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Preface

The origin of elements has been one of the most interesting issues in science,
because it is closely connected with that of ourselves and the solar system. At
present, this subject is considered to be related to the evolution of the universe.
The Big Bang model, based on the theory of General Relativity, has proven to be
the most reliable theory to describe the evolution of the universe. This is supported
by the following observational facts: the expansion of the universe, the cosmic
microwave background (CMB) radiation with a tiny fluctuation in temperature, and
the primordial abundance of light elements, 4He, D, and 7Li.

Among many kinds of books concerning the Big Bang theory, we present a
book which includes a detailed description of Big Bang nucleosynthesis (BBN)
whose theme has not been explained well so far. BBN is the interdisciplinary field
which incorporates nuclear physics, elementary particle physics, and astronomy. In
particular, it is indispensable to obtain important information on the earth, such
as the results of experiments by particle accelerators and observational findings
from stars and galaxies. Originally, nucleosynthesis in the early universe had been
studied fully by nuclear (particle) physicists, which were based on experimental
data of nuclear fusion and β-decays. The basic idea that the light elements could be
produced during the BBN epoch – the first 3 min – still holds now.

We are now in an amazing stage of development in modern cosmology. To derive
matter density of the universe, we need to measure the mass of a typical galaxy and
intergalactic distance. To this end, we climb up the cosmic distance ladder from
the mean distance between the Earth and the Sun, 1.5 × 1013 cm, to the size of the
large-scale structure of the universe, 1026 cm, which is an interesting and instructive
subject on observational cosmology in its own right. Nevertheless, using calculated
abundance of BBN, the matter density of baryons except dark matter is determined
with great accuracy from the observed primordial abundance of D.

In this book, we start to make introductory explanations of General Relativity
and physical processes which are necessary to construct a model of the Big Bang
universe. Moreover, to explain the consistency between the calculated and observed
abundances of light elements, we must explore many physical possibilities. In
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vi Preface

particular, we emphasize the importance of the idea beyond the standard BBN,
because fundamental questions of both dark matter and dark energy are not
answered at all.

This book is meant to become a survey of the state of physical cosmology,
including observational and theoretical parts that establish the subject as a mature
physical science and the more notable attempts to improve and extend the picture.
The goal of this book is to present theoretical bases and applications of BBN.
Readers can appreciate the current status of BBN and acquire techniques to calculate
nucleosynthesis. As a result, they obtain a new idea for BBN in the framework
of modern cosmology. The contents include a basic curriculum of physics, that
is, mechanics, thermodynamics, quantum mechanics, and statistical physics. If a
reader is unfamiliar with General Relativity, we recommend to skip complicated
expressions, because he or she can comprehend the fundamental concept of BBN
without the intricate formulae. Thus, most of this book is accessible to people who
have studied physics to an advanced level at university; we hope that not only
graduated students but also undergraduates would become familiar with BBN and
receive inspiration from the early universe.

We are grateful to Katsuhiko Sato for providing his original code of BBN
calculations and many useful discussions about nucleosynthesis inclusively. Thanks
are due to Fraser Watson for reading through a draft of the manuscript. We also thank
many graduated students who have enjoyed investigating cosmology together.

Fukuoka, Japan Masa-aki Hashimoto
Fukuoka, Japan Riou Nakamura
Fukuoka, Japan E. P. Berni Ann Thushari
Kumamoto, Japan Kenzo Arai
March 2018
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Chapter 1
Introduction

Abstract We make a brief historical review of the Big Bang model from A. Einstein
to G. Gamow. Then we describe achievements of Big Bang nucleosynthesis (BBN)
and introduce many studies on the accelerated expansion of the universe. Non-
standard approaches are also exemplified with neutrino degeneracy or a decaying
cosmological term. We also introduce brane-world cosmology in a five-dimensional
space-time and a modified Brans-Dicke (BD) model with a variable cosmological
term. Finally, we describe the structure of the present text.

Keywords Big bang · Cosmological principle · Early universe · Hubble’s law ·
Nucleosynthesis

1.1 Historical Review

There exist a number of galaxies with various directions and distances in our real
universe. Although the universe is inhomogeneous at smaller scales, it is close
to homogeneous and isotropic at a sufficiently large scale, which we call the
cosmological principle. A large portion of modern cosmology is based on this
principle: all positions in the universe are essentially equivalent. It means that
neither the Sun nor our Galaxy occupies any favored position in space.

The theory of general relativity is a geometric theory of gravitation presented in
1916 by A. Einstein [1]. He generalized Newton’s law of universal gravitation to
incorporate geometric property of space-time as written in a tensor form. Applying
general relativity to the structure of the universe as a whole, in 1917 Einstein
introduced a cosmological constant to hold back gravity and achieve a static model
of the universe with homogeneous matter density [2]. In 1922, A. Friedmann
was the first to show that a homogeneous universe can expand or contract [3].
In 1927, G. Lemaître rediscovered Friedmann’s result and also proposed that an
expanding universe accounts for the radial velocities of extragalactic nebulae [4].
In 1931 he recognized that the expansion of the universe can be traced back to a
dense state in an early stage which he termed the “primeval atom” [5]. R. Tolman
in 1931 remarked that radiation in a homogeneous universe relaxed to thermal

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2018
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Fig. 1.1 Hubble diagram for type Ia supernovae and the Tully-Fisher relation. (Data are taken
from Ref. [10])

equilibrium. He also showed that the expansion of the universe preserves the
blackbody spectrum with decreasing temperature [6]. H. Robertson [7] in 1935, and
independently A. Walker [8] in 1937, rigorously proved that the metric obtained
by Friedmann and Lemaître is the only one on a space-time which satisfies the
cosmological principle. Thereafter the Friedmann-Lemaître-Robertson-Walker, or
simply Robertson-Walker, metric has been used as a fundamental framework in
modern cosmology.

In 1929, E. Hubble discovered the fact that the redshift in light coming from a
distant galaxy is linearly proportional to its distance [9], which is called Hubble’s
law: v = H0D, where v is the recession velocity, determined from the redshift, of a
galaxy at a distance D and H0 is the Hubble constant. This is strong observational
evidence for the expansion of the universe. Figure 1.1 shows the Hubble diagram
for type Ia supernovae (hereafter SNe Ia) and the Tully-Fisher relation, where the
data are taken from the Hubble Space Telescope Key Project [10].

Hydrogen is the most abundant chemical element in the universe. The second
most abundant is helium, which amounts to about 25% by mass fraction, and the
remaining 2% is comprised of heavy elements. G. Gamow in the 1940s proposed
that all these elements were built up by sequences of nuclear reactions in a very hot
and dense phase during an early stage of the expanding universe. With his graduate
student, R. Alpher, the build-up process was presented in 1948 by Alpher, Bethe,
and Gamow [11]. Bethe was only added as a play on words to read the first three
letters of the Greek alphabet which indicate the beginning of the world. This is
referred to as the αβγ theory, or the Big Bang model of cosmology. The term “Big
Bang” was coined with a touch of irony in 1949 by F. Hoyle, one of the proposers
of steady-state cosmology, contrary to the evolving universe. It is noted that the
produced amount of helium is sensitive to the neutron-to-proton ratio at the onset of
nucleosynthesis. It was assumed in the αβγ paper that initial pure neutrons convert
to protons only via β-decay of neutrons. More detailed calculations were made in
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1950 by C. Hayashi [12], involving spontaneous and induced β-processes. In the
αβγ paper, they predicted the present temperature of the relict radiation to be about
10 K, which was revised to �5 K in 1950 by Alpher and Herman [13].

Gamow’s idea of an evolving universe was completely forgotten for a while. In
1965 A. Penzias and R. Wilson reported measurement of microwave background
radiation with temperature 3.5 K [14], which was accompanied with theoretical
interpretation by R. Dicke et al. [15]. This radiation is the relic from the hot early
universe proposed by Gamow. A modern calculation of Big Bang nucleosynthesis
(hereafter BBN) was made in 1966 by P. Peebles [16, 17]. Then extensive calcula-
tions were performed with more nuclides and reactions in 1967 by R. Wagoner, W.
Fowler, and F. Hoyle [18].

Nuclear reaction rates are essentially functions of density and temperature.
Average baryon density of the universe at the present epoch is determined from
the density of intergalactic gas and/or the product of typical mass of a galaxy and
the number density of galaxies. It is noted that the density is estimated to be about
10−31 g cm−3 with uncertainty of a factor 10. On the contrary, precise measurement
of the blackbody spectrum of cosmic microwave background (CMB) radiation was
performed in 1989 by the COBE satellite [19]. The temperature was derived to be
2.735 ± 0.06 K. Large-scale anisotropy of CMB was also detected in temperature
variations across the sky. Furthermore, small-scale fluctuations were measured in
2002 by the satellite WMAP [20], whose anisotropy spectrum was analyzed to yield
cosmological parameters with great accuracy. Hence there remains baryon density
to be determined from other approaches such as BBN.

1.2 Motivation

The standard model of the Big Bang based on the theory of general relativity has
achieved great success in explaining the origin of light elements D, 4He, and 7Li.
BBN has been investigated extensively along with progress in nuclear and particle
physics [21–23]. However, for the last two decades, we have heard that the nature of
many astronomical indications for cosmic acceleration inferred from observations
of SNe Ia is one of the important challenges in particle physics. To understand the
mechanism of the accelerated expansion, theoretical possibilities are proposed such
as cosmography [24], brane-world cosmology [25], inhomogeneous cosmology [26,
27], and dark energy with negative pressure. It is noted that the present acceleration
is due to the sort of dark energy which is represented by Einstein’s cosmological
term.

Observations of SNe Ia [28–30], small-scale fluctuations in CMB temperature
[31, 32], and baryon acoustic oscillation [33] strongly suggest that dark energy
accounts for nearly 70% of the total energy density of the universe. However
the cosmological � term in the early universe should be some 120 orders of
magnitude larger compared to the present value of about 10−56 cm−2 inferred from
observations. This is called the “cosmological constant problem.” It is proposed



4 1 Introduction

that the � term is not really constant but variable as time goes by. To approach
this kind of problem in cosmology, we need new modified theories beyond the
standard model. Various functional forms have been examined for the behavior of
the � term. The mechanism of the dynamic reduction of the term is formulated as a
time-dependent function [34] and/or represented in terms of a scalar field [35, 36].
Moreover, generalized scalar-tensor theories have been investigated [37, 38]. The
evolution of the scale factor is studied with several possibilities of the functional
forms [39–41].

1.3 Nonstandard Approaches to BBN

Although the standard model of BBN (SBBN) has been a great triumph, many alter-
natives are proposed. For example, BBN has been examined including degenerate
neutrinos [18, 42] or strong density fluctuations [43–46].

There exist more baryons in our universe than antibaryons. It follows that
leptons may also have large asymmetry. We examine the case of degenerate
neutrinos. The background model of the universe is the same as that in the standard
model, so that the dynamics is governed by the Friedmann equation. If electron-
neutrinos are degenerate, the neutron-to-proton ratio alters through β-equilibrium,
and consequently the produced abundance of light elements changes significantly
from the standard model.

If our universe is a brane-world in a five-dimensional space-time, we take into
account incoming energy from the outside and interaction energy on the brane itself.
It is then expected that the expansion rate and hence the yields of BBN become
different from those of the standard model.

Numerous cosmological models have been proposed with the common property
of the � term decreasing with time. The decaying vacuum energy into CMB photons
is related to the abundance of light elements [47] and the CMB intensity [48].
Our special interest is its dependence on the scale factor [39]. The interacting dark
energy (or � term) with CMB photons has been discussed in a model with variable
� [49, 50]. The decaying � term also modifies the thermal history of the early
universe [51–53] and critical processes such as formation of molecules and first
stars.

Along with the theory developed by Brans and Dicke [54], scalar-tensor theories
are proposed by introducing the � term which is a function of a scalar field. BBN
has been investigated [55, 56] in the Brans-Dicke (BD) model with variable � for
the coupling constant less than or equal to 500. But the current observations [57,
58] have suggested that the constant exceeds the limit of 40,000. The parameters
inherent in this model are constrained from comparison between the calculated and
observed abundances of light elements [59].
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1.4 Structure of This Text

In Chap. 2 the standard model of cosmology is explained based on the theory of
general relativity. Since BBN depends crucially on thermonuclear reaction rates, the
relevant formulae are presented for resonant and nonresonant reactions. We briefly
review the observed abundances of light elements D, 4He, and 7Li. The calculated
abundance of SBBN is compared with the primordial abundance inferred from the
observed values. We discuss contribution from uncertainties in nuclear reaction rates
and neutron lifetime. Then we turn to examine the magnitude-redshift relation for
SNe Ia as another success of the standard model.

In Chap. 3 alternatives are introduced beyond the standard model. First, we
investigate BBN with lepton asymmetry which does not change the gravitational
theory but alters the physical properties of leptons. Reaction rates between neutrons
and protons are briefly discussed. Second, we explore brane-world cosmology in
a five-dimensional space-time which presents an extension of general relativity
in connection with elementary particle physics. The Friedmann-like equation is
derived to describe the expansion of the universe. Lastly, we examine an example
of thermal history in the early universe with a decaying cosmological term which is
treated as a part of the energy-momentum tensor in Einstein’s field equation.

In Chap. 4 we investigate the modified BD theory as an alternative to general
relativity. The dynamics and characteristics are described in detail for the BD
model with a variable � term. Then we summarize observational constraints on
the intrinsic parameters contained in the theory. Reasonable ranges of the inherent
parameters are derived from the calculated abundance of BBN and the magnitude-
redshift relation of SNe Ia.

Chapters 5, 6, 7, and 8 are Appendixes A–D, where we supplement basic
formulae of tensors, thermal history during annihilation of electron-positron pairs
in the early universe, a numerical method of nucleosynthesis, and physical and
astronomical constants in cgs units.
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Chapter 2
The Standard Model of Cosmology

Abstract We mention the fundamentals in the theory of general relativity, i.e., the
principles of equivalence and general covariance. Based on the facts that our uni-
verse is homogeneous and isotropic at large scales, we derive the Robertson-Walker
metric and subsequently the Friedmann equation which governs the expansion of the
universe. The equation is expressed in a convenient form in terms of density parame-
ters. Next, we describe thermonuclear reaction rates utilized in astrophysics, which
involve resonant and nonresonant reactions, photodisintegration, electron capture,
and β-decay. We review the significance of standard Big Bang nucleosynthesis
(SBBN) and summarize the current situation in the observed primordial abundance
of light elements, 4He, D, and 7Li. Comparing the calculated abundance of the
elements with observed values, we determine a reasonable range for the baryon-to-
photon ratio. Moreover, we examine the dependence of the produced amount of 4He
on the measured lifetimes of neutrons. Finally, we consider the magnitude-redshift
relation of type Ia supernovae (SNe Ia) as an independent probe to cosmological
models.

Keywords Dark energy · Dark matter · Friedmann equation · General
relativity · Magnitude-redshift relation · Primordial abundance · Thermonuclear
reaction

2.1 Theory of General Relativity

In this chapter, we adopt the theory of general relativity which is now the standard
theory of cosmology. General relativity is a geometric theory of gravitation. When
there exists an object of large mass, its surrounding space is not flat but concave.
Consider a test particle approaching the object. Its trajectory is curved toward the
object. In a Newtonian scheme, the particle is attracted by the gravitational force of
the object. According to Einstein, the particle takes a minimum path, i.e., a geodesic
in a curved space. More typically let us consider a ray of light which is a massless
particle. The light proceeds along a straight line in a Newtonian picture, but it takes

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2018
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also a minimum path, which is curved, in general relativity. In an extreme case, light
is totally trapped and consequently disappears from sight.

