis and of

© The Author(s) 2018 99
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phenomenological and quantitative theory. These systems have recently become
attainable to quantitative studies due to digital communication technologies through
which most human socio-economic transactions now occur and are recorded in large
datasets.

At the behavioural level the timings of individual actions present heterogeneous
temporal patterns, while similar dynamics was observed in dyadic social interactions
between individuals, or in collective social phenomena of groups, communities and
societies. One of the first observations of this kind was made in a study of email
correspondence that reported a broad inter-event time distribution with a power-law
tail [65] and was explained using a priority queuing model [21].

At the group or societal level, one has observed bursty dynamics e.g., in the emer-
gence of causal temporal behaviour motifs, the evolution of mass demonstrations,
revolutions, global information cascades, and even wars of various kinds. In all these
cases of human bursty phenomena there is a challenge to characterise and model
them in a unified way. A step forward to this direction has been the proposition of
human bursty behaviour belonging to one of the two universality classes with two
different exponent values characterising the power-law inter-event time distributions
and queuing models. However, this picture turned out not to be complete as further
empirical evidences from some bursty systems were found to give rise to various
different exponent values.

In describing the human bursty behaviour the perspective of the priority queuing
model is that the bursty patterns are consequences of people prioritising their tasks in
the order of perceived importance, inducing intrinsic correlations between different
tasks and resulting in bursty patterns of completed activities. Alternatively human
behaviour is considered to be driven by external factors like circadian and weekly
cycles without any intrinsic correlations, introducing a set of distinct characteristic
time scales and giving rise to heavy tails due to alternating homogeneous and non-
homogeneous Poisson processes. As further alternative approaches in describing
bursty patterns one has assumed strong correlations between consecutive events
and employed memory functions, or self-exciting point processes, or reinforcement
mechanisms. Yet there are other models that have been proposed to describe human
bursty behaviour based on self-organised criticality, or local structural correlations, or
random walk, or contact process, or voter model process to introduce heterogeneous
temporal patterns at the individual or system level.

The richness of emergent features in human bursty dynamics has generated the
development of methodologies and models to ask even more complex scientific
questions about the effects of non-Poissonian patterns of individuals on collective
dynamical processes. A typical example is diffusion of information in a temporal
social network, where individuals interact burstily but are connected together in
a network where information can diffuse globally. Beyond the conventional mod-
elling and simulation techniques of such processes, data-driven models and random
reference systems were recently shown to be successful in addressing such questions.

As is evident from the above not at all comprehensive set of examples, there is still
a lot of open directions to take towards the better understanding of the underlying
mechanisms and processes that lead to burstiness appearing in the systems of human
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dynamics. In this monograph we have embarked on to the road of addressing these
questions of the underlying mechanisms of bursty behaviour in terms of data analysis
as well as using various theoretical and modelling approaches. In order to make our
research endeavour of human bursty behaviour as a logically proceeding narrative
we organised our review in six Chapters, including this Chapter. Starting with a
general introduction in Chap. 1 we provided a broader overview on bursty phenomena
observed in Nature and in human dynamics together with the general motivations
and organisation principles for this monograph.

In Chap. 2 we presented the theoretical description and characterisation of bursty
human dynamics. Starting from the description of discrete time series we went
through all characteristic measures, like inter-event time distribution, burstiness para-
meter, memory coefficient, bursty train size distribution, autocorrelation function,
and so on, which were borrowed or introduced to describe human bursty systems
from the individual to the population level. With these quantities, we showed how
to detect the temporal inhomogeneities and long-range memory effects in the event
sequences of human dynamics. At the same time we also introduced methods of
system-level characterisation, mainly in the frame of temporal networks, which have
been intensively studied in recent years to describe temporal human social behav-
iour. Finally, as human dynamics intrinsically shows the cyclic patterns like the daily
and weekly ones, the methods for deciphering the effects of such cycles were also
described.

In Chap. 3, we made a comprehensive collection of a large number of empirical
observations of human bursty systems recorded in various situations and stored in
a number of datasets. We divided these observations into two main categories, i.e.,
individual activities and interaction-driven collective activities. In addition, we briefly
discussed examples from human mobility, financial systems, and animal behaviour.
Precisely, as for the interaction-driven case, we sorted out the empirical findings
from different social interaction modalities like face-to-face interactions, mobile-
phone based interactions, communication by posted letters and emails to web-based
social interactions, as they may reflect the different degree of sociality between a pair
of individuals. To make the overview for the reader easier to follow such a large set
of empirical studies, we presented a systematic summary of all these observations
in tables including a short description of each dataset, the observed values of some
bursty characters, and the references to the original works.

Next in Chap.4 we summarised the main modelling directions, which have been
studied for the understanding of the emergence of bursty human behaviour. We
addressed three main modelling paradigms concerning priority queuing models,
reinforcement and memory driven processes, and Poisson models of bursty phe-
nomena. In addition, we summarised less recognised modelling directions together
with random reference models, which have been used lately to highlight the effects of
burstiness and temporal correlations in empirical event sequences. Furthermore, we
discussed several generative models at the individual level, where activity dynamics
of a single person were in focus, but we also summarised models of bursty dyadic
interactions, and network models with emergent bursty behaviour.
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In Chap.5 we summarised studies addressing any type of dynamical processes
of bursty human interaction networks. Bursty human interactions have indisputable
consequences on dynamical processes, as their heterogeneous timings largely control
the possible transmission of any kind of information between interacting peers, or
the timely connectedness of the temporal structure. To give a comprehensive review
we first discussed all possible bursty characters like the inter-event and residual
time distributions, ordering of events, triggered event correlations, node and link
burstiness, etc., which were shown to play important roles in the early and late time
behaviour of collective dynamical phenomena. In the second part of Chap.5 we
went through all the main families of dynamical processes studied so far in bursty
interaction networks to understand how process specific behaviour is dependent on
the heterogeneous dynamics.

6.1 Future Directions and Methodological Approaches

As stated before this monograph is meant to serve as an up-to-date overview of what
has been learned so far about human bursty phenomena. However, we need to ask
what is next, what can one learn more, should one try to combine different perspec-
tives, and what should one focus on? Here our perspective to study human burstiness
has largely been that of statistical physics, at least when it comes to methodology.
This includes the analyses of various kinds of small or large datasets to learn about the
dynamical characters and other basic properties of human burstiness at the level of
individuals, pairs of individuals, and networks of individuals. This is followed by the
theory, building plausible models, and doing the actual computational modelling to
understand and explain how these properties at different levels could have emerged.
This is also important in describing on one hand the processes leading to burstiness
and on the other the dynamics of it. This perspective is very much data-driven but
also data-limited, since we are dependent on the availability of data.

One of the recent ICT-related developments in studies of social systems is continu-
ous and automated app-based data collection using smart mobile phones and wearable
devices [5, 63, 137, 266]. As today’s smart phones include a number of sensors, it is
possible to continuously collect lots of different types of data from single individuals,
such as their activity times by monitoring phone screen on/off sequences, location,
accelerometer data, calls, messages, data from apps and services usage, social net-
work data (e.g., Facebook and Twitter), and data from wearables. Together with the
smart phones’ built-in facility to make online surveys and questionnaires, it is possi-
ble to collect qualitative and quantitative truly multidimensional “social diary" data
from a single individual and from interacting individuals in groups or in larger social
networks. The smart phone based research approach can join seemingly different
viewpoints to eventually one research perspective, that could be called “computa-
tional social science” and once again aiming at getting even deeper understanding of
the processes involved in human behaviour in general and human bursty behaviour
in more detail.
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As for data-driven observations of human dynamics, especially when the system
behaves burstily, we raise yet another open question, namely the stationarity of the
process. The reason for this is the fact that human activities are predominantly driven
by circadian rhythms with a characteristic time scale of one day, meaning that every
day a new process is started. This is particularly important if the inter-event time
distribution, the dynamic system produces, is fat tailed, because then it takes infinite
time for the process to become stationary. This in turn induces a non-stationary bursty
dynamics at the individual level, but also at the network level where it is entangled
with the evolving network structure with created and broken ties and with nodes
arriving and leaving the system. Hence this question is indeed crucial at any level
of human dynamical systems and ongoing dynamical processes. However, despite
its importance, the non-stationarity has so far neither been well-demonstrated from
data nor been systematically considered in the framework of modelling, except in few
cases [60, 87, 107, 165, 243, 287]. Thus the non-stationary nature of the dynamics
of the system together with the somewhat better characterised feature of higher-order
temporal correlations between events and inter-event times still remain as questions
to be answered for more comprehensive and deeper understanding of bursty human
dynamics.

Our quest has so far been mostly concentrated on gaining understanding and
explaining human bursty behaviour based on direct observations and analysis of
related data. In order to learn more there is need to reach out and consider whether
bursty behaviour in other complex systems show behavioural similarities, patterns,
and universalities rather than differences, variation, and specifics. The former view-
point is considered Platonic and it is pondered to be akin to physics while the latter is
considered Aristotelian and pondered to be akin to biology [19]. In studies of com-
plex systems both viewpoints are of course needed as they complement each other.
According to the Platonic view one tends at least implicitly to assume—on the basis
of observed regularities—that there should be some kind of, yet uncovered, govern-
ing laws that would lead to the behaviour of the complex system or at least give us
some insight what kind of plausible processes or mechanisms could be involved. As
these regularities appear in various complex natural, social, and man-made systems
and at different scales, one is led to believe that there are observable similarities that
can be characterised with the same type of mathematical relationships, scaling laws,
and behavioural models. With this type of over-arching perspective one could take
the next step to uncover the similarities and even possible universalities as well as
some kind of governing principles of human bursty behaviour at the multiple levels
ranging from individuals to social networks. This could be achieved on one hand with
data-analytics approach and on the other hand with computational modelling, which
could be seen to constitute a physics approach to decipher human bursty behaviour
in terms of structure, function, and response.

