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Preface

I consider plate tectonics as the Earth Sciences discipline that describes
the geodynamic evolution of the lithosphere, coupled with the underlying
“fluid” mantle, over long time intervals, of the order of million years. Such
a description, which includes plate kinematics, mantle dynamics, and the
geology of plate boundaries, is based on a variety of data from marine
geophysics, paleomagnetism, seismology, structural geology, stratigraphy,
paleontology, and geochemistry. Therefore, although traditionally plate tec-
tonics has been considered either as synonymous with plate kinematics (by
most geophysicists) or a discipline describing the structural geology of plate
boundaries (by many geologists), I will try to present an integrated approach
to this science, introducing concepts from most of the research fields listed
above. In fact, despite that the modern society drives young scientists toward
exasperated specialization, it is my firm opinion that a true expertise in plate
tectonics should be based on a holistic view of the geological processes.

This textbook evolved from a series of courses that I taught over the
last years at the University of Camerino, Italy, to students enrolled in the
MSc programme in Geoenvironmental Resources and Risks. These students
had a background in geology, geography, engineering, or physics, a level
ranging from advanced undergraduate to graduate, and came from four
continents. For many geology, geophysics, and environmental engineering
students, knowledge of plate tectonics is generally qualitative and limits to
a few consolidated principles and to some rudiments about plate boundary
processes. This book was born from the idea that a number of students
could be stimulated to undertake a more thorough study of plate tectonics
after having acquired basic skills in introductory courses. For these people,
attaining an in-depth knowledge of the physics of plate tectonic processes
through a rigorous approach based on mathematical methods will be a
pleasant adventure, not a boring exercise. In fact, any student that strives
for understanding the nature of the forces that drive the large-scale geo-
logical processes is naturally led to consider mathematics as a fundamental
method for describing the natural processes in their generality, not only
as a tool for solving practical problems. This book can also be useful for
researchers specialized in one of the several disciplines of geosciences,
who have the necessity to learn techniques of plate tectonic modelling or
simply desire to expand their knowledge. Unfortunately, with the exception
of the classic volume published by Le Pichon et al. in 1973, there are no
advanced books where a student can learn quantitative methods of plate
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tectonics and find a unified description of the laws that govern the motion
of tectonic plates. This book attempts to fill the gap by first exploring the
principles of plate kinematics in the first part (Chaps. 1, 2, 3, 4, 5, and 6), then
trying to link plate motions to physical processes occurring in the lithosphere
and the mantle in the second part (Chaps. 7, 8, 9, 10, 11, 12, 13, and 14).
In order to be self-contained, the book includes three chapters (Chaps. 8, 9,
and 10) that illustrate the basic principles of seismology, because this disci-
pline represents a fundamental source of data for plate tectonics. Throughout
the book, it is assumed that the reader has an adequate background in geology,
geochemistry, and classic physics, while skills in computer programming
are required for solving some exercises. With a few exceptions, reading this
book does not require more mathematical background than the customary
undergraduate courses in advanced calculus and vector analysis. As an aid to
reading, two electronic appendices introduce vector analysis and algorithms
are included at the end of this book. Finally, a basic understanding of plate
tectonics at the level of the classic book of Cox and Hart (1986) is desirable.
Some exercises have been designed to be solved with the help of professional
software, either freeware or commercial. These software tools include two
free computer programs that I designed for the analysis of marine magnetic
anomalies and for making plate tectonic reconstructions, respectively Magan
and PlaKin. Readers can freely download the software and the solutions to
the exercises from http://extras.springer.com either to learn some techniques
or for their own research purposes.

The special emphasis I give to computer methods shows through some
chapters of this book and is clearly a consequence of my heterogeneous
scientific background. Although I studied theoretical physics, my passion
for computer programming led me to start working as a software developer
and consultant in Milan, Italy, soon after my graduation. However, even
in those days I maturated a strong scientific interest in the application
of advanced algorithms to geosciences, in particular to plate kinematics.
During that period, I designed and developed PCME (Paleo–Continental
Map Editor) (Schettino 1998), an interactive computer program for making
plate reconstructions. This event led me to get in touch with C. R. Scotese,
a scientist who pioneered the application of computer methods to plate
kinematics. At that time he was at the University of Texas at Arlington,
and I started collaborating with him to the construction of a new atlas of
plate tectonic reconstructions for the Mesozoic and the Cenozoic in the
context of the Paleomap Project, as well as to the implementation of a
series of advanced software tools for plate tectonic modelling. Starting from
the beginning of the new millennium, my research interests focused on
paleomagnetism, marine geophysics, plate kinematics at global and regional
scale, and on the dynamics of subduction. The general conclusion at which I
arrived during my studies, which is now a guiding principle in my approach
to the analysis of plate tectonic processes, can be summarized as follows.
For time intervals of several million years, tectonic plates move at constant
angular velocity about stationary axes of rotation in any geocentric reference
frame fixed with respect to the Earth’s spin axis. Therefore, conditions
of dynamic equilibrium must normally exist between driving and resistive
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torques exerted on the lithosphere. Such a global equilibrium is broken
when new plate boundaries form, or existing ones become extinct, so that
a new system of tectonic plates is established. Then, the plates of this new
system start moving about new, generally different, rotation axes and with
different angular velocities. New plate boundaries always form by propa-
gation of lithospheric discontinuities from a source region toward existing
active boundaries, where they will give rise to additional triple junctions.
Occasionally, plate motions proceed in non-equilibrium conditions, because
active asthenospheric flows driven by horizontal pressure gradients in the
mantle exert an excess basal drag on the overlying lithosphere, determining
significant variations of angular velocity and accelerated motion. In this
instance, high spreading and subduction rates accompany the plate motions.
The ultimate cause of such episodes of non-equilibrium plate kinematics is
the presence of upper mantle thermo-chemical heterogeneities, in particular
mantle plumes and subducted slabs. Plate motions that proceed in conditions
of perturbed equilibrium are associated with spectacular and sometimes
unexplained geological phenomena, but these events are uncommon in the
history of global plate motions and must be viewed as the exception rather
than the rule. Therefore, the equilibrium between driving and resistive torques
exerted on the lithosphere, and the resulting invariance of the angular velocity
vectors of tectonic plates for long time intervals, should be considered as one
of the most fundamental laws of plate tectonics.

I would like to thank my students of the Earth Physics course, a.a.
2013/2014, for the many errors found in a draft of Chap. 2 and for their
stimulating questions. I would also thank colleagues with whom I worked
for several years on plate kinematics, especially C. R. Scotese and Eugenio
Turco. I am honored to have learnt so many things from these people. I am
also grateful to Giorgio Ranalli (Carleton University), Marco Ligi (ISMAR–
CNR Bologna), and Eugenio Turco (University of Camerino) for the help
I received through their constructive criticism and useful suggestions during
the review of this book. If errors persist in this edition, it is not their fault but
a consequence of my negligence. Finally, I am indebted to the editor, Petra
van Steenbergen, and the editorial staff of Springer for their assistance.

March 2014 Antonio Schettino
Camerino, Italy
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Plate Kinematics



1Composition of the Crust
and theMantle

Abstract

The external layers of the solid Earth, from the crust to the lower
mantle, are the main actors involved in the plate tectonics drama. In this
chapter, I describe their chemical composition and introduce the principal
geodynamic processes occurring within and between these layers.

1.1 Crust andMantle Minerals

Plate tectonics focuses on the dynamics and
kinematics of the most external layers of the solid
Earth: the relatively thin oceanic crust (7–10 km
thickness), the continental crust (5–70 km
thickness), the mantle lithosphere, whose lower
boundary can be found at depths ranging between
80 and 250 km, the underlying asthenosphere
(up to 410 km depth), the transition zone
(410–670 km depth), and the very huge lower
mantle, which extends to a depth of �2,900 km
(Fig. 1.1). All these rock layers are formed
by solid-state mixtures of minerals that are
chemically and structurally stable only within
determined intervals of pressure and temperature.
Rocks can eventually contain liquid phases in the
existing pores between grains or in cracks.

In general, chemical composition, crystalline
structure, and the physical state of Earth
materials change from point to point, so that
rocks are strongly heterogeneous systems.
However, any rock system can be ideally
resolved into a finite number of phases that
are physically and chemically homogeneous.

For example, seismology studies and research on
high-temperature (HT) and high-pressure (HP)
minerals indicate that the upper mantle mostly
consists of two phases: Mg2SiO4 (the fosterite
end-member of olivine) and Mg2Si2O6 (orthopy-
roxene). The chemical composition of mineral
assemblages is usually described by the so-
called components, which represent the minimum
number of chemical formulae that are needed to
describe the set of phases composing the rock.
For example, both olivine and orthopyroxene
can be represented by a mixture of MgO and
SiO2, because Mg2SiO4D 2MgOCSiO2 and
Mg2Si2O6D 2MgOC 2SiO2. We emphasize that
this decomposition is arbitrary and represents
only a useful way to describe the chemical
composition of a rock through its constitutive
elements, independently from the real crystalline
structure of the mineral phases included in the
solid state mixture.

A basic mineralogical characterization and
stratigraphy of the external layers of the solid
Earth is illustrated in Fig. 1.1, while composition,
density, and other physical parameters of the
main crustal and mantle minerals are listed in
Table 1.1. The meaning of these mechanical

A. Schettino, Quantitative Plate Tectonics, DOI 10.1007/978-3-319-09135-8__1,
© Springer International Publishing Switzerland 2015
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4 1 Composition of the Crust and the Mantle

Fig. 1.1 Geometry and mineral composition of the crust
and the mantle (Mineral abbreviations are explained in
Table 1.1. P is the lithostatic pressure)

parameters will be discussed in detail in Chap. 8.
An apparent feature of the subdivision shown in
Fig. 1.1 is the trend towards a more complicated
chemical composition and geometry as we
approach the Earth’s surface. This greater
complexity is only partially real, and mainly
arises from our increased and often direct
knowledge of the most external layers, whereas
starting from the transition zone we must rely
on a combination of theoretical modelling (both
thermodynamic and geochemical), experimental
petrology laboratory results, and indirect
geophysical (mainly seismological) constraints.
However, it is possible to affirm that most of the
complicate geologic structures that we observe at
crustal scale, as well as the considerable lateral
chemical differentiation, are unique features that

result from the global plate tectonics process,
which accompanied the origin and evolution
of life on the Earth during the last 2.5–3 Ga
(billion year b.p.).

The stratification shown in Fig. 1.1 was orig-
inated during the last stages of formation of the
solid Earth by a process of gravitational separa-
tion of materials according to their melting points
and densities. In the next pages, we shall build
a continuum mechanics representation of these
layers, in order to establish a rigorous quantita-
tive basis for the description of the geophysical
entities that we call tectonic plates.

1.2 Continental Crust

The major part of the continental crust most
probably formed between 4 and 2 Ga during two
main episodes of differentiation at �1.9 Ga ago
and �3.3 Ga (Hawkesworth and Kemp 2006).
Geochemical modeling suggests that at �4 Ga
basaltic magma, having a composition similar to
a mixture of 92 % present day oceanic island
arc basalts (IAB) and 8 % ocean island basalts
(OIB), was extracted from the primitive mantle.
Cooling of this magma ocean led to the formation
of an early relatively thin (30–45 km, Herzberg
and Rudnick 2012) basaltic crust envelope of
the entire globe. Further differentiation occurred
sometime later, at �3.3 and �1.9 Ga, and con-
sisted into localized processes of re-melting of
the original basaltic layer, with formation of a
�13 km thick and lighter upper continental crust
and an underlying stratum having much greater
thickness and density. The latter became grav-
itationally unstable as a consequence of phase
transitions that produced dense minerals such as
garnet. Therefore, the original deep continental
crust resulted from further gravitational differen-
tiation, with foundering of a relevant high-density
part of the residual layer into the mantle. After
this initial phase, concentrated in two pulses dur-
ing the Meso-Archean and the Paleo-Proterozoic,
slow and more regular growth of the continental
crust occurred at the expenses of the surround-
ing oceanic crust, and was essentially driven
by plate tectonic processes, in particular by arc
magmatism.

http://dx.doi.org/10.1007/978-3-319-09135-8_8
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6 1 Composition of the Crust and the Mantle

Fig. 1.2 Global crustal
thicknesses in the model
SECT (After Bagherbandi
2012)

The continental crust is characterized by
lateral and vertical chemical heterogeneity, as
well as by variable thickness. These rocks have a
bulk low-density (¡� 2,700 kg m�3) “andesitic”
(intermediate) composition. This implies that a
description of the average chemical composition
of the continental crust in terms of oxide compo-
nents coincides with that of a typical andesite, an
extrusive rock that is characteristic of subduction
zones and is made principally by plagioclase,
mafic (that is, having high Mg and Fe content)
minerals (hornblende, clinopyroxene, and or-
thopyroxene), and possibly quartz and biotite (see
Table 1.1). The thickness varies from a few kilo-
meters along the ultra-thinned continent-ocean
boundaries (COBs) to more than 80 km in regions
of continental collision. Seismology studies
indicate that the greatest crustal thicknesses can
be found in the Himalayas (�80 km) and along
the western Cordillera of the Andes (70–74 km).
Figure 1.2 shows the recent 1ı resolution global
model proposed by Bagherbandi (2012), which
furnishes a good representation of the crustal
geometry especially in the continental areas.

In general, at least three layers with different
petrologic and physical properties are necessary
to describe accurately the continental crust. The
upper continental crust is formed by sedimen-
tary and granitic rocks, with a bulk granodioritic
composition. In terms of components, it includes
66.6 % SiO2, 15.4 % Al2O3, 5.0 % FeOT (total Fe
computed as FeO), 3.6 % CaO, 3.3 % Na2O, and
2.8 % K2O (Rudnick and Gao 2003). The deep

continental crust can be generally divided into
middle (between 10 and 20 km depth) and lower
crust (below 20–25 km). The former is dominated
by amphibolites (metamorphic rocks which have
experienced temperature in excess of 500 ıC and
pressure between 0.3 and 0.8 GPa) and has an
overall trace-element pattern that is very simi-
lar to the upper crust, which indicates that also
this layer is formed by products of the origi-
nal phase of intra-crustal differentiation. Its bulk
composition is intermediate and includes 63.5 %
SiO2, 15.0 % Al2O3, 6.0 % FeOT, 5.3 % CaO,
3.6 % MgO, 3.4 % Na2O, and 2.3 % K2O (Rud-
nick and Gao 2003). Therefore, with respect
to the upper crust this layer has lower SiO2

and K2O concentrations and higher FeO, MgO,
and CaO concentrations. The lower continen-
tal crust is believed to be mainly formed by
granulites, metamorphic rocks that are associated
with HT (T > 650 ıC) and low (LP) to mod-
erate pressure conditions (0.3<P< 1.2 GPa).
The P-waves seismic velocity is subject to rel-
evant lateral variations, but is generally high
(vP� 7 km s�1), suggesting a dominance of mafic
granulite and/or amphibolite lithologies. How-
ever, continental arcs and some Archean cra-
tons are characterized by slower seismic velocity,
which is indicative of more evolved composition
(that is, higher SiO2 content). The lower crust
bulk composition includes 53.4 % SiO2, 16.9 %
Al2O3, 8.6 % FeOT, 9.6 % CaO, 7.2 % MgO,
2.7 % Na2O, and 0.8 % TiO2 (Rudnick and
Gao 2003).
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1.3 Oceanic Crust

We now consider the oceanic crust. With respect
to the continental counterpart, this is a thin layer
(Fig. 1.1) with different and much more homo-
geneous composition, and different mechanical
properties (in terms of density and seismic ve-
locities). It formed much later at the expenses
of the originary undifferentiated basaltic layer
mentioned above and can be considered as the
most evident product of the global plate tectonics
process, which is historically known as Wilson
cycle (Dewey and Burke 1974). This process
governs the formation of new continents by ag-
gregation of continental masses after episodes of
collision (orogenic phases). It also governs their
splitting and subsequent dispersal, with forma-
tion of new oceanic seaways, as a consequence
of extensional forces. Figure 1.3 shows schemati-
cally the four constitutive elements of the Wilson
cycle. A quantitative description of these pro-
cesses is the ultimate objective of this book. The
Wilson cycle implies that oceanic crust is con-
tinuously accreted at spreading centers that are
localized along the mid-ocean ridges, and con-
tinuously destroyed at subduction zones, where
it bends downwards and sinks passively into the
asthenosphere. The morphological expression of
these bending lines is represented by the oceanic
trenches. The global age distribution of the mod-

ern oceanic sea floor (Müller et al. 2008) suggests
that a complete recycling of the oceanic crust may
take more than 200 Myrs. Recent estimates sug-
gest�3 Ga as a probable starting time of this pro-
cess (Shirey and Richardson 2011; Dhuime et al.
2012), although other authors claim that plate
tectonics did not initiate during the Archean (e.g.,
Hamilton 1998). Therefore, the starting time of
the Wilson cycle could be as young as 2.5 Ga.

New oceanic crust is generated by crystal-
lization of a mid-ocean ridge basaltic (MORB)
magma in the empty space that is continuously
created at a spreading center from the horizontal
displacement of two oceanic plates that are mov-
ing apart. Several lines of evidence suggest that
mid-ocean ridges have deep “roots” in the mantle
asthenosphere. Although this layer is made by
solid-state peridotite rocks having considerable
density (between 3,400 and 3,500 kg m�3), we
shall prove in Chap. 13 that it has a distinct fluid
behaviour, with relatively low viscosity of the
order of 1020 Pa s. The lateral divergent motion
of two oceanic plates induces passive upwelling
of asthenosphere material, because the separating
plates exert viscous drag on the underlying hot
mantle, determining the continuous formation
of void that must be filled by a vertical flow.
The asthenospheric upwelling beneath mid-ocean
ridges has a lower bound velocity of the order
v� 10 mm yr�1 and can be traced downwards to
a depth of 250–300 km on the basis of seismic

Fig. 1.3 The Wilson cycle paradigm. Oceanic crust and
underlying mantle lithosphere are shown in orange. Con-
tinental crust and underlying mantle lithosphere are shown
in green. The asthenosphere and transition zone are shown
in light brown and blue respectively. Four distinct inter-
connected processes contribute to the Wilson cycle: R
Rifting, where continents are split apart by extensional

force fields, S Spreading, where new oceanic crust is
created by cooling of basaltic magma associated with as-
thenosphere upwelling; T Subduction, where old oceanic
crust and mantle lithosphere sink into the asthenosphere as
a consequence of gravitational instability; and C Collision,
where continental masses join together and form mountain
belts after complete closure of the intervening oceans

http://dx.doi.org/10.1007/978-3-319-09135-8_13


8 1 Composition of the Crust and the Mantle

tomography techniques (Ritsema et al. 2004).
The velocity of this flow and the typical ther-
mal diffusivity of peridotite (›Š 0.6 mm2 s� 1

at TD 1,400ıK, pD 7� 10 GPa) prevent sub-
stantial transfer of heat to the surrounding man-
tle, because for a path length LD 300 km the
dimensionless quantity vL/�Š 1.59� 102 (Peclet
number), which measures the relative importance
of advection with respect to conduction, is much
greater than unity. Therefore, we can consider
this as an adiabatic process, which is dominated
by the advection of heat rather than by thermal
conduction.

Let us consider a small rising volume element
of the asthenosphere beneath a mid-ocean ridge.
During its ascent, the temperature T and the
ambient pressure p change in such a way that
no heat is lost or gained (dQD 0). This process
is generally considered to be reversible to a first
approximation, so that dQDTdS and the entropy
is invariant too (dSD 0, isentropic process). In
these conditions, it is simple to determine how
the temperature changes as the volume element
moves towards the surface. By the cyclic relations
of thermodynamics, we have that:

�
@T

@p

�
S

D �
�
@T

@S

�
p

�
@S

@p

�
T

(1.1)

Furthermore, Maxwell’s relations require that:

�
@S

@p

�
T

D �
�
@V

@T

�
p

(1.2)

The rate of variation of the volume with tem-
perature can be expressed through the coefficient
of thermal expansion. This quantity is given by:

˛ D 1

V

�
@V

@T

�
p

(1.3)

Substituting into Eq. (1.1) we obtain:

�
@T

@p

�
S

D ˛V
�
@T

@S

�
p

(1.4)

The last derivative in Eq. (1.4) can be calcu-
lated through the specific heat at constant pres-
sure and the usual Maxwell relations:

cp D T

¡V

�
@S

@T

�
p

D T

¡V .@T=@S/p
(1.5)

where ¡ is the density. Therefore, the rate of
change of the temperature with pressure will be
given by: �

@T

@p

�
S

D ’T

¡cp
(1.6)

In order to determine the variation of T with
depth, we can use the simple relationship express-
ing the variation of the hydrostatic pressure with
depth:

@P

@z
D ¡g (1.7)

where g is the acceleration of gravity and z is the
depth. Therefore, the adiabatic rate of change
of the temperature with depth will be given
by:

�
@T

@z

�
S

D ’Tg

cp
(1.8)

The coefficient of thermal expansion varies
between ’D 5� 10� 5 K� 1 at pD 0.1 MPa,
TD 1,700ıK (an adiabatically decompressed
mantle) and ’D 1� 10�5 K�1 at the core–
mantle boundary (Chopelas and Boehler 1992).
For TD 1,700ıK, pD 10 GPa (�300 km depth)
this quantity assumes the value: ’Š 3.5� 10� 5

K� 1. The specific heat at constant pressure for
the mantle is cpŠ 1.2kJ K� 1 kg� 1 (Stacey
2010). Therefore, using these values in Eq. (1.8),
the adiabatic gradient of temperature in the
uppermost asthenosphere is approximately:

�
@T

@z

�
S

Š 0:5ıK km�1 (1.9)

Equations (1.6) and (1.8) describe the depen-
dence of temperature from pressure, TDT(p),
and depth, TDT(z), beneath ridges. These isen-
tropic adiabat geotherms have great importance
in geodynamics. A key observation is that an
isentropic adiabat has a less steep slope dT/dp (or
dT/dz) than the peridotite solidus, which is the
set of (p,T) pairs where these rocks start melting.
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Fig. 1.4 Isentropic adiabat
upwelling geotherms for an
asthenosphere (red line)
with potential temperature
Tp D 1,280 ıC (see text)
and for MORB (in blue).
Dry and wet peridotite
solidi are also shown

Thus, the two curves intersect at a point and
partial melting becomes a necessary consequence
of the passive upwelling of asthenosphere, as
shown in Fig. 1.4.

The concept of potential temperature, Tp, is
related to the necessity to perform comparisons of
the heat content of a volume element at different
depths (hence at different p and T conditions).
If the material is incompressible, then a differ-
ence of heat content, dQ, between two volume
elements at different (p,T) will be proportional to
the difference of temperature, dT. However, if it is
not, then dQ will be proportional to dT only if the
two volume elements will be brought to the same
pressure through an isentropic path. The reason
is that if the material is compressed or stretched
by a variation of pressure, so that its volume
is reduced or expanded, it will be also heated
or cooled as a result of the work done by the
external or internal pressure fields. Therefore, it is
a common practice in geodynamics to introduce
the quantity Tp, which is the temperature that a
volume element would have if it were brought

isentropically to a reference pressure p0 (usu-
ally 1 atm). After this reduction, differences of
temperature measure variations in heat content,
thereby Tp only changes when the entropy of the
material changes. To find the potential tempera-
ture associated with the actual temperature T at
depth z we simply integrate Eq. (1.8) between z
and the Earth’s surface:

TpZ
T

dT 0

T 0 D
’g

cp

0Z
z

d z0 (1.10)

Tp D T .z/e�˛gz=cp (1.11)

McKenzie and Bickle (1988) estimated a
potential temperature of the asthenosphere of
1,280 ıC to generate a 7 km thick oceanic
crust. More recent estimates suggest that Tp

beneath ridges varies linearly between 1,280
and 1,400 ıC as a function of the MgO content
in primary magma (10–13 % wt MgO, e.g.
McKenzie et al. 2005; Herzberg et al. 2007).
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Fig. 1.5 Asthenosphere flow beneath a mid-ocean ridge
(black lines) and melting regime (green triangle). Red
dashed lines represent melt migration flow lines. The
oceanic crust is shown in yellow. The small black rectan-
gle at the spreading center represents the volume of new

crust generated per unit time. The large black rectangles
at dry and wet solidi depths show the volumes of mantle
entering respectively the higher-degree and lower degree
melting regime zones during the same time interval, which
are necessary to produce that amount of new crust

Figure 1.4 shows the mantle adiabatic geotherm
for a potential temperature TpD 1,280 ıC. In
this example, the melt temperature ranges from
�1,310 ıC at the dry peridotite solidus (55 km
depth) to �1,260 ıC at the surface. We note
that the melt adiabatic geotherm has different
slope and potential temperature. The reason is
that (@T/@z)SŠ 1.0ıK/km for a basaltic magma,
approximately twice the slope of the mantle
geotherm.

Let us consider now the solidus curves of
peridotite rocks (Fig. 1.4). Hirschmann (2000)
showed that the dry solidus of peridotite between
0 and 10 GPa can be constrained experimentally
to follow a simple parabolic law:

Ts.p/ D ap2 C bp C c (1.12)

where aŠ� 5.14 ıC GPa� 2, bŠ 132.90 ıC
GPa� 1, and cŠ 1, 120.66 ıC. This solidus is
strongly affected by the presence of volatiles
(water, CO2, etc.), which always reduce the
melting point temperature of these rocks. For
example, Fig. 1.4 shows the effect of the addition
of water to a dry peridotite system (Katz et al.
2003). Therefore, partial melting may start at
considerable depth beneath a spreading center.
Dasgupta and Hirschmann (2006) have recently
shown that deep melting must occur at depths up

to 330 km, producing 0.03–0.3 % carbonatite
liquids, as a consequence of the addition of
small amounts of CO2 to peridotite. However,
most of melts form at depths shallower than
�55 km, where the mantle adiabat crosses
the dry solidus of peridotite (Fig. 1.4). The
zone of upwelling and melting can be as wide
as 100 km at 50–70 km depth. At shallower
depths melting proceeds at enhanced rate, with
extensive extraction of water from the solid
phase. Figure 1.5 illustrates the flows within and
around the so-called melting regime, which is the
region below a mid-ocean ridge where melts are
generated and carried to the surface.

The melting regime can be defined as the
region above the peridotite wet solidus where
the asthenosphere flow has a vertical component
of velocity (Plank and Langmuir 1992). There-
fore, its lateral boundaries are marked by the
zone where the mantle flows almost horizontally,
so that adiabatic decompression ceases or heat
conduction prevails. In stationary conditions, it
can be shown that the maximum velocity of
upwelling is umax D v/ , where v is the spreading
rate (Phipps Morgan 1987). Therefore, if w is
the width of the higher-degree melting regime
zone and F is the average degree of melting,
then the generation of a sliver of oceanic crust
having thickness H requires a melting regime
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having a minimum width w D �H=F . For
example, for HD 7 km and F D 20%, a 110 km
wide melting regime is necessary, granted that
the entire amount of melt is transported to the
ridge axis. In general, the degree of melt focusing
to the spreading center is elevated in the higher-
degree melting regime zone. The pattern of melt
migration depends from the anisotropy of perme-
ability of the peridotite rocks, which determines
the preferred directions of channeling of the melt
between mineral grains. Such anisotropy results
from the process of deformation of these rocks
within the melting regime, where the upwelling
asthenosphere flow is deviated to the horizontal.
Figure 1.5 shows the pattern of melt focusing in
the model of Phipps Morgan (1987). It is clear
that a small amount of melt is always retained,
even in the higher-degree melting zone, because
melts that cross the lateral boundaries of the
melting regime will be incorporated within the
horizontal mantle flow and will never reach the
ridge. Therefore, the asthenosphere outside the
melting regime always contains a small amount
of melt, which contributes to decrease the viscos-
ity of this layer.

The average degree of melting beneath nor-
mal ocean ridges, F , increases with increasing
spreading rate. The compositions of the oceanic
crust and the residual asthenosphere depend from
the process of mixing and equilibration of the
melts that are produced during the mantle up-
welling. An important feature of the quantity
F is that it reflects the degree of enrichment
of the oceanic crust in highly incompatible el-
ements. These are elements, such as K, Rb, Sr,
U, and rare-earth elements (REE), that do not
easily fit into the crystal lattice structures of
minerals such as olivine, pyroxene, spinel, and
garnet, and thereby are the first to be parti-
tioned into the melt. Conversely, the residual as-
thenospheric column leaving the melting regime
will be depleted in these elements. The final
product of sea floor spreading is represented by
a 6–10 km thick oceanic crust layer made by
extrusive MORBs and intrusive gabbros. Mid-
ocean ridge basalts are fine-grained rocks, glassy
to porphyritic, whose sequence of crystallization
starts at depths shallower than �18 km (Grove

et al. 1992). This sequence is: olivine (˙Mg�Cr
Spinel), olivineC plagioclase (˙Mg�Cr Spinel),
olivine C plagioclase C clinopyroxene. The av-
erage composition of MORBs includes 50.5 %
SiO2, 15.3 % Al2O3, 10.4 % FeOT, 11.3 %
CaO, 7.6 % MgO, 2.7 % Na2O, and 1.6 % TiO2

(Hofmann 1988).
The oceanic crust has a characteristic layered

structure, which can be investigated both seis-
mically and by on-land observation of ophio-
lite sequences. These rock assemblages represent
remnants of oceanic crust that has been obducted
onto a continental margin by plate tectonic pro-
cesses. For example, if an oceanic plate is sub-
ducting beneath another oceanic plate, and if it
also carries continental crust in the rear, then
a collision between the continent and the intra-
oceanic subduction zone (comprising the asso-
ciated island arc) is unavoidable, as soon as the
oceanic crust has been entirely destroyed. In this
instance, subduction will be rapidly stopped, be-
cause the low-density continental crust cannot be
subducted. However, a small sliver of the overrid-
ing oceanic plate will be eventually transported
(obducted) onto the continental margin, where it
will form an ophiolite sequence. Figure 1.6 shows
a typical cross-section of oceanic crust, based
on refraction and reflection seismology experi-
ments (e.g., White et al. 1992; Christeson et al.
2012), and direct field observation of ophiolite
sequences.

The sequence starts (in top-down direction)
with a thin layer of deep-sea sediments, usually
less than 0.5 km, which can be formed by car-
bonate oozes, radiolarites, or argillites depending
from sea floor depth, distance from the ridge,
and latitude. Then, we find the effusive high-
porosity MORB layer 2, �0.75 km thick, formed
by ovoidal masses resembling pillows (pillow
lavas). This stratum can be further divided into
two layers, 2A and 2B, with a boundary that
is observed at �400–600 m below the sea floor
away from the ridge axis (Christeson et al. 2012).
The 2A layer has P-wave velocities of 2–3 km s�1

in the upper 250–300 mt, followed by a high-
gradient region, with velocity increasing linearly
up to �4.7 km s�1 at 500 m depth. The transition
from such high-gradient region to velocities of
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Fig. 1.6 Layering of the oceanic crust. H is the thickness
in km, vP is the average P-waves velocity in km s�1. Sym
is the symbol of the corresponding layer

4.7–4.9 km s�1 marks the top of the seismic layer
2B, which can be considered as a transition zone
characterized by the first appearance of dikes.
The underlying low-porosity sheeted dike com-
plex, layer 2C, is �1.5 km thick and has P-wave
velocities between 6.6 and 6.7 km s�1. This layer
provides the most direct evidence of sea floor
spreading, because it is formed by dikes that have
intruded older dikes in so far as the divergent mo-
tion of two tectonic plates has created new space
to be filled. Therefore, these dikes are generally
arranged in a regular temporal sequence, with the
youngest ones located close to the ridge and the
oldest placed along the continental margins. The
presence of a well-developed 2C layer is also evi-
dence of approximate balance between spreading
rate and magma supply (Robinson et al. 2008).
The sequence of rocks forming the oceanic crust
is completed by the pair of intrusive gabbroid
layers 3A and 3B, having thickness 2–5 km and
P-wave velocity vP �7.2 km s�1. The isotropic
gabbros that can be found just beneath the sheeted
dike complex grade into gabbros having a weakly
developed near-vertical layering. Such layering
becomes more developed and acquires shallower

dip toward the base of the sequence, where dips
are sub-horizontal (Nicolas 1989).

Except for plate boundaries, only COBs in-
terrupt the considerable petrologic and mechan-
ical regularity of the oceanic crust. These zones,
which mark the transition to the continental do-
main, can be narrow or broad, and character-
ized by the presence of ultra-thinned blocks of
“transitional” continental crust embedded into an
oceanic “matrix”, exhumed mantle not capped by
oceanic crust, or thickened “transitional” oceanic
crust. A modern and more rigorous term (with
respect to the acronym COB) to indicate the
interface region between oceanic and continental
crust is ocean-continent transition zone, or sim-
ply OCT. We shall conclude this section dedi-
cated to the oceanic crust with a short discussion
about the principal characteristics of these inter-
esting regions.

The formation of an oceanic basin is always
preceded by a phase of continental rifting that
involves extensional faulting and thinning of the
continental crust. A modern example of this pro-
cess can be observed along the West African Rift
zone, which extends from the region of Afar in
Ethiopia to South Africa. The onset of sea floor
spreading is not necessarily synchronous along
the rift axis, but more generally occurs along
discrete axial cells that form and grow indepen-
dently for some million years until they join into
linear spreading segments, as observed in the Red
Sea (Bonatti 1985). At the end of this stage, the
geologic setting of the region at the interface
between the thinned continental margin and the
truly oceanic domain depends from many factors,
the most important being: (a) the velocity of rift-
ing, (b) the presence of thermal anomalies, (c) the
fertility of the asthenosphere beneath the rift area,
and (d) the presence of small-scale convective
currents in the asthenosphere (Ligi et al. 2011,
2012). Two end-members can be used to illustrate
the possible range of situations. In the case of
volcanic passive margins, the onset of sea floor
spreading is associated with intense volcanism,
eventually related to the presence of a mantle
plume. This can be viewed as an anomalously hot
or fertile region of the asthenosphere or, more in
general, as an upper-mantle area characterized by
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Fig. 1.7 Seismic reflection-refraction cross-section along the eastern US Atlantic margin (Modified from Talwani and
Abreu 2000. Numbers represent P-waves velocity in km s�1. SDR D Seaward dipping reflectors)

anomalous composition or volatile content (e.g.,
Anderson and Natland 2005). In this instance,
the acceleration that accompanies the transition
from the rifting stage to drifting may induce
a “spurt” of active upwelling, with anomalous
production of melt and formation of compressive
structures along the continental margins. For ex-
ample, the break-up of the supercontinent Pan-
gaea at �200 Ma was accompanied by an event
of extensive volcanism, which gave rise to the
Central Atlantic Magmatic Province (CAMP).
This event was also responsible for the forma-
tion of a thick initial oceanic crust along the
eastern margin of North America (Talwani and
Abreu 2000). At the same time, the extensional
structures associated with the rift basins were
inverted as a consequence of horizontal compres-
sion (Schlische et al. 2002).

A similar mechanism is probably incipient in
the present-day northern Red Sea (Ligi et al.
2011), thereby the magmatism of the Afar re-
gion could be only the “epicenter” of a future
larger magmatic pulse. Figure 1.7 shows a com-
bined seismic reflection–refraction cross-section
along the Atlantic margin of the United States
(Talwani and Abreu 2000), which illustrates the
main features of volcanic margins. We note the
presence of a more than 20 km thick atypical
oceanic crust, whose upper part has higher ve-
locities with respect to both the continental crust
and the extrusive layers (2A, 2B) of the normal
oceanic crust. The considerable thickness of such

initial oceanic crust is a direct consequence of
the anomalously high potential temperature of the
asthenosphere beneath these rifts (100–200 ıC
above normal Tp, White and McKenzie 1989). A
distinctive feature of this kind of OCT is the pres-
ence of seaward dipping reflectors (SDR), which
are surfaces of discontinuity within the extrusive
region, having a characteristic dip towards the
ocean (Fig. 1.7). Volcanic OCTs belong to the
world’s Large Igneous Provinces (LIPs, Coffin
and Eldholm 1994). They are also the magmatic
expression of catastrophic events that have deter-
mined the continental break-up and huge volcan-
ism. Well-known examples are the East Coast of
the US from Georgia to Connecticut, the western
Indian margin, the conjugate margins of South
America and the South African craton, Greenland
and Eurasia, Eritrea and Yemen.

At the opposite of the quite common volcanic
rifts, there exist only a few examples of non-
volcanic passive margins, which are character-
ized by low magma supply and ultraslow velocity
of the separating plates. An abrupt decrease in the
production of melt can be observed when the full
spreading rates are below�20 mm year�1 (White
et al. 2001). At these very slow spreading rates,
the upwelling of asthenosphere is not adiabatic,
so that conductive cooling prevails and melting
is inhibited. This favors the growth of new litho-
spheric mantle beneath the rift, according to a
thermodynamic process that will be clarified in
Chap. 12. Conversely, the absence of MORB

http://dx.doi.org/10.1007/978-3-319-09135-8_12
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Fig. 1.8 Typical cross-section of a non-volcanic OCT.
The continental margin is formed by a sequence of blocks
that have been tilted and rotated by listric faults. The
growth of new mantle lithosphere not capped by oceanic
crust occurs towards the spreading center (brown area).

The olivine in mantle peridotite is subject to hydration
at the contact with the oceanic seawater, which induces a
metamorphic transformation that converts this mineral to
serpentine (a hydrous Mg-silicate), magnetite, and other
minerals

magma prevents the formation of oceanic crust at
the ridge axis, thereby the new oceanic seaway
will be floored directly by mantle peridotites.
Figure 1.8 illustrates the main features of this
kind of OCTs. Well-known examples are the
western margin of Iberia and its conjugate (the
Newfoundland margin), the northernmost seg-
ments of the central Atlantic passive margins,
the conjugate margins of Labrador and western
Greenland, and the paleo-margins of the western
Tethys. These OCTs, which can be hundreds
of kilometers wide, generally have a seaward
termination represented by a peridotite ridge, a
basement high partly buried by post-rift sediment
(Boillot and Froitzheim 2001). Although both
the peridotite ridge and the serpentinized mantle
exhumed along the OCT may have a strong mag-
netic signal, the truly oceanic domain, character-
ized by MORB accretion and well-developed sea-
floor spreading magnetic anomalies (Chap. 5),
starts farther seaward.

1.4 Lithospheric Mantle

The lithospheric mantle composes the strong
outermost part of the Earth’s mantle. However,
it is often described as the lower portion
of a more heterogeneous external layer, the

lithosphere, which also includes the continental
and oceanic crust. In most treatises on plate
tectonics, this composite lithospheric layer
is considered as the true protagonist of the
game, because the usual definition of tectonic
plates refers to a subdivision of the entire
lithosphere (including the crustal and mantle
components) into a set of blocks that move
independently each other and behave, to a first
approximation, like elastic laminae. Therefore,
it is generally supposed that the lithosphere
has coherent mechanical behaviour despite
the lateral and vertical variability of chemical
composition. In reality, both direct observations
of seismicity and laboratory experiments indicate
that only the upper portion of a lithospheric
plate, the elastic-ductile lithosphere, can resist
static shear deformation through an elastic or
plastic response, whereas the lower part will
flow just like the underlying asthenosphere,
although with much higher viscosity. For this
reason, such lower lithospheric layer cannot be
considered as a permanent part of a tectonic plate.
Experimentally, it is found that the boundary
between the elastic-ductile lithosphere and the
lower fluid layer approximately coincides with
the 650 ıC isotherm and is marked by a sharp
cutoff of seismicity (e.g., Bodine et al. 1981;
Anderson 1995).

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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The limit between crust and lithospheric
mantle is shallower than the thermo-mechanical
boundary discussed above, and is represented by
a sharp surface of discontinuity in the seismic
velocities. Across this discontinuity, the P-wave
velocity jumps from 7.0–7.2 to 8.1 km s�1, while
the S-wave velocity changes from an average 3.9
to 4.5 km s�1. This surface is called Mohorovičić
discontinuity, or simply Moho. It marks the
transition from the basaltic rocks of the oceanic
crust, or from the granulite facies of the lower
continental crust, to the upper mantle peridotites.
An example of mineral composition of peridotite
rocks in the mantle lithosphere is: 71.6 % Ol,
23.7 % Opx, 3.6 % Cpx, and 1.1 % Sp (Eggins
et al. 1998). In terms of oxide components, these
ultramafic rocks may include: 44.1 % SiO2,
44.5 % MgO, 7.9 % FeOT, 1.3 % Al2O3, 0.9 %
CaO, and 0.5 % Cr2O3. Although the chemical
compositions of the mantle lithosphere and the
asthenosphere are similar, there is a substantial
difference in the degree of fertility, hydration,
and presence of melt. When fertile and wet
asthenosphere melts at a spreading ridge by
adiabatic decompression (Fig. 1.5), the residual
column of asthenospheric material leaving the
melting regime is depleted in incompatible
elements and dehydrated. Furthermore, it may
contain retained melts in the lower part, at the
wet solidus boundary. While this column is
dragged horizontally by the overlying oceanic
crust, it is also subject to cooling by conductive
loss of heat through the Earth’s surface. The
details of this process will be given in Chap. 12.
For the moment, it is sufficient to observe that
at any time we can divide the column into an
upper part, where the potential temperature is
fallen below the asthenosphere Tp (�1,280 ıC,
Fig. 1.4), and a lower hotter zone, which has
not yet lost a significant amount of heat. The
potential temperature at any depth z within this
conductive thermal boundary layer (TBL) can
be calculated using Eq. (1.11), starting from
the effective temperature T(z). The base of the
TBL coincides with the lower boundary of the
thermal lithosphere, and is generally used to
define the lithosphere-asthenosphere boundary
(LAB) also beneath the continents, although it

must be emphasized that the material between
the 650 ıC isotherm and the LAB behaves as a
fluid and lacks any elastic or plastic strength.

Although the definition of TBL does not ex-
plicitly mention the chemical nature of the mate-
rial within this layer, there is a substantial differ-
ence between the sub-continental and the oceanic
mantle lithospheres. A first important distinction
is that the first one most likely formed during the
Archean (3.0–3.5 Ga) together with the overlying
crust (Carlson et al. 2005), whereas new oceanic
mantle lithosphere is continuously created by
the conductive cooling of residual asthenospheric
columns. A second distinction concerns the TBL
height. The thickness of an oceanic TBL within a
residual column increases progressively at the ex-
penses of underlying asthenosphere, as it moves
away from the ridge and cools. In Chap. 12, we
shall show that a simple relation exists between
age of a residual column and thickness of the
TBL, which attains�125 km after 80 Myrs. Con-
versely, there is no simple relationship between
age and thickness of the TBL in the case of
the sub-continental mantle lithosphere. Here the
depth to the LAB shows considerable variability
and might reach �300 km beneath the Precam-
brian shields (Fig. 1.9).

Figure 1.9 shows a global estimate of the
depth to the LAB, based on seismic anisotropy
data (Plomerová et al. 2002). In this kind of
studies, the starting point is the observation that
the crystallographic axes of olivine and orthopy-
roxene aggregates acquire non-random orienta-
tions (lattice-preferred orientations, or LPO) in
response to shear deformation. For example, the
orientations of the crystallographic axes of miner-
als in the asthenosphere will be determined by the
direction of the present day flows within this layer
(Tanimoto and Anderson 1984). In particular, the
a-axes will cluster about the flow direction, the
a-axes and c-axes will concentrate in the flow
plane, while the b-axes tend to be aligned with the
normal to the plane of flow. This behavior clearly
determines anisotropy in the propagation of seis-
mic waves (Chap. 9), thereby the wavefront ve-
locity will be different along different directions
of propagation. Such anisotropy can be detected
through a variety of techniques. In any case, the

http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_9
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Fig. 1.9 Depth to the
LAB (After Plomerová
et al. (2002). Depths are in
km)

fact that the rate of shear deformation increases
abruptly passing from the mantle lithosphere to
the underlying asthenosphere implies a vertical
variation of seismic anisotropy that can detected
and used to constrain the LAB topography.

An interesting feature of the lithosphere
beneath the continental cratons is the presence
of thick “keels” of highly refractory peridotite
(Fig. 1.9), which are characterized by high
seismic velocities. Furthermore, while the base
of the lithosphere is marked by a sharp reduction
of seismic velocities beneath the oceanic basins,
possibly associated with retained melts, such a
reduction seems to be absent beneath the old
Precambrian shields. In general, the seismic
velocities are higher in the sub-continental
mantle lithosphere and correlate with the age
of tectono-magmatic activity at regional scale.
Another important source of data about the
sub-continental mantle lithosphere, which has
undoubtedly helped to clarify the differences
with respect to the oceanic counterpart, is
represented by xenoliths. These are fragments
of mantle lithosphere carried to the surface by
explosive volcanic rocks such as kimberlites,
whose systematic study has produced a large
knowledge base about the physical properties, the
chemistry, and the geochronologic history of the
sub-continental mantle lithosphere. For example,
xenoliths have revealed that this lithosphere
is anomalously enriched in some highly
incompatible trace elements, such as potassium,

uranium, and thorium. Such enrichment explains
the relatively high production of radiogenic heat
of the continental regions with respect to the
oceans. Perhaps the most important conclusion
of these studies has been that the cratonic
mantle lithosphere is less dense than the oceanic
TBL, as a consequence of high degree partial
melting and melt removal during the Archean.
Such primary melt depletion gave to the sub-
continental mantle peridotites a compositional
buoyancy that must be considered as a key
factor preserving both the continental crust
and the underlying mantle from sinking into
the asthenosphere (e.g., Carlson et al. 2004).
Conversely, the dry, chemically depleted, oceanic
lithosphere becomes gravitationally unstable
in so far as its thickness and average density
increase with the cooling. Therefore, the fate of
the old oceanic lithosphere is to bend downwards
and sink into the asthenosphere, possibly after
an episode of horizontal compression, forming
a slab. In this event, phase transitions, such as
dehydration or MORB metamorphism to eclogite
facies, will determine an increase of density,
which facilitates passive sinking into the mantle.

1.5 Asthenosphere

The asthenosphere is a mechanically weak solid
state fluid layer just beneath the lithosphere
(Fig. 1.1). Its base is defined by the 410-km
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Fig. 1.10 Logarithm of viscosity, ˜, across the upper mantle in the model of Walzer et al. (2004)

discontinuity, a surface of sharp increase of
seismic velocities and density associated with
the chemical transition of the olivine to the
“-spinel structure. The upper part of this
layer, down to �220 km depth, forms a low-
velocity zone (LVZ), where the seismic velocities
are slightly smaller with respect to those of
the overlying lithosphere and the underlying
lower asthenosphere (Gutenberg 1959). This
phenomenon is probably related to the presence
of melts, either microscopically as thin inter-
granular films or macroscopically as narrow dikes
or sills (Anderson 1989). The LVZ is very thin
beneath the cratons, whereas it approaches the
410-km discontinuity under the East Pacific Rise.

There are two key features that characterize
the asthenospheric layer. The first one is
represented by its local inhomogeneity, which is
clearly determined by the continuous injection of
density, chemical, and thermal anomalies through
the subduction process. Such inhomogeneity
induces both vertical and horizontal variations
in the upper mantle geotherms, so that the range
of temperatures could be as high as �400 ıC
(Anderson 2000). The second key feature is
the capability of this layer to flow and deform
promptly in response to external forces. In
Chap. 13 we shall show that these flows fall
in three basic categories: (a) Laminar flows,
associated with the drag exerted by an overlying

tectonic plate that is moving towards a subduction
zone; (b) Pressure-driven flows, which are
generated by lateral variations of pressure; and
(c) Temperature-driven Rayleigh-Bénard thermal
convection, which arises spontaneously as a
consequence of the vertical variability in the
temperature distribution and the basal heating of
this layer. The local presence of melts further
increases the complexity of the asthenosphere
and consequently the difficulties to find an
adequate geodynamic description of this layer.
Figure 1.10 illustrates a possible trend of the
viscosity in the upper mantle (Walzer et al.
2004). It is evident in such a model that the
asthenosphere is characterized by a viscosity
profile with values that decrease with depth
by more than three orders of magnitude, from
˜� 1024 Pa s at the LAB to ˜Š 3.6� 1020Pa s.
Only close to the base of this layer, at �367 km
depth, the viscosity starts increasing, reaching
the value ˜� 1022 Pa s at its lower boundary.
However, most recent estimations of upper
mantle viscosity point to even lower values. In
Chap. 13, we shall see that the average upper
mantle viscosity is between 0.5 and 1.0� 1021 Pa
s, while the asthenosphere viscosity could be
between 0.5 and 1� 1020 Pa s.

Some lines of evidence suggest that the lower
part of the asthenosphere, approximately below
�300 km depth, may be the source region of

http://dx.doi.org/10.1007/978-3-319-09135-8_s
http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 1.11 Large-scale asthenosphere circulation in the
oceanic domain and cycle of water in the upper mantle.
Blue lines represent transport of H2O, while numbers in-
dicate the estimated water content (% wt). Red lines show

upwellings, downwellings, flows, and counterflows in the
asthenosphere. Light and dark green regions represent, re-
spectively, mantle lithosphere and crust that independently
carry variable amounts of water

MORB. When the oceanic lithosphere moves
away from a ridge axis, it generates laminar
flows within the upper asthenosphere by exert-
ing viscous drag forces. These shallow flows,
which diverge from mid-ocean ridges, must be
compensated by counterflows within the deep
asthenosphere that are directed towards the man-
tle upwelling zones (Chase 1979). Although An-
derson and Bass (1986) argued that the sources
of MORB reside within the transition zone (be-
tween the 410 and the 670 km discontinuities),
there are three independent classes of observa-
tion suggesting a shallower source. The first one
is that the viscosity in the transition zone is
too high to allow an effective counterflow. In
other words, even assuming a participation of this
layer to the return flow, the viscosity contrast
with the asthenosphere is so high that most of
the counterflow will be concentrated anyway in
the lower asthenosphere, as we shall prove in
Chap. 13. The second class of observations is
represented by seismic tomography models of the
asthenosphere beneath ridges, which do not show
evidence of vertical motion below�300 km (e.g.,
Gu et al. 2005). Finally, the distribution of water
within the mantle and the balance of water flow
between crust and mantle lead to conclude that
the probable source of MORB is just above the

410-km discontinuity in the lower asthenosphere.
This point will be discussed in detail below.

In the Earth’s mantle, H2O can either be stored
in solid minerals or be present as hydrous fluids
or melts. Both the instantaneous distribution and
the large-scale transport of this element represent
key aspects of plate tectonics. The distribution is
clearly controlled by the flows, but it also depends
from the storage capacity of the mantle minerals.
The storage capacity of the asthenosphere is be-
tween 0.1 and 1 wt.% (Hirschmann 2006), that
of the lower mantle is much lower (<20 ppm
H2O). Conversely, the transition zone may have a
relevant storage capacity of 0.5 wt.% at 1,600 ıC
and transition zone pressures (Ohtani et al. 2001).
Regarding the water transport, diffusion cannot
be a viable mechanism, because the diffusion
distance is only �10 km Gy�1. Therefore, the
relevant mechanisms of transport are the subduc-
tion of oceanic lithosphere and partial melting.
In general, the former brings water downwards
to the asthenosphere and the transition zone, the
latter drives water upwards to the crust, as shown
in Fig. 1.11.

Water can be considered as an incompatible
element during partial melting, having strong
similarity with Ce. Therefore, the measured
ratio H2O/Ce in undegassed basalts can be

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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combined with known concentrations of Ce in
abyssal peridotites, which are representative
of MORB source regions (Workman and Hart
2005), to provide an estimate of the water
content. Such studies indicate that the MORB
source region has water content between 50
and 200 ppm. Some authors have assumed
this concentration as representative of the
whole asthenosphere, with the exception of
the subduction zones, where the concentration
could be as high as 1 wt.% as a consequence
of slab dehydration (e.g., Hirschmann 2006;
Karato 2011). The best way to estimate the
effective water content across the asthenosphere
is through analysis of electrical conductivity,
because this quantity is much sensitive to the
presence of hydrogen (Karato 1990). Studies of
the electrical conductivity of the upper mantle in
the Pacific region (e.g., Shimizu et al. 2010)
are compatible with the dry asthenosphere
conductivity profile computed by Karato (2011)
and not with the observed H2O concentration of
the MORB source region. Below the 410-km
discontinuity, the theoretical and observed
conductivity profiles are in good agreement if the
concentration of H2O is �1 wt.%. Therefore, the
distribution of water in the upper mantle suggests
a MORB source region close to the 410-km
discontinuity. In this instance, the only regions of
the oceanic asthenosphere above�300 km where
the concentration of H2O rises to �0.01 wt.%
will be the upwelling zones beneath mid-ocean
ridges. This model predicts a moderately wet
MORB source region confined to the lower
asthenosphere and an essentially dry upper
oceanic asthenosphere (Fig. 1.11). It also implies
hydration of the lower asthenosphere counterflow
by advection of wet material across the 410-km
discontinuity (Hirschmann 2006).

The high solubility of H2O in the transition
zone minerals suggests that this layer plays a
key role in the global water circulation. De-
spite the shallow dehydration of slabs at sub-
duction zones, which determines a large H2O
concentration (�1 % wt, Fig. 1.11) in the wedge
just above the slab, the rapidly sinking oceanic
lithosphere introduces a considerable amount of
water at greater depths, directly in the transition

zone. Fresh MORBs contain �0.1 % wt H2O
(Green et al. 2010), whereas the underlying man-
tle lithosphere peridotites are essentially dehy-
drated. However, the water content of both crust
and lithospheric mantle increases progressively
with the age, because of hydrothermal infiltration
of seawater within the oceanic crust or serpen-
tinization of mantle peridotites along fracture
zones and transform faults. Therefore, when the
lithosphere bends and starts sinking its water
content could be as high as 5–6 % wt at a depth of
10–20 km (Schmidt and Poli 1998). A consistent
part of this reservoir will be extracted at shal-
low depth, between 90 and 150 km, determining
extensive partial melting of the mantle wedge
and arc volcanism (Fig. 1.11). Schmidt and Poli
(1998) estimated that the degree of dehydration
at this stage is between 18 and 37 %. A fraction
of the remaining part of the original reservoir
will be extracted at greater depth, where the
bulk water content of the slab could decrease
to 0.2–0.5 wt.%. Therefore, the subduction pro-
cess continuously injects H2O within the tran-
sition zone, where it can be temporarily stored
in high-pressure polymorphs of olivine, wads-
leyite, and ringwoodite. The steady equilibrium
of the Wilson cycle and the geological evidence
of stationary oscillations of the sea level clearly
exclude a progressive decrease of ocean water
at the Earth’s surface. Thus, an upward water
flow from the transition zone to the overlying
asthenosphere, where it will be convoyed towards
upwelling flows, is necessary to obtain a global
mass balance.

The subduction process itself anyway requires
the upward advection of possibly wet material
across the 410-km discontinuity. When cold
oceanic lithosphere penetrates the transition
zone, it is generally subject to upward bending
and flattening just above the base of this
layer. These stagnant slabs tend to increase the
total volume of the transition zone, thereby a
corresponding volume will be pushed upwards
and will cross the 410-km discontinuity. In this
instance, the high H2O content will exceed the
storage capacity of asthenosphere minerals,
determining hydrous melting (Hirschmann
2006). This mechanism may explain the
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low-velocity anomalies that have been observed
just above the 410-km discontinuity, with a shear-
wave velocity drop of �5 %.

1.6 Transition Zone

The transition zone forms the lowermost layer of
the upper mantle. We have discussed in the previ-
ous section its important role in the global water
balance and mantle circulation. Here we shall fo-
cus on some key features regarding the chemistry
and thermodynamics of this region. There are
two principal models for the composition of the
transition zone. In the classic pyrolite model of
Ringwood (1975), the two major seismic discon-
tinuities in the Earth’s mantle, which bound the
transition zone respectively at 410 and 670 km
depth, are isochemical phase transformations of a
hypothetical garnet peridotite composed mainly
by olivine and pyroxene (hence the term “pyro-
lite”) (Fig. 1.12).

In this instance, the 410-km discontinuity is
associated with the pressure-induced transforma-
tion of the olivine phase in peridotite rocks to
wadsleyite:

’ � .Mg;Fe/2SiO4 ! “ � .Mg;Fe/2SiO4

Similarly, a second-order discontinuity at
�520 km depth (�18 GPa) determines new
collapse of this mineral to ringwoodite:

“ � .Mg;Fe/2SiO4 ! ” � .Mg;Fe/2SiO4

Finally, the 670-km discontinuity at the base
of the mantle transition zone (�23 GPa) is asso-
ciated with a complete breakdown of the mineral
phase to form perovskite and magnesiowüstite:

” � .Mg;Fe/2SiO4 ! .Mg;Fe/ SiO3

C .Mg;Fe/O

The other two phases of the upper mantle
mineral assemblage, pyroxenes and garnet, are
subject to more gradual transformations. For
example, pyroxene gradually dissolves into the

Fig. 1.12 Chemical composition of the mantle (% vol)
in the pyrolite model of Ringwood (1975). Maj is
majorite garnet, Mg–Pv D Mg–perovskite, Ca–Pv D Ca–
perovskite, the other symbols are explained in Table 1.1

garnet structure starting from �300 km depth
(�10 GPa). Majorite garnet, in turn, dissolves
into the perovskite structure between 670 and
750 km depth (Fig. 1.12).

In the piclogite model of Bass and Anderson
(1984) the composition of the mantle transition
zone is essentially based on the match of theoret-
ical seismic velocities with observed data and a
model of chemical differentiation of the primitive
Earth (Anderson and Bass 1986). In this instance,
the transition region is assumed garnet-rich rather
than olivine-rich and it is viewed as the source
region of MORBs.

An important prediction of the pyrolite
model arises from the Clapeyron slopes,
dp/dT, of the phase transitions at 410 and
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Fig. 1.13 Phase diagram of pyrolite in P – T space,
showing phase transitions at the 410-, 520-, and 670 km
discontinuities (Modified from Christensen 1995)

670 km depth. The magnitude of dp/dT for the
transition of olivine to wadsleyite is positive,
and a recent estimate gives C3.1 MPa K�1 at
13.4 GPa and 1,400 K (Akaogi et al. 2007).
Conversely, the breakdown of the ringwoodite
to perovskite and magnesiowüstite has a
negative Clapeyron slope of �2.6˙ 0.2 MPa
K�1 at 670 km depth (Akaogi et al. 2007).
Therefore, a negative thermal anomaly across the
transition zone, for example associated with the
presence of subducted material, will determine
simultaneously a downward deflection of the
670-km discontinuity and an upward deflection
of the 410-km discontinuity, as illustrated in
Fig. 1.13. Consequently, we expect that in general
the topography of these primary surfaces of
discontinuity be negatively correlated.

For example, the thermal anomaly associated
with a stagnant slab in the transition zone could
be as high as 700 K. Helffrich and Wood (2001)
estimated that such a difference of temperature
would determine �30 km upward offset of the

410-km discontinuity and �60 km downward
depression of the 670-km discontinuity. The
diverse amounts of displacement are clearly
a consequence of the different magnitudes
of the Clapeyron slopes associated with the
transformations of ’-olivine and ”-spinel.
These quantities were calculated assuming pure
isochemical phase transitions at the transition
zone boundaries, in agreement with the pyrolite
model. Although some seismic studies have
confirmed the existence of these deflections
(e.g., Shearer and Masters 1992), their negative
correlation and the predicted relative magnitude
are not always observed experimentally (Bina
and Helffrich 1994). However, there is a
general consensus about the validity of a
model based on phase transitions rather than
chemical boundaries. Part of the discrepancies
can be explained by taking into account that the
transformations of majorite garnet and pyroxene
to perovskite at the base of the transition zone
and in the uppermost lower mantle have positive
Clapeyron slopes (Weidner and Wang 1998),
thereby their effect is opposite to that of spinel.

Another important consequence of the pyrolite
model is represented by the effect of phase tran-
sitions on buoyancy and mantle convection, in so
far as they determine variations of density and
heat transfer (e.g., Christensen 1995). According
to the Clausius-Clapeyron relation, the Clapeyron
slope of a single-component system is given by:

” D dp

dT
D ��S

�V
D ¡2�S

�¡
D ¡2QL

T�¡
(1.13)

where �S and �V are respectively the variations
of entropy and specific volume, ¡ is the mean
density of the two phases, �¡ is the density con-
trast between the phases, and QL is the latent heat.
Therefore, the phase transition is exothermic if
” > 0, otherwise it will be endothermic.

The sketch in Fig. 1.14 illustrates the predicted
behaviour of negative thermal anomalies placed
in the vicinity of the 410- and 670-km disconti-
nuities. At 410 km depth, the transition of olivine
to wadsleyite has positive ”, so that it is exother-
mic. Therefore, a small downgoing body with
negative thermal anomaly (•T < 0) just above the
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Fig. 1.14 Buoyancy of negative thermal anomalies in
proximity of the mantle transition zone boundaries. Black
arrows indicate buoyancy associated with phase transi-
tions, red arrows indicate buoyancy arising from thermal
anomalies

discontinuity will be subject to phase transition
to wadsleyite at shallower depth, and its density
will increase by �6 % after transformation. The
region will acquire further negative buoyancy
with respect to the surrounding asthenosphere, in
addition to the originary negative buoyancy as-
sociated with its negative thermal anomaly. Con-
sequently, the region will accelerate sinking until
it is assimilated by the transition zone. Although
the effect of the exothermic release of latent heat
is to increase the temperature by �100 K, so
that it would oppose sinking, if this increment
of temperature also occurs in the surrounding
mantle then the contribution of the latent heat to
the forces balance is negligible.

Let us consider now a region characterized
by negative thermal anomaly, which has trav-
elled across the upper mantle and is now lo-
cated just below the 670-km discontinuity. In
this instance, the phase transition has negative ”
and is endothermic. The downgoing blob, which

has negative buoyancy because is colder than
the surrounding mantle, will be subject to phase
transition from ringwoodite to perovskite and
magnesiowüstite at a depth greater than 670 km,
and only after this transformation its density will
increase by �9 % (Fig. 1.14). Therefore, in this
instance the anomalous lower mantle region will
be partially formed by less dense transition region
minerals, which will give a positive contribution
to the total buoyancy. If such a positive contri-
bution balances the negative thermal buoyancy,
then the body will stop sinking. Consequently, the
effect of the 670-km phase transition on buoy-
ancy can potentially prevent deep penetration
of subducting slabs and constitutes at least an
obstacle to whole mantle convection.

1.7 LowerMantle

The 670-km discontinuity potentially represents
a thermal barrier separating the lower mantle
from the outer shells of the Earth. In the previous
section, we have shown that this discontinuity
hinders the downward injection of cold material
coming from the upper mantle. Following a sim-
ilar reasoning, it is easy to show that it may also
impede the upwelling of hot (less dense) material
from the lower mantle. As a consequence, it is
conceivable that convective motions and large-
scale circulation within the upper mantle proceed
separately and independently from any potential
lower mantle convection, so that the interaction
between the two layers would occur essentially
through conductive transfer of heat across the
670-km discontinuity. In general, the possibility
of layered convection depends on whether or not
the magnitude of positive buoyancy associated
with the endothermic phase transition is greater
than the negative thermal buoyancy of a slab
reaching the base of the transition zone. There-
fore, the possibility of layered convection within
the mantle cannot be affirmed on the basis of
simple qualitative estimates. For example, Chris-
tensen and Yuen (1985) showed that the critical
value of the Clapeyron slope for triggering lay-
ered convection depends from the Rayleigh num-
ber, Ra, a dimensionless geodynamic parameter
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describing the relative importance of convection
with respect to conduction (Chap.13). A common
view is that the 670-km phase transition favors
the accumulation of cold material at the base of
the transition zone. When the negative thermal
buoyancy of the accumulated material overcomes
the positive component of buoyancy, then the slab
rapidly penetrates into the lower mantle, deter-
mining the formation of a descending column
of cold material and simultaneously allowing
the upward injection of hot material across the
670-km discontinuity (e.g., Zhong and Gurnis
1994). In this scenario, mantle convection is nor-
mally layered, but catastrophic events of mass
exchange (and associated whole-mantle convec-
tion) periodically occur to restore the equilibrium
between upper and lower mantle. As pointed out
by Christensen (1995), such a “hybrid” regime
requires values of Ra greater than 106, whereas
for Ra< 106 layered convection would prevail.

An alternative viewpoint has been proposed by
Don Anderson and others since the early 1980s
(e.g., Anderson and Natland 2005). In this model,
the 670-km discontinuity represents a chemical
boundary and convection is essentially confined
to the upper mantle. However, the major point
of controversy is probably the interpretation of
mantle plumes. In the original formulation of
Morgan (1971), these are hot and narrow regions
of active upwelling that originate as instabilities
within hot thermal boundary regions at the base
of the mantle. This model was formulated to ex-
plain the age progression and linear arrangement
of volcanic island chains and aseismic ridges,
which would originate from the motion of tec-
tonic plates over hot-spots fixed at the base of
the lower mantle. In many modern models of
mantle circulation, plumes involve large mass
transport from the base of the mantle to the
Earth’s surface. Together with deep slab penetra-
tion, they represent an essential feature of whole-
mantle convection (van der Hilst et al. 1997),
in which layered circulation is considered as a
local transient phenomenon. The alternative sce-
nario proposed by Don Anderson and colleagues
presents a lower mantle characterized by sluggish
convection (very low Ra), where any deep mantle
plume would be suppressed by the effects of

pressure on viscosity, thermal conductivity and
thermal expansion (Anderson 2002). Conversely,
the asthenosphere is considered as a layer charac-
terized by local chemical heterogeneity, as well as
variations of fertility and melting point, that are
consequent to subduction of young plates, aseis-
mic ridges, and seamounts, and the delamination
of lower continental crust (Anderson and Natland
2005). In this view, all upwellings are passive
and anomalous plume magmatism only reflects
higher fertility, not higher temperature (Anderson
2006). Therefore, plumes are ultimately viewed
as thermo-chemical heterogeneities, which can
be transported passively by upper mantle currents
(e.g., Hawaii) or sampled by migrating ridges
(e.g., Iceland, Galapagos).

Recent advances in mantle tomography and
the study of seismic scattering in the lower mantle
have confirmed the presence of heterogeneities
within the entire mantle. For example, Shearer
and Earle (2004) have found that the upper
mantle has strong wave scattering, which
determines 3–4 % rms velocity heterogeneity
at 4-km scale length, whereas the lower mantle
heterogeneity would be only 0.5 % rms at 8-km
scale length. Most importantly, three independent
studies published in 2004 confirmed the existence
of two large nearly antipodal thermochemical
“superplumes” in the lower mantle, which are
now known, respectively, as the Pacific and the
African superplumes (Trampert et al. 2004; Ishii
and Tromp 2004; Ritsema et al. 2004). These
deep structures represent large low-shear-velocity
provinces (LLSVP), which are characterized
by anomalously high density and temperature
(Fig. 1.15), which implies that they constitute
chemically distinct regions of the lower mantle.

The chemical diversity of these regions can
be described in terms of anomalously high per-
ovskite and iron content (Fig. 1.16). The contrast-
ing effect of high density and high temperature
on the buoyancy of LLSVPs determines compli-
cate geodynamic behaviour of these regions. As
the thermal expansivity decreases with increas-
ing depths, in the lowermost 1,000 km of the
lower mantle the positive thermal buoyancy of the
LLSVPs is surmounted by the negative chemical
buoyancy, thereby the lower part of these regions

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 1.15 Shear wave velocity (vs) and density (¡)
anomalies in the lower mantle, based on the seismic
tomography model of Trampert et al. (2004). The lower
mantle has been subdivided in three layers, respectively

from 2,000 to 2,891 km (lower panels), from 1,200 to
2,000 km (middle panels), and from 670 to 1,200 km
(top). A and P are, respectively, the African and the Pacific
superplumes

Fig. 1.16 Thermal (•T) and composition (•Pv and •Fe)
anomalies in the lower mantle, based on the seismic
tomography model of Trampert et al. (2004). The subdivi-

sion of the lower mantle is the same of Fig. 1.15. •Pv and
•Fe are, respectively, the relative variation of perovskite
and iron content
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is negatively buoyant (Trampert et al. 2004). In
the upper part of the lower mantle, thermal and
chemical buoyancies are equally important, so
that the LLSVPs have neutral buoyancy. Finally,
Trampert and colleagues found scarce evidence
of correlation between the subducting slabs and
plumes hypothesized in whole-mantle convection
models and positively or negatively buoyant re-
gions of the lower mantle.

Curiously, some succeeding studies reinter-
preted the LLSVPs in terms of whole-mantle
convection. For example, Burke et al. (2008) yet
acknowledging that LLSVPs do not represent
regions of upwelling, proposed a geometrical cor-
relation between the locations of major hotspot
volcanoes and LIPs and narrow belts surrounding
the LLSVPs close to the core-mantle boundary
(CMB). To this purpose, the LIPs were moved
from their present day location to the position
that they occupied at the time of eruption with
respect to the Earth’s rotation axis. These authors
claimed that hot spots and reconstructed LIPs
form two clusters lying vertically above the pe-
ripheries of the superplumes, which were thereby
viewed as long-lived “plume generation zones”
(PGZ) for at least the last �300 Myrs, while the
remaining of the lower mantle was considered to
be the “graveyard” of slabs.

In summary, the controversy between whole-
mantle convection models, supported by inter-
preted seismic tomography data, and alternative
theories of layered convection or, possibly, con-
vection limited to the upper mantle, is still alive,
and it is likely that a new quantitative approach
to the analysis of seismic tomography data will
be necessary to establish which model is correct.
Furthermore, more data from the lowermost man-
tle could also contribute to assess the hypoth-
esis that this region forms a thermal boundary
layer hosting hot spots. In fact, the 250–350 km
thick layer just above the CMB represents an
enigmatic region where complex transformations
occur. This region, which is known as the D”
layer, presents an anomalously low gradient of
shear-wave velocity accompanied by seismic dis-
continuity and scattering. Furthermore, lateral
variations of the depth to the S-wave velocity
discontinuity suggests a phase transition of the

perovskite to a polymorph called post-perovskite.
Finally, the observation of isolated pockets of ul-
tralow seismic velocity may indicate the presence
of magma chambers just above the CMB (e.g.,
Garnero and McNamara 2008).

Problems

1. Determine analytically the melt temperature
at surface for a wet peridotite having 0.05 %
water content;

2. Solve Eq. (1.8) assuming a linear decrease of
the coefficient of thermal expansion ’with the
depth z;

3. Determine the thickness of new oceanic crust
formed from a 100 km wide melting regime,
assuming that the degree of melting increases
linearly from nearly zero at zD 50 km to
24 % close to the Earth’s surface and that the
fraction of retained melt is 0.1 %/km;
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2Plate Motions

Abstract

Plate kinematics represents a fundamental sub-discipline of plate tecton-
ics. In this chapter, I describe the geometry of plate motions independently
from the geodynamic factors (forces, torques, stresses) that drive the
movement or changes in the state of motion of a tectonic plate. At this
stage, the focus is on modelling, in particular on plate reconstructions,
thereby the general description proceeds assuming that kinematic data are
already available.

2.1 The ContinuumMechanics
Representation

Earth’s crust and mantle are deformable solids,
composed by a large number of closely spaced
microscopic mineral grains of arbitrary shape and
size. At macroscopic scale, a rigorous quanti-
tative description of the geodynamic evolution
of a rock system starts from the introduction
of infinitesimal quantities, the volume elements
dV, which represent the smallest chemically and
physically homogeneous parts in which a rock
assemblage can be divided. It is usually assumed
that a volume element fills a continuous region
of the three-dimensional space, namely a closed
subset R�<3, and has regular shape, for ex-
ample a parallelepiped dVD dxdydz. In practice,
the computational techniques employed in plate
tectonics often require a definition of volume
elements having dimensions up to several km,
depending on the scale of the problem, yet being
small in relation to the total volume of the rock
system.

In the continuum mechanics representation
of solid Earth systems, any geophysical entity
(for example, a subducting slab) is formed
by a continuous distribution of small volume
elements, dV, whose locations are described
by position vectors r in the selected reference
frame. In this representation, the intensive
variables (also known as bulk properties) are
quantities describing local physical properties
of the volume elements, for example their
temperature, velocity, etc. It is assumed that
these quantities vary smoothly across the region
R, so that they can be represented mathematically
by continuous functions of position vectors r 2
R. Often the intensive variables are associated
with scalar fields (see Appendix 1), ¥D¥(r),
having appropriate continuity properties. Typical
examples are the local temperature, TD T(r),
and pressure, pD p(r), of rocks. However, not all
of the intensive variables can be represented by
scalar fields. For instance, the displacement of
a point r during deformation must be described
by a vector quantity, uDu(r), which varies from
point to point in R. Therefore, intensive variables
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are sometimes associated with vector or even
tensor fields (see Appendix 1).

The continuum mechanics representation of
Earth systems also includes extensive variables.
These quantities are global physical properties,
which depend from the total volume V of a sys-
tem through integral expressions involving den-
sity functions. A classic example is the total mass
of a rock body. Let dV be a volume element cen-
tered at position r in the region R. The approach
of continuum mechanics is to consider the mass
contained in dV as the analog of a point mass, so
that the classic equations of elementary physics
can be easily generalized to the new framework.
To this purpose, we can introduce a new intensive
quantity, the density of mass, ¡D ¡(r), such that
the infinitesimal mass contained in the volume dV
will be given by: dmD ¡(r)dV. In this instance,
the total mass of a body is an extensive property
that can be computed by evaluating the following
integral expression:

M D
Z
R

¡ .r/ dV (2.1)

Similar expressions can be written for the total
electric charge, magnetization, etc. introducing
appropriate density functions. If a continuous
rock system is subject to an external action-at-a-
distance force field, such as a gravity or magnetic
field, this force operates on each volume element
in R. Therefore, we can introduce a body force
density (force per unit volume), fD f(r), such
that the infinitesimal force exerted on a volume
element dV will be given by: dFD f(r)dV. Using
this definition, the total force, F, and the torque,
N, exerted on the whole body are extensive vari-
ables given respectively by:

F D
Z
R

f .r/ dV (2.2)

N D
Z
R

r � f .r/ dV (2.3)

An important kinematic parameter of a point
mass distribution is the center of mass, which
is a position vector representing the location of

the entire system. In elementary mechanics, this
vector is obtained by taking the weighted average
of the individual position vectors, and using the
mass of each particle as a weighting parame-
ter. The continuum mechanics analogue of this
quantity is another extensive variable, which can
be calculated by substituting the sum appear-
ing in the elementary definition by an integral
expression.

Therefore, the center of mass of a continuous
distribution is defined as follows:

R D 1

M

Z
R

¡ .r/ rdV (2.4)

where M is the total mass. The last extensive vari-
able considered here is the angular momentum of
the system, which measures the rotational com-
ponent of motion with respect to an arbitrary ref-
erence point. This quantity is usually calculated
with respect to the origin of the reference frame
or, alternatively, with respect to the center of mass
depending on the problem under consideration. In
the former case, the angular momentum is given
by the following integral expression, which is an
obvious extension of the elementary definition:

L D
Z
R

r � ¡ .r/ v .r/ dV (2.5)

In this expression, the vector field vD v(r)
represents the velocity of the mass element at
position r. In the next section, we shall consider
a special form of expression (2.5), which is par-
ticularly useful in plate kinematics, where mass
distributions represent rigid tectonic plates.

2.2 Euler’s Theorem and Rigid
Rotations

Plate dynamics and kinematics, in short plate
tectonics, cannot be described using a unique
mathematical apparatus and a single physical the-
ory, because the various interacting subsystems of
the solid Earth (plates, slabs, asthenosphere, etc.)
conform to different physical laws, depending
on the time scale of observation (seconds, years,
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thousands or million years). Even when consid-
ered at a common temporal scale, these subsys-
tems display distinct mechanical behaviors. For
example, the motion of tectonic plates during
the geological time (intervals of Myrs) can be
described in terms of rigid body’s kinematics,
whereas the asthenosphere behaves as a fluid at
the same temporal scale. However, both can be
considered as elastic bodies if we are studying
earthquakes and propagation of seismic waves in
the solid Earth. In summary, the sole unifying
framework of plate tectonics is the continuum
mechanics representation illustrated in the previ-
ous section, while both the kinematic description
of the processes and the geodynamic laws that
link forces to kinematics will be different depend-
ing on the subsystem and the temporal scale of
observation.

Observation suggests that tectonic plates can
be considered as rigid bodies at first approxi-
mation. Consequently, the volume elements that
fill a region R�<3, representative of a tectonic
plate, are also rigid entities, and the distance
between any pair of volume elements in R is an
invariant. This is equivalent to say that the elec-
tromagnetic interaction between adjacent volume
elements is so strong that any external force
is overcome, so that deformation is negligible.
In this instance, an important theorem, due to
Leonhard Euler (1775), can be used as a starting
point for the mathematical description of plate
kinematics. The statement of Euler’s theorem is
very simple:

Euler’s Theorem
If a sphere S is moved about its center, O, it is
always possible to find a diameter, D, of fixed
points.

Proof Let r1, r2, r3 be three position vectors
pointing to arbitrary points, P1, P2, and P3 in
the original sphere. After an arbitrary change of
orientation of the sphere about its center, these
points are moved to new locations, say: P

0

1, P
0

2,
and P

0

3, represented by the position vectors: r
0

1,
r

0

2, r
0

3. Let T and T0 be the 3� 3 matrices formed
with the components of these vectors:

T D
2
4x1 x2 x3y1 y2 y3

z1 z2 z3

3
5 IT 0 D

2
4x

0
1 x

0
2 x

0
3

y0
1 y

0
2 y

0
3

z0
1 z0

2 z0
3

3
5

Now let us define a new 3� 3 matrix:

A D T 0T �1 (2.6)

The matrix A has the property to transform the
original matrix T into the new matrix T0:

AT D T 0 (2.7)

This equation implies, in turn, that A trans-
forms each vector ri into the corresponding ro-
tated vector r

0

i:

Ar i D r 0
i (2.8)

In general, for any position vector, r, the trans-
formation A preserves the distance of the trans-
formed point from the origin, because the sphere
is assumed to be rigid:

kArk D krk (2.9)

Squaring this equation gives:

rT ATAr D rT r (2.10)

thereby ATAD I, where I is the 3� 3 identity
matrix, and A is orthogonal. Now let us take the
determinant of ATA. It results:

det
�
AT A

� D Œdet .A/�2 D 1 (2.11)

Therefore, det(A)D˙1. If we consider a null
rotation of the sphere from its initial position,
then AD I and det(A)D det(I)DC1. By con-
tinuity, any subsequent infinitesimal rotation or
sequence of rotations must give det(A)DC1.
Furthermore, by the orthogonality of A we have:

AT A �A D �AT � I
�

A D I �A (2.12)

det
�
AT � I

� D det
�
.A � I/T

�
D det .A � I/

(2.13)
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Therefore, taking the determinant of Eq. (2.12)
gives:

det
��

AT � I
�

A
� D det

�
AT � I

�
det .A/

D det
�
AT � I

�D det .A� I/D det .I �A/

(2.14)

Now we take into account that for any 3� 3
matrix R: det(�R)D (�1)3RD�R. In the case of
Eq. (2.14), it results:

det .A � I/ D det .I �A/ D � det .A � I/

” det .A � I/ D 0 (2.15)

Therefore, a vector n¤ 0 exists such that:

.A � I/n D 0 (2.16)

Equation (2.16) is a particular eigenvalue
equation, where A has eigenvalue œDC1 and n
is the corresponding eigenvector. This means that
n is invariant under transformation A. Therefore,
a diameter aligned with the direction of n will
remain unchanged after the transformation. This
proves Euler’s theorem. �

The importance of Euler’s theorem for the
mathematical formulation of plate kinematics is
not immediately evident, despite almost all books
and articles about this subject emphasize its fun-
damental role. If we assume a spherical Earth,
tectonic plates can be considered as rigid spher-
ical caps, which are constrained to move about
its centre. Their instantaneous motion is always
represented by an infinitesimal rotation about an
axis, as illustrated in Fig. 2.1, and this state-
ment holds independently from Euler’s theorem,
despite it could be inferred from it. In these
rotations, an arbitrary point P lying on a tectonic
plate, R, is moved along a small circle arc about
the rotation axis with a velocity v whose magni-
tude depends from the distance of P from the axis.
However, the rigidity of R ensures that different
points will travel the same angular distance d’
in a small time interval dt, so that a unique
angular velocity ¨D d’/dt, which is independent
from the point, characterizes the instantaneous

Fig. 2.1 Geometry of the instantaneous motion of a tec-
tonic plate R. E is the Euler pole, N is the North Pole. P
is a representative point on R, whose instantaneous linear
velocity is v. ¨ is the Euler vector of R

rotation. We can easily build a vector, which
contains all the information associated with an
instantaneous rotation. Such a vector is called an
Euler vector and has magnitude ¨ and direction
coinciding with the direction of the rotation axis
(Fig. 2.1). In order to assign a unique versor, n, to
an Euler vector, we conform to the common prac-
tice of assuming that all rotations are counter-
clockwise rotations.

In this instance, the linear velocity of a point P
can be calculated by the following formula:

v D ¨ � r (2.17)

where ¨D¨n is the Euler vector of the in-
stantaneous rotation. In general, the motion of
a tectonic plate proceeds through a sequence of
infinitesimal rotations about continuously chang-
ing Euler axes. Thus, in principle, reconstructing
its position at a given time in the geologic past
would require a backtracking procedure, based
upon a complete knowledge of the sequence of
instantaneous rotations. However, the standard
approach adopted in plate kinematic modelling
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follows an opposite pathway, which starts from a
specification of the orientations of tectonic plates
at some ages in the geologic past, before any
determination of the sequence of instantaneous
rotations that carried them to the present day
location. The reason is that in most cases the
only information available in advance, through
the analysis of magnetic or structural data, is rep-
resented by the relative positions of the tectonic
plates at some ages in the geologic past. These
relative positions link the orientation of a tectonic
plate at any time t directly to its present day posi-
tion, regardless of the specific trajectory followed
by the plate. The importance of Euler’s theorem
is just to ensure the existence of a unique invariant
axis associated with such transformation from
the present day position to the orientation at any
time t. This means that we can always find a

rotation axis n and a finite angular displacement,
�, such that a present day tectonic plate can be
moved to the location that it occupied at time t,
even before knowing the details of the complex
sequence of instantaneous rotations that link the
past position to the present day location.

Euler’s theorem implies that rotations can be
composed to furnish other rotations. Therefore,
two transformation matrices A and B can be mul-
tiplied to give a new rotation matrix CDAB and
this operation is not commutative (AB¤BA).
The set of all transformation matrices associated
with the rigid rotations of a sphere forms a group
known as the SO(3) group (special orthogonal
group in <3). It can be shown that the orthogonal
matrix associated with a finite rotation by an
angle � about an axis represented by the unit
vector n, is given by:

R .n; �/

D
2
4 n2x .1 � cos�/C cos� nxny .1 � cos�/ � nz sin� nxnz .1 � cos�/C ny sin�
nxny .1 � cos�/C nz sin� n2y .1� cos�/C cos� nynz .1 � cos�/ � nx sin�
nxnz .1 � cos�/ � ny sin� nynz .1 � cos�/C nx sin� n2z .1 � cos�/C cos�

3
5

(2.18)

The unit vector n has only two independent
components, thereby three independent param-
eters are sufficient to describe a rigid rotation.
The point where a positive rotation axis inter-
sects the Earth’s surface is called Euler pole
(Fig. 2.1), its antipodal is called the antipole. An
Euler pole, expressed through its geographic co-
ordinates (latitude and longitude), and a rotation
angle, are the three parameters generally used in

plate kinematics to indicate a finite rotation. In
Sect. 2.7 we shall learn how to use these finite
rotations to describe the kinematics of tectonic
plates through the geological time.

Now let us consider again the instantaneous
kinematics of a tectonic plate R. Using the
expression (2.17), the continuum mechanics
analogue of the kinetic energy, K, will be
given by:

K D 1

2

Z
R

¡ .r/ v2 .r/ dV D 1

2

Z
R

¡ .r/ ¨2r2sin2™ .r/ dV D 1

2
¨2
Z
R

¡ .r/
�
r2 � r2cos2™ .r/

	
dV D

D 1

2
¨2
Z
R

¡ .r/
h
r2 � .n � r/2

i
dV � 1

2
I .n/ ¨2 (2.19)

where ™(r) is the angle between n and r and the
quantity I(n), which depends from plate geome-
try, mass distribution, and the rotation axis, is the
momentum of inertia about the axis n:

I .n/ �
Z
R

¡ .r/
h
r2 � .n � r/2

i
dV (2.20)
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This quantity is a measure of the inertial re-
sistance that a rigid plate opposes to variations of
its angular velocity about a rotation axis. Another
quantity that can be expressed in terms of Euler
vectors is the angular momentum, L. Starting
from expression (2.5), we can write:

L D
Z
R

¡ .r/ r � v .r/ dV

D
Z
R

¡ .r/ r � .¨ � r/ dV

D
Z
R

¡ .r/
�
r2¨ � .¨ � r/ r

	
dV (2.21)

A more compact expression can be determined
introducing the index notation (see Appendix 1),
x1� x, x2� y, x3� z, and Einstein’s summation
convention. With this notation, it is easy to prove
that the angular momentum has the following
simple expression in terms of Euler vectors:

Li D Iij¨j (2.22)

where the quantities Iij form a rank 2 symmetric
tensor, which is known as inertial tensor:

Iij D
Z
R

¡ .r/
�
r2•ij � xixj

�
dVI i; j D 1; 2; 3

(2.23)

In this expression, the quantity •ij represents
the Kronecker delta (•ijD 1 if iD j, zero
otherwise). The components of the inertial
tensor depend from the mass distribution and the
plate geometry, just like the moments of inertia
(Eq. 2.20). Therefore, we expect that a relation
exists between these quantities. It is quite evident
from (2.23) that the diagonal components of I
coincide with the moments of inertia about the
three coordinate axes:

Iii � Ii D
Z
R

¡ .r/
�
r2 � x2i

�
dV D I .ei / I

i D 1; 2; 3 (2.24)

where ei (iD 1,2,3) are the base versors of the
coordinate system. In general, it is possible to
show that the momentum of inertia of a tec-
tonic plate about an arbitrary rotation axis n
can be expressed as a linear combination of the
components of the inertial tensor, thereby this
tensor contains all the relevant information for
the determination of the moment of inertia about
any rotation axis. In fact, using Eqs. (2.20) and
(2.21) we see that the component of the angular
momentum in the direction of n is given by:

L � n D
Z
R

¡ .r/
h
r2¨ � .n � r/2¨

i
dV D ¨I .n/

(2.25)

Using Eq. (2.22), and taking into account that
¨jD¨nj, we can also write:

L � n D Lini D niIij¨j D ¨niIijnj

Therefore, a comparison with Eq. (2.25) fur-
nishes:

I .n/ D niIijnj (2.26)

This expression proves our statement. The pre-
vious equations represent the basic framework for
the description of the instantaneous kinematics of
any rotating rigid plate, independently from the
choice of a reference frame. In the next section,
we shall consider the specific frames of reference
used in plate tectonics.

2.3 Reference Frames

Two broad classes of reference frames are used
in plate tectonics. Geocentric reference frames
are global frames that are built assuming that
the Earth’s centre of mass, R, coincides with the
origin of a Cartesian system of coordinates, so
that RD 0. The best known of these reference
frames is the usual geographic coordinate system,
in which the z axis coincides with the Earth’s spin
axis, and the x and y axes are in the Equatorial
plane and point, respectively, to the Greenwich

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.2 Cartesian (x,y,z)
and spherical (r,™,¥)
coordinates of a point P in
the geographic reference
frame

meridian and 90ıE. Clearly, a point in the city
of London, on the Eurasian plate, has constant
longitude ¥D 0 in this reference frame (Fig. 2.2).

In plate kinematics, the Earth is assumed to
have a spherical shape, so that the Cartesian
coordinates (x,y,z) of a point at distance r from
the Earth’s centre are related to the geographic
coordinates (™,¥), colatitude and longitude, by
the following equations:

8<
:
x D r sin ™ cos¥
y D r sin ™ sin¥
z D r cos ™

(2.27)

Figure 2.2 illustrates the relation between
Cartesian and geographic (spherical) coordinates
of a point. Equations 2.27 can be easily inverted
to get an expression of the spherical coordinates
as a function of the Cartesian components:

8<
:
¥ D arctan .y=x/
™ D arccos .z=r/
r D px2 C y2 C z2

(2.28)

Another useful geocentric reference frame is
the geomagnetic coordinate system (e.g., Camp-
bell 2003). This frame is built on the basis of the
observation that the present day Earth’s magnetic
field can be approximated as the field generated
by a magnetic dipole placed at the Earth’s centre,
as we shall see in Chap. 4. Such a dipole has
not fixed direction, but precedes irregularly about
the North Pole according to the so-called secular
variation of the core field. It is mathematically
represented by a magnetic moment vector, m,
which currently (December 31st 2013) points to
a location placed in the southern hemisphere, at
about (80.24ıS, 107.46ıE). This location is called
the geomagnetic South Pole, and its antipodal
point at (80.24ıN, 72.54 W) is known as the ge-
omagnetic North Pole. The axis passing through
these two points defines the z-axis of the geomag-
netic reference frame. The x-axis of this coordi-
nate system is chosen in such a way that the prime
meridian passes through the geographic South
Pole. Finally, the y-axis will be also placed in the
geomagnetic dipole equator, 90ı from the x-axis.

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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In a paleomagnetic reference frame, the z-axis
always coincides with the apparent directions of
the Earth’s spin axis as determined by a se-
quence of paleomagnetic poles (Chap. 6). In
these frames, the longitude of a point is relative
to an arbitrarily selected location on a reference
continent. For example, if the central African
craton is chosen to be the reference continent,
then we could select a reference site in central
Africa and assign to this location a fixed longi-
tude coinciding with the present day value. This
approach can be found in Besse and Courtillot
(1988). Other more complex techniques assign
a changing longitude (in the paleomagnetic ref-
erence frame) to the reference site according to
specific algorithms (e.g., Schettino and Scotese
2005), but in any case the longitude of any other
point is referred to this site and not to the Green-
wich meridian.

The second broad class of reference frames is
represented by local coordinate systems, which
have the following common features: (a) the
origin is an observation point at the Earth’s sur-
face (seismic station, magnetic field measurement
point, etc.); (b) the z-axis is aligned with the
vertical to the observation point (plumb line), so
that the xy plane is a tangent plane to the Earth’s
surface. These reference frames are usually em-
ployed to represent the geometry of faults, focal
mechanisms of earthquakes, and magnetic field
measurements, but they can be used to charac-
terize any local vector or tensor quantity of geo-
physical interest (Cox and Hart 1986). Figure 2.3
illustrates the conventions used in geomagnetism,
where the z-axis is directed downwards, the x-
axis is directed northwards, and the y-axis is
directed eastwards. In this instance, the Earth’s
core field vector, F, can be represented by three
Cartesian components (X,Y,Z) or, alternatively by
its declination, D, by an inclination, I, and a
magnitude, F.

From Fig. 2.3, we see that the equations of
transformation from (F,D,I) to (X,Y,Z) are:

8<
:
X D F cos I cosD
Y D F cos I sinD
Z D F sin I

(2.29)

Fig. 2.3 Local Cartesian components of the Earth’s main
field, F D (X,Y,Z) and horizontal component, H. The dec-
lination, D, is the azimuth of H, while the inclination, I is
the angle between F and H, positive downward

The inverse transformation can be easily ob-
tained from these expressions. It follows that:

8<
:
D D arctan .Y=X/
I D arcsin .Z=F /
F D pX2 C Y 2 CZ2

(2.30)

Finally, form the definition of horizontal com-
ponent, H D pX2 C Y 2, it follows that the
inclination can be also expressed as a function of
Z and H:

I D arctan .Z=H/ (2.31)

We emphasize that although these equations
refer to the specific case of the geomagnetic field,
they can be used to express the components of
any other vector quantity in a local coordinate
system at the Earth’s surface.

2.4 Plate Boundaries

Three fundamental kinds of plate boundaries can
be observed in the oceanic domain, which have
three counterparts in continental areas. In the
oceans, we find mid-ocean ridges, trenches, and
strike-slip faults. The continental analogues of
these tectonic structures are, respectively, rifts,
collision zones, and transcurrent faults. Now we

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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Fig. 2.4 Geometry of the
Mid-Atlantic ridge in the
central Atlantic area (red
line). Dashed lines are
major fracture zones. Black
dots bound transform faults
and spreading segments
along the ridge. Numbers
label the eight segments
identified along this tract of
the ridge. Double arrows
indicate directions of
spreading. Also shown is
the full spreading rate. The
background image,
showing free-air gravity
anomalies (Sandwell and
Smith 1997), enhances the
location of the axial zone
of the ridge and the track of
the fracture zones (FZ)

are going to consider all these faults and systems
of faults from the point of view of plate kine-
matics. Mid-ocean ridges are extensional bound-
aries in the oceanic domain. We have seen in
Chap. 1 that these features are spreading centers,
where new oceanic crust is passively accreted
as a consequence of divergent motion between
two tectonic plates. These boundaries are formed
by sequences of ridge segments that are linked
together by transform faults, as illustrated in
Fig. 2.4.

Transform faults are faults with a pure strike-
slip kinematics and a strike that reflects the local
direction of instantaneous motion between two
plates. Therefore, these faults are always paral-
lel to velocity vectors of relative motion. This
relative motion is clearly left-lateral strike-slip
in the case of dextral offset of the spreading
segments and vice versa. For example, all the
transform faults shown in Fig. 2.4 imply left-
lateral strike-slip motion. The adjective “trans-
form” that is attributed to these tectonic features
arises from the fact that they generate active
bathymetric discontinuities, as far as the two
plates move apart. Such discontinuities are called
fracture zones and represent linear features that
apparently pursue the transform faults toward
the continental margins (Fig. 2.4). Therefore, the
latter seem to be “converted” into a different

Fig. 2.5 Age discontinuities across fracture zones. Two
points, x and y, on plate A, having very different ages, are
at contact through a transform fault. When the two points
are moved to locations x0 and y0, their difference of age,
�T, is conserved

class of faults, characterized by vertical slip. The
explanation of this phenomenon is quite simple.

Let v and L be, respectively, the relative ve-
locity along a transform fault and its length, and
consider a point x close to one of the ends of
the fault (Fig. 2.5). The age of formation of the
crust at x is T(x)D 2L/v, because the velocity
of accretion on both sides of the ridge is on
average v/2. This point is clearly at contact with
another point, say y, which is close to the ridge
and has age T(y)D 0. Therefore, the difference
of age between x and y is �TD 2L/v. At any
successive time t, these two points will be dis-
placed away from the ridge by the same offset,
to two close locations x0 and y0, independently
from any change of v with time. Therefore, they

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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will remain neighbor points. Thus, the motion of
points x and y away from the ridge will leave
a linear track of age discontinuities, �T, which
crosses the whole oceanic part of the plate and
reaches the continental margin, as illustrated in
Fig. 2.5.

Furthermore, a specular trace will form on
the conjugate plate, reaching the opposite con-
tinental margin. Generally, fracture zone tracks
are easily identified on bathymetric or gravity
anomaly maps (Fig. 2.4), because age disconti-
nuities are always associated with bathymetric
gaps. In Chap. 12, we shall prove that the depth
to the sea floor increases with the crustal age,
so that an age discontinuity always implies a
bathymetric gap. Despite the invariance of the age
discontinuity,�T, along a fracture zone track, the
difference of depth across the two sides changes
with time, because the rate of sea floor subsidence
is not a linear function of time, especially dur-
ing the first �100 Myrs. This implies a lateral
discontinuity in the amount of subsidence, so
that fracture zones can be assimilated to vertical
faults characterized by vertical slip. Therefore,
as suggested by their name, transform faults are
converted to a different class of faults, fracture
zones, which are not associated with horizontal
slip and do not represent plate boundaries, but
simply are active bathymetric gaps associated
with discontinuities in the age of the sea floor.
Finally, it is necessary to keep in mind that
although transform faults and ridge segments are
very different tectonic features, they are part of
unique plate boundaries, namely the mid-ocean
spreading centers. In other words, they cannot be
considered as distinct classes of plate boundaries.

Now let us consider the kinematics along mid-
ocean spreading ridges. In principle, these fea-
tures should be orthogonal to the relative velocity
field between two plates. However, the exam-
ple of Fig. 2.4 shows that the azimuth of the
segments composing a mid-ocean ridge is not
necessarily 90ı from the direction of spreading.
This phenomenon is called spreading obliquity,
and is quantified measuring the angle between
the normal to the ridge trend and the direction of
a transform fault. Observation suggests that the
spreading obliquity is particularly strong in the

case of slow-spreading ridges (e.g., Southwest
Indian Ridge and North Atlantic Ridge), where
it could be as high as �80ı (Whittaker et al.
2008). It is always necessary to take into ac-
count of this parameter when interpreting marine
magnetic data. In Chap. 5, we shall learn how
to deal with oblique spreading. In general, plate
kinematics studies require an accurate prelimi-
nary mapping of the plate boundaries through
GIS software, especially in the case of mid-
ocean ridges. In this instance, the location and the
geometry of the segments forming a spreading
center, as well as the trace of transform faults,
can be established by close inspection of the
axial valley topography and by the analysis of
gravity anomalies (Fig. 2.4). However, in most
cases a precise definition of the ridge segments
will require a successive refinement, based upon
the analysis of marine magnetic anomalies, as we
shall see in Chap. 5. The overall geometry of mid-
ocean ridges is not constant through the geologi-
cal time. It is subject to changes, even in absence
of variations of relative motion, as a consequence
of three basic mechanisms: spreading asymmetry,
ridge jumps, and ridge segment reorientations.
Figure 2.6 illustrates these three possibilities.

Spreading asymmetry occurs when the rate
of accretion of new crust is not uniform across
the two sides of a spreading segment (Fig. 2.6a).
Let v be the full spreading rate along a ridge
segment. This quantity clearly coincides with the
local magnitude of the velocity vector of a plate
A with respect to another plate B.