General relativity is founded on the following two principles. One is the principle
of equivalence. It tells that gravitational and inertial forces are indistinguishable in a
small region. It is exemplified by a famous thought experiment of an elevator. Note
that vertical trajectories of two bodies, which fall freely on the Earth, are parallel
only in a small region. They gradually become closer in a large scale. The other
is the principle of general covariance. It demands that a physical law is covariant
under general transformation of coordinates, so that it should be represented in a
tensor form.

The distance ds between neighboring points xμ and xμ + dxμ is given by

ds2 = gμνdxμdxν, (2.1)

where gμν is the metric tensor which describes geometrical properties of four-
dimensional space-time and the Greek letter runs from 0 to 3. The repeated upper
and lower suffixes are summed over the range.

Being analogous to Poisson’s equation for Newtonian gravitational potential,
Einstein’s field equation is written as [1]

Rμν − 1

2
gμνR + �gμν = 8πGTμν. (2.2)

Here Rμν is the Ricci tensor, R is the curvature scalar, � is the cosmological
constant, Tμν is the energy momentum tensor that measures the relevant properties
of the constituent in the universe, and G is the gravitational constant. Note that we
adopt the units where the light velocity c = 1 throughout. Expressions of relevant
tensors are summarized in Appendix A.

2.2 The Robertson-Walker Metric

The universe is observed to be close to homogeneous and isotropic at large scales.
This means that we stand on neither preferred center nor edge of the universe
and what we see looks the same in any direction. This is called the cosmological
principle. The three-dimensional spaces at any constant time are locally isotropic.
Then, the spatial part of the line element is written in terms of the spherical
coordinates r , θ , and ϕ as

dσ 2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2.

The complete line element in our space-time is given in a general form by

ds2 = −dt2 + exp[f (t, r)] dσ 2, (2.3)
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where the function f does not depend on θ and ϕ because of the isotropy. We
take the signature (−1, 1, 1, 1). Cross terms such as dt dr disappear due to the
homogeneity.

The nonvanishing Christoffel symbols (5.2) are written as follows:


0
11 = e2f ḟ , 
0

22 = e2f r2ḟ , 
0
33 = 
0

22 sin2 θ,


1
01 = ḟ , 
1

11 = f ′, 
1
22 = −(f ′r2 + r),


1
33 = 
1

22 sin2 θ, 
2
02 = 
3

03 = ḟ , 
2
12 = 
3

13 = f ′ + 1

r
,


2
33 = − sin θ cos θ, 
3

23 = cot θ,

where the dot and prime denote the differentiation with respect to t and r ,
respectively. The Ricci tensors (5.8) are

R00 = −3
(
f̈ + ḟ 2

)
,

R01 = −2ḟ ′,

R11 = e2f
(
f̈ + 3ḟ 2

)
− 2

(
f ′′ + 1

r
f ′

)
,

R22 = e2f r2
(
f̈ + 3ḟ 2

)
−

(
f ′′r2 + f ′2r2 + 3f ′r

)
,

R33 = R22 sin2 θ.

Thus the curvature scalar (5.9) is

R = 6
(
f̈ + 2ḟ 2

)
− 2e−2f

(
2f ′′ + f ′2 + 4

r
f ′

)
. (2.4)

We, therefore, obtain the Einstein tensors (5.10)

G0
0 = −3ḟ 2 + e−2f

(
2f ′′ + f ′2 + 4

r
f ′

)
, (2.5)

G1
1 = −

(
2f̈ + 3ḟ 2

)
+ e−2f

(
f ′2 + 2

r
f ′

)
, (2.6)

G2
2 = G3

3 = −
(

2f̈ + 3ḟ 2
)

+ e−2f

(
f ′′ + 1

r
f ′

)
, (2.7)

G0
1 = 2ḟ ′. (2.8)

The energy-momentum tensor can be written as the form of a perfect fluid:

Tμν = (ρ + p)UμUν + pgμν, (2.9)
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where ρ is the energy density, p is the pressure and Uμ is the four velocity. Since
Uμ = (−1, 0, 0, 0) for a particle at rest in this frame, we get

T 0
0 = −ρ, T 1

1 = T 2
2 = T 3

3 = p.

From (2.8) the condition G0
1 = 0 leads to

ḟ ′ = 0.

The variables t and r can be separated to be

f = F(r) + ln a(t). (2.10)

Furthermore, from (2.6) and (2.7), the condition G1
1 = G2

2 yields

f ′′ + 1

r
f ′ = f ′2 + 2

r
f ′.

With use of (2.10), we have

F ′′ − F ′2 − 1

r
F ′ = 0.

If we set F ′ = r�(r), we get

r�′ − r2�2 = 0.

It follows that

− 1

�
= 1

2
r2 + 2

k
,

where k is a constant. Then we obtain

F ′ = − kr

2 + kr2/2
,

which is integrated to be

F = − ln

(
1 + 1

4
kr2

)
.

We get from (2.10)

ef = a

1 + kr2/4
. (2.11)
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Therefore we obtain the line element (2.3) as

ds2 = −dt2 + a2(t)

(1 + kr2/4)2

(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
, (2.12)

where a(t) is the scale factor, which describes the expansion of the universe.
The dimension of length is carried by a(t), so that the radial coordinate r is
dimensionless. The expression (2.12) is called the Robertson-Walker metric. Since
dynamics of the universe is expressed in terms of a(t), galaxies at rest in the
coordinate system (r, θ, ϕ) continue to remain at rest even if the universe expands.
Hence this is named the comoving coordinate system which follows the motion of
typical galaxies.

Inserting (2.11) into the second term of (2.4) and neglecting the time variation,
we get the curvature scalar

R = 6k

a2 . (2.13)

It follows that the curvature is constant in Robertson-Walker space-time. The three-
dimensional space of t = constant is flat for k = 0, closed with positive curvature
for k = +1, or open with negative curvature for k = −1. Therefore, k is called the
curvature constant.

When we introduce a new radial coordinate

r̃ = r

1 + kr2/4
,

then we have

dr̃ = 1 − kr2/4

(1 + kr2/4)2 dr.

If we rewrite r instead of r̃ , then (2.12) becomes

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
. (2.14)

This is an alternative representation of the Robertson-Walker metric.
Equation (2.14) can be expressed in another useful form

ds2 = −dt2 + a2(t)[dχ2 + S2(χ)(dθ2 + sin2 θdϕ2)]

with

S(χ) =
⎧
⎨
⎩

sin χ (k = +1),

χ (k = 0),

sinh χ (k = −1).
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2.3 The Friedmann Equation

The conservation law of energy-momentum, i.e., the condition that the covariant
divergence of the energy-momentum tensor vanishes, is written as

T μ
ν;μ = ∂T μ

ν

∂xμ
+ 


μ
μλT

λ
ν − 
λ

μνT
μ

λ = 0,

where the semicolon denotes the covariant derivative (5.6). Using (2.9), the ν = 0
component is the energy conservation law:

d

dt

(
ρa3

)
+ p

da3

dt
= 0. (2.15)

If an equation of state is set to

p = (γ − 1)ρ, (2.16)

where γ is a constant, then (2.15) reduces to

d

dt

(
ρa3γ

)
= 0,

which is integrated to

ρa3γ = const. (2.17)

For baryons and dark matter we set γ = 1, i.e., pm = 0, then (2.17) becomes

ρma3 = ρm0a
3
0 = const, (2.18)

where the subscript zero denotes the value at the present epoch. Similarly, for
radiation and mass-less particles with γ = 4/3, we have

ρra
4 = ρr0a

4
0 = const. (2.19)

The energy density for a mixture of matter and radiation is expressed as

ρ = ρm + ρr

= ρm0a
−3 + ρr0a

−4. (2.20)

For convenience, we have normalized the scale factor a to unity at the present epoch
(a0 = 1).
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With use of the metric (2.14), the (00) component of (2.2) gives

H 2 =
(

ȧ

a

)2

= 8πG

3
(ρm + ρr) − k

a2
+ �

3
. (2.21)

This is called the Friedmann equation which governs the expansion of the universe.
Let us introduce density parameters

�m = ρm0

ρcr
, �r = ρr0

ρcr
,

�k = − k

H0
2
, �� = �

3H0
2
,

(2.22)

where H0 is the Hubble constant and ρcr = 3H0
2/(8πG) is the critical density for

which the universe is spatially flat in a model with � = 0. Equation (2.21) can be
written, with use of (2.22), as

H 2 = H0
2
[
�ra

−4 + �ma−3 + �ka
−2 + ��

]
. (2.23)

The density parameters satisfy the following condition evaluated at the present
epoch:

�r + �m + �k + �� = 1.

It is noted that radiation temperature varies as T ∼ a−1 because ρr ∼ a−4

from (2.19) and ρr ∼ T 4. In an early universe of high temperatures T > 1011 K,
neutrinos and photons are in thermal equilibrium. Then we have T = Tν ∼ a−1,
where Tν is the neutrino temperature. Neutrinos decouple from photons at T � 1.7×
1010 K. During the stage of pair annihilation of electrons and positrons at around
T � 1.2×1010 K, energies of e± pairs are converted into photons. We can follow the
descent in the photon temperature numerically as explained in Appendix B. After the
complete pair annihilation, photon temperature is given by T = (11/4)1/3Tν ∼ a−1.

The number density of photons is given by

nγ = 16πζ(3)

h3
(kBT )3, (2.24)

where ζ(3) is the zeta function.
Using (2.23), the age of the universe is given by

t0 =
∫ t0

0
dt =

∫ 1

0

da

aH
. (2.25)
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Table 2.1 Cosmological parameters from WMAP 9 year [2] and Planck [3]

Description Symbol WMAP9 Planck

Age of universe (Gyr) t0 13.74 ± 0.11 13.813 ± 0.0038

Hubble constant h 0.700 ± 0.022 0.6731 ± 0.0096

Baryon density �bh
2 0.02264 ± 0.00050 0.02222 ± 0.00023

Dark matter density �ch
2 0.1138 ± 0.0045 0.1197 ± 0.0022

Dark energy density �� 0.721 ± 0.025 0.685 ± 0.013

There are key observational quantities of the standard model. Measurements
of fluctuations in CMB temperature single out the Big Bang model as the prime
and promising candidate to describe our universe. The cosmological parameters are
determined from the satellites WMAP [2] and Planck [3] with amazing accuracy.
They are summarized in Table 2.1, where h = H0/(100 kms−1Mpc−1). Note that
matter is composed of baryons, or nucleons, and dark matter, i.e., �m = �b + �c,
where the subscript “c” indicates cold dark matter (see below). The other parameter
is �r = 4.15 × 10−5 h−2, which includes the contribution from three species of
neutrinos, derived from the CMB temperature of T0 = 2.725 ± 0.002 K. We can set
�k = 0 because of a flat space.

It can be seen from Table 2.1 that our universe is composed of 72% dark energy
(cosmological constant) and 23% dark matter of energy density. Ordinary baryonic
matter amounts to only 5%.

It is worthwhile to mention the characteristics of dark matter. The rotation curve
of a typical spiral galaxy, including our Galaxy, exhibits that the rotation velocity
is kept nearly constant to the outer parts of the galaxy. This is contrary to the well-
known Kepler’s law: the orbital speed u of a planet varies as u ∼ r−1/2, where r is its
orbital radius. It means that the motion of the planet is governed by the gravitation
of the point mass, i.e., the Sun. On the other hand, the constant rotation velocity
in the galaxy indicates that a substantial mass of invisible material surrounds the
visible whole galaxy. It was formerly called “missing mass” but now is termed “dark
matter.” Moreover, concerning the dynamics of rich clusters of galaxies, we have
evidence [4] that the peculiar velocities, apart from the recession velocity due to
cosmic expansion, of individual galaxies are too large to be gravitationally confined
within the cluster. The estimated mass from the virial theorem is more than ten
times greater than the total mass of luminous galaxies. Considerable amounts of
dark matter are needed to hold clusters together.

Dark matter is a gas of particles that moves freely with null electric charge. They
cannot be baryons, because high baryon density would contradict the successful
theory for the origin of light elements as will be described in Sect. 2.5. If the non-
baryonic particles are neutrinos with a small mass, they would be sufficiently hot
and hence contribute to the energy density in the early universe. Strong restrictions
are placed from BBN, again. Consequently, the dark matter must be cold and does
not have nongravitational interactions with ordinary constituents of the universe.
Several candidates of cold dark matter have been proposed so far: neutralino, one of
weakly interacting massive particles, and axions.
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2.4 Astronuclear Reactions

2.4.1 Thermonuclear Reaction Rates

We deal with nuclear fusion in a completely ionized plasma of matter density ρ and
temperature T . Number densities are too low at the BBN stage for nuclei to be built
up directly through many body collisions like 2p + 2n −→ 4He + γ . Therefore, we
consider a two-body reaction between nuclei with number densities n1 and n2. The
cross section for the reaction is a function of the relative velocity v. The reaction
rate in units of volume and time is defined as follows [5]:

n1n2〈σv〉 = n1n24π

(
μ

2πkBT

)3/2 ∫ ∞

0
v3σ(v) exp

[
− μv2

2kBT

]
dv, (2.26)

where kB is the Boltzmann constant. The average value 〈σv〉 is given with the aid
of Maxwell’s velocity distribution. The reduced mass μ for the particle masses M1
and M2 is

μ = M1M2

M1 + M2
.

Let E = μv2/2 be the kinetic energy in the frame of the center of mass. Then (2.26)
can be written as

〈σv〉 = 4

(2πμ)1/2(kBT )3/2

∫ ∞

0
Eσ(E) exp

[
− E

kBT

]
dE. (2.27)

Therefore, if we have knowledge of the cross section σ(E), we can derive the
reaction rate as a function of T by performing integration in (2.27). When we
solve simultaneous rate equations concerning abundance of nuclei as described in
Appendix C, it is convenient to define the thermonuclear reaction rate as NA〈σv〉,
where NA is Avogadro’s number. As a consequence, (2.27) leads to

NA〈σv〉 = 3.7313 × 1010A−1/2T
−3/2
9

×
∫ ∞

0
Eσ(E) exp

[
−11.6045

T9

]
dE cm3mole−1s−1. (2.28)

Here A is the reduced mass number

A = A1A2

A1 + A2
= μ

Mu

,
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where Mu is the atomic mass and T9 = T/109 K. We have

kBT = T9/11.6045 MeV,

(1 MeV = 1.6022 × 10−6 erg).
Usually, thermonuclear reactions occur in astrophysical environment of T9 < 10.

For example, BBN proceeds in the range 0.01 < T9 < 10 and helium burning
ignites in a stellar core at around T9 � 0.1. On the other hand, the Coulomb energy
between two nuclei at contact is

VC = Z1Z2e
2

R
= 1.44Z1Z2

R
MeV,

where R = 1.4A1/3 fm is the nuclear radius (1 fm = 10−13 cm). Since VC is beyond
several MeV, the nuclear reaction does not occur from a viewpoint of classical
mechanics. However, the reaction proceeds gradually due to the tunnel effect of
quantum mechanics. The cross section is proportional to the penetration probability.
In particular, it is proportional to the geometrical cross section, i.e., square of the
de Broglie wavelength for low-energy nuclear reactions. As a consequence, it is
convenient to write σ(E) in the following factorized form:

σ(E) = S(E)

E
exp

[
−2πZ1Z2e

2

�v

]
,

where � = h/2π is the reduced Planck constant. When the interaction energy of
two nuclei is not nearly equal to an energy at which the two nuclei resonate in
a quasistationary state, the factor S(E) is constant, or at least a slowly varying
function of E. This S(E) is called the astrophysical S-factor.

Therefore, we obtain from (2.27)

〈σv〉 = 4

(2πμ)1/2(kBT )3/2

∫ ∞

0
S(E) exp

(
− E

kBT
− bE−1/2

)
dE, (2.29)

where

b = (2μ)1/2πZ1Z2e
2

�
= 31.29Z1Z2A

1/2 keV1/2.