However, at this point one should ask whether the above described Platonic view-
point of research is too one-sided. Is it too simplistic and overly self-assured as
well as falling short of addressing some key properties of human burstiness while
ignoring some of the possibly important details of the complex system of interest?
This is a specifically relevant question in case of humans who can be observed as
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individuals or as members of larger social networks of various kinds as well as in a
society with all sorts of cultural and socioeconomic ramifications. These issues are
traditionally the realms of Cognitive or even Neurocognitive Science, Psychology,
Social Psychology, Social Sciences as well as even Political Science, carrying their
own research perspective(s) and methodological approaches. In them the details,
especially behavioural differences, variation, and specifics matter thus making the
perspective more akin to Aristotelian viewpoint. These systems are studied using
various kinds of experimental methodologies to observe individual behaviour and
alternatively surveys targeted to groups of individuals.

This Aristotelian approach may provide also advances in the future. By focusing
on individuals and pairs of individuals using various brain research methodologies,
one may be bound to get deeper insight into more of the “micro” level properties of
human burstiness. In addition in case of small groups using observational cognitive
research methodologies one may understand better human burstiness as part of social
gathering. Although these experiments, due to being specifically set up for certain
purpose, carry a kind of “in vitro” flavour, they help us to build more realistic models
of human dynamics. The same can be said about the survey or questionnaire studies
of hundreds or thousands of individuals, which can be carried out with new digital
platforms. Such studies may have features of individual subjectivity, which can be
tuned to investigate better certain social situations in a controlled way. So rather
than saying that one of these two viewpoints, either Platonic or Aristotelian, is more
important than the other, we emphasise their equal importance and their mutual
methodological complementarity in building deeper insight into human behaviour
and its dynamics in general. This kind of complementary and joint Platonic and
Aristotelian perspective can be expected to shed light to the governing laws (if any)
or functional rules of human bursty behaviour and to possible behavioural similarities
and universalities.



Erratum to: Bursty Human Dynamics

Erratum to:
M. Karsai et al., Bursty Human Dynamics, SpringerBriefs
in Complexity, https://doi.org/10.1007/978-3-319-68540-3

The original version of the book was inadvertently published without the following
corrections:

In Chap. 4, Pg. 60, 6th line from last, the space between “A,#,” and “,” has been
removed.

In reference [257], the incorrect arXiv number “arXiv:1307.0814 has been cor-
rected as “arXiv:1209.1411”.

In reference [267], the incorrect arXiv number “arXiv:0510216” has been corrected
as “arXiv:physics/0510216”.

In reference [125], the title “Community-based static modeling, stylized facts in
social networks” has been changed as “Stylized facts in social networks:
Community-based static modeling”.

The updated online version for this book can be found at
https://doi.org/10.1007/978-3-319-68540-3_4
https://doi.org/10.1007/978-3-319-68540-3

© The Author(s) 2018 El
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http://dx.doi.org/10.1007/978-3-319-68540-3
http://dx.doi.org/10.1007/978-3-319-68540-3_4
http://dx.doi.org/10.1007/978-3-319-68540-3

References

1. Social Connectome: the anatomy of social networks and its modeling (2016), https://sites.
google.com/site/socialconnectome/

2. J. Abate, W. Whitt, Asymptotics for M/G/1 low-priority waiting-time tail probabilities. Queue-
ing Syst. 25(1-4), 173-233 (1997)

3. N. Aharony, W. Pan, C. Ip, I. Khayal, A. Pentland, Social fMRI: investigating and shaping
social mechanisms in the real world. Pervasive Mob. Comput. 7(6), 643-659 (2011)

4. R. Albert, A.-L. Barabdsi, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1),
47-97 (2002)

5. T. Aledavood, E. Lépez, S.G.B. Roberts, F. Reed-Tsochas, E. Moro, R.I.M. Dunbar, J. Saramai-
ki, Daily rhythms in mobile telephone communication. PLoS ONE 10(9), e0138098 (2015)

6. V. Alfi, A. Gabrielli, L. Pietronero, How people react to a deadline: time distribution of
conference registrations and fee payments. Cent. Eur. J. Phys. 7(3), 483-489 (2009)

7. V. Alfi, G. Parisi, L. Pietronero, Conference registration: how people react to a deadline. Nat.
Phys. 3(11), 746 (2007)

8. P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A. Gemignani, P. Grigolini, B.J. West, P.
Paradisi, Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev. E 80, 061914
(2009)

9. E.G. Altmann, J.B. Pierrehumbert, A.E. Motter, Beyond word frequency: bursts, lulls, and
scaling in the temporal distributions of words. PLoS ONE 4(11), 7678 (2009)

10. C. Anteneodo, Exact results for the Barabdsi queuing model. Phys. Rev. E 80(4), 041131
(2009)

11. C. Anteneodo, R.D. Malmgren, D.R. Chialvo, Poissonian bursts in e-mail correspondence.
Eur. Phys. J. B 75(3), 389-394 (2010)

12. T. Aoki, T. Takaguchi, R. Kobayashi, R. Lambiotte, Input-output relationship in social com-
munications characterized by spike train analysis. Phys. Rev. E 94, 042313 (2016)

13. F. Asgari, V. Gauthier, M. Becker, A survey on human mobility and its applications (2013),
arXiv:1307.0814

14. V.-P. Backlund, J. Saramiki, R.K. Pan, Effects of temporal correlations on cascades: threshold
models on temporal networks. Phys. Rev. E 89, 062815 (2014)

15. S.K. Baek, T.Y. Kim, B.J. Kim, Testing a priority-based queue model with linux command
histories. Phys. A Stat. Mech. Appl. 387(14), 3660-3668 (2008)

16. P. Bak, How nature works: the science of self-organized criticality (Copernicus, New York,
1996)

17. P.Bak, K. Christensen, L. Danon, T. Scanlon, Unified scaling law for earthquakes. Phys. Rev.
Lett. 88(17), 178501 (2002)

18. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise.
Phys. Rev. Lett. 59(4), 381-384 (1987)

19. P. Ball, Complexity: decoding deep similarities. Nature 545(7653), 154—-155 (2017)

© The Author(s) 2018 105

M. Karsai et al., Bursty Human Dynamics,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-68540-3


https://sites.google.com/site/socialconnectome/
https://sites.google.com/site/socialconnectome/
http://arxiv.org/abs/1307.0814

106

20

21.

22.

23.

24.

25.

26.
217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

References

. A.-L. Barabasi, K.-I. Goh, A. Vazquez, Reply to comment on “the origin of bursts and heavy
tails in human dynamics” (2005), arXiv:physics/0511186

A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435, 207-211
(2005)

A.-L. Barabasi, Bursts: The Hidden Pattern Behind Everything We Do, 1st edn. (Dutton Adult,
USA, 2010)

A. Baronchelli, F. Radicchi, Lévy flights in human behavior and cognition. Chaos Solitons
Fractals 56, 101-105 (2013)

A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks, 1st
edn. (Cambridge University Press, Cambridge, 2008)

M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Velocity and hierarchical spread
of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)

Y. Barzel, A theory of rationing by waiting. J. Law Econ. 17(1), 73-95 (1974)

J.M. Beggs, D. Plenz, Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167—
11177 (2003)

T. Berners-Lee, Weaving the Web: The Past, Present and Future of the World Wide Web by its
Inventor (Texere, London, 2000)

Y. Blanter, M. Biittiker, Shot noise in mesoscopic conductors. Phys. Rep. 336(1-2), 1-166
(2000)

V.D. Blondel, A. Decuyper, G. Krings, A survey of results on mobile phone datasets analysis.
EPJ Data Sci. 4(1), 10 (2015)

B. Blonder, T.W. Wey, A. Dornhaus, R. James, A. Sih, Temporal dynamics and network
analysis. Methods Ecol. Evol. 3(6), 958-972 (2012)

S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gomez-Gardefies, M. Romance, I.
Sendifna Nadal, Z. Wang, M. Zanin, The structure and dynamics of multilayer networks. Phys.
Rep. 544(1), 1-122 (2014)

M.I. Bogachev, A. Bunde, On the occurrence and predictability of overloads in telecommu-
nication networks. EPL (Europhys. Lett.) 86(6), 66002 (2009)

J.C. Bohorquez, S. Gourley, A.R. Dixon, M. Spagat, N.F. Johnson, Common ecology quan-
tifies human insurgency. Nature 462(7275), 911-914 (2009)

S.P. Borgatti, A. Mehra, D.J. Brass, G. Labianca, Network analysis in the social sciences.
Science 323(5916), 892-895 (2009)

J.-P. Bouchaud, Crises and collective socio-economic phenomena: simple models and chal-
lenges. J. Stat. Phys. 151(3—4), 567-606 (2013)

G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control, 4th
edn. (Wiley, New York, 2008)