We can introduce a quantity �1<’<C1,
such that the widths of the crust accreted to the
right and left sides of a spreading segment in a
time interval�t are:

�xR D 1

2
.1C ’/ v�t I�xL D 1

2
.1 � ’/ v�t

(2.32)

The quantity ’ is an expression of the asym-
metry of spreading across a mid-ocean ridge
segment. In normal conditions (’D 0), a spread-
ing segment moves at velocity v/2 with respect
to each of the conjugate plates. In the case of
spreading asymmetry, the segment will move at a

http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_5
http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.6 Mechanisms responsible for the changing ge-
ometry of mid-ocean ridges. After a time interval �t, a
normal ridge segment travels a distance �x D ½v�t. In
a the third segment shows spreading asymmetry, because
a larger amount of crust is accreted to the left side. In b
there is no spreading asymmetry, but after a time interval

�t the third segment becomes extinct and a new spreading
segment forms at another location, transferring a piece
of oceanic lithosphere to the conjugate plate. In c the
orientation of the third segment changes as a consequence
of variations of spreading asymmetry along the same
segment

velocity v0D (1C’)v/2 with respect to one plate,
and v00D (1�’)v/2 with respect to the conjugate
plate. Therefore, any variation of asymmetry be-
tween neighbor segments of a mid-ocean ridge
will modify the geometry of the plate boundary,
as illustrated in Fig. 2.6a. Another mechanism,
which is responsible for changing the geome-
try of the mid-ocean ridges, is represented by
the ridge jumps (Fig. 2.6b). In this instance,
a spreading segment is abandoned and a new
center of spreading forms at a certain distance
from the original position. The final effect is
apparently similar to that associated with spread-
ing asymmetry. However, in this instance the
piece of intervening lithosphere between the old
and the new segments will be accreted instan-
taneously to the conjugate plate, determining a
complex pattern of the magnetic lineations and
possible errors in the interpretation of the sea
floor magnetization pattern. This problem will
be considered in detail in Chap. 5. Finally, the
analysis of marine magnetic anomalies shows
that the geometry of the mid-ocean ridges can
be modified by reorientations of the spreading
segments. This phenomenon is ultimately a spe-

cial form of spreading asymmetry, which may
linearly change within the same segment, deter-
mining a continuous rotation that accommodates
the reorientation. The mechanism was originally
proposed by Menard and Atwater (1968) to ex-
plain the effect of changes of the Euler pole of
relative motion, and consequently of the spread-
ing directions, on the mid-ocean ridge geometry.
A series of subsequent studies (e.g., Hey 1977;
Hey et al. 1988) proposed a much more complex
mechanism for the reorientation of the spreading
segments, known as ridge propagation. However,
the simple process of segment rotation is a still
valid model in absence of Euler pole changes.

Apart from the present day system of mid-
ocean ridges, the oceanic domain also includes
many extinct plate boundaries that in origin were
spreading centers. Some of these extinct bound-
aries were produced by large-scale ridge jumps,
which left wide remnant oceanic basins. Impor-
tant examples are the proto-Atlantic Basin in the
central Atlantic (e.g., Schettino and Turco 2009),
the Mascarene Basin in the Indian Ocean (Schlich
1974), the Rockall Trough (Smythe 1989) and
the Norway Basin (e.g., Gaina et al. 2009) in

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.7 Reconstruction
of the North Atlantic
region in the early
Burdigalian (�20 Ma).
The continental lithosphere
is shown in grey. Thinned
continental areas are shown
in light brown. Regions in
black are LIPs. Present day
coastlines are shown for
reference. Late Cretaceous
oceanic crust is shown by
green colours, Eocene crust
is shown by yellow to
orange colours, Oligocene
oceanic crust is shown in
red. RR Reykjanes Ridge,
RT Rockall Trough, NB
Norway Basin, JM Jan
Mayen microcontinent, AR
Aegir Ridge

the North Atlantic. Figure 2.7 illustrates a plate
reconstruction of the North Atlantic region at
�20 Ma, shortly after a westward ridge jump
that determined the extinction of the Aegir Ridge
and cessation of extension in the Norway Basin.
The newly formed spreading segment rifted the
Greenland margin, determining the separation of
a continental fragment: the Jan Mayen microplate
(Jung and Vogt 1997).

Other extinct plate boundaries formed as a
consequence of cessation of divergent motion
between the conjugate plates, not because of a
reorganization of the boundary. In this instance,
a direct causal relation with a nearby onset of
spreading is missing, although the final result is
the same: a remnant oceanic basin and an extinct
ridge testifying the former existence of divergent
plate motions. Important examples of remnant
oceanic basins associated with ridge extinction
are the Jurassic Ligurian Basin in the western
Mediterranean (Schettino and Turco 2011), the

Labrador Basin (Roest and Srivastava 1989), the
South China Sea (Briais et al. 1993), the Somali
Basin (e.g., Coffin and Rabinowitz 1987), the
Gulf of Mexico (Ross and Scotese 1988), the
Amerasian Basin (Rowley and Lottes 1988), and
the Tasman Sea (Gaina et al. 1998).

The second kind of oceanic plate boundaries
is represented by the trench zones (or subduction
zones). These are convergent boundaries, where
oceanic lithosphere bends and sinks into the as-
thenosphere. The structural, stratigraphic, and
petrologic features associated with trenches and
island arcs have been described extensively in the
geologic literature (e.g., Frisch et al. 2011). Here
we shall consider only some aspects that are sig-
nificant for plate kinematics. The geometry of a
subduction zone is that of a small circle arc, both
if we consider the subducting lithosphere as a
flexible-inextensible spherical shell (Frank 1968)
or as a body that can be extended or shortened
during the passive sinking in the mantle (e.g.,
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Fig. 2.8 Geometry of the
Mariana subduction zone.
The brown line represents
the best-fit small circle to
the trench zone, determined
using the algorithm of
Schettino and Tassi (2012).
The background image
shows the free-air gravity
anomaly field (Sandwell
and Smith 1997). The red
line is the active back-arc
spreading center (see text).
The West Mariana Ridge is
an extinct island arc

Schettino and Tassi 2012). Figure 2.8 shows the
example of the Mariana subduction zone in the
western Pacific, which forms an almost perfect
small circle arc. We have already mentioned that
the geometry of tectonic plates can be represented
by spherical caps. Therefore, trench zones can be
viewed as the surficial hinge lines of bending of
spherical caps, associated with the subduction of
oceanic lithosphere. Such hinge lines do not have
constant curvature, but their geometry generally
varies to accommodate changes of the relative ve-
locity field of convergence. For example, Fig. 2.8
shows that the present day Mariana Trench is
deforming as a consequence of an extensional
process in the back-arc area, accompanied by the
formation of new oceanic crust along a back-
arc spreading center in the Mariana Trough. This
spreading ridge is placed to the East of an extinct
island arc, the West Mariana Ridge, which is
representative of a previous geometry of sub-
duction. Almost every subduction zone shows
evidence of back-arc activity, either currently or
sometime in the past. Even in the case of Andean-

like trench zones, where the oceanic lithosphere
is subducting beneath a continent, we observe
back-arc deformation of the continental margin
in the geologic past (e.g., Dalziel 1981; Ramos
et al. 2002), to the point that the present day
western margin of South America has the shape
of a sequence of arcuate hinge lines, which can
be represented anyway by small circle arcs.

An important aspect of the subduction kine-
matics is represented by the velocity relations
between subducting plate, hinge zone, and upper
plate (Fig. 2.9). Hamilton (2002) criticized what
he defined a widespread misconception in the
Earth Sciences community, consisting in the view
that subducting plates roll over stationary hinge
lines and slide down fixed slots. In reality, in
a reference frame fixed to an unsubducted plate
A, the hinge line H always moves toward the
oceanic foreland with some velocity vHA, just as
the margin of the overriding plate, B, and with
equal velocity (because vBHD 0). If we consider
a reference frame fixed to the top of the transition
zone, O, then the hinge line and the overriding
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Fig. 2.9 Cross-sections illustrating the kinematics of a
subduction zone. Velocity vectors vA, vB, and vS are
relative to the lower mantle, vSB is the slab velocity relative
to plate B. Lines in the upper mantle represent streamlines,

everywhere parallel to mantle velocity vectors (Chap.
13). Two end-member dynamic scenarios are shown. Any
other dynamic scenario results from superposition of these
two basic configurations

plate will move at a velocity given by:

vH D vB D vHA C vA (2.33)

If the relative hinge line velocity vHA

increases, for any reason, then the overriding
plate margin will be subject to back-arc
extension, in order to preserve the coupling
between margin and hinge line, a phenomenon
which is known as trench retreat. Conversely,
any decrease of vHA will lead to episodes of
back-arc compression and shortening. In general,
the deformation of active continental margins
and island arcs is an expression of both spatial
and temporal changes of the relative velocity
field between the convergent plates, as well
as of variations in the hinge line velocity vHA.
Regarding the possibility that subducting plates
roll over stationary hinge lines, thereby they
would slide down fixed slots, this is not a wrong
interpretation of the subduction process but one
of two end-member geodynamic configurations
at a subduction zone, as illustrated in Fig. 2.9a.
In fact, when the velocity vBD 0, a subducting
plate effectively bends and rolls over a fixed
hinge line in the mantle reference frame,
dragging the surrounding asthenosphere, as
we shall prove in Chap. 13. In these dynamic
conditions, the pull exerted by the sinking
slab is balanced by the resistive viscous drag
and subduction tends to proceed at constant
velocity. However, the active drag exerted by the
corner asthenospheric flow below the overriding
plate B pulls this plate trenchward, so that B
will acquire a small velocity vB opposite to

vA. The velocity vB increases progressively
until the additional frictional resistance that is
generated at the trench balances the trenchward
asthenospheric drag. If the starting dynamic
configuration is that illustrated in Fig. 2.9b, so
that the overriding plate velocity vB¤ 0 while
vAD 0, the induced oceanic corner flow below
A drags actively this plate trenchwards, thereby
A will acquire a small velocity opposite to vB.
Therefore, the final equilibrium configuration
will be similar to the previous one. Finally,
hypothetical scenarios such that the two
converging plates move in the same direction
but with different velocity (in the upper mantle
reference frame) cannot be stable geodynamic
configuration. In fact, in this instance the
excess hydrodynamic resistance exerted on the
slab should be supplied by additional torques
other than the known driving forces of plate
tectonics (Chap. 12). Subduction roll-back is the
geodynamic process determining the progressive
oceanward migration of the trench zone in the
upper mantle reference frame. In fact, in a
reference frame fixed to the subducting plate
A the hinge line always migrates toward the
foreland of A.

The third kind of oceanic plate boundary
is represented by strike-slip faults, which are
characterized by pure or prevalent left-lateral or
right-lateral motion. Differently from transform
faults, which must be considered in the context
of mid-ocean spreading centers, these structures
are truly independent plate boundaries, which
can be linked to mid-ocean ridges, trenches,
or other strike-slip faults. In the present day

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 2.10 Strike-slip plate
boundaries in the Scotia
Sea (yellow lines). The
arrows represent direction
and magnitude of the
relative velocity field
between plates pairs.
Numbers are magnitudes
of velocity in mm/year

Fig. 2.11 Flower structures associated with left-lateral transcurrent motion (From Frisch et al. 2011)

oceanic regions, only few examples can be
found that belong to this class of boundaries.
In the South America – Antarctica – Pacific
system, the northern, the southern, and part of
the western boundary of the Scotia plate are
classic examples of strike-slip plate boundaries
(Fig. 2.10). Other important examples are the
Owen Fracture Zone in the Arabian Sea (Fournier
et al. 2001), the Cayman Trough transform
system along the present day North America –
Caribbean plate boundary (Pindell et al. 1988),
and the McDougall Ridge in the southwest
Pacific (Lebrun et al. 2003).

We have mentioned that the continental coun-
terparts of the oceanic plate boundaries are zones
of active rifting, collision, or transcurrent motion.
It is interesting to note that while the average
relative velocity along rifts and orogenic belts
is one order of magnitude less than along the

oceanic domain analogues, in the case of tran-
scurrent boundaries the opposite is generally true.
For example, the magnitude of strike-slip motion
along modern transcurrent faults like the San An-
dreas Fault in western US (Pacific – North Amer-
ica boundary) and the North Anatolian Fault
in Turkey (Anatolia – Eurasia boundary) is re-
spectively of �47 mm yr�1 and �29 mm yr�1,
while less than 8 mm yr�1 and 11 mm yr�1

can be observed, respectively along the Owen
Fracture Zone and around the Scotia plate. From
the structural point of view, transcurrent bound-
aries are generally associated with characteristic
flower structures at the upper crustal level, whose
complexity arises from the necessity of accom-
modating transpressional or transtensional com-
ponents within a prevalent strike-slip kinematics.
Figure 2.11 illustrates the typical structural set-
ting along these boundaries.
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Fig. 2.12 Uniform stretching in McKenzie’s (1978) model of rifting

Important modern examples of transcurrent
boundaries are the San Andreas (e.g., Beck 1986)
and North Anatolian (Sengör 1979) faults men-
tioned above, the East Anatolian Fault of south-
ern Turkey (McKenzie 1976), and the Dead Sea
Fault Zone in Middle East (e.g., Garfunkel 1981;
Butler et al. 1997).

Rift zones are extensional plate boundaries,
which usually exhibit complex systems of normal
faults, linked together by transfer zones. The
basic model of evolution of the basins associated
with these fault systems is McKenzie’s (1978)
model, which assumes that the crustal stretching
generated by an extensional force field occurs
through a uniform continuous thinning of the
ductile lower crust, a process that is known as
pure shear. Conversely, extension in the brittle
upper crust would be accommodated symmetri-
cally by listric (upward-concave) normal faults,
as shown in Fig. 2.12. In the model of McKenzie
(1978), rifting events start with rapid stretching
of the continental lithosphere, which determines
passive upwelling of asthenosphere (Fig. 2.12).
This stage is characterized by faulting of the up-
per crust and tectonic subsidence. Then, on a time
scale of 50–100 Myrs conductive cooling of the
lithosphere determines an increase of thickness
and a phase of slow thermal subsidence that is
not accompanied by faulting.

The amount of thinning is measured by the
stretching factor, “, which is simply given by:
“DH1/H2, where H1 and H2 are respectively
the average thicknesses of the lithosphere at the

beginning and at the end of the phase of tec-
tonic subsidence. Although McKenzie’s model
furnishes a simple and elegant picture of the
thermal evolution of rift basins, many conjugate
pairs of continental margins show an asymmetric
pattern of faulting and the presence of exhumed
lower crust, which cannot be explained by the
symmetric model. Wernicke (1985) proposed an
alternative asymmetric model of rifting that de-
scribes accurately many geological features of
these zones (Fig. 2.13).

The key difference of Wernicke’s model with
respect to McKenzie’s model is the recognition of
low-angle detachment faults at crustal scale and
simple shear (that is, localized, non-distributed
shear) as the main mechanisms of lithospheric
thinning during rifting. In general, several suc-
cessive studies (e.g., Buck 1991; Brun 1999;
Corti et al. 2003) have shown that the models of
McKenzie and Wernicke must be considered as
descriptions of distinct modes of rifting. Depend-
ing from crustal thickness, heat flow, and rate of
extension, we can distinguish two basic modes
of rifting: (a) a wide rift mode, characterized
by high thinning of the crust and the mantle
lithosphere over an area larger than �100 km,
and (b) a narrow rift mode, in which extension
by normal faulting is concentrated in a limited
area (less than �100 km wide). Classic modern
examples of wide and narrow rifts are respec-
tively the Basin and Range region of western
US (Hamilton 1987) and the East African Rift
(e.g., Jestin et al. 1994). A transitional mode of
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Fig. 2.13 The simple
shear model of rifting of
Wernicke (1985)

continental extension is represented by the so-
called core complexes, in which high-grade meta-
morphic rocks from the middle to lower crust are
exposed at the surface, surrounded and overlain
by low-grade metamorphic rocks. This rifting
mode requires high extension rates over nar-
row zones and an extremely weak, low-viscosity
lower crust. In this instance, while extension pro-
ceeds, a lower crust inflow from the surrounding
region keeps the topography uniform.

Orogenic belts represent the last kind of con-
tinental plate boundaries. These are collisional
structures that should be distinguished from
other kinds of mountain belts, for example from
orogens associated with accretionary wedges,
like the northern Apennine chain of Italy (Treves
1984), or from Andean-type orogens associated
with subduction magmatism and accretion of
exotic terranes. Orogenic plate boundaries are
the product of continental collisions, which
follow the closure of intervening oceans in the
context of the Wilson cycle (see Sect. 1.3). The
tectonic style of these compressive structures is
sometimes called the Alpine style of orogeny
(e.g., Frisch et al. 2011), essentially because the
spectacular Alpine-Himalayan belt, extending
from western Europe to China, is the unique
example of active orogenic boundary in the
modern Earth. The formation of this mountain
belt started after the collision of three continental
masses, Africa, Arabia, and India, with the
southern Eurasian margin during the Eocene

(�50 Ma). This event followed the closure of the
neo-Tethys ocean, a wide oceanic domain that
existed between Gondwana and Eurasia since
the early Mesozoic (e.g., Schettino and Turco
2011). The collisional structures of this orogenic
belt are still active. This is confirmed both by
the diffuse seismicity (Fig. 2.14) and by space
geodetic observations across the mountain ranges
(Kreemer et al. 2003). Figure 2.14 shows the
chain of convergent and transpressive boundaries
composing the Alpine-Hymalaian belt. In the
next section we shall learn how the set plate
boundaries that are active at any given time
can be linked together to form a plate tectonic
configuration.

2.5 Triple Junctions

Both the direct observation of modern plates and
plate reconstructions show that plate boundaries
are joined together in groups of three, at loca-
tions that are called triple junctions. The lack of
higher order junctions is not casual but depends
from their instability. For example, it is easy to
show that a four-order junction always splits into
two triple junctions (e.g., Cox and Hart 1986).
McKenzie and Morgan (1969) showed that there
are 16 possibilities to form triple junctions by
linking three plate boundaries at a point. If we
designate by R, T, and F, respectively a mid-
ocean ridge, a trench, and a strike-slip fault, then

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.14 The Alpine-Himalayan collisional orogen.
This belt is composed by several plate boundaries linked
together (blue lines with labels). From the West, they are:
Alps, Dinarides (DIN), the North Anatolian Fault (NAF),

the Makran subduction zone (MAK), Sulaiman ranges
(SUL), and Himalayas (HIM). Yellow dots are earthquake
epicenters in the Harvard CMT catalog

the symbol RRR can be used to indicate a triple
junction where three spreading ridges meet, TTR
would indicate a link between two trenches and a
ridge, and so on. At any given time, a plate tec-
tonic configuration can be represented by a graph
G(j,b) (in the sense of Computer Science, e.g., see
Gould 1988 and Appendix 2) having j degree-
three nodes and b edges, corresponding respec-
tively to triple junctions and plate boundaries. In
this representation, which is useful to investigate
the topological properties of the global system of
tectonic plates, a plate P is defined by the ordered
cyclic sequence fJ1,J2, : : : ,Jng of triple junctions
that tie its boundaries. It should be noted that
in this representation the exact geometry of the
plate boundaries is unessential, because what we
are describing is a system of relations between
tectonic plates, their interactions, not the specific
geologic details that implement them. If J is an
arbitrary node in G(j,b), then J is a vertex belong-
ing simultaneously to three adjacent cyclic se-
quences. Starting from this node, the sequence of
triple junctions defining one of the corresponding
tectonic plates is obtained applying the following
simple traversal algorithm:

Algorithm 2.1 (Plate Traversal Algorithm)
1. Select an arbitrary edge of the starting node J;
2. Move to the neighbor node through the se-

lected edge. If this is the starting node J, then
stop;

3. Now you have two alternative (left and right)
edges to leave the current node. Select the left
edge;

4. Jump to step #2.

In this algorithm, the choice of one of the three
plates associated with J is performed implicitly
at step #1 through the selection of a starting edge.
The algorithm can be used as a base for the design
of more sophisticated computational procedures
that investigate the structure of a global plate
tectonic configuration.

The theoretical definition of tectonic plates
discussed above allows to classify them accord-
ing to the number of triple junctions that tie
the corresponding sequence of plate boundaries.
We define the order N of a tectonic plate as
the number of triple junctions that are traversed
applying algorithm 2.1, as illustrated in Fig. 2.15.
Figure 2.16 shows the present day plate tectonic

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.15 Definition of the order N of a tectonic plate

Fig. 2.16 Modern plate tectonic configuration and triple
junctions. Plate boundaries are a slightly modified version
of those proposed by Bird (2003). There are 23 major

plates, 42 triple junctions (red circles), and 63 plate
boundaries (green lines)

configuration, assuming a simplified version of
the plate boundaries proposed by Bird (2003).
This configuration does not include plates and
microplates whose relative velocity is negligi-
ble with respect to adjacent plates, for example
Adria in the central Mediterranean, or that are
expression of forearc deformation, such as the
Burma platelet in Southeast Asia (e.g., Vigny
et al. 2003). In addition, it does not include
small triple junction microplates such as the Juan
Fernandez (e.g., Anderson-Fontana et al. 1986)
and Galapagos (e.g., Lonsdale 1988) microplates
in the Pacific. It is not difficult to prove that two
simple equations allow to express the number of
plates p as a function of the number of plate
boundaries, b, and triple junctions, j.

They are:



b D 3 .p � 2/
j D 2 .p � 2/ (2.34)

In fact, if we start from a hypothetical Earth
with only three plates (pD 3), then it is quite
evident that we have bD 3 and jD 2. In order to
generate a new plate, we must split an existing
one. This operation requires cutting two edges
of the plate through the insertion of two new
triple junctions and a new edge connecting them.
Therefore, for each new plate we add two triple
junctions, thereby j is always even. Regarding
the number of plate boundaries, although we add
only one new edge, the operation of cutting two
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Table 2.1 Order of modern tectonic plates

Plate N Plate N Plate N Plate N

Pacific 13 Nazca 7 Philippine 5 Scotia 3

N. America 10 Australia 5 Arabia 5 Anatolia 3
Eurasia 9 India 5 Sundaland 5 Amurian 3

Antarctica 9 Somalia 5 Caribbean 4 J. de Fuca 2

S. America 8 Cocos 5 Rivera 3 Easter 2

Africa 7 Okhotsk 5 S. Sandwich 3

existing boundaries determines further increase
of the total number of plate boundaries by two
units. Therefore, there are three additional bound-
aries for each new plate. This proves Eq. (2.34).

The present day configuration illustrated in
Fig. 2.16 includes 23 plates. Thus, Eq. (2.34)
requires that jD 42 and bD 63. The order N of
these plates is listed in Table 2.1. The order of a
tectonic plate measures the degree of interaction
with the global system, because it coincides with
the number of neighbor plates. For example, in
the modern Earth’s configuration the dynamics
and kinematics of the Pacific and N. American
plates have the largest impact on the global plate
system, because they are interacting with 14 of
the remaining 21 tectonic plates.

The classification and the kinematics of triple
junctions has been the subject of several studies
since the 1960s (McKenzie and Morgan 1969;
Patriat and Courtillot 1984; Kleinrock and Phipps
Morgan 1988). The basic principle describing the
instantaneous kinematics of these important tec-
tonic features is represented by the closure rule.
In general, if ¨AB, ¨BC, and ¨CA are respectively
the Euler vectors of a plate A with respect to
another plate B, of B with respect to a third plate
C, and of C relative to A, then the closure rule
simply states that:

¨AB C¨BC C¨CA D 0 (2.35)

If this three-plates system is connected
through a triple junction J, then this point
belongs simultaneously to A, B, and C. Therefore,
applying Eq. (2.17) we have that in this case the
closure rule can be expressed in terms of linear
velocities at the triple junction:

vAB C vBC C vCA D 0 (2.36)

The velocity triangle associated with Eq.
(2.36) can be used to predict the kinematics
of triple junctions. The method is illustrated
in Fig. 2.17 through four significant examples.
It is useful to assume a reference frame fixed
to one of the three plates (for example, A).
Strike-slip boundaries and trenches must be
moved according to the magnitude of the relative
velocity vectors. However, trenches are always
displaced with the upper (overriding) plate,
thereby they remain at rest when this coincides
with the reference plate. An important geological
consequence of this behaviour is represented
by the development of strike-slip boundaries at
triple junctions where a subduction flip occurs
(Fig. 2.17 bottom right). This is a general result,
which in principle may be observed along any
composite flipping convergent boundary between
two plates, as illustrated in Fig. 2.18.

Differently from the other plate boundaries,
ridges move at half of the relative velocity v
between two conjugate plates (Fig. 2.17 top left).
In the case of an RRR junction, an extra space
of triangular shape is created during the dis-
placement of the three spreading segments, with
edges given by: vAB�t, vBC�t, and vCA�t. The
new triple junction will be placed within this
triangle, but the link to the original segments may
be somewhat complicated. It may involve either
a simple propagation of the spreading segments
toward the new location of the triple junction,
or the formation of new spreading segments and
even of a small microplate, as it is observed in the
East Pacific region (Juan Fernandez and Galapa-
gos microplates). The fact that a ridge moves at
half velocity with respect to the reference plate
clearly implies that any set of points located near
a spreading segment at time t will be displaced
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Fig. 2.17 Evolution of RRR, FFF, and TTT triple junc-
tions. In all panels, a reference frame with origin in O
is fixed to A. Top left: An RRR junction. Arrows are full
spreading velocity vectors at the triple junction J. The
new location of J after a small time interval �t can be
anywhere in the central dashed triangle. The ridges link
to this new location of J by propagation, development of
new transforms, or oblique spreading. Dark green lines
are points having the same sea floor age (isochrons). Top
right: An unstable FFF triple junction, which collapses
into a new triple junction microplate. In this example,
three new RRF junctions are created that substitute the

original junction J. Dashed lines represent initial locations
of plate boundaries. Bottom: The two different kinds of
TTT junctions. Dotted lines represent subducted points
of lower plate margins. The left panel shows a stable
situation where A is always upper plate, B is both upper
and lower plate, and C is always lower plate. The junction
J migrates rightward along the A�C boundary. The right
panel illustrates a much more complicated configuration,
in which A, B, and C are all upper and lower plates at the
same time. In this instance, the triple junction is not stable,
and new strike-slip boundaries develop (blue lines)

Fig. 2.18 Development of
strike-slip faults along
flipping convergent
boundaries

away from the ridge, after a time interval �t,
by a distance v�t/2 (Fig. 2.6). If we link all the
displaced points of age t from one side of a ridge,
and combine these segments with points placed
along the fracture zones, we obtain a line that
represents the geometry of the mid-ocean ridge
at a certain time t in the past. Such a line is called
an isochron. In Chap. 5, we shall learn the process
of construction of isochron maps, which describe
the pattern of sea-floor spreading through the
geological time. For the moment, it is sufficient
to note that in the reference frame of a plate A,
an isochron of the conjugate plate B moves at
full velocity v, just like trenches and strike-slip
boundaries, as illustrated in Fig. 2.17.

2.6 Tectonic Elements

Computer modelling of plate kinematics has the
primary objective of reconstructing sequences of
past plate configurations. It requires, at a first
step, the specification of the tectonic elements
that will be included in the reconstructions. On
a present day tectonic map, these are defined
as rigid crustal blocks, bounded by paleo-faults,
which have had an independent kinematic history
in the geologic past (Ross and Scotese 1988).
This quite general definition applies equally well
to different scales of modelling (global, regional,
or local) and to different structural features, such

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.19 Major Mesozoic
and Cenozoic tectonic
elements of Africa. MOR
Morocco, NWA northwest
Africa, CAF central Africa,
NEA northeast Africa,
NUB Nubia, SOM Somalia,
TUN Tunisia. Numbers
refer to the temporal range
of independent motion

as exotic terranes, thrust sheets, microplates, sliv-
ers, continents, blocks of oceanic crust, etc. Usu-
ally the boundaries of these tectonic elements are
traced using specialized GIS software, such as
GlobalMapper™, but some plate tectonic mod-
elling tools allow to draw directly the shape of
the crustal blocks as spherical polygons (Schet-
tino 1998, 1999a). If we normalize the Earth’s
radius to unity, then a spherical polygon repre-
senting a tectonic element is a cyclic ordered
sequence of n unit vectors, PDfr1,r2 : : : ,rng,
placed along its boundaries. The greater is the
number of polygon vertices, n, the higher is the
detail through which we graphically represent a
crustal block. In general, the definition of the
tectonic elements is a digitizing procedure, which
could also require employing specialized hard-
ware (digitizers) and thematic base maps, such as
gravity or magnetic anomaly maps, topography,
bathymetry, geologic maps, structural maps, etc.
In any case, the tectonic elements have two time
attributes that specify the temporal range of activ-
ity along their boundaries. These attributes define
the time interval of existence of the crustal blocks
as independent kinematic entities. For example,

Mesozoic plate reconstructions involving Africa
require the specification of at least six tectonic
elements to account for the deformation of this
continent. They are: Morocco, Tunisia, northwest
Africa, northeast Africa, central Africa, and Nu-
bia (Fig. 2.19).

Geological field studies performed in Mo-
rocco suggest that this block moved with respect
to northwest Africa only between �230 Ma (late
Ladinian) and �185 Ma (Pliensbachian), during
the formation of the Atlas Rift (e.g., Laville
and Piqué 1991), whereas for the rest of the
Mesozoic it remained fixed to northwest Africa
(Schettino and Turco 2009). Similarly, north-
west Africa moved with respect to central Africa
only between �120 Ma (Aptian) and �80 Ma
(Campanian), during an episode of extension that
produced the Benue Trough, a failed arm of the
northward propagating South Atlantic rift (e.g.,
Fairhead 1988). Therefore, it is always neces-
sary, when defining a set of tectonic elements,
to start from reliable field data, having strong
geochronologic constraints, and use only faults
that were active during the time interval under
consideration.
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Fig. 2.20 Eastern North
American COB, based on
the maximum horizontal
gradient of the free-air
gravity anomaly field
(Sandwell and
Smith 1997)

Some tectonic element boundaries are defined
on the basis of geophysical constraints. An
important example is represented by COBs (see
Sect. 1.3). In the first plate reconstructions based
on rigorous computational methods, Bullard
et al. (1965) matched the conjugate continental
margins around the Atlantic on the basis of a
fitting algorithm. They applied the method to
the 100, 500, 1,000, and 2,000 fm isobaths (1
fathomD 6 ft), then chose the best fitting set of
curves (500 fmD 914.4 m) as most representative
of the conjugate COBs.

Although this method produced a set of
reconstructions that resisted through time and
can be considered milestones in the history
of plate kinematics modelling, none of the
selected isobaths was really representative of the
true boundary between continental and oceanic
crust. The shape of bathymetry contour lines is
strongly affected by the sedimentary cover. For
instance, deposits associated with the delta of
a great river (such as the Nile or the Ganges)
can progressively shift the 1,000 mt isobath
seawards by hundreds of kilometers in a few

million years. The existence of such processes
implies that even though conjugate isobaths may
fit well at the beginning of the ocean opening,
subsequent sedimentation generally decreases
this initial goodness of fit. Therefore, more recent
studies have adopted a geophysical definition of
the COBs. For example, Schettino and Scotese
(2005) assumed that the COBs were associated
with the maximum horizontal gradient of the
gravity anomaly field. This assumption was based
on the observation that marine gravity anomaly
maps adequately filter the sediment cover,
and that COBs are associated with important
lithological discontinuities, which give rise to
sharp variations of the gravity anomaly field.
In this context, free-air gravity anomaly maps
such as those proposed by Sandwell and Smith
(1997) represent an invaluable tool for modern
plate tectonic modeling. Figure 2.20 shows a
map of the horizontal gradient of the gravity
anomaly field along the eastern margin of North
America. The line of maximum gradient can
be easily used to trace the North American
COB.

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.21 Pattern of magnetic anomalies along the east-
ern North American margin and in the western central
Atlantic, extracted from the global data set of Korhonen
et al. (2007). Positive anomalies are shown in dark green.
The location of the ECMA (vertical hatch) marks a zone

of transitional crust (or anomalous oceanic crust) along the
volcanic margin. The yellow line shows the location of the
COB according to the gravity data of Fig. 2.20 (maximum
horizontal gradient of the gravity anomalies)

Another class of geophysical markers that are
useful to identify COBs is represented by the
magnetic anomalies that border volcanic OCTs
(see Sect. 1.3). A classic example is represented
by the East Coast Magnetic Anomaly (ECMA) of
eastern North America (e.g., Schettino and Turco
2009). In this instance, a strong linear magnetic
anomaly associated with the extrusives and in-
trusives of the initial magmatic pulse marks the
site of transition from the rifting stage to drifting,
hence the location of the COB, as illustrated in
the example of Fig. 2.21. However, a comparison
between the location (and the geometry) of the
ECMA and the COB defined on the basis of grav-
ity anomaly data (Fig. 2.20) shows that the co-
incidence of these features is only approximate,
and that differences of up to 70–80 km exist be-
tween the two lineaments. Therefore, even when
based on a geophysical approach, the definition
of COBs remains to some extent qualitative.

A major problem in the definition of both
COBs and tectonic boundaries that are placed
along rift zones is represented by the considerable
thinning that characterizes the passive margins
of the corresponding tectonic elements. If we
use one of the geophysical techniques described
above to define a conjugate pair of COBs, then a
reconstruction based on the fit of the margins will
be representative of the onset of sea floor spread-
ing, not of the pre-rift configuration. In fact, tec-

tonic elements whose extensional boundaries are
defined using potential field data (either gravity
or magnetic data) are stretched elements, which
should be restored to their original size when
the objective is to make a pre-rift reconstruction.
There are three approaches to the solution of
this problem, which clearly does not affect the
reconstruction of the spreading history of oceanic
basins. All these methods require an estimation
of the amount of stretching that occurred dur-
ing the rifting stage. This is usually expressed
in terms of stretching factor “ (see Sect. 2.4).
A determination of this quantity can be made
when a set of crustal profiles along the continental
margins, obtained from seismic refraction exper-
iments, is available (e.g., Schettino and Turco
2009). The first step consists into an estimation
of the directions of stretching, for example by
landward prolongation of the first post-rift direc-
tions of sea floor spreading. We shall see that
these directions can be easily calculated on the
basis of a kinematic model. Then, the seismic
cross-sections are projected onto the directions of
stretching, to avoid an incorrect determination of
the continental margin width. At the next step, the
upper and lower boundaries of the stretched crust,
the latter coinciding obviously with the Moho,
are identified on the cross-sections. Assuming
that seismic profiles always start on unstretched
crust, then these boundaries are two functions,

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.22 Seismic
refraction profile SIS-04,
offshore Morocco
(Contrucci et al. 2004),
projected onto the direction
of Triassic-Jurassic rifting
(top). The green line
represents the bathymetric
surface. The bottom panel
shows a plot of the crustal
thickness (excluding
sediments),
H(x) D a(x)�b(x), along
the margin. The stretched
continental margin as
width L Š193 km. If we
restore the thickness to
H0 D 35 km, the width of
the margin is reduced to
L0Š110 km (pre-rift
width). Therefore, the
stretching factor “ is given
by: “D L/L0Š1.75

say aD a(x) and bD b(x), of seaward increas-
ing offsets x along the profile. The example il-
lustrated in Fig. 2.22 shows the seismic pro-
file SIS-04, located offshore Morocco (Contrucci
et al. 2004), after projection onto the direction
of Triassic-Jurassic rifting (Schettino and Turco
2009). If L is the size of the stretched margin
(for example determined by the COB) and H0 is
the normal unstretched crustal thickness, then the
pre-rift restored size, L0, and the stretching factor,
“, will be given by (Fig. 2.22):

L0 D 1

H0

LZ
0

Œa.x/ � b.x/� dx � 1

H0

LZ
0

H.x/dx

(2.37)

“ D L=L0 D LH0

LZ
0

H.x/dx

(2.38)

As soon as the stretching factor “ has been
estimated, there are three possibilities for taking
into account thinning of passive margins during
the syn-rift stage in pre-rift reconstructions. In
a first method, the tectonic elements are defined
through their present day stretched boundaries,
but a pre-rift reconstruction will require an over-
lap of the stretched margins, as illustrated in
Fig. 2.23. This method works well both in the
case of passive margins of oceans and for failed
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Fig. 2.23 Overlap of the stretched continental margins in
absence of palinspastic restoration. Let W be the width
of the oceanic domain. In a pre-rift reconstruction, plate
B is displaced by W C (L–L0) C (L0–L 0

0) with respect to
the reference plate A, because the unstretched margins
(dashed lines) must be matched. Therefore, the stretched
continental margins will overlap by a quantity F D (L–
L0) C (L 0–L 0

0)

rifts. The amount of overlap is locally defined by
the quantity:

F D .L �L0/C
�
L0 � L0

0

�
D L0 .“� 1/C L0

0

�
“0 � 1� (2.39)

where the quantities L0, L
0

0, and “0 refer to the
conjugate plate. A second possibility requires a
preliminary restoration of the tectonic elements
to their unstretched shape through a process
that geologists call palinspastic restoration (e.g.,
Schmid et al. 1996; Schmid and Kissling 2000;
Schettino and Turco 2006). In this instance,
the boundaries of conjugate tectonic elements
will match in pre-rift reconstructions, but a
reconstruction at the time of rift-drift transition
will show a gap. Finally, a third approach could
be releasing the constraint of rigid tectonic
elements and allow stretching (or shortening)
of the crustal blocks along the directions of
relative motion. A modern computer program for

making plate reconstructions should allow usage
of this method, which is particularly attractive
in the case of small-scale reconstructions of
collisional settings and represents a link between
the classic approach of rigid plate kinematics,
mostly suitable for describing the evolution of
oceanic basins, and structural geology. In this
approach, the amount of deformation (i.e. strain)
of the tectonic elements should be specified
directly in the kinematic model, and the shape
of any crustal block included in the compilation
of tectonic elements would be defined by the
present day stretched or shortened margins,
so that it would not be necessary anymore to
perform manually a palinspastic restoration. In
this instance, the procedure of restoration would
be accomplished automatically by the software
with the correct timing.

2.7 Plate Circuits and Rotation
Models

Now we will consider the problem of represent-
ing the motion of a set of tectonic elements
through the geological time. The kinematics of
a set of tectonic plates can be described by
generating a sequence of plate reconstructions,
eventually combined into a computer animation.
In this representation, the temporal range of the
reconstructions is always subdivided into a series
of tectonic stages, time intervals during which
the relative motions can be described as rotations
about fixed Euler axes at constant angular veloc-
ities. The existence of such time intervals, which
may span several million years, is probably the
most fundamental principle of plate kinematics.
During a stage, it is possible to determine a set
of plate pairs (A,B), sharing common boundaries,
such that the motion of B with respect to A,
considered at rest in the present day position,
can be represented as a rotation about a fixed
Euler axis at constant angular velocity ¨. In this
instance, the relative motion between any plate
pair in the set occurs, within each stage, along
flow lines that are small circle arcs about an
Euler axis. The experimental evidence of this
fundamental principle relies on the analysis of
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Fig. 2.24 Geometry of fracture zones. In a reference
frame fixed to A, plate B rotates counterclockwise about
pole P1 by an angle �1 (stage 1). The resulting fracture
zone has the shape of a small circle arc about P1 (blue

line). The subsequent clockwise rotation about pole P2

during stage 2 separates the fracture zone in two arms
and inserts a new small circle about P2 in the central zone
(green line)

marine magnetic anomalies and the observation
that the trace of oceanic fracture zones can be
invariably decomposed into chains of small circle
arcs. However, we shall prove that it has a more
general validity. Furthermore, this principle puts
strong constraints on the equilibrium of the driv-
ing forces of plate tectonics, thus representing a
conceptual linkage between plate kinematics and
geodynamics.

The sketch of Fig. 2.24 illustrates the pro-
cess through which a fracture zone assumes the
distinctive shape of a chain of small circles.
On the basis of the fundamental principle stated
above, if (T0,T2, : : : ,Tn) are stage boundaries,
T0< T1< : : :< Tn, then there exist n stage poles
P1,P2, : : : ,Pn such that the relative displacement
of a plate B during the k�th stage can be rep-
resented by a finite rotation matrix SBA(Tk�1,Tk)
about the axis nk associated with the k�th Euler
pole Pk (Eq. 2.18). This rotation, which moves
B from the location at time Tk�1 to the position
occupied at time Tk, is called a stage rotation.
It can be represented either by matrix compo-
nents (Eq. 2.18) or as a triplet (œk,¥k,�k), where
(œk,¥k) are the geographic coordinates of a stage
pole Pk and �k is the finite angle of rotation
during that stage (Fig. 2.24). Clearly, if a set of
forward transformations SBA(Tk�1,Tk) has been
established, we can also move back through time
and determine the relative position of B at time
Tk�1 given the position at time Tk. This oper-
ation simply requires application of the inverse
transformation:

S BA .Tk; Tk�1/ D S �1
BA .Tk�1; Tk/ (2.40)

If Tk�1�T �Tk is an intermediate time during
the k�th stage, then the relative position of B at
time T can be determined by taking as rotation
angle the reduced angle�(T):

�.T / D T � Tk�1
Tk � Tk�1

�k (2.41)

Now let us consider the central point of a
transform fault that belongs to a present day
or extinct mid-ocean ridge. Let r0 be the posi-
tion vector of this point. We are looking for an
algorithm that simulates the geometry of the frac-
ture zone passing through r0. The task should be
accomplished calculating iteratively the location
of this point, relative to each of the conjugate
plates A and B, at any time T 2 [T0,Tn], where
T0 and Tn are respectively the time of onset of sea
floor spreading and the present day (or the time
of extinction). In this algorithm, it is necessary
to take into account that for any stage the point
moves by half of the full stage angle �k on each
of the conjugate plates. Therefore, the point must
be rotated using reduced backward stage pole
matrices, S�

BA(Tk, Tk � 1) and S�

AB(Tk, Tk � 1), hav-
ing the same stage pole locations of SBA(Tk, Tk � 1)
and SAB(Tk, Tk � 1), respectively, but halved stage
angles. If Tk�1�T �Tk, then the location of r0 at
time T on plate A, rA(T), will be given by:

rA.T / D S �
BA .Tk; T / : : :S

�
BA .Tn�1; Tn�2/

� S �
BA .Tn; Tn�1/ r0 (2.42)
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Fig. 2.25 Construction of flow lines. The sequence of
stage rotations is the same of Fig. 2.24, and the dashed
line shows the corresponding fracture zone

A similar formula allows to calculate the lo-
cation of r0 at time T on plate B, rB(T). This
algorithm can be used to test the compatibility
of existing kinematic models with real fracture
zones trend. In fact, the chain of rotations in-
cluded in Eq. (2.42) implies that even small errors
on the single stage rotations are enhanced after
few matrix multiplications. The algorithm, which
should reproduce the geometry of any fracture
zone, was applied for the first time by Shaw
(1987) in a study on the South Atlantic plate mo-
tions. More recently, Schettino and Turco (2009)
used this method to give further evidence that an
independent Moroccan plate existed in the central
Atlantic during the Oligocene and early Miocene.
Equation 2.42 allows to predict the geometry of
fracture zones given a plate motions model, that
is, given a sequence of stage rotations. These
lines must not be confused with the flow lines
of relative motions, which display the path of
a representative point on a plate B relative to
a reference plate A. Figure 2.25 illustrates the
process of constructions of flow lines and the
difference with fracture zones. Although flow
lines can be traced for both oceanic basins and
zones of convergence, the latter tectonic context
historically represents the principal field of ap-
plication of this kind of kinematic representation
(Dewey et al. 1989; Schettino and Turco 2011).
Generally, the algorithm for generating flow lines
is simple in the case of oceanic basins and follows

the approach used for the modelling of fracture
zones (Eq. 2.42). The method is illustrated in
Fig. 2.25. In this example, a point that is currently
placed along the COB of one of the two plates,
say B, is moved backward through time to the
locations occupied at any time T 2 [T0,Tn] with
respect to the conjugate reference plate A.

In this instance, however, the stage rotations
are performed using the full stage angles �k and
not, as we saw in the case of fracture zones, the
halved angles. If r0 is the position vector of a
starting location along the continental margin of
B, then the location at time T, Tk�1 �T � Tk, is a
vector r(T) given by:

r.T / D S BA .Tk; T / : : :S BA .Tn�1; Tn�2/

� S BA .Tn; Tn�1/ r0 (2.43)

This method can be used for some, but not
for all, pairs of oceanic plates. Furthermore, it is
not generally applicable to the case of convergent
settings. The reason is that stage rotations exist
for some plate pairs sharing a common boundary,
but not for any pair of plates, not even when
they share a boundary. This theorem can be easily
proved considering the simple case of a three-
plates system. Let us consider an RRR triple junc-
tion like that of Fig. 2.17. If the relative motion
of B with respect to A is described by a stage
rotation, then by definition the Euler pole PBA is at
rest in the reference frame of A. Similarly, if the
motion of C with respect to A can be described
by a stage rotation, then the location of the stage
pole PCA is also at rest in the reference frame of
A. However, PBA will not be at rest with respect to
C, just like PCA will not be at rest with respect to
B. Therefore, the Euler vector ¨BCD¨BAC¨AC

cannot be an invariant neither in the frame of
B nor in that of C. This implies that a stage
pole does not exist for the plate pair (B,C), even
though both B and C move by stage rotations with
respect to A. For this reason, we shall use the
term “conjugate plates” only in the case of plates
sharing a common boundary (not necessarily a
spreading ridge) and whose relative motion can
be described by a sequence of stage rotations.
When the divergent relative motion between two
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Fig. 2.26 Fracture zones pattern and triple junction mi-
gration path for a system of three divergent plates. Plates
B and C move about fixed Euler axes at constant rate with
respect to A. The relative motion between B and C cannot
be represented by a stage rotation

plates does not occur about a fixed rotation axis,
the fracture zones assume the complicate shape
shown in Fig. 2.26 between B and C.

Let us consider now the problem of determin-
ing stage rotations for a pair of conjugate plates
A and B. In the case of oceanic basins, a subdi-
vision of the opening history in tectonic stages
is performed on the basis of the geometry of
fracture zones and an analysis of marine magnetic
anomalies. This procedure will be explained in
detail in Chap. 5. It allows to determine both the
stage boundaries (T0,T2, : : : ,Tn) and the relative
position of B with respect to A (considered at
rest in the present day position) at each time Tk

(kD 1,2, : : : ,n). Regarding the relative position at
time T0, it can determined through a fitting algo-
rithm applied to the conjugate COBs, as we shall
see in the next section. All these relative positions
are specified through finite reconstruction matri-
ces RBA(Tk), whose expression is given by (2.18).
The existence of these transformations is ensured
by Euler’s theorem (see Sect. 2.2). Generally,
the components of the versor n(Tk), associated
with the rotation axis at time Tk, are expressed
in terms of geographic coordinates (œ(Tk),¥(Tk))
of a finite reconstruction pole Pk. In this instance,
the triplet (œ(Tk),¥(Tk),�(Tk)), �(Tk) being the
rotation angle, specifies all the necessary param-

Fig. 2.27 Relationship between stage rotations and finite
reconstructions. To move a point P from the location at
time Tk�1 to that at time Tk, it is possible to go first to the
present day through an inverse finite reconstruction, then
to time Tk through a direct finite transformation

eters to perform the transformation of a tectonic
element from the present day location to the
position at time Tk relative to the conjugate plate.
Once the finite reconstruction matrices associated
with each stage boundary have been determined,
it is easy to calculate the corresponding stage ro-
tations by the following formula, whose graphical
proof is shown in Fig. 2.27:

S BA .Tk�1; Tk/ D RBA .Tk/R�1
AB .Tk�1/ I

k D 1; 2 : : : ; n (2.44)

When considering finite reconstructions, it is
always necessary to keep in mind that they do
not represent real plate motions, but the combined
result of many instantaneous or stage rotations.
Therefore, the small circle arcs associated with
a finite reconstruction pole are never expressions
of existing geological structures, contrarily to
the case of stage and instantaneous Euler poles.
This is a key point for the correct interpretation
of kinematic data, which has been discussed in
depth in a seminal paper by John Dewey (1975).

Now we are ready to consider the process
of construction of a rotation model, which rep-
resents the primary data structure that is used
in plate tectonic modelling to store the relevant
kinematic information. In fact, this file contains
the information that is needed to reconstruct both
the plate motions and the tectonic history of a
region during a selected time interval. Rotation
models are tables, generally stored in ASCII

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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files, used by dedicated algorithms during the
process of construction of some hierarchical data
structures (or trees in the sense of Computer Sci-
ence, see Appendix 2) that describe the relative
positions of a set of tectonic plates at any given
time. A rotation tree can be considered as a data
structure that specifies the multilevel tectonic
hierarchy of a plate system at an assigned time
T (Ross and Scotese 1988). It is often referred to
as a plate circuit, although this term is also used
when relative velocities are specified rather than
relative positions, usually in studies on current
plate motions. The nodes of these data structures
are tectonic elements, while an edge between any
pair of nodes indicates that their relative motion
can be described by a sequence of stage rotations.
Therefore, given a stage S, the edges of a plate
circuit C for time T 2 S define a set of conjugate
plate boundaries in a system of interacting tec-
tonic elements during the stage S, not the whole
set of active plate boundaries, although all the
existing plates at time T are represented in C.
Thus, if e and p are respectively the size (that
is, the number of edges) and the order (number
of plates) of C, then by (2.34) it always results:
e<3(p�2). It is also important to note that the
topology of plate circuits is not constant through
time, but changes as a consequence of major
plate boundary reorganizations. In general, the
definition of a plate circuit topology for each
tectonic stage is based on the geological or geo-
physical evidence and the identification of a set
of conjugate boundaries, such that the resulting
graph is a connected tree (that is, for any two
nodes u and v there exists a unique path from u to
v). The topology is specified implicitly during the
compilation of a rotation model, while the duty of
the reconstruction algorithms is to build a rotation
tree for any assigned reconstruction time T.

In the example of Fig. 2.28, we assume
that the relative motion between the plate pairs
(A,C), (B,C), (C,D), and (D,E) is represented
by rotations at constant angular velocity during a
time interval S� [T 0,T00]. Therefore, S is assumed
to be a tectonic stage. This assumption most
likely relies on the geometry of fracture zones
in the oceanic area and on geological field

Fig. 2.28 Sketch map illustrating the construction of
plate circuits. Left: A system of five plates. Finite rotations
of A with respect to C, B to C, D to C, and E to D are
known. Right: The corresponding plate circuit

evidence regarding the tectonic activity along
the transcurrent faults that separate D from C and
E. In this instance, four finite reconstruction
matrices must be defined for the conjugate
boundaries, which allow to determine four inde-
pendent stage rotations, SAC(T 0,T00), SBC(T 0,T00),
SDC(T 0,T00), and SED(T 0,T00) through Eq. (2.44).
If RAC(T), RBC(T), RDC(T), and RED(T) are the
finite reconstruction matrices at any time T 2
[T 0,T00], then any other relative position at time
T can be calculated by combining these basic
rotations.

For example, it is possible to determine the
relative position of A with respect to B and that
of E with respect to C at time T:

RAB.T / D RCB.T /RAC .T /I REC .T /

D RDC .T /RED.T /

In general, the tree structures associated with
plate circuits are arranged so that the greater is
the degree of a node in a plate circuit C, that
is, the number of edges incident with the node,
the higher will be its level in the hierarchical
structure. Therefore, the neighborhoods of nodes
in C will increase in size when we move toward
higher levels in the data structure.

Plate circuits are built by reconstruction al-
gorithms starting from a rotation model. This
table specifies, for any stage boundary, the fi-
nite reconstruction pole and rotation angle of
each identified pair of conjugate plates. A sample
fragment of these data structures is shown in
Fig. 2.29. In these tables, the tectonic elements

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.29 A fragment of
rotation model

are coded through plate identifiers. In order to
determine which of the two plates in a conju-
gate pair must be considered as the reference
plate, we shall conform to the principle that high-
degree nodes always appear at higher levels in
the hierarchical structure. Regarding the defini-
tion of the stage boundaries, it is necessary to
distinguish between the large first-order plates,
in a context of global tectonics, and the case
of small tectonic elements associated with intra-
plate deformation or collisional settings. A key
observation is that the changes of relative mo-
tion between large plates during the Mesozoic
and the Cenozoic, hence presumably also dur-
ing earlier time intervals, seem to have occurred
synchronously on a global scale, thereby the
major stage boundaries coincide. As an example,
the classic plate motions model of Müller et al.
(1997) is based on 15 synchronous stages from
the early Jurassic to the present. This implies that
the motions of the major tectonic plates cannot be
determined exclusively by processes occurring in
the mantle, including the subduction of slabs, and
independently from each other. Therefore, at any
time Earth’s tectonic plates must be considered
as a system of interacting bodies. Conversely,
stage boundaries associated with changes of stage
poles between small plates and other tectonic el-
ements must be established on a geological basis
and are not necessarily synchronous with major
events of reorganization of the plate boundaries.
In the next section, we shall discuss some impor-
tant details of the procedures followed in plate
kinematics for the construction of plate motions
models.

2.8 Plate Tectonic
Reconstructions

Usually plate motions models include a recon-
struction of the initial configuration, preceding
the development of plate boundaries. Figure 2.30
illustrates an example of fit of Pangaea, the large
supercontinent that existed before the opening of
the Atlantic ocean.

In the previous sections, we have learnt that
there are two kinds of initial fits: pre-rift fits,
which show the configuration of the continen-
tal masses preceding the development of plate
boundaries, and post-rift fits, which match the
stretched continental margins and show the con-
figuration at the onset of sea floor spreading.
In both cases, the match between the conjugate
COBs is performed through a geometrical fitting
procedure. The algorithm used by Bullard et al.
(1965) in their reconstructions of Pangaea was
the first rigorous method for fitting continental
margins. Here we shall discuss an improved ver-
sion of this algorithm, which was proposed by
Schettino and Turco (2009). Let us assume that
the COBs to be fitted are represented by two
series of unit vectors, respectively (p1,p2, : : : , pN)
and (q1,q2, : : : ,qM), which have been preliminar-
ily rotated to a geographic reference frame where
a test Euler pole e, with coordinates (œe,¥e), has
been moved to the North Pole (Fig. 2.31). A
transformation of the standard geographic coor-
dinates to this new reference frame is obtained
by rotating each position vector pi and qj about
an Equatorial pole placed at (0ı,¥eC 90ı) by
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Fig. 2.30 A pre-rift fit of Pangaea, based on Schettino
and Scotese (2005) and Schettino and Turco (2009). The
present day coastlines are shown for reference. The major
tectonic elements in this reconstruction are: central Africa
(CAF), northwest Africa (NWA), northeast Africa (NEA),
Nubia (NUB), Somalia (SOM), Madagascar (MAD), Mo-
rocco (MOR), Arabia (ARB), India (IND), E. Antarctica

(EAN), Australia (AUS), W. Antarctica (WAN), Brazilian
Craton (BRA), Paraná (PAR), Salado Block (SAL), Patag-
onia (PAT), N. America (NAM), Greenland (GRN), North
Slope (NSL), Okhotsk (OKH), Eurasia (EUR), Iberia
(IBE), Amurian Plate (AMU), N. China (NCH), Yang Tze
Platform (YTP), and Indochina (ICH)

Fig. 2.31 Geometrical fit
of conjugate COBs. In a
reference frame (x0 ,y0,z0)
where a test Euler pole, e,
has been moved to the
North Pole, the fitting
procedure consists to find
the best rotation about the
North Pole, by an angle �
that minimizes the squared
sum of longitude misfits
•¥i (i � N) and •¥

0

j(j � M)
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an angle �™eD�( /2�œe). For each point pi

on the first line, which can be carried onto the
second line at position p

0

i by rotation about the
North Pole, let •¥i(e) be the longitude difference
between the two locations. Similarly, for each
point qj on the second line, which can be carried
back onto the first one at position q

0

j by rotation

about the North Pole, let •¥
0

j(e) be the longitude
difference. In general, only n�N points of the
first line can be projected onto the second line,
and only m�M points of the second line can
be projected back onto the first line. If we rotate
the western line by an angle � about the North
Pole, then misfit between a rotated vertex and
its projection along the eastern line is given by
•¥i(e)�¥0. Similarly, if we rotate the eastern line
by angle�� about the North Pole, we obtain
individual misfits •¥0

j(e)��. The total mean-
square misfit will be given by:

¦2 .e/ D N

n2

nX
iD1

.•¥i .e/ ��/2

C M

m2

mX
jD1

�
•¥0

j .e/��
�2

(2.45)

This formula shows some differences with
respect to the one used by Bullard et al. (1965).
In fact, the original formula of these authors
assumed that the same number of points was
projected between the two lines. This assumption
is adequate only when the two COBs may match
perfectly, that is, when each line can be fit against
the whole conjugate line and not against a subset
of the input data. For example, we could have
missing information from one of the two conju-
gate COBs. In this instance, we must search for a
best fit of one line against a subset of the second
line, not necessarily a whole geometrical fit. Eq.
(2.45) takes into account of the possibility that
one the two lines is not complete. In these condi-
tions, the best fit Euler pole searching algorithm
also tries to maximize the percentage of matched
segments from each line, that is, the number of
projected points, because we could find wrong
Euler poles that furnish very good fits of small
segments of the two lines. This problem is solved
in Eq. (2.45) by multiplying the squared misfit

of each line respectively by N/n and M/m. This
expression reaches a minimum when the rotation
angle�D�(e) is given by:

�.e/ D

N
n2

nX
iD1

•¥i .e/C M
m2

mX
jD1

•¥0
j .e/

N
n
C M

m

(2.46)

The fitting procedure is a searching algorithm
of the Euler pole e which minimizes the misfit
¦2 in expression (2.45). The search is generally
based on trial Euler poles that are chosen over
a coarse grid of locations (for example, a 1� 1ı
global grid). For each trial pole e, the angle� that
minimizes ¦2 is determined through Eq. (2.46).
A first approximate location of the Euler pole
is obtained by selecting the trial pole that gives
the minimum value of � over the global grid.
Now a new scan is performed over a neighbor
of this point using a reduced grid spacing, for
example 0.1ı, so that a new more precise location
of the Euler pole and a new angle of rotation
are determined. The algorithm stops when the
desired resolution is reached.

Now let us consider the procedure for recon-
structing the position of a tectonic element at
time T in the geologic past, starting from a corre-
sponding plate circuit C(T). This reconstruction
algorithm has the following simple structure:

Algorithm 2.2 (Reconstruction Algorithm)
Input: a node n 2 C(T);
Output: A total reconstruction matrix Rn(T);
f

1. Rn(T) I; c n;
2. p Parent(c);
3. pD 0) jump #7;
4. Rn(T) Rcp(T)Rn(T);
5. c p;
6. Jump #2;
7. Rn(T) Rc(T)Rn(T);

g

A total reconstruction matrix, Rn(T), is a ma-
trix that moves a tectonic element n from its
present day location, in the geographic reference
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frame, to the position that this block had at time T
in a paleotectonic reference frame. An important
example of this class of frames is represented by
the paleomagnetic frames mentioned in Sect. 2.3,
but one could wish to refer the reconstructions
to a set of hot spots (e.g., Müller et al. 1993)
or even use a present day continent, for example
N. America or Eurasia, as a reference frame
for plate reconstructions. The existence of total
reconstruction matrices is again a consequence of
Euler’s theorem. The corresponding Euler pole is
called a total reconstruction pole. At step #1 of
Algorithm 2.1, the total reconstruction matrix is
initialized by the identity matrix I, and the current
node, c, is set to be the starting node. At step #2,
a variable p is assigned the parent of the current
node in the tree structure. At the next step, if the
current node c coincides with the root of the tree,
so that pD 0, then the iteration stops and the final
reconstruction matrix is updated by adding the
transformation of the root node with respect to the
paleotectonic reference frame, Rc. At step #4, the
current rotation matrix is updated by adding the
relative rotation of the current node with respect
to its parent. Then, at the next step, we move
upwards to the next higher level by assigning
the current node its parent and the sequence is
restarted. On exit, this algorithm furnishes the
total reconstruction matrix of n at time T in the
variable Rn(T).

As an example, the application of this algo-
rithm to the circuit of Fig. 2.28 would give the
following total reconstruction matrices:

8̂̂
<̂
ˆ̂̂:

RA.T / D RC .T /RAC .T /

RB.T / D RC .T /RBC .T /

RD.T / D RC .T /RDC .T /

RE.T / D RC .T /RDC .T /RED.T /

To calculate the set of finite reconstruction
matrices Rij(T) associated with a plate circuit at a
given intermediate time T, algorithm 2.2 uses the
components of these transformation matrices at
stage boundaries. If Tk�1�T �Tk, then the cor-
responding finite reconstruction of plate i relative
to plate j is given by:

Rij.T / D S ij .Tk�1; T /Rij .Tk�1/ (2.47)

where the rotation Sij is calculated using the
reduced angle (Eq. 2.41). Now we can address
the problem of complementing the kinematic
representation of a set of tectonic plates through
velocity and acceleration fields. We know that the
linear velocity v(r) at the location represented by
a position vector r can be calculated easily start-
ing from an Euler vector ¨ (Eq. 2.17). Therefore,
the problem of representing velocity fields can
be reduced to the problem of determining the
instantaneous axis of relative rotation between
two plates sharing a boundary at time T, indepen-
dently from the eventuality that these are conju-
gate plates or not. Furthermore, it is occasionally
necessary to determine absolute velocity fields
in the selected paleotectonic reference frame.
Clearly, in the case of relative velocity fields
between conjugate plates the calculation should
be simplified by the fact that the relative motions
are rotations about fixed axes at constant angular
velocities. However, even in this eventuality it is
necessary to take into account that the rotation
axis of a stage pole is fixed with respect to a
plate that is considered at rest in the present
day geographic frame. Therefore, the axis must
be rotated according to the total reconstruction
matrix of this plate at time T before it can be used
for calculating velocity vectors. Let nij(0) be the
unit vector of the rotation axis associated with a
stage rotation Sij(Tk�1,Tk). If Tk�1�T �Tk, and
Rj(T) is the total reconstruction matrix of the
reference plate at time T, then the orientation of
this axis at time T will be given by:

nij.T / D Rj .T /nij.0/ (2.48)

At this point, to form a complete Euler vector
we still need to assign an angular velocity ¨ at
time T. This task can be easily accomplished,
because during a stage the relative angular veloc-
ity between two plates is assumed to be approx-
imately constant, thereby we can always deter-
mine this quantity starting from the stage angle
�k and the temporal boundaries Tk�1 and Tk. It
results:

¨ D �k

Tk � Tk�1
(2.49)
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In the general case of two plates whose relative
motion occurs about a continuously changing
Euler pole, it is not possible to determine the
instantaneous rotation axis and angular velocity
starting from a stage rotation. Therefore, a more
general, although complicate, approach to the
problem becomes necessary. We know that all
the plates are represented in a plate circuit at
time T. For each node i, a finite reconstruction
matrix Rij(T) exists, which allows to calculate the
position of the corresponding plate with respect
to the parent plate j. We also know that the
edges of a plate circuit attest the existence of
specific kinematic relations between plate pairs,
consisting in the fact that the relative motions
are stage rotations, thereby they link pairs of
conjugate plates. Therefore, for any plate i not
coinciding with the root of the tree, it is possible
to determine a stage rotation matrix Sij and the
relative velocity field vij with respect to the parent
plate j in the hierarchical representation using the
following simple expression, which combines Eq.
(2.17) with Eqs. (2.48) and (2.49):

vij .r; T / D Rj .T /nij.0/�k

Tk � Tk�1
(2.50)

for any Tk�1� T �Tk. In the case of the root
continent, r, the corresponding finite reconstruc-
tion matrix coincides with a total reconstruction
matrix, Rr(T), that represents the transformation
of r with respect to the paleotectonic reference
frame. Therefore, if (i,j,k, : : : ,r) is a path in the
tree structure from node i to the root, then we
can always determine the absolute velocity field
of a plate in the selected reference frame by
composition of velocity vectors:

vi .r; T / D vij .r; T /C vjk .r; T /

C � � � C vr .r; T / (2.51)

where the absolute velocity field of the root node,
vr, is determined calculating stage rotations with
respect to the paleotectonic reference frame.

Now we are ready to solve the problem of
determining relative velocity fields between non-
conjugate plate pairs. In fact, if i and j are any

two plates, it is always possible to calculate their
relative velocity by subtracting their absolute
velocities:

vij .r; T / D vi .r ; T / � vj .r ; T / (2.52)

Another important kinematic variable is the
relative or absolute acceleration of a tectonic
plate. Curiously, this kind of vector fields have
been seldom considered in plate kinematics stud-
ies, in spite of their importance for the geody-
namic assessment of the models. Probably this is
a consequence of the fact that accelerations have
been traditionally considered as point events that
only occur at stage boundaries, consistently with
the current description of the driving mechanism
of plate tectonics. However, recent research has
shown that phases of accelerated motion have
existed in the geologic past, possibly associated
with the action of mantle plumes (Cande and
Stegman 2011). We shall consider in detail the
geodynamics of accelerated states in Chap. 13.
In order to obtain an acceleration field, it is
necessary to consider two successive times, T and
T0, close enough, and calculate a velocity field for
each of them. For example, Schettino and Scotese
(2002) used a time interval of 1 Myr for determin-
ing the acceleration across stage boundaries in the
Mediterranean region during the Mesozoic. The
acceleration is calculated simply by dividing the
velocity variation by the size of the time interval:

aij .r; T / D vij .r ; T
0/ � vij .r ; T /

T 0 � T (2.53)

It is possible that in the previous discussion,
about the velocity field between non-conjugate
plate pairs, some readers wondered about the
effective number of situations characterized by
this kind of relative motion. We shall satisfy
the curiosity of these readers by proving an in-
teresting topological theorem, which will help
to clarify some key features of plate tectonic
configurations. We say that a plate boundary is
a conjugate boundary if it separates a pair of
conjugate plates. In this instance, any geological
structure associated with strike-slip motion, for
example a transform fault, will be aligned with

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 2.32 Nucleation of a new plate by splitting of an
existing n-th order plate. Free plate boundaries are shown
as dashed lines. Left: The new plate boundary splits two
conjugate boundaries through the insertion of two new
triple junctions, J0 and J00. In this case, the new boundary
is a free boundary and there is no need for a global

reorganization. Right: If one of the two boundaries that are
cut is a free boundary, then a large scale reorganization,
involving several conversions between free and conjugate
boundaries, is necessary. In this instance, a new conju-
gate boundary separates the parent plate from the newly
formed tectonic element

a small circle arc about a stage pole. When
a boundary separates two plates whose relative
motion occurs about a continuously changing
Euler pole, we say that this is a free boundary. In
this case, strike-slip faults, in particular transform
faults, and fracture zones have a quite complicate
pattern, as illustrated in Fig. 2.26. If C is a plate
circuit containing p nodes, then its size (i.e.,
the number of edges) is given by eD p�1. The
following theorem proves that this number does
not coincide with the total number of conjugate
pairs in a plate tectonic configuration, that is, with
the total number of conjugate boundaries, but is
always lower.

Topological Theorem (for Plate Tectonic Con-
figurations)
If G(j,b) is a global plate configuration, then
the number of free and conjugate boundaries are
given, respectively, by:

f D 1

3
b D e � 1 D p � 2 (2.54)

c D 2

3
b D j D 2f (2.55)

Proof In this proof, we always assume that in
normal conditions a system of tectonic plates
tries to maximize the number of conjugate bound-
aries during any episode of reorganization, be-
cause this is clearly a minimum energy configura-
tion. In a three-plates system, it results by (2.34)
that bD 3 and jD 2. We have already proved

that in this configuration only two of the three
boundaries can be conjugate boundaries, thereby
we would have f D 1 and cD 2, in agreement
with Eqs. (2.54) and (2.55). Now let us assume
that the theorem holds for a system with p plates.
We want to prove that in this case it also holds
if one of these plates splits, thus adding a new
tectonic element to the system.

Figure 2.32 shows two possible mechanisms
for generating a new additional tectonic plate
from an existing one. Clearly, in order to create
a new boundary that splits an existing plate, two
of its boundaries must be broken by insertion
of triple junctions. If the edges that are split
are conjugate boundaries, two extra conjugate
boundaries and one additional free boundary are
created and there is no need to change the tectonic
style of the remaining plate boundaries. In this
instance, f increases by one, while c increases
by two, thereby Eqs. (2.54) and (2.55) remain
valid and the theorem is proved. The new plate
boundary separating the two parts of the original
plate is always a free boundary when this kind
of plate nucleation occurs. A much more com-
plicated situation follows if at least one of the
two boundaries that are split is a free boundary.
In this instance, the proof relies on the fact that
for any pair of triple junctions in G, there exist at
least three alternate paths that link the two nodes.
An alternate path is a path formed by an alternate
sequence of conjugate and free edges.

The example of Fig. 2.33 shows the tree struc-
ture that can be formed with the set of all alternate
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Fig. 2.33 An example of global plate configuration, and the corresponding tree of alternate paths starting from node
J1. Dashed and solid lines are respectively free and conjugate plate boundaries

paths starting from a node. The tree is built setting
the root node as the start node, s, and generating
all the possible alternate paths originating in s
by a modified depth-first search or breadth-first
search algorithm (see Appendix 2). For example,
for the graph of Fig. 2.33 we could start from
node J1, then reach nodes J2, J6, and J8. From
node J2, we must proceed to node J3, while from
J8 we can proceed either to node J7, or node
J9, etc. When one of the edges that are split
in the process of nucleation of a new tectonic
plate is a free boundary, the new intermediate
boundary separating the original plate cannot be
a free boundary. More precisely, it could be a
free boundary, but this would not be the minimum
energy solution. In fact, Fig. 2.32 shows that after
insertion of the new triple junctions J0 and J00,
only one of the two arms of a free boundary
needs to be converted to a conjugate boundary
after splitting (the boundary between J0 and Jn

in the example of Fig. 2.32), whereas any other
solution would imply a local reorganization in-
volving more conversions. However, even in this
case the conversion of part of the former free
boundary induces a series of concatenate transi-
tions from free to conjugate boundaries and vice
versa that may propagate outside the perimeter
of the splitting plate, determining a total rear-
rangement of the plate configuration. For each
boundary conversion, another boundary incident
with the same triple junction must be subject to
the inverse of that transformation. At the same
time, a stage boundary is created, which could
either close an existing stage or start a new one
after a time interval of complex relative motion.

The simplest way to terminate the sequence of
boundary conversions and establish a new equi-
librium is to reach the opposite triple junction,
J00, along the shortest alternate path. This path
will include an even number of edges when only
one of the splitting boundaries is a free boundary,
whereas an odd number of edges are converted
when two free boundaries are split. The examples
of Fig. 2.34 illustrate these two possibilities.

It should be noted that the new boundary
linking J0 and J00, and the alternate path linking
these nodes form a closed loop in G, whose
outgoing edges are unaffected by the boundary
conversions. In the case of an even number of
converted edges, for each conjugate boundary
that is transformed into a free boundary there is
a free boundary that is converted into a conju-
gate boundary. Therefore, after the creation of
a new free boundary and two new conjugate
boundaries the total number of edges does not
change. This implies that also in this case f
and c increase respectively by one and by two
units, thereby Eqs. (2.54) and (2.55) remain valid
and the theorem is proved. When the number of
converted boundaries is odd, after the creation
of two new free boundaries (see Fig. 2.34) and
one additional conjugate boundary the sequence
of conversions allows an extra conversion of the
last free boundary into a conjugate edge, thereby
during the conversions f decreases by one and
c increases by one. Therefore, also in this case
f and c increase respectively by one and by two
units, so that Eqs. (2.54) and (2.55) conserve their
validity after the formation of the new plate. This
proves the topological theorem. �

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.34 Alternate paths of converted boundaries during the splitting of a tectonic plate. Top: The new edge links a
free boundary to a conjugate boundary. Bottom: Two free boundaries are split

In Sect. 2.7 we have described a method of
construction of flow lines of relative motion,
which can be used only when the two plates
form a conjugate pair. Furthermore, we have
mentioned that it is not generally applicable to
the case of convergent boundaries. Now we want
to describe a technique to produce flow lines in
the general case of two plates separated by a
free boundary for at least some time intervals.
The method is based on the general technique
for determining relative velocity fields discussed
above. Let r0 be the present day position vector
of a point belonging to a plate B. We want to
generate a path on the globe, formed by the
relative positions of this point with respect to
another plate A at any time T in the geologic
past. The task is easily accomplished calculating
the relative velocity field vBA(T) for a sequence
of closed times T0, T0C •T, T0C 2•T, : : : in an
interval [T0,T00]. In fact, starting from the position
at the initial time, which is r(T0)DRBA(T0)r0,
we can calculate iteratively the position at any
successive time by the following formula:

r .T C •T / D r.T /C vBA.T /•T (2.56)

The kinematic methods described so far can be
applied equally well to the reconstruction of the
tectonic evolution of oceanic basins and to conti-
nental tectonics. In the former case, the finite re-
construction matrices associated with the rotation
model are determined on the basis of an analysis
of fracture zones and the pattern of marine mag-
netic anomalies, as it will be explained in Chap. 5.
In the case of reconstructions that involve defor-
mation of continental crust in the geologic past,
for example during rifting or collisions, or when
the finite rotations must describe relative motions
between continental blocks, these techniques are
inapplicable. In this context, the determination
of the reconstruction parameters (latitude and
longitude of the Euler poles and rotation angles)
mostly relies on geologic data that lack of in-
formation on measurement uncertainty, thereby it
is not generally possible to determine confidence
ellipses for the resulting reconstruction parame-
ters. Nevertheless, it is possible to generate semi-
quantitative reconstructions that correctly predict
the style and timing of tectonic deformation, thus
giving a theoretical framework to the geological
observation at regional or local scale.

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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The asymmetric deformation of a tectonic ele-
ment of continental crust during its motion can
be described by modifying the format of the
tables associated with rotation models (Fig. 2.29).
Such a modification should consist into the in-
troduction of an additional field, which would
allow to establish the amount of shortening or
extension, with respect to the present day shape,
that a block experienced during its motion. This
method cannot be used to describe a symmetric
extension between two plates during a rifting
phase, because the additional attribute refers to
a single tectonic element which will be rotated
with respect to a parent plate, not to a plate
pair. For example, the method can be used in the
modelling of back arc basins, or in the descrip-
tion of complex systems, such as the assemblage
of microplates, slivers, and orogenic structures
that characterizes the Alpine-Himalayan belt. In
general, the additional field would describe the
deformation of a continental block during a stage
rotation through a stretching (or shortening) fac-
tor. For example, a value of 0.9 at 10 Ma would
mean that in a reconstruction at 10 Ma we must
shorten the tectonic element by 10 % with respect
to the present size, in the direction determined by
the stage matrix between 10 Ma and the present.
Similarly, if the deformation parameter is 0.8 at
20 Ma, this value implies two different phases of
extension, the first one between 20 and 10 Ma
and a second one between 10 Ma and the present.
Of course, these two phases of deformation could
develop along different directions, determined by
diverse stage poles, so that in general the present
day shape of a tectonic element would result from
the superposition of several tectonic events. An
example illustrating the combination of rotations
and phases of extension is shown in Fig. 2.35.

Describing the kinematics of deformable bod-
ies requires special techniques and an additional
computational effort for generating plate recon-
structions of the tectonic evolution of a region.
For example, it is not generally possible to deter-
mine the initial shape and location of a tectonic
element through a single finite rotation, accom-
panied by deformation of the block, because
usually the present day geometry results from
the superposition of different phases of extension

Fig. 2.35 Deformation of a continental block during its
motion. In this example, a tectonic element rotates clock-
wise about the stage pole S1 between 20 and 10 Ma,
and counterclockwise about S2 between 10 Ma and the
present. During the first stage, it is stretched in the same
directions of the flow lines about S1. Then, a second phase
of deformation is superimposed on the first one, and the
block is stretched again, this time in the direction of the
flow lines about S2

or shortening, which develop along distinct axes
of deformation. Now we are going to describe,
in a simplified form, the procedure of stretching
or shortening of a tectonic element along an
assigned direction, which cannot be defined as a
trivial algorithm.

The procedure of block deformation starts
with its rotation to a reference frame where
the stage pole coincides with the North Pole
(Fig. 2.36). Then, the points having minimum
and maximum latitudes, in the set of N
vertices associated with the spherical polygon
representation, are determined. Let qs and qn be
respectively these two points (Fig. 2.36), and
assume that the sequence of vertices (q1, q2, : : : ,
qN) is a clockwise sequence. The points qs and
qn can be used to divide the perimeter of the
tectonic element in two halves: an eastern half
that includes vertices from qs to qn, and a western
sequence, which includes vertices from qn to qs.
For each point in the western sequence, qi, let
•¥i be the longitudinal distance from the western
boundary. If “ is the deformation factor, then qi is
moved along its parallel to a new location, q0

i
, in

such a way that •¥
0

i D “•¥i. Finally, the resulting
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polygon is moved back to the original reference
frame before applying the rigid transformation
listed in the rotation model.

Another problem that often must be solved, in
the context of continental tectonics, is associated
with the impossibility to determine a priori, inde-
pendently from the specific kinematic history, a
list of finite reconstruction poles to be included
in a rotation model. The reason is that the typical

Fig. 2.36 Stretching and shortening continental blocks
by a factor “. In a reference frame (x0,y0,z0) where the
stage pole, S, has been moved to the North Pole, the
northernmost and southernmost vertices, qn and qs, of a
plate polygon are used to divide the block perimeter in two
halves. Then, each point along the eastern half is moved
along its parallel of latitude to stretch or shorten by factor
“ the corresponding small circle arc •¥ that separates it
from the western boundary

geological data are generally represented by par-
tially incoherent geologic structures (faults, fold
axes, etc.), which result from the superposition of
two or more phases of deformation, as illustrated
in Fig. 2.37. Even assuming that it is possible
to separate the original data in coherent subsets,
and to identify the timing of the deformation
phases through a precise dating of the geologic
structures, the oldest tectonic structures cannot
be used to determine finite reconstruction pa-
rameters, because it is likely that their strike
has been affected by the more recent phases
of deformation. In these conditions, the typical
approach is to reconstruct the tectonic history
of a region starting from the most recent phase
of deformation and going back through time. If
we can identify the most recent set of geologic
structures, for example between some time Tk and
the present (Fig. 2.37), then it is possible to de-
termine the parameters of a stage transformation
S(0,Tk), which clearly coincides with the finite
reconstruction matrix at time Tk: S(0,Tk)DR(Tk).
At this point, all the structures that are older than
Tk, and that have been affected by the most recent
phase of deformation, are rotated using the matrix
R(Tk), in order to remove the “overprint” of this
phase. After this operation, these structures be-
come coherent with other data that had not been
affected by the recent deformation. The resulting
data set can be used, at the next step, to determine
a second stage pole, S(Tk,Tk�1), which in turn al-
lows to calculate the finite reconstruction matrix
at time Tk �1 : R(Tk� 1)D S(Tk, Tk� 1)R(Tk), and

Fig. 2.37 Superposition of two phases of deformation
of a tectonic element. During phase 1, between T1 and
T2, a rift forms with extension axes having direction
WNW�ESE. Note that the resulting offset L between
the two separating blocks is always less than the width
W of the stretched zone. This phase is followed by a
second episode of extension between T3 and T4, having
NW�SE direction, which modifies the strike of some of

the original transfer zones and rift axes. At the end of this
phase the original block has been divided in four distinct
tectonic elements (A, B, C, and D). To determine a finite
reconstruction pole and angle of rotation for phase 1, it
is necessary to remove the effects of the second phase of
deformation, by reconstructing the shape of the tectonic
element at time T3
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Table 2.2 The NUVEL-1A velocity model

Plate ¨x ¨y ¨z ¨ œe ¥e

Africa 0.002401 �0.007939 0.013891 0.9270 59.160 �73.174

Antarctica 0.000689 �0.006541 0.013676 0.8695 64.315 �83.984
Arabia 0.008195 �0.005361 0.016730 1.1107 59.658 �33.193

Australia 0.009349 0.000284 0.016253 1.0744 60.080 C1.742

Caribbean 0.001332 �0.008225 0.011550 0.8160 54.195 �80.802

Cocos �0.008915 �0.026445 0.020895 1.9975 36.823 �108.629

Eurasia 0.000529 �0.007235 0.013123 0.8591 61.066 �85.819
India 0.008181 �0.004800 0.016760 1.1034 60.494 �30.403

North America 0.001768 �0.008439 0.009817 0.7486 48.709 �78.167

Nazca �0.000022 �0.013417 0.019579 1.3599 55.578 �90.096

South America 0.000472 �0.006355 0.009100 0.6365 54.999 �85.752

¨D (¨x
2 C¨y

2 C¨z
2)1/2 is the angular velocity in deg/Myr;

¨x, ¨y, and ¨z are expressed in rad/Myr;
œe and ¥e are, respectively, the latitude and longitude of the Euler pole with respect to the Pacific

so on. Thus, in general, the finite reconstruction
poles associated with the kinematics of a set of
continental plates can be calculated only after the
stage transformations have been determined by
concatenation of stage matrices.

2.9 Current PlateMotions

We are going to conclude this chapter, dedicated
to plate kinematics, with a description of the
techniques used for the determination of the mod-
ern plate motions. The first models of current
plate kinematics were based on a combination of
heterogeneous data, represented by seismic slip
vectors, averaged spreading rates, and transform
fault azimuths (Chase 1978; Minster and Jordan
1978; DeMets et al. 1990). Each of these mod-
els specified a set of n�1 Euler vectors, ¨i, n
being the number of modern plates, relative to
a reference plate, for example the Pacific plate.
The models were obtained through least squares
procedures that minimized the quantity:

¦2D
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(2.57)

This formula allows to calculate the squared
sum of misfits between predicted and observed
spreading rates and azimuths of relative veloci-
ties. Each plate is assumed to have ni boundaries
that are spreading ridges, and for each of these
boundaries, there are Nij spreading rate data at
locations represented by position vectors rk. Let
¨i�¨j be the predicted relative angular velocity
of the i�th plate with respect to an adjacent plate
separated by a spreading ridge. By (2.17), the
predicted linear velocity between the two plates
at a location rk is given by: (¨i�¨j)� rk. If nk

and v(rk) are respectively a versor normal to the
ridge axis and the observed average spreading
velocity at rk, then the weighted misfit between
observed and predicted spreading rates is given
by the scalar difference between the projections
of v(rk) and (¨i�¨j)� rk onto the axis of nk,
divided by the standard error ¢k attributed to
v(rk). Similarly, it is assumed that the i�th plate
has mi generic boundaries, each having Mij di-
rectional observations. Let s(rk) be a unit ver-
sor representing one of these observations. The
predicted direction is clearly given by the versor
of the theoretical linear velocity (¨i�¨j)� rk.
Therefore, the weighted misfits of azimuth data
can be defined as the magnitudes of the vector
differences between predicted and observed di-
rection versors, divided by the standard error ¢k.

Table 2.2 lists the Euler vectors of NUVEL-
1A (DeMets et al. 1994), one of the most widely
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accepted kinematic models for the modern
plates, which represents a refinement of a
model published in 1990, known as NUVEL-
1 (Northwestern University VELocity model ver.
1, DeMets et al. 1990). In this model, the average
spreading rates used in the least squares fitting
procedure are determined through the analysis
of marine magnetic anomalies spanning the last
�3.2 Myrs. The model includes 12 large plates,
and the components of the Euler vectors are
expressed in a reference frame fixed to the Pacific
plate. The difference between the two versions is
in the geomagnetic polarity time scales used to
analyse the marine magnetic anomalies during
the determination of the spreading rates, so
that the angular velocities of NUVEL-1A are
95.62 % of the corresponding velocities listed in
NUVEL-1.

One of the main problems of the classic mod-
els is represented by the very different time inter-
vals associated with the input data. The spreading
rates along the world’s mid-ocean ridges, which
are estimated through the analysis of marine mag-
netic anomalies, represent averages over the last
�3.2 Myrs. These averages strongly depend from
the choice of a geomagnetic polarity time scale.
Conversely, earthquake slip vectors average di-
rections of relative motions over much shorter
time intervals (decades to centuries). Another
problem is represented by the relatively small
number of plates that are considered in these
models, which limits their capability to repre-
sent the internal deformation of some continents.
Therefore, there is not much surprise in seeing
that inconsistencies often emerge when the linear
velocities predicted on the basis of the Euler
vectors are compared to velocities estimated from
Global Positioning System (GPS) techniques and
other geodetic methods. In fact, the latter data
are consistent averages performed over a few
decades, which are not necessarily representative
of the long-term geological processes. Finally,
the most serious issue of NUVEL-1A and its
predecessors is probably the failure to satisfy
the closure rule (Eq. 2.35) along some three-
plate circuits. In particular, NUVEL-1A does not
satisfy Eq. 2.36 at the Galapagos triple junction
(Pacific-Cocos-Nazca circuit) and at the Bouvet

triple junction (Africa-South America-Antarctic
circuit) at the desired level of confidence.

A major improvement to NUVEL-1A, which
tries to overcome the difficulties mentioned
above, has been proposed in recent times by
DeMets et al. (2010). The new model, which
has been called MORVEL (Mid-Ocean Ridge
VELocity), extends the data set to the 25 plates
shown in Fig. 2.38. With respect to the system
of 23 plates shown in Fig. 2.16, this model
decomposes the eastern part of Africa in two
sub-plates (Lwandle and Somalia), separates
two sub-plates (Capricorn, and Macquarie)
from Australia, introduces the Yang-Tze plate
in eastern Asia and Sur in the South Atlantic,
but incorporates the Anatolian block in Eurasia,
Easter in Nazca, and the Okhotsk plate in N.
America. Using Eq. 2.34, we see that this
model includes 46 triple junctions and 69 plate
boundaries, 23 of which must be free boundaries.
Differently from its predecessors, MORVEL is
based on few earthquake slip directions. In this
model, about 75 % of the input data are sea floor
spreading rates and strikes of transform faults.
The very limited usage of earthquake slip vectors
(�2 % of the total data set) has minimized the
possibility of biased estimates of relative velocity
directions along the world’s subduction zones,
which are usually caused by forearc deformation
(e.g., Jarrard 1986; McCaffrey 1992). Finally,
it has been avoided a mix between long-term
geological data and geodetic velocities in the
estimation of Euler vectors, the usage of GPS
data having been limited to the determination
of the motion of six small plates, for which no
other data were available. The 24 Euler vectors
of MORVEL, relative to the Pacific plate, are
listed in Table 2.3, while the resulting linear
velocity fields between adjacent plates are shown
in Fig. 2.38.

The kinematic models described so far furnish
the Euler vectors of the major modern tectonic
plates relative to the Pacific. The components
of these vectors are expressed in the geographic
reference frame (where London, Eurasia, has a
fixed longitude). By vector summation, we can
calculate the Euler vector of relative motion be-
tween any pair of plates, assess closure conditions
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Fig. 2.38 The plate velocity model MORVEL (DeMets et al. 2010). The length of the arrows indicates 20 times the
relative displacement of a plate with respect to an adjacent plate. Plate labels are listed in Table 2.3

Table 2.3 The MORVEL velocity model

Plate Sym œe ¥e ¨ ¨x ¨y ¨z

Amurian AMU 65.9 �82.7 0.929 0.000841 �0.006567 0.014801

Antarctica ANT 65.9 �78.5 0.887 0.001260 �0.006194 0.014132

Arabia ARB 60.0 �33.2 1.159 0.008463 �0.005538 0.017518

Australia AUS 60.1 6.3 1.079 0.009331 0.001030 0.016325
Caribbean CAR 55.8 �77.5 0.905 0.001922 �0.008668 0.013064

Cocos COC 42.2 �112.8 1.676 �0.008397 �0.019977 0.019649

Capricorn CAP 62.3 �10.1 1.139 0.009098 �0.001621 0.017601

Eurasia EUR 61.3 �78.9 0.856 0.001381 �0.007040 0.013105

India IND 61.4 �31.2 1.141 0.008154 �0.004938 0.017484
Juan de Fuca JDF �0.6 37.8 0.625 0.008619 0.006685 �0.000114

Lwandle LWA 60.0 �66.9 0.932 0.003191 �0.007481 0.014087

Macquarie MAC 59.2 �8.0 1.686 0.014921 �0.002097 0.025276

North America NAM 48.9 �71.7 0.750 0.002702 �0.008170 0.009864

Nubia NUB 58.7 �66.6 0.935 0.003367 �0.007781 0.013944
Nazca NAZ 55.9 �87.8 1.311 0.000492 �0.012819 0.018947

Philippine PHB �4.6 �41.9 0.890 0.011524 �0.010340 �0.001246

Rivera RIV 25.7 �104.8 4.966 �0.019950 �0.075508 0.037587

South America SAM 56.0 �77.0 0.653 0.001434 �0.006210 0.009449

Scotia SCO 57.8 �78.0 0.755 0.001460 �0.006868 0.011150
Somalia SOM 59.3 �73.5 0.980 0.002480 �0.008373 0.014707

Sur SUR 55.7 �75.8 0.636 0.001534 �0.006064 0.009170

Sundaland SUN 59.8 �78.0 0.973 0.001776 �0.008356 0.014677

South Sandwich SAN �3.8 �42.4 1.444 0.018570 �0.016957 �0.001670

Yang Tze Platform YTP 65.5 �82.4 0.968 0.000927 �0.006945 0.015374
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across plate circuits, test triple junction velocity
triangles, etc. What we cannot do with these mod-
els, is to represent the absolute velocities of the
tectonic plates with respect to a reference frame
fixed to the deep mantle, for example fixed to the
top of the transition zone as in Fig. 2.9. However,
this is a necessary step if we want to consider
the kinematics of tectonic plates in relation to
the asthenospheric flows, and give a complete
geodynamic formulation of plate tectonics. Such
approach represents one the fundamental tasks
of this book, thereby now we shall illustrate
an approximate method to determine the Euler
vectors in a reference frame fixed to the deep
mantle.

The method was proposed 40 years ago by
Solomon and Sleep (1974) and applies equally
well to the modern plates and to a paleotectonic
context (Solomon et al. 1977). These authors
started from the assumption that the total torque
N exerted on the lithosphere (Eq. 2.3) is zero, and
that the asthenosphere is dragged passively by
the overlying lithosphere. The first assumption is
compatible with the fact that, apart from the case
of space geodesy studies, we always represent
plate motions through the geological time, not the
physical time, even when we study the present
day plate motions. When we consider physical
processes that occur at the time scale of the last
2–3 Myrs, it is always necessary to neglect any
motion related to the Earth’s rotation, including
variations in eccentricity of the orbit, axial tilt,
and precession. In Chap. 6, we shall discuss
the evidence that the total angular momentum L
(Eq. 2.5) of the lithosphere is constant over time
intervals of several Myrs, which implies that in
equilibrium conditions ND 0 at the time scale of
the geological processes. We shall prove that also
the second assumption is correct in conditions of
geodynamic equilibrium, but not during episodes
of plate acceleration, such as the northward accel-
eration of India during the Cretaceous to Eocene
time interval (Cande and Stegman 2011).

The method of Solomon and Sleep is based
on a balance of the torques exerted on the whole
lithosphere. The torques applied on individual
plates are associated with the viscous resistive
drag force that the asthenosphere exerts on the

base of the overlying lithosphere, and with plate
boundary forces, such as the gravitational forces
exerted by slabs. However, it is not necessary
to include symmetric features such as mid-ocean
ridges in the torque balance, because in this
instance the corresponding torques cancel out.
Therefore, the two fundamental torques that must
be included in the torque balance equation are
those associated with drag forces and those aris-
ing from downward pull forces exerted by slabs.
Let us assume that the passive drag applied at the
base of the lithosphere follows a simple viscous
law, so that it depends linearly from the velocity
of the lithosphere relative to the base of the fluid
asthenosphere. It is also reasonable to assume
that the slab pull force exerted along an active
margin does not depend from the plate velocity.
Let ¨i be the Euler vector of i�th plate relative
to the top transition zone, and vi(r)D¨i � r the
corresponding linear velocity field at each point
r along its surface. The simplest law describing
the resistive drag force per unit area (or traction)
at the base of the lithosphere, TiDTi(r), is the
following one:

T i .r/ D �Divi .r/ D �Di¨i � r (2.58)

In this expression Di is a drag coefficient
which may depend from position. To obtain the
total torque exerted on the i�th plate we must
integrate the local torque per unit area, r�Ti(r),
over the surface Si of the plate:

N i D �
Z
Si

ŒDir � .¨i � r/�dS (2.59)

From this expression, it is easy to calculate
the total torque exerted on the lithosphere by the
underlying asthenosphere:

N D
X
i

N i D �
X
i

Di

Z
Si

Œr � .¨i � r/�dS

(2.60)

where for simplicity we have assumed that Di is
constant along the surface of a plate. If we expand

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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the vector triple product in (2.60), this expression
can be rewritten as follows:

N D �
X
i

Di

Z
Si

.r � r/¨i dS

C
X
i

Di

Z
Si

.r �¨i /rdSi (2.61)

If we assume that the Earth’s radius is normal-
ized to unity, then r�rD 1, so that:

N D �
X
i

DiS	¨i C
X
i

Di

Z
Si

.r �¨i /rdSi

(2.62)

Expression (2.62) can be further simplified
introducing a new tensor quantity, which is
strictly related to the inertial tensor of a tectonic
plate (Eq. 2.23). Using the index notation (see
Appendix 1), the components of this quantity are
given by:

Qi
jk �

Z
Si

�
•jk � xj xk

�
dS D Ai•jk

�
Z
Si

xj xkdS I j; k D 1; 2; 3 (2.63)

where Ai is the area of the i�th plate. Using
this new tensor quantity, which depends only
from the plate geometry, Expression (2.62) can
be rewritten as follows:

N D �
X
i

DiQ
i¨i (2.64)

If this were the only torque exerted on the
lithosphere, the torque balance equation would be
written: ND 0, that is:

X
i

DiQ
i¨i D 0 (2.65)

Let ¨r be the Euler vector of a reference plate,
for example the Pacific plate, with respect to the
top transition zone. Knowing the Euler vector
of any other plate with respect to the reference

plate, ¨ir, it is possible to determine its absolute
Euler vector, ¨i, by adding the absolute angular
velocity of the reference plate: ¨iD¨irC¨r.
Therefore, Eq. (2.65) can be viewed as a linear
system of three equations with respect to the three
unknown components of ¨r:

 X
i

DiQ
i

!
¨r D �

X
i

DiQ
i¨i r (2.66)

The total Q tensor for the whole lithosphere
can be obtained simply by summation of the
tensors Qi associated with each plate. It results:

Q D
X
i

Qi D 8�

3
I (2.67)

where I is the identity matrix. Further simplifi-
cation of Eq. (2.66) follows if we assume that
the drag coefficients Di coincide for all plates:
DiDD. In this instance, using (2.67) we obtain an
immediate solution for ¨r in terms of the relative
Euler vectors of a velocity model:

¨r D � 3

8�

X
i

Qi¨ir (2.68)

This solution corresponds to a condition of
no-net-rotation (NRR) for the whole lithosphere
(LD 0). In fact, for DiDD Eq. (2.65) can be
rewritten as follows:

X
i

Qi¨i �Q� D 8�

3
� D 0) � D 0

(2.69)

where � can be considered as the net rotation of
the whole lithosphere. It should be noted that the
solution (2.68) only holds in the unlikely event
that the unique torques exerted on the lithosphere
come from asthenospheric drag, and that the drag
coefficient D can be considered constant over
the entire lithosphere. Of course, none of these
two strong conditions is likely to be verified.
Slab pull forces are essential components of the
global torque balance, and the drag coefficient
along the irregular continental LAB cannot be

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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equal to the drag coefficient of the oceanic areas.
Notwithstanding these issues, the NNR condi-
tion (2.68) has been widely used to build “ab-
solute” plate motions models (e.g., Argus and
Gordon 1991), and represents the basis for the
definition of a geocentric reference frame. This
is the International Terrestrial Reference Frame
(ITRF), which is particularly important for the
representation of kinematic data obtained from
geodetic techniques, but it is also linked to an
inertial frame tied to stellar objects, the Celestial
Reference Frame. This NNR reference frame is
periodically updated by the International Earth
Rotation and Reference Systems Service (IERS).
It is realized through the acquisition of time
series of mean station positions at weekly or daily
sampling from a global network of observation
sites equipped with various space geodesy sys-
tems: very long baseline interferometry (VLBI),
satellite laser ranging (SLR), Global Positioning
System (GPS), and Doppler Orbitography Radio-
positioning Integrated by Satellite (DORIS) (Al-
tamimi et al. 2002). Then, an assignment of pre-
cise coordinates and linear velocities at reference
epochs is made. These data are used, in con-
junction with Eq. (2.17), to estimate statistically
the angular velocities of each plate having an
observation site. Finally, a best fit alignment with
the current plates velocity model NNR-NUVEL-
1A is performed, in order to satisfy the condition
(2.68) (Altamimi et al. 2003).

We can determine the components of the ten-
sors Qi using a computational method proposed
by Schettino (1999b). Table 2.4 lists the six
independent components of these tensors for the
set of MORVEL plates shown in Fig. 2.38. This
data set can be used to determine the Euler vector
of the reference plate through Eq. (2.68). The
instantaneous Euler pole of the Pacific plate,
determined on the basis of the relative Euler
vectors of Table 2.3 and the Q tensor components
of Table 2.4, is located at 63.5ıS, 114.4ıE, and
its angular velocity is ¨D 0.65ı/Myr. The NNR
version of MORVEL is listed in Table 2.5, while
the corresponding velocity fields are shown in
Fig. 2.39.

An estimation of the errors associated with the
computation of the tensors Qi can be performed

as follows. First, it is possible to show that the
area of each plate, Ai, can be calculated decom-
posing the corresponding spherical polygon into
a set of spherical triangles, then using the well-
known Girard’s formula for calculating the area
of each triangle (Schettino 1999b).

From (2.63), we see that these quantities are
related to the diagonal components of Qi by the
following expression:

T r
�
Qi
� DX

j

Z
Si

�
1 � x2j

�
dS D 2Ai (2.70)

Therefore, an estimate of the errors associated
with the diagonal components of Qi, which are
listed in the last column of Table 2.4, can be
obtained by evaluating the expression:

©i D T r
�
Qi
�� 2Ai

2Ai
(2.71)

It is important to note that the velocity fields
of the NNR version of MORVEL do not really
represent velocities relative to the deep mantle.
In fact, the equations associated with the NNR
condition (2.68) do not consider the contribution
of slab pull forces to the total torque balance,
and are based upon the implausible assumption
that the drag coefficient is uniform across the
Earth’s LAB. However, the method described
above can be considered as a good starting point
for the study of the absolute plate motions. For
example, we can improve the model introduc-
ing in the torque balance equation the torques
associated with the pull exerted by subducting
slabs.

Slab pull is a downward-directed force that
a sinking slab exerts on the unsubducted litho-
sphere along a trench line (Forsyth and Uyeda
1975). If Ti is the small circle representative of a
trench line, then this force is everywhere normal
to Ti. Therefore, if dl is an infinitesimal vector
element tangent to Ti, then the torque exerted on
the unsubducted lithosphere is given by:

N i D Ci
Z
Ti

r � .dl � r/ (2.72)
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Table 2.4 Q tensors and areas of the 25 MORVEL plates

Plate A Q11 Q22 Q33 Q12 Q13 Q23 Diag. Err.