It is noted that the thermonuclear reaction rate depends crucially on the environment
whether there occurs resonance on to an energy level of the compound nucleus.
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Fig. 2.1 Schematic
representation of a Gamow
peak

2.4.2 Nonresonant Reactions

We consider the case when the reaction occurs in an energy range far from the
resonance energy. If S(E) is nearly constant, we can set S(E) = S0. The integrand
in (2.29) is divided into g1 = exp(−E/kBT ) and g2 = exp(−bE−1/2). The
schematic features of g1 and g2 are shown in Fig. 2.1. The product has a sharp
maximum, which is called the “Gamow peak” at E = E0 and an e-folding width of
�E0.

We perform a Taylor expansion of the integrand around E0 and retain the terms
up to the second order. Then we obtain

exp

(
− E

kBT
− bE−1/2

)
= exp

(
− 3E0

kBT

)
exp

[
−

(
E − E0

�E0

)2
]

(2.30)

with

E0 =
(

1

2
bkBT

)2/3

= 0.122(Z2
1Z2

2A)1/3T
2/3

9 MeV,

�E0 = 2

(
1

3
kBT E0

)1/2

= 0.237(Z2
1Z2

2A)1/6T
5/6
9 MeV.

Note that E0 is generally much larger than kBT in astrophysical environment.
Consequently (2.29) is integrated to be

〈σv〉 = 1.30 × 10−17
(

Z1Z2

A

)1/3

S0T
−2/3
9 e−τ cm3s−1,

where τ = 4.25(AZ2
1Z2

2/T9)
1/3. This is the rate of the nonresonant reaction.
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Table 2.2 Astrophysical
S-factor extrapolated to
E = 0 with use of
NACRE-II [6]

Reaction S(0) (eV barns)
2H(p,γ )3He 0.21 ± 0.04
2H(d,γ )4He 5.8+1.0

−1.5 × 10−3

2H(d,n)3He 5.55 ± 0.6 × 104

2H(d,p)3H 56.2+4.9
−4.7 × 103

2H(α, γ )6Li 2.2+0.9
−1.2 × 10−3

3H(d,n)4He 11 ± 1 × 106

3H(α, γ )7Li 98+11
−8

3He(d, p)4He 5.9 ± 0.5 × 106

3He(3He,2p)4He 5.3 ± 0.5 × 106

3He(α, γ )7Be 0.56+0.05
−0.07 × 103

6Li(p,γ )7Be 73+56
−11

6Li(p,α)3He 3.1 ± 0.4 × 106

7Li(p,γ )8Be 1.3+0.4
−0.2 × 103

7Li(p,α)4He 52+11
−8 × 103

For an astrophysical use, we express the thermonuclear reaction rate as a function
of T9:

NA〈σv〉 = 7.83 × 109
(

Z1Z2

A

)1/3

S0T
−2/3
9 e−τ cm3mole−1s−1. (2.31)

Table 2.2 gives values of S(E) extrapolated to E = 0. The rates are taken from
Ref. [6]. As can be seen, the magnitude of order eV barns indicates how small the
reaction rates are (1 barn = 10−24 cm2). It is noted that, when T9 < 0.01, even
hydrogen burning is difficult to operate in a stellar core.

2.4.3 Resonant Reactions

When resonances occur near the Gamow peak, the cross section becomes many
orders of magnitude greater than that of nonresonant reaction. The resonant reaction
occupies the main part of the reaction rate, so that we consider energy dependence
of the resonant cross section.

If the reaction occurs through an energy state of the compound nucleus, the
cross section is written by the Breit-Wigner single-level formula with the resonance
energy Er as

σ(E) = π�2

2μE

ω
a
b

(E − Er)2 + (
/2)2 . (2.32)
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Here 
a and 
b are the partial widths of the formation and destruction of the
compound nucleus, respectively, and 
 = 
a + 
b is the total width. The statistical
weight ω is given by

ω = 2J + 1

(2j1 + 1)(2j2 + 1)
,

where j1, j2 and J are the spins of the projectile, target and compound nuclei,
respectively. The partial width of a state to a particle emission for orbital quantum
number l is written as


l = 3�v

R
Plθ

2
l , (2.33)

where θl is the dimensionless reduced width which could be known experimentally
in the range of 0.01 < θ2

l < 1. The interaction radius or nuclear radius is

approximately the sum of the radii of the two particles: R = 1.4A
1/3
1 + 1.4A

1/3
2 fm.

The penetration factor is given by

Pl = 1

F 2
l (kR) + G2

l (kR)
,

where Fl and Gl are the regular and irregular Coulomb wave functions, respectively,
and k is the wave number given by k = μv/�. As a result, we can rewrite (2.33) as
follows:


l = 3�2θ2
l

μR2 P ′
l = 1.25 × 102 θ2

l

AR2 P ′
l MeV,

where μ = AMu and P ′
l = kRPl . The decay width 
γ by way of γ -ray emission is

typically on the order of 1 eV.
With use of (2.32), the S-factor is given by

S(E) = 656.6

A

ω
a
b

(E − Er)2 + (
/2)2 exp(bE−1/2) keV barns.

Then (2.27) is integrated to be

〈σv〉 =
(

2π

μkBT

)3/2

�
2
∑

r

Sr exp (−Er/kBT ) , (2.34)

where Sr = (ω
a
b)/
 and the summation is performed over the dominant
resonances.
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Finally, we obtain the rate of the resonant reaction

NA〈σv〉 = 1.54 × 105(AT9)
−3/2

×
∑

r

Sr exp (−11.6045Er/T9) cm3mole−1s−1, (2.35)

where Sr is measured in units of eV barns and Er is in MeV.

2.4.4 Inverse Reactions

In the cosmological environment for relevant particles to react with each other, we
may consider that an ordinary reaction and its inverse are in thermal equilibrium,
the so-called detailed balance. For the two-body reaction 1 + 2 ←→ 3 + 4 +Q, the
ratio of the reaction rates is written as

〈σv〉34

〈σv〉12
= f1

(
G1G2

G3G4

) (
A1A2

A3A4

)3/2

exp

[
− Q

kBT

]
. (2.36)

Here Q is the reaction Q-value and the statistical weight f1 is

f1 = (2j1 + 1)(2j2 + 1)(1 + δ34)

(2j3 + 1)(2j4 + 1)(1 + δ12)
,

where ji is the spin of the ground state of nucleus i and

δij =
{

1 iandjareidentical,

0 otherwise.

The normalized partition function Gi is given as

Gi = 1

2ji + 1

∑
μ

(2j
μ
i + 1) exp

[
− ε

μ
i

kBT

]
,

where ε
μ
i is the excitation energy of the excited state μ with the spin j

μ
i .

When the particle “4” is a photon, the reverse reaction is photodisintegration of
nucleus “3” by thermal photons: 3 + γ −→ 1 + 2. The reaction rate is

λγ = f2

(
G1G2

G3

) (
A1A2

A3

kBT

2πNA�
2

)3/2

〈σv〉12 exp

[
− Q

kBT

]
,
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which is written as

λγ = 9.8686 × 109T
3/2
9 f2

(
G1G2

G3

) (
A1A2

A3

)3/2

× exp

[
−11.6045Q

T9

]
λ12 s−1, (2.37)

where λ12 = NA〈σv〉12, Q is measured in units of MeV, and the statistical weight
f2 is given by

f2 = (2j1 + 1)(2j2 + 1)

(2j3 + 1)(1 + δ12)
.

2.4.5 Rates of Electron Capture and β-Decay

Let ρ be the mass density and μe the mean molecular weight of electrons. If we set
ρ̄ = ρ/μe, the electron capture rate at T is given by [7, 8]

λec(ρ̄, T ) = −
∫ ∞

me

λ(ε, 0)
df (ε, T )

dε
dε, (2.38)

where me is the electron mass and f (ε, T ) is the Fermi-Dirac distribution function:

f (ε, T ) = 1

exp[(ε − εF)/kBT ] + 1
.

The electron Fermi energy εF is related to ρ̄ as

ρ̄ = 2.1898 × 107
∫ ∞

me

ε(ε2 − m2
e)

1/2f (ε, T )dε g cm−3,

where energy is measured in units of MeV.
The function λ(ε, 0) in (2.38), being the capture rate at T = 0 when ε would be

regarded as the Fermi energy, is expressed as

λ(ε, 0) = ln 2

f t

∫ Wmax

Wmin

�(W)dW (2.39)

with

�(W) = W(W 2 − 1)1/2
(

Qβ

me

+ 1 − W

)2

F(Z,W), (2.40)
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Wmin = ε/me,

Wmax = Qβ/me + 1.

Here f t is so-called the f t-value of the ordinary β-decay or electron capture, and
| Qβ | is the absolute Q-value of the reaction. The atomic number changes from Z

to Z+1 for β−-decay. The f t-value, (f t)−, obtained from experiments is modified
as

f t = (f t)− (2J + 1)Z+1

(2J + 1)Z
,

where (2J + 1)Z and (2J + 1)Z+1 are the spin weights of the mother and daughter
nuclei, respectively. The Fermi function F(Z,W) is given by

F(Z,W) = 2(1 + s)(2pR)2(s−1) exp(πη)

∣∣∣∣

(s + iη)


(2s + 1)

∣∣∣∣
2

,

where p = (W 2 − 1)1/2, s = (1 − α2Z2)1/2, η = αZW/p, α is the fine structure
constant, R is the nuclear radius, and 
 is the gamma function.

The β-decay rate at T is written as

λβ(ρ̄, T ) =
∫ me+Qβ

me

�(Wmax)[1 − f (ε, T )]dε,

where �(Wmax) is given by (2.40) with Z + 1 of the daughter nucleus.

2.4.6 Reaction Rates and Their Uncertainties

We show in Fig. 2.2 the nuclear reaction network relevant to BBN from neutron and
proton up to 7Li. Twelve reactions are the most effective to produce light elements.

It is noted that we need to include the triple α reaction, 3 4He −→ 12C + γ ,
which could bridge the mass gaps at atomic numbers A = 5 and 8 and operate
to synthesize further heavy elements in high-density phases of an inhomogeneous
universe. Simulations of BBN in the inhomogeneous universe have been performed
[9]. See also Ref. [10].

Figures 2.3 and 2.4 show the rates of nuclear reactions, as functions of temper-
ature, from #2 to #12 listed in Fig. 2.2. The sources of the rates are Ref. [11] for
p(n, γ )D, Ref. [12] for 3He(n, p)3H and 7Be(n, p)7Li, and Ref. [6] for the others.
Uncertainties contained in the rates are rather small for T9 < 2 within 1σ confidence
level, which are just the line-widths of the curves in the individual panels.

We take the neutron lifetime τn = 880.1 ± 1.1 s [13].
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Fig. 2.2 Nuclear reaction
network for BBN

2.5 Standard Big Bang Nucleosynthesis

2.5.1 Overview of SBBN

Big Bang nucleosynthesis (BBN) offers the deepest reliable probe to the early
universe down to nearly 1 s. In an early epoch, a < 10−5 radiation term is the
most dominant in the Friedmann equation (2.21). The radiation energy density is
given by

ρr = aBT 4,

where aB is the radiation density constant. Then (2.21) reduces to

(
ȧ

a

)2

=
(

Ṫ

T

)2

= 8πGaB

3
T 4.

When we take the conditions Ṫ < 0 and T → ∞ as t → 0, we obtain a simple
solution

T =
(

3

32πGaB

)1/4

t−1/2. (2.41)

At high temperatures T9 > 10, i.e., t < 1 s, neutrons and protons are in
equilibrium via weak interactions

n + e+ ←→ p + ν̄e,

n + νe ←→ p + e−,

n ←→ p + e− + ν̄e.
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Fig. 2.3 Reaction rates for BBN (Part 1). The line-widths of the curves indicate the uncertainties
with 1σ confidence level of the rates

Introducing the chemical potential of nuclear species i as

μi = kBT ln

[
ni

gi

h3

(2πmikBT )3/2

]
, (2.42)

where h is the Planck constant and ni , gi , and mi are the number density, statistical
weight, and mass of nuclide i, and then the chemical equilibrium

μn + mn = μp + mp
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Fig. 2.4 Reaction rates for BBN (Part 2). The line-widths of the curves indicate the uncertainties
with 1σ confidence level of the rates

yields the neutron-to-proton ratio:

n

p
= exp

[
−mn − mp

kBT

]
, (2.43)

where we set conventionally n = nn and p = np.
When T9 is 12, i.e., t = 1.5 s, electron-positron pairs annihilate. Consequently, β-

equilibrium cannot be sustained, but neutrons begin to decay freely with the lifetime
τn. The neutron fraction is represented by
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Xn(t) = n

n + p
= Xn(tβ) exp

[
− t − 1.5

τn

]
, (2.44)

where Xn(tβ) = 0.23 is evaluated from (2.43) at t = 1.5 s.
During the stage T9 > 2 the following reaction is in equilibrium:

p + n ←→ D + γ.

Then we obtain

μn + mn + μp + mp = μ
D

+ m
D
.

Using (2.42) with gn = gp = 2 and g
D

= 3, we have

nnnp

n
D

= 4

3

(πmpkBT )3/2

h3
exp

[
−mn + mp − m

D

kBT

]
. (2.45)

It is noted that abundance of D increases rapidly as temperature decreases. When
T9 = 0.8, we get nn � n

D
at t = 350 s. Hence (2.44) gives Xn � 0.15.

Subsequently, nuclear reactions proceed to build up light elements. Figure 2.2
shows the nuclear reaction network which is relevant to BBN. Since there exist no
stable nuclei with mass numbers A = 5 and 8, almost all neutrons of Xn � 0.15 fuse
with protons to produce 4He. The mass fraction of 4He amounts to Y = 2Xn � 0.3,
which is roughly consistent with the observed abundance of 4He.

2.5.2 Numerical Calculations of SBBN

Our standard BBN (hereafter SBBN) model is constructed in the framework of the
following items:

1. Dynamics is described by the Friedmann equation (2.21) with a constant � term.
2. Radiation is the most dominant in the early universe.
3. Neutrinos are three species (νe, νμ and ντ ) and non-degenerate.

In the early universe T9 > 10, photons, neutrinos, and electron-positron pairs are
in thermal equilibrium. The energy density is given by

ρr = ργ + ρν + ρe.

Neutrinos decouple from other particles at T9 � 20. Then pair annihilation of
electrons and positrons converts their energy into photons. We can follow photon
temperature as described in Appendix B.
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Fig. 2.5 Evolution of abundance during BBN era for η10 = 6.19

SBBN contains only one free parameter, the baryon-to-photon ratio η = nb/nγ ,
which is related to the baryon density parameter as

�b = 3.66 × 10−3η10h
−2, (2.46)

where η10 = 1010η.
Once we specify a value of η10, then we obtain a numerical solution x(t) of (2.23)

and hence evolution of ρb and T . Using the nuclear reaction network, we perform
numerical calculations for the evolution of the abundance of chemical elements as
described in Appendix C.

Figure 2.5 shows the evolution of light elements during the BBN stage for η10 =
6.19. Note that once a significant amount of D is produced at t ≥ 30 s, nuclear
reactions proceed further to synthesize 4He. It can be seen that the abundance is
frozen out at t � 103 s except for β-decay of neutrons. The products are mainly 4He
and a trace of D, T, 3He, 7Be, and 7Li.