D. Boyer, M.C. Crofoot, P.D. Walsh, Non-random walks in monkeys and humans. J. R. Soc.
Interface 9(70), 842-847 (2012)

D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel. Nature 439(7075),
462-465 (2006)

G.G. Brunk, Self-organized criticality: a new theory of political behaviour and some of its
implications. Br. J. Polit. Sci. 31, 427-445 (2001)

R.M. Bryce, K.B. Sprague, Revisiting detrended fluctuation analysis. Sci. Rep. 2, 315 (2012)
O.M. Bulashenko, J.M. Rubi, V.A. Kochelap, Suppression of non-Poissonian shot noise by
coulomb correlations in ballistic conductors. Phys. Rev. B 62(12), 8184-8191 (2000)

D.O. Cajueiro, W.L. Maldonado, Role of optimization in the human dynamics of task execu-
tion. Phys. Rev. E 77(3), 035101 (2008)

J. Candia, M.C. Gonzélez, P. Wang, T. Schoenharl, G. Madey, A. Barabasi, Uncovering
individual and collective human dynamics from mobile phone records. J. Phys. A Math.
Theor. 41(22), 224015 (2008)

C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics. Rev. Mod. Phys.
81(2), 591-646 (2009)

C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, A. Vespignani, Dynamics of
person-to-person interactions from distributed rfid sensor networks. PLoS ONE 5(7), e11596
(2010)


http://arxiv.org/abs/physics/0511186

References 107

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

D. Centola, M. Macy, Complex contagions and the weakness of long ties. Am. J. Sociol.
113(3), 702-734 (2007)

A. Chatterjee, Login times in e-mail servers are scale-free (2003), arXiv:cond-mat/0307533
E. Chlebus, W. Ludwin, Is handoff traffic really Poissonian? in Proceedings of ICUPC 1995—
4th IEEE International Conference on Universal Personal Communications (IEEE, 1995),
pp. 348-353

A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data. SIAM
Rev. 51(4), 661-703 (2009)

A. Cobham, Priority assignment in waiting line problems. Oper. Res. 2(1), 70-76 (1954)

B. Coley, B.M. Jolles, A. Farron, K. Aminian, Arm position during daily activity. Gait Posture
28(4), 581-587 (2008)

E.R. Colman, D.V. Greetham, Memory and burstiness in dynamic networks. Phys. Rev. E
92(1) (2015)

R.B. Cooper, S.-C. Niu, M.M. Srinivasan, Some reflections on the renewal-theory paradox in
queueing theory. J. Appl. Math. Stoch. Anal. 11(3), 355-368 (1998)

A. Corral, Long-term clustering, scaling, and universality in the temporal occurrence of earth-
quakes. Phys. Rev. Lett. 92, 108501 (2004)

D.R. Cox, H.D. Miller, The Theory of Stochastic Processes (Chapman and Hall, Boca Raton,
1972)

R. Crane, D. Sornette, Robust dynamic classes revealed by measuring the response function
of a social system. Proc. Natl. Acad. Sci. 105(41), 15649-15653 (2008)

J. Davidsen, G. Kwiatek, Earthquake interevent time distribution for induced micro-, nano-,
and picoseismicity. Phys. Rev. Lett. 110, 068501 (2013)

L. de Arcangelis, C. Godano, E. Lippiello, M. Nicodemi, Universality in solar flare and
earthquake occurrence. Phys. Rev. Lett. 96(5), 051102 (2006)

J.-C. Delvenne, R. Lambiotte, L.E.C. Rocha, Diffusion on networked systems is a question
of time or structure. Nat. Comm. 6, 7366 (2015)

C. Dewes, A. Wichmann, A. Feldmann, An analysis of internet chat systems, in Proceedings
of the 3rd ACM SIGCOMM Conference on Internet Measurement, IMC 2003, New York, NY,
USA (ACM, 2003), pp. 51-64

Z.Dezso, E. Almaas, A. Lukdcs, B. Récz, I. Szakadat, A.L. Barabasi, Dynamics of information
access on the web. Phys. Rev. E 73(6), 066132 (2006)

N. Eagle, A. Pentland, Reality mining: sensing complex social systems. Pers. Ubiquitous
Comput. 10(4), 255-268 (2006)

N. Eagle, A.S. Pentland, D. Lazer, Inferring friendship network structure by using mobile
phone data. Proc. Natl. Acad. Sci. 106(36), 15274-15278 (2009)

J.-P. Eckmann, E. Moses, D. Sergi, Entropy of dialogues creates coherent structures in e-mail
traffic. Proc. Natl. Acad. Sci. U.S.A. 101(40), 14333-14337 (2004)

Y.-H. Eom, H.-H. Jo, Tail-scope: using friends to estimate heavy tails of degree distributions
in large-scale complex networks. Sci. Rep. 5, 09752 (2015)

W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. (Wiley,
New York, 1971)

J. Fernandez-Gracia, V.M. Eguiluz, M.S. Miguel, Timing interactions, in social simulations:
the voter model, in Temporal Networks, Understanding Complex Systems, ed. by P. Holme,
J. Sardamki (Springer, Berlin, 2013), pp. 331-352

M. Formentin, A. Lovison, A. Maritan, G. Zanzotto, Hidden scaling patterns and universality
in written communication. Phys. Rev. E 90, 012817 (2014)

M. Formentin, A. Lovison, A. Maritan, G. Zanzotto, New activity pattern in human interactive
dynamics. J. Stat. Mech. Theor. Exp. 2015(9), P09006 (2015)

S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75-174 (2010)

J. Fournet, A. Barrat, Contact patterns among high school students. PLoS ONE 9(9), e107878
(2014)

A. Gabrielli, G. Caldarelli, Invasion percolation and critical transient in the Barabasi model
of human dynamics. Phys. Rev. Lett. 98(20), 208701 (2007)


http://arxiv.org/abs/cond-mat/0307533

108

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

90.
91.

92.

93.

94.

95.

96.

97.

98.

99.

References

Y. Gandica, J. Carvalho, E.S.D. Aidos, R. Lambiotte, T. Carletti, The wikipedia edits case, on
the origin of burstiness in human behavior (2016), arXiv:1601.00864

C. Gao, J. Liu, N. Zhong, Network immunization and virus propagation in email networks:
experimental evaluation and analysis. Knowl. Inf. Syst. 27(2), 253-279 (2011)

A. Garas, D. Garcia, M. Skowron, F. Schweitzer, Emotional persistence in online chatting
communities. Sci. Rep. 2, 402 (2012)

L. Gauvin, A. Panisson, C. Cattuto, A. Barrat, Activity clocks: spreading dynamics on tem-
poral networks of human contact. Sci. Rep. 3, 3099 (2013)

M. Goetz, J. Leskovec, M. McGlohon, C. Faloutsos, Modeling blog dynamics, in International
Conference on Weblogs and Social Media (2009)

K.-I. Goh, A.-L. Barabasi, Burstiness and memory in complex systems. EPL (Europhys. Lett.)
81, 48002 (2008)

B. Gongalves, J.J. Ramasco, Human dynamics revealed through web analytics. Phys. Rev. E
78(2), 026123 (2008)

M.C. Gonzilez, C.A. Hidalgo, A.-L. Barabasi, Understanding individual human mobility
patterns. Nature 453(7196), 779782 (2008)

A.A. Grace, B.S. Bunney, The control of firing pattern in nigral dopamine neurons: burst
firing. J. Neurosci. 4(11), 2877-2890 (1984)

M.S. Granovetter, The strength of weak ties. Am. J. Sociol. 78(6), 1360-1380 (1973)

G.R. Grimmett, D. Stirzaker, Probability and Random Processes, 3rd edn. (Oxford University
Press, Oxford, 2009)

G. Grinstein, R. Linsker, Biased diffusion and universality in model queues. Phys. Rev. Lett.
97(13), 130201 (2006)

M. Gueuning, J.-C. Delvenne, R. Lambiotte, Imperfect spreading on temporal networks. Eur.
Phys. J. B 88(11), 1-5 (2015)

J.L. Guo, C. Fan, Z.H. Guo, Weblog patterns and human dynamics with decreasing interest.
Eur. Phys. J. B Condens. Matter Complex Syst. 81, 341-344 (2011)

X.-P. Han, T. Zhou, B.-H. Wang, Modeling human dynamics with adaptive interest. New J.
Phys. 10(7), 073010 (2008)

U. Harder, M. Paczuski, Correlated dynamics in human printing behavior. Phys. A Stat. Mech.
Appl. 361(1), 329-336 (2006)

T.E. Harris, The Theory of Branching Processes (Courier Dover Publications, 2002)

T. Hartonen, M.J. Alava, How important tasks are performed: peer review. Sci. Rep. 3, 1679
(2013)

S. Hasan, C.M. Schneider, S.V. Ukkusuri, M.C. Gonzdlez, Spatiotemporal patterns of urban
human mobility. J. Stat. Phys. 151(1-2), 304-318 (2013)

M.S. Hashemian, K.G. Stanley, N. Osgood, Flunet: automated tracking of contacts during flu
season, in 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (2010), pp. 348-353

A.G. Hawkes, Spectra of some self-exciting and mutually exciting point processes. Biometrika
58(1), 83-90 (1971)

T. Henderson, S. Bhatti, Modelling user behaviour in networked games, in Proceedings of the
Ninth ACM International Conference on Multimedia, MULTIMEDIA 2001, New York, NY,
USA (ACM, 2001)

J. Hesse, T. Gross, Self-organized criticality as a fundamental property of neural systems.
Front. Syst. Neurosci. 8, 166 (2014)

C.A. Hidalgo, Conditions for the emergence of scaling in the inter-event time of uncorrelated
and seasonal systems. Phys. A Stat. Mech. Appl. 369(2), 877-883 (2006)

T. Hoffmann, M.A. Porter, R. Lambiotte, Generalized master equations for non-poisson dy-
namics on networks. Phys. Rev. E 86(4), 046102 (2012)

T. Hoffmann, M.A. Porter, R. Lambiotte, Random walks on stochastic temporal networks, in
Temporal Networks, Understanding Complex Systems, Understanding Complex Systems, ed.
by P. Holme, J. Sardmki (Springer, Berlin, 2013), pp. 295-313


http://arxiv.org/abs/1601.00864

References 109

100.