AMU 0.130659 0.108248 0.089481 0.063589 0.028732 0.036320 �0.051295 0.0000 %

ANT 1.434290 1.328262 1.176115 0.364247 �0.050791 0.052812 0.080667 0.0015 %
ARB 0.120824 0.074248 0.066810 0.100589 �0.048782 �0.029553 �0.031041 �0.0004 %

AUS 0.935403 0.602384 0.568115 0.700304 0.230373 �0.218401 0.241845 �0.0002 %

CAR 0.103729 0.094940 0.014300 0.098213 0.024762 �0.006107 0.020566 �0.0024 %

COC 0.072230 0.071072 0.003020 0.070372 �0.005543 0.001064 0.010141 0.0028 %

CAP 0.203647 0.196537 0.022175 0.188580 �0.021636 0.007182 0.045603 �0.0005 %
EUR 1.218422 1.017712 0.913393 0.505738 �0.041466 �0.222433 �0.315605 0.0000 %

IND 0.30636 0.286350 0.042306 0.284051 �0.057048 �0.013096 �0.060493 �0.0021 %

JDF 0.006315 0.005162 0.004356 0.003111 �0.001501 0.001916 0.002491 �0.0079 %

LWA 0.117115 0.063149 0.081116 0.089959 �0.043343 0.036053 0.029664 �0.0026 %

MAC 0.007890 0.006131 0.007510 0.002139 0.000812 �0.003172 0.001465 0.0000 %
NAM 1.440479 1.282025 1.008008 0.590974 0.079145 0.026680 0.378356 0.0017 %

NUB 1.440653 0.372568 1.301217 1.207515 �0.051346 �0.005428 0.044223 �0.0002 %

NAZ 0.403564 0.391445 0.070630 0.345043 �0.014536 �0.003992 �0.115869 �0.0012 %

PAC 2.681816 1.204054 2.045135 2.114430 �0.400314 0.062295 �0.057354 �0.0002 %

PHB 0.144484 0.081761 0.078620 0.128588 0.062670 0.029123 �0.029347 0.0003 %
RIV 0.002486 0.002289 0.000489 0.002193 �0.000625 0.000239 0.000763 �0.0201 %

SAM 1.023883 0.624948 0.586878 0.835938 0.344415 0.181243 �0.174029 �0.0001 %

SCO 0.042001 0.036816 0.034549 0.012637 0.005706 0.012013 �0.014486 0.0000 %

SOM 0.354795 0.221032 0.153739 0.334814 �0.154901 0.024755 0.035861 �0.0007 %

SUR 0.027055 0.018681 0.026496 0.008933 0.001954 0.012245 �0.002957 0.0000 %
SUN 0.281465 0.232911 0.054798 0.275220 0.093052 0.004760 �0.016178 �0.0002 %

SAN 0.004543 0.003525 0.004269 0.001292 0.000527 0.001817 �0.000940 0.0000 %

YTP 0.062249 0.051303 0.024035 0.049159 0.019688 0.011653 �0.022080 �0.0008 %

Earth 12.566357 8.377553 8.377560 8.377628 0.000004 �0.000012 �0.000029 0.0001 %
Av.%.error �0.0001 % �0.0003 % �0.0002 % 0.0006 % 0.0000 % 0.0000 % 0.0000 %

Units are in steradians

where Ci is a constant that is assumed to be
independent from the subduction velocity, and
the line integral is calculated following a coun-
terclockwise path.

If we expand the triple vector product in
(2.72), we obtain the following simple expression
for the torque:

N i D Ci
Z
Ti

d l D Ci
�
rf � r i

�
(2.73)

In this expression, ri and rf are, respectively,
the position vectors of the start and end points
of the trench line Ti. Therefore, we see that
the torque exerted on a subducting plate by the
attached slab only depends from the width of
the subduction zone, not by its curvature. If we

introduce the torques (2.73) in the total torque
balance equation, we obtain a more realistic equa-
tion, which potentially can be solved to determine
the absolute Euler vector of the reference plate:

 X
i

DiQ
i

!
¨r D

X
j

Cj

�
r
j

f � r
j
i

�

�
X
i

DiQ
i¨ir (2.74)

This is a system of three equations in the
unknown components of ¨r, which can be solved
if the drag coefficients Di and the constants Cj are
known. In this instance, the lithosphere always
has a non-zero angular momentum, even when
DiDD for all plates.
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Table 2.5 The NNR�MORVEL velocity model

Plate œe ¥e ¨ ¨1 ¨2 ¨3

AMU 63.4 237.5 0.298 �0.001248 �0.001962 0.004645

ANT 65.7 242.4 0.250 �0.000829 �0.001589 0.003976
ARB 48.8 351.7 0.561 0.006374 �0.000933 0.007363

AUS 33.9 37.9 0.634 0.007241 0.005636 0.006170

CAR 35.6 267.6 0.286 �0.000168 �0.004062 0.002908

COC 27.0 235.7 1.197 �0.010487 �0.015371 0.009493

CAP 44.3 23.1 0.610 0.007008 0.002985 0.007445
EUR 49.3 253.8 0.223 �0.000708 �0.002435 0.002949

IND 50.4 356.9 0.545 0.006064 �0.000333 0.007329

JDF �38.2 60.0 0.951 0.006529 0.011291 �0.010270

LWA 51.9 291.0 0.286 0.001101 �0.002876 0.003932

MAC 49.2 371.1 1.145 0.012831 0.002508 0.015120
NAM �4.6 279.7 0.208 0.000612 �0.003564 �0.000292

NUB 47.9 291.9 0.293 0.001277 �0.003175 0.003788

NAZ 46.4 259.0 0.695 �0.001597 �0.008213 0.008791

PAC �63.5 114.4 0.650 �0.002090 0.004605 �0.010156

PHB �45.9 328.7 0.909 0.009435 �0.005735 �0.011401
RIV 20.3 252.7 4.535 �0.022040 �0.070903 0.027431

SAM �22.2 247.8 0.107 �0.000656 �0.001604 �0.000707

SCO 23.0 254.5 0.146 �0.000630 �0.002263 0.000995

SOM 50.2 275.9 0.339 0.000391 �0.003767 0.004551

SUR �32.3 249.2 0.106 �0.000555 �0.001459 �0.000986
SUN 50.2 265.2 0.337 �0.000313 �0.003750 0.004522

SAN �29.9 323.2 1.361 0.016481 �0.012351 �0.011826

YTP 63.4 243.6 0.334 �0.001163 �0.002339 0.005218

Fig. 2.39 The “absolute” plate velocity model NNR�MORVEL (DeMets et al. 2010). The length of the arrows
indicates 20 times the relative displacement of a plate with respect to an adjacent plate
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Problems

1. An Eulerian reference frame is a geocentric
reference frame obtained rotating an Euler
pole to the North pole. Determine the equa-
tion of transformation from geographic to
Eulerian latitude;

2. The number of edges in a circuit with p plates
is always eD p�1. Explain why;

3. Show that the relation eD p�1 is compatible
with (2.34), e and p being the number of
edges and the number of plates in a circuit;

4. Given the three-plates system formed by the
Pacific, North American, and Juan de Fuca
plates, determine the relative velocity vector
of Juan de Fuca with respect to N. America
at (46.5ıN, 125.8ıW) using the data in Ta-
ble 2.5;

5. Assuming that the spreading asymmetry is
zero along the Juan de Fuca Ridge, how

long time is required for a point at (46.9ıN,
129.4ıW) along the ridge to enter the Casca-
dia Trench and what is the predicted location
of ridge subduction?

6. Subduction of the Capricorn plate beneath
Sundaland along the Sumatra Trench is
highly oblique. Strike-slip motion along
the Sumatran Fault, which is parallel to
the trench in the forearc region, determines
partitioning of such oblique subduction into
a trench-normal component and a trench-
parallel component. Determine the slip rate
and the sense of shear along the Sumatran
Fault at (2.5ıS, 101.5ıE);

7. The Periadriatic Line in northern Italy and
Croatia is a wide E–W and NW–SE structure
that accommodated strike-slip motion be-
tween Africa and Europe in the geologic past
(see figure). What would be the style of this
fault at (46.4ıN, 11ıE) and (42.8ıN, 17.8ıE)
if it were a present day plate boundary?

8. Anatolia is a small microplate between Ara-
bia and Europe in the eastern Mediterranean,
whose N and SE boundaries are transcur-
rent faults (see figure). Starting from the

relative velocity of Arabia with respect to
Europe, calculate the westward escape ve-
locity of this microplate along its strike-slip
boundaries;
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9. Determine the evolution of the Pacific-N.
America-J. de Fuca triple junction in the
Pacific reference frame, and describe the ge-
ological setting around the region where the
corresponding plate boundaries meet;

10. Determine the time interval of stability of the
triple junction between Nazca, Antarctica,
and S. America, and the subsequent migra-
tion path;
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3Magnetization andMagnetic Minerals

Abstract

This is the first of four chapters devoted to the techniques for collecting and
analysing kinematic data. The fundamental source of data for determining
past plate motions is furnished by rock magnetization. In this chapter,
I describe the different classes of rock magnetism, the main magnetic
minerals, and the origin of ferromagnetism.

3.1 Electric Currents

An electric current is a material flow of electric
charges. These charges may be single particles
(e.g., electrons) that move through a medium or
in the empty space or, in a continuous mechanics
representation (see Sect. 2.1), we can think about
an electric current as a flow of volume elements
dV having electric charge. Given an arbitrary
surface S in the physical space, the current I(S)
across this surface is defined as the charge q that
walks through S in the unit time:

I.S/ D dq

dt
(3.1)

Let us consider an infinitesimal surface ele-
ment of S. This quantity can be represented by
a vector dS D ndS, whose versor n is normal
to the surface, and having magnitude dS equal
to the infinitesimal area of the surface element
(Fig. 3.1).

The charge dq crossing dS in an infinitesimal
time interval dt coincides with the electric charge
that originally was contained in a small cylinder

dV, having base dS and height equal to the dis-
tance h travelled by the charge in the direction n.
Clearly, hD (v�n)dt. Then:

dq D ¡dV D ¡ .v � n/ dtdS
D ¡v � dSdt � j � dSdt (3.2)

Here, the scalar quantity ¡ and the vector
j D ¡v are respectively the density of charge and
the density of current. Combining this expression
with (3.1), we have:

I.S/ D
Z
S

j � dS (3.3)

The electric charge is expressed in Coulomb
[C], while currents are measured in Ampere
[1AD 1 ıC s�1]. Magnetic fields are force fields
generated by charges in motion and that exert a
force only on moving charges. The most simple
example is represented by the field generated by
a flow of electrons through a copper cable. If
I is the current through the conductor, the law
of Biot-Savart allows to determine the magnetic
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Fig. 3.1 A flow of electric charges walks through a sur-
face S with local velocity v

Fig. 3.2 Geometry of a current loop

(induction) field B D B(r) at any position r as a
function of the cable geometry (Fig. 3.2):

B .r/ D ��0I
4 

Z
C

.r � q/ � dq

kr � qk3 (3.4)

where the line integral is calculated along the
circuit C and �0 is the magnetic permeability
in the vacuum: �0D 4 � 10�7 H/m. In the SI,
the unit of B is the Tesla [1 TD 1 Vsm�2]. The
magnetic force exerted on a moving charge is
determined by the equation of Lorentz:

F D q .v �B/ (3.5)

Here, v and q are respectively the velocity of
the particle and its charge. Equation 3.5 shows
that the magnetic force is always orthogonal both
to the direction of motion of the particle and to
the magnetic field vector B. Furthermore, FD 0
when the particle moves in the same direction
of the field. Thus, the equation of motion for
a particle that is moving in a magnetic field
assumes the form:

m
dv
dt
D qv �B (3.6)

An interesting class of solutions for Eq. (1.6)
can be obtained easily for a homogeneous mag-
netic field, for example when BD Bk (k being the
base versor in the direction z). In this case (3.6)
assumes the following simple form:

8<
:
Pvx D �vy
Pvy D ��vx
Pvz D 0

(3.7)

where the quantity:

� � qB

m
(3.8)

is called cyclotron frequency. A solution to this
system of differential equations, with the initial
condition v0 D v(0), can be obtained in a few
steps. The third equation implies that vz is con-
stant:

vz.t/ D v0z (3.9)

Furthermore, taking the derivative of the first
two equations we easily obtain a separation of the
equations:


 Rvx D ��2vx
Rvy D ��2vy

(3.10)

Therefore, we obtain:



vx D A sin .�t C ®/
vy D A cos .�t C ®/ (3.11)
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Fig. 3.3 An electric charge in motion through an homo-
geneous magnetic field follows a helical trajectory

Applying the initial conditions we can solve
for the amplitude, A, and the phase parameter, ®:

A D
q

v2x0 C v2y0 I ® D arctan

�
vx0
vy0

�
(3.12)

Therefore, the particle will follow a helical
trajectory with radius A/� (Fig. 3.3). This impor-
tant example explains why charged particles that
move in the Earth’s magnetic field travel in spiral
paths about the geomagnetic field lines.

3.2 Magnetic Moments

Let us consider now a rectangular coil having
sides a and b, placed in a homogeneous magnetic
field B D Bk (Fig. 3.4). Let us also assume
that the sides having length a are aligned with
direction y, and that the coil is inclined by an
angle ™ with respect to the horizontal plane. If I is
the current flowing in clockwise sense along the
coil, then the magnetic force (Eq. 3.5) exerted on
a coil element with orientation n and length dl is
given by:

dF D dq .v �B/ D Idl .n �B/ (3.13)

We can integrate this formula to calculate
the forces exerted on the coil. The forces on
the inclined sides, F1 and F2, have the same

Fig. 3.4 A coil crossed by a current I is subject to a net
torque when it is placed in a magnetic field

magnitude and are opposite each other (Fig. 3.4).
Conversely, forces F3 and F4, which are applied
to the sides aligned with the y direction, also have
the same magnitude, but are not lined up. There-
fore, they generate a force couple that tends to
align the coil with the xy plane. Since F3 D IaBi,
and F4 D�IaBi, then the total torque is given by:

N D b

2
F3 sin ™i C b

2
F4 sin ™i D SIB sin ™i

(3.14)

where S D ab. Assuming that S is a vector
orthogonal to the coil and having magnitude S,
we can introduce a vector m such that: mD IS. In
this instance, (3.14) can be rewritten as follows:

N D m �B (3.15)

The vector m is called magnetic moment of
the coil. Equation 3.15 has general validity and
does not depend from the specific geometry of
the coil. It implies that the field exerts a torque
that tends to align the magnetic moment to the
external field. Let us consider now the example
of an electron that is moving along a circular
orbit with radius r with velocity v (Fig. 3.5). If
T is the orbital period, then the quantity of charge
that crosses an arbitrary surface orthogonal to the
orbit in a unit time is:

I D dq

dt
D e

T
D e

2 r=v
D ev

2 r
(3.16)
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Fig. 3.5 The counterclockwise rotation of an electron
about the z axis is equivalent to a coil crossed by a current
flowing in the opposite direction. If the direction of the
external magnetic field B does not coincide with that of
the magnetic moment associated with the current loop, m,
then the orbit is perturbed and the angular momentum L
will be subject to a precession about the direction of B

Thus, the orbital motion of the electron gener-
ates a current loop, whose strength of interaction
with the external magnetic field is described by
the magnetic moment m. Since the electron has
negative charge, in this case the vector m will be
opposite to the angular momentum L associated
with the orbit. Therefore, if me is the electron
mass and L D r � mev is its angular momentum,
then:

m D � r2IbL D �1
2
evrbL D �1

2
er � v

D � e

2me

L (3.17)

The ratio –e/2me is called classic gyromag-
netic ratio of the electron. Combining (3.17) with
(3.15), we obtain a simple expression for the
torque exerted on the electron orbit:

N D dL

dt
D � e

2me

L �B (3.18)

Therefore, dL? L. This implies that the angu-
lar momentum L, and consequently the magnetic
moment m, precesses about the vector B, as
shown in Fig. 3.5.

To calculate the angular frequency of preces-
sion, we observe that:

dL D L sin ™d¥ (3.19)

where ™ is the angle between L and B and d¥ is
the infinitesimal angle of precession. Combining
(3.19) with (3.18) we obtain:

¨L D d¥

dt
D eB

2me

(3.20)

This quantity, which is independent from the
angle ™, is known as the Larmor angular fre-
quency. The precession of the magnetic and an-
gular moments around the magnetic field vector
is the basic principle underlying the construc-
tion of proton precession magnetometers, which
form an important class of scalar magnetometers.
These devices furnish measurements of the mag-
nitude of the Earth’s magnetic field. We shall see
that these are the raw data of plate kinematics.
The operation of these instruments is based on
the proportionality between Larmor frequency
and magnitude of the external field predicted
by Eq. (3.20), so that a measurement of fre-
quency can be converted to a measurement of
field intensity.

We have seen that current loops are subject to
the action of external magnetic fields. However,
a current loop generates itself a special kind of
magnetic field that is called dipole field, whose
structure is illustrated in Fig. 3.6. We note that
in this case the field lines are arranged symmetri-
cally with respect to the direction of m (dipole
axis). The dipole field describes with good ap-
proximation the present day Earth’s magnetic
field, which will be considered in the next chap-
ter, and with excellent approximation the paleo-
magnetic fields (Chap. 6). The current loops that
generate these fields are referred to as magnetic
dipoles. To obtain an expression for B, we choose
a coordinate system with the z-axis aligned in the
direction of m and with the origin placed at the
centre of the current loop. At great distance, the
magnetic field generated by this magnetic dipole
has the following approximate expression (e.g.,
Panofsky and Phillips 2005):

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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Fig. 3.6 Force lines of the magnetic dipole field B gener-
ated by a small current loop

Fig. 3.7 Components of the dipole field generated by a
magnetic dipole directed as the z-axis

B .r/ Š �0

4 

�
3

m � r
r5

r � m

r3

�
(3.21)

This expression shows that at any location r
the field vector B(r) can be decomposed in two
orthogonal components, one directed radially as
r, and a component that is tangent to the sphere
of radius r (Fig. 3.7). They are, respectively,

Br .r/ D �0m cos ™

2 r3
(3.22)

B™ .r/ D �0m sin ™

4 r3
(3.23)

where ™ is the angle between r and m. In the
case of the geomagnetic field, this angle coincides

with the magnetic colatitude. These expressions
show that the magnitude of B depends from the
inverse cube of the distance from the origin:

B .r/ D �0m

4 r3

�
3cos2™C 1�1=2 (3.24)

We note that at any fixed distance from the ori-
gin, the magnitude of B is maximum at the poles
(™D 0 or ™D ) and attains its minimum along
the magnetic equator (™D /2). Equations 3.22
and 3.23 can be used to determine the compo-
nents of the Earth’s magnetic field in a local ref-
erence frame (see Sect. 2.3). In the next chapter,
we shall see discuss the application of the mag-
netic dipole model to the representation of the
geomagnetic field. For the moment, it is sufficient
to say that in a local coordinate system the term
(3.22) corresponds to the vertical component of
the field, Z, while the horizontal component, H,
will be obtained by (3.23).

3.3 Maxwell’s Equations for
theMagnetic Field

The four Maxwell’s equations of classical Elec-
trodynamics express, in a concise form, all the ba-
sic features of the electromagnetic fields and their
relation with the electric and magnetic sources.
Together with Lorentz’s equation, they furnish a
complete description about the origin of the elec-
tromagnetic fields, their interaction with charged
particles, and their evolution in time. Two of these
equations describe the sources of magnetic fields.
The first of them is a differential form of the law
of Gauss:

r �B D 0 (3.25)

This equation simply states that there are no
magnetic charges in the physical world. It also
implies that a vector field exists, A D A(r), such
that:

B D r �A (3.26)

The field A D A(r) is called vector potential.
The second of Maxwell’s equations devoted to

http://dx.doi.org/10.1007/978-3-319-09135-8_2


86 3 Magnetization and Magnetic Minerals

the magnetic fields is known as Ampere’s law. It
relates the spatial structure of the magnetic field
B to the geometry of the electric currents and to
the temporal variations of the electric field.

Assuming that the latter does not change in
time, the differential form of Ampere’s law can
be written as follows:

r �B D �0j (3.27)

If jD 0 in a region R, hence in absence of
currents, we have that r �BD 0 in R. Therefore,
for any point in a region where the current density
is zero, there exists a scalar field V D V(r) such
that:

B D �rV (3.28)

The field V is called scalar magnetic potential.
If we combine (3.28) with (3.25), we obtain the
following fundamental equation, which is valid
in current�free regions:

r2V D 0 (3.29)

This second-order differential equation is
called Laplace’s equation, and its solutions are
harmonic functions. It represents the fundamental
tool for the study of the Earth’s magnetic and
gravity fields, which form a substantial portion
of a branch of geosciences known as potential
fields geophysics. In Chap. 4, we shall prove that
a solution of this equation in a region R can be
found if boundary conditions have been assigned
along the frontier 
(R) of R, that is, if the values
of V are known on the closed surface 
(R). Once
a solution V D V(r) has been determined in R, we
can use (3.28) to determine uniquely the vector
field BD B(r) in that region.

To understand the basic properties of the har-
monic functions, let us consider now the example
of a two-dimensional potential, depending only
from x ed y. In this instance, Laplace’s equation
assumes the form:

@2V

@x2
C @2V

@y2
D 0 (3.30)

Fig. 3.8 Discretization of Laplace’s equation. The region
R is divided into a set of squared grid cells of dimension h.
It is assumed that the values of the potential V are known
along the boundary 
(R), which is represented by the
grayed cells. The equation is solved calculating iteratively
the values of V at each point (x,y) in the interior of R
(white cells)

A numerical solution to this equation can be
found by discretization of the domain R through
squared grid cells. In this approach, we subdivide
the region R in small grid cells of dimension h
(Fig. 3.8) and search for an approximate solution
at the centre of each cell. Let V D V(x,y) be a
solution of (3.30).

If we expand V in a Taylor series with respect
to variable x, it results:

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

V .x C h; y/ D V .x; y/C h@V
@x
C 1

2
h2
@2V

@x2

C1
6
h3
@3V

@x3
C : : :

V .x � h; y/ D V .x; y/ � h@V
@x
C 1

2
h2
@2V

@x2

�1
6
h3
@3V

@x3
C ::

(3.31)

Summing these two expressions, it results:

V .x C h; y/C V .x � h; y/ D 2V .x; y/

C h2 @
2V

@x2
CO �h4� (3.32)

An analog expression can be found by expand-
ing V in a Taylor series with respect to variable y:

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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V .x; y C h/C V .x; y � h/ D 2V .x; y/

C h2 @
2V

@y2
CO �h4� (3.33)

Now we add expressions (3.32) and (3.33).
Applying the equation of Laplace (3.30), we
have:

V .x; y/ D 1

4
ŒV .x C h; y/C V .x � h; y/
CV .x; y C h/C V .x; y � h/�
CO �h4�

(3.34)

This expression shows that the potential at
any point (x,y) equals, up to high-order terms,
the average of V over a neighbor of (x,y). This
is a general property of the harmonic functions,
which will be proved rigorously in Chap. 4.
Therefore, V cannot have maxima or minima
within the region R. The numerical approach
also allows to calculate easily the values of V
in R, starting from the boundary values. This
algorithm assigns the initial value of each grid
cell internal to R to an arbitrary constant value
V D V0, while the points along the frontier of
R, (x,y) 2 
(R), are set through the boundary
conditions (Fig. 3.8). At the next step, for each
point (x,y) 2 R � 
(R) we calculate iteratively
more precise values of the field by the following
assignment:

VnC1 .x; y/ D1
4
ŒVn .x C h; y/C Vn .x � h; y/

CVn .x; y C h/C Vn .x; y � h/�
(3.35)

The algorithm terminates when the standard
deviation of the values over the neighbor of
each point, with respect to the central value,
falls below an assigned threshold. To reduce
the number of iterations, it is possible to use
a recurrence formula more sophisticated than
(3.35), which includes an over-relaxation factor
0� œ <1. In this approach, the update expression
(3.35) is modified by the addition of an

over-relaxation terms depending from the
weighting factor œ and the deviation of the
neighbor average from the central value:

VnC1 .x; y/ D Vn .x; y/C .�C 1/�n .x; y/

(3.36)

where the deviation factor4n(x,y) at (x,y) at step
n is given by:

�n .x; y/ D 1

4
ŒVn .x C h; y/C Vn .x � h; y/
CVn .x; y C h/C Vn .x; y � h/�
�Vn .x; y/

(3.37)

This procedure, which can be easily gener-
alized to the three-dimensional space, does not
require an explicit analytic solution of Laplace’s
equation. It is a practical method to find the
values of V in R when it is not possible to
determine an exact solution. However, in the next
chapter we shall consider a general class of exact
solutions of this equation that are commonly used
to represent the geomagnetic potential. Then,
a complete analytical procedure for finding the
solutions of Laplace’s equation in spherical coor-
dinates will be described. Finally, in Chap. 14 we
shall see that also the Earth’s gravity potential is
a harmonic function outside the Earth’s surface.

3.4 Magnetization

All ordinary materials, when placed in a magnetic
field, acquire a magnetization, which is a man-
ifestation of the presence of a large number of
magnetic dipoles at atomic scale. These dipoles
result from microscopic currents, associated with
the motion of electrons within the atoms and
the with the intrinsic magnetic moments of the
elementary particles (spin). The magnetic field
generated by these microscopic sources adds to
that produced by macroscopic currents (flows of
electrons in conductors, motion of electrically
charged fluids, etc.). For many substances, the
net magnetic moment of the individual atoms

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_14
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is zero in absence of external field, whereas
small currents are induced when a magnetic field
is applied. These currents are associated with
magnetic moments that oppose the external field,
and this kind of response of the matter is called
diamagnetism. Other substances do have atoms
with permanent magnetic moments, but these
vectors average to zero in absence of external
field. However, when we place these substances
in a magnetic field, the permanent magnetic mo-
ments have the tendency to align with the ex-
ternal field, so that the diamagnetic response
is flanked by an additional form of magnetism,
which enforces the applied field and has greater
magnitude. This response, which is called para-
magnetism, is quite weak because the aligning
forces are small compared with the forces as-
sociated with thermal agitation, which tend to
destroy the alignment. Therefore, this kind of
magnetism strongly depends from temperature.
The third kind of magnetism of matter is called
ferromagnetism and has the greatest importance
in Earth Sciences. In this instance, the mag-
netization induced by external fields has very
strong magnitude and adds a significant con-
tribution to the total magnetic field. This be-
haviour can be observed only in some crystalline
solids and originates from the combination of
a well-known quantum mechanics phenomenon
and electrostatic interactions at atomic scale. The
total magnetization of a body having volume V is
defined as the average magnetic moment per unit
volume:

M D 1

V

X
i

mi ŒA=m� (3.38)

where the vectors mi are magnetic moments at
atomic scale. To understand the effect of mag-
netization, let us consider a body composed by
a continuous distribution of magnetic moments,
such that the magnetic moment associated with a
volume element dV at position r is:

dm .r/ DM .r/dV (3.39)

We are going to show that this body generates
a magnetic field, which is equivalent to the field

Fig. 3.9 Equivalent distribution of atomic dipoles associ-
ated with the component z of magnetization of a body

that would be generated by a macroscopic current
jm that we shall call magnetization current. This
current is calculated as follows:

j m D r �M (3.40)

A comparison of this equation with Ampere’s
law (3.27) shows that the equivalent field is
directed as M and has magnitude �0M. The
equivalence between magnetized materials and
currents was observed for the first time by
Ampere. The expression (3.40) for jm implies
that the current of magnetization goes to zero in
regions of homogeneous magnetization, because
in this case the derivatives of Mx, My, and Mz

in (3.40) are all zero. Therefore, we attain the
fundamental result that the current jm is the result
of a non-uniform magnetization at atomic scale.
To prove (3.40), let us consider a thin slice of the
body, of thickness dz, parallel to the plane xy at
elevation z (Fig. 3.9).

By (3.39), at any location (x,y,z) the presence
of a non-zero component Mz(x,y,z) of the local
magnetization vector implies the existence
of an infinitesimal current loop, having area
dxdy, which has magnetic moment dmz D
Mz(x,y,z)dxdydz. Then, the microscopic current
flowing in the coil will be given by:

I .x; y; z/ D dmz

dxdy
D Mz .x; y; z/ dxdyd z

dxdy

DMz .x; y; z/ d z (3.41)
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Similarly, at position (x,yC dy,z) we have:

I .x; y C dy; z/ DMz .x; y C dy; z/ d z

D
�
Mz .x; y; z/C @Mz

@y
dy

�
d z

(3.42)

Therefore, it is evident from Fig. 3.9 that a
first contribution to the net macroscopic current
flowing in direction x is:

•I
.x/
1 D �

@Mz

@y
dyd z (3.43)

Another contribution to the current flowing
in the x direction can be obtained considering a
thin slice of thickness dy, parallel to plane xz at
elevation y. At position (x,y,z), the existence of a
non-zero component of magnetization My(x,y,z)
is equivalent to the existence of an infinitesimal
rectangular coil having area dxdz and magnetic
moment dmy D My(x,y,z)dxdydz. By the same
reasoning as before, we see that an additional
contribution to the macroscopic current in the x
direction will be:

•I
.x/
2 D

@My

@z
dyd z (3.44)

Therefore, the total macroscopic current in the
x direction is given by:

•I .x/ D •I .x/1 C •I .x/2 D
�
@My

@z
� @Mz

@y

�
dyd z

� jmxdyd z (3.45)

This proves that the components of the curl
of M coincide with the components of a net
macroscopic current density, resulting from the
microscopic currents that flow within the body.

The magnetization acquired by a body in pres-
ence of an external magnetic field is called in-
duced magnetization and is in general a function
of the applied field Bext. The relation between M
and Bext is different among the three classes of
magnetic behavior of matter. We have mentioned
that all the ordinary substances acquire a weak
magnetization that opposes Bext (diamagnetism).

Now we shall prove that this is a consequence of
the Larmor precession discussed in Sect. 3.2. We
have shown in Sect. 3.2 that the electron orbits are
magnetic dipoles, with a definite magnetic mo-
ment that depends from the angular momentum
(Eq. 3.17). In normal conditions, the atoms of a
diamagnetic substance have a net magnetic mo-
ment equals zero, because the various magnetic
moments, associated with orbits, electron spins,
etc., balance out. However, when we apply an
external magnetic field, the precession of an elec-
tron orbit about the field direction is equivalent
to an additional microscopic current loop having
radius a and an intensity that according to (3.16)
is given by:

IL D �e¨L
2 

(3.46)

This current is associated with an extra angular
momentum, resulting from the twist of the elec-
tron orbit, which is parallel to the external field:

•L D meavLbBext D mea
2¨LbBext D 1

2
ea2Bext

(3.47)

where we have used (3.20). It should be noted
that •L represents an additional vector of angu-
lar momentum and not the variation of L in a
small time interval, which is indicated as dL (see
Fig. 3.5). According to (3.17), this extra angular
momentum must be associated with an additional
magnetic moment, •m, given by:

•m D � e

2me

•L D �e
2a2

4me

Bext (3.48)

Thus, the extra magnetic moment •m opposes
the external field Bext. Regarding the quantity a2

that appears in (3.48), it can be shown on the
basis of quantum mechanics considerations that
it represents the averaged square distance of the
electron from the axis of Bext (e.g., Feynman et al.
2006). If the external field is aligned with the z-
axis and r � (x,y,z) is the instantaneous position
of the electron, then a2Dhx2iC hy2i. For a spher-
ically symmetric atom, hx2iD hy2iD hz2iD hr2i,
where r is the distance of the electron from
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the nucleous. Therefore, a2D (2/3)hr2i and (3.48)
can be rewritten as follows:

•m D �e
2
˝
r2
˛

6me

Bext (3.49)

The total magnetization can be calculated us-
ing the definition (3.38). If N is the total number
of atoms and Z is the average number of electrons
per atom, we have:

M D 1

V

X
i

mi D �NZe
2

6meV

˝
r2
˛
Bext

D � ne
2

6me

˝
r2
˛
Bext (3.50)

where n D NZ/V is the density of electrons.
Therefore, M has opposite direction with respect
to Bext. This relation can be rewritten as follows:

M D ¦

�0
Bext (3.51)

The dimensionless quantity ¦, which is neg-
ative in the case of diamagnetic materials, is
called magnetic susceptibility and its value de-
pends from the substance. Common diamagnetic
substances are water, wood, many organic mate-
rials and most metals.

Let us consider now the case of paramagnetic
materials. In this instance, there are permanent
magnetic moments at atomic scale, which are
independent each other and in normal conditions
are randomly oriented due to thermal agitation.
Therefore, the total magnetization (3.38) is zero
in absence of external field. However, if we apply
a magnetic field, the magnetic moments tend to
align to the external field, determining a non-zero
net magnetization. The magnitude of the induced
magnetization is determined by the equation of
Langevin:

M

Ms

D L.Ÿ/ � coth .Ÿ/� 1
Ÿ
I Ÿ � mBext

kT

(3.52)

where m is the permanent magnetic moment of
the atoms, k is the Boltzmann constant, T is the

absolute temperature of the body, and Ms is the
saturation value of magnetization. The function
L in (3.52) is called Langevin function and tends
asymptotically to unity, so that M ! Ms as
Ÿ!1. The existence of a saturation magnetiza-
tion indicates that the induced magnetization can-
not increase arbitrarily as we raise the magnitude
of the external field or decrease the temperature.
Given an atomic magnetic moment m, there is al-
ways a maximum value of magnetization that can
be attained by the substance, which corresponds
to a perfect alignment of the elementary atomic
moments.

The shape of the Langevin function is illus-
trated in Fig. 3.10. If n indicates the density of
magnetic dipoles, then:

Ms D mn (3.53)

For M D Ms (that is, for L(Ÿ) D 1) all the
atomic dipoles are aligned with the external
field Bext. Equation (3.52) implies that for
mBext� 100kT the induced magnetization
practically coincides with the saturation
magnetization. Conversely, for mBext < < kT the
function L is approximately a linear function with
slope �1/3:

M

Ms

Š mBext

3kT
(3.54)

Substituting (3.53) gives:

M Š nm2Bext

3kT
(3.55)

This equation is Curie’s law. It predicts that
the magnetization is inversely proportional to the
temperature. A comparison of this result with
(3.51) shows that the magnetic susceptibility of
a paramagnetic material is positive and assumes
the value:

¦ D �0nm
2

3kT
(3.56)

We have seen that the magnetization of dia-
magnetic and paramagnetic materials is a vector
having the same direction of the external field Bext
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Fig. 3.10 The Langevin
function

and a magnitude approximately proportional to
the magnitude of this field. However, the mag-
netization current jm generates itself a magnetic
field, �0M, which contributes with Bext to form
the total field B. Therefore, Maxwell’s Eq. (3.27)
can be rewritten to show explicitly the contri-
bution of both the macroscopic and microscopic
currents:

r �B D �0 .j Cr �M / (3.57)

where j represents the macroscopic currents. This
equation implies that:

r � .B � �0M / D �0j (3.58)

Let us introduce now a new vector field, which
is the magnetic field intensity:

H � 1

�0
.B � �0M / D B

�0
�M (3.59)

Note that H has the same units of M, namely
A/m. Using this field in the (3.58) we obtain
the following simple form for the Maxwell
Eq. (3.27):

r �H D j (3.60)

Now, considering that the field H is a way to
represent the external field, and the correspond-
ing macroscopic currents, we can write:

M D ¦H (3.61)

Therefore, the total magnetic field B assumes
the following simple expression:

B D Bext C �0M D �0 .H CM /

D �0 .1C ¦/H � �H (3.62)

The quantity � is called absolute magnetic
permeability. For some substances the law (3.62),
which establishes a simple relation of proportion-
ality between magnetic field intensity and total
field, is not valid. In this case, a more complex
tensor expression describes the relation between
the two fields and we say that the material has
magnetic anisotropy. For this class of substances,
B and H are not parallel, and a field applied in
the x-direction determines an induced magneti-
zation also in the y and z directions. Therefore,
in general the magnetic permeability (and the
susceptibility) is described by a 3� 3 tensor. The
magnetic susceptibility of paramagnetic materi-
als is on average from 50 to 150 times greater,
in absolute value, than the susceptibility of dia-
magnetic materials. However, for both classes of
substances the removal of the external field deter-
mines the disappearance of the induced magne-
tization. In the next section, we shall consider a
third class of materials, the ferromagnetic solids,
which retain some magnetization even in absence
of external magnetic fields.
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3.5 Magnetic Properties
of Rocks

It is not exaggerated to say that the ferromagnetic
properties of some crystalline solids are at the
base of the plate tectonics revolution during the
1960s. In ferromagnetic materials, the permanent
magnetic moments of neighbor atoms are not
independent as a consequence of electrostatic
interactions and quantum phenomena, which de-
termine their alignment and a magnetization that
can be several orders of magnitude greater than
the paramagnetic response induced by the same
external field. Ultimately, such a large magne-
tization is a consequence of the tendency of
unpaired electrons of neighbor atoms to avoid
sharing of their orbits, in which case they would
acquire opposing spins, and to align their intrinsic
magnetic moments.

This interaction exists independently from the
application of an external field, and determines
a spontaneous alignment of the spins through
distinct regions of each crystal called magnetic
domains (Fig. 3.11). Therefore, a single magnetic
domain has a net non-zero spontaneous magne-
tization even in absence of external field. The
reason for which a ferromagnetic substance does
not reveal, in normal conditions, any apparent
magnetization is illustrated in Fig. 3.11. Each
crystal grain has a preferred direction of magneti-
zation, and is divided into a series of magnetic do-
mains whose spontaneous magnetization is alter-
nate and parallel to this direction. At macroscopic
scale, these preferred directions are randomly
distributed. Therefore, the net magnetization is
zero. When we apply an external field H, the
domain walls start moving to favor the growth of
domains with a direction of magnetization close
to that of the applied field and the simultaneous
reduction of size for the other domains. For small
values of H, this process is reversible, so that if
we remove the external field the magnetization
returns to zero. If the applied field increases
sufficiently, the domain walls are progressively
destroyed, as illustrated in Fig. 3.12, until the
total magnetization reaches a saturation value,
which corresponds to a complete alignment of

Fig. 3.11 Arrangement of mineral grains (in gray) and
magnetic domains (regions separated by thin lines) in
an unmagnetized polycrystalline solid. Arrows are spin
directions

Fig. 3.12 Arrangement of mineral grains and magnetic
domains in a magnetized polycrystalline solid close to
saturation

the spins. Now let us imagine to reduce pro-
gressively the intensity of the external field. In
this instance, the domains start reforming, but
the progression is not exactly the reverse of the
previous one. In fact, a key feature of the process
described above is represented by the relevant
loss of internal energy in so far as the external
field increases and the mineral grains rearrange
their magnetic domains. This is a consequence of
the presence of crystal defects, which prevents a
continuous adaptation of the domain geometry as
the magnitude of the external field increases. The
jerky rearrangement of the domains wall geome-
try determines the formation of eddy currents that
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Fig. 3.13 Magnetization curve of a ferromagnetic min-
eral, showing the characteristic hysteresis loop of these
materials. Ms is the saturation magnetization, Mr is the
remanent magnetization, Hc is the coercive value of the
external field

dissipate internal energy during the progressive
magnetization resulting from increasing exter-
nal field intensity. Therefore, from some point
onward the process is irreversible. For elevated
values of the applied field, most of the work is
done to rotate a little bit the spins and obtain a
better alignment to the external field axis. In these
conditions, there are small increments of mag-
netization even when the increase of magnitude
of H is large. Consequently, the magnetization
curve asymptotically converges to a saturation
value in a similar way as paramagnetic materials
(Fig. 3.10). However, in the case of ferromagnetic
minerals the irreversibility of the process for large
external fields determines the appearance of a
hysteresis loop in the magnetization curve, as
illustrated in Fig. 3.13. The presence of this loop
implies that some residual magnetization persists
even when we remove completely the external
field. It is called remnant magnetization of the
sample. Figure 3.13 shows that in order to remove
completely this remanent magnetization we must
apply an inverse field of magnitude Hc, which is
called coercive field.

In general, a ferromagnetic solid that has expe-
rienced one or more phases of strong magnetiza-
tion has a total magnetization MT that is the sum

Fig. 3.14 Magnetic susceptibility per unit mass, ¦

[m3/kg] vs. temperature (ıC) for magnetite (Fe3O4).
Arrows indicate the directions of heating and cooling
(Redrawn from Harrison and Putnis 1996)

of two components: an induced magnetization M,
which is proportional to H for small values of the
external field, and a remanent magnetization Mr.
Therefore,

MT DM CM r D ¦H CM r (3.63)

The magnetic susceptibility ¦ is positive
and depends upon temperature, just as in the
case of paramagnetic substances, but in a more
complicate way. Figure 3.14 illustrates the result
of measurements of susceptibility on a pure
magnetite (Fe3O4) sample (Harrison and Putnis
1996). The sample was first heated, so that
the temperature raised from room conditions
to 650 ıC, then cooled back to room temperature
at a rate of 11 ıC/min. It is probably not much
surprising that also this plot shows a hysteresis
loop, given the irreversibility of the process of
magnetization. The temperature associated with
the sharp drop of susceptibility at �585 ıC is
called Curie temperature Tc and depends from
the material. For T > Tc any ferromagnetic
solid is converted into a paramagnetic material.
This is a consequence of the fact that at high
temperatures the thermal energy exceeds the
spin coupling energy, determining a random
arrangement of the magnetic moments.

For any ferromagnetic material, the saturation
value of magnetization Ms is a decreasing func-
tion of temperature, as illustrated in Fig. 3.15.
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Fig. 3.15 Saturation magnetization vs T for hematite
(Fe2O3) (Redrawn from Hunt et al. (1995))

The curve Ms D Ms(T) shows a drop in corre-
spondence with the Curie temperature Tc. Note
that TcŠ 680 ıC for hematite.

The relative importance of the remanent mag-
netization with respect to the induced magnetiza-
tion is measured by the Koenigsberger ratio:

Q � Mr

M
D Mr

¦H
(3.64)

Therefore, Q >>1 indicates that the rema-
nent magnetization dominates, which is usually a
desirable attribute in marine geophysics studies.
Values of Q for several kinds of rocks are listed
in Table 3.1. These values have been determined
assuming that the magnetizing field H coincides
with the Earth’s magnetic field at the Earth’s
surface (HD 24� 48 Am�1). In general, mafic
rocks have a larger spontaneous magnetization.
For example, basalts are generally more magnetic
than rhyolites, and gabbros are more magnetic
than granites. Furthermore, the chemical compo-
sition being equal, extrusive rocks have larger
remnant magnetization and lesser susceptibility
than intrusive rocks. Finally, sedimentary and
metamorphic rocks generally have low values of
remnant magnetization and susceptibility.

An important aspect of the process of forma-
tion of magnetic domains is the relation between
the number of domains within a mineral grain and
the grain size. In general, the magnetization of

Table 3.1 Koenigsberger ratios of selected rocks
(From Hunt et al. 1995)

Roccia Q

Marine sediments 5

Red sediments 1.6–6
Siltstone 0.02–2

Silty shale 5

Granite 0.1–28

Ganodiorite 0.1–0.2

Dolerite 2–3.5
Diabase 0.2–4

Gabbro 1–9.5

Oceanico Gabbro 0.1–58.4

Intrusive rocks 0.1–20

Volcanic rocks 30–50
Subaerial basalts 1–116

Oceanic basalts 1–160

Seamounts 8–57

Granulites 0.003–50

rocks arises from the presence of small grains of
ferromagnetic minerals dispersed within a matrix
of diamagnetic and paramagnetic minerals. The
size of these grains strongly affects the magnetic
behaviour of the rock, just because of its influ-
ence on the number of magnetic domains.

In geology, the most important magnetic
minerals are undoubtedly iron-titanium (FeTi)
oxides, whose ternary diagram is shown in
Fig. 3.16. Two classes of solid solutions are
particularly important: the titanomagnetites
series and the titanohematites, which represent
primary phases of crystallization of igneous
rocks (1–5 % vol). In titanomagnetites, TiC4

substitutes FeC3 as the Ti content increases.
The crystal structure of these minerals is the
spinel structure. The addition of Ti decreases
progressively the saturation magnetization
and the Curie temperature (Fig. 3.17), to the
point that the ulvospinel is paramagnetic at
ambient temperature. The general formula of
titanomagnetites is: Fe3�xTixO4, where x varies
between zero (magnetite) and 1 (ulvospinel).
The ionic substitution is 2FeC3 ! FeC2

C TiC4. However, any titanomagnetite with
x >0.8 is paramagnetic at ambient temperature.
Regarding titanohematites, these minerals have
a corundum structure and constitute a lesser
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Fig. 3.16 Ternary
diagram of the
iron-titanium oxides and
their solid-solution series.
Variable x is the
composition parameter (Ti
content). The ratio of ferric
iron (FeC3) to ferrous iron
(FeC2) increases from left
to right. The Ti content
increases from bottom to
top. The diagram is
normalized to one cation
Fe, so that oxidation lines
(increasing Fe3C/Fe2C

ratio) are horizontal

Fig. 3.17 Variation of room-temperature saturation mag-
netization (solid line) and Curie temperature (dashed line)
with composition (x parameter) in the titanomagnetites.
End members are magnetite (x D 0) and ulvospinel (x D 1)
(Redrawn from Hunt et al. (1995))

portion of ferromagnetic minerals, although in
highly silicic or highly oxidized igneous rocks
hematite can give a major contribution to the
rock ferromagnetism. Furthermore, hematite
is the dominant or exclusive ferromagnetic
mineral in red beds, which represent an important
sedimentary source of paleomagnetic data. The
general formula of titanohematites is Fe2�xTixO3,
where hematite (xD 0) and ilmenite (xD 1) are
the end-members of the series. For a more in-
depth discussion about the mineral physics of
titanomagnetites and titanohematites, the reader
is referred to Butler (1992).

Both titanomagnetites and titanohematites
crystallize early, at a temperature of �1,300 ıC.

The distribution of grain sizes, hence the structure
of the magnetic domains, depends strongly
from the cooling rate. Titanomagnetites that
form in rapidly cooling volcanic rocks (e.g.,
oceanic pillow lavas) are fine-grained, because
they generally contain a significant fraction of
grains with size of 1 �m or smaller. Conversely,
the grain size is larger in the case of slowly
cooled intrusive rocks, where it may exceed
100 �m. Paleomagnetists consider fine-grained
ferromagnetic particles as the best magnetic
recorders (e.g., Butler 1992). Therefore, volcanic
rocks are generally preferred over intrusive rocks
as targets for paleomagnetic studies.

The number of magnetic domains is an in-
creasing function of the grain size. When the
grains are sufficiently small, they will contain
just one domain. These grains, which are referred
to as single-domain (SD) grains, have magnetic
properties that are dramatically different from
those of multi-domain (MD) grains. The thresh-
old grain diameter, d0, below which we have only
SD grains, depends essentially from the grain
shape and from the saturation magnetization Ms.
For hematite, d0D 15 �m, thereby in most cases
these minerals are SD. Conversely, only fine-
grained magnetite is SD. In general, cubic mag-
netite particles must have a diameter d < 0.1 �m
to be SD, although elongated SD particles can
have a length of up to 1 �m. Our interest into
SD grains arises from their property of being
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very efficient carriers of remnant magnetization.
In fact, while the magnetization of MD grains
tends to decay with time, that of SD particles is
stable and can carry paleomagnetic information
over a long time interval (up to billion years).

When the size of magnetite grains is between
1 and 10 �m, the particles are called pseudo-
single-domain (PSD) grains. They form a class of
grains exhibiting intermediate values of the ratio
Mr/Ms and the coercive field Hc. These grains
contain a small number of domains and may carry
a substantial and stable remnant magnetization.
Grain size distributions of many igneous and
sedimentary rocks have a peak within the mag-
netite PSD field, although they have only a small
percentage of particles within the true SD field.
Therefore, PSD grains can be important carriers
of paleomagnetic information.

So far, we have been mainly concerned with
the phenomenological aspect of ferromagnetism,
after having mentioned that it arises from the cou-
pling of electron spins between neighbor atoms.
However, we have not yet explained the nature
of this interaction, and the different ways through
which the electron spins are coupled within a
crystal lattice. Understanding this subject will
require some basic quantum mechanics concepts,
because ultimately the magnetism of matter can-
not be explained by classical electrodynamics
(see e.g., Feynman et al. 2006). At first glance,
we could think that the alignment of magnetic
moments in ferromagnetic materials results from
their magnetic interaction. However, we are go-
ing to prove that this is not the case. Let us
consider the angular momentum of an electron
in an atom, which includes a component of or-
bital motion about the nucleus and one associ-
ated with the spinning about its own axis. These
components also originate magnetic moments,
one arising from the orbital motion, m, and the
other associated with spinning, which will be
indicated as mS. A famous theorem, due to Bohr
and van Leeuwen, shows that the orbital moment
m cannot produce a net magnetization, even in
presence of external field Bext. Thus, let us focus
on the spin moment mS. Let S be the intrinsic
angular momentum associated with the spinning

of the electron. Quantum mechanics shows that in
this case the relation between magnetic moment
and angular momentum is slightly different from
(3.17), so that the ratio of mS to S is twice the ratio
of m to L:

mS D � e

me

S (3.65)

Another difference with respect to classical
mechanics is that in the case of atomic systems
it is not possible to determine unambiguously the
absolute direction of S (or L) at any given time
t. However, it is possible to show that at time t
the projection of S onto any arbitrary axis n can
assume only a finite number of values:

S � n D .s � k/ ¯ I k D 0; 1; : : : ; 2s (3.66)

where the quantity s is called spin of the electron
(or, in general, of the particle) and the constant
-h D h/2 D 1.054571726(47)� 10�34 [Js] is the
reduced Planck’s constant. A similar relation can
be written for the orbital momentum L. There-
fore, at any given time there are only 2sC 1
possible values for the component of S along an
arbitrary axis, for example the z-axis. Such dis-
cretization of the physical variables is one of the
consequences of quantum mechanics. Equation
(3.66) indicates that the maximum magnitude of
the projection of S onto n is s-h, whereas classical
mechanics would give S. Therefore, we would
expect that s D S/-h. However, this conclusion
would be wrong. The average squared magnitude
of S along an arbitrary axis n is given by:

D
.S � n/2

E
D 1

2sC1
2sX
kD0

.s � k/2¯2
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This quantity does not depend from the se-
lected axis of projection n. In particular, we have:

D
.S � i /2

E
D
D
.S � j /2

E
D
D
.S � k/2

E

Therefore,

˝
S2
˛ D DS2x C S2y C S2z

E
D
D
.S � i /2

E

C
D
.S � j /2

E
C
D
.S � k/2

E
D 3

D
.S � k/2

E

Finally, using (3.67) and taking into account
that <S2> does not depend from the direction
of any axis, so that <S2> D S2, we obtain the
following general result:

S2 D ¯s .s C 1/ (3.68)

This important relation shows that for an
atomic system the maximum projection of S
along an arbitrary axis is never S, but it is smaller
than this quantity, because s-h is always less
than the square root of -hs(sC 1). Therefore,
in the quantum mechanical world the observed
projection of angular momentum can never be
exactly aligned with any particular axis! An
electron has spin sD½, so that there are only two
possible values for the projection of S along an
arbitrary axis: (S � n)D˙ -h/2, which correspond
to the two possible (“up” and “down”) states
associated with its spinning. Now let us consider
the interaction between the magnetic moment
of an electron and a magnetic field. When the
electron is placed in an external magnetic field,
it acquires an additional potential energy that
depends from the component of mS along Bext:

Um D �mS �Bext (3.69)

This equation shows that the magnetic energy
depends from the orientation of the magnetic
moment with respect to the external field: if
mS ? Bext, then the potential energy is maxi-
mum (UmD 0), whereas Um assumes its mini-
mum value (Um D �mSBext) when the magnetic
moment is aligned with the field. Substituting
(3.65) gives:

Um D e

me

S �Bext (3.70)

Equation (3.66) puts a constrain on the possi-
ble values of S � bBext , which are ˙-h/2. There-
fore, the magnetic energy, just like the projec-
tion of S along an axis, can assume only two
values:

Um D ˙ e¯
2me

B � ˙�BB (3.71)

where the quantity:

�B � e¯
2me

D 9:27400968.20/� 10�24 �JT�1	
(3.72)

is called the Bohr magneton. Let us consider now
a neighbor magnetic dipole m

0

S at position r. In
this instance, Bext has the form (3.21) and Um

represents the magnetic potential of dipole-dipole
interaction. We have:

Um D �m0
S �Bext .r/

Š ��0
4 

"
3
.mS � r/

�
m0
S � r

�
r5

� mS �m0
S

r3

#

(3.73)

As we may have expected, this expression
is symmetric with respect to mS and m

0

S.
If this were the interaction responsible for
the alignment of spins in ferromagnetic
materials, then the thermal energy correspond-
ing to the Curie temperature Tc, which is
kTc (kD 1.3806488(13)� 10� 23[JK� 1] being the
Boltzmann constant), would have the same order
of magnitude of the strongest field energy of
dipolar interaction. In fact, the former represents
the threshold thermal energy separating ordered
states from paramagnetic behavior, while the
latter would be a measure of the aligning energy.
A rough estimate can be obtained considering
that the nearest neighbor separation coincides
with the lattice constant a. Therefore, setting
mSDm

0

S in (3.73), we would have, for in-plane
interactions:
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kTc 	 Um;max D n�0
4 

m2
S

a3
(3.74)

where n is the number of nearest in-plane neigh-
bors. From (3.65), (3.68), and (3.72) it results:

m2
S D

e2S2

m2
e

D e2¯2s2.s C 1/2
m2
e

D �2B (3.75)

Therefore,

kTc 	 Um;max D n�0
4 

�2B
a3

(3.76)

Taking nD 4 and aD 0.8393 nm (as appropri-
ate for magnetite crystals), we get Tc�0.0042 K.
However, actually magnetite becomes ferromag-
netic at �858 K! Clearly, the dipole-dipole inter-
action is too weak to explain the ferromagnetic
behavior of this mineral. It can only be a correc-
tion to the actual exchange energy �BB � kTc,
and in theory represents a source of anisotropy.
Ironically, the ultimate source of the strongest
form of magnetism results to be a combination of
Coulomb (i.e., electric, not magnetic) interaction
between neighbor electrons and the necessity for
these particles to satisfy the Pauli exclusion prin-
ciple of quantum physics. This principle states
that in an atomic system the quantum state of
an electron, which is specified by a set of four
quantum numbers, must be different from any
other electron in the system. The four quantum
numbers are:
• The principal quantum number, n, which de-

fines the size of the shell where an electron
moves;

• The orbital quantum number, l, associated
with the angular momentum, which deter-
mines the shape of the shell;

• The orbital magnetic quantum number, m,
associated with the orbital magnetic moment;

• The spin magnetic quantum number, mS,
which is associated with the spin magnetic
moment
Therefore, as mS D ˙1=2, given a triplet of

quantum numbers (n,l,m), we can find at most
two electrons in an atomic system having these
quantum numbers and opposite spins. In some

materials, the atoms are packed within the crystal
lattice in such a way that highly eccentric orbital
shells of adjacent atoms overlap. In this instance,
the electrons that move across these shells will
be forced to satisfy simultaneously the exclu-
sion principle of both atoms. This phenomenon
can be described intuitively by the so-called ex-
change interaction, which was proposed in 1928
by Heisenberg to explain the very large electro-
magnetic fields that form in ferromagnetic mate-
rials. Let us consider two atoms with unpaired
electrons and assume that they get close each
other. By Pauli’s principle, if the spins of the two
electrons align antiparallel to each other, these
electrons will be able to share a common orbital
shell, and this event would increase the electro-
static Coulomb energy. Conversely, if the spins
align parallel to each other, Pauli’s exclusion
principle will prevent the formation of a shared
orbit, so that the two electrons would move apart
along separate orbits, thus reducing the normal
Coulomb interaction. The latter solution is clearly
favoured by nature. The order of magnitude of
the Coulomb energy that would be required by a
shared orbit is given by:

Ue D e2

4 ©0r
(3.77)

where r is the average distance between the two
electrons and the constant "0D 8.8542� 10�12

C2N�1m�2 is the free space permittivity. Taking
rD 1 Å gives:

Tc 	 e2

4 ©0kr
D 1:67 � 105 K (3.78)

This value is 105 times larger than the mag-
netic dipole interaction calculated from (3.76) us-
ing the same distance. Therefore, if the Coulomb
energy is, on average, reduced by the Pauli ex-
clusion principle to a small fraction of the value
required by (3.77), say 0.5 %, the variation of
electrostatic energy after the formation of the new
atomic system will give a Curie temperature of
�835 K, which can explain the magnitude of the
molecular field. Thus, the parallel alignment of
electron spins in ferromagnetic materials results
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Fig. 3.18 Antiferromagnetic arrangement of NickelII ox-
ide (NiO), which has the fcc crystal structure of NaCl,
with octahedral NiII (black and red circles) and O2� sites

(not displayed). The A and B sublattices are shown in
green and yellow. Arrows show the spin directions of Ni
atoms

from the combined effect of electrostatic interac-
tion and a quantum-mechanical phenomenon, the
latter being the Pauli exclusion principle.

Although this description of ferromagnetism
explains the magnetic behavior of many metals,
the two series of magnetic minerals that are of
interest for plate tectonics, titanomagnetites and
titanohematites, belong to two special classes of
ferromagnetic materials, characterized by an “un-
usual” alignment of the atomic spins. Hematite
is an example of antiferromagnetic mineral. In
antiferromagnetism, the crystal lattice can be ide-
ally divided in two disjoint subsystems (or sub-
lattices), A and B, in such a way that neighboring
spins are coupled only within each subsystem,
where they have parallel alignment. Furthermore,
the magnetic moments belonging to adjacent sub-
lattices have antiparallel orientation, as shown
in the example of Fig. 3.18. Therefore, if the
two subsystems have equal magnetic moment, the
resulting net magnetization will be zero.

In general, antiferromagnetic minerals have no
spontaneous magnetization and display a weak
magnetism, with a susceptibility ranging from
10�5 to 10�2, similar to that of paramagnetic
materials. However, differently from the latter
substances, antiferromagnetic materials present
an ordered structure. In some cases the magnetic
moments of the A and B layers are not perfectly
antiparallel, so that a non-zero net magnetization
results from the vector difference between
the two spins. This kind of ferromagnetism
is referred to as canted antiferromagnetism.
Figure 3.19 shows the canted antiferromagnetic

arrangement of hematite, in which the small
net magnetization resulting from the imperfect
alignment of Fe3C spins is nearly perpendicular
to the crystal sublattices. If we place an
antiferromagnetic solid in an external magnetic
field parallel to the spin axes, the torque exerted
on the elementary current loops is nearly zero,
so that the ordered spin arrangement is not
disturbed. Therefore, the magnetic susceptibility
is smaller than that of a normal paramagnetic
substance. However, in so far as we increase
the temperature, the ordered arrangement tends
to be destroyed, so that the resulting canted
structure determines an increase of susceptibility,
contrarily to the case of paramagnetic materials.
However, above a critical value of temperature
the spin ordering disappears completely
and the solid behaves like a paramagnetic
substance. This temperature, which is called
Néel temperature, Tn, is more appropriate than
the Curie temperature to describe the transition
point from antiferromagnetic arrangement to
paramagnetic disorder. The Néel temperature
is associated with a maximum of magnetic
susceptibility, as shown in Fig. 3.20. In the case
of hematite, we have TnŠ 673 ıC.

The other special class of ferromagnetic ma-
terials that are characterized by “unusual” align-
ment of the atomic spins is represented by the
ferrimagnetic solids. Magnetite is an important
example of this class of magnetic minerals. In fer-
rimagnetic substances, the A and B sublattices of
an antiferromagnetic spin arrangement are occu-
pied by different magnetic atoms and sometimes
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Fig. 3.19 Canted
antiferromagnetic
arrangement of Fe3C spins
unit cells of hematite. Red
and black circles are Fe3C

ions with opposite
magnetic moments. Note
that the ions are displaced
upward or downward along
the c-axis of the crystal.
Red and black arrows
indicate spin directions.
The resulting net
magnetization is
represented by the blue
arrow

Fig. 3.20 Magnetic susceptibility per unit mass, ¦, vs.
temperature (ıC) for a sample of hematite (Fe2O3) (Mod-
ified from de Boer et al. 2001)

by a different number of atoms. The result is
a net spontaneous magnetization, which may be
of relevant magnitude. In the case of magnetite,
the spinel crystal structure of this mineral yields
a preferred direction of magnetization along the
cube diagonal [111]. Other examples of ferrimag-
netic minerals are titanohematites, Fe2�xTixO3,
when x> 0.45, whereas for 0< x<0.45 these
substances conserve the canted antiferromagnetic
arrangement of hematite.

The natural remnant magnetization (NRM) of
a rock is the remanent magnetization Mr that
can be measured on a rock specimen through a
laboratory magnetometer. The magnitude and di-
rection of this vector depend from the geographic
location of the rock at the time of its forma-
tion and eventually from subsequent geological
processes. The original NRM acquired during
the process of formation of the rock is referred
to as the primary NRM. Any successive com-
ponent that contributes to the observed remnant
magnetization is called a secondary component.
Thus,

Mr DMprimary CM secondary (3.79)

There are three basic kinds of primary NRM.
They are:
• Thermoremanent magnetization (TRM),

which is acquired during cooling from
temperatures above the Curie temperature.
This is the typical form of remanent
magnetization of igneous rocks;

• Chemical remanent magnetization (CRM),
which forms by growth of ferromagnetic
grains below the Curie temperature and is
the typical kind of remanent magnetization in
sedimentary rocks. It results from chemical
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reactions that form new ferromagnetic
minerals by alteration of existing minerals
or precipitation;

• Detrital remanent magnetization (DRM),
which forms during the process of accumula-
tion and lithification of sediments containing
detrital ferromagnetic minerals.
In the next chapters, we shall apply these

concepts to the study of the Earth’s magnetic field
in the geologic past, which furnishes the basic
class of data used in plate kinematics.

Problems

1. Calculate the maximum diamagnetic magneti-
zation of 1 kg Hydrogen in an external field B
with magnitude BD 0.1 T;

2. The saturation magnetization per unit mass
for hematite is MsŠ 0.48 A m2 kg–1. Assum-
ing that a hematite assemblage is formed by
10 �m SD grains, determine the magnetic
moment of a single grain at saturation;

3. A compass needle having volume VD 20�
10–9 m3 has magnetization MD 300 kA/m.
Assuming that at some location theEarth’s

magnetic field has strength FD 40,000 nT and
inclination ID 35ı, determine the maximum
torque exerted on the needle;

4. Determine the maximum magnitude of dipolar
interaction energy for hematite;
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4The Geomagnetic Field

Abstract

The Earth’s magnetic field represents the ultimate cause of rock
magnetization. Here I describe the main internal source, or geodynamo,
associated with convective currents in the external core, as well as the
crustal field, generated by magnetized rocks, and the external magneto-
spheric and ionospheric sources. The concepts discussed in this chapter
are essential for the correct use of magnetic data in plate kinematics. In
particular, it is considered the secular variation of the core field, which rep-
resents the ultimate cause of most difficulties in collecting and analysing
paleomagnetic data on continents. Furthermore, the concepts of polarity
inversion and chron are introduced, along with the techniques used to build
geomagnetic timescales. These topics are particularly important for the
analysis of marine magnetic anomalies, a major source of data in plate
kinematics. Finally, this chapter introduces the potential field technique,
which represents the fundamental mathematical tool for describing the
Earth’s magnetic field.

4.1 Source of theMain
Geomagnetic Field

The first systematic studies on the Earth’s
magnetic field go back to the beginning of
the 1800s. Gauss, von Humbold, and Weber
in Germany, and Arago in France, were the
pioneer of the modern techniques of observation
of the Earth’s magnetic field time variations
(Courtillot and Le Mouël 1988). In addition,
Gauss introduced a new theoretical method
to represent the field in terms of spherical
harmonics, a technique that is still in use.
However, another century occurred to have the

first realistic models about the origin of the
field. Joseph Larmor first proposed in 1919 that
the geomagnetic field originates from electric
currents associated with fluid motions in the
Earth’s core. Today we know that the observed
magnetic field at the Earth’s surface (or close
to it) is mainly produced within the external
core, but also includes a small component of
crustal origin and an even smaller “external”
component, whose source is in the Earth’s
ionosphere (between 85 and 600 km altitude)
and in the magnetosphere (a region that extends
beyond the atmosphere). On average, the field
that originates from magnetization of crustal
rocks is two orders of magnitude lower than
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© Springer International Publishing Switzerland 2015
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the main field, while the mantle is essentially
non-magnetic. The exclusion of any mantle
contribution is also supported by the fact that
mantle convection is too slow to account for the
observed rate of variation of the geomagnetic
field. Therefore, the field must be associated
with macroscopic currents somewhere below
the CMB. Current models about the origin of
the Earth’s main field invoke the existence of
convective motions within the outer liquid layer
of the Earth’s core, which are driven by thermal
and compositional variations just above the inner
core–outer core boundary (ICB) at 2,891 km
depth (e.g., Glatzmaier and Roberts 1995). The
Earth’s core is made by an alloy of iron and
lighter elements. Iron has a good electrical
conductivity ¢ � 4� 105 S m�1. As the Earth
cools, iron freezes at the base of the outer core
and accretes to the inner core, determining its
progressive growth. During this process, the
latent heat of crystallization heats the residual
liquid, which is also enriched in light elements,
determining its positive buoyancy and triggering
the convective process. The upward motion of
the buoyant fluid does not occur along straight
lines, because the Coriolis’ force associated with
the Earth’s rotation determines the formation
of helical flows aligned as the Earth’s rotation
axis. Now we are going to examine the basic
physical laws underlying the formation and the
maintenance of a magnetic field by electric
currents in the outer core. To this purpose, it
is necessary to consider again the fundamental
laws of classical electrodynamics, including the
Maxwell equations.

In Chap. 3, we have seen that charged particles
in motion generate magnetic fields. Charged par-
ticles also generate electric fields, independently
from being at rest or not, the strength of which
depends on their electric charge. An electric field,
E, is a conservative force field that can be felt
by any other charged particle and represents the
electric force per unit charge on a test particle.
Its units are [Vm� 1]D [kg �m2 � s– 3 �A– 1]. Let
¡D ¡(r) be the density function for a distribution
of electric charges (that is, the electric charge
per unit volume). If the charges are at rest in the
laboratory frame of reference, the corresponding

electric field is said to be electrostatic and the
expression for E in the vacuum is given by
Coulomb’s law:

E .r/ D � 1

4 ©0

Z
R

¡e .q/ .r � q/ dV

kr � qk3 (4.1)

where R is the region of distribution of the
electric charges and ©0 D 1/(c2�0)D 8.8542�
10� 12 F/m (c being the speed of light) is the
vacuum permittivity. The forces associated with
electric fields give rise to flow of electric charges
in the free space and in conductors. The constitu-
tive law that describes the resistance of materials
to be traversed by electric currents is the em-
pirical Ohm’s law, which states that in isotropic
materials the current density j at a location r is
proportional to the electric field E:

j .r/ D ¢E .r/ (4.2)

where the electric conductivity of the material, ¢ ,
is measured in [S m�1]. If the material is moving
with uniform velocity u, the law (4.2) is still valid
for an observator who is in motion with it, but not
for one that is at rest in the laboratory frame of
reference. If ¡ is the density of stationary charges
in a reference frame fixed to the moving material,
then this distribution of charge is viewed, from
the perspective of the laboratory frame, as an
electric current having density ¡u.

The quantity:

j c .r/ D ¡ .r/ u (4.3)

is called convective current density. Let j0 and
E0 be respectively the current density and the
electric field measured in the moving frame. The
invariance of (4.2) implies that:

j 0 D ¢E 0 (4.4)

What is the relation between the currents j
and j0? The response is simple. In general, in
the moving frame we have electric charges with
local density ¡ that move with some velocity v0.
Therefore, in this frame we have a density of
current j0 D ¡v0 (Fig. 4.1). However, from the

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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Fig. 4.1 Flow of electric charges through a moving con-
ductive fluid. The fluid moves leftward with uniform
velocity u (dashed lines). The charges have local density
¡ and velocity v0 in the reference frame x0y0z0 of the
fluid, so that the flow of charges through the conductor
is represented by a density of current j0 D ¡v0

point of view of an observator in the laboratory
frame, the velocity of the charges is vD v 0Cu,
so that the density of current will be given by:

j D ¡v D ¡ �v0 C u
� D j 0 C j c (4.5)

Now we want to determine the relation be-
tween the electric field E0 in (4.4) and the electric
field E observed in the laboratory frame. In this
frame, a test charge that is at rest in the moving
frame appears to be subject to the simultaneous
action of an electrostatic field E and a Lorentz
force per unit charge, which is u � B by (3.5).
Therefore, the total force exerted on a charge q is
given by:

F D q .E C u �B/ (4.6)

This is in fact the complete form of the Lorentz
force. Now let us consider an observer in the
moving frame. From the point of view of this
person, the test particle q is at rest, so that the
unique force that comes to play is the electrostatic
force qE0. Therefore, in the moving frame it
results that F0 D qE0. The two forces F and F0
must be clearly equal, because the acceleration
is the same in the two reference frames (u is a
constant vector). Consequently, we have:

E 0 D E C u �B (4.7)

Combining (4.3) and (4.4) with (4.7) we ob-
tain the following expression for the density of
current in the laboratory frame:

j Dj 0C¡uD¢E 0C¡uD¢ .ECu �B/C¡u
(4.8)

This is the general form of Ohm’s law in the
laboratory frame. It establishes the dependency
of the current density through a conductor that
is moving with velocity u from the electric and
magnetic fields and from the local scalar charge
density. The convective term ¡u in (4.8) is often
negligible in comparison with the transport by
conduction, which is proportional to ¢ . For exam-
ple, in the case of the Earth’s core the conductiv-
ity is thought to be very large: ¢ � 4� 105 Sm�1.
In this instance, Ohm’s law assumes the follow-
ing simpler form:

j D ¢ .E C u �B/ (4.9)

Substituting this expression in Ampere’s law
(3.27), gives:

r �B D �0¢ .E C u �B/ (4.10)

This form of the Maxwell-Ampere equation
combines a macroscopic current, depending on
E, with a term depending from the velocity u of
the conductor. In the case of the Earth’s mag-
netism, the electric field E at the right-hand side
of (4.10) cannot be a conservative field, generated
by a distribution of charges as in Eq. (4.1). In
fact, the Earth’s mantle is essentially an elec-
tric insulator, with a conductivity ranging be-
tween 10�4 and 1 S m�1 (Dobson and Brodholt
2000), thereby, the source of the electric field
in (4.10) must be somewhere within the Earth’s
core. A possibility could be a distribution of
electric charges in the solid inner core, a sort
of giant battery, but this solution would require
rather special conditions that cannot be reason-
ably hypothesized (for an in-depth discussion, see
Elsasser 1939). Therefore, the problem is: what
is the origin of the currents flowing through the

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
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outer core? The response to this question comes
from one of the fundamental laws of classical
electrodynamics. In Sect. 3.3 we introduced only
two of the four Maxwell equations, in the special
case of stationary fields in the empty space. Now
we must consider a third equation in the more
general context of time-varying fields. This equa-
tion, which is known as Faraday’s law, predicts
the existence of a non-conservative (i.e., not com-
ing from a potential) electric field E associated
with temporal variations of B:

r �E D �@B
@t

(4.11)

This equation describes the electromagnetic
induction determined by a time-varying magnetic
field. Soon we shall further investigate the conse-
quences and the significance of this fundamental
law. For the moment, it will be used just to
eliminate E from (4.10):

@B

@t
D �r �

�
1

�0¢
r �B � u �B

�

D � 1

�0¢
r � r �B Cr � .u �B/

(4.12)

The first term at the right-hand side of (4.12)
can be simplified using a simple rule of vector
calculus (see Appendix1) and Gauss’ law (3.25):

r � r �B D r .r �B/� r2B D �r2B
(4.13)

Substituting in (4.12) gives the fundamental
equation of magnetohydrodynamics (MHD):

@B

@t
D r � .u �B/C ˜r2B (4.14)

where ˜� 1/(�0¢) is called magnetic diffusivity.
Equation 4.14 is known as the magnetic induction
equation and plays a key role in the study of the
Earth’s magnetic field and in plasma physics. It
allows to determine the magnetic field associated
with currents that are originated by electromag-
netic induction as a consequence of convective
motions within the Earth’s core. If the velocity

u is zero, the first term at the right-hand side of
(4.14) disappears. In this diffusion limit we have:

@B

@t
D ˜r2B (4.15)

This equation is well known in mathematics.
It is called the diffusion equation and is found in
many applications. For example, in Chap. 12 we
shall see that it describes the non-stationary con-
duction of heat. To understand the significance
of the diffusion term in the magnetic induction
equation, let us consider a field depending only
from x and assume that at time tD 0 we have:

B .x; 0/ D

 CB0I x > 0
�B0I x < 0 (4.16)

Let us also assume that the field is held fixed
at points˙L, so that:

B .L; t/ D �B .�L; t/ D B0 (4.17)

In this instance, it is possible to show that
the solution to the diffusion equation is (e.g.,
Wilmot-Smith et al. 2005):

B .x; t/ D B0 x
L
C 2B0

 

1X
nD1

1

n

� exp
��n2 2˜t=L2� sin

�n x
L

�
(4.18)

A graphical representation of this solution is
illustrated in Fig. 4.2. It suggests that the field
diffuses gradually into the fluid, thus removing
local inhomogeneities. If L is interpreted as the
length scale of magnetic inhomogeneities, then
the diffusion time is defined as follows:

£D � L2

˜
(4.19)

This is the time interval required to smooth
away any local anomaly of the field. For exam-
ple, Fig. 4.2 shows that after a time tD £D the
magnetic field distribution is within a factor 10�4

from the stationary solution B(x) D B0x/L. In
the general case of an infinite range (L ! 1)

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_12
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Fig. 4.2 Distribution of the magnetic field for different
values of the non-dimensional time £ D ˜t/L2 predicted
by (4.18). It is apparent the progressive smoothing of the
field with time

and an arbitrary initial profile B(x,0) D f (x), it
is possible to show that the field decays rapidly
to zero on a time scale given by £D. In the
case of the Earth, the geomagnetic field would
disappear within 105 years. Consequently, the
induction term r�(u�B) in (4.14) is effective to
contrast the decay associated with diffusion. For
example, if we set the diffusion term in (4.14) to
zero, which is equivalent to assume a very high
conductivity of the fluid, then the magnetic field
lines would be “frozen” into the fluid and would
always be moving with it.

So far, we have considered the effect of con-
vective motions for the maintenance of a mag-
netic field within the outer core. Now we want
to briefly mention the action exerted to the fluid
back by the magnetic field. We know that a
Lorentz force is exerted on a moving charged par-
ticle in presence of magnetic field (Eq. 3.5). In the
case of a fluid, which can be represented as a con-
tinuous distribution of mass (see Sect. 2.1), the
Lorentz force per unit volume, f, will given by:

f D ¡ .v �B/ D j �B (4.20)

This force must be incorporated into the
fluid dynamics equations describing the relation
between forces and accelerations in the liquid

core (we shall face the dynamics of fluids in
Chap. 13). Therefore, a combined system of
differential equations is necessary to determine
the evolution of the Earth’s magnetic field. The
Earth’s magnetic field model of Glatzmaier
and Roberts (1995) is precisely the result of
a numerical solution to the induction equation
and related fluid dynamics and electromagnetic
equations. We shall not investigate further this
rather complex subject. However, in the next
section, we are going to discuss a conceptual
(analog) model for the generation of the
geomagnetic field, starting from Faraday’s law.

4.2 The Geodynamo

Let us consider first the electrostatic field E D
E(r) generated by a system of electric charges
(Eq. 4.5). This is a conservative field, such that
the work W done in moving a particle from a
point P1 to another point P2 does not depend
from the path � between the two points. In this
case, a scalar function V D V(r) exists such
that:

E D �rV (4.21)

The function V is called electrostatic potential
and its units are [V]. Then, the work per unit
charge will be given by:

W .P1; P2/ D
Z
�

E .r/ � dr D �
P2Z
P1

rV � dr

D �
P2Z
P1

@V

@r
dr D V .P1/ � V .P2/

(4.22)

Therefore, the integral of E along any closed
loop � is zero:

I
�

E � dr D 0 (4.23)

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_13
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By Stokes’ theorem (see Appendix1), this
relation implies, in turn, that:

r �E D 0 (4.24)

This equation implies that the electric field
generated by a system of charges is irrotational,
so that it is not possible to maintain a stationary
current along a closed circuit. However, Faraday
discovered in 1840 that a variable magnetic field
could induce an electric current through a con-
ductor cable. In particular, he found that if he
moved a magnet near an electric circuit, it was
possible to induce a stationary current through
the circuit. This phenomenon also occurred if
he varied the current through a nearby wire.
Conversely, Faraday observed that the presence
of constant magnetic fields did not induce any
current, independently from the field strength. We
call electromotive force (emf) E the energy that
must be supplied by a source to move a unit of
charge along a closed walk through the circuit.
This quantity can be thought as the work done
by a special kind of electric field, which does not
originate from charge distributions.

In this representation, the emf E coincides
with the work done by a non-conservative electric
field E to move the charge along a closed loop � :

E.C / D
I
�

E � dr (4.25)

Faraday’s experiments showed that the exis-
tence of this non-conservative electric field was
related to variations of magnetic field in a way
that will be clarified now. Let C be a wire loop
and S(C) any open surface bounded by C. Also,
let B D B(r,t) a variable magnetic field. Then,
Faraday’s law states that a non-conservative elec-
tric field E D E(r,t) and an emf through C are
generated, such that:

E.C / D
I
C

E � dr D �
Z
S.C /

@B

@t
� dS (4.26)

By Stokes’s theorem, the Maxwell-Faraday
Eq. (4.11) follows. The quantity:

ˆ.C/ D
Z
S.C /

B � dS (4.27)

is called magnetic flux through the surface S.
Eq. (4.26) says that the emf associated with the
current through the circuit C is the opposite of
magnetic flux variation through S(C):

E.C / D �@ˆ
@t

(4.28)

This equation has great practical importance,
because it is the fundamental operating principle
for the construction of a variety of electrical
devices (e.g., electrical motors and generators).
In fact, it implies that we can convert mechanical
energy, which is necessary to move the magnet
or the conductor, into electrical energy. One may
wonder: what happens if we keep the magnetic
field constant, so that @B/@t D 0, while moving
the wire? Of course, if the conductor C moves,
then the flux ˆ(S) must change, because the inte-
gration surface in (4.27) also varies its orientation
in space. Furthermore, the wire will be subject to
a Lorentz force (4.20), which is non-conservative
and can maintain a stationary current.

Therefore, it is possible to show that also in
this case the induction law (4.28) holds, accord-
ing to Faraday’s experiments, and we have:

E.C /D
I
C

.v�B/ � drD� @
@t

Z
S.C /

B �dSD�@ˆ
@t

(4.29)

The induction law (4.28), which links the emf
to flux variations, does not have general validity,
because is some circumstances a true circuit does
not exist, and currents can flow through a vol-
ume. Faraday himself illustrated some of these
situations, one of which is shown in Fig. 4.3. The
device in Fig. 4.3 is called Faraday’s dynamo. It
is made by a disk that rotates about its axis in
presence of a constant magnetic field. The angu-
lar velocity of the disk, ¨, and the magnetic field,
B, are both aligned with the rotation axis. Any
point on the disk surface has velocity v D v(r)
lying in the disk plane, with magnitude vD ¨r, r

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 4.3 A rotating disk placed in a constant and uniform
magnetic field produces an emf, which can be measured
by the difference of potential, V, between the centre and
the periphery of the disk

being the distance from the rotation axis. Because
¨ and B have the same direction, a unit charge
at distance r will be subject to a Lorentz force F
D vB D ¨rB, directed radially toward the disk
border. The total emf can be obtained integrating
over the disk radius, a:

E D
aZ
0

vBdr D ¨B
aZ
0

rdr D 1

2
¨Ba2 (4.30)

Clearly, we have also a constant magnetic flux
through the disk surface, given by:

ˆ D  Ba2 (4.31)

Thus, it is possible to have a non zero emf
even in presence of constant flux. Another in-
teresting phenomenon occurs when we consider
a solenoid (Fig. 4.4). This is a coil wound into
a tightly packed helix, having a diameter small
with respect to its length. When a current passes
through the coil, the resulting magnetic field is
rather intense and uniform within the helix and
negligible outside, with flow lines that are almost
parallel to the solenoid axis (the divergence of B
must be zero everywhere). To calculate the field
within the solenoid, we can apply the integral
version of Ampere’s law (3.27) to the closed loop
C in Fig. 4.4. Taking the line integral of B along
an arbitrary closed loop C gives:

Fig. 4.4 Flow lines of the magnetic field produced by
a solenoid when a current passes through it. A path, C,
can be used together with Ampere’s law to determine the
magnetic field within the solenoid

I
C

B � dr D
Z
S.C /

r �B � dS

D �0
Z
S.C /

j � dS D �0I.S/ (4.32)

where we have used (3.3). This is the integral
form of Ampere’s law. It states that the closed
loop integral of the magnetic field is always
proportional to the current flowing through an
arbitrary surface bounded by C. When we apply
(4.32) to the loop C in Fig. 4.4, we note that C has
an edge of length a within the solenoid, running
parallel to B, two edges that are perpendicular to
B, and one edge outside the wire, where the field
strength is negligible. If I is the current flowing
through the coil and M is the number of turns
for a length a, then the current passing through a
surface bounded by C is MI. Therefore, applying
(4.32) we have:

�0MI D
I
C

B � dr Š Ba (4.33)

Consequently, the field within a solenoid is
approximately given by:

B Š �0nI (4.34)

where n D M/a is the number of turns per unit
length. In so far as the number of turns tends to
infinity, solution (4.34) tends to be an exact so-
lution. Conversely, for a finite solenoid the axial
magnetic field in proximity of the two ends is half

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
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of that predicted by (4.34). The flux through any
cross-section S of the solenoid is:

ˆ.S/ D
Z
S

B � dS D BA D �0NA
L
I (4.35)

where A is the cross-section area, N is the total
number of turns, and L is the length of the
solenoid, so that n D N/L. Now, if we vary the
current I through the coil, we obtain a variation
of flux for each turn. Consequently, by Faraday’s
law (4.28) an emf E appears, which opposes the
variations of current from which it was gener-
ated (remind the minus sign in Faraday’s law).
The resulting additional current is said to be
self -induced. To calculate the emf through the
solenoid, we multiply the emf of each turn by N:

E D �N @ˆ
@t
D ��0N

2A

L

dI

dt
� �LdI

dt
(4.36)

The quantity L in (4.36), which depends from
the solenoid geometry, is called self -inductance
of the solenoid and has units of Henry [H].
A very interesting phenomenon occurs if we
use a solenoid to generate the magnetic field
of Fig. 4.3. It is not difficult to show that in
this instance the system becomes unstable. The
modified circuit is illustrated in Fig. 4.5. We have
again a rotating disk and an external initial field
B0. As in the example of Fig. 4.3, the induced
current flows toward the periphery of the disk.

However, in this new system, the contacts C
and A and the disk shaft allow the current to
flow externally through a solenoid S. This flow
generates a new axial magnetic field B having a
magnitude determined by (4.34). At this point,
removing the initial field B0 and keeping the disk
in motion, we expect that the spontaneous field
B continues to be sustained by the current that
it itself provides to generate. In this instance,
apart from a possibly weak initial magnetic field
B0 seeding the system, no other external field is
needed to sustain the dynamo. Therefore, after
removal of the seed field B0, the dynamo only

Fig. 4.5 Self-exciting dynamo. A disk D rotates with
angular velocity ¨ in the axial magnetic field B, generated
by the current flowing through the solenoid S. Note the
direction of the current flow in the wire

requires a continuous supply of mechanical en-
ergy to drive the electrical conductor sufficiently
fast for self-excitation to be possible.

To understand what really happens, let us as-
sume that before the initial time t D t0 the circuit
be kept open, for example by disconnecting C or
A, so that B(0)D 0 and the emf is only manifest
through a difference of potential V between the
contacts C and A. From (4.30) it results:

V0 D V.0/ D 1

2
¨B0

�
b2 � a2� (4.37)

At tD t0 the circuit is closed and a current will
flow through the solenoid, generating a magnetic
field BD B(t).
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In this conditions, the disk works as a battery
supplying an emf given by:

E.t/ D 1

2
¨ ŒB.t/CB0�

�
b2 � a2� (4.38)

This expression shows that an increase of B
determines an increase of electromotive force,
which in turn implies an increase of the current
flowing through the solenoid. The increase of cur-
rent determines in turn an increase of B and so on.
We say that the system has positive feedback. Let
R and L be, respectively, the electric resistance
(in Ohm) of the circuit and the self-inductance
of the solenoid. Clearly, the total emf (4.38)
must be equal to the electromotive force that is
necessary to allow flowing of a current I through
a circuit having electric resistance R, plus a com-
ponent that compensates the emf (4.36) associ-
ated with current variations. The former is given
by Ohm’s law:

E.t/ D RI.t/ (4.39)

Therefore, we have:

LdI
dt
CRI D 1

2
¨ ŒB.t/C B0�

�
b2 � a2�

Š 1

2
¨ ŒB.t/C B0� b2 .for b >> a/

(4.40)

Using (4.34) for the solenoid field B, gives:

dI

dt
C R

L
�
1 � ¨

¨0

�
I.t/ D ¨B0b

2

2L (4.41)

where:

¨0 � 2R

�0nb2
(4.42)

Equation 4.41 is a linear first-order differential
equation with constant coefficients. The solution
is:

I.t/ D ¨B0b
2

2R .1� ¨=¨0/



1� exp

�
�RL

�
1� ¨

¨0

�
t

�

(4.43)

where we have used the initial condition I(0)D 0.
Let us assume now that ¨/¨0>1. In this in-
stance, the argument of the exponential is positive
and the current increases until it reaches some
value, say I1, at time t D t1. This current flows
through the solenoid in the direction indicated in
Fig. 4.5, thereby, the induced magnetic field B
has the same direction of the external field B0.
If at time t D t1 the field B0 is instantaneously
removed, although in reality the presence of self-
induction effectively prevents an instantaneous
removal of the external field, the Eq. (4.41) for
t 
 t1 becomes a homogeneous equation:

dI

dt
C R

L
�
1 � ¨

¨0

�
I.t/ D 0 (4.44)

Assuming the initial condition: I(t1) D I1, we
have the following solution:

I.t/DI1 exp

�
�RL

�
1� ¨

¨0

�
.t�t1/

�
I t 
 t1

(4.45)

This is an exact solution only for times t
much greater than the decay constant of the
external field B0. It implies that even in absence
of external field the system sustains a self-excited
magnetic field B D B(t). By (4.34) this field is
given by:

B.t/DB1 exp

�
�RL

�
1� ¨

¨0

�
.t�t1/

�
I t 
 t1

(4.46)

Therefore, we can draw the following conclu-
sions:

1. If ¨/¨0< 1, both I and B decay exponentially;
2. If ¨ D ¨0, we have a stationary field B(t) D

B1;
3. If ¨/¨0> 1, both I and B increase exponen-

tially.

Thus, the simple analog model of a self-
excited dynamo composed by a solenoid and
a rotating disk furnishes a theoretical background
for the existence of self-sustained, persistent,
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magnetic fields. The more realistic mechanism
through which Earth’s rotation and convective
fluid motions in the outer core generate and
sustain the main geomagnetic field is known
as the geodynamo. The fundamental laws of
this model are the MHD induction Eq. (4.14)
and the equations of motion of fluid mechanics
(Chap. 13). However, we have shown that the
basic operating principle of a self-sustained
magnetic field is conceptually simple and can be
described through an analog model formed solely
by a solenoid and a rotating disk. In the next
sections, we shall focus on the time variations of
the magnetic field generated by the geodynamo
mechanism.

4.3 Secular Variation of the Core
Field

The magnetic field generated within the external
Earth’s core by MHD processes is the main
geomagnetic field, as it represents the major
component of the magnetic field observed at the
Earth’s surface. The convective currents flowing
in the external core have an estimated velocity
of the order of 10 km/year (e.g., Buffet 2000,
and references therein). The resulting field is
subject to time variations that are significant
at the scale of months. This variability of the
main field is said secular variation and is of
the order of 80 nT/year. The conventions used
in geomagnetism to designate the components
of the main field, F, have been illustrated in
Sect. 2.3. This field resembles the field that
would be generated by a magnetic dipole placed
at the Earth’s centre and inclined by �11ı with
respect to the Earth’s spin axis. As mentioned
in Sect. 2.3, the axis of this dipole intersects
the Earth’s surface at the geomagnetic poles. If
the field were perfectly dipolar, and in absence
of crustal and external contributes, then the
inclination at the geomagnetic poles would be
I D ˙90ı. The points at the Earth’s surface
where the observed field is effectively vertical are
called magnetic poles. At present, the distance of
these poles from the geomagnetic poles is several
hundreds km and they are by no means aligned

with an axis passing through the Earth’s centre.
In fact, a better fit to the observed geomagnetic
field can be obtained using a magnetic dipole
located �400 km from the centre of mass in
the direction of the positive z-axis. This model
field is knows as the eccentric dipole field. The
magnitude of the observed geomagnetic field
varies considerably along the Earth’s surface and
in time. The field vectors are sub horizontal
close to the Equator, where F �30,000 nT,
whereas they tend to be vertical in proximity
of the geomagnetic poles, with magnitudes of the
order of �60,000 nT. Regarding the variability
in time, at the scale of months and years we
observe that the inclined geocentric dipole, which
represents about 90 % of the main field, has no
fixed direction. The magnetic moment of this
dipole precesses irregularly about the geographic
North Pole, thereby determining variations of
declination and inclination, and has variable
magnitude. Although there is some superposition
between the spectrum of time variations
associated with external sources and the
variability of the core field, in general the former
are much more rapid and have much smaller
magnitude. The secular variation of the Earth’s
magnetic field was first recognized by Gellibrand
in 1634, who observed that the declination in
London had decreased by more than 7ı since the
first measurement in 1580. Figure 4.6 shows the
secular variations of declination and inclination
recorded in London since the sixteenth century.
In general, the geomagnetic field variations are
not constant in time and have variable amplitude
from place to place.

There are three basic phenomena associated
with the secular variation of the geomagnetic
field, which affect both the dipolar component,
over long time intervals, and the non-dipolar part
of the field on the short period. They are:

(a) A continuous change of direction of the mag-
netic dipole moment and the consequent mi-
gration of the geomagnetic poles;

(b) Variations of magnetic moment magnitude;
(c) A westward drift of some non-dipolar fea-

tures of the field at a rate of �0.4ı longitude
per year;

http://dx.doi.org/10.1007/978-3-319-09135-8_13
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 4.6 Historical spline regression curves of declination and inclination for London, England (Data from Malin and
Bullard (1981))

Fig. 4.7 Holocene secular
variation, recorded by
lacustrine sediments in
southeastern Oregon. Ages
come from radiocarbon
dating (Redrawn from
Butler (1992))

The geomagnetic poles’ wandering has
been observed over a longer time interval
than that shown in Fig. 4.6. For example, the
archeomagnetism of rapidly deposited lacustrine
and cave sediments has given further evidence
to the existence of an irregular precession of
the geomagnetic dipole axis about the spin
axis (e.g., Creer 1977). Figure 4.7 shows the
Holocene record of variations of declination
and inclination at a site in NW United States.
Regarding the field magnitude, archeomagnetic
studies have shown that it decreased by 50 %
during the last 2,000 years, at a rate of �6.3 %
per century. In particular, the magnetic moment
was �9.4� 1022 Am2 in 1600 ac and decreased
almost linearly to �7.9� 1022 Am2 in 1980 ac.

If this rate were maintained, the magnetic
moment would go to zero within 1,600 years!
Finally, the westward migration of some
magnetic features (such as declination contour
lines) was observed for the first time by Halley
in 1683 around the Atlantic Ocean. However,
although the phenomenon seems to involve some
independent variables, it is not observed in the
Pacific region, thereby, it could be associated
with a process that operates at regional scale.

The discovery of the secular variation of the
geomagnetic field had an indirect but dramatic
consequence for the success of the plate tecton-
ics paradigm during the 1960s. The apparently
random wandering of the dipole axis about the
Earth’s spin axis, along with the recognition that
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the centered magnetic dipole represents �90%
of the field intensity, led to the hypothesis that
the time-averaged geomagnetic field could be ap-
proximated by a geocentric axial dipole (GAD).
In this hypothesis, if we consider a statistically
significant data set of N magnetic field directions,
Fi, spanning several thousand years, the declina-
tion anomaly,�D, will be approximately zero:

�D D

NX
iD1

wiDi

NX
iD1

wi

	 0 (4.47)

where the wi are weighting factors depending
from measurement uncertainties and the Di are
observed declinations (see McElhinny et al.
1996). In fact, if we assume a magnetic moment
aligned with the Earth’s rotation axis (as in
Fig. 3.7), the theoretical declination of the field
vectors will be zero everywhere. Therefore, the
time-averaged declination of a large data set
should also be close to zero.

However, differently from the example of
Fig. 3.7, a representation of the present day time-
averaged geomagnetic field by a centered axial
dipole requires a southward directed magnetic
moment. Therefore, by (3.22) and (3.23) we see

that in this instance the horizontal and vertical
components of F are given by:

8̂
<̂
ˆ̂:
Z .r; ™/ D �Br .r; ™/ D �0m cos ™

2 r3

H .r; ™/ D �B™ .r; ™/ D �0m sin ™

4 r3

(4.48)

where m is the dipole magnetic moment and
(r,™) are spherical coordinates (distance from the
Earth’s centre and colatitude). Thus, the inclina-
tion I will be given by:

tan I D Z

H
D 2 cot ™ (4.49)

This is the famous dipole equation, which
allows to convert a magnetic inclination into a
geographic colatitude and vice versa. In Chap. 6,
we shall appreciate the importance of this equa-
tion for plate tectonics. For the moment, we
can only anticipate that it allows to convert the
magnetic inclination observed on an ancient rock
sample into a paleolatitude of the site from which
the sample was obtained. Equation (4.49) shows
that the inclination of the field vector associated
with a GAD field depends in a simple way from
the site colatitude only. A plot of I versus ™ is
shown in Fig. 4.8. Therefore, if we take the time
average of a set of field directions, observed in

Fig. 4.8 Inclination of GAD field versus site colatitude

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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a narrow colatitude band about ™, in the GAD
hypothesis also the inclination anomaly, �I(™),
will be approximately zero:

�I .™/ D I � tan�1 .2 cot ™/ 	 0 (4.50)

where I is the inclination of the time-averaged
field vector F . To date, many studies have shown
that the time-averaged geomagnetic field is essen-
tially a GAD field, possibly with small additional
non-dipole axial components that will be consid-
ered in Chap. 6. Therefore, the average position
of the geomagnetic poles over a time interval of
the order of hundreds of thousands of years is
indistinguishable from the geographic poles. In
general, on a time scale of thousands of years,
the magnetic moment wobbles (so that the field
inclination changes), precesses, and changes its
intensity (e.g., Merrill and McFadden 2003). The
characteristic periodicity of these processes is
several times longer than that of the non-dipolar
component. For an in-depth discussion about the
secular variation of the geomagnetic field the
reader is referred to the books of Butler (1992)
and McElhinny and McFadden (2000), and to the
paper of McElhinny et al. (1996).

4.4 Polarity Inversions, Chrons,
and Geomagnetic
Timescales

On a time scale larger than that associated
with secular variation, we observe another
phenomenon that has had a dramatic impact for
the construction of the plate tectonics paradigm.
It consists into the recurrent inversion of the
GAD field polarity, with a periodicity between
104 and 108 years. A time interval such that the
GAD magnetic moment has the same direction
as the present day field, pointing southward,
is said to be of normal polarity, while the
opposite configuration defines a reversed polarity
time interval. Although magnetic reversals
determine a change of declination of 180ı at
any point on the Earth’s surface, the fact that
an observed paleomagnetic field direction at a
site is approximately opposite to the present day

field direction could not be sufficient to prove
that the rock formed during a time interval of
reversed polarity. In fact, it is known that the non-
dipole field components can produce large local
deviations of the observed declination values.
Therefore, the evidence for magnetic polarity
reversals must be based upon many independent
observations distributed over the Earth’s surface.

The recognition of the existence of recurrent
events of field inversion led to the development of
geomagnetic polarity time scales since the 1960s.
In these time scales, a time interval with constant
magnetic polarity (normal or inverted) is called
chron and the time boundaries are established on
the basis of radiometric dating. The first time
scales had a rather restricted temporal range,
which was based on potassium�argon (K–Ar)
dating of Pliocene and Pleistocene igneous rocks.
Therefore, they spanned the interval 0–5 Ma. An
example of this class of polarity time scales is il-
lustrated in Fig. 4.9. This time scale was built us-
ing 354 igneous rock samples, from which K–Ar
ages and magnetic polarity had been determined.
Figure 4.9 shows that the average duration of the
chrons was �0.25 Myrs since 5 Ma. The number
of observations that were classified as “interme-
diate polarity” was �1.5 % of the sample. These
field directions were probably acquired during
the short phases of switching of the GAD polarity
at the transition between two adjacent chrons.
It is estimated that these phases have duration
between 1,000 and 8,000 years (see McElhinny
and McFadden 2000, and references therein).
Therefore, in terms of geological time they are
global synchronous events. An important feature
of the alternate sequence of polarity chrons in
Fig. 4.9 is represented by their variable length, so
that the specific pattern of normal and reversed
chrons for a given time interval can be used as a
distinctive “fingerprint” that identifies the inter-
val. We shall make extensive usage of this feature
in the procedure of identification of marine mag-
netic anomalies (Chap. 5), which is the primary
tool for dating the oceanic sea floor. In the case
of the time scale 0–5 Ma, historically four major
magnetic polarity epochs were identified, along
with shorter intervals that were called events.
These epochs, to which was given the name of

http://dx.doi.org/10.1007/978-3-319-09135-8_6
http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 4.9 Magnetic polarity time scale of Mankinen and
Dalrymple (1979). Columns N, I, and R show respectively
the occurrence of samples with normal, intermediate, and
inverse polarity. Normal and reversed polarity intervals
are shown, respectively, in black and white. Numbers are
K�Ar radiometric ages (in Ma)

pioneering scientists in geomagnetism (Brunhes,
Matuyama, Gauss, and Gilbert), are shown in
Fig. 4.9. Although today this nomenclature is
considered obsolete, it is still used by many
geologists. The extension of the geomagnetic po-
larity time scale to times older than the Pliocene

required a different technique, because the un-
certainty of radiometric dating increases with
the age of the samples and approaches the typ-
ical duration of chrons. The method used today
for the time interval between the Miocene and
the middle Jurassic was proposed for the first
time by Heirtzler et al. (1968) and is based
on the analysis of marine magnetic anomalies
from the World’s oceans. The technique can be
described as follows. As new oceanic crust forms
at a spreading ridge by cooling of MORB, it
acquires a TRM having the same direction of the
ambient field at that time (see Sect. 3.5). There-
fore, when the main field is subject to a polarity
reversal, this event is recorded in the oceanic
crust, which acquires an inverted polarity with
respect to the previous chron. This implies that
the magnetization pattern of the World’s oceans
is formed by long parallel stripes having alter-
nate polarity, which move away from spreading
ridges.

