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   Foreword   

 Natural and human-made events, such as earthquakes, hurricanes, epidemics, and 
terrorist attacks, can cause colossal damage and immense social and economic dis-
ruptions. These threats are never completely avoidable, but often can be mitigated 
or preempted if the necessary resources are allocated and prudent actions are taken 
in advance. Preparations can include retiring or retrofi tting existing vulnerable facil-
ities, researching and enhancing the effectiveness of construction codes, planning 
future developments with conscious risk considerations, and utilizing fi nancial 
vehicles to transfer losses and fund post-disaster recovery. In reality, however, 
resources are always limited, forcing decision-makers to make judgments about 
priorities based on the information at hand. Preparing for potential future events can 
be seen as less pressing than addressing more substantive current crises if the poten-
tial magnitude of these events is not fully understood. Decision-makers need more 
information to assist in creating plans and appropriately allocating available 
resources before an event strikes in order to build a more robust and disaster- resilient 
community. 

 Achieving this goal begins with a realistic assessment of a community’s potential 
disaster-related risks. This, however, is by no means an easy task. Assessing risks 
includes understanding and modeling the very complex 1) physical process of the 
potential risk events, 2) response of the community as a whole as well as its indi-
vidual systems, and 3) potential socioeconomic consequences. In the past several 
decades, numerous research studies have been performed across a broad range of 
disciplines to assess potential impacts from mega-risk events. Scientifi c models and 
analytical frameworks are continually developed. Methodologies undergo ongoing 
improvement with advances in subdisciplines. These methodologies, unfortunately, 
are generally mathematically driven and computationally intensive. The wide use of 
computer technology from early 1980s has introduced a revolutionary change in 
how mega-risks can be studied and analyzed. Today, with continuous and rapid 
advancement in computing technologies, risk modeling techniques are improving at 
an unprecedented speed. 
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 That said, challenges are ubiquitous. Fundamental questions on the modeling 
techniques remain. Mega-risk events often involve small probability but large 
 consequences. Documentation of past mega-events is very young compared to the 
cyclical timelines behind these mega-risk events. Historical evidences are often 
inferred and subject to substantial uncertainties. Scientifi c models, both empirical 
and physics-based, are developed often without suffi cient understanding of the 
physical process and the associated socioeconomic consequences of events. 
Statistics are used heavily. Models may be constructed based on different, partial or 
full data sets that are available to different researchers (or research groups), or 
sometimes even the same researcher (or group). These models may all fi t the data 
set used for development to various degrees with acceptable criterion (or criteria). 
Theories and assumptions behind the models, however, can be quite different, or 
even contradictory. As a result, divergent outcomes may be produced when model-
ing risks from future events. Furthermore, traditional statistical and probability 
theories and methods, many developed with experiences from large numbers of 
samples and assuming “stable” distribution, are often “blindly” applied to solve 
mega-risk problems, which by nature are small probability and must be modeled 
with extreme distributions. These extreme distributions are typically much less sta-
ble and more diffi cult to calibrate. Furthermore, the large uncertainty intrinsically 
associated with the highly sophisticated analytics is often hidden, either voluntarily 
or intentionally, with most contemporary modeling approaches. Single solutions 
are commonly provided to decision-makers, with illusory precision. 

 A pioneer and highly respected scholar of mega-risk management, Dr. Craig 
Taylor, has included a series of essays in his book,  Robust Simulation for Mega- 
Risks  , which provide an in-depth overview of the history and perspectives of the 
traditional theories and methods for statistics and probability. These schools of 
thought are the foundation of modern risk assessment. In his essays, Dr. Taylor 
explores their individual weaknesses and limitations, and in particular the danger of 
“blindly” extrapolating to solve mega-risk problems. By looking into the examples 
of many of the signifi cant fi ndings that played major roles in human history and 
their evolution from the initial discovery to a fi nal resolution to major disasters, Dr. 
Taylor explains why divergent answers from competitive approaches to mega-risk 
problems are not only a necessity but are also unavoidable. A simplistic, forced 
consensus or single-answer view can not only be misleading and seriously skew the 
“true” picture of mega-risks, but may also hinder the progress of science and tech-
nological advancement. In that regard, outliers in predicted future losses are not 
only of intellectual interest, but also of great importance to defi ne the “bound” of 
future risks in a meaningful way. Furthermore, Dr. Taylor lays the foundation for a 
new analytical approach, called “Robust Simulation,” that provides the framework 
for constructing a more robust view of mega-risks from alternative models. Also 
discussed are the various analytical methods that can utilize divergent solutions to 
facilitate more robust fi nancial and risk-mitigation decisions. In his essays, Dr. 
Taylor defi nes a new simple metric, called the “Cat Index,” to measure the stability 
of simulated losses or risk exposures in the context of extreme distributions and to 
answer important questions such as: does the implied loss or exposure distribution 
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have a stable standard deviation, or does it even have a stable mean? All these are of 
great importance in risk-related applications such as insurance, monetary invest-
ment, and more. 

 With extensive experience and profound thinking, Dr. Taylor sheds light on many 
innovative ideas and pragmatic approaches for tackling natural and human-made 
mega-risk issues, which are invaluable to risk management practitioners. In his 
words, “The industry needs a rethink and paradigm change” on our current single- 
solution approaches to achieve a more robust view of the actual risks to build more 
disaster-resistant and safer communities.  

 ImageCat, Inc.      Yajie     Lee    
 Long Beach, CA 
 June 2015 
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  Pref ace   

 My fi rst email about this book came in April 2013. My father was writing a book 
and needed my help—someone to read the draft chapters and give feedback and 
guidance. This fi rst message discussed American psychologist Abraham Maslow, 
Plato, the fusion of East-West philosophies, and Aristotle’s concept of “eudemonia” 
or happiness in the fullest sense. If you didn’t know my father or his style, you 
might fi nd it unusual that a book about risk and natural hazards would start with 
philosophy, psychology, religion, and history. But if you knew him you would fi nd 
it quite normal. He was extremely intellectually curious, believing that knowledge 
of all topics comes into play in solving complex systems problems. 

 The starting point for this book was a paper written by my father and several of 
the colleagues who contributed to this book: Yajie Lee, Bill Graf, Zhenghui Hu, and 
Charles Huyck all of ImageCat. The paper was written for a 2010 conference in 
Shanghai and entitled: “Robust Simulation and Cat Diagnostics for Treating 
Uncertainties in Catastrophe Risk Analysis.” In this paper, robust simulation is dis-
cussed as a solution for developing a statistical analysis in an area with considerable 
competition among analysts but where policy or fi nancial decisions are needed in 
the near term. The paper defi nes robust simulation as a method that involves select-
ing a preferred model to run simulations and then selecting alternate models to 
provide other answers. The range of these competitive answers then would provide 
the range of uncertainties … “as best we can know them at a given time.” 1  

 My father had a dominant core idea throughout his career as a seismic risk expert 
about the importance of looking at multiple outcomes or “ensembles.” Modeling a 
single outcome was insuffi cient in a world where surprise is common, where outli-
ers could be catastrophic, where the mean is unstable and where the world itself is 

1   Taylor, Craig, Yajie Lee, William Graf, Zhenghui Hu, and Charles Huyck. (2010). “Robust 
Simulation and Cat Diagnostics for Treating Uncertainties in Catastrophe Risk Analysis,” 
 Reliability Engineering and Risk Management: Proceedings of the International Symposium on 
Reliability Engineering and Risk Management , Tongji University Press. 
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changing. He was keenly aware that this challenged the long-standing tradition in 
Western thought of looking for single solutions and single outcomes. 2  In the context 
of seismic risk, this meant modeling not just one likely outcome but a suite of poten-
tial outcomes—a stochastic method rather than a deterministic one. The concept of 
“robust” or “robustness” takes this another step allowing for the consideration of 
competing strategies. The core idea in this book is that the ensemble view instead of 
the mean or variance is better capable of characterizing mega-risks. This fi gure of 
loss estimates for seismic risk assessment demonstrates how many policy and fi nan-
cial decisions about risk are currently made based on a single or central scenario 
rather than an ensemble view. 3  Other simulations demonstrate that robust simulation 
better captures the variability of real world events. 4        

2   Toulmin, Stephen, (1992).  Cosmopolis :  The Hidden Agenda of Modernity , Chicago: University of 
Chicago Press. 
3   “Using Robust Simulation to Characterize Uncertainties in Catastrophe Loss Assessments,” from 
RAA Cat Modeling 2014, ImageCat, Inc. 
4   See Taylor, Craig, William Graf, Yajie Lee, Charles Huyck, and Zhengui Hu, 2012, “Propagation 
of Uncertainties through Robust Simulation and Future Research,”  Fifth Asian-Pacifi c Symposium 
on Structural Reliability and its Applications (5APSSRA).  Phook, K. K., Beer, M., Quek, S. T. and 
Pang, S. D., editors, Singapore. 
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    In this book, robust simulation is introduced in Chap.   7    . In fact, my father had 
many working titles and subtitles for the book itself which did not even contain 
either of those words—instead referencing multiple interpretations, paths, risks, and 
uncertainties. He liked the notion of mega-risks, a way to expand his ideas about 
decision strategies to important topics beyond earthquakes. My father also wrote the 
chapters in sequence, fi rst writing about deductivist theory, then frequentist theory, 
and then subjectivist theory—each ultimately judged to be valuable but insuffi cient 
for the problem at hand. As he sent me each chapter, I would ask him if he would 
ever propose something affi rmative—something new perhaps? I told him that the 
book should propose a new methodology—people like that in a book. But in fact, 
this was the plan all along if only I had the patience. So the book is about process, 
the path to robust simulation, walking through the key schools of thought and con-
ceptual quandaries that brought us here. In this quest he wanted to be reverential of 
past and alternate approaches, as he quotes the Hungarian philosopher Imre Lakatos: 
“Important criticism is always constructive: there is no refutation without a better 
theory.” 5  To this end, the original preface is now the essay in the back on “Learning 
from Tradition”—a wonderful piece about the trajectory of the book but overtaken 
by events as a preface. 

 My father did not live to see the completion of this book. My brother Adam and 
I were blessed to see my father May 10, 2014 for a lengthy session where the three 
of us collectively fi gured out the fl ow of the book, how the chapters came together 
as a manuscript. My father wanted us to fi nish his book without him and we have 
attempted to keep it as close as possible to his own wording and voice. My father 
was a rigorous, critical thinker. Although he is not here to see this book published, 
he would want readers to approach this book with critical and inquisitive minds. We 
do not present this out of sentimentality but out of the importance and uniqueness of 
the ideas and as a signifi cant contribution to the fi eld. My father would welcome all 
competitive, divergent, alternate, nonlinear views and interpretations. It’s a book 
about eudemonia, here a desire to address important risks facing the world, and an 
understanding that this approach would represent one moment in time until it helps 
propel new thinkers with new questions and new ideas. 

 Many people have helped with this book. Three of us have served as an editorial 
and writing team after we lost my father: myself, Adam Taylor, and Yajie Lee who 
has helped joyfully with every question that has arisen. Enormous thanks goes to the 
full team at ImageCat: in addition to Yajie, we thank William Graf, Charles Huyck, 
Zhenghui Hu, and Ron Eguchi. Adam Rose was a cherished friend and colleague 
and helped with review and publication. Robert Riehemann has provided enormous 
assistance and extremely challenging comments. Abigail Horn has been a tremen-
dous help and brings amazing resources to our project. Syed Rashid Minhas 

5   From p. 6, Lakatos, I., 1978,  The methodology of scientifi c research programmes , London: 
Cambridge University Press. 
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 provided outstanding technical support. We thank the team at Springer—Fritz 
Schmuhl, who has been so patient and helpful, Timo Bazuin, and Naomi Portnoy. 
Thank you Romy and Cassie. Madison Dresler has provided excellent editorial sup-
port. Thank you Gayle Taylor for your grace, kindness, courage, and strength and 
for understanding the importance of fulfi lling this promise.  

  Natural Hazards Management, Inc.      Melissa     Taylor     Dresler      
 Torrance, CA  
 May 2015 
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    Chapter 1   
 Introduction: An Inquiry-Based Approach       

    Abstract     This book introduces a new way of analyzing, measuring, and thinking 
about mega-risks, a “paradigm shift” that moves from single solutions to multiple 
competitive solutions and strategies. “Robust simulation” is a statistical approach 
that yields ranges of answers and requires a process or strategy that takes into 
account alternate competitive evaluations. To reach this approach, the book system-
atically walks through the historical statistical methods for evaluating risks. The 
fi rst chapters deal with three theories of probability and statistics that have been 
dominant in the twentieth century: deductivist, frequentist, and subjectivist. The 
book then introduces “robust simulation” which solves the problem of measuring 
the stability of simulated losses, incorporates outliers, and simulates future risk 
through simulation of a suite of possible answers. The book emphasizes the impor-
tance of fl exibility and attempts to demonstrate that alternative credible approaches 
are helpful and required in understanding a great many phenomena. In its approach, 
the book is neither  assertoric  (asserting that a clear answer exists) nor is it via  nega-
tiva  (discrediting alternate theories)—rather it is  inquiry based , looking systemati-
cally at extant theories to collect and distill all relevant lessons.  

 NATURE and Nature’s laws lay hid in night; 
 God said, Let Newton be! and all was light. (From “EPITAPH, 
Intended for Sir Isaac Newton,” by Alexander Pope, 1730, 
p. 9 in The Poetry of Pope: A Selection, edited by 
M. H. Abrams, New York, Appleton-Century Crofts, Inc.,  1954 ) 

 The fi rst and most important ability you can develop in a fl at 
world is the ability to “learn how to learn”—to constantly 
absorb, and teach yourself, new ways of doing old things or 
new ways of doing new things. … Because what you know today 
will be out-of-date sooner than what you think. (From p. 302, 
Friedman, Thomas L.,  2006 , The World is Flat) 
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1.1               Initial Queries and the Widening Approach 

 This book begins with the basic question: “How do we account for uncertainties in 
mega-risk evaluations?” This is different from asking how risk assessment and risk 
and decision procedures contribute to understanding and coping with mega-risks. 1  
Alternate approaches will not be dismissed out of hand but are systematically 
reviewed to assess their relative contributions to the problem at hand. 

 This work will focus primarily on those uncertainties for which we can currently 
provide some credible risk estimates. 2  Not every “unknown” is to be included as an 
uncertainty in mega-risk estimates. Unknown consequences, those beyond what is 
currently known, present opportunities and limits on what can be covered in 
response to this basic initial question. 

 This work deals with the mega-risks associated with such natural perils as earth-
quakes and hurricanes, fl oods, winter storms, wildfi res, tsunamis, avalanches, and 
landslides. Mega-risks, though, can also be connected to a variety of other perils 
such as epidemics, highly unpredictable costs of mega-construction projects, aster-
oids, missiles, climate change, civil wars, wars between nations, terrorist acts, con-
fl agrations, oil spills, crop failure, food contamination, and economic panics and 
disasters. Mega-risks are here characterized as risks of shocks to complex systems 
the impacts of whose possible occurrence are of great concern to the human 
community. 3  

 The complex systems in question include energy, water, wastewater, transporta-
tion, and communication infrastructure; it could also include healthcare delivery, 
governmental services, legal, fi nancial, manufacturing, labor, management, and 
regulatory systems, food and dietary services, and systems of individual people and 
animals. 

 Mega-risk evaluations typically cover very important social issues—prospective 
climate change impacts to specifi c regions; cost effectiveness of safe rooms in 
Oklahoma City and other high hazard tornado regions; wind and earthquake design 
levels for new building construction; how well electric power systems can be 
expected to respond to fl ooding, winter storms, earthquakes, hurricanes, and other 
natural hazards; and to what extent crop failures in the Midwest impact the regional 
economy.  

1   This overarching question is an extension of what was proposed by Melissa Taylor Dresler in her 
review of the fourth draft of these essays. 
2   On pp. 220–225, Bernstein, Peter L.,  1996 ,  Against the Gods :  The Remarkable Story of Risk , 
New York: John Wiley & Sons, Inc., one fi nds a discussion of sharp distinctions between risk and 
uncertainty but also a discussion of what is [currently] defi nable and what is not. Some risk proce-
dures such as those for construction risk management can be in extremely early stages of develop-
ment, and probability estimates may be very crude. Other factors in risk procedures may be 
virtually unknown at present but may only be revealed as knowledge develops considerably. 
3   Many use  a  quantitative defi nition of “shock” to  mean  data two or  more  standard deviations away 
from the mean. 
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1.2     A Brief Account of Outputs Essential in Mega-Risk 
Evaluations 

1.2.1     Mega-Risk Evaluation Performed Beforehand 

 Figure  1.1  helps to illustrate desired outcomes of mega-risk evaluations. Figure  1.1  
provides a loss distribution that assists in illustrating desired outcomes of mega-risk 
evaluations. This loss distribution begins with losses just below 97 % probability of 
non-exceedance and proceeds cumulatively from there. In effect, there is only 
slightly above a 3 % chance that some loss will occur. Such a loss distribution can 
be defi ned for the status quo of a complex system, or it can be defi ned for the system 
as modifi ed through proposed risk-reduction procedures.

   Such risk evaluations can be used or modifi ed to provide such statistical fi gures 
of merit as:

•    Distributions of risks  
•   Distributions of risk and benefi ts (net benefi ts or losses)  
•   Probability estimates of failure or success    

 Distributions are here described as a comparison of either probability (and/or 
frequency of occurrence) and severity. Probability density functions (pdfs) provide 
such comparisons relative to various levels of severity. Cumulative probability 
 functions (cdfs) sum these severities from low to high relative to probabilities (and/
or frequencies) of exceedance. Resulting metrics may include estimates of:
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  Fig. 1.1    The probability of non-exceedance of a loss level. This fi gure provides a loss distribution. 
This loss distribution begins with losses just below 97 % probability of non-exceedance and pro-
ceeds cumulatively from there. In effect, there is only slightly above a 3 % chance that some loss 
will occur       
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   Mean values  
  Median values  
  Statistical variances  
  Severities at different levels of exceedance (e.g., such fractile estimates as the sever-

ity at a 1 % annual chance of occurrence or, in frequency terms, with an occur-
rence on the average every 100 years)    

 Note that frequencies and probabilities are not equivalent inasmuch as frequen-
cies may exceed one, but probabilities can never exceed one. There may be several 
accidents in a given year on Hawthorne Blvd., but the probability of an accident in 
a given year cannot exceed one.  

1.2.2     Mega-Risk Evaluations After or During a Major Mega- 
Risk Event 

 After a mega-risk event, estimates are typically needed pertaining to losses, injuries, 
deaths, and also impacts on the environment as well as other complex systems. It is 
rarely known with certainty what these losses may be. It can be known that a tor-
nado has demolished a house, but estimates of costs to reconstruct this house may 
vary. Counting injuries may be challenging if many people do not report their inju-
ries. Counting deaths may be nearly impossible if, as in the 2008 Wenchuan, China, 
earthquake, about 19,000 people who disappeared were suspected of being buried 
in landslides. Initial estimates of insured losses were $14B after the 1994 Northridge 
earthquake. Since some claims and their resolution take a very long time to resolve, 
this estimate has risen to above $19B. On the scientifi c side, there are not enough 
sensors to know with certainty the wind velocities and all sites impacted by a hur-
ricane. Inverse modeling of events can also yield various answers. 

 There are also questions about what to include in the long-term process of a 
mega-event. For instance, does the Panic of 1907 follow the 1906 San Francisco 
earthquake, or was this panic partly the result of voluntary investments in rebuilding 
after the earthquake, investments that could have been far less? 4  Were the Iraqi and 
Afghanistan wars the consequence of the terrorist acts on the World Trade Center on 
September 11, 2001, or were these wars voluntary decisions? 

 Common, then, are ranges of estimates for mega-risk events, and these may 
improve over time. Not all is necessarily known about mega-events.  

4   See Bruner, Robert F and Sean D. Carr,  2007 ,  The Panic of 1907 :  Lessons Learning from the 
Market ’ s Perfect Storm , Hoboken, N. J.: John Wiley & Sons, Inc. 
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1.2.3     Uses of These Mega-Risk Estimates 

 This book will discuss some of the quantitative risk and decision procedures that 
assist in helping to understand how these statistics can be used. For present pur-
poses, these mega-risk statistics may be conjoined with various decision procedures 
to assist in specifi c decisions. For instance, a building code may recommend that, 
for a new design level, “no collapse” should be expected with a probability of occur-
rence of greater than 2 % in 50 years. Likewise, one may use benefi t-cost evalua-
tions to assign a benefi t-cost ratio of 3.1 to the use of sodium hypochlorite to replace 
chlorine gas in wastewater fi ltration plants. More advanced fi nancial evaluations 
can also be employed as needed. 

 Of special interest are those shocks that give rise to many adverse consequences 
to systems. These shocks may be rapid like explosions and earthquakes, or very 
slow as in climate change, or oscillating considerably as in the weather storms, 
plagues, or chickenpox. Proximate causes may yield large-scale impacts (“tipping 
points”) in some cases, whereas very large events (huge hurricanes) may cause very 
little damage for extremely wind-resistant cities. 5    

1.3     Book Structure and Organization 

1.3.1     Early Chapters: Discussion and Analysis 
of Seventeenth-to Early Twentieth-Century Approaches 
to Understanding Risk 

 Of the many historical advances in probability and statistics for addressing the basic 
initial question, two are of immediate interest here, and these come from Great 
Britain in the eighteenth century. First, in his mature works, David Hume 6  maintains 
that a system of belief, stressing custom and regularity, can explain inductive infer-
ences. We can invoke the uniformity of nature: past instances provide the guide to 
the similar future. The Newtonian and deterministic view of the world may well be 

5   The expression “tipping point” is popularized in Gladwell, Malcolm,  2002 ,  The Tipping Point , 
New York: Little, Brown and Company. Chaos theory has provided  a  deterministic version of this 
view of how small events can give rise to large consequences (see Wikipedia, “Chaos theory,” 
accessed May 20, 2013). 
6   Hume, David, 1748,  An Inquiry Concerning Human Understanding , Indianapolis: The Bobbs-
Merrill Company, Inc., The Library of Liberal Arts,  1955 , publication; see Smith, Norman Kemp, 
 1966 ,  The Philosophy of David Hume :  A Critical Study of Its Origins and Central Doctrines , 
New York: St. Martin’s Press. In his earlier 1739 work, Hume maintains that “a superior number 
of chances produces our assent neither by  demonstration  nor by  probability ,” p. 126 in Hume, 
David, 1739,  A Treatise of Human Nature :  Being an Attempt to introduce the experimental Method 
of Reasoning into Moral Subjects , reprinted Oxford: at the Clarendon Press,  1968 . Hume’s later 
theory of belief serves to ameliorate the skepticism from such early remarks. 
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true and believed in this system. Our experience can, of course, mislead us, as when 
explorers from Great Britain  discovered   black swans in Australia and elsewhere. 7  
Moreover, in some cases we do not need many instances in order to have a guide as 
to what to say. Ideas alone don’t warrant inductive reasoning. Yet, things work well 
when custom and regularity are assumed. Joining Hume in a similar ontological 
climate of events and putative laws,  Thomas   Bayes developed procedures for aug-
menting empirical evidence with prior knowledge of some situation. Arguably, 
Bayes’ views provide for more active mental processes to assist inductive inference 
than are accounted for in Hume’s theories. 8  

 A discussion of early theories as they have been updated helps to determine how 
well these theories can evaluate risks to complex systems and accounting for uncer-
tainties in these risk estimates. 

 Historically we fi nd that some insurance actually covered very extreme risks. For 
instance, Huebner et al. write that insurance may have begun in Babylonia fi ve or 
six millennia ago. Caravans subject to thievery and piracy may have been involved. 9  
According to Peter Bernstein, the Code of Hammurabi in about 1800 B.C. discussed 
“bottomry,” whereby a ship’s owner took out a loan to fi nance a ship’s voyage but 
did not need to repay the loan if the ship was lost. 10  In Shakespeare’s  The Merchant 
of Venice , Shylock provides “risk capital” for the merchant Antonio’s “argosy bound 
to Tripolis, another to the Indies.” Antonio provides the high-risk “insurance.” 
Speculatively speaking, opulent people such as Portia could then serve as ultimate 
reinsurers of such ventures. 11  The history of risky distributions was in its very early 
stages in discussions of insurance and statistics in the sixteenth century and for 
some period afterward. 

 Thus, in the eighteenth-century period, we have the important early discussions 
of what have been still today major approaches to probability and statistics:

    The deductivist approach : inductive inferences are merely matters of ideas, of 
deductive reasoning, and so only require robotic methods for their correct appli-
cation (covered in Chap.   2    ).  

   The frequentist approach : the more evidence that one has, the more confi dent one can 
be in one’s inferences since asymptotically the evidence yields “laws” or very 
well-founded inductive inferences based on regularities (covered in Chap.   3    ).  

7   Wikipedia, “Black Swan,” accessed May 21, 2013, contains an account of the European discovery 
of black swans. 
8   From p. 14, Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin,  2003 ,  Bayesian 
Data Analysis , Boca Raton: Chapman & Hall/CRC. Some original works by Bayes can be found 
as Appendices in Press, S. J.,  1989 ,  Bayesian Statistics , New York: John Wiley & Sons. 
9   See, for instance, p. 18 in Huebner, S. S., Kenneth Black, Jr., and Robert S. Cline,  1982 ,  Property 
and Liability Insurance , third edition Englewood Cliffs, N. J.: Prentice-Hall, Inc. 
10   From p. 92 in Bernstein, Peter L.,  1996 ,  Against the Gods :  The Remarkable Story of Risk , 
New York: John Wiley & Sons, Inc. This work also describes the development of life statistics and 
other actuarial statistics that, for instance, helped to form Lloyd’s of London as early as 1687 (on 
p. 89). 
11   Shakespeare, William, circa  1595 ,  The Merchant of Venice , pp. 578–612 in  Shakespeare :  The 
Complete Works , edited by G. B Harrison, New York: Harcourt, Brace Jovanovich, Inc. 
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   The subjectivist  ( Bayesian )  approach  contends that inductive inferences can be 
improved if they are augmented by personal or subjective prior estimates (cov-
ered in Chap.   4    ).    

 In this book, these three approaches arising in the eighteenth century will be 
updated chiefl y by three major fi gures in the twentieth century: Rudolf Carnap (“the 
deductivist approach”), Richard von Mises (the “frequentist approach”), and Bruno 
de Finetti (the “   Bayesian approach”). 12  These distinguished representatives of the 
three approaches have each assiduously elaborated their positions and so have dealt 
with some if not many of the major objections in their positions. Authors who later 
summarize positions often refl ect a more doctrinaire, pedagogic approach that sub-
merges many of the issues that have arisen in the course of the development of an 
approach. Thus, the approach in these essays depends on review of systemically 
developed and to that extent superior accounts of diverse positions. As indicated 
throughout, though, developments after these distinguished representatives have led 
to “living” or improving versions of these views. 

 Characteristic of such approaches are the lack of a back-and-forth methodology 
in which consequences force modifi cations in starting points and vice versa. More 
developed interpretations of each of these three representatives will indeed fi nd 
such back-and-forth movements in their views, and these will become more evident 
in Chaps.   2    ,   3    , and   4    . 

 These three approaches may be called “Gaussian” to the extent that they hinge to 
a great extent on formal logic and/or regularity; the normal or Gaussian distribution, 
equilibria; and the assumption of the eventual funneling of results toward precise 
and unique solutions. That is, for any specifi c statistics (e.g., mean, standard devia-
tion, 100-year loss), there is a real number toward which confi dence intervals tend 
to converge to as the number of samples increase. Figure  1.2  illustrates this assump-
tion in terms of various methods used to derive 95th centile confi dence intervals. 
(Note, however, that even with the huge capacity and high speeds associated with 
the “cloud,” Fig.  1.2  provides only a regularity that would vanish as the cloud’s 
limits were exceeded.)

   Figure  1.2  relates to Fig.  1.1  for fractile estimates as well as estimates for the 
mean estimates. In many cases (ignoring plateau issues), longer return intervals or 
lower probabilities converge much more slowly than more frequent return intervals 
or estimates of arithmetic mean values. 

 Although a later development,    Bootstrap theory likewise emphasizes how in the 
long run estimates are necessarily made more certain in their gradual movement 
toward uniqueness. 13  Even for the deductivist theory,    Carnap appears to feel most 

12   Some key works used by these authors include Carnap, Rudolf,  1962 ,  Logical Foundations of 
Probability , Chicago: University of Chicago Press; Von Mises, Richard,  1957 ,  Probability , 
 Statistics and Truth , New York: Dover Publications, Inc.; and De Finetti, Bruno,  1970 ,  Theory of 
Probability :  A critical introductory treatment , Chichester West Sussex: John Wiley & Sons, Wiley 
Classics Library Edition published 1990. 
13   Efron, Bradley, and Robert J. Tibshirani,  1993 ,  An Introduction to the Bootstrap , New York: 
Chapman & Hall. 
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comfortable with mean values and Gaussian distributions, which were historically 
extraordinarily infl uential until late in the nineteenth century and remain prominent 
even today. 14  All of these three approaches have proven to have many valuable uses. 
Peter Bernstein remarks that the normal (Gaussian) distribution forms the core of 
most systems of risk management, although he later adds that at the extremes, the 
stock market, a risky place, is more likely to destroy fortunes than to create them. 15  
Even the deductivist approach, which currently has few followers, provides enor-
mous heuristic aids in learning and applying probabilistic and statistical terminol-
ogy. Additional benefi ts throughout these essays of  reviewing   Carnap’s approach 
include (a) noting the extent to which his foundationalist approach ignores all the 
successes of this binary logic in its offshoots in computer technology and (b) under-
standing how this binary logic can likewise impede understanding how major scien-
tifi c and critical discoveries generally should especially in their original states be 
viewed as “nuanced” or “potentially promising” rather than either “T” or “F.” 

 This book will emphasize how the three approaches arising from the eighteenth 
century have proven to encounter major challenges from research developments, 
events, processes, and applications emerging chiefl y from the past century. These 
chapters will emphasize how long standing this belief in single solutions has been 
dominant yet how fragile has this opinion turned out to become. 

14   Von Plato, J.,  1994 ,  Creating Modern Probability :  Its Mathematics ,  Physics and Philosophy in 
Historical Perspective , Cambridge: Cambridge University Press. 
15   See pp. 144 and 150 in Bernstein, Peter, op. cit. 
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  Fig. 1.2    Illustration as to how 95th centile confi dence intervals converge to statistic of merit (here, 
the mean value for 5000 year samples, although other fractile estimates have similar results—
ignoring Chap.   5     issues)       

 

1 Introduction: An Inquiry-Based Approach

http://dx.doi.org/10.1007/978-3-319-19413-4_5


11

 A fourth ensemble of approaches to probability and statistics has emerged chiefl y 
from this past century. Discussions of mega-risks, whether related to wars, fi nancial 
breakdowns, and natural phenomena, include shocks to systems that cause what 
have been called “   Black Swan” situations. 16  These have been defi ned as events or 
processes that are not very predictable, have very large-scale impacts, and often 
receive hindsight without foresight explanations. Black Swan issues cover not only 
these unpredictable or extremely random events but the failure to assure that the 
“next case” will be similar to those one has previously experienced. Journeys and 
expeditions to different regions, from the Galapagos Islands to Australia, from a 
city nearby to a rain forest, often illuminate how one’s assumptions have been 
restricted to specifi c locales or habitats. Seeing houses built of brick, squirrels that 
are gray, and people who are emaciated may all refl ect personal experiences. One 
may be surprised to fi nd water systems that require heating for drinking or large- 
scale housing developments all with solar panels. 

 Shocks may be sudden as in the case of explosions or wildfi res or may result 
from long-term natural or human activities, such as failure to dredge a river leading 
to a port, human and natural activities impacting changes in climate, or economic 
practices that eventually result in worldwide downturns. The more formal treat-
ments of shocks in probability and statistics emerged largely in the 1920s and 1930s 
(and earlier for actuarial theories) and continue today. 

 Do the many theories developed only in the last century assist in understanding 
these kinds  of   Black Swan cases? These include theories of heavy-tailed (Levy) 
distributions, fractal theory (Mandelbrot), and pragmatic (inquiry-based, systemic, 
Dewey) theories. 17  Enormous advances in storage capacity and speed in information 
technology have provided advantages as well to digital approaches to probability 
and statistics. 

 So, to the three major approaches to probability and statistics, these essays com-
bine a fourth:

   The Pragmatic ,  systemic ,  inquiry - based approach , that considers “robust simulation,” a 
statistical approach that yields ranges of answers (in some or many cases, no unique solu-
tions), along with other non-linear or systemic approaches including heavy-tailed distribu-
tions and fractal theory. 

   To regard this fourth viewpoint as a methodology in a narrow sense may be 
 misleading. Robust simulation requires a process or strategy whereby alternative 
competitive evaluations are taken into account. Overall, the pragmatic viewpoint is 

16   See Taleb, N. N.,  2007 ,  The Black Swan :  The Impact of the Highly Improbable , New York: 
Random House. 
17   For an updated account of Levy distributions, see, for instance, Nolan, John P.,  2009 ,  Stable 
Distributions :  Models for Heavy Tailed Data , accessed on the Internet February 27, 2013; see  also 
 Mandelbrot, Benoit B.,  1983 ,  The Fractal Geometry of Nature , New York: W. H. Freeman and 
Company, originally 1977; see Dewey, John,  1938 ,  Logic :  The theory of Inquiry , New York: Holt, 
Rinehart and Winston, Inc., reprinted by Irvington Publishers, Inc. in 1982; for a pragmatic cri-
tique of other theories  of  probability and statistics, see Will, F. L, 1974,  Induction and Justifi cation , 
Ithaca: Cornell University Press. 
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consistent with incorporating results using fuzzy set theory, digital logic procedures, 
frequency tools,  or   Bayesian tools. And each of these three approaches (deductivist, 
frequency, or Bayesian) requires a high degree of coherence or self-consistency. 

 Oddly enough, in its early expressions, one fi nds in the pragmatist Charles Peirce 
a viewpoint that stresses convergence of opinions much like the convergence 
assumed in Bayesian analysis:

  On the one hand the followers of science are animated by a cheerful hope that the processes 
of invitation, if only pushed far enough, will give one certain solution to each question to 
which they apply it. [Different investigators] may at fi rst obtain different results, but, as 
each perfects his method and his processes, the results are found to move steadily together 
toward a destined centre. 18  

   The discussion of pragmatic theories generally will require addressing the chal-
lenging issue of how reasoning relies signifi cantly on “consequences.” Under some 
circumstances, the “fallacy of affi rming the consequence” is genuine. In other cases, 
this so-called fallacy rests on the assumption of the linear view discussed briefl y in 
the preceding. 

 This book hopes to clarify how robust simulation as well as nonlinear or sys-
temic reasoning has arisen as a means of permitting the scientifi c and technical 
issues to be addressed in full detail by diverse investigators. From the standpoint of 
funding research, robust simulation requires competition as well as systematization. 
From the standpoint of those attempting to discover “the truth,” the truth of “robust 
simulation” as it can be developed may best be characterized at any given time by 
an ensemble of competitive solutions. Systematic or nonlinear reasoning may on 
some occasions converge but in the process may allow considerable internal compe-
tition whether ultimate convergence occurs or not. Table  1.1  summarizes how the 
four main theories of probability and statistics fi t into the following chapters.

   The approaches in Chaps.   2    ,   3    , and   4     are initially taken  categorically , that is, as 
being true without condition. However, all three fail to be absolutely well founded. 
Although many angles exist from which these approaches may be criticized, the 
principal issue in these chapters resides in their “applicability.” 

 Chapters   2    ,   3    , and   4     may at fi rst appear to result from a  via   negativa  approach, an 
approach stressing “denial” of other positions. Karl Popper’s “falsifi cation” pro-
gram represents one sort of via  negativa  approach. 19  These essays show how these 
updated eighteenth-century approaches do not account well for uncertainties in 
these mega-risk evaluations. In particular, major issues that arise in these theories, 
when taken categorically, are (a) null applications for the deductivist view and (b) 

18   From p. 38 in Peirce, Charles,  1878 , “How to Make Our Ideas Clear,” pp. 23–41 reprinted  in 
 Peirce, Charles 1955,  The Collected Writings of Peirce , ed. Justus Buchler, New York: Dover 
Publications Inc. Interestingly enough, in 1896–1899, Charles Peirce writes that “experience can 
never result in absolute certainty, exactitude, necessity, or universality,” (p. 47) and “there are three 
things to which we can never hope to attain by reasoning, namely, absolute certainty, absolute 
exactitude, absolute universality,” on pp. 47 and 56 in “The Scientifi c Attitude and Fallibilism,” 
pp. 42–59 in Charles Pierce, 1955, ibid.  If  convergence among diverse opinions were attainable, it 
would seem that we could arrive at some absolute certainty, exactitude, and universality. 
19   Popper, Karl,  1959 ,  The Logic of Scientifi c Discovery ,  New York :  Routledge Classics  2002 . 
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null confi rmations for the frequency  and   Bayesian theories, respectively. Following 
Chap.   4    , the major issue becomes one of connecting experience and statistical 
mathematics. 

 However, the via  negativa  approach in these essays is far from a mere denial or 
falsifi cation. Instead, affi rmative views are here extracted from the rejection of 
aspects of thoroughly expounded positions. Imre Lakatos, a “follower” of Popper, 
maintains, “Criticism is not a Popperian quick kill, by refutation. Important criti-
cism is always constructive: there is no refutation without a better theory.” 20  That is, 
criticism does not suffi ce to stop with a purely negative attitude toward theories and 
the practice of probability and statistics.  

1.3.2     Middle Chapters: The Dilemma of “Infi nity” 

 Chapter   5     continues this apparent  via   negativa  approach with respect to some very 
rare shocks or some rare systems responses to even minor shocks. Chapter   5     also 
addresses the possibility of “   Black Swans,” extreme value situations, or clear cases 
of non-convergence. The heavy dependence within Gaussian approaches on esti-
mates of the mean and statistical variance is seriously questioned when extreme 
value distributions are involved. Statistical variance in its classical meaning no lon-
ger exists, and for even more extreme distributions, even the mean value in its 

20   From p. 6,  Lakatos, I.,  1978 ,  The methodology of scientifi c research programmes , London: 
Cambridge University Press. 

   Table 1.1    Major theories of probability and statistics and some pertinent chapters   

 Chapter  Main term  Other terms  Proponents  Simplifi ed description 

 Chapter   2      Deductivist  Logico- 
deductivist, 
logistic 

 Carnap  Deductive reasoning: logic and 
mathematics defi ne statistics 

 Chapter   3    ,   6      Frequency  Inductivist, 
objectivist 

 von Mises, 
R. A. Fisher 

 More evidence results in more 
confi dence; mathematical 
methods to achieve “fi tting” 
and “signifi cance” 

 Chapter   4      Bayesian  Subjectivist  de Finetti  May augment inductive 
inferences with personal or 
subjective prior estimates 

 Chapter   5    ,   7      Robust 
simulation 

 Pragmatic, 
systemic, inquiry 
based, nonlinear, 
outlier oriented 

 (Toulmin, 
many others) 

 A statistical approach that 
yields ranges of answers. 
Requires a process or strategy 
whereby alternative 
competitive evaluations are 
taken into account 
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classical sense no longer exists. This chapter contains a discussion of catastrophe 
(“stability”) measures and their relationship to power laws. 

 This chapter provides a simplifi ed approach to extreme value theory, an approach 
merely designed to calibrate the “stability” (in the Gaussian sense) of the distribu-
tion with which one is working. This calibration is “empirical” insofar as only the 
fi nite data (simulated or real) is used for this calibration. Power laws illustrate the 
connection between the  proposed   catastrophe indexes and the evaluation of actual 
systems. Highly “dangerous” distributions can be associated with systems  vulnerable 
to rare but extremely damaging events. 21  Deductivist, frequency, and Bayesian theo-
ries have assumed stability in models used, in spite of formal developments begin-
ning in the 1920s that cover fl oods and other disasters and show that there are 
realities not consumed by regularities as assumed in the past. Figure  1.2  does not 
necessarily apply for the development of many extreme value distributions and for 
many statistics of interest (especially standard deviation, 100-year loss, and the like 
and in very extreme cases, the arithmetic mean and median). 

 Power laws are a simplifi ed means to show how estimating risk to systems can 
be cognitively dangerous if only because the systems themselves as studied can be 
very “fragile” or have characteristics that render their behavior very unpredictable. 
So, while it may be obvious that in science various “shocks” may be very challeng-
ing to predict, it may also be the case that nonlinear behavior in systems can make 
evaluation of risk to these systems cognitively challenging, if not “dangerous.” 

 Chapter   5     poses more problems with conventional views of statistics and so does 
not yet provide the framework for a constructive outlook. Bridging the mathematics 
or quantitative side of probability and statistics with experience becomes at this 
stage the major issue—an issue that had been raised historically by the early David 
Hume and later by J. M. Keynes. 22  

 This issue may (accurately or not) be expressed “how does one bridge the gap 
between the infi nite population assumed by probability and statistics with the fi nite 
samples of experience?” 

 Or, “how can one be sure that the next case or cases do not—as happens for 
extreme value distributions—signifi cantly disturb one’s current fi ndings?” 

