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Preface

This book nucleated as a set of undergraduate lecture notes. Looking for additional
suitable textbook material on Brownian motion, this was often found either too
brief and qualitatively or too extensive with more mathematics than desirable for an
introductory course. This book aims to be somewhere in between and intends to
provide a treatment of Brownian motion on a level appropriate for bachelor students
of physics, chemistry, soft matter, and the life sciences.

One very appealing aspect of Brownian motion, as this book also illustrates, is
that the subject connects a broad variety of topics, including thermal physics,
hydrodynamics, reaction kinetics, fluctuation phenomena, statistical thermody-
namics, osmosis, and colloid science. For basic courses on any of these topics,
I hope this book will offer useful and motivating study material.

I would like to acknowledge the many insightful discussions with Prof. Agienus
Vrij on colloids, Brownian motion, and osmotic pressure. Maria Bellantone
(Springer UK) is thanked for the pleasant collaboration—and for encouraging me to
finally complete this book. Maria Uit de Bulten-Weerensteijn and Yvette Roman
are thanked for their help in the preparation of the book. Samia Ouhadjji and Bonny
Kuipers are acknowledged for proofreading. The anonymous referees and Ute
Heuser (Springer Physics) have offered helpful comments. Any remaining typos,
mistakes or unclarities are, of course, the author’s sole responsibility.

Utrecht, The Netherlands Albert P. Philipse
2018
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Chapter 1
A First Round of Brownian Motion

1.1 A Restless Realm

A glass marble settles in water and comes to permanent rest at the bottom. However,
when the marble is divided into tiny colloidal

1
glass particles, they remain suspended

in the water, providing it with a whitish haze (Fig. 1.1). This observation is rather
astonishing because the total glass weight has not changed, and since the minuscule
glass colloids have the samemass density as the initialmarble, onewould expect them
to sink in water as well. With an optical microscope you can perceive what actually
is going on: the glass colloids indeed do not sediment but, instead, move and tumble
around in random directions. The serenely settling marble has been pulverized into a
pandemonium of small glass bits that senselessly jitter around. It is this turmoil that
is designated by the expression ‘Brownian motion’.

How long will this Brownian motion endure? Let us imagine that the bottle con-
taining the glass colloids dispersed in water is hermetically sealed and stored in a
safe for, say 5000 years—about the age of the Great Sphinx of Giza. Suppose your
(very distant) descendent opens the bottle and looks at it through a microscope. She
will see exactly the same

2
pandemonium as you did: in their splendid isolation the

colloids have continued to dance for ages. Times, by the way, that are insignificant
for the air bubbles that have been observed in water inclusions in quartz; here the
erratic bubble dance has endured since the Jurassic period from about 200 million
years ago, when dinosaurs were roaming our planet.

So Brownian motion truly is a very persistent phenomenon. And that confronts
us with an enigma: where does the energy comes from that powers this never-ending
Brownian movement? The phenomenon is surely at odds with our daily experience:

1Colloids are particles that have, at least in one direction, a size between a few nano-meters and a
few microns.
2Assuming that the silica colloids have meanwhile not aggregated by van der Waals attractions
which would lead to slower diffusing particle clusters.

© Springer Nature Switzerland AG 2018
A. P. Philipse, Brownian Motion, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-319-98053-9_1
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2 1 A First Round of Brownian Motion

Fig. 1.1 Left: glass (silicon dioxide) marbles with a radius of 1 cm, stored in ethanol and arrested
in a motionless heap by their weight. Right: colloidal glass spheres with a radius of 100 nm remain
suspended in the ethanol due to Brownian motion. The suspension of glass colloids has a hazy
appearance due to light scattering by the Brownian particles

in order to keep say, bikes and buggies in motion we have to peddle and push.
When we stop doing that, bikes and buggies grind to a halt, because of the resistance
between internal parts of a vehicle, and friction between the moving vehicle and
its surroundings. This friction comprises the dissipation of mechanical energy as
heat, i.e. the irretrievable or irreversible distribution of energy over vast numbers of
molecules in the surroundings.

That, at least, is the state of affairs in the macroscopic world around us. The
microscopic domain ofmolecules and colloids, in contrast, is an agitated realmwhere
particles do not come to a standstill. The particles do experience visious friction, that
is to say, they transfer kinetic energy to their environment. However, now the energy
donation is reversible: in equilibrium diffusing particles gain on average just as much
energy as they lose. The never ending self-motion is the manifestation of a system’s
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temperature—which gives rise to the term thermalmotion and the expression thermal
energy for the energy associated with this ‘heat’ motion of particles. For molecules
the spontaneous thermal motion is referred to as diffusion3 whereas for colloids it is
usually called Brownian motion; the difference between the two terms is nominal as
they both denote thermal motion.

1.2 Stokes-Einstein Relations

The components of solutions include solvent molecules and electrolyte as well as
larger solutes such as inorganic colloids, proteins and nano-particles. For all these
components diffusion or Brownian motion is the thermal transport mechanism. This
makes the diffusion coefficient that quantifies rate of diffusive displacements a central
parameter in a large set of kinetic processes such as chemical reaction kinetics of
molecules and aggregation kinetics of colloids and nano-particles. Diffusion coef-
ficients also figure in processes as diverse as diffusion towards a biological cell,
fragrance molecules spreading from your deodorant, and nucleation and growth of
crystals and droplets in, respectively, supersaturated solutions and vapors.

Diffusion coefficients have been extensively studied with respect to, among many
other things, concentration effects owing to interacting particles, or the influence of
a confining medium such as a gel, a porous medium or a capillary. These effects are
always compared to a well-understood reference process, namely the free diffusion
of a single particle in a liquid, far away from other particles or a wall. For such a free
particle the translational diffusion coefficient4 D is given by Einstein’s equation5

D � kT

f
, (1.1)

where kT is the thermal energy, k is the Boltzmann constant, T is the absolute
temperature in Kelvin, and f is the friction coefficient of the particle. This diffusion
coefficient determines the rate at which a particle displaces itself by diffusivemotions
according to an equation also due to Einstein:

〈
r2

〉 � 6Dt (1.2)

3From the Latin verb diffundere ‘to scatter, pour out’.
4D without any subscript always denotes a translational diffusion coefficient. Dr, for example, is
the rotational coefficient.
5Equation (1.1) is sometimes also referred to as the ‘Sutherland-Einstein equation’ which does jus-
tice to the fact that William Sutherland (1859–1911) published (1.1) earlier than Einstein. See: W.
Sutherland, “Themeasurement of largemolecularmasses”,Australian Association for the Advance-
ment of Science. Report of Meeting, 10 (Dunedin, 1904), 117–121.
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Here <r2> is the average of the square of the displacement r in time t. The form of
Eqs. (1.1) and (1.2) is independent of the size and the shape of the diffusing particle.
Only the magnitude of the friction factor is determined by particle size and shape.

In this bookwewillmainly consider the case of a spherical particlewith radiusR in
a Newtonian liquid with viscosity η for which the friction coefficient for translational
motion equals the so-called Stokes friction factor:

f � 6πηR (1.3)

The combined result

D � kT

6πηR
, (1.4)

is usually called the Stokes-Einstein (SE) diffusion coefficient for translational sphere
diffusion. It allows us, for example, to determine the radius of a colloidal sphere from
diffusion measurements on a very dilute dispersion. Concentration effects in dense
dispersions or confinement of a sphere in a small geometry lead to (sometimes drastic)
deviations from Eq. (1.4). These effects, however, do not concern us here: in Chaps.
6 and 8 we derive the SE equation for a single free sphere and discuss some of its
applications to colloidal kinetics in Chap. 9.

In addition to translational diffusive steps, a colloid simultaneously also performs
rotations in random directions. The corresponding rotational diffusion coefficientDr

of a single, free sphere has the same form as the translational coefficient in (1.1) be
it with a different friction factor:

Dr � kT

fr
� kT

8πηR3
(1.5)

Rotational diffusion is of importance to understand, among other things, the
response of particles to external fields, a topic addressed in Chap. 10. The align-
ment of a magnetic or electric dipole moment of particles by an external field is
counteracted by rotational Brownian motion which tends to randomize particle ori-
entations, just as translational diffusion randomizes particle positions.

1.3 The Particle Quartet

The particle size below which Brownian motion becomes significant, i.e. observable
under an optical microscope, is around 4–5 μm. For comparison, the thickness of
a human hair is about 50 μm (Fig. 1.2), and pollen grains of the ornamental plant
Clarkia Pulchella (Fig. 2.2) have diameters in the range 50–100μm.Hairs and grains
are examples of a-thermal or granular particles that exhibit no Brownian motion. A
fiber in a spider web has a thickness of about 2 μm, which is in the colloidal size
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Fig. 1.2 Transmission electron microscope (TEM) image (left) of a human hair sided by colloidal
silica spheres of about one micron, observed under an optical microscope (right). A hair is too
massive to displace itself by to its thermal energy whereas the silica colloids are small enough to
exhibit significant Brownian motion. TEM image courtesy B. Erné and H. Meeldijk; microscopy
image courtesy L. Rossi and S. Sacanna

range and thin enough to exhibit thermal fluctuations. Upon decreasing particle size
further in the sub-micron range, diffusion becomes progressively more vigorous, in
line with the size dependence of the Stokes-Einstein diffusion coefficients in (1.4)
and (1.5).

It is instructive to compare, in numerical examples and exercises in this book,
four reference particles, spanning seven decades in particle size and twenty decades
in molar mass, see Table 1.1. The four will be jointly denoted as the Particle Quartet.
The smallest member of the Quartet is the molecular M-sphere, modelling solvent
molecules as spheres with a radius of 0.1 nm (Fig. 1.3) which is about the collision
radius of a water molecule. The size of theM-sphere represents in order of magnitude
also ionic radii in aqueous solutions.6 Nano-particles are exemplified by the nano
N-sphere, which has a radius of 5 nm, a characteristic dimension for metal andmetal-
oxide nano particles (Fig. 1.3). For the colloidal domain the reference is the colloidal
C-sphere with a radius of 100 nm. The largest member of the Quartet is the granular
G-sphere with its radius of one millimeter; it stands for granular matter composed
of large, visible particles such as sand granules or rice grains.

M-spheres have the molar mass of water (Table 1.1) and the other members of
the quartet have a mass density of δ � 2.0 g/ml, which is the density of amorphous
silica in glass, and crystalline silica in the form of quartz. The Quartet is, unless
stated otherwise, dissolved or suspended in water with viscosity η �0.89 cP at a
temperature of T �298 K.

Though the references particles fromTable 1.1 and Fig. 1.3 have a (nearly) spheri-
cal shape, it is important to keep inmind that the expressionD�kT /f for the diffusion

6Y. Marcus, Ionic Radii in Aqueous Solutions, Chem. Rev. 88 (1988), 1475–1498.
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Table 1.1 Properties of the particle quarteta

Rb (nm) δcp (g ml−1) Md (g mol−1)

Molecular M-sphere 0.1 18

Nano N-sphere 5 2.0 6.105

Colloidal C-sphere 102 2.0 5.109

Granular G-sphere 106 2.0 5.1021

aParticles are immersed in water with a viscosity of η �0.89 cP (=0.89 mPa.s) and T �298 K
bSphere radius; 0.1 nm is about the collision radius of a water molecule
cMass density
dMolar mass; 18 g mol−1 is that of water

coefficient, and Einstein’s law for the quadratic displacement in (1.2) are, as shown
in Chap. 6, independent of particle size and shape. They apply to spheres but equally
well to, say, clay platelets, bacteria and proteins.

1.4 Outlook

The outline of this book is as follows. The thermal energy underlying Brownian
motion emerges from the kinetic theory ofmolecules,which iswhywe start inChap. 3
with a review of that theory for molecules and colloids in a dilute gas. Molecular
speeds from kinetic theory form the starting point for the overview in Chap. 4 of the
wide range of time scales underlying Brownian motion for particles immersed in a
liquid phase.

The analysis of thermal diffusion rests on the general diffusion equation which,
among other things, is explained in Chap. 5, and applied in Chap. 6 to derive the
time dependence of quadratic displacements for both translational and rotational
Brownian. Chapter 6 also includes Einstein’s treatment of Brownian motion ‘for
chemists’, and Langevin’s analysis of Brownian movements based on Newtonian
mechanics.

The results from Chap. 6 are still independent of the medium in which Brownian
motion takes place. Since we are primarily interested in colloids in a liquid phase,
Chap. 7 addresses hydrodynamics based on the Stokes equation for viscous flow.
The Stokes equation is solved in Chap. 8 for simple geometries and for flow past
spheres, the latter to eventually obtain the friction factors for translating and rotating
spheres.

Having now available the Stokes-Einstein coefficient for sphere diffusion in a
liquid, we apply it in Chap. 9 to processes such as colloidal aggregation, diffusional
growth and Brownian motion towards an absorbing sphere. Brownian particles in an
external field is the subject of Chap. 10, which addresses the effect of a potential gra-
dient onBrownianmotion, including the electrical potential around a spherical target,
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Fig. 1.3 Examples of particles represented by members of the Particle Quartet from Table 1.1.
a Water molecules (insert) are modelled by M-spheres with a radius of 0.1 nm. b Cryo-TEM
(Abbreviation of Cryogenic Transmission Electron Microscopy) image of magnetic iron-oxide
particles [M. Klokkenburg et al., J. Am. Soc., 126, 16706 (2004)] with an average radius of 5 nm,
represented by N-spheres. c Cryo-TEM image (A. Philipse & G. Koenderink, Advances in Colloid
and Interface Science, 100–102 (2003) 613–639) of amorphous silica sphereswith a radius of 90 nm,
slightly below the radius of C-spheres. d Stainless steel balls with a radius of one millimeter, equal
to the radius of the granular G-spheres from Table 1.1

the potential energy of Brownian magnets in a magnetic field, and the distribution
of colloids in the gravity field.

The thermal energy that powers Brownian motion also brings about the pressure
that thermal particles exert in the form of gas pressure, or osmotic pressure in a
fluid. The phenomena of osmosis and osmotic pressure are, in their connection to
Brownian motion, the subject of Chap. 11.

An introduction to Brownian motion would be incomplete without attention for
the fascinating story behind the discovery of Brownian motion and its reception
in the 19th and early 20th century. This story, summarized in Chap. 2, is in essence
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about resolving the riddle why non-living objects, if small enough, stay in everlasting
spontaneously motion. The resolution of this enigma, as it turned out, provided what
many scientists considered to be decisive evidence for the existence of molecules.

Exercises

1.1 Calculate for the Particle Quartet in Table 1.1 diffusion coefficients in water at
T �298 K.

1.2 How far does each reference particle travel by diffusion in (a) 1 h; (b) one year?
1.3 A glass sphere with a radius of 1 cm is divided7 into n silica spheres with radius

of 100 nm. Compute (a) n and (b) the factor by which the surface area increases.
1.4 Calculate the molar volumes for the Particle Quartet, assuming that each mem-

ber forms a random sphere packing with a sphere volume fraction of ϕ�0.64.

7A way to convert a glass marble to nano-silica spheres is to dissolve the marble at alkaline pH to a
water glass solution, followed by a slow pH decrease upon which silica nano-particles will nucleate
near pH~8. See A. Philipse, Particulate Colloids in J. Lyklema (ed.) Fundamentals of Colloids and
Interface Science, Vol. IV (Elsevier, 2005).



Chapter 2
A Feverish Sphinx

No principal distinction exists, as mentioned earlier, between diffusion of molecules
and diffusion of colloids as both represent thermal motion. ‘Brownian motion’ is the
habitual term for colloids; the naming is appropriate as it was Robert Brown who
was the first to publish on systematic observations of colloids in motion. Below we
will outline Brown’s findings and summarize their history of reception, with a crucial
role for the kinetic theory of matter that was developed in the second half of the 19th
century.

2.1 Through a Small Grain of Glass

The Scottish botanist Robert Brown (1773–1858) was already in his own time
well-known as an expert observer with the single-lens microscope. With this modest
instrument, essentially a miniature magnifying glass (Fig. 2.1), Brown not only
identified the cell nucleus but also studied the fertilization process in plants, for
which purpose he investigated the white pollen of the ornamental plant Clarkia Pul-
chella (Fig. 2.2). In June 1827 he observed under his microscope the zigzag motion
of tiny objects

1
in water which had escaped from the pollen grains. Such motions,

of course, could be expected for small organisms which, in analogy with bacteria or
spermatozoa, move by themselves in water without any external assistance. Brown
decided to investigate the significance of these zigzagging organisms for the love
life of Clarkia Pulchella in more detail. Soon, however, he started to doubt whether
the tiny, feverishly moving particles were indeed living organisms, even though their
motions did not seem to stop. For Brown also scrutinized finely powdered inorganic
substances (silica, clay, grains of sand) under his single-lens microscope and found
that also inorganic particles, if sufficiently small, exhibit erratic motions when

1These particles are now known to be membrane-bound structures called organelles, including
amyloplast which store starch. They have nothing to do with plant fertilization.

© Springer Nature Switzerland AG 2018
A. P. Philipse, Brownian Motion, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-319-98053-9_2
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Fig. 2.1 Brown used a
microscope of this type for
his study of Brownian
motion. This microscope has
only one lens in the form of a
small glass grain. Courtesy
Dr. J. Deiman, Utrecht
University Museum,
photograph J. den Boesterd.
For the non-Dutch reader:
you see the end of a roll of
peppermint candies which
are discs with a radius of one
centimeter

dispersed in water. A mineral also pulverized and scrutinized by Brown was granite,
in one case from a remarkable, certainly very lifeless source. In his own words:

Rock of all ages, including those in which organic remains have never been found, yielded
the molecules2 in abundance. Their existence was ascertained in each of the constituent
minerals of granite, a fragment of the Sphinx being one of the specimens examined.

Brown’s startling conclusion was that inanimate matter spontaneously moves in a
liquid, providedmatter particles are small enough. This conclusion was controversial
formany years—and, remarkably, in some corners the possibility that inanimatemat-
ter has self-motion is still ruled out3. Especially the spontaneity of the particlemotion
was contested in view of factors such as mechanical vibrations, solvent evaporation,
and liquid convections, which could cause the observed motion of suspended parti-
cles. Such objections are not unreasonable; dust particles are seen to whirl around in
sunlight due to air convection, and even minute temperature gradients set up liquid
flows in dispersions.

The author has verified by himself, employing the microscope in Fig. 2.1 using
an aqueous dispersion of mono-disperse latex spheres (diameter about one micron),
that Brown indeed must have been able to observe colloids in motion. The irregular,
diffusive movements of individual latex particles can be distinguished under the
microscope of Fig. 2.1, be it with some difficulty, from convective motions due to
liquid flow, in which particles jointly move in the same direction.

Such a present-day experiment, of course, not only employs our modern, mono-
disperse latex particles in a clean solution, but surely is also guided bywhatwe expect

2Brown employs the term ‘molecules’ to denote small self-moving particles.
3“Spontaneous movement is a characteristic sign of life […] Such a movement is never exhibited
by non-living objects”. A. C. Dutta, A Class-Book of Botany (17th “new revised edition”, Oxford,
2000)
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Fig. 2.2 The ornamental
flower Clarkia Pulchella (H.
W. Richett, Wild Flowers of
the United States, vol. 6 (Mc
Graw Hill, New York 1967)

to see. An unprejudiced 19th century observer trying to repeat Brown’s experiments
must, apart from external disturbances, have been easily confused by the unclear
image of moving and stagnant objects (dust, bacteria, cells, colloids of various size
and shape etc.) observed in a drop of sap or water under a microscope. It is quite
difficult to interpret—or sometimes even to put into words—observations without
guidance by any model or theory.

Father Delsaulx onmechanical theory. That guidance took a long time: it lasted
almost fifty years before Brown’s observations were linked to kinetic4 theory—the
theory that will be reviewed in Chap. 3. The concept of molecules in thermal motion
was central to the kinetic theory that was developed in the second half of the 19th
century. However, making a connection with microscopically observable Brownian

4From the Greek kinetikos derived from the verb kinein ‘to move’.
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motion in a liquid was anything but obvious. It was in any case not obvious to James
Clark Maxwell (1831–1879), one of the founders of kinetic theory, who remarked5:

Diffusion in liquids and gases is the strongest evidence that they contain molecules in a state
of continuous agitation (these motions) cannot be directly observed.

Christian Wiener (1826–1896) studied Brownian motion by optical microscopy
on what we now call a colloidal silica sol, which he prepared by precipitation of an
aqueous silicic acid solution. Wiener noted that the motion of the silica particles was
too erratic to be caused by liquid convections or mechanical undulations and made
in his 1863 publication an attempt to relate Brownian motion to inherent fluctuations
of the suspending fluid.

More than a decade later the Belgian Jesuit Rev. Joseph Delsaulx (1877) wrote
that

The motions discovered by Robert Brown in minute particles, and for that reason called
Brownian motions, have since been observed by all naturalists. In fact, there is not one
amongst them but must have been struck by the strangeness, the persistence, and the frequent
apparition of these molecular motions in the field of the microscope; not one, I fancy, who
has not tried to raise up, were it only by a corner, the veil which nature has cast upon the
secret of their origin. Hitherto, it must be confessed, all their efforts have been fruitless: the
Sphinx6 has kept its enigma.

Father Delsaulx then argues towards the following resolution of the conundrum:

After having explained, in conformity with the principles of thermo-dynamics, the move-
ment of the Brownian gaseous bubbles, and the little masses of vapor in quartz, I shall
endeavor in the same way to account for the movements observed in viscous globules, and
solid granulations in liquids. According to me, all these movements result from the interior
dynamic state that the mechanical theory of heat attributes to liquids.

Delsaulx also notes that Brownian motion is a remarkable confirmation of this
mechanical theory. This confirmation remained qualitative, if not speculative, until
statistical thermodynamics came on stage, and until it was clearly apprehended that
large particles (colloids) obey the same statistical laws as molecules. This realiza-
tion was a turning point in a long-standing controversy on the status of atoms and
molecules.

2.2 Molecular Size

Everything is composed of molecules that, in turn, are made from the atoms of the
PeriodicTable.We are familiarwithmolecules—and easily envisagewatermolecules
being pushed out of the way when stirring a cup of tea, and imagine that we are being

5J. C. Maxwell, Theory of Heat (1888). Unabridged republication by Dover (2001).
6The Sphinx (see cover frontispiece) was a horrendous female monster with a women’s head, the
body of a lion and wings of a bird. She ravaged the city of Thebes, devouring anyone who failed to
correctly resolve her riddle.
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bombarded by air molecules when cycling against the wind. To confirm, in case of
any doubt, that molecules are really there, one can look at their images made with
a scanning force microscope. Yet, verifying the reality of molecules without such
a powerful microscope, depending only on perception of the macroscopic world, is
quite a different matter. Can you mention visual support for air being composed of
thermally agitated molecules—or report any evidence for molecular dimensions?

Air molecules. A first credible estimate of the size of ‘air molecules’ was made
by Joseph Loschmidt (1821–1895). It did not come from any visual observation, but
was inferred from (Exercise 2.7) Maxwell’s kinetic gas theory. Briefly, Loschmidt
combined the mean-free-path of gas molecules (Chap. 3, Eq. 3.13) and Maxwell’s
gas viscosity (Chap. 5, Eq. 5.31) to obtain a result with two unknowns: a molecular
diameter d and a gas volume fraction ϕ. He then estimated the latter from the volume
the gaswould occupywhen condensed to a liquid,which eventually lead to a diameter
of order d ∼ 1 nm for an ‘air molecule’.

Franklin calms the waves. There actually was visible evidence available on
molecular size, almost one century before Loschmidt’s 1865 publication. Benjamin
Franklin (1706–1785) reported7 in 1773 that a tea spoon of oil poured into a pond
could spread to an extensive oil film that calms down the water. Assuming the film
is a mono-layer of ‘oil molecules’ we can estimate their size from Franklins data.
Franklin reports an oil area of about A �2000 m3 and taking V=2 mL as the typical
volume for a Victorian tea spoon we arrive at

d � V

A
≈ 2 × 10−6 m3

2 × 103 m2
≈ 1 nm (2.1)

That is in order of magnitude the length of fatty acid chains of soap molecules in
a film at the water-air interface. Curiously enough, Franklin himself did not made
the estimate (2.1). Only much later Lord Rayleigh performed the calculation8 for a
film of olive oil on water to find d ≈ 1.6 nm.

2.3 Molecular Reality

The findings of Loschmidt and Rayleigh apparently did not form the proof that could
convince sceptics such as the physicist Ernst Mach (1838–1916), who admitted that
molecules were a very useful hypothesis, but anyhow a hypothesis.WilhelmOstwald
(1853–1932) rejected the reality ofmolecules, being convinced that all science should
be based on phenomenological thermodynamics. There is consistency in his view
point: the validity of the First Law (total energy is conserved in any process) and the
Second Law (total entropy cannot decrease) does not rely on any particular molecular

7Phil. Trans. Roy. Soc. 64, (1774), 445. See also C. H. Giles, Franklin’s tea spoon of oil, Soc.
Chemistry & Industry, Nov. 8, 1969.
8Proc. Roy. Soc. (London) 47, (1890), 364.
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microscopic model. So strict adherence to phenomenological thermodynamics is
compatible with denying the existence of molecules.

Chemical atoms. 19th Century chemists were drawing schematic diagrams,
chemical formulae and stoichiometric equations, since Dalton (1766–1844) intro-
duced his atomic theory. For a critical 19th century student, however, the physical
evidence that such chemical symbols might represent ‘real’ particles was not very
convincing. The student could point in the first place to the confusion about the nature
of such particles. Were they indivisible atoms9 in the strict sense of the word? Or
were they agglomerates of such atoms? And was there only one type of atom, for
example hydrogen as postulated by Prout (1785–1850), or could there be a whole
family of chemical atoms - namely one for each element—as advocated by Dalton?
Our 19th century student could also point out that, if molecules existed, nobody knew
how to count them.

TheBoltzmanndistribution. In contrast to the phenomenological thermodynam-
icsmentioned above, statistical thermodynamics imposes commitment to amolecular
model: it builds up the Second Law on classical mechanics and probability theory,
applied to a collection of discrete particles in disorderedmotion.Named after Ludwig
Boltzmann (1844–1906), a founding father of statistical mechanics, is the Boltzmann
constant10 k that relates entropy S to probability �:

S � k lnΩ, (2.2)

In this equation, carved on Boltzmann’s tombstone in Vienna (Fig. 2.3), � is the
number of indistinguishable microscopic states that correspond to a certain macro-
scopic state with fixed total energy. We note in passing that the Boltzmann constant
is the ratio of the molar gas constant Rg to Avogadro’s number:

k � Rg

NAV
� 1.38 × 10−23 JK−1, (2.3)

and has the dimension of entropy. Boltzmann’s entropy formula has an important
consequence for the distribution of an assembly of N particles in an isolated system.
According to the Second law, the entropy in an isolated system must increase until
equilibrium, that is the state with maximal entropy, is reached. For N particles the
maximum of the entropy function S � k ln � is reached when the particles adopt
the Boltzmann distribution:

Ni

N
� gi exp[−εi/kT ]

∑

i
gi exp[−εi/kT ]

(2.4)

9From the Greek a-tomos ‘un-cuttable’.
10This constant was actually not employed by Boltzmann, see also Fig. 2.3.
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Fig. 2.3 The tombstone of Ludwig Boltzmann (1844–1906) on the Zentral Friedhof in Vienna is
decorated with Eq. (2.2)— which Boltzmann curiously enough never wrote down. The Boltzmann
constant k was introduced in 1901 by Max Planck who also formulated S=k log W

Here Ni is the population at the energy level εi , with a degeneracy gi ; the sum in
the denominator over energy levels is the partition function of a particle. Such results
of statistical thermodynamics are clearly only meaningful when there are particles
‘out there’, particles that are in thermal motion such that they can evolve to and
remain in the equilibrium distribution of Eq. (2.4).

2.4 Colloids Are Molecules

The experimental verification of Eq. (2.4), however, presents a problem. One can-
not directly count molecules in such a distribution by, for example, microscopic
observations. Yet it was realized by Albert Einstein (1879–1955) and Jean Perrin
(1870–1942) that the Boltzmann distribution not only applies to atoms or molecules:
it equally holds for the much larger particles in a colloidal suspension (see Fig. 2.4).
The reason is that the principle of “equipartition of energy” does not distinguish the
thermal motion of a solvent molecule from that of a suspended colloid. The kinetic
energy Ekin of a particle with mass m translating with a speed u is
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Fig. 2.4 Perrin’s
microscopic image of the
sedimentation-diffusion
equilibrium of resin spheres
(diameter one micron) in
water. Source F.
Randriamasy, Revue du
Palais de la Découverte 20,
no. 197, 18–27 (1992)

Ekin � 1

2
m u2 (2.5)

The equipartition principle guarantees that in thermal equilibrium all components
of a solution (solvent molecules as well as colloids, polymers or any other particles)
have the same average translational kinetic energy, which is fixed by the absolute
temperature T :

〈Ekin〉 � 3

2
kT, (2.6)

a result that is derived and further discussed in the review of kinetic theory in Chap.
3. Thus the root-mean-square speed of a particle is:

√〈
u2

〉 �
√
3kT

m
, (2.7)

showing that at a given temperature colloids with their large masses move slower
than molecules.

Barometric profiles. This large mass also ‘compresses’ the Boltzmann distribu-
tion in the earth gravity field. At a height h above the surface of the Earth at h=0,
the potential energy of a particle with buoyant mass Δm is:
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U � Δmgh, (2.8)

where g is the acceleration of gravity. The Boltzmann distribution (2.4) for colloids
in the gravity field leads to an equilibrium profile of the form (Exercise 2):

ρ(h) � ρ(h � 0) exp

[−Δmgh

kT

]

(2.9)

Here ρ is the colloid number density; h=0 denotes the reference plane where U
�0. This exponential or ‘barometric’ distribution for non-interacting particles11, has
a thickness characterized by the ‘gravitational length’:

lg � kT

�mg
, (2.10)

which is the height at which the number density has dropped to ρ(h)�ρ(h=0)/e.
For oxygen molecules lg is several kilometers, whereas colloidal spheres may adopt
equilibrium profiles of only several cm or less (Exercise 2.2). Since such spheres can
be observed with an optical microscope, Perrin (Fig. 2.4) was able to directly count
the number densities predicted by Eq. (2.9). He determined the mass of his colloidal
spheres from measurements of their Stokes sedimentation velocity (see Chap. 6).
When ρ(h) in Eq. (2.9) is measured as a function of height h at a given temperature,
the Boltzmann constant k remains the only unknown. Perrin thus determined exper-
imentally k, and found in this way a reasonable value of NAV ≈ 6 × 1023/mol for
Avogadro’s number.

Monodisperse colloids. Perrin initiated the use of ‘well-defined colloids’ to study
molecular statistics on a spatial scale which is accessible to an optical microscope. In
colloid science this ‘upscaling’ is still an important strategy, and one is still wrestling
with the problem that also Perrin had to face: colloidal particles always have a certain
distribution in shape and mass (they are ‘polydisperse’) whereas atoms are monodis-
perse—if one disregards isotopes. The distribution in Eq. (2.9), however, presup-
poses particles with identical mass m. Perrin used fairly monodisperse latex spheres,
obtained from laborious fractionation procedures on natural latex (‘gamboge’) solu-
tion: by repeated sedimentation a few hundred milligrams of spheres were obtained
from one kilo of rubber. Nowadays well-defined colloids can be prepared by precip-
itation or polymerization of insoluble substances in a solution.

The equivalence between colloids andmolecules also leadPerrin to anothermicro-
scopic determination of Avogadro’s number, based on Einstein’s equations for dif-
fusive displacements.

The wonder year. Albert Einstein (1879–1955) investigated Brownian motion
primarily to develop arguments to support the existence of molecules, and to validate
the applicability of statistical thermodynamics. In his own words12:

11For (2.9) to be valid, particle should not only be ideal, but also uncharged, see Sect. 10.5.
12A. Einstein, Autobiographical Notes, in Paul A. Schilpp (Ed.) Albert Einstein: Philosopher-
Scientist Vol. 1, p. 47; The Library of Living Philosophers (Open Court Company, 1969).
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My major aim in this was to find facts which would guarantee as much as possible the
existence of atoms of definite size. In the midst of it I discovered that, according to atom-
istic theory, there would have to be a movement of suspended microscopic particles open
to observation, without knowing that observations concerning the Brownian motion were
already long familiar.

In the annus mirabilis 1905 (in which he also first published on special relativity
and the photo-electric effect) Einstein reported equations for the diffusion of a particle
in a liquid, already mentioned in Chap. 1, namely expressions for the diffusion
coefficient and the quadratic displacement. Perrin verified Einstein’s predictions by
measuring the displacements of his colloidal latex spheres under a microscope and,
found, via the Stokes-Einstein relation D=6πηR/kT again a reasonable value for
Avogadro’s number. Perrin’s experiments made quite an impact; even a sceptic such
as Wilhelm Ostwald accepted eventually the reality of molecules on the basis of
Perrin’s experiments.

Inherent motion. Textbooks sometimes mention Brownian motion as being
caused by ‘uncompensated’ collisions of solvent molecules, which kick around an
otherwise inert colloidal particle. The point is, however, that all free, small entities are
in inherent thermal motion regardless of their surroundings with which they equili-
brate. The colloid’s environment may be a liquid, a gas or a bath of electro-magnetic
radiation - and in any environment colloids move randomly about an equilibrium
position due to their kinetic energy. Only the distance they move is determined by
the energy dissipation to its surroundings; a viscous damping in case of a liquid. The
Stokes-Einstein diffusion coefficient D=kT/6πηR summarizes this state of affairs:
diffusion is driven by the thermal energy kT with no reference to the surroundings of
colloids, and damped by the Stokes friction factor which specifies that the colloids
in question are suspended in a continuous fluid with viscosity η.

Quanta. Brownianmotion not only offered credibility for the reality ofmolecules.
The above mentioned case of Brownian motion in a radiation bath provided—in the
hands of Albert Einstein—support for the reality of light quanta as well. Einstein
discussed Brownian motion by a reflecting mirror suspended in a space filled with
electromagnetic radiation. He came to the insight that the haphazardly fluctuating
mirror does not exchange energy with continuous light waves but, instead, with
radiation that consists of an ideal gas of particles in the form of mutually independent
light quanta.13

2.5 Kinetic Therapy

The awareness that the world is composed of particles or atoms in spontaneous
everlasting motion has a long history, and one ancestor of kinetic theory deserves
to have the floor for a moment. Not only because he foreshadows atomism in a

13How he came to this insight is eloquently related by Einstein himself in A. Einstein in: Paul A.
Schilpp, op. cit. p. 51.
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remarkable way but also because he does so via beautiful poetry with many captive
images of atoms and their motions. The Roman poet Titus Lucretius Carus (c.100-
c.55 B.C.) writes in his On the Nature of the Universe on the process of atoms
clustering and falling apart:

This process, I might point out, is illustrated by an image of it that is continually taking place
before our very eyes. Observe what happens when sunbeams are admitted into a building
and shed light on its shadowy places. You will see a multitude of tiny particles mingling in
multitude of ways in the empty space within the light of the beam, as though contending
in everlasting conflict, rushing into battle rank upon rank with never a moment’s pause in a
rapid sequence of unions and disunions. From this you may picture what it is for atoms to be
perpetually tossed about in the illimitable void. To some extent a small thing may afford an
illustration and imperfect image of great things. Besides, there is a further reason why you
should give your mind to these particles that are seen dancing in a sunbeam: their dancing is
an actual indication of underlying movements of matter that are hidden form our sight. There
you will see many particles under the impact of invisible blows changing their course and
driven back upon their tracks, this way and that, in all directions. You must understand that
they all derive this restlessness from the atoms. It originates with the atoms, which move of
themselves. Then those small compound bodies that are least removed from the impetus of
the atoms are set in motion by the impact of their invisible blows and in turn cannon against
slightly larger bodies. So the movement mounts up from the atoms and gradually emerges
to the level of the senses, so that those bodies are in motion that we see in sunbeams, moved
by blows that remain invisible.