This structure was described for the first time
by Vine and Matthews (1963) in a seminal paper
that can be considered as a milestone in the de-
velopment of the plate tectonics theory. We shall
see in Chap. 5 that the alternated arrangement of
stripes with opposite TRM polarity can be de-
tected by the analysis of the magnetic anomalies
that are produced by the “anomalous” field as-
sociated with crustal magnetization. Figure 4.10
shows an example of magnetization pattern in
the central Atlantic and the associated magnetic
anomalies. The technique used by Heirtzler et al.
(1968) to build a geomagnetic polarity time scale
for times older than 5 Ma is a milestone in
the history of marine geophysics. These authors
started from some ship-track magnetic profiles
acquired in the North and South Pacific, in the
South Indian Ocean, and in the South Atlantic.
For each magnetic profile, they built a magne-
tization model such that the predicted magnetic
anomalies matched the observed profiles. An ex-
ample of this procedure is shown in Fig. 4.10. In
order to fit the theoretical and observed profiles,
they changed repeatedly the width of the blocks,
until the two curves overlapped. The procedure
furnished a sequence of distances x1,x2, : : : ,xn of
the blocks from the ridge. These distances are

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 4.10 An example of sea floor magnetization and
magnetic anomaly signal in the central Atlantic. The black
and red lines show respectively the measured and model
anomalies, while the lower panel shows the resulting

predicted magnetization of the oceanic crust, with the
pattern of normal (black) and reversed (white) blocks. R
is the ridge

referred to as anomalies and are numbered pro-
gressively according to a nomenclature that will
be described later. Assuming that the spreading
velocity v was constant, Heirtzler and colleagues
could have converted promptly the anomalies xi

into ages of the top of each chron, Ti, obtaining
a geomagnetic polarity time scale. In fact, the
scaling formula is simply:

Ti D 2xi

v
(4.51)

However, there was no warranty that the
spreading rate had remained constant for any
of the magnetic profiles. Heirtzler and colleagues
had some calibration points, consisting into sea
floor locations with known age. For example,
they knew that the magnetic basement at anomaly
six in the North Pacific and South Atlantic
had an age of 20–22 Ma. Therefore, these
authors performed a comparative analysis of
the magnetic profiles, concluding that the South
Pacific spreading rate had varied with time,
whereas the South Atlantic and North Pacific
velocities might be considered approximately
constant. In particular, an xi–x

0

i plot of South

Atlantic and North Pacific anomalies showed
a linear correlation between the two data sets.
Consequently, the South Pacific was eliminated
as a standard for the construction of a time
scale. Finally, they selected the South Atlantic
profile as a standard, because of its length
and better anomaly pattern. The assumed
constant velocity was 19 mm year�1 for the
last 80 Myrs. Testing the predicted ages of the
corresponding anomalies was a major objective
of the Deep Sea Drilling Project (DSDP) from
the late 1960s to the early 1980s. Further
biostratigraphic calibration points were provided
by magnetostratigraphic investigations of marine
sedimentary sequences. The most important of
these studies was undoubtedly that performed
on the Late Mesozoic and Cenozoic pelagic
limestone sequences in the Umbria-Marche
Apennine, Italy (Lowrie and Alvarez 1977). The
new data allowed the construction of more refined
geomagnetic polarity time scales, notably the
Mesozoic time scale of Gradstein et al. (1994),
the Late Cretaceous – Cenozoic time scale of
Cande and Kent (1995), and the more recent
Phanerozoic time scale of Gradstein et al. (2004).
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Fig. 4.11 C�series geomagnetic polarity time scale of
Cande and Kent (1995). Only the major anomalies are
labeled. Numbers on the upper scale are distances from
the ridge when the spreading rate is 20 mm year�1. The
red line shows the theoretical magnetic signal associated
with this time scale in the case of an N–S profile in
the northern hemisphere. Ages of the labeled anomalies

are: 2A D 2.58 Ma, 3A D 5.89 Ma, 4A D 8.70 Ma, 5 D
10.95 Ma, 5C D 16.01 Ma, 6 D 20.13 Ma, 7 D 24.73 Ma,
9 D 27.03 Ma, 12 D 30.48 Ma, 13 D 33.06 Ma,
18 D 40.13 Ma, 20 D 42.54 Ma, 21 D 47.91 Ma, 25 D
55.90 Ma, 28 D 62.50 Ma, 30 D 65.58 Ma,
31 D 67.74 Ma, 32 D 71.07 Ma, 33 D 73.62 Ma, and
34 D 83.50 Ma

In these time scales, the polarity chrons for latest
Cretaceous and Cenozoic are numbered within
the C-series, from C34 (the oldest) to C1 (the
youngest). For older times, the middle Jurassic
through Early Cretaceous sequence, which is
used in marine geophysics studies, consists of
the M-series (polarity chrons from M0 to M41).
This segment of the time scale is based upon the
assumption that the Hawaiian sequence of marine
magnetic anomalies in the western Pacific formed
at constant spreading rate (Gradstein et al. 1994).
Also in this case the sequence was pinned to tie
points with known radiometric age.

The naming conventions of magnetochronol-
ogy are simple. For each normal polarity chron,
there is a corresponding older chron with reversed
polarity. Then, a suffix “n” or “r” is used to
distinguish the two time intervals. For instance,
C13n identifies the normal polarity chron within
the interval C13. A complication arises from the
presence in the C-series of smaller intervals with
inverted polarity within a chron. For example,
C2r starts at 2.581 Ma and ends at 1.950 Ma
in the scale of Cande and Kent (1995). This
reversed chron includes a short normal polarity
sub-chron between 2.140 and 2.150 Ma, which
was discovered later. Therefore, it is now divided
into three sub-chrons, named respectively C2r.1r,
C2r.1n, and C2r.2r. Figures 4.11 and 4.12 show
respectively the geomagnetic polarity time scales
for the C-and M-series.

An important feature of the late Cretaceous –
Cenozoic geomagnetic polarity time scale is the
presence of a long chron with normal polarity
(C34), from �120 to �84 Ma (Fig. 4.11). This
is called the Cretaceous normal-polarity super-
chron or, alternatively, Cretaceous Quiet Zone
(CQZ). During this time interval, which lasted
�36 Myrs, the geomagnetic polarity remained
fixed. Another interesting feature can be observed
on the Jurassic – early Cretaceous time scale
(Fig. 4.12). It is represented by a long sequence
of short polarity chrons before M25, between the
Oxfordian and the Callovian, which determines
blurring of the magnetic signal. This time interval
partly coincides with the so-called Jurassic Quiet
Zone (JQZ), which is observed offshore North
America, along the coast of northwest Africa,
and in the western Pacific. This zone includes
anomalies older than M29 and is characterized by
the low amplitude of the magnetic signal, which
makes the analysis difficult.

4.5 Ionosphere
andMagnetosphere

The large region around the Earth where the
geomagnetic field dominates is called magneto-
sphere. It is occupied by plasma, that is, high-
energy charged particles, of solar wind prove-
nance or terrestrial origin. The solar wind is a



4.5 Ionosphere and Magnetosphere 119

Fig. 4.12 M-series segment of the geomagnetic po-
larity time scale of Gradstein et al. (2004). Only
the major anomalies are labeled. Numbers on the
upper scale are distances from the ridge when the
spreading rate is 20 mm year�1. The red line shows
the theoretical magnetic signal associated with this

time scale in the case of an N–S profile in the
northern hemisphere. Ages of the labeled anomalies are:
M0 D 124.61 Ma, M5 D 129.76 Ma, M10N D 135.28 Ma,
M16 D 142.06 Ma, M21 D 148.54 Ma, M25 D 154.37 Ma,
M29 D 157.51 Ma, M37 D 162.04 Ma, and
M41 D 165.61 Ma

Fig. 4.13 Earth’s
magnetosphere and
interplanetary magnetic
field (IMF). Solar wind
streamlines are shown in
red. Points P are polar
cusps. Field lines of the
Earth’s magnetic field and
the IMF are shown
respectively by solid black
and blue lines

highly conductive plasma flow ejected by the
Sun, which travels at a velocity of �500 km/s as
a result of the supersonic expansion of the solar
corona. High conductivity of this material implies
that the magnetic field flow lines are frozen into
the solar wind plasma (see Sect. 4.1). Therefore,
in the region where the charged particles strike
against the Earth’s magnetic field, the particles
slow down and to a large extent are deflected

without penetrating the magnetic shield. At the
same time, the flow lines of the Earth’s magnetic
field are compressed in the dayside region and
stretched out along the nightside area, generat-
ing a wide magnetotail (Fig. 4.13). As a conse-
quence, the Earth’s magnetosphere is a magnetic
cavity shaped like a comet head and tail, and only
at distances less than 5Re, Re being the Earth’s ra-
dius, it can be considered approximately dipolar.
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A small portion of solar wind plasma enters the
magnetosphere along the dayside region near the
polar cusps, two funnel-shaped areas between
the dayside and the magnetotail. Here, the solar
plasma particles follow the magnetic field lines
towards the Earth’s atmosphere (Fig. 4.13).

Three major regions can be distinguished in
the space around the Earth. In the outer space,
the interplanetary magnetic field (IMF) has sub
parallel field lines, and the solar wind stream-
lines are straight lines toward the Earth. The
bow shock is the shock surface where the solar
wind is suddenly slowed from supersonic to sonic
velocities. It marks the transition to turbulent flow
in the magnetosheath, the intermediate region
where IMF geometry and solar wind stream-
lines are affected by the presence of the Earth’s
magnetic field. The magnetopause is the inner
boundary that separates the magnetosphere from
the outer region. Along the magnetopause, the
inward dynamic pressure of the advancing solar
wind plasma is balanced by the outward magnetic
pressure of the magnetosphere. To understand
this important concept, let us consider again the
magnetic field inside a long solenoid (Fig. 4.4),
and let us assume that the coil is infinitely thin
with square cross-section of dimension h. In this
instance, the current through the solenoid is re-
lated to the current density by: I D jh2. If n is
the number of turns per unit length, then hD 1/n.
Therefore, the magnitude of the current density in
the solenoid is given by:

j D In2 (4.52)

We know that the magnetic field B is zero
outside the solenoid and assumes the uniform
value (4.34) in the internal region. The region
occupied by the coil is a transition zone where
the average field is given by:

hBi D 1

2
B Š 1

2
�0nI (4.53)

The presence of a magnetic field within the
coil generates a Lorentz force that can be cal-
culated using (4.20). To evaluate the cross prod-

uct in (4.20) we take into account that the cur-
rent density vector is always tangent to the coil.
Therefore, the Lorentz force per unit volume, f, is
directed radially outwards and has magnitude:

f D I hBin2 D 2hBi2n
�0

D B2n

2�0
(4.54)

where we have used (4.53). If L and r are respec-
tively length and radius of the solenoid, then the
volume of a small slice is dV D rLhd’, where d’
is an arc element of the coil circumference. The
area of its internal surface will be dA D rLd’.
Therefore, the force on the volume element is:

dF D fdV D B2rLd’

2�0
(4.55)

This force determines an outward pressure on
the internal surface of the solenoid, which will be
given by the force per unit area:

Pm D dF

dA
D B2

2�0
(4.56)

The quantity Pm is called magnetic pressure
and can be quite effective. For example, for B D
1 T, we have PmŠ 4.0� 105 PaD 4 bar. Now let
us consider the dynamic pressure, which for any
fluid is defined as the density of kinetic energy:

Pd D 1

2
¡mu2 (4.57)

where ¡m is the mass density and u is the fluid
velocity. This quantity contributes to the total
fluid pressure just like the usual hydrostatic pres-
sure. The solar wind is a neutral fluid formed by
positive ions and electrons. For a flow dominated
by protons and electrons, with a typical density
of five protons per cm3 and an average velocity u
�500 km s�1, it results:

Pd D 1

2

�
5cm�3� � �1:67 � 10�27kg

�

� �500kms�1�2 Š 1:04 � 10�9 Pa
(4.58)
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Fig. 4.14 Examples of
Solar eruptions. Left:
Coronal mass ejection on
April 16, 2012. Right: X
1.9 class solar flare on
November 3, 2011 (Credit:
NASA Solar Dynamics
Observatory)

At the magnetopause, the magnetic and
dynamic pressures balance out. Therefore, we
can use (4.58) and (4.56) to estimate the distance
of the magnetopause from the Earth’s centre.
To this purpose, we approximate the Earth’s
magnetic field by a GAD dipole (Eq. 3.24). In the
equatorial plane, where the value (4.58) is more
appropriate, the magnitude B is given by:

B.r/ D �0m

4 r3
Š 7:9 � 1015 1

r3
(4.59)

where we have assumed that mD 7.9� 1022 Am2.
Let Rp be the distance of the magnetopause from
the Earth’s centre in the dayside equatorial plane.
Equating (4.58) with (4.56) gives an estimate of
this quantity:

Rp D
 
m2 � 10�7

8 Pd

!1=6
Š 8:5Re (4.60)

where ReŠ 6,371 km is the Earth’s radius. This
is the upstream distance of the magnetopause in
normal conditions. However, strong solar wind
conditions can push the magnetopause well in-
side the geostationary orbit of satellites (�6.6
Re). In the nightside region, the magnetopause is
on average�30 Re from the ecliptic plane.

The importance for plate tectonics practition-
ers to have a basic understanding of the magne-
tosphere and related processes arises from the in-
fluence that short-period geomagnetic field time
variations have on the measurement of magnetic
anomalies produced by sea floor crustal magne-
tization. Marine geophysics campaigns require
precise determinations of the total geomagnetic
field strength of internal origin (which includes

core and crustal components), thereby, the pres-
ence of strong external field components impedes
a correct application of the method of calculation
of magnetic anomalies that will be described later
in this chapter. The strongest source of geomag-
netic field disturbance is represented by geomag-
netic storms. These events are associated with
large sudden variations of solar wind dynamic
pressure at the magnetopause, which follow the
impact of coronal mass ejections (CME) and
solar flare particles (Fig. 4.14).

A CME is a form of extensive and explosive
solar mass release that produces strong pertur-
bations of the solar wind, which reaches speeds
as high as 2,800 km s�1 during these events.
A solar flare is a more local event than CMEs,
which produces flashes of light for short time
intervals ranging from a few minutes to a few
hours (Schunk and Nagy 2009). These explosions
can send bursts of energetic particles into the so-
lar wind, determining magnetic storms. A storm
results from compression of the magnetosphere
due to the arrival of the shockwave and can be
particularly strong when the increased solar wind
pressure is associated with a large southward IMF
component (Yokoyama and Kamide 1997). The
typical time that a CME takes to reach the Earth
is 2�3 days. The resulting geomagnetic field
disturbance can have serious consequences for
the human electric infrastructures and networks,
and it is hardly a good idea to take magnetic
measurements during a storm. At mid-latitudes,
about one storm per year produces an external
field whose horizontal component H >250 nT,
and about ten storms per year have H >50 nT
(Campbell 2003). Some events can produce ex-
tremely strong variations of geomagnetic field

http://dx.doi.org/10.1007/978-3-319-09135-8


122 4 The Geomagnetic Field

Fig. 4.15 Monthly X-class flares and International
Sunspot Number and 11-year solar cycle. The plot shows
the increased number of X-class flares during the peaks of
solar activity (higher number of sunspots). However, flares
can also occur when the sunspot cycle is at the minimum
(Original figure in Hathaway 2010, updated to 2014 by
courtesy of the author)

strength. Tsurutani et al. (2003) report 12 large
magnetic storms from 1859 to 1989, with H range
(difference between the maximum and minimum
of H during the storm) varying from 450 to
1,720 nT. The duration of the main phase of
these events is of the order of a few hours.
In general, during the main phase the magnetic
field at the Earth’s surface is significantly de-
pressed. This depression has a strong latitudinal
dependence and is determined by the injection
of magnetotail plasma into the nightside mag-
netosphere. Within the inner magnetosphere, the
Lorentz force drives the high-energy protons to
the west, whereas electrons move eastward, thus
feeding and strengthen a current loop around
the Earth that is known as the ring current.
This current determines the formation of a north-
ward directed magnetic moment that opposes the
Earth’s dipole moment, thus decreasing the net
magnitude of the geomagnetic field measured at
near-equatorial magnetic stations.

Regarding the recurrence interval of geomag-
netic storms, it is strictly related to the solar
cycle, which consists into a periodic change of
solar activity with average duration of �11 years
(Fig. 4.15). The solar cycle is a magnetic phe-
nomenon that originates by dynamo processes
within the Sun. During an 11-year cycle, it is
possible to observe a rise and fall in the number

of solar flares, CMEs, and other visible changes
(sunspots). To measure the solar activity and
the corresponding geomagnetic disturbance, sev-
eral indices have been designed. In marine geo-
physics, the most useful measure of magnetic
activity is the global 3-h-range Kp index. This
index is determined as the arithmetic mean of
K index values from 13 different geomagnetic
observatories. The K index is a quasi-logarithmic
scale that quantifies the disturbance in the H
component of the geomagnetic field in a single
observatory. It is calculated from the amplitude
range of H in a 4-h interval, after removal of
diurnal and secular variations by fitting a smooth
curve to the observed values. The Kp scale ranges
between 0 and 9, and is expressed in thirds of a
unit: 0, 1/3, 2/3, 1, 4/3, : : : These quantities are
usually indicated as: 0,0C,1�,1,1C, etc. Usually,
Kp �2C indicates quietness, whereas Kp 
5 is
indicative of a geomagnetic storm.

A less intense but still significant contribution
to the external geomagnetic field comes from
currents driven by tidal forces and winds circu-
lating in the Earth’s ionosphere, a conducting
region of the terrestrial atmosphere where a large
density of free low-energy electrons and ions
is present. This region extends upwards from
70 to 80 km elevation to considerable altitudes,
where it merges with the magnetosphere. The
free electrons and ions that form the ionosphere
plasma are produced by ionization of neutral
atoms, as a consequence of both extreme ultra-
violet radiation from the Sun and collisions with
high-energy particles that penetrate the atmo-
sphere. The ionosphere currents are revealed by
a recurrent pattern on observatory magnetograms
during quiet days, with characteristic 24/k hour
period spectral components, where k D1,2,3,4
(Campbell 2003). Therefore, the typical magne-
togram pattern associated with these currents is
referred to as quiet daily variations. When the
small but persistent component arising from tidal
forces is removed, the changes are called Sq
variations (i.e., solar quiet). A theoretical plot of
Sq components is illustrated in Fig. 4.16. The Sq
field varies slowly through the months of the year
and its contribution to magnetic measurements
changes with the geographic location, but the
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Fig. 4.16 Theoretical 24-h plot of Sq field components at 0ıN, 15ıE, calculated using the SQ1 model of Campbell
et al. (1989). The horizontal axis shows local time (in min after midnight) on June 1st 2005

prevalence of the 24, 12, 8, and 6 h harmonics
shows that the driving mechanism of the source
currents depends strongly from the Earth’s rota-
tion. In fact, it is known that this field results from
enhancement of conductivity of the E region of
the ionosphere, an intermediate layer between 90
and 140 km altitude, induced by solar radiation
(e.g., Hitchman et al. 1998).

In general, at high latitudes the Sq field does
not give a significant contribution to the external
field, whereas at the magnetic equator the highest
magnitude is of a few tens of nT.

4.6 Crustal Magnetic Field

The magnetization of crustal rocks represents
an important source for the Earth’s internal
field, originating near-surface anomalies between
�3,600 and C8,500 nT. Conversely, both the
mantle and the unconsolidated sediments are
essentially non-magnetic. The crustal sources are
located in regions where the temperature field is
below the Curie point of the magnetic minerals
(see Sect. 3.5). Therefore, the lower boundary
of the so-called magnetic basement, which is
the region of crustal rocks having relatively
large magnetic susceptibilities, approximately
coincides with the Curie isotherm for magnetite.

This isotherm is typically more than 20 km
depth in stable continental regions, but may
be as shallow as 2 km in young oceanic
regions. Although both remnant and induced
magnetization contribute to the crustal field, only
the former is important for plate kinematics. In
paleomagnetic studies performed on continents,
the remnant components of magnetization
are isolated directly on rock samples through
laboratory procedures. Conversely, in the case
of marine geophysics, it is not a simple task
to separate these components from a data
set of total field measurements, thereby, our
interpretations often rely on the hypothesis (more
or less justified) that the induced component is
small. In general, igneous rocks have the highest
Koenigsberger ratios (often between 5 and 50, see
Table 3.1), and in the important case of MORBs
Q may reach values as high as 160. Therefore,
in the oceanic regions, where it is not generally
possible to separate the remnant magnetization
from the induced component, the crustal field
can be considered with good approximation as
the product of time independent TRM at the
historical scale.

In most places, the crustal field is less than
1 % of the total magnetic field, but locally may
represent up to 20 % of the observed field. The
first global maps of the crustal field were built

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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Fig. 4.17 Magnetic field intensity anomaly, �F, caused by the crustal magnetic field at a satellite altitude of 400 km
above the Earth’s surface, as given by the MF3 model (Maus et al. 2006)

on the basis of POGO (Polar Orbiting Geophysi-
cal Observatory) and MAGSAT (Magnetic Field
Satellite) low-orbiting satellite measurements of
magnetic intensity since the 1960s (Maus et al.
2006 and references therein). The first data were
scalar total field magnitudes, whereas starting
from MAGSAT the satellites were also equipped
with vector magnetometers. One of the most
recent data sets comes from the CHAMP (CHAl-
lenging Minisatellite Payload) mission, a German
satellite mission for geologic and atmospheric
research that started in July 2000. An example
of crustal field model based on these data is
shown in Fig. 4.17. This model provides long
wavelength features of the crustal component of
the internal field, which can be useful in studies
of global scale tectonics.

Maps of crustal magnetic field on continents
can be used in conjunction with gravity and
geological maps to identify tectonic provinces,
dikes, faults, and any other geologic feature hav-
ing a magnetization contrast with the surround-
ing. In recent years, the World Digital Magnetic
Anomaly.

Map (WDMAM) has been compiled under the
auspices of the International Association for Ge-
omagnetism and Aeronomy (IAGA). This map,

which is shown in Fig. 4.18 combines ground,
airborne, and marine magnetic data and includes
all the wavelengths that could be useful for the
geological and tectonic mapping of the Earth’s
crust. We have already stressed the fact that
ocean floor magnetization represents a primary
source of data in plate tectonics. In Sect. 1.3 we
have shown that the oceanic crust has a layered
structure (Fig. 1.6), the 2A pillow lavas being the
uppermost of the igneous layers. These subma-
rine basalts cool quickly from high temperatures
in the seawater environment. Consequently, their
titanomagnetite content is fine-grained and car-
ries an intense TRM. This mineral has an average
composition Fe2.4Ti0.6O4 and Curie point in the
range 150–200 ıC (McElhinny and McFadden
2000). We know that the geothermal gradient
close to mid-ocean ridges is �100 ıC/km, while
for a 120 Ma old oceanic crust it is reduced
to �10 ıC/km (Chap. 12). Therefore, the depth
to the Curie isotherm is very shallow near the
spreading centers and increases with the distance
from the ridge. Regarding the lower layers (2B,
2C, and 3), they cool slowly and have Curie
points generally higher than 500 ıC, but the
magnetization is at least one order of magnitude
less than the overlying pillow lavas. It is also

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_12
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Fig. 4.19 Magnetic
polarity boundaries of the
oceanic crust, based on
Tivey (1996). Arrows are
directions of
magnetization. The black
and grey regions have
respectively normal and
reversed polarity

important to note that in so far as the new oceanic
crust moves away from the ridge, the cooling
rate of rocks at any given depth decreases, as we
shall see in Chap. 14. Therefore, the geometry of
the boundaries of blocks with opposite polarity
is determined by the balance between cooling
rate and spreading velocity, so that they are not
vertical but curved towards or away from the
ridge. In most cases, the magnetic boundaries of
the rapidly cooling extrusive 2A layer dip toward
the spreading axis. Then, the boundaries become
nearly vertical in the 2C dikes layer and gently
dip away from the spreading center in the gabbro
section (3A–3B) (Fig. 4.19).

An important feature of the magnetization
pattern in the oceanic crust is represented by
the strong magnetization of the normal polar-
ity axial blocks associated with the present day
chron (C1n), which is generally two to three
times that of adjacent blocks (10–15 Am�1 in-
stead of 5–6 Am�1). McElhinny and McFad-
den (2000) report a time constant of magneti-
zation decay (the time for the magnetization to
reduce to 1/e of its initial value) of �20 kyrs.
Towards the continental margins, the magnetiza-
tion becomes less intense, with typical values
of MD 3�4 Am�1. Furthermore, some of the
anomalies observed close to the COBs may be as-
sociated with upper mantle serpentinization and
not with sea floor spreading (see Sect. 1.3), a
common situation along non-volcanic continental
margins such as the western Iberian margin. In
the next sections, we shall consider in detail the

mathematical properties of the geomagnetic field,
a necessary step to create crustal field models that
match the observed data.

4.7 The Geomagnetic Potential

According to Gauss’ law, the Earth’s magnetic
field, B, is solenoidal (Eq. 3.25). Outside the
Earth’s surface, it is also irrotational, because
j D 0 in (3.27) almost everywhere. Therefore,
there exists a scalar field V such that (3.28)
holds. We say that the magnetic field is a po-
tential field in the region outside the Earth. In
this instance, the scalar geomagnetic potential V
satisfies Laplace’s equation (3.29). Now we are
going to describe some important mathematical
properties of the potential, which will be helpful
to fully understand the meaning of geophysical
models of crustal magnetization and mass den-
sity distributions. These properties are known as
Green identities.

Green’s First Identity
Let ¥ D ¥(r) and § D §(r) be two scalar fields,
defined in a closed region R with boundary S(R).
Then:

I
S.R/

¥ .r/
@§

@n
dS D

Z
R

r¥ � r§dV

C
Z
R

¥ .r/r2§dV (4.61)

http://dx.doi.org/10.1007/978-3-319-09135-8_14
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
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Proof Let us consider the vector field A(r) D
¥(r)r§ and its flux through S(R). We remind that
the quantityr§�dS is the directional derivative of
§ along the normal to S (see Appendix1), which
is usually indicated by @§/@n.

Then, by the divergence theorem we have:

Z
R

r � .¥r§/dV D
Z
R

�r¥ � r§C ¥r2§	dV
I
S.R/

¥r§ � dS D
I
S.R/

¥ .r/
@§

@n
dS

D
Z
R

�r¥ � r§C ¥r2§	dV

The Green first identity (4.61) immediately fol-
lows. This completes the proof. �

A first interesting consequence of the Green
first identity follows when § is harmonic, so that
r2§D 0 in R. In this instance, setting ¥D 1 in
(4.61) gives:

I
S.R/

@§

@n
dS D 0 (4.62)

This equation states that the normal derivative
of a harmonic function averages to zero on the
frontier of the region where it is harmonic. It
also can be shown that if (4.62) holds, then § is
harmonic in R. Therefore, (4.62) is a necessary
and sufficient condition for § to be harmonic in
R. Now let us assume that F is the potential field
associated with §, so that: FD r§. Then, if n is
a versor normal to S(R) we have:

@§

@n
D r§ � n D F � n

Therefore, Eq. (4.62) can be rewritten as fol-
lows:

I
S.R/

F � dS D 0 (4.63)

This equation is often indicated as Gauss’ law.
It says that the normal component of a potential
field averages to zero over the boundary of the

domain where its harmonic potential is defined.
Alternatively, we can say that the flux of a conser-
vative vector field F through the closed boundary
S(R), where its harmonic potential is defined, is
zero.

Applying the divergence theorem to (4.63)
yields the following alternative form of Gauss’
law:

Z
R

r � F dV D 0 (4.64)

Now let us assume that § is harmonic in R
and that §D 0 on S(R). Setting ¥ D § in (4.61)
yields:

Z
R

.r§/2dV D 0

Therefore, r§D 0 in R, thereby, § D const.
The hypothesis that §D 0 on S(R) and the con-
tinuity of § then imply that §D 0 in R. This
proves the important property that if § is har-
monic in R and §D 0 on S(R), then § vanishes
in the whole region R. The following unique-
ness theorem is another corollary of Green’s first
identity.

Corollary 4 (Stokes’ Theorem)
A harmonic function is uniquely determined by its
boundary values.

Proof Let ¥ D ¥(r) and § D §(r) be two
harmonic functions in a closed region R. Let
us also assume that ¥ D § on the boundary
S(R). Clearly, ¥ � § is harmonic in R and it
results ¥ � §D 0 on S(R). Therefore, according
to the previous corollary we must have ¥� §D 0
in R, that is, ¥ D §. This proves that if two
functions coincide on the boundary of R then
they also coincide in R. Therefore, a harmonic
function is uniquely determined by the boundary
values. �

Stokes’ theorem implies that the Dirichlet
boundary-value problem, that is, find a function
that solves Laplace’s equation in the interior
of R given the values on the boundary of this

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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region, admits a unique solution. The following
corollary of Green’s first identity is related to
another boundary-value problem, the Neumann
boundary-value problem, which is to find a
function that solves Laplace’s equation in the
interior of R given the values of the normal
derivatives on the boundary of this region.

Corollary 5
Any function that is harmonic in a region R is
determined, up to an additive constant, by the
values of its normal derivative on the boundary
S(R).

Proof If f D f (r) is harmonic in a closed region
R, then the Green first identity yields:

I
S.R/

f .r/
@f

@n
dS D

Z
R

.rf /2dV

Let ¥ D ¥(r) and § D §(r) be two harmonic
functions in R, such that f (r) D ¥(r) � §(r), and
let us assume that @¥/@n D @§/@n. Then:

Z
R

Œr .¥ � §/�2dV D
I
S.R/

.¥ � §/

�
�
@¥

@n
� @§
@n

�
dS D 0

Therefore, r(¥ � §)D 0 in R and ¥ � § D
const. This proves the theorem. �

The last corollary is a uniqueness theorem for
the mixed boundary-value problem.

Corollary 6
Let § be a harmonic function in a region R, and
let ’, “, and g be continuous functions on S(R),
with ’/“> 0, such that:

’§C “@§
@n
D g (4.65)

on S(R). Then § is uniquely determined in R.

Proof Let ¥ D ¥(r) and § D §(r) be two har-
monic functions in R, such that (4.65) is satisfied
on S(R). Then:

’ .¥ � §/C “
�
@¥

@n
� @§
@n

�
D 0

�
@¥

@n
� @§
@n

�
D �’

“
.¥ � §/

Thus, by the Green first identity we have:

I
S.R/

.¥ � §/
�
@¥

@n
� @§
@n

�
dS D

�
I
S.R/

’

“
.¥ � §/2dS D

Z
R

Œr .¥ � §/�2dV

This identity can be satisfied only if all terms
are zero, because ’/“> 0. Therefore,

I
S.R/

’

“
.¥ � §/2dS D

Z
R

Œr .¥ � §/�2dV D 0

Consequently, ¥D § C const in R and ¥D §
on S(R). By continuity, we must have ¥D § also
in R and the uniqueness is proved. �

Another important set of properties for the
potential arises from the second Green’s identity,
which can be obtained easily from (4.61).

Green’s Second Identity
Let ¥ D ¥(r) and § D §(r) be scalar fields,
defined in a closed region R with boundary S(R).
Then:

I
S.R/

�
¥ .r/

@§

@n
� § .r/ @¥

@n

�
dS

D
Z
R

�
¥ .r/r2§ � § .r/r2¥	dV (4.66)

Proof If we interchange ¥ and § in (4.61) and
subtract the result from this identity, the identity
(4.66) immediately follows. �

As a corollary, when both ¥ and § are har-
monic in R, the second Green’s identity becomes:

I
S.R/

�
¥ .r/

@§

@n
� § .r/ @¥

@n

�
dS D 0 (4.67)



4.7 The Geomagnetic Potential 129

The following theorem, known as the Green’s
third identity, is probably the most important
result for potential functions, in particular for
harmonic fields.

Green’s Third Identity
Let §D§(r) be a scalar field, defined in a closed
region R with boundary S(R), and let P be a fixed
point in R. If r is the distance of any other point
Q 2 R from P, then:

§.P / D � 1

4 

Z
R

1

r
r2§dV C 1

4 

I
S.R/

1

r

@§

@n
dS

� 1

4 

I
S.R/

§
@

@n

�
1

r

�
dS

(4.68)

Proof Let us consider the scalar field ¥D 1/r.
In this instance, the Green’s second identity as-
sumes the form:

I
S.R/

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

D
Z
R

�
1

r
r2§ � §r2

�
1

r

��
dV

We know that r2(1/r)D 0 for any point
Q ¤ P. Therefore, let us consider a small sphere,
†, about P (Fig. 4.20) and the set ED R � †.

In E, the previous identity can be rewritten as
follows:

Z
E

1

r
r2§dV D

I
S.E/

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

D
I
S.R/

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

C
I
†

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

(4.69)

In evaluating the integral over the surface of
†, we must take into account that any surface

Fig. 4.20 Geometry of problem for Green’s third identity

element versor n is directed inwards, because
the sphere itself belongs to the complement of
E. Therefore, for any scalar field f defined on
the surface of †, the directional derivative in
the direction n is the opposite of a directional
derivative in the direction of Q, so that it results:

@f

@n
D �@f

@r

Furthermore, when we integrate over the sur-
face of †, the points Q have a fixed distance r D
R from P, R being the radius of †, and the spatial
average of § over the surface of this sphere is:

h§i† D
1

4 R2

I
†

§dS

Clearly, if we take the limit as R ! 0 of
this expression, we obtain simply §(P). At the
same time, the integral at left-hand side of (4.69)
will be extended to the whole region R. The last
integral at the right-hand side of (4.69) can be
evaluated as follows:

I
†

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

D
I
†

�
�1
r

@§

@r
C § @

@r

�
1

r

��
dS D

D
I
†

�
�1
r

@§

@r
� 1

r2
§

�
dS D

D �4 h§i† �
1

R

I
†

@§

@r
dS
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Therefore, taking the limit as R ! 0 of this
expression, we obtain:

Z
R

1

r
r2§dV D

I
S.R/

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

� 4 §.P /

The Green’s third identity immediately fol-
lows from this identity. �

The Green’s third identity implies that the
potential at any point P has three components:

1. The potential associated with the volume R,
with density �(1/4 r)r2§;

2. A potential associated with the surface S(R),
with density (1/4 r)@§/@n;

3. Another potential associated with the surface
S(R), with density �(1/4 )§@(1/r)/@n.

If § is harmonic, then the volume compo-
nent in (4.68) is zero, and the identity simplifies
to:

§.P / D 1

4 

I
S.R/

�
1

r

@§

@n
� § @

@n

�
1

r

��
dS

(4.70)

This important and surprising result is called
representation formula (e.g., Blakely 1996). It
says that the value of a harmonic function can
be calculated from the values it takes over the
boundary S(R) of the harmonicity region R and
from normal derivatives along the same bound-
ary. However, if we consider any subset E �
R such that P 2 E, this is clearly a region of
harmonicity for §. Therefore, we can use the
boundary values over S(E) to determine §(P) as
well. Therefore, if the Dirichlet boundary value
problem ensures the unicity of a harmonic func-
tion given the boundary values, the converse
is not true, in the sense that we cannot deter-
mine uniquely the boundary values starting from
a known value of § in R. We shall see that
Eq. (4.70) is an invaluable tool for the manipu-
lation of potential field data. An important corol-
lary of Green’s third identity is the following
Gauss’ theorem of the arithmetic mean.

Gauss’ Theorem of the Arithmetic Mean
The value of a harmonic function at a point is
the average of the function over any spherical
neighbor of harmonicity about the point.

Proof Let † be a sphere centered on the point P
2 R. If R is the radius of †, then the representa-
tion formula (4.70) assumes the form:

§.P / D 1

4 R

I
†

@§

@n
dS C 1

4 R2

I
†

§dS

According to the first Green’s identity, the first
integral vanishes. Therefore:

§.P / D 1

4 R2

I
†

§dS D h§i† (4.71)

This identity proves the theorem. �

Gauss’ theorem reveals two key intercon-
nected features of a harmonic function, namely,
the fact that its value at a point coincides with
the average over a spherical neighbor, and the
lack of maxima and minima within the region
of harmonicity. These properties were used in
Sect. 3.3 to find a numerical solution to Laplace’s
equation. In the next section, we shall face
the problem to find an analytic solution to this
equation.

4.8 Spherical Harmonic
Expansion
of the Geomagnetic Field
and the IGRF

In Sect. 3.3, we mentioned the fact that the
scalar magnetic potential V satisfies Laplace’s
Eq. (3.29) in any region R where the current den-
sity is zero (including magnetization currents).
Now we want to find a solution to this equation
for the geomagnetic field. To this purpose, it
is convenient to use spherical coordinates (r, ™,
¥) (see Sect. 2.3) instead of the usual Carte-
sian coordinates (x,y,z), the laws of transforma-
tion between the two systems being given by
Eqs. (2.27) and (2.28).

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 4.21 Base versors for the transformation from
Cartesian to spherical derivatives

To transform Laplace’s equation to spherical
coordinates, it is useful to introduce three or-
thogonal versors,br ,b™, and b¥, which are directed
respectively toward increasing distance from the
origin, increasing colatitude (that is, southward),
and increasing longitude (i.e., eastward) at point
P� (x,y,z) (Fig. 4.21). Our objective is to convert
the Cartesian derivatives of Laplace’s equation
to spherical derivatives, which measure variations
of potential with respect to small increments of r,
™, and ¥.

It is easy to show that the Cartesian com-
ponents of the three versors are given by the
following transformations:

8<
:
br D sin ™ cos¥i C sin ™ sin¥j C cos ™kb™ D cos ™ cos¥i C cos ™ sin¥j � sin ™kb¥ D � sin¥i C cos¥j

(4.72)

To transform the Laplacian operator r2, it is
necessary to find first an expression for the gra-
dient of the potential V in spherical coordinates.
The spatial derivatives @V/@x, @V/@y, and @V/@z
can be transformed using simple chain rules and
transformations (2.27) and (2.28). The resulting
expression for the gradient is:

rV D @V

@r
br C 1

r

@V

@™
b™C 1

r sin ™

@V

@¥
b¥ (4.73)

A formula for the Laplacian can be found
taking into account that r2V Dr�rV. We obtain
the following expression:

r2V D 1

r2
@

@r

�
r2
@V

@r

�
C 1

r2 sin ™

@

@™

�
�

sin ™
@V

@™

�
C 1

r2sin2™

@2V

@¥2
(4.74)

Therefore, the spherical form of Laplace’s
equation can be written as follows:

@

@r

�
r2
@V

@r

�
C 1

sin ™

@

@™

�
sin �

@V

@™

�

C 1

sin2™

@2V

@¥2
D 0 (4.75)

We can solve this equation by separation of
variables. First, let us try the following separation
of the potential into a radial component, R, and a
component depending only from colatitude and
longitude:

V .r; ™; ¥/ D R.r/Y .™; ¥/ (4.76)

Substituting into (4.75) gives:

Y
@

@r

�
r2
@R

@r

�
C R

sin ™

@

@™

�
sin ™

@Y

@™

�

C R

sin2™

@2Y

@¥2
D 0

Hence, dividing both sides by YR:

1

R

d

dr

�
r2
dR

dr

�
D � 1

Y sin ™

@

@™

�
sin ™

@Y

@™

�

� 1

Y sin2™

@2Y

@¥2

(4.77)

where we have substituted partial derivatives at
the left-hand side by ordinary ones, because R

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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depends only from the distance r. This equation
has the form: f (r)D g(™,¥). If we fix latitude and
longitude, the right-hand side of (4.77) does not
change. Therefore, function f must be a constant:
f (r) D k. For reasons that will be clear later, it is
convenient to set k D n(nC 1). In this instance,
taking the left-hand side of (4.77) gives:

1

R

d

dr

�
r2
dR

dr

�
D n .nC 1/

This is an ordinary differential equation,
which can be rewritten as follows:

r2
d 2R

dr2
C 2r dR

dr
� n .nC 1/R.r/ D 0 (4.78)

The solutions of (4.78) have the form:

R.r/ D


rn

r�.nC1/ (4.79)

Therefore, we have two classes of solutions
of Laplace’s equations, one characterized by in-
creasing values of the radial component for in-
creasing distances from the Earth’s center, and
one that decreases with the distance from the
Earth:

V .r; ™; ¥/ D


Ve .r; ™; ¥/ D rnY .™; ¥/
Vi .r; ™; ¥/ D r�.nC1/Y .™; ¥/

(4.80)

The first class of solutions clearly corresponds
to external sources for the geomagnetic poten-
tial (magnetosphere and ionosphere), whereas
the second class arises from the internal sources
(crustal and core). Now let us focus on the right-
hand side of (4.77). We perform further separa-
tion of the variables by assuming that the compo-
nent depending only from colatitude and longi-
tude has the form: Y(™,¥) D T(™)L(¥). Equating
right-hand side of (4.77) to n(nC 1) gives:

1

Y sin ™

@

@™

�
sin ™

@Y

@™

�
C 1

Y sin2™

@2Y

@¥2

D �n .nC 1/

Then,

1

T sin ™

d

d™

�
sin ™

dT

d™

�
C 1

Lsin2™

d2L

d¥2

D �n .nC 1/

where we have substituted total derivatives for
single variable functions T and L with respect to
™ and ¥. Finally,

sin ™

T

d

d™

�
sin ™

dT

d™

�
C n .nC 1/ sin2™

D � 1
L

d2L

d¥2
(4.81)

This equation has the form f (™) D g(¥). If
we fix a longitude ¥, then the right-hand side
of (4.81) does not change. Therefore, function f
must be a constant: f (™) D k. Setting k D m2 and
considering the right-hand side of (4.81) gives:

d2L

d¥2
D �m2L .¥/ (4.82)

This is another ordinary differential equation,
whose solutions have the form:

L.¥/ D



sinm¥
cosm¥

(4.83)

Finally, let us consider the left-hand side of
(4.81). This equation is more complicate:

sin ™

T

d

d™

�
sin ™

dT

d™

�
C n .nC 1/ sin2™ D m2

If we perform the substitution: xD cos™ in this
equation, in a few steps we obtain:

�
1 � x2� d2T

dx2
� 2x dT

dx

C
�
n .nC 1/� m2

1� x2
�
T .x/ D 0 (4.84)

This is the well-known Legendre equation,
whose solutions are the Legendre associate poly-
nomials. In particular, it can be shown that the
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Fig. 4.22 Legendre polynomials for n �5. Note that the x axis scale has been inverted to conform to increasing
colatitudes (from North to South)

parameters n and m, which are called respectively
degree and order of the solution, must be non
negative integers such that m � n. The standard
associate Legendre polynomials are indicated as
Pnm(x). These functions have the form:

T .x/ D Pnm.x/ D .�1/m
�
1 � x2�m=2 dm

dxm
Pn.x/

(4.85)

where the polynomials Pn(x), which are called
simply Legendre polynomials, are defined by the
following Rodrigues’ formula:

Pn.x/ D 1

2nnŠ

dn

dxn

�
x2 � 1�n (4.86)

These polynomials are solutions to the Legen-
dre equation for mD 0:

�
1 � x2� d2T

dx2
� 2x dT

dx
C n .nC 1/ T .x/ D 0

(4.87)

The shape of the first six Legendre poly-
nomials is plotted in Fig. 4.22. We note that
Legendre functions of even degree are symmetric
about the Equator (Pn(x) D Pn(�x)), whereas
they are antisymmetric for n odd (i.e., Pn(x) D

�Pn(�x)). Both the associate and standard Leg-
endre polynomials have specific normalization
properties and satisfy orthogonality conditions.
The normalization of (4.85) and (4.86) is called
Ferrers normalization (Winch et al. 2005). These
functions satisfy the following orthogonality
conditions:

C1Z
�1
Pnm.x/Psm.x/dx D 2

2nC 1
.nCm/Š
.n �m/Š •ns

(4.88)

C1Z
�1
Pn.x/Ps.x/dx D 2

2nC 1•ns (4.89)

where •ns is the Kronecker delta (•ns D 1 for n
D s and zero otherwise). Setting n D s in (4.88)
gives:

C1Z
�1
jPnm.x/j2dx D 2

2nC 1
.nCm/Š
.n �m/Š

Therefore, the root-mean-square magnitudes
of the Legendre polynomials are subject to
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considerable variability when m varies from
0 to n, ranging between [2/(2nC 1)]1/2 and
[2(2n) !/(2nC 1)]1/2. Consequently, if we build
a general solution to Laplace’s equation by
superposition of Legendre polynomials, the
coefficients of the series have a wide range of
values, depending on n and m, to compensate
the variability of the functions Pnm. However,
an expansion in series of Legendre polynomials
would be more informative if the magnitude of
the expansion coefficients reflected the relative
importance of the corresponding polynomial
terms. Therefore, in geomagnetism the Ferrers
normalization is substituted by a different
criterion, which is called Schmidt quasi-
normalization. The new polynomials have the
form:

Pm
n .x/ �

s
2
.n �m/Š
.nCm/ŠPnm.x/ (4.90)

To obtain the general solution to Laplace’s
equation we must first combine particular solu-
tions to Eqs. (4.78) and (4.82) with the normal-
ized Legendre polynomials. Then, the general
solution will be a linear combination of particular
solutions for any value of n and m. A particular
solution for the external field is:

Ve .r; ™; ¥/ D rn



sinm¥
cosm¥


Pm
n .cos ™/ (4.91)

Similarly, for the internal field it results:

Vi .r; ™; ¥/ D r�.nC1/



sinm¥
cosm¥


Pm
n .cos ™/

(4.92)

From here on, we shall focus on the potential
associated with internal sources, which gives the
main contribution to the observed field. This
potential will be called simply V. When taking a
linear combination of particular solutions (4.92),
we must take into account that the solution is
appropriate only where the potential is harmonic.
Therefore, usually the potential is represented
outside a reference sphere of minimum radius, a,
that encloses all the sources. In geomagnetism,

the reference sphere is conventionally chosen to
have a radius equal to the Earth’s mean radius,
ReŠ 6,371 km. Furthermore, the radial distances
are expressed in units of a, and the whole series
is multiplied by the radius a, in order to have the
coefficients expressed in tesla:

V .r; ™; ¥/ D a
1X
nD1

�a
r

�nC1 nX
mD0

�
gmn cosm¥

C hmn sinm¥
	
Pm
n .cos ™/ I r 
 a

(4.93)

The terms within the square brackets, which
depend only from longitude¥, resemble the usual
Fourier’s harmonic series. Multiplied by the Leg-
endre polynomials, they are known as surface
spherical harmonics:

Y mn .™; ¥/ D



cosm¥
sinm¥


Pm
n .cos ™/ (4.94)

These functions are the spherical equivalent of
sines and cosines of the more familiar Fourier’s
harmonic series. It is easy to prove that their rms
magnitude over a sphere of radius r is indepen-
dent from the order m.

Let dS be a surface element on the sphere of
radius r:

dS D r2 sin ™d™d¥ (4.95)

Then, the surface spherical harmonics satisfy
the following orthogonality condition:

1

4 

2 Z
0

d¥

 Z
0

Y mn .™; ¥/ Y
r
s .™; ¥/ sin ™d™

D 1

2nC 1•ns•mr (4.96)

Therefore, the magnitude of the coefficients g
and h in the harmonic expansion (4.93) measures
the strength of the corresponding terms in the
series according to the degree. These coefficients
are called Gauss coefficients, in recognition of the
great contribution of this scientist to the devel-
opment of the spherical harmonic representation.



4.8 Spherical Harmonic Expansion of the Geomagnetic Field and the IGRF 135

In the case of a time-averaged geomagnetic field
(see Sect. 4.3), the series (4.93) is assumed to be
symmetric with respect to the spin axis, so that
the potential does not depend anymore from lon-
gitude. This is made by setting mD 0 in (4.93),
so that at the Earth’s surface we have simply:

V .™/ D a
1X
nD1

g0nPn .cos ™/ (4.97)

A Legendre polynomial Pn has n zeroes be-
tween ™ D 0 and ™ D  . These special surface
harmonics, which depend only from colatitude,
are called zonal harmonics. In the general case,
a surface harmonic Ym

n (™, ¥) vanishes along n-m
parallels of latitude, corresponding to the zeroes
of the m-th order derivative of Pn(™), and it also
has m zeroes at the poles, where the terms (1 –
x2)m/2D sinm™ vanish. Regarding the dependency
from longitude, both cosm¥ and sinm¥ have 2m
zeroes between 0 and 2 . Finally, for n D m
the function Ym

n (™, ¥) has only n zeroes at the
poles and 2n zeroes in longitude. The parallels of
latitude and the meridians along which a surface
harmonic Ym

n (™, ¥) D 0 divide the spherical sur-
face of radius r into a series of tesserae where
the values of the function have alternate signs.
Therefore, when m>0 and n > m these functions
are also called tesseral harmonics. Finally, for n
D m the function Ym

n (™, ¥) divides the spherical
surface of radius r into a series of sectors bounded
by meridians, thereby, we say that Yn

n(™, ¥) is a
sectoral harmonic. Figure 4.23 shows some ex-
amples of zonal, sectoral, and tesseral harmonics.

A key concept in spherical harmonic analy-
sis is that of harmonic wavelength. In standard
Fourier’s analysis, the relative contribution of
the sines and cosines to the series is determined
by their amplitude and wavelength, and a given
set of terms in the series can be related to a
specific physical phenomenon. A similar feature
characterizes spherical harmonics.

In particular, if we consider the surface har-
monics as waves on the surface of a sphere of
radius a, it is possible to define a wavelength œ
as the distance between two successive peaks or
zeroes of Ym

n (™, ¥) and it is quite intuitive that
higher degree harmonics have shorter wavelength

Fig. 4.23 Positive (gray) and negative (white) patches for
some surface harmonics

than the lower ones. Therefore, we can remove
the high-degree terms of a spherical harmonic ex-
pansion to emphasize long-wavelength features
of the field associated with core processes or, al-
ternatively, we could cut off low-degree terms to
enhance short-wavelength features of the crustal
field. To find a precise relationship between har-
monic degree and wavelength, let us consider a
small patch of a sphere with radius a and a local
Cartesian coordinate system (Ÿ,§,—) oriented as
in Fig. 4.21. On the sphere, the surface harmonic
Ym

n (™, ¥) satisfies the equation:

1

sin ™

@

@™

�
sin ™

@Y mn
@™

�
C 1

sin2™

@2Y mn
@¥2

D �n .nC 1/ Y mn .™; ¥/ (4.98)

We want to transform this equation to local
Cartesian coordinates (Ÿ,§,—). To this purpose, we
note that for any function f D f (™,¥):

@f

@™
D @f

@Ÿ

@Ÿ

@™
D a@f

@Ÿ
I @

2f

@™2
D a2 @

2f

@Ÿ2

@f

@¥
D @f

@§

@§

@™
D a sin ™

@f

@§
I @

2f

@¥2
Da2sin2™

@2f

@§2

Furthermore, we observe that the variations of
Ym

n (™,¥) with colatitude occur on a much shorter
scale than sin™. Therefore, the term sin™ at the
left-hand side of (4.98) can be considered as
approximately constant. Consequently, Eq. (4.98)
can be simplified as follows:

@2Y mn
@™2

C 1

sin2™

@2Y mn
@¥2

Š �n .nC 1/ Y mn .™; ¥/
(4.99)
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Fig. 4.24 Wavelength of
spherical harmonics as a
function of degree

Transforming this equation to local coordi-
nates gives:

@2Y mn
@Ÿ2
C @

2Y mn
@§2

Dr2Y mn Š �
n .nC 1/

a2
Y mn .™; ¥/

(4.100)

Therefore, the surface harmonics Ym
n (™,¥)

satisfy the scalar Helmholtz’s equation and
are eigenvectors of the two-dimensional
Laplacian r2D @2/@Ÿ2C @2/@§2 with eigenval-
ues � n(n C 1)/a2. The structure of this equation
clearly suggests a solution that is a combination
of sines and cosines. Therefore, to interpret
the harmonics Ym

n (™,¥) as waves, we try the
following solution:

Y mn .Ÿ; §/ D eik�� (4.101)

where ¡ D (Ÿ,§) and k D (kŸ,k§) is the wave
vector. This function has wavelength œ given by:

œ D 2 

k
D 2 q

k2Ÿ C k2§
(4.102)

Substituting the ansatz (4.101) into (4.100)
gives:

k2 D n .nC 1/
a2

(4.103)

Therefore,

œ D 2 ap
n .nC 1/ Š

2 a

nC 1=2 (4.104)

Equation 4.104 is known as Jeans relation.
It links the wavelength of individual spherical
harmonics to the corresponding degree, indepen-
dently from the order. Figure 4.24 shows a plot of
œ as a function of n. We note that in order to reach
a resolution of �1,000 km it is necessary to have
nD 40.

A 3-D view of the oscillations associated with
surface harmonics is shown in Fig. 4.25. We
stress again the importance of the result that
any function that satisfies Laplace’s equation can
be represented by a sum of spherical harmonics
(Eq. 4.93), which is the spherical analogue of the
classic Fourier series. We shall see soon that this
result furnishes a powerful tool for the parametric
fit to observed data and the creation of global
models of the geomagnetic field.

Let us consider again the magnetic pressure
PmDB2/2�0 (Eq. 4.56). This quantity has di-
mensions Pa D Nm�2 D Jm�3. Therefore, it
represents an energy density for the magnetic
field. In fact, any magnetic field B is generated by
a system of macroscopic or microscopic currents.
These currents must be maintained by some emf
and require a certain amount of work. It is possi-
ble to show that the total work that is necessary
to set up the system of currents that generates a
magnetic field B in a region R is given by:

E D 1

2�0

Z
R

B .r/ �B .r/ dV (4.105)

This is the total energy stored by the magnetic
field in the region R. Now we want to calculate
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Fig. 4.25 Examples of zonal, sectoral, and tesseral surface harmonics, generated using the software utility sph by Phil
McFadden, which can be downloaded at: http://www.ngdc.noaa.gov/geomag/geom_util/sph.shtml

the average magnetic energy density over a
spherical surface of radius a. This is given by:

1

2�0

˝
B2
˛
S.a/
D 1

8 a2�0

I
S.a/

B .r/ �B .r/ dS

D 1

8 a2�0

I
S.a/

rV .r/ � rV .r/ dS

(4.106)

To calculate the integral at the right-hand side
of (4.106), we must rewrite the general solution
(4.93) in terms of surface harmonics. We first set:

Y mn .™; ¥/ D
(
Pm
n .cos ™/ cosm¥I m 
 0
P

jmj
n .cos ™/ sin jmj¥I m < 0

(4.107)

vmn .™; ¥/ D
(
gmn I m 
 0
h

jmj
n I m < 0

(4.108)

Then, the potential can be rewritten as follows:

V .r; ™; ¥/

D a
1X
nD1

CnX
mD�n

�a
r

�nC1
vmn Y

m
n .™; ¥/I r 
 a

(4.109)

The functions Ym
n (™,¥) satisfy not only the

conditions (4.96) but are also subject to additional
conditions of orthogonality for the gradients on
the unit sphere.

They are (Lowes 1966):

1

4 

I
S.1/

rY mn .™; ¥/ � rY rs .™; ¥/ dS

D n .nC 1/
2nC 1 •ns•mr (4.110)

We shall use these relations to evaluate the
integral (4.106). The objective is to find an ex-
pression for the average magnetic energy density
at distance a as a function of the harmonic coef-
ficients. Let us first evaluate the derivatives of the
gradient on a sphere of radius a. We can rewrite
(4.73) as follows:

rV D @V

@r
br C 1

r

@V

@™
b™C 1

r sin ™

@V

@¥
b¥

� @V

@r
br CrsV (4.111)

Then, using (4.109) we have:
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ˇ̌
ˇ̌
rDa
D �a .nC 1/

X
n;m

anC1 1

rnC2

ˇ̌
ˇ̌
rDa
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n D � .nC 1/
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n (4.112)
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X
n;m
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@Y mn
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http://www.ngdc.noaa.gov/geomag/geom_util/sph.shtml
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1

r sin ™

@V

@¥

ˇ̌
ˇ̌
rDa
D 1

sin ™

X
n;m

vmn
@Y mn
@¥

(4.114)

Therefore,

rsV jrDa D
X
n;m

vmn

�
@Y mn
@™

b™C 1

sin ™

@Y mn
@¥

b¥
�

D
X
n;m

vmn rsY mn jrDa (4.115)

Substituting (4.112) and (4.115) into (4.106)
gives:

1

2�0

˝
B2
˛
S.a/
D 1

8 a2�0

X
n;m;s;r

.nC1/.sC1/ vmn vrs

�
I
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Y mn Y
r
s dS C

1

8 a2�0

�
X
n;m;s;r

vmn vrs

I
S.a/

rY mn � rY rs dS

(4.116)

The two integrals at the right-hand side of
(4.116) can be converted to integrals over the unit
sphere by multiplying both terms by a2. Then,
applying the orthogonality conditions (4.96) and
(4.110) we obtain:

1

2�0

˝
B2
˛
S.a/
D 1

2�0

X
n;m

.nC 1/2
2nC 1 jv

m
n j2

C 1

2�0

X
n;m

n .nC 1/
2nC 1 jv

m
n j2

(4.117)

Finally,

˝
B2
˛
S.a/
D
X
n;m

.nC 1/ jvmn j2 (4.118)

This is an important result, which establishes
how the average squared magnitude of the geo-
magnetic field over the reference surface depends
from the various harmonics and wavelengths. Let
us introduce the quantity:

Fig. 4.26 Power spectrum of geomagnetic field accord-
ing to the field model of Cain et al. (1989)

Rn D .nC 1/
CnX

mD�n
jvmn j2

D .nC 1/
nX

mD0

h�
gmn
�2 C �hmn �2

i
(4.119)

By analogy with time domain spectral analy-
sis, a plot of Rn as a function of n can be called
the power spectrum (Lowes 1974). Figure 4.26
shows the power spectrum for the field model
of Cain et al. (1989). We note that the spectrum
breaks into two parts, with a transitional region
from nD 13 to nD 16. An obvious interpretation
of this result is that the two spectra are expres-
sions of distinct sources. In fact, there exists
very strong evidence that the terms from nD 1
to nD 13 are representative of the core field,
whereas the crustal contribution would be limited
to the terms with n>13. However, this separation
of core and crustal terms is not perfect, because
large-scale features of the crustal field are also
contained in the terms from nD 1 to nD 13, just
as short wavelength features of the core field are
included in the n >13 series.

The International Geomagnetic Reference
Field (IGRF) is a geomagnetic field model
representative of core sources, produced and
maintained by a team of modelers under the
auspices of the International Association of
Geomagnetism and Aeronomy (IAGA). It is
based on a least squares parametric regression
of observed data by a truncated version of the
spherical harmonic expansion (4.93). The highest
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Fig. 4.27 Total field
intensity, F, in the IGRF
2010.0 field model (Finlay
et al. 2010). Units are nT

Fig. 4.28 Magnetic
inclination, I, in the IGRF
2010.0 field model (Finlay
et al. 2010). Units are deg

Fig. 4.29 Magnetic
declination, D, in the IGRF
2010.0 field model (Finlay
et al. 2010). Units are deg

degree and order of the spherical harmonics, N,
is chosen so that the coefficients of the model are
reliably determined given the available coverage
and quality of observations. The model can be
used to predict the large scale features of the
internal field. The model is updated at intervals
of 5 years (epochs) to incorporate new data and is
available for the time interval since 1900.0 A.D.
To take into account of the secular variation, the

model also specifies a rate of variation of the
Gauss coefficients within each epoch. In the 11th
generation model, IGRF� 11, N was chosen to
be 10 up to and including epoch 1995.0, and 13
for subsequent epochs, which included excellent
satellite data provided by the Ørsted and CHAMP
satellites (Finlay et al. 2010). The latest IGRF
model is shown in Figs. 4.27, 4.28 and 4.29 (total
field intensity, inclination, and declination). We
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note the presence of a prominent intensity low,
F �23,000 nT, in Argentina (Fig. 4.27), which
is known as South Atlantic anomaly (Heirtzler
2002). This field low is associated with a region
of intense radiation in the space near the Earth,
which causes damage to spacecrafts in low
Earth orbit and is a hazard for astronauts. The
magnetic inclination map (Fig. 4.28) shows a
roughly dipolar trend, especially in the tropical
belt. Conversely, the declination plot of Fig. 4.29
shows a much more complex pattern. Recall that
a pure tilted dipole generates a field with two
agonic lines (contours of zero D) and a single
dip equator (where ID 0). The contour lines of
Fig. 4.29 show three agonic lines: one through
the Americas, one that encompasses Europe,
western Asia, and northeast Africa, and one that
crosses the northwestern Pacific, southeast Asia,
and western Australia.

In the next chapter, we shall see that the IGRF
is an essential tool for the modelling of marine
magnetic anomalies, because it allows to separate
the crustal components of the observed field from
the contribution of the Earth’s core.

Problems

1. Write a computer program to convert from
geographic to geomagnetic coordinates and
vice versa;

2. Determine an expression for the field com-
ponents starting from the spherical harmonic
expansion (4.93);

3. Download the MS Excel worksheet CK-
GTS2004.xls, containing a combined time
scale Cande and Kent (1995) and Gradstein
et al. (2004). Plot the frequency distribution
and the cumulative frequency distribution of
the lengths of polarity intervals. What kind of
distribution results?;

4. Perform a Fourier analysis of the time scale
CK-GTS2004.xls, plotting the power density
as a function of the frequency of inversions;

5. Describe quantitatively the motion of a
charged particle in the auroral zone, where

the magnetic field lines are close to being
vertical and the field intensity increases as
approaching the Earth;

6. How does the ring current influences the
Earth’s magnetic field, assuming that it is
formed by protons concentrated in a thin band
having 1 km2 cross-section at distance rD 4Re

with density npD 4 nA m�2?

References

Blakely RJ (1996) Potential theory in gravity and mag-
netic applications. Cambridge University Press, Cam-
bridge, UK, p 441

Buffet BA (2000) Earth’s core and the geodynamo. Sci-
ence 288:2007–2012. doi:10.1126/science.288.5473.
2007

Butler RF (1992) Paleomagnetism: magnetic domains to
geologic terranes. Blackwell Scientific Publications,
Boston, p 238

Cain JC, Wang Z, Schmitz DR, Meyer J (1989) The
geomagnetic spectrum for 1980 and core-crustal sepa-
ration. Geophys J Int 97(3):443–447

Campbell WH (2003) Introduction to geomagnetic fields,
2nd edn. Cambridge University Press, Cambridge,
p 337

Campbell WH, Schiffmacher ER, Kroehl HW (1989)
Global quiet day field variation model WDCA/SQ1.
Eos Trans AGU 70:66–74

Cande SC, Kent DV (1995) Revised calibration of
the geomagnetic time scale for the late Creta-
ceous and Cenozoic. J Geophys Res 100(B4):
6093–6095

Courtillot V, Le Mouël JL (1988) Time variations of the
earth’s magnetic field-from daily to secular. Annu Rev
Earth Planet Sci 16:389–476

Creel KM (1977) Geomagnetic secular variations during
the last 25 000 years: an interpretation of data obtained
from rapidly deposited sediments. Geophys J R Astron
Soc 48:91–109

Dobson DP, Brodholt JP (2000) The electrical conduc-
tivity and thermal profile of the Earth’s mid-mantle.
Geophys Res Lett 27(15):2325–2328

Elsasser WM (1939) On the origin of the Earth’s magnetic
field. Phys Rev 55:489–498

Finlay CC et al (2010) International geomagnetic
reference field: the eleventh generation. Geophys
J Int 183(3):1216–1230. doi:10.1111/j.1365-246X.
2010.04804.x

Glatzmaier GA, Roberts PH (1995) A three-dimensional
convective dynamo solution with rotating and finitely
conducting inner core and mantle. Phys Earth Planet
Inter 91(1):63–75

http://dx.doi.org/10.1126/science.288.5473.2007
http://dx.doi.org/10.1126/science.288.5473.2007
http://dx.doi.org/10.1111/j.1365-246X.2010.04804.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04804.x


References 141

Gradstein FM, Agterberg FP, Ogg JG, Hardenbol
J, van Veen P, Thierry J, Huang Z (1994) A
Mesozoic time scale. J Geophys Res 99(B12):
24 051–24 074

Gradstein FM et al (2004) Geologic time scale 2004.
Cambridge University Press, Cambridge

Hathaway DH (2010) The solar cycle. Living Rev Solar
Phys 7:65

Heirtzler JR (2002) The future of the South At-
lantic anomaly and implications for radiation dam-
age in space. J Atmos Solar-Terr Phys 64(16):
1701–1708

Heirtzler JR, Dickson GO, Herron EM, Pitman WC
III, Le Pichon X (1968) Marine magnetic anoma-
lies, geomagnetic field reversals, and motions of
the ocean floor and continents. J Geophys Res 73:
2119–2136

Hitchman AP, Lilley FEM, Campbell WH (1998)
The quiet daily variation in the total magnetic
field: global curves. Geophys Res Lett 25(11):
2007–2010

Korhonen JV et al (2007) Magnetic anomaly map of the
World (and associated DVD), scale: 1:50,000,000, 1st
edn. Commission for the Geological Map of the World,
Paris

Lowes FJ (1966) Mean-square values on sphere of spheri-
cal harmonic vector fields. J Geophys Res 71(8):2179.
doi:10.1029/JZ071i008p02179

Lowes FJ (1974) Spatial power spectrum of the main geo-
magnetic field, and extrapolation to the core. Geophys
J Roy Astron Soc 36(3):717–730

Lowrie W, Alvarez W (1977) Upper Cretaceous-
Paleocene magnetic stratigraphy at Gubbio, Italy, III.
Upper Cretaceous magnetic stratigraphy. Geol Soc Am
Bull 88:374–377

Malin SRC, Bullard E (1981) The direction of the Earth’s
magnetic field at London, 1570–1975. Philos Trans R
Soc London, Ser A 299(1450):357–423

Mankinen EA, Dalrymple GB (1979) Revised geomag-
netic polarity time scale for the interval 0–5 m.y. B.P.
J Geophys Res 84(B2):615–626

Maus S, Rother M, Hemant K, Stolle C, Lühr H, Ku-
vshinov A, Olsen N (2006) Earth’s lithospheric mag-
netic field determined to spherical harmonic degree 90
from CHAMP satellite measurements. Geophys J Int
164(2):319–330

McElhinny MW, McFadden PL (2000) Paleomag-
netism: continents and oceans. Academic, San Diego,
p 382

McElhinny MW, McFadden PL, Merrill RT (1996) The
time-averaged paleomagnetic field 0–5 Ma. J Geophys
Res 101(B11):25007–25027

Merrill RT, McFadden PL (2003) The geomagnetic ax-
ial dipole field assumption. Phys Earth Planet Inter
139(3):171–185

Schunk RW, Nagy AF (2009) Ionospheres, 2nd edn.
Cambridge University Press, Cambridge, p 628

Tivey MA (1996) Vertical magnetic structure of ocean
crust determined from near-bottom magnetic field
measurements. J Geophys Res 101(B9):20275–20296.
doi:10.1029/96JB01307

Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S
(2003) The extreme magnetic storm of 1–2 September
1859. J Geophys Res 108(A7):1268. doi:10.1029/
2002JA009504

Vine FJ, Matthews DH (1963) Magnetic anomalies over
oceanic ridges. Nature 199:947–949

Wilmot-Smith AL, Priest ER, Hornig G (2005) Magnetic
diffusion and the motion of field lines. Geophys Astro-
phys Fluid Dyn 99(2):177–197

Winch DE, Ivers DJ, Turner JPR, Stening RJ (2005) Ge-
omagnetism and Schmidt quasi-normalization. Geo-
phys J Int 160(2):487–504

Yokoyama N, Kamide Y (1997) Statistical nature
of geomagnetic storms. J Geophys Res 102(A7):
14215–14222

http://dx.doi.org/10.1029/JZ071i008p02179
http://dx.doi.org/10.1029/96JB01307
http://dx.doi.org/10.1029/2002JA009504
http://dx.doi.org/10.1029/2002JA009504


5Marine Magnetic Anomalies

Abstract

This chapter is devoted to the techniques of collecting and analysing
magnetic data on oceanic crust. These data represent the main source for
the determination of global plate motions during the Cenozoic and part of
the Mesozoic. I describe the methods to design magnetic surveys, process
the raw data, and build isochron maps of oceanic regions.

5.1 Magnetic Anomalies

Marine magnetic anomalies represent a
fundamental data component in plate kinematics
studies, as they furnish most of the basic
information that is necessary to unravel the
evolution of the world’s oceanic basins through
the geological time. Vine and Matthews (1963)
were the first to discover that the magnetic
signature of sea-floor spreading is represented by
long stripes having alternate polarity of crustal
magnetization. Starting from this pioneer work,
the analysis of the magnetic anomaly field across
the world’s oceans has been a formidable tool
for the study of the spreading history along the
oceanic ridges and the determination of global
plate motions. In particular, if we assume that
the highly magnetic 2A layer of the oceanic crust
can be represented by an assembly of long prisms
having uniform remnant magnetization, then
the boundaries between adjacent blocks having
opposite directions of magnetization (normal
or reversed) are magnetic lineations that can
be combined with fracture zone trends to form

magnetic isochrons. These lines are used in turn
in the determination of the finite reconstruction
(Euler) poles that describe the relative position of
two plates in the geologic past (e.g., Klitgord and
Schouten 1986; Matias et al. 2005).

In Chap. 4, we have seen that the observed
magnetic field at a location r near the Earth’s
surface at time t, T D T(r,t), results from the
superposition of three basic component fields.
The main contribution comes from the core field,
F D F(r,t), whose model is represented by an
IGRF for the corresponding epoch. This field
varies from being horizontal with magnitude
�30,000 nT near the Equator to vertical and with
magnitude �60,000 nT near the poles; the root
mean square (rms) magnitude of the field vector
over the Earth’s surface is �45,000 nT. This field
also varies in time, on a timescale of months and
longer, as a consequence of the secular variation,
which is on average �80 nT/year. The second
contribution is the generally small external field
S D S(r,t), associated with solar and ionosphere
activity and with currents induced in the crust,
which has variable magnitude. In favourable
conditions, the Sq variations determine changes
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having primarily frequencies of 24, 12, 8, and 6 h
and amplitudes of only a few tens nT. However,
we have seen that the external contribution to
the geomagnetic field can reach 1,000 nT during
magnetic storms. Finally, the third important con-
tribution to the total magnetic field is represented
by an “anomalous” field�FD�F(r,t) (intended
as perturbation of the main core field) associated
with the remnant and induced magnetizations of
crustal rocks. This field can be considered as a
time independent field when the main component
of magnetization is the remnant magnetization,
a condition which is generally met by oceanic
basalts (see Table 3.1). Therefore, the total
magnetic field vector that is observed at the
Earth’s surface can be written as follows:

T .r ; t/ D F .r; t/C S .r ; t/C�F .r/ (5.1)

A total field magnetic anomaly is calculated
from scalar field measurements by subtracting
the reference core field, usually an IGRF, and
eventually applying a diurnal correction, which
removes those components of the measured field
associated with solar and ionospheric activity.
Let T D T(r,t) be the observed magnitude of
total field at location r and time t, which can be
obtained by a scalar magnetometer survey. Let
F D F(r,t) be the IGRF field at the same point
and time. Finally, let us assume that an estimate
of the external contribution to the magnitude of
the observed field, that is a diurnal correction
�S D �S(r,t), is available. Then the total field
anomaly is defined as:

�T .r ; t/ D T .r; t/ � F .r ; t/ ��S .r; t/
(5.2)

In the next section, we shall see that an esti-
mation of the external components in Eq. (5.2)
can be performed using nearby magnetic obser-
vatory data and/or a special design of the survey
tracks. Unfortunately, most oceanic surveys are
performed far away from magnetic observatories,
and the ship-track design generally must satisfy
the requirements of other kinds of geophysi-
cal measurement. Therefore, the calculation of
marine magnetic anomalies is often performed by
simple subtraction of the reference field from the

Fig. 5.1 Relationship between main (core) field F, ob-
served field T, and anomalous field �F in the definition
of magnetic anomalies

observed data. Now we want to give a physical
significance to the expression (5.2). To this pur-
pose, we note that the field �F in (5.1) can be
considered as a small perturbation to the main
reference field, caused by the magnetization of
crustal rocks. In fact, ignoring the external con-
tribution, the average magnitude of the observed
field is �45,000 nT, whereas crustal field mag-
nitudes in the oceans generally do not exceed
500 nT.

Following Blakely (1996), we also observe
that the total field anomaly �T defined in (5.2)
is not equivalent to the magnitude of the anoma-
lous field, �F, because �T D jFC�Fj � jFj
¤�F, as illustrated in Fig. 5.1. However, for
F<< jFj we can write:

�T D jF C�F j � jF j
Š pF � F C 2F ��F � jF j

D F
r
1C 2F ��F

F � F � F Š

ŠF
�
1CF ��F

F � F
�
�F DF F ��F

F � F D bF ��F

(5.3)

Therefore, a total field anomaly �T
approximately coincides with the projection
of the anomalous field �F onto the reference
field axis. In other words, �T approximates
the component of the field generated by the
crustal sources in the direction of the regional
field. Typical total field oceanic anomalies range
from a few nT to thousands of nT, with an rms
value of 200–300 nT. Therefore, the condition
jFj>>�F is usually met. Note that in general

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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�T is not a function of the position only, even
if we consider �F as a time independent vector
quantity, because it is obtained by projecting�F
onto a time-varying field direction.

Magnetic anomalies are scalar fields that can
be considered as harmonic functions under some
simplifying assumptions. In general, the expres-
sion (5.2) does not warrant the harmonicity of�T
in any region. However, if bF is approximately
constant over the survey area, then taking the
Laplacian of (5.3) gives:

r2�T D bF � r2�F D 0 (5.4)

In fact, the components of the crustal field
�F are harmonic functions. Therefore, under
the assumptions that �F<< jFj and that bF is
approximately constant over the survey area, a
magnetic anomaly field can be considered as a
harmonic function.

5.2 Acquisition and
Pre-processing of Raw
Magnetic Data

The acquisition of magnetic data that can be used
in studies of crustal magnetization, in particular
in plate tectonics, is done mainly through scalar

magnetometers, measurements devices that fur-
nish the magnitude of the ambient magnetic field.
Today there are essentially three kinds of scalar
magnetometers: proton precession magnetome-
ters, Overhauser effect magnetometers, and cae-
sium vapor magnetometers. Proton precession
magnetometers are commonly used in land-based
magnetic surveys. The operation of these mea-
suring devices is based on the Larmor preces-
sion of magnetic moments in an external field
(see Sect. 3.2). However, differently from the
example of Fig. 3.5, in this case the elementary
magnetic moments are that of hydrogen nuclei
(i.e., protons). Therefore, basically a proton pre-
cession magnetometer is formed by a cylindrical
container (bottle) filled with a liquid rich in hy-
drogen atoms. The bottle is surrounded by a coil,
as shown in Fig. 5.2.

The liquid in the bottle can be distilled water,
kerosene, alcohol, or any other hydrocarbon
fluid rich in hydrogen atoms. The measurement
proceeds in two steps. During phase 1, a DC
current is delivered by a battery through the
circuit, generating a relatively strong magnetic
field B in the solenoid. This field causes the
dipole moments to align with the solenoid axis
in the direction of B. The objective of this
polarization is to start a coherent precession
of the protons about the external field T and

Fig. 5.2 Operation of proton precession magnetometers.
During phase 1, the current flowing through the coil
generates a strong magnetic field B in the bottle, which de-
termines the alignment of atomic spins. When the circuit
is open (phase 2), the magnetic moments start precessing
about the ambient geomagnetic field T. The Larmor pre-

cession frequency (Eq.3.20) depends from atomic param-
eters and the field strength T. This precession induces a
small alternating current in the coil, with frequency equal
to the Larmor frequency of precession, which is measured
through the frequency counter. Finally, the field intensity
T is calculated scaling the observed Larmor frequency

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
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generate a measurable alternate current at the
Larmor frequency. Therefore, after a small time
interval (�1 s), in phase 2 the DC power supply is
switched off. The torque exerted by the external
field determines now a precession of the magnetic
moments about the field direction, with a Larmor
frequency that is proportional to the strength
of the total field (�2 kHz). This produces a
weak rotating magnetic field that induces a small
alternate current through the circuit. This current
decays exponentially with a time constant of a
few seconds. Therefore, it is promptly amplified
and sent to a digital counter, which furnishes a
signal frequency proportional to the geomagnetic
field intensity. The main disadvantage of proton
precession magnetometers is represented by their
sensitivity to the orientation of the external field.
For example, if the polarizing field B has the
same direction as T, then no precession will occur
and the induced current will be zero. In general,
the induced signal strength is proportional
to the sine of the angle between the Earth’s
magnetic field and the axis of the solenoid. An
improvement with respect to the basic design
illustrated in Fig. 5.2 can be obtained using
toroidal cores instead of linear solenoids. The
accuracy of this kind of magnetometers can reach
0.5 nT.

Overhauser effect magnetometers are an im-
proved class of proton precession magnetome-
ters. The bottle liquid of these sensors contains a
chemical additive formed by free radicals, which
allows a different method of polarization. In this
approach, the spins of unbound electron of the
free radicals are polarized through a low-power
radiofrequency electromagnetic field. Then, the
polarization of electrons is spontaneously trans-
ferred to the protons in the liquid via a nuclear
magnetic resonance phenomenon known as Over-
hauser effect. This method allows to reduce the
required power supply by one order of magnitude
and to increase the sensitivity by two orders
of magnitude. An Overhauser magnetometer is
capable to perform readings with a 0.01–0.02 nT
standard deviation while sampling once per sec-
ond. This kind of magnetometer is widely used
in marine geophysics and is installed at several

Fig. 5.3 The G-882 marine magnetometer (Picture cour-
tesy of Geometrics)

magnetic observatories. It was also used on the
Ørsted and CHAMP satellites.

The state-of-art technology in scalar magne-
tometers is undoubtedly represented by alkali
atoms (e.g., helium, caesium) vapor sensors. In
these devices, polarized laser light is transmitted
through a glass cell containing a vapor of the
alkaline substance. Again, the idea is to create
an initial alignment of spins, which then precess
about the external field axis. The sensitivity of
these devices can be as high as 0.002 nT at
1 s sample rate. Figure 5.3 shows an example
of caesium vapor magnetometer used in marine
geophysics.

The importance of oceanic magnetic surveys
for plate kinematics has been repeatedly
emphasized in the previous chapters. However,
plate tectonic modelling also relies on structural
information collected along continental margins
and continental plate boundaries. In these
areas, even small-scale land surveys can help
the identification of geological structures.
Ground-based magnetic surveys usually require
one or two proton precession or Overhauser
magnetometers. Data are acquired walking across
a rectangular grid pattern and taking readings
at more or less equally spaced grid nodes
(called stations). The average spacing of stations
depends from the wavelength of the anomalies
that must be mapped and ranges from less than
1–10 m. To remove the diurnal variations from
the signal, it is possible to use a second sensor,
which is called base-station magnetometer. This
is kept fixed at a nearby location, in order to
record geomagnetic field variations associated
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Fig. 5.4 Example of
marine or aeromagnetic
survey pattern (black line),
formed by 12 survey lines,
Li, and 3 tie lines, Rk.
Crossover points, Cik, are
shown as black dots

exclusively with ionospheric and magnetospheric
activity. In fact, at the time scale of a magnetic
survey (a few days) secular variations can
be neglected. Alternatively, if a magnetic
observatory exists at reasonable distance (within
a few tens km), it is possible to use the total
field intensity magnetogram of that station to
perform the diurnal correction. These data can be
easily downloaded from the Intermagnet network
at http://www.intermagnet.org. The procedure
is simple. Let T0 D T0(t) be a base-station
magnetogram with 1 s sampling rate and Tk

D T(rk,tk) the observed total field intensities at
locations rk at times tk (k D 1,2, : : : ,n). Then, the
sequence corrected for external field variations
can be obtained applying the transformation:

Tk ! Tk � ŒT0 .tk/ � T0 .t1/� � Tk ��T0 .tk/ I
k D 1; 2; : : : ; n (5.5)

This procedure can be also applied to aero-
magnetic surveys on continental regions. It only
requires a series of base-station magnetometers
placed at fixed locations in the survey area. In
absence of these additional magnetometers, or
in the case of oceanic surveys far away from
continental margins, a different procedure must
be used. In this instance, the track line is formed
by a series of survey lines, which are oriented

according to geological considerations, and some
transverse tie lines (Fig. 5.4).

The idea is to have duplicate measurements at
some stations, which are called crossover points.
A crossover point is placed at the intersection
between a survey line and a tie line. The differ-
ence between the two readings gives information
about the diurnal variations of the geomagnetic
field, as we shall see in the next section. In this
instance, the correction for external field daily
variations requires a special algorithm, and the
pre-processing of raw data will consist essentially
into the removal of spikes, either manually or
through a filtering procedure, and into the paral-
lax correction, which adjusts the data coordinates
to take into account for the sensor offset relative
to the ship (or to the airplane).

Although most modern marine magnetic
surveys are made using the criteria described
above, many “historical” surveys across the
World’s oceans, made during the 1960s and
1970s, are simply long ship tracks that cross
the oceanic basins from one continental margin
to the opposite margin. In some cases these data
were taken during magnetic storms, and there is
no way to remove the contribution of the external
fields. Therefore, it is necessary to be cautious
when using these data in plate kinematics. The
minimum pre-processing work consists into a
recalculation of the magnetic anomalies, starting

http://www.intermagnet.org
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from the observed total intensity data, on the
basis of a definitive version of the IGRF for the
survey epoch (that is, a DGRF).

5.3 Levelling Techniques

The procedure of normalization of ship-track or
aeromagnetic data according to the information
given by a set of crossover points is called level-
ling. The objective of this technique is to reduce
systematically the intersection errors (difference
between two readings) at crossover points. This
is made through an iterative algorithm that dis-
tributes the errors between tie lines and survey
lines (Luyendyk 1997). Although in origin the
method was developed as an alternative to the
use of base station data (Yarger et al. 1978;
Nabighian et al. 2005), today it is commonly used
even after the application of base-station diurnal
corrections, in conjunction with a survey track
design that includes tie lines. In fact, in absence
of levelling magnetic anomaly maps often show
small long wavelength artifacts aligned with the
survey lines that can be misleading during the
phase of structural interpretation. The application
of a levelling procedure is important for the
production of reliable magnetic anomaly maps,
especially in regions of severe space weather con-
ditions at high latitudes, where diurnal variations
may be as high as 100 nT (Mauring et al. 2002).

The basic idea behind levelling is that the
crossover errors, "ki, form a time sequence of
data that can be used to estimate the diurnal
drift function through a regression procedure.
Although several algorithms have been designed
for the levelling of magnetic data, here we
are going to describe two simple methods
that are widespread in the applied geophysics
community: (1) Polynomial fitting of crossover
errors, and (2) Median filtering. A procedure
of polynomial fitting starts with a zero-order
levelling step. Let <">k be the average crossover
error along tie line Rk (see Fig. 5.4):

h©ik D
1

n

nX
iD1

©ki (5.6)

where n is the number of survey lines. Then,
for each point rj on the tie line Rk, if T is
the observed magnetic field intensity, then the
following transformation is performed:

T
�
rj
�! T

�
rj
� � h©ik (5.7)

This transformation is applied to the observed
field values of all tie lines. Then, the crossover
errors are updated using the new tie line magnetic
intensities. The procedure is now repeated for
the survey lines Li. If there are m tie lines, then
we set:

h"ii D
1

m

mX
kD1

"ki (5.8)

In this case, for each point rs on the survey line
Li, the following transformation is performed:

T .r s/! T .r s/ � h©ii (5.9)

These transformations do not introduce distor-
tions in the data set, because they simply offset
the tie lines or the survey lines. However, the
resulting data set is not perfectly levelled and
an output magnetic anomaly map would show
narrow bands aligned as the survey lines. There-
fore, usually a high-order levelling procedure is
applied. This consists into a least squares re-
gression of the crossover errors as a time series
functional of the elapsed time through low order
polynomials (the typical order is 1–3). The re-
gression can be applied to tie lines, survey lines,
or to an entire flight. The resulting polynomials,
which are called drift curves, are then subtracted
from the corresponding data set to minimize the
crossover errors. In the simplest case, a levelling
procedure requires three steps (Mauring et al.
2002): (1) levelling the tie lines; (2) update the
crossover errors, and (3) levelling the survey
lines. However, more complex procedures can be
used to obtain better results (e.g., see the proce-
dure described in Appendix 1 of Luyendyk 1997),
and the regression can be also performed using
non-polynomial estimators (Sander and Mrazek
1982). A major problem of polynomial regression
is that for a given order the degree of smoothing
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depends from the number of crossover errors to
be fitted. For example, fitting a second order
function to 5 points will generally produce a
lower smoothing than fitting the same function
to 20 points. Therefore, a direct manual assess-
ment of the required polynomial degree could be
necessary. Alternatively, it should be possible to
use spline regression techniques or other forms of
piecewise low-order polynomials to generate drift
curves.

Levelling by median filtering of crossover
errors is a valid alternative technique to
polynomial fitting (e.g., Mauring et al. 2002).
This approach is especially convenient for the
removal of random noise and does not require
pre-processing procedures such as despiking. A
median filter is a non-linear filter based on the
following algorithm:

Algorithm 5.1: (Median Filtering Algorithm)
Input: A time–ordered sequence of crossover

errors f"k1,"k2, : : : ,"kng; filter size r (r odd)
Output: A median–filtered sequence f"k1; "k2;
: : : ; "kng;

f
1) i 1;
2) if i�br/2cthen set S f"k1, "k1, "k1,
: : : , "k1, "k,i, "k,i C 1, : : : , "k,i C rg(fill miss-
ing values with "k1); jump # 6;

3) if i> n�br/2cthen set S f"ki, "k,i C 1,
: : : , "kn, "kn, "kn, : : : , "kng(fill missing
values with "kn);

4) jump #6;
5) S f"ki,"k,iC1, : : : ,"k,iCrg;
6) ©k;iCr=2 median(S);
7) i i C 1;
8) if i � n – r C 1 then jump #2;

g
In this algorithm, the function median() per-

forms a sorting of the input sequence, then it
returns the median of the resulting distribution
of values. The algorithm uses a running win-
dow of size r over the input data set, which
is moved from position i D 1 to position i D
n – r C1. Given the group of crossover errors
in the window at position i, it simply replaces
the middle value of the array by the median

value of the group. If i�br/2c, then the set
S cannot be filled with r values whose central
position has index i C r/2, thereby, the set is
filled with a series of "k1. For example, if rD 5
and the data set is represented by the sequence:
f21,5,–8,12,4,–3,10,14, : : :g, then for iD 1 we set
S  f21,21,21,5,–8g, because the set S must
contain five values. A similar procedure is used
at the end of the sequence, for i> n–br/2c. In this
case (at step #3), the set will be completed by a
series of "kn. This algorithm is particularly useful
for removing spikes, although it preserves sharp
edges in the input data set.

The levelling procedure described above gen-
erally produces good results, but small “corru-
gations” aligned as the survey lines may be still
observed on the output magnetic anomaly maps.
In this instance, an additional microlevelling fil-
tering algorithm is applied, which will remove
the residual levelling errors (e.g., Minty 1991;
Mauring and Kihle 2006).

5.4 Modelling of Marine
Magnetic Anomalies

In general, dating the ocean floor, constructing
isochron maps that describe the sea floor spread-
ing history of oceanic basins (Sect. 2.5), and
discovering the plate kinematics of continents
during the geological time, have a common
starting point in the modelling of oceanic crust
magnetization through the identification of
marine magnetic anomalies. Such identification
requires in turn calculation of the “anomalous”
field �F D �F(r) associated with an assumed
distribution of magnetized blocks of oceanic
crust. Then, total field magnetic anomalies are
computed for the survey time and compared with
the observed anomalies. A best match is found
by trial and errors varying the spreading rate
function, hence the width of crustal blocks having
normal or reversed magnetization according to a
geomagnetic polarity time scale (see Sect. 4.4).

Let us consider first the problem of calculating
the gravitational or magnetic field generated by

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.5 Stack of laminae in the Talwani and Ewing’s (1960) method of calculation. See text for explanation

a distribution of mass or (respectively) magne-
tization. The method described here was first
proposed by Talwani and Ewing (1960) and sub-
sequently modified by Won and Bevis (1987)
to improve the computational efficiency. In this
approach, a body is represented by a stack of
infinitely thin laminae and the boundary of each
lamina is approximated by a polygon (Fig. 5.5).
The observation point is placed at the origin of
the reference frame. It is convenient to consider
first the calculation of the gravity field generated
by the mass distribution.

By Newton’s law of gravitation, the potential
V of a mass distribution is given by:

V D G
Z
R

¡ .r/

r
dxdyd z (5.10)

where R is the region containing the mass distri-
bution, ¡D ¡(r) is the local mass density, and G is
the gravitational constant. The gravity associated
with this potential is:

g D rV D G
Z
R

¡ .r/br
r2

dxdyd z (5.11)

We are generally only interested to the vertical
component of gravity, because gravity meters
just measure this quantity. If we indicate this
component by ”, then:

” D @V

@z
D G

Z
R

¡ .x; y; z/ z

.x2 C y2 C z2/3=2
dxdyd z

(5.12)

This equation has the general form:

” D
Z
R

¡ .x; y; z/ § .x; y; z/dxdyd z (5.13)

where the function:

§ .x; y; z/ D G z

.x2 C y2 C z2/3=2
(5.14)

is called a Green’s function. We now assume that
the density is constant within the region R. In this
instance, Eq. (5.12) reduces to:

” D G¡
z2Z
z1

2
64
Z
S.z/

dxdy

.x2 C y2 C z2/3=2

3
75zd z

� G¡
z2Z
z1


.z/zd z (5.15)

where:


.z/ D
Z
S.z/

dxdy

.x2 C y2 C z2/3=2
(5.16)

The integral 
(z) represents a surface integral
over a single horizontal lamina of the body. As
shown in Fig. 5.5, it can be converted into a line
integral around the perimeter of the lamina. In
fact, let (x1,y1) and (x2,y2) be respectively the
points having absolute minimum and maximum
of y within the region S(z). We also assume that
the region S(z) has not relative maxima or minima
for variable y. In this instance, the boundary of
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S(z) can be represented by two functions x D
`1(y) and x D `2(y) connecting (x1,y1) to (x2,y2).
For any function f (x,y) on the surface of the
lamina it results:

Z
S.z/

f .x; y/ dxdy D
y2Z
y1

dy

`2.y/Z
`1.y/

f .x; y/ dx

D
y2Z
y1

dy ŒF .`2.y/; y/� F .`1.y/; y/�

D
I
B.z/

F .x; y/ dy (5.17)

where B(z) is the boundary of S(z). Therefore,
the quantity 
(z) in (5.16) assumes the following
expression:


.z/ D
I
B.z/

x

.y2 C z2/
p
x2 C y2 C z2

dy

(5.18)

This integral can be calculated by approximat-
ing the perimeter B(z) of the lamina through a
polygon having vertices (Ÿ1,—1),(Ÿ2,—2), : : : ,(Ÿn,—n),
as shown in Fig. 5.5. This is equivalent to
approximate the functions `1(y) and `2(y) by
piecewise first-order polynomials. Therefore, the
line integral (5.18) will be converted into a sum
of simple integrals:


.z/ Š
NX
nD1

�nC1Z
�n

x

.y2 C z2/
p
x2 C y2 C z2

dyI

—NC1 � —1 (5.19)

The variable x in this equation can be easily
expressed in terms of y, because the path is
composed by straight line segments:

x D ’ny C “n (5.20)

where:

’n D ŸnC1 � Ÿn
—nC1 � —n I “n D Ÿn � ’n—n (5.21)

Finally, substitution in (5.19) provides:


.z/ Š
NX
nD1

—nC1Z
—n

� .’ny C “n/

.y2 C z2/
q�
’2n C 1

�
y2 C 2’n“ny C “2n C z2

dyI

—NC1 � —1

(5.22)

The solution of these integrals gives:


.z/ Š
NX
nD1

Œarctan�n .ŸnC1; —nC1; z/

�arctan�n .Ÿn; —n; z/� (5.23)

where:

�n .x; y; z/

D z.“ny�’nz2/
xŒ.1C’2n/z2C“2n��.’2nz2C“2n/

p
x2Cy2Cz2

(5.24)

Substituting the solution (5.23) into (5.15)
provides the vertical component of gravity at
the origin. In general, integration over z can be
performed using standard numerical techniques
and should not constitute a problem. The basic
idea of converting a surface integral into a
line integral around the surface boundary also
represents the starting point of the method
proposed by Talwani et al. (1959) for calculating
the gravity anomalies of two-dimensional bodies.
A geological structure having a linear trend, for
example a long horizontal cylinder, generates
linear magnetic or gravity anomalies and can
be modelled by sources, respectively magnetic
or gravitational, that are invariant along the
direction parallel to the long side. In this case
the y axis is often chosen parallel to the invariant
direction (Fig. 5.6), leaving calculations to be
performed only with respect to the x and z
dimensions. We say that the corresponding
problem is two-dimensional. This class of
forward-modelling problems can be solved by
approximating the cross-section of the body by
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Fig. 5.6 Geometry of a
two-dimensional problem

an N-sided polygon, in a way similar to that
illustrated in Fig. 5.5. As the density of a two-
dimensional source does not vary along the

y dimension, we can set: ¡ D ¡(x,z). The
gravitational potential of a linear body such that
illustrated in Fig. 5.6 can be written as:
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0
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0

D G
Z
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¡
�
x

0
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0

� (
lim
a!1 log

aCpr2 C a2
�aCpr2 C a2

)
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0

d z
0

(5.25)

where r �
q
.x � x0/2 C .z� z0/2 and S is the

cross-section of the volume R orthogonal to the
y axis. Clearly, as a ! 1 the limit in (5.25)
diverges, and the potential approaches infinity.
This problem is overcome by changing the

definition of the potential for infinitely extended
bodies. In fact, we note that if a potential V
satisfies (3.28) (or an equivalent equation for
the gravitational field), then V C c also satisfies
this equation for any constant c. Therefore, the

http://dx.doi.org/10.1007/978-3-319-09135-8_3


5.4 Modelling of Marine Magnetic Anomalies 153

potential is defined up to an additive constant.
Generally, this constant is chosen so that V ! 0
as r ! 1. In the case of an infinite body, we
choose the arbitrary additive constant so that
VD 0 at a unit distance from the body (rD 1).
Therefore, the solution (5.25) is changed as
follows:

V .x; 0; z/ D G
Z
S

¡
�
x

0

; z
0

�

�
(
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"
log

aCpr2 C a2
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d z
0

D 2G
Z
S

¡
�
x

0
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0

�
log

1

r
dx

0

d z
0

(5.26)

If we move the observation point to the origin
of the reference frame and assume a constant
density ¡, then the vertical component of gravity
will be given by:

” D �@V
@z
D 2G¡

Z
S

z
0

dx
0

d z
0

x
02 C z02

(5.27)

Integration over x0 yields:

” D 2G¡
z2Z
z1

dz
0

2
4arctan

`2

�
z

0

�
z0
� arctan

`1

�
z

0

�
z0

3
5

D 2G¡
I

B.S/

arctan
x

0

z0
d z

0

(5.28)

where `1 and `2 are function of z0 and B(S) is the
boundary of S. As before, we now approximate
the perimeter of S with an N-sided polygon
having vertices (Ÿ1,—1),(Ÿ2,—2), : : : ,(Ÿn,—n). In this
case, solution (5.28) becomes:

” D 2G¡
NX
nD1

—nC1Z
—n

arctan
x

0

z0
d z

0 I —NC1 D —1

(5.29)

The expression for x0 in terms of z0 is similar
to (5.20). We have:

x
0 D ’nz

0 C “n (5.30)

where ’n and “n are given by (5.21). Finally,
substitution in (5.29) provides:

” D 2G¡
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9>>>>=
>>>>;
I ŸNC1 D Ÿ1I —NC1 D —1

(5.31)

The first two terms in parentheses of summa-
tion give zero after summation. Therefore:

” D 2G¡
NX
nD1
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1C ’2n

2
64log

q
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� arctan
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(5.32)

This solution implies that the gravity of a
body in a two-dimensional problem only depends
upon the coordinates of the vertices of a poly-

gon that approximates its cross-section. Vertex
coordinates (Ÿn,—n) in (5.32) can be replaced by
quantities rn and ™n illustrated in Fig. 5.5. In fact,
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rn D
q
Ÿ2n C —2nI ™n D arctan

—n

Ÿn
(5.33)

In this instance, the solution assumes the fol-
lowing simple form:

” D 2G¡

NX
nD1



“n

1C ’2n

�
log

rnC1
rn

� ’n .™nC1 � ™n/�gI
ŸNC1 D Ÿ1I —NC1 D —1 (5.34)

Therefore, the normal gravity of a two-
dimensional problem depends upon the distances
of the polygon vertices from the observation point
and from the angles of the radii rn with respect to
the horizontal. In computer modelling software,
the angles ™n are calculated through Eq. (5.33) by
calling the atan2() C language library function.
This call may lead to improper evaluation of these
quantities when the observation point is located
between —n and —nC1. Therefore, the following
tests are performed:

if .sgn .—n/ ¤ sgn .—nC1// thenn

if .Ÿn—nC1 < ŸnC1—n and —nC1 
 0/ then ™n

 ™n C 2 I
else if .Ÿn—nC1 > ŸnC1—n and —n
 0/ then ™nC1
 ™nC1 C 2 I

else if .Ÿn—nC1 D ŸnC1—n/ then ”  0Io

if .ŸnD —nD 0 or ŸnC1D —nC1 D 0/ then ” 0I
if
�
Ÿn D ŸnC1

�
then

“n

1C ’2n

�
log

rnC1
rn
� ’n .™nC1 � ™n/

�

 Ÿn log
rnC1
rn

The typical conventions for the calculation of
normal gravity through (5.34) require clockwise
polygons, and a downward directed z axis, as
shown in Fig. 5.6.