Figure 2.6 shows the produced abundance as a function of η10. The upper panel is
the mass fraction Y of 4He, and the middle and lower are the number ratios D/H and
7Li/H, respectively. The line-widths of the curves indicate uncertainties contained
in the nuclear reaction rates. It is noted that Y is insensitive to η, while D depends
strongly and monotonically on η. This is the reason that D is called a baryometer.
In a low-density range, η10 < 2, 7Li is produced directly through 3H + 4He −→
7Li + γ , while at η10 > 3, it is originated from electron capture or β+-decay (half-
life τ1/2 = 53.22 days) of 7Be produced via 3He + 4He −→ 7Be + γ .
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Fig. 2.6 Abundance of light elements produced in SBBN. The horizontal lines indicate the
observed primordial abundances [14–18]. (The vertical shaded region is taken from Planck [3])

2.5.3 Observed Abundance of Light Elements

As has been stated repeatedly, the produced amount of 4He is sensitive to the
neutron-to-proton ratio and hence the physical circumstances at the onset of
nucleosynthesis. On the other hand, the abundance of D strongly depends on the
baryon density. BBN fails to produce heavy elements. They are synthesized in
massive stars during the evolution of galaxies. Therefore, the abundance of heavy
elements, i.e., metals, is a measure of age. The primordial abundance is deduced
from observations of objects with low metallicity. There exist very large spreads in
some observed abundances of light elements due to different observational methods.
Let us describe how we adopt the observed primordial abundance.

Helium abundance is derived from observations of He I (neutral helium) emission
lines from low-metallicity blue compact dwarf galaxies. The observed helium
abundance Y ∗ is obtained from He I λ10830 Å emission line of 45 H II (ionized
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hydrogen) regions in 43 dwarf galaxies (1 Å = 10−8 cm). Using a linear regression
of Y ∗ versus O/H, the oxygen-to-hydrogen ratio, the primordial abundance Yp of
4He is determined to be [14]

Yp = 0.2551 ± 0.0022. (2.47)

On the other hand, using a Markov chain Monte Carlo analysis for 15 qualifying
objects, an alternative low value is reported [15]:

Yp = 0.2449 ± 0.0040. (2.48)

It is considered that the significant differences between (2.47) and (2.48) are
ascribable to the differences in determining Y ∗ for individual objects and in
selecting the samples.

Deuterium abundance is derived from D and H absorption lines toward high-
redshift quasars due to intervening intergalactic clouds. The primordial D abundance
is determined from measures of a very metal-poor damped Lyman α system (DLA)
at redshift z = 2.618 to be [16]

D/H = (2.82 ± 0.19) × 10−5. (2.49)

Moreover, a precise D abundance is reported from measurements of DLA at z =
3.067 [17]:

D/H = (2.53 ± 0.04) × 10−5. (2.50)

Lithium abundance is derived from Li I absorption lines in metal-poor dwarf
stars, because Li is easily destroyed through 7Li(p, α)4He at temperatures around
2 × 106 K in stellar interiors. The primordial abundance of 7Li is determined from
measurements of Li I λ6798 Å absorption line of 28 dwarfs in the galactic halo to
be [18]

7Li/H = (1.58 ± 0.31) × 10−10. (2.51)

It is noted that a high primordial abundance

7Li/H = (2.75 − 4.17) × 10−10,

is proposed [19] by taking account of significant depletion or destruction during the
lifetime of dwarf stars. Note also that some fraction of 7Li and particularly all of 6Li
are produced together with Be and B through spallation of CNO nuclei by cosmic
ray protons and α particles.

We show in Fig. 2.6 the observed abundances Yp’s of (2.47) and (2.48), D/H’s
of (2.49) and (2.50), and 7Li/H of (2.51) by the horizontal lines with the identifi-
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cations Izotov 2014 [14], Aver 2015 [15], Pettini 2008 [16], Cooke 2014 [17], and
Sbordone 2010 [18], respectively. The vertical shaded region indicates the range
η10 = 6.07 ± 0.06 determined from Planck [3]. Note that the produced amounts
of 4He and D in SBBN agree well with the observed values, though unfortunately
7Li provides poor consistency. It seems that the standard model is not enough to
explain the discrepancy in the abundance of 7Li, which encourages us to research
nonstandard models.

2.5.4 Neutron Lifetime

The update of reaction rates does not remove discrepancies between the results of
SBBN and the observed abundances. Now we examine the neutron lifetime τn,
because it is one of the most important items of physical input which affects the
produced amount of 4He. We take τn = 885.7 s [20], which was frequently used
in the previous evaluations, and 880.1 s [21] that is the currently recommended
value. Table 2.3 gives the consistent range of η10 through the produced abundance
of SBBN for two cases of neutron lifetime.

We show in Fig. 2.7 a record of measured lifetimes of neutrons in recent years.
The data are compiled in [24]. It is surprising that the evaluated lifetime depends
significantly on the methods. Measurements have been pursued by using two
methods: proton-counting and neutron-counting methods [25]. The results exhibit
a large discrepancy for the neutron lifetime.

Table 2.3 Range of η10 for
different neutron lifetimes

η10

τn = 880.1 s τn = 885.7 s Reference

D 6.08 − 6.54 6.09 − 6.56 [17]

Yp ≥6.77 ≥6.00 [22]

Yp ≥2.33 ≥4.48 [23]

Fig. 2.7 Neutron lifetimes
measured in recent years.
(The data are taken from
[24])
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Fig. 2.8 Dependence of the
produced helium abundance
on the neutron lifetime. (The
observed abundances are
from [22] and [23])

Fig. 2.9 Dependence of the
produced helium abundance
on the nuclear reaction rates.
The red and blue lines
represent the results
calculated with the rates of
[6] and [12], respectively. The
boxes indicate the ranges of
η10 constrained from the
observed abundance [22].
(The shaded vertical band is
the constraint from Planck
[3])

Figure 2.8 shows the produced amount of 4He, using alternative lifetimes of
neutrons. The difference is small. When we adopt the recommended value of τn

and the observed abundance of Aver 2013 [23], the permitted range of η10 is barely
consistent with that from Planck. However, SBBN fails to reconcile the higher
abundance of Izotov 2013 [22]. We show in Fig. 2.9 the produced abundance of 4He,
using the nuclear reaction rates given in Ref. [6] or [12]. The boxes represent the
ranges of η10 constrained from the observed abundance [22], which are inconsistent
with the vertical band constraint from Planck [3].

2.6 Another Observational Success of the Standard Model

As stated in the previous section, one of the most outstanding successes of the
standard Big Bang model is the quantitative prediction of primordial abundance
for light elements. The amounts of D, 4He, and 7Li produced during the first three
minutes are in good agreement with the observed abundance.
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Now we consider the magnitude-redshift relation of distant objects as a potential
test for cosmological models, because measures of the cosmological distance
depend sensitively on the spatial curvature and the expansion dynamics.

Since light emitted from a distant object is redshifted due to the expansion of
the universe, redshift is used to describe the distance to the emitting source. If
emitted light of wavelength λ is observed by a local observer at wavelength λ0,
the wavelength increases proportionally to the scale factor a. Then the redshift z is
defined by

1 + z = λ0

λ
= a0

a
. (2.52)

A source with luminosity LS at a distance d in our Galaxy is observed with
energy flux F = LS/(4πd2). Generalizing this to the expanding universe, we define
the luminosity distance

dL =
(

LS

4πF

)1/2

. (2.53)

The energy of light emitted from the object with time interval �t is denoted as
�E, whereas the observer receives the energy �E0 with the time interval �t0. The
luminosities LS and L0 are given by

LS = �E

�t
, L0 = �E0

�t0
. (2.54)

Since the photon energy is proportional to its frequency, we have

�E

�E0
= ν

ν0
= �t0

�t
= λ0

λ
= 1 + z. (2.55)

From (2.54) and (2.55), we obtain

LS = L0 (1 + z)2 . (2.56)

We find from the metric (2.14) that the area of the sphere of the comoving coordinate
r at t = t0 is S = 4πa2

0r2. Hence the observed energy flux is

F = L0

4πa2
0r2

. (2.57)

Substituting (2.56) and (2.57) to (2.53), we obtain the luminosity distance

dL = (1 + z)a0r. (2.58)
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For the emitted light which propagates along the radial direction toward the
origin, we can set ds = dθ = dϕ = 0 in (2.14). We then obtain

χ =
∫ r

0

dr

(1 − kr2)1/2 =
∫ t0

t

dt

a(t)
. (2.59)

The first integral yields

χ =
⎧
⎨
⎩

sin−1 r (k = +1),

r (k = 0),

sinh−1 r (k = −1).

Using (2.52), the second integral becomes

χ =
∫ z

0

dz

H
,

where H is represented from (2.23) as

H = H0[�r(1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + ��]1/2. (2.60)

The apparent magnitude m of the source at the luminosity distance dL is related
to the absolute magnitude M through

m = M + 5 log
dL

10 pc
, (2.61)

(1 pc = 3.0857 × 1018 cm). It is convenient to use the distance modulus defined as

μd = m − M = 5 log dL + 25, (2.62)

where dL is measured in units of Mpc. As can be seen from (2.58), dL is a function
of z. Hence (2.62) is called the magnitude-redshift (m − z) relation.

Type Ia supernovae (SNe Ia) are ideal standard candles, because they are found
in all kinds of galaxies and easily identified due to a characteristic shape of light
curves and spectral features that follow a standard pattern of evolution. They are
so luminous that can be observed in distant galaxies beyond z � 1. There is
significantly less scatter in the maximum luminosities. The absolute maximum
magnitude is M = −19.6 ± 0.2 at B band [26], which is comparable to the
absolute magnitude �− 20.3 of our Galaxy. SNe Ia are considered to be explosions
of white dwarfs that accrete matter from binary companions and just reach the
Chandrasekhar limit, the maximum possible mass of �1.4 M� that can be supported
by degenerate pressure of electrons (1 M� = 1.99 × 1033 g). It follows that the
nature of explosion does not depend much on the environment in the universe.
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Fig. 2.10 Magnitude-redshift relation of SNe Ia [27]. Theoretical curves correspond to flat models
with �� = −0.5, 0, 0.5, and 1.0

Figure 2.10 shows the m − z relation of SNe Ia, where the data are taken from
the Union2 compilation [27] up to z = 1.12. Theoretical curves are also shown for
flat models with �� = −0.5, 0, 0.5, and 1.0. In a model with a large positive ��,
the expansion is accelerated, and hence the distance modulus becomes large.

We examine χ2 analysis (see Sect. 3.1.3 for χ2 analysis in detail) for the distance
moduli of SNe Ia:

χ2(�m,��) =
∑

i

|μi
d(z;�m,��) − μi

obs(z)|2
(σ i

obs)
2 + (σ i

v)
2

, (2.63)

where μi
obs and σ i

obs are the observed distance modulus and its uncertainty,
respectively, σ i

v is the dispersion in the redshift due to the peculiar velocity v given
by

σ i
v =

(
v
dμi

d

dz

)
.

We adopt v = 300 km s−1, i.e., 10−3, in units of c = 1. The total number of the
samples is N = 557 in the Union2 compilation [27].

Figure 2.11 shows the contours with 1σ (68.3%), 2σ (95.4%), and 3σ (99.7%)
confidence levels on the (�m,��) plane. The flat model (k = 0) is indicated by the
dashed line with �m + �� = 1. It is suggested that cosmological models without
dark energy are excluded even if we adopt the non-zero curvature term.
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Fig. 2.11 Confidence
regions in the (�m, ��)
plane for SNe Ia. The
observed data are from
Union2 compilation [27]. The
dashed line indicates the flat
universe (�m + �� = 1)
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Table 2.4 Cosmological
parameters from m − z

relation of SNe Ia

Description Symbol �k 
= 0 �k = 0

Matter density �m 0.30 ± 0.08 0.27 ± 0.02

Dark energy density �� 0.79 ± 0.13 0.72 ± 0.02

The best fit values of �m and �� are given in Table 2.4. If we adopt the flat
universe suggested by the observations of CMB anisotropy [2, 3], these parameters
are consistent with the results of Planck (Table. 2.1).

References

1. Weinberg, S.: Cosmology, p. 41. Oxford University Press, New York (2008)
2. Hinshaw, G., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations:

cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). https://doi.org/10.1088/
0067-0049/208/2/19

3. Planck Collaboration: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.
594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

4. Trimble, V.: Existence and nature of dark matter in the universe. Ann. Rev. Astron. Astrophys.
25, 425–472 (1987). https://doi.org/10.1146/annurev.aa.25.090187.002233

5. Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis, p. 283. McGraw-Hill, New
York (1968)

6. Xu, Y., et al.: NACRE II: an update of the NACRE compilation of charged-particle-induced
thermonuclear reaction rates for nuclei with mass number A < 16. Nucl. Phys. A 918, 61–169
(2013). https://doi.org/10.1016/j.nuclphysa.2013.09.007

7. Egawa, Y., Yokoi, K., Yamada, M.: Electron capture in highly evolved stars. Prog. Theor. Phys.
54, 1339–1355 (1975). https://doi.org/10.1143/PTP.54.1339

https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1146/annurev.aa.25.090187.002233
https://doi.org/10.1016/j.nuclphysa.2013.09.007
https://doi.org/10.1143/PTP.54.1339


38 2 The Standard Model of Cosmology

8. Egawa, Y., Yokoi, K.: Energy loss accompanying the electron captures in highly evolved stars.
Prog. Theor. Phys. 57, 1255–1261 (1975). https://doi.org/10.1143/PTP.57.1255

9. Nakamura, R., Hashimoto, M., Fujimoto, S., Sato, K.: Constraint on heavy element production
in inhomogeneous big-bang nucleosynthesis from the light element observations. J. Astrophys.
2013, 587294 (2013). https://doi.org/10.1155/2013/587294

10. Nakamura, R., Hashimoto, M., Ichimasa, R., Arai, K.: Big bang nucleosynthesis: constraints
on nuclear reaction rates, neutrino degeneracy, inhomogeneous and Brans-Dicke models. Int.
J. Mod. Phys. E 26, 1741003 (2017). https://doi.org/10.1142/S0218301317410038

11. Ando, S., Cyburt, R.H., Hong, S.W., Hyun, C.H.: Radiative neutron capture on a proton at
big-bang nucleosynthesis energies. Phys. Rev. C 74, 025809 (2006). https://doi.org/10.1103/
PhysRevC.74.025809

12. Descouvemont, P., Adahchour, A., Angulo, C., Coc, A., Vangioni-Flam, E.: Compilation and
R-matrix analysis of big bang nuclear reaction rates. Atomic Data Nucl. Data Tables. 88, 203–
236 (2004). https://doi.org/10.1016/j.adt.2004.08.001

13. Beringer, J., et al.: Review of particle physics. Phys. Rev. D 86, 010001 (2012). https://doi.org/
101103/PhysRevD.86.010001

14. Izotov, Y.I., Thuan, T.X., Guseva, N.G.: A new determination of the primordial He abundance
using the He I λ 10830 A emission line: cosmological implications. Mon. Not. R. Astron. Soc.
445, 778–793 (2014). https://doi.org/10.1093/mnras/stu1771

15. Aver, E., Olive, K.A., Skillman, E.D.: The effects of He I λ10830 on helium abundance
determinations. J. Cosmol. Astropart. Phys. 07, 011 (2015). https://doi.org/10.1088/1475-
7516/2015/07/011

16. Pettini, M., et al.: Deuterium abundance in the most metal-poor damped Lyman alpha system:
converging on �b,0h

2. Mon. Not. R. Astron. Soc. 391, 1499–1510 (2008). https://doi.org/10.
1111/j.1365-2966.2008.13921.x

17. Cooke, R.J., et al.: Precision measures of the primordial abundance of deuterium. Astrophys.
J. 781, 31 (2014). https://doi.org/10.1088/0004-647X/781/1/31

18. Sbordone, L., et al.: The metal-poor end of the spite plateau. I. Stellar parameters, metallicities,
and lithium abundances. Astron. Astrophys. 522, A26 (2010). https://doi.org/10.1051/0004-
6361/200913282

19. Korn, A., et al.: A probable stellar solution to the cosmological lithium discrepancy. Nature
442, 657–659 (2006). https://doi.org/10.1038/nature05011

20. Serebrov, A., et al.: Measurement of the neutron lifetime using a gravitational trap and a
low-temperature fomblin coating. Phys. Lett. B 605, 72–78 (2005). https://doi.org/10.1016/
j.physletb.2004.11.013

21. Beringer, J., et al.: Review of particle physics. Phys. Rev. D 86, 010001 (2012). https://doi.org/
10.1103/PhysRevD.86.010001
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Chapter 3
Theories Beyond the Standard Model

Abstract Many alternative models are proposed, though remarkable agreement
is obtained on the primordial abundance of standard BBN. As an approach to
nonstandard models, first we investigate a possibility that neutrinos or antineutrinos
are degenerate. An excess density of neutrinos speeds up the expansion of the
universe, leaving more neutrons at the onset of nucleosynthesis. In addition, degen-
erate electron-neutrinos shift less neutrons through β-equilibrium. Performing χ2

analysis for the calculated and observed abundances of 4He and D, we determine the
plausible ranges of the degeneracy parameter and the baryon-to-photon ratio. Next,
we explore BBN under the brane-world cosmology. The Friedmann-like equation
is derived in the five-dimensional universe. It is found that more 4He is produced
than in standard BBN because of rapid expansion due to the interaction energy on
the brane. Finally, we examine thermal evolution in the early universe including a
decaying cosmological term which is treated as a source of the gravitational field.