Lucretius’s atomistic elegy is not a kinetic theory in our sense of theword, with the
aim to explain the macroscopic world in terms of underlying microscopic entities. Its
principle goal is to liberate humanity of anxiety for death and fear for the supernatural.
The world and everything in it is governed by mechanical laws of the atoms and not
by the Gods. By believing this, men can live a peaceful and happy life. What more
could any theory wish to achieve?

Exercises

2.1 It is often claimed that Brown observed the Brownian motion of pollen grains.
Pollen grains of Clarkia Pulchella have diameters in the range 50–100 µm.
Suppose youwould observe the grains inwater under amicroscope for one hour:
calculate the diffusive displacement of a 50-µm grain in that hour. Conclusion?

2.2 (a) Derive the barometric height distribution in Eq. (2.9). Start with formulating
the force balance on the particles in the equilibrium profile. (b) How large is lg

for oxygen molecules, and for colloidal spheres with a radius R �100 nm and
mass density of 2 g cm−3?

2.3 Explain why Brownian motion does not stop due viscous friction between col-
loid and surrounding solvent.

2.4 One could argue that a colloid receives heat from its environment and converts
it to work of motion, and vice versa. However, according to the Second Law it
is impossible that heat is fully convert to work in a closed cycle. Does Brownian
motion contradicts the Second Law?

2.5 Discuss in how far the quote from Lucretius in Sect. 2.4 can be seen as a
description of Brownian motion.
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2.6 Avogadro’s number. Describe the twomethods employed by Perrin- and check
his corresponding calculations- to find Avogadro’s number NAV. Describe at
least four other methods to determine NAV and explain for each case the under-
lying principle.

2.7 Loschmidt on molecular size. The estimate of molecular diameter d in 1865
by Loschmidt is based on the proportionality d ∼ φλ ,where λ is the mean free
path length of molecules in a gas in which molecules occupy a volume fraction
φ.

(a) Verify that this proportionality is correct (hint: consult Chap. 3)
(b) Find out how Loschmidt was able to deduce or estimate φ.
(c) Estimate d for nitrogen gas using the proportionality d ∼ φλ

(d) Calculate Avogadro’s number on the basis of your estimate of d.
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Chapter 3
Kinetic Theory

Random motion of particles, so well put into words by Lucretius in Sect. 2.5, was
quantified by the kinetic theory of matter in the second half of the nineteenth century.
Aswe have seen in Chap. 2, this theory eventually lead to the demasking of Brownian
movements as an instance of thermal motion, be it a remarkable instance, that can be
observed with microscopy on colloids dispersed in a liquid. This Chapter introduces
kinetic theory for thermal particles, for the computation of, among other things, their
kinetic energies and the pressure they exert. The magnitude of thermal energy in
comparison to chemical bond energies will also lead us into an aside on soft matter,
the materials that are particularly susceptible to thermal energy at room temperature.

Colloidal smoke. We will address particles in a gas phase, though all results
from kinetic theory also apply to the solutes and solvent molecules in a solution. In
addition, from the kinetic view point there is no principle difference between a dilute
gas of visible colloids and a vapor of invisible molecules. The distinction is one of
degree: for a given temperature average motional energies of molecules and colloids
are the same, so the heavy colloids move at much lower speeds than molecules.

Gases of colloidal particles, incidentally, are quite common systems and occur
in the form of smoke—which is blueish or white owing to the light scattering from
the sub-micron particles in the ‘aerosol’. Other examples of colloidal vapors are
air polluting smog, hair sprays and deodorant, and the suspended colloidal water
droplets better known as ‘mist’.

3.1 The Basis

Kinetic theory is the theory that explains properties of matter in terms of the motions
of its constituent particles; inwhat follows ‘particles’ is the joint term formolecules as
well as colloids or nano particles. As even dilute gases contain immense numbers of
particles that are in ceaseless chaotic motions, their modelling seems like a daunting,
if not impossible task. However, as it turns out, the kinetic theory is able tomake quite
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accurate predictions on the basis of three minimal assumptions (outlined below) on
particle motion, particle interactions and particle size.

1. Random motions. Particles are in a state of perpetual random motion, moving
erratically around, with motional energies that depend only on temperature. This
chaotic pandemoniumwill persist forever because particles cannot cease moving
since a temperature of zero Kelvin cannot be achieved. Thermal particle motion
has on average no preferred orientations. Consequently, gases and solutions are
homogeneous onmacroscopic length scales, i.e. on scales verymuch larger than a
particle radius. Statistical properties are the same in all directions. For example, a
calculation of the average particle speed in any particular direction, as performed
in Sect. 3.3, is a calculation for all directions.

2. Collisions only. Particles are assumed to be mutually independent, which is to
say that they behave ideal. Mutual independence of particles entails that their
potential energy (their energy due to their position with respect to each other)
is assumed to be zero. The total energy of particles is therefore the sum of their
kinetic energies. The only interactions between particles are elastic collisions,
i.e. collisions that do not dissipate any kinetic energy of the particles involved.1 A
cannon ball falling onto a hard floor will bounce forever if the collision between
ball and floor is purely elastic; an extreme counter-example is the non-elastic
impact of a lump of clay with the floor, where all the lump’s kinetic energy is
dissipated during one collision.

3. Low volume fractions. Particles are not point-like but have a finite volume
otherwise they could not collide. It is by collisions that molecules exchange
motional energy such that they evolve to the equilibrium velocity distribution to
be discussed in Sect. 3.4. However, molecule volumes are assumed to be small
enough for the total particle volume to be negligible in comparison to the vessel
volume. The volume fraction ϕ of particles with volume V p is defined as:

φ � N

V
Vp � ρVp (3.1)

Here ρ =N/V is the number density of N particles in a total system volume V.
A small volume fraction ϕ � 1 implies for particles in a gas that they travel in a
straight line (the free path) many times their own diameter between two collisions.
In contrast, Brownian particles or solute molecules in solution are surrounded by a
dense population of solvent molecules so here the free path is very much smaller,
namely of the order of the size of a solvent molecule.

Equilibrium and particle speeds. Ideal gases and colloidal solutions that are
in thermodynamic equilibrium harbor uniformly dispersed particles and colloids in,
respectively, a vessel and a solution. According to the postulates mentioned above,
particles keep on ceaselessly and randomly colliding with each other. Since colli-
sions alter relative particle speeds in a random manner, particles speeds maintain in

1Also collisions between a particle and container walls are assumed to be purely elastic.
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equilibrium a time-independent distribution, also known as theMaxwell-Boltzmann
distribution, to which we return in Sect. 3.3. So the supposition that in equilibrium
all particle speeds are the same would be mistaken: particles that all have the same
speed actually represent a non-equilibrium state in which entropy would increase
because speeds would spontaneously redistribute themselves until the equilibrium
distribution has been reached. The implication is that analysis of particle kinetics
must focus on average values of speeds and kinetic energies for large numbers of
particles.

In what follows we should clearly distinguish particle speeds from velocities; the
velocity of a particle is a vector with three Cartesian components in the x, y and z
direction:

−→v � (vx, vy, vz) (3.2)

The speed of a particle is the absolute magnitude, or modulus of the velocity
vector, which will be denoted by the symbol u:

u � ∣
∣−→v ∣

∣ �
√

v2
x + v2

y + v2
z (3.3)

Since particle speeds are distributed we will be dealing with averages such as:

< u2 > � < v2
x > + < v2

y > + < v2
z > (3.4)

Here the brackets denote a number-average over all particles. For example, the
average over the square of the velocity component vx is defined by:

< v2
x > �

∑

j�1 njv
2
x,j

∑

j�1 n j
� 1

N

∑

j�1

njv
2
x,j (3.5)

Here nj is the number of particles with a velocity component vx,j; note that the
sum in the denominator represent the total number, N , of particles. We will return
to averages as in (3.5) and how they can be evaluated using distribution functions in
Sect. 3.3.

3.2 Free Volumes and Collisions

The first quantity we will calculate employing kinetic theory is the average distance
a particle traverses between two collisions with other particles, an average referred
to as the particle’smean free path. It can be computed from two different expressions
for the same statistical property of particles and that is their mean free volume.

Mean free volume. The free volume vf is defined as the volume surrounding
the center of a particle in which no other particle centers are present, as illustrated
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Fig. 3.1 Snapshot of N �36 particles randomly distributed in a total volume V , which is divided
in N cubes, each with a volume V/N . At any moment some cubes are empty and others contain one
or more particle centers. On average each particle has a free volume<vf>�V /N available in which
no other particle center is present. Note that finite particle volumes actually reduce the free volume
such that <v> = V /N only holds at sufficiently low concentrations

in Fig. 3.1. Due to particle motions this free volume will fluctuate in time, so we
need to consider the average free volume per particle, denoted as <vf>. According
to the three assumptions discussed above particles are randomly distributed, non-
interacting particles with a negligible volume. For N such particles in a total volume
V , the mean free volume equals the inverse particle number density:

< vf > � V

N
� 1

ρ
(3.6)

If the total particle volume would occupy a significant part of the system volume
V , the mean-free volume would be smaller than given by (3.6) because less space is
available for particle centers to move around. Note that for an ideal gas at pressure
p and temperature T :

V

N
� kT

p
(3.7)

Thus the average free volume is a constant for given p and T ; this is nothing but a
reformulation of Avogadro’s principle stating that themolar volume of ideal particles
is constant at given p, T.

Mean free path. Another way to estimate the free volume vf is to look at the
straight trajectory that particles traverse between two collisions. This trajectory is
called the free path; Fig. 3.2 shows a particle that travels this free path with average
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Fig. 3.2 a Particles are modeled as hard spheres with diameter d and collision cross section πd2;
a moving sphere sweeps a cylindrical volume with cross section πd2 and collides with any sphere
having its center located in this cylinder. b The length of the cylinder free from other centers is the
mean free path λ. c A particle moves with average speed <u> through a swarm of fixed neighbor
spheres with a mean free path as indicated. The blue rectangle is the side view of a cylinder with
length λ and cross section πd2; the cylinder volume equals on average the free volume <vf >

speed <u> in a cloud of fixed neighbor spheres. The particle voyages unhindered
until it collides with one of its static neighbors. The corresponding free volume is:

< vf > � λπd2 (3.8)

Here λ is the average value of the free path, the mean free path, and πd2 is the
collision cross-section, see also Fig. 3.2b. Thus the average free volume <vf> can be
eliminated from (3.6) and (3.8) to obtain:

1

ρ
� λπd2, (3.9)

such that the mean free path is given by:

λ � 1

ρπd2
(3.10)

This is the mean free path for one particle moving with average speed <u> in a
swarm of fixed neighbors, see Fig. 3.2. In reality these neighbors are also in motion
so the relative speed of particles with respect to each other is actually larger than
<u>. This enhances the rate at which particles collide and, consequently, reduces the
mean free path. This reduction turns out to be2 a factor of

√
2:

2See f.e. W. J. Moore, Physical Chemistry, Longman, London, fifth ed. (1972), pp. 148–150.
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λ � 1√
2ρπd2

(3.11)

Using the ideal gas law p �ρkT we find the alternative expression

λ � kT√
2πd2 p

(3.12)

So all we need is the diameter d of particles to calculate the mean free path in a gas
at given pressure and temperature. The volume fraction φ of particles with diameter
d is defined as:

φ � ρ
(π

6

)

d3 (3.13)

Combining (3.12) and (3.13) we find the simple expression:

λ

d
� 1√

2 6φ
(3.14)

For example, in a dilute gas of colloidal spheres with volume fraction φ ~ 0.001,
the colloids travel unhindered over distances λ ~118 times their own diameter d.

Collision frequencies. The result for the mean free path λ in (3.12) directly leads
to an expression for the frequency z at which particles collide with one target particle.
Again particles are modelled as hard spheres with diameter d. Realizing that the time
tB that elapses between two collisions equals 1/z, the mean free path follows from:

λ � < u > tB � < u >
1

z
, (3.15)

where <u> is the average speed of the particles. From (3.12) and (3.15) we can
eliminate λ to obtain the collision frequency z of particles on one selected target:

z � < u >
√
2 ρπd2 � < u >

√
2πd2 p

kT
(3.16)

Also here we get a compact result in the terms of the particle volume fraction φ

from (3.13):

z � < u >

d

√
2 6φ (3.17)

This result allows aquick estimate of the order ofmagnitudeof z. Taking, for exam-
ple, molecules with diameter d ~1 Å that travel at the speed of sound (u ~330 m/s),
the collision frequency is approximately:

z ≈ 3 × 1013 φ s−1 (3.18)
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Thus even for low gas volume fractions gas collision frequencies have staggering
values; for example, for ϕ�0.5×10−4 a gas molecule collides in one second with
about one billion other molecules.

Binary collisions. The frequency z denotes the collisions on one chosen particle;
since there are in total N particles in a volume V , the total number ZB of binary
collisions, per second per volume equals:

ZB � 1

2
z
N

V
� 1

2
zρ � πd2 < u >√

2
ρ2 (3.19)

Here ρ is the particle’s number density; the factor ½ is included to avoid double
counting of collisions. ZB provides the maximal rate for a reaction between gas
particles, when every collision produces a dimer.

3.3 Pressure from Ideal Thermal Particles

The energy of ideal particles only comprises the kinetic energy that is stored in
the their thermal motion; the same holds for ideal solute particles in a solution. The
thermalmotion of particles generates a pressure p andwewish to assess how pressure
p is related to masses and velocities of the particles involved. An educated guess for
this relation, based on dimensions, is as follows.

A dimensional conjecture. A pressure has the unit of N/m2 �Nm/m3 � J/m3 so
pressure is an energy in joule (J) per volume. Ideal particles have only one type of
energy, and that is the kinetic energy stored in their translational motions. Thus N
particles have a total kinetic energy N<Ekin>, where <Ekin> is the average kinetic
energy per particle. This total kinetic energy is present in a volume V so for the
pressure to have the correct dimension we expect that:

p ∝ ρ < Ekin >; ρ � N

V
, (3.20)

where ρ is the particle number density; the proportionality sign ∝ means ‘is apart
from a constant equal to’. The kinetic energy of a particle with mass m and speed u
equals Ekin � (1/2)mu2 so the proportionality (3.20) can also be written as:

p ∝ ρm < u2 > (3.21)

To find the missing constant of proportionality in (3.21) we will evaluate pressure
p in a more rigorous fashion, starting from Newton’s second law and the momentum
transport by ideal particles.3

3The following derivation of ideal particle pressure is based on the treatment by James Clerk
Maxwell (1831–1879) in his Theory of Heat (Longmans, London 1888); reprinted by Dover, Mine-
ola, 2001.
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Newton’s second law. Newton’s first law states that, due to its inertia, a particle
remains at constant velocity unless acted upon by a net external force. For the par-
ticle velocity to change, either in magnitude or direction, a force F is required that
according to Newton’s second law is given by:

−→
F � m

d−→v
dt

(3.22)

The product of particles mass m and velocity −→v is the momentum
−→
P of the

particle so Newton’s second law can also be written as:

−→
F � d

−→
P

dt
;

−→
P � m−→v (3.23)

Note that this is a vector equation: both changes in magnitude and direction of the
particle moment require a force. Below we will need the average momentum change
in a time interval �t , associated with a time-average force

<
−→
F >t � �

−→
P

�t
(3.24)

Mixture of ideal particles. Particles in a gas travel at different speeds, according
to the equilibrium distribution treated in Sect. 3.4. Suppose we give label j=1 to
particles that have velocities with an x-component equal or very close to vx,1, and
do the same for groups of particles with labels j=2, 3, 4 … Q, thereby dividing
the particles into a mixture of Q components. We will first calculate the partial
pressure exerted by one of these components, and then evaluate the total pressure by
summation of the partial pressures of all Q components.

Momentum exchange. Imagine a suspended open wire with areaO, as sketched4

in Fig. 3.3. Particles travel through the area O but since in equilibrium there is no
net particle transport, every particle that crosses the wire from L to R, is balanced
by another particle that crosses from R to L with on average the same, but opposite
x-component of the velocity. The momentum exchange associated with one particle
with label j going from L to R and one j-particle going in reverse is

�Px,j � mvx,j − (−mvx,j) � 2mvx,j (3.25)

If thismomentumexchange lasts�t seconds, the average force in this time interval
is, according to Newton’s second law (3.24):

< F >t,L→R � 2mvx,j

�t
(3.26)

4Figure 3.3 shows spherical molecules or colloids. However, the derivation of equation (3.35) does
not presuppose that particles or solutes and holds for ideal particles of arbitrary shape.
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Fig. 3.3 Two gas particles
fly through an open wire with
area O, respectively, from
space L to R and vice versa.
The net momentum transfer
2mvx in a time interval �t
corresponds to an average
force with magnitude
FL→R � 2mvx/�t , from
which we can calculate the
gas pressure, as further
explained in the text

The number of j-particles that reach the wire within �t seconds is

1

2
vxj�t

Nj

V
O (3.27)

Here N j is the number of j-particles in volume V ; the factor ½ takes into account
that only 50% of j-particles in space L have an x-component of the velocity in the
direction of the wire. The pressure exerted by the j-particles is the total force per unit
area

pL→R � 1

O
× 1

2
vx,j�t

Nj

V
O × < F >t,L→R � Nj

V
mv2

x,j (3.28)

Windless equilibrium. According to the random-motion assumption from
Sect. 3.1 particles move in all directions with equal probability so there are no
net, macroscopic particle displacements. Thus the j-particles do not exert a net force
on the area O, implying that in equilibrium the pressure pL→R in (3.28) equals the
opposite pressure pR→L. So we can drop the subscript L→R and write for the partial
pressure exerted by the j-particles:

pj � Nj

V
mv2

x,j (3.29)

Since we are dealing with ideal particles the total gas pressure p of the gas mixture
equals, according to Dalton’s law, the sum of all partial pressures pj:

p �
∑

j

pj � m

V

∑

j

Njv
2
x,j, (3.30)



30 3 Kinetic Theory

where the summation runs over all groups j=1, 2, 3,…Q of gas particles. The average
of the square of the velocity component vx is defined by:

〈

v2
x

〉 � 1

N

∑

j

Njv
2
x,j; N �

∑

j

Nj (3.31)

HereN is the total number of particles, foundby adding up all numbers of particles,
N j, of all components j=1, 2, 3… ,Q.By combining Eqs. (3.30) and (3.31) we obtain
for the total pressure:

p � ρm < v2
x >; ρ � N

V
(3.32)

The average of the square of the particle speed u is given by:

< u2 > � < v2
x > + < v2

y > + < v2
z > (3.33)

Again we exploit the random-motion assumption that in equilibrium, gas pres-
sures are the same in all directions: no wind is blowing in an equilibrium gas. The
implication is that

< v2
x > � < v2

y > � < v2
z > (3.34)

Thus the pressure in (3.32) can be rewritten to:

p � 1

3
ρm < u2 >; ρ � N

V
, (3.35)

which should be compared to our conjecture in Eq. (3.21). For the average kinetic
energy we will derive in Sect. 3.4 that:

< Ekin >� 1

2
m < u2 >� 3

2
kT, (3.36)

which on substitution in (3.35) yields for the pressure:

p � ρkT (3.37)

This is the pressure law for ideal, non-interacting thermal particles. For particles
in a gas phase, (3.37) is usually referred to as the ideal gas law; for particles that are
solutes in a solution, (3.37) is commonly written as

π � ρkT (3.38)

Here the symbol π is used for the pressure to indicate that particles are immersed
in a solvent rather thanmoving around in a gas vessel. The pressure exerted by solutes
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is also called the osmotic pressure and Eq. (3.38) is referred to as Van’ t Hoff’s law.
We will return to the osmotic pressure of dilute solutions in Chap. 11, which
comprises two thermodynamic alternatives for the kinetic derivation of Eq. (3.38)
given above.

3.4 Velocity Distributions and Energy Equipartition

We have already encountered in Sect. 3.2 the average speed <u> of gas particles
that determines collision frequencies, and found in Sect. 3.3 that particle pressures
depend on the average <u2> of the squares of particle speeds. We will now introduce
the mathematical tools, required to evaluate averages such as <u> and <u2>.

Cars versus particles. For the determination of the average speed of cars on
a high way, we sum the measured speeds of N cars, and divide the outcome by
N to obtain the desired average. An analogous procedure for particles would be
the determination of their average speed from the list of speeds of, say, one mole of
particles.However, even for a tiny fraction of amole such a listwould be as colossal as
it would be superfluous: an inventory of all individual velocity components contains
very much more information than we actually need. To evaluate average quantities
for large numbers of particles all we need is a distribution function for their velocity
components.

Discrete distributions. To introduce particle distribution functions we first con-
sider the discrete probability distribution of car speeds sketched in Fig. 3.4; here the
speed-axis is divided in Q bins that each represent a certain range of speeds. For
example, the bin 99–101 km/h contains the number of cars that have a speed u in the
range 99–101 km/h. The average car speed follows from

〈u〉 �
∑

j njuj
∑

j nj
(3.39)

Herenj is the number of cars in bin j that, on average, have speeduj. The summation
sign, the upper case Greek letter �, denotes the summation over all bins labelled
j �1, 2, 3 … Q. Note that the summation in the denominator in (3.39):

∑

j

nj � n1 + n2 + n3 + · · · nQ � N (3.40)

yields the total number, N , of cars. The probability pj to randomly select a car with
speed uj equals the number of cars in bin j divided by the total number of cars:

pj � nj
∑

j nj
� nj

N
(3.41)

Combination of (3.41) and (3.39) leads to the average car speed in the form:



32 3 Kinetic Theory

Fig. 3.4 Discontinuous probability distribution of car speeds; pj is the probability to find a car in
a bin with label j �1, 2, 3 … Q, containing nj cars with average speed uj. For example, p4 is the
fraction n4/N of the total number N of cars in bin 4. The probability pj is normalized, meaning that
the sum of all probabilities equals one

〈u〉 �
∑

j

pjuj (3.42)

Thus an average of a quantity follows from adding up all its values multiplied by
their probability to occur. For example, the average of the square of car speeds is:

〈

u2
〉 �

∑

j

pju
2
j (3.43)

An alternative measure for average speed is the root-mean-square (index ‘rms’)
speed, defined as:

urms � 〈

u2
〉1/2

(3.44)

Returning back to the probability pi in (3.41) we note that for an arbitrarily chosen
car to have a (any) speed, that probability must be one. This requirement implies that
the sum of all probabilities pj equals one, which is indeed the case:

∑

j
pj �

∑

j nj

N
� N

N
� 1 (3.45)

A probability whose sum of all its values equals one, is called a normalized
probability.
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Fig. 3.5 Continuous distribution of components vx of particle velocities. On the x-axis the magni-
tude of vx runs from plus infinity to minus infinity; on the y-axis are the values of the distribution
function P(vx). The shaded area is the probability P(vx)dvx to find a velocity component in the
interval between vx and vx +dvx: the shaded area is the fraction of particle velocities with an x-
component between vx and vx +dvx provided the distribution function is normalized, meaning that
the total area under the curve equals one

Continuous distributions. For the case of velocities of astronomic numbers of
particles, the bins as in Fig. 3.4 would be very narrow, in fact close to infinitesimally
narrow, such that the distribution becomes continuous. Figure 3.5 shows a sketch of
such a distribution for the x-component of particle velocities. In the discontinuous
distribution of Fig. 3.4 the y-axis represents the probability pj—defined in (3.41)—to
find a car with speed uj. In Fig. 3.5 the y-axis is the distribution function P(vx); its
definition is thatP(vx)dvx equals the probability to find a velocity component between
vx and vx +dvx. Thus the average value of (vx)2 follows from:

< v2
x >�

+∞∫

−∞
P(vx)v

2
xdvx (3.46)

As for the discrete probability pj in (3.41) the continuous probability P(vx)dvx
must also fulfill the requirement of normalization. Instead of the discrete summation
in (3.45) normalization is now the integral:

+∞∫

−∞
P(vx)dvx � 1 (3.47)
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Note the difference between the dimensionless probabilities pi, defined in (3.41)
for a discrete distribution and the distribution function P(vx): the latter is not a
probability and has the dimension of reciprocal speed. A distribution function is
also referred to as a probability density which turns into a numerical probability by
multiplying with an infinitesimal interval of the variable in question (here dvx).

Moments of a distribution. Suppose y is the distributed quantity of interest, with
a normalized probability density P(y). Then the average of ym is given by:

< ym > �
∫

ymP(y)dy (3.48)

Here <ym> is called the m-th moment of the distribution in y. Thus, the average
<v2x> in (3.46) represents the second moment of the distribution in velocity com-
ponents vx. Having identified a method to compute moments of a distribution, the
question is now which distribution function P(y) has to be substituted in (3.46). The
answer is that an equilibrium probability density distribution for particle properties
such as particle speeds and spatial positions is always a Boltzmann distribution.

The Boltzmann factor. In Chap. 2 (Exercise 2.2) we already encountered the
equilibrium concentration profile resulting from the competition between Brownian
motion and gravity, a profile that is further analyzed in Sect. 10.5. For particles with
mass m the equilibrium concentration profile is

ρ(h) � ρ0 exp[−Upot

kT
]; Upot � mgh (3.49)

Here g is the gravitational acceleration and ρ0 is the particle concentration at h=0;
Upot is the potential energy of a particle at height h. Since the probability P(h) to find
a particle at height h must be proportional to the concentration ρ(h), we can infer
from (3.49) the proportionality

P(h) ∝ exp[−Upot

kT
] (3.50)

This is the exponential Boltzmann factor for particles in the gravity field. More
generally we can write for the Boltzmann factor:

p(εj) ∝ exp[
−εj

kT
] (3.51)

Here p(εj) is the probability of finding a particle in a state j with energy εj, a
probability which, for given energies, only depends on the absolute temperature T .
Energy ε includes, among many others, the potential energy in the barometric height
profile in (3.50), the discrete energy levels for particle rotations and vibrations and
the continuous distributions of translational kinetic energies. Equation (3.51) can be
turned into an equality by the normalization of the probability p(εj) via:



3.4 Velocity Distributions and Energy Equipartition 35

p(εj) � exp[−εj/kT ]
∑

j exp[−εj/kT ]
(3.52)

Here the summation is carried out over all energy levels (or quantum states),
labelled j=1, 2, 3, …. Note that we deal here with a discrete distribution of energies;
only if the spacing between energy levels is very small the distribution of energies
and particles approaches a continuous one. For translational kinetic energies level
spacings can be neglected, so the kinetic energy of particles and colloids can be
described by a continuous distribution function, as the one shown in Fig. 3.5.

One-dimensional velocity distributions. For the continuous distribution of
velocity components vx the relevant energy in the Boltzmann factor is a particle’s
kinetic energy so the probability distribution function for velocity components vx is
given by:

P(vx) � C exp[−Ekin,x/kT ] � C exp[−mv2
x/2kT ] (3.53)

Here Ekin,x is the contribution of the x-component of the velocity to the kinetic
energy of a particle. The constant C follows from the normalization requirement

C

+∞∫

−∞
exp[−mv2

x/2kT ]dvx � 1 (3.54)

Employing the Gaussian integral (see Appendix A)

+∞∫

−∞
e−ay2dy �

√
π

a
, (3.55)

the integral in (3.54) can be easily solved, with the result that for the probability
P(vx)dvx to be properly normalized, the constant must equal:

C �
( m

2πkT

)1/2
(3.56)

So the normalized probability density for vx reads

P(vx) �
( m

2πkT

)1/2
exp[−mv2

x/2kT ] (3.57)

The rms-speed. Using the probability density in (3.57) we can now compute the
average of the square of velocity components vx by evaluating the following integral:

< v2
x >�

( m

2πkT

)1/2
+∞∫

−∞
exp[−mv2

x/2kT ] v
2
xdvx (3.58)
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Rewriting this integral to:

< v2
x >�

( a

π

)1/2
+∞∫

−∞
e−av2xv2

xdvx ; a � m

2kT
, (3.59)

we can employ the Gaussian integral (3.55) to obtain5:

< v2
x > � kT

m
(3.60)

As a consequence of the random-motion assumption from Sect. 3.1 (averages are
the same in all directions) the outcome for the y and z-velocity components must
also equal kT /m. Thus the average of the squared speed is:

< u2 > � < v2
x > + < v2

y > + < v2
z >� 3kT

m
(3.61)

As a measure for the average particle speed we can employ the rms-speed intro-
duced in Eq. (3.44); using the result for <u2> in (3.61) we obtain:

urms � 〈

u2
〉1/2 �

(
3kT

m

)1/2

�
(
3RgT

M

)1/2

(3.62)

Here m is the mass of a particle and M is the molar mass. Gas particles in the
atmosphere race around at supersonic speeds; nitrogen particles at room temperature
have according to (3.62) an rms-speed of 515 m/s whereas the somewhat heavier
CO2 molecules still achieve a respectable speed of 411 m/s which exceeds the speed
of sound of 330 m/s. Sound, incidentally, is transmitted by molecular motions but
since sound only moves in one direction it goes slower than the average molecular
speed.

The kinetic energy of a particle equals:

Ekin � 1

2
mu2, (3.63)

so from the rms-speed in (3.62) it follows that the average kinetic energy only depends
on temperature:

< Ekin > � 3

2
kT (per particle) ; < Ekin > � 3

2
RT (per mole) (3.64)

5< v2x >� −( a
π

)1/2 d
da

+∞∫
−∞

e−av2x dvx � −( a
π

)1/2 d
da

(
π
a

)1/2 � 1
2a
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Fig. 3.6 Velocity vectors from a snapshot of particles (left) are transposed to the origin of a two-
dimensional velocity space (middle). For very large numbers of particles the vector end points form
a sphero-symmetrical cloud (right). Speed u is realized by all two-dimensional vectors (vx, vy) with
their end-point in annular area 2πudu. Three-dimensional velocity vectors (not shown here) have
their end points in shell volume 4πu2du

The 3-D Maxwell-Boltzmann (MB) distribution. Above we calculated <u2>
which eventually leads to the expression for the rms-speed in (3.62). In this calcula-
tion we employed distribution functions for the velocity components P(vx)�P(vy)�
P(vz), as given by Eq. (3.57). These are one-dimensional distribution functions.
However, for the calculation of the average speed<u>we need a three-dimensional
distribution function. That is, we consider three-dimensional velocity vectors v and
ask for the probability that the velocity has a certain magnitude u. To derive the
corresponding distribution function P(u) we proceed as follows.

Imagine we take a snapshot of a large number of randomly moving particles
and draw for each particle its velocity vector, as shown for some selected particles
in Fig. 3.6. Next these vectors are transposed such that they all start in the origin
of a Cartesian space, as illustrated for the two-dimensional case in Fig. 3.6. The
components of these vectors are statistically independent, uncorrelated quantities, in
accordance with random-motion postulate from Sect. 3.1.

Now probabilities for independent quantities are multiplied: if the probability for
coin 1 to fall on its head is p(1)�½, the probability that three independent coins all
fall on their head is:

p(1) × p(2) × p(3) � 1

2
× 1

2
× 1

2
� 1

8
(3.65)

In complete analogy we have for the probability to find three velocity components
between vx and vx +dvx, vy and vy +dvy, and vz and vz +dvz, the product:

P(vx)dvx × P(vy)dvy × P(vz)dvz � C3 exp[−m(v2
x + v2

y + v2
z )/2kT ]dvxdvydvz

(3.66)

HereC is again the ‘one-dimensional’ normalization constant given by Eq. (3.56).
From the theorem of Pythagoras
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Fig. 3.7 Maxwell-Boltzmann distributions at T=298 K for the Particle Quartet from Table 1.1.
Probability density P(u) is in m/s; speeds u are in m/s, except for the granular G-spheres (label G)
where u is in nm/s. Molecular M-spheres (labelM) travel on average at supersonic speeds, whereas
nano-spheres (N) move at the speed of a quiet bike ride: 11 km/h. Colloidal spheres (C) roam around
at several centi-meters per second and the very sluggish granular spheres (label G) need more than
nine hours to cruise their own radius of one millimeter. Figure courtesy Samia Ouhadjji

u2 � v2
x + v2

y + v2
z , (3.67)

it follows that a value for speed u is realized by any triplet (vx, vy, vz) that satisfies
(3.67), each Pythagorean triplet representing a vector that ends in a shell with radius
u and thickness du, see also Fig. 3.6. The number of these vectors is proportional
to the shell volume 4πu2du so the probability for a particle to have a speed u is the
product of this shell volume and the Boltzmann factors in (3.66):

P(u)du � C3 exp[−mu2/2kT ]4πu2du; C �
( m

2πkT

)1/2
(3.68)

The probability density P(u) is usually referred to as the Maxwell-Boltzmann
(MB) distribution. Figure 3.7 depicts the widely different MB-distributions for the
Particle Quartet from Table 1.1. Noteworthy is the strong speed reduction upon
increase ofmolecularmass:molecularM-spheresmove at supersonic speedswhereas
the nano-spheres cruise at an average speed of only 11 km/h, the pace of a relaxed
bike ride.

Having now the three-dimensional MB distribution (3.68) at our disposal we can
compute the average particle speed:
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< u > �
∞∫

0

P(u)udu � 4π
( m

2πkT

)3/2
∞∫

0

exp[−mu2/2kT ]u3du (3.69)

To evaluate this integral we employ6

∞∫

0

e−ax2x3dx � 1

2a2
(3.70)

Making the appropriate substitutions in (3.69), the outcome for the averageparticle
speed turns out to be:

< u > �
(
8kT

πm

)1/2

�
(
8RgT

πM

)1/2

(3.71)

The average speed <u> is smaller than urms in (3.62) which is due to the inequality

〈

u2
〉 ≥ 〈u〉2 (3.72)

In words: the average of squared (speed) values always exceeds the square of the
average; this is true for any distribution as shown in Appendix A. The average and
rms-speed differ not only numerically, but also in their application: <u> is employed
for time-dependent processes such as collision frequencies (Sect. 3.1); the second
moment<u2>of the speed distribution is needed to calculate features that involve
kinetic energies, such as the pressure exerted by particles (Sect. 3.1) and the energies
involved in collisions.