101.
102.

103.
104.
105.
106.
107.
108.
109.

110.

111.

112.

113.

114.

115.
116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

P. Holme, Information content of contact-pattern representations and predictability of epi-
demic outbreaks Sci. Rep. §, 14462 (2015)

P. Holme, Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1-30 (2015)
P. Holme, Temporal network structures controlling disease spreading. Phys. Rev. E 94, 022305
(2016)

P. Holme, F. Liljeros, Birth and death of links control disease spreading in empirical contact
networks. Sci. Rep. 4, 4999 (2014)

P. Holme, N. Masuda, The basic reproduction number as a predictor for epidemic outbreaks
in temporal networks. PLoS ONE 10(3), 0120567 (2015)

P. Holme, J. Saramiki, Temporal networks. Phys. Rep. 519(3), 97-125 (2012)

P. Holme, J. Saramiki (eds.), Temporal Networks (Springer, Berlin, 2013)

D.X. Horvith, J. Kertész, Spreading dynamics on networks: the role of burstiness, topology
and non-stationarity. New J. Phys. 16(7), 073037 (2014)

D. Hric, R.K. Darst, S. Fortunato, Community detection in networks: structural communities
versus ground truth. Phys. Rev. E 90, 062805 (2014)

H.-B. Hu, D.-Y. Han, Empirical analysis of individual popularity and activity on an online
music service system. Phys. A Stat. Mech. Appl. 387(23), 5916-5921 (2008)

P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, C. Diot, Pocket switched networks and
human mobility in conference environments, in Proceedings of the 2005 ACM SIGCOMM
Workshop on Delay-tolerant Networking, WDTN 2005, New York, NY, USA (ACM, 2005), pp.
244-251

Internet Live Stats, Total number of websites (2016), http://www.internetlivestats.com/total-
number-of-websites/. Accessed 24 Dec 2016

J.L. Iribarren, E. Moro, Impact of human activity patterns on the dynamics of information
diffusion. Phys. Rev. Lett. 103(3), 038702 (2009)

J.L. Iribarren, E. Moro, Branching dynamics of viral information spreading. Phys. Rev. E
84(4), 046116 (2011)

L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, W. Van den Broeck, What’s in a crowd?
analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166—-180 (2011)

O.M. Jackson, Social and Economic Networks (Princeton University Press, 2010)

T. Janevski, Traffic Analysis and Design of Wireless IP Networks (Artech House Inc., Nor-
wood, MA, USA, 2003)

H.J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Bio-
logical Systems, 1st edn. (Cambridge Lecture Notes in Physics (Cambridge University Press,
Cambridge, 1998)

B. Jiang, J. Yin, S. Zhao, Characterizing the human mobility pattern in a large street network.
Phys. Rev. E 80(2), 021136 (2009)

Z.-Q. Jiang, W.-J. Xie, M.-X. Li, B. Podobnik, W.-X. Zhou, H.E. Stanley, Calling patterns in
human communication dynamics. Proc. Natl. Acad. Sci. 110(5), 1600-1605 (2013)

Z.-Q. Jiang, W.-J. Xie, M.-X. Li, W.-X. Zhou, D. Sornette, Two-state markov-chain poisson
nature of individual cellphone call statistics. J. Stat. Mech. Theory Exp. 2016(7), 073210
(2016)

H.-H. Jo, M. Karsai, J. Karikoski, K. Kaski, Spatiotemporal correlations of handset-based
service usages. EPJ Data Sci. 1(1), 10 (2012)

H.-H. Jo, M. Karsai, J. Kertesz, K. Kaski, Circadian pattern and burstiness in human commu-
nication activity (2011), arXiv:1101.0377v1

H.-H. Jo, M. Karsai, J. Kertesz, K. Kaski, Circadian pattern and burstiness in mobile phone
communication. New J. Phys. 14(1), 013055 (2012)

H.-H. Jo, E. Moon, K. Kaski, Optimized reduction of uncertainty in bursty human dynamics.
Phys. Rev. E 85, 016102 (2012)

H.-H. Jo, Y. Murase, J. Torok, J. Kertész, K. Kaski, Stylized facts in social networks:
community-based static modeling (2017), arXiv:1611.03664

H.-H. Jo, R.K. Pan, K. Kaski, Emergence of bursts and communities in evolving weighted
networks. PLoS ONE 6(8), 22687 (2011)


http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/
http://arxiv.org/abs/1101.0377v1

110

127.

128.

129.

130.

131.

132.

133.
134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

References

H.-H. Jo, R.K. Pan, K. Kaski, Time-varying priority queuing models for human dynamics.
Phys. Rev. E 85, 066101 (2012)

H.-H. Jo, R.K. Pan, J.I. Perotti, K. Kaski, Contextual analysis framework for bursty dynamics.
Phys. Rev. E 87, 062131 (2013)

H.-H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Analytically solvable model of spreading dynamics
with non-poissonian processes. Phys. Rev. X 4(1), 011041 (2014)

H.-H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Correlated bursts and the role of memory range.
Phys. Rev. E 92(2), 022814 (2015)

H.-H. Jo, J. Saramiki, R.I.M. Dunbar, K. Kaski, Spatial patterns of close relationships across
the lifespan. Sci. Rep. 4, 6988 (2014)

A. Johansen, Probing human response times. Phys. A Stat. Mech. Appl. 338(1-2), 286-291
(2004)

N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (Elsevier, 2007)
C. Kang, X. Ma, D. Tong, Y. Liu, Intra-urban human mobility patterns: an urban morphology
perspective. Phys. A Stat. Mech. Appl. 391(4), 1702-1717 (2012)

J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Detecting long-
range correlations with detrended fluctuation analysis. Phys. A Stat. Mech. Appl. 295(3-4),
441-454 (2001)

H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd edn. (Cambridge University
Press, Cambridge, 2004)

J. Karikoski, M. Nelimarkka, Measuring social relations: case otasizzle, in Social Computing
(SocialCom) (IEEE, 2010), pp. 257-263

F. Karimi, Tightly knit: spreading processes in empirical temporal networks. Ph.D. thesis,
Umead University, Department of Physics, 2015

F. Karimi, P. Holme, A temporal network version of Watts’s cascade model, in Temporal
Networks, Understanding Complex Systems, ed. by P. Holme, J. Saramiki (Springer, Berlin,
2013), pp. 315-329

F. Karimi, P. Holme, Threshold model of cascades in empirical temporal networks. Phys. A
Stat. Mech. Appl. 392(16), 3476-3483 (2013)

F. Karimi, V.C. Ramenzoni, P. Holme, Structural differences between open and direct com-
munication in an online community. Phys. A Stat. Mech. Appl. 414, 263-273 (2014)

M. Karsai, M. Kiveld, R.K. Pan, K. Kaski, J. Kertész, A. Barabdsi, J. Saramiki, Small but
slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2),
025102 (2011)

M. Karsai, G. Iiiguez, R. Kikas, K. Kaski, J. Kertész, Local cascades induced global contagion:
how heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online
adoption spreading. Sci. Rep. 6, 27178 (2016)

M. Karsai, K. Kaski, A.-L. Barabadsi, J. Kertész, Universal features of correlated bursty be-
haviour. Sci. Rep. 2, 397 (2012)

M. Karsai, K. Kaski, J. Kertész, Correlated dynamics in egocentric communication networks.
PLoS ONE 7(7), e40612 (2012)

M. Karsai, N. Perra, A. Vespignani, Time varying networks and the weakness of strong ties.
Sci. Rep. 4, 4001 (2014)

F. Kelly, Notes on Effective Bandwidths. Royal Statistical Society Lecture Notes Series, vol.
4 (Oxford University Press, Oxford, 1996), pp. 141-168

T. Kemuriyama, H. Ohta, Y. Sato, S. Maruyama, M. Tandai-Hiruma, K. Kato, Y. Nishida,
A power-law distribution of inter-spike intervals in renal sympathetic nerve activity in salt-
sensitive hypertension-induced chronic heart failure. Bio Syst. 101(2), 144-147 (2010)

A. Kentsis, Mechanisms and models of human dynamics. Nature 441(7092), ES (2006)

A. Kepecs, J. Lisman, Information encoding and computation with spikes and bursts. Netw.
Comput. Neural Syst. 14(1), 103-118 (2003)

J. Kertesz, J. Torok, Y. Murase, H.-H. Jo, K. Kaski, Multiplex modeling of the society (2016),
arXiv:1609.08381


http://arxiv.org/abs/1611.03664

References 111

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

R. Kikas, M. Dumas, M. Karsai, Bursty egocentric network evolution in Skype. Soc. Netw.
Anal. Min. 3(4), 1393-1401 (2013)