Let us come back now to the problem of
calculating the magnetic anomaly generated by
a magnetized 2-dimensional body. This anomaly
can be easily computed by the Poisson’s relation
using the previous expressions for the gravity
potential. Let us consider a body with uniform
magnetization M and mass density ¡. A small
element of the body can be considered as an
elementary magnetic dipole having magnetic mo-
ment m D Mdxdydz. If the observation point is
placed at the origin, then a dipole at location
r generates a small magnetic field dB which is
approximately given by:

dB Š �0

4 

�
3

M � r
r5

r � M

r3

�
dxdyd z (5.35)

where we have used (3.21). Therefore, by (3.28)
the potential dV is given by:

dV Š �0

4 

M � r
r3

dxdyd z

D ��0
4 

M � r
�
1

r

�
dxdyd z (5.36)

Integrating (5.36) over the region R occupied
by the body gives the total magnetic potential V:

V Š �0

4 

Z
R

M � r
r3

dxdyd z

D ��0
4 

M � r
Z
R

�
1

r

�
dxdyd z (5.37)

This formula is similar to expression (5.10) for
the gravitational force of a mass distribution if the
body density is constant. In fact, in this instance
(5.10) gives:

V D G¡
Z
R

1

r
dxdyd z (5.38)

Then,

g D �rV D �G¡r
Z
R

�
1

r

�
dxdyd z (5.39)

Therefore, the magnetic potential of a uni-
formly magnetized body having constant density
can be written as:

http://dx.doi.org/10.1007/978-3-319-09135-8_3
http://dx.doi.org/10.1007/978-3-319-09135-8_3
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Fig. 5.7 Conventions and
geometry of a
two-dimensional problem.
The polygon
approximating the body
cross-section has vertices
vi, which are ordered
clockwise

V D �0

4 G¡
M � g D �0¦

4 G¡
H � g (5.40)

where ¦ is the magnetic susceptivity and H is
the inducing geomagnetic or paleomagnetic field.
This expression is called Poisson’s relation. It
states that the magnetic potential of a uniformly
magnetized body having constant density is pro-
portional to the component of the gravity field in
the direction of magnetization. Therefore, taking
the gradient of Eq. (5.40) we obtain that the
anomalous field of a body in a 2-dimensional
problem can be written as:

�F D rV D �0M

4 G¡

@g

@n
D �0¦H

4 G¡

@g

@n
(5.41)

where n is the direction of induced or remnant
magnetization. This solution implies that unlike
the gravity anomaly, the magnetic anomaly also
depends on the strike of the body, as this affects
the direction of magnetization. Let us assume that
the body magnetization is purely NRM. Let I and
’ be respectively the mean paleomagnetic field
inclination in the survey area, and the strike of the
body measured counterclockwise from the paleo-
magnetic North to the negative y-axis (Fig. 5.7).

The unit vector associated with the magnetiza-
tion direction can be written as:

8<
:
nx D cos I sin ’
ny D cos I cos’
nz D sin I

(5.42)

Therefore, for any scalar field ¥ that is con-
stant in the y direction, the directional derivative
of ¥ along direction n results to be:

@¥

@n
D r¥ � n D @¥

@x
cos I sin ’C @¥

@z
sin I

(5.43)

It is easy to determine the vertical and horizon-
tal components of the anomalous field combining
expressions (5.41) and (5.43). We have:

�Fx D �0M

4 G¡

@gx

@n

D �0M

4 G¡

�
@gx

@x
cos I sin ’C @gx
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(5.44)
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D �0M
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@x
cos I sin ’C @gz

@z
sin I

�

(5.45)

Quantities gz and gx can be calculated respec-
tively using (5.34) (because gz � ”) and a similar
formula for gx. These formulae can be written as
follows:

gx D 2G¡
NX
nD1

XnIgz D 2G¡
NX
nD1

Zn (5.46)
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where,

Xn D “n

1C ’2n
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’n log
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rn
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(5.47)

Zn D “n

1C ’2n
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� ’n .™nC1 � ™n/
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Therefore, substituting these expressions into
(5.44) and (5.45) we have:

�Fx D �0M
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NX
nD1

�
@Xn

@x
cos I sin ’C @Xn

@z
sin I

�

(5.49)
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2 

NX
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@x
cos I sin ’C @Zn

@z
sin I

�

(5.50)

In Sect. 5.1 we have shown that a total field
anomaly can be calculated by projecting the
anomalous field vector �F onto the IGRF field
axis (Eq. 5.3). Let D0 and I0 be respectively the
declination and inclination of the reference field
(Fig. 5.8). The components of the anomalous
field vector �F that are calculated through
(5.49) and (5.50) are expressed in the local
(x,y,z) frame of a prism. In order to combine
the contributions of several blocks through the
superposition principle, we must represent the
anomalous vector components in a common
reference frame. Then, the expected total field
anomaly, �T, associated with the crustal field
�F D �F(r), can be calculated by projecting
the vector �F onto the axis of the present-day
reference field F, which has declination, D0,
and inclination, I0, in the (X,Y,Z) local reference
frame of Fig. 5.8. Therefore, it is convenient
to express the components of the anomalous
magnetic field vectors generated by each block
in the standard (X,Y,Z) coordinate system. Let
“ (0ı � “ <360ı) be the local strike of the y
axis, measured clockwise from the North. As it is
shown below, this quantity is determined by the
local trend of the flow line. Then, the components
of the vector �F in the local frame of reference

Fig. 5.8 Crustal field �F and components of the IGRF
field F in a local frame of reference. Declination D0 is
the angle between the North direction and the horizontal
projection of the field, measured clockwise. The angle be-
tween projection H and the field vector F is the inclination
I0, positive if F is directed downward

can be easily obtained by the following simple
transformation:

8<
:
�FX D �Fx sin “
�FY D ��Fx cos “
�FZ D �Fz

(5.51)

It should be noted that an anomalous field vec-
tor �F does not have y-component in the (x,y,z)
reference frame of a magnetized prism, whereas
it has a non-zero Y-component with respect to the
standard (X,Y,Z) geomagnetic coordinate system.
Therefore, the total field anomaly, �T, at an
observation point r is given by:

�T D�F � bF D bFX�FX C bF Y�FY

C bFZ�FZ D cos I0.�FX cos D0

C�FY sin D0/C�FZ sin I0 (5.52)

Evaluation of derivatives in formulae (5.49)
and (5.50) is simple:
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Furthermore,
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Finally,
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where,

R2 D .ŸnC1 � Ÿn/2 C .—nC1 � —n/2 (5.57)
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Also in this case the evaluation of angles ™n

through the atan2() C library function must take
into account of three special situations.

The first two conditions are the same of the
gravity case, whereas the third one is now,

if (Ÿn D ŸnC1) then f
@Zn

@z
D � P ;

@Zn
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CQI @Xn
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D � .�nC1 � �n/2

R2

� .�nC1 � �n/C P g
The results obtained in this section allow cre-

ating and testing magnetization models of the
oceanic crust. In fact, observation suggests that
the pattern of magnetization in oceanic basins
generally consists of assemblages of long prisms
having uniform remnant magnetization, normal
or reversed, running parallel to the spreading
ridges (Fig. 4.18). These prisms can be approx-
imated by 2-D bodies, for which the previous
solutions allow to determine the resulting crustal
field and the corresponding anomaly at any point.
The size of these blocks in the x direction is not
arbitrary, but depends from the spreading velocity
and the duration of chrons in a geomagnetic po-
larity time scale. In the next section we shall see
the procedures that must be followed to analyse
and interpret the observed magnetic signal.

5.5 Forward Modelling
Procedures

The analysis and interpretation of marine total
field anomalies can be performed using either
forward modelling or inversion techniques (e.g.,
Blakely 1996). A forward modelling algorithm
assumes a “reasonable” initial magnetization pat-
tern of the oceanic crust, which is built starting
from a geomagnetic polarity time scale and a
spreading rate function of time t, v D v(t). Then,
a specialized computer program generates model
anomalies, �T0, that can be compared with the
observed data �T. Generally, the magnetization
pattern is modified in a trial and error procedure
through successive adjustments of the spread-
ing rate function v D v(t), until a good fit of
the model anomalies to the observed data is

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.9 A complex ship
track in the central
Atlantic. In this example,
data along the track
segment A are projected,
together with data from
segments B and C, onto a
projection line (dashed
line) having a fixed strike
with respect to the ridge
axis. The background
image shows gravity
anomalies (Sandwell and
Smith 1997)

obtained. Alternatively, inversion techniques use
the observed anomalies �T to estimate both ge-
ometry and properties of the magnetized bodies
(Bott 1967; Backus and Gilbert 1968; Bott and
Hutton 1970; Parker and Huestis 1974; Parker
1974). In this instance, the processing method
generally requires summation of Fourier trans-
forms of bathymetry and magnetization functions
(Parker 1972).

In general, forward modelling techniques have
been more commonly employed in marine geo-
physics studies, whereas inverse modelling is pre-
dominant in exploration geophysics. The reason
is that inverse models always require a series of
simplifying assumptions that may not adequately
fit the complexity of the sea floor spreading
process. For instance, in the approach of Bott
and Hutton (1970), Parker and Huestis (1974),
and Parker (1974) the magnetization intensity
may only vary horizontally along a traverse. This
prevents the possibility to generate magnetization
models where the prisms have dipping polarity
boundaries as suggested by Tivey (1996). An-
other limitation of the inverse modelling is the
requirement that the direction of magnetization
can only change by C/�180ı. This limitation
does not significantly affect short profiles encom-
passing a few million years of sea floor spreading,
but could introduce significant distortion in the
shape of the model anomalies when the time
interval is longer than a few tens million years.

Now we are going to describe the specific
procedures that are used in the forward modelling
of marine magnetic anomalies. In the following,
we shall assume that the input data set is repre-

sented by a series of ship tracks or aeromagnetic
flight lines from an oceanic basin. For example,
the National Geophysical Data Center (NGDC)
disseminates such data through the GEODAS
data base. Ship tracks that can be used in plate
kinematics should form an angle between 40 and
140ı with the ridge axis, because outside this
range it would be hard to identify correctly the
anomalies. Therefore, the first step is to select
the tracks (or track segments) that can be used
in the analysis. An example of ship-track com-
posed by several segments and tie lines is shown
in Fig. 5.9.

The second step is to project the data from one
or more segments (survey lines) onto a projection
line, which can be aligned or not with the local
direction of spreading. In general, the line of
projection will have a unique strike with respect
to the magnetized prisms, whereas a track line
could swing irregularly about a definite direc-
tion. Furthermore, in some cases it is possible to
project different neighboring survey lines onto a
unique line of projection, in order to generate an
averaged magnetic profile, as shown in Fig. 5.9. A
computer program like Magan (Schettino 2012)
uses the local strike of the projection line to
define the profile obliquity angle, §, with respect
to the magnetized prisms, and build a local refer-
ence frame according to the conventions used in
Fig. 5.6. As an example, in Fig. 5.10 the strike of
the magnetized prisms is clearly evidenced by the
pattern of crustal magnetic anomalies, extracted
from the global grid of Korhonen et al. (2007).
Because of spreading obliquity (see Sect. 2.4), in
this example we would have an obliquity angle

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 5.10 Example of determination of the profile obliq-
uity angle §

§ that is greater than 90ı even in the case of a
projection line oriented as the fracture zones,.

Once the data have been projected, it is nec-
essary to assign the position of the origin along
the magnetic profile, which will be the point
with offset zero in age-distance plots. This point
should be placed tentatively along the spreading
ridge (or the extinct ridge) as seen on gravity
anomaly maps. However, it will be adjusted later
to match the observed central anomaly. In order
to start a forward modelling procedure, we must
assume an initial spreading velocity v, which
will be used to build the initial configuration of
the magnetized prisms according to a selected
geomagnetic polarity time scale (see Sect. 4.4).
Very often, the prisms are draped on bathymetry,
with constant height H equal to the assumed
magnetized layer thickness, but it is also possible
to build models that are based on estimates of
the real depth to the basement (excluding the
sedimentary layer).

For each chron in the time scale, a polygon
that approximates the cross-section of the crustal
block that formed during this time interval is
built, with horizontal width wk proportional to the
chron duration:

wk D 1

2
v�Tk (5.60)

where v is the default full spreading rate and
�Tk is the duration (in Myrs) of the k-th chron.
The polygons are assumed to have uniform mag-
netization directed as the average paleomagnetic

field vector during the corresponding chrons. In
plate kinematics, the magnetization direction of
a prism cannot be chosen as coincident with the
present day reference field F, not even when the
data ages encompass the last 2–3 Myrs. In fact,
assuming that the rock magnetization is entirely
of NRM type, even in the case of rocks that
formed during the last polarity chron, the average
magnetization direction would be aligned with
the time-averaged geomagnetic field for the last
0.78 Myrs, which is a GAD field. Therefore,
in this instance the paleomagnetic direction in
(5.49) and (5.50) would be ID 90ı, DD 0ı and
not that of the local IGRF field (i.e., I0 and D0).
These parameters can also be used for rocks of
Pliocene – Pleistocene age, but in general older
crust requires a different approach. In the next
chapter, we shall see that for a tectonic plate that
has been moving around the globe, the NRM
directions of its rocks of various ages can be de-
scribed by a temporal sequence of paleomagnetic
fields whose dipole axes migrate in a regular fash-
ion away from the present day Earth’s spin axis
according to an age progression. This apparent
polar wandering, which is a consequence of plate
motions, must be taken into account in plate kine-
matics modelling, because it determines a corre-
sponding change of paleomagnetic directions in
so far as we move away from a spreading centre.
Let (p1,p2, : : : ,pn) be a sequence of paleopole
positions for one of the two conjugate plates
about a spreading ridge. This sequence furnishes
the apparent orientation of the spin axis (i.e.,
the apparent location of the geographic North
Pole) during each chron in the time scale, as
seen from the reference frame of this plate. In
the next chapter, we shall study in detail these
apparent polar wander paths (APW Paths). For
the moment, it is sufficient to say that we can
easily compute the paleomagnetic inclination and
declination (Ik,Dk) of the NRM vector at any
point along the projection line starting from these
paleopoles. A similar procedure can be used to
determine the inclination and declination (I0

k,D0
k)

for any point on the tract of projection line placed
on the opposite side of the spreading ridge. To
this purpose, it could be necessary to have a
sequence of paleopoles (p0

1,p0
2, : : : ,p0

n) also for

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.11 Local
coordinate system for a
magnetized prism at
location Q along a
projection line. R is the
present ridge axis. (œp ,¥p)
is the palaeopole location
as seen for the prism. ™ is
the paleocolatitude of
point Q

the conjugate plate. However, we shall see soon
that knowledge of just one APW path is sufficient
to calculate the field components.

A declination value can be used, together with
the local strike, “, of the y axis (main axis of the
magnetized prism), to calculate the parameter ’
that appears in (5.49) and (5.50). Assuming that “
is measured clockwise from the North (Fig. 5.11),
with 0ı � “ <360ı, it can be easily shown that in
any case ’ is given by:

’ D D � “C 180ı (5.61)

Let us consider now the oceanic crust that
is created along a ridge segment during a po-
larity chron. At the end of the chron, this is a
crustal block formed by two adjacent prisms with
identical GAD magnetization and strike ’, which
are placed along the opposite flanks of the ridge
segment. Therefore, at this time the two prisms
have the same inclination, I0 D I, which depends

from the paleolatitude of the spreading segment
according to the dipole Eq. (4.49). Clearly, such
identity will hold also in the future, because the
separated blocks can only rotate about vertical
axes and be displaced in so far as sea floor
spreading proceeds. In fact, we know that the two
magnetized prisms will move apart in opposite
directions by a sequence of rotations about stage
poles (see Chap. 2). Unlike the inclination, during
this process the direction of magnetization will
change, and it will change differently for the
two blocks, so that after some million years the
declination D of the two magnetization vectors
will be significantly different. However, it is eas-
ily realized that the strike ’ of the two prisms
with respect to their directions of magnetization
remains invariant, so that if “0 is the modern strike
of the conjugate block and D0 is its declination,
we have:

D
0 D ’C “0 � 180ı (5.62)

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Therefore, in the calculation of the field com-
ponents through (5.49) and (5.50), it is not neces-
sary to know the corresponding sequence of pa-
leopoles (p0

1,p0
2, : : : ,p0

n) for the conjugate plate.
A conjugate pair of magnetized prisms on the
two sides of a spreading ridge has a unique
inclination, I, and a unique paleostrike ’.

The expected magnetic anomaly profile
is built calculating, for a series of equally
spaced locations r along the projection line, the
contribution, �Fk(r), to the total crustal field
from each magnetized prism included in the
model. The individual contribution of a block
is determined through expressions (5.49) and
(5.50). Then, a vector summation of these terms
will give the total anomalous field associated
with the magnetization model. Finally, the local
anomaly is computed by projecting the total field
�F(r) onto the reference field axis (Eq. 5.3). This
procedure is repeated for each point r along the
projection line. The resulting magnetic anomaly
profile can be compared with the observed data
to evaluate if the assumed velocity is appropriate.

In general, the forward modelling of marine
magnetic anomalies requires successive adjust-
ments of the spreading velocity function v D
v(T), and eventually of the magnetization inten-
sity M D M(T), until an acceptable visual match
between model and observed anomalies is ob-
tained. In this trial and error procedure, the inves-
tigator first identifies the characteristic wiggles
associated with the major anomalies (e.g., 2, 2A,
3, 4, 5, : : : ) on the observed profile, then he/she
tries to change the spreading rate v of groups
of chrons to improve the match. According to
(5.60), a change of the spreading velocity vk

during the k-th chron determines a variation of the
horizontal width wk of the corresponding block,
because the time interval �Tk is fixed by the
geomagnetic polarity time scale. A good rule of
thumb is to match a well-known anomaly close
to the profile end through an average constant
velocity v. Then, we select an “easy” anomaly
within the sequence and try to match the corre-
sponding wiggle changing the average velocity
of the lower half to some value v0. This oper-
ation will require an adjustment of the veloc-
ity of the upper half sequence to a new value

v00. Such “divide-et-impera” algorithm can be
repeated iteratively until we obtain a satisfactory
fit of the major anomalies. In general, it is not
recommended to use different velocities for the
sub-chrons of a major chron, because the char-
acteristic shape of the corresponding anomaly
depends precisely upon the relative duration of
the various sub-chrons. Therefore, changing arbi-
trarily the width of the blocks in the model could
lead to a misinterpretation of the anomalies. It is
important to note that the magnetization models
resulting from procedures of forward or inverse
modelling are never unique, because there are
infinitely many block models that generate the
same magnetic signal. When interpreting marine
magnetic anomaly profiles, it is necessary to
take into account that the shape of the major
anomalies mainly depends from the following
factors:
1. The bathymetric profile, which determines the

geometry of magnetized prisms;
2. The presence of sea mounts and other volcanic

features;
3. The present day latitude of the prisms,
4. The paleostrike, ’, of the magnetized blocks;
5. The paleolatitude of the blocks, which deter-

mines their inclination;
6. The present day strike, “, of the magnetized

prisms;
7. The profile obliquity §;
8. The presence of ridge jumps

For example, Fig. 5.12 illustrates the shape of
the magnetic anomalies 1–12 along a N-S profile
at various latitudes (hence, for different values
of the reference field inclination I0). We note
that the profiles that would be observed in the
southern hemisphere are specular with respect
to those observed in the northern hemisphere.
The effect of another important factor influencing
the shape of the magnetic anomalies, which is
the paleo-strike of the spreading ridge, is illus-
trated in Fig. 5.13. While the inclination of the
reference field essentially modifies the ampli-
tude of the anomalies (within the same hemi-
sphere), the paleo-strike, ’, of the magnetized
blocks has a strong effect on the shape. Ridge
jumps and strong spreading asymmetry are other
sources of complexity in the analysis of marine
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Fig. 5.12 Theoretical magnetic anomaly profiles, gener-
ated at a ridge with constant full spreading rate v D 30 mm
year�1, originally located at 40ıN with a paleo–strike
’D 180ı. It is assumed that the present day strike of
the prisms is “D 0ı (so that the ridge has not changed

orientation with respect to the geographic North). The
magnetic signal changes according to the present day
latitude of the prisms, as evidenced by the variation with
the inclination I0 of the ambient geomagnetic field
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Fig. 5.13 Theoretical magnetic anomaly profile, gener-
ated at a ridge with constant full spreading rate v D 30 mm
year�1, originally located at 40ıN with a paleo–strike
’D 135ı. It is assumed that the present day strike of

the prisms is “D 35ı (so that the ridge has not changed
orientation with respect to the geographic North). The
ambient geomagnetic field inclination is I0 D 45ı

magnetic anomalies. The effect of ridge jumps
is to introduce gaps and duplications in the se-
quence of chrons. Figure 5.14 shows an example
of magnetization model distorted by the presence
of a ridge jump, along with the corresponding dis-
continuities in the age progression plot as a func-
tion of the distance from the ridge. The detection
of minor ridge jumps in a real magnetic profile

is not a simple task, especially when the profile
does not encompass both flanks of the spreading
axis.

Therefore, it is good practice to be cautious
when introducing a ridge jump in the block
model: very often a reinterpretation of the
anomalies allows to obtain anyway an acceptable
fit of the data.
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Fig. 5.14 Discontinuities
and duplications of a
magnetization model
caused by ridge jumps. In
this example, an eastward
jump by three blocks
occurred at the end of
chron C3An.1n. In general,
eastward (or northward)
ridge jumps add blocks to
the western (southern) side
and remove a
corresponding number of
prisms from the eastern
(northern) side. The green
dashed lines are
discontinuities. The
age-distance plots show the
predicted crustal age
discontinuities (After
Schettino 2012)

The output of a forward modelling procedure
is a spreading velocity function v D v(T). This
function can be used in turn to determine the
offset of the anomalies along the profile, which is
the first step in the construction of isochron maps.
However, it is important to note that the best-
fitting spreading velocities of a magnetization
model do not necessarily represent true plate
velocities during the corresponding chrons. For
example, when a magnetic profile contains data
from one side only, the resulting velocities may
be anomalously high or low as a consequence of
local spreading asymmetry or undetected ridge
jumps. In Chap. 2, we have mentioned the fact
that the spreading asymmetry may change not
only between two neighbor ridge segments but
also within the same segment (Sect. 2.4). Fur-
thermore, a model where the block associated
with chron Ck has apparent velocity vk on the

eastern flank of a ridge cannot be distinguished
from another representation in which the same
block has been generated with velocity vk/2, but
has been subsequently doubled by a westward
ridge jump. Therefore, in the analysis of magnetic
anomaly profiles that encompass one side only of
a spreading ridge, it is not possible to infer the
real plate velocities from the apparent spreading
rates associated with the block model. In general,
the correct determination of the relative plate
velocities requires a statistical treatment of many
velocity models from the same area, and an an-
alytical procedure of correlation of the magnetic
profiles, in order to determine stage boundaries
and average spreading rates. However, even the
analysis of a single magnetic profile can furnish
an rough estimate of the true spreading rate after
an appropriate statistical treatment. In fact, let
us consider the function x D x(T), which gives

http://dx.doi.org/10.1007/978-3-319-09135-8
http://dx.doi.org/10.1007/978-3-319-09135-8_2


164 5 Marine Magnetic Anomalies

Fig. 5.15 Age-Distance plot illustrating the relation be-
tween the offset, x, of each block included in a magnetiza-
tion model and the corresponding chron upper boundary
age T (small black dots). These points furnish the crustal

age as a function of the distance from the ridge axis. The
black line shows the linear spline regression fit using a
three-stages model. Large black dots are the knots of the
regression curve

the distance x from a spreading centre segment,
where we can find oceanic crust of age T:

x.T / D 1

2

TZ
0

v.t/dt (5.63)

This age-distance function can be easily built
on the basis of the velocity function v D v(T).
A key observation in plate kinematics is that
the function (5.63) can be always approximated
fairly well by a sequence of straight lines, that
is by a first-order piecewise polynomial, in spite
of the apparent full spreading rates variability
through the geological time. As an example,
Fig. 5.15 shows the age-distance plot associated
with a magnetic profile in the central Atlantic.
This plot suggests a change of spreading rate at
anomaly 5, 6, and 13 times, associated with a
change of slope of the regression lines.

Therefore, even the statistical analysis of a
single magnetic profile can furnish an estimate of
the true spreading rate over long time intervals.
In fact, we have mentioned in Sect. 2.7 that a ba-
sic principle of plate kinematics establishes that
the Euler vector describing the relative motion
between two plates is approximately constant for
long time intervals (of the order of tens Myrs) that

we called stages. This principle implies in turn
that the spreading rate along a ridge segment is
approximately constant during a stage, which is
effectively what we observe through the analy-
sis of marine magnetic anomalies. In general, a
rough estimate of the true full spreading rates can
be obtained from the apparent velocity function
v D v(T) through a linear spline regression fit
(Schettino 2012). A better estimate requires the
more complex procedure that will be described in
the next section.

5.6 Construction of Isochron
Maps

Sea floor spreading isochrons are lines formed
by a combination of points with the same age
and fracture zone segments in an oceanic basin.
They can be considered as determinations of the
spreading ridge geometry in the geologic past. If
the ocean is not yet subducting, we always have
two conjugate isochrons for each possible time,
placed on the opposite sides of the spreading
center at a more or less equal distance. Although
in principle we can build isochrons of any age
less than the age of onset of sea floor spreading,
it is common practice to construct isochron maps

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 5.16 Global isochron chart of Royer et al. (1992). Labels are anomaly names of the corresponding isochrons.
Modern plate boundaries and Mesozoic–Cenozoic tectonic elements are also displayed

that only include isochrons at stage boundaries.
For instance, the first digital global compilation
of isochrons from the World’s oceans (Royer
et al. 1992), which led to the well-known age
map of the sea floor of Müller et al. (1997),
included isochrons for only 14 anomalies: 5, 6,
13, 18, 21, 25, 31, 34, M0, M4, M10, M16,
M21, and M25. In that model, the ages of these
anomalies were identified as global synchronous
stage boundaries (see Sect. 2.7), at which sharp
changes of the stage poles occurred. We shall
come back to this point in the next chapter.
Figure 5.16 shows the original isochron chart of
Royer et al. (1992), combined with the global
compilation of tectonic elements of Schettino and
Scotese (2005), some additional isochrons for
the western Mediterranean (Schettino and Turco
2006), and a couple of synthetic (i.e., theoretical)
isochrons for the Canada Basin area (based on
the model of Rowley and Lottes 1988). This map
illustrates the major tectonic features associated
with the evolution of the oceanic basins since
the middle Jurassic, including ridge jumps, ridge
extinctions, changes of the stage pole, subduction
of spreading centers, and the location where the
Pacific plate formed as a small oceanic plate
bounded by three ridges. However, the isochrons

also represent the geometrical expression of a
statistical procedure that allows to determine fi-
nite reconstruction poles starting from locations
of identified magnetic anomalies and fracture
zones.

Now we are going to describe this proce-
dure in detail. The starting point for the con-
struction of isochrons is represented by a com-
bination of ship track magnetic anomalies and
fracture zones. To build a reliable map, it is
necessary to have at least two magnetic profiles
crossing each spreading ridge segment, and a
digitized data set of fracture zones. An exam-
ple of variable data coverage is illustrated in
Fig. 5.17.

The second step consists into the analysis of
the magnetic profiles, according to the proce-
dure illustrated in the previous section. This step
provides, for each profile, a sequence of apparent
spreading velocities, which can be converted into
a series of locations along the projection line.
These locations correspond to the starting offset
of each block in the magnetization model and
are called crossing points or simply crossings.
They specify where a certain anomaly can be
found. Therefore, the set of all crossings corre-
sponding to a given anomaly represents the basic

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 5.17 An example of data coverage for the construc-
tion of isochron maps. Black lines are ship tracks, blue
lines are fracture zones. The spreading center is divided
into 11ridge segments. The coverage is good for segments

1–4, 8, 14, 16, and for fracture zone segments, while it is
incomplete for segment 12 and scarce for segments 5, 6,
and 10

building block for the construction of a sea floor
spreading isochron. To this purpose, we usually
group the crossings according to the side and to
the ridge segment. Further subdivision is made
when a ridge segment has variable strike. The
reason is that we are going to search the finite
reconstruction pole and rotation angle that best
fits the set of all conjugate groups of crossing
and fracture zone lineations, namely, the set of all
groups of crossings or fracture zone points that
are placed on the opposite flanks of a ridge and
are approximately aligned along great circle arcs.
As an example, Fig. 5.18 shows the conjugate
groups of crossings for anomaly 2A relative to
the data set of Fig. 5.17.

Therefore, at the next step we shall perform
a statistical fitting of the magnetic lineations
and the intervening fracture zone segments. This
procedure will be described in the next section.
It furnishes the Euler pole of closure of the
ocean floor younger than the selected anomaly.
Then, we proceed creating two additional sets
of crossings by application of the resulting fi-
nite reconstruction matrix (see Sect. 2.7) to the
eastern groups, and the conjugate matrix to the

western groups. The result is a more dense set of
crossing points that delineates better the magnetic
lineations corresponding to the selected anomaly.
Furthermore, this technique allows to perform a
visual inspection of the goodness of fit. An ex-
ample of this approach is illustrated in Fig. 5.19.
The last step requires tracing the representative
magnetic lineations on one of the two flanks (the
choice is generally arbitrary). These lineations
are prosecuted to intersect the fracture zones,
where they are linked together by intervening
segments of the digitized fracture zones. The
result is a digital isochron. To obtain the conju-
gate isochron, we do not repeat the procedure on
the opposite flank. Instead, we simply rotate the
isochron using the reconstruction matrix deter-
mined during the previous step. This technique
ensures that the two isochrons will match per-
fectly when making plate reconstructions.

The final result of the procedure illustrated
above is represented by a pair of conjugate
isochrons like those shown in Fig. 5.20.
Repeating the steps for older anomalies gives
the complete set of isochrons describing the
evolution of an oceanic basin.

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 5.18 Crossing points for anomaly 2A (blue dots)
in the example of Fig. 5.17. Projection lines, where the
magnetic data of Fig. 5.17 have been projected, are shown
as dotted lines. There are seven conjugate groups of
crossings and five conjugate groups of fracture zone points
that can be used to determine the finite reconstruction

pole and rotation angle at anomaly 2A time (2.58 Ma).
Note that segments with only one crossing on one side
cannot be used in the fitting procedure. Therefore, the
resulting isochron geometry along these segments will be
unconstrained

Fig. 5.19 Complementary data set of crossing points (red dots) for the example of Fig. 5.18
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Fig. 5.20 Sea floor spreading isochrons 2A (green lines) generated by interpolation of complemented crossings for the
example of Fig. 5.19

5.7 Determining Finite Rotations

Now we are going to describe the procedure
for determining the best fit Euler rotation that
matches two conjugate sets of crossings and frac-
ture zone points, along with the associated un-
certainty parameters. Both the crossings obtained
through the analysis of magnetic anomalies and
the points that can be sampled along a fracture
zone are affected by errors. Apart from the case
of mis–interpretation of magnetic anomalies, we
have errors associated with navigation (up to 10–
15 km), errors associated with the mapping of
fracture zone (5–20 km), and an uncertainty rela-
tive to the sampling of fracture zone points within
the zone of gravity anomaly low that character-
izes these features (up to 30 km). For an in-depth
discussion of these errors the reader is referred to
the paper of Kirkwood et al. (1999). The uncer-
tainty in position for crossings and fracture zone
points determines in turn an uncertainty in the ro-
tation parameters, which depends from the length
of the two isochrons and their distance from the
best fit Euler pole (Stock and Molnar 1983).

The most widely used algorithm for determin-
ing the best Euler rotation that matches two data

sets of points sampled along conjugate isochrons
was proposed by Hellinger (1981). It can be de-
scribed as follows. Let us assume that the conju-
gate isochrons can be divided into N lines that are
representative of past spreading ridge segments
and transform faults, as illustrated in Fig. 5.17.
We also assume that these lines have roughly the
geometry of great circle arcs. If a spreading ridge
segment cannot be approximated by a great circle
arc, it is subdivided in smaller segments that
satisfy this assumption. Let pij (iD 1,2, : : : ,N;
jD 1,2, : : : ,ni) be the position versor of a data
point on the i–th segment of one isochron. Sim-
ilarly, let qik (iD 1,2, : : : ,N; kD 1,2, : : : ,mi) be
the position versor of a data point on the i–th
segment of the conjugate isochron. If R is a test
rotation matrix, close to the best fit rotation, then
the points Rqik should approximately match the
corresponding points pij. In this instance, both
the Rqik and the pij should be aligned about a
great circle arc, with a confidence interval not
exceeding the size of the estimated errors of the
data. To calculate the misfit, let us consider the
unit vector wi normal to the i–th great circle arc.
The scalar product wi�pij represents the angular
distance between wi and pij. Therefore, it deter-
mines the distance cij of pij from the i–th great



5.7 Determining Finite Rotations 169

circle arc. When this distance is small we can
write:

cij D  

2
� cos�1 �wi � pij

�

D sin�1 �wi � pij

� Š wi � pij (5.64)

Similarly, the scalar product between Rqik and
w will give the approximate distance dij of Rqik

from the same great circle arc. Now let us as-
sume that these points have respectively standard
deviations � ij and Q�ik . Then, the maximum–
likelihood estimator of the misfit can be written
as follows:

�2 D
NX
iD1

2
4 niX
jD1

�
wi � pij

�2
¢2ij

C
miX
kD1

.wi �Rqik/
2

Q¢2ik

3
5

(5.65)

Keeping fixed the Euler pole associated with
R, the angle of rotation that minimizes �2 is
found iteratively searching in a neighborhood of
the rotation angle � associated with R. From
(2.18) we see that this angle can be calculated
easily from the trace of R:

� D cos�1
�
T r .R/ � 1

2

�
(5.66)

At the next step, Hellinger’s algorithm
requires calculation of �2 and the corresponding
best fit rotation angle for eight Euler poles
that lie on the border of a spherical rectangle
having edges of 0.5ı and centered at the initial
pole. The Euler pole that gives the minimum
misfit is selected as the new starting point, if
�2 is less than the misfit of the initial pole.
Otherwise, the size of the rectangle is halved. The
previous steps are repeated until the size of the
rectangle drops below the acceptable precision.
An improved version of this algorithm can be
built considering that a fracture zone segment is
better approximated by a small circle arc about
the current Euler pole (Matias et al. 2005). Let e
be the Euler pole associated with R. If the i–th
set of points is a fracture zone segment, then the
average angular distance from e is:

h™i i D 1

ni

niX
jD1

cos�1 �pij � e
�

C 1

mi

miX
kD1

cos�1 .Rqik � e/ (5.67)

Therefore, taking the small circle arc with
distance <™i> as the estimated best fit fracture
zone segment, then the misfit is expressed by the
following functional:

�2i D
1

ni

niX
jD1

�h™i i � cos�1 �pij � e
�	2

C 1

mi

miX
kD1

�h™i i � cos�1 .Rqik � e/
	2

(5.68)

In the approach of Hellinger (1981), any rota-
tion matrix R (or Euler pole e and rotation angle
�) such that the total misfit does not exceed the
average variance of the data is acceptable. The
set of all Euler poles and rotation angles that are
acceptable on the basis of this criterion furnish
the confidence limits of the reconstruction. A
more rigorous study of the statistical properties
of the Hellinger solution has been performed
by T. Chang and described in a series of pa-
pers (e.g., Chang 1993). Here we are going to
illustrate the more intuitive, although heuristic,
approach of Stock and Molnar (1983). These
authors considered the problem of determining
how the distribution of the data influences the
confidence limits of the Euler pole location and
the rotation angle. To this purpose, they perturbed
the best fitting rotated data set fRqikg through
small additional rotations that were called partial
uncertainty rotations (PURs). These PURs cor-
respond to three standard ways to distort a best
fitting configuration introducing a known amount
of misfit (Fig. 5.21).

The PURs can be combined to estimate the
uncertainty associated with the best fit Euler ro-
tation. Let " and L be respectively the maximum
allowed angular misfit of the data points along the
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Fig. 5.21 Partial uncertainty rotations (b–d) about an
ideal best fit reconstruction (a). In (b) a skewed fit is
generated by a small rotation about the isochron “center”
a1. Another way to introduce a distortion is through a
small rotation about the versor a2, which is orthogonal to
a1 (c). This rotation generates a mismatch of the fracture

zone segments, while leaving the crossings on the correct
great circles. Finally, we can distort the fit by a small
rotation about axis a3 (d), which is orthogonal to both
a1 and a2. In this case, a mismatch of the crossings is
generated while leaving the fracture zone points on the
correct segments

reconstructed pair of isochrons and the total an-
gular length of the spreading segments. It is easy
to prove that the length L determines the rotation
angle, •�1, for the skewed fit PUR. In fact, let
us consider a spherical triangle with two sides of
length L/2 and one side of length ". Applying the
spherical cosine law to this triangle, we have that
cos "D cos2(L/2)C sin2(L/2)cos(•�1).

Therefore, in order to have a maximum mis-
match " at distance L/2 from the isochron center,
the angle •�1 must be given by:

•�1 D cos�1
�

cos © � cos2L=2

sin2L=2

�
(5.69)

In the case of PURs associated with mis-
matched fracture zones or crossings, the distance
of the isochron center from the corresponding
pole is 90ı. Therefore, the rotation angles •�2

and •�3 that introduce a maximum mismatch "
are:

•�2 D •�3 D © (5.70)

We see that the PUR angle •�1 not only
depends from the maximum allowed mismatch
", but it also depends from the isochron size L.
For each of the three PURs, the rotation angle
•�k can be either positive or negative. Therefore,
we have six end–member rotations that define a

roughly ellipsoidal uncertainty region about the
best fit triple (œe,¥e,�), (œe,¥e) being the Euler
pole coordinates and � being the best fit rota-
tion angle. The end–member rotations associated
with skewed fits and mismatched fracture zones
will determine the uncertainty of the Euler pole
location (œe,¥e), while the end–member rotations
associated with mismatched crossings will deter-
mine the uncertainty in the rotation angle �. In
summary, we can use Hellinger ‘s algorithm to
determine the best fit rotation that matches two
conjugate data set of crossings and fracture zone
points. Then, assuming an a priori uncertainty of
the data, we can calculate a confidence region for
the best fit rotation R multiplying this matrix by
the six end–member rotations associated with the
PURs.

5.8 Data Transformations

One of the most useful tools for the analysis of
potential field data is the Fourier transform. In
the context of potential field geophysics, this tool
is used to map real functions of spatial variables
(x,y,z) into complex functions of a wave vector k.
The reason to perform this transformation is that
many complex operations, such as the so-called
upward continuation, are simple linear transfor-
mations in the space of wave vectors. Let f D f (x)
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be a real continuous non-periodic function of
variable x, such that f (x)! 0 as x!˙1.

The Fourier transform of f is a complex func-
tion of a real parameter k, defined as follows:

F.k/ D
C1Z
�1
f .x/e�ikxdx (5.71)

The variable k in (5.71) is called wavenumber
and has units of m�1. It is related to the wave-
length œ by the following relation (see Sect. 4.8):

k D 2�

œ
(5.72)

Being a complex function, on the basis of
Euler’s formula F can be written in the form:

F.k/ D jF.k/j ei‚.k/ (5.73)

where the functions jF(k)jand‚(k) are called re-
spectively amplitude and phase. The key feature
of Fourier transforms is that always exists an
inverse Fourier transform that allows to go back
from the Fourier wavenumber domain to the
space domain:

f .x/ D 1

2 

C1Z
�1
F.k/eikxdk (5.74)

Therefore, the basic idea in Fourier–domain
modelling is to simplify complex operations by
application of the Fourier transform, then going
back to the space domain through an inverse
transformation. In the case of multivariate func-
tions, the Fourier transform defines a complex
function of a wavevector k, thereby, the transfor-
mation and its inverse assume the form:

F .k/ D
C1Z
�1

C1Z
�1

C1Z
�1
f .r/ e�ik�rdxdyd z (5.75)

f .r/ D 1

.2 /3

C1Z
�1

C1Z
�1

C1Z
�1
F .k/ eik�rdkxdkydkz

(5.76)

The Fourier transformation F [f ] of a real
function has the basic properties listed below:
1. Symmetry. Re(F) is a symmetric function,

Im(F) is antisymmetric:

Re .F .–k// D Re .F.k// I Im .F .–k//
D –Im .F.k// (5.77)

2. Linearity. For any pair of constants a and b,
if f and g are real continuous non–periodic
functions of x, then:

F Œaf C bg� D aF Œf �C bF Œg� (5.78)

3. Scaling. For an arbitrary constant a¤ 0, if g(x)
D f (ax) and GD F [g], then:

G.k/ D 1

jajF
�
k

a

�
(5.79)

4. Shifting. If g(x)D f (x–x0) is a shift of function
f, then its transform adds a linear phase factor
to the Fourier transform of f, leaving the am-
plitude spectrum unaffected:

G.k/ D F.k/e�ikx0 (5.80)

5. Convolution. Let f and g two real functions
with Fourier transforms F and G, respectively.
The following integral function is called con-
volution of f and g:

h.x/ D
C1Z
�1
f .Ÿ/ g .x � Ÿ/ dŸ � f � g

(5.81)

Then, the convolution property states that:

H.k/ D F.k/G.k/ (5.82)

6. Derivative. The operation of differentiation
in the space domain is transformed into a
multiplication in the wavenumber domain:

F
�
dnf

dxn

�
D .ik/nF.k/ (5.83)

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.22 Fourier filtering of magnetic anomaly data in
the phase preceding forward modelling. In this example,
wavenumbers below 0.01 km�1 have been filtered away.

The original signal (dashed line) had an almost constant
offset �T0 Š 58.3 nT. The filtered magnetic anomalies
have zero average and are more appropriate for modelling

7. Parseval Identity. The “energy” of a real func-
tion is invariant under Fourier transformation:

C1Z
�1
jf .x/j2dx D 1

2�

C1Z
�1
jF.k/j2dk (5.84)

One of the simplest applications of Fourier’s
transform is the filtering of magnetic anomaly
data before initiating the forward modelling step.
Figure 5.22 illustrates an example where the
original data had a common offset of a few
tens nT. The signal was first transformed to the
Fourier domain, then the low wavenumbers (long
wavelengths) that were responsible for the signal
displacement were removed from the spectrum.
Finally, the filtered Fourier domain representa-
tion was converted back to the space domain
through an inverse transform. The resulting signal
is clearly more suitable for the subsequent inter-
pretation phase. Soon we will introduce a more
complex application of the Fourier transform.

Let us consider now the problem of
transforming the potential field data observed at
some altitude to a different surface, more distant

from the magnetic sources. This transformation
is called upward continuation and is useful when
aeromagnetic data observed at different altitudes
must be merged, or when an investigator wants
to attenuate the short-wavelength components
of the signal and enhance the complementary
range, which is a form of data filtering.
For example, one could wish to enhance
the anomalies associated with deep sources,
which have longer wavelengths, with respect
to the short-wavelength anomalies generated by
near-surface sources. The theoretical basis for
upward continuation is the Green’s third identity
(4.70). Let us assume to know the potential V
everywhere on the plane z D z0. We want to
calculate the potential at some point with greater
elevation (x,y,z0 – �z). To this purpose, let us
choose a harmonicity region R as in Fig. 5.23,
and assume that all magnetic sources are located
at altitude z > z0.

In this case, we can separate the integral (4.70)
in two parts, one that performs integration over
the hemisphere surface, and one that operates on
a circle in the plane zD z0 (Fig. 5.23). Therefore,

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.23 Geometry for
the upward continuation
transformation

if we let the hemisphere radius to increase indef-
initely, the integral over the hemisphere surface
goes to zero, so that the Green third identity
assumes the form:

V .x; y; z0 ��z/

D 1

4 

C1Z
�1

C1Z
�1

"
1

r

@V

@z0

ˇ̌̌
ˇ
z0

� V
�
x

0

; y
0

; z0
�

� @

@z0

�
1

r

�ˇ̌̌
ˇ
z0

#
dx

0

dy
0

(5.85)

where rD [(x–x0)2C (y–y0)2C (z0–�z–z0)2]1/2.
This expression cannot be easily evaluated,
because the vertical derivative of V is not
generally available.

To understand how we can eliminate @V/@z0
in (5.85), let us consider a new harmonic func-
tion U in R. If we apply the second Green’s
identity (4.67) to the pair (U,V) and insert the
result in the representation formula (4.70), we
obtain:

V.P /

D 1

4 

I
S.R/

��
U C 1

r

�
@V

@n
� V @

@n

�
U C 1

r

��
dS

(5.86)

To eliminate the first part of the integrand,
we must find a harmonic function U such that
UC 1/rD 0 on S(R). It is easy to verify that the
function:

U
�
x

0

; y
0

; z
0

�

D �
h�
x�x0�2 C �y�y0�2 C �z0C�z�z0�2i�1=2

� � 1

¡
�
x

0

; y
0

; z0
�

(5.87)

is harmonic in R and satisfies the required con-
dition UC 1/rD 0 on the plane z0 D z0. Further-
more, U(x0,y0,z0)! 0 on the hemisphere surface
as its radius increases. Therefore, substituting
(5.86) and (5.87) in (5.85) gives:

V .x; y; z0 ��z/ D � 1

4 

C1Z
�1

C1Z
�1
V
�
x

0

; y
0

; z0
� @

@z0

�
1

r
� 1
¡

�ˇ̌ˇ̌
z0

dx
0

dy
0

D �z

2 

C1Z
�1

C1Z
�1

V
�
x

0

; y
0

; z0
�

h
.x � x0/2 C .y � y0/2 C�z2

i3=2 dx0

dy
0

(5.88)

This is the upward continuation integral. It al-
lows to calculate the potential at any point above

a plane, given the values on that level surface.
Clearly, in practice the numerical evaluation of

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 5.24 Polar
coordinates for the
computation of integral
(5.94)

the upward continuation integral is performed on
a finite but sufficiently large rectangle below the
point (x,y,z0 –�z). An alternative approach to the
upward continuation is based on the Fourier do-
main representation, which allows to determine V
on any plane, given the values of the function on
a reference level surface. We note that the integral
(5.88) is a form of two-dimensional convolution
of V by a harmonic function §:

V .x; y; z0 ��z/ D
C1Z
�1

C1Z
�1
V
�
x

0

; y
0

; z0
�

� §
�
x � x0

; y � y0

; �z
�
dx

0

dy
0

(5.89)

where

§
�
x � x0

; y � y0

; �z
�

D �z

2 
h
.x � x0/2 C .y � y0/2 C�z2

i3=2
(5.90)

Therefore, we can perform a Fourier transfor-
mation of both sides of (5.89) and apply the con-
volution property. If QV is the upward continuation
of V, then:

F � QV 	 D F ŒV �F Œ§� (5.91)

To determine the Fourier transform of §, it is
useful to rewrite (5.90) as follows:

§
�
x � x0

; y � y0

; �z
�
D � 1

2 

@

@�z

1

r
(5.92)

where r is the distance of the point (x,y,z0 – �z)
from points on the plane z0 D z0 (Fig. 5.23). The
Fourier transform of (5.92) gives:

F Œ§� D � 1

2 

@

@�z
F
�
1

r

�
(5.93)

To calculate the Fourier transform of 1/r, let
us move the observation point to (0,0,0). In this
instance, the Fourier transform is performed over
the plane z D �z, with rD [x2C y2C�z2]1/2.
Then,

F
�
1

r

�
D

C1Z
�1

C1Z
�1

1p
x2 C y2 C�z2

e�ik�¡dxdy

(5.94)

This integral can be evaluated more easily
passing to polar coordinates (¡,™,¥), as shown in
Fig. 5.24.

We have:

F
�
1

r

�
D

C1Z
0

2 Z
0

¡p
¡2 C�z2

e�ik¡ cos.��¥/d¡d™

(5.95)

Making the substitution ™0 D ™ – ¥ and taking
into account that exp(–ik¡cos™0) is periodic with
period  , we obtain:
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The integral over ™ is a Bessel function of the
first kind:

J0.x/ D J0 .�x/ D 1
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C Z
� 
e�ix sin’d’

D 1

2 

2 Z
0

e�ix cos ™d™

Therefore,
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� 2 
C1Z
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(5.97)

where F0(k) is a Hankel transform of order zero.
For k and a positive real numbers, this transfor-
mation gives (e.g., Poularikas 2010):

H0

"
1

.¡2 C a2/1=2
#
D e�ak

k

Therefore, using this result in (5.97) we ob-
tain:

F
�
1

r

�
D 2 e

�k�z

k
(5.98)

Finally, substitution into (5.93) gives:

F Œ§� D � 1
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@

@�z

�
2 
e�k�z

k

�
D e�k�z

(5.99)

where k> 0 and �z >0. Therefore, the
Fourier transform of the upward continuation

of V is simply obtained from the Fourier
transform of V by multiplying this function by
exp(–k�z):

F � QV 	 D F ŒV � e�k�z (5.100)

This solution shows that all wavenumbers
are attenuated in the upward continuation, and
that the degree of attenuation increases with the
step �z and with the wavenumber k. Clearly,
this approach can be used when the potential
is transformed from one plane to another,
because the step �z must be constant in this
approach.

Problems

1. Use Magan to analyse the data in exer-
cise_5.1.zip. Determine the stages, the average
linear velocity for each stage, and the angular
velocities assuming an angular distance
™D 50ı from the Euler poles;

2. Use Magan to analyse the data in exer-
cise_5.2.zip. This exercise requires to deal
with spreading asymmetry. Determine the
stages and the average linear velocity for each
stage;

3. Use Magan to analyse the data in exer-
cise_5.3.zip. This exercise includes a possible
ridge jump. Determine the stages and the
average linear velocity for each stage;

4. Use Magan to analyse the data in exer-
cise_5.4.zip. This exercise includes several
magnetic profiles from the same area.
Determine the stages and use a GIS to visually
build isochrons. Then, use the procedure
described in the book to build a kinematic
model;
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6Paleomagnetism and Earth History

Abstract

Even in times preceding the worldwide acceptation of the plate tectonics
paradigm, paleomagnetic data have furnished the most striking evidence
of Wegener’s continental drift theory. In this chapter, I present selected
topics from paleomagnetism, which are essential for using paleomagnetic
data in plate kinematics modelling. First, I introduce Neel’s theory of
thermo–remanent magnetization, which represents the form of primary
remanent magnetism acquired by most igneous rocks. Then, the basics of
paleomagnetic sampling and statistics are discussed. Finally, the chapter
presents some advanced applications, such as the construction of apparent
polar wander paths and true polar wander, as well as a global plate motions
model since the Triassic.

6.1 Néel’s Theory
of Single-Domain TRM

In Chap. 3, we have introduced the physics of
ferromagnetism in its generality, without consid-
ering the different kinds of NRM that are carried
by Earth’s rocks. Here we are going to describe
TRM, which is the form of primary remanent
magnetism acquired by most igneous rocks and
some high-grade metamorphic rocks when they
are cooled in a weak field H below Curie’s
temperature. This kind of NRM is considered the
most reliable record of the past directions and
intensities of the geomagnetic field, especially
when it is carried by SD grains. In general, the
TRM of SD grains is very stable over geological
times, despite geomagnetic polarity reversals, re-

heating, and other secondary processes. However,
such a long-term stability does not imply an exact
conservation of the total magnetization vector,
because for HD 0 the final state of equilibrium
of a rock containing a large ensemble of SD
grains requires in any case that MrD 0. This
demagnetized limit equilibrium state is not a
consequence of the fact that the magnetization
vectors of the individual grains have decreased to
zero, because an SD grain is always magnetized
to saturation (see Sect. 3.5). The total magneti-
zation of an ensemble of SD grains decays to
zero as a consequence of the tendency for the
magnetization vectors of the individual grains to
acquire a random alignment. At any temperature,
the thermal energy is responsible for this relax-
ation towards a demagnetized equilibrium state.
Now we are going to introduce the classic theory

A. Schettino, Quantitative Plate Tectonics, DOI 10.1007/978-3-319-09135-8__6,
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of Néel (1949), which represents still today the
fundamental starting point for a description of
single-domain TRM.

Let us consider an assemblage of spheroidal
SD grains aligned with the external field H.
This configuration could be attained by an
ensemble of grains characterized by uniaxial
anisotropy, meaning that there exists a unique
preferred (“easy”) axis of magnetization (in
either direction). In this instance, each grain has
two minimum-energy states, with magnetization
M1DCMS (grain moment aligned with H) or
M2D –MS. In general, from (3.69) we see that the
potential energy associated with a grain having
magnetization M and volume V is given by:

U D �VM �B D ��0VM �H (6.1)

Therefore, the minimum-energy states of a
grain in the assemblage will be: U1D–�0VMSH
and U2DC�0VMSH. If the number of grains
is sufficiently large, the equilibrium configura-
tion for this assemblage is a Maxwell-Boltzmann
distribution of the magnetization directions, in
which the average magnetization is determined
by the Boltzmann partition function:

MeqD

2X
iD1

Mie
�Ui =kT

2X
iD1

e�Ui =kT
DMS tanh

�
�0VMSH

kT

�

(6.2)

This formula shows that MeqD 0 for HD 0. If
N is the total number of grains in the ensemble, at
any time t we have that n grains are in a state with
parallel alignment with the external field (state
1), and N – n have anti-parallel alignment. To
evaluate the probability of a transition between
the two states, we must first determine the energy
barrier separating them. To this purpose, it is
necessary to take into account that in addition
to the strong exchange interaction described in
Chap. 3 between the atoms of a ferromagnetic
material, there exist dipole-dipole interactions
and interactions between the magnetic moments

and the electric field of the crystal lattice (spin-
orbit interactions) (e.g., Kachkachi et al. 2000).
Although weak, these interactions operate over a
long range, so that their contribution is not gener-
ally negligible. Indeed, they introduce anisotropy
in the system, that is, a dependence of the total
energy from the direction of magnetization. Here
we shall consider only the dipole-dipole inter-
actions, which play an important role in small
systems such as SD grains. The potential energy
associated with these forces is given by (3.73).
Considering all dipole pairs in a SD grain, the
total magnetostatic energy of the dipole-dipole
interaction can be written as follows:

UD D �
�0�

2
B

4�

X
i¤j

"
3

�
Si � rij

� �
Sj � rij

�
r5ij

� Si � Sj
r3ij

#

(6.3)

where the sum is extended to all dipole pairs at
sites i and j and rij is their distance. In the case
of ellipsoidal grains with volume V, it is possi-
ble to show that (6.3) determines a macroscopic
shape anisotropy, which is a form of magnetic
anisotropy (Kachkachi et al. 2000), and the total
magnetostatic energy for the dipole-dipole inter-
actions assumes the following simple expression:

UD D 1

2
�0V

�
DxM

2
x CDyM

2
y CDzM

2
z

�
(6.4)

where Dx, Dy, and Dz are positive quantities
called demagnetizing factors for reasons that will
be clear shortly. These quantities depend from the
grain geometry and size. For a prolate spheroid
with axes X, Y D X, and Z > X, they are given
by:

Dz D 1 � e2
2e3

�
lg

�
1C e
1 � e

�
� 2e

�

Dx D Dy D 1

2
.1 �Dz/ (6.5)

where 0< e< 1 is the ellipsoid eccentricity:

e D
q
1 � .X=Z/2
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Fig. 6.1 Internal demagnetizing field in a prolate
spheroid. The minimum intensity of HD occurs when M is
parallel to the major axis Z, because Dz � Dx D Dy (left).
Conversely, the maximum intensity is obtained when M

is parallel to the minor axis X (center). For any other
direction of M, the demagnetizing field is not perfectly
antiparallel to M

The dipole-dipole interaction can be repre-
sented by an additional magnetic field, HD, which
is essentially confined within each grain in the as-
semblage, so that the total magnetostatic energy
is given by:

UT D ��0VM � .H CHD/

D �0VMiHi � �0VMiHD;i (6.6)

where we have used (6.1) and the summation
convention. Now let us rewrite (6.4) in tensor
form:

UD D 1

2
�0VMiDijMj (6.7)

where the tensor D is defined as: Dij�Di•ij. A
comparison of (6.7) with (6.6) gives:

HD;i D �1
2
DijMj (6.8)

Therefore, the internal field HD opposes mag-
netization. This is the reason why this field,
which represents the magnetostatic dipole-dipole
interaction within a grain, is referred to as the
demagnetizing field. For the same reason, the
tensor Dij is called the demagnetizing tensor. In
some cases, for example when the magnetiza-
tion is aligned with one of the major axes of
an ellipsoidal grain, D reduces to a scalar, so
that DijDD•ij. Now we want to determine the
total magnetostatic energy for a spheroidal SD
grain as a function of the magnetization direction.
Figure 6.1 illustrates three possibilities. In the

general case that M forms an angle ™¤ n /2
(n
 0) with the major axis Z, the demagne-
tizing field HD is not antiparallel to M, as it
results:

HD D �1
2
M
�
Dx sin � iCDy cos �k

�
(6.9)

Therefore, writing the magnetization vector
as: M D Msin™i C Mcos™k, we see that the
magnetostatic dipole-dipole energy is given by:

UD D ��0VM �HD

D 1

2
�0VM

2
�
Dz C .Dx �Dz/ sin2�

	
(6.10)

As pointed out by Dunlop and Özdemir
(1997), the difference Dx – Dz is often more
important than Dx and Dz separately. Expression
(6.10) shows that UD is anisotropic with respect
to the shape of the grains. This shape anisotropy
is uniaxial in the case of prolate spheroids,
which have a unique easy axis of magnetization
coinciding with the major axis (™D 0ı or
™D 180ı). Now let us assume that an SD
spheroidal grain is magnetized at saturation along
its major (easy) axis. If we apply an external field
H at an angle ¥ with respect to the major axis,
the magnetization vector rotates by an angle ™
with respect to the major axis, as illustrated in
Fig. 6.2.

During this rotation the total energy UT

changes as illustrated in Fig. 6.2, until it reaches
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Fig. 6.2 Rotation of the SD grain magnetization after
application of an external field H, whose axis forms an
angle ¥ with the easy grain axis. The plot on the right
shows the total energy (dashed line) as a function

of the rotation angle ™. The curves have been
traced assuming ¥D 45 ı, V D 1.25 � 10� 22m3, MS D 1
A/m, H D 0.1 A/m, and X/Z D 0.71(e D 0.7). In this
example, the total energy minimum is attained for ™D 20ı

a minimum at an equilibrium angle ™0. For any
rotation angle ™, the total energy is given by
the sum of the potential energy associated with
the external field H (Eq. 6.1) and the internal
demagnetizing energy UD:

UT .™; ¥/D��0VM S �H � 1
2
�0VM S �HD D

D��0VMSH cos .¥ � ™/

C 1
2
�0VM

2
S

�
DzC.Dx�Dz/ sin2�

	
(6.11)

The plot of UD shows that in absence of
external field the demagnetizing field provides an
energy barrier for the complete reversal of the
grain magnetization. To determine the equilib-
rium angle in (6.11), we simply set to zero the
first derivative of UT :

0 D @UT

@™

ˇ̌
ˇ̌
�D�0
D ��0VMSH sin .¥ � ™0/

C 1

2
�0VM

2
S .Dx�Dz/ sin 2�0

(6.12)

Hence,

H sin .¥ � �0/ D 1

2
MS .Dx �Dz/ sin 2�0

(6.13)

For ¥D 0, Eq. (6.13) assumes the form:

cos ™0 D � H

MS .Dx �Dz/
� � H

Hc

(6.14)

This equation has solutions only for jHj �Hc.
The quantity Hc is called microscopic coercivity
or simply micro-coercivity of the SD grain.
For jHj>Hc there is only one minimum for
UT , thereby, the grain magnetization undergoes
an irreversible rotation to the unique stable
configuration. Now let us come back to
the Maxwell-Boltzmann distribution of the
magnetization directions for an assemblage of
spheroidal SD grains (Eq. 6.2). In this instance
¥D 0, thereby at any time t, for n grains, we have
that ™D 0, while N – n grains have anti-parallel
alignment, so that ™D 180ı. Taking into account
of the demagnetizing energy, the corresponding
energy levels for these states are:

U1 D ��0VMSH C 1

2
�0VM

2
SDz

U2 D C�0VMSH C 1

2
�0VM

2
SDz (6.15)

Switching from state 1 to state 2 implies a
rotation ™D 180ı. As shown in Fig. 6.3, this tran-
sition requires passing the energy peak at ™D ™0.
To rotate from state 1 to state 2, the thermal
energy must be in excess of �U12DUmax – U1.
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Fig. 6.3 Total energy of a
prolate spheroidal SD
grain, magnetized in the
direction of the easy axis
(¥D 0, dashed line) as a
function of the rotation
angle ™. The curves have
been traced assuming
V D 1.25 � 10� 22m3,
MS D 1 A/m, H D 0.05 A/m,
and X/Z D 0.60(e D 0.8).
In this example, the total
energy maximum is
attained for ™D 106ı
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Similarly, to have a rotation from state 2 to
state 1, the thermal energy must be in excess of
�U21DUmax – U2. Insertion of (6.14) in (6.11)
gives:

Umax D �0VMS

H2

Hc

C 1

2
�0VM

2
S

�
�
Dz C .Dx �Dz/

�
1 � H

2

H2
c

��

(6.16)

Therefore, using (6.15) we see that the two
energy barriers for state transitions are given by:

�U12 D 1

2
�0VMSHc

�
1C H

Hc

�2

�U21 D 1

2
�0VMSHc

�
1 � H

Hc

�2
(6.17)

Clearly, for H> 0, the transition from state 1
to state 2 is more difficult than the reverse one.
Therefore, the number of grains, n, in state 1
increases progressively until the thermal equilib-
rium is attained. A kinetic equation that describes
this process can be obtained assuming that the
number of transitions per unit time from one state
to another is proportional to the corresponding
population of grains in the initial state. Therefore,

Pn.t/ D K21 ŒN � n.t/� �K12n.t/ (6.18)

where K12 and K21 are, respectively, the proba-
bility of a transition from state 1 (™D 0ı) to state
2 (™D 180ı) and from state 2 to state 1. At any
time, the average magnetization is given by:

M.t/ D � ŒN � n.t/�MS C n.t/MS

N

D 2n.t/ �N
N

MS (6.19)

In terms of M, Eq. (6.18) assumes the form:

PM.t/CKM.t/ D .K21 �K12/MS (6.20)

where:

K D 1

�
� K12 CK21 (6.21)

The solution to Eq. (6.20) is immediate:

M.t/ DM0e
�t=� CMeq

�
1 � e�t=�� (6.22)

where M0DM(0) and MeqD (K21–K12)MS/K is
the limit equilibrium state for t!1. A direct
formula for Meq is expression (6.1). The quantity
£ is called relaxation time. It can be calculated
from the probabilities of state transitions K12 and
K21 using (6.21). These quantities obey to an
Arrhenius equation for the temperature depen-
dence of transition rates, with thermal activation
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energies �U12 and �U21 and pre-exponential
factor 1/£0 (Dunlop and Özdemir 1997):

K12 D 1

�0
exp

�
��U12
kT

�

D 1

�0
exp

"
��0VMSHc

2kT

�
1C H

Hc

�2#

K21 D 1

�0
exp

�
��U21
kT

�

D 1

�0
exp

"
��0VMSHc

2kT

�
1 � H

Hc

�2#

(6.23)

where we have used (6.17) and £0� 10�9–10�10

s is the atomic time interval of reorganization
between successive state transitions. This
quantity determines the frequency at which
the grains try to switch their direction of
magnetization. When H> 0,�U12>�U21 and
rotations from ™D 180ı to ™D 0ı are favoured, so
that K12<K21. If H is sufficiently large, state 1
is strongly favoured and Meq!MS. Similarly,
if H< 0 and sufficiently large, then state 2
is strongly favoured and Meq! –MS. In this
instance, we can write:

1

�
Š 1

�0
exp

"
��0VMSHc

2kT

�
1 � jH j

Hc

�2#

(6.24)

for jHj sufficiently large. Conversely, for HD 0
we have that �U12D�U21 and Eqs. 6.21 and
6.23 give:

1

�
D 2

�0
exp

�
��0VMSHc

2kT

�
(6.25)

According to (6.22), M(t) will be close to
the equilibrium value Meq after a time interval
coinciding with the relaxation time £. The factor
UBD½�0VMSHc is usually referred to as the
blocking energy. Note that both MS and Hc in
this expression depend upon T. From (6.24) to
(6.25), we see that the relaxation time strongly
depends from the temperature T. For temper-
atures close to the Curie temperature Tc, the

blocking energy is small and the equilibrium
is attained is a short time interval. This situ-
ation is referred to as an unblocked or super-
paramagnetic condition. At room temperature,
where UB is large, the equilibrium is attained
very slowly, so that the non-equilibrium state
can be considered as frozen or blocked in the
system. For a given grain volume V, there is
a critical blocking temperature, TB, at which £
becomes small (e.g., 60–100 s) during a heating
experiment. Conversely, during a rapid cooling
from above TB, the equilibrium value of mag-
netization Meq is frozen in the sample as TRM.
This is the main conclusion of Néel’s theory of
thermal relaxation. On the basis of this model,
TRM can be removed only reheating a sample
to its original blocking temperature. In the next
section, we shall see that this feature furnishes a
method for removing secondary TRM from rock
samples.

6.2 Paleomagnetic Sampling
and Cleaning Procedures

Well before the discovery of marine magnetic
anomalies in the early 1960s, paleomagnetism
provided the strongest evidence for continental
drift, although not yet for plate tectonics in the
modern acceptation. This important branch of
Earth Sciences supplied a large number of data
from all continents since the 1950s, which proved
that both igneous and sedimentary rocks formed
at latitudes that did not generally coincide with
their present day latitudes. This conclusion was
supported by the anomalous inclination of NRM
vectors observed in rock samples of various ages.
Furthermore, these data showed that going back
to ages older than Pliocene, the declination of the
magnetization vectors was distributed differently
from what we expected on the basis of secular
variation. The strike of the horizontal component
of magnetization seemed to migrate away from
the Earth’s spin axis in so far as the rock ages
increased. As pointed out by Irving (2005), until
the late 1960s the dominant belief among geo-
physicists and geologists, especially in the United
States, was a form of fixism, which assumed that
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the continents were not, and had never been, sub-
ject to horizontal motion. Curiously, even some
famous seismologists, like Sir Harold Jeffreys,
were proud opponents of mobilism and the the-
ory of Wegener (1912) about continental drift
(Frankel 2012). However, by the end of 1950s, a
large amount of evidence for continental drift had
accumulated, and most of this information came
from paleomagnetic data collected on continental
crust.

Paleomagnetic sampling on continents is usu-
ally structured on a hierarchical basis. At the top
level, we have rock units, which often coincide
with geologic formations or with one of their
members. Sampling is performed at several sites
across a rock unit to give a unique estimation of
the NRM direction associated with the rock for-
mation. In general, at least ten sites are required
to achieve acceptable confidence limits in the
estimated paleomagnetic direction. A site can be
a lava flow, a dike, a pluton, or any other igneous
body unit. In sedimentary rocks, sites usually
coincide with specific layers in the stratigraphic
succession. For each site, paleomagnetists collect
six to eight samples using a portable drilling
device. The original orientation of the individual
specimens is accurately annotated for the subse-
quent reconstruction of the direction of magneti-
zation after laboratory treatment.

Once the specimens have been brought to a
paleomagnetic lab, they are processed to isolate
their primary remnant magnetization, a procedure
that is referred to as cleaning. Usually, NRM of
the order of 10–5 A/m are sufficient to obtain
meaningful results. The modern measuring de-
vice for the determination of the NRM of a sam-
ple is the cryogenic magnetometer. This device
uses a complex sensor based on superconduc-
tivity, which is called SQUID (Superconducting
QUantum Interference Device). It can measure
NRM of rock specimens with total magnetic
moment MV � 10�10 Am2. The NRM vectors
measured on a set of N samples from B sites
generally include two components: a primary
NRM acquired during rock formation (TRM,
CRM, or DRM), and a secondary component that
is gradually acquired during the geological time

(the viscous remnant magnetization, or VRM)
or even after sampling (Eq. 3.79). Clearly, the
secondary NRM must be considered as a form
of noise in the applications of paleomagnetism
to plate kinematics, thereby, a series of labora-
tory procedures have been designed to remove
this component of magnetization. To eliminate
a secondary NRM, a rock sample is subject to
partial demagnetization, which operates on the
component of magnetization with lower stability.
This low-stability component usually coincides
with the secondary NRM that we want to remove,
whereas the high-stability component that is iso-
lated through this procedure often coincides with
the primary NRM. However, exceptions exist,
so that the high-stability component is usually
referred to as the characteristic component of
remnant magnetization (ChRM), which does not
necessarily coincide with the primary NRM.

There are two basic techniques for accom-
plishing partial demagnetization of a sample.
In the alternate field (AF) demagnetization,
a specimen is exposed for about 1 min to
an alternating magnetic field with linearly
decaying intensity from an initial amplitude
HAF � 100 mT. The typical frequency of this
signal is 400 Hz, and the device allows to rotate
automatically the sample in order to align in
turn all the specimen axes with the applied field.
At the time t when a positive peak jHC(t)j is
reached, only the domains with micro-coercivity
Hc� jHC(t)j align their spins with the external
field. Because the amplitude of each half-cycle
is smaller than the previous one, after a half-
period T/2 a slightly smaller set of domains with
micro-coercivity Hc� jH–(t C T/2)j< jHC(t)j
will align their spins in the opposite (“down”)
direction. Therefore, if the rate of decrease of
the AF is not large, only a small fraction of
spins will be frozen in the “up” direction, so
that the total magnetic moment of the grains
in these two intervals of micro-coercivity Hc

will be approximately zero. Similarly, at the
next step, only a small fraction of spins will be
frozen in the “down” direction, thereby, after
several cycles the net magnetization along each
axis will be removed from the sample for all

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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grains having relaxation times corresponding
to micro-coercivity Hc� jH(0)j. Then, H(0) is
increased and the procedure is repeated to remove
the next more stable component, which should
have a different direction of magnetization. If
the new component has the same direction of
magnetization of the one detected at the previous
step, then it is interpreted as the ChRM. AF
demagnetization is effective when the dominant
ferromagnetic mineral is a titanomagnetite. In
these rocks, secondary NRM is mostly associated
with multi-domain grains (see Sect. 3.5), whereas
the ChRM is retained by single-domain grains
with higher micro-coercivity.

The second fundamental technique for the
removal of secondary NRM is thermal demag-
netization. This method requires heating of a
specimen to high temperature below the Curie
point of the constituent ferromagnetic minerals,
then cooling to room temperature in zero mag-
netic field. It is based on the thermal relaxation
of an assemblage of SD grains described in the
previous section. A real rock sample can be
considered as formed by multiple ensembles of
grains with different physical and geometrical
characteristics. Grains with different volumes V
have distinct blocking temperatures TB, so that
when the rock cools and passes through the vari-
ous TB, the relaxation times of the corresponding
grain assemblages increase quickly. Therefore,
different equilibrium magnetizations are frozen
during this process, so that any subsequent varia-
tion in the direction of the external field at lower
temperatures does not affect these components.
This means that the TRM is not acquired at
one time just below the Curie temperature, but
during a long time interval over a set of blocking
temperatures. Therefore, reheating a sample to
a temperature T <Tc implies unblocking of the
frozen magnetizations for all grain populations
with TB <T and the consequent removal of these
components of TRM. Expression (6.24) shows
that the relaxation time of can vary over a wide
range. SD grains with small values of £ are

called superparamagnetic grains: their remnant
magnetization decays quickly to zero after re-
moval of the magnetizing field. These grains are
those that more likely acquire VRM through the
geological time. For fixed temperature, relation
(6.24) shows that the relaxation time varies with
the grain volume V and the micro-coercivity
Hc. Grains with low values of the product VHc

will have shorter relaxation time with respect to
grains with higher values of this parameter. Good
paleomagnetic recorders must have values of £
of the order of several hundred Myrs. However,
even superparamagnetic grains are converted into
stable grains at low temperature. We have seen
that the temperature at which this transition oc-
curs is the blocking temperature, TB. Any SD
grain is superparamagnetic between the Curie
temperature and the blocking temperature.

In the previous section, we have shown that the
stability of the TRM acquired by an assemblage
of SD grains is expressed in terms of relaxation
time £. According to Eqs. 6.23 and 6.25 this
quantity increases rapidly when the temperature
T decreases. Let us consider an SD grain assem-
blage with a fixed value of VHc. If the TRM of
these grains has a relaxation time £ of geological
length for some temperature T, it is possible to
determine the blocking temperature at laboratory
time scale, namely, the temperature at which a
sample must be heated to reset its TRM through
a zero external field in a short time interval, say
£BD 60–100 s. In fact, using (6.25) we have that:

TB lg .2£B=£0/

MS .TB/Hc .TB/
D T lg .2£=£0/

MS.T /Hc.T /
(6.26)

Plots of the blocking temperature as a function
of the relaxation time are shown in Fig. 6.4.
These plots can be used to determine the blocking
temperature as a function of the initial relaxation
time. For example, an assemblage of SD mag-
netite grains with relaxation time £D 1 Myr at
93 ıC is expected to have acquired substantial
VRM if it has been kept at this temperature for

http://dx.doi.org/10.1007/978-3-319-09135-8_3
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Fig. 6.4 Relation between blocking temperature, TB, and relaxation time, £, for magnetite and hematite. A line on these
diagrams represents a set of pairs (£,T) that resets the TRM of an SD assemblage (Redrawn from Pullaiah et al. (1975))

1 Myr (point A in Fig. 6.4). However, if we heat
the sample to 270 ıC for 100 s in a zero magnetic
field, then this secondary magnetization is un-
blocked and reset to zero (point B in Fig. 6.4).
We also note that grain assemblages associated
with curves that are placed on the right side
of the diagrams (high unblocking temperatures)
are reset by a small increase of temperature.
This is a consequence of the rapid increase of
£ for decreasing T when the assemblage has
TB close to the Curie temperature. Therefore,
grain assemblages in the grey regions of Fig. 6.4,
which acquire VRM at relatively low tempera-
tures (250–350 ıC) over geological time intervals
(�10 Myrs), are unstable carriers of primary
TRM. Conversely, grains in the white regions
of Fig. 6.4 have blocking temperatures within
�100 ıC of Tc for any relaxation time, so that
TB is insensitive to £ and resetting their TRM
is more difficult. These grain assemblages are
the main carriers of primary TRM. The plots in
Fig. 6.4 predict that primary TRM can be retained
after a heating episode within the greenschist
metamorphic range (300–500 ıC) but not within
the amphibolite range (above 550 ıC).

6.3 Paleomagnetic Directions

The result of paleomagnetic sampling and
the subsequent laboratory treatment is a set
of N magnetization vectors (M1,M2, : : : ,MN)
for a rock unit of known radiometric or
stratigraphic age. In plate tectonics, we are
generally interested only in the paleomagnetic
directions, and not in the magnitude of these
vectors. Therefore, the data set is usually
expressed in terms of N pairs (Ik,Dk) in a local
reference frame, Ik being the inclination of the
k–th magnetization vector and Dk being its
declination. Paleomagnetic directions observed at
a single site are generally scattered, for example
as a consequence of inaccurate orientation
of the specimens. However, such within-site
scattering is flanked by an inter-site dispersion,
associated with the secular variation of the
geomagnetic field (see Sect. 4.3). In fact, the
sampling procedures are designed in such a
way that the samples of a single site have
approximately the same age, so that variations
of magnetization between the different sites of a

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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rock unit are representative of secular variation.
A key assumption in paleomagnetism is that the
N paleomagnetic directions sampled across a
rock unit form a statistically meaningful data
set for the determination of a time-averaged
paleomagnetic field that can be adequately
approximated by a geocentric dipole field.

To determine a time-averaged paleomagnetic
field from a collection of paleomagnetic
directions, researchers use Fisher’s (1953)
statistics. The average paleomagnetic direction
is calculated simply as the vector sum of the
individualversors, normalized to unity. Therefore,

using (2.29) we see that the Cartesian coordinates
(X,Y,Z) of the estimated mean direction are
given by:

X D 1

R

NX
kD1

cos Ik cosDk I

Y D 1

R

NX
kD1

cos Ik sinDk I Z D 1

R

NX
kD1

sin Ik

(6.27)

where R � N is the magnitude of the resultant
vector:

R D

vuuut
 

NX
kD1

cos Ik cosDk

!2
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NX
kD1

cos Ik sinDk

!2
C
 

NX
kD1

sin Ik

!2
(6.28)

Finally, using the inverse transformation
(2.30), we see that the declination and inclination
of the mean direction are given by:



D D arctan .Y=X/
I D arcsin.Z/

(6.29)

The statistical parameters of uncertainty as-
sociated with the estimated mean direction are
calculated assuming that the data set of paleo-
magnetic directions can be modelled as a Fisher
distribution, a spherical analogue of the Gaus-
sian distribution, in which the concentration of
unit vectors about the mean is proportional to
exp(›cos§), where › is a precision parameter
and § is the angle between an observation and
the true mean direction. The precision parameter
describes the dispersion of the points about the
mean. When › is small, the distribution is highly
dispersed, whereas for large › it is concentrated
about the mean. In a Fisher distribution, the
probability to find a unit vector in a region R of
the spherical surface of radius 1 is given by:

P .R/ D
Z
R

�

4� sinh .�/
exp .� cos§/dS

(6.30)

The constant factor ›/(4 sinh ›) in (6.30)
ensures that the probability normalizes to unity
when R coincides with the whole sphere. The el-
ement area dS in the integral (6.30) is a spherical
surface element, which at angular distance § is
given by: dSD sin§d§d¥, ¥ being the azimuth
of the point about the mean. The distribution
is uniformly distributed with respect to the az-
imuthal angle ¥, thereby, integrating over ¥ we
have that the probability P to find an observation
within an angle § from the true mean is given
by:

P .§/ D
§Z
0

›

2 sinh .›/
exp

�
› cos§0� sin§0d§0

D e› � e› cos§

e› � e�» (6.31)

The probability density function p associated
with (6.31) is shown in Fig. 6.5 for three different
precision parameters. Note that the presence of
sin§ in (6.31) determines a maximum for p that
is offset with respect to §D 0. From (6.31) it is
possible to calculate the angle §95 within which
we can found an observation with a probability of

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 6.5 Probability density function, p D p(§), associated with the distribution (6.31). For any angle §, the probability
to find an observation within a band of width d§ between § and §C d§ is given by p(§)d§

95 %:

 95 D arccos

�
1

›
lg .0:05e›C 0:95e�›/

�

(6.32)

Fisher (1953) showed that for ›
 3 the best
estimate of the precision parameter is given
by:

k D N � 1
N � R (6.33)

This is a best estimate in the sense that 1/k is
both a minimum variance and unbiased estimator
of ›�1 (McFadden 1980). Fisher (1953) also
proved that if we take groups of N observations
from the distribution (6.30), then the directions
of the resultant vectors, which are the estimated
means, belong themselves to a Fisher distribution
about the true mean, with precision parameter
›R. Therefore, he deduced that for › 
 3 the
true mean direction of the distribution has 95 %
probability to lie within a spherical circle of
radius ’95 about the resultant vector (X,Y,Z),
where:

˛95 D arccos

(
1 � N �R

R

"�
1

0:05

� 1
N�1

� 1
#)

	 140ı
p
kR (6.34)

This is the 95 % confidence circle used in pale-
omagnetism. In general, the averaging procedure
is applied at different levels. At the lowest level,
for each sample that includes several specimens,
the ChRM directions of the single specimens are
averaged. Then, site-means are calculated from
the sample means of each site. Finally, site-means
are averaged to give the final paleomagnetic di-
rection of the rock unit. However, in the next
section we shall see that averaging of paleomag-
netic data continues even at higher levels, when
they are used to determine the kinematics of tec-
tonic plates. Although there are no strong rules,
generally paleomagnetists consider k> 30 and
’95< 15ı as minimum acceptability parameters
for site means (e.g., Butler 1992). Apart from the
determination of the confidence circle, a series



188 6 Paleomagnetism and Earth History

of statistical tests is performed before drawing
geological conclusion from paleomagnetic data.
These tests, which are described in detail in
the book of McElhinny and McFadden (2000),
include:

• Testing whether an apparent outlier is truly
discordant with other observations, so that it
should be rejected;

• Testing whether two or more sets of paleo-
magnetic observations could have been drawn
from a common Fisher distribution, so that
they would have a common true mean direc-
tion and a common precision parameter ›;

• Testing whether a scattered set of paleomag-
netic directions have been sampled from a
uniform random population;

• Testing whether a set of observed paleomag-
netic directions conforms with a Fisher dis-
tribution, so that the statistical methods de-
scribed above are applicable.

Here we are going to describe the last of these
tests, which is of fundamental importance in the
plate kinematics applications. The test requires
more than one step. First, the azimuthal angle ¥
must be distributed uniformly between 0 and 2 .
Secondly, the distribution of the polar angles §
must be conform to the probability density (6.31).
From (6.31), we see that the probability to find an
observation between angles §1 and §2 about the
true mean is given by:

P .§1; §2/ D e› cos§1 � e› cos§2

2 sinh ›
(6.35)

Therefore, for N observations, the expected
frequency of polar angles §1�§�§2 is given
by:

bf .§1; §2/ D N

2 sinhk

�
ek cos§1 � ek cos§2

�
(6.36)

where k is given by (6.33). Similarly, the expected
frequency of azimuthal angles ¥1�¥�¥2 is
given by:

bf .¥1; ¥2/ D N

2�
.¥2 � ¥1/ (6.37)

To test either the azimuthal or the radial
distribution, we separate the observations into
m polar or azimuthal classes. For each class,
the statistic X2 is calculated by the following
expression:

X2 D
mX
iD1

�
fi � bf i

�2
bf i

D
mX
iD1

f 2
ibf i

�N (6.38)

where the fi are observed frequencies, while thebf i are calculated by (6.36) for polar classes and
from (6.37) in the case of azimuthal classes. If
the observations were drawn from a Fisher distri-
bution, then the statistic X2 has a �2 distribution
with � degrees of freedom, where:

� D m � 1 �… (6.39)

and … is the number of parameters that have
been replaced by their maximum likelihood es-
timates to calculate the observed frequencies.
For example, testing a data set of geomagnetic
poles against the GAD hypothesis would re-
quire just one estimated parameter in (6.36),
because the true mean is known and coincides
with the North Pole. Therefore, we would have
that …D 1 in the radial distribution test and
…D 0 in the azimuthal test. However, typically,
we do not know the true mean direction, so that
it will be estimated through expressions (6.27)–
(6.28). In this case we have that …D 3 in the
radial distribution test and…D 2 in the azimuthal
test.

6.4 Paleopoles and Apparent
PolarWander Paths

The declination D and inclination I of a rock unit,
which result from averaging site means, are quan-
tities that depend from the geographic position of
the rock formation and from the tectonic history
of the continent to which these rocks belong.
Assuming that the corresponding time-averaged
magnetization has been acquired by exposition to
a geocentric dipole field, we can easily determine
the coordinates of the paleomagnetic pole, or
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Fig. 6.6 Geometrical
relations between a rock
unit at location S, whose
time–averaged
magnetization vector M
has declination D and
inclination I, and the
corresponding paleopole,
at location P, of a
geocentric paleomagnetic
dipole field with magnetic
moment m. Angle ™ is the
site paleo–colatitude

simply the paleopole, associated with this field.
In fact, for a magnetic dipole field, the inclination
is related to the distance from the field pole by
the dipole equation (4.49), while the declination
tells us the direction where to find this pole.
Figure 6.6 illustrates the geometric relationships
between the various parameters.

Let S� (™S,¥S) be the geographic location (co-
latitude and longitude) of a rock unit, for which
a time-averaged remnant magnetization vector M
with declination D and inclination I has been
determined. If this is considered as equivalent
to an NRM that was acquired by exposition to
a geocentric dipole field, then from the dipole
equation (4.49) we have that the paleocolatitude
™ of the site can be calculated readily by the
following formula:

™ D cot�1
�
1

2
tan I

�
(6.40)

To determine the colatitude of the paleopole
P, we can use the spherical version of the law of
cosines:

cos ™P D cos ™S cos ™C sin ™S sin ™ cosD
(6.41)

A little bit more complicate is to determine the
paleopole longitude ¥P. Let “ be the longitude
difference between paleopole and site. By the
spherical version of the law of sines we have that:

sin ™

sin “
D sin ™P

sinD
(6.42)

Therefore,

“ D arcsin

�
sinD sin ™

sin ™P

�
(6.43)

This formula constrains “ to be in the range
[– /2,C /2]. In fact, there is a source of am-
biguity arising from the fact that a longitude
difference “ and a difference   – “ give the
same sine. Therefore, using (6.43) we cannot
distinguish a situation where a paleopole P lies
in the same hemisphere of S from a situation in
which P is in the opposite hemisphere. Applying
again the law of cosines to the spherical triangle
(S,P,N) of Fig. 6.6, we see that the two situations
give:

cos ™ D cos ™P cos ™S C sin ™P sin ™S

cos “
cos .��“/

S and P in the same hemisphere
S and P in opposite hemispheres

(6.44)

Therefore,

cos ™ D cos ™P cos ™S ˙ sin ™P sin ™S cos“
(6.45)

Now we note that sin™Psin™Scos“
 0 in any
case, thereby, the two situations can be distin-
guished comparing cos™ with cos™Pcos™S:

“ D


¥P � ¥S
¥S � ¥P C  

for cos ™ 
 cos ™P cos ™S
for cos ™ < cos ™P cos ™S

(6.46)

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 6.7 Transformation of a paleomagnetic field at
t D 140 Ma (early Cretaceous), with pole at P in the
reference frame of Africa (present day coordinates), into
a GAD field. The transformation is performed applying

an Euler rotation that moves P to N. In this example, the
Euler axis of rotation, a, has pole at (0ı,¥P C 90ı) and the
rotation angle is –™P

Therefore, solving for ¥P gives:

¥P D


¥S C “
¥S C   � “

for cos ™ 
 cos ™P cos ™S
for cos ™ < cos ™P cos ™S

(6.47)

Differently from a mean paleomagnetic direc-
tion (D,I), which is a site-dependent quantity,
a paleomagnetic pole of age t (the mean age
attributed to the rock unit) is a global quantity
that represents the apparent location of the geo-
graphic North Pole at time t in a reference frame
fixed to the continent to which the site S belongs
(Fig. 6.7). This is clearly a consequence of the
GAD hypothesis (see Sect. 4.3), which states that
a time-averaged geomagnetic field approximately
coincides with a GAD field not only in the present
epoch but also in the geologic past. Therefore,
any Euler rotation that brings a paleopole to
the geographic North Pole will also transform
the time-averaged paleomagnetic field associated
with the paleopole into a GAD field. This rotation
coincides with a transformation from a reference
frame where the continent is at rest in the present
day position to a geocentric reference frame in
which the paleopole P coincides with the geo-

graphic North Pole N, as shown in Fig. 6.7, and
the continent has been restored to its original ori-
entation with respect to the spin axis. However, as
a GAD field is symmetric with respect to the spin
axis, there is no way to establish a paleolongitude
of the site S relative to the present day location.
In other words, there are infinitely many rotations
that moves P to N, which determine infinitely
many longitudinal displacements of the site S. All
these reconstructions are admissible, and there
is no way to determine the correct longitude
variation of S from the present day location to
its reconstructed position. A common method to
perform paleomagnetic reconstructions is illus-
trated in Fig. 6.7. In this approach, the paleopole
is moved to the North Pole along its own meridian
of longitude through an Euler rotation about an
equatorial pole at (0,¥PC 90ı) by an angle –™P

(e.g., Ziegler et al. 1983; Schettino and Scotese
2005). We shall come back to this point in the
next section.

Once that we have determined the paleopole
corresponding to a paleomagnetic direction (D,I),
the next step is assigning uncertainty parameters
to the location (™P,¥P). To this purpose, let us
first consider the uncertainty of a paleomagnetic

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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Fig. 6.8 Determination of
the inclination and
declination uncertainty
from the confidence cone
’95

Fig. 6.9 Colatitude error,
dp, and relationship
between declination
uncertainty, •D, and
trasversal uncertainty in the
paleopole direction, dm

direction in terms of confidence limits for the
inclination and the declination, as illustrated in
Fig. 6.8. From simple trigonometry, we have
that:

•I D ’95I tan •D D tan’95
cos I

(6.48)

where the second of these equations is usually
expressed in the approximated form:

•D Š ’95

cos I
(6.49)

These uncertainties can be easily converted
into a confidence oval about the paleopole, with
mutually orthogonal semi-axes dp and dm, as
illustrated in Fig. 6.9. Applying the spherical law
of sines we obtain:

sin dm

sin ıD
D sinp (6.50)

Therefore,

dm Š •D sinp D ’95 sinp

cos I
(6.51)

The colatitude error dp can be calculated using
the dipole equation (6.40). It results:

dp D �d™
dI
•I D �’95 d™

dI
D 2’95

1C 3cos2I

D 1

2
’95

�
1C 3cos2™

�
(6.52)

The pair (dp,dm) is called oval of 95 % confi-
dence about the paleopole. In an alternative ap-
proach, each site direction is converted first into a
virtual geomagnetic pole (VGP). Then, the result-
ing set of VGPs is considered as a Fisher distribu-
tion and analyzed using the technique described
above. In this instance, conventions require that
the precision parameter and the 95 % confidence
cone be indicated by the capital symbols K and
A95, respectively (e.g., Van der Voo 1993). It can
be shown that the approximate relation between
the confidence cone A95 and the uncertainties dp
and dm is:

A95 	
p

dpdm (6.53)

Paleopoles are fundamental quantities
in the application of paleomagnetism to
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plate kinematics. Their importance arises from
the capability to predict both the paleolatitude
and the declination at any reference site on a
tectonic plate. Therefore, combining paleopoles
of different age, determined from different
rock units, it is possible to build curves that
describe the variations of paleolatitude and
declination though the geological time at a
common reference site (Van der Voo 1993;
Schettino and Scotese 2005). Let p and s be
the unit vectors associated respectively with a
paleopole P and a reference site S. The Cartesian
coordinates of these vectors can be calculated
from the corresponding geographic coordinates
using the transformation equations (2.27). The
predicted paleolatitude at S can be determined
promptly by the following formula:

œ D  

2
� arccos .p � s/ (6.54)

Calculating the predicted declination is
likewise simple. We first apply (6.46) to
determine “, then the declination can be obtained
by Eq. (6.42). Although this technique can be
applied using individual paleopoles of different
ages from the same continent, the large amount
of paleomagnetic data collected during the last
decades and the discrepancy between results
of similar age has led to the development of
statistical techniques for the determination of
the “best” mean paleomagnetic pole from a data
set formed by several paleopoles of similar age.
Similarly, several methods have been proposed
for the determination of best-fit time series
of paleolatitude and declination, and for the
construction of curves on the globe that represent
the migration of the mean paleomagnetic pole
of a continent through the geological time.
The latter curves, which are called apparent
polar wander paths (APW paths), represent the
most important result of paleomagnetism for
the study of continental drift. The determination
of mean paleopoles is not much different from
the calculation of individual paleopoles from
data sets of VGPs. However, in this instance
the data are always weighted through their
confidence cones A95 and possibly through their
age uncertainties.

For example, if we wish to determine the
mean paleopole for North America during the
Paleocene, we should select all the paleopoles
obtained from rocks on the cratonic part of this
continent, with an age between 65.5 and 56 Ma,
and satisfying some quality criteria (e.g., Van der
Voo 1990, 1993). To this purpose, we could use
the Global Paleomagnetic Database (GPMDB)
(McElhinny and Lock 1990), which is a struc-
tured publicly accessible data set of paleopoles
(e.g., Schettino and Scotese 2001). Most authors
perform a pre-selection of the data according to
more or less subjective data reliability criteria. As
an example, Van der Voo (1990, 1993) proposed
seven reliability criteria that could be satisfied by
a paleopole. In this approach, a “quality factor”
0�Q� 7 is assigned to each datum, which in-
dicates the number of criteria that are satisfied.
Van der Voo (1990, 1993) suggests that Q 
 3
is the minimum requirement for a paleopole to
be included in the computation of a representa-
tive mean. Let p1, p2, : : : , pN be N unit vectors
associated with the selected paleopoles, and let
w1, w2, : : : , wN be weights assigned to each
paleopole on the basis of their quality parameters.
For example, we could simply set wiD 1/A95,i for
iD 1,2, : : : ,N, but other more complex weighting
schemes are possible. In some cases (e.g., Torsvik
et al. 2001, 2008), even Van der Voo’s quality
factor Q has been used as a weighting factor,
although Q is all except a physical quantity.
Once a weighting scheme has been selected, the
mean paleopole p is calculated by the following
formula:

p D 1

w

NX
iD1

wipi (6.55)

where w is a normalization factor, which ensures
that jpjD 1. To determine the uncertainty
parameters of the mean paleopole, we can
use again Fisher statistics, granted that the
spatial distribution of the data is conformal
to a Fisher distribution. This test can be
performed using the technique described in
Sect. 6.3.

Let us consider now the procedure for
constructing APW paths. As mentioned above,

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 6.10 A sliding–window APW path for the African
craton since 200 Ma (Besse and Courtillot 2002), obtained
using a 10 Myrs window and 5 Myrs steps. Blue circles are

A95 confidence cones (left). Red dots are mean paleopole
locations. The right pane shows more clearly the complex-
ity of this path, which includes several loops and hairpins

an APW path is a time series of mean paleopoles
p(t1), p(t2), : : : , p(tN), where t1< t2< : : : < tN .
Therefore, a versor p(ti) is always calculated
by a weighted averaging formula like (6.55).
Geometrically, the time series is represented by a
curve on the unit sphere, formed by a sequence
of great circle arcs linking the paleopoles. A
potential source of ambiguity in the construction
of these curves arises from the geomagnetic field
reversals. However, in paleomagnetic databases
like the GPMDB such ambiguity is overcome
by assigning to each listed paleopole a normal
polarity. Eventually, in the case of southern
hemisphere continents, it is possible to reverse all
the paleomagnetic poles and visualize the APW
paths as inverted polarity curves. The first APW
paths were built selecting groups of paleopoles
according to their geologic age. For example,
one could start determining the average of all
paleopoles having a stratigraphic or radiometric
age in the lower Cretaceous time interval,
obtaining the representative mean paleopole for
the lower Cretaceous. Then, the procedure was
repeated for the upper Cretaceous paleopoles,
and so on. This simple method was the only
possible approach when the number of available
paleopoles satisfying minimum reliability
criteria was small. Starting from the 1990s, the
publication of many new results allowed more
refined analyses of the paleomagnetic fields.

Today, there are three general approaches to
the construction of APW paths. In the sliding
window method (e.g., Harrison and Lindh 1982),
the paleomagnetic poles with ages falling within
a time window of fixed width (for example,
30 Myrs) are averaged to determine a mean
paleopole, which it is attributed an age equal
to the central age of the interval, or equal to
the mean age of the averaged paleopoles. Then,
the window is moved by an assigned step (for
example, 10 Myrs) and the procedure is repeated.
An example of sliding-window APW path is
shown in Fig. 6.10.

A major problem with APW paths like that
illustrated in Fig. 6.10 is that they show a level of
detail higher than what is statistically justifiable.
This is quite evident by comparing the confidence
limits shown in Fig. 6.10 (left panel) with the
average distance between consecutive paleopoles
and with the hairpin turns of the path. There-
fore, it is likely that several consecutive mean
paleopoles of this APW path would pass a test
that establishes if two poles have been drawn
from a common distribution (e.g., McElhinny and
McFadden 2000).

A second, more rigorous, approach to
the construction of APW paths consists into
the selection of a few reliable paleomag-
netic poles of different age, without apply-
ing time averaging (e.g., Gordon et al. 1984;
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Fig. 6.11 Triassic – early
Cretaceous APW path for
N. America, based on a
compilation of 15
high-quality paleopoles
(May and Butler 1986).
Circles are 95 %
confidence cones

Kent and Van der Voo 1990; May and Butler
1986; van Fossen and Kent 1992; Kent and Witte
1993). According to May and Butler (1986), the
most important factor controlling the accuracy of
APW paths is the reliability of the selected data
base, thereby, these authors propose to select
only high-quality paleopoles and to evaluate
their time sequence. Clearly, this technique relies
on an accurate selection of the data, which
will be paleopoles determined using the most
severe demagnetization analyses and from a large
number of samples and sites. A good example of
this class of APW paths is shown in Fig. 6.11.

Although the approach of constructing APW
paths from few reliable paleopoles does not suffer
the problems of the sliding-window method, it
relies too strongly on the more or less subjective
process of paleopole selection, which does not
guarantee the correctness of each selected datum.
For example, only two of the three early Triassic
(246 Ma) paleopoles in Fig. 6.11 may have been
drawn from the same Fisher distribution. There-
fore, the third paleopole could be either correct
(in fact, it is located close to the 240 Ma result)
or the other two paleopoles are correct and this

result should be discarded. Actually, in the selec-
tion of reliable paleopoles for the construction of
APW paths, it is necessary taking into account
that even the “best” paleomagnetic direction can
produce a wrong paleopole if it is attributed an
incorrect age.

The third approach to the construction of
APW paths tries to overcome the limitations of
the methods described above through statistical
regression techniques. In this instance, APW
paths are built by fitting smoothed regression
curves on the sphere through swaths of
paleomagnetic data. Parker and Denham (1979)
were the first to propose an interpolation method
based on cubic splines. Similarly, Thompson and
Clark (1981) used weighted, least-squares cubic
splines to fit smoothed curves to the colatitudes
and longitudes of paleopoles from North America
and Europe. Musgrave (1989) applied a modified
version of the weighted least-squares regression
method to a study of Cretaceous and Cenozoic
Australian paleomagnetic data, while Jupp and
Kent (1987) developed a sophisticated fitting
algorithm based on spherical smoothing splines.
Examples of APW paths based on the method of
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Fig. 6.12 Predicted paleolatitudes for a reference point
in N. America at (55ıN, 90ıW) since the late Triassic,
based on the global compilation of Schettino and Scotese

(2005). The regression curve is a natural cubic spline, built
using a smoothing parameter “D 5

Jupp and Kent (1987) can be found in Torsvik
et al. (1996, 2012). An alternative technique of
construction of smoothed APW paths has been
proposed more recently by Schettino and Scotese
(2005). This approach tries to overcome the limits
of the spherical splines smoothing algorithms,
in which the amount of smoothing is chosen
arbitrarily by the researcher, and the regression
may determine a best fitting curve that is not so
best with regard to the local geology at individual
sites. To understand the problem, let us consider
the plot of Fig. 6.12, which shows the predicted
paleolatitudes of a point on the North American
craton since the late Triassic.

The plot in Fig. 6.12 has been built using
(6.54) and combining paleopoles from N. Amer-
ica with paleopoles from other continents, which
were rotated into N. American coordinates us-
ing the rotation model of Schettino and Scotese
(2005). We note that the overall trend of paleo-
latitude for the selected reference point is an ap-
proximately linear increase by�36ı from the late
Ladinian (230 Ma) to the Barremian (130 Ma),
then a more or less constant paleolatitude un-
til recent times. However, the smoothing spline
curve of regression, which has 4.8ırms error of
residuals, shows a sequence of second-order low-
amplitude oscillations about the general trend.
These oscillations could be interpreted as real

cycles having geological significance. However,
if we used a greater smoothing parameter, say “
D 300, in order to generate a regression curve
that is more representative of the general trend,
the maximum displacement of the spline curve in
Fig. 6.12 from the new representative trend would
be only �œD 3.3ı (Fig. 6.13). Therefore, the
predicted paleolatitude oscillations would have
amplitude that is less than the standard deviation
of the residuals about the regression line!