Universal Maxwell-Boltzmann distribution. The MB-distribution (3.68) shifts
to larger speeds upon increasing the temperature—which is obvious as the aver-
age kinetic energies of particles increases. Augmenting particle mass is one way of
shrinking the MB-distribution to smaller speeds, as illustrated in Fig. 3.7 showing
the wide variation of MB-distributions for the Particle Quartet from Table 1.1. Inter-
estingly, underlying all MB-distributions is one universal distribution which emerges
as follows. The most probable speed umax is the speed at which a MB-distribution
has a maximum, and is given by (Exercise 3.6):

umax �
(
2kT

m

)1/2

(3.73)

6
∞∫

0
e−ax2 x3dx � − d

da

∞∫

0
e−ax2 xdx

x2�z� − 1
2

d
da

∞∫

0
e−azdz � − 1

2
d
da

( 1
a

) � 1
2a2
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Fig. 3.8 When for the widely different distributions from Fig. 3.7, probability densities P(u) and
speeds u are scaled on their maximal value, all distributions collapse on one curve in accordance
with Eq. (3.75)

Substitution of umax in (3.68) yields:

P(umax)dumax � C3e−14πu2maxdumax, (3.74)

which can be combined with (3.68) to obtain:

P(u)

P(umax)
�

(
u

umax

)2

exp[1 −
(

u

umax

)2

] (3.75)

Rewritten in this form, the MB-distribution has become independent of temper-
ature and particle mass. An example of the collapse of MD-distributions on this
universal distribution is shown for the Particle Quartet from Table 1.1 in Figs. 3.7
and 3.8.

Effusion and Graham’s law. Equation (3.71) for the average molecular speed
can be used to predict the rate at which a gas effuses, i.e. the rate at which a dilute gas
escapes from a vessel through a small hole (Fig. 3.9) or a porous membrane. Thomas
Graham (1805–1869) found experimentally7 that effusion rates of molecules with
masses mA and mB obey the following relation, now known as Graham’s law:

rate (A)

rate (B)
�

(
mB

mA

)1/2

(3.76)

7Graham found (3.76) in 1831; the reason underlying this relation, namelyEq. (3.71),was elucidated
only thirty years later by Maxwell’s kinetic theory.
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Fig. 3.9 Molecules escape from a dilute gas through a small open window at average speed <u>.
The rate of this effusion is therefore inversely proportional to molecular mass, a proportionality
known as Graham’s law

Graham’s law is a consequence of the relation between molecular velocities and
molecular mass; from (3.71) we find for the ratio of the average speeds of molecules
A and B:

< u >A

< u >B
�

(
mB

mA

)1/2

(3.77)

Thus the effusion rate of gas molecules is proportional to their average speed
which in turn is inversely proportional to molecular mass. For example, for oxy-
gen molecules the effusion rate is (32/2)1/2 �4 times lower than that of hydrogen
molecules, allowing for separation of a hydrogen-oxygen gas mixture by a series of
effusion chambers. Effusion is also applied to separate gas mixtures and fractionate
gas mixtures containing isotopes.

For an aperture in the vessel with area A, the number Zc of molecules that escape
per second through the opening is:

Zc � ρA

∞∫

0

vxP(vx)dvx � ρA

(
kT

2πm

)1/2

� 1

4
ρA < u > (3.78)

Here vx is a velocity component in the positive x-direction towards the aperture;
P(vx) is its distribution function from (3.57). Note that by choosing the integral limits
0 to ∞ we dismiss molecules that move away from the aperture.

Equipartition of energy. Boltzmann distributions, as we have seen in Sect. 3.2,
can be employed to calculate average kinetic energies associated with velocity com-
ponents in the x, y and z direction. There is a simple short-cut to find these average
energies and that is to employ the equipartition theorem (ET) which states that for
particles at thermal equilibrium each quadratic contribution to the energy equals on
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average (1/2) kT. Here the quadratic contribution of interest is the kinetic energy of
a mass m moving in the x-direction:

Ekin,x � 1

2
mv2

x (3.79)

The total kinetic energy of the massm is the sum of three quadratic contributions:

Ekin,x � 1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z (3.80)

According to the ET each quadratic term contributes on average (1/2) kT so the
total average kinetic energy per particle equals:

< Ekin> � 3

2
kT (3.81)

This average kinetic energy is independent of particle mass m and only deter-
mined by temperature T.When at constant temperature and, hence, constant average
kinetic energy,mass of particles increases, theymovemore slowly. Even largemacro-
particles and colloids of about one micron in radius still exhibit a significant thermal
motion, manifesting itself as the Brownian motion that can be observed with an
optical microscope.

The ET, it should be noted, is a theorem that is not always applicable; it only
applies at temperatures that are high enough for many quantum energy levels to be
populated. Formolecular vibrational states, for example, the ET is unreliable asmany
energy levels are not accessible at room temperature. For the translational energies
in (3.81), however, separations between energy levels are so small that many states
are inhabited such that the ET is applicable to particle motions, from heavy colloids
all the way down to small molecules.

3.5 Soft Matters

Thermal stability. Do thermal collisions carry enough energy to break chemical
bonds? Apparently not for the gas molecules in the atmosphere: at room temperature
colliding N2 or O2 molecules do not dissociate—for which we should be grate-
ful because oxygen radicals are poisonous. The collisions-only assumption from
Sect. 3.1 implies that for thermal collisions only kinetic energies have to be taken
into account since the potential interaction energy of molecules is zero. For ideal
molecules the average kinetic energy per mole is:

< Ekin >� 3

2
RT � 3.75 kJmol−1; T � 298K (3.82)
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This molar motional energy should be compared to typical dissociation energies
of covalent bonds, given below in kJ/mol:

C–C 344
N–N 945
O–H 463
O–O 498

Clearly at room temperature thermal collisions are by far not capable of cleaving
chemical bonds. However, these collisions can disrupt hydrogen bonds8 that are
considerably weaker than covalent bonds, corresponding to binding energies roughly
in the range 10–20 kJ/mole. Dissociation of Van der Waals bonds9, in turn, requires
even less energy than hydrogen bonds. Water can exist as a liquid phase because of
van derWaals and hydrogen bridges betweenwatermolecules. At higher temperature
more bonds between water molecules are broken due to thermal collisions so more
molecules migrate to the vapor phase; at the boiling point the liquid phase gradually
disappears.

Soft forces. Water is an example of soft matter, a term denoting physical systems
that are deformed or structurally changed by energies or stresses comparable to the
thermal energy at room temperature. These systems also include colloids, polymers,
foams, gels and many food products. Generally the characteristic length scale on
which soft matter deforms and changes, is the mesoscopic colloidal length scale
that is intermediate between the size of molecules and that of visible objects. In
soft matter systems Brownian motion and thermal fluctuations are the agents for
spontaneous change. And even if the forces involved are soft so to speak, the changes
may be remarkable: colloids that crystalize into opal-like structures, space-filling gels
that spontaneously shrink, and molecular motors that maneuver around in cells, to
mention only three out of numerous examples.

Talking of cells: in biological systems and tissues the importance of thermal
fluctuations is particularly significant. Interaction energies in biology are in the range
of the thermal energy and it is by soft forces that life perseveres. The hope expressed
in a Dutch poem10 is that also in politics and society, soft forces will ultimately
prevail. Here are its opening lines11:

The softer forces will no doubt prevail

in the end – this I hear as an intimate whisper

in me: were it mute all light would darken

all warmth within would stiffen

8Weak bonds between molecules resulting electrostatic attraction between a proton in one molecule
and an electronegative atom in the other.
9Weak attractive force between electrically neutral molecules in close proximity caused by tempo-
rary attractions between electron-rich parts of one molecule and electron-poor parts of another.
10Written in 1918 by the Dutch poetess Henriette Roland Holst (1869–1952).
11My prose translation, see References for the original Dutch couplet.
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Exercises

3.1 A bitter cold, extremely dilute hydrogen gas with a temperature of T=3 K
contains a number density of hydrogen atoms of 1 cm−3. (a) Calculate the
hydrogen pressure. (b) Estimate the mean free path for hydrogen atoms in the
gas. (c) Estimate their collision frequency; how often does a hydrogen atom
collide in one week and one year?

3.2 (a) Calculate the average free volume <vf > (in Ȧ3) per water molecule in liquid
water, assuming a mass density of δ �1 g cm−3 at T �298 K.
(b) In (a) we have not specified the pressure p that is exerted on the liquid
water. Discuss whether this is a serious omission.
(c) Calculate<vf >(again in Ȧ3) for water particles in a water vapor at T �
298 K and a pressure of p=1 bar. Assume the vapor obeys the ideal gas law.
(d) Estimate the average distance between the particles in the vapor phase

3.3 Estimate the collision frequency on one particle in a gas with a volume fraction
ϕ�0.5.10−4. Assume that particles (with diameter 0.1 nm) move on average
at the speed of sound.

3.4 Calculate the mean free path in a gas for the Particle Quartet from Table 1.1,
for a particle volume fraction of one per cent.

3.5 Given are 2 cars with speed u �80 km/h, 4 cars at u �100 km/h and 10 cars
at u �140 km/h. (a) Calculate<u>. (b) Calculate the rms-speed of the cars.
(c) Comment on any difference between the answers in (a) and (b).

3.6 Calculate the average molar translational kinetic energy at 300 K.
3.7 From the distribution function for particle speeds derived in this Chapter, show

that the most probable speed is given by:

umax �
(
2kT

m

)1/2

3.8 Derive a formula for the average square of the velocity x-component<v2x>using
the appropriate Boltzmann distribution. How large is<vx>and why?

3.9 Verify that

C �
( m

2πkT

)1/2

for the distribution in Eq. (3.56) of this Chapter is correct.
3.10 Solve integrals (3.58) and (3.69) of Chap. 3.
3.11 Verify that the Gaussian distribution (see Appendix A) for the variable s

G(s) � 1

σ
√
2π

exp[−1

2

(
s− < s >

σ

)2

]; σ 2� < s2 > − < s >2 ,

leads to the Maxwell-Boltzmann distribution for the velocity components vx.

https://doi.org/10.1007/978-3-319-98053-9_3
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Chapter 4
A Tale of Ten Time Scales

The three assumptions underlying kinetic theory mentioned at the start of Chap. 3
not only relate to kinetics of a molecular gas, or a colloidal mist of droplets in air, but
equally apply to colloids that perform Brownian motion in a solvent. The colloids
diffuse erratically around (assumption 1) at low concentrations such that they jointly
occupy only a small volume fraction (assumption 3) and the effect of interactions is
insignificant (assumption 2).

The motion of colloids and solvent molecules are similar in the sense that, accord-
ing to the equipartition principle, they both carry the same average kinetic energy.
An important difference, however, arises with respect to time scales: for solvent
molecules, a colloidal particle is an extremely sluggish object, whereas the colloid
experiences a dense swarm of molecules colliding with it at extremely high fre-
quency. The wide range of time scales that confronts solute particles in a solution
can be separated in two categories: one that relates to the inertial mass of colloids and
one category that comprises diffusive times where, as we shall see, colloids have lost
memory of their mass. This division follows from the distinction between Brownian
and ballistic motion.

4.1 Brownian Versus Ballistic Motion

Buys Ballot’s objection. One important result from the kinetic theory in Chap. 3
was the calculation of the average molecular speed:

< u >�
(
8kT

πm

)1/2

�
(
8RgT

πM

)1/2

(4.1)

Here m is the mass of a molecule andM is its molar mass. We recall the implica-
tion of (4.1) that small gas molecules rush around at supersonic speeds. The Dutch
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mathematician and meteorologist Buys Ballot1 (1817–1890) objected—actually not
unreasonably—that this implication is at oddswith everyday observations. Ifwe open
a bottle of perfume in the corner of a room, a seductive scent should be noticeable
in the whole room within a split of a second, if gas molecules indeed migrate at the
speed of sound. And if a stove would emit the lethal carbonmonoxide, any attempt to
escapewould be futile: you cannot outrun the speed of sound!BuysBallot’s objection
would cut ice if molecules indeed always travel along an uninterrupted straight line.
Which they do not: molecular velocities change directions at every collision—and
in Chap. 3 we concluded that these collisions occur at staggering frequencies.

In other words, the straight line that perfume or CO molecules freely traverse is
very much smaller than the dimension of a room, and actually equals the average
mean free path λ from Chap. 3:

λ � kT√
2 πd2 p

(4.2)

Here p is the pressure in a gas of (ideal) molecules with diameter d. To counteract
Buys Ballot’s objection with some numbers we note that at room temperature the
average speed of a CO2 molecule is 411 m/s. However, due to the many collisions
the net displacement of a CO2 molecule in the atmosphere is actually only 0.3 cm/s.
Thus there is every opportunity to escape from poisonous gases—and, if you like,
from perfume particles.

Ballistic motion. Unhindered molecular motion is also called ballistic motion;
in accordance with Newton’s second law the molecule’s velocity will not change,
neither in magnitude nor direction, in absence of any force on the molecule. The
distance s travelled by ballistic motion of a molecule at average speed in time t is:

s �< u > t, (4.3)

with<u>given by (4.1). The sequence of molecular steps of magnitude λ that almost
continuously change direction due to collisions is referred to as diffusion. The mag-
nitude of the displacement r of a molecule by diffusion is given by:

〈
r2

〉 � 6Dt (4.4)

Here<r2> is the average of the square of the displacement r in time t and D is the
diffusion coefficient of the molecule. The distance that can be extracted from (4.4)
is the root-mean-square (rms) value of the displacement r:

rrms � 〈
r2

〉1/2 � (6Dt)1/2 (4.5)

1Known for Buys-Ballot’s law which states that if a person on the Northern Hemisphere cycles
against the wind, atmospheric pressure is higher at her left than at her right.
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Note that for ballistic motion in (4.3) the distance s increases linearly with time
t, whereas the rms-displacement by diffusion grows much slower, namely with
the square root of time. This square-root dependence will be further addressed in
Sect. 4.3.

4.2 Mass-Related Time Scales

The molecular collision time τC. The fastest process in a colloidal dispersion,
relevant for Brownian motion, is the collision of solvent molecules with each other,
and with a colloid. The average kinetic energy of particles with mass m and speed u
equals

< Ekin >�<
1

2
mu2 >� 3

2
kT (4.6)

Since in a solvent the solvent molecules are closely packed together, molecules
will collide when they travel a distance of about the molecular radius R. The time τC

it takes to travers a distance R follows from;

R ∼ τC

√〈
u2

〉
(4.7)

So the collision time τC for molecules with radius R is of the order:

τC ∼ R√
kT/m

(4.8)

Here the symbol ‘~’ should be read as “is approximately equal to”. For molecular
M-particles (Table 1.1) at room temperaturewe find from (4.6) that<u2>1/2 �370m/s
and taking R�0.1 nmwe obtain τC ~2.10−13 s. Since the colloid is completely static
on this time scale, τC is also the characteristic time for encounters between a colloid
and its surrounding molecules. In other words, the molecules hit the colloid with a
staggering frequency of order 1/τC ~1013 s−1. This high frequency implies that on a
time scale t�τC the colloid experiences a continuous fluid rather than a collection
of discrete molecules. In such a fluid the motion of a colloid is damped by the Stokes
friction and it is this viscous damping by which a colloid ‘relaxes’ its momentum.

The momentum relaxation time τMR. Suppose a colloidal particle is given
an initial directed ‘drift’ velocity �v0 and an initial momentum �P0 � m�v0 at
time t �0, see also Fig. 4.1. We ask for the time τMR it takes for this sphere
to lose all its initial momentum due to viscous energy dissipation to the sol-
vent. Assuming that the solvent behaves as a continuum, the viscous force on the
sphere equals f �v(t) where f is the Stokes friction factor. Newton’s second law
reads:
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0t = MRt τ=

0v 0( ) /v t v e=

MRt τ

Fig. 4.1 The speed v(t) of a sphere decays exponentially in time due to viscous kinetic energy
dissipation. At the momentum relaxation time τMR the sphere speed has decreased by a factor e
from its initial value v0. Only a drift speed of the sphere imparted by an external force, will fully
decay to zero. The thermal Brownian sphere will only partial decay as the average speed stays at
the equilibrium value from Eq. (4.6)

−→
F tot � d

−→
P (t)

dt
, (4.9)

where
−→
P (t) � m−→v (t) is the particle’s momentum at time t. Since the total force on

the sphere is
−→
F tot � − f −→v (t) we obtain the following differential equation for the

velocity −→v (t) for a particle with constant mass m:

m
d

dt
�v(t) � − f �v(t) , for t � τC , (4.10)

fromwhichwefind that the instantaneous velocity−→v (t) and, consequently, the initial
momentum decay as

�v(t) � �v0 exp

[
− f t

m

]
��v0 exp

[
− t

τMR

]
(4.11)

The exponential decrease of the colloid’s momentum (see also Fig. 4.1) is set by
the decay time, also referred to as the momentum relaxation time:

τMR � m

f
� 2

9

δp

η
R2, (4.12)

for a sphere with massm � (4/3)πδpR3 and friction factor f=6πηR. For the standard
colloidal C-sphere (see Table 1.1) in water we find that τMR �5.10−9 s, which is
four orders of magnitude longer than the molecular collision time τC: it was indeed
justified to use in (4.10) the Stokes friction factor for a continuous, viscous fluid,
see also Fig. 4.2. The distance l(t) travelled by the sphere during the momentum
relaxation process equals:
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Fig. 4.2 a For solvent molecules, closely packed molecular M-spheres, a colloidal C-sphere is
a bumpy plane with nano-scale surface irregularities. b C-spheres relax their momentum over a
distance �, on a time scale at which the solvent already behaves as a viscous continuum. After
many relaxation steps C-spheres enter the diffusive regime where first configurations change in (c)
followed at longer times by Brownian encounters in (d)

l(t) �
t
′∫

0

v(t)dt � v0τMR
[
1 − exp(−t/τMR)

]
(4.13)

For times much smaller than the momentum relaxation time we find from (4.13):

l(t) � v0t, for t 	 τMR (4.14)

This is the ballistic displacement by a sphere moving at uniform speed v0. The
typical momentum relaxation step � is:
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Table 4.1 Translational versus rotational angular motion

Translational motion Angular motion

Translational momentum
−→
P � m�v

Force �F � d
−→
P /dt

Mass m
Velocity �v

�J � I
−→
�

Torque �T � d �J/dt
Moment of inertia I
Angular velocity

−→
�

� � v0τMR[1 − e−1] ≈ 0.63v0τMR, for t � τMR (4.15)

For the initial speed v0 we take the rms-speed which for the colloidal C-sphere
equals 3.9 cm/s. Thus the relaxation step in (4.15) for the C-sphere is about � ≈
0.1 nm. So in its kinetic energy exchange with the surrounding solvent, the colloid
executes ‘ballistic’ steps which in length are comparable to those taken by solvent
molecules (the radius of an M-sphere). Due to its much larger mass, however, the
colloid takes these steps at a very much lower frequency.

When the sphere has dissipated all its momentum it has, according to Eq. (4.13),
travelled a total distance of

l � v0τMR , for t/τMR → ∞ (4.16)

It should be noted that this limit only applies to an initial momentum provided by
an external force, which provides a directed drift velocity that fully decays, see also
Fig. 4.1. Brownian particles receive thermal shocks from the environment that makes
them change direction: the colloids only probe an initial part of the velocity decay
in (4.11) such that in equilibrium, their average speed remains at its equipartition
value.

The angular momentum relaxation time τAR. Suppose a sphere rotates at an
angular velocity

−→
� 0 at t �0. We ask for the time τAR it takes for the sphere to

dissipate all its angular moment due to viscous friction by the solvent. Here it is
helpful to note the analogy between translational and angular motion, summarized
in Table 4.1.

Newton’s second law for translational motion is given by (4.10); its equivalent
for rotational motion is:

d
−→
J

dt
� − fr

−→
� (t) (4.17)

where f r is the rotational friction factor. The angular momentum is �J � I
−→
� , with

I the sphere’s moment of inertia. Integrating (4.17) yields for the angular particle
velocity on time t:

−→
� (t) � −→

� 0 exp[− frt/I ] � −→
� 0 exp[−t/τAR] (4.18)
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Fig. 4.3 Sketch for the calculation of the moment of inertia of a sphere in Sect. 4.2

(τ in seconds)

Fig. 4.4 Illustration of the broad range in times scales harbored by a dispersion of the Brownian
C-spheres from Table 1.1. Indicated are the molecular collision time C, the momentum relaxation
time MR, the time CR needed for a change in colloid configuration, and the typical time BC for
spheres to encounter each other via Brownian motion in a dispersion with one volume percent of
spheres

Here the relaxation time for the sphere’s angular momentum is:

τAR � I

fr
(4.19)

The moment of a inertia I of a sphere is evaluated as follows. The mass of the
slab in Fig. 4.3 with radius x is: (Fig. 4.4).

ms � πx2δpdy, (4.20)

where δ is the mass density of the sphere. The moment of inertia of the slab about
the axis Oy (O is the origin in Fig. 4.3) equals

Is � 1

2
msx

2 � 1

2
π (R2 − y2)2δpdy (4.21)

So the moment of inertia of the whole sphere is found by the integration (Exercise
4.3):
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I �
+R∫

−R

Is � 2

3
MR2, (4.22)

in which M is the total mass of the sphere. From (4.19) and (4.22) we find for the
angular relaxation time, taking into account the rotational friction factor f r �8πηR3:

τAR � 1

15

δp

η
R2 (4.23)

Comparing τAR to the momentum relaxation time τMR in Eq. (4.12) we can con-
clude that sphere translations and sphere rotations decay on the same time scale.
Thus on the diffusive time scale both translational and angular momenta have com-
pletely relaxed. In other words, the sum of all forces and the sum of all torques on a
diffusing, Brownian particle are both zero.

The hydrodynamic decay time τHD. A moving colloid disturbs the surrounding
fluid in two ways. First it causes pressure waves that travel at the speed of sound.
Secondly the colloid motion initiates a shear wave, namely a flow pattern of fluid
layers moving at different speeds (see for example Fig. 6.1). When a liquid layer
moving in the x-direction contacts a slower layer, it transfers x-momentum to the
slower layer. This momentum transfer is further discussed in Chap. 7, where it is
concluded that the time τHD needed for momentum to travel via a shear wave a
distance R is, in order of magnitude:

τHD ∼ δ

η
R2 ∼ τMR (4.24)

Here δ is the mass density of the fluid. This hydrodynamic decay time is compara-
ble to the moment relaxation time τMR in Eq. (4.12) needed for a colloid to dissipate
its (translational and angular) momentum; that makes sense because viscous dissipa-
tion is primarily losing momentum via shear waves. Also the propagation of pressure
(sound) waves occurs on a time scale similar τMR. In water, for example, the velocity
of sound is 1500 m/s so it takes about 10−9 s for a pressure disturbance to travel a
distance of R �100 nm.

Sedimentation time scales. The short time scales related to a colloid’s inertial
mass cannot be accessed by optical microscopy of Brownian motion—which takes
place on the diffusive time scale to be discussed below. There is, however, another
experiment by which we can observe the colloids in such a way that a momentum
relaxation time can be measured. That is the observation of colloids settling under
gravity in a sedimentation experiment. A boundary of sedimenting particles moves
at speed u and leaves behind a clear solvent. The buoyant weight of a colloidal sphere
is the product of buoyant mass 	m and the gravitational acceleration g. When the
sphere has reached a stationary settling speed u, it experiences a friction force fu that
balances the sphere’s weight such that:
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u � 	mg

f
(4.25)

Thus from a measured sedimentation speed we obtain the characteristic time τ	
MR

τ	
MR � u

g
� 	m

f
� 2

9

(δp − δsolv)

η
R2, (4.26)

where δsolv is the solventmass density. By comparisonwith themomentum relaxation
time τMR for massm in (4.12) we see that (4.26) represents the momentum relaxation
time for the smaller buoyant mass 	m. Another time scale in sedimentation is the
time τsed it takes for a sphere to settle a distance equal to its own radius:

τsed � R
f

	mg
� R

g

1

τ	
MR

(4.27)

For nano-particles this sedimentation time is very long in comparison to the dif-
fusion times scale discussed in Sect. 4.3. As a result particles remain under gravity
homogeneously distributed in suspension. Employing an ultra-centrifuge the cen-
trifugal acceleration may be orders of magnitude larger than g such that settling of
nano-particles can be detected.

4.3 The Diffusive Regime

The time scales discussed above all derive from the mass of colloids or molecules.
One of the intriguing aspects of Brownian motion is that in the course of time a
colloid loses memory of its own mass. Below we will investigate the origin of this
inertial oblivion that happens when the colloid enters the diffusive regime.

The diffusive or Brownian time scale t>>τMR. When a colloid has performed
many moment-exchanging steps it enters the diffusive time regime t>>τMR, see
also Fig. 4.5. Consider a sphere on a straight line that executes ballistic steps on
the relaxation time scale τMR. The step length will be distributed; on the basis of
(4.16) we consider an average displacement of order � ~v0τMR. The step frequency
is typically 1/τMR so if all steps would be in the same direction the net displacement
x at time t equals:

x ∼ l

τmr
t ∼ v0t ; v0 ∼ √

3kT/m; (4.28)

This result represents uniform, ballisticmotion at a constant speed v0. The uniform
displacement increases linearly in time and depends on the colloid mass. However, in
the case of Brownian motion the momentum exchange with the solvent is a random
process (Fig. 4.5): the sphere steps with equal probability either to the left (unit
vector −δ̂) or to the right (unit vector+δ̂). Then the average displacement<x>equals
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zero, by definition. For the square of the displacement vector we find on average for
a large number n � t/τMR �1 of ballistic steps:

< �x · �x > � <

n∑
j�1

l δ̂ j .

n∑
k�1

l δ̂k >

� l2
t

τMR
< δ̂ j .δ̂ j > + l2

n∑
j ��k

n∑
< δ̂ j .δ̂k > � l2

t

τMR
(4.29)

The average of the double-summation of cross-terms j �� k vanishes because the
summation produces a sequence of dot products of unit vectors equal to 1 or−1 with
equal probability. Since

l2 ∼ (v0τMR)2 ∼ kT τ 2
MR

m
, (4.30)

we find a mean quadratic displacement that is proportional to:

< x2 >∼ kT

m
τMRt ∼ kT

f
t , for t � τMR (4.31)

Two conclusions here: (1) the colloid mass m has dropped out of the equation,
and has no effect on diffusive displacements, and (2) the mean of the squared dis-
placements growths linearly in time, in contrast to the ballistic motion in Eq. (4.28)
for which the squared displacement increases quadratically in time. The difference
is due to the circumstance that the ballistic steps all steps are all added, whereas for
Brownian motion, steps are not only added but just as frequently subtracted. We rec-
ognize in the proportionality constant in (4.31) the translational diffusion coefficient
D=kT/f . The correct factor multiplying time t in (4.31) is actually 2kT /f , as we will
show later in Chap. 6.

Fig. 4.5 Top: a sphere executes ballistic steps of length l in the same direction such that its dis-
placement is proportional to time t. Bottom: a Brownian sphere steps with equal probability to the
left or to the right which entails a net displacement that grows as the square root of t
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The configurational relaxation time τCR. The position vectors that locate the
centers of N Brownian particles are:

−→r1 � (r1,x, r1,y, r1,z);
−→r1 � (r2,x, r2,y, r2,z); . . .

−→rN � (rN,x, rN,y, rN,z) (4.32)

TheN centers are positioned a in a 3-dimensional configuration space with Carte-
sian axes x, y, and z. How much time does it take for this configuration of colloids to
change? In the mass-dominated, ballistic time regime the colloids make momentum
relaxation steps, as a result of which the colloid configuration only changes on the
sub-nanometer scale. More interesting are changes that—for micron size colloids
could be observed under a microscope. This implies that colloids have entered the
diffusive regime, and have diffused a distance comparable to their own radius R.
Accordingly, a relaxation time τCR can be defined as the time needed for sphere
centers to inscribe an area of order R2 by diffusion. From Eq. (4.29) we obtain for
this configurational relaxation time:

τCR ∼
(
R

l

)2

τMR (4.33)

Clearly relaxation of particle configurations is extremely slow in comparison
to moment relaxation. For the C-particle from Table 1.1 with R=100 nm and
� � 0.1 nm the difference is six orders of magnitude: τCR ~5.10−3 s versus
τMR ~5.10−9 s. To put such a wide time span into human perspective: if it would
take colloids one minute to relax their momentum, it would take more than one year
before they have changed their configuration.

An alternative expression for τCR follows from (4.31):

τCR ∼ f R2

kT
∼ ηR3

kT
, (4.34)

This expression will return in our discussion of diffusion-controlled processes in
Chap. 9.

Note that the time it takes for colloids to significantly change their configuration
is very much longer than the time it takes for hydrodynamic disturbances (either
sound or shear) to propagate. When we slightly displace a sphere in an arrangement
of colloids, the flow field in the surrounding solvent almost instantaneously adapt
itself. In other words, in the time region

τMR ∼ t 	 τCR (4.35)

colloids only experience each other (or a wall, or any other obstacle) via hydro-
dynamic flow fields (‘hydrodynamic interactions’). Only on the timescale t>τCR

the colloids encounter each other directly (Fig. 4.2) and experience the colloidal or
‘direct’ interactions.
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Fig. 4.6 Cartoon accompanying the estimate of the Brownian collision time τBC from Eq. (4.37).
A sphere inscribes by diffusion an area of 2Dt per second during which it collides with other spheres
that have their centers (black dots) in a volume of order DRt

The rotational relaxation time τRR. When colloidal spheres have performed
many angular steps in which they exchange angular momentum with the solvent,
they enter the diffusive time regime t� τAR. Initially the net angular displacement
θ of the sphere is still insignificant. For θ to deviate substantially from its value θ �
0 at t �0 we have to wait at least a time.

τRR � 1

Dr
∼ ηR3

kT
(4.36)

Here Dr � kT/8πηR3 is the rotational diffusion coefficient that determines the
decay of sphere orientations. Thus the time τCR in Eq. (4.34) taken by a sphere to
significantly change its position coincides with the time τRR needed to substantially
change its orientation.

The Brownian collision time τBC. We have already evaluated the collision time
τC for molecules and it will come as no surprise that the collision time τBC for
Brownian spheres will be verymuch longer. This collision time follows from Smolu-
chowski’s theory for rapid coagulation to be discussed in Chap. 8; here we give a
brief argument that leads to the same estimate for τBC.

Consider a tracer sphere (Fig. 4.6) with radius R diffusing in a dilute dispersion
with low colloid number density ρ. The tracer sweeps by diffusion an area of the
order of Dt square meters in t seconds. Since spheres collide at a center-to-center
distance 2R the tracer scoops up in t seconds a ‘collision volume’ 2DRt in which it
encounters about ρDRt other spheres. Therefore, the typical time between two such
encounters is of the order:

τBC ∼ 1

ρDR
(4.37)

Substituting the sphere diffusion coefficient D � kT/6πηR and the sphere vol-
ume fraction ϕ � ρ(4/3)πR3 we can rewrite this to:

τBC ∼ ηR3

kTϕ
� τCR

ϕ
, (4.38)
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where τCR is the configurational relaxation time from Eq. (4.34). The R-dependence
in (4.38) stems from the conversion of number density to volume fraction: if for a
given ϕ we reduce the particle radius, the number density increases and particles
collide at higher frequency. The time scale τBC determines the coagulation kinetics
of colloids to which we will return in Chap. 9.

Characteristic time ratio’s. To balance the effect of the erratic Brownian motion
to the directed motion induced by an external force (gravity, liquid convection) it
is convenient to evaluate the ratio of the time scales involved. For example, for
colloids or nano-particles that settle under gravity, the relevant ratio is that of the
configurational time scale to the sedimentation time scale:

τCR

τSED
� 4πR4

kT
(δp − δSOLV) (4.39)

It is seen that upon increase of the colloid radius, diffusive changes in colloid
configuration slow down considerably in comparison to the rate of sedimentation.
For a granular sphere the effect of Brownian motion during sedimentation can be
disregarded.

The Péclet number. The competition between erratic Brownian motion and a
directed, convective speed v can also be quantified by the Péclet number2:

Pe � Lv

2D
(4.40)

Here L is a characteristic distance over which diffusion and convection takes
place. Taking L ∼ R and substituting the sedimentation speed u from (4.25), the
Péclet number equals the time ratio in (4.39).

Viscosity’s dual role. On inspection of themass-related time scales fromSect. 4.1
we observe that they are all inversely proportional to the solvent viscosity; the diffu-
sive time scales, on the other hand, linearly increase with viscosity. Thus the solvent
viscosity pulls mass-related and diffusive time scales apart. Consider, for example,
the ratio between the configurational and momentum-relaxation time:

τCR

τMR
� 9R

2δkT
η2 (4.41)

When the viscosity rises the rate at which momenta relax increases but diffusion
slows down due to the enhanced Stokes friction factor.

Measuring microscopic speeds. When colloids in a liquid dispersion are exam-
ined by optical microscopy, or probed by dynamic light scattering, the observation
time τOBS is far beyond the momentum relaxation time τMR. Thus these techniques
only provide diffusion coefficients but give no information on microscopic speeds
of the suspended particles. However, for micron-size colloids suspended in a gas of
low pressure, microscopic speeds can be measured, and the transition from ballistic

2Named after the French physicist Jean Claude Eugene Péclet (1793–1857).



60 4 A Tale of Ten Time Scales

to diffusive motion can be detected in the mean-square-displacements of a single
colloidal sphere3. The sphere, incidentally, is held here in an optical trap such that
radiation pressure prevents the colloid to settle under gravity.

Exercises

4.1 Calculate how far a marble with radius r �1 cm diffuses in water in a century.
(T �298 K).

4.2 (a) Calculate using equipartition the rms velocity of a sphere with radius 100 nm
and mass density δp �1.5 g cm3 at T �298 K .
(b) How large is the distance the sphere would traverse in one second with this
velocity in uninterrupted linear motion?
(c) How large is the rms displacement in one second in case of Brownianmotion
of the sphere? (Explain any difference with b).

4.3 Verify the derivation of the inertia moment of a sphere in (4.22).
4.4 Compute for all four particles in Table 1.1 the configurational relaxation time

from (4.34).
4.5 (a) Estimate howmanymomentum relaxation steps a C-sphere has made within

the time the sphere has diffused a distance equal to its radius. [See Eq. (4.33)].
(b) What is the total distance covered by these relaxation steps?

4.6 Calculate the work w done by the friction force f v(t) on a sphere with mass m
during momentum relaxation. Interpret your finding.
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Chapter 5
Continuity, Gradients and Fick’s
Diffusion Laws

Brownian motion is a sequence of random steps in positions or orientations of
colloidal particles. Such a diffusive sequence can be described by a diffusion
equation that quantifies how particle positions and orientations evolve in time.
Diffusion belongs to the large class of transport phenomena, with other mem-
bers such as the transport of heat or electricity, and also the viscous liquid
flow treated in Chap. 7. Transport phenomena obey certain conservation laws,
which stipulate that some quantity is conserved. For example, when colloids dif-
fuse in a closed system, their total mass will remain constant. Such a conser-
vation of mass, charge, energy or any other quantity is conveniently expressed
in the language of vector calculus (see Appendix B) by a continuity equa-
tion.

Transport phenomena, of course, differ with respect to the substance that is dis-
placed, and the type of force or gradient that sets the substance in motion. These
distinctions are described by constitutive equations. One of them is Fick’s first law
for the diffusion flux, which we will apply in Sect. 5.4 to diffusion in a dilute gas.

5.1 The Continuity Equation

We start with the notion of a flux densitywhich—in the case of diffusion—is the flow
of particles through a unit area per second. Consider the flux density

−→
j of some

property f , such as the concentration of molecules or colloids in a fluid, in which case
the magnitude of

−→
j is the flux density of particles through a unit area per second.

Suppose there are no ‘sources’ or ‘sinks’ for colloids in the fluid; in other words, no
new colloids are being formed and no colloids disappear. Then the total number of
colloids is conserved, which is formulated in vector notation as follows.