E.-K. Kim, H.-H. Jo, Measuring burstiness for finite event sequences. Phys. Rev. E 94, 032311
(2016)

E.-K. Kim, A.M. MacEachren, An index for characterizing spatial bursts of movements: a case
study with geo-located twitter data, in GIScience 2014 Workshop on Analysis of Movement
Data (2014)

J. Kim, D. Lee, B. Kahng, Microscopic modelling circadian and bursty pattern of human
activities. PLoS ONE 8(3), 58292 (2013)

M. Kiveld, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer
networks. J. Complex. Netw. 2(3), 203-271 (2014)

M. Kiveld, R.K. Pan, K. Kaski, J. Kertész, J. Saramiki, M. Karsai, Multiscale analysis of
spreading in a large communication network. J. Stat. Mech. Theory Exp. 2012(03), P0O3005
(2012)

M. Kiveld, M.A. Porter, Estimating inter-event time distributions from finite observation
periods in communication networks. Phys. Rev. E 92(5), 052813 (2015)

S.D. Kleban, S.H. Clearwater, Hierarchical dynamics, interarrival times, and performance, in
Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC 2003, New York, NY,
USA (ACM, 2003)

J. Kleinberg, Bursty and hierarchical structure in streams, in Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002,
New York, NY, USA (ACM, 2002), pp. 91-101

B. Klimt, Y. Yang, The enron corpus: a new dataset for email classification research, in
Machine Learning: ECML 2004, ed. by J.-F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi,
Lecture Notes, in Computer Science, vol. 3201, Chap. 22, (Springer, Berlin, 2004), pp. 217—
226

D.D. Kouvatsos, Traffic and Performance Engineering for Heterogeneous Networks, vol. 1
(River Publishers, 2009)

L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saraméki, Temporal motifs in time-dependent
networks. J. Stat. Mech. Theory Exp. 2011(11), P11005 (2011)

L. Kovanen, K. Kaski, J. Kertész, J. Saramiki, Temporal motifs reveal homophily, gender-
specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. 110(45), 18070-
18075 (2013)

G. Krings, M. Karsai, S. Bernhardsson, V.D. Blondel, J. Saramiki, Effects of time window
size and placement on the structure of an aggregated communication network. EPJ Data Sci
1(1), 4 (2012)

B. Kujawski, J. Hotyst, G.J. Rodgers, Growing trees in internet news groups and forums.
Phys. Rev. E 76(3), 036103 (2007)

J.M. Kumpula, J.-P. Onnela, J. Saramiki, K. Kaski, J. Kertész, Emergence of communities in
weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)

H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news media? in
Proceedings of the 19th International Conference on World Wide Web, WWW 2010, New York,
NY, USA (ACM, 2010), pp. 591-600

O. Kwon, W.-S. Son, W.-S. Jung, The double power law in human collaboration behavior:
the case of Wikipedia. Phys. A Stat. Mech. Appl. 461, 85-91 (2016)

R. Lambiotte, L. Tabourier, J.-C. Delvenne, Burstiness and spreading on temporal networks.
Eur. Phys. J. B 86(7), 14 (2013)

G. Laurent, J. Saramiki, M. Karsai, From calls to communities: a model for time-varying
social networks. Eur. Phys. J. B 88(11), 301 (2015)

D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L.L. Barabasi, D. Brewer, N. Christakis, N.
Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, M. Van Alstyne,
Computational social science. Science 323(5915), 721-723 (2009)

K. Lee, J. Lee, Y. Yi, I. Rhee, S. Chong, Mobile data offloading: how much can wifi deliver?
IEEE/ACM Trans. Netw. 21(2), 536-550 (2013)


http://arxiv.org/abs/1609.08381

112

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

References

S. Lee, L.E.C. Rocha, F. Liljeros, P. Holme, Exploiting temporal network structures of human
interaction to effectively immunize populations. PLoS ONE 7(5), €36439 (2012)

A. Li, L. Zhou, Q. Su, S.P. Cornelius, Y.-Y. Liu, L. Wang, Evolution of Cooperation on
Temporal Networks (2016), arXiv:1609.07569

N.-N. Li, N. Zhang, T. Zhou, Empirical analysis on temporal statistics of human correspon-
dence patterns. Phys. A Stat. Mech. Appl. 387(25), 6391-6394 (2008)

R.-D. Li, Q. Guo, J.-T. Han, J.-G. Liu, Collective behaviors of book holding durations. Phys.
Lett. A 380(42), 3460-3464 (2016)

X. Liang, X. Zheng, W. Lv, T. Zhu, X. Ke, The scaling of human mobility by taxis is expo-
nential. Phys. A Stat. Mech. Appl. 391(5), 2135-2144 (2012)

S.B. Lowen, M.C. Teich, Power-law shot noise. IEEE Trans. Inf. Theory 36(6), 1302-1318
(1990)

S.B. Lowen, M.C. Teich, Fractal renewal processes generate 1/f noise. Phys. Rev. E 47,
992-1001 (1993)

T. Maillart, D. Sornette, S. Frei, T. Duebendorfer, A. Saichev, Quantification of deviations
from rationality with heavy tails in human dynamics. Phys. Rev. E 83(5), 056101 (2011)

F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time
finance ii: the waiting-time distribution. Phys. A Stat. Mech. Appl. 287(3—4), 468—481 (2000)
R.D. Malmgren, D.B. Stouffer, A.S.L.O. Campanharo, L.A.N. Amaral, On universality in
human correspondence activity. Science 325(5948), 1696—1700 (2009)

R.D. Malmgren, D.B. Stouffer, A.E. Motter, L.A.N. Amaral, A poissonian explanation for
heavy tails in e-mail communication. Proc. Natl. Acad. Sci. 105(47), 18153-18158 (2008)
R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in
Finance, 1st edn. (Cambridge University Press, Cambridge, 2007)

M. Mintyld, The OtaSizzle project: large-scale service experimentation testbed, in 2008
Eighth International Workshop on Applications and Services in Wireless Networks (aswn
2008) (IEEE, 2008), p. 8

J. Masoliver, M. Montero, G. Weiss, Continuous-time random-walk model for financial dis-
tributions. Phys. Rev. E 67(2), 021112 (2003)

N. Masuda, J.S. Kim, B. Kahng, Priority queues with bursty arrivals of incoming tasks. Phys.
Rev. E 79(3), 036106 (2009)

N. Masuda, P. Holme, Predicting and controlling infectious disease epidemics using temporal
networks. F1000Prime Rep. 5, 6 (2013)

N. Masuda, R. Lambiotte, A guide to temporal networks (World Scientific, 2016)

N. Masuda, T. Takaguchi, N. Sato, K. Yano, Self-exciting point process modeling of conver-
sation event sequences, in Temporal Networks, Understanding Complex Systems, ed. by P.
Holme, J. Saramiki (Springer, Berlin, 2013), pp. 245-264

J. Mathiesen, L. Angheluta, PT.H. Ahlgren, M.H. Jensen, Excitable human dynamics driven
by extrinsic events in massive communities. Proc. Natl. Acad. Sci. 110(43), 17259-17262
(2013)

R.T.J. McAteer, C.A. Young, J. Ireland, P.T. Gallagher, The bursty nature of solar flare x-ray
emission. Astrophys. J. 662(1), 691 (2007)

M. McPherson, L. Smith-Lovin, J.M. Cook, Birds of a feather: homophily in social networks.
Ann. Rev. Sociol. 27, 415-444 (2001)

A. Medvedeyv, J. Kertesz, Empirical study of the role of the topology in spreading on commu-
nication networks. Phys. A Stat. Mech. Appl. 470, 12-19 (2017)

B. Mehrdad, L. Zhu, On the hawkes process with different exciting functions (2015), arX-
iv:1403.0994

G.A. Miller, The magical number seven plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81-97 (1956)

B. Min, K.I. Goh, Burstiness: measures, models, and dynamic consequences, in Temporal
Networks, Understanding Complex Systems, ed. by P. Holme, J. Saramiki (Springer, Berlin,
2013), pp. 41-64


http://arxiv.org/abs/1609.07569
http://arxiv.org/abs/1403.0994

References 113

199.

200.

201.

202.

203.

204.
205.

206.

207.