 To begin to address these bridging issues, the following chapter has been devel-
oped: Chap.   6    , Mathematization of Statistics: Flexibility and Non-convergence. 
Chapter   6     provides an account of mathematical approaches that have been used in 
“fi tting” models to distributions and in providing statistical “acceptability” tests of 

21   Beard, R. E., T. Pentikainen, and E. Pesonen,  1984 ,  Risk Theory , 3rd edition, London: Chapman 
& Hall. 
22   General references  are  Hume, David, 1739, op. cit.,  and  Keynes, and John Maynard,  1921 ,  A 
Treatise on Probability , London: MacMillan and Co. Peter L. Bernstein, op. cit., p. 118, fi nds a 
quotation  in  Keynes, ibid., p. 368, ultimately from Leibniz, in which he regards contingencies in 
nature as prohibiting one from deriving life  expectancy  data based on very large data samples 
alone. 
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hypotheses. Although these activities had begun at least by 1900, the key fi gure 
used to begin this discussion is R. A. Fisher. One of his major critics today turns out 
to be the famous statistician and bettor, N. Silver. 23  

 On the downside, the mathematization of probability and statistics has given rise 
to a huge inventory of “axioms,” “theorems,” “lemmas,” “subroutines,” “tests,” and 
the like. This propensity to quantize science and other inquiries has a much longer 
history in the West than formal statistics and probability. N. Silver’s critique of 
Fisher is that Fisher’s reliance on the binomial, Gaussian, and Poisson distributions 
entails that he assumes knowledge of the total distribution that may not work in 
future cases and sequences of data. That is, Fisher assumes that there is but a single 
answer, that is, a convergence answer, when one is “fi tting” data to distributions and 
developing signifi cance tests for acceptability of hypotheses. 

 On the upside, though, this mathematization now provides a large number of 
tools that can be used to assess “fi ts” in diverse ways and to examine the “accept-
ability” of hypotheses from different vantage points. One does not need to be con-
fi ned to 3 underlying distributions or to 30 or 40 currently common distributions: 
mathematicians have devised ways to construct an indefi nitely large number of dis-
tributions that could be used in “fi tting” and “testing.” The fl exibility of mathemat-
ics enables it to provide a cornucopia of tools that can be used in the evaluation of 
“fi ts” and “hypotheses.” Chapter   6     provides potential future research in how some 
of the many possible mathematical tools may impact statistics on “fi tting,” “signifi -
cance,” and the like. In particular, if one cannot know with certainty in advance the 
trends of future data, how can one provide a more robust account of the diverse 
ways in which fi nite data samples are evaluated? 

 From the earliest chapters, it has become apparent that non-convergence in prob-
ability and statistics is much more common than has been assumed. Chapter   4    , for 
instance, illustrates how non-convergent results may arise from very slight changes 
in a Bayesian prior. Chapter   5     shows how a “wobble” can be discovered in extreme 
distributions, a permanent oscillation that prohibits convergence for at least many 
statistics of merit. Chapter   6     shows that one can use mathematics to construct alter-
native “fi ts” and “signifi cance tests.” Chapter   7     continues these fi ndings with fi rst a 
discussion of how there are alternative credible models. 

 For many socially important activities, the author and colleagues have defi ned 
robust simulation as fi rst requiring multiple outcomes. Having multiple outcomes 
by themselves does not overcome the issues raised in the previous chapters. In par-
ticular, these multiple outcomes cannot merely be the result of constructing a large 
number of alternative views that may or may not be attributed to someone. A math-
ematical search program alone with its ensemble of outcomes does not suffi ce to 
show how quantitative models are tied to experience.  

23   General references  are  Fisher, Ronald Aylmer,  1944 ,  Statistical methods for research workers , 
London: Oliver and Boyd Ltd., ninth edition,  and  Silver, Nate,  2012 ,  the signal and the noise :  why 
so many predictions fail — but some don ’ t , New York: the Penguin Press. 

1.3 Book Structure and Organization

http://dx.doi.org/10.1007/978-3-319-19413-4_6
http://dx.doi.org/10.1007/978-3-319-19413-4_4
http://dx.doi.org/10.1007/978-3-319-19413-4_5
http://dx.doi.org/10.1007/978-3-319-19413-4_6
http://dx.doi.org/10.1007/978-3-319-19413-4_7


16

1.3.3     Robust Simulation: New Ways of Thinking 

 In Chap.   7    , “Robust simulation” is defi ned. 24  “Robust simulation” is fi rst discussed 
for more qualitative or social science activities, along with betting as well as minor 
Bayesian estimates. Robust simulation is next discussed in the evaluation of risks to 
complex systems. Multiple models are valuable to comprehend the “uncertainty” in 
estimates. Calculation of “confi dence intervals” does not achieve this goal and the 
“uncertain” bounds of estimates are not themselves confi dence intervals. Individual 
models may use Bayesian, bootstrap, frequency-based, fuzzy set, or other profes-
sional approaches. Rather than endorsing an ill-defi ned “subjectivity,” “intelli-
gence,” addressing problems and borrowing on the rich cognitive resources 
available, is required to defi ne the mental portion of successful investigations using 
fi nite samples of data. This intelligence is an active participation in the quest for 
knowledge through the application of pertinent disciplines. In effect, the profes-
sional community in its broadest sense must be involved in what amounts to a com-
petition that illuminates the diverse trajectories of investigations. 

 No one of the professionally competitive multiple models in robust simulation 
constitutes “the truth.” The presence of such state-of-the-art competition implies 
that at present, and maybe for a hundred or thousands of years, a singular truth may 
not be revealed. Nonetheless, on the view being advanced in these essays, these 
competitive results comprise knowledge or the state of the art. For robust simula-
tion, a  process  must be in place that enables investigators to go in different direc-
tions that they approach a major issues or set of issues. Each investigative team may 
employ one or more diverse methods as they undertake the evaluation of risks of 
shocks to systems. 

 Thus, robust simulation inherits the  simple   catastrophe indexes in Chap.   5     and 
takes advantage of fi ndings in the deductivist, frequency, and Bayesian modeling 
and “fi tting” and “signifi cance” tests in Chap.   6    —as long as these do not require 
unique solutions for many risk evaluations of great social importance. These activi-
ties assist in developing the nexus between the quantitative side of statistics and 
experience, which also requires the long-term disciplined activities of the profes-
sional community. 

 Chapter   7     uses work by statistician David Freedman to further the discussion 
through case studies not only very briefl y of major experiments that have taken 

24   Pertinent versions of “robust simulation” (and  also  catastrophe indexes) are found in Taylor, 
Craig, Yajie Lee, William Graf, Zhenghui Hu, and Charles Huyck,  2010 , “Robust Simulation and 
Cat Diagnostics for  Treating  Uncertainties in Catastrophe Risk Analysis,” pp. 155–163, in 
 Reliability Engineering and Risk Management :  Proceedings of the International Symposium on 
Reliability Engineering and Risk Management , ed. by Jie Li, Yan-Gang Zhao, Jianbing Chen, and 
Yongbo Peng, Shanghai, China, Tongji University Press, and Murnane, R. J., C. E. Taylor, 
T. Jagger, and Z. Hu, 2011, “Robust simulation for sensitivity analysis of catastrophe risk losses,” 
in  Applications of Statistics and Probability in Civil engineering , ed. by M. H. Faber, J. Koehler, 
and K. Nishijima, CRC Press, New York, PP. 875–877. 
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place but principally of major successes in addressing health system issues. 
Chapter   7     discusses how these major social issues (e.g., as in health systems) can be 
addressed through highly nonlinear statistical and qualitative approaches that even-
tually become part of a legacy of health system developments. These major health 
system issues were not solved defi nitively all at once, but the “successes” have 
become so because eventual developments have overcome initial objections and 
have further provided much more information on the nature and extent of these 
health system issues and way to manage and treat them when they arise. Dealing 
with human and other organisms (animal, bacteria), even the most complete health 
system discoveries mentioned, namely, the eradication of smallpox, have not reach 
an absolute lawlike state, one that has eliminated all future vigilance. 

 Characteristic of these very famous cases is the incompleteness combined with 
potential or fertility of the initial discovery. Typically, this initial discovery is fol-
lowed by a very large number of developments in order to ascertain and defi ne the 
details of the discovery. In effect, in many such cases, the initial discovery would be 
deemed “false” if taken by itself and if one ignored all the “consequences” that fol-
low from follow-up investigations and applications. To evaluate such discoveries 
too precipitously would deprive them of their enormous value in providing insights 
into critical and practical activities to pursue in order to limit and validate them. 
These discussions assist in defi ning the expression “consequences,” which are often 
after the fact developments of an initial idea that is not ripe for being simply called 
true or false. In their initial stages, many great discoveries provide viewpoints that 
compete with currently widespread beliefs. And because the development of ideas 
can take considerable time and effort, during the period of this development there is 
a strong possible that alternative and competing ideas will coexist.  

1.3.4     Final Chapters: Possible Futures 

 Chapter   8     thus asks: “how does one provide a quantitative account of decision anal-
ysis for ensemble statistical outcomes?” Previously there have been stochastic 
accounts that have been provided using the principle of least regret, mean values, 
and statistical variances; the entire distribution of gains and losses (stochastic domi-
nance), almost stochastic dominance, and fat-tail reduction models; and even the 
use of multiple decision criteria. 

 This chapter outlines some of these quantitative decision methods and hypothe-
sizes as to how these may be used to assist in decision-making using robust simula-
tion methods. This chapter concludes with the view that there are a number of 
quantitative tools that may help to make decisions based on robust simulation 
outcomes. 

1.3 Book Structure and Organization
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 Chapter   9     covers remaining questions. In the elaboration of previous chapters, 
the treatment of various traditional approaches as being “categorical” is in some 
respects unfair. Treating viewpoints as being categorical facilitates an ultimately 
uncritical via  negativa  approach—an indefi nite and pointless deconstruction. Yet 
the goal of Chap.   9     is to provide a plausible equilibrium in which for the time being 
the value of probability and statistics in dealing with systems is clarifi ed. The pres-
ence of further queries implies that, even when one achieves some temporary equi-
librium, there are many further lines of inquiry to be undertaken or in some cases to 
require assembly of what is there in various places already. Of special interest in 
Chap.   9     pertains to how the views of “robust simulation,” “instabilities in extreme 
value distributions,” and linear reasoning, among others, upset a very long-standing 
Western tradition of believing that there is but a unique solution, a singular truth to 
be achieved. 

 These multiple “interpretations” of mega-risks do not imply that one is endorsing 
a certain sort of very unreasonable vagueness and indefi niteness. Instead, what these 
multiple interpretations show is how alterative investigators can provide an ensem-
ble of defi nite outcomes. Feigning that there is always but one outcome is to endorse 
a false precision rather than clarify and distinctness. The stochastic interpretations 
of complex phenomena clarify the range of current outcomes. 

 The use of robust simulation and the fl exibility in mathematical and critical 
approaches to the use of probability and statistics both illustrate how our world view 
is enhanced by considering how alternative credible approaches and views are help-
ful and required in understanding a great many phenomena, including how to assess 
mega-risks. 

 A deep Western tradition assuming single solutions in critical studies—traced by 
Stephen Toulmin as deriving itself from developments in the seventeenth century—
is one reason why many may not be able to accept the changes that come with such 
developments, as well as other developments that upset the ready-made world of 
statistics and probability theory. These developments go well beyond those men-
tioned in these essays. Chapter   9     points out, however, that fi ndings from this ready- 
made world, when qualifi ed, can be most useful going forward. The modest 
skepticism espoused by Toulmin and others should characterize the reasonableness 
within applications of probability and statistics as these continue to morph. 25  The 
blinding clarity of Newton, as commemorated by Alexander Pope, becomes a very 

25   Toulmin, Stephen,  1992 ,  Cosmopolis :  The Hidden Agenda of Modernity , Chicago: University of 
Chicago Press; a critique of the doctrinaire aspects of  the  Newtonian world view is found in Burtt, 
E. A.,  1954 ,  The Metaphysical Foundations of Modern Science , Garden City, N. Y.: Doubleday & 
Company, Inc., Doubleday Anchor Books. 
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important past glimmer of light as one moves through Plato’s cave and regains one’s 
vision with many subsequent signifi cant vantage points. 26  ,  27  

 In this chapter, hypotheses are developed to treat these questions. Heavy empha-
sis is placed on how critical subjects are developed systemically. This systemic 
background contains idealizations and heuristics essential to the body of work com-
pleted or envisioned. This system background is thus itself subject to modifi cations 
and underscores the modifi cations implied by robust ensemble outcomes in impor-
tant risk evaluations.      
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    Chapter 2   
 The Deductivist Theory of Probability 
and Statistics       

 Cultural xenophobia is a frequent sequel to a society’s decline 
from cultural vigor. Someone has aptly called self-imposed 
isolation a fortress mentality. Armstrong describes it as a shift 
from faith in logos, reason, with its future-oriented spirit, 
“always…seeking to know more and to extend…areas of 
competence and control of the environment,” to mythos, 
meaning conservatism that looks backward to fundamentalist 
beliefs for guidance and a worldview. A fortress or 
fundamentalist mentality not only shuts itself off from dynamic 
infl uences originating outside but also, as a side effect, ceases 
infl uencing the outside world. (Jacobs, Jane,  2004 ,  The Dark 
Age Ahead , New York: Random House, p. 17) 

    Abstract     This chapter outlines one of three common views of probability and 
statistics: the deductivist view, discussed through a key proponent, Rudolf Carnap. 
This theory suggests that logic is the basis of mathematics and hence of probability 
and statistics. It requires absolute certainty in intuitions and deductions, thus not 
allowing for fl exibility and adjustment. The chapter ultimately concludes that the 
deductive theory fails because of lack of applications. Today the view has few pro-
ponents. However, the limitations of this theory point to what is needed: more viable 
ways of comprehending uses of digital logic, the nature of starting points of inquiry, 
and the roles of consequences, applications, and problem-solving within inquiry. 
Carnap’s view also provides key incipient insights into how “context” or “conditions” 
need to play a key role in understanding statistics and probability.            

 Ideas in modern Russian [the Soviet Union] are machine-cut 
blocks coming in solid colors; the nuance is outlawed, the 
interval walled up, the curve grossly stepped. (From p. 243, by 
Vladimir Nabokov,  Pale Fire ,  1962 , New York: Perigee Books) 
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2.1      Introduction 

  This  chapter   outlines one of three common views of probability and statistics: the 
deductivist view (aka foundational, linear). The term “deductive” in this sense 
comes from formal logic and mathematics alone. This view asserts that logic is the 
basis of mathematics and hence of probability and statistics. There is little doubt 
that mathematics and information technologies play key roles in probability and 
statistics. How to express this role, though, remains to be examined. 

 One very distinguished representative of this view is Rudolf Carnap. 1  This view 
of probability and statistics was once a major view but today seems to have few sup-
porters. The sometime ascription of this “deductivist” view to J. M.    Keynes adds 
nothing since this ascription is highly controversial. 2  

 Carnap’s very systemic view shows how a “backward-looking” approach contin-
ues to fl ounder owing to its requirement of absolute certainty in intuitions and 
deductions. Instead of adjusting one’s view in order to account for some very impor-
tant matters (e.g., the existence of irrational numbers), the view discussed here 
retreats to its foundations that are incapable of reaching such goals. This founda-
tional view can be used by a purist in order to undermine very great science and 
critical views as they are developed. 

 In spite of these drawbacks, it is because of the powerful offshoots of the binary 
formal and mathematical logic in terms of a variety of competing computer pro-
grams and approaches that one is now able to see, for instance, Fig.   1.2    , and how 
(ignoring the limitations of infi nite samples even on the “cloud”) statistical confi -
dence levels gradually converge to a single point on a loss distribution. The nonlin-
ear reasoning that has gone into these electronic and mathematical logical techniques 
shows the immense values of the logical studies that Carnap and others were 
undertaking. 

 This chapter exposes the major weaknesses of this viewpoint, all centered on 
how the approach leads nowhere. Going nowhere is common in experimental pro-
grams that are developed to learn from failures. Going nowhere in this case pertains 
chiefl y to the underlying view of consequences, applications, and problem-solving. 
This chapter along with later chapters assist in understanding more viable ways of 
comprehending uses of digital logic, the nature of starting points of inquiry, and the 
roles of consequences, applications, and problem-solving within inquiry. These 
modifi cations are desired to reassess how to escape from the severe problems that 
Carnap fi nds himself in his quest for a risk-free theory of probability and statistics. 

1   Two direct pertinent references from Carnap are Carnap, Rudolf,  1962 ,  Logical Foundations of 
Probability , Chicago: University of Chicago Press, and Carnap, Rudolf and Richard C. Jeffrey, 
 1971 ,  Studies in Inductive Logic and Probability , Volume I, Berkeley: University of California 
Press. 
2   From Wikipedia [7], “A Treatise on Probability,” accessed June 5, 2013. Keynes argued at some 
points that probability is strictly a logical relationship between evidence and hypothesis (e.g., 
P(H|E) is “logical), a degree of partial implication. See also footnote 10. Keynes is “a persistent 
subjectivist” according to Richard von Mises, p. 94 in  1957 ,  Probability ,  Statistics and Truth , 
New York: Dover Publications, Inc. Keynes’s work on probability, namely,  A Treatise on 
Probability , encompasses a great many views. 

2 The Deductivist Theory of Probability and Statistics

http://dx.doi.org/10.1007/978-3-319-19413-4_1


25

 This chapter questions the view that self-evident foundations of logic and 
mathematics provide the absolute certainty that undergird both applications and 
accounts of uncertainty in probability and statistics. 

 A more technical analysis of Carnap’s “L”-language is reserved for an addendum 
even though this discussion has potentially considerable interest. 

 Finally, this chapter summarizes lessons learned from the evaluation of Carnap’s 
very thorough but failed account of how one uses deduction as the means to account 
for probability and statistics. Given the deep tradition within which Carnap’s view 
resides, these lessons are more challenging to absorb than many others in later chap-
ters. However, Carnap’s view provides key incipient insights into how “context” or 
“conditions” need to play a key role in understanding statistics and probability. In 
addition, had Carnap and others modifi ed their view of the centrality of logic and 
adopted the approach of computer programs and systems in stressing all the uses of 
these programs and systems and had they looked forward rather than backward, the 
resulting modifi ed view should have received widespread acclaim of computer pro-
grams and systems today.  

2.2     Fundamentalism: From Physics to Mathematics to Logic 

2.2.1     Descartes 

 One of the major thinkers stressing self-evidence was of course Descartes, with his 
 Cogito ergo sum . Only with some parallels with Descartes’ fi rst Meditation, the 
development in this chapter leads from a type of universal skepticism through clas-
sical physics and through mathematics to mathematical logic.  

2.2.2     Newton 

 In the previous chapter, the often quoted poem by Alexander Pope raised Newton 
and his insights into an exalted status. The belief that physics and in particular 
Newtonian physics was indefatigable was not avowed by all in Newton’s time but 
has long since been shown to be qualifi ed through centuries of modifi cations and 
“revolutions” in physics itself as well as such allied disciplines as chemistry. This 
sort of  fundamentalism   had vanished by the time that mathematics in the late nine-
teenth and early twentieth century became the object of a fundamentalist outlook. 3  

3   As an aside, one of many accounts of fundamentalism, in religion, is Armstrong, Karen,  2001 ,  The 
Battle for God :  A History of Fundamentalism , New York: Ballantine Books. Arguably, a similar 
type of zealous fundamentalism can surface in critical disciplines, as indicated in Burtt, E. A., 
 1954 ,  The Metaphysical Foundations of Modern Science , Garden City, N. Y.: Doubleday & 
Company Inc., Doubleday Anchor Books. Burtt maintains that this zealous attitude prevailed by 
and toward  Newton’s work. An extension of this theme is found in Toulmin, Stephen,  1992 , 
 Cosmopolis :  The Hidden Agenda of Modernity , Chicago: University of Chicago Press. Toulmin 
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 Attempts to develop a “logicist” theory of mathematics, i.e., a view deriving 
mathematics from pure logic, became seriously questioned in the early twentieth 
century. Furthermore, diverse views of mathematics have arisen throughout its his-
tory. For example, according to Herman Weyl, there are two prominent views of 
mathematics: the constructivist and the hypothetico-deductivist. He favors the fi rst 
view:

  By the mathematical way of thinking I mean fi rst that form of reasoning through which 
mathematics permeates into the science of the external world—physics, chemistry, biology, 
economics, etc., and even into our everyday thoughts about human affairs. … The power of 
science, as witnessed by the development of modern technology, rests upon the combina-
tion of a priori construction with systematic experience in the form of planned and repro-
ducible reactions and their measurements. 4  

   This view is chiefl y a functional view, stressing functions, constants, and vari-
ables. This view binds itself to material interpretations. This view returns especially 
in Chap.   6     on the mathematization of probability and statistics, which can be treated 
as being “constructivist.” 

 In contrast to this constructivist view, Weyl mentions the deductive method in 
which the mathematician is “left to himself” and less interested in truth than in con-
sistency. 5  The chapter covers this second view of mathematics: the deductive method 
of developing probability and statistics. 

 So, if mathematics is not the discipline sin which self-evidence and deduction 
prevail and yield risk-free truths, what is left for those seeking risk-free knowledge? 
And the answer for many in the twentieth century, even such notable thinkers as 
 Imre   Lakatos, is mathematical logic. Because this faith in mathematical logic has 
extended so far and wide, this chapter spends considerable space on what feature of 
this answer: the attempt to treat probability and statistics as merely a derivative of 
mathematical logic.   

2.3     Carnap 

 Carnap refl ects the twentieth-century philosophy in America and Great Britain, 
which has been dominated by this view of the relatively isolated sphere of logic and 
mathematics, especially logic and its view of rigorous inquiry and expression. Risk- 
free logic is taught as being fundamental to all science and cannot be questioned 
within science itself. This Logic is not falsifi able and undergirds defi nitions of 
falsifi ability. 6  

maintains that a doctrinaire attitude prevailed in the West from 1610 and for at least 300 years and 
associated with historical circumstances that create a heteronomy in scientifi c studies. 
4   From pp. 1832 and 1844 in Weyl, Herman, “Mathematical Creation,” pp. 1832–1849 in  The 
World of Mathematics ,  1956 , ed. by James R. Newman, New York: Simon and Schuster. 
5   From pp. 1832 and 1846 in Weyl, Herman, Ibid. 
6   References in this paragraph are to Carnap,  1962 , op. cit., pp. 161, 577, and 244. 
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 Carnap’s purported goal is a reconstruction “restricted to a simple language 
form, of inductive thinking in everyday life and science…a critically corrected 
reconstruction.” Carnap expects through his reconstructive quest to give mathemati-
cal statistics for the fi rst time a solid foundation, a systematic unity of its various 
methods, and a clarity and exactness of its basic concepts. 7  

2.3.1     The Problems of Applying Carnap’s Viewpoint 

2.3.1.1     Illustrative Carnap-Like Axioms 

 Given that Carnap adopts a risk-free approach to the theory of statistics and proba-
bility, one might expect him to use an axiomatic approach and in particular one that 
begins with self-evident axioms and proceeds through deductions to self-evident 
consequences. One begins with the following 8 :

•    There is a set E of elementary events x, y, z,…  
•   There is a family of subsets  F  of E. Its members are called  chance  events.    

 Derived from Kolmogorov, one might imagine that the following axioms are 
acceptable to a Carnap-like view:

    1.    As a fi eld,  F  is closed with respect to unions, intersections, and compliments.   
   2.    F contains E.   
   3.    To each set A of  F , a nonnegative real number P(A) is attached. This number 

P(A) is called the probability of the event A.   
   4.    P(E) = 1.   
   5.    If A and B are disjoint,  P AUB P A P B( ) ( ) ( )         

 These require that some events are “elementary.” These propositions further 
assume that probability statements are constant. Propositions can only be applied 
when one uses, for instance, sets or else “types” to categorize. Propositions are 
either true or false.  The   theorem of total probability obtains—that is, all of the 
 probabilities for a given phenomenon must yield one. These basic axioms therefore 
appear to apply to languages in which the terms used are fi xed and clear cut. 

7   See p. 52, Carnap,  1962 , Ibid. 
8   This treatment is derived from Von Plato, J.,  1994 ,  Creating Modern Probability :  Its Mathematics , 
 Physics and Philosophy in Historical Perspective , Cambridge: Cambridge University Press. 
pp. 217–220. In reconstructing Carnap’s position, Mather ( 2009 ) maintains that “K” can be defi ned 
as a “fi xed” proposition and is called “background evidence.” Notably, however, it is more than 
merely challenging to construct “K” as a clear-cut set. Note as well that the Bayesian approach to 
total evidence requires a fi nite partition and so implies that there is only a fi nite sample of evidence. 
References for Carnap,  1962 , Ibid., are pp. 211, 212 and for Maher, Patrick, “Explication on 
Inductive Probability,” in Formal Epistemology Workshop, June, accessed from the worldwide 
web on October 9, 2009. 
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 As a caveat to the above, in his quest for explicitness, Carnap  follows   Keynes and 
others in stating probabilities as P(H|E), the probability that H is true given E for 
two sentences H and E. P(H) alone is not thus a basis for this pure probability the-
ory. This P(H|E) has a unique and constant value. 9  

 To render his axioms applicable to statistics and probability, Kolmogorov adds the 
following rules permitting the application of probability and statistics to experience 10 :

    1.    A certain complex S of unlimitedly repeatable conditions is assumed.   
   2.    One investigates certain events which may appear in the realization of the condi-

tions S. In individual cases of the conditions, the events appear in general in 
different ways. Let E be the set of possible variances x 1 , x 2 ,… of how the events 
appear. The set E contains all variants we hold a priori as possible.   

   3.    If the variant appearing after the realization of conditions S belongs to the set A, 
we say the event A appeared.   

   4.    Under certain conditions …, one can assume that to the event A a real number 
P(A) is attached such that:

    (a)    If the conditions S are repeated a great number of times n, one can be  practi-
cally certain  that the relative frequency m/n of occurrence of A differs only 
a little from P(A)   

   (b)    If P(A) is very small, one can be practically certain that A does not appear in 
a single realization of the conditions S.        

  The extension of the original mathematical axioms of probability theory to these 
rules of applicability poses many obvious problems, especially with respect to discus-
sions of catastrophes. The following discussion does not assume that Kolmogorov 
thought that these rules of applicability were risk-free. Carnap himself did not regard 
such rules as being risk-free. For Carnap, existing relative frequencies may be upset by 
future evidence.  Black Swans  —when the future is not like the past—are possible. 11  

 Proposition 4a ignores such dramatic changes and trends that can upset what one 
estimates as a probability. If for many years there have been many trees in the forest, 
does the probability of there being at least two trees in the forest depend only on this 
isolated experience? Or, does it depend on, for instance, such processes as defores-
tation and recent fi res? Landscapes can change rapidly. 

 Proposition 4b ignores preparing for mega-risks. Probabilities of individual 
mega-risks tend to be very low. However, practice requires not that one turns aside 
from such potential disasters but considers them in light not only of their probabili-
ties but also in terms of the severity of their consequences. Think of ignoring the 
potential for tsunamis in Asia and of ignoring the potential for storm surge in New 
Orleans and the practical consequences of this negligence. 

9   From Carnap,  1962 , op. cit., p. 37. The general reference to Keynes is to Keynes, John Maynard, 
 1921 ,  A Treatise on Probability , London: MacMillan and Co. Whether or not Keynes is a pure 
logicist is moot. 
10   From Von Plato, J.,  1994 , op.cit. 
11   This is presumably the reason for the title in Taleb, N. N.,  2007 ,  The Black Swan :  The Impact of 
the Highly Improbable , New York: Random House. 
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 For catastrophes, we may be evaluating the “   law of small numbers,” that is, regu-
larities in catastrophic or rare events. 12  Are, we may ask,  hurricane   frequencies 
regular, or have increases in ocean temperature increased their intensity and hence 
their frequency of occurrence? Or, can we assume that earthquakes have in a given 
region a stable energy output over time based on a small sample of very large earth-
quakes (which tend to dominate such statistics since the increase in one magnitude 
level corresponds to about a 31-fold increase in energy output)? If this is so, then 
very rare magnitudes of 8.0 or above greatly impact the “average” energy (or 
moment) produced in a given region of the world. Magnitudes of 9.0 and above have 
an even more dramatic impact on earthquake statistics.  

2.3.1.2     Carnap Himself Admits that His Efforts Lead to a Null Set 
of Applications 

 As indicated in his text, on the one hand, one might expect Carnap to be arguing that 
one can justify his logic in terms of its success, and this might include a lengthy 
discussion of how information systems have evolved from logic. On the other hand, 
Carnap maintains that logic is what it is, apart from its applications, and that it 
should be universal for any system of concepts that fi t the particular language in 
question. Put in other terms, Carnap’s logic should not commit the “fallacy of con-
sequence” but should instead justify matters in a linear fashion—one step at a time. 13  

 In constructing this system, Carnap begins with a simple language L that has 
only a fi nite or denumerably many entities. Carnap then goes on to say that this 
system fails because it cannot account for the continuums found in science: space, 
time, temperature, mass, length, and so on. As has been found in many sources, one 
needs to have real numbers in order to account for these continuous values, and 
Carnap’s simple L-language has no such capability. Similarly, without the use of 
space, time, and other continuous values, one cannot distinguish individuals from 
each other. Thus, Carnap himself admits that his “logic” has yet to be so extended 
in a “self-evident” fashion if such an extension were even feasible. Carnap’s quest 
as of the 1950s failed to have applications in science. As shown later in this chapter, 
Carnap in the 1960s resorts to a theory of betting in order to try to achieve 
applications.  

2.3.1.3     Carnap Creates a Separate Sphere of Logic and Mathematics: 
A Risk-Free System of Logic and Its Extension to the Theory 
of Probability and Statistics 

 On the deductivist treatment of probability and statistics, logic and mathematics are 
set apart and are logically prior to any scientifi c, engineering, fi nancial, social sci-
ence, or any other cognitive activities. Logic and mathematics are distinct from 

12   See Keynes, John Maynard,  1921 ,  A Treatise on Probability , London: MacMillan and Co., 
pp. 403ff. 
13   References to the views favoring applicability are in Carnap,  1962 , op. cit., pp. 7, 108, and 161. 
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methodology. In this separate sphere of logic and mathematics, one can achieve 
logical and mathematical truths that are true in any universe. “Probability” can be 
defi ned in this separate sphere, and so “probability” can become exclusively a realm 
of logical or a priori truth. Deductions alone exist in this risk-free sphere. 

 This deductivist sphere is not designed to expand on the tools that logic and math-
ematics have in order to solve a variety of older and new problems. Certainty rather 
than expansion of possibilities and applications is the goal of this deductivist view. 

 Noticeable in such an extreme view as Carnap’s and his followers is the use of 
many rhetorical fl ourishes or defense mechanisms to assure that their views—
expressing risk-free truths—combat any assaults from outsiders. Those who stress 
“real life” suffer from “abstractophobia”—defi ned by Carnap as “depriving science 
of some of its most fruitful methods.” Introverts, who stress abstractions rather than 
observations, have been vital to science. Those who treat logic as critical thinking 
are subject to “psychologism.” Applications of logic lie outside logic and, not being 
the task of logic, are inessential to its truth. 14  One should not raise questions about 
proposed elementary and universal truths. One should merely intuit their truth. 
Elementary truths should be expressed in an axiom system. Derivations too should 
be completely transparent. Precision and exactness are to replace vagueness. 
“Applications” are not “pure.” 

 The creation of a risk-free sphere has serious consequences for any attempt to 
validate mathematical logic as through its consequences, especially but not exclu-
sively in such consequences as its value in the development of computers. In the 
1980s, R.    Feynman developed his lectures on computation in which he began with 
the sort of binary logic in mathematical logic. One may cavil that computer binary 
logic is not completely identical with mathematical logic: for computers, not every-
thing follows from a contradiction. However, more importantly, in the development 
of a computer, Feynman goes on to explain how, for instance, communication (elec-
tronic) theory must be deployed and the thermodynamics of computing must be 
considered. In both cases, very small errors can arise in the machine and reducing 
the probability of errors must be considered in light of other factors salient in the 
development of a computer. In short, in order to  apply  logic through the use of a 
computer, one cannot eliminate all risks. The situation is of course worse when 
human beings are involved in the application of a “pure” logic. 15    

2.3.2     The Basic Critique of This Foundationalist View: 
The Road to Nowhere Argument 

 For all foundationalist views like the deductivist account, there is an argument that 
maintains that if one achieves “self-evidence,” then one has achieved, so to speak, a 
road to nowhere. No further consequences can be derived from a view that is by 

14   From Carnap,  1962 , Ibid., pp. 208, 216, and 217. 
15   See Feynman, Richard P.,  1996 ,  Feynman Lectures on Computation , edited by Tony Hey and 
Robin W. Allen, Cambridge, MA: Perseus Publishing. 

2 The Deductivist Theory of Probability and Statistics



31

itself so certain that no further evidence or derivations can falsify or modify it. Very 
briefl y speaking, any consequences that one may derive from a self-evident view 
can only create cognitive trouble for this purportedly self-evident view. Cognitive 
trouble for a view deemed self-evident means that the view is not as self-evident as 
it was initially deemed. First impressions of this truth are upended by second 
impressions when this initial truth has consequences that may be unwanted. 16  

 This basic critique has been shown to apply with respect to an axiom system that 
does not yield applications to probability and statistics, to the discovery that the real 
number system cannot be developed from Carnap’s logic, and to the failure to verify 
the logical system used in terms of such enormous applications as those in the 
development of computers, from the failure to understand that errors, however 
slight, occur in applications including verifi cation that logic has been used. 

 The fi nding that the foundationalist or linear view does not account even for the 
continuum or real numbers, let alone complex numbers, is very damaging to 
Carnap’s viewpoint. This fi nding results from an account of the binary account of 
the fallacy of affi rming the consequence as follows:

  It is a fallacy to maintain that “If p implies q, then if q is true then p is true” in which “p” 
and “q” are each propositions that are either T or F. 

   The similar fallacy within the theory of self-evidence is as follows:

  It is a fallacy to maintain that “p is self-evident” when p implies q and q may be false. Thus, 
if p implies q, and p is self-evident, then q must be true. 

   The above “fallacies” help to clarify the reciprocity of antecedent and conse-
quent when expressed in binary terms. As later chapters will indicate, these “falla-
cies” stated in binary language do not refl ect nuanced views of truth and falsity. In 
Chap.   7    , examples will be given of how major discoveries are often expressed in 
incomplete ways, and the “consequences” of these major discoveries may take gen-
erations to clarify. One such example comes from F. Waismann’s work on mathe-
matical thinking:

  …the differential quotient is not a quotient at all, but the limiting value of a sequence of 
quotients. However, this was not yet clear to the founders of differential calculus, although 
they occasionally came very close to the truth. By and large, they cultivated the view that 
the differential quotient is the ratio of the quantities Δ x, Δ y at the instant at which they just 
vanish—the  ultima evanescentium incrementorum , as Newton said. Leibniz and Newton 
had a feeling that there existed a diffi culty in the formation of this concept; however, they 
were unable to get a really clear idea about it. 17  

16   The view that fi rst impressions, including those in mathematics, can be overridden or modifi ed 
by later developments is found in the psychological work of Kahneman, Daniel,  2011 ,  Thinking , 
 Fast and Slow , New York: Farrar, Straus and Giroux. Slow thinking can overcome failures in fast 
thinking. One treatment of the philosophy of mathematics that shows how those studying mathe-
matics or even doing arithmetic undergo transformations as they proceed from natural numbers to 
integers and so on is found in  Waismann, Friedrich,  1951 ,  Introduction to Mathematical Thinking , 
New York: Frederick Ungar Publishing Co. A much more extended “road to nowhere” argument is 
found in Taylor, Craig Elliot,  1974 ,  An Essay on the Possibility of Inference , Ph.D. dissertation 
under Professor Frederick L. Will, Champaign, IL: University of Illinois (unpublished). 
17   See p. 150,  Waismann, Friedrich, ibid. 
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   We can now use and compute with infi nitesimals after a long period of confusion. 
That confusion, while needing to be removed, did not prevent the progress of the 
subject. This volume will continue in the tradition of working with incomplete logi-
cal foundations in hopes that later workers will reinforce and solidify them. 18  

 Thus, when the immensely useful notion of the differential quotient was intro-
duced, its brilliant founders did not have a clear idea about it and it took time for this 
idea to become clarifi ed. So, if the starting point of an inquiry should be true in an 
unqualifi ed sense, then the differential calculus started from a very shaky founda-
tion owing to the lack of clarity of the notion of a differential quotient. 

  As   Feynman has indicated, information technology requires taking into account 
very small errors in the electronics of computers. In addition, digital computation 
itself has great challenges relative ultimately to “analog” issues involving real and 
complex number systems. The presence of limitations does not imply that enormous 
value comes from such digital electronic systems. The failure of Carnap’s approach 
to account for the value of real and complex number systems (implied in 
Kolmogorov’s axioms) and digital electronic systems is the basis for the stringency 
of the “road to nowhere” line of reasoning. The role of logic, mathematics, and 
information technology in probability and statistics is undermined through this 
foundationalist approach. 

 Frequency theorists as we shall see postulate that the future evidence will yield a 
long-term forecast or  convergence   to some value P(H). Frequency theorists thus 
defi ne probability differently not as something logical but as something in which, so 
to say, the future will be like the past.  

2.3.3     Selected Anachronisms in Carnap’s View 

 To identify some selected anachronisms in Carnap’s view is merely to identify how 
modifi cations in probability and statistics, and related areas, have had consequences 
that would require changes in Carnap’s view. Two of special interest are fi rst 
Carnap’s preference for using the mean value and Bernoulli processes and second 
Carnap’s attempt to use an embryonic view of decision theory. 

2.3.3.1     Carnap’s Preference for an Estimate of the Mean Value μ 

 Carnap distinguishes between probability in the logical sense (probability 1 ) versus 
probability in the nonlogical sense or frequency (probability 2 ). 19  No certainty exists 
that the estimate of μ is equal or even near to the actual value μ. This again assumes 

18   Dr. Robert Riehemann, letter dated December 22, 2014. 
19   There is further a search for c*, the quantitative explicatum for probability 1 , a representative of 
the concept of degree of confi rmation (p. ix). Inductive logic, in its quantitative form, may be 
regarded as the theory of c. In selecting a primary candidate for c, Carnap picks P(H|E) = the esti-
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that there is some actual value μ. Still, Carnap maintains that various proposed prin-
ciples used to derive μ directly—rather than as an estimate—fail. These include the 
doctrine of the uniformity of nature, namely, that the future will be like the past. 20  

 In speaking of the reliability of estimates of μ, the e-function or confi rmation 
function, Carnap appears to rely on extensions of Bernoulli processes in which  the 
  confi dence intervals are derived based on such a formula as

   P H E( ) / [ * / ( )]|   t n 1    ( 2.1 )    

in which  t  is derived from a table for the normal distribution and  σ  is  the   standard 
deviation derived relative to H given E.  n  is number of samples. If there are distribu-
tions such as the Cauchy that have no fi nite mean, there are even more distributions 
including the Cauchy that have no fi nite variance or standard deviation. In addition, 
especially for  fi nite samples  , there are many distributions such as the exponential 
distribution in which the confi dence intervals so derived are not symmetric, in con-
trast to what the foregoing formula implies. Thus, Eq. ( 2.1 ) does not fi t the discus-
sion later in Chap.   5     about extreme value distributions. There are as well many ways 
to develop  confi dence intervals   when there is a fi nite variance or standard 
deviation. 21  

 The selection of the arithmetic mean and the use of the binomial distribution as 
principal factors are curious. Later in Chap.   6     we witness the statistician/biologist 
R. A.    Fisher likewise resorting to fairly simple statistics and distributions. However, 
as seen in Chap.   5    , if the underlying distribution were a Cauchy distribution, then 
there is no fi nite mean. Other very “heavy-tailed” distributions—those with a small 
percentage of very high absolute values—may lack a stable estimate of the mean. 22    

mate of the mean value for H, given only E. Once H and E are given, the  probability ip(H,E) is logi-
cally derived and fi xed forever. This probability is the estimate of the relative frequency. If 
presumably there were no relative frequency μ and no probability 2 , then there would be no 
probability 1 . 
20   References in this paragraph are from Carnap,  1962 , Ibid., pp. 169 and 178–180. 
21   For supporting references, see Hogg and Klugman, 1984 and Law and Kelton, 1991, and also see 
Carnap,  1962 , Ibid., pp. 510, 512, 534, 536, 537, 564, and 582. Alternative methods for developing 
confi dence intervals given fi nite variances are found in treatments of the Chebyshev inequality, 
bootstrap resampling methods, and, when they apply, the use of control functions (whether or not 
combined with bootstrap methods). For bootstrap methods, see Efron, Bradley, and Robert 
J. Tibshirani,  1993 ,  An Introduction to the Bootstrap , New York: Chapman & Hall. If Carnap has 
selected the most cognitively certain method for estimating confi dence intervals, he would have 
selected Chebyshev’s inequality, which is analytically derived given a fi nite variance (see pp. 141–
142 in Meyer, Paul L.,  1970 ,  Introductory Probability and Statistical Applications , Reading, MA: 
Addison-Wesley Publishing Company). 
22   The Cauchy distribution is mentioned merely in passing by Carnap,  1962 , Ibid., p. 245. This 
distribution, of course, creates huge challenges for a theory of  probability and statistics that always 
assumes that the mean value μ is fi nite. In Triana, Pablo,  2009 ,  Lecturing Birds on Flying :  Can 
Mathematical Theories Destroy The Financial Markets ? Hoboken, New Jersey: John Wiley & 
Sons, Inc., the author posits that fi nancial markets are so wild that a Cauchy distribution may be 
the best one to apply since this distribution is so extreme and has only a constant median value. Not 
all extreme value distributions have even a constant median value. 
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2.3.4     Carnap’s Later Excursions into Decision Theory 

 In 1971, Carnap considers problems of “applications” of a “pure” (and “universal”) 
logic. At this later time, he still considers the reliance on “frequency” theory to be 
unreliable because “statistical probability values” are not generally known. 23  
Instead, he defi nes in this context “probability” to mean “degree of belief.” One 
begins with a belief system that permits one to evaluate alternative bets (or acts) in 
terms of outcomes with certain probabilities in the world. The bridge to “applica-
tions” does not reside in these probabilities, since they are not known. Instead, they 
are part of a belief system, and this belief system must be at least self-consistent 
internally and the same as the belief system of other “bettors.” This betting proce-
dure supplies Carnap with his bridge to applications. 

 This bridge results from our alleged ability to determine exactly and uniquely 
that our bets cannot be improved. Our logical betting system corresponds to the bet-
ting system of the “House,” that cannot go into ruin but that cannot beat our logical 
betting system. So, our bets are suitably logical and probabilistic if we cannot lose 
to a superior bettor. 