This example can be extended to the spherical
regression curves that are used in the modelling
of APW paths. It shows that the smoothing
parameter of a spline regression curve cannot be
chosen arbitrarily, but it should be compatible
with the dispersion of the data about the
regression curve. Another more critical problem
of the “crude” statistical approach will be
discussed now. To this end, it will be useful
to examine in detail some key features of the
approach of Schettino and Scotese (2005).
These authors compiled a list of paleopoles for
each continent by filtering data in the GPMDB
according to some minimum-reliability criteria
(B
 4, N/B
 4, A95� 15ı, cleaning procedure
code 
 2, and half-interval of age uncertainty
�20 Myrs). In the analysis of a continent, the
paleopoles belonging to other plates were rotated
into the local coordinate system of the continent
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Fig. 6.13 Variations of a
paleolatitude regression
spline with smoothing
“D 5 (Fig. 6.12) about a
spline regression plot
having smoothing
parameter “D 300

being analyzed. The possibility to perform such
operation is quite intuitive. If we know the Euler
pole that restores the position of a continent
with respect to a reference plate at time t, for
example the Brazilian craton with respect to
central Africa at 130 Ma, then applying this
rotation to its paleopoles of age t gives a new set
of paleomagnetic poles that are fully compatible
with those obtained by sampling directly on the
reference continent. We say that the paleopoles
have been rotated into the coordinate system of
the reference continent. Such paleopole transfer
technique has been applied by several authors
to fill gaps in the paleomagnetic record of some
continents (especially Africa) and to build global
APW paths (e.g., Besse and Courtillot 1991).

The next step in the technique of Schettino
and Scotese (2005) was to select an arbitrary
reference point on each continent and to build pa-
leolatitude and declination plots relative to these
points. Then, the two time series were analyzed
independently through a non-parametric spline
regression technique. Parametric regression mod-
els assume that the form of the regression func-
tion, �, is known except for a finite number of
parameters. Non-parametric regression models,
on the other hand, only require some qualitative
properties for �, for example that � belongs to
some functional space 
 . An overall measure of
performance of an estimator can be expressed
by a combination of goodness of the fit and
smoothness of the curve � D �(t). For example,

¦2 D .1 � q/ 1
n

nX
iD1

wi Œxi � � .ti /�2

C q
bZ
a

�
dm�

dtm

�2
dt (6.56)

where xiD x(ti) are the n observed values with
positive weights wi, m is a positive integer, and
the parameter 0< q< 1 is used as a balancing
factor between goodness-of-fit and smoothing of
the estimator. If we set: “� q/(1 – q), then the
functional to be minimized, �2, can be rewritten
as:

¦2 D 1

n

nX
iD1

wi Œxi � � .ti /�2 C “
bZ
a

�
dm�

dtm

�2
dt

(6.57)

The minimizing function, �, is a natural
smoothing spline estimator (Eubank 1999)
and the parameter “, which controls balancing
between goodness-of-fit and smoothness, is
called the smoothing parameter. When “ is
large (q� 1) smoothness is favoured, whereas
estimators having large m-th derivative are
penalized. Conversely, small values of “ (q� 0)
tend to select classic least squares estimators and
privilege goodness-of-fit. It can be shown that
smoothing spline estimators are natural splines,
that is, piecewise polynomials subject to a
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Fig. 6.14 Spherical spline
APW path for N. America.
This best-fitting curve has
been generated using the
algorithm of Jupp and
Kent (1987) and a
smoothing parameter
“D 50. North American
paleopoles have been
selected from the GPMDB
using the
minimum-reliability
criteria of Schettino and
Scotese (2005), but no
further filtering has been
applied. Confidence limits
are not displayed for clarity

maximum number of continuity constraints. The
segmented nature of these functions gives them
more flexibility than polynomials and allows a
better adaption to the local characteristics of the
data. The parameters “ and m can be chosen
manually, according to some known properties
of the estimator, or computed by algorithms that
take into account of the actual data and some
optimality criteria. When the only assumption
about � is that this function is continuously
differentiable and has a square integrable second
derivative, then mD 2, and the resulting estimator
is a cubic smoothing spline.

The independent statistical analysis of paleo-
latitude and declination time series represented a
major point of controversy, to such an extent that
the a famous geophysical journal rejected to pub-
lish the paper submitted by the proponents of this
method. The criticizers of the approach followed
by Schettino and Scotese (2005) questioned the
fact that independent regressions of declination
and paleolatitude data were statistically incor-
rect (e.g., Ruiz-Martínez et al. 2012), because
declination and inclination (hence paleolatitude)
are not independent variables. To understand this
point, let us assume that a time series of unit
vectors uiDu(ti) is converted into a sequence
of site-dependent paleolatitude and declination
pairs (œiDœ(ti), DiDD(ti)). If we perform inde-
pendent statistical regressions of these two time

series and then convert back the smoothed pairs
(œ 0 (t), D 0 (t)) into unit vectors u0(t), then these
vectors will not form, in general, a best fitting
spherical regression curve of the original time se-
ries. In this instance, we say that œ and D are not
independent each other from the statistical point
of view. In fact, while œ0(t) and D0(t)) will satisfy
at best the maximum likelihood principle for the
corresponding curves of paleolatitude and decli-
nation, their combination in the spherical variable
u0(t) will not necessarily fit at best the unit vectors
ui in the least-squares sense. Conversely, unit
vectors sampled along a real best fitting curve
on the sphere (e.g., a spherical spline) will not
generally produce paleolatitude and declination
pairs that fit at best the corresponding time series.
For example, Fig. 6.14 shows a spherical smooth-
ing spline APW path for the North American
craton, generated using the algorithm of Jupp and
Kent (1987) and without paleopole transfer from
other continents. We may use this APW path to
get smoothed curves of paleolatitude and decli-
nation for a reference point in North America.
However, Fig. 6.15 shows that these functions
would not coincide with best fitting smoothed
curves of paleolatitude and declination, which
can be built using the same data set and a similar
degree of smoothing. In general, the curves of
predicted paleolatitude and declination generated
from smoothed APW paths will not represent best
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Fig. 6.15 Predicted paleolatitudes (top) and declinations
(bottom) for a point in N. America at (55ıN, 90ıW) since
the late Triassic, based on the same data used for the
construction of the APW path of Fig. 6.14. No attempt

has been done to remove outliers. The solid lines represent
cubic spline regression curves, built using a smoothing
parameter “D 50. Dots are paleolatitudes and declinations
predicted by the spherical spline APW path of Fig. 6.14

fitting estimators of the corresponding time se-
ries, although the APW paths from which they are
derived are by themselves best fitting spherical
curves of paleomagnetic pole time series on the
unit sphere.

In summary, we can choose to have alter-
natively best fitting regression curves of pale-

olatitude and declination, sacrificing the possi-
bility to have a best fitting APW path through
the paleopoles, or the vice versa. What is the
“correct” or the “best” approach? It depends
from what we consider to be our data. For the
criticizers of the method proposed by Schet-
tino and Scotese (2005), the primary input data
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in the construction of an APW path are mean
paleopoles. In this instance, a smoothed APW
path must have the property to be a best fitting
regression curve on the sphere in the least-squares
sense, and there is no necessity to have best
fitting paleolatitude or declination plots. Con-
versely, in the approach of Schettino and Scotese
(2005) declination and inclination represent the
primary physical observables, from which it is
possible to calculate a paleomagnetic pole using
some assumptions (e.g., the GAD hypothesis). In
this view, the data are paleomagnetic directions
determined at sampling sites, and the utility of
paleopoles resides exclusively in their capability
to predict inclination and declination at any other
site, as well as in the possibility to determine total
reconstruction poles for the continent.

Therefore, in the view of these authors, the im-
portant time series to be analyzed, and for which
best fitting regression curves were searched, were
the sequences of paleolatitude and declination at
representative reference sites and not the pale-
opole time series.

The importance of these variables was also
stressed observing that the declination D and the
paleolatitude œ at a reference site are kinematic
quantities that completely describe the motion of
a tectonic plate with respect to a paleomagnetic
reference frame. In fact, it is easy to show that any
motion on the sphere can be resolved into three
elementary Euler rotations, namely: (a) A pure
N–S rotation, associated with an Equatorial Euler
pole and variations of latitude of the reference
site S; (b) A pure rotation about the vertical
axis at the reference site, which is responsible
for changes in declination, and (c) A rotation
about the spin axis (z axis), which only changes
the site longitude. Figure 6.16 illustrates these
independent rotations, which can be performed
in any order without affecting the final result.
Therefore, assuming a paleomagnetic reference
frame where the longitude of the site S is fixed
(see Sect. 2.3), we have that the pair (œ,D) com-
pletely describes the kinematics of the tectonic
plate to which S belongs. Another reason to
prefer declination and paleolatitude regressions
sacrificing paleopole fitting is that declination
and inclination (hence paleolatitude) are influ-

enced differently by tectonic processes after the
acquisition of NRM, which also contributes to
their physical independence. For example, the
site of a paleopole could be located on a second-
order tectonic element that experienced a small
amount of vertical axis rotation with respect to
the main continent. This process could affect
significantly the site declination, although its pa-
leolatitude would remain unchanged. On the con-
trary, a process known as sedimentary inclination
shallowing (e.g., Arason and Levi 1990) could
modify the magnetic inclination of deep-sea sed-
iments during the process of compaction without
affecting their declination. As a consequence,
paleopoles having either a wrong declination or
a wrong paleolatitude have a negative effect on
a spherical regression curve, whereas they would
be easily detected as outliers on either paleolati-
tude or declination plots. Therefore, an essential
aspect of the approach of Schettino and Scotese
(2005) was the detection of anomalous values of
the predicted declination or paleolatitude at the
reference sites. These outliers were filtered away
during the process of construction of a smoothed
paleolatitude or declination plot, although the
corresponding paleopoles could still contribute
to the other curve (respectively declination or
paleolatitude). Finally, the resulting spline regres-
sion curves were combined to generate spherical
smoothed (but not necessarily best fitting in the
spherical sense) APW paths.

6.5 Paleomagnetic Reference
Frames

In Chap. 2, when we have described the general
structure and the process of construction of plate
circuits, we omitted to specify how the finite
rotations of the root plate are determined. We
have learnt that rotation models are listings of
finite reconstruction poles and rotation angles for
each identified pair of conjugate plates. How-
ever, the finite rotations of the plate associated
with the circuit root node cannot be referred to
any other plate, so that in a rotation table like
that illustrated in Fig. 2.29 the reference plate
field of the corresponding entries will be set to

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8
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Fig. 6.16 Decomposition of Euler rotations. Given a
rotation on the sphere (a), an arbitrary reference site S
will be subject to a variation of paleolatitude, declination,
and longitude. These variations can be described by three

elementary transformations: a rotation about an Equatorial
pole, located 90ıE from the initial longitude (b), a vertical
axis rotation (c), and a rotation about the spin axis (d)

zero. This means that the reconstruction matri-
ces obtained from these entries are immediately
total reconstruction matrices, which transform
a plate from the present day position to the
absolute position occupied at an assigned time
T in a paleotectonic reference frame. Here, we
are going to discuss some methods to set up
a paleomagnetic frame of reference, which is
a common kind of paleotectonic frame, using
an APW path. In Chap. 2, we have seen that
paleomagnetic frames are geocentric coordinate

systems such that the z � axis coincides with
the apparent position of the Earth’s spin axis as
determined by a paleomagnetic pole. Therefore,
these frames differ each other on the basis of how
the longitude of a reference point on the root plate
changes with respect to the present day value.
Clearly, this definition requires a characteriza-
tion of longitudes that is independent from plate
motions, which leads us to abandon the familiar
concept of angular distance from the Greenwich
meridian.

http://dx.doi.org/10.1007/978-3-319-09135-8_2


6.5 Paleomagnetic Reference Frames 201

Fig. 6.17 The
paleolongitude ¥*(t) at
time t of a site S on the
reference continent (central
Africa in this example) in a
paleomagnetic reference
frame (x0 ,y0,z0) is built
using the mean paleopole
P(t) for time t and a hot
spot track. At any time t,
the reference meridian (i.e.,
the meridian for which
x0 D 0) is defined as the
actual meridian of a hot
spot location, H(t), with
respect to P(t). It is
assumed that H is the
surficial expression of
deep processes and that its
location does not depend
from the motion of the
plate where it is currently
placed. The black line with
age progression of hot spot
locations represents the
track left by H during the
motion of this plate

A way to define the paleolongitude of a point
independently from plate motions is based on the
individuation of hot spots (Morgan 1971) punc-
tual magmatic features at the Earth’s surface,
which are expressions of deep processes occur-
ring somewhere below the lithosphere and the
uppermost asthenosphere (Fig. 6.17). A key fea-
ture of hot spots, which is generally interpreted as
evidence of their stationary position with respect
to the mantle, is that they are placed at the
youngest ends of alignments of intraplate volcan-
ism with age progression. In this instance, the
combined sequence of magmatic events in space
and time could witness the transit of the tectonic
plates where they are placed over quasi-stationary
mantle upwellings not related to plate boundary
processes. Classic examples of hot spot tracks
are the Hawaiian and Emperor seamount chains
on the Pacific plate. Contrarily to a widespread
belief, the construction of reference frames based
on hot spot tracks does not require assumption

that hot spots be fixed to the deep mantle, be-
cause any marker whose geographic location is
unconstrained with respect to the surrounding
plate and with sufficient age range can be used
to define paleolongitudes. Figure 6.17 illustrates
how to accomplish this task. If H is the present
day location of a hot spot, we choose an arbitrary
reference site S on the root plate and determine its
relative longitude, ¥*(0)D¥S–¥H, with respect
to H. To calculate the paleolongitude at time t,
we choose as reference meridian in the paleo-
magnetic reference frame (x0,y0,z0) the meridian
passing through the location, H(t), where the hot
spot magmatism has age t. The paleolongitude
¥*(t) will be given by the angle between the
meridian through S and the reference meridian in
the paleomagnetic frame. Therefore, the longitu-
dinal shift of the reconstructed site S is given by
•¥(t)D¥*(t)–¥*(0).

Hot spot tracks are useful to set up paleo-
magnetic or pure hot-spot reference frames for
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Cenozoic and late Mesozoic plate reconstructions
(e.g., Müller et al. 1993). However, the scarcity of
hot spot data for times older than the Cretaceous
leads to adopt alternative strategies when the
reconstructions encompass larger time intervals.
The simplest way to define a paleomagnetic coor-
dinate system independently from hot spot tracks
is to assign constant paleolongitude ¥*(t)D¥0 to
a selected reference site, ¥0 being the present day
longitude of the site. For example, if we choose
the central African craton as the root continent of
our rotation model, then we could assume that the
point with present day coordinates (0ıN,25ıE) in
central Africa will have constant paleolongitude
¥*(t)D 25ıE for any time t. This approach can
be found in Besse and Courtillot (1988). In this
instance, the finite rotations corresponding to
each paleopole position are obtained applying the
transformation:

R.t/DR .0; ¥0C90; œ0�œ.t//R .�0; ¥0;D.t//

(6.58)

Here, D(t) and œ(t) are respectively the dec-
lination of the reference point (œ0,¥0) and its
paleolatitude at time t, and R(œ,¥,¨) is a rotation
matrix about the generic Euler pole (œ,¥) by
an angle ¨. In this formula, D(t) and œ(t) are
determined by the paleopole position using the
method described in Sect. 6.4. We note that the
first rotation in (6.58) resets to zero the decli-
nation at (œ0,¥0), while the subsequent rotation
moves this point northward or southward to re-
store its paleolatitude. Both these rotations leave
invariant the longitude ¥0 of the reference point.
An alternative, but substantially equivalent, way
to set up a paleomagnetic reference frame is to
define R(t) as the rotation that brings a paleopole
P to the North Pole through its own meridian of
longitude, as illustrated in Fig. 6.7. This rotation
is given by:

R.t/ D R
�
0; ¥P C 90ı;�™P

�
(6.59)

where (¥P,™P) are the paleopole longitude and
colatitude. Two examples of the use of such
a reference frame can be found in Ziegler et
al. (1983) and Schettino and Scotese (2005).

Note that the setup of this frame does not require
the selection of a reference site. Furthermore,
in this case the paleolongitude of any reference
point will change with respect to its present day
value in a complicate way, although the variation
will be very small. In general, any rotation that
brings a paleopole P to the North Pole gen-
erates a corresponding paleomagnetic reference
frame.

Maybe, the most intriguing way to perform
this operation is that proposed by Gordon et al.
(1984). These authors observed that for long time
intervals plate motions appear to be rotations
about fixed Euler poles, so that any point on a
tectonic plate moves along a small circle arc.
Even the APW paths seemed to be composed
by sequences of tracks having the geometry of
small circle arcs, which were interpreted as the
kinematic expression of stages of constant motion
about fixed Euler poles. These poles were called
paleomagnetic Euler poles (PEPs). In this view,
the cusps of an APW path, which link consec-
utive small circles, correspond to times of rapid
change in the plate motion. An example of PEP
analysis is illustrated in Fig. 6.18, in the case of
a track ending at the North Pole. In general, the
transformation from the present day geographic
coordinate system to a paleomagnetic reference
frame is accomplished through k rotations about
PEPs if a paleopole is placed along the k–th track.
Apparently, the technique proposed by Gordon
et al. (1984) allows to determine the true pale-
olongitude variation of a reference site S with
respect to its present day value. To this purpose,
these authors drew an analogy with the motion
of a tectonic plate with respect to hot spots. They
observed that alignments of volcanic activity with
regular age progression, such as the Hawaiian and
Emperor seamount chains, have the geometry of
small circle arcs. Therefore, in this case we can
find Euler poles by fitting small circles to hot spot
tracks. If we assume that the hot spots are fixed
with respect to the lower mantle, then a rotation
about a hot spot Euler pole can be considered as
a motion expressed in a lower mantle reference
frame. By analogy, a rotation about a PEP would
be expressed in a unique “absolute” reference
frame. However, Gordon et al. (1984) did not
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Fig. 6.18 Reconstruction
of a continent through PEP
analysis. A small circle arc
about a PEP, E, is used to
fit a sequence of
paleopoles (red dots). For a
track that ends at the North
Pole, a paleomagnetic
reference frame for time t
is found rotating P(t) to the
North pole about the PEP E

explain how to set up such an “absolute” frame.
Therefore, although PEP analysis furnishes an
intriguing way to represent the motion of a root
continent, it has not received much favor from the
community of paleomagnetists (e.g., Butler 1992;
Van der Voo 1993), possibly as a consequence of
the difficulties to define precisely the reference
frame.

6.6 True PolarWander

True polar wander (TPW) can be defined as a
rotation of the whole outer shells of the solid
Earth (crust plus mantle) with respect to the spin
axis, although this rotation would be indistin-
guishable from a motion of the lone lithosphere.
Such definition, which can be found in several
papers about this subject (e.g., Jurdy and Van der
Voo 1974; Gordon 1987; Evans 2003), requires
a precise definition of what is intended by “ro-
tation of the whole Earth”, and a specification

of the reference frame where the rotation can
be observed. Unfortunately, the definitions that
can be found in the published literature are often
vague or inadequate. For example, Steinberger
and Torsvik (2008) built a reference frame assum-
ing that the z-axis was aligned with the spin axis,
while the y-axis was chosen in the Equatorial
plane, passing through the meridian where the
“continents’ centre of mass” is placed. Apart
from the difficulty to find the “continents’ centre
of mass”, this definition is somewhat confusing,
because the centre of mass of a system of plates
(or continents) is not independent from global
plate motions, thereby, it should not be used to
set up a reference frame for the detection of TPW.
As shown in the previous section, a suitable way
to define a coordinate system that is independent
from plate motions requires using hot spot tracks,
which are expressions of processes occurring
somewhere below the lithosphere.

For example, if a hot spot track exists on the
root plate, we can eventually fit a small circle
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Fig. 6.19 Determination
of a hot-spot Euler pole
(HEP). In this instance, a
small circle arc about a
HEP, E, is used to fit a
chain of volcanoes (red
dots). H is the location of
present day hot spot
volcanism

arc about a hot spot Euler pole (HEP) to the hot
spot track observed on this plate (Gordon et al.
1984). This method is illustrated in Fig. 6.19.
In this instance, for a set of N plates related by
a circuit C, we can determine the Euler vectors
¨i describing the motion of each plate in the
global circuit. In fact, if ¨r is the Euler vector
of the reference plate (with Euler pole in E, see
Fig. 6.19) and ¨ir is the angular velocity of the i-
th plate relative to the root plate, then its absolute
angular velocity will be given by: ¨iD¨irC¨r.
Then, using (2.69) we see that an Euler vector
describing the rotation of the whole lithosphere
can be written as follows:

� D 3

8�

X
i

Qi¨i (6.60)

where the components of the tensors Qi are given
by (2.63). The vector � can be used to establish
the existence of TPW. To this purpose, � must be
decomposed into an Equatorial component and a

component aligned with the spin axis. As noted
by Jurdy and Van der Voo (1974), only the Equa-
torial component will contribute to TPW, in so far
as it shifts the whole lithosphere from the current
location of the spin axis. Therefore, we can define
TPW as the result of a rotation of the whole
lithosphere about an equatorial Euler pole. Given
that it is unlikely for � to be aligned with the spin
axis at any time, we see that TPW is a common
feature of global plate motions, which also affects
at the same time all APW paths. A series of ques-
tions immediately follows (apart from those re-
garding the dynamics associated with TPW). For
example, what is the amount of TPW during the
geologic past? Does it average to zero? Second,
how are APW paths affected by TPW? Third,
what is the kinematic relation between TPW and
hot spots? Although these questions have been
addressed in a number of articles since the 1970s,
no satisfactory answer has been found so far
and TPW is still at the frontier of paleomagnetic
research.

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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6.7 Velocity Fields
and Acceleration Fields
During the Cenozoic
and theMesozoic

Now we are going to describe some insightful
features of global plate motions since the late Tri-
assic through an unconventional approach, based
on an analysis of velocity and acceleration fields.
To this end, we will use the techniques described
in Sect. 2.8 to determine the absolute linear ve-
locity of a point (Eq. 2.51) and its acceleration.
For simplicity, plate motions will be represented
in the paleomagnetic reference frame of Schet-
tino and Scotese (2005), but the validity of the
results extends to more sophisticated coordinate
systems. Our starting point is the observation that
the absolute motion of a reference point on any
given plate, which can be determined using the
methods described in Sect. 2.7, is far from being a
random walk. Figure 6.20 illustrates the absolute

trajectories of reference sites on four continents
since 230 Ma (late Ladinian). An important fea-
ture that these paths have in common is that they
are chains of small circle arcs. Furthermore, it
is possible to show that the velocity along each
small circle arc is approximately constant, which
suggests us that the motion of any point can be
described by a sequence of rotations about fixed
Euler axes.

It is not difficult to prove that this is in part
a consequence of the fact that the relative motion
between two neighbor plates in a circuit is always
a sequence of stage rotations (see Sect. 2.7). The
technique to calculate the path of relative motion
travelled by a reference point has been described
in Sect. 2.8. Extending the method to absolute
motions is an elementary task: we simply sub-
stitute the relative linear velocity appearing in
(2.56), which could not be associated with a stage
rotation, by an absolute velocity v:

r .T C •T / D r.T /C v .r/ •T (6.61)

Fig. 6.20 Trajectories of reference points in N. America, S. America, Eurasia, and India during the last 230 Myrs in
the paleomagnetic reference frame of Schettino and Scotese (2005). Numbers represent ages along the paths

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 6.21 Smoothed APW
path of central Africa
since the early Jurassic
(modified from Schettino
and Scotese 2005).
Numbers represent ages
along the path

where T is the time and r is the position vector
of the reference point. To determine the absolute
velocity v, we perform a traversal of a rotation
tree from the selected plate to the root node,
calculating and summing at each step the relative
velocity of the current node with respect to its
parent (Eq. 2.51). However, we know that any
node in a rotation tree represents a conjugate
plate for the parent node, thereby, the velocities
are always calculated from stage poles. Conse-
quently, the relative motion of any plate with
respect to the root node can be represented by a
sequence of stage rotations. This is not sufficient
to explain the geometry of motion illustrated in
Fig. 6.20, because the absolute motion of the root
plate could be a random sequence of instanta-
neous rotations, at least in principle. However, as
we have seen in section Sect. 6.5, paleomagnetic
data suggest that even the motion of the root
plate can be described by a sequence of rotations
about PEPs. This observation results not only
from the study of Gordon et al. (1984) but also
from an independent analysis of the geometry of
the smoothed APW paths proposed by Schettino
and Scotese (2005). For example, it can be proved
rigorously that the smoothed African APW path
can be divided into four small circle tracks, as
suggested by a visual inspection of Fig. 6.21
(Schettino and Scotese 2000).

Therefore, we infer that the absolute motion
of any plate can be described by a sequence of
rotations about fixed Euler poles, as illustrated
in Fig. 6.20 by the paths travelled by refer-
ence sites. Such conclusion has important con-
sequences when we try to link plate kinematics
with mantle geodynamics, because it implies that
plate motions proceed for long time intervals
with constant angular momentum, so that the
total torque exerted on a tectonic plate is zero.
This in turn implies that in normal conditions
the lithosphere moves in equilibrium conditions,
such that the resistive forces opposing the motion
over the fluid asthenosphere are balanced by
active plate boundary forces. More specifically,
the existence of stationary plate motions that are
maintained for long time intervals implies that
the dominant driving force represented by the
gravitational pull of subducting slabs is always
balanced by the resistive viscous drag exerted
by the asthenosphere (Chase 1979). However, in
Chap. 13 we shall see that episodes of accelerated
plate motion are possible and result from currents
in the asthenosphere, anomalous ridge push, or
continental collisions.

Now we are going to give a precise character-
ization of the global tectonic stages since the late
Triassic, as well as of possible events of acceler-
ated motion during this time interval. In general,

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 6.22 Accelerations at stage transitions. ek and ekC1

are two successive stage poles. Euler vectors ¨k and ¨kC1

are built using the versors through ek and ekC1 and the
angular velocities of the corresponding stages. Although

the variation �¨ can be quite large, the magnitude of
the angular velocity variation, �j¨j D j¨kC 1j–j¨kj is
generally small

stage transitions are associated with discontin-
uous variations of the stage pole about which
a tectonic plate moves, so that we can define
an angular acceleration vector�¨�¨kC 1�¨k

at the end of the k-stage (Fig. 6.22). Just as in
the example of Fig. 6.22, these transitions do
not generally involve large variations of plate
velocity, because in most cases we have only a
change in the location of the stage pole, such that
�j¨j� j�¨j. In principle, phases of accelerated
plate motion should be associated with a series of
very short stages with increasing (or decreasing)
velocity. In practice, the analysis of marine mag-
netic anomalies often allows to determine only
an average stage velocity, whereas the details of
the spreading process are obscured. The reason
is that stage boundaries are usually associated
with sharp variations of curvature in the trend of
oceanic fracture zones (corresponding to changes
of stage pole location), only exceptionally with
variations of plate velocity. Therefore, we will
be able to identify phases of accelerated mo-
tion, which must not be confused with stages

of elevated but constant velocity, only by the
individuation of short asynchronous pulses of fast
(or slow) velocity of individual plates, not neces-
sarily associated with plate boundary processes
(e.g., collisions). In this case, we will observe
a significant positive (or negative) peak in the
magnitude of the angular acceleration of a single
plate at a stage boundary, followed by a compara-
ble peak of opposite sign at the successive stage
boundary (Fig. 6.23).

Plots of magnitude of the angular acceleration
vector, j P̈ j, and of variations of angular velocity,
P!, for nine large plates since the late Triassic are
illustrated in Figs. 6.24, 6.25, 6.26, 6.27, 6.28,
6.29, 6.30, 6.31, and 6.32. Peaks in the magnitude
of the angular acceleration vector are associated
with large displacements of the stage pole during
stage transitions, but not necessarily with non-
equilibrium states. Conversely, alternate pairs of
large peaks in the plots of scalar acceleration
are indicative of non-equilibrium states of trac-
tion for the lithosphere, if they represent asyn-
chronous events. For example, a striking peak of
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Fig. 6.23 Detection of
accelerated
non-equilibrium states. The
transitions from stage pole
ek to ekC1 and from ekC1

to ekC2 are associated with
large variations, of
opposite sign, of the
magnitude of the angular
velocity

Figs. 6.24 and 6.25
Magnitude of the angular
acceleration vector (blue
line) and variations of
angular velocity (red line)
for N. America and S.
America since the late
Triassic (230 Ma).
Boxes indicate possible
events of traction
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Figs. 6.26 and 6.27
Magnitude of the angular
acceleration vector (blue
line) and variations of
angular velocity (red line)
for Eurasia and India since
the late Triassic (230 Ma).
Boxes indicate possible
events of traction

jd¨/dtj can be observed at 120 Ma (anomaly M0)
in the plots of N. America, S. America, Eurasia,
India, Australia, and E. Antarctica.

This peak is associated with a phase of global
reorganization of the plate boundaries during
the early Aptian, but no events of traction can
be observed at that age. However, large peaks
of scalar acceleration are always accompanied
by peaks in the magnitude of the angular
acceleration vector. The plots in Figs. 6.24, 6.25,
6.26, 6.27, 6.28, 6.29, 6.30, 6.31, and 6.32 show
that central Africa, east Antarctica and possibly
Australia never experienced a remarkable episode
of traction, although the latter was subject to three

strong increments of angular velocity during
the Tertiary that could be indicative of ongoing
accelerated motion (Figs. 6.28, 6.29). The
oldest event of lithospheric traction during the
time interval considered here possibly occurred
between 154 Ma (M25 – Kimmeridgian) and
148 Ma (M21 – Tithonian). It consisted into
a clockwise acceleration of Laurasia about a
pole located in the present day Xinjiang region,
central Asia (44.88ıN, 88.45ıE). The event can
be observed on the plots of both N. America and
Eurasia (Figs. 6.24, 6.25, 6.26, 6.27), which at
that time formed a unique Laurasian plate, and
coincided with a phase of accelerated spreading
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Figs. 6.28 and 6.29
Magnitude of the angular
acceleration vector (blue
line) and variations of
angular velocity (red line)
for central Africa and
Australia since the late
Triassic (230 Ma)

in the central Atlantic. It is interesting to note
that the time interval of this event does not
overlap with the first episode of magmatism
in the New England seamounts chain, which is
�103 Ma (Duncan 1984). Therefore, it is not
possible in this case to associate the lithospheric
traction with mantle plume magmatism. A
paleotectonic reconstruction at 154 Ma (M25 –
Kimmeridgian) is shown in Fig. 6.33, which
illustrates both the instantaneous velocity field
of the major continents at that time and the
�0.20ıMyr�2 clockwise acceleration field of
Laurasia. Undoubtedly, this event could have
triggered a phase of increased subduction in

the Tethys, associated with the obduction of the
Vardar ophiolites onto the Dinaric, Pannonian,
and Menderes-Tauride domains of east Europe
and Turkey (Schettino and Turco 2011).

Apart from the traction event that affected
Laurasia, the global velocity field shown in
Fig. 6.33 suggests a phase of relevant TPW,
associated with a clockwise rotation of the
lithosphere about an Equatorial pole. However,
this is only a possibility, which cannot be
demonstrated merely through the observation
of continental lithosphere velocity fields.
The next probable episode of traction was
a slowdown of Laurasia and India between
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Figs. 6.30 and 6.31
Magnitude of the angular
acceleration vector (blue
line) and variations of
angular velocity (red line)
for east Antarctica and
Pacific since the late
Triassic (230 Ma). Boxes
indicate possible events of
traction

132 Ma (M10 – Hauterivian) and 127 Ma
(M4 – Barremian) (Figs. 6.24, 6.25, 6.26, 6.27).
However, in this instance lower magnitudes of
angular acceleration (respectively �0.14 and
�0.17ıMyr�2) were accompanied by locations
of either poles or antipoles of acceleration not
far from these continents. Consequently, the
effective accelerations were low and there is
more than one doubt that this time interval was
effectively a phase of accelerated motion for
these plates. Figure 6.34 shows a reconstruction
at 132 Ma (M10 – Hauterivian). It is interesting
to note that in this reconstruction both S. America
and Africa have negligible angular velocities.

The successive episode of non-equilibrium
kinematics occurred at �84 Ma (C34–C33
boundary, Santonian) and influenced once again
the motion of N. America, Eurasia, and India.
However, while the episode of accelerated motion
ended during C33n (�78 Ma – Campanian) in
the case of N. America and Eurasia (Figs. 6.24,
6.25, 6.26, 6.27), India continued to increase
its velocity until C21 (�48 Ma – Lutetian)
(Figs. 6.26, 6.27). Furthermore, while the former
plates experienced modest increases of angular
velocity, respectively 0.14 and 0.07ıMyr�2,
India accelerated northward by 0.29, 0.33, and
0.44ıMyr�2 during three distinct pulses between
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Fig. 6.32 Magnitude of
the angular acceleration
vector (blue line) and
variations of angular
velocity (red line) for
Nazca since the late
Triassic (230 Ma). Boxes
indicate possible events of
traction

Fig. 6.33 Reconstruction at 154 Ma (M25 – Kimmerid-
gian), illustrating the acceleration field of Laurasia (red
arrows) and the global plate velocities (black arrows).

A and P are respectively the antipole and the pole of
acceleration. Black areas are LIPS. Coastlines are overlaid
for reference

C34 and C21. Cande and Stegman (2011) have
suggested that the northward acceleration of
India during the Cretaceous to Eocene time
interval was determined by the push exerted
by the Reunion plume head. Conversely, no
clear connection exists between the traction of
N. America – Eurasia and plume magmatism.
Figure 6.35 shows a reconstruction at 84 Ma
(M10 – Santonian), where we can observe a

possible episode of TPW, associated with a
counterclockwise rotation of the lithosphere
about an Equatorial pole. A remarkable feature
of this reconstruction is the considerable linear
acceleration of N. America and Eurasia, despite
their modest increase of angular velocity. This
depends from the location of the acceleration
poles or antipoles, which are both far from these
plates. This is an important point: the location
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Fig. 6.34 Reconstruction at 132 Ma (M10 – Hauteriv-
ian), illustrating the small acceleration field of Laurasia
and India (red arrows) and the global plate velocities

(black arrows). PIND and PLAU are respectively the poles of
acceleration of India and Laurasia. Black areas are LIPS.
Coastlines are overlaid for reference

Fig. 6.35 Reconstruction at 84 Ma (C34 – Santonian),
illustrating the acceleration field of N. America, Eurasia,
and India (red arrows) and the global plate velocities

(black arrows). PIND, PEUR, and PNAM are respectively the
poles of acceleration of India, Eurasia, and N. America.
Black areas are LIPS. Coastlines are overlaid for reference
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Fig. 6.36 Reconstruction at 68 Ma (C31 – Maas-
trichtian), illustrating the acceleration field of the Pacific,
S. American, and Indian plates (red arrows) and the global
plate velocities (black arrows). PIND, PPAC, and PSAM are

respectively the poles of acceleration of India, Pacific, and
S. America. Black areas are LIPS. Coastlines are overlaid
for reference

of a pole of acceleration is often more important
than its magnitude in the recognition of traction
episodes.

Figure 6.35 also shows that S. America was
moving rapidly southwestward during the Santo-
nian, while the southern part of central Africa was
moving eastward at moderate velocity. These mo-
tions followed an episode of almost instantaneous
increase of angular velocity during the very short
chron M0 (�125 Ma), which was accompanied
by a relevant change of the stage pole locations.
It is not possible to prove that this was an event
of traction, because we do not know the details
of the spreading process during the long CQZ,
although it is interesting to note that the spike
of P! coincided with the onset of the Tristan de
Cunha plume magmatism in the South Atlantic.

A new set of traction episodes occurred be-
tween chrons C31 (�68 Ma – Maastrichtian)
and C25 (�57 Ma – Thanetian). Apart from
the continued northward acceleration of India,
during this stage both S. America and the Pa-
cific plate experienced traction, but with oppo-
site polarities. In fact, while S. America was
decelerating in this time interval (Figs. 6.24,

6.25), the Pacific plate increased its angular ve-
locity and changed dramatically the stage pole
location (Figs. 6.30, 6.31). A reconstruction at
�68 Ma is shown in Fig. 6.36, which illustrates
the strong eastward acceleration of the Pacific
plate between chrons C31 and C25. Such acceler-
ation was necessarily accompanied by increased
spreading rate along the East Pacific Rise (EPR),
which separated the Pacific domain from the
Farallon plate (e.g., Cande et al. 1988). How-
ever, there is no direct evidence that this episode
was associated with plume activity in the Pacific
area.

An interesting episode of deceleration was
experienced by Eurasia between C25 (�57 Ma –
Thanetian) and C21 (�47 Ma – Lutetian). Fig-
ures 6.26, 6.27 shows that this event was asso-
ciated with a remarkable variation of the stage
pole, while Figs. 6.26, 6.27 indicates that the end
of this time interval coincided with an abrupt
slowdown in the northward drift of India, pos-
sibly caused by the incipient collision with the
Eurasian margin (e.g., Dewey et al. 1989; Huchon
et al. 1994). A plate reconstruction at chron C25
is illustrated in Fig. 6.37.
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Fig. 6.37 Reconstruction at 57 Ma (C25 – Thanetian),
illustrating the acceleration field of Eurasia (red arrows)
and the global plate velocities (black arrows). PEUR is

the pole of acceleration of Eurasia. Black areas are LIPS.
Coastlines are overlaid for reference

Fig. 6.38 Reconstruction at 39 Ma (C18 – Bartonian),
illustrating the acceleration field of Nazca (red arrows)
and the global plate velocities (black arrows). PNAZ is

the pole of acceleration of Nazca. Black areas are LIPS.
Coastlines are overlaid for reference

The next episode of traction occurred between
C18 (�39 Ma – Bartonian) and C13 (�33 Ma –
early Rupelian) and affected the Nazca plate
(Fig. 6.32). It consisted into an eastward acceler-
ation (Fig. 6.38), accompanied by a remarkable
change of the stage pole. At the end of this stage,

the Pacific plate probably started a phase of
westward acceleration and increased spreading
rate along the EPR, which lasted at C6 (�20 Ma –
Burdigalian) (Figs. 6.35 and 6.39). The last rec-
ognized episode of traction occurred once again
in the Pacific area and consisted into a southward
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Fig. 6.39 Reconstruction at 33 Ma (C13 – Rupelian),
illustrating the acceleration field of Pacific (red arrows)
and the global plate velocities (black arrows). PPAC is the

pole of acceleration of the Pacific plate. Black areas are
LIPS. Coastlines are overlaid for reference

Fig. 6.40 Reconstruction at 19 Ma (C6 – Burdigalian),
illustrating the acceleration field of Nazca (green arrows)
and the global plate velocities (black arrows). PNAZ is

the pole of acceleration of Nazca. Black areas are LIPS.
Coastlines are overlaid for reference

acceleration of Nazca between C6 and C5
(�11 Ma – Tortonian) (Fig. 6.40). In conclusion,
eight major phases of non-equilibrium kinematics
could have occurred during the last 230 Myrs.
These episodes interested individual plates,
which experienced a stage of accelerated motion,

accompanied by fast spreading on one boundary
and rapid subduction along an opposite boundary.
In some cases, the plates were subject to a sudden
slowdown rather than to increasing velocity. In
any event, the force exerted by the downgoing
slabs was not balanced by the resistive viscous
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drag exerted by the fluid asthenosphere, so that
additional forces came to play. We shall come
back to this point later in this book.

6.8 Non-dipole Paleomagnetic
Fields

Up to this point, we have assumed that time-
averaged paleomagnetic fields are geocentric
dipole fields. However, several lines of evidence
suggest that this is only an approximate picture
of the reality, which could not be sufficient to
solve some issues. In a study of paleomagnetic
results from continental igneous rocks and
oceanic sedimentary cores of Quaternary to
Recent age, Wilson (1970) showed that individual
paleopoles were systematically displaced from
the geographic North Pole towards the far side
with respect to the sampling site (Fig. 6.41),
although they were correctly averaged to a point
that statistically coincided with the North Pole. In

particular, the northern and southern hemisphere
sea cores had respectively shallower and steeper
inclinations, and this could not be a depositional
effect. Therefore, Wilson (1970) suggested that
the dipole equation (4.49), which implies a GAD
field, is only an approximation of the correct
formula.

To explain the paleopole distribution, Wilson
(1970) proposed that a more refined model of
the time-averaged geomagnetic field was that
generated by an axial magnetic dipole, displaced
northward along the spin axis. In this instance,
the formula relating inclination to colatitude for
an arbitrary displacement •z is:

tan I D 2a cos ™C 3•z �3cos2™ � 1�
a sin ™C 6•z sin ™ cos ™

(6.62)

where a is the Earth’s radius. This formula is the
analogous of the GAD Eq. (4.49) for a magnetic
dipole displaced along the z axis. Wilson’s field
was already known in geomagnetism, where it

Fig. 6.41 Far-sided effect.
In this example,
Quaternary to Recent
paleopoles Pi, sampled at
locations Si on different
continents, are
systematically displaced
towards the far side from
the geographic pole

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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was used in the non-axial form to approximate
the Earth’s magnetic field (Bartels 1936). It is
usually referred to as the eccentric dipole field.
Wilson’s analysis of inclination data gave an
offset •zD 191˙ 38 km. Most interestingly, Wil-
son (1970) proved that the field produced by the
eccentric axial dipole is an axially symmetric
field formed by a GAD field plus a quadrupole
component. For an axially symmetric potential,
we have that the spherical harmonic expansion
(4.93) assumes the following simplified form:

V .r; ™/ D a
1X
nD1

�a
r

�nC1
g0nPn .cos ™/I r 
 a

(6.63)

which reduces to (4.97) for rD a (i.e., at the
Earth’s surface). The vertical and horizontal com-
ponents of the magnetic field associated with this
potential are given by:
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(6.64)

In the case of Wilson’s field, only the dipole
and quadrupole components of (6.63) and (6.64)
survive, so that the potential V is given by:

V .r; ™/ D a
�
g01
a2

r2
P1 .cos ™/C g02

a3

r3
P2 .cos ™/

�

(6.65)

The Legendre polynomials appearing in
(6.65) are given by: P1(cos™)D cos™ and
P2(cos™)D (3 cos2™–1)/2. Therefore, we have:

V .r; ™/ D a
�
g01
a2

r2
cos ™C g02

a3

2r3

�
3cos2™ � 1�

�

(6.66)

At the Earth’s surface, the vertical and hori-
zontal components of the corresponding geomag-
netic field are given by:
8<
:
Z .™/ D �2g01 cos ™ � 3

2
g02
�
3cos2™ � 1�

H .™/ D �g01 sin ™ � 3g02 sin ™ cos ™
(6.67)

Therefore, for an eccentric dipole field the
dipole equation (4.49) will be substituted by the
following more complex expression:

tan I D Z .™/

H .™/
D
2g01 cos ™C 3

2
g02
�
3cos2™ � 1�

g01 sin ™C 3g02 sin ™ cos ™
(6.68)

A comparison of this equation with the Wilson
solution (6.62) gives an estimate of the relative
importance of the quadrupole term with respect
to the dipole strength:

g02
g01
D 2•z

a
Š 0:06˙ 0:01 (6.69)

where we have used aD 6,371 km and
•zD 191˙ 38 km. In a later study, Wilson
and McElhinny (1974) showed that the mean
paleomagnetic field for the last 25 Myrs was an
eccentric dipole field with •zD 325˙ 57 km.
These authors also found a slow rate of change
in the long-term structure of the geomagnetic
field, hence in the parameter •z, during this
time interval. However, the first comprehensive
study about the non-dipolar components of the
time-averaged geomagnetic field was published
by Coupland and Van der Voo in 1980. These
authors assumed an axial geometry for the
paleomagnetic field and searched the best-
fitting low-degree zonal Gauss coefficients,
g0

n, of a spherical harmonic expansion of the
potential. With the available paleomagnetic
data, they found that significant departures from
the GAD symmetry were associated with the
zonal quadrupole and octupole components,

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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with coefficients g0
2 and g0

3, respectively. This
study confirmed the existence of non-dipole
components for the time interval between 130 Ma
(early Barremian) and the present day, although
the octupole component was negligible for times
older than 26 Ma. The study of Coupland and
Van der Voo (1980) was followed in 1983 and

1984 by two important articles of Livermore and
colleagues (Livermore et al. 1983, 1984). These
authors confirmed that the best substitute for the
dipole equation was the following expression,
which can be determined easily from (6.64)
retaining only dipole, quadrupole, and octupole
components:

tan I D
2g01 cos ™C 3

2
g02
�
3 cos2 ™ � 1�C 2g03 cos ™

�
5 cos2 ™ � 3�

g01 sin ™C 3g02 sin ™ cos ™C 3

2
g03 sin ™ .5 cos2 ™ � 1/

(6.70)

This formula is usually written in the form:

tan I D
2 cos ™C 3

2

�
g02=g

0
1

� �
3 cos2 ™ � 1�C 2 �g03=g01� cos ™

�
5 cos2 ™ � 3�

sin ™C 3 �g02=g01� sin ™ cos ™C 3

2

�
g03=g

0
1

�
sin ™ .5 cos2 ™ � 1/

(6.71)

which evidences more clearly the dependence
of the inclination from the ratios G2� g0

2/g0
1

and G3� g0
3/g0

1. Livermore and colleagues
found that G2D 0.045˙ 0.015 for the last
35 Myrs, while G2Š 0.10 between 40 and
60 Ma (Paleocene – Eocene), and it attained
negative values between �0.07 and �0.10 during
the Cretaceous and the Jurassic. Regarding the
octupole component, these authors suggested
the possibility that G3Š 0.02 for the last
5 Myrs, although they questioned that this
result may be due to data errors. The effect
of low-order non-dipolar components on the
observed magnetic inclinations is illustrated in
Fig. 6.42. We note that both the quadrupole
and octupole components determine shallower
inclinations in the northern hemisphere.
However, in the southern hemisphere inclinations
are always steeper only in the case of dipole-
quadrupole fields, because when the octupole
components have sufficiently large magnitude the
inclination will be shallower in both hemispheres.
Inclinations considerably shallower than those
predicted from APW paths were effectively
observed in central Asia (e.g., Si and Van der
Voo 2001 and references therein).

On the basis of these observations, Si and Van
der Voo (2001) proposed a paleomagnetic field
geometry with negligible quadrupole component
and significant octupole component (G3
 0.06)
for the time interval between the late Cretaceous
and the Tortonian. The difference between
inclination anomalies associated with quadrupole
and octupole components is illustrated in
Fig. 6.43. We note that an octupole inclination
anomaly is antisymmetric with respect to the
Equator, whereas a quadrupole anomaly is always
negative and has its maximum at the Equator.
In another paper, Van der Voo and Torsvik
(2001) used a data set of N. American and
European paleopoles with ages between 300 and
40 Ma, comparing the observed paleolatitudes
with theoretical values predicted on the basis
of the dipole equation. These authors assumed
a paleomagnetic field geometry formed by a
GAD field plus a zonal octupole component,
obtaining G3D 0.1. In a successive study, Torsvik
and Van der Voo (2002) confirmed this value
using stable Gondwana paleopoles. One of
the major issues addressed by these authors
was associated with the classic fits of Pangaea
(known as Pangaea A1 configurations, e.g., Van
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Fig. 6.42 Predicted
inclination as a function of
colatitude for three
paleomagnetic field
geometries: GAD (solid
line), a dipole field plus a
quadrupole component
(dashed line), and a field
which includes all zonal
components up to degree
two (dotted line). In this
example, G2 D 0.10 and
G3 D 0.05

Fig. 6.43 Predicted
inclination anomaly as a
function of colatitude for a
quadrupole component
(dashed line) and an
octupole component
(dotted line). In this
example, G2 D 0.10 and
G3 D 0.05

der Voo 1993), which introduced a discrepancy
between Permian-early Triassic paleopoles from
Gondwana and those obtained from Laurasian
sites.

In this instance, Permian and early Triassic re-
constructions did not bring the two data sets suf-
ficiently close to the North Pole, because Gond-
wana was placed too northwards with respect to
Laurasia in the fit of Pangaea. The attempt to keep
the GAD hypothesis led to several alternative,
more or less creative, fits of this supercontinent,
which are referred to as Pangaea A2, B, or C fits.
Apparently, the only alternative solution to the
paleomagnetic discrepancy, which would have
allowed to retain the classic A1 fits (e.g., that il-
lustrated in Fig. 2.30), was to admit the existence

of significant high-degree zonal components in
the paleomagnetic fields. However, more recent
studies have questioned this interpretation, which
does not take into account of a phenomenon
known as sedimentary inclination error. King
(1955) first observed that the inclination of rem-
nant magnetization of artificial sedimentary spec-
imens, I, was different from that of the magnetiz-
ing field, IF. He called this difference inclination
error:

•I D IF � I (6.72)

The experiments of King (1955) showed that
•I is independent from the field strength, but
depends from the fraction f of particles with

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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sub-spherical geometry, and the corresponding
fraction 1 – f of plate-like particles.

He found that the two inclinations were related
by the following simple equation:

tan I D f tan IF (6.73)

The empirical parameter f is called flattening
factor. In more recent times, Tauxe and Kent
(1984) have confirmed the validity of this equa-
tion and showed that f Š 0.55 for sediments with
detrital hematite. This value indicated that the
observed shallower inclinations could be associ-
ated with inclination errors rather than with non-
dipole components of the paleomagnetic field
(e.g., Gilder et al. 2003). The present orienta-
tion of paleomagnetists regarding the origin of
the inclination anomaly is that it is associated
with sedimentary inclination errors and/or poor-
quality data, while a solution to the Pangaea fit
can be found by selecting reliable data, correcting
inclination errors, and improving the plate recon-
structions (e.g., Domeier et al. 2012).

Problems

1. Interpreting the APW path of a continent as
the trajectory of a moving point at the Earth’s
surface, explain what kind of information can
be obtained about the kinematics at a reference
site S;

2. Assuming that a tectonic plate is rotating
clockwise about an Euler pole located at
(0ıN,90ıE) with angular velocity¨D 1ı/Myr,
determine the northward and eastward
components of velocity for a reference point
at (30ıN,45ıE), and the rate of variation of its
inclination and declination;

3. Given a mean paleopole for India at 100 Ma,
describe a method to fit India to Madagascar
in three steps;

4. Find an expression/algorithm for calculating
the predicted paleolatitude and declination at a
point P given the paleolatitude and declination
at a reference site S.
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Part II

Dynamics of the Lithosphere and theMantle



7Stress and Strain

Abstract

In this chapter, the fundamentals of continuum mechanics are presented,
in particular the concepts of stress and strain, and the general equations
of motion for a continuum medium. Finally, it is introduced the discipline
of rheology and the basic rheological models, which are widely used in
geodynamics.

7.1 The Stress Tensor

In the first part of this book, we have described
the principles of plate kinematics, hence the ge-
ometry of plate motions, independently from the
active and passive forces that drive the conti-
nental drift and the formation of new oceanic
crust. Now we are going to consider the system
of torques exerted on the lithosphere, and the
relation between these torques and deformation
processes at different time scales, using the for-
malism of continuum mechanics (see Sect. 2.1).
In the next chapters, we shall prove that both plate
motions and deformation of the lithosphere are
intimately related to the dynamics of the Earth’s
mantle. Our starting point will be a review of the
relationships between forces and deformation in
a continuum body.

In Sect. 2.1, we have introduced the concept
of body forces, which are external action-at-a-
distance force fields, such as gravity or magnetic
fields, that operate on each volume element dV of
a body. In addition to these forces, a body may
be subject to other interactions with the external

world, by direct pressure along its boundary sur-
face. All these forces and force fields may simply
produce a change in the state of motion of a body,
if it has sufficient rigidity. In this instance, the
distance between any two points in the region
R filled by the body does not change with time
and the relation between forces and motion is
described by Euler’s equations (e.g., Goldstein
1980). However, when we consider a tectonic
plate this representation is not generally ade-
quate, because in most cases plates deform under
the action of external forces. As soon as a body
changes its shape, a new force field is generated
within the deformed region R0, which tries to re-
store the original undeformed shape R or simply
opposes deformation. This is a short-range force
field between adjacent molecules or atoms of the
body that can be represented as a distributed
interaction across contact surfaces. Therefore, it
is usually referred to as a surface forces field.
A classic example of this class of forces is the
resistance opposed by a spring to an external
force during its extension or compression. An-
other example is the pressure field within a com-
pressed fluid, or its resistance to deformations
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Fig. 7.1 The traction across a surface element within a
deformed body

that do not involve volume changes. These forces
can be modelled assuming that for any arbitrary
surface element dS D ndS, n being the versor
normal to the surface and dS its infinitesimal
area, there exists a force per unit area T D T(n)
across the surface element, which depends from
its orientation and from the mechanical state of
the body (Fig. 7.1). This is a representation of the
distributed contact interaction between molecules
and atoms across the surface element, so that
the effective force exerted across dS will be the
infinitesimal force dF(n) D T(n)dS. The vector
T, which has units [Nm�2] � [Pa], is called
traction. In equilibrium conditions, the force ex-
erted on the molecules that are close to one of
the two sides of the surface element has equal
magnitude and opposite direction with respect to
the force exerted on the molecules that lie along
the opposite side, thereby T(�n) D�T(n). The
components of T that are normal and parallel to
the plane of dS are called, respectively, normal
stress and shear stress. In the case of a liquid
substance, the shear stress is always zero, so that
T D�Pn, where P is the hydrostatic pressure.

Let us consider now the system of surface
forces exerted on a volume element dV within
a deformed body. Let us assume that dV is a
small parallelepiped with sides parallel to the
coordinate axes of a Cartesian reference frame
(Fig. 7.2). In the following, we shall use in most
cases index notation (x1 � x, x2 � y, x3 �
z) and Einstein’s convention summation, which
allows to simplify the mathematical notation. In
equilibrium conditions, the tractions exerted on
opposite sides of dV have equal magnitude and
opposite directions. We shall assume that the unit

Fig. 7.2 Tractions exerted on a volume element dV, with
sides dxidxj, i,j D 1,2,3

vector representing the orientation of a surface
element is always directed outwards from closed
surfaces. In the case of the volume element dV,
three of its sides have versors ni coinciding with
the base versors ei (Fig. 7.2). The components of
the three tractions vectors T(ei) form a rank-two
tensor called stress tensor:

�ij D Ti
�
ej
�

(7.1)

With this notation, the second index of the
stress tensor indicates the direction of the surface
across which the traction is exerted, while the first
index identifies the traction component. We shall
prove soon that this tensor completely determines
the surface force field existing within a deformed
body. The sign convention for the stress tensor is
that when a diagonal component £ii is positive,
then it is directed outwards the volume element
under consideration, while a positive off-diagonal
component £ij (i ¤ j) indicates that the corre-
sponding shear stress component is directed as ei.
For example, £32 >0 implies that a shear stress
is exerted on the surface element dx1dx3 (whose
normal versor is e2) in the direction of e3. This
convention is illustrated in Fig. 7.3.

In equilibrium conditions, it is easy to deter-
mine the tractions on the opposite faces of the
volume element. In fact, we have simply: Ti(�ej)
D� Ti(ej)D –£ij. Therefore, while the total force
exerted on the volume element is clearly zero,
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Fig. 7.3 Positive
components of the stress
tensor

the off-diagonal components of £ generate six
couples with the corresponding components of
traction along the opposite faces. At the equi-
librium, both the total force and the total torque
must be zero, thereby, two torques in direction ei

and –ei always cancel out. As a consequence, the
stress tensor is symmetric and we have only six
independent components:

�ij D �j i (7.2)

The importance of the stress tensor in the
description of the surface force fields within de-
formed bodies arises from its capability to predict
the traction along any surface element. This is a
consequence of the following theorem:

Cauchy’s Theorem
In equilibrium conditions, for an arbitrary sur-
face element with normal versor n, the compo-
nents of traction are given by:

Ti D £ij nj (7.3)

Proof A surface element of arbitrary shape can
be always divided into a set of triangles. There-
fore, we shall prove the theorem for a triangle
having area dS and orientation n. Let us choose
a reference frame with the origin O very close to
this triangle, as shown in Fig. 7.4. The triangle
forms a tetrahedron with the three coordinate
axes, with sides dS, dS1, dS2, and dS3, dSi being
orthogonal to ei. The unit versors associated with
the four triangles bounding the tetrahedron are,

Fig. 7.4 The Cauchy tetrahedron

respectively, n, –e1, –e2, and –e3. It is easy to
realize that the areas of triangles dSi are given by:
dSiD dS � eiD (n � ei)dSD nidS. The total force F
exerted on the tetrahedron is the sum of the
forces exerted on the individual faces. At the
equilibrium, it must be FiD 0. Therefore, taking
into account that i–th component of the force
exerted on the surface elements dSj is –£ijdSj (no
implicit summation) we have:

TidS � £ij nj dS D 0 (7.4)

Dividing Eq. (7.4) by dS gives (7.3). This
proves Cauchy’s theorem. �

Cauchy’s theorem shows that the stress ten-
sor completely determines the surface force field
existing within a deformed body. It can be con-
sidered as the linear operator that generates a



230 7 Stress and Strain

traction vector T from a direction vector n. In
general, the components of this tensor change
with the position within the body. However, its
symmetry guarantees that we can always find
three directions ni such that the shear stress is
zero along surface elements orthogonal to ni. In
these conditions, ni and T(ni) are parallel each
other, so that by Cauchy’s theorem (7.3) we have:

T
�
ni
� D œini D £ni I i D 1; 2; 3 (7.5)

where the quantities œi are scalars. To find a ver-
sor ni that satisfies (7.5), we solve the following
eigenvalue equation:

.£ � Iœi /ni D 0 (7.6)

where I is the identity matrix of order three. The
parameter œi that satisfies this equation is the
eigenvalue of the equation, while ni is the eigen-
vector. Equation 7.6 represents a homogeneous
system of three linear equations in the unknown
eigenvector components ni

j, which has non-trivial
solutions only when:

det .£ � Iœi / D 0 (7.7)

This is a cubic equation, which has three real
solutions because of the stress tensor symmetry.
To find the eigenvector corresponding to a given
eigenvalue œi, we insert this value in (7.6) and
solve for the eigenvector components ni

j, taking
into account that only two of the three compo-
nents are independent. The three eigenvectors ni

are orthogonal each other and define a new local
reference frame that is called the system of the
principal axes of stress. In this local coordinate
system, the stress tensor is represented by a
diagonal matrix ¢ given by:

¢ D N T £N D
2
4 ¢1 0 0

0 ¢2 0

0 0 ¢3

3
5 (7.8)

where N is a matrix formed with the components
of the eigenvectors ni:

Nij D nji (7.9)

By convention, the three stresses ¢ i are sorted
in such a way that: j¢1j> j¢2j> j¢3j. When ¢1 D
¢2 D ¢3 we say that the stress field is hydrostatic.
In liquids, the stress tensor is always diagonal and
¢ i � –P, where P is the pressure. An important
feature of the principal stresses ¢ i at a point r is
that they allow to predict the planes of maximum
shear stress at that point. In geology, these are
the planes along which the probability of rupture
and faulting, for a given stress field, reaches a
maximum. Now we are going to show that there
are just two orientations of n such that the shear
component of T(n) is maximum, and ¢1 and ¢3

form angles of 45ı with each of these planes. Let
us consider an arbitrary plane with normal versor
n in the principal axes coordinate system. In this
instance, by Cauchy’s theorem the normal stress
along this plane is given by:

TN .n/ D T .n/ � n D ¢in2i (7.10)

Therefore, the squared shear stress component
will be given by:

T 2S .n/ D T 2 .n/ � T 2N .n/ D ¢2i n2i �
�
¢in

2
i

�2
(7.11)

To find the directions of maximum shear
stress, we must find the solutions of the
equations:

@T 2S
@nj
D 0 (7.12)

with the constraint that:

nini D 1 (7.13)

This is a classic problem of finding a con-
ditional maximum, which can be solved using
Lagrange’s multipliers. In this instance, we will
search the solutions of the equations:

@T 2S
@nj
D œnj I j D 1; 2; 3 (7.14)

where œ is the Lagrange multiplier. Using (7.11),
these equations can be rewritten as follows:
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2nj

h
¢2j � 2

�
¢in

2
i

�
¢j

i
D œnj I j D 1; 2; 3

(7.15)

Solving these equations with the constraint
(7.13) gives nine solutions, three of which are the
base versors ni (for which TSD 0). The remaining
six represent the planes where TS has local or
global maxima:

�
1p
2
;˙ 1p

2
; 0

�
I
�
1p
2
; 0;˙ 1p

2

�
I

�
0;

1p
2
;˙ 1p

2

�

It is easy to verify that TS attains its maximum

for n D
�
1=
p
2
� �

n1 ˙ n3
�
. For these directions,

it results that the shear and normal components of
stress are given by:

TS D ¢1 � ¢3
2

I TN D ¢1 C ¢3
2

(7.16)

In the case of two-dimensional problems, for
example in the study of the state of stress along
vertical faults, it is easy to determine direct for-
mulae for the normal and shear components of
stress, and for the principal stresses. If s is the
strike of a vertical fault (clockwise angle from
the North) and the coordinate axes x1 and x2 are
directed, respectively, northward and eastward,
then:8̂
ˆ̂<
ˆ̂̂:

TN .s/ D 1

2
.£11 C £22/C 1

2
.£11 � £22/ cos 2s

C £12 sin 2s

TS.s/ D 1

2
.£22 � £11/ sin 2s C �12 cos 2s

(7.17)

Then, we see that TSD 0 for:

s D s1 D 1

2
tan�1

�
2£12

£11 � £22
�

(7.18)

One principal axis has direction n1D (cos s1,
sin s1), the other one has versor n2D (cos s2, sin
s2)D (sin s, cos s), where s2 D s1 C  /2. The
principal stresses are obtained substituting s1 and
s2 into the expression (7.17) for of TN .

Fig. 7.5 Cauchy’s stress surface. Versor m is parallel to
T(n) and ¡D 1/

p
TN is the distance PQ

We obtain the following direct formula for ¢1

and ¢2:

8̂
<̂
ˆ̂:
¢1 D 1

2
.£11 C £22/C

r
£212 C

1

4
.£11 � £22/2

¢2 D 1

2
.£11 C £22/ �

r
£212 C

1

4
.£11 � £22/2

(7.19)

Now we are going to describe the variability
of the normal stress TN(n) at a point P, which
is determined by (7.10) in the reference frame of
the principal axes, as a function of n. This can be
done through an elegant geometrical method due
to Cauchy. For any versor n at P, let us consider
the point Q along the direction of n, at distance:

¡ .n/ D 1p
TN .n/

(7.20)

The set of points Q, whose distance from P is
¡(n) for variable n, forms a surface S that traces
the variations of normal stress at P. This surface
is known as the Cauchy stress surface and has
the important property that its normal at Q has
the same direction of T(n) at P, as illustrated in
Fig. 7.5.

To prove this assertion, we first note that if qi

are the Cartesian coordinates of Q in the principal
axes reference frame, which has origin at P, then
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the components of n are given by: ni D qi/¡.
Substituting into (7.10) and taking into account
of (7.20) gives:

TN .n/ ¡
2 D ˙1 D ¢iq2i (7.21)

In this equation, the minus sign is associ-
ated with compressive stresses, thereby, (7.10)
reduces to a single triaxial ellipsoidal surface
with semi-axes j� ij� 1/2:

j¢i j q2i D 1 (7.22)

The components of the versors normal to this
surface are given by the gradient of (7.22) (see
Appendix1):

mi D › @

@qi

�j¢i j q2i � D 2› j¢i j qi (7.23)

where › is a constant that ensures that jmjD 1.
Now, in the principal axes coordinate system
(7.3) reduces to:

Ti .n/ D ¢ini D 1

¡
¢iqi (7.24)

Therefore,

mi D ˙2›¢iqi D ˙2›¡Ti .n/ (7.25)

This expression proves that m and T(n) are
parallel. As a consequence, Cauchy’s stress el-
lipsoid completely determines the state of stress
at a point. Another important general feature of
the stress tensor is that it can be decomposed
into an isotropic stress, £0, which describes the
hydrostatic component of stress, and a deviator,
£0, associated essentially but not exclusively with
shear:

£ij D �p•ij C £0
ij (7.26)

where pD£kk/3 is the mean pressure and
£

0

ijD £ij� £kk•ij/3. This is often a convenient
separation, because stresses in the deep Earth are
dominated by the large compressive components
associated with the hydrostatic pressure, whereas
the deviatoric component, associated with

flow and yielding, is relatively small. The
last important property of the stress tensor is
represented by its invariants. The characteristic
Eq. (7.7) can be written as follows:

det .£ � Iœi / D �œ3 C I1œ2 C I2œC I3 D 0
(7.27)

where,

I1 D �11 C �22 C �33 D Tr .£/

I2 D � .�11�22 � �12�21/� .�11�33 � �13�31/
� .�22�33 � �23�32/

I3 D det .£/ (7.28)

It is possible to prove that the quantities I1, I2,
and I3, which are referred to as the first, second,
and third invariant, are unchanged under coordi-
nate transformations, so that they are invariants of
the stress tensor. While the first invariant simply
states that the hydrostatic pressure is independent
from the selected coordinate system, the second
one plays an important role in the description of
the fluid behaviour of the rocks and non-linear
creep.

7.2 Displacement Fields
and Strain

Let us face now the problem of describing quan-
titatively the deformation of a continuum body
under the action of external forces. When a con-
tinuum body changes its shape, each point in
the undeformed region R, with position vector
r, is subject to a displacement u that depends
from the position. The set of all displacements
for each point r 2 R forms a vector field u D
u(r) (Fig. 7.6). Clearly, the existence of a non-
zero displacement field does not imply automat-
ically that a body has been deformed, because
rigid body translations and rotations are also
associated with displacement fields. In principle,
the existence of a deformation can be estab-
lished observing that two neighbor points r and
rC dr have experienced differential displacement

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 7.6 Displacement field in a deformed continuum
body

du D u(rC dr) – u(r), as illustrated in Fig. 7.6.
However, even a description of the deforma-
tion in terms of differential displacements is not
adequate. For example, if a metal bar having
length lD 1 m and fixed at one end is uniformly
stretched to a length l0D 1.2 m, the deformation
could be described saying that the magnitude
of the displacement vectors increases uniformly
from zero at the fixed end to 0.2 m at the opposite
side, thereby, we have differential displacements.
However, if the bar were simply rotated about
a hinge coinciding with the fixed end, the field
of differential displacements would be different
from zero anyway, despite this time the body has
not changed its shape.

Furthermore, in the example mentioned above
of a homogeneously stretched metal bar, a single
number would be sufficient to describe this de-
formation, because the magnitude of the displace-
ment vectors is always 0.2x/l, x being the distance
from the fixed end. This example suggests that a
better description of the deformation should be
based on the relative variations of the displace-
ment field, rather than on absolute changes. Let us
consider a Taylor expansion of the displacement
field, stopped at the first order:

ui .r C dr/ D ui .r/C @ui
@xj

dxj (7.29)

With this approximation, we are limiting our
attention to geologic processes that involve only
infinitesimal deformations. The phenomena con-
sidered in seismology generally conform to this

hypothesis. In this instance, to the first order
the components of the differential displacements
field are given by:

dui .r/ D @ui
@xj

dxj (7.30)

In general, this field does not describe cor-
rectly the deformation, because it may include a
rotational component not associated with changes
of shape. To isolate the component of true defor-
mation in (7.30), let us decompose the Jacobian
Jij D @ui/@xj into symmetric and antisymmetric
parts:

Jij D ©ij C ¨ij (7.31)

where ©ij are the components of a symmetric
rank-two tensor, ©ij D ©ji, known as strain tensor.

The components of the strain tensor are given
by:

©ij D 1

2

�
@ui
@xj
C @uj
@xi

�
(7.32)

while the tensor ¨, which is antisymmetric
(¨ij D � ¨ji), has components:

¨ij D 1

2

�
@ui
@xj
� @uj
@xi

�
(7.33)

It is not difficult to prove that ¨ describes
a rigid rotation without deformation. In fact, by
its anti-symmetry, ¨ has a null diagonal, so that
there are only three independent components. Let
us consider the vector �, having components:

�k D 1

2
©ijk¨ij (7.34)

where ©ijk is the Levi-Civita tensor (see
Appendix 1). Using the identity:

©ijk©stk D ©kij ©kst D •is•jt � •it •js (7.35)

we find that:

©ijk�k D 1

2
©ijk©stk¨st D 1

2

�
¨ij � ¨ji

� D ¨ij
(7.36)

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Therefore,

¨ij dxj D ©ijk�kdxj D �.� � dr/i (7.37)

This result shows that ¨ is a rigid rotation
about an axis having the direction of �, so
that no deformation is associated with the anti-
symmetric part of the Jacobian matrix. As a
consequence, any deformation is described by
the strain tensor ©. We note that the compo-
nents of © are non-dimensional quantities that
are calculated from partial derivatives of the dis-
placement field. The diagonal components, ©kk,
represent variations of displacement components
along the corresponding directions. For example,
©11 D @u1/@x1 represents the variation of the x–
component of displacement as we move along the
x axis.

Taking the trace of ©, we obtain the divergence
of the displacement field:

 � ©kk D r � u (7.38)

This quantity is called dilatation and repre-
sents the volume change per unit volume during
deformation. In fact, assuming that the strain
tensor is diagonal, we have that a volume element
dV D dx1dx2dx3 is changed as follows:

dV 0 D
�
1C @u1

@x1

�
dx1

�
1C @u2

@x2

�
dx2

�
�
1C @u3

@x3

�
dx3 Š

�
1C @uk

@xk

�

� dx1dx2dx3

D
�
1C @uk

@xk

�
dV D .1C/dV

(7.39)

Therefore, the relative variation of volume will
be given by:

 D dV 0 � dV
dV

(7.40)

Whenever it results @ui/@xi > 0, we have exten-
sion along the axis xi. Conversely, for @ui/@xi < 0
we have contraction. In general, the divergence

of the displacement field plays an important role
in the quantitative description of the deformation
process. Let us consider now the curl of u:

r � u D
�
@u3
@x2
� @u2
@x3

�
e1 C

�
@u1
@x3
� @u3
@x1

�
e2

C
�
@u2
@x1
� @u1
@x2

�
e3

(7.41)

It is not difficult to prove that this quantity
is associated only with rigid rotations. This re-
sults promptly from a comparison of expressions
(7.41) and (7.33). Therefore, r � u is non-zero
only when the displacement field includes a com-
ponent of rigid rotation. A deformation that can
be described by a traceless (©kk D 0) strain tensor
leaves invariant the volume of a body and is
referred to as a pure shear. A simple example of
pure shear deformation is illustrated in Fig. 7.7d.
Let us consider now the off-diagonal components
of ©, which arise from variations of displacement
components along transversal axes. For example,
©12 ¤ 0 when the x component of u varies as
we move in the y direction, or when uy changes
as we move in the x direction, both possibilities
being admissible at the same time. When in a pure
shear deformation the strain tensor diagonal is
identically zero and the deformation arises from
a single pair of off-diagonal components (e.g., ©12

and ©21), a simultaneous rotation about an axis
orthogonal to the plane of deformation may lead
to the situation illustrated in Fig. 7.7c, which is
termed simple shear.

In simple shear, two orthogonal segments with
a common fixed point, initially parallel to coor-
dinate axes, assume new orientations after defor-
mation (Fig. 7.7c), with angles ¥1 and ¥2 with re-
spect to the coordinate axes. For an infinitesimal
deformation in the xz plane, it results:

¥1 Š tan¥1 D @u1
@x3
I ¥2 Š tan¥2 D @u3

@x1
(7.42)

Therefore,

¥1 C ¥2 Š @u1
@x3
C @u3
@x1
D 2©13 (7.43)
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Fig. 7.7 Geometry of
deformation in two
dimensions. a Dilatation, b
Compression, c Simple
shear, d Pure shear

This expression says that the off-diagonal
component ©13 is the average angular variation
in the plane x1x3. A similar conclusion can be
drawn for the other off-diagonal components.
Therefore, (7.43) furnishes a simple intuitive
interpretation of the off-diagonal components of
the strain tensor.

A consequence of the strain tensor symmetry
is that a system of principal strain axes mi exists
such that the tensor is diagonal. In this frame, and
assuming no rotations, the variations of displace-
ment dui have the same direction of the variations
of position dxi:

dui D ©ij dxj D œdxi (7.44)

The three eigenvectors of (7.44) are called
the principal strains ©1, ©2, and ©3. With the
exception of a situation of hydrostatic strain, such
that ©1D ©2D ©3, some amount of shear strain is
always present also in the principal strain axes
coordinate system.

7.3 Cauchy Momentum Equation

In the previous sections, we have introduced the
concepts of traction, stress, displacement, and
strain for a continuum body in conditions of static
equilibrium. Now we are going to describe the

relation between these variables in a geodynamic
context. This can be done adapting the classic
Newton’s equations of motion (second law of me-
chanics) to the case of a continuum deformable
body. Let us consider the forces exerted on a
volume element dV D dx1dx2dx3 of the region R
occupied by the body (Fig. 7.8).

We know that the surface force exerted on a
face of dV is given by the traction on that face,
times the area. Therefore, the force dF on a face
at position r D (x1,x2,x3), with normal –ej and
area dxrdxs (r,s¤ j), has components:

dFi
��ej ; r

� D Ti ��ej
�
dxrdxs

D �£ij .r/ dxrdxsI r; s ¤ j
(7.45)

Similarly, the force on a face at position r C
ejdxj, with normal ej and area dxrdxs (r,s ¤ j),
has components:

dFi
�
ej ; r C ej dxj

� D �ij �r C ej dxj
�

� dxrdxsI r; s ¤ j
(7.46)

Clearly, when the stress field is homo-
geneous the net force exerted on dV is
zero, because the forces on opposite sides
of the volume element balance each other:
dF(�ej,r) D � dF(ej,r C ejdxj). Therefore, in
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Fig. 7.8 Forces on a
volume element dV D
dx1dx2dx3 in equilibrium
conditions

order to have a net force on dV, a non-zero
spatial gradient of the stress field must exist
at the location of dV. In this instance, to the first
order the net force on the faces normal to the xj

axis is given by:

•Fi
�
ej
� D dFi �ej ; rCej dxj

�CdFi ��ej ; r
�

D �£ij �r C ej dxj
� � £ij .r/	dxrdxs

D
�
@£ij

@xj
dxj

�
dxrdxs D @£ij

@xj
dV I

� r; s ¤ j I no summation on j
(7.47)

Therefore, considering the net force exerted
on all pairs of faces, we have that the total
surface force per unit volume acting on dV has
components:

f
surf
i D @£ij

@xj
(7.48)

Let us introduce now the body force den-
sity, f D f(r), exerted on the volume element
dV (see Sect. 2.1), which also gives a contri-
bution to the force on dV: dF D f(r)dV. Then,
the total force per unit volume will be given
by:

f tot
i D

@£ij

@xj
C fi (7.49)

To apply the second law of mechanics, we
must balance the total force by an inertial term
Ruidm, where dmD ¡dV is the mass of the volume
element and the second time derivative of the
displacement field represents, in the context of
continuum mechanics, the analogue of the point
mass acceleration. Therefore, considering force
densities, the equations of motion can be written
as follows:

¡Rui D @£ij

@xj
C fi (7.50)

This is the fundamental equation of dynamics
for continuous media. It is often referred to as the
Cauchy momentum equation. In seismology, it is
generally possible to neglect the contribution of
body forces in absence of seismic sources. Fur-
thermore, in this context the second time deriva-
tive of the displacement can be calculated as a
partial derivative, because the location of a vol-
ume element does not change significantly during
earthquakes (this is not true in fluid dynam-
ics). In this instance, the momentum equation re-
duces to the following homogeneous equation of
motion:

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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¡
@2ui
@t2
� @£ij
@xj
D 0 (7.51)

In Chap. 8, we shall see that this is the govern-
ing equation for the propagation of seismic waves
outside source regions.

7.4 Basic Rheological Models
and Constitutive Equations

Apart from being in one of the four ordinary
states of matter, solid, liquid, gas, or plasma, a
material has a mechanical behaviour that depends
from its rheology. By “mechanical behaviour”,
we mean a distinct relationship between the stress
and strain fields within a body, which can be
expressed by a constitutive equation:

R .©; P©; R©; : : : ;£; P£; R£; : : : ;
� m1;m2; : : : ; s1; s2; : : : / D 0 (7.52)

The function R is referred to as the rheological
function and usually includes a set of intrinsic
parameters mi that depend from the material
(e.g., elastic moduli, viscosity) and a set of state
variables sj describing the microstructural state
of the material (e.g., grain size, see Ranalli 1995).
The word “Rheology” originates from Greek and
means “study of flow”. A good quantitative in-
troduction to this subject can be found in Ranalli
(1995). Many materials display proportionality
between stress and strain for small deformations.
However, all materials, independently from their

physical state, may flow under certain thermo-
mechanical conditions, showing a mechanical
behaviour typical of liquids, gases and plasma. In
this instance, a material is subject to continuous
deformation under an applied shear stress.
An understanding of the different rheological
behaviors within the solid Earth is fundamental
in geology in general, but particularly in
plate tectonics, where the different interacting
subsystems of crust and mantle display distinct
mechanical behaviors. The simplest constitutive
equation is that associated with the elastic
behavior, which approximates adequately the
relationship between stress and strain in solids
at low pressure and temperature and for small
deformations, but also in non-solids in the case
of high-frequency variations of the stress field.
For example, the lithosphere can be considered
as an elastic body in so far as it is not subducted,
but also lower mantle rocks and the outer core,
which is liquid, can be modelled as elastic bodies
at the frequency of deformations associated
with earthquakes. A paradigm for this kind of
mechanical behavior is given by springs. In this
instance, the constitutive equation expressing the
relation between stress and strain is Hooke’s law:

£.t/ D Y ©.t/ (7.53)

where t is the time and the parameter Y, which
depends from the material, is known as the time-
independent elastic modulus. Figure 7.9 shows
the ideal response of an elastic system to a stress
step.

Fig. 7.9 Response of an
elastic system to a stress
step. There is instantaneous
response, linear
proportionality between
stress and strain, and the
strain © is fully recoverable
after stress removal

http://dx.doi.org/10.1007/978-3-319-09135-8_8
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Fig. 7.10 Response of a
linear viscous system to a
stress step. An analog
model for this system is the
dashpot. There is
continuous deformation at
constant rate under
constant stress, and the
strain © is permanent after
stress removal

Another theoretical response of a material to
stress steps, which can eventually combine with
the elastic response, is associated with the vis-
cous behavior. In this instance, the constitutive
equation relating stress and stress expresses pro-
portionality between stress and strain rate rather
than strain:

£.t/ D 2˜P©.t/ � p (7.54)

where p is the hydrostatic pressure and the con-
stant parameter ˜, which depends from the ma-
terial and is a decreasing function of temper-
ature, is called viscosity and has units [Pa s].
The time derivative of strain, P©, ha units [s�1]
and gives a measure of the rapidity of deforma-
tion. In the case of non-solid materials, where
© represents pure shear strain, the constitutive
law (7.54) describes the behavior of Newtonian
fluids.

The linear viscous behavior is illustrated
in Fig. 7.10. These materials do not display
strain recovery and deform continuously under
constant stress. Just as a spring furnishes an
analog model for elastic systems, a dashpot
can be used as a paradigm for linear viscous
materials. However, many materials of geologic
interest have a mechanical behavior that can be
considered as a combination of linear viscous and
elastic rheologies. They are termed viscoelastic
materials. A simple description of their behavior
can be obtained using analog models. These
models are built combining springs and dashpots
into complex systems. Here we are going

Fig. 7.11 Analog model for the Maxwell rheology

to describe some simple rheological models
commonly used in geodynamic modelling. The
first of them is the Maxwell rheology model,
which is a two-element system consisting of a
linear spring element and a dashpot connected in
series, as shown in Fig. 7.11.

In this model, the total strain is partitioned into
a spring strain, ©S, and a dashpot strain, ©D, so
that:

P©.t/ D P©S .t/C P©D.t/ (7.55)

where ©S and ©D are related to the applied stress £
by the following equations:

£.t/ D Y ©S.t/
£.t/ D 2˜P©D.t/ � p (7.56)

Inserting these expressions into (7.55) gives:

P©.t/ D 1

Y
P£.t/C 1

2˜
Œ£.t/C p� (7.57)
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This is the constitutive equation of the
Maxwell rheology model, which can be solved
under different stress conditions to determine
strain-time behavior. For example, let us assume
that a stress step with magnitude £ D £0 has
been applied from tD 0 to t D t0, as shown in
Fig. 7.11. At the initial time, we have ©(0) D ©S

D £0/Y.
For 0� t � t0, it results P£ D 0, thereby, (7.57)

reduces to:

Pe.t/ D 1

2˜
Œ£.t/C p� (7.58)

Integration of this equation gives:

©.t/ D

8̂̂
<
ˆ̂:

1

2˜
£0t C £0

Y
I 0 � t < t0

1

2˜
£0t0I t 
 t0

(7.59)

Therefore, this system shows an unrecoverable
strain ©r D £0t0/2˜. Maxwell’s viscoelastic ma-
terials have an immediate elastic response, but
ultimately behave as linear Newtonian fluids. The
first applications of this model in geodynamics
go back to the 1970s (e.g., Wang et al. 2012 and
references therein). The objective was to give a
representation of the Earth’s mantle that allowed
the elastic transmission of stress associated with
earthquakes, yet preserving the fluid behavior
required by mantle convection and the delayed
response to the removal of surface ice loads
(postglacial rebound). The viscous component
of a Maxwell viscoelastic model describes the
steady-state creep of materials under constant
stress. In this context, the word “creep” refers
to a continuous deformation (flow) of the mate-
rial without formation of breaks. The Maxwell
rheology furnishes a good approximation of the
century- to millennium scale glacial isostatic ad-
justment and of the evolution of the stress and
strain fields during the interseismic interval be-
tween two earthquakes. An important feature of
Maxwell rheological models is a phenomenon
known as stress relaxation. Let us assume that
©(t) D ©0 for t 
0 and £(0) D £0. By (7.57), we
have that:

P£.t/C Y

2˜
£.t/ D �Yp

2˜
(7.60)

The solution to this equation is an exponential
decay curve to the hydrostatic pressure, with
relaxation time tR D 2˜/Y:

£.t/ D .£0 � p/ e�Y t=2˜ C p (7.61)

Therefore, in conditions of constant strain, a
Maxwell viscoelastic material exponentially re-
laxes the internal stress. Studies of a process
known as postglacial rebound have allowed an
estimation of the mantle relaxation time. During
the last (Pleistocene) glaciation, the load of con-
tinental ice sheets at high latitudes resulted into
a downward bending of the lithosphere, accom-
panied by a peripheral bulge at some distance
from the glacier margins. For example, the thick
ice sheet that covers Greenland has depressed
the surface of this continent several kilometers,
below the sea level at some places. The vertical
motion associated with such bending was clearly
accompanied by corresponding lateral flow in
the asthenosphere. The subsequent melting of
the ice sheet during the Holocene determined
unloading and a gradual restoration of the iso-
static equilibrium through upward bending of the
lithosphere. A simple mathematical formulation
of this process can be found in Turcotte and
Schubert (2002). The rate of rebound, which
has been determined by the radiocarbon dating
of elevated beach terraces along the coastlines
of Canada and Scandinavia, and by Uranium-
Thorium dating of coral reef deposits, can be used
to determine the viscosity of the asthenosphere,
hence its relaxation time. Recent estimates con-
strain the mean viscosity of the asthenosphere
and the transition zone to be 	 0.5� 1021 Pa
s, the upper 500 km of the lower mantle to
be 	 1.6� 1021 Pa s, and the remainder of the
mantle to be	 3.2� 1021 Pa s (Argus and Peltier
2010). Assuming an appropriate elastic modulus
YD 70 GPa (e.g., Schubert et al. 2001), we obtain
that an estimate of the relaxation time for the
upper mantle is tR � 453 years. This value of tR
provides an explanation for the elastic response
of the mantle to the propagation of seismic waves,
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Fig. 7.12 Analog model for the Kelvin rheology

which involves displacements on a time scale of
a few tens seconds, and the simultaneous fluid
behavior on a time scale of several tens Myrs
in the context of mantle convection. In general,
the prevalence of elastic behavior with respect to
the viscous response depends from the relative
importance of the parameters Y and ˜. For large
values of the elastic modulus, the material be-
haves as a viscous fluid over long time intervals,
whereas for ˜!1 it behaves as an elastic solid
for short-duration loads.

Another important rheological model is the
Kelvin rheology model, which is also a two-
element system consisting of a linear spring
element and a dashpot, but this time the two
elements are connected in parallel, as shown
in Fig. 7.12. In this instance, the total stress is
partitioned between the spring and the dashpot,
so that:

£.t/ D £S .t/C £D.t/ (7.62)

where £S and £D are related to the common strain
© by the following equations:

£S .t/ D Y ©.t/
£D.t/ D 2˜P©.t/ � p (7.63)

Therefore:

P©.t/C Y

2˜
©.t/ D 1

2˜
Œ£.t/C p� (7.64)

This is the constitutive equation associated
with the Kelvin rheology model. For a stress

pulse, such that £(t) C p D £0 for 0� t � t0,
and assuming the initial condition ©(0)D 0, we
have:

©.t/ D £0

Y

�
1 � e�Y t=2˜� (7.65)

Therefore, the total strain increases progres-
sively (at decreasing rate) towards the asymptotic
value ©(1) D £0/Y (Fig. 7.12). This behavior
implies that the load is initially supported by
the viscous element only, which then elongates
and transfers an increasing amount of stress to
the spring. After a sufficiently long time interval,
most of the stress is supported by the elastic
element. The strain rate associated with creep is
easily obtained by (7.65):

P©.t/ D £0

2˜
e�Y t=2˜ (7.66)

Therefore, the strain rate decays exponentially
to zero. Once we have removed the load, at some
time t D t0, the subsequent evolution of the strain
field can be determined using the superposition
principle. To set the total stress to zero, we com-
bine the initial stress, £0, with an additional stress
field £(t) D –£0, for t 
 t0. The strain associated
with the initial stress is given by (7.65), while that
resulting from the additional stress will be given
by:

©0.t/ D £0

Y

�
e�Y .t�t0/=2˜ � 1

�
I t 
 t0 (7.67)

Then, for t 
 t0 the total strain follows an
exponential recovery curve:

©.t/ D £0

Y

�
eY t0=2˜ � 1� e�Y t=2˜I t 
 t0 (7.68)

This solution shows that a Kelvin material has
full strain recovery after load removal. Neither
of the Maxwell and Kelvin models furnishes an
accurate description of the viscoelastic rheology.
For example, the Kelvin model does not exhibit
instantaneous strain after loading or unloading,
and does not account for permanent strain after
relaxation. Similarly, the Maxwell model does
not allow time-dependent recovery and predicts
constant strain rate under constant stress, whereas
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Fig. 7.13 Analog model for the standard solid rheology

the creep of most viscoelastic materials exhibits
decreasing strain rate for constant load.

An improvement over Maxwell and Kelvin
rheologies is given by the standard solid model
(or Zener model) illustrated in Fig. 7.13. This
system adds instantaneous elastic response un-
der loading or unloading to a normal Kelvin
rheology, but it still lacks of permanent strain
after transient creep. A widely used rheological
model, which provides a better representation of
the viscoelastic behavior, is the Burgers model,
which puts in series a Kelvin and a Maxwell
model (Fig. 7.14).

The total strain associated with the model of
Fig. 7.14 is:

©.t/ D ©K.t/C ©D.t/C ©S .t/ (7.69)

where,

©S .t/ D 1

Y2
£.t/I P©D.t/C 1

2˜2
Œ£.t/C p� I

P©K.t/C Y1

2˜1
©K.t/ D 1

2˜1
Œ£.t/C p� (7.70)

It is possible to show (e.g., Findley et al. 1989)
that the resulting constitutive equation is:

£.t/C p C 2
�
˜2

Y1
C ˜2
Y2
C ˜1
Y1

�
P£.t/C4˜1˜2

Y1Y2
R£.t/

D 2˜2P©.t/C 4˜1˜2
Y1
R©.t/ (7.71)

To determine the creep curve of the Burgers
model, we set the initial strain conditions for a
stress step such that £(0)D £0:

©.0/ D ©S .0/ D £0

Y2
I ©K.0/ D ©D.0/ D 0

P©.0/ D 1

2

�
1

˜1
C 1

˜2

�
£0 (7.72)

With these initial conditions, the solution
to (7.71) is simply the sum of the strain of a
Maxwell rheology component plus the strain of a
Kelvin element:

©.t/ D £0

Y2
C £0

2˜2
t C £0

Y1

�
1 � e�Y1t=2˜1� (7.73)

In this model, when the load is removed there
is instantaneous recovery of the elastic strain
associated with the Maxwell element. This is
followed by transient creep strain, but perma-
nent residual deformation results for t ! 1.
In general, the Burgers body exhibits instanta-
neous elastic response after loading or unloading,
permanent strain after relaxation, time-dependent
recovery, and decreasing transient strain rate un-
der constant stress. Over the long timescale, it
exhibits linear viscous behaviour. Therefore, it
provides a unifying model for the rheology of
the Earth’s mantle over the whole frequency
spectrum. Differentiating (7.73) gives the strain
rate under constant load:

P©.t/ D £0

2

�
1

˜2
C 1

˜1
e�Y1t=2˜1

�
(7.74)

Therefore, the initial rate of creep for tD 0C
and the asymptotic value for t!1 are:

P© �0C� D £0

2

�
1

˜2
C 1

˜1

�
I P© .1/ D £0

2˜2
(7.75)

The delayed response of Burgers systems (but
also of Kelvin and Zener models) to a pulse train
is usually indicated as anelastic behaviour. In this
instance, part of the elastic strain energy is dis-
sipated as heat. Microscopically, the anelasticity
is associated with slipping along grain bound-
aries and internal friction. In the frequency do-
main, transient creep is partly responsible for
the attenuation (i.e., the damping) of seismic
waves. The magnitude of this attenuation depends
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Fig. 7.14 Analog model
for the burgers rheology

from environmental parameters such as temper-
ature, pressure, and the frequency of the propa-
gating wave. Therefore, the study of anelasticity
gives valuable information about the physical
conditions and the rheological parameters of the
Earth’s mantle.

We conclude this review of rheological models
with a short mention to the plastic rheology of
solids. Plasticity occurs when a body does not
deform until the stress has attained a critical
value £c, which is referred to as the yield stress.
Starting from this point, a plastic body deforms
continuously under constant stress, thereby, we
can say that it cannot support a stress greater
than the critical value £c. At the yield stress,
deformation is permanent and irreversible and
proceeds at constant rate. Therefore, ideally the
amount of deformation is unlimited as long as
the yield stress is maintained, and the strain rate
is independent of stress. Plastic strain is a form
of shear strain, thereby, it can only be associated
with shear stress.

An analog model for the plastic rheology is
given by a mass at rest on a flat and rough surface
(Saint-Venant body) (Fig. 7.15). Static friction
prevents displacement of the mass if the applied
stress £ is less than the frictional resistance. As
soon as £ overcomes the frictional resistance,
the mass starts moving. A key feature of plastic
deformation is that it implies strain localization,
as strain may take place only locally, in regions
where the critical value of stress is reached.
Therefore, it is possible to use the plastic rheol-
ogy to build analog models describing the brittle
and ductile behaviours of the upper crust and the

Fig. 7.15 Response of a plastic body to a stress step. An
analog model for this system is a mass at rest on a rough
surface. There is continuous deformation at constant rate
for £D £c

Fig. 7.16 Analog model for the visco-plastic rheology. ©p

is the amount of plastic strain

upper part of subducting slabs, where deforma-
tion occurs either by seismic slip (associated with
faulting) or strain localization without loss of
continuity. In the simplest model, we combine the
plastic behaviour with an instantaneous elastic
response by the introduction of a spring element,
as shown in Fig. 7.16. Such a rheological model
is called the Prandtl body, and the correspond-
ing mechanical behavior is referred to as the
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elasto-plastic rheology. When the stress is below
the yield strength, the system stretches the spring
and there is no slip along the contact surface. In
these conditions, the material deforms elastically.
As soon as the stress attains the critical value, the
mass is pulled at constant stress and deformation
proceeds plastically until the load falls below the
yield stress £c. Apparently, this behaviour is quite
similar to the viscous flow. However, differently
from visco-elastic deformation, plastic flow oc-
curs only when the yield stress is attained. It is
termed ductile deformation when the continuity
within the material persists despite strain local-
ization. Conversely, when the material loses its
cohesion through the development of fractures or
faults we will use the term brittle deformation.

The mode of failure of Earth’s rocks mainly
depends from the confining hydrostatic pressure
and from temperature, while the yield point is a
decreasing function of the strain rate. The effect
of increased hydrostatic pressure is to inhibit
fracturing and cracking. Therefore, in so far as
the hydrostatic pressure is increased, the me-
chanical behaviour changes suddenly from brittle
to ductile. The range of depths at which this
transition occurs is called the brittle-ductile tran-
sition zone and depends not only from (P,T)
conditions but also from the strain rate and the
presence of water. In general, the rheology of
Earth’s lithosphere rocks changes with increas-
ing depth from brittle to ductile to visco-elastic.
The mechanical behaviour is usually represented
graphically through strength (yield stress) versus
depth profiles that are called rheological profiles
or yield-strength envelopes. Now we are going
to describe the general methods adopted to build
these profiles.

The static frictional resistance along fault
planes is generally constant, so that by Amonton’s
law the coefficient of static friction, �s,
determines the shear stress required to have
seismic slip:

£S D �s¢N (7.76)

where £S and ¢N are respectively the shear stress
and the normal stress along the fault plane.
Amonton’s law implies that the shear stress

required for seismic slip is independent from
the contact area and increases linearly with the
confining pressure. Byerlee (1968) determined
experimentally the following linear relations
over a range of normal stresses from 3 MPa
to 1.7 GPa:

£S D


0:85¢N I 3 < ¢N < 200MPa
60˙ 10C 0:6¢N I ¢N > 200MPa

(7.77)

These simple relations hold for all geologic
materials except certain clay minerals (e.g., Brace
and Kohlstedt 1980). They can be used to build
the upper part of a rheological profile, assuming
that ¢N corresponds to the hydrostatic pressure.
In this instance, the strength increases linearly
with depth and is independent from the specific
kind of rocks. The lower part of a rheological pro-
file for the lithosphere is built taking into account
that Earth’s rocks exhibit non-linear viscous be-
haviour at relatively low temperatures. In fact,
the linear visco-elastic rheological models dis-
cussed above provide good approximations of the
real mechanical behaviour of Earth’s rocks only
at lower lithosphere and asthenosphere condi-
tions, that is, temperatures between 1,000 ıC and
1,500 ıC and slow strain rates (10�12–10�14 s�1).
Conversely, in the case of upper lithospheric man-
tle and crustal rocks, we observe steady-state flow
even at small stresses, but the relation between
stress and strain rate is nonlinear. In this instance,
the viscosity is a decreasing exponential function
of temperature through an Arrhenius relationship
and the stress raised to some power (usually
between 3 and 5) is proportional to the strain rate.
The most important empirical non-linear relation
between stress and strain rate is known as the
power-law creep or Dorn equation:

P© D A£nSe�E=RT (7.78)

where n is determined experimentally and de-
pends from the material, A is a constant depend-
ing from the material and the (P,T) conditions,
T is the temperature, R is the gas constant, and
the thermal activation energy E is of the order of
100–600 kJ mol�1 depending from the material.
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Fig. 7.17 A simple rheological profile, illustrating the
variations of yield stress with depth (solid line)

This non-Newtonian flow behaviour is very com-
mon in silicate polycrystals at high temperature
and low stresses (T > Ts/2 and £S between 10
and 100 MPa). The lower part of a rheological
profile for the lithosphere shows the rock strength
in a context of ductile deformation. It is largely
insensitive to hydrostatic pressure variations but
decreases exponentially with depth due to ther-
mal softening.

At any given depth, the strength is defined
as the lowest between brittle and ductile yield
stresses. Therefore, inverting (7.78) for £S and
assuming a temperature versus depth relation
(see Chap. 12) allows to build a lithospheric
strength profile like that illustrated in the
example of Fig. 7.17. More complex profiles
can be built for different tectonic environ-
ments assuming specific crustal compositions,
lithospheric layering, and temperature field
(e.g., Ranalli and Murphy 1987).

Problems

1. Find the principal axes for the 2-D stress

tensor: £ D
�

20
p
125p

125 40

�
MPa and de-

termine: (1) the components of traction on
a vertical fault oriented E–W; (2) the plane
of maximum shear stress and the shear and
normal stresses along this plane;

2. Determine the body force field in conditions
of static equilibrium for the following stress
tensor:

£ .x; y; z/

D
2
4 �3x

2 C 5y � 2z3 4x C 3xy 3xz
4x C 3xy 2x3 � 4y 0

3xz 0 � 3
2
z2

3
5

and comment the result;
3. Consider the following transformation of the

stress tensor:

£ij ! £ij C a•ij

where a is a constant. What is the effect on the
principal axes?

4. What is the relation between the principal
axes of the stress tensor and those of the
deviator?

5. Find a constitutive equation for the standard
solid rheology and determine the creep and
relaxation curves.
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Abstract

An important source of data in plate tectonics comes from seismology.
This is the first of three chapters devoted to the fundamental laws of
propagation of seismic waves. In this chapter, I describe the elastic
response of Earth’s rocks to deformation, which is quantified by Hooke’s
law, the seismic wave equation, and the concept of seismic energy.