208.
209.
210.
211.
212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

B. Min, K.I. Goh, .M. Kim, Waiting time dynamics of priority-queue networks. Phys. Rev.
E 79(5), 056110 (2009)

B. Min, K.I. Goh, A. Vazquez, Spreading dynamics following bursty human activity patterns.
Phys. Rev. E 83(3), 036102 (2011)

G. Miritello, E. Moro, R. Lara, Dynamical strength of social ties in information spreading.
Phys. Rev. E 83(4), 045102 (2011)

A. Moinet, M. Starnini, R. Pastor-Satorras, Burstiness and aging in social temporal networks.
Phys. Rev. Lett. 114(10), 108701 (2015)

A. Moinet, M. Starnini, R.P. Satorras, Aging and percolation dynamics in a non-poissonian
temporal network model. Phys. Rev. E 94, 022316 (2016)

E.W. Montroll, G.H. Weiss, Random walks on lattices. II. J. Math. Phys. 6(2), 167-181 (1965)
O. Mryglod, Y. Holovatch, I. Mryglod, Editorial process in scientific journals: analysis and
modeling. Scientometrics 91(1), 101-112 (2012)

Y. Murase, H.-H. Jo, J. Torok, J. Kertész, K. Kaski, Modeling the role of relationship fading
and breakup in social network formation. PLoS ONE 10(7), e0133005 (2015)

S.A. Myers, J. Leskovec, The bursty dynamics of the twitter information network, in Pro-
ceedings of the 23rd International Conference on World Wide Web, WWW 2014, New York,
NY, USA (ACM, 2014), pp. 913-924

T. Nakamura, K. Kiyono, K. Yoshiuchi, R. Nakahara, Z.R. Struzik, Y. Yamamoto, Universal
scaling law in human behavioral organization. Phys. Rev. Lett. 99(13), 138103 (2007)

T. Nakamura, T. Takumi, A. Takano, N. Aoyagi, K. Yoshiuchi, Z.R. Struzik, Y. Yamamoto,
Of mice and men universality and breakdown of behavioral organization. PLoS ONE 3(4),
€2050 (2008)

M.E.J. Newman, Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)
M.E.J. Newman, Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)
M.E.J. Newman, Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46(5), 323—
351 (2005)

D. Nichols, E. Smolensky, T.N. Tideman, Discrimination by waiting time in merit goods. Am.
Econ. Rev. 61(3), 312-323 (1971)

T. Obadia, R. Silhol, L. Opatowski, L. Temime, J. Legrand, A.C.M. Thiébaut, J.-L. Herrmann,
E. Fleury, D. Guillemot, P-Y. Boglle, on behalf of the I-Bird Study Group, Detailed contact
data and the dissemination of staphylococcus aureus in hospitals. PLoS Comput. Biol. 11(3),
e1004170 (2015)

G. Odor, Slow, bursty dynamics as a consequence of quenched network topologies. Phys.
Rev. E 89, 042102 (2014)

J. Oliveira, A. Vazquez, Impact of interactions on human dynamics. Phys. A Stat. Mech. Appl.
388(2-3), 187-192 (2009)

J.G. Oliveira, A.L. Barabasi, Mechanisms and models of human dynamics (reply). Nature
441(7092), E5-E6 (2006)

J.G. Oliveira, A.-L. Barabasi, Human dynamics: Darwin and Einstein correspondence pat-
terns. Nature 437(7063), 1251 (2005)

J.-P. Onnela, J. Saramiki, J. Hyvonen, G. Szab6, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabasi,
Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104(18),
7332-7336 (2007)

J.-P. Onnela, S. Arbesman, M.C. Gonzélez, A.-L. Barabasi, N.A. Christakis, Geographic
constraints on social network groups. PLoS ONE 6(4), €16939 (2011)

J.-P. Onnela, J. Saramiki, J. Hyvonen, G. Szabd, M. A. de Menezes, K. Kaski, A.-L. Barabasi,
J. Kertész, Analysis of a large-scale weighted network of one-to-one human communication.
New J. Phys. 9(6), 179 (2007)

M. Pagel, Inferring the historical patterns of biological evolution. Nature 401(6756), 877-884
(1999)

V. Palchykov, K. Kaski, J. Kertész, A.-L. Barabasi, R.I.M. Dunbar, Sex differences in intimate
relationships. Sci. Rep. 2, 370 (2012)



114

224.

225.

226.

227.

228.

229.

230.

231.

232.
233.

234.

235.

236.

237.

238.
239.

240.

241.

242.

243.

244,

245.

246.

247.

248.

249.

References

P. Panzarasa, M. Bonaventura, Emergence of long-range correlations and bursty activity pat-
terns in online communication. Phys. Rev. E 92(6), 062821 (2015)

A. Paranjape, A.R. Benson, J. Leskovec, Motifs in temporal networks, in Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, New
York, NY, USA (ACM, 2017), pp. 601-610

R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in
complex networks. Rev. Mod. Phys. 87(3), 925-979 (2015)

V. Paxson, S. Floyd, Wide-area traffic: the failure of poisson modeling. IEEE/ACM Trans.
Netw. 3, 226-244 (1995)

C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Mosaic
organization of dna nucleotides. Phys. Rev. E 49(2), 1685-1689 (1994)

A.“Sandy” Pentland, Reality Mining of Mobile Communications: Toward a New Deal on Data
(World Economic Forum, 2009), pp. 75-80

J.1. Perotti, H.-H. Jo, P. Holme, J. Saraméki, Temporal network sparsity and the slowing down
of spreading (2014), arXiv:1411.5553

N. Perra, B. Gongalves, R. Pastor-Satorras, A. Vespignani, Activity driven modeling of time
varying networks. Sci. Rep. 2, 469 (2012)

M. Plischke, Equilibrium Statistical Physics (World Scientific, 2006)

M. Porter, J. Gleeson, Dynamical Systems on Networks (Springer International Publishing,
Cham, 2016)

J.A. Powell, S.J. Duda, A statistical study of earthquake occurrence. Pure Appl. Geophys.
113(1), 447460 (1975)

A. Proekt, J.R. Banavar, A. Maritan, D.W. Pfaft, Scale invariance in the dynamics of sponta-
neous behavior. Proc. Natl. Acad. Sci. 109(26), 10564—-10569 (2012)

M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial
data: an empirical study. Phys. A Stat. Mech. Appl. 314(1-4), 749-755 (2002)

L.R. Rabiner, A tutorial on hidden markov models and selected applications in speech recog-
nition. Proc. IEEE 77(2), 257-286 (1989)

F. Radicchi, Human activity in the web. Phys. Rev. E 80, 026118 (2009)

R.T. Ramos, R.B. Sassi, J.R.C. Piqueira, Self-organized criticality and the predictability of
human behavior. New Ideas Psychol. 29(1), 38-48 (2011)

J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer, A. Vespignani, Characterizing and
modeling the dynamics of online popularity. Phys. Rev. Lett. 105(15), 158701 (2010)

R. Rettie, Mobile phone communication: extending goffman to mediated interaction. Sociol-
ogy 43(3), 421-438 (2009)

A.M. Reynolds, On the origin of bursts and heavy tails in animal dynamics. Phys. A Stat.
Mech. Appl. 390(2), 245-249 (2011)

L.E.C. Rocha, V.D. Blondel, Bursts of vertex activation and epidemics in evolving networks.
PLoS Comput. Biol. 9(3), €1002974 (2013)

L.E.C. Rocha, F. Liljeros, P. Holme, Information dynamics shape the sexual networks of
internet-mediated prostitution. Proc. Natl. Acad. Sci. 107(13), 5706-5711 (2010)

L.E.C. Rocha, F. Liljeros, P. Holme, Simulated epidemics in an empirical spatiotemporal
network of 50,185 sexual contacts. PLoS Comput. Biol. 7(3), e1001109 (2011)

G.J. Ross, T. Jones, Understanding the heavy-tailed dynamics in human behavior. Phys. Rev.
E 91(6), 062809 (2015)

D. Rybski, S.V. Buldyrev, S. Havlin, F. Liljeros, H.A. Makse, Scaling laws of human inter-
action activity. Proc. Natl. Acad. Sci. 106(31), 12640-12645 (2009)

D. Rybski, S.V. Buldyrev, S. Havlin, F. Liljeros, H.A. Makse, Communication activity in a
social network: relation between long-term correlations and inter-event clustering. Sci. Rep.
2,560 (2012)

P. Sapiezynski, A. Stopczynski, D.K. Wind, J. Leskovec, S. Lehmann, Inferring person-to-
person proximity using wifi signals, Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(2), June 2017, Article No. 24, (2016)


http://arxiv.org/abs/1411.5553

References 115

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

J. Saramiki, P. Holme, Exploring temporal networks with greedy walks. Eur. Phys. J. B 88(12),
1-8 (2015)

C.M. Schneider, V. Belik, T. Couronné, Z. Smoreda, M.C. Gonzalez, Unravelling daily human
mobility motifs. J. R. Soc. Interface 10(84), 20130246 (2013)

I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Causality-driven
slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Comm. 5,
5024 (2014)

V. Sekara, A. Stopczynski, S. Lehmann, Fundamental structures of dynamic social networks.
Proc. Natl. Acad. Sci. 113(36), 9977-9982 (2016)

S. Shinomoto, K. Shima, J. Tanji, Differences in spiking patterns among cortical neurons.
Neural Comput. 15(12), 2823-2842 (2003)

R.F. Smalley, J.L. Chatelain, D.L. Turcotte, R. Prévot, A fractal approach to the clustering
of earthquakes: applications to the seismicity of the New Hebrides. Bull. Seismol. Soc. Am.
77(4), 1368-1381 (1987)

C. Song, T. Koren, P. Wang, A.-L. Barabasi, Modelling the scaling properties of human
mobility. Nat. Phys. 6(10), 818-823 (2010)

C. Song, D. Wang, A.-L. Barabdsi, Connections between human dynamics and network sci-
ence (2013), arXiv:1209.1411

A. Sorribes, B.G. Armendariz, D. Lopez-Pigozzi, C. Murga, G.G. de Polavieja, The origin of
behavioral bursts in decision-making circuitry. PLoS Comput. Biol. 7(6), e1002075 (2011)
L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Steady state and mean recurrence time for
random walks on stochastic temporal networks. Phys. Rev. E 91, 012806 (2015)