Keywords Brane world · Decaying cosmological term · Five-dimensional
space-time · Neutrino degeneracy

3.1 Lepton Asymmetry

Baryon asymmetry exists in our universe: baryons slightly dominate over
antibaryons. Since pairs of baryon and antibaryon annihilate into photons at the
epoch kTB � 1 GeV, we obtain nb + nb̄ � nγ , where nb̄ is the number density
of antibaryons. Then the baryon asymmetry (nb − nb̄)/(nb + nb̄) in the early era
kBT > 1 GeV is nearly equal to the baryon to photon ratio (nb/nγ )0 � 10−9 at the
present epoch.

On the other hand, there is a possibility that leptons have large asymmetry [1].
As stated in Sect. 2.5 of SBBN, the produced abundance of 4He is sensitive to the
neutron-to-proton ratio at the onset of nucleosynthesis. If neutrinos are degenerate,
the energy density increases, which leads to speed up in the expansion rate, leaving
more neutrons, and eventually enhancing the produced amount of 4He. Moreover,
if electron-neutrinos degenerate, β-equilibrium shifts to less neutrons and hence
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lowers the primordial abundance of 4He. Therefore, it is worthwhile to investigate
effects of neutrino degeneracy on the produced abundance of BBN.

3.1.1 Reaction Rates Between Neutrons and Protons

The number density of neutrinos (or anti-neutrinos) with momentum between p and
p + dp at temperature Tν is given by the Fermi distribution

nν(p)dp = 4πp2

h3 dp

[
exp

(
p ± μν

kBTν

)
+ 1

]−1

, (3.1)

where μν is the chemical potential of neutrinos; the minus sign refers to neutrinos
and the plus to antineutrinos. The net neutrino number density is

nν =
∫ ∞

0
dp[nν(p) − nν̄(p)]. (3.2)

If we set y = p/kBTν and x = μν/kBTν , (3.2) is written as

nν = 4π

(
kBTν

h

)3

N (x), (3.3)

where

N (x) =
∫ ∞

0
y2dy

[
1

exp(y − x) + 1
− 1

exp(y + x) + 1

]
. (3.4)

Since both nνa
3 and Tνa are constant during the expansion of the universe, the

quantity nν/T 3
ν and hence N (x) are also kept constant.

It is beneficial to introduce the degeneracy parameter

ξi = μνi

kBTν

, (3.5)

where the subscript i stands for electron-, muon-, and tau-neutrinos. Note that ξi is
preserved as the universe expands. Performing integration of (3.4), we obtain the
degree of lepton asymmetry

ην = nν

nγ

= 1

12ζ(3)

(
Tν

T

)3

(π2ξi + ξi
3), (3.6)

where the number density of photons nγ is given by (2.24).
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Although it is pointed out that the chemical potentials of three generations of
neutrino are the same due to neutrino oscillation, we take the case where only the
electron-neutrinos are degenerate, and we set ξμ = ξτ = 0. With the use of (3.1),
the energy density of neutrinos can be written as

ρν = 4π

h3

∫ ∞

0
dE

E3

exp[(E ± μν)/kBTν] + 1
. (3.7)

Then the energy density of three generations of neutrinos and antineutrinos is

ρν + ρν̄ = aBTν
4Fi(ξi), (3.8)

where aB is the radiation density constant and

Fi(ξi) = 21

8
+ 15

4

(
ξi

π

)2

+ 15

8

(
ξi

π

)4

.

When kBT > 2 MeV, photons, electrons, positrons, and neutrinos are in thermal
equilibrium (T = Tν). Then the total energy density of radiation is

ρr =
[

1 + 7

4
+ Fi(ξi)

]
aBT 4. (3.9)

It is noted that neutrinos decouple from the other particles at kBT � 1.5 MeV
and neutrino temperature varies as Tν ∼ a−1. After pair annihilation of electrons
and positrons, as described in Appendix B, photon temperature rises up to T =
(11/4)1/3Tν . Radiation is composed of photons and neutrinos, so that we have

ρr =
[

1 +
(

4

11

)4/3

Fi(ξi)

]
aBT 4. (3.10)

Figure 3.1 shows the neutrino temperature in the BBN stage. It can be seen that
degenerate neutrinos increase the expansion rate and hence lower the temperature
than the standard model.

When electron-neutrinos are degenerate, reaction rates for n ←→ p are
significantly altered. Particularly, the neutron-to-proton ratio in equilibrium is given
by

n

p
= exp

[
−mn − mp

kBT
− ξe

]
. (3.11)
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Fig. 3.1 Neutrino
temperature in the BBN stage
(Red: ξe = 0, Blue:
|ξe| = 1.0)
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The reaction rates are written as follows [2]:

λn→peν = 1

τnλ0

∫ q

1
dε

ε(ε − q)2(ε2 − 1)1/2

[1 + exp(−εu)][1 + exp((ε − q)uν + ξe)] , (3.12)

λnν→pe = 1

τnλ0

∫ ∞

q

dε
ε(ε − q)2(ε2 − 1)1/2

[1 + exp(−εu)][1 + exp((ε − q)uν − ξe)] , (3.13)

λne→pν = 1

τnλ0

∫ ∞

1
dε

ε(ε + q)2(ε2 − 1)1/2

[1 + exp(εu)][1 + exp(−(ε + q)uν + ξe)] , (3.14)

λpeν→n = 1

τnλ0

∫ q

1
dε

ε(ε − q)2(ε2 − 1)1/2

[1 + exp(εu)][1 + exp((q − ε)uν + ξe)] , (3.15)

λpe→nν = 1

τnλ0

∫ ∞

q

dε
ε(ε − q)2(ε2 − 1)1/2

[1 + exp(εu)][1 + exp((q − ε)uν − ξe)] , (3.16)

λpν→ne = 1

τnλ0

∫ ∞

1
dε

ε(ε + q)2(ε2 − 1)1/2

[1 + exp(−εu)][1 + exp((q + ε)uν + ξe)] , (3.17)

where τn is the lifetime of neutrons, u = me/kBT , uν = me/kBTν , ε = Ee/me,
q = (mn − mp)/me, and

λ0 =
∫ q

1
dεε(ε − q)2(ε2 − 1)1/2 = 1.63609.

We show in Fig. 3.2 the rates (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17) for
ξe = −0.046 normalized to those of SBBN. It is noted that neutrons and protons
are in β-equilibrium at temperatures T9 > 20. The crucial reactions in SBBN are
p+e− −→ n+ν and n+e+ −→ p+ν̄ in the range T9 � 2−20. When ξe = −0.046,
the reactions p + ν̄ −→ n + e+ and n + ν −→ p + e− are dominated.
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Fig. 3.2 Rates of n ←→ p
reactions for ξe = −0.046
normalized to those of SBBN
(ξe = 0)

Fig. 3.3 Produced
abundance of Yp and D/H in a
neutrino degenerate model
(blue, ξe = −0.1; green,
ξe = 0.0; red, ξe = 0.1)

3.1.2 BBN with Degenerate Neutrinos

Using the initial n/p ratio (3.11) at high temperature for a specified value of ξe, we
perform BBN calculations. The numerical technique is explained in Appendix C.
Figure 3.3 shows the produced abundances for ξe = −0.1, 0, and 0.1 as a function
of the baryon-to-photon ratio η10. It can be seen that the amount of 4He strongly
depends on ξe. In the case of positive ξe, the rates for n −→ p are enhanced, so that
there remain less neutrons, which yields less 4He than in SBBN.
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On the contrary, the produced amount of D is nearly the same as that in SBBN.
The resultant abundance is compared with the primordial abundances of Yp and D/H
inferred from observations [3, 4], as described in Sect. 2.5.3.

3.1.3 χ2 Analysis

To find consistent ranges of η and ξe between the calculated and observed
abundances, we carry out χ2 analysis. Let us introduce the statistical quantity

χ2(η, ξe) =
∑

i

|Y i
th(η, ξe) − Y i

obs|2
(σ i

th)
2 + (σ i

obs)
2

. (3.18)

Here Y i
th and Y i

obs are the theoretical (calculated) and observed values, respectively,
σ i

th and σ i
obs are their standard deviations from the average values, and the

summation i is taken over Yp and D/H. Note that σth is obtained from 1σ errors
associated with relevant nuclear reaction rates.

Figure 3.4 shows the contours with 1σ , 2σ , and 3σ confidence levels (CL) on the
(η10, ξe) plane. We find that the consistent region is

−0.04 ≤ ξe ≤ −0.01, 6.1 ≤ η10 ≤ 6.5

within 1σ CL.
Now we explain a relation between confidence levels and the number of

parameters [5]. To measure the reliabilitywe consider

�χ2 = χ2 − χ2
min. (3.19)

Fig. 3.4 Contours with 1σ ,
2σ , and 3σ confidence levels
from Yp and D/H
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Table 3.1 �χ2 given from
confidence levels and the
number of parameters

CL 1 2 3 4 5

68.3 % 1.00 2.30 3.53 4.72 5.89

95.4 % 2.71 4.61 6.25 7.78 9.24

99.7 % 9.00 11.8 14.2 16.3 18.2

Fig. 3.5 Confidence regions
which indicate values of χ2

larger than the fitted
minimum χ2

min. The dashed
curve indicates �χ2 = 2.30,
and the ellipse contains
68.3% normally distributed
data of two parameters. The
solid curve with �χ2 = 1.00
is projected onto the vertical
axis with the interval AA’ for
one parameter. Other
numerical values are given in
Table 3.1

A

A’
Δχ2=1.00

Δχ2=2.30

Note that the lowest value χ2
min indicates the highest reliability. Table 3.1 gives �χ2.

The first column is CL and the first line indicates the number of parameters. For a
set of two parameters, reliability of �χ2 = 2.30 is 68.3% and that of �χ2 = 4.61
is 95.4%.

An example of contours obtained from χ2 analysis is shown in Fig. 3.5, where the
two axes correspond to individual parameters. Two parameters distribute inside the
contour of �χ2 = 2.30 with 1σ (68.3%) CL. When we project a contour onto the
axis, we obtain �χ2 for one parameter. For example, the contour of �χ2 = 1.00,
which corresponds to 1σ CL for one parameter (see Table 3.1), is mapped on the
vertical axis as shown in Fig. 3.5. Consequently, we confirm the range from A to A′
with 1σ CL.

3.2 BBN Under the Brane Cosmology

3.2.1 Five-Dimensional Einstein Tensor

A brane cosmology has been invented in the frame of superstring theory (more
details are given in several reviews, such as [6]). Our four-dimensional universe is
considered to be a brane on the surface of a five-dimensional space-time [7, 8] which
is called “bulk” as shown in Fig. 3.6.

Based on the method [9, 10], we derive the five-dimensional Friedmann-like
equation from Einstein’s equation

GAB = RAB − 1

2
gABR = κ2

(5)TAB, (3.20)
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Fig. 3.6 Schematic feature
of a brane universe

where the suffixes A and B run 0, 1, . . . 4 and κ2
(5) corresponds to the five-

dimensional Newton’s gravitational constant. We can introduce five-dimensional
Planck mass M(5) which represents the energy scale of the grand unified theory
such that M3

(5) = 1/(2κ(5))
2.

The line element of our brane world in a five-dimensional space-time is given by

ds2
(5) = gABdxAdxB

= −n2(τ, y)dt2 + a2(τ, y)γij dxidxj + b2(τ, y)dy2. (3.21)

Here the extra dimension is expressed by the direction y and

γij = X−2δij (3.22)

with

X = 1 + k

4
δmnx

mxn,

where the roman suffix runs 1, 2, and 3 and k is the curvature constant.
The nonvanishing Christoffel symbols (5.2) are written as follows:


0
00 = ṅ

n
, 
0

ij = ȧa

n2 γij , 
0
05 = n′

n
,


0
55 = ḃb

n2 , 
i
0j = ȧ

a
δi

j ,


i
jk = −k

2
X−1xm(δjmδi

k + δkmδi
j − δi

mδjk),
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i
j5 = a′

a
δi

j , 
5
00 = n′n

b2
, 
5

05 = ḃ

b
,


5
ij = −a′a

b2 γij , 
5
55 = b′

b
,

where the prime denotes the differentiation with respect to y.
The Ricci tensors (5.8) are

R00 = −3
ä

a
− b̈

b
+ n′′n

b2
− b′n′n

b3
+ 3

ȧṅ

an
+ 3

a′n′n
ab2

+ ḃṅ

bn
,

Rij = γij

( äa

n2 + 2
ȧ2

n2 − ṅȧa

n3 − a′′a
b2 − 2

a′2

b2 + ȧḃa

bn2 − n′a′a
b2n

+n′a′a
nb2 + b′a′a

b3 + 2k
)
,

R05 = 3

(
− ȧ′

a
+ ȧn′

an
+ a′ḃ

ab

)
,

R55 = −n′′

n
− 3

a′′

a
+ b̈b

n2 − ṅḃb

n3 + 3
ȧḃb

an2 + b′n′

bn
+ 3

a′b′

ab
.

Then the curvature scalar (5.9) is

R = 6
ä

an2 + 2
b̈

bn2 − 2
n′′

nb2 + 2
b′n′

nb3 − 6
ȧṅ

an3 − 6
a′n′

ab2n
− 2

ḃṅ

bn3

+6
ȧ2

a2n2
− 6

a′2

a2b2
− 6

a′′

ab2
+ 6

ȧḃ

abn2
+ 6

a′b′

ab3
+ 6

k

a2
.