Consider a surface S enclosing a region V in a fluid with colloids (Fig. 5.1), with
a normal unit vector �n pointing outwards from a surface element dS. The flux density
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Fig. 5.1 Particle flux
−→
j

through the surface of a
volume V

component along the normal is the dot product
−→
j .

−→n so the net amount of f flowing
through the total surface S in unit time is the surface integral:

∫

S

( �j · �n
)
dS (5.1)

Note the sign convention: in the case of a closed surface as in Fig. 5.1 the normal
is pointing in the positive, outward direction and the surface integral (5.1) is positive
if f is leaving the volume.

Suppose f is the local number density of colloids; i.e. the colloid concentration
in a small volume element dV at some position in the volume V in Fig. 5.1. Then at
any time t the total number of colloids in volume V is the volume integral:

∫

V

f dV (5.2)

The rate at which this total number of colloids changes in time is the derivative:

d

dt

∫

V

f dV �
∫

V

∂ f

∂t
dV , (5.3)

where it is assumed that ∂ f/∂t is continuous such that the derivative can be moved
under the integral sign. Conservation of the total number of colloids requires that the
number of colloids passing through the surface in Fig. 5.1 equals the change in the
number of colloids in the volume V :

∫

S

( �j · �n
)
dS � −

∫

V

∂ f

∂t
dV (5.4)
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According to the divergence theorem (see Appendix B) the surface integral in the
LHS of (5.4) also equals:

∫

S

( �j · �n
)
dS �

∫

V

�∇ · �j dV (5.5)

The physical significance of this theorem for colloid transport is as follows. The
divergence

−→∇ . �j is the net colloid flow, per unit volume, out of a volume element.
This volume element has a positive divergence. The outgoing colloids enter another
volume element, thereby contributing to an opposite, negative divergence. Thus in
the volume-integral in the RHS of Eq. (5.5) all divergences cancel, except for colloids
leaving or entering the volume V through its surface, as quantified by the surface
integral in the LHS of Eq. (5.5). From Eqs. (5.4) and (5.5) it follows that:

∫

V

(
∂ f

∂t
+ �∇ · �j

)
dV � 0, (5.6)

The volume integral in Eq. (5.6) being zero does not necessarily imply a zero
integrand. One could imagine a source inside V (integrand positive) which is exactly
compensated by a sink (integrand negative). However, we already excluded the exis-
tence of sources and sinks inside V so the quantity f is conserved everywhere in V .
Under this assumption the integrand in (5.6) is zero:

∂ f

∂t
+ �∇ . �j � 0 , (5.7)

This is the continuity equation, a basic equation both in diffusion (Chap. 6) and
hydro-dynamics (Chap. 7), with no other physical meaning than that f is a conserved
quantity. We have found (5.7) taking as instance for f the local colloid concentration.
However, the continuity equation is a completely general conservation law.

Incompressible fluids. Let us apply (5.7) to the mass flux
−→
j � δ−→v of a fluid

with velocity −→v and mass density δ:

∂δ

∂t
+ �∇. (δ �v) � 0, (5.8)

In many cases, for example a fluid such as water, the mass density has at each
position the same constant, time-independent value. Then dδ/dt�0 such that (5.8)
simplifies to:

�∇ . �v � 0, δ � constant (5.9)

This is the continuity equation for an incompressible fluid. As we will see later
in Chap. 7 on hydrodynamics, the continuity Eq. (5.9) is an important constraint on
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Table 5.1 Flux� transport property x gradient

Flux Transport property Gradient

Particles Diffusivity Particle density (Fick)

Charge Conductivity Electrical potential (Ohm)

Liquid Permeability Pressure (Darcy)

Momentum Viscosity Momentum density (Newton)

Energy Heat conductivity Temperature (Fourier)

the velocity field −→v around a colloid in a suspension, because the solvent usually is
an incompressible liquid.

Stationary states. Equation (5.9) describes a steady state which by definition
means that the distribution of the quantity f in (5.7) is time-independent. In a station-
ary flow of colloids in Fig. 5.1, for example, colloids enter and leave volume V at the
same rate such that the colloid concentration f remains constant. Then ∂f/ ∂t=0 so
from the continuity Eq. (5.7) it follows that the steady state automatically satisfies:

�∇ · �j � 0 (5.10)

In the steady state the divergence of the flux is zero, which should not be con-
fused with the thermodynamic equilibrium state in which the flux itself is zero. The
fluxes in the steady state are due to irreversible processes (diffusion, viscous flow),
which produce entropy, whereas in thermodynamic equilibrium (for example, as in
the Maxwell-Boltzmann distribution from Chap. 3) no entropy producing transport
processes can occur. One can also view equilibrium as the limiting case of a steady
state in which all fluxes vanish. Examples of stationary states will be addressed in
Sect. 5.3.

5.2 Constitutive Equations and Fick’s Laws

The conservation Eq. (5.7) has two unknowns so to find the quantity f a second
relation between f and its flux

−→
j is needed. Such a relation is a constitutive equation

which specifies the transport problem and identifies the gradient that is responsible
for the existence of the flux

−→
j . An example is a concentration gradient of colloids

which drives a net diffusive displacement of particles. The concept of a flux driven
by a gradient of an intensive variable is quite general, as is illustrated by Table 5.1.

The momentum flux will be dealt with later in Chap. 7; liquid flow according
to Darcy’s law is briefly addressed in Sect. 8.1. Here we will continue with the
formulation of Fick’s diffusion laws.

Brownian motion is a randommotion: colloids diffuse in all directions with equal
probability. Thus there is no net displacement of particles in a homogeneous distri-
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bution with a constant concentration of colloids. A concentration gradient, however,
induces a collective displacement of colloids, also referred to as gradient or collective
diffusion.

Fick’s first law. The diffusion flux �jd increases linearly with the concentration
gradients �∇ρ , if that gradient is small enough. The diffusion coefficientD is defined
as the ratio of the flux to the gradient that drives it:

D ≡ − �jd
�∇ρ

, (5.11)

Here the symbol ‘≡’ denotes a definition; ρ is the colloid concentration. Equa-
tion (5.11) is usually rewritten to

�jd � −D �∇ρ, (5.12)

a constitutive equation that goes by the name ofFick’s first law—which is not somuch
a law then a definition of D. Fick’s first law will be utilized later for the calculation
the diffusion coefficient of a particle in a dilute gas in Sect. 5.4, and of a colloid in
solution in Sect. 6.1.

We note here in passing that the collective diffusion coefficient D in Eq. (5.12)
should, in principle, be distinguished from the self -diffusion constant for a single
particle. The latter refers to the tortuous path of one colloid diffusing through a
swarm of neighbor colloids. At infinite dilution, however, the magnitudes of the
collective and the self-diffusion coefficient are the same. Since in this bookwemostly
neglect concentration effects, the coefficient D—unless stated otherwise—refers to
the Stokes-Einstein coefficient of a single, free particle.

The diffusion equation. The number of colloids is conserved so the conservation
law Eq. (5.7) yields:

∂ρ

∂t
� −�∇ . �jd , (5.13)

which is also known as Fick’s second law. If there is only a particle flux due to
diffusion we can substitute Eq. (5.12) to obtain:

∂ρ

∂t
� −�∇ . (−D �∇ρ) � D ∇2ρ, (5.14)

assuming that the diffusion coefficient D is a constant (see Appendix B for further
explanation of the vector notation). A solution of the diffusion Eq. (5.14) (Exercise
5.1) gives the number density ρ(x, t) of the diffusing particles at every point in
space at any time. Examples of number density profiles are the bell-shaped curves
in Fig. 5.2, formed by particles diffusing away from a plate source.

Probability density. The solution of Fick’s second law also provides the proba-
bility density P(x,t) that entails the probability P(x,t)dx to find a diffusing particle in
the region between x and x+dx. This probability is simply the number of particles
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Fig. 5.2 Concentration
profiles of Brownian
particles which were located
on a thin slab at t =0. The
bell-shaped curve in a box
represents the relative
density of the particles for
each point in the x-direction.
The curve at the bottom
illustrates the case in which
the root-mean-square
displacement at t=3 s equals√
3 cm. Figure is adapted

from B.H. Lavenda,
Brownian Motion, Scientific
American 252 (1985),
pp. 56–67

in that region, divided by the total number of particles in the original source. For a
plate source (Fig. 5.2) with a an initial surface number density �0 at t �0 we have
(see also Exercise 5.1)

P(x, t)dx � ρ(x, t)

�0
dx � exp[−x2/4Dt]

2(πDt)1/2
dx (5.15)

So the diffusion coefficient is all we need to predict where particles are located at
any moment in time.

Diffusion plus convection. Often the randomizing diffusion or Brownian motion
is accompanied by a convection, i.e. directed transport of particles by external forces
such as gravity, an electric field or a flow field. For a concentration ρ of colloids each
moving with a velocity −→u , the convective particle flux is:
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�jc � ρ �u (5.16)

Supplementing this convective fluxwith a diffusive flux �jd the continuity Eq. (5.7)
for the colloid concentration becomes:

∂ρ

∂t
� −�∇ . ( �jd + �jc) � D∇2ρ − �∇ . (ρ �u) (5.17)

This is the convection–diffusion equation which will be employed in Sect. 6.2 to
derive the Stokes-Einstein diffusion coefficient, and in Chap. 10 to analyze Brownian
motion in an external force field.

Suppose a gravitational force propels particles with mass m at a speed u=mg/f in
the x-direction, the convective flux equals jc �ρmg/f . Then according to (5.17) the
particle concentration in the x-direction changes in time as

∂ρ

∂t
� D∇2ρ − mg

f
∇ρ � D

∂2ρ

∂x2
− mg

f

∂ρ

∂x
(5.18)

Here g is the gravitational acceleration and f is the Stokes friction factor of a
particle with massm. Equation (5.18) will re-appear in the derivation of the diffusion
coefficient in Chap. 6.

5.3 Stationary Diffusion

Solving the diffusion Eq. (5.14) is even for simple geometries mathematically
involved. A considerable simplification occurs when the diffusion process enters
a stationary (or steady) state in which the concentration profile of diffusing particles
does not change in time. Then ∂ρ/∂t � 0 so the Laplacian of the concentration in
Eq. (5.14) is zero:

∇2ρ � 0 (5.19)

This result is also known as the Laplace equation. To solve it, the geometry and
the boundary conditions of the diffusion problem must first be specified. For one-
dimensional stationary diffusion in the x-direction we have the Laplace equation in
the form:

d2ρ

dx2
� 0, (5.20)

Fick’s first law (5.12) for the diffusion flux in one dimension reads:

jd � −D
dρ

dx
(5.21)
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Fig. 5.3 Sketch
accompanying the estimate
in Sect. 5.4 of the diffusion
coefficient for particles in a
dilute gas phase. Particles
diffuse from higher to lower
concentration across a
distance approximately equal
to the mean free path

ρ ρ ρ+ Δ

x λΔ :

u t< > Δ

0x = x L= x R=

Note the minus sign: it is there because particles diffuse from high to low concen-
tration so diffusion fluxes always go downhill a concentration profile. From (5.21)
and (5.20) it follows that djd/dx = 0; an instance of the steady state condition (5.10).

Brownian motion in a tube. One simple geometry is a vesselwith colloid concen-
trationCA connected by a narrow tube to another vessel with concentrationCB < CA.
Provided both vessels are large enough, Brownian motion of colloids in the narrow
tube will not significantly change the colloid concentrations CA and CB and, conse-
quently, a stationary flux of colloids will set up. From (5.21) and (5.20) we can infer
that the stationary flux jD is indeed a constant, with a magnitude that follows from
integration of (5.21):

jd � D(CA − CB)

L
(5.22)

Here L is the tube length, running from x=0 to x=L where colloids enter or leave
the vessel with concentration CB. Measurement of a stationary diffusion flux for
known colloid concentrations CA and CB allows the determination of the colloid
diffusion coefficient D.

5.4 Diffusion in a Dilute Gas

In Sect. 6.1 Fick’s first law (5.21) will be utilized by Einstein to find the diffusion
coefficient of a solute particle in solution. Here wewill employ Fick’s law to estimate
the diffusion coefficient for particles in a low-density gas phase. The estimate is based
on the mean-free-path λ from Sect. 3.2, which is here assumed to be the distance that
separates a particle number densityρ+�ρ at location x=R froma lower concentration
ρ at location x=L, see Fig. 5.3. If<u> is the average particle speed, then the number
of particles that travel in �t seconds through area A from R to L is:

1

2
× < u > �t × A × (ρ + �ρ), (5.23)
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where a factor ½ is included because only half of the particles move in the R-L
direction. The number of particles that moves in �t seconds from L to R is:

1

2
× < u > �t × A × ρ (5.24)

Consequently, the net transport per second through a unit area is

jD � 1

2
< u > ×�ρ ≈ −1

2
< u > ×λ

�ρ

�x
, (5.25)

taking into account that particle transfer occurs over a distance about equal to the
mean free path. By comparison with Fick’s law (5.21) we arrive at the following
estimate for the diffusion coefficient:

D ≈ 1

2
< u > λ (5.26)

The simple model depicted in Fig. 5.3 provides the correct scaling D ∼< u > λ

but the numerical factor is inaccurate; a much more involved derivation1 yields:

D � 1

3
< u > λ � 1

3
λ2z (5.27)

Here z is the collision frequency on one particle, see Sect 3.2. From Chap. 3 we
recall that the mean free path is also given by:

λ � 1

ρπd2
� kT

pπd2
(5.28)

Thus the diffusion coefficient of small molecules exceeds that of large molecules,
and it decreases upon increase of the pressure or particle number density.

Gas viscosity. Diffusive particle transport quantified by diffusion coefficient D
has associated with it diffusive transport of momentum, measured by the viscosity
η. For a gas with mas density δ:

D � ν � η

δ
(5.29)

Here ν is the kinematic viscosity, see also the paragraph on momentum diffusion
in Sect. 7.2. Hence the viscosity of a gas equals:

η � 1

3
< u > λδ (5.30)

1See f.e. J. Jeans, An Introduction to the Kinetic Theory of Gases (Cambridge University Press,
1962)
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A gas of particles with mass m has a mass density δ � ρm such that:

η � 1

3
< u >

m

πd2
, (5.31)

showing that, in contrast to the diffusion coefficient, gas viscosity is independent of
the concentration and pressure of particles. One could have expected that a particle,
when it has to plough through a particle swarm of increasing density, will experience
a higher friction and viscosity. Maxwell confirmed his own prediction of the pressure
independence by measuring gas viscosities at various pressures. The independence
arises from two compensating effects: when gas density increases more molecules
are available for momentum transport but they carry momentum less far because of
the decrease of the mean free path.

Exercises

5.1 An infinite plate contains at time t �0 a surface number density�0 of Brownian
particles. Diffusion produces a bell-shaped concentration profile that gradually
flattens in time (Fig. 5.2). Verify that the profile

ρ(x, t)

�0
� exp[−x2/4Dt]

2(πDt)1/2
(5.32)

is a solution of Eq. (5.14) for diffusion in the x-direction.
5.2 Suppose at t=3 s,

√
< x2 > � √

3 cm. Calculate the probability that at t �3 s
a particle is found within

√
3 cm of the thin slab (Fig. 5.2) at x = 0.

5.3 Show from the profile in Exercise 5.1 that the number of diffusing particles in
the box in Fig. 5.2 is conserved.
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Chapter 6
Brownian Displacements

The trajectory of a Brownian particle is an erratic curvewith the characteristic feature
that the observed distance in a given time interval�t depends on themagnification of
the microscope (Fig. 6.1). Thus one cannot differentiate this distance unambiguously
with respect to time to obtain a velocity. Instead we have to focus on the displacement
of the particle, defined as the shortest distance between two positions of the colloid.
How the squared displacement by diffusion grows in time was first figured out by
Einstein.

6.1 Einstein for Chemists

Prof. R. Lorentz has called to my attention, in a verbal communication, that an elementary
theory of the Brownian motion would be welcomed by a number of chemists. Acting on this
invitation, I present in the following a simple theory of the phenomenon.

Thus opened Albert Einstein (Fig. 6.2) his last publication
1
on the subject of

Brownian motion. Writing for an audience of chemists, as we shall see below, appar-
ently implied leaving outmathematics asmuch as possible. Belowwewill paraphrase
Einstein’s ingenuous argumentation, occasionally giving the floor to theman himself.

‘Diffusion and Osmotic Pressure’
2
. Einstein draws a cylindrical vessel Z

(Fig. 6.3) filled with a dilute solution, and divided by a movable semi-permeable
piston M in regions A and B. If the solute concentration in A exceeds the concen-
tration in B, an external force, directed to the left, is needed to maintain the piston
in equilibrium. This force equals the difference between the two osmotic pressures

1A. Einstein, Elementare Theorie der Brownschen Bewegung, Z. für Electrochemie 14 (1908),
253–239. Quotations in this Chapter are English translations in A. Einstein, Investigations on the
Theory of the Brownian Motion, (Ed. by R. Fürth, Dover 1956).
2Subtitles are from Einstein, in the paper in note 1.
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Fig. 6.1 Brownian motion
observed by Perrin for
mastic spheres (radius
0.53 μm) in water. Particle
positions were marked every
30 s. The side of a square in
A is about 3 micron. Source
J. Perrin, Atoms (transl. D. L.
Hammick), Constable &
Company Ltd, London, 1916

exerted by solutes on the piston. In absence of this external force, the piston will
move to the right until concentrations in A and B are equal. From this consideration
it follows, according to Einstein (see Footnote 1) that

it is the forces of osmotic pressure that bring about the equalization of the concentrations in
diffusion3; for we can prevent diffusion […]4 by balancing the osmotic differences, which
correspond to the differences of concentrations, by external forces acting on semi-permeable
partitions.

Next Einstein imagines diffusion of dissolved substances taking place in Fig. 6.3
across the partition in cylinder Z . First he evaluates the ‘osmotic forces’ giving rise

3Here Einstein refers to collective or gradient diffusion that equalizes concentration differences.
4Here and later […] indicates that in a quotation text has been skipped.
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Fig. 6.2 Albert Einstein in
ballistic motion

to this diffusion in a thin slice between planes E and E′, see Fig. 6.3. Pressure π and
π* act on, respectively, planes E and E′ so the net pressure on slice with thickness
dx is

π − π∗ (6.1)

From this net osmotic pressure it follows that

K � π − π∗

dx
� −π∗ − π

dx
� −dπ

dx
, (6.2)

is the osmotic pressure gradient, corresponding to a force K acting on the solutes in
a unit volume. Since the osmotic pressure is given by π =ρkT , where ρ is the solute
particle number density, it follows that the net osmotic force per particle equals

K � −kT

ρ

dρ

dx
(6.3)

Einstein notes that “to calculate the motions due to diffusion to which these active
forces can give rise, we must know how great a resistance the solvent offers to a
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Fig. 6.3 Two drawings from
Einstein in his paper
Elementare Theorie der
Brownschen Bewegung,
Zeitschrift für Electrochemie
14 (1908), 253–239,
employed to derive the
diffusion coefficient, see
Sect. 6.1. Einstein uses for
osmotic pressure the symbol
p; in the text osmotic
pressure is denoted by π

movement of the dissolved substance”. This resistance is known because when a
force K acts on a particle, the particle’s stationary speed u is given by:

u � K

f
, (6.4)

where f is the Stokes friction factor. The concentration difference in Z (Fig. 6.3)
creates a flux of particles, carried by diffusion through the thin slice between planes
E and E′. The magnitude of this particle flux follows from (6.4) and (6.3) as

ρu � ρ
K

f
� − kT

f

dρ

dx
(6.5)

Einstein remarks that the product ρu represents the amount of dissolved substance
“carried per second by diffusion through unit area of cross section”, and then delivers
the following punch line:

“The multiplier of dρ/dx is therefore nothing else5 but the coefficient of diffusion
D of the solution in question. We have, therefore, in general:

D � kT

f
, (6.6)

5The diffusion coefficient is defined as the ratio of flux to gradient, see also Sect. 5.2.
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and, in the case when the diffusing molecules can be looked upon as spherical, and
large compared to the molecules of the solvent […]:

D � kT

6πηR
(6.7)

In the last case, therefore, the coefficient of diffusion depends upon no other
constants characteristic of the substance in question but the viscosity η of the solvent
and the radius R of the molecule”.

In the derivation of (6.6) Einstein makes no assumptions about the shape, size
or composition of the Brownian particles. The diffusion coefficient D=kT/f applies,
for example, equally well to inorganic colloids of any shape, as well as to polymers
and proteins: details of shape and size only affect the friction factor. The latter can
only be calculated for a limited number of shapes—we will do the calculation for a
sphere in Chap. 8.

‘Diffusion and Irregular Motion of the Molecules’. In the above line of rea-
soning for the diffusion coefficient D, Einstein does not commit himself to any
microscopic picture of particle diffusion. He merely evaluates the particle flux due
to a concentration gradient6, after which D follows from Fick’s first law.

His second derivation ‘for chemists’ concerns the displacement by diffusion and
here Einstein starts with a microscopic depiction of diffusion as a process in which
“single molecules of a liquid will alter their positions in the most irregular manner
thinkable”. Then the argumentation proceeds as follows. Suppose particles diffuse
in the direction of the x-as of cylinder Z, in a time interval τ so short that solute
concentrations hardly change. Let Δ be the typical displacement of a particle in the
x-direction in time τ , a displacement that is just as frequently positive as negative.

Fig. 6.4 Einstein made use
of this drawing in the
derivation of the quadratic
displacement of Brownian
particles, as explained in
Sect. 6.1

6A gradient, it should be noted, that is of unspecified magnitude.
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From left to right across plane E (Fig. 6.4) only solutes will diffuse that are located
within a distance Δ at the left from E. Since only half of the solutes between planes
Q and E makes a displacement +Δ, the number of those particles is

1

2
ρL�, (6.8)

where ρL is the mean solute number density in volume QE, i.e. the density in the
middle layer M1. Since the cross-section is unity, (6.8) is the number of solute
particles in QE. The number of particles that diffuse through E from left to right in
time τ equals

1

2
ρR� (6.9)

Here ρR is the solute number density in middle layer M2. The net number of
particles diffusing from left to right in τ seconds is:

1

2
�(ρL − ρR) (6.10)

The derivative of ρ with respect to x (the distance from the left cylinder-end) is:

dρ

dx
� ρR − ρL

�
, (6.11)

so the number of particles from (6.10) can also be expressed as

−1

2
�2 dρ

dx
(6.12)

Consequently, the number of particles diffusing per second across E is given by:

−1

2

�2

t

dρ

dx
(6.13)

Just as in Eq. (6.5) we have here a particle flux due to a concentration gradient
and also here the factor multiplying the gradient must be the diffusion coefficient:

D � 1

2

�2

t
(6.14)
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Thus the diffusive displacement in time t is

� � √
2Dt, (6.15)

showing the characteristic square-root timedependence of the displacement byBrow-
nian motion. Einstein remarks at this point that Δ actually should be replaced by the
root-mean-squared displacement<Δ2>1/2—as we will confirm in Sect. 6.2.

Remark on ion diffusion. On various occasions Einstein emphasizes that the
solute particles are large compared to solvent molecules which justifies the use of
the friction factor f derived for a solvent that behaves as a structure-less hydrody-
namic continuum. For colloids on the diffusive time scale this continuum assumption
is certainly justified. One would expect that for diffusion of molecular species, com-
parable in magnitude to water molecules, the continuum assumption breaks down.
Diffusion of ions, nevertheless, obeys the Stokes-Einstein diffusion coefficient fairly
well; for ions in water and water molecules themselves, typically7 D~10−5 cm2/s
which is also the order of magnitude expected from (6.7) for the molecular M-sphere
from Table 1.1, see also Exercise 1.1.

6.2 Translational Diffusion Coefficient from Equilibrium

The treatment ‘for chemists’ in the previous section is Einstein’s informal account
of his own first, more technical treatment of Brownian motion that was published
in a physics journal8. In both treatments the ingredients of the diffusion coefficient
are the thermal energy kT from Van’t Hoff’s law for solute particles, and the friction
factor f for these same particles drifting in a viscous fluid. In addition, in both
treatments the law for the mean-square-displacement (MSD) is found by focusing
on the erratic motions of solute particles. In his 1905 paper Einstein found the MSD
via Fick’ second diffusion law, to which we return in Sect. 6.3. Here we first address
Einstein’s approach to calculate D by deriving two different expressions for the very
same equilibrium density profile.

7A notable exception is the proton which diffuses much faster.
8A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von
in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. D. Physik 17, (1905), pp. 549–560.
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Fig. 6.5 Thermodynamic equilibrium between osmotic pressure π and external force K implies
that net particle fluxes and net momentum flux are both zero, which entails the Stoke-Einstein
diffusion coefficient D=kT /f , see Sect. 6.2

Suppose colloids in a dispersion experience an external force K , for example
gravity or an electrical or magnetic force. The colloids accumulate in one part of the
vessel (Fig. 6.5), which is counteracted byBrownianmotion that tends to homogenize
the particle distribution. In equilibrium the two tendencies balance, leading to a
concentration profile ρ(x) which remains constant in time. This thermodynamic
equilibriumprofile implies that in any volume element the net flux of bothmomentum
and colloids is zero.

Momentum flux. The momentum flux results from two forces. The gradient in
concentration produces a gradient in osmotic pressureπ which corresponds to a force
per unit volume of dispersion, also referred to as a force density. This osmotic force
density is balanced by the external force which, per unit volume, equals K times
the number density ρ of colloids. In equilibrium the sum of force densities (the net
momentum flux) is zero:

ρ �K + �∇π � 0 (6.16)

We now assume that the colloids do not interact such that they obey Van’t Hoff’s
law π =ρkT . Then for a one-dimensional profile that changes only in the x-direction,
(6.16) simplifies to the differential equation:

ρK + kT
dρ

dx
� 0, (6.17)

with the solution:

ρ(x) � ρ0 exp[−Kx/kT ] (6.18)

Here ρ0 is the number density at x �0. This is the Boltzmann distribution of non-
interacting particles in an external force field. For colloids sedimenting in gravity,
K can be identified as the weight of a colloid corrected for buoyancy. For that case
Eq. (6.18) is also called the sedimentation-diffusion equilibrium profile.
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Particle flux. We can describe equilibrium also in terms of the particle flux
−→
j

which appears in the continuity equation

∂ρ

∂t
� −�∇ . �j (6.19)

Suppose the external force K propels particles at a stationary, constant speed u.
The corresponding convective flux ρu has to be substracted from the diffusive flux
due to Brownian motion, so the net flux in the x-direction is:

jx � −D
∂ρ

∂x
− ρu (6.20)

Hence for convection and diffusion in the x-direction Eq. (6.19) becomes:

∂ρ

∂t
� − ∂

∂x

[
ρu + D

∂ρ

∂x

]
(6.21)

This is the diffusion-convection equation for the time and spatial dependence of
the colloid number density that we already encountered in Sect. 5.2. In a stationary
state the concentration profile ρ(x) is independent of time t:

0 � − d

dx

[
ρu + D

dρ

dx

]
, (6.22)

implying that the total flux is a constant, independent of x. Since in thermodynamic
equilibrium there can be no net particle flux, this constant must be zero:

ρu + D
dρ

dx
� 0, (6.23)

which can be integrated to yield:

ρ(x) � ρ0 exp[−ux/D] (6.24)

This equilibrium profile should be the same profile as in Eq. (6.18) which entails
that the diffusion coefficient D equals:

D � u

K
kT � μ kT (6.25)

The mobility coefficient μ in (6.25) is defined as the stationary speed per unit of
applied force:

u � μK (6.26)
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Colloids with a stationary speed u in a viscous fluid experience a frictional force
fu; thus K= fu and the mobility μ is the inverse Stokes friction factor such that:

D � kT

f
(6.27)

6.3 Quadratic Displacements via Einstein’s Diffusion
Approach

The mean square displacement (MSD) of a Brownian particle can be found as fol-
lows via the diffusion equation9. Consider a particle which diffuses for a time t to
reach a (positive or negative) displacement x with respect to the particle position at
t �0. We assume that there is no external force on the colloid, so positive and nega-
tive displacements occur with equal probability. The average for a large number of
particles, also referred to as the ensemble average, of the displacement is therefore:

<x > �
+∞∫

−∞
P(x, t)x dx � 0, (6.28)

where P(x, t)dx is the probability that after t seconds, a particle displacement is in
the interval between x and x +dx . The function P(x, t) is a probability density (with
unit 1/m) normalized via

+∞∫
−∞

P(x ,t) dx � 1, (6.29)

which expresses that the probability to find a particle somewhere equals one. The
average of the quadratic displacement is calculated as follows. The probability to find
a particle at a certain location x is proportional to the particle concentration ρ(x, t)
at that location:

P(x, t) ∝ ρ(x, t) (6.30)

9The derivation is in essence that of Einstein’s 1905 paper; one difference is that we do not invoke
the explicit solution of the diffusion equation, which simplifies the treatment.
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This concentration is the solution of the diffusion equation from Chap. 5, which
reads for diffusion in the x-direction:

∂

∂t
ρ(x, t) � D

∂2

∂x2
ρ(x, t) (6.31)

where D is the diffusion coefficient. Substitution of (6.30) yields for the probability
density:

∂

∂t
P(x, t) � D

∂2

∂x2
P(x, t), (6.32)

which allows us to evaluate the ensemble average of the quadratic displacement via
the integration:

< x2 >�
+∞∫

−∞
P(x, t)x2dx ; for t � τMR (6.33)

This mean-square-displacement (MSD), applies for colloids that have entered the
diffusive time regime, i.e. the time t is much larger than the momentum relaxation
time τMR discussed in Chap. 4. We are interested in the change of the MSDwith time
on this diffusive time scale:

d

dt
< x2 >�

+∞∫
−∞

∂

∂t
P(x, t)x2dx � D

+∞∫
−∞

[
∂2

∂x2
P(x, t)

]
x2 dx (6.34)

For physical reasons we can expect the distribution function P(x,t) to have the
following properties. Since steps in +x and −x directions are equally probable the
function will be symmetric such that P(+x, t) � P(−x, t). In addition, moving
away from the origin both P(x,t) and its first and second derivative will all asymp-
tote monotonically to zero in the limits x → ±∞. In other words, P(x,t) must
have the bell-shape curve depicted in Fig. 5.2. Given these properties of P(x,t), two
integrations by parts of (6.34) yield (Exercise 6.2):

d

dt
< x2 >� 2D (6.35)

which results in the Einstein equation for the average quadratic displacement:

< x2 >� 2Dt ; for t � τMR (6.36)

Note that this result has been obtained without solving the diffusion equation to
find an explicit expression for P(x,t), see also Exercise 6.1. For a randomly diffusing
colloid there is no distinction between x, y and z directions (the random-motion



82 6 Brownian Displacements

postulate from kinetic theory) so < x2 >�< y2 >�< z2 >. Thus the average
quadratic radial displacement for a colloid diffusing in any direction −→r from a
central point is given by:

<r2 >� 6 Dt ; r2 � x2 + y2 + z2 (6.37)

At this point the idea could arise that we can define an effective speed ueff of the
colloid by differentiating the distance

√
<r2 > � √

6Dt (6.38)

with respect to time to obtain:

ueff � d
√

<r2 >

dt
�

√
3D

2t
(6.39)

This effective speed, however, diverges when time t approaches zero. What is
going wrong here is that the expression for the MSD in (6.37) is only valid on the
diffusion time scale t�τMR; for times comparable to the momentum relaxation time
the MSD has a time dependence that differs from (6.37), as will be shown in the next
Sect. 6.4 on the Langevin equation.

6.4 Brownian Motion from Newtonian Mechanics

Einstein’s treatment of Brownian motion in Sect. 6.3 is an analysis from the view
point of the time-dependent diffusion of colloids: an ensemble of Brownian parti-
cles, initially concentrated in the origin, diffuses out as time proceeds, leading to
concentration profiles that follow from Fick’s second law in Eq. (6.31), with average
mean-square-displacements given by (6.36). Since the diffusion approach considers
times far beyond the colloid’s momentum relaxation time, the microscopic details
underlying Brownian displacements—fluctuating forces exerted on particles by ther-
mal shocks from the surrounding fluid—remain concealed. Precisely these details
form the bases of a treatment of Brownianmotion due to Paul Langevin (1872–1946),
which he published a few years10 after Einstein’s annus mirabilis 1905.

The Langevin equation. Langevin examined Brownian movement from the per-
spective of the forces acting on a colloid. The total force on one colloid, Langevin
argued, can be separated into two parts: one is an average force due to the surround-
ing fluid and the other part is the transient force that a colloid experiences due to
fluid pressure fluctuations in its immediate vicinity. The average force stems from the
fluid’s viscosity and equals the frictional force f dx/dt exerted on a particle moving

10M. P. Langevin, Sur la theorie dumouven Brownien, C. R. Acad. Sci. (Paris) 146, 530–533 (1908).
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in the x-direction at a speed dx/dt. According to Newton’s second law the total force
on a particle equals the mass of the particle times its acceleration:

m
d2x

dt2
� − f

dx

dt
+ F(t); 〈F(t)〉 � 0 (6.40)

Here F(t) is the fluctuating component of the total force, a component that on
average is zero. The equation of motion (6.40) of a colloid is also known as the
Langevin equation. We are interested in squared displacements x2 rather than x. To
get x2 into the Langevin equation wemultiply (6.40) by x/m and employ the identities

x
dx

dt
� 1

2

dx2

dt
; x

d2x

dt2
� 1

2

d2x2

dt2
−

(
dx

dt

)2

, (6.41)

to arrive at the Langevin equation in the form:

1

2

d2x2

dt2
−

(
dx

dt

)2

� − 1

2τMR

dx2

dt
+
xF(t)

m
; τMR � m

f
, (6.42)

where τMR is the momentum relaxation time that we already encountered in Chap.
4. Now Eq. (6.42) holds for one particular particle only; for many identical particles
in the fluid we take, for a given moment in time, the ensemble average11 of the terms
in (6.42):

1

2

d2
〈
x2

〉
dt2

− 〈
(dx/dt)2

〉 � − 1

2τMR

d
〈
x2

〉
dt

+
〈xF(t)〉

m
(6.43)

Here<x2> is themean-square-displacement, hereafter abbreviated asMSD.When
the slow, heavy colloid has moved a distance x, the force F(t) has already randomly
fluctuated many times. Thus we can assume that x and F(t) are uncorrelated on the
time scale of colloid motion, entailing that the average of their product is zero:

〈xF(t)〉�〈x〉〈F(t)〉� 0 (6.44)

In addition, the mean-square speed of the colloids in the x-direction follows from
equipartition as

〈
(dx/dt)2

〉 � 〈
v2
x

〉 � kT

m
(6.45)

11A sequence of observations in time on a single particle will yield the same averages.
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On substitution of (6.44) and (6.45) the Langevin Eq. (6.42) transforms to the
following differential equation for the MSD:

d2
〈
x2

〉
dt2

+
1

τMR

d
〈
x2

〉
dt

� 2kT

m
(6.46)

Integration yields for the time derivative of the MSD:

d
〈
x2

〉
dt

� 2kT

f
(1 − exp[−t/τMR]) (6.47)

This solution satisfies the boundary condition that the initial rate of displacement
of the colloid is zero: d < x2 > /dt � 0 at t �0.