M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Random walks on temporal net-
works. Phys. Rev. E 85(5), 056115 (2012)

M. Starnini, A. Baronchelli, R. Pastor-Satorras, Modeling human dynamics of face-to-face
interaction networks. Phys. Rev. Lett. 110(16), 168701 (2013)

M. Starnini, A. Machens, C. Cattuto, A. Barrat, R. Pastor-Satorras, Immunization strategies
for epidemic processes in time-varying contact networks. J. Theor. Biol. 337, 89-100 (2013)
J. Stehlé, A. Barrat, G. Bianconi, Dynamical and bursty interactions in social networks. Phys.
Rev. E 81(3), 035101 (2010)

J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Régis, J.-F. Pinton, N.
Khanafer, W. Van den Broeck, P. Vanhems, Simulation of an seir infectious disease model on
the dynamic contact network of conference attendees. BMC Med. 9(1), 87 (2011)

J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto, W. Van den
Broeck, C. Régis, B. Lina, P. Vanhems, High-resolution measurements of face-to-face contact
patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, M.M. Madsen, J.E. Larsen, S. Lehman-
n, Measuring large-scale social networks with high resolution. PLoS ONE 9(4), 95978 (2014)
D.B. Stouffer, R.D. Malmgren, L.A.N. Amaral, Comment on barabasi. Nature 435,207 (2005),
October 2005, arXiv:physics/0510216

D.B. Stouffer, R.D. Malmgren, L.A.N. Amaral, Log-normal statistics in e-mail communica-
tion patterns (2006), arXiv:physics/0605027

L. Sun, K.W. Axhausen, D.-H. Lee, X. Huang, Understanding metropolitan patterns of daily
encounters. Proc. Natl. Acad. Sci. 110(34), 13774-13779 (2013)

M. Szell, R. Lambiotte, S. Thurner, Multirelational organization of large-scale social networks
in an online world. Proc. Natl. Acad. Sci. 107(31), 13636-13641 (2010)

M. Szell, R. Sinatra, G. Petri, S. Thurner, V. Latora, Understanding mobility in a social petri
dish. Sci. Rep. 2, 457 (2012)

M. Szell, S. Thurner, Measuring social dynamics in a massive multiplayer online game. Soc.
Netw. 32(4), 313-329 (2010)

T. Takaguchi, N. Masuda, P. Holme, Bursty communication patterns facilitate spreading in a
threshold-based epidemic dynamics. PLoS ONE 8(7), 68629 (2013)

T. Takaguchi, M. Nakamura, N. Sato, K. Yano, N. Masuda, Predictability of conversation
partners. Phys. Rev. X 1(1), 011008 (2011)


http://arxiv.org/abs/1307.0814
http://arxiv.org/abs/0510216
http://arxiv.org/abs/physics/0605027

116

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

29s.

296.

297.

298.

References

D.-H. Tang, X.-P. Han, B.-H. Wang, Stretched exponential distribution of recurrent time of
wars in china. Phys. A Stat. Mech. Appl. 389(13), 2637-2641 (2010)

T. Zhou, X.-P. Han, X.-Y. Yan, Z.-M. Yang, Z.-D. Zhao, B.-H. Wang, Statistical mechanics
on temporal and spatial activities of human. J. Univ. Electron. Sci. Technol. China 42(4),
481-540 (2013)

Y. Tsubo, Y. Isomura, T. Fukai, Power-law inter-spike interval distributions infer a conditional
maximization of entropy in cortical neurons. PLoS Comput. Biol. 8(4), e1002461 (2012)

E. Ubaldi, A. Vezzani, M. Karsai, N. Perra, R. Burioni, Burstiness and tie reinforcement in
time varying social networks. Sci. Rep. 7, 46225 (2017)

J. Ugander, B. Karrer, L. Backstrom, C. Marlow, The anatomy of the facebook social graph
(2011), arXiv:1111.4503

J.C. Uyeda, T.F. Hansen, S.J. Arnold, J. Pienaar, The million-year wait for macroevolutionary
bursts. Proc. Natl. Acad. Sci. 108(38), 15908-15913 (2011)

S. Vajna, B. Téth, J. Kertész, Modelling bursty time series. New J. Phys. 15(10), 103023
(2013)

P. Van Mieghem, R. van de Bovenkamp, Non-markovian infection spread dramatically alters
the susceptible-infected-susceptible epidemic threshold in networks. Phys. Rev. Lett. 110(10),
108701 (2013)

P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer, C. Régis, B.-A. Kim, B. Comte,
N. Voirin, Estimating potential infection transmission routes in hospital wards using wearable
proximity sensors. PLoS ONE 8(9), €73970 (2013)

A. Vazquez, Impact of memory on human dynamics. Phys. A Stat. Mech. Appl. 373, 747-752
(2007)

A. Viazquez, Exact results for the barabasi model of human dynamics. Phys. Rev. Lett. 95(24),
248701 (2005)

A. Viazquez, J.G. Oliveira, Z. Dezso, K.-1. Goh, I. Kondor, A.-L. Barabasi, Modeling bursts
and heavy tails in human dynamics. Phys. Rev. E 73(3), 036127 (2006)

A. Vazquez, B. Racz, A. Lukacs, A.L. Barabasi, Impact of non-poissonian activity patterns
on spreading processes. Phys. Rev. Lett. 98(15), 158702 (2007)

G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, H.E. Stanley,
Optimizing the success of random searches. Nature 401(6756), 911-914 (1999)

P. Wang, X.-Y. Xie, C.H. Yeung, B.-H. Wang, Heterogenous scaling in the inter-event time
of on-line bookmarking. Phys. A Stat. Mech. Appl. 390(12), 2395-2400 (2011)

P. Wang, T. Zhou, X.-P. Han, B.-H. Wang, Modeling correlated human dynamics with temporal
preference. Phys. A Stat. Mech. Appl. 398, 145-151 (2014)

Q. Wang, J.-L. Guo, Human dynamics scaling characteristics for aerial inbound logistics
operation. Phys. A Stat. Mech. Appl. 389(10), 2127-2133 (2010)

W. Wang, N. Yuan, L. Pan, P. Jiao, W. Dai, G. Xue, D. Liu, Temporal patterns of emergency
calls of a metropolitan city in china. Phys. A Stat. Mech. Appl. 436, 846-855 (2015)

S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications. Structural
analysis in the social sciences, vol. 8, Ist edn. (Cambridge University Press, Cambridge,
1994)

D.J. Watts, A simple model of global cascades on random networks. Proc. Natl. Acad. Sci.
99(9), 5766-5771 (2002)

V.J. Wearmouth, M.J. McHugh, N.E. Humphries, A. Naegelen, M.Z. Ahmed, E.J. Southall,
A.M. Reynolds, D.W. Sims, Scaling laws of ambush predator ‘waiting’ behaviour are tuned
to a common ecology. Proc. R. Soc. B Biol. Sci. 281(1782), 20132997 (2014)

W. Hong, X.-P. Han, T. Zhou, B.-H. Wang, Heavy-tailed statistics in short-message commu-
nication. Chin. Phys. Lett. 26(2), 028902 (2009)

M.S. Wheatland, P.A. Sturrock, J.M. McTiernan, The waiting-time distribution of solar flare
hard x-ray bursts. Astrophys. J. 509(1), 448 (1998)

Y. Wu, C. Zhou, J. Xiao, J. Kurths, H.J. Schellnhuber, Evidence for a bimodal distribution in
human communication. Proc. Natl. Acad. Sci. U.S.A. 107(44), 18803-18808 (2010)


http://arxiv.org/abs/1111.4503

References 117

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

Q. Yan, W. Lianren, L. Zheng, Social network based microblog user behavior analysis. Phys.
A Stat. Mech. Appl. 392(7), 1712-1723 (2013)

Q. Yan, L. Yi, W. Lianren, Human dynamic model co-driven by interest and social identity in
the microblog community. Phys. A Stat. Mech. Appl. 391(4), 1540-1545 (2012)

X.-Y. Yan, X.-P. Han, B.-H. Wang, T. Zhou, Diversity of individual mobility patterns and
emergence of aggregated scaling laws. Sci. Rep. 3, 2678 (2013)

T. Yasseri, R. Sumi, J. Kertész, Circadian patterns of Wikipedia editorial activity: a demo-
graphic analysis. PLoS ONE 7(1), e30091 (2012)

T. Yasseri, R. Sumi, A. Rung, A. Kornai, J. Kertész, Dynamics of conflicts in wikipedia. PLoS
ONE 7(6), 38869 (2012)

T. Zhang, P. Cui, C. Song, W. Zhu, S. Yang, A multiscale survival process for modeling human
activity patterns. PLoS ONE 11(3), 0151473 (2016)

B. Zhao, W. Wang, G. Xue, N. Yuan, Q. Tian, An empirical analysis on temporal pattern of
credit card trade, in Advances in Swarm and Computational Intelligence, vol. 9141, ed. by
Y. Tan, Y. Shi, F. Buarque, A. Gelbukh, S. Das, A. Engelbrecht. Lecture Notes in Computer
Science (Springer International Publishing, 2015), pp. 63-70

K. Zhao, J. Stehlé, G. Bianconi, A. Barrat, Social network dynamics of face-to-face interac-
tions. Phys. Rev. E 83(5), 056109 (2011)