We obtain the nonvanishing Einstein tensors (5.10)

G00 = 3

[
ȧ

a

(
ȧ

a
+ ḃ

b

)
− n2

b2

{
a′′

a
+ a′

a

(
a′

a
− b′

b

)}
+ kn2

a2

]
, (3.23)

Gij = γij

(
−2

äa

n2 − ȧ2

n2 + 2
ṅȧa

n3 + a′2

b2 + 2
a′′a
b2 − 2

ḃȧa

bn2 + 2
n′a′a
b2n

−2
b′a′a
b3

− b̈a2

bn2
+ n′′a2

nb2
− n′b′a2

nb3
+ ḃṅa2

bn3
− k

)
, (3.24)

G05 = 3

(
− ȧ′

a
+ ȧn′

an
+ a′ḃ

ab

)
, (3.25)

G55 = 3

[
a′

a

(
a′

a
+ n′

n

)
− b2

n2

{
ä

a
+ ȧ

a

(
ȧ

a
− ṅ

n

)}
− kb2

a2

]
. (3.26)
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3.2.2 Friedmann-Like Equation

The energy-momentum tensor is decomposed into the parts of brane and bulk:

T A
B = T A

B |bulk + T A
B |brane. (3.27)

Here T A
B |bulk and T A

B |brane are defined by

T A
B |bulk = diag(−ρB, PB, PB, PB, PT ), (3.28)

T A
B |brane = δ(y)

b
diag(−ρbr , Pbr , Pbr , Pbr , 0), (3.29)

where T A
B |brane is the energy-momentum tensor on the brane at y = 0. Since

the constituent on the brane is assumed to be homogeneous and isotropic,
ρB, PB, PT , ρbr , and Pbr depend only on t . Furthermore, we assume

−ρB = PB = PT . (3.30)

The (0,0) component of Einstein’s equation (3.20) is from (3.23), (3.28),
and (3.29) written as

3

[
ȧ

a

(
ȧ

a
+ ḃ

b

)
− n2

b2

{
a′′

a
+ a′

a

(
a′

a
− b′

b

)}
+ kn2

a2

]

= κ2
(5)n

2
(

δ(y)

b
ρbr + ρB

)
. (3.31)

When we consider the situation on the brane, we need a connection condition
between bulk and brane at y = 0. We integrate (3.31) in a narrow range −ε ≤ y ≤ ε,
(ε > 0, ε → 0). Consequently, only the term with a′′ contributes in the left hand
side and the first term remains in the right hand side due to the δ-function. Therefore,
we obtain

∫ ε

−ε

a′′dy = a′
0+ − a′

0− = −κ2
(5)

3
a0b0ρb, (3.32)

where a0 and b0 are evaluated at y = 0 and the suffix 0+ indicates the limiting case
from y > 0 to 0 and 0− is that from y < 0 to 0. We assume the boundary condition

a(τ, y0) = a(τ,−y0).

Then we have

a′(τ, y0) = −a′(τ,−y0),
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It follows that

a′
0+ − a′

0− = 2a′
0+ = −2a′

0−.

Therefore, from (3.32) we get

a′2
0 = κ4

(5)

36
a2

0b2
0ρ

2
b . (3.33)

Let us introduce a function

F(τ, y) = (a′a)2

b2
− (ȧa)2

n2
− ka2. (3.34)

Differentiating (3.34) with respect to y, we get

F ′ = 2a′a3

b2

[
a′′

a
+ a′

a

(
a′

a
− b′

b

)]
− 2ȧa3

n2

[
ȧ′
a

+ ȧ

a

(
a′

a
− n′

n

)]
− 2kaa′.

From G05 = 0 we have

ȧ′

a
= ȧn′

an
+ a′ḃ

ab
.

Therefore, we obtain

F ′ = −2a′a3

3n2 G00.

Similarly, differentiation of (3.34) with respect to t gives

Ḟ = 2ȧa3

3b2 G55.

Consequently, Einstein’s equation yields

F ′ = 2a′a3

3
κ2
(5)T

0
0|bulk, (3.35)

Ḟ = 2ȧa3

3
κ2
(5)T

5
5|bulk. (3.36)

Since T 0
0|bulk = −ρB is independent of y, (3.35) is integrated to be

F + κ2
(5)

6
a4ρB + C = 0, (3.37)
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where C is a function which depends only on t . On the other hand, from (3.28)
and (3.30) we have T 5

5|bulk = −ρB . Then the derivative of (3.35) with respect
to t and the derivative of (3.36) with respect to y lead to ρ̇B = 0. It follows that
integration of (3.36) yields the same result as (3.37). Therefore, C becomes constant.

From (3.37) and (3.34), we obtain

(
ȧ

na

)2

= 1

6
κ2
(5)ρB +

(
a′

ba

)2

− k

a2 + C

a4 . (3.38)

On the brane y = 0, we can set n0 = 1. Using (3.33), we get

(
ȧ0

a0

)2

= 1

6
κ2
(5)ρB + κ4

(5)

36
ρ2

br + C

a4
0

− k

a2
0

. (3.39)

The first term in the right hand side corresponds to the incoming energy density
from the bulk, the second is the interaction energy density on the brane, the third
behaves as a−4

0 like the radiation energy density, and the last is the same curvature
term as in the Friedmann equation (2.21).

Henceforth, we omit the subscript “0,” because we are concerned with quantities
on the brane. We divide the energy density into two components

ρbr = � + ρ, (3.40)

where � is a constant called “brane tension” and ρ is the ordinary energy density.
Then we obtain

(
ȧ

a

)2

= 1

6
κ2
(5)ρB + κ4

(5)

36
�2 + κ4

(5)

18
�ρ + κ4

(5)

36
ρ2 + C

a4
− k

a2
. (3.41)

Following Refs. [7, 8], we take a relation

1

6
κ2
(5)ρB + 1

36
κ4
(5)�

2 = 0, (3.42)

and we also adopt the following identification: to recover the standard cosmology

1

6
κ4
(5)� = 8πG. (3.43)

Consequently, we get

(
ȧ

a

)
= 8πG

3
ρ + C

a4
+ 1

36
κ4
(5)ρ

2 − k

a2
.
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Since the second term in the right hand side behaves like the radiation, we set
C/a4 = 8πGρDR/3, where ρDR is called the “dark radiation” density. Therefore,
the Friedmann-like equation on the brane is written as [9–11]

H 2 =
(

ȧ

a

)2

= 8πG

3
(ρ + ρDR) + 1

36
κ4
(5)ρ

2 − k

a2 . (3.44)

3.2.3 BBN on the Brane

In our brane-world cosmology, the expansion rate of the universe is different from
that in the standard model, because it contains two extra terms: dark radiation
ρDR and interaction energy on the brane ρ2. It is noted that these terms affect
the primordial nucleosynthesis [12–14]. We examine how the interaction energy
ρ2 influences the yields of BBN.

We assume the flat universe (k = 0) and neglect the contribution of ρDR.
Then (3.44) reduces to

H 2 = 8πG

3
ρ + 1

144M6
(5)

ρ2. (3.45)

Figure 3.7 shows the expansion rate H during the BBN era for M(5) = 10 and
15 TeV. The rate deviates significantly from that of the standard model in an early
stage, where the second term in (3.45) becomes dominant.

We make BBN calculations using the nuclear reaction network. Figure 3.8 shows
the abundance of 4He produced in the brane universe for M(5) = 10 and 15 TeV. It
can be seen that, compared to SBBN indicated with the dashed line, much more 4He
is produced. This is because more neutrons survive due to more rapid expansion.

Fig. 3.7 Expansion rate of
the brane universe with
M(5) = 10 and 15 TeV. The
dashed line denotes the
standard model
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Fig. 3.8 Helium abundance produced in the brane universe. The blue and red lines are M(5) = 10
and 15 TeV, respectively. The dashed line corresponds to SBBN

Fig. 3.9 Contours with 1σ

and 2σ confidence levels
from Yp

-0.05

0

0.05

0.1

0.15

10 11 12 13 14 15

ξ e

M(5) [TeV]

68 % C.L.
95.4% C.L.

Note that the produced amounts of D and 7Li are almost the same as in SBBN since
they are not so sensitive to the neutron-to-proton ratio.

When we compare our results with the observed abundance, as described in
Sect. 2.5.3 for SBBN, we can unfortunately find no reasonable range of the baryon-
to-photon ratio η. Consequently, we are forced to take the condition M(5) → ∞,
which reduces to the standard model.

To reduce the abundance of 4He, we incorporate neutrino degeneracy with
a positive ξe as explained in Sect. 3.1.2. We perform the χ2 analysis for two
parameters M(5) and ξe. Figure 3.9 shows a part of the contours with 1σ (68 %)
and 2σ (95 %) CLs on the (M(5), ξe) plane, where η10 = 6.1 is taken to be fixed. It



3.3 Phenomenological Variable � Models 53

is noted that overproduction of 4He due to inclusion of the interaction energy on the
brane is canceled out if electron-neutrinos are degenerate.

3.3 Phenomenological Variable � Models

The cosmological term is considered to be extremely large in the early universe,
so that it is not constant, but decreasing to a small value around 10−56 cm−2 at the
present epoch as inferred from observations [15]. Let us examine thermal evolution
of the universe with the decaying cosmological term. The term is transferred to
the right hand side in Einstein’s field equation (2.2) and treated as a source of the
gravitational field [16].

The energy-momentum conservation law including variable � is written as

d

da

[(
ρ + �

8πG

)
a3

]
= −3

(
p − �

8πG

)
a2. (3.46)

The Friedmann equation (2.21) is

H 2 =
(

ȧ

a

)2

= 8πG

3
ρ − k

a2 + �

3
. (3.47)

We adopt an equation of state: p = (γ − 1)ρ.

When we examine the thermal history of a realistic universe, we take a general
relation for the energy density which includes both matter and radiation:

ρ = ρm + ρr . (3.48)

Here the radiation energy density contains photons, electron-positron pairs, and
neutrinos:

ρr = αT 4 (3.49)

with

α = aB

(
11

4
+ 7

8
Nν

)
,

where Nν = 3 is the number of neutrino species.
Neglecting the contribution from matter, pressure is given by

p = 1

3
αT 4. (3.50)
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When we normalize the scale factor a to its present value, as has been done
below (2.20) in Sect. 2.3, (3.46) and (3.47) are rewritten in terms of the density
parameters

d ln a

dt
= H0

[
� + λ + �k

a2

]1/2

, (3.51)

d�

d ln a
= −4� + �m0

a3 − dλ

d ln a
, (3.52)

where

� = ρ

ρcr
, λ = �

3H 2
0

, �k = − k

H 2
0

.

Note that both � and λ are not constants but functions of a.
Now we investigate the thermal evolution of variable � models. The � term is

assumed to be of the form

λ = λ0a
−m. (3.53)

The energy equation (3.52) becomes

d�

d ln a
= −4� + �m0

a3 + mλ. (3.54)

We consider nonsingular models quantitatively. From the conditions da/dt =
d2a/dt2 = 0 at the moment of bounce, the critical value λ∗ of λ0 and the minimum
value a∗ are found to be [16]

λ∗ = (3γ − 2)(3γ − m)�0

3γ (2 − m)a
3γ−m∗ + (3γ − 2)m

, (3.55)

3γ (3γ − m)�0a
2∗ + 3γ (2 − m)(1 − �0)a

3γ∗
−(3γ − 2)(3γ�0 − m)am∗ = 0. (3.56)

The numerical solutions for various sets of γ , �0, and m are given in Table 3.2.
The critical temperature is defined as T∗ = 2.725/a∗ K. The most stringent
constraints at the early universe are derived from primordial nucleosynthesis.
Nonsingular models need the critical temperature T∗ > 1010 K, since light elements
He, D, and Li are produced around T � 108 − 109 K in accordance with the
observed abundance as described in SBBN. It is easily found from Table 3.2 that
when a∗ < 10−10, this condition can be attained.
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Table 3.2 Cosmological
values at the moment of the
bounce

γ �0 m a∗ λ∗ T∗(K)

1 0.51 1.5 1.70856E–04 0.510 1.595E+04

1 0.61 1.8 4.75822E–10 0.407 5.727E+09

4/3 0.55 1.9 1.36487E–09 0.608 1.997E*09

4/3 0.54 1.9 3.92015E–10 0.597 6.951E*09

4/3 0.53 1.9 8.89150E–11 0.586 3.065E+10

4/3 0.50 1.9 5.99525E–14 0.553 4.545E+13

When m 
= 3γ , the energy density is found to be [16]

ρ = ρ0a
−3γ

[
1 − κ

m(1 − a3γ−m)

3γ − m

]
, (3.57)

where κ = λ0/�0. If either λ0 = 0 or m = 0, then (3.57) reduces to (2.17), and ρ

satisfies the thermodynamic condition of the adiabatic expansion of the universe.
We examine thermal evolution during the early stage of the universe. Then we

can take γ = 4/3. Since ρ ∼ T 4, temperature is written from (3.57) as

T

T0
= 1

a

[
1 − κ

m(1 − a4−m)

4 − m

]1/4

, (3.58)

We guess 0.1 < κ < 10 from observations. We can set a4−m � 1 at the early
universe because a � 10−10. Then a necessary condition for T > 0 is

m <
4

κ + 1
. (3.59)

The alternative condition that the right hand side of (3.54) must be negative at the
present epoch gives rise to

mκ < 3. (3.60)

Figure 3.10 shows the evolution of temperature in the early universe for several
sets of κ and m. It can be seen that temperature becomes lower in a variable � model
than that of the standard model (m = 0).
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Fig. 3.10 Temperature in
units of its present value T0
against the scale factor for
several sets of κ and m
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Chapter 4
Modified Brans-Dicke Theory

Abstract Concerning the decrease in the cosmological term � from a large
magnitude in a very early universe to a small value at the present epoch, we explore
the Brans-Dicke theory modified with a variable � term which is a function of
the scalar field. The fundamental equations are derived for the gravitational and
scalar fields from the variational principle of the action. In the framework of the
Robertson-Walker metric, we obtain the expression for the expansion rate of the
universe like the Friedmann equation. Then we turn to summarize the observational
constraints on the intrinsic parameters contained in this theory. We confirm that
the evolution of the universe deviates significantly from the standard model in the
early stage. Calculations of Big Bang nucleosynthesis (BBN) are performed with
the use of the nuclear reaction network. Comparing the resultant amounts of the
light elements, 4He, D, and 7Li, with the observed primordial abundances and using
also the magnitude-redshift relation of Type Ia supernovae (SNe Ia), we derive
reasonable ranges of the parameters.

Keywords Brans-Dicke theory · Flat universe · Scaler field · Variable
cosmological term

4.1 Dynamics of BD� Model

Based on the original Brans-Dicke (BD) theory [1], we construct a BD model
incorporated with a variable � term which is a function of the scalar field φ

(hereafter BD�). The action is expressed as [2]

S =
∫

d4x
√−g

[
(R − 2�) φ − ω

φ
φ,νφ

,ν + 16πLm

]
, (4.1)

where φ,ν = ∂φ/∂xν , R is the curvature scalar, Lm is the Lagrangian density of
matter, and ω is the dimensionless constant of BD gravity.
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The variational principle with respect to gμν yields the field equation

Rμν − 1

2
gμνR + gμν� = 8π

φ
Tμν + ω

φ2

(
φ,μφ,ν − 1

2
gμνφ,σ φ,σ

)

+ 1

φ

(
φ,μ;ν − gμν�φ

)
, (4.2)

where � is the d’Alembertian, the symbol semicolon indicates the covariant
differentiation and

T μν = 2√−g

∂

∂gμν

[√−gLm

]
(4.3)

is the energy-momentum tensor of matter.
Contraction of (4.2) results in

−R + 4� = 8π

φ
T ν

ν − ω

φ2 φ,νφ
,ν − 3

φ
�φ. (4.4)

On the other hand, the field equation for φ is obtained from the variational
principle with respect to φ in (4.1) as

R − 2� − 2φ
∂�

∂φ
= ω

φ2 φ,νφ
,ν − 2ω

φ
�φ. (4.5)

Eliminating R from (4.4) and (4.5), we get

� − φ
∂�

∂φ
= 4π

φ
T ν

ν − 2ω + 3

2φ
�φ. (4.6)

We adopt the simplest case of coupling between the scalar and matter fields

�φ = 8πμ

2ω + 3
T ν

ν , (4.7)

where μ is a constant. Then (4.6) is integrated to be

� = 2π (1 − μ)

φ
T ν

ν . (4.8)

It is noted that the case μ = 1 reduces to the original BD theory with � = 0.
Here we consider the homogeneous and isotropic universe, as depicted by the

Cosmological Principle in Chap. 1. It follows that the scalar field φ turns out to
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be a function of time only. Using the Robertson-Walker metric (2.14) and the
energy-momentum tensor of perfect fluid (2.9), after some manipulations, the (0, 0)

component of (4.2) is written as

(
ȧ

a

)2

+ k

a2 − �

3
− ω

6

(
φ̇

φ

)2

+ ȧ

a

φ̇

φ
= 8π

3

ρ

φ
. (4.9)

Consequently, the expansion rate of the BD� model is given by

H = ȧ

a
=

[
1

4

(
φ̇

φ

)2

− k

a2 + �

3
+ ω

6

(
φ̇

φ

)2

+ 8π

3

ρ

φ

]1/2

− φ̇

2φ
, (4.10)

where we adopt an expanding solution.
For a perfect fluid we obtain from (4.7)

d

dt

(
φ̇a3

)
= 8πμ

2ω + 3
(ρ − 3p) a3. (4.11)

Since ρ = ρm + ρr and p = pr = ρr/3, (4.11) is integrated to give

φ̇ = 1

a3

[
8πμ

2ω + 3
ρm0t + B

]
, (4.12)

where B is an integral constant, ρm0 is the matter density at the present epoch, and
the scale factor a is normalized to its present value (a0 = 1).