Mean square displacement. Upon integration of (6.47) we obtain for the MSD:

〈
x2

〉 � 2kT

f
[t − τm(1 − exp[−t/τMR])] (6.48)

In the time dependence of theMSDwe can discern two regimes. At times t �τMR

Eq. (6.48) reduces to12

〈
x2

〉 � kT

m
t2 �< v2

x>t2; 0 < t � τMR (6.49)

This equation describes a type of motion that is consistent with a particle with
constant speed u that covers in uniform, linear flight a distance s in time t:

s � u t (6.50)

Such a free flight is also referred to as ballistic motion: an inertial motion that is
governed by particle mass only. The particle’s inertia is taken into account by the
exponential term in (6.48) which vanishes at times much larger than the momentum
relaxation time:

〈
x2

〉 � 2
kT

f
t � 2Dt ; t � τMR (6.51)

This result for the time dependence of the MSD is the same as the one found via
Einstein’s diffusion approach in Sect. 6.3. However, via the Langevin equation we
also recover here the diffusion coefficient D=kT /f .

Mass memory loss. The physical picture emerging from the Langevin equation
is as follows. A colloid, when we start to clock it at t=0, begins its journey as a
ballistic object governed by the inertial termmd2x/dt2 in its equation ofmotion (6.40).

12Make use of the Taylor expansion τm(1 − exp[−t/τm])] � t + (1/2)t2/τm + . . .
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However, in the process of making many momentum relaxation steps the particle
gradually loses ‘memory’ of its mass eventually leading to Brownian diffusion, with
the MSD from (6.51) that has become independent of particle mass. In the diffusive
regime the net force on the colloid is zero, so the erratic deflections in the trajectory
(Fig. 6.1) of the ‘force-free’ particles are not velocity changes but random thermal
steps.

Thus from observations of Brownian movements in a fluid under a micro-
scope—with observation times t �τMR—we can only deduce the size of the par-
ticles (via the diffusion coefficient) but not the particle mass. The latter requires
measurement of the microscopic colloid speed in (6.49) which cannot be done with
microscopy on a dispersion of colloids in a liquid phase. However, for colloids in a
dilute gas phase microscopic speeds can, in principle, be measured, as mentioned at
the end of Chap. 4.

6.5 Angular Displacements from a Diffusion Equation

The MSAD. Consider a label diffusing on the surface of a unit sphere with radius R
�1 (Fig. 6.6). The unit vector û(t) denotes the position of the label or, equivalently,
the orientation of an axis through the label and the sphere center. The angular dis-
placement of the label at time t is defined by the vector û(t) − û0, where û0 marks
the label position at t �0. The mean of the squared angular displacement, hereafter
referred to as the MSAD, is given by:

<
(
û(t) − û0

)2
>�< û0 . û0 > + < û(t) . û(t) > −2 < û(t) . û0 > (6.52)

Since the dot product of a unit vector with itself equals unity we find for the
MSAD;

<
(
û(t) − û0

)2
>� 2 − 2 < û(t) . û0 >� 2 − 2 < cos θ > ; t � τAR (6.53)

Here θ is the angle between the unit vectors û(t) and û0. Note that (6.53) is only
valid on the diffusional time scale, i.e. at times much larger than the time τAR for the
angular momentum to relax, see Chap. 4. At t=0 all labels have the same orientation
û0 such that < cos θ >� 1 and the MSAD is zero. By rotational Brownian motion
the orientations gradually randomize until < cos θ >� 0 (Exercise 6.6) signifying
that all orientations occur with equal probability such that

<
(
û(t) − û0

)2
>� 2; t → ∞ (6.54)

So theMSADreaches a plateau equal to the sumof the two unit vector dot products
in (6.52). Such a plateau is in marked contrast to theMSD for translational Brownian
motion that increases without limit as time goes by. The plateau signifies that when
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Fig. 6.6 Due to Brownianmotion the direction of the z-axis (fixed to the spheres) fluctuates in time,
which may be represented by a label that diffuses on the sphere surface from its initial position on
the z-axis to a position (r, θ, φ) at time t. The displacement of the label is marked by the vector
û(t) − û0, where û0 is the label’s position at t �0

Fig. 6.7 The mean square angular displacement (MSAD) for diffusing labels on a sphere, see
Fig. 6.5. At short times Drt<< 1 the MSAD grows linearly in time, just as for labels in a 2-d plane.
Whereas at larger times a Brownian particle on an true 2-d plane would wander off to infinity
the MSAD of the label on a sphere surfaces approaches a constant, which is further discussed in
Sect. 6.5

we observe the Brownian movements of a label on a sphere (Fig. 6.7) we cannot tell
how often the label already has probed the sphere surface. In other words, the label
just turns in a (very erratic) circle whereas Brownian particles in a large bulk wander
off to infinity.

Orientational decay. To assess how the MSAD relaxes in time to the plateau in
(6.54), we have to find the time dependence of < cos θ >, for which we need the
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orientational distribution function P(θ, t). In complete analogy with Eq. (6.32) for
P(x,t) we have:

∂

∂t
P(θ, t) � Dr∇2P(θ, t) (6.55)

HereDr is the rotational diffusion coefficient, actually a frequencywith dimension
1/s. Note that P(θ, t), a probability density with dimension m−2, does not depend on
the angle φ (see also Fig. 6.6) so for a unit sphere with radius R�1 the normalization
condition is:

2π

π∫
θ�0

P(θ, t) sin θdθ � 1 (6.56)

The average of cos θ follows from:

< cos θ >� 2π

π∫
θ�0

P sin θ cos θdθ ; P � P(θ, t) (6.57)

For the time-derivative we can write, making use of the diffusion Eq. (6.55)

d

dt
< cos θ > � 2π

π∫
θ�0

∂P

∂t
sin θ cos θ dθ

� 2πDr

π∫
θ�0

1

sin θ

[
∂

∂θ

(
sin θ

∂P

∂θ

)]
sin θ cos θ dθ (6.58)

Note that we only need the θ -dependent part of the Laplace operator in spherical
coordinates (see Appendix B). Partial integration of the integral in (6.58) yields:

[
cos θ sin θ

∂P

∂θ

]π

θ�0

−
π∫

θ�0

sin θ
∂P

∂θ
d(cos θ ) (6.59)

The bracket term equals zero and the remaining integral, after a second partial
integration, turns out to equal:

−2

π∫
θ�0

P sin θ cos θdθ � − 1

π
< cos θ > (6.60)

The time-derivative in (6.58) therefore becomes
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d

dt
< cos θ >� −2Dr < cos θ > (6.61)

with the solution

< cos θ >� exp[−t/τRR]; τRR � 1

2Dr
(6.62)

Thus the orientation of initially aligned, non-interacting anisometric particles
decays exponentially in time. The rotational relaxation time τRR is determined by the
rotational diffusion coefficient of the particles in question (spheres, rods, platelets,
magnetic dipoles etc.). Thus for the time dependence of the MSAD (6.53) we find:

<
(
û(t) − û0

)2
>� 2(1 − exp[−2Dr t]), for t � τAR (6.63)

Figure 6.7 depicts a sketch of the change of the MSAD in time. At short times
such that Drt � 1 Eq. (6.63) simplifies to:

<
(
û(t) − û0

)2
>�< θ2 >� 4Dr t, for Dr t << 1 (6.64)

This result is equivalent to translational diffusion on a two dimensional plane for
which < z2 >� 4Dt where z is a two-dimensional displacement. Indeed, at short
times the diffusive label has not probed the curvature of the sphere’s surface yet.
Gradually, however, the label discovers it is stumbling around on a sphere instead of
on a flat plane and at longer times Drt � 1, the MSAD levels to the plateau already
identified in (6.54).

6.6 The Rotational Diffusion Coefficient

The diffusion coefficientD=kT/f for translational Brownian motion was found from
the distribution of particle positions resulting from the equilibrium between diffusion
and an external force. The rotational diffusion coefficientDr can be derived in a very
similarmanner from the distribution of particle orientations in response to an external
torque. To this end we consider a collection of independent direction vectors as in
Fig. 6.8, each representing an orientation angle θ with respect to the axis at θ � 0.
The vectors rotate with the same angular velocity:

� � dθ

dt
[rad s−1], (6.65)

towards θ � 0. This rotation is caused by a torque T0, the physical nature of which
we do not have to specify. One can choose a rotating external magnetic field acting
on magnetic dipoles, or a shear flow aligning rods but for the argumentation here
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Fig. 6.8 Diffusing labels on a sphere surface (a) accumulate at the north pole (b) since all labels
represents an axis subjected to the same constant torque T0 as indicated in (c). Rotational diffusion
tends to randomize axis orientations and counteracts the angular convection due toT0. In equilibrium
the distribution of labels is given by Eqs. (6.69) or (6.71)

this choice is irrelevant. All we ask from the torque is to sustain a constant angular
velocity, which is given by:

� � μr T0 (6.66)

Here μr is the rotational mobility defined as the steady angular velocity per unit
of applied torque; note the analogy between μr and the translational mobility μ in
Eq. (6.25).

Angular flux. The number of vectors rotating per second, the convective angular
flux, is given by:

jω(θ ) � −�ρ(θ ) � −μrT0ρ(θ ), (6.67)

in which ρ(θ ) represents an orientation density, i.e. the number of direction vec-
tors per unit angle. Due to this angular flux, vectors accumulate near θ � 0, so a
gradient dρ(θ )/dθ is formed which attempts to relax by rotational diffusion. The
corresponding diffusive flux

j(θ ) � −Dr
dρ(θ )

dθ
, (6.68)
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defines the rotational diffusion coefficient Dr of the independent, freely moving
vectors. At equilibrium j(θ ) + jω(θ ) � 0, and after integration we find the angular
equilibrium profile:

ρ(θ ) � ρ(θ � 0) exp[−μrT0θ/Dr], (6.69)

which is the equivalent of (6.24) for the distribution of particle positions. Next we
derive the angular equilibrium profile along a different route that employs work.

Angular work. The work done by the torque to achieve an angular displacement
θ starting from θ � 0 equals

w(θ ) �
θ∫

0

T0dθ
′ � T0θ ; T0 � constant (6.70)

The Boltzmann distribution of the orientations is therefore:

ρ(θ ) � ρ(θ � 0) exp[−w(θ )/kT ] � ρ(θ � 0) exp[−T0θ/kT ] (6.71)

The angular equilibrium distributions (6.69) and (6.71) are identical which entails
that the rotational diffusion coefficient is given by:

Dr � μrkT (6.72)

This result is still independent of the medium in which a particle is rotating.When
the medium is a viscous fluid, the mobility is the inverse of the hydrodynamic Stokes
friction factor f r :

Dr � kT

fr
(6.73)

Take note of the close analogy between translational and rotational diffusion:
thermal energy kT drives the random spreading of, respectively, positions and orien-
tations, which is resisted by the same Stokes friction that also opposes, respectively,
linear and angular drift in an external field.

Exercises

6.1 Substitute the solution of the diffusion equation from Exercise 5.1 in Chap. 5,
in Eq. (6.33) to verify that the law for quadratic displacement in (6.36) is indeed
correct.

6.2 Evaluate the integral in Eq. (6.34). Which assumptions do you have to make for
P(x,t)? Why are they physically plausible?

6.3 Where in the derivation of the diffusion coefficient Eq. (6.25) it is assumed that
the particles do not interact?
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6.4 Estimate the time it would take oxygen molecules to diffuse in water (D �18×
10−6 cm2/s) at room temperature a distance equal to (1) the typical thickness
of a bacteria; (2) the typical thickness of a human being. Verify that diffusive
transport of oxygen from the environment to the lungs is not an alternative to
oxygen transport by red blood cells. Do you expect that an oxygen molecule
in air diffuses much slower or much faster than in water? See for example S.
Vogel “Life’s Devices; the physical world of animals and plants” (Princeton
University Press, 1988).

6.5 Discuss the validity of the rotational diffusion coefficient in Eq. (6.73) for non-
spherical particles.

6.6 Show that, when orientations have randomized, < cos θ >� 0.
6.7 Colloids performing Brownian motion are force-free, see f.e. the discussion at

the end of Sect. 6.4. In Sect. 6.1, however, Einstein evaluates the ‘osmotic force’
per colloid to derive the diffusion coefficient. Is there something going wrong
in Einstein’s argument? If not, why not?

6.8 Verify all steps in the derivation of theMSD (6.48) from theLangevinEq. (6.40).

References

An English translation of Einstein’s papers on Brownian motion can be found in: A. Einstein,
Investigations on the Theory of the Brownian Motion, (Ed. by R. Fürth, Dover 1956).

Indispensable scientific biography of Albert Einstein, including an elucidating analysis of Einstein’s
papers on Brownian motion: A. Pais, Subtle is the Lord (Oxford University Press, 1982).

More extensive treatments of Brownian motion and other transport properties of colloids can be
found in: W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions (Cambridge,
1995), and J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).

For an English translation of Langevin’s 1908 paper see: D. S. Lemons and A. Gythiel Am. J. Phys.
65 (11), November 1997.

Brownian motion in its wider context of stochastic processes is treated in: N. G. van Kampen,
Stochastic Processes in Physics and Chemistry, (North Holland, 1981) and S. Chandrasekhar,
Stochastic Problems in Physics and Astronomy¸ Rev. Mod. Phys. 15, 1 (1993).

Rotational diffusion is treated by Peter Debye in his classic Polar Molecules (Dover Publication,
reprint of the 1929 Reinhold edition).



Chapter 7
Fluid Flow

Brownian motion in a liquid medium
1
is a dual process: the thermal motion of

colloids in any direction is, owing to the liquid’s incompressibility, accompanied by
oppositely directed flow in the colloid’s surroundings. In Chap. 4 we have seen that
on timesmuch beyond the time scale τC for molecular collisions, colloids experience
a structure-less, continuous fluid characterized only by viscosity η and mass density
δ. Thus we have to specify the mobility μ in the diffusion coefficient D �μkT as
a hydrodynamic mobility or its inverse, a hydrodynamic friction factor f . In this
Chapter we will introduce hydrodynamics up to the level needed to calculate in
Chap. 8 friction factors for translation and rotation of a solid sphere. Before eagerly
plunging into the intricacies of hydrodynamics, we will first outline the challenging
problem that a friction factor presents us.

Friction factors. When a liquid is stirred, fluid layers slide along each other—a
process also referred to as shear flow—which causes dissipation of energy. This
dissipation manifests itself as the viscosity of the liquid: the higher this viscosity,
the more energy in the form of work has to be invested to maintain liquid motion.
When an object is displaced in a fluid, one consequence is the occurrence of pressure
forces because liquid has to be pushed out of the way. The other effect is induction
of shear flows because liquid sticks to some extent to the object’s surface giving rise
to tangential shear forces. What we need to calculate is the total hydrodynamic force
the fluid exercises on the moving object. This force equals the magnitude K of an
external force that has to be exerted on the object to sustain its constant speed u. The
friction factor f then follows as the ratio of the applied force and the steady speed f �
K /u. This factor depends on the shape and size of the object in question, the simplest
case being a smooth, undeformable solid sphere.

1To which there are notable exceptions such as colloids in a gas (aerosol) and the inorganic colloids
that inhabit in vast numbers interstellar dust clouds.
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7.1 Fluid Velocity Fields

We begin with a general description of fluid flow. The flow velocity �u in a fluid at
position vector �r � [x, y, z] and time t

�u � �u(�r , t), (7.1)

has three Cartesian components u, v and w. Thus Eq. (7.1) is a shorthand for the
vector function:

�u � [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)] (7.2)

Finding the flow field �u is the main task in a flow problem, because �u tells us what
all elements of the fluid are doing at any time t. A simplification is a steady flow in
which both magnitude and direction of �u are constant at any fixed point in space.
Thus

∂ �u
∂t

� 0, (7.3)

defines steady flow. Further, in many flow problems of interest (such as flow in a tube
or past a sphere) �u is independent of one or two spatial coordinates. For example,
two-dimensional steady flow has the form:

�u � [u(x, y), v(x, y), 0] (7.4)

With respect to the direction of the flow vector �u, an important concept is that of
the streamline which is a curve that at any point has the same direction as �u. For a
steady flow the streamline pattern does not change in time. Nevertheless, even though
�u is constant at a fixed point in space, the flow velocity may change for a particular
fluid element traveling along its streamline.

The material derivative. We must clearly distinguish the fate of a blob of fluid
which ‘follows the flow’ along a stream line, from what happens to fluid in a vol-
ume element that is fixed in space. This distinction also appears in the notation for
derivatives of fluid properties. Suppose the function f � f (x, y, z) denotes some
property of the moving fluid such as its mass density or a component of velocity �u.
According to the chain rule:

d f � ∂ f

∂t
dt +

∂ f

∂x
dx +

∂ f

∂y
dy +

∂ f

∂z
dz (7.5)

The total rate of change in f is therefore:

d f

dt
� ∂ f

∂t
+

∂ f

∂x

dx

dt
+

∂ f

∂y

dy

dt
+

∂ f

∂z

dz

dt
(7.6)
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Suppose we measure f in a volume element rigidly attached to our boat, which is
located at a position x, y, z. If this position is fixed then, according to Eq. (7.6), df /dt
is the change in f in time. However, if we tour around in the fluid the rate of change
in f also depends on the components dx/dt etc. of the boat velocity. Only if the boat
(with its engine switched off) passively follows a streamline these components equal
the components of the flow velocity �u:

dx

dt
� u,

dy

dt
� v,

dz

dt
� w (7.7)

For this particular case of ‘following the fluid’ the notation D/Dt is used instead
of d/dt:

D f

Dt
� ∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂y
+ w

∂ f

∂z
� ∂ f

∂t
+ (�u · −→∇ ) f (7.8)

Here (�u ·−→∇ ) is the vector product of the fluid velocity and the differential operator−→∇ (‘del’), defined in Cartesian coordinates as:

−→∇ �
∑

i

�δi ∂

∂xi
(7.9)

The derivative

D

Dt
� ∂

∂t
+ �u · −→∇ (7.10)

is known as the material or substantial derivative. Note that ∂/∂t denotes a change
in time at a position that is fixed relative to the flow field, whereas the derivative
(�u · −→∇ ) measures a change following a stream line.

Stream functions. From the meaning of the derivative (�u · −→∇ ) it follows that
whenever

(�u · −→∇ ) f � 0, (7.11)

f is constant along a streamline; then f is a called stream function, because its
value generates a streamline. Note that f might be a different constant on different
streamlines, just as isobars in the weather forecast represent different but constant
pressures. Stream functions will be needed later to analyze viscous flow past a trans-
lating sphere. By applying Eq. (7.8) to the components u, v andw of the fluid velocity
the acceleration of a fluid element at position �r is found to be:

D�u
Dt

� ∂ �u
∂t

+ (�u · −→∇ )�u (7.12)
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Here (�u · −→∇ )�u is a vector (see Appendix B) describing changes in �u for a fluid
blob traveling along a streamline. The acceleration in Eq. (7.12) is due to forces on
the blob which will be identified below.

7.2 The Navier-Stokes Equation

Consider a surface S enclosing a region V in the fluid, with a normal unit vector �n
pointing outwards. The flow velocity component along the normal is �u.�n so the net
fluid volume leaving V in unit time is

∫

S

�u.�n dS (7.13)

For an incompressible fluid this integral must be zero because there can be no net
gain or loss of fluid volume. Using the divergence theorem (see Appendix B) we find

∫

S

�u.�n dS �
∫

V

−→∇ .�u dV � 0, (7.14)

which implies that

−→∇ .�u � 0 (7.15)

anywhere in the fluid: the divergence of the flow is zero for any volume element in
V . Note that (7.15) is the continuity equation for an incompressible fluid which we
already encountered in Chap. 5. Next we consider the effect of the pressure p �p(x,
y, z) in the fluid. This pressure is a scalar function so the forceK on a surface element
dS is:

−→
K � −p�ndS, (7.16)

with a minus sign because −→n points out of the region V . The net force on the region
is, using the divergence theorem (see Appendix B):

−
∫

S

p�n dS � −
∫

V

−→∇ p dV (7.17)

If
−→∇ p is continuous it will be almost constant over a sufficiently small blob

of volume ∂V . The net pressure force on the blob due to the surrounding fluid is
therefore−−→∇ p(∂V ). The gravitational force on the blob with mass density δ equals
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Fig. 7.1 Momentum transport in the y-direction, from a fast fluid layer at height y +�y to a slower
fluid layer at y, gives rise to a shear force in the x-direction at height y

δ�g(∂V ). The sum of forces must equal the product of the blob’s mass δ(∂V ) and its
acceleration, so we obtain:

δ
D�u
Dt

� −−→∇ p + δ�g; −→∇ · �u � 0 (7.18)

This is the so-called Euler equation for the motion of a non-viscous, incom-
pressible fluid. It turns out, however, that viscous forces in a colloidal suspension
are important, if not dominating, so Eq. (7.18) must be extended with the viscous
stress on the blob. This stress is related to viscous transport of momentum as can be
explained with reference to the sliding fluid layers in Fig. 7.1.

Shear forces. For the case of the plane-parallel flow in Fig. 7.1 the flow field is
described by:

�u � [u(y), 0, 0];
−→∇ · �u � ∂u(y)

∂x
� 0 (7.19)

Recall from Chap. 5 that
−→∇ · �u � 0 is the condition for steady, time-independent

flow of an incompressible fluid, implying here that the velocity component in the
x-direction depends only on y. The momentum

−→
P carried by this flow field is

−→
P � [Px , Py, Pz] � [m u(y), 0, 0] (7.20)

Here m is the mass of a quantity of fluid moving at speed u(y). For the change in
momentum we can write, in general, see Eq. (7.5):

d
−→
P � ∂

−→
P

∂t
dt +

∂
−→
P

∂x
dx +

∂
−→
P

∂y
dy +

∂
−→
P

∂z
dz (7.21)

In the present case all partial derivatives are zero, except the one with respect to
y, and (7.21) simplifies to:
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dPx
dt

� ∂Px
∂y

dy

dt
� ∂mu(y)

∂y

dy

dt
(7.22)

This equation describes a shear force in the x-direction acting on a fluid area at
position y. In other words: x-directed momentum is transported in the y-direction:
a slowly moving fluid layer at y receives momentum from a faster layer at y +dy.
The shear stress σ is defined as the shear force divided by the area A on which it is
working:

σ � dy

A dt

∂mu(y)

∂y
� L

dy

dt

∂δu(y)

∂y
(7.23)

Here δ is the mass density of the fluid, and L a distance over which x-momentum
diffuses in the y-direction. The kinematic viscosity ν is defined as the ratio of the
stress σ and the gradient in the moment density:

σ � ν
∂δu(y)

∂y
; ν � η

δ
, (7.24)

where η is the shear viscosity of fluid. Before proceeding to Newton’s law in (7.28)
we look at the analogybetween (7.24) andFick’s law for the diffusionfluxof particles.

Momentum diffusion. The flux of momentum is proportional to the gradient in
momentum concentration, just as the flux of particles is proportional to the gradient in
particle concentration. The coefficient ν in (7.24) is indeed a diffusion coefficientwith
dimension m2/s—consistent also with (7.23). Furthermore, when the momentum
diffuses a distance L we find from (7.23) and (7.24)

L

L∫

0

dy � ν

t∫

0

dt, (7.25)

which leads to an instance of Einstein’s law for quadratic displacement from
Chap. 6:

L2 ∼ νt, (7.26)

where ν is a ‘momentum diffusion coefficient’. Thus the time τH needed for momen-
tum to propagate a distance of order sphere radius R is:

τH ∼ R2

ν
� R2δ

η
(7.27)

This is the hydrodynamic time scale already anticipated in Chap. 4.
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Fig. 7.2 A flow field exerts
viscous forces on a volume
element

Newton’s viscosity law. The analogy between diffusion of momentum and dif-
fusion of particles is somewhat veiled when for a liquid of constant mass density δ,
Eq. (7.24) is rewritten to its usual form:

σxy � η
∂u(y)

∂y
(7.28)

which is known as Newton’s viscosity law. Though we obtained this law from the
simple flowof Eq. (7.19), it is valid for the general flowpattern described byEq. (7.1).
Note the convention of indices: σ xy is the x-directed shear stress on a fluid layer at
y. Alternatively one can say that σ xy is the flux of x-momentum in the y-direction.

In rectangular coordinates nine stress components as in Eq. (7.28) may be written
down: σ yx, σ yy, σ yz, etc. Consider a volume element in a flow field (Fig. 7.2). The
stress component σ yx works on the surface elements �x�y so the corresponding
viscous force component on the volume element is:

�x�z
[
σxy(y + �y) − σxy(y)

]
(7.29)

Per unit volume this force equals

∂σxy

∂y
� η

∂2u

∂y2
(7.30)

Considering all nine stress components the total viscous force per volume is

η

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
[u, v, w] � η∇2�u (7.31)

The Laplacian ∇2 is here expressed in rectangular co-ordinates x, y, z. The more
general form of the Laplacian in the Appendix B also applies to curvi-linear co-
ordinates. Adding Eq. (7.31) to the Euler equation (7.18) we find:

δ
D�u
Dt

� −−→∇ p + δ�g + η∇2�u; ∇ · �u � 0 (7.32)
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Fig. 7.3 Left: example of turbulent water flow into a glass. Right: viscous flow of honey. Note the
well-defined honey flow field, in contrast to the more chaotic pattern in the water. To undergo what
bacteria experience in water, one should take a low-Reynolds number bath in a large tank of honey

This is the Navier-Stokes equation for an incompressible fluid with constant vis-
cosity η and constant mass density δ. No single general solution of (7.32) exists; such
a single solution would describe all possible flow patterns −→u and would generate,
for example, both flow patterns in Fig. 7.3. A serious difficulty arises in particular at
high velocities when chaotic turbulent flow occurs, inwhich the velocity and pressure
are no longer unique functions of space and time coordinates. Turbulent flow can be
observed everywhere (Fig. 7.3) and common as it may be, its theoretical description
is extremely complicated.

A sufficiently slow, steady flow is stable against the occurrence of turbulence. For
a steady flow ∂u/∂t � 0 in the material derivative D/Dt of Eq. (7.10), so the equation
of motion becomes:

δ(�u · −→∇ )�u � −−→∇ p + δ�g + η∇2�u (7.33)

A further simplification involves the omission of the inertial terms δ(�u · −→∇ )�u
resulting in the so-called Stokes equation. This simplification is fortunately justified
for the small-scale flow patterns involving colloidal particles for reasons explained
in the next section.

7.3 Stokes Flow

The example of flow in a curved tube in Fig. 7.4 illustrates the physicalmeaning of the
various terms in Eq. (7.33). The hydrostatic pressure δ�gz which has a gradient in the
vertical z-direction, induces liquid flow �u and the concomitant pressure distribution p.
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Fig. 7.4 Flow through a curved tube of a liquid with mass density δ, described by Eq. (7.33).
Changes in flow velocity are resisted by the liquid’s inertia according to the LHS of (7.33). Velocity
gradients lead to energy dissipation quantified by the viscous term at the RHS of (7.33)

If the flow is steady nothing changes in time in any fixed volume element. Following
a streamline we notice that the flow velocity changes direction which is ‘resisted’
by inertia: the δ(�u · −→∇ )�u term in Eq. (7.33). In a cross section of the tube a velocity
gradient is present leading to the viscous term η∇2�u.

The Reynolds number. The relative contributions from inertia and viscosity are
estimated from a dimensionless parameter known as the Reynolds number Re:

Re � δ
UL

η
, (7.34)

in which U is a typical flow speed and L a characteristic length scale of the flow. In
Fig. 7.4, for example, U is the average flow velocity and L the diameter or length of
the tube. The viscous term will dominate inertia if Re �1.

To understand the origin of the inequality Re �1 we note that derivatives of
velocity components such as ∂u/∂x (describing inertia effects) are of order U/L,
whereas second derivatives (designating viscous effects) are of order U/L2. This
gives the order of magnitude estimates:

∣∣∣(�u · −→∇ )�u
∣∣∣ ∼ U 2/L;

∣∣∇2�u∣∣ ∼ U/L2 (7.35)

The ratio of the two terms in Eq. (7.33) is therefore

inertial term

viscous term
� δ(�u · −→∇ )�u

η∇2�u ∼ δU 2/L

ηU/L2
� δ

UL

η
, (7.36)

which equals theReynolds number in Eq. (7.34). For colloidal particles typical values
ofUL are small enough to ensure that Re �1 (Exercise 1). Then we may neglect the
inertia term in Eq. (7.33) to obtain (for �g � 0):

0 � −�∇ p + η∇2�u; ∇ · �u � 0 (7.37)
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This is the creeping flow equation for purely viscous flow of an incompressible,
Newtonian fluid, also known as Stokes flow.

7.4 On Magnitude

The term ‘creeping flow’ does not necessarily imply that flow is sluggish; it denotes
a flow rate U which is small enough such that Re �1. On the colloidal length scale
(L in the submicron range) this rate may be actually quite high: micron colloids may
settle under gravity or in a centrifuge at a rate of several times their diameter per
second.

Small enough creatures such as bacteria live at low Reynolds numbers and, hence,
experience water as a viscous fluid, in which they are completely unaware of their
mass. We are large enough to suffer from inertia in a swimming pool, and will only
have the Stokes flow experience when immersed in a bath of a very viscous fluid
such as syrup or the honey from Fig. 7.3.

Reversible flow. One surprising feature of creeping flow is its reversibility which
can be demonstrated (in a famous experiment by G. I. Taylor) as follows. Fill the gap
of a Couette geometry (two concentric cylinders) with viscous oil and insert a dyed
blob of oil with a syringe. The blob is sheared by slowly rotating one cylinder a few
revolutions. However, if the cylinder is rotated back to its original position, the blob
will return almost exactly to its original shape. The reversibility of purely viscous
flow has an interesting biological consequence: if an animal is small enough to live at
low Reynolds numbers, is has to battle this reversibility in order to move. Amicrobe,
for example, trying to swim by flapping its tail to and fro makes no progress, because
the effect of one flap is undone by the opposite flap. We are all living evidence of the
fact that spermatozoa use their tail in a more efficient manner to swim in viscous bio
fluids.

Not our scale. So what sort of hydrodynamics and external forces dominate the
live of a creature, is a matter of scale. We end here with a memorable quote from
the classical scholar and biologist D’Arcy Wentworth Thompson (1860–1948) who
finalizes his book chapter2 On Magnitude as follows:

Life has a range of magnitude [….] wide enough to include three such discrepant conditions
as those in which a man, an insect and a bacillus have their being and play their several roles.
Man is ruled by gravitation, and rests on mother earth. A water-beetle finds the surface of
a pool a matter of life and death, a perilous entanglement or an indispensable support. In a
third world, where the bacillus lives, the resistance defined by Stokes’s law, the molecular
shocks of the Brownian motion, doubtless also the electric charges of the ionized medium,
make up the physical environment and have their potent and immediate influence on the
organism. The predominant factors are no longer those of our scale; we have come to the
edge of a world of which we have no experience, and where all our preconceptions must be
recast.

2D’ArcyWentworth Thompson,OnGrowth and Form, Dover, 1992—the unabridged republication
of the work published by Cambridge University Press, 1942.
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Exercises

7.1 Verify that the Reynolds number Re is dimensionless.
7.2 Estimate for the Particle Quartet from Table 1.1 the Reynolds number for sedi-

mentation due to gravity in water.
7.3 (a) Suppose you swim at a speed of U �2 m/s; assuming a frontal area of

0.1 m2, how large is Re? (b) To maintain a constant swim speed you have to
invest energy because of (1) viscous friction on your body and (2) displacement
of water. Argue which factor is the most important.

7.4 A sphere with diameter d is pulled out (at constant volume) to a thin rod with
aspect ratio L/D �30. Argue by which factor Re goes up or down.

7.5 (a) A forceF moves a very large flat plate with constant speed u(D), at a distance
y �D from a parallel wall in water. (a) Derive the velocity profile u(y) from the
Stokes equations (7.37), and give an expression for the average flow velocity
<u>.
(b) Show that u(y) is a stream function, and that it satisfies the continuity equa-
tion.
(c) Suppose u(D)�1 mm s−1; D �1 mm and η �10−3 Pa s.
How large is F (per unit area)?
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Chapter 8
Flow Past Spheres and Simple
Geometries

Flow problems in colloidal systems either concern flow in channels or flow around
submerged particles. Channel flow, also known asPoiseuilleflow, occurs for example
for colloidal dispersions in a capillary for electrophoresis or electro-osmosis and for
fluids in the tube or double-cylinder (Couette) geometry of a viscosity meter. Flow
around particles arises for colloids undergoing sedimentation or Brownian motion.
Though our primary goal is the hydrodynamic friction factor for flow past a sphere,
wewill first, as awarming-up, solve the Stokes equations for viscous flow in channels
with a simple geometry.

8.1 Slits and Tubes—and Darcy’s Law

Flow between flat plates. We start with a slit in the form of two flat parallel plates
as in Fig. 8.1 at a distance d. There is only fluid motion in the x-direction so the flow
velocity field in this geometry has the form

�u � [u(y), 0, 0] (8.1)

This plane parallel flow satisfies
−→∇ · �u �0, because the velocity component u(y)

is independent of x. For this flow pattern the Stokes equation is:

∂p

∂x
� η

∂2u

∂y2
,

∂p

∂y
� ∂p

∂z
� 0 (8.2)

Since ∂p/∂x is constant in the y-direction, ∂2u/∂y2 �constant so u must be a
quadratic function of y. Integrating (8.2) twice indeed yields the parabola:

u � 1

2η

dp

dx
y(y − d), (8.3)
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Fig. 8.1 Viscous flow between two parallel plates, with the parabolic liquid flow velocity profile
given by Eq. (8.3)

a solution which satisfies the stick boundary or no-slip condition

u(y � 0) � u(y � d) � 0, (8.4)

stating that at the surface of the plates the fluid is in rest relative to the plates; stick
and slip boundaries are further addressed in Sect. 8.4. The flow velocity averaged
over the volume in the gap between the two plates is:

< u >�
∫ d
0

∫ L
0 u dx dy

∫ d
0

∫ L
0 dx dy

� d2

12η

�P

L
(8.5)

Here �P is the total pressure drop going from x �0 to x �L. Apart from a
numerical constant, Eq. (8.5) also arises from a dimensionless form of the Stokes
equation as follows. Suppose <u> is the velocity averaged in the y-direction over
a length d, and �P is the pressure drop over length L. Introducing dimensionless
parameters p̃, x̃, ũ and ỹ defined as:

p � p̃�P, x � x̃ L , u � ũ < u >, y � ỹd, (8.6)

the Stokes equation (8.2) becomes:

�P

L

∂ p̃

∂ x̃
� η

d2
< u >

∂2ũ

∂ ỹ2
(8.7)

Since the two derivatives only contain dimension-less quantities we can write:

< u > � d2

η

�P

L
× numerical factor (8.8)

So we can expect that Stokes flow in another geometry will have an average fluid
velocity with the same functional form as the result for flat-plates in Eq. (8.5). We
will verify this expectation for flow in a capillary with a circular cross-section.