 Very often, the advantage of the “House” or other bettors results from superior 
information. So, the supposition here must be that our systems of beliefs about acts, 
outcomes, and probabilities must be identical. So, how have quantitative decision 
procedures fared since their development in the early half of the twentieth 
century? 

 Carnap is placing his bets on a unique solution for a “maximum” bet. However, 
as developments before 1971 and defi nitely afterward have shown, there is no 
unique solution for each and every self-consistent betting system. 

 In the 1950s, Markowitz and others developed a “mean-variance” approach to 
fi nancial or betting decisions. Two dimensions are used to evaluate investments or 
bets: the mean return on investment and its variance. Investments are superior to the 
extent that the mean return is higher and the variance is lower. Thus, an alternative 
with the highest mean or expected return on investment may also have a very high 
variance and so be less desirable than an alternative with the same mean return but 
a lower variance. The use of two dimensions for evaluating investments or bets 
assures that there may be many alternative betting schemes that are “indifferent” to 
each other in the sense that they could be acceptable to someone at some time. As 
has been shown many times, the use of a unique “utility” function to defi ne a unique 
solution has many fl aws. 24  

 A more advanced approach that fi ts Carnap’s desire for a “maximum” betting 
value comes from work by H. Levy and others who develop “   stochastic dominance” 

 The other comments in this paragraph are explicated later in Chap.  5 . 
23   See Carnap, Rudolf and Richard C. Jeffrey,  1971 , op. cit., pp. 8– 9. 
24   References for this paragraph include Markowitz, H. M.,  1959 ,  Portfolio Selection :  Effi cient 
Diversifi cation of Investments , Oxford: Basil Blackwell Ltd., and Kahneman, Daniel,  2011 , 
 Thinking ,  Fast and Slow , New York: Farrar, Straus and Giroux. 
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theory. First-order stochastic dominance occurs when one alternative is better or at 
least no worse for each and every possible situation. This, though, is a very rare situ-
ation and not typically useful in investment procedures. Second-order stochastic 
dominance does ensure that the betting system with the highest mean return can 
never be rejected. However, this conclusion still permits other betting systems to be 
in the same situation. The uniqueness of the betting solution thus vanishes with this 
more advanced system of betting, much as it does with the mean-variance approach. 

 Note that “almost stochastic dominance” may prove to be a more valuable tool 
inasmuch as it downplays small differences between alternative betting schemes 
and stresses major differences between these schemes. Note also that none of these 
betting schemes fully addresses circumstances in which fi rst, second, and even third 
moments are infi nite. The embryonic decision procedures that Carnap was relying 
on do not render probability applications “a priori,” “purely logical,” or known 
indisputably. 25   

2.3.5     Summary of the Deductivist Theory 

   The Upsides 

•   Carnap’s rigorous quest leads him to reject common postulates such as the uni-
formity of nature, namely, that future cases will mirror past cases. There can  be 
  black swans even if one has only seen white swans. There are often unforeseen 
consequences when one expects and acts on past regularities.  

•   Carnap recognizes that real numbers are immensely challenging if not impossi-
ble to derive (through “effi cient procedures”). This is even more true of geomet-
ric reasoning, including not only Euclidian and non-Euclidian geometries but 
nowadays fractile geometry. 26  The extensive use of digital computers raises simi-
lar issues as does the use of  fi nite samples   in statistics.  

•   Carnap recognizes that probability and statistics are conditional. This condition-
ality begins as a precise P(H|E) and devolves into a vague P(H|E&K), in which 
K becomes very vague. However, conditionality of probability and statistics is 
extremely important in following chapters. 27   

25   Stochastic dominance has been comprehensively outlined by Levy, H.,  2006 ,  Stochastic 
Dominance :  Investment Decision Making Under Uncertainty , 2nd edition, New York, NY: 
Springer. Applications to natural hazards events have been developed by Taylor, Craig, Glenn Rix, 
and Fang Liu,  2009 , “Exploring Financial Decision-Making Approaches for Use in Earthquake 
Risk Decision Processes for Ports,”  Journal of Infrastructure Systems , Volume 15, Number 4, 
pp. 406–416, December 1, 2009. 
26   See  Mandelbrot, Benoit B.,  1983 ,  The Fractal Geometry of Nature , New York: W. H. Freeman 
and Company, originally 1977. 
27   Maher, Patrick,  2010 , “Explication on Inductive Probability,” in Formal Epistemology Workshop, 
June, retrieved from the World Wide Web on October 9, 2009. 
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•   Carnap’s emphasis on a binary logic has strong parallels (and some nonparallels) 
with the digital developments in information technology (IT). IT advances have 
greatly enhanced the ability of users to publicize and use a large number of tools 
in probability and statistics.   

  The Downsides 

•   Carnap attempts to maintain that mathematics is founded on logic and that one 
can devise a logic of probability. He hopes that logic, mathematics, and probabil-
ity can be restricted to a risk-free sphere, a sphere of the analytically true, the a 
priori truths. This quest, expressed in Carnap’s metalanguage, is not without its 
risks, and the language that Carnap devises in the  Logical Foundations of 
Probability  fails miserably in this work. There are minor inconsistencies in this 
quest, such as when P(H|E) is analytic, and both H and E are said to be atomic or 
logically independent. There are major challenges when Carnap confi nes himself 
to equiprobable distributions and the stress on mean values. Save in cases in 
which population statistics are known, underlying distributions may indicate 
trends, clustering, or other memory-based events. There are evolutionary reasons 
why the British saw only white swans until the late seventeenth or early eigh-
teenth centuries. Likewise, mean values may be misleading or in some cases 
incalculable.  

•   Major inconsistencies arise in Carnap’s quest when the language L as devised 
has no applications to become universal when the quest is furthered to include 
real (and perhaps complex) numbers. Whereas the quest for such foundations 
may have invaluable offshoots, this quest tends to preclude any potentially pre-
carious applications or risky metalanguage interpretations that exhibit founda-
tions that shake and slump. Any quest to construct an a priori sphere of truth 
separate from applications suffers from lack of adequate feedback loops. The 
variety of computer programs that have emerged have resulted from competitive 
settings in which users fi nd advantages and disadvantages of various systems and 
select those best suited for their uses. A priori logic treats feedback consequences 
that are in any way negative as being instead signs of “incompetence.”  

•   By ignoring consequences of his theory, Carnap ignores validations of the same 
theory. By ignoring applications and the errors that enter even into computer 
applications of a theory, Carnap places the theory in an isolated zone to which 
one has no access. The recognition that digital information technologies pose 
small mathematical and physical limitations on processing fi ndings in probabil-
ity and statistics does not imply that these information technologies should be 
epistemologically abandoned.  

•   Carnap implicitly rules out a number of applications in science and elsewhere. 
Most notably, many authors have maintained that species are not as clear when 
one views evolutionary history.    Black swans may originally have been white 
swans but, after reproductive isolation, may have morphed and become a sepa-
rate species. 28  Transitions states, mutations, and a variety of other anomalies 

28   Wikipedia, “Black Swan,” accessed April 28, 2013. 
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arise in a more rigorous and hence less clear-cut evaluation of evolutionary phe-
nomena. Species are clearly not points in space time and are hardly separable 
from their habitats. Evolutionary biology and language may transcend the axi-
oms of Carnap or Kolmogorov and their assumptions of primitive individuals, 
elementary events, sets or types, and atomic propositions.  

•   Likewise, the pursuit of how the earth’s surface has changed is much more com-
plex and indirect than what Carnap’s account of atomic propositions permits. 
Since linguistic changes are common in the development of continental drift 
theories (e.g., “crustal plates”), fi xing language in advance, whether in terms 
used or the number of terms used, lacks adequate fl exibility. The evidentiary 
basis for such estimates as the temperature of the earth’s interior and many other 
phenomena in continental drift theory exhibit the use of highly refi ned instru-
mentations and complex calculation routines and assumptions to derive even 
single data points. 29   

•   The goal of this deductivist approach is not to expand how mathematics can be 
used to illuminate problems in critical subject matters. The goal is to defi ne a 
risk-free approach to probability and statistics, and in this regard it is left with an 
approach that cannot be used: a road to nowhere.          

    Addendum 1: Carnap’s “L”-Language with Only 
Denumerable Values and His Admitted Limitations 
for Scientifi c Applications 

 As indicated in the text, on the one hand, one might expect Carnap to be arguing that 
one can justify his logic in terms of its success, and this might include a lengthy 
discussion of how information systems have evolved from logic. In contrast, Carnap 
maintains that logic is what it is, apart from its applications, and that it should be 
universal for any system of concepts that fi t the particular language in question. Put 
in other terms, Carnap’s logic forbids that should not commit the “fallacy of conse-
quence” but should instead justify matters in a linear fashion—one step at a time. 

 In  Logical Foundations of Probability , Carnap presents two languages: L n  and 
L ∞ . The former consists of a fi nite system and the latter consists of a denumerably 
large system. In general, one must form the system from

•    Countably many logically independent individuals, i 1 , i 2 , …  
•   Clear-cut, independent, and binary (either applicable or not) primitive classes/

predicates/properties/modalities (presumably color, shape, and so on)  
•   Atomic sentences—which ascribe primitive properties to an individual  
•   Extensional combinations of atomic sentences (for everything complex or 

“molecular,” one uses an inclusive “or,” a tilde for negation, or an “and”)  

29   Uyeda, Seiya,  1978 ,  The New View of the Earth :  Moving Continents and Moving Oceans , San 
Francisco: W. H. Freeman and Company, pp. 2, 11ff. 
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•   Binary assignments (“T” or “F”) to all sentences so formed.    

 Finite or denumerably infi nite systems are basically in terms of information tech-
nology “digital” as opposed to “analog.” Only a countable number of variables, 
sentences, individuals, and state descriptions exist. In this digital world, irrational 
numbers become truncated. Statistical distributions become a disjunction of a 
countable number of individual distributions. So, how does one apply such a lan-
guage L (whether L n  or L ∞ )? If individuals are logically independent and primitive 
properties are logically independent, how can probabilistic statements be logical? 
Suppose that a probabilistic statement is of the Carnap/   Keynes formulation P(H|E) 
or the probability of H given E. Suppose further that both H and E are atomic sen-
tences. Then, the sentences H and E therefore imply some value ip(H|E), a condi-
tional probabilistic estimate. To that extent, H and E are not independent. H and E 
are thus relevant to each other or else ip(H|E) = 0, still a logical implication. Thus, 
at a minimum, there are serious challenges for deriving probabilistic estimates for 
two atomic sentences in Carnap’s theory of probability. 

 Digital information systems—along with many related products such as digital 
pictures—has had enormous successes—but with some obvious sacrifi ces. To what 
world does this digital logic apply without sacrifi ces? Carnap’s response appears to 
be that there is no world that he can think of that fi ts languages L n  or L ∞  perfectly. 
He states:

  It seems best to imagine as individuals in a system L, not extended regions like physical 
bodies or events in our actual world, but rather positions like the space-time points in our 
actual world, hence unextended, indivisible entities. Since, however, the number of indi-
viduals in a system L is either fi nite or denumerably infi nite, they cannot form a contin-
uum… the qualities and relations with which we are acquainted in our actual world cannot, 
strictly speaking be applied. For instance, a color occurs in the actual world only as a 
property of extended, continuous area. 

   Later, Carnap rules out length, mass, and temperature. One might hope that a 
statement of the form “at point (x,y,z) at time t the temperature is T,” as being suit-
ably atomic, but not even this is the case. Carnap admits that the actual language of 
science and even that of elementary physics has, of course, a much more complex 
structure. 30  The whole language of science has “its great complexities, its large vari-
ety of forms of expression, and its variables of higher levels (e.g., for real num-
bers).” This, though, requires a much more thorough rational reconstruction than 
Carnap pursues in his  Logical Foundations of Probability . The simpler languages so 
far constructed have no applications whatsoever, and so the null set of applications 
is all that remains at this point of this “universal” logic. 31  ,  32  

 The status of the metalanguage may be reconsidered at this stage. As with other 
proposed languages and their elements, the metalanguage is clearly not an 

30   From Carnap,  1962 , Ibid., pp. 73–74. 
31   See pp. 541, 208, and 209 in Carnap,  1962 , Ibid. 
32   See pp. 199 and 163 in Carnap,  1962 , Ibid. 
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L-language. The metalanguage is one may presume supra-logical, that is, beyond 
the restrictions of the L-language logic. Statements about the author’s goals—while 
to be taken at face value—as well as statements about other’s misconceptions stretch 
well beyond the sphere of risk-free logic. 

 Note that with sacrifi ces or tradeoffs, this logic could have immense applications 
and hence successes. Alternatively, Carnap in his later writings and his followers 
may pursue a course of a risk-free logic that is also universal.    
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    Chapter 3   
 The Frequency Theory of Probability       

    Abstract     One of the most popular theories of probability and statistics is the “fre-
quency theory” originating in the eighteenth century. This data-driven view is devel-
oped here through a chief proponent, Richard von Mises. Von Mises is concerned in 
a major way that laws of large numbers and the central limit theorem follow from 
any account of probability and statistics. He defi nes a “collective” containing unre-
lated or fairly inconsequential data. He thus does not capture trends, correlations, 

 This book is about a new, fourth paradigm for science based on 
data-intensive computing. In such scientifi c research, we are at 
a stage of development that is analogous to when the printing 
press was invented (p. xiii in Bell, Gordon,  2009 , “Foreword,” 
pp. xiii–xvii in  Hey, Tony, Stewart Tansley, and Kristin Tolle, ed, 
The Fourth Paradigm: Data-Intensive Scientifi c Discovery, 
Redmond, Washington: Microsoft Research ). 

 Learning to use a “computer” of this scale may be challenging. 
But the opportunity is great: The new availability of huge 
amounts of data, along with the statistical tools to crunch these 
numbers, offers a whole new way of understanding the world. 
Correlation supersedes causation, and science can advance 
even without coherent models, unifi ed theories, or really any 
mechanistic explanation at all. There’s no reason to cling to our 
old ways. It’s time to ask: What can science learn from Google? 
(These deliberately provocative words are from Chris Anderson, 
 2008 , “The End of Theory: The Data Deluge Makes the 
Scientifi c Method Obsolete,” Wired, 6/23/08.) 

 As Bellerophon’s fame grew, so did his hubris. Bellerophon felt 
that because of his victory over the Chimera he deserved to fl y 
to Mount Olympus, the realm of the gods. However, this 
presumption angered Zeus and he sent a gad-fl y to sting the 
horse causing Bellerophon to fall all the way back to Earth 
(From “Bellerophon,” Wikipedia, the free encyclopedia, 
accessed 10/17/2013). 
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perturbations, and a host of phenomena from the realm of statistics. Frequency 
theory also ignores extreme values or outliers. The chapter ultimately concludes that 
the theory assumes a convergence at infi nity that will never be experienced. 
However, frequency theory vies with the Bayesian theory in current-day popularity 
because of claimed successes.  

3.1               Introduction 

     This  chapter   discusses one of the most popular theories  of   probability  and   statistics: 
the “frequency theory” with origins in the eighteenth century. This view is devel-
oped here largely through  a   chief proponent, Richard von Mises. The frequency 
theory is one of many tools of interest when the right tail of the loss distribution is 
small (however long). 1  The frequency theory places enormous emphasis on data and 
its evaluation, with important parallels with the data-mining approach now in full 
swing. 

 While making initially huge concessions to the uses of frequency theory (and 
Bayesian theory) relative to light-tailed distributions, this chapter will not address 
the well-known small sample issue. The doctor may need few tests to determine that 
the patient’s blood pressure is in a dangerous zone; the structural engineer may 
deem that a building suffers from soft fi rst story problems in a  high   seismic zone. In 
many cases, few trials are needed to arrive at a very reliable result. This chapter cov-
ers only large sample issues. 2  

 The frequency theory can provide enormous assistance in addressing the original 
questions raised in these chapters. It is conceded throughout this chapter that many 
loss distributions are light tailed. However, its serious limitations suggest that it is 
not to be taken as the entire answer. The version of this theory provided by von 
Mises provides enormous insights into the diffi culties of using laws of large num-
bers for the vast majority of data-mining activities, especially those pertaining to 
shocks to systems. Both frequency theory and data mining, though, greatly enhance 
our knowledge through the quest itself.  

1   A very helpful approach to effi ciencies is found in Chap.  23  of Efron, Bradley, and Robert 
J. Tibshirani,  1993 ,  An Introduction to the   Bootstrap , New York: Chapman & Hall. In general, the 
topic is one of variance reduction techniques, and control functions provide potentially very great 
simulation effi ciency gains for light-tailed distributions. One need not combine these with the very 
useful bootstrap modeling to produce, for instance, confi dence intervals that can account for mean 
[fractile] estimates as well as say 5th and 95th centile estimates. 
2   On pages vii, 156, 158, 159, and 163 in  Probability ,  Statistics and Truth , New York: Dover 
Publications, Inc.,  1957 , Richard von Mises opposes small sample theory including Bayesian the-
ory and the use of case studies. 
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3.2     Von Mises: Search for a Simple and Exact Theory 

 The frequency theory is discussed here through the major fi gure Richard von Mises. 3  
In sharp contrast to Carnap, von Mises maintains both that the most important test 
 of   probability theory lies in its applicability and that probability theory provides an 
experimental (natural science) basis for probability statements. Probability theory is 
concerned with forecasting and not merely with providing “descriptive statistics.” 
Like Carnap, von Mises maintains that one must begin with the simple and exact 
solution and extend and improve it gradually. 4  

 Linear at the outset, the theory of von Mises requires developments in statistics 
that are prior to its application. In particular, his account of a “collective” requires 
that one curate data so that it defi nitely permits the application of the law(s) of large 
numbers. This curation thus requires a back-and-forth statistical movement not 
characteristic of perfectly linear approaches. 

 This discussion of von Mises will begin with his defi nition of “probability” and 
then proceed to his notion of “collective” that he regards as being critical to his 
notion then to his discussion of the law(s) of large numbers. He regards his notion 
of the collective as critical to an adequate account of these laws. 5  Afterward, an 
illustration of large sample statistics is used to emphasize the conditioning and con-
ditionality of the uses of these statistics. 

 For von Mises, probability is defi ned in terms of relative frequency. For instance, 
if the temperature in San Francisco exceeds 90 °F 5 days a year, then its relative 
frequency is 5/365.25 = 20/1,461. Because von Mises seeks a simple and exact solu-
tion that accounts for probability and statistics, probability and statistics apply to 
mass phenomena in which the same event repeats itself again and again, or a great 
number of uniform elements are involved at the same time. Thus, one needs years 
of data to develop an adequate relative frequency for temperatures in San Francisco. 
Population statistics covering birth and death rates; social statistics covering mar-
riages, suicides, crimes, incomes, and heredity; medical statistics covering the 
action of drugs and cures; economics covering mass production, consumption, 
prices, demand, lotteries, gambling banks, and life insurance companies; and many 
studies in physics (such as those of Brownian motion) comprise activities in which 
such mass phenomena are studied. 6  

 In particular, the  relative frequency  is “ the ratio of the number of cases in which 
the attribute has been found to the total number of observations .”  Probability is the 
constant limiting value of this long  [ theoretically infi nitely long ]  sequence of experi-
ments . That is, any probabilistic statement concerning temperatures in San Francisco 

3   From Von Mises, Richard,  1957 , ibid.; See Von Plato, J.,  1994 ,  Creating Modern Probability :  Its 
Mathematics ,  Physics and Philosophy in Historical Perspective , Cambridge: Cambridge University 
Press, pp. 13ff.; According to Keynes,  1921 , op. cit., pp. 92ff. 
4   From von Mises,  1957 , ibid., pp. 8, 30, 53, 54, 100, and 166. 
5   From von. Mises,  1957 , ibid., pp. 80, 113, and 125. 
6   From von Mises,  1957 , Ibid., pp. 11, 18, 102, and135. 
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is validated by a long number of years of thermometer readings. The resulting prob-
ability is unique. That is, there is a real number that corresponds to a given estimate 
of the probability that 90° is exceeded on a given day in San Francisco. This real 
number is not less than zero and not greater than one. For von Mises as for Carnap, 
probabilities are unique. 7  

 To assure that he begins with a simple and exact theory, Von Mises contends that 
there is no “gaming system” (Von Mises’s term for a “system of selection”). The 
mass phenomena must be completely random or lawless.  The observation of one 
sample does not impact the observation of the next . For instance, if one measures 
the infl ow of water at a given junction on a water trunk line and the outfl ow at a 
second junction, with no other outlets along this line, one would expect there to be 
a connection between the inputs and, after a time, the outputs. Of course there may 
be losses along the line and pressure and possibly temperature changes may create 
variations in this relation, but still one would expect the data from these two junc-
tions to imply a statistical connection. The data together would not constitute a 
random sample in the sense that von Mises is using. One might try considering the 
set of data from each junction to be considered a part of separate collectives—if the 
data stream from each junction could be considered as being random in itself if the 
data samples were far enough apart in time so that each did not impact the next. 

3.2.1     The Simple and Exact Solution: Search 
for a “Collective” from the Plethora of Data and Test 
for Equally Likely Random Samples 

 Some accounts of data mining as the fi rst two quotations speak of data and its vast 
accumulation as a possible source of immense optimism in how rapidly knowledge 
and its use can benefi t humanity. Gannon and Reed speak of “a rising tsunami of 
data” in environmental, healthcare, and biological disciplines that can move science 
from asking about data for hypothesis testing to asking about correlations, insights, 
and cross-disciplinary patterns. 8  

 In serious data-mining activities, curation and similar activities require consider-
able effort and thought. “Provence data” have been defi ned as requiring the history 
of inputs and processing steps along with other information to assist in determining 
the relevance of these data to other activities and further to establish their veracity 
and support further activities involving reproducibility. 9  Putative data can be errone-
ous, duplicative, confusing, only marginally supported, and irrelevant. 

7   From von Mises,  1957 , Ibid., pp. 14, 33, and 127. 
8   From pp. 131–132 in Gannon, Dennis and Dan Reed,  2009 , “Parallelism and the Cloud,” pp. 131–
135 in Hey, Tony et al., op. cit. 
9   From Van De Sompel, Herbert and Carl Lagoze,  2009 , “All Aboard: Toward a Machine-Friendly 
Scholarly Communication System,” pp. 193–199 in Hey, Tony et al., op cit. 
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 Von Mises undertakes his own curation tasks: to assure that samples are suitable 
for probability and statistics. The curation that von Mises seeks to undertake elimi-
nates a huge part of the plethora of data so-called in data-mining activities. Thus, 
one may take von Mises as having a reductionist attitude toward the vast amounts of 
data that are available. One small subset, in effect, survives the curation that von 
Mises undertakes. Note again that von Mises undertakes these data reduction activi-
ties so that the laws of large numbers can obtain. 

 One chief concern for von Mises is that the  previous   deductivist theory treats 
probability as the ratio of the number of favorable cases to the total number of 
 equally likely cases . Yet, this is very confusing. For von Mises, one must perform 
trials in order to assure that cases are equally likely. For instance, one may have as 
one datum the sighting of Haley’s comet and another datum might be a car accident 
in San Bernardino County. These are not equally likely events. So, von Mises 
believes that one must test the trials to determine that they are equally likely. 10  

 So, for von Mises, the central problem of statistics is fi nding out whether or not 
a certain group can be considered a collective. He thus tries various attempts to 
“reduce” sequences to those that can be treated according to a method much like 
sampling with replacement. For instance, if one draws a card from a deck of cards 
and then returns the card to the deck, then probabilities for drawing a 1, 2,… do not 
change on the next draw. Von Mises likewise tries to show how Brownian motion 
can be reduced to a “collective.” At the same time, he contends that there are many 
mass phenomena to which the theory of probability does not apply. 11  

 In order not to be encumbered by the mathematical conclusion that there is 
always a rule for any fi nite sequence, von Mises postulates that the “collective” 
from which one develops trials must be infi nite. The sequence itself is thus assumed 
to be infi nite. 12  Thus, drawing without replacement from a deck of cards in which 
there are only a fi nite number of possible draws does not count as a “collective.” 

 For von Mises, to discover that there is equiprobability, one must assure that 
there is no statistical “memory,” no dependence of the next case on previous cases. 
For instance, if only a fi nite number of possibilities are available, sampling without 
replacement yields dependence on previous cases. For example, if from a deck of 
cards one draws a 10 and does not replace it in the deck, then the denominator for a 
probability reduces to 51, and this modifi es probabilities for drawing each of the 
cards, a 2, a 3, a 4, and so on. Thus, from a fi nite collection, samples without replace-
ment comprise one example of lack of randomness for von Mises.  Equal likelihood 
for von Mises entails statistical independence. The collective must not contain sam-
ples drawn from a fi nite set and drawn without replacement. The collective must not 
contain samples whose probability is known in advance . 

10   From Von Mises,  1957 , op cit., pp. 53, 54, 67, and 80. 
11   See Von Mises,  1957 , op. cit., pp. 141–145. 
12   See Von Mises,  1957 , op. cit., pp. 91, 92, 93, and 101. In Chap.  4 , the derivation of Bayes’ theo-
rem presupposes a fi nite partition of the universe in question. Chapter  4  brings out some problems 
with this fi nite sample when it is used for a large number of forecasts. 
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 For von Mises, to be  random , the sample in question must not be able to be 
impacted by some system of selection. One such nonrandom system of selection 
might be cyclical. One’s trials must not be such that one can sample the 5th, 10th, 
15th, and so on elements of a long sequence and so arrive ultimately at a different 
estimate of probability. 13  Thus, Haley’s comet must be ruled out as a sample along 
with many astronomic phenomena such as lunar cycles. So, too, routine behavior 
such as going to school every weekday must be ruled out except when it ceases to 
be metronomic behavior. For von Mises,  equal probability is random ,  and both 
equal probability and randomness imply the absence of a system of selection as 
occurs when there is cyclic behavior. The collective must not contain samples that 
exhibit cyclic behavior. Again ,  probabilities of samples must not be known in 
advance . 

 Similarly, trends must be discovered through trials. Blood pressure tests over 
time may indicate that a patient has increasing systolic and diastolic numbers. One 
needs empirically to discover whether or not the trials are equally likely, or whether 
or not they exhibit a trend. Global warming must be ruled out to the extent that it 
contains samples of ongoing diminutions of the polar ice cap, with consequences 
elsewhere. Confl agrations following natural hazard events may be less likely as cit-
ies impose building codes and land-use requirements that limit fi re spread. The 
heavy use  of   DDT to control insects may lead to considerable loss of animals and 
plants. Deforestation without replacement of trees can yield losses of the wide vari-
ety of uses of timber as well as other impacts. 14  For von Mises ,  randomness and 
equiprobability imply that there is no gaming system so that there are no trends. The 
collective must not contain samples that are part of trends . 

 If trends, cycles, dependencies, and unequal probabilities are ruled out, what is 
left? For heuristic purposes, let us suppose that we draw n samples from a collection 
having infi nitely many (denumerably many) elements or events. For instance, let us 
assume that there are a great many cards and that theoretically aces occur in 1 of 13 
cards that are drawn. For von Mises, one cannot postulate that the probability that 
aces are drawn is 1 out of 13. Instead, one must draw the cards and derive the rela-
tive frequency from the draws. Some of the cards could stick together and so upset 
the theoretical or a priori probabilities. Now, one would expect each draw to be an 
event, and the actual card drawn (whether a 2, 3, …, or ace) to be a property or 
attribute of the event. So, one is concerned with the relative frequency of the attri-
bute, given that the draws are equiprobable. Figure  3.1  shows how this statistical 
cycle (with an expectation of 1 in 13 draws being an ace) varies over 100 random 
draws. There is considerable difference in how long it takes before the ace is drawn. 
In some cases, after an ace is drawn, another ace is drawn next. In other cases, there 
may be many draws before an ace is drawn. Figure  3.1  assumes that whenever an 
ace is drawn, it is replaced in the deck. Thus, the draw is one with replacement.

13   From Von Mises,  1957 , Ibid., pp. 24, 25. 
14   On the use of DDT, see Carson, Rachel,  1962 ,  The Silent Spring , Boston: Houghton Miffl in 
Company. On impacts of deforestation, see Diamond, Jared,  2005 ,  Collapse :  How Societies 
Choose to Fail or Succeed , New York: Viking. 
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   In this way, one can imagine the process to be similar to a computer simulation 
that begins with 13 cards and uses uniform random numbers in order to draw cards. 
If the computer draws the cards without replacement, then of course the probabili-
ties change with each draw. So, instead, one may try a computer program in which 
the computer draws cards with replacement. If the uniform random numbers selected 
are as random as possible, then one would expect aces to be drawn on the computer 
about 1 in 13 times in the long run. Thus, one can see something like Fig.   1.2     in how 
the computer in the long run converges toward the result. 

 In general, one might try a random selection of cases drawn with replacement in 
order to determine if this is adequate to fi t von Mises’s defi nition of a collective. For 
instance, suppose that one wants to pick jurors randomly. Assume that there is a 
compiled database from which one may derive people who are at least 18 years old, 
registered to vote, not felons, not defi ned as a “dependent” for reasons of dementia 
or otherwise, living in the suitable jurisdiction, and not having served in the past 3 
years. From this list, one may use random numbers in order to select say 30 possible 
jurors to be evaluated by the prosecution and defense. This actually is a case of 
sampling without replacement, but at least there is a way in which issues pertaining 
to various biases may be minimized—subject to review by lawyers on the case in 
question. 

 However, this is not the way in which von Mises is viewing the matter. Sampling 
without replacement from a fi nite set is not his approach. Instead, one must view the 
situation as being one in which sampling is done from a potentially infi nite set. 
Sampling with replacement constitutes a situation in which one may believe that 
one views the potential set as being infi nite. Sampling without replacement from an 
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infi nite set does not mean that the probability of each draw is actually 1/n. Actually, 
each draw has in the collective a probability of 1/∞, and so sampling without 
replacement fails to meet von Mises’s test. 

 For sampling with replacement, a different possible problem arises. If one draws 
enough sample cards, then there will be a “statistical” cycle that develops for aces. 
 On average , aces will be drawn 1 in 13 times. This does not of course imply that 
there will be 1 ace in each 13 draws. In some cases of 13 draws, there will be 2 or 3 
aces so drawn. In many other cases of 13 draws, there will be no aces drawn. Still, 
one expect there to be a statistical cyclic behavior that surfaces as the draws 
continue. 

 Sampling jurors nonetheless is less likely to be allowed. Still, using sampling 
with replacement, one might devise a rule that some prospective juror may be 
selected two or more times on the same jury. A cycle is removed only if (a) any juror 
no longer appears again on the list of prospective jurors, (b) the number of prospec-
tive jurors for a case changes, or (c) the size of the population from which jurors are 
selected changes. For both jurors and cards, removing statistical cycle behavior will 
require considerable effort—not very realistic in practice. 

 So, typically ruling out trends, dependencies, cycles, and the like, von Mises has 
greatly reduced the data that are suitable for use in a collective. The proportion of 
data in a von Mises “collective” is but an extremely small portion of all the data in 
today’s data-mining activities. The curation process used by von Mises defl ates the 
vast data-mining optimism so that he may achieve a more credible theory of prob-
ability and statistics. At the same time, since von Mises believes that only experi-
ence can assure that there are cycles, dependencies, trends, and other perturbations, 
then in order to reject various data samples from a collective, an enormous effort 
must be made that yields considerable information. So, it is only as regards uses of 
various statistical laws and the like that data-mining activities are reduced by the 
view promoted by von Mises. In ruling out various data samples from being part of 
a collective, there will be considerable statistical tools used. 

 Thus, a typical criticism of von Mises’s view of the collective and its random or 
equiprobable samples is that one must have knowledge in order to tell that there is 
no “gaming system” or “system of selection.” That is, experience must have played 
a role in evaluating the cyclic behavior of Haley’s comet or the moon. There appears 
to be a vicious circularity in this defi nition of randomness. 

 This criticism is strengthened because collectives are assumed to contain infi -
nitely many samples.  As   Keynes points out, defi nitions of randomness that rely on 
“the long run” fail because they require complete knowledge. 15  In effect, Keynes is 
maintaining that all of the references to one’s previous success in fi nding random-
ness or in determining a fi nal result in the “long run” are confused.  In no case have 
we experienced successfully an infi nite sequence of trials . 16  

15   References on this paragraph are fi rst from Von Mises,  1957 , op. cit., p. 137 and then from 
Keynes,  1921 , op. cit., p. 290. 
16   Elaborating on this idea, on p. 6  Applied Chaos Theory :  A Paradigm for Complexity , San Diego 
CA: Academic Press.  1993 , A. B Cambel states 
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 Complete knowledge may lead to the conclusion that Haley’s comet is more 
random than is expected, that the diminution of polar ice caps is more uneven than 
previously thought, and that not all communities suffer virtual extinction when they 
tolerate deforestation. Considerable thought and time, inferential power, is required 
in the curation of samples that von Mises is undertaking.   

3.3     The View that the Law(s) of Large Numbers Require 
Collectives 

 In earlier  or   Gaussian stages  of   probability theory and statistics, the binomial theo-
rem has served as a major means of confi rmation of viewpoints. Von Mises rightly 
criticized the earlier versions of  the   law of large numbers for not fi rst purging the 
samples of cases that may yield considerable errors. In this earlier version, this law 
is as follows:

  If an experiment, whose results are simple alternatives with the probability p for the positive 
result, is repeated n times, and if ε is an arbitrarily small number, then the probability that 
the number of positive results will be not smaller than n(p-ε) and not larger than n(p + ε) 
tends to 1 as n tends to infi nity. 17  

 Because a set of numbers appears to be random does not mean that it is. Statistical analyses 
must be undertaken to establish the nature of the data. For example, …in card games a deck 
must be shuffl ed seven times before the odds that a card may be in any position are the 
same. In turn, two decks must be shuffl ed nine times… 

 Further elaborating on this idea on p. 18, in  Randomness , Cambridge, Massachusetts: Harvard 
University Press. 1998, Deborah J. Bennett maintains that 

 Von Mises defi ned randomness in a sequence of observations in terms of the inability to 
devise a system to predict  where  in a sequence a particular observation will occur without 
prior knowledge of the sequence….Yet certainly every sequence conforms to  some  rule—
we may simply not know what the rule is ahead of time….In a 1963 paper Andrei 
Kolmogorov was able to show that if only  simple  formulas, rules, or laws of production are 
allowed, then von Mises-type sequences would exist….[For Kolmogorov] a random 
sequence is one with maximal complexity…if the shortest formula which computes it is 
extremely long. …The problem is, How do we ever know if we have found the  shortest  
formula? … Common to all of these views is the  unpredictability  of future events based on 
past events. 

 The reader who wishes to learn about random coin tossing should read [quoted in J. Ford,  1983 , 
“How Random Is a Coin Toss?”  Physics Today , April, pp. 40–47; note that the fi rst known six-
sided dice are dated as being from the East in 2750 B.C. See also von Mises,  1957 , op. cit., pp. 69, 
74, and 85 on how the manufacturer, toss and eventual wear and tear of the die will impact the 
results. 

17   From Von Mises,  1957 , Ibid., p. 105. This statement has a close relationship with Eq.  2.1  that 
Carnap uses in order to gain some applications of probability and statistics. 
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   To show how nonrandom samples can upset this rule, von Mises constructs a 
sequence of 0s and 1s that does not obey this theorem in terms of the intervals 
assumed, even though the probability of 0s ultimately ends up as p. For von Mises, 
the appropriate law must be empirical. Unlike the stated law above, von Mises fur-
ther asserts that one should let the data speak rather than presupposing that  p  is the 
probability in question. 18  

 This approach has problems for small, large, and huge computer programs that 
postulate probabilities in advance. For instance, one may say that the computer 
program that includes cards picked at random has a bias if only the conventional 13 
(bridge, poker, etc.) cards are selected, and a quasi-random (as random as possible) 
method is used for selection. For von Mises, should there be such biases? 

 For estimating probability  p , von Mises restates  the   law of large numbers as 
follows:

  The ratio of numbers derived from the observation of a very large number of similar events 
remain practically constant, provided that these events are governed partly by constant fac-
tors and partly by variable factors whose variations do not cause a systematic change in a 
defi nite direction. 19  

   Variable factors that cause a systematic change in a defi nite direction may include 
trends, causes, systemic effects, correlations, cycles, and so on. As von Mises 
knows, small causes may have large effects. So, collectives that are ruled out include 
samples of smallpox, samples of mutations that yield viable offspring and popula-
tions in the long run, samples of habitats impacted by the molten lava of volcanoes, 
and samples in increases in growth in an economy and gradual changes that can 
yield large effects. 20  Here again, von Mises’s view depends on the application of 
considerable knowledge before the statistics can be used. 

 This law depends then on ruling out from consideration samples having varia-
tions that cause a systematic change in a defi nite direction. 

 In the vast amount of data that is currently mined, only a very small portion 
appears to be suitable for use in a von Mises “collective” and that may more or less 
fi t into the above strong law of large numbers. Since the computer has never pro-
duced an infi nite number of results, so too  as   Keynes, Hume, and others have pointed 
out there has never been an infi nite long run to test this strong law of large 
numbers.  

18   From Von Mises,  1957 , Ibid., pp. 109–113, 116, 134. See pp. 163 and 199  in  Carnap, Rudolf, 
 1962 ,  Logical Foundations of Probability , Chicago: University of Chicago Press. It turns out that 
Carnap would agree: one can safely speak about the estimate and then and only then the ultimate 
outcome relative to the estimate. 
19   From Von Mises,  1957 , ibid., pp. 80, 104, 105, and 108. 
20   Von Mises recognizes how small changes may accumulate to produce large effects, as when, in 
chaos theory, small changes in initial conditions have dramatic effects.  1957 , Ibid., p. 180 and 182. 
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3.4     Weakening the Law(s) of Large Numbers 

 Recognizing that this strong law of large numbers is too strong, Von Mises further 
restates the weakened version of the strong law of large numbers:

  “if the game of no casts is repeated, and n is suffi ciently large,  nearly all games  will yield 
the same value of the ratio n 1 /n,” the initial estimate of a relative frequency. 

   The expression “nearly all games” tells us that this is a matter of experience and 
that such long-run frequencies hold most of the time. The expression “nearly all 
games” is reminiscent of Kolmogorov’s principles of inference (discussed in Chap. 
  2    ) in which he speaks about practical certainties. In terms of casting a die, von 
Mises himself details the manufacturing, toss techniques, and wear and tear that 
would signifi cantly create “biases” in the die and hence the ultimate fi nal result. 
Against the deductivists, von Mises can maintain that the die cast in these theoreti-
cal games is one that is not affected by such factors. Against his own views, von 
Mises is implicitly admitting that not even the casting of a die would in the long run 
produce a sequence of independent results. Like the deductivists, von Mises is pos-
tulating a “ p ” that has never been experienced. 21  

 Von Mises also states a second weakened strong law of large numbers:
     If an object picked at random has shown a frequency of success a, in  
  a long sequence of experiments, then the probability P that the probability p  
  of this object lies between a-ε and a + ε will approach unity more and more  
  closely as the number n of experiments is more and more increased. 22     

   Restated, this second law is that “if the ratio  n  1 / n  =  a , and n is suffi ciently large, 
nearly all evaluations must have approximately [the estimate] a.” Here again, the 
expression “nearly all evaluations” indicates that von Mises is basing this result on 
experience. 

 These weakenings illustrate that Von Mises is having diffi culties fi nding exam-
ples that fi t the strong law of large numbers, samples that are equiprobable, random, 
independent, not trendy, not cyclic, not systemic. Optimists about data mining can 
be relieved because von Mises too fi nds little actual probabilistic purity—equiprob-
ability, independence, randomness—in actual data. 

 The real world is full of various perturbations, shocks, trends, cycles, systemic 
relations, and data that relate to these phenomena. Common shocks to the system 
include stokes, dementia, malignancies, job losses, pension fund losses, huge unex-
pected fi nancial losses, divorces, family deaths, rescues, auto accidents, lawsuits, 
and so on. Wars, assassinations, and economic downturns as well as home-team 
championships, major discoveries, and many other events may be epoch moments 
in one’s life. Shocks and major epochs can yield major perturbations in one’s life-
style and modify what one has taken for granted through one’s previous experience. 
Major changes may arise in one’s expenditures, career goals, daily activities, cul-

21   From Von Mises,  1957 , Ibid., p. 127. 
22   From Von Mises,  1957 , Ibid., pp. 122–125. Figure  1.1  in Chap.  1  illustrates how the confi dence 
intervals converge to the estimate in question. 
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tural experiences, friends, and psychological well-being. What one may have taken 
for granted (e.g., severe winters) may be modifi ed (seventy degrees Fahrenheit in 
the winter). One’s previously narrow experience may in some such cases be greatly 
expanded.  

3.5     A Major Object Lesson: Conditioning of Inferences that 
Deploy Large-Scale Data Management 

 The vast array of considerations in what data to use and how to use them do draw 
inferences is apparent in von Mises’s serious concern about whether or not data are 
suitable for their use in probability and statistics. The law(s) of large numbers 
depend for their application on consideration of or presuppositions arising from 
many factors. The conditionality of inferences  from  data arises in part because there 
are so many considerations that enter into data management. These can pertain to 
the consideration of factors that can infl uence results, perturbations that may yield 
outliers, trends that underlie data, limits that proscribe extrapolations, and interfer-
ences in activities underway—let alone all the possible defects in errors 
themselves. 

 This conditionality is signifi cant because inference is already going on before 
inferences are made from data. To illustrate this matter, an example from actuarial 
statistics provides some help. This conditional nature of statistics can also be shown 
if one attempts to take an extremely huge database, one collected over centuries and 
diverse circumstances, and not properly distinguish among these circumstances. For 
instance, one may take life-expectancy data from London in the 1600s and compare 
this with 1993 US life-expectancy data. Their combination would result in multimo-
dality as in Fig.  3.2 . 23 

   This fi gure illustrates what happens when one fi rst compares life-expectancy 
information from 1993 in the USA with the 1600s life-expectancy tables from 
London (derived from Bernstein  1996 ). These health environment contexts are so 
radically different that one would not expect to combine the two data sets without 
leading to something other than a bell-shaped curve. Context such as health envi-
ronment used is critical in applying and understanding statistical data. 