From (4.8) we have

� = 2π(μ − 1)

φ
ρm. (4.13)

The gravitational “constant” G in the BD� model can be expressed as

G = 1

2

(
3 − 2ω + 1

2ω + 3
μ

)
1

φ
. (4.14)

When ω → ∞ and μ = 1, we obtain G = 1/φ. Moreover, if φ is constant,
then (4.9) in our model reduces to the Friedmann equation (2.21) without the �

term.
The curvature constant k is given from (4.9) evaluated at the present epoch as

k = 2π(5 − μ)

3φ0
ρm0 − H0

2 + ω

6

(
φ̇

φ

)

0
− H0

(
φ̇

φ

)

0
. (4.15)
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4.2 Parameters in the BD� Model

As described in the previous section, our BD� model contains three parameters, ω,
μ, and B. It can be seen from (4.14) that the strength of the φ field is related to the
gravitational “constant.”

The coupling constant was proposed to be ω = 6 in the original BD theory [1].
BBN has been studied for ω = 6 in the BD� model [3]. A detailed analysis [4]
gives ω > 50. Using the Viking space probe, time delay of radar echoes results
in ω > 500 [5]. Calculations of BBN are revisited with ω = 500 [6]. From the
Cassini spacecraft, the result ω > 40,000 is reported [7]. It is, therefore, worthwhile
to investigate the BD� model with the use of a new value of ω. Here we adopt
ω = 10,000 in our studies [8].

The time variation of the gravitational “constant” G has been explored using
various techniques. The results are summarized in Table 4.1 for the limit to (Ġ/G)0
at the present epoch obtained from, e.g., palaeomagnetic studies [9], lunar laser
ranging [11], neutron star masses [13], and helioseismology [15]. Consequently, we
set the constraint (Ġ/G)0 < 10−13 yr−1.

As can be seen from (4.13), if the intrinsic parameter μ < 1, we have � < 0.
Also, from (4.14), we obtain φG < 0 if μ > 3 and ω � 1. Therefore, it is suitable
to consider the range −2 ≤ μ ≤ 2.

We can see in (4.12) that the behavior of the early universe is essentially
determined from B as

lim
t→0

φ̇(t) = lim
t→0

B

a3(t)
.

A model with negative B implies negative φ̇, or equivalently positive Ġ in the early
stage of the universe.

On the other hand, using t0 � 1017 s and ρm0 � 10−31 g cm−3, we can find
that the BD� model does not deviate appreciably from the standard model near the
present epoch as long as |B∗| ≤ 10, where B∗ is the normalized value of B defined
as B∗ = B/(10−24 g s cm−3). Then we obtain

Table 4.1 Time variation of
the gravitational “constant”
(Ġ/G)0

Method (Ġ/G)0 (10−12yr−1) Reference

Palaeomagnetic studies <8 [9]

Big bang nucleosynthesis <0.17 [10]

Radar ranging of Mars 0.8 [5]

Lunar laser ranging 0.1 ± 10.4 [11]

White dwarf −30(+10
−30) [12]

Neutron star mass −0.6 ± 2.0 [13]

Globular cluster age −35 ∼ 7 [14]

Helioseismology <1.6 [15]
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Table 4.2 Parameters in the
BD� model

Parameter Value

Coupling constant ω 10,000

Intrinsic parameter μ −2 ∼ 2

Integral constant B∗ −10 ∼ 10

(φ̇)0 = 8πμ

2ω + 3
ρm0t0.

Using (4.14), we have

(
Ġ

G

)

0
= −

(
φ̇

φ

)

0
= − 16πρm0G0t0

3(2ω + 3) − (2ω + 1)μ
. (4.16)

Table 4.2 gives the values of parameters in the BD� model we adopt in our
numerical calculations.

4.3 Characteristics of a Flat Universe

We examine characteristics of the BD� model in a flat universe. The Hubble
parameter at the present epoch is expressed from (4.9) with k = 0 as

H 2
0 = 8πρm0

3φ0
+ �0

3
+ ω

6

(
φ̇

φ

)2

0
− H0

(
φ̇

φ

)

0
. (4.17)

Let us introduce density parameters

�m0 = ρm0

ρBD�
cr

, ��0 = �0

3H 2
0

,

�φ0 = ω

6H 2
0

(
φ̇

φ

)2

0
− 1

H0

(
φ̇

φ

)

0
,

where ρBD�
cr = 3φ0H

2
0 /8π is the critical density of the BD� model. Then we have

�m0 + ��0 + �φ0 = 1, (4.18)

Since |φ̇/φ|0 = |Ġ/G|0 < 10−12 yr−1 (see Table 4.1), we get �φ0 < 10−2.
Using (4.13), we obtain

�m0 � 4

μ + 3
, ��0 � μ − 1

μ + 3
.
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Fig. 4.1 Evolution of the
scale factor in the BD�

model for B∗ = −0.5 and 2.0
with μ = 0.6 and ω = 104.
The solid line denotes the
standard model
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Therefore, the matter density at the present epoch is given by

ρm0 = 3

2π(μ + 3)
φ0H

2
0 . (4.19)

We can solve a set of (4.10), (4.12), and (4.13) numerically with specified
parameters ω, μ, and B∗. The others are fixed to be H0 = 71 km s−1 Mpc−1 and
G0 = 6.6726 × 10−8 dyne cm2 g−2. The matter density ρm0 at the present epoch is
evaluated from (4.19).

Figure 4.1 shows the evolution of the scale factor in the BD� model for B∗ =
−0.5 and 2.0 with fixed μ = 0.6 and ω = 104. The deviations from the standard
model, which are indicated by the solid line, become appreciable at t < 10 s in the
early stage of the universe.

As already stated, φ̇ is essentially determined from B∗ in the early universe. The
evolution of the scalar field is shown in Fig. 4.2 for several values of ω and B∗ with
μ = 0.6 fixed. As can be seen from (4.12), if B∗ is positive, φ is an increasing
function of time. It follows that G is a decreasing function. In contrast, if B∗ is
negative, φ decreases until t � 10 s. Thereafter, the first term in (4.12) becomes
dominant over |B|, and φ̇ changes to positive. Consequently, there is no considerable
difference in the BD� model from B∗ at t > 102 s.

Figure 4.3 shows the evolution of the scalar field for several values of ω and μ

with B∗ = 0.5 fixed. Since B∗ is positive, φ increases monotonically with time. For
large ω, (4.14) reduces to

φ � 3 − μ

2

1

G
.

Then we have large φ for small μ.
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Fig. 4.2 Evolution of the scalar field in the BD� model for several values of ω and B∗ with
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Fig. 4.3 Evolution of the scalar field in the BD� model for several values of ω and μ with B∗ =
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As can be seen from Figs. 4.1, 4.2, and 4.3, the BD� model deviates from
the standard model. The deviation, which depends on the specified parameters, is
considerably large at t < 100 s. Therefore, these parameters can be constrained
from observational points of view such as the abundance of light elements in BBN
and the m − z relation of SNIa.
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4.4 Constraints on the BD� Model

4.4.1 Constraints from BBN

Synthesis of 4He is the most important consequence of BBN. Its abundance should
be in principle used as the critical test of nonstandard models, because it reflects
physical circumstances at around T � 109 K in the early universe. The abundance
of light elements in the BD� model has already been investigated [3, 6, 16], though
the parameter ω was taken to be small. We perform BBN calculations for ω = 104

using the nuclear reaction network as described in Sect. 2.5 of SBBN.
Figure 4.4 shows the produced abundance of 4He, D, and 7Li against the baryon-

to-photon ratio η. We take B∗ = −10, −2.5, 0, and 10 with μ = 0.5 fixed. As can be
seen from Fig. 4.1, when |B∗| is large, the expansion rate of the universe increases,
which leads to more neutrons at the onset of nucleosynthesis. Consequently, more
4He is produced than in SBBN.

H/
D

Y
P

H/i
L7

Fig. 4.4 Abundance of light elements produced in the BD� model for various values of B∗ with
μ = 0.5 and ω = 104
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Fig. 4.5 Abundance of light elements produced in the BD� model for B∗ = 2, μ = 0.6, and
ω = 104. The dashed lines indicate the 2σ uncertainties in the nuclear reaction rates. The horizontal
dotted lines denote the observed abundances of Yp [17–19], D/H [20], and 7Li/H [21]. The vertical
lines indicate the range of η determined from WMAP [22]

We compare the calculated yields of BBN with the observed primordial abun-
dances. Figure 4.5 shows the produced abundance for B∗ = 2 and μ = 0.6.
The dashed lines denote the 2σ uncertainties in the nuclear reaction rates. The
observed abundances are indicated by the horizontal dotted lines. The data are taken
from Refs. [17–20] and [21] for Yp, D/H, and 7Li/H, respectively. The vertical lines
indicate the value η = (6.19 ± 0.15) × 10−10 determined from WMAP [22].

It is found that the range of η derived from both Yp and D/H is tightly consistent
with the value of WMAP, though the lower limit of 7Li/H is barely safe. Finally, we
obtain the reasonable parameter ranges

0.0 ≤ μ ≤ 0.6, −2 ≤ B∗ ≤ 2. (4.20)
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4.4.2 Constraints from SNe Ia

Now we proceed to consider the magnitude-redshift (m − z) relation in our BD�

model with k = 0 as described in Sect. 2.6 for the standard model. We are concerned
with a matter dominant era of z < 5, where the parameter B∗ is not effective to
change the evolution of the universe.

Once the parameters ω, μ, and B∗ are specified, the expansion rate (4.9) and
hence the luminosity distance (2.58) are numerically evaluated. The resulting m-z
relation is shown in Fig. 4.6 together with the observed data for SNe Ia taken from
the Union2 compilation [23].

We make the same χ2 analysis for the distance moduli of SNe Ia as in Sect. 2.6.
We get χ2 = 2293 for the samples of N = 557. Hence the reduced χ -square
becomes χ2

r = χ2/N = 4.12. When φ̇ � 0 in the matter dominated stage, we have
� ∼ ρm from (4.13). It follows that the BD� model reduces to the standard model
without �. This is contradictory to the present accelerating universe, which should
contain a sufficient amount of dark energy to accelerate the universe. To simulate the
present acceleration, we are forced to add another constant cosmological term �c0.

The expansion rate in this model is given by

H =
[

1

4

(
φ̇

φ

)2

+ �

3
+ �c0

3
+ ω

6

(
φ̇

φ

)2

+ 8π

3

ρ

φ

]1/2

− φ̇

2φ
. (4.21)

When we set ��c0 = �c0/(3H 2
0 ) = 0.7 and μ = 0.5, the resultant m-z relation

is shown in Fig. 4.6. We obtain χ2 = 546.9 and hence χ2
r = 0.98. It is noted

0.01 0.1 1
redshift z

34

36

38

40

42

44

46

μ d

Friedmann model
BDΛ without Λc0
BDΛ  with Λc0
Union-2

Fig. 4.6 Magnitude-redshift relation of a flat universe in the standard and BD� models
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that ��0 = −0.043 and �m0 = 0.34 in this model. Consequently, the total ��

amounts to 0.66. We conclude that the BD� model with �c0 has nearly the same
characteristics as the standard model with �m = 0.3 and �� = 0.7. Although the
cosmological term is not important in the early stage, it plays a very important role
near the present epoch.
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Chapter 5
Appendix A: Einstein Tensor

Abstract We provide some useful formulas explicitly to obtain the Einstein tensor
as a convenience to readers. We also establish our notation in tensor calculus.

Keywords Einstein tensor · Notation in tensor calculus

The infinitesimal distance ds of two points with difference dxμ is given by

ds2 = gμνdxμdxν, (5.1)

where gμν is the metric tensor. The Christoffel symbol is written as


λ
μν = 1

2
gλσ

(
∂gσμ

∂xν
+ ∂gσν

∂xμ
− ∂gμν

∂xσ

)
. (5.2)

The variational principle under the condition that the endpoints A and B are fixed

δ

∫ B

A
ds = 0

yields the geodesic equation

d2xλ

dτ 2 + 
λ
μν

dxμ

dτ

dxν

dτ
= 0, (5.3)

where τ is the proper time defined as ds2 = −dτ 2.
The covariant derivative of a contravariant vector is

Aμ;ν = ∂Aμ

∂xν
+ 


μ
νλA

λ, (5.4)
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and similarly the covariant derivative of a covariant vector is

Aμ;ν = ∂Aμ

∂xν
− 
λ

μνAλ. (5.5)

More generally, the covariant derivative of a tensor T μν
λ is

T μν
λ;ρ = ∂T μν

λ

∂xρ
+ 
μ

ρσ T σν
λ + 
ν

ρσ T μσ
λ − 
σ

λρT μν
σ . (5.6)

The Riemann tensor is given by

Rλ
ρμν = ∂
λ

ρν

∂xμ
− ∂
λ

ρμ

∂xν
+ 
λ

σμ
σ
ρν − 
λ

σν

σ
ρμ. (5.7)

Its contraction yields the Ricci tensor as

Rμν = Rλ
μλν

= ∂
λ
μν

∂xλ
− ∂
λ

μλ

∂xν
+ 
λ

μν

ρ
λρ − 
λ

μρ

ρ
νλ. (5.8)

Moreover contracted is the curvature scalar

R = gμνRμν = Rμ
μ. (5.9)

The Einstein tensor is given by

Gμν = Rμν − 1

2
R gμν. (5.10)



Chapter 6
Appendix B: Thermal History in an Early
Universe

Abstract We describe the thermal history during the stage of annihilation of
electron-positron pairs. Energies of the pairs are converted into photons. We obtain
the expression for the photon temperature T which deviates from the usual law
T ∼ a−1 in the expanding universe.

Keywords Thermal history · Photon temperature

Let us consider the thermal history during the stage when electron-positron pairs
annihilate and hence convert their energy into photons. In the early universe, the
Friedmann equation (2.21) can be written as

ȧ

a
=

(
8πG

3
ρr

)1/2

.

The constituents of radiation at T � 1010 K are photons, neutrinos, and electron-
positron pairs which are mildly relativistic. The energy density is given by

ρr = ργ + ρν + ρe.

Here

ργ = aBT 4, ρν = 7

8
NνaBTν

4,

where aB is the radiation density constant, Nν = 3 is the number of neutrino species,
and Tν is the neutrino temperature. Since neutrinos have already been decoupled at
this stage, we have Tν 
= T .

The energy density and pressure of electrons are, neglecting degeneracy, given
by

ρe− = 8π

h3

∫ ∞

0

Ep2

exp(E/kBT ) + 1
dp, (6.1)
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pe− = 8π

3h3

∫ ∞

0

p2

E

p2

exp(E/kBT ) + 1
dp (6.2)

with

E = (p2 + me
2)1/2,

where h is the Planck constant, kB is the Boltzmann constant, E is the energy of
an electron with momentum p, and me is the electron rest mass. Recall that we are
using units with c = 1.