8.1 Hooke’s Law

In this chapter, we consider the elastic behaviour
of Earth’s rocks in response to dynamic loads at a
time scale of a few tens seconds. In the context of
plate tectonics, slip along plate boundaries is the
ultimate cause of most earthquakes, but are the
elastic properties of the rocks to determine the
mode of propagation of seismic waves through
the Earth. Therefore, these properties constitute
the “hard background” for the study of seismol-
ogy. The basic formulation of this subject as-
sumes that the elasticity of rocks does not depend
on direction, so that the material is isotropic.
In this instance, it is possible to show that the
number of independent parameters necessary to
describe the elastic behaviour of a rock body
reduces to three scalar quantities, and the three–
dimensional time–dependent constitutive equa-
tion describing the relation between stress and
strain is a tensor form of Hooke’s law (7.53):

�ij .r; t/ D œ .r/ •ij ©kk .r ; t/C 2� .r/ ©ij .r ; t/
(8.1)

The scalar fields œ D œ(r) and � D �(r) are
called Lamé parameters and represent two of
the three quantities determining the local elastic
properties of a rock, the third one being the
density. In the case of pure shear deformation,
the dilatation � D ©kk is zero, so that (8.1) re-
duces, component–by–component, to (7.53) with
YD 2 �. The quantity � is termed shear modulus
or rigidity modulus and is a measure of the
resistance or rocks to shear deformation. Values
of � for the main crustal and mantle minerals are
listed in Table 1.1. This parameter is always zero
in the case of liquids, gases, and plasma, because
matter in the fluid states does not exhibit resis-
tance to finite strain. Conversely, the parameter
œ does not have a simple physical interpretation,
thereby it is often convenient to introduce some
additional, more descriptive, elastic parameters.
For example, we can separate in (8.1) isotropic
and deviatoric components. If we define the mean
normal stress £0 D –p � £kk/3, then taking the
trace in (8.1) gives:

£0 D
�
œC 2

3
�

�
©kk � ›� (8.2)
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where � is the dilatation (Eq. 7.38) and ›, which
is called bulk modulus, is a measure of the in-
compressibility of the material. In fact, by (8.2)
we see that this quantity represents the ratio
of hydrostatic pressure to the resulting volume
change. Values of the adiabatic bulk modulus for
the main crustal and mantle minerals are listed
in Table 1.1. Two other common parameters,
especially in engineering and applied geology,
are the Young modulus, Y, and Poisson’s ratio
�. The Young modulus is defined as the ratio
between extensional stress and resulting exten-
sional strain for a cylinder that is pulled by both
ends. It can be shown (e.g., Ranalli 1995) that is
given by:

Y D .3œC 2�/�
œC � (8.3)

Finally, the non–dimensional Poisson’s ratio
is the ratio between the lateral contraction of
a cylinder that is pulled by both ends and its
longitudinal extension. It is given by:

� D œ

2 .œC �/ (8.4)

This parameter varies between –1 and a maxi-
mum value �D 0.5 in the case of a liquid (�D 0).
A Poisson solid is a material such that œ D �,
so that �D 0.25. In seismology, crustal rocks are
often approximated as Poisson solids in the esti-
mation of seismic velocities. In general, 0.25�
� � 0.30 for most crustal rocks. An interesting
property of isotropic media is that in this instance
the principal axes of stress coincide with the
principal axes of strain. To prove this assertion,
let us assume that:



£ij nj D œni
©ij n

0
j D œ0n0

i

(8.5)

where œ an œ0 are eigenvalues.
Substituting Hooke’s law (8.1) in the first of

these equations gives:

£ij nj D
�
œ•ij�C 2�©ij

�
nj

D œni�C 2�©ij nj D œni (8.6)

Therefore,

©ij nj D œ .1 ��/
2�

ni (8.7)

As a consequence, a principal axis of stress, n,
with eigenvalue œ is also a principal axis of strain
with eigenvalue:

œ0 D œ .1 ��/
2�

(8.8)

8.2 Equations of Motion for
Elastic Media

Now we are going to search a solution to
the homogeneous version (7.51) of Cauchy’s
momentum equation, which links the second
time derivatives of the displacement field (inertial
term) to the spatial variations of the stress tensor
(surface forces field). To this end, we use Hooke’s
law (8.1) to write the components of the stress
tensor in terms of displacement field. Substituting
the expression (7.32) for the strain tensor into
Hooke’s law gives:

£ij D œ•ijr � uC �
�
@ui
@xj
C @uj
@xi

�
(8.9)

This equation is a version of Hooke’s law that
makes explicit the dependence of the stress field
from the displacements. It is important to note
that in this relation the variables are evaluated
at a given time t and position r, and the small
displacement ui(r,t) associated with the elastic
response instantaneously accompanies the varia-
tions of stress in time. However, the momentum
equation tells us that it is the spatial variability
of the stress tensor to drive changes in the dis-
placement field, which occur with velocity and
acceleration that are given by the first and second
time derivatives of ui. Therefore, while (8.9) links
the local components of stress at r to the spatial
variations of displacement in a neighbor of r, the
momentum Eq. (7.51) relates the spatial variabil-
ity of the stress field to the temporal changes in
the local displacement.

http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
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Substituting (8.9) into the momentum equa-
tion gives a differential equation in terms of
displacements only:

¡
@2ui
@t2
D @œ

@xi
�C .œC �/ @�

@xi
C @�

@xj

�
�
@ui
@xj
C @uj
@xi

�
C �@

2ui
@x2j

(8.10)

This second–order partial derivatives equation
is the seismic wave equation. It can be solved
numerically when the three scalar fields ¡D ¡(r),
œ D œ(r), and � D �(r) are known. Sometimes
this technique is used to create computer simu-
lations of seismic wave propagation, following a
hypothetical earthquake with assigned source pa-
rameters. The corresponding theoretical ground
motion that would be observed at a station is
called a synthetic seismogram, and it is also pos-
sible to predict the associated damage to human
structures. The terms that include gradients of the
Lamé parameters at the right–hand side of (8.10)
are zero in the case of a homogeneous material.
This is often a useful approximation in the study
of seismic wave propagation within small quasi–
homogeneous regions. In this instance, Eq. (8.10)
reduces to:

¡
@2ui
@t2
D .œC �/ @�

@xi
C �@

2ui
@x2j

(8.11)

There are two ways for using this equation
in appropriate manner. First, it is possible to
assume that the Earth is composed by a se-
quence of quasi–homogeneous layers with vari-
able thickness, so that (8.11) is applied indepen-
dently within each layer and the local solutions
are linked together a posteriori. For example, the
propagation of seismic waves through the oceanic
crust is often modelled this way. In general, this
approach assumes that the lateral variations of the
mechanical parameters are negligible. Second,
when both� and œ vary smoothly, it is possible to
find an approximate solution to (8.10) consider-
ing the material as formed by small homogeneous
regions where (8.11) holds, and assuming smooth
variations of the parameters � and œ from each

region to its neighboring areas. Clearly, this ap-
proach is effective when one takes into account of
the presence of discontinuities in the mechanical
properties at some boundaries, for example at
the Moho, the CMB, etc. We shall explore this
technique, which is referred to as the seismic ray
method, in the next chapter. We will prove that the
method can be used to describe the propagation
of high–frequency seismic waves, thereby the
Earth’s free oscillations (with frequencies of the
order of one mHz or less) are excluded from a
description in terms of seismic rays.

8.3 SeismicWaves

Although the seismic wave Eq. (8.10) can be
solved numerically or assuming specific distribu-
tions of the elastic parameters, it is possible to
gain some insight about the physics of seismic
waves propagation from the more simple homo-
geneous version (8.11). Taking the divergence of
this equation gives:

¡
@2

@t2
@ui
@xi
D .œC �/ @

2�

@x2i
C � @

@xi

@2ui
@x2j

Therefore,

r2� � ¡

œC 2�
@2�

@t2
D 0 (8.12)

This is a standard wave equation (or
D’Alambert’s equation). It implies that in
isotropic homogeneous media a volume
perturbation propagates with velocity:

’ �
s
œC 2�
¡

(8.13)

To prove this, let us assume that at any time
t the dilatation � D �(r,t) is constant along a
plane having distance — from the origin, as shown
in Fig. 8.1.

Although this assumption is a good approxi-
mation of reality only at great distance from the
source, it is useful to understand the physics of
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Fig. 8.1 Plane waves propagation. At any time t, the
dilatation is a function of the distance — D —(t) of a plane
from the origin O

waves. For example, if we consider the propa-
gation of a circular wave along the surface of a
lake after having thrown a stone, we note that at
sufficient distance from the source the wavefront
is approximately flat, so that the geometry of the
wavefront can be approximated by a plane rather
than a circle. If n is a versor normal to the plane,
then at any point r we have that:

�.r; t/ D ® .r � n; t/ D ® .—; t/ (8.14)

In this instance, the gradient of the scalar field
� D �(r,t) can be written as follows:

r�.r ; t/ D n
@®

@—
(8.15)

Using (8.15), we see that the wave Eq. (8.12)
reduces to:

@2®

@—2
� 1

’2
@2®

@t2
D 0 (8.16)

This is the plane waves equation, which de-
scribes the propagation of unidimensional waves
(or plane waves). This equation can be solved
analytically. To this purpose, let us rewrite (8.16)
as follows:

�
@

@t
� ’ @

@—

��
@

@t
C ’ @

@—

�
® D 0 (8.17)

Now we perform a change of variables intro-
ducing two new variables ˜ and Ÿ:

˜ D t � —

’
I Ÿ D t C —

’
(8.18)

The inverse transformation from (˜,Ÿ) to (t,—)
is the following one:

t D 1

2
.˜C Ÿ/ I — D ’

2
.Ÿ � ˜/ (8.19)

Therefore, the derivatives are changed as fol-
lows:

@

@˜
D 1

2

�
@

@t
� ’ @

@�

�
I @

@Ÿ
D 1

2

�
@

@t
C ’ @

@—

�

(8.20)

If we substitute these expressions into (8.17),
we see that the plane wave equation assumes the
simple form:

@2®

@˜@Ÿ
D 0 (8.21)

The solutions of this equation have the form:

® D ®1 .˜/C ®2 .Ÿ/ (8.22)

where ®1 and ®2 are arbitrary functions. There-
fore, the general solution to (8.16) has the form:

® D ®1
�
t � —

’

�
C ®2

�
t C —

’

�
(8.23)

To understand the meaning of this solution,
let us assume, for example, that ®2D 0, so that
® D ®1(t � —/’). Along any plane defined by
some value — D const, the field ® clearly varies
with time. Similarly, at any given time t the field
assumes different values along distinct planes —.
However, from (8.23) we see that ® assumes the
same value for the set of all pairs (—,t) such that
t � —/’D const, hence for:

— D const C ’t (8.24)

Therefore, if for t D t0 the field ® had some
value ® D ®0 along the plane — D —0, it will
acquire the same value after a time interval �t
along a plane having distance ’�t from the
plane — D —0. Consequently, we can say that the
field propagates through the material along the
direction n with velocity ’, so that the function
®1(t � —/’) represents a longitudinal plane wave
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Fig. 8.2 Pattern of
deformation associated
with the propagation of P
waves

propagating in the direction n. Similarly, it can be
shown that the function ®2(t C —/’) represents a
plane wave propagating in the direction �n. The
waves associated with the propagation of volume
variations, with velocity ’ given by (8.13), are
called P waves and represent the first arrivals to
seismic stations after an earthquake. In the case of
plane waves, the volume variations at any given
distance — from the source occur in the direction
of wave propagation and are alternatively longi-
tudinal shortening or dilatation, as illustrated in
Fig. 8.2.

We say that the displacement field of P–waves
is longitudinal. Now we will take the curl of the
homogeneous wave Eq. (8.11). This gives:

¡
@2

@t2

�
©ijk

@uk
@xj

�
D .œC �/ ©ijk @2�

@xj @xk

C �r2
�
©ijk

@uk
@xj

�
D �r2

�
©ijk

@uk
@xj

�

(8.25)

where ©ijk is the Levi–Civita tensor (see
Appendix 1). It is useful at this point to introduce
a new vector field, the curl of the displacement
field:

� D r � u (8.26)

With this definition, the wave Eq. (8.25) can
be rewritten as follows:

r2� � 1

“2
@2�

@t2
D 0 (8.27)

Again, this is a standard wave equation, with
velocity of propagation given by:

“ D
r
�

¡
(8.28)

A comparison of (8.28) with (8.13) shows that
we always have ’ > “, because the Lamé pa-
rameters are both positive. The waves associated
with (8.27) are called S waves (Fig. 8.3) and
represent a later arrival to seismic stations after an
earthquake (in fact, “S” stands for «Secundae»,
while “P” stands for «Primae», from Latin). We
also note the S waves cannot propagate in fluid
state matter, because in this case we would have
�D 0, so that (8.28) implies “D 0. Therefore,
these waves do not cross the external Earth’s core
as well as the oceans.

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 8.3 Pattern of
deformation associated
with the propagation of S
waves

In the case of a plane wave that is propagating
in the x direction, we have that:


i D 
i
�
t � x

“

�
D ©ijk @uk

@xj
D fi .x/ (8.29)

Therefore, as for P waves, the derivatives
of displacement components in the y and z di-
rections must be zero, because otherwise the
displacement would increase or decrease indefi-
nitely:

@uz

@y
D @uy

@z
D 0

Consequently,
xD 0 and u lies in the yz plane
(uxD 0). These waves are said transverse waves,
to express the fact that displacements always
occur in a direction normal to the propagation
direction, as illustrated in the example of Fig. 8.3.
When the displacement occurs along the z axis,
we say that the wave is polarized vertically
(SV waves, Fig. 8.3), while for a motion in
the y direction, parallel to the Earth’s surface,
we say that the wave is polarized horizontally
(SH waves). The typical velocities of P and S
waves in the crust are easily calculated assuming
that the crust is a Poisson solid with � D œ

	 3� 1010 Pa and density ¡D 3� 103 Kg/m3.
In this instance, we have average velocities
’	 5.5 km s�1 and “	 3.2 km s�1. The trends
of the seismic velocities and the density in the
PREM (Preliminary Reference Earth Model,
Dziewonski and Anderson 1981) global seismic
model of the Earth are illustrated in Figs. 8.4
and 8.5. We note an approximately linear
increase of ’, “, and ¡ in the lower mantle,
with gradients: @’/@zD 1.35˙ 0.04 m s�1 km�1,
@“/@ zD 0.56˙ 0.03 m s�1 km�1, and @¡/@zD
0.54˙ 0.01 kg m�3 km�1, and a roughly linear
increase in the transition zone, with higher
gradients: @’/@zD 4.47˙ 0.48 m s�1 km�1,
@“/@zD 2.52˙ 0.29 m s�1 km�1, and @¡/@zD
1.07˙ 0.14 kg m�3 km�1. Conversely, the trend
is discontinuous in the asthenosphere. The linear
increase in the lower mantle and in the transition
zone is in agreement with what we expect from
the changes in pressure and temperature on rocks
of uniform composition and crystal structure. We
also note the dramatic �5.7 km s�1 drop of ’ at
the CMB, which accompanies the disappearance
of S waves in the liquid external core. Another
important discontinuity for ’, “, and ¡ is the
inner–core boundary (ICB) at �5,150 km, which
separates the liquid external core from the solid
iron internal core (Figs. 8.4 and 8.5).
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Fig. 8.4 P wave and S
wave velocity as a function
of depth. Values are plotted
from the PREM seismic
model of the Earth
(Dziewonski and Anderson
1981). CMB is the
core–mantle boundary, ICB
is the inner core boundary
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Fig. 8.5 Rock density as a function of depth. Values are plotted from the PREM seismic model of the Earth
(Dziewonski and Anderson 1981). CMB is the core–mantle boundary, ICB is the inner core boundary

An important class of solutions to the plane
waves Eq. (8.12) is represented by periodic func-
tions having the form:

�.r ; t/ D �0 .r/ cos .¨t C ª/ (8.30)

where ª is the phase, ¨ is the angular frequency,
and � D ¨/2  is the wave frequency. Solutions
of the form (8.30) are called monochromatic
waves. Substituting (8.30) into (8.12) gives
a time–independent equation that determines

the spatial distribution of the monochromatic
wave:

r2�0 C ¨2

’2
�0 D 0 (8.31)

This is a scalar Helmholtz’s equation, similar
to that encountered in Sect. 4.8. We know that
the solutions to this equation are combinations of
sines and cosines:

�0 .r/ D ei k�r (8.32)
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where k is the wave vector. In the case of a
monochromatic plane wave that is propagating in
a unique direction, the dilatation must also be a
function of (t � —/’). Therefore we have that,

¨t C ª D ¨
�
t � —

’

�
� ¨t � k— (8.33)

If n is the versor in the direction of propaga-
tion and œD ’/� is the wavelength, then the wave
vector is given by:

k D ¨

’
n D 2 �

’
n D 2 

œ
n (8.34)

The magnitude k of this vector represents the
number of oscillations in a segment of length
2  (wavenumber). Using a complex notation, the
general plane wave monochromatic solution to
(8.12) will have the following form:

�.r; t/ D Aei.k�r�¨t/ (8.35)

where A is the amplitude. A similar formula
can be written for the transverse waves. Of
course, only the real part of (8.35) has physical
significance. In the crust, where ’	 5.5 km s�1,
a P wave that is propagating with period
T D 1/�D 5 s will have wavelength œ	 27.5 km.
In general, seismic waves associated with
earthquakes have periods between 1 and 10 s,
that is, frequency 0.1 Hz � � � 1 Hz. Therefore,
typical crustal wavelengths of P waves range
between 5.5 and 55 km. Other kinds of seismic
waves have different periods. For example, in
the case surface waves 10 s � T � 100 s, while
free oscillations of the Earth occur with periods
100 s � T � 1,000 s. Conversely, artificial waves
generated in exploration geophysics have very
short periods between 10�4 s and 10�3 s.

More realistic solutions to the wave Eqs.
(8.12) and (8.27) can be found assuming a
spherical rather than planar symmetry. In this
instance, it is necessary to represent the equations
in spherical coordinates (Eq. 2.28) and use the
spherical version (4.73) of the gradient in a local
reference frame having the origin at the seismic
source. In this frame, (8.12) assumes the form:

1

r2
@

@r

�
r2
@�

@r

�
C 1

r2 sin ™

@

@™

�
sin ™

@�

@™

�

C 1

r2sin2™

@2�

@¥2
� 1

’2
@2�

@t2
D 0 (8.36)

In this equation, the spherical coordinates
(™,¥) do not represent global coordinates of
colatitude and longitude; they are simply
local angular coordinates. Assuming spherical
symmetry implies that � does not depend from
these variables. Therefore, the wave equation for
the dilatation can be rewritten as follows:

1

r2
@

@r

�
r2
@�

@r

�
� 1

’2
@2�

@t2
D 0 (8.37)

To solve this equation, we set:

�.r; t/ D Ÿ .r; t/ =r (8.38)

Then, substituting into (8.37):

1

r

�
@2�

@r2
� 1

’2
@2Ÿ

@t2

�
D 0 (8.39)

For r¤ 0 this reduces to a classic plane waves
Eq. (8.16). Therefore, the solution for � has the
form:

�.r; t/ D f .t ˙ r=’/
r

(8.40)

This is the spherically symmetric solution to
the wave equation for the dilatation. A similar
solution can be written for the components of
the vector field � . The solution describes wave
fronts that are spherical surfaces centered about
the origin rD 0 and having amplitude that is in-
versely proportional to the distance from the ori-
gin. For rD 0, (8.40) is not a solution to the wave
equation. However, it is possible to show that it
is a solution of the following non–homogeneous
wave equation (e.g., Aki and Richards 2002):

r2� � 1

’2
@2�

@t2
D �4 • .r/ f .t/ (8.41)

where •(r) is the Dirac delta function centered
at the origin. The term at the right–hand side of

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8_4
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(8.41) represents a point source located at the ori-
gin and having time–varying magnitudeD f (t).

8.4 Seismic Energy

Seismic waves carry energy both in the form
of kinetic energy, associated with the motion of
volume elements, and potential energy related
to deformation. If K and U are respectively the
kinetic and the potential energy per unit volume,
then the total energy density E in a material
during the travel of a seismic wave is given by:

E D K C U (8.42)

The kinetic energy density is clearly deter-
mined by the local velocity of displacement, so
that:

KD 1
2
¡Pu2D 1

2
¡

"�
@u1
@t

�2
C
�
@u2
@t

�2
C
�
@u3
@t

�2#

(8.43)

Regarding the potential energy, let us assume
that an elastic body starts deforming under the
action of external forces. The rate of mechanical
work P(t) depends from both internal body forces
operating in the region R and surface forces
exerted along the boundary, 
(R), of R:

P.t/ D
I

.R/

Ti PuidS C
Z
R

fi Pui dV (8.44)

where T D T(n) is the traction exerted along the
surface element dSD ndS and fD f(r) is the body
forces field. Using Cauchy’s theorem (7.3) and
Gauss’ divergence theorem (see Appendix 1) in
(8.44) gives:

P.t/ D
I

.R/

£ij nj PuidS C
Z
R

fi PuidV

D
I

.R/

�Pui £ij �nj dS C
Z
R

fi Pui dV

D
Z
R

�
@

@xj

�Pui £ij �C fi Pui
�
dV

D
Z
R

�
@£ij

@xj
C fi

�
PuidV C

Z
R

£ij
@Pui
@xj

dV

D
Z
R

�
¡
@Pui
@t
Pui C £ij @Pui

@xj

�
dV

D
Z
R

�
¡
@Pui
@t
PuiC1

2
£ij
@Pui
@xj
C1
2
£j i
@Puj
@xi

�
dV

D
Z
R

�
¡
@Pui
@t
Pui C £ij P©ij

�
dV

D 1

2

@

@t

Z
R

¡Pui PuidV C
Z
R

£ij P©ij dV

D @K

@t
C
Z
R

£ij P©ij dV
(8.45)

where we have used the momentum Eq. (7.50),
the symmetry of the stress tensor, and the defini-
tion (8.44) of kinetic energy density. It is useful
at this point to introduce a function W of the
strain components, which allows to generate the
corresponding stress tensor by its derivatives:

£ij D @W

@©ij
(8.46)

The function W is called the strain–energy
function and has the dimensions of an energy den-
sity [J m�3]. The most general form of Hooke’s
law, which expresses the linear dependence of
stress from strain, can be written as follows:

£ij D Cijhk©hk (8.47)

This constitutive equation is more general that
(8.1), because it also holds in the case of non–
isotropic materials. The tensor Cijhk at the right–
hand side is referred to as the elastic tensor.
Substituting (8.47) into (8.46) gives:

@W

@©ij
D Cijhk©hk (8.48)

http://dx.doi.org/10.1007/978-3-319-09135-8_7
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This equation says that all the derivatives of
W are linear functions of the strain tensor com-
ponents. Therefore, considering that this function
must be zero in the undeformed state of equilib-
rium, we have that W must be a homogeneous
bilinear function of the strain components:

W D Dijhk©ij ©hk (8.49)

Taking the first derivative of this expression
gives:

@W

@©rs
DDrshk©hkCDijrs©ij DDrshk©hkCDhkrs©hk

D .Drshk CDhkrs/ ©hk

A comparison with (8.48) allows to express
the elastic tensor in terms of components of D:

Chkrs D Drshk CDhkrs

Therefore, using (8.47) we see that (8.49) can
be rewritten as follows:

W D Dijhk©ij ©hk D 1

2

�
Dijhk CDhkij

�
©ij ©hk

D 1

2
Cijhk©ij ©hk D 1

2
£ij ©ij (8.50)

In order to give a physical significance to the
strain–energy function W, we first calculate its
time derivative:

PW D 1

2
Cijhk

�P©ij ©hk C ©ij P©hk�

D 1

2
£ij P©ij C 1

2
£hk P©hk D £ij P©ij (8.51)

where we have used an obvious symmetry prop-
erty of the elastic tensor: Cijhk D Chkij. A com-
parison of this expression with (8.45) shows that
W represents the potential energy density of the
material in the deformed state. Let us consider
now a monochromatic SH plane wave that is
propagating in the x direction. In this instance,
the displacements occur in the y direction at any
time, so that:

(
uy D A sin .¨t � kx/
@uy
@t
D A¨ cos .¨t � kx/ (8.52)

where A is the wave amplitude, ¨ is the angular
frequency, and k D ¨/“. The density of kinetic
energy can be calculated using (8.43):

K D 1

2
¡A2¨2cos2 .¨t � kx/ (8.53)

Therefore, the average kinetic energy density
over a wavelength is:

hKi D 1

4
¡A2¨2 (8.54)

Let us consider now the potential energy den-
sity. In this example, the only non–zero compo-
nents of the strain tensor are:

©xy D ©yx D 1

2

@uy
@x
D �1

2
Ak cos .¨t � kx/

(8.55)

Therefore, using Hooke’s law (8.1) we have
that the non–zero components of the stress tensor
are:

£xy D £yx D 2�©xy D �Ak� cos .¨t � kx/
(8.56)

Substituting these expressions into (8.50)
gives the strain–energy function associated with
this wave:

W D 1

2
A2k2�cos2 .¨t � kx/ (8.57)

Also in this case it is useful to consider the
spatial average over a wavelength. It will be given
by:

hW i D 1

4
A2k2� D 1

4
¡A2¨2 D hKi (8.58)

Therefore, the average kinetic energy
coincides with the average potential energy. The
same result can be easily obtained in the case of
monochromatic P plane wave.
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As a result, the average total energy density is
proportional to the squared wave amplitude and
to the square of angular frequency:

hEi D hKi C hW i D 1

2
¡A2¨2 (8.59)

This result implies that for any given ampli-
tude high–frequency waves carry a greater quan-
tity of energy per wavelength. More information
about this topic can be found in the book of
Shearer (2009).

Problems

1. Download the MS Excel file PREM.xlsx, con-
taining the PREM model, from the supple-
mental material web site. Use this file to de-
termine how long time takes a downward di-
rected P wave generated at the Earth’s surface
to reach the antipodal point;

2. Determine an expression for the strain tensor
of a monochromatic wave travelling in the x
direction;

3. Find a test to determine if a material is a
Poisson solid from measurements of seismic
velocity;

4. Find an expression for determining the Pois-
son ratio from measurements of seismic veloc-
ity;

5. Determine the relation between elastic mod-
uli, Lamé parameters, and the velocities ’ and
“ when �D –1 and �D 0;

6. Estimate the ’/“ ratio from a set of arrival
times of P and S waves at seismic stations.
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9Seismic Rays

Abstract

In this second chapter on seismology, I introduce seismic ray theory
starting from the Eikonal equation. The classic concepts about travel-
time curves are discussed, as well as the seismic phase’s nomenclature
at regional and global scale.

9.1 The Eikonal Equation

Seismic rays are the continuum mechanics
analogous of the usual light rays of geometrical
optics. They have been used since the dawn of
seismological science in the interpretation of
earthquake data and still furnish the simplest
computational approach to a wide class of prob-
lems, including the localization of earthquake
foci, the determination of focal mechanisms, and
seismic tomography. However, we shall see that
the range of applicability of this approach is lim-
ited to the propagation of high-frequency waves.
Furthermore, seismic rays do not adequately
describe non-geometrical phenomena such as
diffraction. The starting point of seismic ray
theory is the so-called eikonal equation, which
determines the relation between the geometry
of a wavefront and the velocity fields ’ D ’(r)
and “ D “(r). We know that these fields depend
in turn from the mechanical parameters of the
rocks via Eqs. (8.13) and (8.28). Let us assume
that a non-homogeneous but isotropic material
can be approximated by a regular grid of small
homogeneous regions and that the mechanical

parameters vary smoothly from a grid cell to its
neighboring cells. In this instance, at each grid
center we can write the wave equations in the
form:

r2� � 1

’2 .r/

@2�

@t2
D 0 (9.1)

r2� � 1

“2 .r/

@2�

@t2
D 0 (9.2)

These equations can be solved locally to deter-
mine the mode of propagation of seismic waves
within specific grid cells. Let ® D ®(r,t) any of
the field components �(r,t) or 
 i(r,t). The form
of Eqs. (9.1) and (9.2) suggests a monochromatic
solution with amplitude and phase that depend
from the position.

Therefore, we make the ansatz:

® .r; t/ D A .r/ ei!.t�T .r// (9.3)

where T D T(r) is a phase factor and A D A(r)

is the local wave amplitude. Taking the gradient
and then the divergence of (9.3) gives:
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r® D ŒrA .r/ � i¨A .r/rT .r/� ei¨.t�T .r//
(9.4)

r2® D �r2A .r/� 2i¨rA .r/ � rT .r/
� i¨A .r/r2T .r/
�¨2A .r/rT .r/ � rT .r/	 ei¨.t�T .r//

(9.5)

Regarding the time derivative, we easily
obtain:

@2®

@t2
D �A .r/ ¨2ei¨.t�T .r// (9.6)

Substituting these expressions in one of the
seismic wave Eqs. (9.1) or (9.2) gives:

r2A .r/� 2i¨rA .r/ � rT .r/
� i¨A .r/r2T .r/� ¨2A .r/ jrT .r/j2

D �A .r/ ¨
2

c2 .r/
(9.7)

where c D c(r) is either the P-wave velocity ’ or
the S-wave velocity “. Now we decompose this
equation into the real and imaginary parts. The
resulting equations are:

r2A .r/� ¨2A .r/ jrT .r/j2 D �A .r/ ¨
2

c2 .r/

(9.8)

2rA .r/ � rT .r/C A .r/r2T .r/ D 0 (9.9)

The second of these equations is called the
amplitude transport equation. For the moment,
we shall focus on the first equation only. Dividing
both sides by A¨2 gives:

jrT .r/j2 � 1

c2 .r/
D r

2A .r/

A .r/ ¨2
(9.10)

When the angular frequency of the wave is
sufficiently high, hence in the limit ¨ ! 1,
the term at the right-hand side can be ignored.
Therefore:

jrT .r/j2 D 1

c2 .r/
(9.11)

Fig. 9.1 Wavefront propagation. At any arrival time t D
T0, the set of points T(r) D T0 is a 3-D surface and the
gradient of T is locally normal to the surface. The distance
—D —(t) from the source, placed at the origin, can be used
to build a parametric seismic ray equation r D r(—)

This is known as the eikonal equation. Let us
introduce now the slowness s, which is simply the
reciprocal of a seismic velocity ’ or “:

s .r/ � 1

c .r/
(9.12)

Substituting into (9.11) allows to express the
eikonal equation in the following alternative
form:

jrT .r/j2 D s2 .r/ (9.13)

The phase factor T D T(r) is a scalar field
having the dimensions of a time. According
to the eikonal equation, the amplitude of its
gradient locally coincides with the slowness s.
The physical interpretation of an arbitrary surface
T(r) D T0 is simple. From (9.3), we see that for t
D T0 the propagating anomaly (either in � or �)
associated with the wave assumes a unique value
along this surface. Therefore, a surface T(r)D T0

can be interpreted as a wavefront and T assumes
the significance of travel time necessary to the
propagating wavefront to reach that location.
We know that the gradient of a scalar field is a
vector that is always normal to its iso-surfaces
(see Appendix 1). Therefore, at any location r,
rT is normal to the wavefront passing through r
(Fig. 9.1). Starting from a seismic source located
at r0 and considering a sequence of wavefronts
with arrival times T D k�T (kD 1,2, : : : ) for
some small time interval �T, we can build a

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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line r D r(—) in the 3-D space by the following
procedure. We select an initial arbitrary direction
n0 D n. Then, we link the source point r0 to
the point r1D r0C n0�—0D r0Cn0c(r0)�T.
At the next step, we consider the versor
n1DrT/jrTj and link r1 to a new point
r2D r1Cn1�—1D r1Cn1c(r1)�T. At any
successive step, we set nkDrT/jrTj and
link the current point rk to a new point
rkC 1D rkCnk�—kD rkCnkc(rk)�T. For �T
sufficiently small, this algorithm generates a
(generally) curved line that is called a seismic
ray (Fig. 9.1). Of course, we can build infinitely
many rays starting from r0 simply changing the
initial arbitrary direction n.

At any step, the parameter —D�—0C�—1

C : : : represents the total distance from the
source, so that the position vector r can be
considered as a function of the parameter —.
We can also build a slowness vector s such that
bs D rT= jrT j and with magnitude sD 1/c.
Using this notation, we have that the eikonal
equation assumes the form:

rT .r/ D s .r/ (9.14)

Assuming that the position along a seismic ray
is parametrized by an equation rD r(—), where —
is distance from the source, then the infinitesimal
variation of r along the ray will be given by:

dr D rT .r/
s

d— (9.15)

In fact, crT(r)D (1/s)rT(r) is always a versor
normal to the wavefront. To determine the varia-
tion of arrival time along the ray, corresponding
to an infinitesimal variation of r, we will use the
directional derivative of T along the tangent to the
ray at r:

dT

d—
D rT .r/ � dr

d—
D rT .r/ � rT .r/

s
D s
(9.16)

This equation confirms our previous interpre-
tation of T as a travel time from the seismic
source to the wavefront. Now we want to find

an equation that allows to determine r D r(—),
hence the seismic ray geometry, directly from the
slowness field sD s(r). By (9.15) we have that:

ds

d—
D d

d—

�
s .r/

dr

d—

�
D d

d—
rT .r/ D r

�
dT

d—

�

(9.17)

Finally, using (9.16) we obtain a differential
equation for the ray that does not depend from
the travel time T:

d

d—

�
s .r/

dr

d—

�
D rs .r/ (9.18)

This equation, which allows to determine the
seismic ray geometry as a function of the slow-
ness field, is called the seismic ray equation. It
can be solved easily by finite differences to obtain
the function r D r(—) given an initial direction n,
granted that the variables s and rs are known at
any point. In the case of a homogeneous region,
(9.18) reduces to d2r/d—2D 0, which has the gen-
eral solution: r(—)D a—C b, a and b being con-
stant vectors. This is clearly a straight line in the
direction a and passing through the point r0 D b.

9.2 Geometrical Spreading

Now let us turn our attention to the amplitude
transport Eq. (9.9). We are going to prove that
it determines how the amplitude A is transported
along a seismic ray. Substituting in the first term
at the left-hand side the gradient of T by the
slowness vector s (Eq. 9.14) we have that:

2rA .r/ � s .r/CA .r/r2T .r/ D 0 (9.19)

We note that rA(r)�s(r) is at any point r
proportional to the directional derivative of A
in the direction of rT, thereby (9.19) can be
considered as an ordinary differential equation
along the curved line representing the seismic
ray. If rays are described by parametric equations
r D r(—), then the variation of amplitude along a
seismic ray can be expressed as a function of the
parameter —.
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We have:

dA

d—
D @A

@xi

dxi

d—
D rA � dr

d—
D rA � rT

s
D k � rA

(9.20)

where kD k(r)DrT/s is the versor tangent to the
seismic ray at r. Therefore:

s � rA D sk � rA D s dA
d—

(9.21)

Using (9.16), we can convert the derivative of
A with respect to — into a derivative with respect
to the travel time T. We have:

s � rA D s dA
dT

dT

d�
D s2 dA

dT
(9.22)

Substituting this result into (9.19) and express-
ing A as a function of T we obtain a first-order
ordinary differential equation along the ray:

2s2 .r/
dA

dT
C A.T /r2T .r/ D 0 (9.23)

To solve (9.23), it is necessary to know the
Laplacian of the travel time T along the seismic
ray. Let us consider the surface of a wavefront
T(r) D T0 (Fig. 9.2). The position of a point
on this surface can be specified through two
curvilinear coordinates (¥,§):

8̂
<
:̂
x D x .¥;§/
y D y .¥;§/
z D z .¥; §/

(9.24)

For example, in the case of a spherical wave-
front propagating from the Earth’s center, we
could use spherical coordinates of longitude and
latitude to identify the intersection of a seismic
ray with the propagating wavefront. A set of pairs
(¥,§) defines the intersection of a family of rays
and the eikonal surface T(r)D T0. Let (¥0,§0) be
the coordinates of a point along this surface, and
consider the set of seismic rays that intersects the
wavefront in a neighborˆ of this point.

Fig. 9.2 Curvilinear coordinates on a wavefront and ray
tube at a point (¥0,§0)

Let us assume that for any eikonal surface ˆ
is defined through fixed displacements d¥ and d§
from (¥0,§0):

ˆ.¥0; §0/ D f.¥; §/ W ¥0 � ¥ � ¥0 C d¥ I
§0 � § � §0 C d§g (9.25)

The set of rays crossing the wavefront through
ˆ forms what is known as a ray tube (Fig. 9.2).
The area dS of ˆ is clearly a function of T0, as
shown in Fig. 9.2. It can be calculated as follows:

dS .T0/ D
ˇ̌
ˇ̌dr

d¥
d¥ � dr

d§
d§

ˇ̌
ˇ̌

D
ˇ̌̌
ˇdr

d¥
� dr

d§

ˇ̌̌
ˇ d¥d§

� J .T0; ¥0; §0/ d¥d§ (9.26)

The quantity:

J .T0; ¥0; §0/ D
ˇ̌̌
ˇdr

d¥
� dr

d§

ˇ̌̌
ˇ (9.27)

is called geometrical spreading of the tube and
describes the focusing and defocusing of seismic
rays. It increases when the distance between rays
raises with the distance from the source. Con-
versely, if the rays converge to a point, then J
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Fig. 9.3 The volume element formed by two eikonal
surfaces and a tube

decreases progressively to zero at the point of
convergence. Let us consider now the volume
element dV formed by a ray tube and two closely
spaced wavefronts at T D T0 and T D T0 C dT,
as shown in Fig. 9.3.

To evaluate dV, we observe that the triple
product a � b � c of three vectors represents the
volume of the parallelepiped formed by the three
vectors. Therefore:

dV D
ˇ̌
ˇ̌dr

d—
d— �

�
dr

d¥
d¥ � dr

d§
d§

�ˇ̌ˇ̌

D
ˇ̌
ˇ̌dr

d—
�
�
dr

d¥
� dr

d 

�ˇ̌ˇ̌d—d¥d§

D

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌

@x

@—

@y

@—

@z

@—

@x

@¥

@y

@¥

@z

@¥

@x

@§

@y

@§

@z

@§

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
d—d¥d§

� D .—; ¥; §/d�d¥d§

D D .T; ¥;§/dTd¥d§

(9.28)

where we have used (9.16) to transform deriva-
tives with respect to — into derivatives with respect
to T. On the other hand, from (9.26) we have that:

dV D dSd— D J .T; ¥; §/ d¥d§d—

D 1

s.T /
J .T; ¥; §/ d¥d§dT (9.29)

where the slowness s has been expressed as a
function of T through r. Finally, comparing (9.28)
with (9.29) gives the following expression for the
geometrical spreading at T:

J .T; ¥; §/ D sD .T; ¥; §/ (9.30)

Let us consider now the integral of the vector
field rT over the surface of dV. It is given by:

I
dV

rT � dS D s .T C dT / dS .T C dT /

� s.T /dS.T / D Œs .T C dT / J .T C dT /
�s.T /J.T /� d¥d§

Therefore, using the definition of divergence
(see Appendix 1) and (9.29), we have:

r2T D r � rT D lim
dV!0

1

dV

I
dV

rT � dS

D lim
dV!0

Œs .T C dT / J .T C dT /� s.T /J.T /� d¥d§

1

s.T /
J.T /d¥d§dT

D

D lim
dV!0

s.T / Œs .T C dT / J .T C dT /� s.T /J.T /�

J.T /dT

D s.T /

J.T /

d

dT
.s.T /J.T //

(9.31)

Substituting this expression into the transport
equation (9.23) and dividing by s gives:

2s.T /
dA

dT
C 1

J.T /
A.T /

d

dT
.s.T /J.T // D 0

(9.32)

This is a first order differential equation with
separable variables, with solution:

A.T / D c .¥; §/p
s.T /J.T /

(9.33)

where c is a constant not depending from T,
which can be expressed in terms of seismic ray
parameters ¥ and §. This solution shows that
the amplitude decreases when the geometrical
spreading increases. More precisely, the

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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amplitude depends from the inverse square root
of the ray tube cross-section. To determine the
constant c, let us consider again the transport
equation in the form (9.9). Multiplying this equa-
tion by A(r), it is possible to rewrite it in the form:

r � �A2 .r/rT .r/� D 0 (9.34)

Let us consider two points r0 and r00 of a
seismic ray and the corresponding wavefronts T
D T 0 and T D T00. A tube segment between r0 and
r00 is a region R bounded by the two wavefronts
and by the tube walls. We know that the gradients
of T are always parallel to the lateral surface
of the tube and perpendicular to its end faces.
Therefore, integrating (9.34) over the region R
we have:

0 D
Z
R

r � �A2 .r/rT .r/� dV

D
I

.R/

A2 .r/rT .r/ � dS D
I

.R/

A2 .r/ s .r/ dS

D A2 .r00/ s .r00/ dS .r00/�A2 .r0/ s .r0/ dS .r0/

(9.35)

Hence:

A2
�
r 0� s �r 0�dS �r 0� D A2 �r 00� s �r 00�dS �r 00�

(9.36)

By (9.26), we also know that the cross-
sections of a tube can be expressed in terms
of geometrical spreading J. Therefore, if we have
determined the quantities A and J at some point
r D r0, then we can determine the amplitude at
any other point rewriting (9.33) as follows:

A .r/ D A .r0/
s
J .r0/ s .r0/

J .r/ s .r/
(9.37)

9.3 Snell’s Law

Let us consider now a material such that the
velocity c (either ’ or “) depends only from the
depth z, so that s D s(z). In this instance, the
quantity:

Fig. 9.4 Typical geometry of a seismic ray in a material
where the velocity c depends only from depth. ™ is the
incidence angle

p D k � s.z/dr

d—
(9.38)

is an invariant of the seismic ray. In fact, by the
ray Eq. (9.18) we have:

dp

d—
D k � d

d—

�
s.z/

dr

d—

�
D k � rs.z/ D 0

(9.39)

The definition (9.38) implies that p is normal
to the direction of propagation, thereby any ray
will lie in a vertical plane. Furthermore, the
conservation of p requires that also its magnitude
must be constant. Let us define the incidence
angle ™ D ™(z) as the angle that a seismic ray
forms with the vertical at any point (Fig. 9.4).
The magnitude of p is called the ray parameter
and is a fundamental invariant in seismology,
because it is uniquely associated with a seismic
ray. By (9.38) this quantity satisfies the following
simple law:

p D s.z/ sin ™.z/ (9.40)

The conservation law (9.40) for p along a
seismic ray is known as Snell’s law. It allows
to determine the geometry of any sesimic ray
given a velocity function c D c(z) and a take-
off angle ™0, which is the incidence angle at the
source point. Clearly, (9.40) results from a flat-
Earth approximation that is adequate only in the
case of shallow propagation, say up to 30 km
depth. In a spherical Earth with radial symmetry,
the slowness s and the incidence angle ™ depend
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Fig. 9.5 In a spherical
homogeneous Earth,
seismic rays are straight
lines but the incidence
angle changes with depth.
In this instance, the
quantity r sin™(r) is
invariant

only upon the distance r from the Earth’s center,
so that sD s(r) and ™ D ™(r). In this instance, the
vector invariant assumes the form:

p D r � s.r/dr

d—
(9.41)

Also in this case the seismic rays lie on vertical
planes, and it is easy to prove that Snell’s law
assumes the form:

p D s.r/r sin ™.r/ (9.42)

In fact, in this instance sin™ is not anymore
invariant when the slowness is constant (Fig. 9.5).
Conversely, the example of Fig. 9.5 shows that in
the spherical context the quantity r sin™ will be
conserved for s(r)D const. It is important to note
that both the flat approximation (9.40) and the
spherical conservation law (9.42) do not take into
account of lateral inhomogeneities, so that they
are only applicable when the seismic velocity
depends from a unique parameter (z or r).

9.4 1-D Velocity Models

Let us consider now a plane wave that propagates
through a homogeneous material with constant
slowness s (Fig. 9.6). The wavefronts at time T
and T C �T are separated by a distance �—
along a seismic ray. At the Earth’s surface, the
wavefront arrivals have a different separation�x,
which depends from both�— and the slowness s:

Fig. 9.6 A downward propagating plane wave from a
seismic source at the Earth’s surface. The material is
homogeneous, so that the seismic rays are straight lines
and the incidence angle ™ is constant

�— D �T

s
D �x sin ™ (9.43)

Therefore, by Snell’s law:

�T

�x
D s sin ™ D p (9.44)

This relation implies that a measurement of
arrival times at different seismic stations allows to
determine the seismic parameter p. It also implies
that p is the apparent slowness of the wavefront
in the horizontal direction. Therefore, p is some-
times referred to as the horizontal slowness of the
seismic ray. Let us assume now that the wave
strikes a horizontal discontinuity in the elastic
parameters, so that we can separate the material
into an upper layer with velocity c1 and a lower
layer with higher velocity c2 > c1 (Fig. 9.7).
For s2 < s1, Snell’s law predicts an increase
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Fig. 9.7 Wavefront
propagation (dashed lines)
and ray refraction through
a seismic discontinuity
separating two
homogeneous media.
Higher velocity in the
lower layer determines an
increase of spacing �—

Fig. 9.8 Formation of a
head wave at the turning
point interface. This is
formed by the envelope of
secondary spherical waves
generated along the
discontinuity (red lines)

of both the spacing between wavefronts and the
incidence angle, so that �—2 > �—1 and ™2 > ™1.
Conversely, for s2 > s1 we would have downward
bending of the seismic rays. This phenomenon is
termed seismic refraction and is analogous to the
refraction in optics. From (9.40) we have:

p D s1 sin ™1 D s2 sin ™2 (9.45)

Therefore, the incidence angle of the transmit-
ted wave will be given by:

™2 D arcsin

�
s1

s2
sin ™1

�
(9.46)

A critical incidence angle, ™c, is defined as an
incidence angle such that the transmitted ray has
™2D 90ı. In these case, we say that the ray is at
its turning point. From (9.46) we easily obtain:

™c D arcsin

�
s2

s1

�
(9.47)

At the turning point, we have that the slowness
coincides with the ray parameter and the ray
direction becomes horizontal. The corresponding

wave propagates horizontally (in the ideal limit
of plane waves) through the lower layer with
velocity 1/s2 as shown in Fig. 9.8.

During its propagation, the transmitted wave
excites the interface surface between the upper
and lower layer, determining by Huygens’s prin-
ciple the formation of a head wave (sometimes
called a bow wave) that travels upwards in the
direction of the Earth’s surface. The seismic rays
associated with this secondary source have the
same incidence angle, ™c, as the downgoing rays
(Fig. 9.8). A complete description of the head
waves is not possible in the context of ray theory
and requires an analysis in terms of waves rather
than seismic rays. It is important to note that
the velocity of propagation of the head wave in
Fig. 9.8 is 1/s1, while the boundary perturbation
always moves at higher velocity 1/s2 along the in-
terface. Therefore, any spherical wavefront gen-
erated along the discontinuity surface and propa-
gating through the upper layer will be overtaken
by its source, so that each new wavefront will
start beyond the last one. The resulting envelope
wave is V-shaped and tangent to all the emitted
spherical wave fronts, as shown in Fig. 9.8. Let
us consider now a layered material, such that the
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Fig. 9.9 Seismic ray
geometry for a layered
spherical Earth model,
such that the seismic wave
velocity c increases with
the layer depth. The
existence of a turning point
does not always depend
from the achievement of a
critical incidence angle
(Eq. 9.47). In fact, in this
example ™4 < 90ı

Fig. 9.10 Seismic rays from a source point S for a spher-
ical Earth model such that the seismic wave velocity c
increases linearly with depth. Both the range (horizontal

angular distance travelled by the ray) and the turning point
depth increase as the take-off angle decreases

seismic velocity is constant within each layer Lk

(kD 1,2, : : : ,n) but increases progressively travel-
ling into deeper layers. In this instance, the seis-
mic rays will be broken lines that bend upwards
until the critical angle is reached. According to
Snell’s law (9.40) we have that:

pD s1 sin ™1D s2 sin ™2D : : : D sn sin ™c D snC1
(9.48)

where ™1 < ™2 < : : : < ™c. Therefore, if sn is
the slowness within the layer where the incidence
angle assumes the critical value ™c, then the
slowness in the underlying layer will coincide
with the ray parameter p. In the limit case that the
velocity increases continuously with depth, we
still have a turning point at some depth z D zmax

and it results: s(zmax) D p. Head waves form an
important class of seismic waves in exploration
geophysics, where the depths reached by artificial
waves do not exceed a few tens km and the flat
Earth approximation is effective.

In a spherical Earth, the upward propagation
of seismic waves and the existence of turning
points is a consequence of the spherical Snell’s
law (9.42). In this instance, for a velocity c that
continuously raises with depth, the downgoing
segment of a seismic ray will bend progressively
through increasing incidence angles, as far as
a turning point depth zmax is reached. This is
illustrated in Fig. 9.9 and does not require the for-
mation of head waves. In general, the maximum
depth zmax of a seismic ray and the maximum
angular distance,�, from the source depend from
the take-off angle ™0 (Fig. 9.10).

We shall face now the problem of determining
the range and the arrival time of a seismic ray. Let
us consider first the flat Earth approximation and
assume to have placed a number of receivers (i.e.,
seismometers) at distances X1,X2, : : : ,Xn from a
seismic source S. If the velocity c D c(z) is
a monotonically increasing function of depth,
then a measurement of the corresponding arrival
times T1,T2, : : : ,Tn allows to fit these data by a
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Fig. 9.11 Travel–time fitting curve for a monotonically
increasing velocity function. Dots are observed travel
times Ti at locations Xi. The tangent to the regression
curve (dashed line) represents the ray parameter of the
seismic ray arriving at distance X from the source

continuous curve T D T(X) of the arrival time
as a function of the distance X from the seismic
source (that is, the range). By (9.44) we have that
the slope of this curve will be given by:

dT

dX
D p D s .zmax/ (9.49)

Clearly, the derivative dT/dX is a decreasing
function of the range, because the ray parameter
(hence the slowness at the turning point)
decreases with increasing range (see Fig. 9.8).
Therefore, a plot of the travel time curve
T D T(X) has the typical shape illustrated in
Fig. 9.11. In this plot, each point of the regression
curve represents a different seismic ray, whose
parameter is given by the slope of the curve.
When the seismic velocity is a known function
of z, it is possible to determine analytically both
the travel–time T and the range X for any value of
the parameter p, hence for any seismic ray from
a known source. We know that the horizontal
component of the slowness vector s D s(z)
coincides with p (Eq. 9.44): sx D p. Regarding
the vertical component, sz, it is given by:

sz.z/ D s.z/ cos ™.z/ D
p
s2.z/ � p2 (9.50)

At the turning point, we have that p D s and
szD 0. It is easy to find expressions for X D X(p)
and T D T(p). Let us consider an infinitesimal ray
path segment d—. By Snell’s law (9.40) we have
that:

dx

d—
D sin ™D p

s
I d z

d—
D cos ™

D
p
1 � sin2™D

p
1 � p2=s2D 1

s

p
s2 � p2

(9.51)

Therefore,

dx

d z
D dx

d—

d—

d z
D pp

s2 � p2 (9.52)

This expression can be easily integrated to
determine the x component of points along the
seismic ray with parameter p, assuming a source
located at the origin of the reference frame. To
determine the range X associated with p, we must
take into account that in laterally homogeneous
models the distance at which the upgoing seg-
ment of the seismic ray reaches the Earth’s sur-
face is twice the horizontal distance between the
seismic source and the turning point. Therefore,

X.p/ D 2p
zmaxZ
0

d zp
s2.z/� p2 (9.53)

A similar procedure allows to determine the
arrival time T. Because dT D sd— (Eq. 9.16), we
have:

dT

d z
D dT

d—

d—

d z
D s2p

s2 � p2 (9.54)

Integrating from the Earth’s surface to zmax

and multiplying by 2, we easily obtain the arrival
time ad distance X:

T .p/ D 2
zmaxZ
0

s2.z/d zp
s2.z/ � p2 (9.55)

When the transmitting domain can be con-
sidered as a stack of homogeneous layers, the
integral solutions (9.53) and (9.55) are substituted
by sums.

We have:

X.p/ D 2p
X
i

�hiq
s2i � p2

I si > p (9.56)
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T .p/ D 2
X
i

s2i �hiq
s2i � p2

I si > p (9.57)

where�hi is the thickness of the i-th layer. When
the velocity model has continuous gradients, the
approximate solutions (9.56) and (9.57) are in-
adequate, because of the large number of quasi-
homogeneous layers that would be needed to
obtain reliable results. In this instance, a better
approach is to assume a velocity model such
that c D c(z) is a broken line and evaluate the
expressions (9.53) and (9.55) for each segment.
For example, if ci (iD 0,2, : : : ,n) are nC 1 rep-
resentative control points at depths zi along an
experimental velocity profile, we can assume that
the velocity varies linearly between any pair of
successive control points, so that:

c.z/ D ciC1 � ci
ziC1 � zi

.z � zi /Cci � mi.z� zi /Cci I

for zi � z � ziC1I i D 0; 1; � � � ; n � 1 (9.58)

In this case, the variation of slowness with
depth will be given by:

ds.z/ D ds

dc
dc.z/ D � 1

c2.z/
dc.z/

D � mi

c2.z/
d z D �mis

2.z/d zI

for zi < z < ziC1I i D 0; 1; � � � ; n � 1
(9.59)

If we substitute the functions (9.58) into the
integrals (9.53) and (9.55) and change the inte-
gration variable to ds, we have that each segment
gives a contribution Xi to the total range X that
can be expressed as follows:

Xi .p/ D p

ziC1Z
zi

dzp
s2.z/� p2

D � p

mi

siC1Z
si

ds

s2
p
s2 � p2

D �
p
s2 � p2

mips

ˇ̌
ˇ̌̌siC1

si

D �
q
1� p2Œmi .z � zi /C ci �

2

pmi

ˇ̌
ˇ̌
ˇ̌̌
ziC1

zi

D � 1

pmi

�q
1� p2c2iC1 �

q
1� p2c2i

�
I

i D 0; 1; : : : ; n� 1

(9.60)

Similarly,

Ti .p/ D
ziC1Z

zi

s2.z/d zp
s2.z/ � p2 D �

1
mi

siC1Z
si

dsp
s2 � p2

D � 1
mi

ln
�
s Cps2 � p2�ˇ̌ˇsiC1

si

D � 1
mi

ln
h

1
mi .z�zi /CciC

q
1

Œmi .z�zi /Cci �2�p2
ǐ̌̌ ziC1

zi

D � 1
mi



ln

�
1

viC1

�
1C

q
1 � p2c2iC1

� �

� ln

�
1
vi

�
1C

q
1 � p2c2i

��
(9.61)

The final arrival time T(p) and range X(p)
are then obtained summing these contributions
over the index i and multiplying the result by
two. Let us consider now the generalization of
the previous solutions to the spherical Earth. We
know that in this instance the horizontal distance
X is substituted by the angular distance �, so
that dX D Rd�, R being the Earth’s radius. In
this case, the ray parameter coincides with the
slowness at the turning point only when c is a
continuous and mostly increasing function of the
depth. To generalize (9.49), we start as before
from (9.43). However, in this case Snell’s law
in the form (9.40) must be substituted by (9.42).
Therefore,

dT

d�
D RdT

dX
D Rp

R
D p (9.62)

This is the generalization of (9.49) to a spher-
ical Earth. Solutions for the arrival time T(p) and
the range X(p) can be found easily using the same
approach discussed previously for the flat Earth
approximation. We obtain:

�.p/ D 2p
RZ
rmin

1

r
p
r2s2.r/� p2 dr (9.63)
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T .p/ D 2
RZ
rmin

rs2.r/p
r2s2.r/ � p2 dr (9.64)

where rmin is the distance from the Earth’s center
at the turning point.

9.5 Travel Time Curves

We have seen that the range X(p) is a decreas-
ing function of the ray parameter p, as shown
in Fig. 9.10. Therefore, we expect that in nor-
mal conditions dX/dp< 0. However, when the
velocity profile includes segments characterized
by elevated gradient, the behaviour of seismic
rays becomes more complicate. In the case of
rays with a turning point below or above the
high-gradient layer, the corresponding tracts of
travel time curve will have a trend similar to that
illustrated in Fig. 9.11, thereby the arrival time
increases and the parameter decreases for increas-
ing distance from the source. These portions of
travel–time curve are called prograde.

When seismic rays bottom in the high velocity
gradient region, the increased bending determines
a decrease of range, as illustrated in Fig. 9.12.
In this instance, some stations will experience
more than one arrival for the same kind of seismic
wave. The corresponding segment of travel time
curve is called retrograde. When a travel time
curve includes a retrograde segment, we say that

it contains a triplication (Fig. 9.13), while the
corresponding cusps at the end points of the
retrograde tract are called caustics. Caustics are
hit by two distinct seismic rays, while any other
point in the range of the retrograde branch will
be hit by three rays. At the caustics, we have
that dX/dpD 0, because these points separate
branches for which T increases as the parameter p
decreases (prograde branches) by tracts such that
the travel time decreases for decreasing values
of p (retrograde tract). The triplication range is
always associated with greater energy delivery,
because of ray focusing (see Sect. 9.2).

In particular, ray theory predicts infinite am-
plitude of the seismic waves at the caustics. To
prove this, let us consider the distribution of seis-
mic energy along a wavefront in the simple case
of a laterally homogeneous model. In Sect. 8.4
we have shown that the average energy density is
proportional to the wave amplitude A and to the
angular frequency ¨ (Eq. 8.59). Therefore, we

Fig. 9.13 A travel–time curve containing a triplication

Fig. 9.12 Normal prograde rays (black lines) and retro-
grade rays (red lines) associated with high velocity gradi-
ent. Seismic rays arriving at stations A–F have decreasing

take-off angles, but rays that bottom in the high-gradient
layer will have a shorter range. A single ray incides on A,
B, E, and F, while three distinct rays incide on C and D

http://dx.doi.org/10.1007/978-3-319-09135-8_8
http://dx.doi.org/10.1007/978-3-319-09135-8_8
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Fig. 9.14 Lower focal hemisphere about a seismic source
S and band through which the energy associated with
rays having take-off angle between ™0 and ™0 C d™0 is
irradiated

expect that focusing and defocusing of seismic
rays associated with geometrical spreading de-
termine the distribution of seismic energy along
the wavefronts. Let us assume that a source at
some depth below the Earth’s surface irradiates
isotropically a seismic energy E, and consider the
rays with take-off angle between ™0 e ™0 C d™0

(Fig. 9.14).
These rays leave a unit sphere about the

source through a horizontal band having area
2 sin™0d™0 (Fig. 9.14). Because the total area of
the unit sphere is 4  and the radiation of seismic
energy is isotropic, the energy transmitted
through the band is:

dE .™0/ D 1

2
E sin ™0d™0 (9.65)

The corresponding rays strike the Earth’s
surface through a ring belt having area
2 X(™0)dX, while the wavefront portion will have
area 2 X(™0)cos™0dX, because the incidence
angle at X coincides with the take-off angle.
Therefore, the energy distributed along this
wavefront portion will be given by:

dE.X/ D 2  hE.X/iX .™0/ cos ™0dX (9.66)

where <E(X)> is the average energy density at
X. By the law of conservation of energy, we must
have: dE(�0)D dE(X). Therefore,

hE.x/i D E

4 X .™0/
tan ™0

ˇ̌
ˇ̌d™0
dX

ˇ̌
ˇ̌ (9.67)

By Snell’s law we have that s0sin™0 D
p, thereby dp(™0) D s0cos™0d™0. Further-
more, it results: tan ™0D p/(s2

0� p2)1/2 and
d™0/dXD (s2

0� p2)� 1/2dp/dX. Therefore, we
obtain the following expression for the average
energy density at distance X:

hE.X/i D pE

4 X
�
s20 � p2

�
ˇ̌
ˇ̌ dp
dX

ˇ̌
ˇ̌

D pE

4 X
�
s20 � p2

� jdX=dpj (9.68)

The role of the term jdX/dpj in expression
(9.68) is quite intuitive. When this quantity is
small, a large number of seismic rays with differ-
ent parameters strike the Earth’s surface at com-
parable distance X. In this instance, the energy
density and the amplitude of seismic waves attain
elevated values. By contrast, when jdX/dpj is
high, rays with comparable parameters distribute
on a large area, thereby the density of energy and
the amplitude are small. Finally, for jdX/dpjD 0,
hence at the caustics, the energy density (9.68)
is infinite. Clearly, this result is valid only in
the infinite frequency limit of ray theory; real
amplitudes of the seismic waves and the energy
density are elevated but finite at the caustics.

So far, we have represented travel time curves
in terms of (T,X) pairs. In this context, T D
T(X) is not generally a single-value function
because of triplications. An alternative represen-
tation, which does not suffer the problems asso-
ciated with triplication, is based on pairs (£,p),
where the quantity £ is called delay time and
can be calculated easily taking the intercept of a
tangent to the travel time curve:

£.p/ D T .X/� pX.p/ (9.69)

In fact, any point belonging to a travel time
curve can be uniquely identified by an intercept
along the vertical axis and a straight line with
appropriate slope p as illustrated in Fig. 9.15.
Although less intuitive than the previous one, this
representation allows an elegant solution to the
inversion of seismic data. In the case of a later-
ally homogeneous material, we can substitute the
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Fig. 9.15 A point (X0,Y0) on the travel time curve can be
uniquelly identified by an intercept £ and the slope p of
the tangent to the curve at the point

solutions (9.53) and (9.55) into (9.69) to obtain
an expression for the delay time £:

�.p/ D 2
zmaxZ
0

"
s2.z/p
s2.z/� p2 �

p2p
s2.z/� p2

#
d z

D 2
zmaxZ
0

p
s2.z/ � p2d z D 2

zmaxZ
0

sz.z/d z

(9.70)

where we have used the expression (9.50) for the
vertical slowness. In the case of a material formed
by a stack of homogeneous layers, this expression
assumes the form:

£.p/ D 2
X
i

q
s2i � p2�zi D 2

X
i

˜i�zi I si > p

(9.71)

The slope of the curve £ D £(p) is given by:

d£

dp
D 2 d

dp

zmaxZ
0

p
s2.z/ � p2d z

D �2p
zmaxZ
0

1p
s2.z/ � p2 d z D �X.p/

(9.72)

Therefore, X(p)
 0 implies d£/dp< 0, and the
curve £ D £(p) is monotonically decreasing also
in the case of triplications. Now let us take the
second derivative of (9.70). We have:

d2�

dp2
D �dX

dp
(9.73)

Therefore, the curve £ D £(p) is concave
upward in the case of prograde segments and
concave downward in the case of retrograde
branches. Differently from the curve T D T(X),
this curve is always a single-value function,
thereby it can be used more easily to determine
velocity models from travel time data.

9.6 Low-Velocity Zones

Low-velocity zones (LVZ) are regions where the
seismic velocity decreases with depth, in contrast
to a general trend characterized by positive gradi-
ents (hence by increasing velocities). According
to Snell’s law, we have that seismic rays are
bent downwards within an LVZ, as illustrated in
Fig. 9.16. Clearly, no seismic ray can bottom in
an LVZ, and those that penetrate one of these
regions will turn at greater depth, where the
velocity c has raised above any velocity in the
LVZ. Note that the seismic ray emerging at point
C in Fig. 9.16 has the same parameter of the ray
emerging at A. In fact, the ray with turning point
at the upper boundary of the LVZ will bifurcate
at its bottom, generating an additional ray that
travels through the LVZ. Seismic rays with a
slightly less parameter will have a decreasing
range, back to a caustic point at the far end of
the shadow zone.

In presence of an LVZ, the travel–time curve,
T D T(x), and the delay time curve, £ D £(p),
show a gap respectively for a range of distances
corresponding to the shadow zone at the Earth’s
surface and for a range of values of the ray
parameter p (Fig. 9.17). At global scale, the most
important example of LVZ is a region of astheno-
sphere or lower lithosphere between 100˙ 20 km
and�220 km depth, which is characterized by an
average 1.08 % drop in ’ and 1.13 % drop in “
in the PREM model (Dziewonski and Anderson
1981) (see Fig. 8.4).

This upper mantle LVZ has greater thickness
and velocity reduction beneath the oceans, and
the velocity drop can reach 5 % in some regions

http://dx.doi.org/10.1007/978-3-319-09135-8_8
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Fig. 9.16 A low-velocity zone at planetary scale (gray region). Seismic rays penetrating the LVZ are bent downwards,
determining the formation of a shadow zone (A,B) and a duplication zone (B,C) at the Earth’s surface

Fig. 9.17 Travel–time
curve (left) and delay time
curve (right) in presence of
an LVZ

Fig. 9.18 Deflection of seismic rays from a random dis-
tribution of scatterers may determine multiple arrivals at a
location

(Thybo 2006). In general, S-waves are strongly
attenuated within the LVZ, especially under
oceanic regions. The approximately constant
depth of the top boundary suggests that the upper
mantle LVZ arises from metamorphic or other
pressure-driven transformations, because none of
the known phase transformations of peridotite
occurs at the lithostatic pressure of 100 km depth
(�3.1 GPa). Another feature of this region is the
presence seismic wave scatterers on a scale of
�7� 3 km (Thybo 2006). Scattering of seismic
waves consists into the deviation of seismic rays
associated with high-frequency waves from small
random heterogeneities (Fig. 9.18).

The most evident phenomenon associated with
scattering from small scale heterogeneities is the

appearance of continuous wave trains with slowly
decreasing amplitude, following the direct arrival
of S waves or P waves. Aki (1969) named these
wave trains coda and proposed that they were
formed by composition of incoherent waves scat-
tered by distributed heterogeneities in the litho-
sphere. In particular, he observed that while the
main phase amplitude decreased with increasing
epicentral distance, the coda amplitude was al-
most independent from the range. An in-depth
treatment of this interesting topic is beyond the
scope of this book and can be found in Sato
et al. (2012) and in Shearer (2007). Here we
are concerned only with the observation that
seismic waves are strongly scattered by the LVZ,
which requires the existence of smallscale het-
erogeneities within this layer. The scattering is
observed as a pronounced coda behind the first
arrivals in the offset interval of �500–1,400 km
(Thybo 2006), with more than 7 s duration at
short offset and more than 2–3 s at far offsets.

The gap in the travel time curve associated
with the upper mantle LVZ is observed between
800 and 1,000 km (�8ı from the epicenter).
Seismologists, petrologists, and the general geo-
dynamics community have wondered about the
origin of this region since the end of the 1950s.
Some of these scientists argued that it originates
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from the presence of small amounts of partial
melt (e.g., Lambert and Wyllie 1970; Anderson
and Spetzler 1970), while others proposed that its
existence can be explained by intrinsic properties
of peridotite close to its solidus. For example,
Karato and Jung (1998) observed that experi-
mental studies failed to prove significant effects
of partial melting on the physical properties of
peridotite for a range of melt fractions expected
over most upper mantle conditions (<1–3 %).
Conversely, they pointed out that in presence of
partial melting seismic wave velocities should
increase. In fact, water dissolves in melts much
more than in crystal lattices, thereby in pres-
ence of partial melting it would be removed
from minerals such as olivine determining an in-
crease of mechanical strength. These authors sug-
gested that no significant partial melting occurs in
the asthenospheric LVZ, so that the decrease of
seismic velocities would result exclusively from
the high water content of this layer. Similarly,
Stixrude and Lithgow–Bertelloni (2005) built an
upper mantle elastic isotropic and homogeneous
model in conditions of thermodynamic equilib-
rium. These authors proved that an LVZ could
be explained by the model even excluding the
presence of melts. However, Hirschmann (2010)
has recently showed that melts should exist any-
way in the LVZ. Therefore, the open problem is
not understanding whether or not partial melting
may occur in the LVZ, but if this melting would
effectively influence or determine the observed
decrease of seismic velocities.

9.7 Seismic Phases
Nomenclature

The variations of seismic velocity within the
Earth and the presence of discontinuities deter-
mine the formation of several classes of ray paths
after an earthquake. The corresponding arrivals at
recording devices are named seismic phases. In
general, seismograms result from the superposi-
tion of distinct seismic phases associated with a
unique event. The possibility to observe a seismic
phase at a particular station depends not only
from its amplitude, but also from its polarization

and frequency spectrum. Seismic stations usually
record three components of ground velocity or
acceleration: a vertical component, Z, and N–S
and E–W components. The horizontal recordings
are then rotated to have the x axis along the radial
direction to the earthquake epicenter. Therefore,
if ” is the azimuth to the source, then the radial
and transverse components of velocity are calcu-
lated by the following transformation:

� PuR
PuT
�
D
�

cos§ sin§
� sin§ cos§

� � PuEW
PuNS

�
(9.74)

where§D 3 /2� ”. Figure 9.19 shows an exam-
ple of three-component seismogram, recorded at
a station in the range of distances known as near
field (�< 20ı). The three traces illustrate the
main features of a seismogram in the near field,
which includes P and S phases and surface wave
arrivals. The identification of seismic phases on
seismograms is a difficult task that can be per-
formed either manually by a skilled seismologist
or automatically by specialized computer algo-
rithms. In general, a seismic phase is identified
by a change of both amplitude and dominant fre-
quency. For seismograms in the near field, phase
identification is usually difficult in the sub-range
of angular distances associated with triplication
from the Moho discontinuity (see Fig. 9.13), but
the correct picking of the arrival time of any
seismic phase can be hindered anyway by back-
ground noise or by the complexity of the field of
seismic velocities along the raypath. This is why
the interpretation of broad-band seismograms at
local or regional scale is often preceded by high-
pass filtering (with typical low cut-off frequency
of 1 Hz) to remove low-frequency noise, occa-
sionally by low-pass or band-pass filtering to cut
high-frequency noise.

Sometimes, filtering can be useful for
identifying the precise onset of some phases,
for example S waves. In this instance, it is
possible to apply a filter that simulates the
Wood–Anderson torsion seismometer (high-pass
2-poles Butterworth filtering with low-corner
frequency of 2 Hz, followed by integration from
velocity to displacement). The effect of this kind
of filtering on the seismogram in Fig. 9.19 is



9.7 Seismic Phases Nomenclature 273

Fig. 9.19 Unfiltered vertical, radial, and transverse
components of ground velocity, recorded at station
IRIS/ANTO (Ankara, Turkey), for an earthquake with

epicenter in Crete, Mw 6.7, which occurred on October 12,
2013 h13:11:52.4000. Epicentral distance is �D 8.72ı

Fig. 9.20 The same seismogram of Fig. 9.19 after application of a Wood–Anderson simulation filter. S wave arrival on
the vertical trace is enhanced by this operation

illustrated in Fig. 9.20. Both these seismograms
have been analyzed using SeisGram2K, a public-
domain software tool for the visualization
of seismic traces designed by Antony Lo-
max (http://alomax.free.fr/software.html). The
nomenclature of seismic phases in the near field
includes both crustal phases and surface waves
(Fig. 9.21).

The first arrival of P waves in the near field
is either a Pg or Pn phase. A Pg phase is a P
wave having its turning point in the crust, while
a Pn phase is a low-amplitude phase associated
with a refracted wave, generated at sub-critical
incidence angle and travelling almost horizon-
tally just below the Moho. Finally, a reflection
from the Moho discontinuity is called a PmP

http://alomax.free.fr/software.html
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Fig. 9.21 Near field
phases from a seismic
source A to a receiver B.
For clarity, S wave arrivals
(dashed lines) are shown
separately

phase. The first arrival at a seismic station can be
either a Pg phase or a Pn phase, depending on the
epicentral distance �, the Moho depth, zm, and
the focal depth zf . Close to the epicenter, the first
arrival is always Pg.

However, at a certain angular distance �c the
Pn phase takes over Pg. The distance where the
first arrival changes from Pg to Pn is called the
crossover point. This location clearly depends
from the crustal thickness and is �0.27ı from
the epicenter in the oceans and �1.35ı from the
epicenter on the continents. In general, for shal-
low earthquakes it results�c	 900zm/ R, where
R is the Earth’s radius, which corresponds to a
great circle distance Xc	 5zm km. The reflection
PmP always arrives after Pg and Pn, although
its amplitude can be dominant in the coda. This
phase follows very closely Pg, with delay less
than 2 s beyond the crossover point. As shown in
Fig. 9.21, an equivalent nomenclature exists for
the S wave arrivals. Furthermore, it is possible to
have converted phases, such as PmS, SmP, or PS,
which arise from the conversion of a P wave into
an S wave or vice versa after a reflection at the
Moho discontinuity or at the Earth’s surface.

The last high-amplitude arrival is represented
by surface waves travelling near the Earth’s
surface. In the case of spherical body waves,
we know that the energy density decays as
1/r2, because it depends from the squared wave
amplitude (Eq. 8.59), which decreases as 1/r
(Eq. 8.40). Conversely, geometrical spreading
of surface waves determines a two-dimensional
spread of energy, thereby energy in this instance
decays as 1/r and not as 1/r2. Consequently, at
large distances from the source, surface waves
dominate the seismograms. These phases, which
are easily recognized in the case of shallow
earthquakes, are of two kinds. Rayleigh waves
are radially polarized phases resulting from

Fig. 9.22 Multiple reflections of S waves at the Earth’s
surface

superposition of P and SV waves, with period
less than 3 s, group velocity 3.0 km/s, which
are absent if the focal depth exceeds 3 km.
They determine retrograde elliptical trajectories
of ground in the radial vertical plane. It can
be shown that at the top of a homogeneous
Poisson solid their velocity is 0.92“, slightly
less than the S wave velocity (e.g., Stein and
Wysession 2003; Shearer 2009). Love waves
are transversely polarized surface waves that
form by constructive interference of high-order
SH multiples, that is SH wave reflections at the
Earth’s surface (Fig. 9.22). The multiples are
usually indicated as SS, SSS, SSSS, SSSSS, etc.,
as illustrated in Fig. 9.22. Love waves, just as
Rayleigh waves, do not form an independent
class of seismic waves, because they represent
an interference phenomena of normal S waves.
Therefore, in principle it is possible to build them
by superposition of body waves. A simplified
model of formation for Love waves considers
the propagation of monochromatic plane waves
through a homogeneous layer overlying a ho-
mogeneous half-space with different mechanical
properties (Fig. 9.23). It is assumed that the
interference is associated with the superposition
of multiple reflections trapped between the
discontinuity plane and the Earth’s surface. In
fact, if the incidence angle of the SH waves
exceeds the critical angle ™cD arcsin(“1/“2)
(Eq. 9.47), then the waves are totally reflected
both at the interface and at the Earth’s surface.
Therefore, they are trapped in the upper layer.

http://dx.doi.org/10.1007/978-3-319-09135-8_8
http://dx.doi.org/10.1007/978-3-319-09135-8_8
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Fig. 9.23 Multiple reflections of S waves in a flat Earth model. The upper layer is homogeneous with slowness s1. The
underlying half-space has slowness s2 < s1. Wavefronts are shown as dashed lines

Let us consider the three points A, B, and C in
Fig. 9.23. The downgoing wavefronts at A and
C are in phase and are subject to constructive
interference only if the phase of the SH wave
changes by 2n  (for some integer n) after the two
reflections. Such phase variation includes two
contributions, one associated with the reflections,
•ªR, and one due to propagation, •ªP:

•ª D •ªR C •ªP (9.75)

It is possible to prove (e.g., Stein and
Wysession 2003) that reflection at postcritical in-
cidence angle determines a phase shift given by:

•ªR D 2 arctan

"
�2

�1

�
p2 � s22
s21 � p2

�1=2#
(9.76)

where �1 and �2 are the rigidity moduli of the
upper layer and the half-space, respectively. Re-
garding •ªP, it is determined by the path length,
which is AB C BC , and by the wavenumber k:

ªP D �
�
AB C BC � k

D �
�
BC cos 2ªC h

cos ™

�
k

D � hk

cos ™
.1C cos 2ª/ D �2hk cos ™

(9.77)

Therefore, the condition of constructive inter-
ference assumes the form:

arctan

"
�2

�1

�
p2 � s22
s21 � p2

�1=2#
� 2hk cos ™ D 2n 

(9.78)

Table 9.1 Main symbols for building mantle and core
phases in the IASPEI standard

Phase symbol Description

P P wave travelling through the mantle

K P wave travelling through the outer core

I P wave travelling through the inner core

S S wave travelling through the mantle
J S wave travelling through the inner core

c Reflection at the CMB

i Reflection at the ICB

or, equivalently,

�2

�1

�
p2 � s22
s21 � p2

�1=2
D tan .hk cos ™/ (9.79)

Phases associated with Rayleigh and Love
waves are indicated respectively by the symbols
LR and LQ. At teleseismic distance (�> 20ı) it
is possible to observe either the mantle phases
or the whole Earth phases. Table 9.1 lists the
basic symbols used to build mantle and core
phase names, according to the IASPEI Standard
(Storchak et al. 2003).

Phase names are built considering reflections,
refractions, and conversions along raypaths. For
each transformation, a new symbol is added to the
phase name. For example, a raypath starting in
the mantle, refracted at the CMB and bottoming
in the external core will be indicated as PKP
(Fig. 9.24). Similarly, the phase PKJKP indicates
a P wave that penetrates the outer core, converts
to an S wave at the ICB, and has a turning point
in the inner core.

In the case of deep focus earthquakes, up-
going rays reflected at the Earth’s surface are
termed depth phases and are indicated by pP,
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Fig. 9.24 Main mantle
and whole Earth ray paths
from a deep earthquake
(red star) and phase names.
P and S waves are shown
respectively as solid and
dashed lines. Diffractions
are indicated as dotted
lines. The different colors
indicate inner core
(orange), outer core
(yellow), mantle (grey), and
lithosphere (green).
Nomenclature for phases
starting as S waves is
similar

sS, sP, etc. (Fig. 9.24). The identification of
phases on teleseismic seismograms requires some
additional caution. First, it is often necessary to
apply band-pass or low-pass filtering (with high
cut-off frequency between 0.07 and 0.1 Hz) to
allow a correct picking of the S phase arrival
through detection of the change of frequency that
is usually associated with S waves. Furthermore,
at teleseismic distance the first arrival is a P
wave only for �< 110ı. In the shadow zone
determined by the drop of velocity in the external
core, which is the range 110ı<�< 145ı, the
earliest arrival is a diffraction of P along the
CMB, which is termed Pdif (Fig. 9.24). Beyond
this range, for �> 145ı, the first arrival is PKP.
Figure 9.25 shows a teleseismic record for the
same event of Fig. 9.19.

Picking of seismic phases at a number of
stations for several tens of years has allowed
the construction of detailed travel time curves
since the 1940s and has furnished the basis for
building a reliable picture of the Earth’s internal

structure (e.g., the PREM model, Dziewonski and
Anderson 1981). The first travel time tables were
published by Jeffreys and Bullen (1940), when
modern computers had not yet been invented. It
is striking that the much more recent IASP91
model (Kennett and Engdahl 1991) presents only
small differences with respect to the original JB
tables. The most recent compilation of empirical
travel times is an improvement of IASP91, which
has been used to build the radial velocity model
named AK135 (Kennett et al. 1995). Figure 9.26
shows travel time curves for the major phases,
relative to an earthquake with focus at the Earth’s
surface.

Although these curves can be used to predict
the approximate arrival times on a seismogram, it
is important to note that lateral inhomogeneities
along the raypaths, as well as local departures of
the seismic velocities from the global averages,
will determine a shift of the observed arrival time
with respect to the theoretical value. In the future,
it is likely that only minor adjustments will be
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Fig. 9.25 Teleseismic seismograms (vertical, radial, and
transverse components) recorded at station IRIS/CASY
(Casey, antarctica), for the earthquake with epicenter in

Crete, Mw 6.7, October 12, 2013 h13:11:52.4000. Epicen-
tral distance is �D 121.06ı . The original data have been
band–pass filtered to the range 0.01–0.07 Hz

Fig. 9.26 Travel time curves for the main seismic phases, determined on the basis of the AK135 model (Kennett et al.
1995)

made to the empirical global travel time curves,
because they already result from the combination
of a large number (almost 1,700,000) of picks
(Kennett et al. 1995). Therefore, the focus will

be on the deviations of the observed arrival times
with respect to the predicted values at regional
scale, because these deviations are strictly re-
lated to the presence of lateral inhomogeneities,
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especially in the upper mantle. The technique of
determining the lateral variations of seismic ve-
locity starting from the observation of arrival time
differences is known as seismic tomography and
represents a powerful tool of modern seismology.
This technique has shown to be effective in pro-
viding spectacular images of the Earth’s internal
structure, in particular of descending slabs.

Problems

1. What is the geometry of a seismic ray with
™0D 0?;

2. Determine the travel–time curve T D T(X) for
waves reflected at a horizontal discontinuity,
knowing that the two-way travel time (TTWT)
for vertical incidence is T0;

3. What is the correction that must be applied
on a set of travel times of reflected arrivals
to obtain proportionality between arrival time
and depth to the reflector (this is known as
normal moveout)?

4. Determine the travel–time curve T D T(X) of
a Pn phase, given the crustal thickness and
assuming a homogeneous crust and surficial
source;

5. Assuming a homogeneous crustal layer, the
first arrival at short range would be a direct
wave only below the crossover distance. De-
termine this distance;

6. Determine the critical distance below which
Pn phase arrivals are impossible, assuming a
homogeneous crust;

7. Draw the delay time curve associated with the
travel time curve of Fig. 9.13;

8. Download the MS Excel file ESP215.txt, con-
taining a velocity model of oceanic crust in the
Balearic Basin (Pascal et al., 1993, Geophys.
J. Int., 113, 701–726.), from the supplemental
material web site. This file contains a table that
divides the oceanic crust into a series of flat
layers with P wave velocity that increases lin-
early and variable thickness. Write a computer
program that uses this ASCII table to build the

local travel time table for Pg waves generated
from a surficial source, assuming take–off an-
gles from 85ı to the minimum take–off angle
for Pg waves, with increments of 5ı, starting
from (9.60) and (9.61).
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10Earthquakes

Abstract

This chapter introduces earthquake seismology, in particular friction
models for earthquake genesis, source mechanisms, moment tensors, and
the Gutenberg-Richter law. The objective is to acquire confidence with the
focal mechanisms representation (beach balls) and the recurrence time of
earthquakes.

10.1 Reid’s Model

Earthquakes represent the most evident effect
of short-term plate tectonics, because of their
dramatic and destructive impact on humanity. Al-
though they are mostly concentrated along plate
boundaries, strong earthquakes associated with
intra-plate deformation or other phenomena are
also possible and in some cases may represent
an even greater hazard for human life. An earth-
quake can be viewed as an instantaneous release
of accumulated strain energy (hence stress) in
a small region along an active fault. The idea
that an earthquake results from a sudden release
of accumulated stress in the crust was first pro-
posed by Reid (1910), an American engineer who
studied the ground displacement field across the
San Andreas Fault after the 1906 earthquake in
San Francisco. His analysis led to the elastic
rebound theory for the origin of earthquakes.
In this model, slip along a fault plane may be
locked for centuries, whereas the field of rel-
ative velocities is nonzero and increases pro-
gressively as we move away from a stick zone

along the fault plane. A direct consequence of
the model is that the relative velocity vectors
will attain the magnitude determined by global
plate kinematics only at some distance from plate
boundaries (Fig. 10.1). During this interseismic
phase, which may be several thousands of years
long after large earthquakes, the upper crust de-
forms elastically and accumulates strain energy
and stress. When the accumulated stress exceeds
some threshold, a “rupture” along the stick region
determines sudden sliding and release of strain
energy (Fig. 10.1). The (almost) instantaneous
displacement during this coseismic phase can
reach tens of meters and cause devastating earth-
quakes. The rupture and the subsequent evolution
of the stress and strain fields leading to the next
earthquake is known as the seismic cycle. A
complete seismic cycle typically also includes a
postseismic phase, which generally spans a few
months after an earthquake but may continue
for some years. In this instance, a fault that
has experienced a significant rupture continues
to accommodate some slip after the earthquake.
Today observations of surface deformation using
geodetic techniques are used to monitor the slow

A. Schettino, Quantitative Plate Tectonics, DOI 10.1007/978-3-319-09135-8__10,
© Springer International Publishing Switzerland 2015
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Fig. 10.1 The seismic
cycle in the elastic rebound
model. The red line
represents a reference
marker on two tectonic
plates, A and B, which is
progressively deformed
during the time interval
between two earthquakes
(top, inter-seismic phase).
There is no slip along the
fault plane during the
interseismic phase. During
an earthquake (co-seismic
phase), the displacement
field is maximum along the
fault (bottom), so that the
shape of the marker is
restored on each plate

changes of strain field in seismically active re-
gions (known as the secular strain rate).

A simple physical mechanism explaining the
seismic cycle and the elastic rebound theory
is known as the stick-slip model of frictional
instability. This theory is based upon the
observation that earthquakes do not form as a
consequence of shear cracking (i.e., fracturing)
of rocks, but they are ultimately frictional
phenomena (Brace and Byerlee 1966). Therefore,
the seismic cycle is viewed as a combination
between a “stick” interseismic phase of elastic
strain energy accumulation and a coseismic “slip”
along an existing fault plane. The observation
of Brace and Byerlee (1966) was followed by
a number of laboratory friction experiments,
with the objective to study the dynamics of
sliding instability and determine a constitutive
law of friction. These experiments showed that
for a Saint-Venant body (see Sect. 7.4) the
static friction coefficient �s in Eq. (7.76) is not
constant but depends on the duration of the stick
interval, so that if the two surfaces are kept in
static contact under load for a time interval �t,

then �s increases as log �t (Dieterich 1972).
The quantity �s is an important parameter for
understanding earthquake mechanics, because as
we saw in Chap. 7 it represents the threshold ratio
of shear to normal stress triggering sliding along a
fault plane. During sliding, the friction coefficient
decreases to a new value, �, which is termed the
dynamic friction coefficient. Another significant
result of the experiments was the determination
of the dependence of � from the sliding velocity
v, which was found to be: � / log v. Finally,
it was found that variations of sliding velocity
determined state transitions over a characteristic
distance L (for a review of the major experimental
results, see Scholz 1998). At the same time, the-
oretical modelling of stick–slip motion revealed
that the instability of frictional slip depends from
a reduction of the friction force during sliding.
This phenomenon was called slip weakening.
Modelling efforts led to the formulation of
an empirical constitutive law for the dynamic
friction coefficient, which is known as the rate-
and-state friction law (or Dieterich–Ruina law).
According to this law, starting from a steady

http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
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Fig. 10.2 Frictional response (left) and state evolution (right) for a positive 10 % velocity step, followed by a negative
step. u/L is the normalized displacement. The plots were built assuming L D 10�5 m, a D 0.005, and b D 2a

state with constant velocity v0 and friction
coefficient �0, an arbitrary velocity transition v0

! v will trigger a transient phase during which
the friction coefficient changes continuously
as a consequence of the evolution of a state
variable ™:

�.t/ D £

¢
D �0 C a ln

�
v

v0

�
C b ln

�
v0™.t/

L

�

(10.1)

where a, and b are constants that can be
determined experimentally and ™(0)� ™0DL/v0.
The state variable ™ was interpreted as the age of
a population of contact points supporting the load
¢ across the fault plane. The Dieterich-Ruina for-
mula is based on the assumption that the physical
state of the contact surface can be characterized
at any time by a single variable ™ D ™(t), and
that the frictional stress depends only from the
normal stress ¢ , the slip rate v, and the state
variable ™ (Dieterich 1979; Ruina 1983). Several
evolution laws were proposed for the variable
™ (for a review, see Nakatani 2001). The most
simple of them is (Dieterich and Linker 1992):

P™.t/ D 1 � 1

L
™.t/v (10.2)

Experiments showed that the characteristic
distance L varies between 2 and 100 �m and
increases with the surface roughness and the fault
gouge particle size. Equation 10.2 implies that for
a stationary contact the state variable ™ increases
linearly with time, while for constant v > 0 we
have:

™.t/ D L

v

�
1C

�
v

v0
� 1

�
e�vt=L

�
(10.3)

The constitutive law (10.1) shows that the
friction coefficient � may change either as a
consequence of velocity variations or as a conse-
quence of state transitions. Figure 10.2 illustrates
the variations of dynamic friction coefficient and
state after positive and negative velocity steps.
After a sudden velocity increase v! ’v, ’ > 1,
� has a positive transition �! �C aln’, which
is known as the direct velocity effect. Such a dis-
continuous transition is followed by a continuous
decrease in friction, having magnitude bln’. In
fact, by (10.2) we have that the state variable ™
decreases exponentially to the asymptotic value
™1 D L/v, thereby the third factor at the right-
hand side of (10.1) will tend asymptotically to the
value – bln(v/v0) (Fig. 10.2).

As a consequence, the steady state friction
coefficient will be given by:

�1 D £1
¢
D �0 C .a � b/ ln

v

v0
(10.4)

This solution implies that for a < b the steady
state friction decreases with increasing veloc-
ity. This form of friction can be observed for a
wide class of materials, and the reference friction
coefficient �0 results to be nearly independent
from the rock type and from temperature. The
solution (10.4) apparently says that the steady
state friction � at some velocity v depends from
the previous steady state pair (�0,v0). In this
instance, a series of velocity values v0,v1, : : : ,vn

would produce a sequence of friction coefficients
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�0,�1, : : : ,�n, such that the steady state coeffi-
cient for the stage kC 1 would be given by:

�kC1 D �k C .a � b/ ln
vkC1
vk
I k

D 0; 1; : : : ; n � 1 (10.5)

However, this recurrence formula can be eas-
ily solved in terms of (�0,v0), so that the steady
state coefficient for the k-th stage can be calcu-
lated easily from (�0,v0). It results:

�k D �0 C .a � b/ ln
vk
v0
I k D 0; 1; : : : ; n

(10.6)

Therefore, in the calculation of the dynamic
friction coefficient through the rate-and-state law
(10.1), �0 and v0 can be considered as reference
values, so that the resulting steady state value of
� will be independent from the previous state of
the system. Now we may wonder if the existence
of a static friction coefficient �s can be ex-
plained through the rate-and-state law (10.1). An
interesting numerical experiment, which can also
be performed as real laboratory experiment (see
Nakatani 2001), will help clarifying the concept
of static friction.

In a slide-hold-slide experiment, a sliding
mass M is initially moved applying a constant
shear stress £0. In steady state conditions, this
stress is balanced by a frictional stress �0¢ , so
that £0 D �0¢ and the mass moves at constant
velocity v(t) D v0. Now let us assume that at
some time tD t0 the applied stress is reduced to a
lower value £ < £0 (possibly zero). At this point,
the velocity will start decreasing according to the
following equation of motion:

Pv.t/ D 1

M
Œ£ � �.t/¢� (10.7)

where M is mass per unit surface and �(t) is
the dynamic friction coefficient at time t, which
evolves according to the rate-and-state law (10.1)
and the state evolution law (10.2). We also as-
sume that at some later time t1 D t0, as soon as
the velocity has decreased to zero, the slider is
restarted and moved again at constant velocity v0.

The resulting plots of frictional stress, velocity,
and state are illustrated in Fig. 10.3. We note a
prominent peak of the state variable ™ for v D
0, and the frictional stress peak at t D t1, which
represents the static friction stress ¢�s that must
be applied to resume sliding. In this numerical
experiment, the duration of the stick interval is
initially zero, so that the initial value of static
friction can be defined as the dynamic friction
coefficient at the onset of slipping:

�s.0/ D �0 C b ln

�
v0™ .t1/

L

�
(10.8)

Alternatively, if we keep the slider at rest for
some finite time interval tstick D t – t1, we will ob-
serve a logarithmic increase of the static friction
�s(tstick) as a consequence of the linear growth of
the state variable ™ for vD 0 (Eq. 10.2). Such an
increase of the friction coefficient during station-
ary contact is known as healing (e.g., Berthoud
et al. 1999). The curves in Fig. 10.3 show that
static friction is not a separate phenomenon but
can be explained in terms of rate-and-state evolu-
tion. Furthermore, they show that the initial value
of �s does not represent an absolute threshold
determined exclusively by the physical properties
of the materials. In fact, by (10.8) we see that
�s(0) also depends from the current value of the
state variable ™ at the stop time and, apparently,
from the velocity at which we resume sliding af-
ter the stick interval (v0 in this example). Clearly,
this dependence from the restarting velocity is not
actual, because the system does not know a priori
at which velocity the slider will be moved. In
reality, the appearance of a velocity dependence
arises from the fact that the order of magnitude of
the dynamic friction coefficient does not change
for a wide range of velocities. For example,
using the parameters of Fig. 10.3 and Eq. (10.4),
we see that for a transition v0! 10�3 v0, the
friction coefficient will change from �D 0.60 to
�Š 0.63. Figure 10.4 shows the predicted steady
state friction coefficient for a wide interval of
relative velocities v/v0.

Therefore, if we apply a small push to the
slider when it is at rest, we will effectively ac-
celerate the mass to a very small velocity v,
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Fig. 10.3 Frictional response, state evolution, slider ve-
locity, and displacement in a numerical slide–hold–slide
experiment. The applied stress £ is reduced by 10 % at
time t0 D 0.001 s, while sliding at constant reference ve-
locity v0 is restored as soon as v D v(t1) D 0 (black lines)
or at a later time (colored lines). The assumed parame-

ters are: L D 10�4 m, a D 0.005, b D 2a, v0 D 0.1 ms�1,
�0 D 0.6, M D 0.005 kg m�2. The static friction coeffi-
cient �s increases logarithmically with the duration of the
stick interval t – t1. During this time interval, the state
variable ™ increases linearly according to (10.2) with v D 0

Fig. 10.4 Steady state dynamic friction coefficient as a
function of relative velocity. Note the logarithmic scale
of the horizontal axis. The assumed parameters are:
a D 0.005, b D 2a, v0 D 0.1 ms–1, �0 D 0.6

say 10�8 m/s, but the resulting dynamic friction,
which is comparable to �0, will immediately
stop the slider. We could not even detect the
corresponding small displacement. Conversely, if
the applied stress is sufficiently high to accelerate
the mass to a macroscopic velocity v having the
same order of magnitude of v0, we can eventually
balance the frictional stress at that velocity and

trigger the onset of sliding. As we have seen
above, the stress required to put the slider in
motion will increase with the stick time as a
consequence of the healing phenomenon. This
reflects the fact that the interface region between
slider and sliding surface is effectively a mul-
ticontact interface, along which a population of
contact points supporting the load ¢ increases
logarithmically with the hold time.

The friction law (10.1) predicts instability of
sliding under some specific conditions. Let us
consider a spring-slider system pulled at constant
velocity V0 (Fig. 10.5). The equation of motion
for the slider simply states that the accelera-
tion of a unit mass having unit contact area is
proportional to the net force resulting from the
combination of spring pull (or push) and friction:

Ru D �K Œu.t/ � V0t� � � .v; ™/ (10.9)

where K represents the spring stiffness and £ is
the frictional stress exerted on the slider.
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A simple numerical experiment shows that
for a< b the slider motion is jerky, that is, it is
characterized by phases of rapid slip separated by
stick intervals, as illustrated in Fig. 10.6 Starting
from a stationary contact, the spring force to
normal stress ratio, Fs/¢ , will increase linearly
until the current value of the static friction co-
efficient �s is attained. At this point, a velocity
spike occurs and the spring shortly starts relax-
ing. When Fs/¢ falls below the dynamic friction
coefficient �, the slider starts decelerating and
quickly stops. As shown in Fig. 10.6 during the
stick time intervals, the static friction coefficient
increases logarithmically, while the state variable
increases linearly.

Also the spring force increases linearly during
a stick interval. In fact, if at any time t D t0 the
slider stops at location u0 D u(t0), then during the
subsequent stick interval we have:

Fs.t/ D �K .u0 � V0t/
D Fs.t0/CKV0 .t�t0/ I t 
 t0I stick time

(10.10)

Fig. 10.5 The spring-slider analogy for earthquake nu-
cleation. A spring with stiffness K is pulled at con-
stant velocity V0. The elastic force exerted by the
spring on the attached slider is opposed by the friction
stress £(t) D ¢�(t). This system may exhibit stick-slip
instability

At any time t in the stick interval, this force
could potentially accelerate the slider to velocity:

v.t/ D
tZ
t0

Fs
�
t 0
�
dt 0

D 1

2
KV0

�
t2 � t20

� �Ku0 .t � t0/ (10.11)

However, the slider will effectively restart
only when the dynamic friction corresponding
to this potential velocity is less than the applied
spring force. In conclusion, a plausible though
qualitative explanation of the seismogenic mech-
anism can be obtained combining Reid’s elastic
rebound idea with the modern theory of friction
and analog spring-slider modelling. However, it
is important to note that this representation of
earthquake nucleation cannot be used to predict
the short-term occurrence of seismic events.
The reason is that a fault generally includes
several stick regions with different geometry
and different normal loads. This complexity
clearly affects the regularity of stick-slip motion.
Furthermore, an earthquake associated with
rupture of a stick zone usually modifies the
stress field of other stick regions, determining
a delay or an advance of the subsequent rupture.
Therefore, earthquake prediction cannot be
based on rigorous geophysical laws, but must
be considered as a statistical problem.

10.2 Faults and Focal Mechanisms

An important step in the study of earthquake
dynamics consists into the determination of the
location of the rupture area along a fault plane.

Fig. 10.6 Frictional response, slider velocity, and state
evolution in a numerical stick-slip motion experiment. A
spring-slider system is pulled at velocity V0 D 0.01 ms�1.
It is assumed that the slider is at rest for t D 0.

The parameters are set as follows: K D 12 Nm�1,
¢D 1 Pa, dt D 0.0005 s, L D 10�5 m, a D 0.005, b D 2a,
v0 D 0.1 ms�1, �0 D 0.6. Fs D � K[u(t) � V0t] is the
spring force
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Fig. 10.7 Kinematic parameters of a source mechanism.
In earthquake studies, a fault is modeled as a planar sur-
face with normal versor n. The slip vector u describes the
relative displacement of the hanging wall block relative
to the foot wall block. It always results u�n D 0. The
intersection of the fault plane with the Earth’s surface is

a line whose orientation relative to the North is described
by the strike angle ¥ 2 [0ı,360ı). The angle between fault
plane and the Earth’s surface is the dip • 2 (0ı ,90ı]. The
rake (or slip) angle œ 2 [�180ı ,C180ı] is between the
positive x1 axis and the slip vector. It is positive when u is
directed upwards

This is the stick region where the “static” fric-
tional forces were overcome by the accumulated
elastic stress. Usually, this location is specified by
a single representative point in the Earth’s crust
or mantle, which is called the earthquake focus
or hypocenter. The coordinates (x0,y0,z0) of this
point and the corresponding source time t0 can
be determined through specific inversion algo-
rithms (e.g., Stein and and Wysession 2003) that
rely on the arrival times at seismic stations. The
next step is determining the source mechanism
associated with the earthquake. This mechanism
includes the orientation of the fault along which
the rupture occurred and the slip vector of relative
motion between the two blocks or plates.

The kinematic parameters associated with a
source mechanism are the strike, ¥, the dip, •,
and the rake (or slip), œ. They are illustrated in
Fig. 10.7. A local reference frame can be defined
aligning the x1 axis with the fault strike, in such a
way the fault plane dips to the right when we look
at the positive x1 direction. Then, the x2 axis is

oriented as the opposite direction with respect to
the dipping trend. Therefore, in this instance the
x3 axis is vertical and directed upwards. Reverse
faulting occurs when the slip vector is directed
upwards, while downward motion is referred to
as normal faulting. They reflect the existence of
compressional or extensional stress fields, respec-
tively. Faults with • < 45ı and reverse faulting
are usually termed thrusts. Finally, the horizontal
and vertical components of motion are indicated,
respectively, as strike-slip and dip-slip. In par-
ticular, in the case of pure strike–slip motion,
when an observer sees the adjacent block moving
rightwards the faulting mechanism is said to be
right-lateral strike-slip, otherwise it is termed
left-lateral strike-slip. Conventionally, the rake is
set to œD 0ı in the case of pure left-lateral strike-
slip motion, whereas œD 180ı in the case of pure
right-lateral strike-slip motion.