 Thus, we can mine an immense amount of life-expectancy data, and if we put it 
all together, it is not likely to yield a normal distribution, which is long tailed, light 
tailed, and unimodal. Even today the inclusion of life-expectancy data from differ-
ent regions will yield multimodality. There are many possible “perturbations” on 
these data. 

 If therefore one uses life-expectancy data, one needs to condition this data with 
a pertinent health environment and possibly with data pertaining to a personal 
genetics and history. The use of vast amounts of life-expectancy data before 1900 

23   From p. 83 in Bernstein, Peter L.,  1996 ,  Against the Gods :  The Remarkable Story of Risk , 
New York: John Wiley & Sons, Inc. 
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may yield very incorrect actuarial estimates if they had been used to forecast the 
twentieth century and the twenty-fi rst century actuarial rates. The use of  conditioning 
on statistics yields potentially diverse perspectives. For instance, if one is looking at 
the life expectancy of a female at age 50, one may use mass statistics in general. 
Alternatively, one may choose statistics for the particular person given a genetic 
background and personal health and environmental history. Given that there are dif-
ferent ways of managing the data on a person in order to arrive at a conclusion, as 
J. M.    Keynes asks, since “a given proposition belongs to innumerable different 
classes, how are we to know which class the premises indicate as appropriate?” 24   

3.6     Summary of the Frequency Theory 

 Von Mises may accept most of the following conclusions from a review of his 
account of frequency theory. In particular, he is keenly aware of how many applica-
tions of statistics may not be as cautious as desirable. Nonetheless, the lessons 
learned from an evaluation of his theory are many and not all corroborate his 
approach nor the optimism of some data-mining activities:

24   From Keynes,  1921 , op. cit., p. 103. 
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    1.    Curation and large extant data sets illustrate how results derived are conditional 
on management and selection of pertinent data. Considerable time and effort—
inference—is required in these management processes. These may not result in 
unambiguous results. 

 This fi rst conclusion arises from the consideration of data used to diagnose a 
person’s health given that person’s health history and the vast amount of data on 
health. This vast information depends for its application in this case on relevant 
populations, not necessarily entire populations, and the person’s genetics and 
history too may contain data that are misleading and that need to be interpreted 
provisionally and holistically. The vast amount of data that can in principle be 
available is valuable for application under these conditions.   

   2.    Simulation procedures can employ say laws of large numbers owing to the abil-
ity to provide quasi-random numbers and, with sometimes considerable effort, to 
develop equiprobable estimates based in model inputs (that may themselves have 
variable probabilities). Under many conditions (discussed especially in Chap.   5    ), 
one can employ laws to derive conclusions for which the law(s) of large numbers 
obtain. 

 These simulation procedures can be enormously helpful in developing con-
clusions from data, models, and assumptions derived from considerable effort. 
Using frequency theory, one can derive confi dence intervals. Using enormous 
numbers of simulations, one can avoid undue simplifi cations that have been 
employed before vast IT capabilities have been present. 

 However, as von Mises’s quest for pure collectives suggests, real-world equi-
probable cases that are independent of others in the collective and hence are not 
part of cycles, trends (radioactive elements), systems, and the like are rarer than 
one may fi rst suppose. For real-world cases, there is a strong urge to  assume  
stabilities, whether in most or all cases. To assume stabilities is to assume that 
the future will be like the past. Very much concerned to fi nd stabilities, J. M. 
Keynes maintains that stable frequencies are not very common and cannot be 
assumed lightly. 25  Hundreds of millions of data on life expectancy in the past do 
not always indicate the nature of trends for the population as a whole or for sub-
groups within the population. In many of these cases, what has been taken for 
granted may need to be reevaluated, sometimes extensively. Just as past indi-
vidual experience—narrow as it typically is—may become expanded, so expec-
tations about growth, priorities, and many other matters may become modifi ed as 
a result of shocks. 26    

   3.    Mega-risks can occur to infrastructure systems either regarded in isolation from 
the rest of the world. Low rates of pipeline replacement may over time eventually 
yield clusters of trunk line ruptures in a culinary water system. Previous experi-
ence with needed pipeline repairs may be upset such an outbreak of ruptures. In 

25   From Keynes,  1921 , op. cit., p. 335. 
26   In 1962, on p.188 of  The Silent Spring , Boston: Houghton Miffl in Company,  Rachel  Carson 
maintained that “it is simply impossible to predict the effects of lifetime exposure to chemical and 
physical agents that are part of the biological experience of man.” 
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electric power systems, the additions of many portable and laptop computers 
may signifi cantly increase the number of watts needed for a specifi c population 
and outpace what had estimated in long-term planning. Outages and brownouts 
may result from major increases in demand. New health cures may likewise 
change healthcare systems dramatically. Life expectancies before the twentieth 
century—even with the result of very long sequences—may be modifi ed signifi -
cantly as new drugs are devised. Still, with population increases, famines, 
plagues, insecticides, and other phenomena may greatly reduce life expectan-
cies. Catastrophes, of course, can disrupt infrastructure systems for many years.   

   4.    As J. M. Keynes (also  David   Hume, Francis Bacon, Gottfried Leibniz, among 
others) have proclaimed, there have been no cases in which an infi nite number of 
samples have confi rmed empirical induction. Empirical induction is fi rst of all 
not mathematical induction. Reference to previous successes belies the depen-
dence on either long-term  mathematical   convergence of results or a fi nite num-
ber of cases use them to draw conclusions that have turned out to be adequate. 
Frequency theory requires in general that fi nite samples are used to develop con-
clusions. (As already stated, a very large number of conclusions, assumptions, 
and the like are required before one can even defi ne the fi nite samples to be used 
in drawing inferences.)   

   5.    The frequency theory can thus provide enormous assistance in addressing the 
original questions raised in these chapters. It is conceded throughout this chapter 
that many loss distributions are light tailed. However, its serious limitations sug-
gest that it is not to be taken as the entire answer. The version of this theory 
provided by von Mises provides enormous insights into the diffi culties of using 
laws of large numbers for the vast majority of data-mining activities, especially 
those pertaining to shocks to systems (such as the long-term shocks revealed by 
Rachel Carson and many others).     

 The quest for a set of purely random, equally likely, independent samples needed 
for data mining to ensure valid statistical conclusions reminds one of mythical 
attempts to fl y on Pegasus to Mt. Olympus, only to suffer serious downturns in this 
quest. 27  Von Mises’s insights in his view of frequency theory helps to defl ate what 
statistics can do, somewhat excessively, but even in data mining the absence of infi -
nitely many samples and the errors that can arise with data not yet gathered entail 
that the mythical top of Mt. Olympus is unattainable. Both frequency theory and 
data mining, though, greatly enhance our knowledge through the quest itself.         

27   As a result of all the practical activities that those engaged in data mining participate in, they do 
not need to worry about having the fate of Bellerophon, who, after having been a hero who killed 
the Chimera, tried to fl y to Mt. Olympus on Pegasus, was thrown off Pegasus by Zeus, and “wan-
dered alone about the plain of Aleios, eating his heart out, skulking aside from the trodden track of 
humanity.” (From The Iliad, book VI, translated by Richard Lattimore, Chicago: Phoenix Books, 
University of Chicago Press,  1951 ). 
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Chapter 4
Subjectivist (Bayesian) Theory

Abstract This chapter presents the third major view of probability and statistics, 
the subjectivist or Bayesian theory. The prior two chapters emphasized a linear the-
ory proceeding from known to unknown. In contrast, the Bayesians emphasize 
updating beliefs, even beliefs that may not be “known,” but which provide a starting 
point in solving problems using probability and statistics. Like the frequentist the-
ory, the Bayesian theory heavily depends on the use of data, or facts, that permit the 
Bayesians to contend that they have used facts in order to obtain adequate solutions 
to problems. Because both frequency theory and Bayesian theory have perceived 
successes, they vie with each other in present-day popularity as the two and only 
two viable views of probability and statistics. However, as with the frequency the-
ory, the Bayesian method is inadequate for the purposes of this book because it 
assumes a convergence at infinity which will never be experienced.

…something like “convergent thinking” is just as essential to 
scientific advance as is divergent. …most new discoveries and 
theories in the sciences are not merely additions to the existing 
stockpile of scientific knowledge. To assimilate them the 
scientist must usually rearrange the intellectual and 
manipulative equipment he has previously relied upon, 
discarding some elements of his prior belief and practice while 
finding new significance in and new relationships between many 
others….the ultimate effect of this tradition-bound work [puzzle 
solving] has been to change the tradition. (From pp. 226, 227, 
234 in “The Essential Tension: Tradition and Innovation in 
Scientific Research,” pp. 225–239 in Kuhn, Thomas, 1977, The 
Essential Tension: Selected Studies in Scientific Tradition and 
Change, Chicago: University of Chicago Press)

Tetlock interviewed 284 people who made their living 
“commenting or offering advice on political and economic 
trends.” The Results were devastating. The experts performed 
worse than they would have if they had simply assigned equal 
probabilities to each of the [three] alternatives. … Even in the 
region they knew best, experts were not significantly better than 
non-specialists. (From p. 219 in Kahneman, Daniel, 2011, 
Thinking, Fast and Slow, New York: Farrar, Straus and Giroux 
and based on Tetlock, P. E., 2005, Expert political judgment, 
Princeton, N. J.: Princeton University Press)
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4.1  The Bayesian Theory Contrasted to Two Other Major 
Probability Theories

This chapter presents the third major view of probability and statistics, the Bayesian 
theory, occasionally called subjective. The chief sense in which the Bayesian theory 
is “subjective” is that it is nonlinear. The Bayesian theory heavily depends on the 
use of data or facts, which permit the Bayesian to contend that they have used these 
facts in order to obtain adequate solutions to problems. In contrast to the theories in 
the prior chapters, Bayesians emphasize updating beliefs, and so are happy to begin 
with beliefs that may not be “known,” but provide a starting point in solving prob-
lems using probability and statistics.

The Bayesian view, as this chapter will indicate, thrives on successes. The book 
The Theory that Wouldn’t Die by the journalist Sharon McGrayne, for instance, 
provides an enormous number of purported successes. Often these involve secret 
missions that need to solve cases in political conflicts, such as how to locate U-boats 
in war. However, the main thrust in McGrayne’s work appears to cover cases—
whether secret or public—in which searches are greatly facilitated through the use 
of Bayesian statistics in contrast to the more tedious cumulative approaches in fre-
quency theory.1 Because both frequency theory and Bayesian theory have claimed 
successes (also noted in Chap. 6 for work using Fisher and/or Pearson), they vie 
with each other currently in popular terms as the two and only two viable views of 
probability and statistics.

4.2  Overview of the Third Main Theory of Probability

Bayesians do not hold that probability statements reflect relative frequencies. 
Instead, for Bayesians, probability statements express degrees of belief. Randomness 
and probability exist only in the minds of individuals, not in the objective world. 
Probabilities thus express the “degree of belief in the occurrence of an event attrib-
uted by a given person at a given instant and with a given set of information.” P(H|E) 
is regarded as a measure of my degree of belief in H “given that I know that E is 
true.”2

1 See McGrayne, Sharon Bertsch, 2011, the theory that would not die: how Bayes’ rule cracked the 
enigma code, hunted down Russian submarines & emerged triumphant from two centuries of con-
troversy, New Haven: Yale University Press.
2 On David Hume’s version of “belief,” see Bennett, Deborah J., 1998, Randomness, Cambridge, 
Massachusetts: Harvard University Press, p. 154; for Bayesian accounts of the quotation, see De 
Finetti, Bruno, 1970, Theory of Probability: A critical introductory treatment, Chichester West 
Sussex: John Wiley & Sons, Wiley Classics Library Edition published 1990, pp. 3,4; De Finetti, 
Bruno, 1937, “Foresight: Its Logical Laws, Its subjective Sources,” republished pp. 53–118 in 
Studies in Subjective Probability, edited by Henry E. Kyburg, Jr. and Howard E. Smokler, 
Huntington, New York: Robert E. Krieger Publishing Company, 1980, p. 109; Von Plato, J., 1994, 
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The Bayesian view is that a subject’s prior judgment, even though fallible and 
not even necessarily “known,” can enhance the extant data so that issues can be 
addressed more expeditiously than with frequency theory procedures. This view 
represents a nonlinear view of the development of statistical findings. To repeat, the 
Bayesian recognizes that the subject’s prior view is fallible and extremely corrigi-
ble, but this is not an overwhelming reason not to use the probabilistic value that it 
contains. For the Bayesian, knowledge progresses when a corrigible prior judgment 
is combined with an incomplete database. Adequate solutions to probability and 
statistical problems can arise through this nonlinear Bayesian approach. As with the 
data-mining activities that von Mises requires in order to set up collectives, the 
Bayesian theory requires a give-and-take movement between hypotheses and 
empirical samples.

Against this background, this chapter first provides a discussion of the derivation 
of Bayes theorem from the theorem of total probability. The latter is expressed in 
terms of a finite partition of a universal set. Next are some simplifications from Nate 
Silver on how to calculate Bayesian estimates, along with reference to some fairly 
simple illustration that Silver employs.

Since the heavy emphasis of these essays is on developing mega-risk distribu-
tions, there is a discussion of how one might use Bayesian procedures to estimate 
the occurrence of a catastrophic peril, in this case major earthquake occurrences. 
This discussion leads into an account of the challenge of how different people can 
have different degrees of belief and how this is alleged to be overcome through a 
theory of large samples. Finally, there is a summary of pros and cons of Bayesian 
theory.

It has clearly had many valuable applications. For instance, one might have a 
prior distribution for the roulette wheel: if one picks black, one has a 36/73 chance 
of winning. If there is some physical anomaly in the roulette wheel, this should 
surface in the many applications of this table relative to the prior expectations. 
Many games of chance, for instance, can be viewed in similar terms. Sharon 
McGrayne’s work provides an abundance of illustrations.3

Yet the categorical version of Bayesian theory encounters the same problems as 
does the frequency theory. Only in later chapters do we discern how the Bayesian 
theory, as well as the other two major theories, can assist in addressing the initial 
question with which this inquiry begins.

Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective, 
Cambridge: Cambridge University Press, p. 24; Lee, P. M., 2004, Bayesian Statistics: An 
Introduction, New York: Oxford University Press Inc., Third Edition, p. 3; see also Press, S. J., 
1989, Bayesian Statistics, New York: John Wiley & Sons, pp. 3, 4.

One of the major issues with this characterizations of probability and statistics is that it confines 
itself to an “individual’s” set of beliefs, and as this chapter continues, one sees that the alleged 
convergence between an individual’s set of beliefs, taken initially in isolation, and that of others 
requires postulating a long run that in Keynes’s words never arrives.
3 The illustration of the roulette wheel comes from Mlodinow, Leonard, The Drunkard’s Walk: 
How Randomness Rules Our Lives, New York: Pantheon Books, an e-book. For many more illus-
trations, see again McGrayne, Sharon Bertsch, 2011, op. cit.

4.2 Overview of the Third Main Theory of Probability
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4.3  The Derivation

The finite perspective of Bayesian modeling begins with the definition of a “parti-
tion” below4:

A partition of U is a division into mutually exclusive sets, Ai, such that the follow-
ing three conditions obtain.

For all integers i, j > 0:

 1. P A A( ) .i jÇ =f

 2. U j
n

jA U= ( ) =1

 3. This definition requires that P(A|Bi) > 0.

Hence, the partitions used in Bayes Theorem cannot contain events of probability 0. 
This can happen for a continuous distribution if some B is a point. However, there 
are probability measures for which points have probability greater than zero.5

The theorem of total probability thus asserts the following:
Assume that {Bj} constitutes a partition of U, then

 
P A A B P B P A B P B P A B P Bn n( ) = ( ) ( ) + ( ) ( ) + + ( ) ( )| | |1 1 2 2 �

 (4.1)

According to Meyer,6 in order to calculate P (A), one needs to know Bj for each j.
The definition of conditional probability is as follows:
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From this definition of conditional probability and the theorem of total probability, 
one derives Bayes’ theorem:
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∑

 
(4.2)

In this formulation, the prior probability is P(Bi) and the likelihood function is 
[P(A|Bi)]. The posterior probability is P(Bi |A). This definition only has value if 
[P(A|Bi)] > 0. Hence, this definition requires that one does not “partition” possible 

4 The illustration of the roulette wheel comes from Mlodinow, Leonard, The Drunkard’s Walk: 
How Randomness Rules Our Lives, New York: Pantheon Books, an e-book. For many more illus-
trations, see again McGrayne, Sharon Bertsch, 2011, op. cit.
5 Dr. Robert Riehemann, Letter of December 22, 2014.
6 This treatment is from Meyer (1970).
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events in such a way (as through using “points”) that yield probabilities that are 
virtually zero.

If P(A) is treated as a constant, then one has the following very useful 
formulation:

 
P B A P A B P Bi i i| | *( ) ∝ ( ) ( )  (4.3)

Furthermore, the theorem does not permit an indefinitely large partition of the uni-
versal set. Thus, the partition does not envisage application to a large number of new 
prospective trials or experiments. If the experiment to be predicted is to be incorpo-
rated into Bayes’ theorem, then the theorem of total probability contains an event or 
events (here, Bi, and by implication, A) whose probabilities are unknown.

When the prospective events to be updated, say m, exceed the original “n” sam-
ples (or n−1, if the nth sample is to be estimated), then each future update must have 
an additional event included. This potential infinite progression illustrates how the 
original formulation of Bayes’ theorem demands a finite point of view.7

4.4  Simplified Version and Illustrations by Nate Silver

The esteemed bettor Nate Silver has developed the following simplifications:

 

P B x

P A B y

P A B z

( ) =
( ) =

−( ) =
|

| not
 

from which he derives

 
P B A xy xy z x| /( ) = + −( )( )1

 (4.4)

If one ignores subscripts, Eq. (4.4) follows from Eq. (4.2) and yields Eq. (4.3). 
Using this simplification, Silver discusses the following sorts of cases:

• The estimation that a women is cheating based on finding her underwear
• The estimation that women at age 40 should have mammograms

7 There are of course continuous models that might be taken to account for denumerably many or 
even non-denumerably many samples. For instance, an integrand formulation of Bayes’ estimator 
is presented on p. 349, Hoel, Paul G. 1971, Introduction to Mathematical Statistics, New York: 
John Wiley & Sons, Inc. On reflection of the notion that temperatures, for instance, are continuous, 
one may still be stuck with (a) point estimates or (b) line segments for temperature. In general, the 
number of samples from a line or area or volume will be finite, even though under some circum-
stances it may even be “necessary” to consider irrational numbers in estimating their lengths, 
areas, or volumes, respectively.

4.4 Simplified Version and Illustrations by Nate Silver
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• The estimate of the probability of terror attack given a first plane hitting the 
World Trade Center

• The estimate of the probability of terror attack given a second plane hitting the 
World Trade Center

For Silver, the latter two examples turn out to have probabilities of 38 % and 
99.99 %, respectively. The second example serves to illustrate why mammograms 
for women under 50 have been controversial.8 These examples show some of the 
wide range of examples for which Bayesian estimates can be made.

4.5  Illustration of Estimating the Distribution of Occurrence 
of a Rare Catastrophe Peril

A detailed example of the use of a Bayesian approach comes from D. Perkins,9 who 
claims that one can estimate probabilities of occurrence of some infrequent peril 
(here, major earthquake occurrences) as follows:

Use, for example, a Poisson distribution as one’s likelihood function. Like the 
binomial model, a Poisson distribution has no “statistical memory” and so is unlike, 
for instance, a disease that may depend on the eventual accumulation of harmful 
doses.

The Poisson probability for number of events in time, t, is expressed as 
follows10:

 
P E J t

J
J

t

( ) ( )
!

= =
-

l
le

 
(4.5)

in which

E = a variable for the number of events in time interval t
λ = the mean rate of occurrence for each time unit
J = 0,1,2,…

Both the mean and the variance equal λ.

8 These illustrations are found in Nate Silver, 2012, The Signal and the Noise, New York: the 
Penguin Press, pp. 242ff. Textbooks on Bayesian statistics can provide a large number of other 
valuable illustrations. The mammogram examples appear as well on pp. 259–261 in McGrayne, 
Sharon, 2011, op. cit.
9 This illustration comes from David Perkins, written comm.., July 2010.
10 See, for instance, Ang, Alfredo H-S. and Wilson H. Tang, 1975, Probability Concepts in 
Engineering Planning and Design, Volume I, Basic Principles, New York: John Wiley & Sons, 
pp. 114ff. and Law, A. M. and Kelton, W. D., 1991, Simulation Modeling and Analysis, New York: 
McGraw-Hill, pp. 349ff.
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For the example in question, the Poisson model is used for the likelihood func-
tion, P(A|Bi), expressed as follows for three events in 1200 years:

 

Y x x

x

= ( )∗ ∗( ) ∗ − ∗( )2 1200 1200 1200
3

/ exp ,

in which is the rate off occurrence.  
(4.6)

For the geological prior P (Bi), this rate is expressed as follows:

 

Y
x

x

=
-

-æ
è
ç

ö
ø
÷( . / )

log( ) log( . )

.8 3 10

2

16

2

1

2

0 004

0 4

ps
e

 
(4.7)

4.6 is the likelihood for rate x given three events in 1200 years. 1200x is the expected 
number of events, which is the parameter for the Poisson distribution. 4.7 is the 
prior, which is a lognormal distribution whose location parameter is 0.004, which is 
the equivalent of 4 in 1000.

The parenthetical values leading each equation have no function other than to 
give the same peak height in the graphic calculator program I use. So, the 2 and the 
8.3 are just adjustable parameters.11

Table 4.1 assists in clarifying how one simulates the development of the posterior 
from these two equations. In the first column, one begins with x = 0.0005, then pro-
ceeds to x = 0.0005 times 2 = 0.001, and so on. The column ends at 0.0135 since 
beyond this point, only very small numbers result in other columns.

The second column uses Eq. (4.7) for the geological prior. The estimates are 
“raw” in the sense that their total is not equal to one. The third column uses Eq. (4.6) 
for the likelihood function. Again, these are “raw” estimates based directly on the 
equation above.

Next one normalizes these results for the Y’s as calculated so that they sum to 
1.0. Columns four and five cover normalized estimates of the prior and likelihood 
function, respectively.

Column six multiplies columns four and five together as a version of Eq. (4.2) 
to obtain one set of “raw” estimates of the “posterior” function. Column seven 
produces a normalized version of this estimate of the posterior function. Note that 
there are different ways to weight the likelihood function and the prior function. 
For instance, Gelman and others discuss using variances to “weight” the prior and 
likelihood functions. The simple illustration here weights these two functions 
equally.12

11 David Perkins email of May 12, 2014.
12 Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin, 2003, Bayesian Data 
Analysis, Boca Raton: Chapman & Hall/CRC., p. 47.

4.5 Illustration of Estimating the Distribution of Occurrence of a Rare…
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Figure 4.1 summarizes the procedure. One notices that the posterior function 
begins with the highest values, and the likelihood function has higher values as x 
increases. The posterior function is the probability density distribution of the multi-
plication of the probability density function (pdf, with values summing to one) for 
the prior function and the pdf for the likelihood function. Note as stated already that 
the prior pdf and likelihood pdf are weighted equally in the figure.

Table 4.1 Calculations, for example, of Bayesian analysis (very small values omitted can have 
cumulative effects)

X
Raw prior 
total

Raw 
likelihood 
total

Prior 
normalized

Likelihood 
normalized

Raw 
posterior

Normalized 
posterior

0.0005 0.224312 0.000198 0.226752 0.011852 0.002688 0.324763
0.001 0.049847 0.000867 0.050389 0.052038 0.002622 0.316860
0.0015 0.016635 0.001607 0.016816 0.096386 0.001621 0.195861
0.002 0.006231 0.00209 0.006299 0.125388 0.00079 0.095436
0.0025 0.002292 0.00224 0.002317 0.134403 0.000311 0.037627
0.003 0.000716 0.002125 0.000723 0.127461 0.000092 0.011141
0.0035 0.000132 0.001852 0.000134 0.111081 0.000015 0.001793
0.004 Very small 0.001517 Very small 0.090999 Very small Very small
0.0045 ” 0.001185 Very small 0.071108 ” ”
0.005 ” 0.000892 ” 0.053532 ” ”
0.0055 ” 0.000652 ” 0.039104 ” ”
0.006 ” 0.000464 ” 0.027862 ” ”
0.0065 ” 0.000324 ” 0.019441 ” ”
0.007 ” 0.000222 ” 0.013326 ” ”
0.0075 ” 0.00015 ” 0.008995 ” ”
0.008 ” Very small ” 0.005991 ” ”
0.0085 ” ” ” 0.003944 ” ”
0.009 ” ” ” 0.002569 ” ”
0.0095 ” ” ” 0.001658 ” ”
0.01 ” ” ” 0.001062 ” ”
0.0105 ” ” ” 0.000674 ” ”
0.011 ” ” ” 0.000426 ” ”
0.0115 ” ” ” 0.000267 ” ”
0.012 ” ” ” 0.000166 ” ”
0.0125 ” ” ” 0.000103 ” ”
0.013 ” ” ” Very small ” ”
0.0135 ” ” ” ” ” ”
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4.6  Slightly Divergent Prior Estimates: Multiple Models

The first quotation in this chapter stresses views by T. S. Kuhn on how the educa-
tional process begins with an emphasis on “convergence,” with “divergence” later in 
such sciences as physics. For instance, one learns that Kepler’s law and, with revised 
data by astronomers, Newton’s inertial rectilinear motion plus gravitation law pro-
vide an excellent first approximation to show that planets have elliptical orbits about 
the sun. This is elaborated in Chap. 9.13

The second quotation by P. Tetlock stresses how, in the difference between 
hedgehogs (one big view) and foxes (many small views), so-called political experts 
do not fare well. (Note that hedgehogs appear to be drawn from neocons and like- 
minded people.) Hedgehogs on this view tend to be inflexible yet divergent from 
foxes.

13 The initial account can be found in Feynman, Leighton, Sands, 1963–2010, pp. 7–2, 7–3 to be 
expanded in Chap. 9 on this book.
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Fig. 4.1 Estimate probabilities of occurrence of some infrequent peril (here earthquakes) (Source: 
David Perkins)
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Every day, there are divergent opinions, viewpoints, calibrations, and the like 
that can yield different prior distributions. For instance, one person analyzing the 
2012 Presidential Election may bet that Obama will obtain 290 Electoral College 
votes, another may bet that he will obtain 236 electoral collect votes, and a third 
may estimate that he will obtain 330 Electoral College votes (the number that Nate 
Silver bet on and that turned out to be accurate).

For another example, one person may maintain that mature faults have fixed 
boundaries or termini and have a return interval that is fixed, with statistical uncer-
tainty. Another person may maintain that those boundaries for mature faults may be 
violated when an earthquake ruptures first along the primary fault and then diverges 
along a secondary fault. There are a great many such divergent opinions in earth-
quake estimation procedures.14

For the sake of illustration, the next figure outlines how slightly divergent esti-
mates for the prior distribution can yield multiple posterior distributions. In particu-
lar, the original prior Eq. (4.7) is:

 
Y x x= ( )∗( )∗ − ∗ ( ) ( )( )( )( )8 3 1000000 1 0 5 0 004 0 40

2
. / / exp . ln ln . / . 

 

One slightly divergent equation is:

 Y x x= ( )∗( )∗ − ∗ ( ) ( )( )( )( )8 3 1000000 1 0 5 0 003 0 40
2

. / / exp . ln ln . / .  (4.8)

A second slightly divergent equation is:

 Y x x= ( )∗( )∗ − ∗ ( ) ( )( )( )( )8 3 1000000 1 0 5 0 005 0 40
2

. / / exp . ln ln . / .  (4.9)

As expected, Fig. 4.2 shows that the resulting posterior distribution is different for 
the three slightly divergent prior models. This obvious conclusion shows how 
diverse individuals with slightly different prior models can arrive at divergent out-
comes or posterior distributions.

Of special note is the more often contested contention that similar results obtain 
if the likelihood function is different for different individuals. This indeed has often 
been the case, as “data” are themselves often contested, or found to be irrelevant, for 
evaluations at hand.

14 For a discussion of divergences for California seismicity, see Lee, Yajie, Craig E. Taylor, 
Zhenghui Hu, William P. Graf, Charles K. Huyck, 2014, “Uncertainty estimates for earthquake 
hazard analysis through Robust Simulation,” National Earthquake Research Conference, hosted in 
Anchorage, AK, by the Earthquake Research Engineering Institute.
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4.7  Convergence in the Long Run

For the most part, the divergences that one finds from smaller samples is thought to 
vanish once larger samples are found. The likelihood function becomes dominant. 
That is, the frequentist position and the Bayesian position converge (see Fig. 1.1 in 
Chap. 1 for this gradual convergence). According to Lee,

It is often sensible to analyze scientific data on the assumption that the likelihood dominates 
the prior. …even if you and I both have strong prior beliefs about the value of some 
unknown quantity, we might not agree, and it seems sensible to use a neutral reference prior 
which is dominated by the likelihood and could be said to represent the views of someone 
who (unlike ourselves) had no strong beliefs a priori. The difficulties of public discourse in 
a world where different individual have different prior beliefs constitute one reason why a 
few people have argued that, in the absence of agreed prior information, we should simply 
quote the likelihood function…in many scientific contexts we would not bother to carry out 
an experiment unless we thought it was going to increase our knowledge significantly, and 
that in the case then presumably the likelihood will dominate the prior.15

15 See Lee, P. M., 2004, Bayesian Statistics: An Introduction, New York: Oxford University Press 
Inc., Third Edition, p. 43.
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Gelman and others concur that except in some rare cases, there is convergence in 
the long run.16

If sound, these views overcome, for instance, the extreme views, as expressed by 
de Finetti, that probability is “the opinion of an individual and cannot have meaning 
except in relation to him.”17 If the likelihood function dominates, then the probabil-
ity ceases to be dominated by the opinion of any individual.

4.8  Summary of Subjectivist (Bayesian) Theory

4.8.1  Upsides

As with the frequency theory, the Bayesian theory has had many applications and 
has proven to be attractive to many practitioners. Many tools have developed to 
simplify these applications. In principle, all the tools developed for the frequency 
approach should be adaptable to the Bayesian approach, especially as regards the 
application of the likelihood function.

Of special interest especially to later chapters is how individual people can con-
tribute to statistical estimates over and above extant data. The implication is that 
even individual people’s views, treated here as “priors,” can be cognitively valuable 
even though they may not be entirely true. At first blush, the Bayesians do not 
demand a wholesale elimination of a priori assumptions relative to specific inqui-
ries. Even though the accumulation of data contribute to updates provided within 
Bayesian theory, the theory does not start from firm foundations and so is nonlinear. 
This nonlinear view of statistics and probability continues throughout these essays 
and benefits from the struggles of Bayesians to promote their views.

There is nonlinearity implicit in von Mises’s search for collectives, presumably 
by data-mining activities along with tests. Many conclusions are discovered during 
this data-mining and curation activity. However, this nonlinearity is a consequence 
of his view rather than something that he discusses at length.

There are also indications that Bayesian models may expedite reaching solutions. 
Von Mises complains that Bayesian evaluations apply only to small samples. This 
may turn out to be a great advantage rather than a disadvantage. Sharon McGrayne, 
for instance, finds arguments that in some cases very small samples are “enough” 
using Bayesian modeling, whereas frequency modeling requires a great many more. 
In addition, Bayesian modeling is regarded as being valuable in the many instances 
in which there are no data yet to make a decision, as often occurs in business.18

16 Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin, 2003, Bayesian Data 
Analysis, Boca Raton: Chapman & Hall/CRC., pp. 107–112.
17 De Finetti, Bruno, 1937, “Foresight: Its Logical Laws, Its subjective Sources,” republished 
pp. 53–118 in Studies in Subjective Probability, edited by Henry E. Kyburg, Jr. and Howard 
E. Smokler, Huntington, New York: Robert E. Krieger Publishing Company, 1980, p. 109.
18 Only a small sample of pertinent passages from Sharon McGrayne, 2011, op. cit. include pp. 65, 
85, 92, 94, 141.
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4.8.2  Downsides

As with the frequency theory of probability and statistics, the resort to a presumed 
convergence in the long run implies that one has indeed had confirmations of fre-
quencies in the very long run. Again, as J. M. Keynes has intimated following David 
Hume, the theory proposed actually has a null set of confirmations.19 No one ever 
experiences all the trials of any infinite sequence. Thus, contending that there are 
tests for randomness or that past experience confirms that “random sequences” 
always yield a unique stable probability p has no evidence whatsoever.

Stresses on convergence among “rational” individuals as well as among ultimate 
outcomes reached by the application of frequency theory stresses how especially 
Chaps. 3 and 4 are dominated by the view that facts are facts and remain so forever. 
Even with “curated” facts, though, some may be contested. And other “facts” may 
be deemed to be irrelevant or weighted too heavily by specific investigative teams.

Even though Bayesian theory has nonlinear elements and brings in an active role 
by individuals, the claims that people will eventually agree in the long run presup-
pose that individuals will have experienced a long run. In science, engineering, and 
other heavily quantitative subject matters, agreement on all details, including all 
approaches, is not necessarily the rule—even in the long run.

Bayesian methods are treated as inverse modeling, an enormously valuable activ-
ity. However, as with other comments on convergence, inverse modeling likewise is 
discussed later in, for instance, Chap. 6. While most desirable for many problems, 
inverse modeling only rarely yields single or convergent solutions.
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Chapter 5
The “Wobble” Breaks Through Previous 
Theories (Mid-1970s)

Abstract The three preceding theories can only manage stable distributions; this 
chapter looks into the issue of unstable distributions. For stable distributions, risk 
estimates and their confidence intervals can be assumed to merge at infinity. 
However, for “unstable” distributions, those with infinite variances, risk estimates 
may “wobble.” This chapter will therefore address the key question of bridging the 
gap between the infinite population assumed by probability and statistics with the 
finite samples of experience. This chapter contains a discussion of catastrophe (“sta-
bility”) measures and their relationship to power laws. Power laws are a simplified 
means to show how estimating risk to systems can be cognitively dangerous if only 
because the systems themselves as studied can be very “fragile,” or unpredictable. 
So, while it may be obvious that in science various “shocks” may be very challeng-
ing to predict, it may also be true that nonlinear behavior in systems can make evalu-
ation of risk to these systems cognitively challenging, if not dangerous.

Consistent statistics …all tend more and more nearly to give the 
correct values, as the sample is more and more increased; at 
any rate, if they tend to any fixed value it is not to an incorrect 
one. (From Fisher, Ronald Aylbumer, 1944, Statistical methods 
for research workers, London: Oliver and Boyd Ltd., ninth 
edition, p. 11)

Mathematicians, however, are well aware that it is childish to 
try to show that every continuous function has a derivative. 
Though differentiable equations are the simplest and easiest to 
deal with, they are exceptional. (Quoted from Jean Perrin on 
p. 8 in Mandelbrot, Benoit B., 1983, The Fractal Geometry of 
Nature, New York: W. H. Freeman and Company, originally 
1977. On p. 178 in his 2012 The Fractalist: Memoir of a 
Scientific Maverick, New York: Pantheon Books, Mandelbrot 
proclaims that “What a contrast [between 2012, or even 1986] 
with the period around 1960! Then Levy stability [for extreme 
value distributions] was viewed as a specialized and 
uninteresting concept.”)
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5.1  Introduction: More Challenges to Tradition, Extreme 
Value Diagnostics, Power Laws, and the Wobble

One critical topic not discussed so far pertains to the treatment of extreme value 
distributions, such as nonlinear behavior, system shocks, and collateral events. The 
three theories that have been discussed up to this point can only manage stable dis-
tributions; therefore, a method is needed to deal with unstable distributions. In other 
words—how do we bridge the gap between the infinite population assumed by prob-
ability and statistics with the finite samples of experience? For “stable” distribu-
tions, those with finite variances and risk estimates and their confidence intervals 
can be assumed to merge at infinity. For “unstable” distributions, those with infinite 
variances, risk estimates may “wobble.”

This chapter contains a discussion of catastrophe (“stability”) measures and their 
relationship to power laws. Power laws are a simplified means to show how estimat-
ing risk to systems can be cognitively dangerous if only because the systems them-
selves as studied can be very “fragile” or unpredictable. So, while it may be obvious 
that in science various “shocks” may be very challenging to predict, it may also be 
true that nonlinear behavior in systems can make evaluation of risk to these systems 
cognitively challenging, if not dangerous.

This chapter uses a distinction by von Mises between probability and statistics, 
on the one hand, and the theory of distributions, on the other hand.1 The theory of 
distributions can in some sense be termed a theory of mathematics, with an empha-
sis on parametric modeling and its consequences. The theory of probability and 
statistics instead can be nonparametric or can concern itself chiefly with the rela-
tionship between data samples, scientific information and theories, and parametric 
modeling.2

So far, in all three views of probability and statistics, there has been an implicit 
or explicit dependence on the law(s) of large numbers. These law(s) are not the 
entire story even within these theories. This chapter provides a simplified catastro-
phe index that assists in determining whether or not the law(s) of large numbers 
hold—at least as based on the sample to date. This chapter will show, for instance, 
that von Mises was overly circumspect when he limited his views to a collective that 
consisted chiefly of random and fairly inconsequential data without various types of 
perturbations. Various events can happen together as typically happens in disasters 
in which immediate food supplies may suffer immediately after a large-scale flood 
or a dam may fail during an earthquake and require a very rapid evacuation. These 

1 See p. 99 in Von Mises, Richard, 1957, Probability, Statistics and Truth, New York: Dover 
Publications, Inc.
2 The use of three types of distributions in, for instance, Gumbel, E. J., 1958, Statistics of Extremes, 
Mineola, N. Y.: Dover Publications, Inc. (republished in 2004), illustrates how a smoothing 
approach has arisen for the theory of extremes and may be considered as part of the theory of 
distributions and less a part of the variations of how variable extreme value and other distributions 
may become. This variability is stressed in many of the charts in this chapter.
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types of events or processes are not included in “collectives” as defined by von 
Mises, but one may still find that these events are part of processes for which one 
may qualifiedly say the law(s) of large numbers and central limit theorems still hold. 
The function of the catastrophe index in this chapter is to distinguish between dis-
tributions with finite variance and distributions with infinite variance, the latter 
called “fat tailed.” A finite variance is all that is required for the law(s) of large 
numbers and the central limit to hold. From the standpoint of simulations, the cat 
index(es) provided in this chapter assist—better than the coefficient of skewness—
in estimating how many simulations should be used to achieve conventional statisti-
cal stability.3

However, there can be applications of these laws when some of the data are very 
consequential. At the same time, there is a realm that this index can indicate in 
which the law(s) may not hold—at least according to the data at hand. For example, 
von Mises was aware that it is “of course possible for highly improbable accumula-
tions of calls to happen on the same day.” This comment today is commonplace 
when one considers mega-data and mega-hits on the Internet, phones, or electric 
power needs for immensely popular activities or for such websites that require enor-
mous numbers of users or for special occasions or applications of computers or air 
conditioning.4 A great many phenomena over and above many electrical engineer-
ing applications have extreme or almost extreme distributions: floods, Great 
Depression, Great Recession, earthquake, hurricanes, conflagrations, winter storms, 
pandemics, mega-construction risks, and species extinctions, to mention a few. The 
proposed index can be applied to distribution of wealth, distribution of values of 
properties in a portfolio, and other distributions in which the index is applied to 
positive nonzero values (e.g., distributions of net losses may need some added num-
ber to overcome events in which net losses are negative).

This simplified index has parallels with power laws that are often applied to sys-
tems. An addendum is included to explain why such simple models are used as 
diagnostics. A second addendum provides a discussion from chaos theory as to 
nonlinear systems for which extreme trajectories can be traced.

3 The coefficient of skewness has multiple definitions, but in this case refers to Pearson’s third 
central moment, a measure of the asymmetry of a distribution.
4 In his 2006 book entitled Noise, New York: Viking, and, for instance, in Kosko, Bart, and Sanya 
Mitaim, 2004, “Robust stochastic resonance for simple threshold neurons,” Physical Review E 70, 
031911, Bart Kosko first shows that the law(s) of large numbers and associated central limit theo-
rem encounter problems when faced with many chaotic systems, “impulsive” Cauchy noise, and 
the “bursty” rate of Ethernet traffic. He uses, for instance, what are called alpha-stable distributions 
as samples of extreme value distributions that can provide useful indexes similar to the catastrophe 
indexes discussed in this paper (see many pages in Noise.) One question that these chapters do not 
address is whether or not the “wobble,” “wiggle,” or “burst” in these distributions pose very serious 
problems for estimating more distant fractile estimates as one constructs alpha-stable distributions 
for these extreme circumstances.