If we take the transformation p = me sinh θ , we have E = me cosh θ . Thus (6.1)
and (6.2) can be written as

ρe− = ae

∫ ∞

0

sinh2 θ cosh2 θ

exp(ζ cosh θ) + 1
dθ, (6.3)

pe− = ae

3

∫ ∞

0

sinh4 θ

exp(ζ cosh θ) + 1
dθ (6.4)

where

ζ = me

kBT
, ae = 8πme

4

h3 .

The integrals result in

F1 =
∫ ∞

0
sinh2 θ [1 + exp(ζ cosh θ)]−1dθ

=
∫ ∞

0

∑
n=1

(−1)n+1 sinh2 θ exp[−nζ cosh θ ]dθ

=
∑
n=1

(−1)n+1 1

nζ
K1(nζ ),

F2 =
∫ ∞

0
sinh4 θ [1 + exp(ζ cosh θ)]−1dθ

=
∑
n=1

(−1)n+1 3

(nζ )2
K2(nζ ),

where Kn (n = 1, 2) are the modified Bessel functions. Therefore, we obtain

ρe = ρe− + ρe+ = 2ae(F1 + F2), (6.5)

pe = pe− + pe+ = 2

3
aeF2 (6.6)
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The energy conservation law (2.15) is now written as

d

dT
(ργ + ρν + ρe) + (ργ + ρν + ρe + pγ + pν + pe)

3

a

da

dT
= 0, (6.7)

where the variable is changed from time t to temperature T . The contribution from
neutrinos vanishes because Tν ∼ a−1. It follows that

d ln a

d ln T
= − 1

3(ργ + ρe + pγ + pe)

d(ργ + ρe)

d ln T
. (6.8)

We obtain from (6.2)

dpe

d ln T
= − dpe

d ln ζ
= (ρe + pe).

Thus, we have

dρe

d ln T
= T 4 d

d ln T

(
ρe + pe

T 4

)
+ 3(ρe + pe).

Because

dργ

d ln T
= 4ργ = 3(ργ + pγ ),

(6.8) reduces to

d ln a

d ln T
= −1 − T 4

3(ργ + ρe + pγ + pe)

d

d ln T

(
ργ + ρe + pγ + pe

T 4

)
,

which is integrated to be

ln a + ln T + 1

3
ln[(ργ + ρe + pγ + pe)/T 4] = const.

Therefore, we obtain

log a = − log T − 1

3
log

[
ρe + pe

T 4 + 4

3
aB

]
+ C, (6.9)

where C is an integration constant.
The entropy density of photons is given by

s = ργ + pγ

T
= 4

3
aBT 3. (6.10)
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Table 6.1 Relation between
the scale factor a/a0, photon
temperature T , and energy
density of electrons ρe

a/a0 T (K) ρe (erg cm−3)

1.94549E–10 1.00000E+10 1.43386E+05

2.46042E–10 7.94328E+09 5.61462E+04

3.11946E–10 6.30957E+09 2.17608E+04

3.97000E–10 5.01187E+09 8.29547E+03

5.08019E–10 3.98107E+09 3.08047E+03

6.54998E–10 3.16228E+09 1.09831E+03

8.52590E–10 2.51189E+09 3.68363E+02

1.12142E–09 1.99526E+09 1.13054E+02

1.48720E–09 1.58489E+09 3.06413E+01

1.97460E–09 1.25893E+09 7.01540E+00

2.59657E–09 1.00000E+09 1.28417E+00

3.35606E–09 7.94328E+08 1.75539E–01

4.27120E–09 6.30957E+08 1.64577E–02

5.39250E–09 5.01187E+08 9.51606E–04

6.79188E–09 3.98107E+08 2.97208E–05

8.55067E–09 3.16228E+08 4.24757E–07

While, at the epoch kBT1 � me, neutrinos, photons, and electrons are in thermal
equilibrium, the entropy density of photons plus electron-positron pairs is

s1 =
(

1 + 7

4

)
4

3
aBT1

3.

The entropy in a volume a3, which is conserved due to adiabatic expansion, is
written as

S = sa3 = s1a1
3.

Because the neutrino temperature varies as Tν ∼ a−1, the photon temperature well
after pair annihilation is increased to be

T =
(

11

4

)1/3

Tν. (6.11)

In Table 6.1 we give the relations between the scale factor a/a0, the photon
temperature T , and the energy density of electrons ρe(T ) during the stage of
annihilation of electron-positron pairs.



Chapter 7
Appendix C: Numerical Approach
to Calculate Nucleosynthesis

Abstract We describe a numerical method to calculate the evolution of the
abundance of chemical elements. A set of differential equations are reduced to the
full-implicit backward difference equations for a finite time interval. We can obtain
a set of solutions without meeting numerical instability.

Keywords Abundance evolution · Numerical method

We present briefly a numerical method for calculating the evolution of chemical
elements, e.g., BBN based on [1].

Let Yj (mol g−1) be the abundance of the j -th nucleus, and then the time variation
of abundance, for example, Y1, is determined from the following differential
equation:

d Y1

d t
=

∑
12···k
lm···n

λ12···k
lm···n Yl Ym · · ·Yn −

∑
lm···n
12···k

λlm···n
12···k Y1 Y2 · · · Yk. (7.1)

Here the first and second terms indicate the production and destruction of Y1,
respectively, and λlm···n

12···k is the rate of the reaction 1+2+· · ·+k −→ l+m+· · ·+n,
where 1, 2, · · · , n stand for nuclear species.

We represent the thermonuclear reaction rate of k + 1 bodies by Nk
A 〈σv〉 12···k ,

where NA is Avogadro’s number and the average is taken over the Maxwell-
Boltzmann distribution. Then we have the form of the reaction rate in (7.1) as

λ 12···k = (ρNA) k N1

N1!N2! · · ·Nk! 〈σv〉 12···k, (7.2)

where Nj is the particle number of element j among the k + 1 bodies and Nj !
is necessary to avoid multiple counting of reactions with identical particles. For a
decay with half-life τ1/2, the rate is written as

λβ = ln 2

τ1/2
. (7.3)
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Fig. 7.1 Typical branches of
nuclear reactions from a
specific nucleus AZ on the
N -Z plane

Figure 7.1 shows the branches of nuclear reactions relevant for nucleosynthesis
on the N -Z plane, where N and Z are the neutron and proton numbers, respectively.
This is a section of the chart of nuclides and indicates paths of nuclear reactions with
respect to a specific nucleus AZ of mass number A = N + Z. The paths β−, β+,
and ec denote β−-decay, β+-decay, and electron capture, respectively.

The evolution of abundance can be obtained from (7.1) by taking into account the
flow of nuclides shown in Fig. 7.1. For example, BBN starts from the production of
deuterium through p(n,γ )D. Then it is followed by the destruction via D(p,γ )3He,
D(d,n)3He, and so on.

Generally, (7.1) is written as

d Yj

d t
= fj (Y1, Y2, · · · , Yn), (j = 1, 2, · · · , n). (7.4)

We must solve a set of differential equations (7.4) without numerical instability. To
this end we adopt the implicit integration method. Let Y

(i)
j and Y

(i−1)
j be the number

fractions of the j -th nucleus at the time steps i and i −1, respectively, and then (7.4)
reduces to the full implicit backward difference equation.

Y
(i)
j − Y

(i−1)
j

�t(i)
= fj (Y

(i)
1 , Y

(i)
2 , · · · , Y (i)

n ), (7.5)

where �t(i) is the time interval at the i-th time step.
When the right-hand side of (7.5) would be evaluated in terms of the solutions

Y
(i−1)
j at the previous time step as fj (Y

(i−1)
1 , Y

(i−1)
2 , · · · , Y

(i−1)
n ), it is the explicit

method. We will often meet numerical instability, unless we take a infinitesimal
time step.

On the contrary, in our implicit method, the right-hand side contains the variables
at the i-th time step. We set

Y
(i)
j = Y

∗(i−1)
j + δY

∗(i−1)
j , (7.6)
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Y
∗(i−1)
j = Y

(i−1)
j + �Y

(i−1)
j , (7.7)

where Y
∗(i−1)
j is a trial value for Y

(i)
j . Then (7.5) is written as

δY
∗(i−1)
j + �Y

(i−1)
j

�t(i)
= fj (Y

∗(i−1)
k + δY

∗(i−1)
k ), (k = 1, 2, · · · , n). (7.8)

The right-hand side is expanded to the first-order term as follows:

fj (Y
∗(i−1)
k + δY

∗(i−1)
k ) = fj (Y

∗(i−1)
k ) +

n∑
k=1

∂fj

∂Y
∗(i−1)
k

δY
∗(i−1)
k .

Consequently, we obtain a set of simultaneous linear equations for δY
∗(i−1)
j :

n∑
k=1

(
δjk

�t(i)
− ∂fj

∂Y
∗(i−1)
k

)
δY

∗(i−1)
k

= fj (Y
∗(i−1)
k ) − �Y

(i−1)
j

�t(i)
, (j = 1, 2, · · · , n). (7.9)

When we set a guess evaluated from the previous solutions by

�Y
(i−1)
j =

(
Y

(i−1)
j − Y

(i−2)
j

) �ti

�ti−1 ,

then we seek solutions of (7.9) iteratively. The iteration is terminated when the
maximum value of the relative corrections |δY ∗(i−1)

j /Y
(i)
j | becomes less than a

critical value. We have just obtained a set of solutions Y
(i)
j at the i-th time step.

It is noted that the mass fraction is given by

Xj = AjYj , (7.10)

where Aj is the atomic mass of element j . We check that the normalization

n∑
j=1

Xj = 1

is sustained at every time step.
As an example, we show in Fig. 7.2 the evolution of mass fraction Xj through the

hot CNO cycle, which is calculated toward the exhaustion of hydrogen. The network
consists of 12 nuclei: 1H, 4He, 12,13C, 13−15N, 14−17O, and 17F. The included
reactions have only positive Q-values and β-decays. The initial composition is set
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Fig. 7.2 Abundance changes through the hot CNO cycle toward the exhaustion of hydrogen

to be the solar system abundance. Density is 102 g cm−3. Temperature is around
2×108 K and slightly changes during the course of the evolution in accordance with
the nuclear energy generation [2]. It is noted that the ordinary CNO cycle operates
at T � 3 × 107 K in main sequence stars.
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Chapter 8
Appendix D: Some Useful Numbers

Abstract We summarize physical and astronomical constants in cgs units. We also
provide the conversion of peculiar units in nuclear physics and astronomy used in
this book.

Keywords Physical constants · Astronomical units

Physical constants

Speed of light in vacuum c 2.9979 × 1010 cm s−1

Gravitational constant G 6.6742 × 10−8 dyne cm2 g−2

Planck constant h 6.6261 × 10−27 erg s

Reduced Planck constant � 1.0546 × 10−27 erg s

Avogadro’s number NA 6.0221 × 1023 mole−1

Boltzmann constant kB 1.3807 × 10−16 erg K−1

Atomic mass unit Mu 1.6605 × 10−24 g

Electron mass me 9.1094 × 10−28 g

Proton mass mp 1.6726 × 10−24 g

Neutron mass mn 1.6749 × 10−24 g

Electronic charge e 4.8032 × 10−10 esu

Electron rest energy mec
2 511.00 keV

Proton rest energy mpc2 938.27 MeV

Neutron rest energy mnc
2 939.57 MeV

Radiation density constant aB 7.5658 × 10−15 erg cm−3 K−4

Fine structure constant α 1/137.04

Planck time tP 5.3912 × 10−44 s

Planck mass MP 2.1765 × 10−5 g

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2018
M. Hashimoto et al., Big-Bang Nucleosynthesis, SpringerBriefs in Physics,
https://doi.org/10.1007/978-981-13-2935-7_8

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2935-7_8&domain=pdf
https://doi.org/10.1007/978-981-13-2935-7_8


82 8 Appendix D: Some Useful Numbers

Astronomical constants

Solar mass M� 1.9891 × 1033 g

Solar luminosity L� 3.8458 × 1033 erg s−1

Hubble constant H0 h × 100 km s−1 Mpc−1

Hubble time H0
−1 9.778 h−1 × 109 yr

Critical density ρcr 1.878 h2 × 10−29 g cm−3

Conversion of units

Arc second 1′′ = 4.8481 × 10−6 rad

Electron volt 1 eV = 1.6022 × 10−12 erg

Fermi 1 fm = 1 × 10−13 cm

Cross section 1 barn = 1 × 10−24 cm2

Ångström 1 Å = 1 × 10−8 cm

Year 1 yr = 3.1558 × 107 s

Light year 1 lyr = 9.4607 × 1017 cm

Parsec 1 pc = 3.0857 × 1018 cm
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A
Absolute magnitude, 35
Action, 59
Age of universe, 15
αβγ theory, 2
Apparent magnitude, 35
Astrophysical S-factor, 18

B
Baryometer, 29
Baryon, 16
Baryon-to-photon ratio, 29, 43
β-decay rate, 24
Big Bang nucleosynthesis, 25
Brane cosmology, 45
Brane tension, 50
Brans-Dicke theory, 59
Breit-Wigner formula, 20
Bulk, 45

C
Chandrasekhar limit, 35
Chemical potential, 26
χ2 analysis, 36, 44
Christoffel symbol, 11, 46, 71
Cluster of galaxies, 16
Comoving coordinate system, 13
Confidence level, 36, 44
Conservation law, 14, 53
Cosmological constant, 10, 16
Cosmological principle, 1, 10
Coulomb energy, 18
Covariant derivative, 71

Covariant divergence, 14
Critical density, 15
Curvature constant, 13
Curvature scalar, 11, 13, 47, 72

D
Dark energy, 16
Dark matter, 16
Dark radiation, 51
Decaying cosmological term, 53
Degeneracy parameter, 40
Density parameter, 15, 54, 63
Detailed balance, 22
Distance modulus, 35

E
Einstein’s field equation, 10
Einstein tensor, 11, 47, 72
Electron capture rate, 23
Energy conservation law, 14, 75
Energy-momentum tensor, 11, 48
Entropy density, 75
Equation of state, 14, 53
Explicit method, 78

F
Friedmann equation/Friedmann-like equation,

15, 51

G
Gamow peak, 19
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General relativity, 9
Geodesic equation, 71

H
Hubble constant, 15
Hubble’s law, 2

I
Implicit method, 78

K
Kepler’s law, 16

L
Lepton asymmetry, 40
Line element, 10, 46
Luminosity distance, 34

M
Magnitude-redshift relation, 35, 68
Mass fraction, 79
Metric tensor, 10, 71
Missing mass, 16

N
Neutrino degeneracy, 40
Neutrino temperature, 15, 73
Neutron lifetime, 32
Neutron-to-proton ratio, 27, 41
Nonresonant reaction, 19
Nuclear radius, 18
Nuclear reaction, 78
Nuclear reaction network, 24

P
Pair annihilation, 15, 28, 76
Photodisintegration, 22
Primordial abundance, 30
Principle of equivalence, 10
Principle of general covariance, 10
Proper time, 71

R
Redshift, 34
Reduced mass, 17
Reduced mass number, 17
Resonant reaction, 22
Ricci tensor, 11, 47, 72
Riemann tensor, 72
Robertson-Walker metric, 13
Rotation curve, 16

S
Scale factor, 13
Scaler field, 59
Spiral galaxy, 16
Standard BBN, 28
Standard candle, 35

T
Thermonuclear reaction rate, 17
Tunnel effect, 18
Two-body reaction, 17
Type Ia supernova, 35

V
Variable � term, 59
Variational principle, 60
Virial theorem, 16
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