Flow in a cylinder. The flow velocity �u for axial flow in a tube of radius R,
parallel to the z-axis (see Fig. 8.2) has the components:
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Fig. 8.2 Axial flow in a
straight tube; the velocity
profile is given by Eq. (8.15)

�u � [
ur , uθ , uz

] � [
0, 0, uz(r )

]
(8.9)

Here we use cylindrical coordinates (r, θ, z); note that velocity components in the
θ and r direction are zero. The Stokes equation for this type of flow is:

1

η

∂p

∂z
� 1

r

∂

∂r

(

r
∂

∂r
uz

)

+
∂2

∂z2
uz ;

−→∇ · �u � ∂uz

∂z
� 0 (8.10)

The zero-divergence of the flow velocity implies that uz is constant in the z-
direction, as expected for an incompressible liquid. Clearly then also ∂2uz/∂z2 is
zero:

1

η

dp

dz
� 1

r

d

dr

(

r
d

dr
uz

)

(8.11)

One integration yields the velocity gradient:

duz
dr

� 1

2η

dp

dz
r +

C

r
; C � 0 (8.12)

The constant C must be zero, because otherwise this gradient is infinite at r �
0, which would imply an infinite stress. From this velocity gradient we obtain the
viscous stress via Newton’s viscosity law, derived in Chap. 7:

σrz � −η
duz
dr

(8.13)



108 8 Flow Past Spheres and Simple Geometries

This viscous stress can be employed to calculate the total viscous force on the
inner wall of the tube (Exercise 8.2). The second boundary condition, in addition
to the absence of an infinite stress at the center axis of the cylinder at r �0, is the
no-slip boundary at the wall of the tube:

σrz(r � 0) � 0; uz(r � R) � 0 (8.14)

The solution for Eq. (8.12) which also satisfies this second condition is:

uz � 1

4η

dp

dz

(
r2 − R2

)
, (8.15)

The average velocity in the tube is:

< u >�
∫ L
0

∫ R
0 uzr dr dz

∫ L
0

∫ R
0 r dr dz

� R2

8η

�P

L
(8.16)

The similarity to the flat plate result in Eq. (8.5) is clear; the different geometry
only changes the numerical factor in Eq. (8.8). Note that the volume rate of flow Q

Q � < u > πR2 � πR4

8η

�P

L
(8.17)

strongly depends on the tube radius R. This result, called the Hagen-Poiseuille law,
is the basis of viscosity measurements on (Newtonian) dispersions from flow rates
in a tube. The R4 scaling in the Hagen-Poiseuille equation also explains why only
minor clogging of arteries may significantly raise the blood pressure (Exercise 8.7).

Tube friction factor. For the circular tube we can define a friction factor f C as the
ratio between the net force applied on the liquid in the tube, and the average liquid
speed in (8.16). The result is:

fC � �PπR2

< u >
� 8πηL (8.18)

The tube’s friction factor differs by only a factor 4/3 from the friction factor 6πηL
of a sphere with radius L.

Darcy’s law. We note here in passing Darcy’s law for viscous flow in a porous
mediumwhich states that the average flow velocity <u> is proportional to the average
pressure gradient that drives the flow:

< u >� − k

η
<

−→∇ p > (8.19)

Here k is the so-called liquid permeability of the porous medium. For one-
dimensional flow in a medium of length L Darcy’s law becomes:
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< u >� − k

η

�P

L
, (8.20)

where �P is the total pressure drop over the length L. The permeability depends on
the geometry of the medium and can only be calculated for simple cases. We have,
in fact, already made this calculation for flow in tubes and between parallel plates.
So Darcy’s law in its integrated form (8.20) is just an instance of Eq. (8.8), with
all geometrical details ‘hidden’ in the numerical factor. The liquid permeability k
is proportional to the square of a typical ‘pore diameter’ d, a proportionality which
also holds for more complicated pore geometries.1

8.2 Friction Factor of a Rotating Sphere

Viscous flow past a sphere. In the previous examples of flow through a channel the
total viscous force on the inner wall of the channel equals the external force (i.e. the
pressure drop �p) which drives the flow (Exercise 2). The analogous force balance
for viscous flow past a colloidal particle defines the Stokes friction factor f .

K � f u (8.21)

Here u is the constant liquid velocity relative to the particle and fu is the total
viscous force which balances the external force on the colloid. For a rotating particle
we have to read K as a torque and u as an angular velocity, see Eq. (8.22). We will
first calculate the rotational friction factor which involves a simpler flow field than
for translational friction.

Rotating Stokes flow. Consider a solid sphere of radius R that slowly rotates at
a constant angular velocity � around the z-axis in a large volume of quiescent fluid,
see Fig. 8.3. We ask for the torque T z required to maintain the sphere rotation, which
defines the rotational friction factor f r via:

Tz � fr� (8.22)

In terms of spherical coordinates (r, θ, φ) the flow field near the sphere will be of
the form:

�u � [
ur , uθ , uφ

] � [
0, 0, uφ(r, θ)

]
, (8.23)

1Examples are the tortuous pore spaces in particle packings, see: D. M. E. Thies-Weesie and A.
Philipse, J. Colloid and Interface Science 162, 470–480 (1994).
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Fig. 8.3 A solid sphere
rotates at constant angular
velocity. The sphere exerts a
stress τrφ , given by
Eq. (8.31), in the
φ—direction on the fluid

This field is symmetric about the z-axis of rotation so there is no dependence
on the angle φ. The pressure p will be of the form p � p(r, θ ) again without any
φ—dependence. For the sphere the Stokes equation therefore adopts the form:

η
[∇2�u]

φ
�

[−→∇ p
]

φ
� 0 (8.24)

From the φ-component of ∇2�u, the Laplacian for spherical coordinates (see
Appendix B), we only need the derivatives that depend on θ and r. Thus the Stokes
equation becomes:

0 � 1

r2
∂

∂r

(

r2
∂uφ

∂r

)

+
1

r2
∂

∂θ

(
1

sin θ

∂

∂θ

(
uφ sin θ

)
)

(8.25)

Flow field. Since there is no distinction between ‘up’ and ‘down’ in the flow field,
the substitution θ → π − θ should not change the flow velocity, which suggests that
uφ is proportional to sin θ � sin(π −θ ). Since uφ only depends on θ and r we choose
as a trial solution for the flow field:

uφ(r, θ ) � f (r ) sin θ (8.26)

Insertion of this trial solution in Eq. (8.25) leads to the following differential
equation for f (r):
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d

dr

(

r2
d f

dr

)

− 2 f � 0 (8.27)

Here, the trial solution is f � rn which on substitution in Eq. (8.27) gives n � 1
and n � −2. Thus the flow field in (8.26) becomes

uφ(r, θ ) �
(

C1r +
C2

r2

)

sin θ (8.28)

To determine the constants C1 and C2 we note that at infinity all velocity com-
ponents are zero, and that on the sphere’s surface the liquid rotates with the same
velocity as the sphere (stick boundary):

uφ → 0 as r → ∞
uφ → R� sin θ as r � R

(8.29)

Here Rsinθ is the shortest distance of a point on the surface of
the sphere to the rotation axis z. The point traverses a circle with cir-
cumference 2πRsinθ with velocity �Rsinθ . Application of these bound-
ary conditions to (8.28) shows that C1 �0 and C2 ��R3. Therefore
the final expression for the flow field induced by the rotating sphere
is:

uφ � �R sin θ

(
R

r

)2

� uφ(r � R)

(
R

r

)2

(8.30)

Torque on the sphere. The relevant component of the stress is (see Appendix B):

τrφ � −ηr
∂

∂r

(uφ

r

)
(8.31)

To find the total torque we need to integrate the tangential force τrφ(r � R)dS
exerted on the fluid by a solid surface element dS, multiplying each element by its
lever arm R sin θ with respect to the rotation axis:

Tz �
∫

τrφ(r � R)R sin θdS

�
2π∫

0

π∫

0

(3η� sin θ )(R sin θ )R2 sin θdθdφ � 6πηR3�

π∫

0

sin3 θdθ

� 8πηR3� (8.32)

By comparison with Eq. (8.22) we conclude that the rotational friction factor for
a sphere in a pure viscous fluid is given by:
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fr � 8πηR3, (8.33)

so the rotational diffusion coefficient of the sphere equals:

Dr � kT

8πηR3
(8.34)

Perhaps we expected the rotational friction factor to be proportional to R2 namely
the surface area between the rotating sphere and the surrounding fluid. Indeed, the
total viscous force scales withR2 but in (8.32) we need a viscous torquewhich entails
an additional R-term in the lever arm leading to the scaling f r~R3.

Sphere in a cavity. The rotational friction factor in (8.33) has been derived for a
sphere in an unbounded fluid, far away from a confining wall or other spheres. For
one particular confinement the friction factor can be easily corrected. Suppose the
sphere is rotating in a spherical cavity with radius (1+ δ)R, with δ ≥0. If the cavity
represents a stick boundary which is at rest with respect to the rotation axis, we have
instead of (8.29) the boundary conditions:

uφ → 0 as r → (1 + δ)R

uφ → R� sin θ as r � R
(8.35)

Evaluating the constants C1 and C2 in Eq. (8.28), we find the flow field:

uφ

�R sin θ
� (1 + δ)3(R/r )2 − (r/R)

(1 + δ)3 − 1
(8.36)

Substitution of this flow field in the stress component τrφ fromEq. (8.31) we again
obtain the torque Tz, to find eventually for the rotational friction factor:

fr � 8πηR3 (1 + δ)3

(1 + δ)3 − 1
(8.37)

Note that this result reduces, as it should, to 8πηR3 in the limit δ → ∞ of an
unbounded fluid. The rotational diffusion coefficient of the sphere in the cavity is
accordingly:

Dr � kT

8πηR3

[
1 − (1 + δ)−3

]
(8.38)

This simple extension of the rotational diffusion coefficient is also relevant for a
sphere rotating in a complex fluid (such as a polymer solution) instead of a continuous
solvent.2

2See for example: G. H. Koenderink et al., Rotational and translational diffusion of fluorocarbon
tracer spheres in semi-dilute xanthan solutions, Phys. Rev. E (2004) 69, 021804-1–12.
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Fig. 8.4 Creeping flow past a fixed sphere. Far away from the fluid has a uniform speed u∞; in
the vicinity of the sphere, the fluid velocity profile is given by Eq. (8.60): A point in the fluid is
specified by distance r from the origin, polar angle θ and a zimuthal angle ϕ

8.3 The Translational Friction Factor

We now determine the solution of the Stokes equations for creeping flow past a
translating sphere. The non-rotating sphere in Fig. 8.4 is fixed in a fluid which has
a uniform speed u∞ far away from the sphere. Using spherical coordinates (r, θ, φ),
the flow field near the sphere is of the form:

�u � [ur(r, θ), uθ(r, θ), 0] (8.39)

This is a two-dimensional ‘axisymmetric’ flow: the fluid approaches from the
z-direction so if we observe the flow in a plane perpendicular to the z-axis at a fixed
distance r the pattern is the same for every angle φ; the velocity component uφ in
Eq. (8.39) is zero. In contrast to Poiseuille flow in a straight tube streamlines are now
curved, which makes the creeping flow equation more difficult to solve directly for
the components of −→u . One option is to simplify the Stokes equation by rewriting it
in terms of a stream function ψ instead of −→u .
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Stokes stream function. A stream function has a constant value along a stream-
line. According to Eq. (7.11) ψ is a stream function if

(�u · −→∇ )ψ � 0 (8.40)

In the case of plane parallel flow in Eq. (8.1), the velocity component u(y) is itself
a stream function:

(�u · −→∇ ) u(y) � u
∂u(y)

∂x
� 0 (8.41)

Along the curved streamlines past a sphere, however, velocity components are
not constant. The components are actually derivatives of a stream function:

ur � 1

r2sinθ

∂ψ

∂θ
, uθ � − 1

rsinθ

∂ψ

∂r
(8.42)

These equations define the Stokes stream function ψ , which is indeed a stream
function because

(�u · −→∇ )ψ � ur
∂ψ

∂r
+
uθ

r

∂ψ

∂θ
� 0 (8.43)

For the velocity components in Eq. (8.42) it is also the case that

−→∇ .�u � 0 (8.44)

This is the trick of the Stokes stream function: if we find ψ , the velocity −→u in
Eq. (8.39) immediately follows while we automatically satisfy

−→∇ .�u � 0. So from
the creeping flow Eq. (7.37) we only need:

−→∇ p � η∇2�u � −η
−→∇ ×

(−→∇ × �u
)
, (8.45)

where we have substituted the Laplacian from equation B12 in Appendix B. The curl
of fluid velocity field in terms of the stream function in Eq. (8.42) is the vector:

−→∇ × �u �
[

0, 0,
−1

rsinθ
E2ψ

]

, (8.46)

where E2 is the differential operator

E2 � ∂2

∂r2
+
sinθ

r2
∂

∂θ

(
1

sinθ

∂

∂θ

)

(8.47)

Substitution of (8.46) in Eq. (8.45) yields:



8.3 The Translational Friction Factor 115

∂p

∂r
� η

r2sinθ

∂

∂θ
E2ψ ;

1

r

∂p

∂θ
� −η

rsinθ

∂

∂r
E2ψ (8.48)

Next we note that the pressure p � p(r, θ ) is a state function (dp is an exact
differential). Then by definition the order of differentiation may be reversed:

∂

∂θ

∂p

∂r
� ∂

∂r

∂p

∂θ
(8.49)

The pressure can now be eliminated by combining (8.48) and (8.49) to obtain

E2
(
E2ψ

) � 0, (8.50)

which on substitution of (8.47) can be rewritten to:

[
∂2

∂r2
+
sinθ

r2
∂

∂θ

(
1

sinθ

∂

∂θ

)]2

ψ � 0 (8.51)

This is the simplified version of the differential equation (8.45) for −→u .
Trial function. We now have to guess a form of ψ which satisfies (8.51). A

suitable form suggests itself by the ‘infinity condition’: at r →∞ the flow becomes
uniform with speed u∞ (see Fig. 8.4) in the z-direction:

ur ∼ u∞cosθ and uθ ∼ −u∞sinθ, as r → ∞ (8.52)

For the stream function in Eq. (8.42) this implies:

ψ ∼ 1

2
u∞r2sin2θ, as r → ∞, (8.53)

which suggests a solution to Eq. (8.51) of the form

ψ � f (r)sin2θ (8.54)

Substitution of this trial solution in Eq. (8.51) shows that f (r) follows from the
differential equation:

(
d2

dr2
− 2

r2

)2

f (r) � 0 (8.55)

We now try solutions of the form f � rα , which indeed satisfy Eq. (8.55) provided
that:

[(α − 2)(α − 3) − 2][α(α − 1) − 2] � 0, (8.56)

which is the case for α � −1, 1, 2, 4. Therefore:
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f (r) � A

r
+ Br + Cr2 + Dr4, (8.57)

where A, B, C and D are constants that are determined as follows. The condition of
uniform flow at infinity in Eq. (8.53) can only be fulfilled if C �½ u∞ and D �0.
The stick-boundary condition that uθ and ur in Eq. (8.42) are both zero on the sphere
surface implies

−∂ψ

∂r
� 1

r

∂ψ

∂θ
� 0 on r � R, (8.58)

which reduces to (1/R) f (R) � f
′
(R) � 0. This determines the constants A �

u∞R3/4 and B �−3u∞R/4. The Stokes stream function finally turns out to be:

ψ � 1

4
u∞

(

2r2 +
R3

r
− 3Rr

)

sin2θ (8.59)

Streamlines as sketched in Fig. 8.4 correspond to certain values ofψ . For example
ψ � 0 generates the streamlinewhich satisfies either r � R or θ � 0.Note in Fig. 8.4
that the flow pattern has ‘for-after’ symmetry: the streamlines will remain the same
if the flow u∞ is reversed. This is another example of the reversibility of creeping
flow referred to at the end of Chap. 7.

Velocity profile. By substituting ψ we can compute the velocity components in
Eq. (8.42):

ur
u∞

�
[

1 − 3

2

(
R

r

)

+
1

2

(
R

r

)3
]

cosθ

uθ

u∞
� −

[

1 − 3

4

(
R

r

)

− 1

4

(
R

r

)3
]

sinθ (8.60)

One striking feature of this velocity profile of a translating sphere is its long range
due to the R/r term-compare, for example, the flow field around a rotating sphere
in (8.30). So a diffusing or sedimenting colloidal sphere causes a disturbance of a
uniform flow which extends over many sphere diameters. Therefore these solutions
to the Stokes equation for a single sphere are only valid if the sphere is far away from
other spheres or a wall.

The radial pressure gradient in Eq. (8.48) turns out to be:

∂p

∂r
� 3u∞ηRr−3cosθ (8.61)

At infinity, the pressure in the uniform flow is p∞:

p � p∞ − 3

2
u∞η

R

r2
cosθ (8.62)
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As could be expected, the pressure exceeds the bulk pressure p∞ at the sphere
side which receives the flow. For a colloidal sphere settling or diffusing in a liquid we
are interested in the net force which is exerted on the sphere in Fig. 8.4. The relevant
viscous stress component is

τrθ � −ηr
∂

∂r

(uθ

r

)
(8.63)

namely the stress tangential to the sphere’s surface due to the velocity gradient
perpendicular to the surface. For the velocity component uθ in Eq. (8.60) we obtain
for the stress on the surface of the sphere:

τrθ � η
3

2

u∞
R

sinθ, at r � R (8.64)

Further, the pressure on the surface is:

p � p∞ − η
3u∞
2R

cosθ, at r � R (8.65)

By symmetry the net force on the spherewill be oriented in the z-direction, parallel
to the uniform flow (Fig. 8.4). The relevant components of p and τrθ on the sphere
surface are

t � τrθsinθ − pcosθ � 3ηu∞
2R

− p∞cosθ (8.66)

The total force F on the sphere is the integral of t over the whole sphere surface:

F �
2π∫

0

π∫

0

t R2sinθ dθdϕ � 6πηu∞R (8.67)

Note that the term p∞ cos θ in Eq. (8.66) does not contribute to this total force,
because the isotropic bulk pressure p∞ can have no net effect on the sphere. Thus
the stress in Eq. (8.66) on the sphere surface is everywhere the same, a surprising
result in view of the velocity profile in Fig. 8.4. The proportionality factor between
the uniform flow velocity u∞ far away from the sphere and the drag force is:

f � 6πηR, (8.68)

This is the Stokes friction factor for the translational motion of a sphere in a
viscous fluid, valid for small Reynolds numbers and under the condition of a no-slip
boundary between sphere surface and fluid.

Sphere settling. One application of the Stokes friction factor in (8.68), concerns a
sedimenting sphere which accelerates downwards in a fluid until a constant velocity
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U0 is achieved. Then the drag force balances the weight of the sphere, corrected for
buoyancy:

6πηU0 R � 4

3
πR3

(
δsphere − δfluid

)
g, (8.69)

where δ is a mass density. The stationary sedimentation velocity

U0 � 2R2

9η

(
δsphere − δfluid

)
g, (8.70)

also called the Stokes velocity, of course only applies if all assumptions underlying
the Stokes friction factor (Re 
1, no-slip boundary) are justified. The same applies
of course for the Stokes-Einstein diffusion coefficient for the sphere:

D � kT

f
� kT

6πηR
(8.71)

One assumption has not been addressed explicitly, namely that the fluid surround-
ing the sphere is a continuum. For a colloidal micron-sphere diffusing or settling in a
low-molecular solvent this is certainly the case: on its diffusive time scale the sphere
experiences continuum hydrodynamics, see the discussion on time scales in Chap.
4. For an ion, however, one would expect that the continuum hypothesis fails. Nev-
ertheless, the Stokes friction factor Eq. (8.68) is widely used in the Stokes-Einstein
diffusion coefficient of small solute molecules, and in many cases appears to work
well; see also the remark on ion diffusion at the end of Sect. 6.1.

8.4 Stick, Slip and the Lotus Sphere

TheStokes-Einstein diffusion coefficients for sphere translation and rotation are often
appliedwithout attention being paid to the underlying assumption of a stick boundary
condition. The derivation of the Stokes friction factors relies on fluid mechanics of
a sphere suspended in a continuum for which we can neglect all molecular details;
the great benefit of the stick-boundary condition is that these details can also be
disregarded for fluid that contacts the sphere. As a result the only fluid property that
enters into the Stokes friction factors is the macroscopic viscosity η. Slip, however,
leads in friction factors to an additional parameter β whose value is not a priori
known, because when a solid surface and the adjacent fluid move at different speeds
the resulting frictional force will differ from one solid-liquid combination to another.

The parameter β can be defined as the constant of proportionality between the
tangential stress τ and the relative solid-liquid speed u, at the sphere surface:

τ � βu, at r � R (8.72)
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Note the analogy with the friction factor f in Eq. (8.21): f is a force per unit of
speed and β is a stress per unit of speed. The dimension of β is accordingly a friction
factor per unit area.

For the tangential velocity component uφ on a rotating sphere boundary condition
(8.72) adopts the form

β
(
R� sin θ − uφ

) � τrφ � −ηr
∂

∂r

(uφ

r

)
, at r � R (8.73)

bearing in mind that uφ is the velocity relative to the z-axis of rotation, see also
Fig. 8.3. The flow field is, compare for example Eq. (8.28):

uφ � C

r2
sin θ, (8.74)

which on substitution in Eq. (8.73) determines the constant C with the result:

uφ � �R

(
R

r

)2

sin θ
1

1 + 3S
; S � η

βR
(8.75)

Here S is a dimensionless parameter, which measures the ‘amount’ of slip at
the sphere surface. The term 1/1+3S multiplies the flow field from Eq. (8.30) and
obviously also the total torque T z on the sphere in Eq. (8.32), so the rotational friction
factor and the rotational diffusion coefficient modify to:

fr � 8πηR3

1 + 3S
; Dr � (1 + 3S)kT

8πηR3
(8.76)

The stick boundary condition is the limit S →0, where we recover our earlier
result f � 8πηR3. For the translational friction factor one can show (Exercise 4)
that the boundary condition (8.72) leads to:

f � 6πηR

(
1 + 2S

1 + 3S

)

(8.77)

In the limit of a pure no-slip boundary we recover the familiar friction factor
f � 6πηR.

The Lotus sphere. Imagine the fate of a super-hydrophobic3 sphere in water.
For a strongly water repelling sphere, the pure slip boundary condition S →∞
applies, i.e. the tangential stress on the sphere surface is zero. This condition—at
first sight—reduces the Stokes factor in (8.76) to fr � 0. However, Lotus sphere and
its surrounding water very likely will be separated by a thin layer composed of water
vapor and dissolved gas. In that case the sphere performs thermal rotations in a water

3Super-hydrophobicity is also known as the Lotus effect; the leaves of the Lotus plant are not wetted
by water due to a porous surface structure that entraps air.
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cavity lubricated by a gas, with a rotational diffusion coefficient that is significantly
larger than for a hydrophilic sphere to which water sticks.

Sphere translation, in contrast to rotation, displaces liquid such that in absence
of viscous stress still a significant friction factor remains; from (8.77) we find for a
Lotus sphere:

f � 4πηR, for S → ∞ (8.78)

So wemay conclude that for spheres in a continuous fluid the incorporation of slip
effects in friction factors is possible on the basis of the plausible boundary condition
of Eq. (8.72).

Exercises

8.1 Give the equation for the volume rate of flow Q for the flat plates in Fig. 6.1.
8.2 Sketch the profile of the viscous stress τrz and show that the total viscous force

on the inner wall of the tube in Fig. 8.2 equals πR2�P.
8.3 Derive the Stokes friction factor (per unit length) for the rotation of a very long

cylinder with radius R around its long axis (cf. Fig. 8.3).
8.4 Equation (8.76) seems not to have been reported earlier. Formula (8.77), how-

ever, can be found in a somewhat different notation in J. Happel and H. Brenner,
Low Reynolds Number Hydrodynamics (Englewood Cliffs, NJ: Prentice-Hall,
1965, pp 125–126). Verify that the formula is correct.

8.5 Re-examine the Poiseuille flow in simple geometries with a “pure-slip” bound-
ary condition. Conclusion?

8.6 Calculate the gravitational settling rates of the Particle Quartet of Table 1.1.
8.7 A certain fatty deposit decreases the inner radius of a blood capillary from R1

�5 micron to R2 �4 micron. By which percentage should pressure p increase
to keep transport of red blood cells at the same level as for a clean blood vessel?
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Chapter 9
Encounters of the Brownian Kind

9.1 Diffusion Versus Convection

In a quiescent solution, in absence of any particle convection due to an external field,
Brownian motion is the only transport mechanism for (non-living) colloidal particles
to encounter each other. To get an idea of the time scale involved we compute the
time taken by a sphere of radius R to diffuse a mean-square-displacement equal to
R2—the configurational relaxation time τCR introduced in Chap. 4. For spheres in
water at room temperature:

R (nm) τCR ∼ ηR3/kT (s)

10 2 × 10−7

100 2 × 10−4

1000 2 × 10−1

104 2 × 102

Clearly, for small colloidal particles, Brownian motion on their own colloidal
length scale is fairly rapid, whereas for radii much larger than a micron, diffusion is
a hopelessly inefficient transport vehicle. Also for small, rapidly diffusing particles
covering large distances is a slow process due to the square-root time dependence of
diffusive displacements. For traversing large spaces convective transport must take
over: we stir to homogenize coffee and milk rather than waiting for diffusion to do
the mixing.

On the other hand, convection becomes an inadequate transport vehicle close to
a surface, or in sufficiently narrow geometries, where the viscous drag is very large.
So for small particles or molecules that have to react with a surface—or penetrate
a biological cell—the profitable strategy is to cross large distances by convection,
followed by Brownian motion for the final sub-micron steps. A typical biological
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Fig. 9.1 Poiseuille flow in a
vertical capillary of length h
and radius a, driven by
pressure difference �P
caused by the fluid weight.
The question—answered in
Sect. 9.1—is when the time
needed for a diffusive
displacement a of a colloid,
equals the time needed for
the fluid to propel the colloid
the same distance

example is formed by viruses that are propelled by the flow of blood or air but that
eventually have to arrive at suitable landing places on a new target cell via Brownian
motion on a sub-micron scale.

Tubes and arteries. A simple case for examining the relative effects of diffusion
and convection is provided by a colloid in the Poiseuille flow (Fig. 9.1) through a
vertical capillary of radius a driven by a pressure difference

�P � ghδ (9.1)

for a fluid with mass density δ in a capillary of length h; g is the gravitational
acceleration. The time tD needed for a colloid of radius R to diffuse a distance equal
to the capillary radius a is of the order:

tD ∼ a2

2D
� 3πηRa2

kT
(9.2)

We should compare this to the time tC taken by the colloid to travel the same
distance by liquid convection. Ignoring the parabolic velocity profile (Fig. 9.1) we
just employ the average flow velocity, derived earlier in Chap. 7:

< u >� a2

8η

�P

h
� a2

8η
gδ (9.3)



9.1 Diffusion Versus Convection 123

Hence the convection time is about:

tC ∼ 8η

agδ
(9.4)

The ratio of diffusion time and convection time is therefore

tD
tC

� a3R
3π

8

gδ

kT
(9.5)

Note that this time ratio also follows from the Péclet number in the form

Pe � < u > a

2D
(9.6)

The capillary radius aB for which the time ratio in (9.5) equals unity is about
aB ≈ 1.5 and aB ≈ 4 μm for, respectively, the colloidal C-sphere (R �100 nm) and
the nano-sphere (R=5 nm) from Table 1.1 (Exercise 9.6).

Blood vessels. These estimates for aB show that for pore radii in the micron
range there is a significant transport contribution from both Brownian motion and
convection. This puts the radii of blood vessels into perspective. The narrow vessels
referred to as ‘blood capillaries’ are located in body tissues and transport blood from
arteries to the veins that bring blood back to the heart. Radii of these capillaries are
in the range from about 2–5 μm, indicating that species of nano-meter size, let alone
small molecules, have enough time to reach capillary walls during blood flow by
diffusion.

9.2 Brownian Motion Towards a Spherical Absorber

Brownian collisions on a spherical target will be analyzed in more detail below
because it captures the essential kinetics of many processes including coagulation of
colloids, diffusional growth anddiffusion-controlled chemical reactions.Weconsider
a collection of Brownian spheres with radius Rj, diffusing in the vicinity of a target
sphere with radius Ri centered at the origin (Fig. 9.2). The frequency of collisions of
j-spheres on the target sphere can be found, following Smoluchowski, via a stationary
diffusion model as follows.

Imagine that every j-sphere that hits the target sphere is somehow removed from
the solution: the target act as an irreversible, spherical absorber such that the con-
centration of j-spheres near its surface is zero. Assuming that in a very large bulk far
away from the central sphere the j-sphere density remains constant, a steady diffusion
of j-spheres from the bulk to the target will be established. The continuity equation
for the number concentration cj of j-spheres is (see Chap. 5):

∂cj
∂t

� −�∇ . �jd, (9.7)
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Fig. 9.2 Spheres j diffuse from a bulk (with number concentration cj,∞) at a distanceRi + δ towards
a diffusing tracer sphere with radius Ri which acts as an infinite sink from which no j-sphere can
escape. A practical instance is a porous sphere that irreversibly absorbs foul smelling j-molecules

which together with Fick’s first law

�jd � −Dij �∇cj (9.8)

leads to the diffusion equation which we already encountered (in slightly different
notation) in Chap. 5.

∂cj
∂t

� Dij∇2cj (9.9)

Here Dij is the diffusion coefficient of the j-spheres relative to the center of the
target sphere which itself also exhibits Brownian motion.

Stationary diffusion. The concentration profile of j-spheres reaches a steady state
when ∂cj/∂t � 0. Then (9.9) reduces to the Laplace equation:

∇2cj � 1

r2
∂

∂r

(
r2

∂cj
∂r

)
� 0, (9.10)

with the solution:

cj(r ) � A

r
+ B, (9.11)
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in which A and B are constants. The boundary conditions, see also Fig. 9.2, are a
constant bulk concentration cj,∞ beyond some distance Ri + δ from the origin, and
zero-concentration of j-spheres at the target surface:

cj(r � Ri + δ) � cj,∞ ; cj(r � Rij) � 0 (9.12)

Note that the boundary condition of zero-concentration actually occurs at the
collision distance Rij, i.e. the center-to-center distance at which the i- and j-sphere
touch. After evaluating A and B from the boundary conditions in (9.12), the steady-
state profile turns out to be:

cj(r )

cj,∞
�

(
1 − Rij

r

)(
Ri + δ

Ri + δ − Rij

)
(9.13)

The question now iswhich valuewe have to take for the ‘diffusion-zone thickness’
δ; in other words, where in Fig. 9.2 does the bulk begin? Fortunately, for a single
target sphere in a sufficiently large container of j-particles, we do not have to specify
δ any further than that it is much larger than Rij. Thus for the steady-state profile we
can take the limit

lim
δ→∞

cj(r )

cj,∞
� 1 − Ri j

r
(9.14)

In what follows, we will only employ this concentration profile. We note here
that the simple, asymptotic result in (9.14) is a fortunate consequence of Brownian
motion in three-dimensional space: diffusion in a two-dimensional plane involves an
undetermined δ (Exercise 1).

Stationary flux. The steady diffusion flux of j-spheres in radial direction
(unit vector �δr ) towards the target follows from substitution of (9.14) in Fick’s first
law (9.8):

�jd � −Dij�δr dcj
dr

� −Dij�δr d
dr

cj,∞
(
1 − Ri j

r

)
� − �δr

r2
DijRijcj,∞ (9.15)

This is a flux of particles (per unit area per second) which decreases with
increasing r. However, because of mass conservation the total flux J through a
spherical envelope of surface area 4πr2 must be independent of r. This independence
also follows from the steady-state condition �∇ . �jd � 0. Thus the collision-frequency
of j-particles on the target sphere can be equated to this total flux, evaluated at
r �Rij:

J ( j → i) � 4πR2
ij

∣∣∣ �jd(r � Rij)
∣∣∣ � 4πDijRijcj,∞ (9.16)

Next we note that for solid spheres the collision radius equals Rij �Ri +Rj, and
that for independently diffusing spheres their relative diffusion coefficient equals
(Exercise 2):
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Dij � Di + Dj � kT

6πη

(
1

Ri
+

1

Rj

)
(9.17)

Consequently Eq. (9.16) becomes:

J ( j → i) � 2kT

3η
(2 +

Ri

Rj
+
Rj

Ri
)cj,∞ (9.18)

It is instructive to rewrite this collision frequency in terms of the volume fraction
φj � (4/3)πR3

j cj,∞ of j-spheres:

J ( j → i) �
[
2 +

Ri

Rj
+
Rj

Ri

]
φj

2πτCR
; τCR ∼ ηR3

j

kT
(9.19)

This expression shows that, for given volume fraction, it is the configuration
relaxation time τCR that determines the collision frequency of j-spheres on the target.

Effect of poly-dispersity. A remarkable feature of the diffusion flux J(j → i) is
its minimum for spheres of identical size (Exercise 3):

J ( j → i) � 2φj

πτCR
; Ri � Rj (9.20)

In other words, for a given volume fraction, polydispersity always accelerates
Brownian encounter frequencies in comparison to monodisperse spheres. The min-
imal value of (9.20) can be qualitatively understood by noting that if, in a monodis-
perse system, we shrink all spheres except the target sphere, the collision frequency
increases due to the enhanced diffusion of the shrunk spheres. If, on the other hand,
only the target sphere is reduced to a point-like particle, it will rattle around rapidly
in a collection of static j-spheres which also increases the diffusion flux J(j → i).

To get an idea of the collision frequencies involved, imagine the fate of a target
sphere with radius Ri �1μm immersed in an aqueous host dispersion with a particle
volume fraction ϕj �0.01. According to Eq. (9.19) the collision frequency on this
target is in order of magnitude:

Rj (nm) J(j → i) (s−1)

10 68×102

100 80×10−2

1000 26×10−3

Thus the micron-sized target is bombarded quite frantically by Brownian motion
when the hosts are nano particles, whereas for an equal volume fraction of micron-
sized hosts, the target has to wait for more than half a minute for the next Brownian
encounter to take place.
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9.3 Diffusional Sphere Growth

A Brownian particle may come into existence by clustering of solute molecules in
a sufficiently concentrated solution—a process also referred to as ‘precipitation’. In
the initial stage of this precipitation process solute molecules form small, transient
clusters by thermal fluctuations. Beyond a critical cluster size, particles irreversible
grow by uptake of more solute molecules. The growth kinetics can—at least qualita-
tively—be explained in terms of the diffusion flux towards a target sphere discussed
in the previous Sect. 9.2.

In the expression (9.16) for the collision frequency we substitute Dj >>Di and,
consequently, also Rij ≈ Ri so the collision frequency on a sphere is approximately
that of small particles on a large, static target:

J ( j → i) ≈ 4πDjRicj,∞ (9.21)

If each j-particle contributes a volume vj to the volume Vi of the growing target
we have for V i the differential equation:

dVi

dt
� J ( j → i)vj; Vi � (4/3)πR3

i (9.22)

Substitution of (9.21) and integration yields for the radius Ri at time t:

R2
i (t) − R2

i (t0) � 2Djφj(t − t0); φj ≈ cj,∞νj (9.23)

The volume fractionϕj is actually larger than the true volume fraction of j-particles
because the volume contribution vj to the growing sphere volume exceeds the j-sphere
volume itself.Note in (9.23) the scaling R ∼ t1/2 which is characteristic for diffusion-
controlled growth. The growth Eq. (9.23) is indeed an instance of Einstein’s law for
quadratic displacement, here in the form of a particle radius squared that grows
linearly in time. The usual Stokes-Einstein single-particle diffusion coefficient D is
replaced by an effective diffusion coefficient Djϕj.