5.1 Introduction: More Challenges to Tradition, Extreme Value Diagnostics, Power…



76

5.2  The One-Parameter Pareto Distribution for Assessing 
the Extremity of Distributions

There are several treatments of this distribution that are somewhat or very different 
from that presented here.5The Pareto distribution has long been used in catastrophe 
reinsurance (insuring insurers) as a means to capture and cover the extreme loss 
values possible in catastrophes. Taylor et al. have maintained that the use of the 
Pareto distribution in such pricing yields prices that are far too high at extreme loss 
levels.6 Nonetheless, the simplified Pareto distribution is a one-parameter distribu-
tion with a probability distribution function7

 F x x c( ) = - -1 and  

a density function of

 f x cx xc( ) = ³- -1 1for  

Where “c” is the slope parameter (or “slope”), the mean is c/(c−1) when c>1.
The variance is c/[(c−1)2(c−2)] when c>2.
To simulate a one-parameter Pareto distribution, use the following:

 1. Pick Ui in U(0,1).
 2. Derive Xi = (1/Ui)1/c.

where U is a uniform distribution on the unit interval (0, 1).
In the above simulation process, the random numbers should be considered to 

comprise ultimately as being a “rectangular distribution,” one comprising a straight 
line when ordered from low to high. Alternatively, one can define the following 
implicitly rectangular distribution for a sequence of N trials:

 1 2 1 2 1 1 2 1/ ; / / ; ; / ( ) /N N N N N N+ ¼ + -  

Chart 5.1 below shows normalized Pareto variants resulting from the extreme values 
of c of 0.5, 1.0, 2.0, and 5.0 of 1000 simulations in the sense that the maximum loss 
is 1.0 (Y-axis). The slope 2.0 is used as the boundary for “heavy-tailed” 

5 See Embrechts, Paul, Claudia Klueppelberg, and Thomas Mikosch, 2003, Modelling Extremal 
Events, Berlin: Springer, fourth printing, p. 162; Gumbel, E. J., 1958, Statistics of Extremes, 
Mineola, N. Y.: Dover Publications, Inc. (republished in 2004), p. 45; and Law, A. M. and Kelton, 
W. D., 1991, Simulation Modeling and Analysis, New York: McGraw-Hill, p. 413.
6 Taylor, C., J. Lemaire and C. Tillman (1994), “A New Earthquake Insurance and Reinsurance 
Index: Uncertainties and Future Developments,” Uncertainty Modeling and Analysis: Theory and 
Applications, B. M. Ayyub and M. M. Gupta, (eds.), 1997. Elsevier Science BV., pp. 497–514.
7 The treatment here comes from Hastings, N. A. J. And J. B. Peacock, 1975, Statistical 
Distributions, London: Butterworths, pp. 102ff.
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distributions.8 Note that catastrophe reinsurance pricing has in the past often postu-
lated a “c” value well below 1.0. For this case, the arithmetic mean value is infinite 
or undefined. When the arithmetic mean value is undefined, there are major issues 
the strong law of large numbers does not hold nor does its correlate the central limit 
theorem.9 Note that a power law is a straight line in log-log plot.11 This log-log plot 
is shown in Chart 5.2.

Charts 5.1 and 5.2 apply to how “c” is derived by the above methods especially 
for low-probability and high-consequence risks. These include earthquake, hurri-
cane, flood, and many other risks. However, there are risks in which the conse-
quences can be very high but the probabilities also are more than “low.” These 
medium-probability high-consequence events cover, for instance, new ventures, 
new lines of business, mega-construction projects, and very frequent occurrences of 
a natural disaster in a given locale. Charts 5.3 and 5.4 provide some insight into how 

8 The Pareto distribution is only one example of a fat-tailed distribution (when c<2). Source: Dr. 
Robert Riehemann letter December 22, 2014.
9 According to p. 219, Mandelbrot, 2012, op. cit., “The 1900 [Bachelier’s Gaussian] theory assumed 
that price jumps can be neglected—the mathematical concept being that ‘prices vary continu-
ously’…My 1962 counter theory allowed for discontinuities…” In effect, Mandelbrot was notic-
ing with the more primitive computer outputs at the time that financial series may not comply with 
the strong law of large numbers.
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well these “heavy-tailed” but “medium consequence” phenomena may be evaluated 
in terms of the index provided in this chapter.

As in Chart 5.1, both Charts 5.3 and 5.4 are normalized Pareto variants from 
robust simulations.

In Chart 5.3, one of the curves represents a more typical low-probability high- 
consequence model in which the extreme tail dominates the overall result. Its slope 
is 1.5. In contrast, the second “curve” represents a risk in which the probability of 
total loss becomes very high as this probability approaches 20 % (or 80 % chance 
of non-exceedance). The normalized curves look very different, but oddly enough 
the slope of the second is slightly above 1.5.

Chart 5.4 shows normalized accounts of such higher-probability high- 
consequence “curves” as the probability of a high-consequence event increases. As 
this occurs, then the slope is reduced. If the high consequence consumes about 10 
% of the loss distribution, then the slope calculated is about 1.3, as in Chart 5.4; as 
the high consequence consumes about 20 % of the loss distribution, then the slope 
calculated is slightly above 1.5; as the high consequence consumes about 30 % of 
the loss distribution, then the slope calculated is about 1.8. In general, one will find 
different slopes or cat indexes depending as well on the probability of occurrence. 
High-probability high-consequence events, activities, or processes represent situa-
tions in which these high consequences (sometimes ruinous) become almost or 
actually expected. The slope used here as a cat index does not cover very well, for 
instance, cases in which the high-consequence events, activities, or processes are 
almost certain.
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5.3  A Simplified Account of Qualitative and Quantitative 
Approaches to Systems Evaluations

Very qualitative accounts of system reliability are common. One example is the field 
of ecology where vast numbers of studies have been undertaken both before and 
after Rachel Carson’s Silent Spring.10 Carson discusses many instances of how 
insecticides have damaged habitats. One of many such current issues pertains to 
how DDT has damaged the habitat off the Palos Verdes coast, in the intensely stud-
ied Palos Verdes shelf.

One account of the origins of damages points out many negative consequences. 
For instance, five decades of DDT and PCBs have been discharged through wastewa-
ter pipes. PCB was discharge until 1971. One view of DDT is that it does not break-
down and is easily transported from sediment into the water columns. Brown 
pelicans, peregrine falcons, and bald eagles had their reproductive cycles disrupted 
as when their egg shells became too thin. Bottom feeding fish ceased to be edible.11

Another account stresses how clean-up efforts and consequences of this DDT 
have not been readily predictable. Ninety percent of the DDT off the Palos Verdes 
Peninsula had vanished in a surprisingly short 5-year period after many years of 
slow, gradual decline. One expert noted: “It doesn’t make sense to me that this 
degree of a change would have occurred within the last 5 years. It’s very difficult to 
assess where it went.”12

These more qualitative efforts depend heavily on instrumented values in order to 
develop projections, and in this case projections have not proved to be as severe as 
expected. In addition, there are competing organizational and legal interests 
involved, so that it becomes even more incumbent on those making estimates and 
updating them to be as impartial as possible.

Infrastructure and other systems are continually being studied. In addition to 
more qualitative studies buttressed by much data, there are three approaches to sys-
tems, and each of these approaches can be carried out in varying detail relative to 
various hazards that may impact the system in question:

 1. Boolean or connectivity approaches: these treat system nodes and components as 
being either fully functional or fully disabled. This approach greatly simplifies 
how systems can be evaluated. To achieve this approach probabilistically, one 
must determine the probability level at which nodes and components are regarded 
as failing, and one must have fragility models that distinguish only between suc-
cess and failures of nodes.

10 Carson, Rachel, 1962, Silent Spring, Boston: Houghton Mifflin Company. The influence of this 
work and others on the view of science and its applications is discussed in Chap. 9.
11 “DDT/PCBs Off the Shores of Palos Verdes,” in palos verdes.com/eco/political/ddt, Accessed 
June 24, 2013. Accounts such as these are traditionally disputed because they are part of court 
disputes and potential settlements.
12 Cone, Marla and Environmental Health, 2013, “The Mystery of the Vanishing DDT in the Ocean 
Near Los Angeles,” Scientific American, March 13, accessed June 24, 2013.
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 2. Capacitated approaches: these treat system nodes and components as having 
various levels of capacity. The entire system can be evaluated in terms of total 
demand desired and the capacity available to achieve this desired demand. For 
instance, one may treat a roadway segment as needing to carry on peak situations 
10,000 vehicles. The capacity evaluation would then determine whether or not 
under varying circumstances these 10,000 vehicles could run on the roadway 
segment in question. Capacitated approaches permit the evaluation of nodes and 
components in terms of various levels of capacity or functionality.

 3. Flow approaches: these treat the system as having various physical properties con-
necting nodes and links, along with various demands. For instance, water systems 
may require adequate pressures along with connectivity so that demands may be 
met. These evaluations can be carried out at extremely detailed levels of analysis.

Discussed next, power laws turn out to be one way in order to provide a very 
broad quantitative view of system reliability.

5.4  A Simplified Account of the Power Law in Relation 
to the One-Parameter Pareto Distribution

The account here follows Barabasi,13 who is interested in applying the power law to 
systems. In particular, systems comprised primarily of a hub and spoke—in which 
the hub has many connections and the spokes each have few—can follow an extreme 
distribution. These systems have many nodes whose damage can yield only local 
damage to the overall system. Yet, damage to the hub (or a very few nodes) can have 
severe repercussions on the system. This discussion also shows the parallels between 
power laws and the one-parameter Pareto distribution.

Modifying Barabasi slightly, the power law has the form:

 Y bX= -alpha
 

in which

Y = the fractional result (e.g., the fraction of nodes with X connections to other 
nodes)

b = a scalar
alpha = the slope

For Barabasi, X is an integer. Here, X > 0. Also for Barabasi, alpha ranges from 
2 to 3. These values, it turns out, are for what he calls a “scale-free” network. A 
scale-free network is one governed by power laws such as the one above. In effect, 
the ranges from 2 to 3 result in very extreme values. The relation between the Pareto 
distribution slope of “c” in the previous subsection and the “alpha” here is:

 alpha =1/ .c  

13 Barabasi, Ibid., pp. 74, 85.

5.4 A Simplified Account of the Power Law in Relation to the One-Parameter Pareto…
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That is, for ranges of alpha from 2 to 3, “c” in the Pareto distribution ranges from 
0.333 to 0.5, extraordinarily low values resulting in very extreme distributions. 
Needless to say, one can have less extreme values of “alpha” in the above and still 
have the equivalent of a non-Gaussian distribution (with a Pareto slope of 2 or less).

As with the Pareto distribution, one may use a ln-ln plot for the power law. For 
Chart 5.2, the values of alpha would be 3, 2.5, 2, 1, 0.5, and 0.2 from lowest to high-
est on the right side.

Note that Barabasi claims that power laws apply to “phase transitions,” such as 
when something turns from a liquid to a solid or something becomes magnetized 
(with atoms now spinning in the same direction).

5.5  Challenges of the One-Parameter Pareto Distribution 
and Power Laws to Traditional Theories

This approach departs to some extent from the approach that is taken in, for instance, 
the important work of E. J. Gumbel, who is largely concerned with a distributional 
approach rather than what von Mises calls a statistical approach. For the approach 
being used here, the largest value of a sample would be too eccentric to employ, 
whereas the use of the 99th centile estimate can provide “mass” to the estimate in 
the following sense: the “shape” or “slope(s)” of the 99th centile mass are not pre-
determined. Thus, the “largest” value can be below what this 99th centile test would 
estimate, or it could be well above this 99th centile estimate would estimate. Shapes 
of distributions are not presupposed on the account being presented here. In addi-
tion, this approach is clearly empirical in the sense that with further samples the 
results may change. What seems to be an unstable distribution may eventually be 
seen to be a stable one and vice versa. However, the work of E. J. Gumbel on the 
Pareto distribution may in some or many cases correspond to the estimation proce-
dure used here.14

The following rules apply to the extent that this test applies:

 1. If the Pareto slope is 2 or less, then the statistical variance (i.e., the standard 
deviation) is infinite.

 2. If the Pareto slope is 1 or less, then the statistical mean is infinite.
 3. If the Pareto slope is 2 or less, and especially if the Pareto slope is 1 or less, an 

estimation may be right 99 % of the time and very wrong 1 % of the time.

14 Gumbel, E. J., 1958, Statistics of Extremes, Mineola, N. Y.: Dover Publications, Inc. (republished 
in 2004). Note that Gumbel stresses finding the largest value rather than using a “mass” estimate 
such as the 99th centile estimate. Ultimately it appears that there may be convergence between 
Gumbel’s approach and that used here with respect to mega-simulations. The author also agrees 
that for extreme value distributions, the mode is extremely important and that one cannot resort 
merely to normal or lognormal distributions (see p. 345 in Gumbel).
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One can translate these into power laws as defined above:

 1a. If the power law is 0.5 or above, then the statistical variance is infinite.
 2a. If the power law is 1.0 or above, then the statistical mean is infinite.

These findings undermine the traditional (Gaussian) theories of statistics that 
rely heavily on the strong law of large numbers for convergence of values should the 
number of samples proceed to infinity. That is, if the Pareto slope is 2 or less, then 
values of “fractiles” (e.g., 100-year losses) are ill-defined—no matter how many 
samples are used. If the Pareto slope is 1 or less, not even the mean values are 
well-defined.

Thus, the presence of extreme values undermines the assumption that—even if 
the number of samples were virtually infinite—for all distributions there must exist 
unique statistical or probabilistic estimates. Taleb regards various Black Swan 
events as being “incomputable.” In this essay, specific extreme value distributions 
will exhibit a “wobble,” the horizon of a permanent lack of uniqueness for some 
value or set of values.15

Chart 5.5 illustrates how the wobble occurs for Pareto slope values of 1.5 and 
especially 0.5 but not for the Pareto slope value of 2.5. In these cases, 1000 uniform 
random variates are used to derive these outcomes, and the final mean value is 
forced to be 1/1000 or 0.001. In actuality, a “true” Pareto with a slope of 0.5 has no 
“final” value. Instead, it continues to “wobble” indefinitely.

Chart 5.6 illustrates how the wobble occurs for estimates of the standard devia-
tion relative to the “final” mean values. Again, for the Pareto slope value of 0.5, not 
only is the “final” mean illusory but so is its alleged standard deviation. For the 
Pareto slope value of 1.5, the standard deviation “wobbles.” Eventually, for a Pareto 
slope value of 2.5 (the same as the slope value for the exponential distribution), the 
standard deviation stabilizes.

15 From p. 138, Taleb, Nassim Nicholas, 2012, Antifragile: Things that Gain from Disorder, 
New York: Random House. If as in Chap. 6 deviations are used instead of standard deviations in 
order to define extreme distributions and if this means that average deviations are used, then one 
can derive from these a mean value of the distribution. Thus, if the catastrophe index here is 1 or 
less, deviations cannot be used to redefine the distribution. Nolan’s work, for instance, stops in the 
development of extreme distributions when the catastrophe index is 1 or below: see Nolan, John P., 
2009, Stable Distributions: Models for Heavy Tailed Data, accessed on the Internet February 27, 
2013. Years after the term “wobble” was selected, I found the term “wiggly” on p. 219 of 
Mandelbrot, Benoit B., 2012, The Fractalist: Memoir of a Scientific Maverick, New York: Pantheon 
Books: “All price charts…are qually wiggly. “Wiggly” is hardly a scientific term—[b]ut that is 
exactly what we see in the [cotton price change] data: a fractal pattern.

5.5 Challenges of the One-Parameter Pareto Distribution and Power Laws…

http://dx.doi.org/10.1007/978-3-319-19413-4_6
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above 2.0 (running standard deviations relative to three Pareto slopes of 0.5, 2.5, and 1.5 from top 
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0.001 is the mean value postulated for each 1000 simulations for each slope)
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5.5.1  Even the Lognormal Distribution Can Become Extreme

Oddly as it may seem, the lognormal distribution is not per se oblivious to more 
heavy-tailed considerations, some of which imply that the central limit theorem and 
the strong law of large numbers do not apply in specific cases. As David Perkins has 
indicated,16 one may view the mean value as being

 m m s= -( / )*([ ln ] / ln )1 2x lnx  

Then, as the coefficient of variation (cv = σ/μ) increases to 4, the tail of the distribu-
tion approaches a scalar times 1/x, which is known to diverge. Augmenting Perkins’s 
remarks, one finds further results using the catastrophe index in Chap. 5 along with 
1000 balanced uniform samples. In particular, a cv of 1.6 may be close to or below 
2, a cv of 7.6 is very close to 1, and a cv of 12 is well below 1. Using these finite- 
sample tests, as the cv approaches 1.6, then “variance” may be unstable since the cat 
index is close to or below 2, and as the cv approaches 8, even the mean value may 
be unstable since the cat index is close to or below 1. So, even the lognormal distri-
bution cannot automatically be regarded as being subject to Gaussian theorems

5.5.2  But There Can Be Lots of Perturbations in Stable 
Distributions

In the application of the cat index to actual loss distributions, most have been at least 
barely statistically stable, that is, with cat indexes above 2. Below are two illustra-
tions. Chart 5.7 provides the example of a loss distribution that has a cat index of 
7.9. This, though, implies that the distribution is clearly not normal. Chart 5.8 pro-
vides an example of a loss distribution that has a cat index of 2.5. Curiously enough, 
this is the cat index for an exponential distribution (not an exponential type distribu-
tion in Gumbel’s sense). However, the shape of the distribution is by no means 
exponential.17

Thus, the extraordinary efforts that von Mises employs to assure that the law(s) 
of large numbers holds is excessive. Most actual distributions may be “stable.” 
However, even stable distributions, such as that shown in Chart 5.8, can give rise to 
major issues.

16 David Perkins, written comm., June 2, 2009.
17 These charts are produced by joint work with Zhenghui Hu.

5.5 Challenges of the One-Parameter Pareto Distribution and Power Laws…
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5.6  Summary of Extreme Value Diagnostics, Power Laws, 
and the Wobble

Simplified empirical tests can diagnose how “dangerous” the derived distributions 
turn out to be. For very “dangerous” distributions, with Pareto slopes less than 2, 
then many values in the resulting distribution may “wobble,” or not be uniquely 
defined. If the Pareto slopes are 1 or less, then even the mean values may “wobble” 
or not be uniquely defined. Most distributions—even those for shocks to systems—
may be statistically “stable.” Some systems as well as distributions may illustrate 
unstable circumstances. In these circumstances, things may go well 99 % of the 
time but fall apart 1 % of the time. Hence, tests of distributions that only go so far 
may miss these extreme cases.

Hence, this section enhances the reasoning in the previous sections that relies 
heavily on the absence of any cases in which there have been an infinite number of 
samples. In some cases, even the idealized presence of infinitely many samples will 
not result in uniquely defined probability or statistical values.

 Addendum 1: Why Such Simple Extreme Value Models Have 
Been Deployed

Many of the treatments of extreme value distributions are mathematical in the sense 
that mathematical or parametric models are presumed, and the user feels consider-
able control over the resulting values. The treatment here diagnoses the dangers of 
existing distributions, as defined from finite data.

In the literature, a number of graphical measures are used to define whether or 
not a distribution is “heavy tailed.” In cases here surveyed, “heavy-tailed” means 
having no finite statistical variance. In some cases surveyed, these tests may provide 
more information as is clearly the case with the diagnostic tests provided here. 
However, this greater information tends to be opaquely used because these tests are 
graphic; when exposed to actual data, their results are subject to interpretation.

For example, the Hill’s estimator is one such test.18 If one applies this to a Pareto 
distribution with a predefined slope, then the Hill’s estimator assists in defining this 
slope, as in the following Chart 5.9 in which the predefined slope is 1.0.

However, as in Chart 5.10, the application of the one-parameter Pareto distribu-
tion to the exponential distribution (no matter what positive slope is used for this 
distribution) turns out to yield a Pareto slope of 2.5. Yet, as in Chart 5.10, Hill’s 

18 Sources for Hill’s estimator are Embrechts et al., op. cit., pp. 330ff.; Resnick, S., 2007, Heavy-
Tail Phenomena, New York: Springer, pp. 80ff. and Beirkut, J. and G. Mattheys, 2000, “Quantile 
Estimation for Heavy-Tailed Data,” 23/03/2000mistis.inrialpes.fr/work/extreme/jb.ppt.

Addendum 1: Why Such Simple Extreme Value Models Have Been Deployed
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estimator provides no clear picture for the exponential distribution. And, as in Chart 
5.11, when Hill’s estimator is applied to an actual distribution, here one on historic 
losses as provided by T. Jagger,19 then there is no unambiguous solution.

19 T. Jagger, written comm., December 7.
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Another well-known diagnostic test for heavy tails is Dekker’s estimator.20 Chart 
5.12 shows how this applies to a one-parameter Pareto distribution with a slope of 
1.0. There is a graphical patter in such a parametric case. However, in Chart 5.13, 
when applied to historic hurricane losses, the subsequent figure shows that ambigui-
ties arise.

 Addendum 2: Heavier-Tailed Distributions and Genuinely 
Nonlinear Models

Nonlinear equations are those that involve second-order and higher values (e.g., 
x**2). S. Strogatz characterizes nonlinear “systems” as follows:

Linear systems can be broken down into parts. Then each part can be solved separately and 
finally recombined to get the answer… This… underlies such methods as normal modes, 
Laplace transforms, superposition arguments, and Fourier analysis…a linear system is pre-
cisely equal to the sum of its parts…Whenever parts of a system interfere, or cooperate, or 
compete, there are nonlinear interactions going on.21

20 Sources as for the Pickand’s estimator are Embrechts et al., op. cit., pp. 328ff; Resnick, S., 
pp. 90ff. and Beirkut, J. and G. Matthys, op. cit. Resnick is especially critical of the use of this 
estimator and develops two modified versions of this estimator.
21 From Strogatz, Steven H., 1994, Nonlinear Dynamics and Chaos: With Applications to Physics, 
Biology, Chemistry, and Engineering, Cambridge, MA: Perseus Books Publishing, LLC, pp. 8, 9.
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For example, Strogatz defines the following two-dimensional linear system of 
the form:
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In which x and y are coordinates, t is time, and a, b, c, and d are “parameters” (i.e., 
coefficients to be determined).22

In some cases, statistical methods can effectively linearize some formally nonlin-
ear equations. However, for genuinely nonlinear problems, Menke maintains:

There are no simple means for deciding whether a non-linear inverse problem has a unique 
solution that minimizes prediction error in the absence of prior information…23

Cambel maintains that:

there are no explicitly general solutions to linearize mathematical problems. In the past, 
there was a tendency to deal with nonlinearity by consideration such problems as aberra-
tions and ignoring them. With increasing populations, dwindling resources, and rising 
Expectations, we can no longer indulge in this cavalier attitude.24

Thus, ignoring the many models used in complex systems evaluations, even sin-
gle models may pose serious issues for derive unique estimates. The use of “prior” 
information permits of course alternative approaches with alternative outcomes. So, 
too, diverse investigators may use different tests, forms, parameters, and systems 
approaches (combining different models). At the same time, the prior assumption of 
normality may too yield fallible or erroneous conclusions.

As regards statistical forecasting, N. Silver discusses nonlinear modeling to 
emphasize current weather forecasts in which small changes are critical, how things 
can behave in strange and mysterious ways in which they interact with each other 
(the theory of complexity), and how in the atmosphere the dynamic memory of the 
atmosphere can erase itself over time.25
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    Chapter 6   
 Battling Inductivist vs. Deductivist Theories 
(1900s to Present)       

    Abstract      This chapter provides an account of mathematical approaches that have 
been used in fi tting models to distributions and in providing statistical acceptability 
tests of hypotheses. These helpful tools attempt to bridge the gap between fi nite 
samples and the infi nite populations. Tools of interest in this chapter pertain to sig-
nifi cance tests and fi tting methods. 

 In terms of the underlying distributions needed for statistics, mathematicians in 
the past used binomial, Poisson, and normal (Gaussian) distributions. However, dis-
tributions have been expanded to include others such as the exponential 
distribution. 

 The theory of random probability distributions has been expanded so that indefi -
nitely many distributions—far more than the 30, 40, or so that are familiar—can be 
constructed. This expansion of the theory of random probability distributions now 
permits investigators to postulate alternative underlying distributions with alterna-
tive solutions. This chapter stresses the multiple interpretations that can and should 
be derived from the use of statistics.                 

 Coolly considered, this is a preposterous claim, which would 
have been universally rejected long ago, if those who made it 
had not successfully concealed themselves from the eyes of 
common sense in a maze of mathematics. (From pp. 388–389 in 
Keynes, John Maynard,  1921 , A Treatise on Probability, 
London: MacMillan and Co.) 

I should like to say: mathematics is a motley of techniques of 
proof.—And upon this is based its manifold applicability and its 
importance. (p. 84c in Wittgenstein, Ludwig,  1967 , Remarks on 
the Foundations of Mathematics, Cambridge, MA: the M. I. 
T. Press, fi rst published in 1956, edited by G. H. von Wright, 
R. Rhees, and G. E. M. Anscombe and translated by G. E. 
M. Anscombe)

George Cantor claimed that the essence of mathematics lies in 
its freedom. But mathematicians do not pick problems from the 
air for the pleasure of solving them. …Do I claim that 
everything that is not smooth is fractal? That fractals suffi ce to 
solve every problem of science? Not in the least. (From pp. 178 
and 299 in Mandelbrot, Benoit B.,  2012 , The Fractalist: Memoir 
of a Scientifi c Maverick, New York: Pantheon Books)
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6.1      Introduction to Mathematization of Statistics: Flexibility 
and Non-convergence 

 This chapter will cover the mathematization of statistics: tools developed to bridge 
the gap  between   fi nite samples and the infi nite populations assumed by probability 
and statistical theories. The mathematization of statistics provides a cornucopia of 
valuable tools that are often being augmented. Tools of interest in this chapter per-
tain  to   signifi cance tests and fi tting methods. Such tools were fi rst developed by 
statisticians at the turn of the century and are associated with such fi gures as 
K. Pearson and R. A.    Fisher. 1  

 The discussion of R.A. Fisher and related approaches is designed to address such 
questions as “does this mathematization  require   convergence (or at least “stabil-
ity)?,” “how can statistics have any value when standardized practices have resulted 
in so many errors?,” and “do these methods bridge the gap between infi nite popula-
tions and experience treated as fi nite samples?” As the chapter title suggests, these 
essays will ultimately emphasize how one should stress the power and fl exibility of 
mathematical tools rather than their absolute certainty. 

 The theory  of   random probability distributions has been expanded so that indefi -
nitely many distributions—far more than the 30, 40, or so that are familiar—can be 
constructed. This expansion of the theory of random probability distributions now 
permits investigators to postulate alternative underlying distributions with alterna-
tive solutions. The tests posited by R. A.    Fisher and followers can be used as fallible 
diagnostics about whether or not the underlying distribution “washes out” with 
future data. The use of multiple underlying distributions belies R. A. Fisher’s dic-
tum that there is one correct solution. 

 The lack of unique outcomes can also be shown as one examines the fl exibility 
that different investigators have in applying statistics. This is shown in inverse 
 modeling. Also, similar problems of underfi tting and overfi tting apply in regression 
and other modeling.  

6.2     Mathematical Tools Enhancing Statistical Practice: 
Flexibility or Incorrigibility 

 As has been stated previously in these essays, considerable mathematical attention 
has been placed on exponential, lognormal, and even more extreme distributions 
(e.g., the Weibull, Pareto, Gumbel, generalized extreme value, Cauchy). In contrast, 
the long traditions of Gaussian statistics have developed a potpourri of materials for 

1   These confl icts between K. Pearson and R. A. Fisher, on the one hand, and prominent Bayesians 
are discussed  throughout  McGrayne and Sharon Bertsch,  2011 ,  The theory that would not die: how 
Bayes’ rule cracked the enigma code, hunted down Russian submarines & emerged triumphant 
from two centuries of controversy , New Haven: Yale University Press. 
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any data for which normal distributions are assumed to fi t. 2  R. A.    Fisher alone is 
reputed to be the pioneer of randomization methods, sampling theory, tests of sig-
nifi cance, maximum-likelihood estimation, analysis of variance, and experimental 
design methods. According  to   McGrayne, Fisher’s p-values have been used millions 
of times. They are probability statements based on Gaussian assumptions. In addi-
tion, Neyman-Pearson theory of hypothesis tests have been enormously infl uential 
in applied mathematics. 3  

 For frequency and Bayesian theories, in no cases have the tests used by them-
selves been verifi ed by an infi nite sample—even if the mathematical representation 
of fi ndings may imply such an extension of the fi t of a parametric equation. The 
parametric equations themselves are assumed or presupposed to apply and so by 
implication may be faced with “new cases” that show that they do not fi t. 

 In contrast to the view that mathematics gains its power through its absolute 
certainty, one may maintain that the success of this mathematization—as in the very 
long-term rigorous development of the calculus or in the many mathematical tools 
for applications and statistics—resides in its benefi tting these applications from 
standardized methods on which practitioners can rely. One should indeed be 
impressed by all of these developments. As extensive and valuable as these develop-
ments have been and continue to be, these though do not overcome the qualifi ca-
tions outlined in previous chapters. These developments and tools provide a 
fl exibility to be discussed in this chapter. 

 This second view of mathematics is referenced in Chap.   2     with respect to com-
ments by Herman Weyl or the treatment in Carl Boyer of the development of the 
calculus over more than two millennia. One fi nds similar fi ndings in Bernoit 
Mandelbrot:

  Classical mathematics had its roots in the regular geometric structures of Euclid and the 
continuously evolving dynamics of Newton. Modern mathematics began with Cantor’s set 
theory and Peano’s space-fi lling curve. Historically, the revolution was forced by the dis-
covery of mathematical structures that did not fi t the patterns of Euclid and Newton. These 
new structures were regards…as “pathological”…as a ‘gallery of monsters,’ kin to the cub-
ist painting and atonal music that were upsetting established standards of taste in the arts at 
about the same time. The mathematicians who created the monsters regarded them as 
important in showing that the world of pure mathematics contains a richness of possibilities 
going beyond the simple structures that they saw in Nature. 4  

   This chapter begins with a contrasting view of mathematization that constrains 
itself to providing as much self-evidence as possible and later considers richer pos-
sibilities in the mathematization of probability and statistics.  

2   See, for instance, pp. 6–20 in Neter, John, William Wasserman, and Michael Kutner,  1985 , 
 Applied Linear Statistical Models , Homewood, IL: Irwin. 
3   See McGrayne, op. cit., pp. 47, 49, and 55. 
4   See p. 3  in  Mandelbrot, Benoit B.,  1983 ,  The Fractal Geometry of Nature , New York: W. H. 
Freeman and Company, originally 1977. 
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6.3     Notorious Past Failures in Statistical Findings 

 The topic of incorrigibility in statistical practice yields a strong rebuke from cases 
in which statistical practice has come up with the wrong answers. A brief discussion 
of these alleged falsifi cations of statistical practice should arrest attempts to con-
sider applications of mathematical statistics as being incorrigible. 

 The idiosyncratic work of N. Taleb points out failed statistical estimates in, for 
instance, economics, fi nance, and medicine. One of Taleb’s hobby horses is iatro-
genics—inadvertent adverse effects or complications resulting from medical treat-
ment or advice. Among the many examples of iatrogenics that Taleb cites are 
replacement of butter by margarine, overuse of Vioxx, antidepressants in many 
cases, cortisone, hormone replacement theory, caesarean births, disinfectants, 
lobotomies, whitening of rice and wheat, and annual mammograms. In general, 
Taleb treats these errors as proof of extreme skepticism and the methodology of via 
negativa—progress through falsifi cation or rejection of hypotheses since “justify-
ing” truth is apparently more challenging than falsifi cation. As incisive as are many 
of Taleb’s insights into iatrogenics and elsewhere, the recourse to “T” or “F” is simi-
lar to the diatribe against medical research found, for instance, in  The Economist . 5  

 Taleb’s explanations of these “failures” include the nonlinearity in the physiolog-
ical response of biological systems, problem of scaling data for nonlinear models, 
preoccupation of data accumulation when nature has provided tens of thousands of 
years of data, accumulation of data yielding false data and more correlations, and 
lack of compatibility for “   Black Swan” (extreme value) situations. 6  

 In a similar vein, the late Berkeley statistician  David   Freedman has consistently 
reviewed various statistical fi ndings and methods, including examples from medi-
cine. For but one instance, Freedman and Petitti critique the salt hypothesis that 
higher levels of salt lead to higher levels of blood pressure so that salt intake should 
be cut by a factor of two or more. Freedman and Petitti fi nd multiple interpretations 
of studies and suggest that with good diet, salt has almost no impact on systolic 
pressure. 7  

 Past research in which these mathematically supported statistical approaches 
have yielded erroneous conclusions—such as through underestimating outliers—
only shows that this research is—as it should be—informative yet fallible. The fl ex-

5   See Taleb, Nassim Nicholas,  2012 ,  Antifragile: Things that Gain from Disorder , New York: 
Random House, pp. 339, 346, 347, and 358; see likewise Silver, Nate,  2012 ,  The signal and the 
noise: why so many predictions fail—but some don’t , New York: the Penguin Press, p. 183. The 
Economist article is “Unreliable research: Trouble at the lab, Scientists like to think of science as 
self-correcting. To an alarming degree, it is not,” October 19, 2013. 
6   See Taleb, Nassim,  2012 , Ibid., pp. 138, 288, 288, 349, 350, 416, and 417; for an account of the 
“Black Swan,” see Taleb, N. N.,  2007 ,  The Black Swan: The Impact of the Highly Improbable , 
New York: Random House. 
7   See Freedman, David and Diana B. Pettitti,  2002 , “Salt, Blood Pressure, and Public Policy,” 
 International Journal of Epidemiology , vol. 31 (2002), pp. 312–320. 
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ibility of mathematics in constructing distributions facilitates looking at issues from 
the perspective of multiple models. 

 The next chapter will provide needed balance to these perspectives that rightly 
stress the negatives of overly linear accounts of statistics as they are applied in 
medicine and elsewhere. However, one cannot have balance if one expects statisti-
cal fi ndings to be incorrigible—in spite of future events and consequences that may 
not be very foreseeable or at least not foreseen.  

6.4     Sample Linear Methods Devised by R. A. Fisher 
and Others to Bridge the Gap between Distributions, 
with Infi nite Populations and Finite Data Samples 

 Of special interest throughout this document is the assumption of unique answers in 
much statistical practice. One may consider two general methods that have been 
developed in order to bridge the gap between distributions with infi nite populations 
and fi nite data samples. One of these methods consists of the use of various types  of 
  signifi cance tests. A second consists of methods that are used to “fi t” models to the 
data and to account for uncertainties in these data. For considering these two types, 
we start with the statistical procedures developed by R. A.    Fisher, whose outlook 
could be considered to be almost exclusively Gaussian and who insists on statistics 
that yield unique solutions. He proclaims:

   Consistent  statistics …all tend more and more nearly to give the correct values, as the 
sample is more and more increased; at any rate, if they tend to any fi xed value it is not to an 
incorrect one. 

   That is, Fisher maintains that these methods  yield   convergence or single answers. 8  
 Building on previous work by Karl Pearson and many others, R. A. Fisher calls 

“fi ducial probability” methods for evaluating hypotheses based on only a fi nite 
number of samples. Originally the chi-squared test by Pearson had yielded one 
method for evaluating hypotheses. This test assumed that the observed frequencies 
tended toward the chi-squared distribution as the sample became larger. The table of 
the chi-squared test gives the area of the tail of a continuous curve. 9  

    Fisher was concerned principally with three very common underlying distribu-
tions that apply to a great variety of the statistical subject matter: the binomial, the 
Poisson, and the normal (Gaussian). As with the chi-squared test, the goal of the use 
of these distributions was to supply a distribution, assumed to have an infi nite popu-
lation, to a hypothesis with a fi nite sample in order to fi nd out the signifi cance of this 
fi nite sample.  

8   See Fisher, Ronald Aylmer,  1944 ,  Statistical methods for research workers , London: Oliver and 
Boyd Ltd., ninth edition, p. 11. 
9   See Fisher, Ronald Aylmer, pp. 10, 41, 92, and 93. 
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6.5     Selected Criticisms of Signifi cance Tests Used 
in Standard Statistical Work 

 Fisher also discusses various fi tting techniques such as the method of maximum 
likelihood—always an “effi cient” statistics, of which for him the least-squares 
method is an example. 10  N.    Silver, famous for his forecasting feats, has even criti-
cized these “fi tting” procedures developed by R. A. Fisher (and others) and fol-
lowed by many as standard procedures in statistics. According to Silver, these 
“fi tting” procedures presuppose an underlying distribution. Similarly, the 
Kolmogorov-Smirnov test at fi rst assumed the Kolmogorov distribution, a quasi- 
Gaussian distribution, but now in application can have such an underlying model as 
the exponential distribution. 11  

 The late Berkeley  statistician   Freedman goes further in stating that the notions of 
“almost surely” (widely used in books on extreme value statistics) and the limiting 
relative frequency (used in the frequency and Bayesian theories, respectively) “are 
features of your opinion not of any external reality. (“Almost surely” means with 
probability 1, and the probability in question is your prior.)” 12  

 D. Kaye and D.    Freedman ask the question consistent also with Chaps.   2    ,   3    ,   4    , 
and   5    , “would a pattern wash out if more data were collected?” With respect to any 
selected prior distribution used to develop “   signifi cance test,” this question indicates 
that the pattern in the fi nite sample may with more data become (a) more like the 
underlying presupposed distribution or (b) less like the underlying presupposed dis-
tribution. Moreover, in their critique of “signifi cance” tests, Kaye  and   Freedman 
maintain that “if results are signifi cant at the 0.05 level, it is tempting to conclude 
that the null hypothesis has only a 5 % chance of being correct.” 13  

 In developing “tests” to indicate whether or not there is a given “fi t” or that a 
hypothesis is acceptable, R. A. Fisher’s restriction of his “signifi cance tests” to three 
distributions is very biased. Bayesians generally have noted that throughout his 
work, R. A. Fisher postulates the application of distributions that for Bayesians 
should be regarded as priors. Bayesians apply this as well to Fisher’s maximum- 
likelihood method. 14  

10   See Fisher, Ronald Aylmer, pp. 9, 19, and 21. 
11   See Silver, Nate,  2012 , op. cit., pp. 251ff.; see also Wikipedia, “Kolmogorov-Smirnov test,” 
accessed February 27, 2013. 
12   See Freedman, David,  1995 , “Some issues in the foundation of statistics,”  Foundations of 
Science , vol. 1, pp. 19–83, reprinted in  Some Issues in the Foundation of Statistics , Kluwer, 
Dordrecht (1997), Bas C. van Frassen, ed., p. 11. 
13   See Kaye, David H. and David A. Freedman, eds.,  2011 , “Reference Guide on Statistics,” 
pp. 211–301, in  Reference Manual on Scientifi c Evidence , Washington, D. C., National Research 
Council, Committee on the Third Edition of the Reference Manual on Scientifi c Evidence & 
Federal Judicial Center, pp. 115, 124, and 125. This article contests the view in The Economist, 
2013, op. cit., to the effect that a 5 % signifi cance level has some probability meaning, such as that 
there is a 5 % chance that the hypothesis is incorrect. 
14   S. McGrayne, op. cit., cites  various  Bayesians on these issues on, for instance, pp. 53 and 132. 
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 It is possible to construct a very large number of distributions beyond those 40 or 
so that are very familiar to those who study distributions.  This notion of construct-
ing a very large number of distributions is discussed, for instance, in earlier papers 
by Diaconis and Freedman, and many others . 15  The presence of many possible 
underlying or prior distributions suggests that there may be multiple ways of “fi t-
ting” and also that there may be many hypotheses that are about as valid as one 
another. 

 Following Lincoln Moses, Kaye and Freedman maintain

  A given data set can be viewed from more than one perspective, can be represented by a 
model in more than one way. Quite commonly, no unique model stands out as “true” or 
correct, just so strong a conclusion might require a depth of knowledge that is simply lack-
ing. So it is not unusual for a given data set to be analyzed in several apparently reasonable 
ways….Desirable features of a model include (i) tractability (ii) parsimony, and (iii) 
realism. 16  

6.6        Further Discussions of “Fitting” Procedures 

 When do professionals working on such major projects develop different statistical 
approaches even when faced with the same or very similar data sets? Part of the 
answer to this question comes from discussions in Menke’s approach to discrete 
inverse modeling. For matrices, if the number of model parameters M equals the 
number of data points N, then there is a unique solution. If M > N, then the solution 
set is undetermined, and there is a solution only if “prior information” supplements 
the N data points. If M < N, then the problem becomes one of “fi tting” N data to the 
model with M parameters. Cases in which M > N can arise if there is an “overfi t-
ting” of the data, although overfi tting can also occur if too many parameters are used 
to solve a problem and this results in various types of confusion and 
ineffi ciencies. 17  

 For N. Silver, if too few parameters are used, there is underfi tting: not capturing 
as much of the signal as you should. If too many parameters are used, the fi t is too 
tight: noise in the data is fi t rather than discovering the underlying structure of the 
data. The overfi t model that fi ts each individual sequence lowers the variance. Thus, 
minimizing variance cannot be the sole criterion used in fi tting. 18  

15   Hill, Theodore P., and David E. R. Sitton,  2004 , “Constructing Random Probability Distributions,” 
 Abstract and Applied Analysis , 453–468, Chuong, Nurenberg, and Tutschek, ed., World Scientifi c 
Press. In order to construct various alternative distributions, merely normalize the results of  Y =  a 0 
+  a 1* x  +  a 2* x **2 + … an x ** n  for any  n  so that the sum is 1.0 for  x  in  U (0,1). One may use  a i ≥ 
0 to simplify the process. As higher-order equations are used, chances are increased that extreme 
value distributions can be produced, with their attendant “stability” issues. 
16   See Kaye, David H. and David A. Freedman,  2011 , Ibid., p. 120. 
17   See Menke, W.,  1989 ,  Geophysical Data Analysis: Discrete Inverse Theory , San Diego: 
Academic Press, pp. 39–49 and 89, 90. 
18   See Silver, Nate,  2012 , op. cit., pp. 163 and 166–167. 