Z.-D. Zhao, H. Xia, M.-S. Shang, T. Zhou, Empirical analysis on the human dynamics of a
large-scale short message communication system. Chin. Phys. Lett. 28(6), 068901 (2011)
Z.-D. Zhao, Z. Yang, Z. Zhang, T. Zhou, Z.-G. Huang, Y.-C. Lai, Emergence of scaling in
human-interest dynamics. Sci. Rep. 3, 3472 (2013)

Z.-D. Zhao, T. Zhou, Empirical analysis of online human dynamics. Phys. A Stat. Mech.
Appl. 391(11), 3308-3315 (2012)

T. Zhou, H. A. T. Kiet, B. J. Kim, B. H. Wang, P. Holme, Role of activity in human dynamics.
EPL (Europhys. Lett.) 82(2), 28002 (2008)

T. Zhou, Z.-D. Zhao, Z. Yang, C. Zhou, Relative clock verifies endogenous bursts of human
dynamics. EPL (Europhys. Lett.) 97(1), 18006 (2012)

Y. Zhu, D. Li, W. Guo, F. Zhang, Effect of heterogeneity of vertex activation on epidemic
spreading in temporal networks. Math. Probl. Eng. 2014, 409510 (2014)



Index

A

Activity driven network model, 67

Animal behaviour, 47, 101

Assortativity, 66

Autocorrelation function, 7, 13-15, 25, 35,
43,55, 61, 101

B
Basic reproduction number, 90
Bellman-harris branching processes, 80
Burst, burstiness

collective bursts, 20

contextual bursts, 20

correlated bursts, 15

link burstiness, 34, 61, 102
Burstiness parameter, 11, 18, 25,47,92, 101
Bursty train

bursty train size distribution, 11, 15, 19,

35, 54, 101

C

Circadian fluctuations, 58, 87, 97

Coefficient of variation (CV), 11

Communication channel, 22, 33, 34, 36, 37,
39, 40

Community, 8, 19, 41, 66

Complex contagion process, 98

Complex system, 14, 103

Contact process, 7, 98, 100

Cyclic pattern, 24, 40, 101

D
Data-driven simulations, 75, 76, 85
Degree distribution, 67, 68

© The Author(s) 2018
M. Karsai et al., Bursty Human Dynamics,

De-seasoning method, 24, 26, 40

E

Effective transmission matrix, 94
Egocentric network, 18-20, 98

Email, 7, 15, 19, 36, 39, 40, 90, 96, 101
Epidemics, 7, 77, 86, 91

Evolutionary games, 75, 97

Exponential cutoff, 10, 24, 38, 48, 50, 66,

76, 82, 89

F

Face-to-face interaction, 34, 36, 37, 39, 85,
92,96, 97, 101

Financial interaction, 44
Finite-size effect, 11, 12
Focal closure, 66

G
Generating function, 81
Griffiths phase, 98

H

Hawk-dove game, 97

Hawkes process, 54

History dependent contagion, 96
Human mobility, 33, 4547, 101
Hurst exponent, 14, 17, 41, 43

I
Independent models, 61
Individual activities, 33-35, 41, 42, 101

119

SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-68540-3



120

Infinite automatons, 56

Information diffusion, 7, 43, 75

Interaction-driven collective activities, 33,

34, 101
Inter-event time
inter-event time distribution, 3, 10, 11,

17, 20, 24, 25, 34, 43, 44, 46, 49, 51—
54, 56, 57, 59, 61, 63, 64, 75, 717, 78,
80, 82-84, 86, 91, 99-101

K
Kumpula model, 66

L

Letter, 6, 18, 36, 39, 40, 48, 50, 51, 101
Local closure, 66

Local Variation (LV), 12

Log-normal distribution, 51, 58

M
Mean first-passage time, 85
Mean recurrence time, 93-95
Memory
memory coefficient, 11, 12, 25, 47, 55,
101
memory effect, 9, 16, 38, 43, 54, 101
memory functions, 7, 52, 100
memory kernel, 16, 54, 66, 94
Mobile phone, 6, 15, 19, 24, 25, 3640, 50,
85, 87, 102

N

Node turnover rate, 91
Non-markovian correlations, 52
Non-stationary process, 84

o

1/fnoise, 5, 14

Online forum, 21, 36, 43
Otasizzle project, 37

P
Poisson process
homogeneous Poisson process, 9, 10, 57,
58, 87
non-homogeneous Poisson process, 9,
57,59, 87, 100
Poissonian cascades, 57

Index

Position based priority lists, 52
Power-law
power-law distribution, 10, 20, 35, 38,
51, 64,78, 95
power-law exponent, 10, 11, 14, 15, 21,
34,37,44,47,55,61,78, 84
Power spectrum, 13, 14, 43
Prioritising, 6, 51, 100
Priority queuing model
Barabadsi priority queuing model, 4, 18,
48, 100
Cobham priority queuing model, 48
interacting priority queues, 51, 64, 66
Prisoner’s dilemma, 97
Processing time, 18, 64

Q

Queuing
queuing models, 18, 49, 100
queuing theory, 17, 56

R
Random reference models, 22, 75, 84, 87,
88,95, 101
Random walk
active random walk, 92, 93, 95
greedy random walk, 78, 86, 92
passive random walk, 92, 94, 95
zero-crossing random walk model, 64
Rank shift model, 61
Reality Mining project, 37
Reinforcement processes, 5, 52, 65
Renewal process, 68, 83, 91, 92
Residual time, 9, 17, 75, 77, 78, 81, 83, 85,
90, 91, 94, 102
Response time, 18

S
Scaling relation, 14, 15, 20-22
Self-exciting processes, 7, 16, 53
Self-organised criticality, 3, 7, 62, 99
Short message (SMS), 6, 15, 37
Social contagion, 75, 95
Social network

Social Networking Service (SNS), 18, 36
Spreading processes, 79, 87, 91
Stationary process, 53
Stretched exponential

stretched exponential distribution, 10
Susceptible-infected, 77, 79, 98
Susceptible-infected-recovered, 85



Index

T

Temporal
temporal motif, 6, 22, 23, 84, 100
temporal network, 19, 22, 61,75, 76, 78,

84, 86, 87, 89, 90, 92, 95-97, 101

temporal network sparsity, 23
temporal sparsity, 87

Threshold models, 95

Time series, 4, 7, 8, 10-13, 16, 17, 25, 26,

57,58, 101
Transmissibility, 85, 90
Triggered event correlations, 84, 96, 102

121

v
Voter model, 61, 97, 100

W
Waiting time
waiting-time paradox, 17, 77, 91
waiting time under uncertainty, 60
Weibull distribution, 38, 47, 59, 95
World Wide Web (WWW), 40



	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 Bursty Human Dynamics
	1.2 About This Monograph

	2 Measures and Characterisations
	2.1 Point Processes as Time Series with Irregular Timings
	2.1.1 The Poisson Process
	2.1.2 Characterisation of Temporal Heterogeneities

	2.2 Inter-event Time, Residual Time, and Waiting Time
	2.3 Collective Bursty Phenomena
	2.3.1 Bursty Patterns in Egocentric Networks
	2.3.2 Bursty Temporal Motifs
	2.3.3 System Level Characterisation

	2.4 Cyclic Patterns in Human Dynamics
	2.4.1 Remark on Non-stationarity


	3 Empirical Findings in Human Bursty Dynamics
	3.1 Individual Activities
	3.2 Interaction-Driven Collective Activities
	3.2.1 Face-to-face Interactions
	3.2.2 Mobile Phone-Based Interactions
	3.2.3 Communication by Posted Letters and Emails
	3.2.4 Web-Based Activities and Social Interactions

	3.3 Other Bursty Patterns
	3.3.1 Financial Activities
	3.3.2 Human Mobility
	3.3.3 Animal Behaviours


	4 Models and Mechanisms of Bursty Behaviour
	4.1 Models of Individual Activity
	4.1.1 Queuing Models of Bursty Phenomena
	4.1.2 Memory Driven Models of Bursty Phenomena
	4.1.3 Poisson Models of Bursty Phenomena
	4.1.4 Other Type of Models

	4.2 Models of Link Activity
	4.2.1 Interacting Priority Queues
	4.2.2 Models with Combined Mechanisms

	4.3 Network Models of Bursty Agents
	4.3.1 Zero-Crossing Random Walk Model
	4.3.2 Reinforcement Models of Group Formation
	4.3.3 Evolving Networks with Interacting Priority Queues
	4.3.4 Dynamic Networks with Memory
	4.3.5 Activity Driven Network Models with Bursty Nodes


	5 Dynamical Processes on Bursty Systems
	5.1 Bursty Characteristics Controlling Dynamical Processes
	5.1.1 Inter-event Time and Residual Time Distributions
	5.1.2 Triggered Event Correlations
	5.1.3 Effects of Link Burstiness
	5.1.4 Other Bursty Characters
	5.1.5 Dominant Characters

	5.2 Dynamical Processes on Bursty Temporal Networks
	5.2.1 Epidemic Spreading
	5.2.2 Random Walks
	5.2.3 Threshold Models
	5.2.4 Evolutionary Games
	5.2.5 Dynamical Process Induced Bursty Behaviour


	6 Discussion
	6.1 Future Directions and Methodological Approaches

	7 Erratum to: Bursty Human Dynamics
	Erratum to:&#6;M. Karsai et al., Bursty Human Dynamics, SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-68540-3

	References

	Index