Diffusion coefficients of small molecules or ions in water are typically on the
order of Dj ~10−5 cm2 s−1 so for a volume fraction ϕj �0.01, Eq. (9.23) predicts a
sphere growth rate of about dR2/dt≈20μm2/s. This is quite fast; growth of colloidal
spheres by precipitation in a supersaturated solution is often much slower. Retarding
factors include exhaustion of the bulk (decrease of ϕj in time) or a chemical process
that only slowly generates the particles j.

9.4 Birth and Growth of Brownian Clusters

By flocculation or aggregation we refer to Brownian particles that stick together
while keeping their identity in the form of their shape, in contrast to droplets which
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merge together in a coalescence process. When the colloids strongly attract each
other such that each Brownian encounter leads to a permanent aggregate, we speak
of fast flocculation.

Early-phase flocculation. The initial stage of fast flocculation is the irreversible
aggregation of two monomeric particles into a dimer. The dimerization kinetics is
that of any irreversible ‘bi-molecular reaction’ between species i and j:

dci
dt

� dcj
dt

� −kij ci cj (9.24)

Here ci and cj are bulk number concentrations of species i and j (the subscript
∞ denoting bulk values has been dropped). The rate constant kij of this second
order reaction directly follows from the flux in Eq. (9.16), because the total collision
frequency between particles i and j equals J ( j → i)ci . Since every collision removes
a free i and j particle we have:

dci
dt

� dc j
dt

� −J ( j → i)ci , (9.25)

which implies for the rate constant:

kij � J ( j → i)/cj � 4πDijRij, (9.26)

where we have substituted the diffusive flux J(j → i) from Eq. (9.16). This rate con-
stant, first derived by Smoluchowski, has the remarkable feature that for monodis-
perse particles it is independent of particle size, for if we substitute Rij �2R1 andDij

�2D1 it turns out that:

k11 � 8kT

3η
(9.27)

This size independence suggests that k11 should also give a reasonable estimate
for diffusion-controlled reactions between small molecules or ions. For example, for

OH− + NH +
4

kr−→ NH3 + H2O,

the rate constant is kr �5.6×10−17 m3/s. From (9.27) we obtain for water (η �
0.84 mPa s) at 298 K: kr �1.2×10−17 m3/s, which is indeed correct in order of
magnitude.

Non-spheres. In addition to itsweak size independence, the rate constant in (9.26),
derived for spheres, is also fairly insensitive to the shape of Brownian particles. We
will illustrate this for the (very non-spherical) case of thin rods with diameter D and
length L>>D. The orientationally averaged diffusion coefficient of a thin rod is1:

1J. K. G. Dhont, An Introduction to the Dynamics of Colloids (Elsevier, Amsterdam, 1996).
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D � kT

3πηL
ln

(
L

D

)
, for

L

D
	 1 (9.28)

A freely rotating rod sweeps by rotational diffusion a spherical volume with
diameter L. Brownian encounters between two rods may occur when their ‘rotation
volumes’ overlap. Thus the collision distance for the rods is about R11 ∼ L which
on substitution together with (9.28) in (9.26) yields:

k11 � 8πDR11 � 8kT

3η
ln

(
L

D

)
(9.29)

So even for thin Brownian rods, (9.27) provides a reasonable estimate of the rate
constant; the rod’s aspect ratio only slightly enhances k11 via its logarithm. The impli-
cation is that kinetic results derived in what follows for spheres, also approximately
hold for non-spheres. The underlying reason is that non-sphericity increases the
average collision distance Rij between colloids but its enhancing effect on collision
frequency is compensated by the slower diffusion of non-spheres.

Singlets half-time. Even though the rate constant is independent of particle size,
the particle number density due to flocculation decreases in time at a rate that strongly
depends on the sphere radius R, as can be seen as follows. Consider the initial stage
of flocculation in which only doublets of spheres are formed. Equation reads for
identical spheres:

dc1
dt

� −k11 (c1)
2 (9.30)

The solution of (9.30) shows that in the initial stage the concentration c(t) of free
singlet spheres decreases as

c(t) � c0
1 + (t/t1/2)

(9.31)

Here t1/2 is the half-life of the singlet spheres and c0 the singlet number density
at t=0. For a starting volume fraction φ0 � c0(4/3)πR3 the half-life equals:

t1/2 � 1

k11c0
� πτCR

2φ0
; τCR � ηR3

kT
(9.32)

Here τCR is the configurational relaxation time from Eq. (4.11); note that t1/2
approximately equals the Brownian collision time τBC � τCR/φ0, that we met earlier
in Sect. 4.3. The half-life also turns out to be the reciprocal of the flux in (9.20). It is
evident that for a given volume fraction, colloids in the micron size range flocculate
relatively slowly. For nano-particles at a volume fraction of say φ � 0.01, rapid
flocculation occurs within a split of a second.

Late-stage flocculation. Beyond the initial stage of dimer formation further
aggregation of particles by Brownian motion produces triplets, quadruplets etc.
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which, in turn, also collide by diffusion to form large clusters. Smoluchowski showed
that this—at first sight hopelessly complicated—kinetic problem can be approxi-
mately solved as follows. Consider the concentration cα of aggregates containing
α spheres. Such α-mers are formed by the encounters of smaller aggregates, and
disappear by the uptake of any other particle or aggregate. The change of α-mer
concentration in time is therefore:

dcα

dt
� 1

2

α−1∑
i = 1

ki,α−icicα−i −
∞∑
i = 1

kiαcicα (9.33)

This equation can be solved easily if we neglect any difference between reaction
rate constants kij and consequently substitute kij �k11:

dcα

dt
� 1

2
k11

α−1∑
i�1

cicα−i − k11cα

∞∑
i = 1

ci (9.34)

In terms of the total number density

ctot �
∞∑
i = 1

ci, (9.35)

Equation (9.34) can be written as:

dctot
dt

� −1

2
k11c

2
tot, (9.36)

with the solution

c(t) � c0
1 + t/t1/2

(9.37)

Here the half-life equals

t1/2�πτCR

φ0
, (9.38)

which is twice the half-life of singlet spheres in Eq. (9.32). Apart from the total
particle number density, we can also evaluate the concentration all the various particle
species (α − mers) in time. From Eq. (9.34):

dc1
dt

� −k11

∞∑
i = 1

cic1;
dc2
dt

� 1

2
k11c

2
1 − k11

∞∑
i = 1

cic2, etc. (9.39)

Again all rate constants are equal: kij � k11. This leads to the concentrations of the
various species in Fig. 9.3. The assumption that all rate constants equal k11 seems
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Fig. 9.3 Change in species concentration in time according to Eq. (9.39)

drastic. It implies, for example, that the rate constant for irregular aggregates of,
say, 10 particles equals that of one single sphere. Note, however, that the diffusion
coefficient D of a cluster is inversely proportional to the typical cluster size Rc. This
implies that the rate constant k ~DRc is indeed fairly insensitive to the shape and
size of the aggregates that form in the flocculation process.

Exercises

9.1 Derive the equivalent of (9.16) for Brownian motion on a flat plane, for discs
with radius Rj towards a target disc with radius Ri. Consider the limit δ → ∞.
Conclusion?

9.2 Show that (9.17) is indeed correct for spheres that diffuse independently from
each other.

9.3 Show that (9.20) is the minimum of (9.19).
9.4 Calculate the half-life for the flocculation of identical spheres in the initial stage,

for φ � 0.01 and R � 10 nm, respectively, R � 10μm.
9.5 Consider a mixture of spheres with a certain distribution in the sphere radius.

Show that by diffusional growth the distribution will always sharpen.
9.6 Calculate the capillary radius aB for which the time ratio in (9.5) equals unity

for the colloidal C-sphere (R �100 nm) and the nano-sphere (R=5 nm) from
Table 1.1.

9.7 An adult in rest has a blood pressure of about 0.13 bar. Which water height h
in Fig. 9.1 produces the same pressure?
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9.8 The following numbers were obtained by counting free silica spheres in water
(T�298K, viscosity 0.89mPa s) duringflocculation by excess sodiumchloride:

t/min 0 2 4 7 12 20

c/108cm−3 100 14 8.2 4.6 2.8 1.7

Calculate the second-order rate constant k11 and compare it with the prediction
based on the assumption that the flocculation is a diffusion-controlled process.

9.9 Colloidal spheres with radius R�500 nm and volume fraction of φ1 � 0.01 are
mixed in solution with small nano-particles with radius r �10 nm and volume
fraction φ2 � 0.05 Calculate the Brownian encounter frequency between small
spheres and one big sphere.

References

For the original work of Smoluchowski on his diffusion model for coagulation see M. von Smolu-
chowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von
Kolloidteilchen,Phys. Z. 17 (1916) 557–599, andM. von Smoluchowski,Versuch einermathema-
tischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1917) 129–168.

Brownian encounters in biology are examined in H. C. Berg, Random Walks in Biology (Princeton
University Press, expanded edition, 1993).

Section 9.2 treats diffusion towards a homogeneous sphere; for Brownian motion towards a patchy
cell with receptors on its surface see H. C. Berg and E. M. Purcell, Physics of Chemoreception,
Biophysical Journal 20 (1977) 193–219.

For a review on precipitation, nucleation and growth of colloids see: A. P. Philipse, Particulate
Colloids: Aspects of Preparation and Characterization, in: J. Lyklema (Ed.), Fundamentals of
Colloid and Interface Science, Vol. IV (Elsevier, 2005).



Chapter 10
RandomWalks in External Fields

Brownianmotion comprises a sequence of randomly oriented steps (Fig. 4.5)—which
is why it is often compared to the walk of a (very) drunk man who stumbles in every
direction with equal probability. The man only makes these unbiassed steps when
stumbling on awide, horizontal street; on a sloping street his down-hill steps aremore
probable than up-hill ones.Andwhen theman has accidentally entered a narrow alley,
movements to the left and to the right are confined by hard walls that impose on our
pitiable friend a (quasi) one-dimensional random walk parallel to these walls.

Slopes and walls are examples of external fields that break the overall, on average
radial symmetry ofBrownian displacements in absence of external forces.Associated
with such a field is a potential; gravitational potential energy in the case of a sloping
street, and a steep repulsive ‘hard wall’ potential experienced by the drunkard when
he (of course, at random moments in time) attempts to penetrate a solid wall.

In this Chapter we will study colloids that diffuse up- or downhill a gradient in a
potential V ; this gradient corresponds to an external force K on each colloid:

−→
K � −−→∇ V ;

∮
dV � 0 (10.1)

Force K is a conservative one, implying that the integral of V over a closed
path is zero, as indicated, because the potential is a variable of state. In addition to
gravitational and hard-wall potentials, colloids may also be subjected to electrical or
magnetic forces, the latter being examined in Sect. 10.4 on Brownian rotations in a
magnetic field. However, an external force on a colloid can also stem from another
colloid, as in the case of charged spheres to be addressed in Sect. 10.2.
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10.1 One-Dimensional Diffusion

In Fig. 10.1 the Brownian motion of particles leads to a net diffusive transport in
the x-direction, from a source with constant concentration ρ0 at x �a to a sink with
concentration ρ =0 at x �a+L. In absence of a potential, the diffusion flux and the
concentration gradient in the steady state are:

jd � −D
dρ(x)

dx
� D

ρ0

L
; ρ(x) � ρ0(1 − x

L
) (10.2)

The external force K=−dV (x)dx on each particle produces the convective flux

jc � −ρ(x)u � −ρ(x)

f

dV (x)

dx
(10.3)

Thus the total steady-state flux j= jd + jc is given by

j � −D

[
dρ(x)

dx
+

ρ(x)

kT

dV (x)

dx

]
� constant (10.4)

In thermodynamic equilibrium the total flux is zero; for j=0 the solution of (10.4)
is the equilibrium number density profile:

ρeq(x) � ρ0 exp[−V (x)/kT ], (10.5)

which is an instance of the Boltzmann distribution. To find the concentration profile
ρ(x) in the non-equilibrium steady-state (j �� 0) we note that the profile must reduce
to (10.5) when the flux is zero; so as a trial solution we choose:

Fig. 10.1 Particles diffuse
in the x-direction from a
source with constant
concentration ρ0 across a
potential barrier of width L
into a sink where the particle
concentration remains zero

=
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ρ(x) � γ (x)ρev(x) � γ (x) exp[−V (x)/kT ], (10.6)

where γ (x) is a function that in equilibrium equals the concentration ρ0. Substitution
of (10.6) in (10.4) leads to the following differential equation for γ (x):

exp[−V (x)/kT ]
dγ (x)

dx
� − j

D
(10.7)

In view of the boundary condition γ (x � a) � ρ0 Eq. (10.7) yields:

γ (x) � ρ0 − j

D

x∫

a

exp[V (x ′)/kT ]dx ′ (10.8)

The magnitude of the steady-state flux follows from the second boundary condi-
tion, namely that γ (x � a + L) � 0 :

j � Dρ0∫ a+L
a exp[V (x)/kT ]dx

(10.9)

The steady-state concentration profile is obtained by substitution of (10.8) and
(10.9) in (10.6):

ρ(x)

ρeq(x)
� 1 −

∫ x
a exp[V (x ′)/kT ]dx ′

∫ a+L
a exp [V (x)/kT ]dx

(10.10)

Here ρeq(x) is the equilibrium Boltzmann distribution from (10.5). Note that for
V (x)�0 we recover the flux and the linear concentration profile in Eq. (10.2).

The delay factor. With respect to kinetics, the essential point is that the effect
of a potential is equivalent to a rescaling of the diffusion coefficient. We can rewrite
(10.9) as:

j � Deff
ρ0

L
; Deff � �1D (10.11)

Here Deff is an effective diffusion coefficient that accounts for the retardation of
particle transport due to the external potential. In (10.11) the upper case Greek letter
� denotes the dimension-less delay factor

�1 � 1

L

a+L∫

a

exp[V (x)/kT ]dx (10.12)

To make an estimate of this factor we note that for a high repulsive barrier Vmax

(see Fig. 10.1), the integral in (10.12) approximately equals (L/2) exp (Vmax/kT ).
Thus:
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Deff ≈ 1

2
D exp[−Vmax/kT ], for Vmax � kT (10.13)

This result reminds of the Arrhenius equation in chemical reaction kinetics,
where reaction rates are exponentially retarded by an activation energy barrier. Equa-
tion (10.13) informs us that, independent of the detailed shape of the potential V (x),
a repulsive barrier in the range 5–10 kT suffices to practically eliminate Brownian
diffusion across the barrier in Fig. 10.1.

Age of a Brownian floc. Particle clusters, of course, may also fall apart due to
thermal motion provided the attractive well is not too deep. We can estimate the life
time of a doublet from the time it takes for a particle to diffuse out of a well with
depth Vmax and a width comparable to its own radius:

τ ∼ R2

Deff
∼ ηR3

kT
exp[Vmax/kT ] � τCR exp[Vmax/kT ], (10.14)

where τCR is the configurational relaxation time for the colloids in absence of any
force field. This scaling relation also gives an indication for the temporal stability
of larger clusters or aggregates or particle gels. Such non-equilibrium structures
can be called permanent when the time τ from (10.14) is very much larger than
an observation time which is about 10−2–10−3 s for dynamic light scattering and
minutes for optical microscopy.

10.2 Radial Brownian Motion and Colloidal Stability

When two uncharged colloidal particles meet via Brownian motion, they will stick
together by the van der Waals attraction. The kinetics of this irreversible aggregation
was the subject of Sect. 9.2. However, when colloids carry electric surface charge,
they are surrounded by a diffuse clouds of oppositely charged counter ions that upon
overlap generate an repulsion1. When this repulsion outweighs the van der Waals
attraction the colloids are said to be stable, see also Fig. 10.2. This stability is not a
thermodynamic one but, instead, a kinetic one: for the large majority of Brownian
encounters the kinetic energy of the colloids is insufficient to approach each other
closely enough to feel the pull of the van der Waals force. Hence, after the encounter
colloids just freely diffuse away.

The radial delay factor. To calculate the factor by which a repulsion between
colloidal spheres slows down Brownian collision frequencies, we consider a sphere
diffusing in a radial potential V (r) induced by a sphere that is centered at the origin.
The steady state for radial diffusion of spheres towards the origin is

1Entropic because the repulsion stems from compression of an ideal ion gas between two approach-
ing surfaces.
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Fig. 10.2 Due to a potential
barrier Vmax two spheres,
diffusing in three
dimensions, cannot approach
each other sufficiently close
to irreversibly form a dimer
by the van der Waals
attraction

J � 4πr2D12

[
dρ(r )

dr
+

ρ(r )

kT

dV12(r )

dr

]
(10.15)

Here J is the total particle flux per second through a spherical envelope with
radius r, V 12(r) is the interaction potential between spheres 1 and 2, and D12 is their
relative diffusion coefficient. For the boundary conditions ρ(r=R12)�0, and ρ =0
in the bulk at infinite r, solution of (10.15) (exercise 10.1) leads to the steady-state
flux:

J � �rρ04πD12R12; R12 � R1 + R2, (10.16)

where R12 is the center-to-center contact distance. The dimension-less delay factor
�r is defined by

1

�r
� −R12

R12∫

∞

exp[V12(r )/kT ]

r2
dr , (10.17)

and is the three-dimensional, radial analogue of the delay factor in Eq. (10.12). Note
that �r � 1 for V 12(r)�0 such that the flux J reduces to the flux found earlier in
Chap. 9 for spheres without interaction (except for an irreversible sticking at contact).

Coulomb repulsions. An interaction for which the delay factor can be easily
evaluated is the repulsion between spheres 1 and 2 that carry, respectively, z1 and
z2 elementary charges on their surface. The Coulomb repulsive interaction energy
between the two spheres at center-to-center distance r is accordingly:

V12(r )

kT
� z1z2e2

4πεε0rkT
� z1z2

(
LB

r

)
; LB � e2

4πεε0kT
(10.18)
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Fig. 10.3 Centers of particles j move in a shear flow towards target particle i. Shear induced
flocculation is auto-catalytic: the larger the particle aggregate, the more rapid it will catch other
particles in a stirred solution

Here LB is the Bjerrum length, defined as the distance between two elementary
charges e at which their interaction energy equals the thermal energy kT , for charges
immersed in a solvent with di-electrical constant εε0. Solving integral (10.17) for
the Coulomb repulsion yields:

�r � y12
exp(y12) − 1

; y12 � z1z2

(
LB

R12

)
(10.19)

For identical spheres with valency z, the delay factor simplifies to:

�r � y

exp(y) − 1
; y � z2

(
LB

2R

)
(10.20)

The diffusion flux from (10.16) becomes for identical spheres:

J � ρ0
8kT

3η
�r � ρ0

8kT

3η

y

exp(y) − 1
; y � z2

(
LB

2R

)
(10.21)

This diffusive flux—and hence the collision frequency between spheres—dimin-
ishes dramatically with increasing sphere size. For a fixed surface charge density,
the sphere valency scales with the sphere radius as z~R2 such that y ~R3 and, con-
sequently, the flux in (10.21) scales as J~R3exp(–R3).

10.3 Brownian Motion in a Shear Flow

In Chap. 9 we have analyzed the fast flocculation of colloids that perform Brownian
motion in a quiescent solution. If the solution is stirred, shear forces increase the
flocculation rate, because velocity gradients in the solvent increase the collision
frequency of the colloids. Suppose a constant velocity gradient γ̇ �dv/dz is present
in the z-direction (see Fig. 10.3). Then the flux of particles j at height z in the direction
of sphere i centered at z �0 is:
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Fig. 10.4 Sketch
accompanying Eq. (10.22)

c jv(z)2

√(
R2
i j − z2

)
dz; v(z) � γ̇ z (10.22)

Integration of this expression (see also Fig. 10.4) gives the total flux of j-particles
to the i-sphere:

J ( j → i) � 4c j γ̇

Ri j∫

0

z

√(
R2
i j − z2

)
dz � 4

3
γ̇ R3

i j c j (10.23)

The corresponding rate constant is:

ki j � 4

3
γ̇ R3

i j (10.24)

We compare this ‘shear-induced’ rate constant to the purely diffusional rate con-
stant derived in Chap. 9:

(ki j )shear
(ki j )diff

� γ̇ R2
i j

3πDi j
≈ 4R3ηγ̇

kT
� 4τCRγ̇ (10.25)

Clearly for large particles (R >1 µm) shear-induced flocculation becomes impor-
tant. In practice, this type of flocculation appears to have an auto-catalytic character:
once flocculation has started (either by diffusion or stirring) further stirring strongly
accelerates the process. This is because of the R3—dependence in Eq. (10.25): the
larger the aggregate or floc the more rapid it will catch other aggregates in the stirred
suspension.

10.4 Brownian Magnets in a Magnetic Field

So far we have considered the effect of an external field on translational particle
diffusion; we will now address an example of a field that only couples to rotational
Brownian motion. It is a magnetic field that interacts with the magnetic moments of
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Fig. 10.5 Left: a dipole moment μ has its lowest energy when parallel to the external field H but
due to rotational Brownian motions, dipole moments adopt an equilibrium distribution in the polar
angular range θ =0 to θ =π . Right: Sketch of a magnetization curve;M is the average magnetization

per volume in the direction of
−→
H . Initially M increases linearly with a slope χ i; upon further

increase of H the angular dipole distribution progressively narrows until saturation magnetization
Ms is reached

magnetic colloids, for example, colloids composed of magnetic iron-oxide2. These
colloids have an embedded permanentmagneticmomentμ and the Brownianmotion
of such colloids can be envisioned as the thermal tumbling and turning of colloidal
compass needles.

Since these needles have no preferred orientations, the net magnetization of a dis-
persion of magnetic colloids is zero. To generate magnetization, magnetic moments
must be forced to line up by means of an external magnetic field

−→
H . When this field

is homogeneous, only a torque is exerted on the moments so only rotational diffusion
is affected; when the field is inhomogeneous a translational force is exerted on the
colloids as well.

Angular distribution function. The energy E of a (point) dipole −→μ in applied
field

−→
H is given by the vector product

E � −�μ . �H (10.26)

So the configuration with lowest energy is that of a dipole moment parallel to the
external field (Fig. 10.5); this is the ground state for a dipole at zero Kelvin. At finite
temperature, however, the dipole moment executes rotational Brownian motion as a
result of which dipole orientations adopt an equilibrium distribution of polar angles
in the range from θ =0 to θ =π (Fig. 10.5). Since the ends of dipole vectors having
the same orientation θ , end up in an annular area 2πθdθ (Fig. 10.5), the number
of these vectors is proportional to that area. Therefore the distribution function for
dipole orientations is of the form:

2B. Luigjes et al., J. Phys.: Condens. Matter 24 (2012) 245104.
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P(θ ) � C exp[( �μ . �H )/kT ]2π sin θdθ � C exp[(α cos θ ]2π sin θdθ (10.27)

HereC is a normalization constant (Exercise 10.5) andα is the ratio of themaximal
energy of a dipole in the external field, to the thermal energy kT :

α � μH

kT
(10.28)

The Langevin function. The contribution of a dipole to the net magnetization
induced by the field H is the component of the dipole moment parallel to the field
which, as can be seen in Fig. 10.5, equalsμcos θ .The average value of this component
is3 μ<cos θ>, where the average cosine of the polar angle between dipoles and field
equals (exercise 10.3):

< cos θ >�
∫ π

0 cos θ exp(α cos θ ) sin θdθ∫ π

0 exp(α cos θ ) sin θdθ
� �(α) (10.29)

Here the Greek uppercase letter � denotes the so-called Langevin function which
is defined by4:

�(α) � coth(α) − 1

α
(10.30)

For a liquid dispersion with a number density ρ of colloids with an embedded
permanent magnetic moment, the net magnetizationM per volume of dispersion is:

M � ρμ�(α) (10.31)

At strong external fields such that α �1, the Langevin function approaches
Λ(α)�1, signifying that all dipoles are aligned parallel to the field. Then the colloidal
dispersion has reached its maximal or saturation magnetization Ms:

Ms � ρμ, forα � 1 (10.32)

In a weak external field (α <<1) thermal angular displacements of dipoles are
significant. From the weak-field limit of the Langevin function (exercise 10.4)

�(α) � α

3
, forα � 1, (10.33)

it follows that the initial linear slope of the magnetization curve (Fig. 10.5), also
referred to as the initial susceptibility, is given by:

3It is assumed here that all dipole moments have the same value μ.
4coth(x)�cosh(x)/sinh(x)� (ex +e−x)/(ex − e−x).
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χi � M

H
� ρμ2

3kT
(10.34)

Colloid number densities ρ are usually not accurately known5 but ρ can be elim-
inated by scaling the measured initial susceptibility on the saturation magnetization:

χi

M
� μ

3kT
(10.35)

This determination of magnetic moments only works if the distribution of mag-
netic particle moments is sufficiently narrow. In a mixture of magnetic moments, the
large dipole moments will align at low fields and, hence, dominate χ i whereas weak
moments will only start to contribute on approach of the saturation magnetization.

10.5 Gravity

In practice, many colloids (like those in paints, clays and dairy products) have enough
mass to feel the pull of the Earth. Hence the haphazard Brownian motion of these
colloids competes with a particle flux that is directed towards the center of Earth. In
equilibrium we have the force balance

dπ (h)

dh
� −(�m)gρ(h) (10.36)

Hereπ (h) andρ(h) are, respectively, osmotic pressure andparticle number density
at altitude h, �m is the buoyant particle mass and g is the gravitational acceleration.

Equation of state. The force balance (10.36) harbors the osmotic equation of
state (OES), i.e. the dependence of osmotic pressure π (ρ) on colloid concentration.
Integration of (10.36) yields:

π (h) � (�m)g

∞∫

h

ρ(h′)dh′ (10.37)

In words: the osmotic pressure exerted by particle number density ρ(h) at height
h carries the buoyant weight of particles in the column from h to infinity6. From
an experimentally determined concentration profile ρ(h) one can then retrieve the
OES7. So here the gravitational field is employed to gauge the pressure exerted by

5The experimental concentration measure is the colloid weight concentration; its conversion to a
number density requires the particle mass density which is not easy to determine.
6‘Infinity’ is here an altitude high enough to leave the particle profile behind and enter pure solvent.
7For an example of this osmotic pressure measurement by centrifugation, see Piazza R. Bellini T.
and Degiorgio V. Equilibrium Sedimentation Profiles of Screened Charged Colloids. A Test of the
Hard-Sphere Equation of State, Phys. Rev. Lett. 71 (1993) 4267.
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Fig. 10.6 For a charged colloid in free Brownian motion (left) its thermally fluctuating counter ion
cloud remains on average spherically symmetric. The gravity field (right) biases diffusive steps of
colloids towards the earth but has no effect on the virtually weightless ions that tend to stray into free
space. Electro-neutrality, however, orders the ions to stay in the colloid’s vicinity. In equilibrium,
centers of positive and negative ion distributions no longer coincide, leading to an electric field that
lifts up the colloid

Brownian particles; in Sect. 11.3 we will witness the use of an external field in the
form of a membrane for that purpose.

Barometric profile. We continue with non-interacting colloids, with the EOS
π � ρkT, for which the solution of (10.36) is the barometric profile that we already
encountered in Sect. 2.3:

ρ(h) � ρ0 exp

(−h

lg

)
; lg � kT

(�m)g
, (10.38)

where ρ0 is the colloid number density at zero altitude. One interesting—and often
overlooked—point is that ideality of colloids is a necessary condition for the baro-
metric profile (10.38) to hold, but it is not a sufficient one: the colloids must also
be uncharged. When colloids carry electrical charge the equilibrium sedimentation-
diffusion (SD) profile is non-barometric, even at infinite dilution. The physical reason
for this is that gravity induces in the SD-profile an internal electric field that lifts up the
Brownian particles. This interesting phenomenon is due to the huge mass difference
between colloids and ions, as explained in the legend of Fig. 10.6.

Charged colloids. Consider a solution with a mixture of three species: negatively
charged colloids with charge number z and number density ρ, monovalent cations
with concentration c+ and monovalent anions with concentration c−. The solution
is in equilibrium with an external reservoir with total ion concentration 2cs—in a
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sedimentation cell this reservoir is the supernatant solution devoid of colloids at high
altitude. Suppose an electrical field with magnitude E acts on the colloids than the
force balance on non-interacting colloids reads:

kT
dρ(h)

dh
� −(�m)gρ(h) − zeEρ(h); E � −d�

dh
(10.39)

Here e is the proton charge and ψ the electrical potential and E the electric field.
The solution of (10.39) is the SD-profile:

ρ(h) � ρ0 exp

[−h

lg
+ z(ϕ − ϕ0)

]
; ϕ � e�

kT
(10.40)

Here ϕ and ϕ0 are reduced values of the potentials ψ and ψ0 at, respectively,
altitudes h and h=0. Further, ρ0 is the colloid number density at h=0. The profile
in (10.40) is non-exponential because the electrical potential depends on the colloid
concentration and, consequently, also on altitude. The potential follows from the
force balance for ideal, weightless ions in an electric field:

−kT
dc±
dx

± ec±E � 0, (10.41)

which entails the equilibrium ion density profiles:

c± � csexp[ ∓ ϕ] (10.42)

The SD-profile as a whole must be electrically neutral which implies:

−zρ(h) + c+ − c− � 0 (10.43)

From (10.42) and (10.43) we obtain the potential as:

ϕ � arcsinh

(
− zρ(h)

2cs

)
(10.44)

Equations (10.40) and (10.44) describe a concentration profile that is inflated
in comparison to the barometric profile in (10.38). This is because the macroscopic
electric field inside the profile exerts a force on the colloids that is oppositely directed
to gravity (Fig. 10.6). Thus the field reduces the buoyant mass of the particles. This
reduction becomes more significant at lower salt concentration and vanishes at high
ionic strength (exercise 10.6). If the induced field compensates the particle mass
(exercise 10.6) the colloids are weightless and freely perform Brownian motion as
if no external field was present.
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10.6 Exercises

10.1 Solve the differential equation in (10.15) V(r) to find the steady-state flux in
(10.16). Employ the boundary conditions ρ(r=R12)�0, and ρ =0 in the bulk
at infinite r.

10.2 Derive the delay factor in (10.17) for ions with equal radii R and valency z.
Also verify (10.19).

10.3 Verify the calculation of<cos θ> in (10.29).
10.4 Verify the weak-field limit of the Langevin function in (10.33).
10.5 Determine the normalization constant C in (10.27).
10.6 (a) Show that for high salt concentration cs theSD-profile in (10.40) approaches

the barometric distribution (10.38). (b) Estimate the field strength needed to
reduce the buoyancy in water of C-spheres from Table 1.1 to zero. Assume
that the spheres carry one negative surface charge per nm2.

10.7 (a) The barometric profile is a Boltzmann distribution, so the distribution func-
tion has the form P(h)�C exp(−Energy/kT); C �constant. Here P(h) is the
distribution function for particles at height h; k is the Boltzmann constant.
Which energy term should we substitute here for ideal, uncharged particles?
(b) What is the meaning of P(h) dh?
(c) Calculate the constant C via the normalization:

∫
P(h)dh�1

(d) Calculate the average height<h>of the particles above the Earth’s surface
located at h=0.
(e) Evaluate<h>for nitrogen particles and for colloids in the form of small
water droplets with a diameter of 1 µm and mass density 1 g/ml in an atmo-
sphere at T �298 K. Discuss the two outcomes.
(f)Derive a formula for the root-mean-square height of particles in a barometric
distribution.
(g) Compute the average gravitational potential energy of particles in the dis-
tribution.
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Chapter 11
Brownian Particles and Van ’t Hoff’s
Law

The inherent thermal motion of Brownian particles brings about both diffusion and
osmotic pressure, phenomena that for non-interacting particles are quantified by,
respectively, Einstein’s diffusion coefficient and Van ’t Hoff’s law:

D � μkT ; π � ρkT (11.1)

The diffusion coefficient of one colloid is found bymultiplying the thermal energy
kT with the mobility coefficient

1
μ, determined by the surrounding medium; for the

osmotic pressure π jointly exert by the colloids, the multiplier is the colloid number
density ρ. So one can say that diffusion and pressure of ideal particles are two sides of
the same thermal coin. This is also illustrated by Einstein’s derivation of the diffusion
coefficient D �μkT in Chap. 6: a crucial step in the derivation is the assumption of
the validity of Van ’t Hoff’s osmotic pressure law π � ρkT , via which the thermal
energy kT enters the diffusion coefficient. One could also reverse the argument and
assume that D �μkT : then analysis of the equilibrium profiles from Fig. 6.1 yields
Van ’t Hoff’s law.

There is something to say to proceed from π to D rather than vice versa because
we have independent derivations of Van ’t Hoff’s osmotic pressure law. Chapter 3,
for example, showed how the ideal pressure law for gases and solutions can be found
from the momentum transport by thermal particles. We will discuss in this Chapter
two additional derivations of Van ’t Hoff’s law that are quite different in nature from
the kinetic treatment in Chap. 3. The first is based on bulk thermodynamics for the
solvent in an osmotic equilibrium; the second is a statistical argument that explicitly
invokes the Brownian particles to calculate the pressure they exert. For the ‘solvent
route’ some results from the thermodynamics of dilute dilutions are needed that will
be reviewed first.

1Note that here μ denotes the mobility for both translational and rotational motions.
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Fig. 11.1 Work done to increase the pressure on an incompressible solvent is equivalent to the
work needed to lift extra weight Gf −Gi to height h

11.1 Thermodynamics of Dilute Solutions

Osmosis is the spontaneous mixing of solution and solvent and, as any naturally
occurring process, is able to deliver work. The maximal work, it will be recalled,
is the work produced in a reversible, quasi-static process. In what follows the term
‘work’ always denotes this reversiblework. The otherwork term involved in osmosis,
in addition to mixing, relates to the increase of pressure on a solution.

Pressure-work. We evaluate the work needed to increase the pressure p in an
incompressible solution from an initial value pi to a final state with value pf. For
the path that leads from state i to state f we select the following gravitational route.
A weight Gi is brought from height h �0 to height h, on a piston resting on an
incompressible fluid, see Fig. 11.1. The requiredwork equals the increase in potential
energy of the weight in the gravity field:

wi � G ih � piAh � piV, (11.2)

whereA is the piston area andV the solution volume.Next the final state is established
by lifting a weight Gf to height h which involves the work:

wf � Gfh � pfV (11.3)

Hence the reversible work needed to go from initial to final state is

wp � wf − wi � (p f − pi)nV , (11.4)

for nmoles of incompressible solvent with molar volume V . Note that this pressure-
work is positive: work has to be performed on the solvent which by convention is
counted as positive.

Dilution-work. The reversible work wd associated with spontaneous dilution of
a solution by solvent can be evaluated employing the thermodynamic cycle depicted
in Fig. 11.3. Here one mole of solvent is evaporated from a solution to its equilibrium
vapor phase (step E), then transferred to the vapor phase above pure solvent (step
I) and condensed onto that solvent (step C). The cycle is closed by relocating the
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Fig. 11.2 The hydrostatic pressure exerted by the solvent column at the right equals the osmotic
pressure of the solution, and counteracts the spontaneous migration of solvent from left to right. In
osmotic equilibrium the net water flux across the membrane is zero

solvent to the solution (step D). Since E and C are opposite steps taken in a liquid-
vapor equilibrium they involve no net work. Since the total work of the closed cycle
must be zero, work wd in step D is the opposite of the work in step I . The latter
follows from Raoult’s law for the vapor pressure of a solution.