6.6 Further Discussions of “Fitting” Procedures



100

  As   Silver discusses overfi tting and underfi tting, he further criticizes the develop-
ment of fi tting tests by R. A. Fisher. Not only does Fisher require underlying distri-
butions, but Silver contends that as a frequency theorist Fisher emphasizes the 
objective purity of the experiment (in contrast to the theory-laden view of N. R. 
Hanson). In addition, tests of signifi cance, often the binary null hypothesis tests, are 
too “clumsy” for gambling. One should also be reminded that the centile ranks 
assigned to null hypotheses have never been confi rmed. 19  

 For cases in which M< N, Menke distinguishes among L1, L2,…, Lm approaches 
to “fi tting” data to models. For instance, L1 represents the use of deviations between 
a parametric form and the data to be fi t. L2 represents the use of deviations squared 
between a parametric form and the data to be fi t. For Menke, the typical or Gaussian 
approach uses L2 as a means of fi tting data, typically to one that reduces the total 
sum of deviations squared, the least-squares method. For Gaussian distributions, 
this method turns out as well to be the maximum-likelihood method, the method 
that achieves the highest likelihood of a fi t for all data. 20  

 As Menke moves to a heavier-tailed distribution, the exponential distribution, he 
uses L1 instead of L2 norms to evaluate “fi ts” to data. Minimizing average devia-
tions thus becomes the selected norm. The L1 norm weights “bad” data less than 
any Li norm in which i > 1. For Gaussian unstable distributions (the variance is 
infi nite), the use of the L1 norm is also common. As may be expected from the 
mathematization of statistics and the ready availability of the Internet, a very large 
number of “fi tting” programs are now available for a small number of extreme value 
mathematical forms. 21  

 Mathematization has from nearly the outset been applied to extreme value distri-
butions. Some have been defi ned as being “stable.” To achieve this, Nolan extends 
this to the use of L0.8 and so on fi tting techniques in cases in which, for instance, 
the Poisson slope is 0.9. This stratagem is required because L1.0 will not work if the 
slope of the Pareto distribution, for instance, is below 1.0. Still, Nolan’s stratagem 
depends on knowing what this slope actually is—in the long run. Recall that only a 
fi nite number of samples are used to defi ne any such stable distribution and further 
data may be expected to yield different results and in some cases extremely different 
results. 22   

19   See Silver, Nate,  2012 , Ibid., pp. 251–261; see also Hanson, Norwood Russell, 1965,  Patterns of 
Discovery: An Inquiry into the Conceptual Foundations of Science , Cambridge: Cambridge 
University Press. 
20   See Menke, W.,  1989 , op. cit., pp. 27, 37, 80, and 83 and Neter, John et al.,  1985 , op. cit., p. 50. 
21   See Menke, W.,  1989 , pp. 133 and 141. 
22   See Nolan, John P.,  2009 ,  Stable Distributions: Models for Heavy Tailed Data,  accessed on the 
Internet February 27, 2013, p. 15, and Wikipedia, “Stable Distribution,” accessed February 27, 
2013. 
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6.7     Summary of the Mathematization of Statistics 

 The mathematization of statistics attempts to bridge the gap  between   fi nite samples 
and the infi nite populations assumed by probability and statistical theories. The 
mathematization of statistics provides a cornucopia of valuable tools that are often 
being augmented. Tools of interest in this chapter pertain to signifi cance tests and 
fi tting methods. These tests provide diagnostics for hypothesis testing and fi tting of 
models. Yet, as N. Silver has asserted, these tests require underlying distributions. 
For R. A. Fisher, an early developer of these bridging methods, the chief underlying 
distributions are the binomial, Poisson, and normal (Gaussian). Gaussian methods 
placing high stress on variance and the size of the sample permeate Fisher’s embry-
onic writings. These underlying distributions assumed by Fisher have been expanded 
so that—to repeat—the Kolmogorov-Smirnov test, once associated with the light- 
tailed Kolmogorov distribution, has been expanded to permit other underlying dis-
tributions such as the exponential distribution. 

 The theory  of   random probability distributions has been expanded so that indefi -
nitely many distributions—far more than the 30, 40, or so that are familiar—can be 
constructed. This expansion of the theory of random probability distributions now 
permits investigators to postulate alternative underlying distributions with alterna-
tive solutions. The tests posited by R. A. Fisher and followers can be used as fallible 
diagnostics about whether or not the underlying distribution “washes out” with 
future data. The use of multiple underlying distributions belies R. A. Fisher’s dic-
tum that there is one correct solution. 

 The lack of unique outcomes can also be shown as one examines the fl exibility 
that different investigators have in applying statistics. This is shown in inverse mod-
eling. Also, similar problems of underfi tting and overfi tting apply in regression and 
other modeling. 

 Any hubris associated with existing tests and fi tting procedures should be less-
ened through the recognition of the errors that have arisen from the standardized 
ways of using statistics. New cases or sequences of cases may always arise that 
modify previous results considerably. As with life-expectancy data, striking modifi -
cations may occur, for instance, when infant mortality rates are reduced consider-
ably. Other extreme examples of these cases, as Taleb points out, can initially 
suggest extreme skepticism about the statistical use of data and the compilation of 
huge amounts of data. 23  More positively, this chapter stresses the multiple interpre-
tations that can and should be derived from the use of statistics. The next chapter 
will evaluate major successes in the use of statistics and show different and more 
nuanced ways to interpret statistical  fi ndings   .     

23   See Silver, Nate,  2012 , Ibid., pp. 251–261; see also Hanson, Norwood Russell, 1965,  Patterns of 
Discovery: An Inquiry into the Conceptual Foundations of Science , Cambridge: Cambridge 
University Press. 
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    Chapter 7   
 Robust Simulation and Nonlinear Reasoning       

 And how does it come out that the proof compels me? Well, in 
the fact that once I have got it I go ahead in such-and-such a 
way, and refuse any other path. All I should further say as a 
fi nal argument against someone who did not want to go that 
way, would be “Why, don’t you see…!”—and that is no 
argument. “But, if you are right, how does it come about that 
all men (or at any rate all normal men) accept these patterns as 
proofs of these propositions?”—It is true, there is great—and 
interesting—agreement here. (From p. 13e, Wittgenstein, 
Ludwig,  1967 , Remarks on the Foundations of Mathematics, 
Cambridge, MA: the M. I. T. Press, fi rst published in 1956, 
edited by G. H. von Wright, R. Rhees, and G. E. M. Anscombe 
and translated by G. E. M. Anscombe) 

    Abstract     In this chapter, robust simulation is introduced as a methodology that 
augments and supersedes previous approaches. Robust simulation is the representa-
tion of future risk through simulation of an ensemble of credible views that inte-
grates valid scientifi c disagreement. From the standpoint of calculation, robust 
simulation supersedes the use of variance, confi dence intervals, and other methods 
that have been used to develop uncertainty estimates. Robust simulation also aug-
ments the mathematical tools discussed in previous chapter through the presence of 
a community of investigators on major issues and the use of models derived from 
various disciplines. In competitive settings for addressing these socially important 
risk issues, alternative investigators may arrive at different risk estimates. The 
ensemble of these different estimates characterizes the current bounds of their 
uncertainty. 

 Robust simulation requires, moreover, intelligence applied to problems at hand 
and encourages competition among investigators. This competition will lead to an 
improvement in models used but not necessarily to convergence among any reason-
able alternative approaches. Huge data samples may be helpful but are often not 
required to develop adequate statistical fi ndings. These multiple interpretations 
show how alterative investigators can provide an ensemble of defi nite outcomes. 
Suggesting that there is always but one outcome is to endorse a false precision. The 
stochastic interpretations of complex phenomena clarify the range of current 
outcomes.  
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7.1               Introduction to Robust Simulation 

 Robust simulation is the representation of future risk through simulation of  an 
  ensemble of credible views that integrates valid scientifi c disagreement. 1  Robust 
simulation augments the mathematical tools discussed in previous chapter through 
the presence of a community of investigators on major issues and the use of models 
derived from various disciplines. This community of investigators on major issues 
can be thought of as being both competitive and cooperative and enhance a view of 
science as defi ned by Imre Lakatos who states:

   The history of science has been and should be a history of competing research programmes  
( or ,  if you wish , ‘ paradigms ’),  but it has not been and must not become a succession of 
periods of normal science :  the sooner competition starts ,  the better for progress . 2  

   In other words, the presence of multiple approaches assists rather than hinders 
progress. The multiple approaches of merit are those developed by professionals 
and are heavily dependent on the experience of these professionals. These profes-
sionals may derive different approaches in parameters needed, applicable tests, per-
tinent data, data required, mathematical forms of models used, suitable decision 
models, and the science desired and needed to render the models credible. It is this 
community of investigators with a variety of approaches and goals from various 
disciplines who provide the credibility of robust simulation. 

 One may contend that robust simulation is an approach, a process, a strategy, or 
a more global outlook, but at the same time it can provide a “model,” a method, or 
something confi ned even to a single investigative team. Whether performed by mul-
tiple investigative teams or by a single team, the result is a range of estimates ( not 
  confi dence intervals in the traditional sense) that can be established in reference to 
a critical query. 

 Previous chapters have indicated some of whys and hows of robust simulation. 
This chapter begins with brief references to de facto illustrations of robust simula-
tion, starting from illustrations in the social sciences and progressing to some more 
detailed quantitative examples. Afterward this chapter connects the topic of robust 
simulation to the topic of nonlinear reasoning—already introduced in various previ-
ous chapters—as in brief discussions of the development of Newtonian science and 

1   Lee, Yajie, Taylor, Craig E., Hu Zhenghui, Graf, William P., and Huyck, Charles K., 2014, “Using 
 Robust Simulation to Characterize Uncertainties in Catastrophe Loss Assessments” from RAA Cat 
Modeling 2014, ImageCat, Inc. 
2   From p. 69, Lakatos, I.,  1978 ,  The methodology of scientifi c research programmes , London: 
Cambridge University Press. In contrast to theories of data mining, Lakatos has provocatively sug-
gested:  as science grows ,  the power of empirical evidence diminishes  (p. 21). The presence of the 
ability to store (e.g., the “cloud”) and process immense amounts of data, though, implies that one 
can, for instance, provide controls to telecommunications systems that lack the systemic weak-
nesses of typical hub-and-spoke systems. (See, for instance, Tang, Alex K. et al., 2014, “Lifeline 
System Interdependencies—Key for Resilience in Practice,”  the Second International Conference 
on Vulnerability and Risk Analysis and Management  ( ICVRAM2014 )  and Sixth International 
Symposium on Uncertainty Modelling and Risk Analysis  ( ISUMA2014 ), Liverpool, July.) 
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the calculus. During the process of the testing and development of a fruitful idea, 
ranging from days to months to years to centuries and even millennia, many com-
peting viewpoints have room for development and even the fi nal success of many 
critical ideas does not discourage further qualifi cations and developments.  

7.2     Robust Forecasting in the Social Sciences, Betting, 
and More Qualitative Studies 

 The notion of robust simulation begins with processes for which (1) simulation is 
extremely important to develop “statistical” or “risk-based” outcomes and (2) alter-
native and often very complex models are used to develop a set of reasonable out-
comes. These procedures are very valuable when as at RAND large-scale 
computational resources are available yet models being used—in these cases largely 
economic and policy related—may vary signifi cantly from investigator to investiga-
tor. An example of these uses of robust simulation is found in Lempert et al., which 
takes on 100-year economic forecasting. 3  

 A second application of robust simulation derives from forecasting methods 
associated with betting. In betting (often referenced as a “test” of a statistical fi nd-
ing) requiring skill, some practitioners of course have better results than others. 
Nate Silver is one whose bets (as in the 2012 US Presidential election) have turned 
out to be notoriously and basically right. 

 Much of Silver’s  2012  book describes a theory of forecasting. Unlike Taleb, 
Silver forwards a positive viewpoint on forecasting rather than extreme skepticism. 
Silver’s theory has two major features consistent with this chapter 4 :

•    First, statistics and forecasting should be regarded as being fallible activities. 
There are no perfect data or models. Instead, there are problems to be solved and 
questions to be addressed. Strong statistical inferences are backed up by theory 
or at least some deeper thinking about root causes. 5   

•   Second, aggregate forecasts are “better.” Some of these aggregate forecasts may 
be “better,” but the overall aggregation of forecasts provides better forecasts 
overall. The individual forecasts made that are aggregated need to be in some 
sense “independent.” 6     

3   See Lempert, R. J.,  Popper, S. W., and Bankes, S. C.,  2003 ,  Shaping the Next One Hundred Years : 
 New Methods for Quantitative ,  Long - Term Policy Analysis , Santa Monica, CA: RAND, and 
Lempert, R. J, Groves, D. G., Popper, S. W., and Bankes, S. C.,  2006 , “A General, Analytic Method 
for Generating Robust Strategies and Narrative Scenarios,”  Management Science , Vol. 52, No. 4, 
April, pp. 514–528. 
4   See Silver, Nate,  2012 ,  the signal and the noise :  why so many predictions fail — but some don ’ t , 
New York: the Penguin Press. 
5   From p. 333, Silver, Nate,  2012 , Ibid. 
6   From pp. 73, 335, Silver, Nate,  2012 , Ibid. 
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 Unfortunately, Silver’s view of “robust” forecasting is aligned with a view of 
Bayesian statistics that assumes that individual forecasters will have their views 
“converge” as time goes forward. (See the previous discussions in Chap.   4    .) This 
view  of   convergence is aligned with a linear view of scientifi c progress that assumes 
that we are converging to the truth as data are compiled.    Bayes himself shared an 
eighteenth-century  underlying   deterministic world view. Silver’s view also assumes 
that one can  develop   confi dence intervals from the aggregate forecasts. This pre-
sumes that the law of total probability obtains, even though it is a separate and often 
daunting exercise to determine that one has assembled all candidate forecasts. 7  

 The view developed in this chapter is that ensembles provide the risk solutions in 
robust simulation. Multiple perspectives do not need to be and probably should not 
be entirely independent—especially from the disciplines with which they are asso-
ciated. How one weights these ensembles is an open question inasmuch as values 
close to the highest may be the best in some cases yet those values close to the low-
est may be the best in other cases. 

 In addition, many examples come from a large number of studies concerned with 
the environment. Risk-based approaches on more qualitative topics, such as por-
tions of geology and also water management areas, may likewise be familiar with 
dealing with diverse opinions and not expecting precise results. The view that mul-
tiple perspectives pertain to scientifi c activities is familiar in ecological studies. 
Stephen Toulmin has contrasted the modern view, from the seventeenth century 
through 1950 or after, according to which unique perspectives were solely required 
in critical disciplines. In accounting for some of the changes to this modern view, 
Toulmin cites ecological studies:

  As late as 1960, the word “ecosystem” had not yet won a place in the political vocabulary 
of industrial nations. John Muir and Aldo Leopold had crusaded for the environment, and 
for the threatened populations of endangered species. But  Rachel   Carson’s book  Silent 
Spring  fi rst spoke, in 1962, to the entire public audience—that is to an audience that was 
now ready to hear its message. 8  

   Thus, robust simulation approaches may seem to be passé to many investigators 
in ecological studies and critical studies generally that are very qualitative.  

7.3     Robust Simulation in More Quantitative Areas of Science 
and Engineering 

 Risk and decision models for evaluating complex systems require a great many sub- 
models covering:

7   From pp. 242, 410, Silver, Nate,  2012 , Ibid. 
8   From p. 163,  Toulmin, Stephen,  1992 ,  Cosmopolis :  The Hidden Agenda of Modernity , Chicago: 
University of Chicago Press. See also Carson, Rachel L., 1950,  The Sea Around Us , New York: 
Oxford University Press, 1989 edition. 
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•    Exposure data for sites, structures, system, people, animals, and habitats  
•   The peril and its frequency of occurrence (for different “severities”)  
•   The transmission and distribution from the source(s) to site(s) resulting in “site 

intensities”  
•   The direct response of structures, people, and animals to the distributed 

intensities  
•   Any further perils that arise as a consequence of the initial peril  
•   The indirect response of systems given these direct responses  
•   The community and economic changes given the direct losses and the indirect 

response of systems  
•   Alternative ways to reduce direct and indirect damages, respectively  
•   Decision methods for evaluating these alternative ways to reduce damages    

 Each of these sub-model regions could be discussed extensively. 
 In general, the sub-models needed for a full-scale risk and decision analysis have 

always exhibited an unevenness in development. As discussed in many works by 
Graf et al., even sub-models with extensive use and refi nement may be subject to 
nonlinearities and other issues that strongly suggest further needed work. 9  This 
unevenness gives rise not only to needed research but also to the presence of alterna-
tive models covering the same sub-model areas. For instance, different ways to 
gather exposure data exist especially as (1) more data are electronically maintained 
but still need to be curated and (2) much data may be proprietary. 

 For many of the sub-models,    uncertainty evaluations (called here “endogenous 
uncertainties”) are desirable. For instance, the Beta distribution may be used to 
evaluate “endogenous” uncertainties in the direct response of structures to intensi-
ties. Endogenous uncertainties can in theory be calculated in run time for the full 
evaluation of a risk and decision model. In this simulation process, these  endogenous 
uncertainties “vanish” as more simulations are used (unless, as explained in Chap. 
  5    , the strong law of large numbers does not prevail). 

 If these risk and decision evaluations were linear, and not systemic, then the 
weak sub-models would subvert the general evaluations. Since there are many sub- 
models, and as already indicated a great deal of fl exibility in model development, 
there have been in many cases multiple models that can be used. 

 In contrast to the theory of statistics proposed by von Mises and studied in Chap. 
  3    , there are exogenous probabilities required that do not necessarily follow a bino-
mial model. In particular, frequencies of occurrence of the peril are exogenous esti-
mates. These are required for estimating risk in a minimal sense. If, for instance, 
one investigator provides one “event set” for perils (e.g., one event set for hurricanes 
impacting a specifi c region), then to combine this with another “event set” or to vary 
the probabilities for each sample could create considerable confusion. Alternative 
models of the frequencies of the peril, then, are a major source of alternative 
outcomes. 

 So, (de facto) cases in which multiple (quantitative) models are common include:
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•    Catastrophe risk models for such perils as fl ood, earthquake, and hurricane 9  ,  10   
•   Global climate change models downscaled for different regions 11   
•   Missile risk evaluations (and related asteroid risk evaluations) 12     

 There are  alternative   decision theories that can be adapted to many situations, 
including those in which there is no simple “optimal” decision. 13  

  Using   earthquake risk evaluations alone, one can fi nd in the literature an enor-
mous number of alternative models. But a small number of these include:

•    A variety of different inverse  modeling   approaches and outcomes on modeling 
earthquake events in great detail, such after they have occurred or in the 
laboratory 14   

•   Very signifi cant differences on modeling seismicity, including time between 
major events and general regional energy modeled 15   

9   See Craig Taylor, Yajie Lee, William Graf, Zhenghui Hu, and Charles Huyck,  2010 , “ Robust 
Simulation and Cat Diagnostics for Treating Uncertainties in Catastrophe Risk Analysis,” pp. 155–
163 in The 1994 Northridge, California earthquake: Investigation of rupture velocity, risetime, and 
high-frequency radiation  of the International Symposium on Reliability Engineering and Risk 
Management , ed. by Jie Li, Yan-Gang Zhao, Jianbing Chen, and Yongbo Peng, Shanghai, China, 
Tongji University Press; Craig Taylor, William Graf, Yajie Lee, Charles, Huyck, and Zhenghui Hu, 
 2011 , “Sample Treatment of Uncertainties in Earthquake Portfolio Risk Analysis,” pp. 246–251 in 
 Vulnerability ,  Uncertainty ,  and Risk :  Analysis ,  Modeling ,  and Management , Proceedings of the 
ICVRAM 2011 and ISUMA 2011 Conferences, edited by Bilbal M. Ayyub, Reston, VA: American 
Society of Civil Engineers; William Graf, Yajie lee, Charles Huyck, and Zhenghui Hu,  2012 , 
“Propagation of Uncertainties through  Robust Simulation and Future Research,”  Fifth Asian -
 Pacifi c Symposium on Structural Reliability and its Applications  ( 5APSSRA ), Phook, K. K., Beer, 
M., Quek, S. T., and Pang, S. D., editors, Singapore; and C. Taylor, R. Murnane, W. Graf, and 
Y. Lee,  2013 , “Epistemic Uncertainty, Rival Models, and Closure,”  Natural Hazards Review , 
February, pp. 42–51, volume 14, number 1. 
10   See R. J. Murnane, C. E. Taylor, T. Jagger, and Z. Hu,  2011 , “ Robust simulation for sensitivity 
analysis of catastrophe risk losses,” in  Applications of Statistics and Probability in Civil engineer-
ing , ed. M. H. Faber, J. Koehler, and K. Nishijima, CRC Press, New York, PP. 875–877. 
11   Examples of ensemble climate change outcomes are made in many works including Alexander 
A. Golub, and Anil Markandya,  2008 ,  Modeling Environment — Improving Technological 
Innovations Under Uncertainty , London: Routledge, Taylor & Francis Group. 
12   See Collins, Jon D. and Steven L. Carbon,  2010 , “Launch Risk Acceptability Considering 
Uncertainty,”  Proceedings of the 4th International Association for the Advancement of Space 
Safety  ( IAASS )  Conference , Huntsville, AL, 19–21 May. 
13   See Resnick, S.,  2007 ,  Heavy - Tail Phenomena , New York: Springer; Markowitz, H. M.,  1959 , 
 Portfolio Selection :  Effi cient Diversifi cation of Investments , Oxford: Basil Blackwell Ltd.; Levy, 
H.,  2006 ,  Stochastic Dominance :  Investment Decision Making Under Uncertainty , 2nd edition, 
New York, NY: Springer; and Taylor, Craig, Glenn Rix, and Fang Liu,  2009 , “Exploring Financial 
Decision-Making Approaches for Use in Earthquake Risk Decision Processes for Ports,”  Journal 
of Infrastructure Systems , Volume 15, Number 4, pp. 406–416, December 1, 2009. 
14   See Collins, Jon D. and Steven L. Carbon,  2010 , “Launch Risk Acceptability Considering 
Uncertainty,”  Proceedings of the 4th International Association for the Advancement of Space 
Safety  ( IAASS )  Conference , Huntsville, AL, 19–21 May. 
15   See Kagan, Yan Y., et al.,  2007 , “A Testable Five-Year Forecast of Moderate and Large 
Earthquakes in Southern California Based on Smoothed Seismicity,”  Seismological Research 
Letters , Vo. 78, No. 1, January/February 2007, pp. 94–98; National Research Council (NRC), 
( 1997 ),  Review of Recommendations for Probabilistic Seismic Hazard Analysis :  Guidance on 
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•   On modeling attenuation of seismic waves from source to site 16   
•   On modeling vulnerability of structures to strong ground motions 17   
•   On modeling higher-order economic losses resulting from catastrophic 

damage 18     

 The number of types of sub-models needed and the number of pertinent refer-
ences could be multiplied by several orders of magnitude. These sub-models could 
be increased a great deal for such infrastructure systems as those for electric power, 
culinary water, natural gas, highway, ports, air traffi c, and telecommunications. 
These cases show the need to show that how, why, when, and where these multiple 
outcomes are possible.  

7.4     Nonlinear Reasoning in Successful Cases Using Finite 
Samples and Experiments 

 Signifi cance tests and fi tting methods discussed in this and the previous chapter do 
not yet provide adequate credibility given the many alternatives to “standard” or 
Gaussian statistical procedures. The addition of professional groups and underlying 

Uncertainty and use of Experts , Washington, D. C.: National Academy Press; Perkins, D.,  2002 , 
“Uncertainty in Probabilistic Seismic Hazard Analysis,” pp. 19–60 in  acceptable Risk Processes : 
 Lifelines and Natural Hazards , edited by Taylor, C. and VanMarcke, E., Reston, VA: American 
Society of Civil Engineers; Petersen, Mark D., Tianqing Cao, Kenneth W. Campbell, and Arthur 
D. Frankel,  2007 , “Time-independent and Time-dependent Seismic Hazard Assessment for the 
State of California: Uniform California Earthquake Rupture Forecast Model 1.0,  Seismological 
Research Letters , Vol. 78, No. 1, January/February 2007, pp. 99–109; and Petersen, Mark D., 
Arthur D. Frankel, Stephen C. Harmsen, Charles S. Mueller, Kathleen M. Huller, Russell 
L. Wheeler, Robert L. Wesson, Yuehuan Zeng, Oliver S. Boyd, David M. Perkins, Nicolas Luco, 
Edward H. Field, Chris J. Wills, and Kenneth S. Rukstales,  2008 ,  Documentation for the 2008 
Update of the United States National Seismic Hazard Maps , US Department of the Interior, US 
Geological Survey, Open-File Report 2008–1128. 
16   See Bradley, Brendon A.,  2009 , “Seismic Hazard Epistemic Uncertainty in the San Francisco 
Bay Area and Its Role in Performance-Based Assessment,”  Earthquake Spectra , Vol. 25, No. 4, 
pp. 733–754, November; Stewart, Jonathan P., Ralph J. Archuleta, Maurice S. Power,  2008 , 
“Special Issue on the Next Generation Attenuation Project,”  Earthquake Spectra , Vol. 24, No. 1, 
February; Strasser, F. O., Abrahamson, N. A., and Bommer, J. J.,  2009 , “Sigma: Issues, Insights, 
and Challenges,”  Seismological Research Letters , Volume 80, Number 1, pp. 40–56, January/
February; Trifunac, M. D.,  1997 , “Stresses and intermediate frequencies of strong earthquake 
accelerations,” Geofi zika, vol. 14, pp. 1–27. 
17   See Cho, S., et al.,  2006 , “Calibration of Default Bridge-Damage Model,” Appendix K in 
 REDARS 2 Methodology and Software for Seismic Risk Analysis of Highway Systems , by Werner, 
S. D., et al., Buffalo, N.Y.: MCEER under FHWA Contract Number DTFH61-98-C-0094; Graf, 
William P., and Lee, Yajie,  2009 , “Code-Oriented Damage Assessment for Buildings,”  Earthquake 
Spectra , Volume 25, No. 1, February; and Wesson, Robert L., et al., M. D.,  2004 . Losses to single-
family housing from ground motions in the 1994 Northridge, California, earthquake,  Earthquake 
Spectra   20,  No. 3, 1021–1045. 
18   See Rose, A. and S. Liao.  2005 . “Modeling Regional Economic Resilience to Disasters: A 
Computable General Equilibrium Analysis of Water Service Disruptions,”  Journal of Regional 
Science  45(1): 75–112. 
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agreements again can be subjected to questioning even though these additions pro-
vide persuasive reasons for  granting   robust simulation outcomes credibility, at least 
within the state-of-the-practice or state of the art. The issue  of   fi nite samples still 
poses questions about robust simulation results. 

 A different approach to these issues stems from a discussion of successes in the 
application of statistics conjoined with qualitative considerations. This discussion 
contrasts to discussions of failures in Chap.   6    . Successful experiments also provide 
insights into the role statistics can play in advancing knowledge. What follows, 
based on work by D.    Freedman on statistics and R. Harre on experiments, provides 
but a small portion of the vast literature on these topics and topics related to the 
advances in knowledge generally. However, characteristic of these examples is the 
nonlinear character of overall processes of reasoning often initially associated with 
specifi c individuals but in all cases associated with eventual great interest scientifi c 
and/or practical by many people. These cases further illustrate how in nonlinear 
reasoning one does not begin with a solid initial truth whose consequences are 
known fully to everyone. Instead, the early version of a successful theory—if evalu-
ated solely at that moment in terms of its “truth”—will typically be at best a fruitful 
direction but “false” if taken as a fi nal proposition. 

    Freedman 19  uses the following celebrated case studies to illustrate the role that 
fi nite statistics and qualitative consideration play in addressing very signifi cant 
medical issues (with the successes initially defi ned in terms of one investigator in 
spite of the long history before and after each success). Note that Freedman calls the 
cases those involving causal process. 

 The following nine case studies are in sharp contrast to pure data-mining 
activities. 

7.4.1     Case Study: Edwin Jenner’s Discovery that Injection 
of “Cowpox” Could Eliminate or Greatly Diminish 
Smallpox 20  

 Smallpox elimination is often considered an unmitigated success, but it was actually 
a very complex history. Smallpox had arisen maybe in 10000 B.C. and had caused 
a great many epidemics over time. A method called variolation had been discovered 
that led to a reduction in smallpox deaths by a factor of about 10. This method had 
been used by the British and later by George Washington and his forces during the 

19   See Freedman, David A., d.u., “On types of scientifi c inquiry: nine success stories in medical 
research,” in  Oxford Handbook of Political Methodology , pp. 300–318, Janet M. Box-Steffensmeier, 
Henry E. Brady, and David Collier, editors. 
20   References for this discussion come from Wikipedia, “Smallpox,” accessed July 13, 2013; see 
Wikipedia, “History of smallpox,” accessed July 13, 2013; Wikipedia, “Edward Jenner,” accessed 
December 1, 2013; and Riedel, Stefan,  2005 , “Edward Jenner and the history of smallpox and vac-
cination,”  BUMC Proceedings  18:21–25. 
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revolutionary war.  Before   Jenner’s sustained research efforts, cowpox was used by 
English doctors in regions with dairy farms and there were many tales that dairy-
maids were protected from smallpox as a result of having suffered cowpox. 
Benjamin Jesty was among those who had discovered the effi cacy of cowpox in 
eliminating or greatly diminishing smallpox. Against this background, Edward 
Jenner undertook case studies of the use of cowpox, and his fi rst 40 of so case stud-
ies had proven to be successful: the “inoculation” of patients by cowpox had elimi-
nated smallpox. Later studies led to at least one case in which the inoculation had 
only reduced the effects of smallpox. By 1800, Jenner was convinced that inocula-
tion was effective in virtually eliminating deaths by smallpox. Owing to the slow 
testing needed, the British government eventually proscribed the use of “variola-
tion” in lieu of the use of “cowpox” for reducing and eliminating smallpox. Over 
time, Jenner’s procedures were tested on very large populations and their improve-
ment and incorporation in more recent theories of the role of germs in disease, the 
discovery and study of viruses, and the developments of modern immunology. In 
1958, smallpox still thrived in 63 countries. As a result of a comprehensive cam-
paign to eradicate smallpox, by 1977 the World Health Organization had claimed 
that smallpox was eliminated. So,    Jenner’s fi nding conjoined with healthcare plan-
ning and execution has led to date to an unmitigated success, an extremely large 
population no longer suffering from smallpox. However, this may be the only case 
in which a human infectious disease has been completely eradicated. 

  Conclusion/Lesson     Jenner’s discoveries thus comprise a small portion of a much 
longer narrative on the use of cowpox to eliminate smallpox.    Jenner’s discovery 
ultimately competed very successfully in contrast to its competitor, variolation. 
Variolation remained a competitive alternative for many years. Large amounts of 
data have accumulated to indicate that smallpox has been eliminated. This case is as 
close as any of the cases discussed  by   Freedman involving indefi nite progression or 
lawlike outcome from the work of Jenner and his many successors dealing with a 
problem of major social importance.   

7.4.2     Case Study: Ignaz Semmelweis’s Discovery that One 
Could Reduce Infectious Diseases Through Eliminating 
Cadaveric Particle Cleansing 21  

 Serving as a professor’s assistant in a clinic where both autopsies were performed 
and births occurred,    Semmelweis noted that in one ward the fatality rate for women 
bearing children was much higher than in another. In effect women were dying at 

21   References for this discussion come from Wikipedia, “Semmelwise refl ex,” accessed December 
2, 2013; Wikipedia, “Ignaz semmelwise,” accessed December 2, 2013; and Robinson, Victor, 
 1912 , “Pathfi nds in Medicine: Semmelwise, the Obstetrician,”  Medical Review of Reviews ,  18 , 
232–245. 
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high rates for childbirth fever, called then “puerperal fever” and now “sepsis.” Over 
time, he tried various prior theories that did not seem to apply to the discrepancy in 
fatality rates between the two wards: milk, local suppression, a gastric-bilious dis-
turbance, peritonitis, being unmarried, and miasma (or “ill winds” from poor air 
ventilation). The disease was deemed to arise from poisonous gases from swamps, 
garbage pits, open graves, and rotting organic matter.    Semmelweis noted that in one 
room students performed the birthing assistance, whereas in the other room mid-
wives performed this assistance. Maintaining careful statistics, Semmelweis noted 
that women giving births out of doors had lower fatality rates. Over time, he decided 
to try disinfecting hands with a solution of chlorinated lime. Results in the ward 
with high fatality rates supported this hypothesis. He hypothesized that the cause of 
the high fatality rates was the absorption of putrid matter from a living organism or 
cadaver, producing a pyemic blood dissolution. The bacteria in the group 
 Streptococcus pyogenes  that caused the infection were identifi ed only afterward. 
The theory of the role of germs in causing disease had not yet been accepted and 
studies of viruses and immunology did not at the time provide a theoretical under-
pinning of Semmelweis’s results. As a consequence, in Europe his results were 
savagely opposed and this opposition has led to the “Semmelweis refl ex.” In 
England, a theory of “miasma,” a theory of contagion, was at that time thought to 
have the same result as Semmelweis’s theory. Thus, it was not until later that 
Semmelweis’s antiseptic approach was accepted. 

  Conclusion/Lesson     Once  again   Freedman is discussing an issue of major social 
importance. Again, the theoretical underpinnings of the views discovered by 
Semmelweis were not known until work by many in later investigations. Once 
again, there is opposition.       Semmelweis’s fi ndings indicate how successful inquiry 
in statistics can be extremely nonlinear. Competitive hypotheses and theories per-
sisted until the germ theory overcame its own objections and became a theory 
explaining Semmelweis’s fi ndings.   

7.4.3     Case Study: John Snow’s Discovery that an Infectious 
Disease Can Be Prevented by Cleaning Up the Water 
Supply System 22  

 Making discoveries from the cholera epidemic that began in 1849,  John   Snow too 
found his discoveries to be opposed by supporters of the miasma theory. As with 
Semmelweis’s theories  and   Jenner’s discoveries, Snow was opposed in his lifetime 
but later was vindicated by history. 

22   References for this discussion come from Wikipedia, “John Snow (physician),” accessed 
December 3, 2013; Vachon, David,  2005 , “Doctor John Snow Blames Water Pollution for Cholera 
Epidemic,”  Old News  16 (8), 8–10, May and June; UCLA [1], “Competing Theories of Cholera,” 
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 Starting from detailed studies of this epidemic,    Snow discounted the miasma 
theory as an explanation: deaths should have developed for miners, those in a work-
house, and those working in a local brewery. Instead, very detailed studies led Snow 
to fi nd that of the fi rst 83 deaths, 73 had died near a water pump that drew water 
from the Thames. Starting with these fi rst fi ndings, Snow’s discoveries were very 
nonlinear. The initial evaluation of the pump indicated that the sewage line was well 
below the pump and the pump lining was intact. Water samples from the pump were 
microscopically compared with samples from elsewhere, yet no differences were 
disclosed. 

 Later data indicated 197 deaths, all within a 3 min walk of the pump. In 1854 at 
the outset of the outbreak, an infant’s diapers had been dumped into a drain 32 in. 
from the pump well, and the infant had died from diarrhea. Changing the pump 
handle had apparently removed the local cholera problem. However, it appears that 
the real cause was the change of an intake pipe at the water company serving the 
pump. And it is only  after   Snow died that the Italian Fillipo Pacini had made histo-
logical examinations of intestinal mucosa and had discovered a bacillus that had 
caused cholera. Thus, later historical developments in histological data and germ 
theory had obviated many of the objections to Snow’s statistical interpretations. 

  Conclusion/Lesson     Again, these fi ndings comprise a major historical narrative 
that lives well beyond the inchoate and opposed fi ndings of the investigator, here 
 John   Snow. Again, the theoretical underpinnings of his theory were not yet well 
developed. Data mining based on erroneous theoretical underpinnings can be very 
fl awed.   

7.4.4     Case Study: Christiaan Eijkman’s Discovery that Diet 
Defi ciencies (Thiamine) Resulted in Beriberi 23  

 Among his many researches,    Eijkman’s most famous work came as a result of his 
studying beriberi, “a disease of the peripheral nerves” in Indonesia/Dutch East 
Indies. Alternative hypothesis for the cause of beriberi had been blood contamina-
tion, respiratory metabolism, perspiration, or seasonal or temperature variation. 
Several of Eijkman’s experiments with rabbits, monkeys, and chickens provided no 
insight into causes of beriberi. 

 By accident, Eijkman had discovered that some chickens used in his laboratory 
had symptoms of beriberi when their feed had been leftover rice from military 
rations but had no such symptoms when they are fed military rice. The causative 

 www.ucla.edu/snow/fatherofepidemiology.hyml , accessed December 3, 2013; and UCLA [2], 
“Who fi rst discovered cholera?,”  www.ucla.edu/snow/fatherofepidemiology.hyml 
23   References for this discussion come from Wikipedia, “Christiaan Eijkman,” accessed December 
4, 2013; Wikipedia, “Beriberi,” accessed December 4, 2013; BetterMedicine, “Beriberi,”  http://
www.localhealth.com/article/beriberi ; and Medicine Plus, “Beriberi,”  http://www.nih.gov//med-
cineplus/article/000339.htm 
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feed was polished rice—rice with its husk removed in order to extend its lifespan, 
as opposed to the unpolished rice. Eventually it was discovered that the missing 
compound was vitamin B1 or thiamine. Later investigations have found that alcohol 
can inhibit the body’s ability to absorb thiamine. Wet beriberi is now described as 
beriberi affecting the cardiovascular system, in contrast to the dry beriberi that 
affects the nervous system. Infantile beriberi can occur when the nursing mother is 
lacking in thiamine. Genetic beriberi is a rare condition in which people lose the 
ability to absorb thiamine from foods. 

  Conclusion/Lesson     The nonlinearity  of   Eijkman’s discovery and subsequent 
developments is shown in how the terms become modifi ed in the process of discov-
ery. The initial discovery confounded two terms: the “beriberi” that he was address-
ing was the “dry beriberi” and not “wet beriberi.” The element that caused the dry 
beriberi was named “thiamine.” Multiple sources of the dietary defi ciency came out 
after Eijkman’s work. As with other cases cited, the success is derived for his 
dogged inquiry to solve a problem of major importance, a dogged inquiry that led to 
fi ndings that could be used by others as a viable starting point.   

7.4.5     Case Study: Joseph Goldberger’s Discovery that Diet 
Defi ciencies (Niacin, Vitamin B3) Led to Pellagra 24  

 Pellagra was identifi ed in among Spanish peasants in Spain. It was though conclu-
sively distinguished from leprosy in 1907. Between 1907 and 1940, approximately 
100,000 people died chiefl y in southern US states. In 1914,    Goldberger was asked 
by the US surgeon general to investigate pellagra, an endemic disease in the south-
ern USA. Previously held opinions stressed how pellagra was regarded as an infec-
tious disease. However, Goldberger found that germs did not explain the disease. In 
mental hospitals and orphanages, inmates and orphans contracted the disease, but 
the staff never did. Goldberger than developed an experiment with a sample of two 
orphans and inmates of a mental asylum. Those fed a diet of fresh meat, milk, and 
vegetables did not contract pellagra, whereas those fed a corn-based diet did con-
tract the disease. Goldberger surmised that diet not germs caused the disease. Then 
Goldberger developed a small-sample experiment on 11 healthy volunteer prison-
ers, who were fed a corn-based diet. Six of these contracted pellagra after 5 months. 
When fed a normal diet, the pellagra vanished. Still unconvinced, Goldberger, his 
wife, and an assistant experimented on themselves to derive the same conclusion. 
Enraged southerners including a South Carolina congressman opposed Goldberger’s 

24   References for this discussion come from Kraut, Alan M., “Dr. Joseph Goldberger & the War 
on Pellegra,”  http://history.nih.gov/exhibits/goldberger/index.html ; Diet.com,” Goldberger, 
Joseph,”  http://www.diet.com/g/goldberger.joseph ; Wikipedia, “Joseph Goldberger,” accessed 
December 5, 2013; and Wikipedia, “Pellegra,” accessed December 5, 2013. 
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conclusions. Before he died in 1929, Goldberger thought that vitamin B was the 
defi cient element in the diet. 

 After Goldberger died, Conrad Elvehjem discovered the more specifi c cause was 
the dietary lack of the B vitamin niacin along with reduced levels of the essential 
amino acid tryptophan. Further discoveries included possible excessive intake of 
leucine, possible alterations in protein metabolism in disorders of such as carcinoid 
syndrome, and a defi ciency in the amino acid lysine that leads to a defi ciency in 
niacin. North American Indians had “nixtamalized” maize and so had avoided the 
niacin defi ciency. Nixtamalization is the treatment of the grain with lime and an 
alkali and has been shown to make niacin available in corn. Pellagra is common in 
Africa, Indonesia, North Korea, and China, and the majority of patients are poor, 
homeless, alcohol dependent, or psychiatric patients who refuse food. This century 
there have been outbreaks in Angola, Zimbabwe, and Nepal. 

  Conclusion/Lesson     As with the other cases, the discovery that diet in contrast to 
germs was responsible for pellagra is part of a longer and ongoing historical narra-
tive that fi lls in many of the details about causes of pellagra and its sources related 
to niacin defi ciency in diet. Goldberger’s discoveries comprise a major stage in this 
longer narrative, a major stage that had it not led to further inquiries could have been 
very misleading.   

7.4.6     Case Study: Frederick McKay’s Discovery that Led 
to the Use of Fluoride in Water Systems 25  

 In the nineteenth century, a German, Carl Erhardt, had recommended potassium 
fl uoride supplements to reduce tooth decay and the British James Crichton-Borwne 
had proposed the reintroduction of fl uoride into the diet for similar reasons. From 
1901 to 1933, Frederick McKay undertook studies of the brown-stained teeth (fl uo-
rosis) in such locations as Colorado Springs, CO, Oakley, ID, and Bauxite, AK. In 
the course of these studies, by 1917 McKay and colleagues accidentally found that 
lower rates of tooth decay were concomitant with brown-stained teeth. McKay had 
tested water samples but had found no difference in the water in these communities. 
In 1931, H.V. Churchill had used a more refi ned procedure, photospectographic 

25   References for this discussion come from Wikipedia, “History of water fl uoridation,” accessed 
December 6, 2013; Wikipedia, “Water fl uoridation,” accessed December 6, 2013; The Savvy 
Sister, “Dr. McKay fl uoride,” accessed December 6, 2013; William James Maloney and Maura 
Maloney,  2009 , “Dr. Frederick McKay: Father of Communal Fluoridation,”  Journal 
of the Massachusetts Dental Society , vol. 58/no 1., Spring; Gower, Timothy,  2002 , “A History 
of Fluoride,” in  Prevention ,  http://www.prevention.com ; Medical Discovery, “Trustworthy 
Endodontist,”  http://www.discoveriesinmedicine.com/Enz-Ho/Fluoride-Treatment-Dental.html , 
accessed December 6, 2013; and NIH, National Institute of Dental and craniofacial Research, “The 
Story of fl uoridation,”  http://nider.nih.gov/OralHealth/Topics/Fluoride/TheStoryofFluoridation.
htm 
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analysis, and had found fl uoride in the water samples. H. Trendley Dean at NIH 
began epidemiological studies of fl uorosis. From 1933 to 1945, a Danish investiga-
tor Kaj Roholm that detailed some negative features of fl uoride: bone disease, skin 
lesions, and mortality. But 1939, Gerald J. Cox had performed a study of the use of 
fl uoride in rats and had concluded that their teeth were healthier. By 1942 an NIH 
study of 30,000 schoolchildren indicated that 1 ppm of fl uoride in water was enough 
to minimize tooth decay yet not cause fl uorosis. In 1945, Grand Rapids MI under-
took a fl uoridation program for its water system, and by 1956 a case study of 6000 
schoolchildren was available. This epidemiological study indicated the water fl uori-
dation reduced tooth decay by 2/3rds, a ratio higher than the 10–25 % reduction 
now estimated, with a range of −5 % to 64 % depending on circumstances. 

 Many scientifi c and social activities have been undertaken since these early stud-
ies. Now, for instance, it is known that there are many sources of fl uoride along with 
fl uoridation of water: natural water fl uoridation in some cases, toothpaste, some air 
pollution, tea leaves, barley, and so on. In Sichuan, China, for instance, food is the 
main source of fl uoride. Tolerable levels have been variously stated, possible at 0.01 
mg/day for infants 6 months or less up to 0.1 mg/day for those 19 and above. 
Detailed chemical analysis of cavities has described how fl uoride does not prevent 
but instead controls the rate at which cavities develop. Finland and Germany have 
stopped water fl uoridation without increasing tooth decay rates. Yet, in many cir-
cumstances, water fl uoridation is still regarded as being scientifi cally a sound 
method for reducing tooth decay. 

  Conclusion/Lesson     Frederick McKay’s discoveries comprise part of a long his-
torical narrative that continues to have some degree of controversy long after his 
death. The many sources of fl uoride along with issues pertaining to its safe limits 
have been discussed and continue to be discussed even today.   

7.4.7     Case Study: Alexander Fleming’s Discovery of the Mold 
Penicillin 26  

 Before Fleming discovered a penicillin mold in 1928, many ancient cultures includ-
ing Greeks and Chinese had used molds and other plants to treat infection and Serbs 
and Greeks used moldy bread as a traditional treatment for wounds and infections. 
In 1875, John Tyndall had described the antibiotic effects of  Penicillium  and in 
1925, D. A. Gratia had done the same. Others having initial insights included 
Joaquim Caminhoa in Brazil, Vincenzo Tierio in Naples, Clodomioro Picado Twight 
in Costa Rica, and Ernest Duchesne. 

26   References for this discussion come from Wikipedia, “Alexander Fleming,” accessed December 
7, 2013; Bio, “Alexander Fleming biography, synopsis,”  http://www.biography.com/print/profi le/
alexander-fl eming-9296894l ; New World Encyclopedia, “Alexander Fleming,”  http://www.new-
worldencyclopedia/org/entry/Alexander_Flemingl ; and Wikipedia, “Penicillin,” accessed 
December 7, 2013. 
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    Fleming himself had found the antiseptics used in World War I to be ineffective 
because they dealt only with the surface infections. By accident after a vacation, 
Fleming noticed that one culture in his lab was contaminated with a fungus and that 
the colonies of  staphylococci  that had immediately surrounded it had been destroyed, 
unlike what happened in colonies farther away. The rare variant may have drifted 
from one fl oor below. He thought that he had discovered an enzyme but later called 
it a mold juice, named penicillin. Fleming was the fi rst to isolate  Penicillium  and 
take it seriously. It turned out to be the fi rst successful antibiotic. 

 But for some time he regarded its action to be slow and also short lasting and so 
ineffective for killing bacteria effectively. His clinical tests were inconclusive. Some 
later tests were more promising, but by 1939 the testing was taken up at Oxford by 
Howard Florey and Ernest Chaine, who stressed researching, isolating, and mass 
producing it. 

 Being regarded by some as one of the major medical discoveries of the last mil-
lennium, penicillin has been used for previously such serious diseases as syphilis 
and infections caused by staphylococci and streptococci. Millions of people may 
have been saved. Adverse effects have since been identifi ed as has its correct struc-
ture and also its chemical mechanism of action. Numerous practitioners have played 
major roles in its development and successes. Yet, many types of bacteria have 
become resistant. 

  Conclusion/Lesson     The historical narrative associated with Fleming’s discovery 
contains an even more interesting consequence: dealing with bacteria reduces the 
changes that the penicillin vaccination will be sound indefi nitely. The statistics and 
fi ndings provided at one stage may prove to be very misleading as the bacteria pro-
duce defensive mechanisms for survival.   

7.4.8     Case Study: Norman Gregg’s Discovery that Exposure 
to German Measles in Early Pregnancy Led to More 
Infants with Cataracts and Heart Defects 27  

 German or 3-day measles (rubella) had been described in the eighteenth century by 
Frederick Hoffman and considered a disease distinct from both measles and scarlet 
fever by George de Maton in the early nineteenth century. In the 1940s there was a 
sever outbreak of rubella in Australia.  Norman   Gregg began working on the issue of 

27   References for this discussion come from Wikipedia, “Norman Gregg,” accessed December 8, 
2013; Wikipedia, “Rubella,” accessed December 8, 2013; Forrest, Jill M., Fiona M. Turnbull, Gary 
M. Sholler, Richard E. Hawker, Frank J. Martin, Margaret A. Burgess, and Trevor T. Doran,  2002 , 
“Gregg’s congenital rubella patients 760 years later,”  Med. J. Aust ., 177(11), 664–667; Dunn, 
P. M.,  2007 , “Perinatal lessons from the past: Sir Norman Gregg, ChM, MC, of Sidney (1892–
1966) and rubella embryopathy,”  Arch dis child Fetal Neonatal Ed , 092: F513-514; and Louisiana 
Offi ce of Public Health, Infectious Disease Epidemiology Section, 2012, “Rubella,” July 2, 2012, 
 www.infectiousdisease.dhh.louisiana.gov 
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problems in birth defects; the widely held assumption was that all such problems 
were genetic, not environmental. Gregg studied 78 children with congenital cata-
racts and found that 68 had been exposed to rubella in utero. Gregg and others 
continued these investigations and found that congenital defects included mental 
retardation, thrombocytopenic purpura, hepatitis, bone lesions, and meningoen-
cephalitis were manifestations of the disease. 

 Later investigations have indicated that mothers infected with rubella within the 
fi rst 20 weeks of pregnancy are especially susceptible to having infants die or have 
congenital problems. These include cardiac, cerebral, ophthalmic, and auditory 
defects and other possible defects. By 1961 investigators had isolated the virus 
RNA, toga virus genus  Rubivirus , which is capable of crossing the placenta and 
infecting the fetus where it sops cells from developing or destroys them. In the 
1964–1965 US epidemic of rubella, there were no fewer than 20,000 cases of con-
genital cataract. By 1969 a live attenuated  Rubella  virus vaccine had been devel-
oped. Since 1983 fewer than 1000 cases per year were reported in the USA. Later 
studies at the start of this century detailed the results of congenital rubella on those 
who had been studied by Gregg 60 years earlier. Ten had died and 32 were among 
those who volunteered for the study. Diabetes, thyroid disorders, early menopause, 
and osteoporosis had increased compared with the Australian population. Thus, 
Gregg’s discovery along with later methods of prevention have greatly reduced the 
incidents of rubella and its adverse consequences. 

  Conclusion/Lesson     Here again, the historical narrative of the discovery implies a 
change in what can count as a “cause” in congenital defects. And again, the medical 
profession has greatly advanced on the work of Gregg and his colleagues.   

7.4.9     Case Study Arthur Herbst’s Discovery that an Artifi cial 
Hormone Led to Adenocarcinoma in Adolescent Girls 

 In the late 1930s and early 1940s, obstetricians treated diffi cult pregnancies some-
times with a new wonder drug—diethylstilbestrol (DES), marketed by many com-
panies. This is a nonsteroidal synthetic estrogen. The FDA had approved DES in 
1940. When DES was suspected of causing cancer in the vagina, this was thought to 
be rare, and only for women over 50. Instead, from 1966 to 1969, seven girls rang-
ing from 15 to 22 years of age from New England were found to have clear cell 
adenocarcinoma (CCA), and in 1969 another case arose for a 20-year-old patient in 
another Boston hospital. The clustering of cases led to considerable data gathering 
in order to identify why this clustering had occurred. Seven of the eight mothers 
volunteered that they had had stilbestrol in the fi rst trimester of pregnancy; the other 
mother had been delivered in a private setting. Between 1946 and 1951 about 14,500 
births were evaluated in one of the hospitals which had 675 cases in which stilbes-
trol was prescribed. Thus, a low ratio of women bearing children during this period 
had been treated with stilbestrol. 
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 In April 22, 1971,  Arthur   Herbst and colleagues had written an article about how 
DES in mothers led to this carcinoma in their daughters. In 1971, the FDA rescinded 
its approval of DES. This discovery pushed medical research in the direction of 
studying prenatal environmental disruptor exposures to what had happened in the 
womb. For instance, vaginal cytology does not diagnose this carcinoma. Instead 
vaginal examination is required. Herbst’s fi nding has led to many animal experi-
ments dealing with the mechanisms of transplacental carcinogenesis and effects of 
exogenous hormones on the developing embryo. Third-generation effects have been 
studied, along with ways of educating the public and managing cases. Lawsuits 
against drug companies originally marketing DES have not proven to be effective. 

  Conclusion/Lesson     This study begins with the approval of a drug that proves later 
to be harmful, an example of iatrogenics. It is not the “environment” or “genetics” 
that proves to be the source of vaginal cancer in young women but instead a drug 
used to assist their mothers in childbirth. As a consequence  of   Herbst’s discoveries, 
many further fi ndings have covered not only how other populations can have these 
cancers but also how to manage and treat those impacted by related health 
problems.    

7.5     Lessons Learned from Complex Problem-Solving 

 In examining such cases of problem-solving, Freedman draws the following 
conclusions:

•    The power of quantitative methods and good research design are important.  
•   Substantial progress derives from informal reasoning and qualitative insights.  
•   Recognizing anomalies is important.  
•   Investigators should have the ability to capitalize on accidents.  
•   Progress may require refuting conventional ideas if they are wrong and develop-

ing new ideas that are better and testing both new and old ideas. For instance, 
theories underpinning Semmelweis’s discoveries had not yet validated his 
approach in spite of the data he had collected to establish his view.  

•   Given the nonlinearity of fi ndings, the overly standardized use of statistics—with 
the appearance of rigor—can have negative impacts, such as missing insights 
developed through the use of fi nite numbers of carefully considered cases and 
failing to recognize determinants that have been ruled out in current prevailing 
models.    

  Amplifying   Freedman’s remarks, these cases of the successful use of fi nite sta-
tistics along with qualitative considerations show how:

•    Sound but unfi nished statistical and qualitative reasoning can become part of a 
longer major nonlinear historical narrative that responds to many issues in the 
understanding, clarifi cation, and treatment of major health problems.  
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•   During this longer and nonlinear historical narrative, there is opposition and at a 
minimum competition to the original insights mentioned.  

•   Thus, later developments become extremely important in these historical narra-
tives; the fi ndings do not stand by themselves, but their value or truth lies in their 
being taken up and augmented through further inquiry and practice.    

 In these case studies, data are used for further confi rmation of fi ndings derived 
through the application of problem-solving techniques (the use of intelligence, both 
qualitative and quantitative). But as the case of Semmelweis shows, data alone do 
not fully confi rm these derivations. As Taleb has said,

  [p]eople are under the illusion that “science” means more data.…The more data…the more 
false information…The more data…the more correlations. 28  

   At the same time, the investigators referenced above typically require further 
data to support and clarify their fi ndings. Still, with only a fi nite amount of data 
available, there is always the strong possibility that the general discoveries will need 
to be qualifi ed for some people or in some contexts. 

 Case studies of experiments can bring out similar fi ndings. In Harre’s account of 
20 very famous experiments, made by  investigators   Aristotle and Theodoric of 
Freiburg to Pasteur and Faraday, we see the importance of treating experiments as 
steps in larger scientifi c programs. These experiments tend to add clarity to “vaguely 
delineating subject matter” of great importance in research. The qualitative nature 
of fi ndings is supplemented by series of experiments that are not “isolated events 
that stand by themselves.” 29   

7.6     Summary of Robust Simulation and Nonlinear 
Reasoning 

 Flexible mathematical tools are equipped to evaluate the acceptability of hypotheses 
and fi ts of data to diverse distributions. These tools, along with huge advances in 
information technology (IT), help greatly when dealing with multiple models, 
methods, approaches, processes, and strategies. From the standpoint of calculation, 
   robust simulation supersedes the use of variance,    confi dence intervals, and other 
methods that have been used to  develop   uncertainty estimates. Confi dence intervals 
and estimates of variance can vanish for Gaussian distributions and can wobble for 
extreme value distributions. 

 Robust simulation requires, moreover, intelligence applied to problems at hand. 
This intelligence heavily depends on piggybacking off a legacy of advances in 
diverse disciplines. A community of investigators is required along with competi-

28   From pp. 128, 416, and 417 in  Taleb, Nassim, 2012, op. cit.; similar remarks are found on p. 13, 
Freedman, op cit. 
29   From pp. 4, 5, Harre, Rom,  1983 ,  Great Scientifi c Experiments :  Twenty Experiments that 
Changed our View of the World , Oxford: Oxford University Press, pp. 4, 5. 
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tion among these investigators on matters of major social and economic 
importance. 

 This competition will lead to an improvement in models used, but not necessarily 
 to   convergence among any reasonable alternative approaches. Case studies in suc-
cessful applications of statistics relative to fi eld and/or experimental data can clarify 
that huge data samples may be helpful but are often not required to develop ade-
quate statistical fi ndings. The long historical narrative for major discoveries and 
their adumbration provides an explanation as to how competition is very common 
and needed during this long narrative. In most of the cases cited, this narrative is still 
ongoing. One expects far less than the full truth to be the starting point. 

 For instance,  David   Freedman gives a number of illustrations as to how fi nite and 
careful sampling can  play a key role  in developing broad solutions to critical prob-
lems—especially when this sampling is combined with different applications of 
intelligence that considers anomalies, modifi cation of traditional views, serendipi-
tous results, and even the application of a wide range of tools to solve problems. 
Success in these cases is defi ned in terms of achieving goals for a signifi cant popula-
tion, but it would be premature that success in these cases goes on forever. 

 In addition, R. Harre provides a similar account of great experiments. These 
cases arise in which there are major problems that need to be addressed, and the 
issue is not merely reaching the “truth” but also providing a broader solution to 
these problems. Samples are used to confi rm and on occasion to discover the solu-
tion, but the active mind is required to deal with an array of modifi cations of previ-
ous results that have not provided the needed solution. Anomalies may prove to be 
important. Serendipitous results may be important. Modifying conventional views 
may be needed. Viewing cases of successes in statistics and experimentation pro-
vides insight into the limitations of extreme skepticism, which, while it may be true 
in the absolute, does not assist when one is trying to provide broader solutions to 
currently unsolved problems. Solutions are known by how much and how well they 
can account for a broad range of consequences.     
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Chapter 8
Modern Thinking, Ensembles, and the  
“So What” Question

The mountain trees invite their own cutting down; lamp oil 
invites its own burning up. Cinnamon bark can be eaten; 
therefore the tree is cut down. Lacquer can be used; there the 
tree is scrapped. All men know the utility of useful things; but 
they do not know the utility of futility. (p. 135 in Laotse, The 
Wisdom of Laotse, translated by Lin Yutang, New York: the 
Modern Library, first edition, 1948)

All things are exchangeable for fire and fire for all things, like 
gold for goods and goods for gold, or so sings old. (From 
“Herakleitos,” pp. 6–7 in Eight Objects, by Robert Bringhurst, 
San Francisco: the Kanchenjunga Press, 1975)

Abstract This chapter asks the “so what” question: even if one assumes that robust 
simulation and nonlinear reasoning assist in helping us to understand a variety of 
phenomena, how does this help in making decisions on risk evaluations as they 
impact complex systems? The chapter begins with a discussion of the very large 
number or even in some cases the plethora of qualitative criteria that may be used in 
major decisions. These pertain to social, political, efficiency, effectiveness, techni-
cal, administrative, aesthetic, equity, legal, regulatory, safety, cultural, organization, 
medical, and educational criteria, to mention a few. On the quantitative side, pro-
spective criteria include benefit-cost, least total mean cost, mean and variance, and 
additional dynamic financial analysis procedures such as stochastic dominance, 
almost stochastic dominance, real options, the principle of least regret, and big bet 
or variability-reduction methods. Given robust simulation outcomes, these may pro-
duce diverse results that decision-makers may use. The consideration at present as 
to which quantitative methods are superior remains under study.
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8.1  Introduction: Managing Expectations, Qualitative 
Considerations, and Quantitative Decision Procedures

The previous chapters are intended to show a shift in mega-risk studies from a 
single- solution approach to one that can yield an ensemble of risk estimates. 
However, the “so what?” question remains. This chapter outlines only very briefly 
(a) some of the very qualitative features in decision-making and (b) some key quan-
titative decision procedures that deserve to be explored when decision-makers are 
faced with an ensemble of risk estimates.

For a great many decisions pertaining to mega-risks, the answers may be rela-
tively easy. These are decisions that might have immediate or obvious widespread 
benefits. However, for major decisions, there may be significant downsides as well 
as upsides, and the decisions may require more deliberation. No single criterion 
may simply provide the answer. The approach to decision-making in such cases is 
supported by, for instance, views of Baruch Fischhoff and others in which compli-
cated acceptable risk decisions may have many recommendations but no single cri-
terion that provides the answer in all cases.1 In his Reason and the Common Good, 
Arthur E. Murphy maintains a more reflective view opposed to the:

parochial dogmatism which arises from an identification of local orthodoxies with universal 
truth, and a consequent inability to do justice to these moral insights or ideas that fall out-
side the limits of accredited preconceptions and linguistic properties.2

Abjuring simple solutions to complex decision issues, James D. Wallace pro-
vides a nonlinear account of reasoning that involves moral or valuation conflicts: 
“Efforts to solve moral relevance and conflict inevitably change morality.”3

In view of these mature views of reasoning about risks, the common good, and 
moral or decision conflicts, this chapter does not purport to arrive at a single crite-
rion for mega-risk decision-making. Instead, this chapter begins with a very brief 
account of the systems and many qualitative considerations involved in mega-risk 
decisions. Afterward, there is an account of some prominent quantitative decision 
procedures that can and have been used in mega-risk decisions.

1 See Fischhoff, Baruch, Sarah Lichtenstein, Paul Slovic, Stephen L. Derby, and Ralph L. Keeney, 
Acceptable Risk, 1981, Cambridge: Cambridge University Press.
2 From p. 33 in Murphy, Arthur E., 1963, Reason and the common good: selected essay of Arthur 
E. Murphy, edited by William H. Hay, Marcus G. Singer, and Arthur E. Murphy, Englewood Cliffs, 
N. J.: Prentice-Hall, Inc.
3 From Wallace, James D., 1988, Moral Relevance and Moral Conflict, Ithaca, N. Y.: Cornell 
University Press
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8.2  Complex Systems Implicated in Mega-Risks 
and a Sample of Qualitative Decision Considerations

Since mega-risks involve social losses and their ameliorations often require social 
costs, these risks cover numerous potential systems including those that are politi-
cal, legal, social, cultural, religious, administrative, organizational, environmental, 
medical, technological, scientific, educational, and regulatory. Some subject matters 
appear to have predominantly qualitative approaches: poetry, painting, short stories, 
novels, rhetoric, and lawyering.

Yet, the major problem addressed in these essays is the emergence of multiple inter-
pretations of the technical or risk findings, findings that can come from scientific, engi-
neering, economic, financial, and other quantitative studies. This emergence is different 
from the view that in qualitative areas, there should ultimately be a convergence in 
outcomes, so that decision-makers need only to consider one set of risk profiles. Most 
studies, especially those with fewer resources for development, are likely to contain 
such single solutions—along with suitable caveats. However, robust simulation (and 
during most periods nonlinear research issues) has multiple solutions that decision-
makers must address. With robust simulation, one cannot properly say, for instance, 
“Here is the 90th centile confidence interval for losses.” Confidence intervals vanish “in 
the cloud” as the number of simulations increase—as long as the distributions in ques-
tion have finite variances (alternatively, those supporting alpha distributions and other 
extreme value distributions will be imposing on the data their supposed centile esti-
mates with very different meanings from those traditionally deployed.)

8.3  Quantitative Decision Procedures of Interest

First deterministic quantitative decision procedures are discussed. Of special inter-
est is the minimax or principle of least regret. Second, a variety of stochastic deci-
sion procedures are discussed. These include those stressing arithmetic means (e.g., 
benefit-cost, least total mean cost), those stressing as well statistical variances (e.g., 
mean-variance procedures), those stressing entire loss (or loss and gain) distribu-
tions (e.g., stochastic dominance, almost stochastic dominance), and those stressing 
hedging techniques (e.g., real options). Quantitative presentations focus on major 
outlines of these methods. Full-scale applications to robust simulation techniques 
require research beyond these essays.

8.3.1  Deterministic Quantitative Decision Procedures 
of Interest

Beginning at least early in the twentieth century, deterministic decision procedures 
became of great interest. These assume that one is deciding among known alterna-
tives. Deterministic decision procedures include the principle of dominance, the 
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maximin principle, the minimax principle or principle of least regret, and the 
 combined minimax and maximin principle (or the optimism-pessimism principle).4

One major issue with respect to deterministic decision procedures is how to han-
dle initial outlays. Relative to prospective disasters, deterministic procedures are 
basically procedures used without respect to probabilities Mega-risk scenarios are 
not certain. Decision alternatives may have fairly certain costs or initial outlays, but 
not certain benefits. So, one way to add initial outlays to downstream losses is first 
of all to treat both in terms of constant dollar values. This, however, does not solve 
the entire major issue inasmuch as the mega-risk scenarios postulated may not 
occur. Moreover, even if one uses constant dollar values to express losses, losses 
that occur downstream are subjected in economic terms to discounting. Discount 
rates are, say, 4 % for federal projects and may be slightly higher for local munici-
palities and private utilities. (Note that until recently, these discount rates were 7 %. 
However, current discount rates used are roughly the average difference between 
government bonds and inflation.5) Nonetheless, downstream losses are not—with-
out discounting—directly commensurable with initial outlays.

Deterministic procedures are discussed first with emphasis on the mini-max or 
“principle of least regret”. According to Luce and Raiffa (1957, p. 2), John von 
Neumann apparently held that the minimax theorem is necessary for the theory of 
games (a slightly different topic but a large subject matter).6 According to NASA, 
because of its “worst-case” feature, this rule had found some application in military 
systems.7 According to Kleindorfer et al. this is a widely used principle.8 In man-
agement theory, James March and others have found that many administrators use 
such a principle.9 Of special interest to these essays is that the minimax principle 
has been used in some climate change literature including some of the pioneering 
work on robust simulation in a 100-year economic forecasting.10

4 A very satisfactory account of these and other deterministic principles is found in Resnick, 
Michael D., 1987, Choices: An Introduction to Decision Theory, Minneapolis: University of 
Minnesota Press.
5 Rose, Adam, et al., 2007, “Benefit-Cost Analysis of FEMA Hazard Mitigation Grants,” Natural 
Hazards Review, November. The use of a discount rate of slightly above 2 % is found in Lempert, 
R. J., Popper, S. W., and Bankes, S. C., 2003, Shaping the Next One Hundred Years: New Methods  
for Quantitative, Long-Term Policy Analysis, Santa Monica, CA: RAND.
6 See p. 2 in Luce, R. Duncan and Howard Raiffa, 1957, Games and Decisions: Introduction and 
Critical Survey, New York: Dover Publications, Inc.
7 See p. 77, National Aeronautical and Space Administration (NASA), 1995, NASA Systems 
Engineering Handbook, Washington D. C.: NASA.
8 See p. 153ff. in Kleindorfer, Paul R., Howard C. Kunreuther, and Paul J. H. Shoemaker, 1993, 
Decision Sciences: An Integrative Perspective, New York: Cambridge University Press.
9 In March, James G., 1988, Decisions and Organizations, Oxford: Basil Blackwell Ltd., James 
March and others have found that many administrators use such of principle.
10 See the American Society of Civil Engineers (ASCE), Committee on Adaptation to a Changing 
Climate (CACC), 2013, Bridging the Gap between Climate change Science and Civil Engineering 
Practice, edited by J. Rolf Olsen, with many contributing authors, review draft, 2013. This draft 
builds on, for instance, Lempert, R. J. et al., 2003, op.cit., and Lempert, R. J, Groves, D. G., 
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One set of quantitative procedures to characterize the minimax principle is as 
follows with reference principally to monetary measures:

Let A1, A2, …,Ambe m seismic decision alternatives with S1representing the baseline 
or status quo. Associated with each seismic decision alternative is a marginal 
cost C1, C2,…, Cn, respectively. The marginal cost represents the present value of 
the proposed upgrade or upgrades for the decision alternative. For many pur-
poses, this can be called the initial outlay. For other purposes, maintenance 
costs will be critical. Note that C1 = 0 for the baseline or status quo.

Let Si1, Si2,… Sij, …, Sinbe n system states (simulations) defined for alternative Ai. In 
a matrix of alternatives and system states, Sij will be the system loss for the ith 
row (or alternative) and the jth column (or scenario simulation, typically called 
“state” or “system state”).

For these reasons, it is essential to add a scenario—no costs. On this scenario, the 
total costs are merely the initial outlays, namely, C1, C2, …, Cn, respectively. 
Within the time horizon for decision-making, this may or may not be a plau-
sible assumption.

For this purpose, we shall let

 S C Syy
′ = +  (8.1)

where Sy
′ is the system state for Alternative A that considers the initial outlays.

In effect, for each of the decision alternatives, one needs to pick a plausible least 
dollar loss scenario within the time horizon in question and add this least cost sce-
nario to the cost for the decision alternative. One could use stochastic methods in 
order to derive a least loss scenario for the time horizon used. Alternatively, one 
may assume more simply that zero is the least loss scenario for the time horizon.

This requirement that there be a zero loss scenario within the time frame of 
decision-making follows that dictum for potential disasters: “certain costs but 
uncertain benefits.” This dictum emphasizes that costs of the seismic decision alter-
natives are by and large certain (to the extent that construction and other costs are 
certain), whereas benefits may range from very large to none at all.

For example, according to Table 8.1, there are four scenarios (simulations, sys-
tem states) selected, and total system losses (including initial outlays) for alternative 
A1 have a maximum of $9M, whereas total system losses (including initial outlays) 
for alternative A2 have a maximum of $10M.

Popper, S. W., and Bankes, S. C., 2006, “A General, Analytic Method for Generating Robust 
Strategies and Narrative Scenarios,” Management Science, Vol. 52, No. 4, April, pp. 514–528.

Table 8.1 Illustrative table of two alternatives and four total system losses

Scenario losses (plus initial outlays)

Alternative A1 $3M $7M $9M $9M
Alternative A2 $0M $8M $2M $10M

8.3 Quantitative Decision Procedures of Interest
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The minimax principle basically says that one should undertake an action 
that will involve the least regret (greatest relative gain) for some one scenario.

The formulas for the minimax regret rule are somewhat more complicated than 
those for other deterministic principles. In particular—and put in terms of losses 
rather than gains—recall that Sij represents the total system loss for the ith row, 
alternative I, and the jth simulation for the seismic decision alternative i:

Define

 M S ij ij= minimum for all{ }′  (8.2)

and

 
Rij S M i j

ij j= −′ for each ,
 

(8.3)

 maxregret for eachi = max ,R i jij  (8.4)

The minimax regret rule thus states that

Alternative is superior to alternative if maxregretAq Ar r >> maxregretq  (8.5)

This rule can be illustrated again in terms of Table 8.1. In Table 8.1, and using Eq. 
(8.2), one derives:

M1 = $0M
M2 = $7M
M3 = $2M
Mj = $9M

From these values, Table 8.1, and Eq. (8.3), one derives the following regret 
Table 8.2.

Using Eq. (8.4), one then shows that the maximum regret for alternative A1 is 
$7M, whereas the maximum regret for alternative A2 is $1M. Thus, according to the 
rule expressed in Eq. (8.5), the minimax regret rule favors alternative A2.

One of Michael Resnick’s criticisms of the minimax regret rule is that the addition 
of alternatives may reverse the outcome of the decision rule. To this end, Table 8.3 
has been constructed. If one uses Eqs. (8.2), (8.3), (8.4), and (8.5), then one derives 
that Alternative A1 is superior to Alternative A2, which is in turn superior to 
Alternative A3. The maximum regrets are $7M, $8M, and $9M, respectively, for the 
alternatives in order. Thus, the addition of a new alternative (in this case Alternative 

Table 8.2 Regret table derived from Table 8.1

Regrets (Rij’s in Eq. (8.3))

Alternative A1 $3M $0M $7M $0M
Alternative A2 $0M $1M $0M $1M
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A3 to the other two alternatives in Table 8.1) can indeed reverse the outcome based 
on the minimax regret rule.

Resnick provides an additional criticism that there are cases in which the mini-
max regret rule yields very counterintuitive conclusions.11 To illustrate, in Table 8.4, 
the minimax regret rule would favor Alternative A1 over Alternative A2 even though 
Alternative A1 is clearly the worse alternative in three of the four scenarios. Table 
8.4 could be extended to a great many cases in which Alternative A1 is $7M or so 
worse than Alternative A2, but the $8M difference in one scenario is driving the 
decision, regardless of these other cases.

The principle of least regret can sometimes lead to the equivalent of “high stakes 
gambling.” Table 8.4 (especially when extended) can illustrate how this may occur. 
In effect, alternative A1 can be constructed to be a steady loser (one can fill in addi-
tional scenarios in which losses are similar to those in the first three columns). 
However, there can be one scenario in which the relative gains of alternative A1 over 
alternative A2 can exceed the relative gains of alternative A2 over alternative A1 for 
the rest of the scenarios. Thus, selection of alternative A1 over Alternative A2 can 
reflect the tendency to go for the largest prize (relative gain) in spite of all the other 
losses that are expected to accrue as a result of the decision.

Similar criticisms obtain when one considers insurance purchase. Modifying an 
illustration from Kleindorfer,12 one may develop a regret table as follows for insur-
ance purchase:

From Table 8.5, one can derive a regret table that shows that one would most 
regret the alternative “No insurance.” Yet, such a regret table fails to do justice to the 

11 In M. Resnick, 1987, op. cit., the minimax rule is discussed on pp. 28–32.
12 See p. 153ff. in Kleindorfer, Paul R., Howard C. Kunreuther, and Paul J. H. Shoemaker, 1993, 
Decision Sciences: An Integrative Perspective, New York: Cambridge University Press.

Table 8.3 Illustrative table of three alternatives and four system losses

Scenario losses (plus initial outlays)

Alternative A1 $3M $7M $9M $9M
Alternative A2 $0M $8M $2M $10M
Alternative A3 $4M $0M $6M $18M

Table 8.4 A second illustrative table of two alternatives and four system losses

Scenario losses (plus initial outlays)

Alternative A1 $8M $7M $9M $0M
Alternative A2 $1M $0M $2M $8M

Table 8.5 Example of a 
scenario table for insurance 
purchase

No earthquake  
damage Earthquake damage

No insurance $0.0 $1M
Insurance $0.2M $0.2M

8.3 Quantitative Decision Procedures of Interest



134

cost of insurance relative to its probable benefits, the need to renew insurance 
 periodically (annually) with its total downstream cost not being its singular cost in 
one context, and a myriad of other considerations in this context (e.g., the presence 
or absence of state and federal post-disaster assistance programs).

In spite of these limitations, the minimax principle has been used in association 
with robust simulation results to provide useful results, as in the case of nascent 
work by R. Lempert and others. The presence of limitations on quantitative 
 principles is consistent with the remarks on reasoning about the common good and 
moral and other conflicts at the outset of this chapter.

8.4  Probabilistic Quantitative Decision Procedures 
of Interest

8.4.1  Probabilistic Quantitative Principles Stressing  
Averages Alone

Among those quantitative decision principles that focus on averages or central val-
ues are benefit-cost methods, least total mean costs, and the use of logic tree weights 
on robust simulation results in order to assess central values for decisions.

8.4.1.1  Benefit-Cost Methods

Benefit-cost methods are most suitably used for governments and possibly huge 
organizations that are self-insured or for whom the probability of default is virtually 
nil. These organizations thus do not need to worry about the “volatility” or variabil-
ity in costs and benefits. State and local governments do not comprise such organi-
zations nor do the vast number of private sector organizations.

First, benefits are the present value of reduced losses. Let us suppose that there 
are Y years of random walks for these n scenarios. Then,

 
Expected annualized status quo losses =

+ + + +S S S S

Y
j n11 12 1 1 

 
(8.6)

Moreover,

 
Expected annualized losses for Alternative i

S S Si i ij=
+ + +1 2  + S

Y
in

 
(8.7)

 

Expected annualized benefits for alternative
Expected annualizi= eed status quo losses -

Expected annualized losses for alternative i  (8.8)
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If D is the discount rate selected, and t is the number of years for the assumed life- 
span of the system modifications, then

 
The present value multiplier PVM

D

D

t

=
− + −1 1( )

 
(8.9)

From these equations, it follows that

 

The benefits of alternative
Expected annualized benefitsi PVM= ∗ ( ffor alternative i)  (8.10)

From these equations, it follows that

 

For benefit-cost evaluations
Alternative is preferred to the sta

,
i ttus quo if

the benefits of alternative exceed its costsI  (8.11)

One can also compare alternative i to other alternatives, which leads into the least 
cost evaluation.

Note that if for each robust simulation outcome the resulting distribution yields 
a favorable benefit-cost ratio for some alternative, and this alternative is favored 
over all alternatives, then this definitely favors the superior alternative. However, 
variability in outcomes is also desirable for the vast number of organizations and 
governmental entities.

8.4.1.2  Least Total Average Costs Methods

With respect to mean values of losses, benefit-cost evaluations do not necessarily 
lead to an optimum solution. Instead, given a benefit-cost ratio exceeding unity, the 
evaluation is presumed to be complete. Such is not the case with least cost methods, 
which extend benefit-cost methods to all decision alternatives evaluated. In particu-
lar, one defines

 

The otal (mean) costs of alternative
Expected ann

i TMCi
Ci PVM

= =
+ ∗ ( uualized losses for alternative i)  (8.12)

And then the rule for least total (mean) costs becomes

 Alternative is preferred to alternative ifi j TMCi TMCj<  (8.13)

One can see that this least total costs method is a way of comparing all alternatives 
against each other, and so arriving at the alternative that has the best benefit-cost 
ratio. In that sense, the least total costs method optimizes with respect to mean 
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losses and costs, whereas benefit-cost methods do not necessarily optimize with 
respect to mean losses and costs.

Unlike the benefit-cost approach, the least total mean approach is likely to yield 
as many “optimal” outcomes as there are robust simulation approaches. Decision- 
makers would then need to have additional criteria to select among outcomes.

8.4.1.3  Subjective Weighting of Average Costs and Benefits

Here decision-makers may have preferences for one or more of the robust simula-
tion approaches and may decide to weight each of the approaches. Using this 
method, one can derive from the average outcomes for each robust simulation 
approach a weighted average of benefit-cost ratios. Likewise, one could use this 
weighted simulation approach method in order to select the average weighted “opti-
mal” approach.

The “weighted” approach discussed here should not be described as a method for 
determining robust simulation approaches and outcomes themselves, although it 
may be challenging to distinguish the “subjective” elements in critical studies for 
the more “objective” methods.

8.5  Stochastic Approaches Considering Variability as well 
as Averages

8.5.1  Mean-Variance Decision Methods

The mean-variance method has been widely used for over 20 years in the capital 
markets in order to assure that investors are sufficiently diversified. In particular, the 
mean-variance criterion evaluates investments not only with respect to their mean 
yields but also with respect to their variance, measured by their statistical variance 
(or, for practical purposes equivalently, their standard deviation). This method is 
especially suitable for projects by entities that are not extraordinarily diversified, 
such as individuals, corporations, and state and local governments.13

For the application of the mean-variance rule, one first calculates the variance of 
total mean costs, or

 

Vari
j

n

TMC TMCi Sij n( ) ( ) ( )= −








 −

=
∑

1

1

 
(8.14)

13 See Markowitz, H. M., 1959, Portfolio Selection: Efficient Diversification of Investments, 
Oxford: Basil Blackwell Ltd.; Levy, Haim and Marshall Sarnat, 1984, Portfolio and Investment 
Selection: Theory and Practice, New Jersey: Prentice Hall International; and p. 236 in Bernstein, 
Peter, 1996, Against the Gods: The Remarkable Story of Risk, New York: John Wiley & Sons, Inc.

8 Modern Thinking, Ensembles, and the “So What” Question



137

For decision purposes one may equivalently calculate the standard deviation of the 
total mean costs since the standard deviation is on a quantitative scale more com-
mensurate with the total mean cost:

 STDi TMC TMCi( ) [ ( )] .= Var 0 5

 (8.15)

The mean-variance criterion is thus expressed as follows:

 

Alternative is preferable to alternative if
both and Va

i j
TMC TMCi j< rr Var

If neither alternative is preferable to alte
i TMC j TMC

i
( ) ( ) ;<

rrnative nor
alternative is preferable to alternative
then the

j
j i,

yy are indifferent to each other  

(8.16)

In the above formulations, the standard deviation of total mean costs may replace 
the variance with of course no difference in the decision outcomes. Owing to scal-
ing issues, this reformulation of the rule in (8.16) is probably desirable if for a set of 
alternatives total mean costs and their standard deviations are either table or 
plotted.

The mean-variance rule is thus more restrictive than the least cost or benefit-cost 
rules. In other words, the mean-variance rule takes into account two dimensions of 
the investment decision: not only the mean total costs but the “volatility” (as mea-
sured by the statistical variance) of the decision. Thus, fewer decision alternatives 
may be ruled out by the mean-variance criterion than by the least total (mean) cost 
criterion.

Note that the principle of dominance can help to indicate some instances (coun-
terexamples) in which the mean-variance criteria do not apply well. In the first 
instance, there are problems with riskless assets, those in which one puts monies 
under the bed or in which one invests in virtually riskless federal securities. Take, 
for example, the following two equally probable returns on alternatives:

Alternative 1 1 2 1 2
Alternative 2 1 1 1 1

Now, the principle of dominance would imply that alternative 1 is superior to the 
riskless alternative 2. However, since the riskless alternative has a variance of zero, 
even though its mean return is less than that of alternative 1, the MVC implies that 
neither is preferred to the other.

A similar example arises from Fishburn and Vickson14 for the following two 
alternatives:

14 See p. 62, Fishburn, P. C. and Vickson, R. G., 1978. “Theoretical Foundations of Stochastic 
Dominance.” Stochastic Dominance. An Approach to Decision-Making Under Risk, G. A. 
Whitmore, and M. C. Findley, eds., D. C. Heath, Lexington, MA, 39–114
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Alternative 1 1 1 4 4 4 4
Alternative 2 1 1 3 3 4 4

The principle of dominance implies that alternative 1 is superior to alternative 2. 
However, using the MVC, one would need to calculate the variances in order to 
determine whether indeed alternative 1 is preferable.

Even without these counterexamples, the MVC approach has come under great 
criticisms from the failure of Long-Term Capital Management, faulty applications 
that assisted in causing the Great Recession of 2008 and in general limitations on 
the approach when it is used beyond Gaussian or very linear or quadratic assump-
tions.15 The use of averages for financial and general economic evaluations would 
have had even more deleterious effects.

8.5.2  Stochastic Dominance and Almost Stochastic Dominance 
Approaches

A full discussion of stochastic dominance and almost stochastic dominance 
approaches are found in Levy.16 A discussion of how these apply to seismic design 
and redesign (and similar) issues is found in Taylor, Rix, and Liu.17 In effect, first- 
order stochastic dominance applies in those cases in which one alternative is supe-
rior to another alternative in at least one instance (simulation) and the first alternative 
is at least equal to the second alternative in all other cases. The study of seismic 
design issues has led to the conclusion that second-order stochastic dominance does 
not show that superior design is better in cases in which there are some simulations 
(e.g., 50-year random walks) in which no damage would have occurred to either the 
superior or inferior design. For instance, no damaging earthquake has occurred in 
the city of Orange, California, since the 1933 Long Beach earthquake. Thus, a 
building design in a high seismicity region need not exhibit any benefits in all 
50-year life spans—and even though seismic design costs tend to be well below 
seismic retrofit costs.

Still, second-order stochastic dominance and almost stochastic dominance 
approaches appear to be viable tools for decision-making in the context of robust 
simulations for mega-risks.

15 Samples of criticisms of the MVC approach are found in Lowenstein, R., 2000, When Genius 
Failed: The Rise and Fall of Long-Term Capital Management, New York: Random House; Levy, 
H., 2006, Stochastic Dominance: Investment Decision Making Under Uncertainty, 2nd edition, 
New York, NY: Springer; and Taleb, Nassim Nicholas, 2012, Antifragile: Things that Gain from 
Disorder, New York: Random House.
16 Levy, H. 2006, ibid.
17 See Taylor, Craig, Glenn Rix and Fang Liu, 2009, “Exploring Financial Decision-Making 
Approaches for Use in Earthquake Risk Decision Processes for Ports,” Journal of Infrastructure 
Systems, volume 15, number 4, pp. 406–416, December 1, 2009.
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8.5.3  Hedging: Real Options

Real options are those in which not all monies are spent initially in order to treat a 
mega-risk. These are discussed, for instance, in Lempert et al. and in Golub and 
Markandrya.18 These tools are especially valuable when (a) waiting until a later date 
does not engender a catastrophe or enable a condition to be serious enough to be a 
likely cause of catastrophe and (b) more can be learned from more limited treat-
ments used and as the science and technology improves.