Raoult’s law. Consider (Fig. 11.3) the equilibriumbetween a solutionwith solvent
mole fraction xs and its vapor with pressure p. The molecules in the vapor, and the
solutes in solution are ideal particles. For water as solvent, equilibrium between
solution (L) and the vapor (G) phase can be represented by:

H2O|L � H2O|G, (11.5)

with an equilibrium constant

K (T ) � [H2O]G
[H2O]L

∝ p

[H2O]L
, (11.6)

that, as any equilibrium constant, depends on temperature only. In a mixture of ns
water molecules and nf solute particles, the evaporation of water will be a fraction
ns/(ns + nf) of that from pure water. For K (T ) in (11.6) to remain constant also the
vapor pressure in (11.6) has to lower by the same fraction. Thus if p∗ is the vapor
pressure of pure water, the vapor pressure of the solution at the same temperature is:

p � ns
ns + nf

p∗ � xs p
∗, (11.7)

where xs is the solvent mole fraction in the solution. Equation (11.7) is known as
Raoult’s law for the vapor pressure of a solution—which is always below the solvent
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Fig. 11.3 Left: a pure solvent in equilibrium with its vapor pressure p*. Right: a solution generates
a lower equilibrium vapor pressure p <p*. The work done in step D to transfer one mole of solvent
to a solution is the opposite of the work done to increase in step I in which the pressure of one mole
of vapor is raised from p to p*

vapor pressure. Employing Raoult’s law we can infer that the work needed to bring
n moles of ideal gas from pressure p to p* (step I in Fig. 11.3) is:

w � −
∫

pdV � nRT

p∗∫

p

p−1dp � −nRT ln xs (11.8)

The work of dilution (step D in Fig. 11.3) therefore equals:

wd � nRT ln xs (11.9)

The dilution work is negative, indicative of the spontaneous mixing of solvent
and solution that can deliver work to the surroundings.

11.2 Osmotic Pressure Gauged via the Solvent

The spontaneous migration (osmosis) of solvent into a concentrated solution builds
up a counter-acting hydrostatic pressure such that in osmotic equilibrium (Fig. 11.2)
the net water flux is zero. Osmosis involves two work terms namely the work wp in
(11.4) needed to increase the pressure on a solution and, secondly, the work wd from
Eq. (11.9) associated with the spontaneous dilution of a solution.

Osmotic equilibrium. In equilibrium there is no net transport of solvent across
the membrane in Fig. 11.2 so the overall work must be zero:

wp + wd � (p f − pi)nV + nRT ln xs � 0 (11.10)
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Since the pressure drop across the membrane in Fig. 11.2 is pf −pi �π it follows
from (11.10) that the osmotic pressure exerted by ideal solutes equals:

π � − ln xs
V

RT (11.11)

The mole fraction of solutes equals xf �1−xs; since for a dilute solution xs is a
very small fraction, the logarithmic term can be linearized:

π � − ln(1 − xf)

V
RT � xf

V
RT, for xf � 1 (11.12)

Since for a very dilute solution of nf moles in ns moles of solvent

xf � nf
nf + ns

� nf
ns

, for nf � ns, (11.13)

it follows that

π � ρkT, (11.14)

where ρ � nf/V is the number density of solute particles. We have derived here
Van ’t Hoff’s ideal pressure law (11.14) from the thermo-dynamic equilibrium of
the solvent. Though Brownian particles are not explicitly addressed in the derivation
above, evidently the solutes in Fig. 11.2 must be in thermal motion. If by some
unpleasant act of sorcery, colloids would be deprived of their Brownian motion and
reduced to static entities, the pressure difference in Fig. 11.2 would disappear, and
the solution would not be able to draw in solvent.

11.3 Osmotic Pressure from Brownian Motion; Vrij’s
Statistical Approach

In Sect. 11.2 we treated osmotic pressure via a thermodynamic point of view, as was
also done by Van ’t Hoff himself 2 (Fig. 11.4). Here we will, following A. Vrij — see
references, derive Van ’t Hoff’s law via a statistical approach to Brownian motion
of particles in the neighborhood of the same semi-permeable membrane employed
for the thermodynamic route in Sect. 11.2. Such a membrane can be seen as a field
of force that only affects the Brownian particles, not the solvent in which they are
immersed.

Membrane force field. Suppose a membrane with thickness x � δ has its center
plane located at x �0 (Fig. 11.5). Selectivity of the membrane implies that colloids
arriving by diffusion at location x ≈ δ will experience a sharply rising repulsion. At
distances x � δ any repulsion between membrane and colloid obviously vanishes.

2J. H. Van ’t Hoff, Zeischrift für physikalische Chemie, vol. i. (1887), pp. 481–508.
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Fig. 11.4 Jacobus Henricus Van ’t Hoff (1872–1911) received in 1905 the first Chemistry Nobel
prize for his work on osmotic pressure and thermo-dynamics of dilute solutions

Fig. 11.5 A semi-permeable membrane exerts a force K (x) on colloids that is steeply repulsive
for colloids approaching the membrane within a distance x ≈ δ, and that vanishes far away from
the membrane. These two features of K (x) suffice to calculate the osmotic pressure exerted by the
colloids, see Sect. 11.3

Imagine a container of (further unspecified) thermal background particles that
exert a pressure p on both sides of a large vertical membrane suspended in the
container. We add Brownian particles to the container; their concentration remains
low such that the effect of inter-particle interactions is negligible. By Brownian
motion a colloid arrives at a distance x (Fig. 11.5) where it experiences a force K(x)
due to the membrane.
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Potential of mean force. Along its diffusive path, a colloid samples numerous
configurations and orientations of surrounding background particles, so an ensemble
of colloids experiences at x a certainmean forceKMF(x). The corresponding potential
is the potential of mean force VMF(x):

KMF(x) � −dVMF(x)

dx
, (11.15)

The potential VMF(x) is the minimal, reversible work needed to bring a colloid
from infinity to position x, averaged over all configurations and orientations of the
background particles. The mean force exerted on colloids in a slab with thickness dx
at a distance x from the membrane with area A equals:

FMF � KMF(x)ρ(x)Adx, (11.16)

where ρ(x) is the local colloid number density, which satisfies the Boltzmann distri-
bution:

ρ(x) � ρ0 exp[−VMF(x)/kT ] (11.17)

Here ρ0 is the bulk density at x →∞. From Eqs. (11.15) to (11.17) we find for
the total force on all Brownian particles due to the membrane:

Ftot � A

∞∫

0

KMF(x)ρ(x) dx � −Aρ0

∞∫

0

dVMF(x)

dx
exp[−VMF(x)/kT ] dx (11.18)

Boundary conditions. The two obvious limiting conditions are that any force
exerted by amembrane vanisheswhen colloidswander off to infinity, and that colloids
experience a very steep repulsion when their centers approach the membrane surface
within a distance equal to the colloid radius R:

VMF(x → ∞)

kT
� 0;

VMF(x ≤ R)

kT
� ∞ (11.19)

Hence (11.18) yields

Ftot � Aρ0kT (exp[−VMF(x → ∞)/kT ] − exp[−VMF(x ≤ R)/kT ]) � Aρ0kT
(11.20)

According to Newton’s third law, the total force (11.20) exerted by the membrane
on the colloids, and directed into the solution, equals in magnitude the total force
exercised by the colloids on the membrane. Therefore the excess pressure π exerted
by Brownian particles on the plate equals:

π � Ftot

A
� ρkT, (11.21)
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which is Van ’t Hoff’s law.3 It should be noted that (1) the particles in this derivation
are of arbitrary size, shape and composition and (2) the force K(x) exerted by the
membrane remains unspecified.

What this derivation illuminates is that addition of non-interacting thermal parti-
cles increases the pressure with ρ0kT , independent of the nature of the surroundings
of the particles, as long as the effect of this surroundings is averaged out in the deter-
mination of the potential of mean force. Stated differently, whenever background
particles do not affect the mean force between a Brownian particle and a surface, the
excess pressure is given by (11.21). Further, within this statistical approach there is
no difference between the ideal gas law andVan ’t Hoff’s osmotic pressure law. In the
former case, the background is empty space which obviously does not influence the
mean force between colloid and the plate. In the latter case, the background system is
a thermal molecular fluid that does not affect the mean force between dilute colloids
and plate either.

Exercises

11.1 Verify that (11.14) follows from (11.11).
11.2 Where in the derivation in Sect. 11.3 is it assumed that colloids are ideal

solutes?
11.3 A dispersion contains a weight concentration ctot of colloids that are poly-

disperse in size. Show that the osmotic pressure of the dispersion yields the
number averaged molecular mass Mn.

11.4 What is the weight concentration and osmotic pressure of a solution of glucose
(M �180 g/mol) that is isotonicwith a 9w%solution ofNaCl (M �58 g/mol)?
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Appendix A
Moments, Fluctuations and Gaussian
Integrals

Gaussians. The Maxwell-Boltzmann distributions (Fig. 3.7) from Chap. 3 and the
bell-shaped solutions (Fig. 5.3) of the diffusion equation are members of a whole
family of so-called Gaussian or normal distributions defined as

GðsÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp½� 1
2

Ds
r

� �2

�; Ds ¼ s�\s[ ðA:1Þ

Here r is the standard deviation of the distribution:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
\s2 [ �\s[ 2

p
ðA:2Þ

An exponent of the form exp(−x2) is called a Gaussian function and its integral is
the Gaussian integral

I ¼
Zþ1

�1
e�x2dx ðA:3Þ

This integral can be evaluated via its quadratic:

I2 ¼
Zþ1

�1
e�x2dx

0
@

1
A

2

¼
Zþ1

�1

Zþ1

�1
e�ðu2 þ v2Þdu dv ðA:4Þ

This double-integral is the sum over the whole area of the u-v plane, a sum-
mation that can also be done by employing polar coordinates. On substitution of

r2 ¼ u2 þ v2; dudv ¼ rdrdh; ðA:5Þ
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we obtain:

I2 ¼
Z2p
0

Zþ1

0

e�r2rdr dh ¼s¼r2 2p
Zþ1

0

1
2
e�sds ¼ p ðA:6Þ

Hence the Gaussian integral from (A.3) equals

Zþ1

�1
e�x2dx ¼ ffiffiffi

p
p ðA:7Þ

Employing the substitution x2 = ay2, where a is a constant, the Gaussian integral
modifies to:

Zþ1

�1
e�ay2dy ¼

ffiffiffi
p
a

r
ðA:8Þ

Moments. In Chap. 3 we have calculated the first moment <u> and the second
moment <u2> of the distribution of particle speeds, the latter leading to the
rms-speed urms. The average speed <u> is numerically different from urms (see
below) and we have seen that also their areas of application differ. The first moment
is employed for time-dependent processes such as collision frequencies (Sect. 3.2);
the second moment of the speed distribution is set into action to calculate features
that involve kinetic energies, such as the pressure exerted by particles (Sect. 3.3).

Standard deviation. The width of any distribution (here of speeds u) can be
quantified by its absolute standard deviation (SD), the quadratic of which is defined
as:

r2u ¼ \u2 [ �\u[ 2 ðA:9Þ

So the SD is the second moment of the speed distribution minus the square of the
first moment (the average speed). The quadratic of the relative SD is given by:

ru
\u[

� �2
¼ \u2 [

\u[ 2 � 1 ðA:10Þ

The quadratic of the relative SDV must be a positive number; this necessitates
the validity of the following inequality

u2
� �� uh i2 ðA:11Þ
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In words: the average of the squared speed always exceeds the square of the
average speed.

Fluctuations. It is an instructive exercise in statistical fluctuations to give an
additional proof of the inequality in (A.11), in particular because the inequality
applies to any statistical distribution. For the speed distribution these fluctuations
are defined as the (positive or negative) differences Du between individual particle
speeds and the average speed of all particles (Fig. A.1);

Du ¼ u�\u[ ðA:12Þ

This definition of fluctuations entails that their average over all particles is zero:

\Du[ ¼ \u[ �\u[ ¼ 0 ðA:13Þ

In terms of the fluctuations Du in equation (A.12), the average of the squared
speed can be written as:

\u2 [ ¼ \ \u[ þDuð Þ2 [
¼ \u[ 2 þ 2\u[\Du[ þ\ Duð Þ2 [ ¼ \u[ 2 þ\ Duð Þ2 [

ðA:14Þ

Since the average of the quadratic terms (Du)2 must be positive, it indeed follows
that <u2> > <u>2; only when all speeds are the same, both averages are equal.

The moment expansion. There is a very useful approximation for computing
moments from the relative SD, for narrow distributions of arbitrary shape.

Fig. A.1 Dots represent individual particle speeds at a certain moment in time, fluctuating around
the average speed <u>; for particle k the magnitude of the fluctuation is Duk < 0. Upon squaring
speeds to u2 such negative fluctuations become positive quantities such that the root-mean-square
speed urms always speed
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For a normalized distribution function P(a) of a variable a, the nth moment of a
distribution is defined by:

\an [ ¼
Z

PðaÞanda ðA:15Þ

The fluctuations D = a − <a> satisfy :

Z
PðaÞDda ¼ 0 ðA:16Þ

Dividing the nth moment by the first moment (the number average of the dis-
tribution) to the power n we obtain:

\an [
\a[ n

¼
Z

PðaÞ 1þ D
\a[

� �n

da ðA:17Þ

Truncating the binomial expansion after the first two terms

1þ D
\a[

� �n

¼ 1þ n
D

\a[
þ nðn� 1Þ

2
D2

\a[ 2 þ � � � ; ðA:18Þ

yields

\an [
\a[ n ¼ 1þ nðn� 1Þ

2
\D2 [
\a[ 2

¼ 1þ nðn� 1Þ
2

\a2 [ �\a[ 2

\a[ 2

	 

;
\D2 [
\a[ 2 � 1

ðA:19Þ

So from the average value and the relative SD of a distribution one can compute
all higher moments, without specifying the distribution function. Note that the
linear term in (A.18) vanishes in the integration (A.17) because of (A.16). Thus for
the approximation (A.19) to apply it is the quadratic term that must be small, as
indicated in (A.19). The implication is that (A.19) is applicable to fairly broad
distributions with a relative SD of, say, 10–20%.

158 Appendix A: Moments, Fluctuations and Gaussian Integrals



Appendix B
Summary Vector Calculus

The following summary primarily relates to results from vector calculus that are
employed in this book. A vector~v can be represented by the triplet

~v ¼ v1; v2; v3½ � ; ðB:1Þ

where v1 is the component of the vector along axis 1. An alternative, convenient
notation is:

~v ¼
X
i

~divi; i ¼ 1; 2; 3 ðB:2Þ

Here~d1;~d2 and~d3 are unit vectors in the direction of, respectively, axes 1, 2 and
3. The scalar (or dot) product of two vectors is:

~v:~w ¼
X
i

vi wi; ðB:3Þ

This outcome for a dot product follows from the dot product of the unit vectors

~di:~dj ¼ dij; ðB:4Þ

in which dij is the Kronecker delta; dij ¼ 0 for i 6¼ j and dij ¼ 1 for i ¼ j. The vector
(or cross) product of ~v and ~w is also a vector, with components given by the
determinant:

~v � ~w ¼
~d1 ~d2 ~d3
v1 v2 v3
w1 w2 w3

������
������ ðB:5Þ
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The vector differential operator ~r (‘del’) is defined in Cartesian coordinates as:

~r ¼
X
i

~di
@

@xi
ðB:6Þ

If s is a scalar function of x1, x2 and x3 then its gradient (‘grad’) is:

~rs ¼
X
i

~di
@s
@xi

ðB:7Þ

If ~v is a function of the coordinates xi then its divergence (‘div’) is the dot
product:

~r:~v ¼
X
i

@vi
@xi

ðB:8Þ

The curl of the vector is the cross product

~r�~v ¼
~d1 ~d2 ~d3
@
@x1

@
@x2

@
@x3

v1 v2 v3

������
������ ðB:9Þ

For example, the component of curl~v in the direction of ~d1 is:

~r� ~v
h i

1
¼ @v3

@x2
� @v2

@x3

The Laplacian of a scalar s is the divergence of its gradient:

~r: ~rs ¼
X
i

@2

@ x2i
s ¼ r2s; ðB:10Þ

where

r2 ¼ @2

@x21
þ @2

@x22
þ @2

@x23
ðB:11Þ

is the Laplacian (read: ‘del squared’) in Cartesian coordinates. The Laplacian of a
vector field~v is defined as:

r2~v ¼ ~r ~r:~v
� �

� ~r� ~r�~v
� �h i

ðB:12Þ

This definition is valid for curvilinear as well as rectangular coordinates.
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The divergence theorem. Let S be a surface (with unit outward normal ~n),
which encloses a region with volume V. ThenZ

S

~F:~n dS ¼
Z
V

~r:~F dV ; ðB:13Þ

which is called the divergence theorem; its physical meaning is further explained in
Chap. 5. A similar identity is:Z

S

p~n dS ¼
Z
V

~rp dV ðB:14Þ

where p is a scalar function.
Spherical Coordinates ðr; h;/Þ
For problems involving spherical symmetry such as the sphere rotation in Sect. 8.2
and the diffusion towards a spherical target in Sect. 9.3, it is convenient to work
with polar coordinates r; h;/ (Fig. B.1). Below is a list of vector operations in terms
of these coordinates.

~r ¼~dr
@

@r
þ~dh

1
r
@

@h
þ~d/

1
r sinh

@

@/
ðB:15Þ

~rp ¼ @p
@r

~dr þ 1
r
@p
@h

~dh þ 1
r sinh

@p
@/

~d/ ðB:16Þ

~r �~u ¼ 1
r2

@

@r
r2ur
� 
þ 1

r sinh
@

@h
uhsinhð Þþ 1

r sinh

@l/
@/

ðB:17Þ

Fig. B.1 Spherical coordinates (left) and their corresponding unit vectors (right)
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r2p ¼ 1
r2

@

@r
r2
@p
@r

� �
þ 1

r2sinh
@

@h
sinh

@p
@h

� �
þ 1

r2sin2h

@2p

@/2 ðB:18Þ

~r�~u ¼ 1
r2 sinh

~d r~dh r sinh~d/
@
@r

@
@h

@
@/

ur ruh r sinhu/

������
������ ðB:19Þ

½r2~u�/ ¼ /� component of the Laplacian of~u

¼ 1
r2

@

@r
r2
@u/
@r

	 

þ 1

r2
@

@h
1

sin h
@u/ sin h

@h

	 

þ derivatives with respect to/

ðB:20Þ

sr/ ¼ r/� component of the stress inNewton0s law

¼ �g r
@

@r
u/
r

h i
þ derivative to/

ðB:21Þ

Cylindrical Coordinates ðr; h; zÞ (Fig. B.2)

~rp ¼ @p
@r

~dr þ 1
r
@p
@h

~dh þ @p
@z

~dz ðB:22Þ

~r �~u ¼ 1
r
@

@r
rurð Þþ 1

r
@uh
@h

þ @uz
@z

ðB:23Þ

r2p ¼ 1
r
@

@r
r
@p
@r

� �
þ 1

r2
@2p

@h2
þ @2p

@z2
ðB:24Þ

½r2~u�z ¼ z� component of the Laplacian of~u

¼ 1
r
@

@r
r
@uz
@r

	 

þ 1

r2
@2uz
@h2

þ @2uz
@z2

ðB:25Þ

Figure B.2 Cylindrical
coordinates and their corre-
sponding unit vectors
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srz ¼ rz� component of the stress inNewton0s viscosity law

¼ �g
@ur
@z

þ @uz
@r

	 
 ðB:26Þ
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Appendix C
Answers to Selected Exercises

Chapter 1

1:1 M: 2.5 � 10−5 cm2/s; N: 4.9 � 10−11 m2/s; C: 2.5 � 10−13 m2/s; G: 2.5 �
10−16 m2/s.

1:2. Rms displacement = \r2 [ 1=2 ¼ 6Dtð Þ1=2: For an M-sphere: 0.73 cm in one
hour and 68.1 cm in one year. For an N-sphere: 0.10 cm, respectively 9.7 cm.

1:3 ðaÞ n ¼ 1015; ðbÞ 105
1:4 For Z spheres with volume Vp in a vessel volume the sphere volume fraction is

/ ¼ ZVp=V . So the molar volume is (NAV is Avogadro’s number):

VM ¼ NAVð4=3ÞpR3

0:64

M : VM ¼ 3:9 cm3=mol;N : 0:49m3=mol; C : 3:94m3=mol;

G : 3:94 km3=mol

Chapter 2

2:1 For a grain radius of 50 lm the displacement in one hour is:
\x2 [ 1=2 ¼ 5:9 lm. So you don’t see grains moving when you peer through
a microscope; what Brown observed was not motion of grains, but tiny par-
ticles released by them, see Sect. 2.1.

2:2 (a) See the derivation of the barometric profile in Sect. 10.5; (b) 7.9 km,
respectively 50 lm, taking T = 298 K.

2:3 The colloid indeed dissipates motional energy to the solvent but—in equi-
librium—receives on average the same kinetic energy in return.

2:4 The phenomenological Second law of thermodynamics states that no process
is possible with the only result that heat withdrawn from a reservoir is fully
converted to work. A bouncing ball comes to a stop when all its kinetic energy
has been dissipated as heat to the surroundings; the Second Law forbids that
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afterwards the ball spontaneously jumps upwards by conversion of (part of)
that dissipated heat to its kinetic energy. A Brownian particle, however, loses
kinetic energy to its surroundings and receives on average the same quantity
such that its average speed remains constant. Brownian motion, therefore,
shows that the Second Law is not an absolute one: a soccer ball spontaneously
jumping up from the table is not an impossible event: its occurrence is simply
extremely unlikely. The smaller the ball, however, the more likely this event
becomes: a colloidal ball randomly jumps over the table.

2:5 Lucretius does not describe Brownian motion: movements of visible dust
particles in sunbeams are convective motions due to air-currents set up by
temperature differences.

Chapter 3

3:1 (a) p ¼ 4� 10�23 bar. (b) For d � 10¼10 m : k � 23� 109 km.
(c) \u[ ¼ 178 m/s ) z ¼ \u[ =k ¼ 8� 10�12 s�1. The time elapsed
between two collisions is of order 106 years.

3:2 (a) \vf [ ¼ MH2O

d�NAv
� 30� 10�30 m3 ¼ 30 A

	� �3

; 1A
	
¼ 10�10 m;

(b) It is not: water is hardly compressible….

(c) From the ideal gas law: \vf [ ¼ kT
p ¼ 4:12�10�21J(=Nm)

105 Nm�2 ¼
4:12� 104 Å

� 
3
.

(d) Particles in liquid water are at an average distance of about
\vf [ 1=3 � 301=3 Å ¼ 3:1 Å. For the vapor:\vf [ 1=3 ¼ 34:5 Å.

3:3 z = 1.5 � 109 s−1.
3:4 k

d ¼ 1ffiffi
2

p
6/

¼ 11:8.

M-spheres : k ¼ 2:4 nm; N : 117:9 nm; C : 4:7 lm; G : 2:4 cm:

3:5 (a) \u[ ¼ 122:5 km=h ; (b) \u2 [ 1=2 ¼ 124:7 km=h.
3:6 \Ekin [ per mole ¼ ð3=2ÞkT � NAV ¼ ð3=2ÞRT ¼ 3:7 kJmol�1 at T ¼

300K.
3:7 Determine the maximum of the Maxwell distribution by putting dP(u)/du=0.

3:8 \v2x [ ¼ m
2pkT

� 
1=2� Rþ1

�1
v2xexp½�mv2x=2kT �dvx ¼ kT

m ; \vx [ ¼ 0.

3:10 GðvxÞ ¼ 1
r
ffiffiffiffi
2p

p exp½� 1
2

vx�\vx [
r

� 
2�; r2 ¼ \v2x [ �\vx [ 2.

Since the distribution in vx is symmetric, <vx>= 0 so the standard deviation
equals

r2 ¼ \v2x [ �\vx [ 2 ¼ \v2x [ ¼ kT
m
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and the Gaussian distribution becomes:

GðvxÞ ¼ m
2pkT

� �1=2
exp � 1

2
mv2x
kT

� �2
" #

;

which is the normalized Maxwell-Boltzmann distribution for vx.

Chapter 4

4:1 \x2 [ 1=2 ¼ 0:37mm:
4:2 (a) 0.54 mm/s. (b) 0.54 mm. (c) displacement in x-direction: 2 lm.

4:4 sCR 
 gR3

kT ; forM-sphere : sCR 
 2� 10�13 s; N : 5� 10�7 s;C : 2� 10�4 s;
G : 2� 104 s:
NB: these are estimates of orders of magnitude; any constant in the expression
for the relaxation time is ignored here.

4:5 Each step takes sMR seconds so the number of steps is
sCR
sMR

� 2�10�4 s
5�10�9 s � 4� 104, corresponding to a distance 4� 104‘ � 4 lm; 40

times the colloid radius.

4.6 w ¼
Z
0
fvðtÞdr ¼ f

ZsMR

0

v2ðtÞdt ¼fv20

ZsMR

0

exp½�2t=sMR�=dt

� fv20
sMR

2
¼ 1

2
mv20

Comparing this work to the thermal energy we find v20 
 2kT=m; which is
pretty close to the equipartition result \v2 [ ¼ 3kT=m. So the initial kinetic
energy kick mv20=2 received by the sphere is returned as dissipated work
during the momentum relaxation event.

Chapter 5

5:2 The probability to find a particle in the region from � ffiffiffi
3

p
to þ ffiffiffi

3
p

is :

p ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p
Zþ ffiffi

3
p

� ffiffi
3

p
exp½�x2=4Dt�dx ¼ 0:683;

where Dt ¼ ð1=2Þ � 3 cm2, and x a distance in centimeter.
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5:3 If mass is conserved then the initial particle concentration C0 on the plate at t =
0 should equal the integrated concentration profile at any later time t > 0. This
is indeed the case:

C0 ¼
Zþ1

�1
qðx; tÞdx ¼ C0ffiffiffiffiffiffiffiffiffiffi

4pDt
p

Zþ1

�1
exp½�x2=4Dt�dx

¼ C0ffiffiffi
p

p
Zþ1

�1
exp½�y2�dy ¼ C0ffiffiffi

p
p ffiffiffi

p
p ¼ C0:

Chapter 6

6:1 \x2 [ ¼ Rþ1

�1
Pðx; tÞx2dx ¼ 1ffiffiffiffiffiffiffi

4pDt
p

Rþ1

�1
exp½�x2=4Dt�x2dx

¼ 4Dtffiffi
p

p
Rþ1

�1
exp½�y2�y2dy ¼2Dt.

6:2 d
dt\x2 [ ¼ Rþ1

�1
d2P
dx2 x

2dx; P ¼ Pðx; tÞ:
The normalized distribution function P is a continuous, differentiable function
symmetric around x = 0. P decays fast enough such that:

lim
x!�1

ðxPÞ ¼ lim
x!�1

ðx2 dP
dx

Þ ¼ 0:

Then:

d
dt
\x2 [ ¼ D

Zþ1

�1
x2d

dP
dx

� �
¼ �2D

Zþ1

�1

dP
dx

dx2 ¼ �2Dð�1Þ
Zþ1

�1
Pdx

¼ 2D ) \x2 [ ¼ 2Dt:

6:3 Van ’t Hoff’s osmotic pressure law that underlies the force balance equation
(6.17) only holds for ideal particles. In the flux balance (6.23) it is assumed
that the diffusion coefficient D is independent of concentration q, which also
presupposes non-interacting particles.

6:4 Diffusion coefficients of oxygen in water and air (p = 1 bar, 20 °C) are,
respectively, 2:1� 10�9 and 2:0� 10�6 m2=s.

6:5 No assumption has been made on the shape of the rotating colloid; shape only
enters via the choice of the rotational friction factor fr in Dr= kT/fr.
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6:6 \ cos h[ ¼ R p
0 Pðh; tÞ sinh cos hdh. For randomly orientations Pðh; tÞ ¼ 1

by definition and \ cos h[ ¼ �2p
R p
0 cos hdð cos hÞ ¼ 0

Chapter 7

7:2 Taking L ¼ R, and for U the Stokes sedimentation velocity
used ¼ 2R2ðdp � dÞg=9g we have for the Reynolds number:

Re ¼ dUL
g

used ¼ 2ðdp � dÞdg
9g2

R3 ¼ ð2:75� 1012 m�3ÞR3

Here dp and d are the mass density of, respectively, particles and water;
g ¼ 0:89 cP.
For the Particle Quartet (Table 1.1) M : Re ¼ 3� 10�18; N : 3� 10�13;

C : 3� 10�9; G : 3� 103:
7:3 (a) Re = 600.000. (b) By far water displacement; viscous drag is unimportant

because you swim at high Re. Your energy input is proportional to U2 and not
to U as in the case of viscous flow.

7:4 Re will decrease by a factor D
d ¼ 2D

3L

� 
1=3¼ 0:28; for L
D ¼ 30; assuming that D2

is the frontal area facing the flow. One could argue that for flow perpendicular
to the rod, Re actually increases with a factor L/D.

7:5 (a) @2uðyÞ
@u2 ¼ 0 ) uðyÞ ¼ uðDÞ y

D; \u[ ¼ 1
D

RD
0
uðyÞdy ¼ 1

2uðDÞ.

(b) Stream function because ð u!:r!Þ½uðyÞ� ¼ 0.

(c) F
area ¼ �g @uðyÞ

@y ¼ 10�3Pa.

Chapter 8

8:2 srz ¼ �g duz
dr ¼ � 1

2
dp
dz r ¼ 1

2
DP
L r; DP ¼ � RL

0

dp
dz dz ¼� dp

dz L.

The stress is zero at r = 0 and increases linearly with r to its maximum value at
r = R. The total viscous force exerted on the tube wall is:

Fvis ¼ 2pRL� srz r¼R

�� ¼ pR2DP

Note that the flow in the tube is driven by a net external force Fext ¼ pR2DP,
exerted on the in- and outlet of the tube, which for a steady flow is exactly
compensated by the total viscous force on the tube’s inner surface.

8:3 fr ¼ 8pgR.
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8:6 G-sphere : U0 ¼ 4:9m=s; C: 46 nm/s; N: 0.1 nm/s.

8:7 Volume flow rate scales as Q / R4DP ) DP2
DP1

¼ R2¼5
R1¼4

� �4
; increase is 244%.

Chapter 9

9:1 Take discs of equal radii R. The flux of discs in the plane towards the origin is:

J ¼ 2prD
dq
dr

Here q is the disc number density at distance r . Since J is constant (stationary
diffusion) we find:

J
Z2R
d

dr
r
¼ 2pDð0� qbulkÞ ) J ¼ 2Dpqbulk

lnðd=2RÞ

One cannot, in contrast to the 3-dimensional case, take the limit d ! 1
because then the diffusion flux would vanish. Thus for diffusion-controlled
processes on a surface one has to specify a certain diffusion ‘zone thickness’ d,
a choice that is not required for the 3-dimensional case.

9:2 Suppose~ri;~rj are the position vectors of two particles that start in the origin.
Then the mean-square-displacement of particles relative to each other is:

\ð~ri �~rjÞ2 [ ¼ 6Dijt

For independent diffusers the position vectors are uncorrelated such that the
average of their dot-product is zero. Hence:

\ð~ri:~rjÞ2 [ � 2\ð~ri �~rjÞ[ þ\ð~ri �~rjÞ2 [ ¼ 6Ditþ 6Djt;

from which it follows that: Dij ¼ Di þDj.

9.3 Jðj ! iÞ ¼ const:� ð2þ xþ x�1Þ; x ¼ Ri

Rj

) d
dx

Jðj ! iÞ ¼ 0; for x ¼ 1ðis aminimumÞ:

9:4 3.8 � 10−5, 3.8 � 103 s.
9:5 In Sect. 9.3 we found that the radius Ri of sphere i (with radius R0 at time t0)

grows by the diffusive uptake of small molecules j as:
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R2
i � R2

i ¼ 2Dj/jðt � t0Þ; /j � cj;1mj

Hence:

dR
dt

¼ A
R

ð1Þ

Here A is a constant; the subscript i has been dropped. Another sphere has a
larger radius Rð1þ eÞ, with e[ 0 . For this larger sphere:

dRð1þ eÞ
dt

¼ A
Rð1þ eÞ ð2Þ

The change in time of e follows from the combination of (1) and (2):

de
dt

¼ A
R2 1þ eð Þ�1�ð1þ eÞ

h i
; e[ 0

Since ð1þ eÞ[ ð1þ eÞ�1for e[ 0 it follows that de=dt\0. So for any arbi-
trary pair of spheres the relative size difference decreases in time; conse-
quently the whole particle size distribution sharpens by diffusional growth.

9:6 The radius follows from

aB � R�1=3 � 71� 10�6 �m4=3

Here the colloid radius R has the unit of meter; the numerical factor is valid for
water at T = 298 K with a mass density of d = 1 g/mL.

9:8 Number density decreases as

dc
dt

¼ k11c
2;

c
c0

¼ 1
1þ k11c0t

From the experimental data: k11 � 5� 10�12 cm3=s. For rapid flocculation the
prediction is a higher rate constant: k11 ¼ 8kT=3g � 12� 10�12 cm3=s.
Possibly the van der Waals attraction between the silica particles at contact is
not large enough to induce irreversible aggregation for every encounter
between the particles.

9:9 17 � 105 s−1.

Chapter 10.

10:7 (a) PðhÞ ¼ C exp½�mgh=kT �.
(b) Probability to find a particle in the interval h, h+dh;
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(c) C = mg/kT.

(d) \h[ ¼ C
R1
0
he�Chdh ¼ � R1

0
hde�Ch ¼ � R1

0
dðhe�ChÞþ R1

0
e�Chdh ¼ 1

C ¼ kT
mg

Alternatively: (d) \h[ ¼ �C d
dC

R1
0
e�Chdh ¼ �C d

dC
1
C

� 
 ¼ 1
C

(e) 9.0 km and 0.8 µm. Obviously the heavy droplets stay very much closer
to the surface of the earth.

(f) \h2 [ ¼ C
Z1
0

h2e�Chdh ¼ �
Z1
0

h2de�Ch

¼ �
Z1
0

dðh2e�ChÞþ
Z1
0

e�Chdh2 ¼ 0þ 2
Z1
0

e�Chhdh

From ðdÞwe can infer that
Z1
0

e�Chhdh ¼ 1
C2

) \h2 [ ¼ 2
C2 ) hrms ¼ \h2 [ 1=2 ¼

ffiffiffi
2

p

C
¼

ffiffiffi
2

p kT
mg

So the rms-height is a factor
ffiffiffi
2

p
larger than the average height from (d).

Chapter 11

11:3 Van ’t Hoff’s law for species i with weight concentration ci and molar mass
Mi is:

pi
RT

¼ ci
Mi
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We measure: ptot
RT ¼ ctot

\M[ ¼
P

ciP
Mi

Thus: \M[ ¼
P

ciP
ci=Mi

¼
P

niMiP
ni

¼ Mn

11:4 The osmotic pressure of the NaCl solution is

p ¼ cRT
M

¼ 9 g=L� 2� 8:31 J=molK� 300K
58 g=mol

¼ 7:74 bar

So the isotonic solution has a sugar concentration of 18058 � 9 g=L ¼ 27:9 g=L
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