8.5.4  Hedging with Anti-fragile and/or Big Bets Reduction 
Methods

So far in this chapter, there has been no reference to findings in Chap. 5 in which 
distributions evaluated may turn out to be nearly are actually extreme, and/or there 
may be a high probability of ruin or catastrophe. Work on hedging to avoid or 
reduce cost-effectively variability and/or big (and somewhat unstable) bets are two 
ways in which one may approach mega-risks that appear without treatments to be 
nearly or actually extreme.
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    Chapter 9   
 Remaining Questions: Conclusions 
and Queries       

 In theology or philosophy, you may (with due intellectual 
modesty) adopt as personal working positions the ideas of your 
inherited culture; but you cannot deny others the right to adopt 
different working positions for themselves, let alone pretend 
that your experience “proves” the truth of one such set of 
opinions, and the necessary falsity of all the others. (From 
p. 29, Toulmin, Stephen,  1992 , Cosmopolis: The Hidden 
Agenda of Modernity, Chicago: University of Chicago Press) 

 The study of the confi rmation procedures as they are practiced 
in the sciences is … often the study of what scientists will and 
will not give up in order to gain other particular advantages. 
(From p. 212 in Kuhn, Thomas,  1977 , The Essential Tension: 
Selected Studies in Scientifi c Tradition and Change, Chicago: 
University of Chicago Press) 

    Abstract     This chapter attempts to characterize the current “equilibrium” state of 
thinking with respect to probability and statistics for systems-based problems. This 
chapter looks at questions still to be addressed: What are the roles of experts and the 
enormous amount of drill and other convergent approaches in education and train-
ing, including the presupposition of “universals” assumed pedagogically? How 
does this education and training provide a world view that assists in “bridging the 
gap” between fi nite samples and infi nite populations—even though the bridges are 
corrigible? How does one deal with such “deterministic” subjects as chaos theory 
when unknown initial conditions provide room for developing probabilistic mod-
els? Does Taleb’s contention of the incomputability of Black Swans result from the 
“wobble” inherent in extreme value distributions, or can they be and have they been 
successfully applied with qualifi cations? How does one use nonlinear reasoning to 
understand differently the so-called “fallacy of affi rming the consequent” when so 
many theories are praised for their successes? This chapter also asks how competi-
tion can be encouraged and what decision procedures work best with robust simula-
tion outcomes. This chapter specifi cally addresses how many of the concepts 
covered in this book including robust simulation, instabilities in extreme value dis-
tributions, and linear reasoning upset a very long-standing Western tradition of 
believing that there is but a unique solution, a singular truth to be achieved.            
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9.1      Further Elaboration of Robust Simulation 

 Robust simulation has been used to account for uncertainties in the computer gen-
eration of loss estimates to portfolios and systems. The use of alternative models 
provides the basis for calculating the bounds of uncertainties. These bounds do not 
necessarily represent confi dence intervals because not all alternative models are 
typically considered and the most plausible values may lie at or near the extremes 
of these bounds. These bounds do not comprise a continuum or a “fuzzy set.” As in 
chaos theory, different initial conditions posited for a modeled system may yield 
wildly different trajectories or loss estimates. So, for specifi c loss estimates (e.g., as 
those with a given return interval), different comprehensive models may yield dif-
ferent estimates. The ensemble of these estimates does not necessarily comprise a 
continuum. 

 The use of robust simulation arises because resources are adequate to provide for 
competitive outlooks, competitive outlooks are available, and single methods and 
approaches have severe limitations in accounting for uncertainties in loss distribu-
tions. The presence of these social and economic resources implies that the value of 
competition is recognized. A process is in place that permits not a monopoly of 
results but instead possible different directions in which subject matters may go. 
This process by diverse investigators does not need to converge as long as there is 
recognition that one can deal with changes in and diverse interpretations of risk 
estimates. 

 The application of deductivist, frequentist, or Bayesian methods to develop con-
fi dence intervals does not help insofar as these confi dence intervals virtually vanish 
as the number of trials increases. In addition, the sharp epistemic/aleatory dichot-
omy does not fi t any of these aforementioned approaches, does not fi t the current 
approach being proposed, and results in either arbitrary or self-contradictory 
results. 1  

 The use of confi dence intervals does not address this uncertainty issue also 
because in some cases loss estimates are unstable. As a consequence, catastrophe 
indexes have been developed in Chap.   5     to provide an “empirical” (fi nite trial) esti-
mate of the stability of the loss estimates in question. Unstable estimates may be 
conceived of as “wobbling” indefi nitely as individual trials or more often sequences 
of trials always have the potential to upset an apparently stable estimate. 

 Robust simulation requires the application of alternative models that are as 
coherently constructed as possible. The existence of alternative credible models 
results from the fl exibility inherent in probability and statistics to pursue divergent 
approaches. The nonlinearity of major discoveries as indicated in Chap.   7     often 
provides considerable temporal gaps between the development of alternative theo-
ries and a fi nal resolution—to the extent that one exists. 

1   See Taylor, C., R. Murnane, W. Graf, and Y. Lee,  2013 , “Epistemic Uncertainty, Rival Models, 
and Closure,”  Natural Hazards Review , February, pp. 42–51, volume 14, number 1. 
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 These alternative models are also possible because Bayesian, frequency, and 
other approaches have considerable but not unconditional cognitive value. Thus, 
previous chapters do not rule out categorically applications of Bayesian, frequency, 
or mathematization approaches but instead regard them as having value in a condi-
tional sense. 

 This conditional nature of statistics can also be shown if one attempts to take an 
extremely huge database, collected over centuries and diverse circumstances, with-
out properly distinguishing among these circumstances. For instance, one may take 
life-expectancy data from London in the 1600s and compare this with 1993 US life- 
expectancy data. Their combination would result in multimodality as in the chart 
that follows (Fig.  9.1 ). 2 

   Not only do the Bayesian, frequency, and predominantly mathematical 
approaches rely at best on fi nite samples (like the fi nite samples in the partition used 
for the theorem of total probability) but so do the robust simulation and catastrophe 
index approaches. The uncertainty bounds generated by a robust simulation 
approach are restricted to the state-of-the-practice and so may be improved as the 
alternative credible models are improved.  

2   From p. 83 in Bernstein, Peter L.,  1996 ,  Against the Gods :  The Remarkable Story of Risk , 
New York: John Wiley & Sons, Inc. 
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9.2     Tradition of Believing in Only Unique Risk Solutions 

 According to Stephen Toulmin, the view that inquiry yields a unique result in 
response to critical questions has prevailed in Western countries for well over three 
centuries since the seventeenth century and still seems to permeate many quantita-
tive studies today. The development of ecological studies and the interest in some 
deeply practical studies such as health have provided some limitations on extreme 
versions of the distinction between theory and practice, still common in Western 
universities today. The alignment of mathematics with theory has too been part of 
this Western tradition, and in experimentation and the use of fi eld data, the belief 
that “almost surely” enables one to assume the convergence of results at infi nity is 
part of this common traditional system of beliefs. Toulmin writes that the “mathe-
matical and experimental” have not been clearly dovetailed in this long-standing 
tradition. 3  Given that indefi nitely many experiments are infi nitely costly and other-
wise impossible, a different approach to the nexus between quantitative models and 
experiments needs to be developed. Likewise, “validation” of quantitative models 
turns out to rest on assumptions that surely extend beyond the bounds of 
experience. 

 Absent the view that there is but one quantitative solution to risk evaluations of 
systems and other similar critical problems, the specter of freedom in inquiry rears 
its ugly head. Freedom in general is often lauded, but discretion in pursuing alterna-
tive approaches to problem-solving is often tolerated only if it is presumed that 
there is but one truth to the matter in question. 

9.2.1     Flexibility in Approaches 

 The previous discussion by Menke of how diverse measures (L1, L2, and so on) can 
be used to evaluate “fi tting” of a model to data grossly underestimates the mathe-
matical combinations available for “fi tting.” The measures could include L0.5, 
L1.3, L2.8, and so on as well as a direct weighting of the tail (as in the catastrophe 
indexes described in Chap.   5    , which ignores the body of the distribution). 4  

 The discussion by N. Silver on how an underlying distribution is required for 
classical fi tting techniques as fi rst developed by the biologist R. A. Fisher and others 
again assumes an infi nite number of cases can be “validated” by a fi nite number of 
samples. The statistician David Freedman has shown that the use of “percent” 
acceptability misleads one to believe that this constitutes the probability of accept-

3   Pertinent pages include pp. 84, 104  Toulmin, Stephen,  1992 , op. cit. 
4   On how rational numbers as those referenced must be used for “univariate” alpha distributions in 
which the slope is less than 2 and in some cases less than 1, see p. 15 in Nolan, John P.,  2009 , 
 Stable Distributions :  Models for Heavy Tailed Data , accessed on the Internet 2/27/13. 

9 Remaining Questions: Conclusions and Queries

http://dx.doi.org/10.1007/978-3-319-19413-4_5


147

ability of the “null” hypothesis. Among other things, this acceptability resides only 
to the extent that the underlying distribution obtains—a huge assumption. 

 For some time in environmental studies, there have been multiple interpretations 
of nature and of course of the behavior of people and other living beings. In climate 
change studies, “there is not one model…there are multiple models, multiple sce-
narios, the interaction of socioeconomic data, the introduction of parameterizations, 
nested ecological models, and…the communities interact, ask more questions,…
new questions result in different experimentation…new results, new answers, more 
new questions….” 5  

 Chapter   7     has shown that research into major health issues is not necessarily 
resolved in a very short span of time. Instead, clarifi cation of initial discoveries, or 
educated guesses based on early fi ndings, can come considerably later. Through 
these later developments, alternative determinants of specifi c diseases, for instance, 
can be discovered. Filtration plants are extremely valuable but may not provide 
“safe” water if the main piping systems are old. Water may need to be boiled at the 
destination point in order to be safe. Beriberi may have other forms than the “dry” 
beriberi for which adequate intake of thiamine tended to be a major cure. Fluoridated 
water may prove to be valid in reducing tooth decay in a number of cases, but not in 
those in which alternative sources of fl uoride in drinks, food, or toothpaste provide 
adequate means to reduce decay.   

9.3     Five Queries and Partial Current Responses 

 The results presented raise serious questions for making risk estimates for socially 
important issues. What follows are fi ve of these questions.

    Question 1 :  what are the roles of experts and the enormous amount of drill and 
other convergent approaches in education and training ,  including the pre-
supposition of  “ universals ”  assumed pedagogically ? Why should “profession-
als” or “experts” be trusted any more than anyone else? Haven’t professionals 
made indefi nitely many mistakes, a lot of which have been critical? How does 
one choose among approaches that are credible and those that are not? 

 Over time, the notion of “professionals” has of course changed immensely with the 
changes in universities and diverse disciplines as well as their association with 
society. Not too long ago, some of the scientists most highly regarded, Charles 
Darwin for one, were “amateurs.” So, the notion of “professional” here has to do 
with the types of disciplinary studies and investigations undertaken by Darwin or 
many others who have contributed to critical areas. 

 The famous historian of science Thomas Kuhn considers the type of “divergence” 
discussed in these essays to require a substantial “convergence.” Dealing princi-

5   Written communication, Melissa Dresler, 7/22/13. 
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pally with the nonhistorical sciences (e.g., not, for instance, geology or evolu-
tionary biology), Kuhn maintains that the bulk of a scientist’s early career resides 
in “puzzle solving,” normal science, or very convergent thinking. As Kuhn 
remarks, “it is often better to do one’s best with the tools at hand than to pause 
for contemplation of divergent approaches.” In contrast to those who treat cre-
ativity, or divergent thinking, as involving isolated discoveries, Kuhn avows that 
“the ultimate effect of this tradition bound work [puzzle-solving] has been to 
change the tradition.” 6  

 Very importantly, for Kuhn science is systemic and hence progressive in the noncu-
mulative sense:

  most new discoveries and theories in the sciences are not merely additions to the existing 
stockpile of scientifi c knowledge. To assimilate them the scientist must usually rearrange 
the intellectual and manipulative equipment he has previously relied upon, discarding some 
elements of his prior belief and practice while fi nding new signifi cance in and new relation-
ships between many others. 7  

   Rigid standards from the nineteenth century institutionalization of science, for 
instance, underlie Kuhn’s remarks on the role of “puzzle solving” or undergoing 
a rigorous training before one can effectively produce what are counted as “dis-
coveries.” For Kuhn, “sciences are not born de novo.” 8  Thus, the role of profes-
sionalization in this sense is to underscore how the alternative approaches to 
major risk issues are developed so that they may be systemically explained, as 
through journal articles and books. 

 As provided here, this view does not cover the complex issues in the sociology and 
psychology of professionals and experts, including the propensity in some disci-
plines for signifi cant errors. Instead, what is underscored is that alternative 
approaches that are acceptable must be relatively coherent, with a systemic 
development, and not merely opinions, or possibilities. 9   

6   See, for instance, pp. 225, 234 in  Kuhn, Thomas,  1977 , op.cit. 
7   See pp. 226–227 in  Kuhn, Thomas,  1977 , Ibid. 
8   See p. 234 in Kuhn, Thomas, Ibid. 
9   On pp. 112–113, in  Flyvbjerg, Bent, Nils Bruzelius, and Werner Rothegatter,  2003 ,  Megaprojects 
and Risk :  An Anatomy of Ambition , Cambridge, UK: Cambridge University Press, Funtowicz and 
Ravetz are used to defi ne “peers” either as scientists and experts who are colleagues working 
within the “paradigm of the offi cial expertise” or those who are enriched “at the very least” by the 
contribution of other scientists and experts and who are “technically competent but representing 
interests outside the social paradigm of the offi cial expertise.” In  Flyvbjerg, Bent,  2001 ,  Making 
Social Science Matter :  Why social inquiry fails and how it can succeed again , Cambridge, UK: 
Cambridge University Press, Hubert Dreyfus is used on pp. 16–18 to defi ne (level 4) “profi cient 
performer: beyond analytical rationality” and “expert.” Experts proceed intuitively, synchronically, 
and holistically to achieve a high level in situations in order to make decisions. Of course, there are 
libraries of works that show that experts can make mistakes, and these include mistakes on large-
scale political judgments as shown in Tetlock, P. E.,  2005 ,  Expert political judgment , Princeton, 
N. J.: Princeton University Press. The defi nitions that Flyvbjerg, Dreyfus, and colleagues used do 
not require that experts be infallible. One fi nds the 10,000 h rule used for outlier performance in 
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   Question 2 :  how does education and training provide a world view that assists 
in  “ bridging the gap ”  between fi nite samples and infi nite populations — even 
though the bridges are corrigible ? This second question comes from a very 
different perspective, if standard statistical approaches do not work well, how 
can one rely on any of them made by professional investigations? How can these 
individual investigations prove to work if the issue is how to bridge the gap 
between fi nite samples and infi nite populations? Even 40 or 50 diverse investiga-
tions do not seem to be able to bridge the gap between fi nite samples and infi nite 
populations. 

 One response to the second issue begins with the assumption—based on past evalu-
ations of catastrophe risk evaluations—that many of the risk evaluations are 
going to be “Gaussian” in the broad sense of having catastrophe indexes above 2 
and sometimes barely above 2. 10  Thus, the many tools that are common in statis-
tics can be employed with some restraint but with the anticipation that the trajec-
tory of outcomes will be suffi ciently stable. This applies to results of individual 
evaluations. 

 A second response, perhaps more fruitful, resides in the view that a considerable 
portion of the inherited science that Kuhn regards as requiring “puzzle solving” 
consists of idealizations and heuristics. These idealizations and heuristics are 
essential to the building up of systemic knowledge; knowledge by its nature can-
not be absorbed all at once. In referencing the “knowledge” of a physical law, 
Wittgenstein writes:

  “If the parts [e.g, of a crosshead] were quite rigid this is how they would move”; is that a 
hypothesis? It seems not. For when we say: “Kinematics describes the movements of the 
mechanism on the assumption that its parts are completely rigid”, on the one hand we are 
admitting that this assumption never square with reality, and on the other hand it is not sup-
posed to be in any way doubtful that completely rigid parts would move in this way. But 
whence this certainty? The question here is not really one of certainty, but of something 
stipulated by us. 11  

   The “puzzle solving” of which Kuhn speaks can consist of fi nding solutions to old 
solutions, “divergences of ages past,” that once took considerable more time and 
effort to fi nd. For Kuhn, “in the mature sciences, most things generally do go 
right.” 12  

Gladwell, Malcolm,  2008 ,  Outliers :  The Story of Success , New York: Back Bay Books, Little 
Brown and Company. Of course, there are many who have spent 10,000 h on some tasks and still 
not achieved a high level of competence. 
10   For this view for  earthquake portfolio evaluations, see J. Lemaire and C. Tillman.  1993 , “Models 
for Earthquake Insurance and Reinsurance Evaluations,” Proceedings of the Second International 
Symposium on  Uncertainty Modeling and Analysis, Los Alamitos, California: IEEE Computer 
Society Press, April. 
11   From p. 37e in Wittgenstein, Ludwig,  1967 ,  Remarks on the Foundations of Mathematics , 
Cambridge, MA: the M. I. T. Press, fi rst published in 1956, edited by G. H. von Wright, R. Rhees, 
G. E. M. Anscombe, and translated by G. E. M. Anscombe. 
12   See p. 222 in Kuhn, Thomas,  1977 , op. cit. 
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 The systemic view of knowledge and convergent knowledge underlying divergent 
fi ndings leads to different views of “confi rmation” and “falsifi cation” from those 
in traditional statistics, on the one hand, and Popper’s writings, on the other 
hand. Confi rmation through data can support preexisting knowledge, or these 
data can upset preexisting knowledge. “Knowledge” in this sense is not some-
thing eternal but instead undergoes modifi cation through research, experience, 
and application. 

 Hence, part of the answer here to the second question is that systemic knowledge 
does not “follow the rules” of incremental knowledge. This knowledge may con-
tain idealizations and heuristics whose origins may not be in serious question as 
data are developed on a specifi c topic. This learned systematic knowledge may 
be very but not wholly coherent: errors may be embedded in what is currently 
known. Idealizations and heuristics may include the mathematical notion of 
“infi nity” as used in probability and statistics. In particular and relative to fi nite 
samples, “infi nity” may provide a picture of the trajectory or trajectories that a 
trend is leading. The catastrophe index in Chap.   5     provides trajectories based on 
fi nite data samples. Parametric models such as normal, lognormal, exponential, 
Poisson, and Pareto distributions can suggest trajectories of fi nite samples as 
they are increased. 

 In many instances, one does not use probability and statistics in order to fi nd an 
ultimate trajectory or trend that goes to infi nity. For instance, ballplayers wear 
out as do tires and machines. For individuals and tires, performance statistics 
may be very useful for a limited time horizon, but they are not going to continue 
forever.  

   Question 3 :  how does one deal with such  “ deterministic ”  subjects as chaos the-
ory when unknown initial conditions provide room for developing probabi-
listic models ? Where do subjects like classical mechanics, but also chaos theory, 
fi t into the views presented so far? For instance, why has chaos theory not yet 
benefi ted from the understanding by Werner Heisenberg that: “When one wishes 
to calculate ‘the future’ from ‘the present’ one can only get statistical results, 
since one can never discover every detail of the present.” 13  

 The third question gives rise to some of a very large number of inquiries that can be 
undertaken. These include, for instance:

•    Chaos theory has shown that “systems” can yield diverse and sometimes 
divergent dynamic trajectories. However, chaos theory has been primarily 
deterministic. 15  (chaos theory from Wikipedia) To what extent can one develop 
stochastic models of chaos theory? Can “initial conditions” be modeled as 
having endogenous uncertainty distributions?  

•   To what extent is there a currently inherent randomness in various highly 
numerical subjects such as geophysics, climatology, structural engineering, 
and cosmogony?  

13   Quoted on p. 333 in Isaacson, Walter,  2007 ,  Einstein :  His Life and Universe , New York: Simon 
& Schuster. 
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•   What is the grain of truth in Nassim Taleb’s view that distributions in the 
“Black Swan zone” are “incomputable”? 14  Can one accept the slightly contra-
dictory or at least limiting view that extreme value distributions can be very 
useful, as in electrical engineering, yet ignore the “wobble” or merely regard 
the wobble as a minor issue relative to the value of using such extreme value 
distributions?  

•   Not discussed thoroughly are issues of nonlinearity. The discussion of catas-
trophe modeling of systems brings in nonlinearity for a great many systems. 
As Chap.   5     shows, one can develop a comparison between power laws and the 
catastrophe indexes. This suggests again that some systems have risks that are 
at best only very poorly computable. As Chap.   5     again shows, this may mean 
in the more extreme cases that the mode of losses for these systems is very 
well behaved but that the extremes rule out estimating statistical variances 
and even possibly arithmetic means. 15  Chapter   7     emphasizes the nonlinearity 
in addressing major healthcare issues. Nonlinearity is used in Chap.   7     to show 
how the long time frames in the developments of eventually successful work-
ing theories provide time for competing theories to thrive  even if  in rare cases 
the successful outcome remains so for an enormously long time.  

•   Also not explored enough is the so-called fallacy of affi rming the conse-
quence. This is indeed a fallacy when one has a single consequence. Formally 
speaking, this reads “C is true. If A were true, C would be true. Hence, there 
is reason to believe that A is true.” 16  This formalization presupposes that one 
should stamp “T” or “F” on individual statements in their fi rst instantiation, as 
though this was the last of a long narrative of movements backward and for-
ward. As Chap.   7     has shown, with critical reasoning, a given theory may have 
a great many consequences that help to confi rm the theory. The theory is not 
necessarily abandoned in toto because it has one or even many troublesome 
consequences. As shown in many examples, language may be changed with 
new additions as the discovery is clarifi ed. The original “discovery” may 
undergo many changes as the initial discovery comes to terms with many 
issues. As with the continental drift theory (or a great many others such as the 
discussion of Kepler’s discovery), the theory may be required to morph into a 
more comprehensive theory that overcomes many of the initial objections and 
provides clarifi cation otherwise not available by other extant theories. 

14   See pp. 138, 288 in  Taleb, Nassim Nicholas,  2012 ,  Antifragile :  Things that Gain from Disorder , 
New York: Random House. 
15   For describing  chaos as entering when the number of variables in a nonlinear model exceeds 3 
and also when the topic has yet to be explored enough, as with immune systems and ecosystems, 
see p. 11, Strogatz, Steven H.,  1994 ,  Nonlinear Dynamics and Chaos :  With Applications to Physics , 
 Biology ,  Chemistry ,  and Engineering , Cambridge, MA: Perseus Books Publishing, LLC. 
16   These simplifi cations are similar to the formalizations in  Peirce, Charles,  1901 , 1903, in 
“Abduction and Induction,” pp. 150–156; in Charles  Peirce, 1955, ibid., p. 151; and Wikipedia, 
“Abductive reasoning,” accessed 12/14/2013. Note that Peirce’s discussion of Kepler’s discoveries, 
which are not easily encapsulated in two or three lines, compares with the discussions of discover-
ies in healthcare discussed in Chap.  7 . 
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Theories entitled to be considered comprehensive views are systemic in the 
sense that a single negative consequence (or datum that oppose the theory) 
does not eliminate the theory. Instead, negative consequences may provide 
opportunities for further modifi cation of a comprehensive theory, as has hap-
pened for well over a century with Darwin’s theories. 17      

   Question 4 :  from a program management perspective ,  or in general ,  how does 
one encourage competition among investigators ,  how does one assemble 
alternative outcomes in ways that are useful to decision - makers ,  and what 
happens after these outcomes are assembled ? In short, how does one compre-
hend the phenomenology of this competition among competitors (e.g., are alter-
natives exhausted in some cases, is institutional memory lost, is there in some 
cases convergence resulting from later investigations, are resources exhausted, 
do new competitors arise and how)?  

   Question 5 :  how does one test the value of tools described in Chap.    8      with respect 
to their value in making decisions regarding mega - risks ? How does one pro-
vide these when the multiple outcomes are “deterministic”? Is the principle of 
least regret adequate for all such applications? And, how does one provide a 
quantitative account of decision analysis for ensemble statistical outcomes? 
Previously there have been stochastic accounts that have been provided using 
mean values, statistical variances, the entire distribution of gains and losses (sto-
chastic dominance), the almost stochastic dominance, fat-tail reduction models, 
and even the use of multiple decision criteria.     

9.4     Conclusions 

 Robust simulation provides a largely coherent response to the question as to how 
one can account for uncertainties in complex risk evaluations. In practice, different 
statistical results of professional investigations have been presented in many impor-
tant disciplines. Some of these are found in the social sciences and some are in 
highly quantitative physical sciences, especially as computational speed and capac-
ity permit alternative search and other approaches to major issues. The vast number 
of unknowns or matters poorly known gives rise in socially important risk issues to 
a process that enables diverse investigative teams to engage in a process of decon-
structing previous views, construction alternative views, experimenting further, 
deconstructing the newer views, and reconstructing even more preferred views. 
Even after long periods of inquiry and large data samples, these resulting views may 
still differ among different investigative teams. 

17   These simplifi cations are similar to the formalizations in Peirce, Charles,  1901 , 1903, in 
“Abduction and Induction,” pp. 150–156; in Charles Peirce, 1955, ibid., p. 151; and Wikipedia, 
“Abductive reasoning,” accessed 12/14/2013. Note that Peirce’s discussion of Kepler’s discoveries, 
which are not easily encapsulated in two or three lines, compares with the discussions of discover-
ies in healthcare discussed in Chap.  7 . 
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 Robust simulation proves an answer as to how to calculate the uncertainties in 
these risk-related issues. Robust simulation also requires that the alternative 
approaches used be credible, coherent, or professional. As a result of nonlinearity in 
developing more defi nitive views, these approaches imply taking into account years 
of experience in the topics in question. Active minds are required to develop 
approaches that can be used. Robust simulation uses rather than totally displaces 
alternative statistical approaches, even those that have traditionally required only 
unique statistical solutions. 

 These essays provide hints as to how there may be a bridge between experience 
and the infi nite populations typically assumed in probability and statistics. The sys-
tematization of knowledge, including idealizations and heuristics, provides a basic 
background for how disciplined experience is not confi ned to fi nite samples. The 
use of a community of investigators also emphasizes the role of active research and 
application in the development of an ensemble of outcomes for socially important 
risk issues. This community is “involved in an iterative process, questions going 
back and forth, not a single answer, but interaction and useful representation of 
uncertainties.” 18      
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    The Contrasting Trajectory in This Work: Learning 
from Traditional Sources of the Single-Solution Approaches, 
Leading to Competitive, Multiple Interpretive Solutions   

  Ideas in modern Russian are machine-cut blocks coming in solid colors; the nuance is 
outlawed, the interval walled up, the curve grossly stepped. 1  

 [goal]: to transform social science from what is fast becoming a sterile academic activity 
which is undertaken mostly for its own sake and in increasing isolation from a society on 
which it has little effect and from which it gets little appreciation. 2  

     Stressing the Phenomena of Mega-Risks and Importance 
of Multiple Interpretations 

 This work is about mega-risks. These include natural and technological disasters, 
large-scale construction projects, missile and asteroid risks, political risks including 
wars and other violent confl icts, climate change risks, and epidemics. Frankly 
speaking, no one knows much about these mega-risks, yet many of us have spent 
many hours on one or more of these phenomena. This work chiefl y covers quantita-
tive evaluations and by a presumptive extension considers these multiple interpreta-
tions when there are more than one valid evaluations at a given time. 

 Another presumption throughout this document is that multiple interpretations 
are most desirable whenever imagination or novelty is needed. Of course imagina-
tion is required on a daily basis in order to consider alternative courses of action as 

1   From  Pale Fire , 1962, by Vladimir Nabokov, New York: Perigee Books. p. 243. 
2   From p. 166 in Flyvbjerg, Bent, 2001,  Making Social Science Matter :  Why social inquiry fails and 
how it can succeed again , Cambridge, UK: Cambridge University Press. 
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desired or needed. Contrary to the second quotation above, one might maintain that 
a major function of the humanities and social sciences is to provide the ability to 
look at matters imaginatively, in different ways. This document, though, stresses 
how in many areas—starting with “hard” sciences—the predominant way of think-
ing has presumed that there is but one interpretation, one evaluation, and one solu-
tion. If this thought were confi ned to “hard” sciences, then the discovery or 
clarifi cation that multiple interpretations are available even in “hard” sciences 
would go some way toward bridging the gap in what has been deemed the issue of 
“two cultures,” if indeed the second quotation above did not have more than a grain 
of truth. So, for this preface, one might pursue this thought for a few pages. This 
document is also premised on the notion that, although modeling and assessment 
efforts have uncertainties, they provide value in risk decision-making. 

 This preface deals with alternative trajectories that have been taken on related 
issues and how these contrast to the essays in this book.  

   Diverse past Trajectories on These Issues: Those Stressing 
Lack of Nuance in the Social Sciences, Those Learned 
in the Humanities Who Exalt the Social Benefi ts 
of the “Harder” Disciplines with Their Rigid Methods 

 Seeking for similarities in past discussions, I found only very different trajectories 
to related issues are found in John Stuart Mill’s essay on Bentham and Coleridge, 
C.P. Snow’s essay on two cultures, and Henry Adams’ discussion of changes in US 
culture from one emphasizing the humanities to one stressing industrialization. 

 In 1838 and 1840, John Stuart Mill provides a classical discussion of the distinc-
tion between two thinkers: Jeremy Bentham and Samuel Taylor Coleridge. Mill 
regarded each thinker as leaders in questioning the status quo and as having enor-
mous infl uence on the British culture of the day. Summarily, Mill regards Bentham 
as providing a “scientifi c” or empiricist method of how to approach business, legal, 
and political issues. This empiricist and extreme utilitarian view regarded single 
outcomes as the result of a “method of exhaustion” in which one viewed all alterna-
tives and ruled out all but one, which was the truth. For Mill, Bentham’s scientifi c 
approach was valid, but his genuine contributions lay in business and law. Bentham 
lacked the imagination of being able to understand what others thought or taking 
their opinions seriously. 

 In contrast, Coleridge emphasized the importance of mining what others thought, 
in assuming that what underlay the opinions of others contained some signifi cant 
merit. Thus, Coleridge was concerned with exploring the meanings of what others’ 
past and present had derived and taking them seriously. 3  

3   Pertinent pages include pp. 41, 44, 48, 56, 62, and 75 in 1838, “Bentham,” and pp. 99, 100, and 
143 in 1840, “Coleridge” in  Mill on Bentham and Coleridge . One very faint clue that the social 
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 Mill’s discussion stresses how someone in the humanities, namely, Coleridge, 
can be principally concerned with issues in interpretations. At the same time, like 
the two quotations that lead this preface, Mill’s discussion thus confi rms that there 
is a view of the social sciences that lacks nuance––that stresses that there is but one 
solution, one result. Thus, some or much social science work may lend itself to 
being more “quantitative.” From this standpoint, the “two cultures” is more com-
plex. For a variety of reasons, including the resources provided for the “hard” cul-
ture, this “hard” culture may on occasion be far more imaginative in exploring 
various solutions. Writings on “two cultures” typically do not consider this 
alternative. 

 C.P. Snow’s short work on  The Two Cultures  does not bridge this gap. Instead, 
this work provides an apology for all the advantages that industrialization and sci-
ence have provided so that those in the humanities should worship at its altar. Snow 
applauds how science has removed “unnecessary suffering from a billion individual 
human lives”:

  The scientifi c revolution is the only method by which most people can gain the primal 
things (years of life, freedom from hunger, survival for children). 4  

   For Snow, the scientifi c method and its industrial application have had all these 
obvious advantages that the Luddite tendencies lead those in the humanities to fail 
to understand. The common culture is for Snow rightly dominated by the scientifi c-
technical culture that has provided these advantages. 

 Based on my fi rst reading of  The Education of Henry Adams  by Henry Adams, I 
thought that this work might provide a clue as to how the humanist culture in which 
Henry Adams had been raised largely before 1850 had intertwined with the indus-
trialist culture afterward and how he had found a way to reconcile the two cultures. 
In effect, I thought that Adams would provide a better view as to how the two cul-
tures, the heavily quantitative and the more qualitative, weave together in at least a 
slightly stable harmony. 

 In his delightful work, Adams though tends to suffer from the same trajectory as 
does Snow: the person educated in the classics and broad humanities now lauds 
principally the quantitative approaches that underlie the industrial society. This 
becomes evident in the view of history that Adams sketches, a view derived not 
from the humanities nor from the life sciences but instead from nineteenth-century 
physics. Adams proclaims a kinetic theory of history, a theory determined by an 
acceleration resulting from a new-found energy and economy of forces. In 1840, 
The trusts and corporations were created that stood for the larger part of the new 
power. These trusts and corporations had a “vigorous and unscrupulous energy.” 
They troubled “all the old conventions and values, as the screws of ocean streamers 

sciences may not be the more enlightened as regards multiple interpretations lies in the almost total 
absence of a discussion of “skewness” in the excellent work by William L. Hays, 1973,  Statistics 
for the Social Sciences , New York: Holt Rinehart and Winston, Inc. As the document that follows 
points out, skewness is extremely important in evaluating mega-risks. 
4   From pp. 78 and 80 in Snow, C. P., 1963,  The Two Cultures and A Second Look , Cambridge: 
Cambridge University Press. See also pp. 3, 22, 60, and 70. 
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must trouble a school of herring. They tore society to pieces and trampled it under 
foot.” The new world consisted of people who rejected theories of history, philoso-
phy, and theology but instead regarded the world as being full of new energies. 5  

 By 1900 not long before Adams died, this energy consisted of coal power, elec-
tric power, and radiating energy. This energy, along with new forces as yet undis-
covered, might enable people to forecast changes with ever increasing accelerations 
and velocities, which, if plotted, might yield predictions to plot the past and future 
orbit of the human race as accurately as that of the November meteoroids. The old 
qualitative methods of dispute and discussion had become idle in the face of these 
new energies and their attendant forces. 6   

   The Contrasting Trajectory in This Work: First, 
Learning from Traditional Sources of the Single-Solution 
Approaches to Mega-Risks 

 The trajectory of the following essays goes in the opposite direction from the works 
of Mill, Adams, and Snow. These essays do not start from eminently readable dis-
cussions of society, education, politics, the humanities, and diverse viewpoints 
therein. These essays do not end with an affi rmation that the quantitative disciples 
are fait accompli and should provide the forces that leave disputes and discussion 
worthless. These essays do not deny that quantitative approaches have in many 
cases dominated discussions, innovations, inventions, and everyday life. 

 Instead, after defi ning the issues at hand and summarizing chapters to come, 
these essays begin with highly quantitative approaches of statistical and probability 
theories that now make a considerable difference in everyday life. These essays 
begin with discussions of a “deductivist” approach, proceed to a “frequentist” 
approach, and continue with a “Bayesian” approach. These three approaches have 
traditionally been the main approaches to issues in probability and statistics, and the 
latter two approaches still dominate today’s discussions. These discussions are 
designed to address questions about accounting for uncertainties in mega- risk eval-
uations. In spite of all the valuable insights that come from these three approaches, 
they address uncertainty issues in very limited ways. Their limitations are devel-
oped in these chapters as well as in the next chapter that provides a simple approach 
to the initial assessment of extreme value distributions. 

 To complete the discussion of how traditional theories fare in addressing uncer-
tainty issues, a discussion of the mathematization of probability and statistics fol-
lows. Once again, the discussions fi rst consider quantitative issues and of how they 

5   From pp. 239 and 500 in Adams, Henry, 1918,  The Education of Henry Adams , Boston, Houghton 
Miffl in Company. 
6   From pp. 496 and 501 Adams, Henry, op. cit. 
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have been treated and how they could be treated. The mathematization of statistics 
purports to bridge the gap between fi nite samples and the infi nite populations used 
in probability and statistics. The vast improvements in information technology (IT) 
have led to and can continue to lead to many signifi cant results in probability and 
statistics because one is enabled to visualize how huge numbers of simulations 
might yield sound results. Yet, very briefl y speaking, when one sees in one’s mind’s 
eye what an infi nity of samples might be, one fi nds the passage from Shakespeare’s 
 Troilus and Cressida  apropos:

     The will is infi nite
   and the execution confi ned,     
  the desire is boundless
   and the act a slave to limit. 7        

   These chapters are not dead ends because each chapter contains explicitly and 
implicitly enormous advances in the infrastructure of probability and statistics and 
assists in addressing major questions on stochastic uncertainties in evaluations of 
mega-risks. But the trajectory still has a distance to traverse.  

    The Contrasting Trajectory in This Work: Interpretive 
Processes Dealing with Mega-Risks in Competitive 
Highly Disciplined Settings 

 The same is actually true with, for instance, reading J.S. Mill, C.P. Snow, and Henry 
Adams, respectively. One doesn’t fi nd out how they are coping with the issue of two 
cultures or the industrialization (and now the post- industrialization) of society and 
culture, given previous educational emphases away from quantitative disciplines 
currently favored. My interpretation of J. S. Mill, C.P. Snow, and Henry Adams, 
respectively, may turn out on further examination to be way off base. I use the term 
“interpretation” in the title because it is a term used in many “softer” disciplines and 
is not thought of as being as meaningful in the more strict quantitative disciplines. 
“Interpretation” requires the “imagination,” defi ned by Mill as conceiving the absent 
as if it were present and the imaginary as if it were real, and, by implications, makes 
it possible to interpret another mind, way of thinking, or approach to dealing with a 
problem. 8  What is treated as imaginary may turn out to be real or a valuable way to 
solve some major issues. 

 So, each new chapter is an outgrowth of fi ndings from the previous chapters. The 
fi nal three chapters produce an infrastructure for the treatment of uncertainties that 
is much richer than that achieved by thinking of uncertainties as being dealt with by 
large samples. Instead, the fi nal chapters rely more signifi cantly on the discipline 
developed through education and training that enables one to make sound or intel-

7   From p. 38 in Mandelbrot, Benoit B., 1983,  The Fractal Geometry of Nature , New York: W. H. 
Freeman and Company, originally 1977. 
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ligent decisions that are stochastic in nature. This discipline can be combined with 
a critical account of existing quantitative approaches that may be useful in making 
decisions about mega-risks. These quantitative decision procedures do not rule out 
numerous qualitative considerations nor the issue of interpretation. 

 This trajectory thus proceeds in the opposite direction from that of J. S. Mill, 
Henry Adams, and C.P. Snow but fi nds similarities in the writings of many others. 
The trajectory in these essays moves more toward a “soft” approach to uncertainty 
in these vast simulations as “harder” approaches one after another fall by the way-
side. We “interpret” outputs from evaluating shocks to systems, and this interpreta-
tion, fallible as it is, should require years of prior discipline and appeal to those in 
various disciplines. Some problems can be addressed in an instant; to address other 
problems may require decades or longer. In the words of William James in 1882:

  A chemist who conjectures that a certain wall-paper contains arsenic; and has faith enough 
to lead him to take the trouble to put some of it into a hydrogen bottle, fi nds out by the 
results of his action whether he was right or wrong. But theories like that of Darwin, or that 
of the kinetic constitution of matter, may exhaust the labors of generations in their corrobo-
ration, each tester of their truth proceeding in the simple way—that he acts as if it were true 
and expects the results to disappoint him if his assumption is false. 8  

   The trajectory in Flyvbjerg quoted at the start of this preface is fi rst to indicate 
how science and scientifi c activities follow something more like a Cartesian or 
Newtonian viewpoint or like Thomas Kuhn’s “normal” science and Aristotle’s view 
of science. Flyvbjerg contrasts a context-free science emphasizing universals and a 
cumulative view of progress to his view of the social sciences as a modifi cation of 
Aristotle’s theory of  phronesis  or practical reasoning that emphasizes context-
dependent concrete activities in valuation settings. “Interpretation” becomes critical 
in Flyvbjerg’s view of social science. Without going further into his view of social 
science, there is to some degree more of a merger here of his view and the view in 
these essays. In particular, the so-called “hard” sciences are when applied to chal-
lenging issues far less “Newtonian” than classical physics defi ned as a “puzzle-
solving” activity in which there is one solution to each puzzle. The quantitative 
areas considered in these essays naturally give way to numerous quantitative 
approaches to decision-making and to that extent have bearing on valuation issues. 
These quantitative approaches to decision-making assist but do not in these essays 
purport to deal wholly with all the concrete activities involved in decision-making. 

 The view here furthers the work of Imre Lakatos, who maintains that “normal 
science” is nothing but a research program that has achieved monopoly” 9  and “[ t ] he 
history of science has been and should be a history of competing research 
programmes .” 10  The systemic and contextual features of “puzzle solving” are for-

8   From p. 325, William James, 1882, “the Sentiment of Rationality,” in  The Writings of William 
James :  A Comprehensive Edition . 
9   From p. 69 in Lakatos, I., 1978,  The methodology of scientifi c research programmes , London: 
Cambridge University Press. 
10   From p. 69 in Lakatos, I., 1978,  The methodology of scientifi c research programmes , London: 
Cambridge University Press. 
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gotten when one ignores how one “law” may interact with others and be part of a 
puzzle: the ball rolls uphill as a result of the westerly wind. So, when a new force is 
discovered, there is a systemic modifi cation of the previous view. 

 The trajectory in these essays is indeed more like the trajectory in the work of the 
extremely divergent thinking Benoit Mandelbrot, whose views have not been fully 
absorbed in these essays. Although one of his fi rst discoveries was the price changes 
in economics did not follow the Gaussian distribution as had been theorized since 
the turn of the century, this theory continued to be used in spite of the failure of 
Long-Term Capital Management and until perhaps the great recession of 2008, so, 
he did much work in “harder” sciences and engineering such as astrophysics on the 
distribution of galaxies, hydrology on different impacts of dams on rivers, and elec-
trical engineering to evaluate turbulence in fl ows. 11     
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