The set of parameters (¥,•,œ,u) is called the
focal mechanism of an earthquake. It determines
uniquely geometry and kinematics of the
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seismogenic source. The fundamental problem
of the earthquake source theory is determining
the radiation pattern of displacements u D u(r,t)
from a source located at the origin, assuming
elastic properties of the transmission medium. In
this context, the building block of analog models
that are representative of real seismic sources is
simply a body force (per unit volume), f, applied
to a point r D r0. In principle, the objective of
determining the radiation pattern associated with
this simple source can be accomplished solving
the non-homogeneous version (7.50) of Cauchy’s
momentum equation with f(r, t)D g(t)•(r–r0):

¡
@2ui
@t2
D @£ij

@xj
C gi .t/• .r � r0/ (10.12)

where •(r – r0) is the Dirac delta function, which
is defined by the following functional relations
(e.g., Panofsky and Phillips 2005):

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:̂

• .r/ D 0 for r ¤ 0Z
R

•
�
r � r 0�dx0dy0d z0 D 1 for any region R

such that r 2 RZ
R

f
�
r 0� • �r � r 0�dx0dy0d z0 D f .r/ for any

region R such that r 2 R (10.13)

We also note that the second of these proper-
ties is a consequence of the third, more general,
property. To determine the radiation pattern as-
sociated with f, it is useful to start from the static
displacement field generated by the application of
a force f at the origin of the reference frame. In
equilibrium conditions, the displacement is zero
far from the origin, and assuming a homogeneous
medium we have:

0 D .œC �/ @�
@xi
C �@

2ui
@x2j
C fi (10.14)

where have simply rewritten (8.11) without the
acceleration term and including the body force
contribution. In vector notation, this equation
assumes the form:

f C .œC 2�/r .r � u/� �r � r � u D 0
(10.15)

where we have used the identity:

r � r � u D r .r � u/� r2u (10.16)

In this problem, the body force field f D f(r)
is concentrated at the origin, so that it must be
expressed in terms of Dirac’s delta function. By
Gauss’ theorem, this function can be written as
the Laplacian of a scalar field:

• .r/ D � 1

4 
r2
�
1

r

�
(10.17)

Therefore following Lay and Wallace (1995)
we can write:

f .r/ D n• .r/ D �r2
� n

4 r

�

D �r
�
r � n

4 r

�
Cr � r �

� n

4 r

�
(10.18)

where n is a unit vector representing the direction
of f. If we insert this force into the static equilib-
rium Eq. (10.15) we obtain:

� r
�
r � n

4 r

�
Cr �r �

� n
4 r

�

C .œC 2�/r .r � u/� �r � r � u D 0
(10.19)

Therefore,

r
n
r �

h
� n

4 r
C .œC 2�/u

io

Cr � r �
� n

4 r
� �u

�
D 0 (10.20)

We search a solution uD u(r) having the form:

u D r �r �Ap

� � r � .r �As/ (10.21)

To this purpose, we note that for an arbitrary
vector field u D u(r) we can always determine a
vector field AD A(r) such that:

http://dx.doi.org/10.1007/978-3-319-09135-8_7
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r2A .r/ D u .r/ (10.22)

In fact, (10.22) is a classic Poisson’s equation,
which has a unique solution when u decreases
with sufficient rapidity (at least as 1/r) for r !
1:

A .r/ D � 1

4 

Z
R3

u .r 0/
jr � r 0jdV

0 (10.23)

Therefore, using the vector identity (10.16) for
the field A gives:

u D r2A D r .r �A/ � r � .r �A/

(10.24)

Now, setting:

¥ D r �AI ‰ D �r �A (10.25)

we obtain:

u D r¥Cr �‰ (10.26)

This equation implies that a vector field u
D u(r) always has an irrotational component
(r¥) and a solenoidal component (r � ‰).
The fields ¥ and ‰ are termed respectively
the scalar potential and the vector potential of
the displacement field, and (10.26) is known
as Helmholtz’s decomposition theorem. Now,
let us consider two vector fields, Ap and As,
such that A D Ap C As. In order to satisfy
(10.21), we must have that: r � ApD 0 and
r � AsD 0. Therefore, by (10.16) we have:
r2ApDr(r �Ap) and r2AsDr � (r �As).
Substituting (10.21) into (10.20) and taking into
account that r2ADr2ApCr2As leads to:

r
n
r �

h
� n

4 r
C .œC 2�/r2Ap

io

Cr �r �
� n

4 r
� �r2As

�
D 0 (10.27)

This equation is clearly satisfied when:

(
r2Ap D n

4 r.œC2�/
r2As D n

4 r�

(10.28)

Now let us assume that the potentials Ap and
As have the same direction of n: Ap D Apn, As D
Asn. In this instance, the equations (10.28) reduce
to just two standard Poisson’s equations:

(
r2Ap D 1

4 r.œC2�/
r2As D 1

4 r�

(10.29)

These equations are easily integrated taking
into account that r2r D 2/r. Therefore, the so-
lutions have the form:

(
Ap D r

8 .œC2�/
As D r

8 �

(10.30)

To determine the displacement, we must mul-
tiply (10.30) by n and insert the vector potentials
Ap and As into (10.21). It is convenient to set
n D ej and determine the i-th component of the
displacement field associated with a force at the
origin in the direction ej. We shall indicate this
quantity by uj

i:

uji D
1

8 �

�
•ij .2 � 
/ 1

r
C 
 xixj

r3

�
(10.31)

where:


 � œC �
œC 2� (10.32)

The quantities uj
i form a symmetric tensor that

is known as the Somigliana tensor. To visualize
the pattern of deformation, it is usually conve-
nient to express the components of displacement
in spherical coordinates applying the following
transformation (see Appendix I):

2
64

ujr
uj™
uj¥

3
75 D

2
4 sin ™ cos¥ sin ™ sin¥ cos ™

cos ™ cos¥ cos ™ sin¥ � sin ™
� sin¥ cos¥ 0

3
5
2
64

uj1
uj2
uj3

3
75

(10.33)

For example, for a force applied in the x1

direction, it is easy to calculate the components of
the displacement field in the plane x1x3 (¥D 0).
Using the transformation (2.27) to represent the

http://dx.doi.org/10.1007/978-3-319-09135-8_2


288 10 Earthquakes

Fig. 10.8 Radial (solid lines) and tangential (dashed lines) components of displacement after the application of a unit
force at the origin in the x1 direction (black arrow). The plot has been drawn assuming �D 50 GPa and œD 25 GPa

components xi of the position vector r we obtain
after some steps:

u1r D u11 sin ™C u13 cos ™ D 1
4 �r

sin ™
u1™ D u11 cos ™ � u13 sin ™ D 1

4 �r

�
1 � 


2

�
cos ™

(10.34)

Therefore, the radial component of displace-
ment is zero along the vertical axis and attains its
maximum in the horizontal plane. Conversely, the
tangential displacement (which is associated with
shear strain) is maximum along the z axis and
zero in the horizontal plane. Both components
have a two-lobe pattern as illustrated in Fig. 10.8.
If a force is applied at position Ÿ instead that at the
origin, the previous formulae must be corrected
by the transformation: xi ! xi – Ÿi. In particular,
we are going to consider the case of the applica-
tion of a force couple in the x1 direction at loca-
tions (Ÿ1, Ÿ2C 1/2•Ÿ2, Ÿ3) and (Ÿ1, Ÿ2–1/2•Ÿ2, Ÿ3).
By the superposition principle, we have that in
this instance the displacement at a location r

will be given by the sum of the displacements
associated with the single forces.

Let us indicate the displacement at r generated
by the application of a force at Ÿ by u(Ÿ,r). Using
this notation, the displacement associated with
a force couple in the x1 direction and with a
small arm in the x2 direction (Fig. 10.9) can be
written as:

u1i .Ÿ; r/ D u1i .Ÿ1; Ÿ2 C •Ÿ=22; Ÿ3; x1; x2; x3/
� u1i .Ÿ1; Ÿ2 � •Ÿ2=2; Ÿ3; x1; x2; x3/

D @u1i
@Ÿ2

•Ÿ2 CO
�
•Ÿ22
�

(10.35)

Considering that r2D (x1� Ÿ1)2C (x2� Ÿ2)2C
(x3� Ÿ3)2, we have: @r/@ŸiD� @r/@xi. Therefore,

@uji
@Ÿk
D �@uji

@xk
(10.36)

Consequently, the total displacement can be
written as follows:
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u1i .Ÿ; r/ D �
@u1i
@x2

•Ÿ2 CO
�
•Ÿ22
�

(10.37)

To obtain the static field of displacement as-
sociated with a force couple, we take the limit
as •Ÿ2! 0 and f ! 1, so that we can always
consider a finite moment f •Ÿ2 ! M. Therefore,
combining (10.31) and (10.37) we see that the
displacement will be given by:

u1j .r/ D �
M

8 �

h
�•i1 .2 � 
/ x2

r3
C •i2
 x1

r3

�3
 x1x2xi
r5

i
(10.38)

A similar calculation can be performed to
determine the displacement field generated by a

Fig. 10.9 A force couple in the x1 direction is applied at
location Ÿ D (Ÿ1,Ÿ2,Ÿ3) with an arm •Ÿ2 in the x1x2 plane

force couple in the x2 direction with an arm in the
x1 direction. It results:

u2i .r/ D �
M

8 �

h
�•i2 .2 � 
/ x1

r3
C •i1
 x2

r3

�3
 x1x2xi
r5

i
(10.39)

Therefore, a double couple like that in
Fig. 10.10 would generate the following dis-
placement field:

ui .r/ D � M

4 �

h
.
 � 1/

�
•i1
x2

r3
C •i2 x1

r3

�

�3
 x1x2xi
r5

i
(10.40)

Finally, in spherical coordinates the double–
couple displacement field assumes the form:

8̂
<
:̂

ur D M
4 �r2

�
1C 


2

�
sin2™ sin 2¥

u™ D M
8 �r2

.1 � 
/ sin 2™ sin 2¥

u¥ D M
4 �r2

.1 � 
/ sin ™ cos 2¥
(10.41)

A comparison of this solution with (10.34)
shows that the displacement field associated with
a double couple decreases with distance more
rapidly (as 1/r2) than that generated by a point
force. In the x1x2 plane we have that ™D /2,
thereby u™D 0 and:

(
ur D M

4 �r2

�
1C 


2

�
sin 2¥

u¥ D M
4 �r2

.1 � 
/ cos 2¥
(10.42)

Fig. 10.10 A double force couple in the x1x2 plane and the corresponding pattern of displacement for ur and u¥
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The corresponding pattern of displacement for
these components is illustrated in Fig. 10.10.
The importance of these solutions in seismology
arises from the idea that a distribution of equiva-
lent double couples produces a displacement field
that is indistinguishable from the displacements
around a fault plane after an earthquake. This
in one of the most fundamental principles of
seismology, which underlies the construction of
equivalent systems of forces in the modeling of
real seismic events, both in the elasto-static and
in the elasto-dynamic cases.

Now we are ready to consider the elasto-
dynamic solutions of the momentum equation. In
the general non-static case this equation can be
written, in vector notation, as follows:

f C .œC 2�/r .r � u/� �r � r � u D ¡@
2u
@t2

(10.43)

This time we shall assume a time-dependent
body force of the form: f(r, t)D g(t)•(r)n, where
g(t) represents the time history. For example, g(t)
could be a delta function •(t) or a step function
H(t). Therefore, (10.18) can be rewritten as fol-
lows:

f .r/ D g.t/• .r/n D �g.r/r2
� n

4 r

�

D �g.t/r
�
r � n

4 r

�
Cr �r �

� n

4 r

�
(10.44)

Again, we assume that two vector potentials
exist, Ap and As, such that the displacement u
has the form (10.21). In this instance, the wave
equation splits into two distinct equations, one for
each potential.

We obtain:

(
r2Ap � 1

’2
@2Ap

@t2
D g.t/n

4 r.œC2�/
r2As � 1

“2
@2As

@t2
D g.t/n

4 r�

(10.45)

where ’ and “ are the P and S wave velocities
respectively (Eqs. 8.13 and 8.28). Assuming as
before that the potentials Ap and As have the
same direction of n, so that Ap D Apn and As

D Asn, gives the following inhomogeneous wave
equations:

(
r2Ap � 1

’2
@2Ap

@t2
D g.t/

4 r.œC2�/
r2As � 1

“2
@2As
@t2
D g.t/

4 r�

(10.46)

Finding a solution to these equations is rather
complicate and involves Fourier transform tech-
niques. The interested reader is referred to the
book of Lay and Wallace (1995) for a detailed
treatment of this subject. Therefore, we will give
without proof the classic Stokes solution for the
displacement associated with a point force at the
origin in the direction xj:
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�
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�
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(10.47)

We note that the first term of this solution
behaves like 1/r2, thereby it is usually referred
to as the near-field term, while the other terms
behave like 1/r. Consequently, they are called the
far-field terms. The first of them corresponds to a
P wave that propagates with velocity ’. Its contri-
bution to the displacement is a radial component.
The second far-field term is associated with an
S wave propagating with velocity “. It is easy
to prove that the scalar product with r is zero,
so that its contribution consists of a tangential
displacement. Both far-field terms are propor-
tional to the magnitude of the applied force.
Figure 10.11 illustrates the radiation pattern for
a single force applied in the x1 direction. Finally,
to obtain the displacement field associated with
force couples and double couples we can apply
the same procedure described in the elasto-static
context.

For a double couple in the xjxk plane, oriented
as the coordinate axes, the far-field P and S wave
radiation patterns are given by:

http://dx.doi.org/10.1007/978-3-319-09135-8_8
http://dx.doi.org/10.1007/978-3-319-09135-8_8


10.2 Faults and Focal Mechanisms 291

Fig. 10.11 Far-field
components of
displacement in the x1x2

plane for a single force in
the x1 direction. Left: P
wave field; Right: S wave
field

Fig. 10.12 Far-field components of displacement for a
double couple in the x1x2 plane. Left: P wave field; Right:
S wave field. The orientation of the arrows shows the
direction of first motion and the length is proportional
to the displacement. In the red quadrants, P wave first
motion is outward, thereby they are called the compres-

sional quadrants. Conversely, in the dilatational quad-
rants (white regions) P wave first motion is inward. Nodal
lines of zero motion separate the P-wave polarities into
four quadrants. The tension axis (or T axis) is in the
middle of the compressional quadrant; the pressure axis
(P axis) is in the middle of the dilatational quadrant

uPi .r; t/ D
1

2 ¡’3
xixj xk

r3

PM .t � r=’/
r

(10.48)

uSi .r ; t/ D
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�
•ij � xixj

r2

� PM .t � r=“/
r

(10.49)

where PM is termed the moment rate function.
A three-dimensional view of the first-motion far-
field radiation pattern corresponding to a dou-
ble couple in the x1x2 plane is illustrated in
Fig. 10.12. As in the elasto-static context, we note

that the displacement field is four-lobed, but now
the lobes represent first-motion displacements,
not static dislocations.

So far, we have not discussed the meaning of
the near-field term in (10.47). This term com-
bines radial and tangential contributions and a
complete solution for double couple sources can
be found in Aki and Richards (2002). However,
the pattern of near-field displacement is important
only at short distances from an earthquake focus,
where it represents permanent static deformation.
In the next section, we shall use the double
couple description of seismic sources and the
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corresponding radiation pattern to set up a quan-
titative characterization of the kinematic and dy-
namic parameters associated with an earthquake.

10.3 Moment Tensor

Let us consider the set of all force couples
in a Cartesian coordinate system, such that
the opposing forces are directed as the xi

axis and separated in the xj direction. The
nine possibilities are illustrated in Fig. 10.13.
If assign a magnitude Mij to each of these

couples, we obtain a rank-two tensor that is
termed the moment tensor. Clearly, if the force
couples must be used to build double couples
that are representative of real seismic sources,
we need to ensure that the total torque be
zero. This requirement then translates into a
specific condition of symmetry for the moment
tensor components: Mij D Mji. Therefore,
the moment tensor represents three different
double couples and three force pairs with zero
moment, corresponding to the diagonal elements.
The latter system of forces can be used in
the modelling of explosive sources but not

Fig. 10.13 The nine force couples composing the seismic moment tensor
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Fig. 10.14 Principal axes
and diagonalization of the
moment tensor

for the representation of earthquake sources.
The moment tensor allows to build a simple
representation of arbitrarily oriented double
couples by a combination of double couples
that have force vectors oriented as the coordinate
axes. For example, for a double couple in the x1x2

plane, we would have that M assumes the form:
MiiD 0, M12DM21DM0, M13DM31 D M23 D
M32D 0, where M0 is the magnitude of the single
couples.

Using the moment tensor formalism and on
the basis of the superposition principle, we have
that for an arbitrary double couple the far-field so-
lutions (10.48) and (10.49) assume the following
general form:

uPi .r ; t/ D
1

2 ¡’3
xixj xk

r3

PMjk .t � r=’/
r

(10.50)
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r

(10.51)

Now we recall from the previous section that
double couples are systems of equivalent body
forces that produce the same radiation pattern of
real shear dislocations. Consequently, their orien-
tation is related to slip directions and fault plane
orientations associated with earthquakes. For ex-
ample, we expect that the pattern of displace-
ments for an E–W oriented right-lateral strike–
slip fault can be described through an equivalent
model that includes an E–W oriented couple of
forces and a conjugate couple having N–S ori-

entation. Therefore, the E–W directed coseismic
slip along the fault plane would have the same
direction as the main force couple. However, it is
not possible to infer a unique focal mechanism
for an earthquake, in terms of strike, dip, and
rake, starting from the observed radiation pattern.
For example, the pattern illustrated in Fig. 10.12
could have been generated either by an E–W
oriented right-lateral strike–slip fault or by an N–
S oriented left-lateral fault. This ambiguity in the
source mechanism is intrinsic in the moment ten-
sor representation and cannot be avoided. There
are always two complementary focal mechanisms
that are consistent with far-field seismic observa-
tions. The true fault plane is termed the primary
fault plane, while the other solution is called the
auxiliary fault plane. While the determination of
the correct primary fault plane is easy when direct
geological observation of the structures is avail-
able, in the case of deep faults (e.g., associated
with intra-slab deformation) it is necessary to
consider the distribution of aftershock locations.
In fact, all large earthquakes are followed by a
sequence of smaller earthquakes, the aftershocks,
which are distributed along the fault plane and are
associated with readjustments of the stress field
after the mainshock.

The symmetry of the moment tensor implies
that it can be diagonalized by solving an eigen-
value problem and applying the corresponding
similarity transformation. For a double couple
in the x1x2 plane, the result of this operation is
illustrated in Fig. 10.14 and the components of
the diagonalized tensor will be: MijD 0 for i¤ j,
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Fig. 10.15 Focal sphere, S, about an earthquake focus.
The first-motion polarity recorded at two seismic stations
R1 and R2 depends from their azimuth, from the take-off

angle (™1 or ™2), and from the orientation of the compres-
sional and dilatational quadrants on the focal sphere

M11DM0, M22D�M0, M33D 0. Consequently,
the new x1 and x2 axes are termed, respectively,
the tension axis, T, and the pressure axis, P.
These axes indicate the directions of minimum
and maximum compressional stress, respectively,
and their orientation with respect to the far-field
radiation pattern is illustrated in Fig. 10.12.

The polarity (up or down) of first motion
associated with the arrival of P waves, measured
on several vertical-component seismograms dis-
tributed around a seismic source, can be used to
infer the radiation pattern and the focal mecha-
nism of an earthquake. A convenient approach
is to consider a small sphere around the source,
which is called the focal sphere. The polarity of
a P phase arrival determines whether the corre-
sponding seismic ray left the focal sphere from
a compressional (upward first motion) or dilata-
tional quadrant (downward first motion). The
next step is then to determine the points on the
focal sphere that are crossed by the seismic rays
linking the earthquake focus to each receiver R
(Fig. 10.15). The location of one of these points
on the focal sphere can be specified assigning
a take-off angle, ™0, and a ray azimuth ¥0. The
former quantity can be easily determined using
Snell’s law (9.42), while the latter parameter
depends from the location of the seismic station
relative to the epicenter. The results from many
observations are plotted using stereographic or
equal-area projections and specific software is
run to determine the best-fitting orientation of
the compressional and dilatational quadrants on
the focal sphere. The distribution of first-motion
polarities on the focal sphere constrains the ori-
entation of the primary and auxiliary planes as-

sociated with the focal mechanism. Usually, this
is displayed plotting the lower hemisphere of
the focal sphere, but in some cases it could be
convenient to show a lateral view. These plots are
referred to as beach ball plots and represent the
standard way to describe the pattern of seismic
deformation in a region. Some basic beach ball
plots associated with common focal mechanisms
are illustrated in Fig. 10.16.

So far, we have focused on the kinematic
parameters associated with an earthquake, which
are grouped in the focal mechanism variables
(¥,•,œ), and on a description of the procedure
used for determining them. Therefore, it is time to
consider the parameters that describe the strength
of earthquakes, which are representative of the
seismic energy released in the coseismic phase.

An earthquake results from sudden slip along
a fault plane, with finite average magnitude u
and direction represented by the rake parameter
œ. Such dislocation, which is unrecoverable and
cannot be considered as an elastic displacement,
determines a stress drop along the fault plane, as
illustrated in Fig. 10.17. Burridge and Knopoff
(1964) showed that if S is a fault plane and u(x,y)
is the coseismic displacement at a point (x,y) on S,
then a measure of the earthquake size is given by:

M0 D �
Z
S

u .x; y/ dS D �uS (10.52)

where S is the fault area and� is the rigidity mod-
ulus. The quantity M0 is called the scalar seismic
moment and has dimension [Nm]. It represents
the most important parameter in seismology for
the specification of the strength of earthquakes
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Fig. 10.16 Lower-half
(left) and lateral (center)
views of some basic focal
spheres and corresponding
fault geometry and
kinematics (right). Only
one of the two possible
focal mechanisms is
displayed. The
compressional quadrants
are shown in black

caused by fault slip. Observed value of the seis-
mic moment range between �4� 1022 Nm (the
largest earthquake included in the Harvard CMT
catalog) and �105 Nm for microearthquakes. If
Ts(x,y) and T0

s(x,y) are the shear stresses exerted
on the fault plane before and after an earthquake,
then the stress drop can be defined as the average
change of stress along the fault plane:

•Ts D 1

S

Z
S

�
T 0
s .x; y/ � Ts .x; y/

	
dS (10.53)

The stress drop represents the fraction of stress
that is employed to generate slip along the fault.
In a similar way, we can define the average shear
stress during the coseismic phase.
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Fig. 10.17 Stress drop
across a fault plane after an
earthquake. Ts and T0

s are
the local fields of shear
stress along S before and
after slip u

This quantity is clearly:

T s D 1

S

Z
S

�
T 0
s .x; y/C Ts .x; y/

	
dS (10.54)

Now we note that T s S represents the total surface
force exerted across the fault plane. Therefore,
the total energy release during an earthquake will
be given by:

E D T sSu D T s

�
M0 (10.55)

The stress drop associated with large earth-
quakes is generally estimated from the seismic
moment. In the case of shallow events, it varies
between 1 and 10 MPa. Often earthquakes along
plate boundaries have lower stress drops than
intraplate events (Shearer 2009 and references
therein). It is estimated that the average •Ts is
�3 MPa in the case of plate boundary earth-
quakes and �6 MPa for intraplate events. This
is possibly a consequence of a lower area of
intraplate faults with respect to the typical dimen-
sions of plate boundary faults.

The scalar seismic moment measures the
strength of an earthquake. Therefore, it is quite
intuitive that it must be related to the moment
tensor components Mij. In fact, it is possible to
show (e.g., Udías 1999) that if n is the versor
normal to a fault plane and bu is the seismic
slip versor, so that n � bu D 0, then an analytic
expression for the moment tensor is:

Mij D M0

�
nibuj C njbui � (10.56)

As we expected, this expression gives a sym-
metric tensor. Furthermore, it results:

T r .M / DMkk D 2M0nkbuk D 2M0 .n �bu/ D 0
(10.57)

Therefore, the trace of the moment tensor is
always zero. The expression (10.56) shows that
the moment tensor can be separated into a scalar
strength, corresponding to the seismic moment
M0, and a kinematic component associated with
the tensor quantitymij � nibuj Cnjbui . The latter
can be rewritten to make explicit the relation
between the components of M and the focal
mechanism. In fact, the components of the versor
n depend from both the fault strike,¥, and the dip,
•, whilebu depends from the rake œ. Therefore, it
is easy to prove that the components of M in a
local reference frame oriented as x � N, y � E, z
� Down are given by:

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

M11 D �M0 .sin • cosœ sin 2¥
C sin 2• sinœsin2¥

�
M12 D CM0 .sin • cosœ cos 2¥

C 0:5 sin 2• sin œ sin 2¥/
M13 D �M0 .cos • cosœ cos¥

C cos 2• sinœ sin¥/
M22 D CM0 .sin • cosœ sin 2¥

� sin 2• sinœcos2¥
�

M23 D �M0 .cos • cosœ sin¥
� cos 2• sin œ cos¥/

M33 D CM0 sin 2• sinœ

(10.58)
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10.4 EarthquakeMagnitude

The size of earthquakes is usually measured
through their magnitude. There are several
empirical magnitude scales, which are based
on simple measurements of the largest seismic
wave amplitude as recorded on seismograms.
In the 1930s, Charles Richter proposed what
is now known as the local magnitude, ML

(Richter 1935). While cataloging data from the
southern California seismic network, Richter
observed that plots of the logarithm of the
largest amplitude, A, recorded on a standard
instrument, the Wood-Anderson seismograph,
versus epicentral distances exhibited the same
decay rate (Fig. 10.18).

We recall that the amplitude of seismic
waves decays as a consequence of geometrical
spreading and attenuation. Therefore, the
displacement recorded on seismograms may
reflect the earthquake size only after a correction
that accounts for the epicentral distance.
Furthermore, the displacement results to be
proportional to the moment rate (see Eqs. 10.50
and 10.51), not to the scalar moment (which is
the correct quantity describing earthquake sizes).
However, the necessity to determine promptly
earthquake magnitudes through simple routine
measurements has led to the widespread usage of
scales based on waveform amplitudes. Richter,
in particular, observed that the distance between
the decay curves of two different earthquakes
appeared to be approximately independent from
the epicentral distance. Therefore, it was possible
to define a distance-independent measure of the

Fig. 10.18 Amplitude decay curves for four earthquakes

earthquake size through the offset of log10A from
a reference value:

ML D log10A .�/ � log10A0 .�/ (10.59)

Richter built his scale using a reference epi-
central distance XD 100 km and a reference am-
plitude A0D 10�3 m. Using these values, (10.59)
can be rewritten as follows:

ML D log10A .�/C 2:76log10� � 2:48
(10.60)

The largest amplitude on Wood-Anderson tor-
sion seismometers is generally associated with
the S wave arrival on horizontal sensors. Earth-
quakes with ML� 2.5 are not generally felt by
people, so that they are called microearthquakes.
Since dominant period of the Wood–Anderson in-
trument (0.8 s) is similar to that of most buildings,
the Richter (or local) scale is especially useful
in engineering seismology. This scale is also
important because all the more recent magnitude
scales have been tied to it. A much more useful
scale in plate tectonics is the moment magnitude
scale proposed by Kanamori (1977), which is
defined as follows:

Mw D 2

3
log10M0 � 6:03 (10.61)

where M0 is the scalar moment measured in
N m. This expression shows that the moment
magnitude scale provides a simple way to write
the large numbers usually associated with the
scalar moment. We also note that a unit increase
in Mw does not coincide with a tenfold increase in
earthquake size. Rather, if M0 changes from 10n

to 10n C 1, then Mw will increase by 2/3.

10.5 Gutenberg-Richter Law

Tens of years of seismological observation have
shown that there exists a precise statistical rela-
tionship between the magnitude of earthquakes
and their recurrence time. Gutenberg and Richter
(1956) were among the first seismologists to
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Fig. 10.19 Fit of the
Gutenberg-Richter
distribution (dashed line)
to the population of
earthquakes in the global
CMT catalog 1976–2009
(solid line). The best-fitting
value of b is �1.22

recognize that such relation could be described
by a power-law:

log10N.M/ D a � bM (10.62)

where N(M) is the number of earthquakes with
magnitude greater than or equal to an assigned
value M in some time interval and region. An
example of modelling of the global seismicity by
this law is illustrated in Fig. 10.19.

In expression (10.62), the parameter a depends
from the total number of events with magnitude
greater than or equal to zero, while b measures the
relative number of large earthquakes versus small
earthquakes. This parameter is referred to as the
b-value and varies between 0.8 and 1.2 for a
number of different regions. In seismically active
regions, it is close to the unity. A b-value of 1
implies that for each unitary magnitude increase,
there is a tenfold reduction in the number of
earthquakes.

An empirical relation similar to the Gutenberg-
Richter law holds for the seismic moment M0. In
this instance, the annual number of earthquakes
with seismic moment greater than or equal to
an assigned value M0 in some tectonic region is
given by (Molnar 1979):

N .M0/ D ’M�“
0 (10.63)

where ’ and “ are constants. This distribution
does not take into account the important obser-
vation that for any given tectonic region there is
a threshold seismic moment above which there

are no earthquakes. Molnar (1979) has proved
that if M0,max is the maximum observed seismic
moment, then the annual rate of scalar moment
release is given by:

PM0 D ’

1 � “M
1�“
0;max (10.64)

As pointed out by Kagan (1991), there is
evidence that the “-value represents a universal
constant. At global scale, a statistical analysis of
the CMT catalog gives “D 2/3. Although this
is also the value suggested by Molnar (1979),
theoretical arguments lead to the value “D 0.5
for any specific tectonic region (Kagan 1991,
1993, 2010). We shall see in the next chapter that
(10.63) and (10.64) play a key role in the study of
the seismic deformation of the lithosphere.

Problems

1. An active fault has been mapped by geol-
ogists. After the last earthquake, they have
found that its length is 10 km, the strike
is ¥D 30ıN, the dip is •D 45ı, an average
10 cm downward dip-slip displacement of the
hanging wall occurred, while seismic reflec-
tion studies suggest that the fault reaches a
depth of 5 km. Estimate the moment tensor
components for this earthquake;

2. Prove the validity of expression (10.58) for the
moment tensor components;
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3. Expression (10.58) for M can be rewritten as
follows:

M D cos • cosœM .1/ C sin • cosœM .2/

� cos 2• sin œM .3/ C sin 2• sinœM .4/

where M(k) are four elementary moment ten-
sors. Find expressions for M(k) and discuss the
result.
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11Seismic Deformation
of the Lithosphere

Abstract

Here the principles of seismic deformation are illustrated, which represent
an essential tool to unravel the kinematics of subduction. In particular, the
classic Kostrov and Brune formulae are presented, as well as the more
advanced representation of Molnar, based on an asymmetric strain tensor.
Finally, this chapter introduces the application of these techniques to the
study of slab deformation in subduction zones.

11.1 Kostrov’s Formula

In the previous chapters, we have learnt that
lithosphere deforms both by viscous creep, at the
time scale of millions of years, and elastically
in the short range (up to thousands of years).
Therefore, at first glance seismicity does not
provide a relevant source of data for studying
neither the long-term pattern of deformation of
tectonic plates nor plate motions. In this chapter,
we are going to prove that such an appearance
is misleading, because earthquakes supply both
valuable qualitative information about the style
of deformation (e.g., the modes of deformation
of slabs), and a quantitative measure of the long-
term strain rate under external loads.

The first attempt to link earthquakes to long-
term tectonics was done by Brune (1968) in a
seminal paper. This author considered the seis-
micity along a large shear zone with total surface
S, consisting into a series of earthquakes with
scalar moment M(k)

0 (kD 1,2, : : : ,n), rupture sur-
face Sk, and average displacement u.k/ (Fig. 11.1).

By (10.52), we have that the average slip along
the k-th rupture area is:

u.k/ D M
.k/
0

�Sk
(11.1)

Therefore, if the overall displacement, u,
along the entire shear zone is calculated taking
the weighted average of these quantities, with
weights given by the size of the individual rupture
areas, we have:

u D 1

S

X
k

u.k/Sk D 1

�S

X
k

M
.k/
0 (11.2)

This is called Brune’s formula. Assuming that
the observed seismicity is relative to a sufficiently
long time interval T, the formula can be used to
estimate the average rate of seismic slip along a
shear zone:

@u

@t
D 1

�ST

X
k

M
.k/
0 (11.3)
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Fig. 11.1 Average long-term seismic slip in the Brune’s
model

Differently from Brune (1968), Kostrov
(1974) considered the problem of describing
the seismic deformation within a finite volume
V, rather than dislocations along a planar plate
boundary. In this instance, earthquakes are
not confined to a planar surface, individual
faults within the deforming region have
different orientations, and slip along these faults
occurs along distinct directions. Therefore,
the contribution of each event to the overall
deformation must include the source focal
mechanism parameters or, alternatively, the
components of the moment tensor. Kostrov
(1974) proved that the components of the average
strain rate tensor due to seismic slip are related to
the moment tensor components of the individual
earthquakes, M(k)

ij , by the following expression:

P©ij D 1

2�V T

X
k

M
.k/
ij D

M0

2�V T

X
k

m
.k/
ij

(11.4)

where M0 is the average scalar seismic mo-
ment and mij is the geometrical part of the mo-
ment tensor, which can be expressed in terms of
strike, dip, and rake (see 10.58). This formula has
been widely used to determine at regional scale
the seismic deformation of continental blocks

(e.g., Kiratzi and Papazachos 1996) or subducting
slabs (e.g., Kiratzi and Papazachos 1995), and
at large scale to build global strain rate mod-
els for the lithosphere (Kreemer et al. 2000).
Although (11.4) appears as a generalization of
(11.3) (and Kostrov himself considered his for-
mula this way), this interpretation is not com-
pletely correct. As pointed out by Molnar (1983),
Kostrov’s formula leads to results that differ from
those obtained using Brune’s formula when the
former is applied to a block that deforms along
a unique shear zone (which is the situation con-
sidered by Brune). To understand the difference
between the two formulations, let us consider the
deformation field associated with the coseismic
slip along a fault plane. The sudden non-elastic
displacement during an earthquake can be viewed
as a rotation of one block relative to the opposing
block about an axis perpendicular to the fault
plane. Clearly, conservation of the angular mo-
mentum requires that the moment associated with
slip be balanced by an opposite moment with
equal magnitude. Such a complementary moment
will determine elastic deformation in the region
surrounding the rupture area border. Brune’s for-
mulation allows to calculate the net rotation as-
sociated with seismic slip independently from
the elastic deformation occurring near the fault
ends. In this instance, the strain tensor will be
identically zero, while the displacement field can
be described uniquely by an antisymmetric rota-
tion tensor ¨ij (see Sect. 7.2). Consequently, this
model cannot completely describe the deforma-
tion within a 3-D volume. Conversely, in his
formulation Kostrov assumed that the deforma-
tion was pure shear (i.e., without any rotational
component). In fact, the symmetric strain rate
tensor that results from summation of symmetric
moment tensors excludes any rotational displace-
ment. As a consequence, Kostrov’s model cannot
describe situations where any of the faults in the
deforming region intersects the region boundary.
In particular, it cannot describe the simple shear
of a block. In the next section, we shall consider
a more general formulation that combines both
approaches.

http://dx.doi.org/10.1007/978-3-319-09135-8_10
http://dx.doi.org/10.1007/978-3-319-09135-8_7
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11.2 The Asymmetric Strain
Tensor

Molnar (1983) proposed the following solution to
the problem of estimating the average strain rate
of a deforming region from its seismicity. Let us
consider a rectangular region of thickness h and
dimensions w and a, crossed from side to side by
a vertical fault of length L and strike ™ (Fig. 11.2).
Let us assume that a small (compared to w, a,
and L) strike-slip displacement •u occurs along
the fault during an earthquake. In this instance,
the average strain in the y direction will be given
by:

©yy D •u cos ™

w
(11.5)

According to (10.52), the coseismic displace-
ment •u determines a scalar moment M0 given
by:

M0 D �Lh•u (11.6)

Therefore, (11.5) can be rewritten as follows:

©yy D M0

sin ™ cos ™

�V
(11.7)

where V D awh is the volume of the region.
Similarly, the shear strain will be given by:

©xy D •u sin ™

w
D M0

sin2™

�V
(11.8)

Let us consider now the components ©xx and
©yx. The points along the left side of the region
have displacement zero in the x direction for a
length w2, and •usin™ for a length w1. There-
fore, the average displacement of the left side
in the x direction is (w1/w)•usin™. Similarly, the
mean displacement of the right side in the x
direction is (w3/w)•usin™. Therefore, the average
change in length is •aD (w3–w1)•u sin ™/wD
–L • u sin ™ cos ™/w.

Then, the average strain in the x direction will
be given by:

©xx D •a

a
D �L•u sin ™ cos ™

aw
D �M0

sin ™ cos ™

�V

(11.9)

A similar calculation leads to the following ex-
pression for ©yx:

©yx D �L•ucos2™

aw
D �M0

cos2™

�V
(11.10)

Fig. 11.2 A rectangular
region cut by a vertical
fault with strike ™

http://dx.doi.org/10.1007/978-3-319-09135-8_10
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Expressions (11.7), (11.8), (11.9), and (11.10)
define an asymmetric strain tensor that is pro-
portional to the scalar moment M0. Now let us
introduce the slip versor bu and the versor n
perpendicular to the fault plane. It results:


bu D sin ™i C cos ™j
n D � cos ™i C sin ™j

(11.11)

Now let us define an asymmetric moment ten-
sor as follows:


ij � M0bui nj (11.12)

Then, from (11.7), (11.8), (11.9), and (11.10)
we obtain:

©ij D 1

�V

ij (11.13)

In the general case of many faults, the average
strain will be calculated by summation of the
asymmetric moment tensors associated with the
individual seismic events:

©ij D 1

�V

X
k



.k/
ij D

M0

�V

X
k

”
.k/
ij (11.14)

where M0 is the average scalar seismic moment
and ”ij is the geometrical part of the asymmetric
moment tensor, which can be expressed in terms
of strike, dip, and rake just like the corresponding
symmetric tensor appearing in (11.4). From the
definition (11.12), it is easy to prove that in the
North–East–Down reference frame it results:
8̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

”11 D �0:5
�
sin • cos œ sin 2¥C sin 2• sinœsin2¥

�
”12 D sin • cos œcos2¥C 0:25 sin 2• sinœ sin 2¥
”13 D � cos • cos œ cos¥ � cos2• sinœ sin¥
”21 D � sin • cos œsin2¥C 0:25 sin 2• sinœ sin 2¥
”22 D C0:5

�
sin • cos œ sin 2¥C sin 2• sinœcos2¥

�
”23 D � cos • cos œ sin¥C cos2• sinœ cos¥
”31 D sin2• sinœ sin¥
”32 D �sin2• sinœ cos¥
”33 D 0:5 sin 2• sinœ (11.15)

Finally, assuming that the observed seismicity
is relative to a sufficiently long time interval T,
we can have an estimate of the average strain rate
during that time interval:

P©ij D 1

�V T

X
k



.k/
ij D

M0

�V T

X
k

”
.k/
ij (11.16)

This is the asymmetric analogous of Kostrov’s
formula (11.4). The correct application of this
formula requires that the time interval T be large
enough to include events having large magnitude.
These earthquakes have long recurrence intervals,
as we have seen in Sect. 10.5. Therefore, we
cannot assign to the variable T in (11.16) a value
corresponding to the number of years represented
in the local data base of seismic events (for
example, a few tens of years in the case of the
Harvard CMT catalog), because large events with
recurrence intervals of the order of �103 years
(Molnar 1979) could not be represented in this
data base. This problem can be solved rewriting
(11.16) as follows:

P©ij D
PM0

�V

X
k

”
.k/
ij (11.17)

where PM0 is the annual rate of seismic moment
release.

The quantity PM0 can be estimated statistically
assuming a distribution density, ¥, of seismic
moment release. The simplest distribution is a
power-law or Pareto distribution (Molnar 1979;
Kagan 1991, 1993):

¥.M/ D “M“
c M

�1�“ .Mc �M <1/
(11.18)

where Mc is a lower threshold and “Š 0.5 (Kagan
1991, 2010). In this instance, the annual number
of events having moment M 
 M0 will be given
by (10.63), with ’�NT M“

c , NT being the annual
number of events.

11.3 Global Pattern
of Lithospheric Deformation

Kostrov’s (1974) formula or one of its variants
have been widely used to estimate geological
strain rates at regional or global scale. For ex-
ample, England and Molnar (1997) studied the
active deformation of Asia covering the region

http://dx.doi.org/10.1007/978-3-319-09135-8_10
http://dx.doi.org/10.1007/978-3-319-09135-8_10
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Fig. 11.3 Second
invariant of the strain rate
field (After Kreemer et al.
2003)

by a mesh of triangles. For each mesh element,
they estimated the strain rate using the seismic-
ity of Quaternary faults and Kostrov’s formula.
Similarly, Corredor (2003) determined the seis-
mic strain rate of the northern Andes region,
while Papazachos and Kiratzi (1992) used the
same technique to study the pattern of active
deformation in central Greece. At global scale,
Kreemer et al. (2000, 2003) used geodetic veloc-
ities, seismic moment tensors from the Harvard
CMT catalog, and Quaternary fault slip rate data
to build a model strain rate field along the major
plate boundaries, in particular along the wide
Alpine-Hymalaian collision zone. These authors
assumed a constant shear modulus �D 35 GPa,
and seismogenic depths of 20 km for the con-
tinental areas, 30 km along subduction zones,
20 km for zones of diffuse oceanic deformation,
and 7.5 km for oceanic ridges and transforms.
Their global map, which is illustrated in Fig. 11.3,
shows the distribution of the second invariant of
the strain rate, which is defined by:

P©II D 1

2

h
P©ij P©ij � .P©kk/2

i
D P©212 C P©223 C P©231

� .P©11P©22 C P©11P©33 C P©22P©33/ (11.19)

The total annual release of seismic moment
results to be 7.7� 1021 Nm yr�1 within the shal-
low seismogenic thickness of the lithosphere, but
�17 % of this total moment rate is concentrated
in areas of diffuse deformation on continents.

In their approach, Kreemer et al. (2000,
2003) used Brune’s formula (11.3) to estimate

the geodetic average rate of release of seismic
moment starting from slip rates. For a system
of n faults having length Lk and dip •k, we can
rewrite (11.3) as follows:

D PM.k/
0

E
D �Sk hPuki D �Lkh

sin •k
hPuki (11.20)

where h is the seismogenic thickness and the
average slip rate is estimated from a combination
of geodetic data (GPS, VLBI, etc.), regional Qua-
ternary fault slip rate data, and seismic moment
tensor information from shallow earthquakes. In-
serting this expression into Kostrov’s formula
(11.4), Kreemer et al. (2000, 2003) obtained
an estimate of the geodetic-seismic strain rate
tensor:

P©ij D 1

2A

X
k

Lk hPuki
sin •k

m
.k/
ij (11.21)

where A is the area of a grid cell for which the
strain rate is estimated. In their study, Kreemer
and colleagues divided the Earth’s deforming
regions into 24,500 grid cells having dimension
0.6� 0.5ı. The possibility of using geologic and
geodetic data to estimate strain rates had already
been exploited by Ward (1998) in a study on
the differences between geodetic, seismic, and
geologic strain rates for the US region. This
author determined the field of maximum geodetic
strain rate through the largest eigenvalues of the
geodetic strain rate tensor. The geodetic strain
rates were used in turn to estimate the aver-
age geodetic moment rates. An interesting result
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obtained by Ward (1998) was that the average
release of seismic moment was 73–86 % of the
average geodetic moment rate in California and
�70 % outside this state. Given the unlikelihood
of a high rate of aseismic creep, he concluded
that the earthquake catalogues failed to be repre-
sentative of the long-term deformation. However,
in the next section we shall see that the correct
application of Kostrov’s formula to the determi-
nation of the seismic deformation requires some
caution, because the Gutenberg-Richter law (10.
62) (and the equivalent expression in terms of
seismic moment) demand a rigorous statistical
analysis in the estimation of annual seismic rates.
Similarly, using observed geologic slip rates for
estimating the annual rate of seismic moment re-
lease through (11.20) should require an in-depth
analysis of the statistical properties of the seismic
slip data set. Therefore, the correct application of
Kostrov’s and Brune’s formulae to the analysis of
lithospheric deformation is still an open problem
that demands further studies.

11.4 Bending of Slabs

Seismicity supplies an important source of data
for the study of the geometry and deformation of
subducting slabs. As pointed out by Isacks et al.
(1968) in a seminal paper, almost all the global
seismicity in the deep and intermediate range,
and most of the world’s shallow earthquakes are
associated with island arcs or arc-like structures.
Oliver and Isacks (1967), in a study of the Fiji-
Tonga region, were among the first to recognize
the existence in the upper mantle of an anomalous
zone whose thickness was of the order of 100 km
and whose upper surface was characterized by
elevated seismicity up to depths of about 700 km.
The zone was anomalous in that attenuation of
seismic waves was low and seismic velocities
were high relative to those of the surrounding
asthenosphere. Subsequent studies confirmed the
existence of such anomalous regions beneath all
the world’s island arcs, and they are today known
as Wadati-Benioff zones. These zones delineate
the geometry of slabs sinking into the mantle
as a consequence of their negative buoyancy.

Figure 11.4 shows an example of subducting slab
cross-section as outlined by its seismicity.

Seismicity of Wadati-Benioff zones can be
divided in three categories. At shallow depths,
up to �80 km, slip of the bending lithosphere
beneath the accretionary wedge produces very
strong events that may have devastating effects
on the people living in the forearc region. An ex-
ample is the large Sumatra-Andaman earthquake
of 26 December 2004, which had magnitude
MwD 9.1 and was accompanied by a tsunami that
caused more than 283,000 deaths (for a general
description of this event, see Lay et al. 2005).
Figure 11.5 illustrates the typical geological set-
ting and focal mechanism associated with this
class of events.

The other two sources of seismicity are associ-
ated with intra-plate earthquakes that reflect two
modes of slab deformation. The first of them is
referred to as downdip deformation and can be
either downdip shortening or downdip extension.
In both cases, the P or T axes are parallel to the
local slab dip and the fault strike is approximately
normal to the local downdip direction. Isacks
and Molnar (1971) were the first to perform
a systematic study of this kind of seismicity,
with the objective of studying the distribution
of stresses within the sinking lithosphere. They
observed that there were remarkable systematic
differences between intermediate-depth (between
70 and 300 km) and deep solutions. The deep
earthquakes were dominated by down-dip com-
pression, whereas the intermediate-depth solu-
tions showed a variety of focal mechanisms, in-
cluding downdip shortening, downdip extension,
and many solutions that could not be classified as
downdip deformation. Isacks and Molnar (1971)
suggested that this distribution of seismicity was
a consequence of the gravitational instability of
the lithosphere, which is more dense than the
surrounding mantle and sinks into the astheno-
sphere under its own weight. Therefore, slabs are
subject to downdip extension when they pene-
trate the rheologically weak asthenosphere, and
downdip compression when they reach regions of
the upper mantle characterized by higher strength
(hence resistance to penetration), in particular the
transition zone.

http://dx.doi.org/10.1007/978-3-319-09135-8_10
http://dx.doi.org/10.1007/978-3-319-09135-8_10
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Fig. 11.4 Vertical cross-section across the Nazca slab,
which is subducting beneath the Chile Trench. Black
dots represent foci of intra-plate earthquakes, while un-
derthrusting events are shown as green circles. All the
earthquake foci in a vertical stripe 200 km wide have been
projected onto this vertical cross-section. The Wadati-

Benioff zone is modelled by a 30 km thick seismogenic
slab, built around a cubic spline regression curve of the
events locations (red line). Most world’s slabs bend down-
wards (increasing dip) in the asthenosphere and upwards
in the transition zone (decreasing subduction angles)

Fig. 11.5 Vertical cross-section illustrating the main geometric features of accretionary prisms and the typical focal
mechanisms associated with slab underthrusting

The second source of intra-plate seismicity
requires a more complex explanation. In Chap. 2,
we have seen that the Earth’s subduction zones, in
particular the island arcs, are represented geomet-
rically by small circle arcs. Frank (1968) was the
first to prove that the curvature of the subduction
zones is a function of the slab dip ’. He proposed
a suggestive explanation that is known as the
“ping-pong ball” model. In this model, the litho-
sphere is considered as a flexible-inextensible

spherical shell that bends downwards, determin-
ing a deformation pattern that can be assimilated
to the dent of a ruptured ping-pong ball. In this
process, there is a quantity that is conserved:
the Gaussian curvature of the Earth’s surface. To
understand the concept of Gaussian curvature, let
us consider a surface S having arbitrary shape.
The curvature of S at a point P clearly varies if
we consider different directions along the tan-
gent plane at P. Euler in 1760 showed that the

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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curvature has a maximum ›1 and a minimum ›2

along two orthogonal directions. They are known
as the principal curvatures. The quantity K �
›1›2 is called Gaussian curvature and plays a
key role in differential geometry. It can be used
to classify points on S according to the value
and sign of K. At the Earth’s surface, which is
biconvex, we have always that K is positive, be-
cause ›1Š ›2Š 1/RD 1/6373 km– 1, R being the
Earth’s radius, so that KD 1/R2D 2.462� 10� 8

km� 2. In Frank’s theory, this quantity is con-
served when the lithosphere bends to form the
Wadati-Benioff zone, because we have that for a
slab ›1Š ›2Š–1/R. Therefore, the slab acquires
a biconcave shape, similar to the dent on a ping-
pong ball (Bevis 1986). This is in agreement with
an important theorem proved by Gauss in 1827,
which states that K remains unchanged under
continuous deformation of a flexible and inexten-
sible surface. Finally, Frank (1968) proved that
the simple bending of the lithosphere through an
angle ’ can only occur along a small circle having
angular radius of curvature “D ’/2.

Despite its appeal and the capacity to ex-
plain the geometry of subduction zones, Frank’s
model has proved to be incorrect. During the
1970s, several authors recognized that Frank’s
formula, relating dip angle and radius of curva-
ture, did not seem to be satisfied by the observed
values of dip and trench curvature. The con-
clusion was that subducting slabs were subject
to significant lateral stress as a consequence of
the observed deviations from Frank’s equilib-
rium formula (Strobach 1973; De Fazio 1974;
Laravie 1975; Tovish and Schubert 1978). An-
other discrepancy was the prediction of Wadati-
Benioff zones having concave downdip curvature
�1/R, whereas most modern subduction zones
show convex radial curvatures, associated with
the downward bending of the lithosphere in the
upper mantle and a general increase of the sub-
duction angle at shallow depths. As pointed out
by Bevis (1986), modern subducting slabs do
not seem to conserve the Gaussian curvature of
the unsubducted lithosphere, thereby the Earth’s
lithosphere cannot be considered as a flexible-
inextensible shell and Frank’s theorem is not
applicable.

In a more recent study, Schettino and Tassi
(2012) have argued that the classic “ping-pong
ball” model of Frank (1968) is not compati-
ble with the kinematics of subduction. First, the
model is in contrast with Euler’s theorem, ac-
cording to which the relative motion between any
two plates is a rotation about an axis (see Sect.
2.2). Figure 11.6a shows the concavo-concave
geometry of a subducting slab in Frank’s model.
To obtain this configuration, subduction must
have started at a point with an infinitely small
island arc. Then, the process has continued by
increasing both radius of curvature and width of
the trench zone, in such a way that the lithosphere
has been subducted radially from the initial point.
In this instance, the Wadati-Benioff zone isodepth
lines would have the shape of small circle arcs
having a unique pole and length decreasing with
the depth, as shown in Fig. 11.6a. Therefore, in
a reference frame fixed to the overriding plate
the relative velocity field of the subducting plate
would be oriented radially with respect to the
trench (Fig. 11.6c). Clearly, such a kinematics is
not compatible with the plate tectonics paradigm,
not only because it violates Euler’s theorem, but
also because it requires the presence of a non-
rigid overriding plate, which extends radially in
so far as subduction proceeds. In any case, the
plate velocities predicted by this model are not
compatible with those effectively observed along
convergent plate boundaries.

The last major problem of Frank’s model is
represented by the very strong lateral deforma-
tion (extension or shortening) predicted when
dip angle and radius of curvature assume values
that deviate from an equilibrium combination. It
can be easily proved, using the formulation of
Strobach (1973), that the theoretical lateral strain
associated with non-equilibrium values of dip and
trench curvature is very high and attains a singu-
larity at downdip distance — D ¡=

p
1 � ¡2=R2,

¡ being the radius of curvature of the trench
(in km).

An alternative model of subduction has been
proposed recently by Schettino and Tassi (2012).
As illustrated in Fig. 11.6b, the set of points
placed along a subducting plate margin, which
are entering the trench at an initial time t0 are

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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Fig. 11.6 Alternative kinematic models of lithospheric
bending at a subduction zone. (a) Classic “ping-pong
ball” model (Frank 1968). During the subduction the
trench curvature is progressively reduced and the trench
length increases. Isodepth lines of the Wadati-Benioff
zone are small circle arcs having a common pole, the slab
geometry is concavo-concave, and the Gaussian curvature
is conserved. (b) In the model proposed by Schettino and
Tassi (2012), the radius of curvature of the trench does not

change through time. In this instance, the slab geometry
is concavo-convex, thereby the Gaussian curvature is no
longer invariant. The subducted trench lines are isodepth
lines (small circle arcs) having constant curvature but
different poles. (c) Predicted relative velocity field in the
“ping-pong ball” model. (d) Typical velocity field along a
subduction zone. Dashed lines represent flow lines about
the Euler pole of relative motion (From Schettino and
Tassi 2012)

aligned along a small circle arc and form an
isodepth line having depth zD 0 and length ` at
time t0. In Frank’s model, such a small circle arc
would sink vertically while conserving its length,
thereby no lateral deformation would occur
during the subduction in so far as the equilibrium
condition is satisfied. In the model of Schettino
and Tassi (2012), the points which entered the
trench at time t0 also form isodepth lines at any
time t > t0, thereby the Wadati-Benioff zone
can be still represented by isodepth lines that
are small circle arcs. However, in this instance
a condition of lateral mechanical equilibrium
cannot exist at any time t, so that subduction
requires some amount of lateral shortening
and extension during bending. Furthermore, in
conditions of lateral mechanical equilibrium,
each isodepth line conserves at some depth its
initial length ` and curvature, but differently
from Frank’s model has a continuously changing
pole. Therefore, in the model of Schettino
and Tassi (2012) the trench geometry can be
conserved, at least in principle, for million years
and the relative velocity field, which is shown in

Fig. 11.6d, is compatible with plate kinematics.
An interesting feature of the Wadati-Benioff zone
geometry predicted by Schettino and Tassi (2012)
is that the radial curvature of the unsubducted
lithosphere, ›1Š 1/R, can be potentially
conserved, when the subduction angle does
not change substantially, although the Gaussian
curvature of the subducting plate would be no
longer conserved, because it would assume a
negative value. Conversely, in Frank’s model the
slab dip must decrease with depth and K is always
conserved. Therefore, in the model of Schettino
& Tassi a subducting plate cannot be considered
as a flexible-inextensible spherical cap.

To understand the theoretical grounds of this
model, let us start from the simple example of a
planar lamina that has been bent along a hinge
line coinciding with the x axis (Fig. 11.7a) to
simulate the effect of the Earth’s curvature. If we
bend the lamina again by rotating progressively
the margin about the hinge versors n0 and m0
(Fig. 11.7b), it can be easily proved, for example
through a sheet of paper, that such a new bending
will cause lateral shortening, until the dip angle
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Fig. 11.7 Lateral deformation associated with the bend-
ing of a non-planar lamina along a segmented hinge line.
(a) A planar lamina has been bent along the x-axis to
simulate the effect of the Earth’s curvature. Then, further
bending is applied along a segmented hinge line. In the
tangent plane, the segments of the hinge line forms an
angle œ with the y-axis. (b) Slab bending is performed

through progressive rotation about the axes n0 and m0. For
small values of the bending angle ’, lateral shortening
occurs along the segment OP after subduction, as the
internal margin of the left and right sectors of the slab
overlap by a quantity b, which increases with the distance
— from the hinge line

reaches an equilibrium value. It is easy to prove
that such an equilibrium value of the bending
angle is determined by Frank’s formula.

The state of lateral shortening that occurs for
small bending angles is represented in Fig. 11.7b
by the overlap of the internal margins of the two
slab components by a quantity b. If n and m
are the versors describing the projection of the
hinge line onto the tangent plane and R(q,®) is
the rotation matrix about an axis having versor q
through an angle ® (positive counter-clockwise),
then the axes of the hinge line are described by
the versors:

n0 D R .i ;�¨=2/n I m0 D R .i ;C¨=2/m

(11.22)

where i is the x-axis versor and¨/2 is the angle of
bending of each side of the original lamina about
the x axis. In order to determine the overlap b, we
rotate the point P, having coordinates p� (—,0,0),
respectively by an angle ’ about the axis n0, and
by an angle �’ about the axis m0. The amount of
overlap b will be given by:

b D ˚�R �
n0; ’

� �R
�
m0;�’�	p

�
y

D 2—
h
sin œ cosœ cos

¨

2
.1 � cos’/

� cosœ sin
¨

2
sin ’

i
(11.23)

where we have used expression (2.18) for the
components of R.

Overlap occurs for b< 0, whereas for bD 0
we get the equilibrium condition of Frank (1968).
Finally, for b> 0 we obtain lateral extension
along the internal margin. This result implies that
Frank’s formula correctly describes the states of
lateral mechanical equilibrium during the bend-
ing. The angle œ in (11.23) must be taken in the
tangent plane (i.e., the plane of n and m). The re-
lationship of this quantity with the corresponding
angle, œ0, in the plane of n0 and m0 is:

sin2œ0 D sin2œcos2
¨

2
C sin2

¨

2
(11.24)

The application of these expressions to the
case of the Earth’s subduction zones can be
made taking the limit as œ!0 and ¨!0 and
considering that the variation d¨ per unit arc
length ` must be equal to the Earth’s curvature:
›eD 1/RD d¨/d`. Let ›T D d(2œ)/d` D 2dœ/d`
and ›D 1/¡D 2dœ0/d` be respectively the
trench curvatures in the tangent plane and
in the plane of n0 and m0. From (11.24)
we easily obtain the relation between these
quantities:

›T D
�
› � 1

R2

�1=2
D
�
1

¡2
� 1

R2

�1=2
(11.25)
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Therefore, if we take the limit as œ!0 and
¨!0 in the expression (11.23) for b, we obtain
an expression for the lateral strain © D db/d` at
downdip distance — from the hinge line:

© D —
"
.1 � cos’/

�
1

¡2
� 1

R2

�1=2
� 1

R
sin ’

#

(11.26)

For ¡ D Rsin’/2 (Frank’s formula), the lateral
strain vanishes. Therefore, although the model
of Frank (1968) does not correctly describe the
subduction process, the corresponding relation
between subduction angle and trench curvature
holds as a condition of lateral mechanical equi-
librium at any depth. Expression (11.26) holds
when the lithosphere bends along a single hinge
line and differs substantially from the formula
proposed by Strobach (1973). It shows that the
lateral strain state increases linearly with the
downdip distance —. From (11.26) we easily ob-
tain the strain rate, P©, which is independent from
the downdip distance.

If v is the subduction velocity, then:

P© D v

"
.1 � cos’/

�
1

¡2
� 1

R2

�1=2
� 1

R
sin’

#

(11.27)

The previous formulation started from the
simple bending of a lamina whose initial
geometry simulates the effect of the Earth’s
curvature along one direction only, because
the radial curvature is assumed to be zero in
the starting state (the lamina is flat in the x
direction). In order to estimate the effect of
the radial curvature ›e D 1/R of a tectonic
plate, we note that this is equivalent to assume
an initial radial bending of the lamina by a
small angle •’, which is not accompanied by
lateral strain. However, for a small patch of
lithosphere having width — D 1 km we would
have: •’D 180/( R)D 0.008993ı, which is
effectively a negligible quantity. Therefore, the

approximation used to obtain (11.26) and (11.27)
is acceptable.

More problematic is the unrealistic hypothesis
that the rate of lithospheric bending along the
trench zone is compensated at shallow depths by
an equal rate of lithospheric unbending, so that
the subduction angle remains approximately con-
stant along the Wadati-Benioff zone. Real sub-
duction zones exhibit a more complex behaviour,
characterized by a general increase of the dip an-
gle ’ and eventually by zones of upward bending,
especially when an old slab reaches the 670 km
discontinuity (e.g., Goes et al. 2008). Considering
a vertical cross-section, we can ideally reproduce
the real slab geometry through a sequence of
small rotations about horizontal hinge lines. The
method is illustrated in Fig. 11.8. For a slab
having total downdip length —max, we start with
a small rotation of a straight segment having
length —max about the surface hinge line by an
angle �’0. At the next step, we rotate a straight
segment having length —max � �—0 about a hinge
line at downdip distance �—0 by an angle �’1.
Then, the procedure is repeated iteratively. If the
slab geometry has been correctly reproduced as
far as downdip distance —, then the next step
is to rotate by a small angle �’(—) a segment
having length —max � — about a hinge line at
downdip distance —. At each step, the incremental
strain can be calculated by differentiating (11.26).
Therefore, we can generalize (11.26) and (11.27)
to an arbitrary downdip geometry of the Wadati-
Benioff zone. Le x be the horizontal offset from
the surface hinge line and ’ D ’(x) a dip func-
tion. Then, generalized formulae for the finite
lateral strain and the lateral strain rate at offset x
are:

©.x/ D
xZ
0
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Fig. 11.8 Conceptual
method of construction of
down-dip slab geometries.
At step #1, a line having
length —max is rotated by
angle �’0 about a hinge
H0 at depth zero. Then, at
the next step, a line
segment having length
—max ��—0 is rotated by
angle �’1 about H1. At
step #n, a line segment
having length

—max �
n�1X
kD0

�—k is rotated

by an angle �’n
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Expression (11.29) is particularly interesting,
because it shows that the solution (11.27) is valid
also when the slab dip changes with depth. In
general, the lateral strain rate P© at some depth
z, or offset x, will depend only from the slab
dip ’ at the same depth (or at the corresponding
horizontal offset). Plots of the lateral strain as a
function of the bending angle, ’, are illustrated
in Fig. 11.9 for different horizontal offsets x from
the hinge line. These curves have been traced in
the simple case of a constant bending angle (’(x)
D const) through (11.26). They show that a small
component of compressional strain at shallow
depths is always present during the bending of a
lithospheric slab. However, the typical geometry
of many Wadati-Benioff zones presents a dip
angle increasing progressively from the bulge to

intermediate depths (300–400 km), where values
close to Frank’s equilibrium condition are often
reached.

Expression (11.29) can be used to plot the
theoretical lateral strain rate as a function of the
slab dip. Such curves are more readily compa-
rable with the observed data along vertical cross
sections. Figure 11.10 illustrates the dependence
of the lateral strain rate from the dip angle for sev-
eral trench curvatures. We note that the range of
angles for which lateral shortening is predicted is
reduced when the radius of curvature decreases.
These results imply that bending of slabs is al-
ways accompanied by lateral deformation that
superimposes on downdip strain. In particular,
slabs are always in a state of lateral shortening at
shallow depths, and they eventually go in a state
of lateral extension at intermediate depth, espe-
cially when the radius of curvature ¡ is small and
the dip angle ’ is large. Therefore, we expect that
subducting lithospheres like that which is sinking
beneath the Mariana Trench (¡D 738 km) in the
western Pacific, or that which is subducting be-
neath the South Sandwich Trench (¡D 346 km)
in the South Atlantic, are subject to large lateral
extension at intermediate depths. Schettino and
Tassi (2012) showed that this is exactly what
is observed on the basis of the Wadati-Benioff
seismicity.
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Fig. 11.9 Lateral strain as a function of the bending an-
gle at different distances x from the trench. The three plots
show that the lateral strain is shortening at any offset x for
small bending angles, whereas large extensional strain is
predicted when the bending angle exceeds the equilibrium

value. The curves have been built assuming a curvature
radius ¡D 2,500 km. Note that the range of subduction
angles for which lateral shortening (or extension) occurs
is independent from the horizontal offset from the trench
(After Schettino and Tassi 2012)

Fig. 11.10 Lateral strain rate as a function of the bending
angle for different trench curvatures. These plots show that
the lateral strain rate has a small component of shortening
for small bending angles, whereas large extensional strain

rates (up to �4 %Myr�1) are predicted when the bending
angle exceeds the equilibrium value. The curves have been
built assuming a convergence velocity v D 50 mm/year
(After Schettino and Tassi 2012)

Intraslab seismicity has been widely used
to study geometry, pattern of deformation, and
state of stress of slabs. After the classic papers
of Isacks et al. (1968) and Isacks and Molnar
(1971) mentioned above, Bevis and Isacks (1984)
performed an analysis of the geometry of Wadati-
Benioff zones through a determination of trend
surfaces fitting earthquake hypocenters. The
existence of a large number of events that could

not be associated with downdip deformation was
also observed by Apperson and Frohlich (1987),
while Bevis (1988) estimated an average downdip
strain rate of �10�15 s�1 (�0.032 %/Myr) using
Brune’s formula (11.2). Nothard et al. (1996),
in a study of the deformation of the Tonga slab
based on Kostrov’s formula (11.4), suggested
that the downdip and lateral strain rates were
of the order of �10�16� 10�15 s�1, one–two
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Fig. 11.11 Examples of
seismic deformation along
Wadati-Benioff zones. (a)
Downdip extension; (b)
Lateral extension; (c)
Vertical tearing

orders of magnitude smaller than the Bevis
(1988) estimate. More recently, Chen et al.
(2004), in a global study of the state of stress
associated with intermediate-depth earthquakes,
found significant lateral deformation everywhere
in the Mariana and South Sandwich slabs, and
in part of the Aleutian and Tonga subducting
lithosphere. Finally, in their study about the
relation between trench curvature and lateral
deformation of the slabs, Schettino and Tassi
applied Molnar’s formula (11.17) to the events
included in the Harvard CMT catalogue (1976
through 2009) of eight slabs. They found very
large strain rates associated with lateral extension
for the South Sandwich and Mariana slabs, and
moderate lateral extension in the case of the
Tonga and Japan slabs.

Conversely, Costarica, N. Kurile, Sumatra,
and Kermadec were found to be in a state of

small lateral shortening above 400 km. On
average, Schettino and Tassi (2012) calculated
downdip and lateral strain rates of the order of
�10�14 s�1, one order of magnitude larger than
Bevis’ estimate. Three common kinds of intraslab
deformation at intermediate depth, and the
corresponding focal mechanisms, are illustrated
in Fig. 11.11. Conversely, lateral deformation is
generally shortening at shallow depth and in the
transition zone, while downdip deformation is
almost always shortening below�300 km.

Problems

1. The figure below shows focal mechanisms
along the Wadati-Benioff zone of the Ionian
slab in central Mediterranean. Curved lines
represent isodepth lines of the slab. Classify



References 315

each focal mechanism and discuss the style of
deformation of this slab;

2. Download the MS Excel file CMT7609.xlsx,
containing the global CMT catalog 1976–
2009. Select underthrusting earthquakes
(depth �40 km) from the Hellenic Trench
between (38ıN, 20ıE) and (34.6ıN,24ıN).
Determine the average velocity of conver-
gence between Africa and Greece using
Brune’s formula. Compare with the velocity
of convergence Africa – Eurasia in the same
area estimated by MORVEL (see Chap. 2);

3. Write a computer program to calculate the
strain rate tensor from a set of moment tensors
using Kostrov’s formula (11.4);

4. Write a computer program to calculate the
strain rate tensor from a set of asymmetric
moment tensors using formula (11.14);

5. Perform a study of seismic deformation of
Turkey using Kostrov’s formula and the asym-
metric moment tensor approach. Discuss the
differences between the two approaches.
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12Heat Flow and Thermodynamics
of the Lithosphere

Abstract

In this chapter, I present the important theme of heat conduction across
and within the continental and oceanic lithospheres. In particular, the non-
steady state heat conduction equation is solved and applied to the cooling
of the oceanic lithosphere. The chapter also describes the main forces
driving plate tectonics: ridge push and slab pull.

12.1 Fourier’s Law

In this chapter, we are going to study the thermal
structure of the lithosphere, which is strongly
related to its rheology and dynamic behavior.
By “thermal structure”, we mean the scalar field
of temperatures, T D T(r,t), and its temporal
evolution. This field depends in turn by both the
rate of heat transfer through the Earth’s interior
and the heat loss at the Earth’s surface. It is
known that heat can be transferred by conduction,
convection, or radiation. Conduction essentially
results from micro-scale interaction between en-
ergy carriers within a material. The nature of
these carriers depends from the state of the matter
and from the material structure, so that they
can be individual molecules in fluids, electrons
or phonons in solids. In any case, conduction
consists into a direct energy transfer from more
energetic carriers to low-energy carriers through
molecular or particle collisions, thereby is a dif-
fusive process that requires spatial variability of
the temperature field. Convection is a process that
changes the temperature field by the large-scale

motion of energy carriers. In this instance, heat
is conveyed from one region to another together
with the carriers, rather than being transferred
between energy carriers. Clearly, convection and
conduction may operate at the same time within a
fluid. Finally, heat can be transported by electro-
magnetic radiation. This is a process that occurs
at the top of the Earth’s atmosphere, thereby it
will not be investigated in this book.

The distribution of temperatures in the con-
tinental and oceanic lithosphere is largely con-
trolled by the conductive loss of heat at the
Earth’s surface, although convective heat trans-
port by water circulating through the oceanic
basalts or intrusive igneous bodies may be locally
an important mechanism of cooling for these
rocks. This heat originates both by the secular
cooling of the Earth’s hot interior and by the ra-
dioactive decay of some elements that are present
in crustal and mantle rocks.

The fundamental equation describing the con-
ductive heat transport is known as Fourier’s law.
If we define the heat flux q(n) as the quantity
of heat per unit area and per unit time that
flows by conductive transport through a small
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© Springer International Publishing Switzerland 2015

317



318 12 Heat Flow and Thermodynamics of the Lithosphere

Fig. 12.1 Global map of Earth surface heat flow in mWm–2, based on the data of Davies (2013)

surface element having normal versor n, then the
isotropic Fourier’s law reads:

q .n/ D �krT � n (12.1)

where k, the coefficient of thermal conductiv-
ity, has units Wm�1 K�1. Therefore, the heat
flux through a surface element dS D ndS is
proportional to the directional derivative of the
temperature field along the direction n. Clearly,
changing the orientation of dS will also change
the heat flux through dS. Consequently, Fourier’s
law agrees with the quite intuitive concept that the
maximum heat flow must occur in the direction
of maximum decrease of the temperature field,
which is the direction of –rT. To this purpose, it
is useful to define a vector field q D q(r,t) that is
at any point r orthogonal to the isotherm surface
passing through r at time t. By the properties of
the gradient operator (see Appendix 1), we can
define the vector field of maximum heat flux as
follows:

q D �krT (12.2)

Although this equation in many textbooks is
indicated as “Fourier’s law”, it represents only a

corollary of the complete law of heat conduction
(12.1). Combining the two equations gives:

q .n/ D q � n (12.3)

Measurements of the vertical heat flow
through the Earth’s surface are performed
lowering thermistors, which are thermally
sensitive semiconductor resistors, down drill
holes. The average heat flux provides essential
information about the quantity of heat that
was generated in the Earth’s interior and
the temperature field within the lithosphere.
Figure 12.1 illustrates a recent global compilation
of heat flux data, which is based on �38,000
measurements (Davies 2013). The average
value of q on the continents is relatively
low in N. America, Fennoscandia, and East
Europe (33–40 mWm–2), intermediate in Africa
(�52 mWm–2), and quite large in Brazil and
Australia (65–68 mWm–2). Such a variability
is caused by regional changes in radioactive
heat production. In the oceanic regions, the
average heat flux is greater than �100 mWm–2

when the lithosphere has an age less than
�10 Ma and rapidly decreases in so far as
the age attains 30 Ma (Stein and Stein 1992).

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 12.2 Sketch illustrating the sources of heat in the
Earth and the components of the global heat flow. qCC and
qOC are respectively the surface heat flux from continental
and oceanic regions, qm is the heat flux through the Moho,
and qc is the heat flux through the CMB. Four important
heat sources exist in the Earth: radiogenic decay in the
continental crust (HCC), radiogenic decay in the mantle
(Hm), secular cooling of the mantle (Sm), and secular
cooling of the core (Sc)

Then, q� 60 mWm–2 for older lithosphere and
decreases smoothly to about 50 mWm–2 in the
oldest lithosphere.

The typical thermal conductivity of near-
surface rocks depends from rock type, com-
position, grain size, grain orientation, density,
porosity, composition of pore fluid, and
temperature. In the case of sedimentary and
volcanic rocks, the main controlling factor is
the porosity, while the thermal conductivity
of plutonic and metamorphic rocks depends
from the dominant mineral phase (Clauser and
Huenges 1995). In general, most sedimentary
rocks have values of k between 0.5 and 2.5 Wm�1

K�1, while for the majority of volcanic and
plutonic rocks k ranges from 1.5 to 3.5 Wm�1

K�1. Finally, in the case of metamorphic rocks,
the thermal conductivity is generally between
2 and 4 Wm�1 K�1 when the quartz content
is low, and between 5 and 6 Wm�1 K�1 in
the case of quartzite. Assuming kD 2.5 Wm�1

K�1, we have an average vertical temperature
gradient at the Earth’s surface of �16 Kkm–1

when qD 40 mWm–2 and �24 Kkm–1 when
qD 60 mWm–2.

A consistent part of the heat flow at the Earth’s
surface undoubtedly originates by the radioactive
decay of 40K, 235U, 238U, and 232Th in the mantle
and, to a lesser extent, in the continental crust
(Fig. 12.2). The remaining part of the surface heat

flow must come from cooling of the Earth over
the geological time. It is important to note that
the average rate of production of radiogenic heat
in the crust (including the oceanic crust), which
is HCD 2.9� 10–10 Wkg–1, is much greater than
that of the mantle, which is estimated to be
HmD 5.1� 10–12 Wkg–1. This larger productivity
is overcome by a mantle to crust mass ratio
that is �143, thereby the total crustal radioac-
tivity results to be 8.2� 1012 W, with respect
to a total mantle production of 20.0� 1012 W
(Stacey and Davis 2008). As mentioned above,
radiogenic decay is not the unique source of heat
in the Earth’s interior. Another important source
is represented by the basal heating of the litho-
sphere along the LAB, associated with mantle
convection, which also contributes to the heat
flux qm through the Moho (Fig. 12.2). Turcotte
and Schubert (2002) estimated that �75–80 %
of the present-day surface heat flow should be
attributed to decay of radioactive isotopes, while
about 20–25 % would originate from the secular
cooling of the Earth. This is the continuous loss
of primordial heat stored in the Earth’s mantle
and core studied by Kelvin (1864), which drives
mantle convection. The relative contribution of
secular cooling and radioactive decay to the total
heat budget estimated by Turcotte and Schubert
(2002) is controversial and other authors give
very different values of the relative importance of
these sources of heat (e.g., Korenaga 2003, 2008).
The Urey ratio is a quantity that is commonly
used to measure the relative importance of the
radiogenic heat generated in the Earth’s crust
and mantle. It is defined as the ratio of internal
heat production to surface heat flux. This is a
key parameter characterizing the global thermal
budget and a strong constraint for both thermal
history and mantle convection models. Calling
q(HCC), q(Hm), q(Sm), and q(Sc) the components
of surface heat flux associated with each of the
sources illustrated in Fig. 12.2, we have the fol-
lowing budget relations:

8̂
<̂
ˆ̂:

qCC D qm C q .HCC /

qOC D qm
qm D q .Hm/C q .Sm/C qc
qc D q .Sc/

(12.4)
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where the production of radiogenic heat in the
oceanic crust and in the core has been neglected.
The bulk Earth Urey ratio measures the relative
contribution of internal heat generation with re-
spect to the total surface heat flux:

Ub D q .HCC /C q .Hm/

qCC C qOC (12.5)

A quantity that is more commonly used by
geophysicists in studies about the thermal history
of Earth is the convective Urey ratio, which
Korenaga (2008) defines as the ratio of heat gen-
eration in the mantle over the mantle heat flux:

Uc D q .Hm/

qm
(12.6)

Finally, it is possible to introduce an internal
heating ratio, I, as the ratio of surface heat flow
associated with mantle sources to the mantle heat
flux:

I D qm � qc
qm

(12.7)

Korenaga (2008) pointed out that while the Ub

is probably �0.35, the convective Urey ratio Uc

is estimated to be �0.2. Therefore, according to
this author only �20 % of the basal lithospheric
heating associated with mantle convection would
originate from radioactive decay, while�80 % of
qm would come from secular cooling. In the next
section, we shall determine the temperature field
in the continental crust starting from the surface
heat flow data and from an estimate of the radio-
genic heat produced in the Earth’s interior.

12.2 Continental Geotherms

Let us consider the temperature distribution in a
homogeneous region R, bounded by the surface
S(R). According to the form (12.2) of Fourier’s
law, the maximum heat flux q is a potential
field and the temperature itself is the associated
potential. Assuming that there are no sources of
heat in R, the total free flux of heat through S(R)
will be given by:

ˆ.S / D
I
S.R/

q .n/ dS D
I
S.R/

q � dS

D �k
I
S.R/

rT � dS (12.8)

At any time, the total heat, Q, in R is given
by:

Q.t/ D c¡
Z
R

T .r ; t/ dV (12.9)

where c is the specific heat and ¡ is the density
in R. Clearly, the rate of variation of Q must
coincide with the net incoming flow through
S(R), so that applying the divergence theorem
(see Appendix 1) and reversing the sign we
obtain:

PQ.t/ D k
I
S.R/

rT � dS D k
Z
R

r2TdV (12.10)

By (12.9), the rate of variation of Q can be also
written as follows:

PQ.t/ D c¡
Z
R

@T

@t
dV (12.11)

Therefore, combining this expression with
(12.10) provides:

Z
R

�
c¡
@T

@t
� kr2T

�
dV D 0 (12.12)

The fact that this integral vanishes for any
choice of the region R implies that the integrand
itself must be zero throughout R. Therefore,
introducing the thermal diffusivity › � k/c¡
[m2s–1], we obtain the following equation of
conductive heat transfer (or heat diffusion
equation):

@T

@t
� ›r2T D 0 (12.13)

This equation holds, in the present form, in
the hypothesis that the thermal conductivity k and

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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the diffusivity › are independent from T, which is
only approximately true (e.g., Hofmeister 1999).
Therefore, more general equations of conductive
heat transfer can be written. In steady–state con-
ditions, the temperature does not change with
time, so that (12.13) assumes the form:

r2T D 0 (12.14)

Consequently, in steady–state conditions and
in absence of sources the temperature field
satisfies Laplace’s equation in R, so that it is
harmonic. Accordingly, it will not have neither
maxima nor minima in R – S(R). For example,
in a problem where the temperature depends
only from the depth z, we would have dT/dz
D const, so that T would change linearly with
depth. In presence of heat sources, the diffusion
Eq. (12.13) must be generalized to take into
account of the local rate of heat production. Let
H D H(r,t) be the rate of heat generation per unit
mass at location r and time t. In this instance, the
heat diffusion equation assumes the following
more general form:

@T

@t
� ›r2T � H

c
D 0 (12.15)

Therefore, even in steady–state conditions, the
presence of heat sources implies that a tempera-
ture field depending only from z cannot increase
linearly with the depth. We can easily apply these
results to the simple case of a vertical heat flow
through a thin horizontal slab having thickness
dz. In this instance, the net flux through the slab
is simply:

dq D q .zC d z/� q.z/ D dq

d z
d z D �k d

2T

d z2
d z

(12.16)

This expression implies that dq¤ 0 iff T is
not a linear function of depth, so that its one-
dimensional Laplacian d2T/dz2 is not zero. In
this instance, by the conservation of energy, the
net flux through the lamina must be supplied by
internal sources of heat. Let H be the rate of heat
produced per unit mass within the slab. The heat

generated in a volume of slab dV having unit
surface area, thickness dz, and mass dm is given
by:

dQ D Hdm D ¡Hd z (12.17)

Therefore, the one-dimensional version of the
stationary equation of conductive heat transfer
with sources now reads:

k
d2T

d z2
C ¡H D 0 (12.18)

A solution to this equation can be easily found
assuming a half–space with top boundary at
zD 0. Let us assign the boundary conditions as
follows: T(0) D T0, q(0) D –q0. In this case,
the solution to (12.18) is the following parabolic
function:

T .z/ D T0 C q0

k
z � ¡H

2k
z2 (12.19)

The function T D T(z) is called a geotherm.
In principle, it could be used to predict the varia-
tions of temperature within the continental litho-
sphere, granted that the rate of radiogenic heat
production H can be considered constant in the
crust and in the lithospheric mantle. Assuming
T0D 300 K, q0D 60 mWm–2, ¡D 3,300 kg m–3,
kD 3 Wm–1 K–1, and HD 6� 10–11 W kg–1 gives
the continental geotherm shown in Fig. 12.3.
This plot would fail to describe the distribution
of temperature in the asthenosphere, because it
predicts partial melting of the mantle peridotite
starting from�80 km depth. Conversely, it repre-
sents an acceptable approximation of the effective
geotherm in continental areas.

An improved conductive geotherm model can
be obtained taking into account that the pro-
duction of radiogenic heat is not constant but
decreases with depth. A good method is to con-
sider different crustal layers, each with constant
radiogenic heat production rate, and decrease H
stepwise with depth. Alternatively, Turcotte and
Schubert (2002) argued that a good choice for the
function H D H(z) is:

H.z/ D H0e
�z=h (12.20)
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Fig. 12.3 Continental geotherm (solid line) for constant rate of heat production H. The dashed line shows the dry
peridotite solidus, determined using expression (1.12) and PREM distribution of hydrostatic pressure

where H0 is the radiogenic heat production rate
per unit mass at the Earth’s surface and h is a
length scale parameter for the decrease of H with
depth. In this instance, (12.18) assumes the form:

k
d2T

d z2
C ¡H0e

�z=h D 0 (12.21)

To solve this equation, we assume that at great
depth, at the lower boundary of the radiogenic
heat production layer (e.g., at the Moho), we have
an upward flux q D –qm (note that for dT/dz>0,
T increases downwards in the positive z direction,
so that heat flows in the negative z direction).
Such a basal flow can be approximated through
the boundary condition: q(z) ! –qm as z ! 1.
A first integration of (12.21) gives:

q.z/ D �¡H0he
�z=h � qm (12.22)

Therefore, the surface heat flux will be given
by:

q0 D �q.0/ D ¡H0hC qm (12.23)

This result, which has been confirmed by
direct observations, shows that the surface heat
flow depends linearly from the radiogenic heat
production rate at the Earth’s surface. The length
scale parameter h and the basal flux qm can
be estimated fitting a linear regression curve
through pairs of observed values of q0 and H0.
It results that hŠ 10 km and qm� 28 mWm�2

(Turcotte and Schubert 2002). Further integration
of (12.20) gives:

T .z/ D T0 C qm

k
zC ¡H0h

2

k

�
1 � e�z=h

�
(12.24)

A possible distribution of temperature in the
continental crust, based on (12.24), is shown in
Fig. 12.4. We note a substantial difference with
respect to the trend illustrated in Fig. 12.3, which
shows a more linear growth in the crust.

This improved geotherm predicts a temper-
ature of �500 ıC at 40 km depth, which is
much less than the �770 ıC of the previous
model. However, a downward continuation of

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 12.4 A more realistic continental geotherm, based on exponential decrease of heat production H with depth

the geotherm (12.24) to the lithospheric man-
tle would give anyway unrealistic temperatures
on the basis of the estimated values from kim-
berlites. The mineral compositions from garnet
peridotite nodules can be used to estimate both
depth and temperature at which a nodule reached
the equilibrium. These data can be used to con-
strain the geotherms of several continental re-
gions. McKenzie et al. (2005) built steady state
continental geotherms solving the equations sep-
arately for the crust, an underlying mechani-
cal boundary layer (MBL), and a lower thermal
boundary layer (TBL). In fact, as we mentioned
in Sect. 1.4, the lithospheric mantle can be con-
sidered as formed by an elastic-ductile upper
layer and a lower more viscous layer that are
separated by the 650 ıC isotherm and a sharp cut-
off of seismicity. In their study, McKenzie et al.
(2005) assumed a constant thermal conductivity
kD 2.5 Wm�1 K�1 for the crust, whereas the
radiogenic heat generation rate H was expressed
in terms of energy density and set to 1.12�W m–3

for the upper crust and 0.4 �W m–3 in the lower
crust. The heat generation within the thermal

and mechanical boundary layers was set to zero,
thereby the steady state heat flux throughout these
layers was constant and coincident with the heat
flow through the Moho.

Figure 12.5 illustrates the model geotherm
proposed by McKenzie et al. (2005), which is in
agreement with heat flow measurements and fits
(P,T) estimates from kimberlite nodules. Differ-
ently from previous models, in this geotherm the
crustal contribution to the heat flow is increased,
while the mantle heat flow is decreased. The
surface heat flux determined from this geotherm
results to be �52 mWm–2.

12.3 Non-steady State Heat
Conduction

The steady-state equation of heat conduction
(12.18) can be used to model the temperature
distribution in old continental crust and in
the MBL. However, it cannot describe time-
dependent processes such as the cooling of
the oceanic lithosphere. Usually, radiogenic

http://dx.doi.org/10.1007/978-3-319-09135-8_1


324 12 Heat Flow and Thermodynamics of the Lithosphere

heat production plays a minor role in these
phenomena, so that we can assume HD 0.
However, in this instance, the diffusion Eq.
(12.13) must be used to determine both the
distribution of temperature and its time evolution.
In this equation, the diffusivity ›� k/c¡ has units
[m2s–1]. Therefore, if the temperature changes
over a characteristic time interval £, then such
a variation will propagate over a distance of
the order L � p›£, while a time £ � L2/› is
required for a temperature change to propagate
over a distance L. Now we are going to face the
case of instantaneous heating or cooling of a
half-space. As shown by Turcotte and Schubert
(2002), the corresponding solution can be used

Fig. 12.5 A continental lithosphere geotherm (solid line)
that fits pressure and temperature estimates of garnet peri-
dotite nodules from kimberlites (Redrawn from McKenzie
et al. 2005)

in the modelling of several important geological
problems. Let us assume that the temperature
is uniform along horizontal planes, so that heat
transfer occurs along the z direction only. In
this instance, heat conduction is described by
the one–dimensional version of the diffusion Eq.
(12.13):

@T

@t
� ›@

2T

@z2
D 0 (12.25)

This equation can be easily solved in a half–
space having uniform temperature T(z,t)D Ti for
t� 0 and whose surface is instantaneously heated
(or cooled) and maintained at a different constant
temperature T0, so that T(0,t) D T0 for t> 0.
In this instance, for T0 > Ti heat is transferred
into the half–space and the internal temperature
increases, whereas for T0 < Ti the half–space
cools and its temperature decreases. An example
of the former situation is illustrated in Fig. 12.6.
As shown in this figure, at any time t> 0 we have
the boundary condition:

lim
z!1T .z; t/ D Ti for any t > 0 (12.26)

The diffusion Eq. (12.25) can be solved by
similarity introducing a dimensionless tempera-
ture ratio:

™ � T � Ti
T0 � Ti (12.27)

In terms of ™, the diffusion Eq. (12.25) as-
sumes the form:

@™

@t
� ›@

2™

@z2
D 0 (12.28)

Fig. 12.6 Heating of a half-space by a sudden increase of the surface temperature
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The boundary conditions for ™ arise immedi-
ately from those for T. We have that ™(z,t)D 0 for
t� 0 and ™(0,t)D 1 for t> 0. Furthermore:

lim
z!1™ .z; t/ D 0 for any t > 0 (12.29)

A solution by similarity is based on the idea
that two solutions of (12.28) for different times
should have a “similar” spatial distribution of
temperatures. Therefore, z and t must appear in
a particular combination, just like solutions of
the plane wave equation require that distance
x and time t always appear in the combination
t – x/v, v being the wave velocity. In the case
of the diffusion equation, the quantity L(t) Dp
›t represents a characteristic thermal diffusion

distance, thereby it is reasonable to assume that if
™D ™(z,t) is a solution to (12.28), then it will be a
function of the dimensionless ratio z=

p
›t rather

than of an arbitrary combination of the variables
z and t. To simplify the results, it is convenient
to define a dimensionless similarity variable ˜ as
follows:

˜ .z; t/ � z

2
p
›t

(12.30)

Formally, the similarity implies that tempera-
ture distribution at time t can be obtained from the
distribution at time t0 by stretching the distance z
by the square root of t0/t. In fact, the transforma-

tion z ! z0 D z
p
t 0=t gives ˜0 D z0=

�
2
p
›t 0
�

D z=
�p

t 0=t=
�
2
p
›t 0
�
D z=

�
2
p
›t
� D ˜. Now

let us rewrite the diffusion equation in terms of ˜.
By the chain rule, we have:

@™

@t
D d™

d˜

@˜

@t
D � ˜

2t

d™

d˜
(12.31)

@™

@z
D d™

d˜

@˜

@z
D 1

2
p
›t

d™

d˜
(12.32)

@2™

@z2
D 1

2
p
›t

d2™

d˜2
@˜

@z
D 1

4›t

d2™

d˜2
(12.33)

Substituting into (12.28) gives the following
ordinary linear differential equation:

d2™

d˜2
C 2˜d™

d˜
D 0 (12.34)

With respect to ˜, the boundary conditions
assume the form:

lim
˜!1™ .˜/ D 0I ™.0/ D 1 (12.35)

Now let us set:

¥ � d™

d˜
(12.36)

Substituting into (12.34) reduces this equation
to a first-order differential equation:

d¥

d˜
C 2˜¥ D 0 (12.37)

The solution is:

¥ .˜/ D ae�˜2 (12.38)

Therefore, the general solution for ™ is:

™ .˜/ D a
�Z
0

e��2d� C b (12.39)

Finally, substituting the boundary conditions
allows to express the solution to (12.34) in terms
of error function:

™.˜/D1� 2p
 

Z̃
0

e��2d� � 1�erf .˜/Derfc .˜/

(12.40)

This solution can be easily converted into
a temperature distribution using (12.27) and
(12.30). We have:

T .z; t/ D .T0 � Ti/ erfc

�
z

2
p
›t

�
C Ti

(12.41)

A plot of T vs z is shown in Fig. 12.7 for
a sudden increase of the surface temperature
(T0 > Ti). The near–surface region where the
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Fig. 12.7 Distribution of temperature after instantaneous heating from 20 to 500 ıC at the surface of a half-space after
10, 100, and 1,000 s. The assumed thermal diffusivity is ›D 1 m2s–1

temperature variations are significant is known
as the thermal boundary layer (TBL). Turcotte
and Schubert (2002) define the thickness of this
region as the depth at which ™D 0.1. Clearly,
such a depth changes with time insofar as the
half-space heats or cools after the initial surface
variation. By the definition (12.27), the condi-
tion ™D 0.1 means that the actual variation of
temperature with respect to the initial value is
10 % of the temperature change at the half-
space surface. Substituting the value ™D 0.1 into
(12.40) gives a corresponding value, ˜T , for the
similarity variable ˜:

˜T � erfc�1.0:1/ Š 1:16 (12.42)

Therefore, the TBL thickness at time t will be
given by:

zT .t/ D 2˜T
p
›t Š 2:32p›t (12.43)

The surface heat flux corresponding to the
cooling or heating law (12.41) can be easily
obtained by differentiation. We have:

q0 D �q .0; t/ D k @T
@z

ˇ̌
ˇ̌
zD0
D k .Ti � T0/p

 ›t

(12.44)

12.4 Cooling of the Oceanic
Lithosphere

The solution (12.41) to the diffusion equation
can be adapted to describe the formation of the
oceanic crust by cooling of MORB produced
at a mid–ocean ridge after contact with oceanic
seawater. Furthermore, in Sect. 1.3 we have seen
that when fertile and wet asthenosphere melts at
a spreading ridge by adiabatic decompression,
the residual column of asthenospheric material
leaving the melting regime is also dragged hor-
izontally away from the ridge axis and cools by
conductive loss of heat. At any time, we can
divide this column into an upper part, where the
potential temperature is fallen below the astheno-
sphere TP (�1,280 ıC), and a lower hotter zone,
which has not yet lost a significant amount of

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 12.8 Cooling of the
oceanic lithosphere. If v is
the spreading rate, a
column of asthenospheric
material moves away from
the ridge at half-spreading
rate ½v and attains a
thickness zT at distance
x D ½vt from the ridge
crest

Fig. 12.9 Isotherms of the oceanic lithosphere, determined inverting (12.45) and assuming ›D 1 mm2 s–1, T0 D 10 ıC,
and Ta D 1,280 ıC. The shape of the TBL at any time (thick black line) has been calculated using (12.43)

heat. The conductive TBL where T < TP defines
the oceanic lithosphere. Let Ta be the initial
temperature of the asthenosphere that leaves a
melting regime, and let us assume that seawater
instantaneously cools and maintains the surface
of the residual column to the temperature T0. In
this instance, neglecting the horizontal compo-
nents of heat conduction, we can apply the so-
lution found in the previous section. Figure 12.8
illustrates an idealized cross-section through the
ridge crest of a cooling oceanic plate.

If v is the spreading rate and x is the offset of
an asthenospheric column from the ridge crest,
then the temperature distribution at any depth z
below the sea floor can be written as follows:

T .z; t/ D .T0 � Ta/ erfc

 
z

2
p
2›x=v

!
C Ta

D .Ta � T0/ erf

 
z

2
p
2›x=v

!
C T0
(12.45)

Figure 12.9 shows some isotherms beneath
the ocean surface vs the ocean floor age. We
can use (12.43) to estimate the thickness of the
oceanic lithosphere of any age. This quantity is
also displayed in Fig. 12.9 and coincides with the
depth to the oceanic LAB minus the ocean floor
depth.
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Fig. 12.10 Heat flux as a function of the age of the ocean
floor. Black dots are observed data included in the global
data base maintained by the International Heat Flow Com-
mission (see http://www.heatflow.und.edu/index2.html).

The theoretical trend based on the HSC model is displayed
as a red line. This trend line was determined using (12.44)
and assuming ›D 1 mm2 s–1, T0 D 10 ıC, Ta D 1,280 ıC,
and k D 3.3 W m�1 K�1

To estimate the suitability of the half–space
cooling (HSC) model, we can compare the pre-
dicted surface heat flux q0 at any sea floor age
t with observed values. Figure 12.10 shows the
distribution of global marine heat flow data on
oceanic crust provided by the International Heat
Flow Commission and the predicted HSC heat
flux given by (12.44). We note that there is
considerable scatter in the observed data, even
taking into account that they have been extracted
from a global catalogue. A major source of scat-
tering is associated with hydrothermal circulation
through the oceanic crust and the consequent heat
loss. However, the agreement between the heat
flow data and the HSC trend is acceptable after
�60 Ma, although the theoretical trend appears
to decrease a little bit more rapidly. In fact, in old
oceanic basins the observed heat flow apparently
levels at �53 mW m–2. A comparison with mea-
surements performed only in thick sedimentary
successions, which possibly block hydrothermal
circulation and heat loss, would confirm more

clearly this misfit (Turcotte and Schubert 2002).
This suggests that beyond some sea floor age
the rate of conductive cooling is to some ex-
tent compensated by additional heat production.
However, a more serious problem in Fig. 12.10
is represented by the apparent misfit between the
observed heat flow and the theoretical trend on
young oceanic lithosphere. In fact, the former ap-
pears to be significantly lower than that predicted
by the HSC model.

An improvement over the HSC model, which
was originally developed by Davis and Lister
(1974), can be obtained taking into account that
the lithosphere is heated from below as a conse-
quence of mantle convection. In the plate cooling
model (PCM) of Parsons and Sclater (1977),
the oceanic lithosphere forms by cooling of an
asthenospheric plate having finite thickness h
and an isothermal lower boundary. Such a lower
isothermal boundary prevents continued cooling
and thickening of the oceanic lithosphere for
older ages. The parameter h is fixed and chosen

http://www.heatflow.und.edu/index2.html
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Fig. 12.11 Left: Oceanic geotherm of the HSC model
(solid line) and of the PCM (dashed line) for a 100 Ma
old lithosphere. Right: Heat flux as a function of the age

of the ocean floor in the two models. The maximum plate
thickness is assumed to be h D 105 km (McKenzie et al.
2005; Afonso et al. 2007)

as coincident with the effective thickness of the
oldest lithosphere. If Ta is the temperature of the
upper asthenosphere, then the boundary condi-
tions can be written as follows:

lim
z!h

T .z; t/ D TaI

lim
z!0

T .z; t/ D T0I for any t > 0 (12.46)

T .z; 0/ D TaI for any 0 � z � h (12.47)

Therefore, the plate is assumed to have uni-
form temperature Ta at tD 0, and at any suc-
cessive time the upper and lower boundaries are
maintained at temperatures T0 and Ta respec-
tively. The solution for T (Carslaw and Jaeger
1959) has the form of an infinite series:

T .z; t / D T0 C .Ta � T0/

�
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z

h
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(12.48)

We note that for ›t>> h2 the series in (12.48)
tends to zero, thereby at large times a linear
steady-state geotherm is attained:

T .z; t/ � T0 C .Ta � T0/ z

h
as t !1

(12.49)

Conversely, for ›t<< h2 the solution (12.48)
assumes the form:

T .z; t/ Š T0 C .Ta � T0/

�
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z
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n
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�n z

h

�#
I for t ! 0

(12.50)

It is possible to show that the solution for t! 0
gives geotherms that do not differ significantly
from those of the HSC model.

Regarding the surface heat flux, it can be
obtained by (12.48) applying Fourier’s law for
zD 0:

q0.t/D k .Ta � T0/
h

"
1C2

1X
nD1

exp

�
�›n

2 2t

h2

�#

(12.51)

Also in this case for large times, such that
›t>> h2, a steady-state value is attained. This is
given by:

q0.t/ � k .Ta � T0/
h

as t !1 (12.52)

which is significantly different from (12.44).
A comparison of geotherm and heat flux pre-
dicted by the HSC model and the corresponding
curves in the PCM is shown in Fig. 12.11. As
required by (12.49), the PCM geotherm of old
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lithosphere flattens and tends to a straight line.
At 100 km depth the predicted temperature in the
PCM is �210 ıC higher. Regarding the surface
heat flow, the PCM flux curve shows a better fit
to the heat flow data at the extremes of the age
range. A detailed analysis of the PCM parameters
has shown that this model can account quite
satisfactorily for the observed heat flow (Stein
and Stein 1992).

A direct consequence of the cooling of the
oceanic lithosphere is represented by the pro-
gressive increase of its density. Let ¡ D ¡(z,t)
be the rock density at depth z and time t. This
quantity is an intensive state variable that varies
with temperature T and pressure P. In the case
of decreasing temperature, density increases be-
cause the volume of a rock body decreases by
thermal contraction.

In general, the thermodynamic relation that
determines the change of volume associated with
variations of temperature and pressure is:

dV D
�
@V

@P

�
T

dP C
�
@V

@T

�
p

dT (12.53)

The derivatives in this expression are prop-
erties of the material that are usually expressed
through the coefficient of thermal expansion, ’,
which is defined by (1.3), and the isothermal
compressibility “, given by:

“ D � 1
V

�
@V

@P

�
T

(12.54)

Substituting (12.3) and (12.54) into (12.53)
gives the following expression for dV:

dV D V .�“dP C ’dT / (12.55)

This expression determines the variation of the
extensive variable V associated with changes of
P and T. It is usually convenient to express vol-
ume variations in terms of an intensive variable
rather than an extensive one. To this purpose,
we introduce the specific volume v � 1/¡, which
represents the volume per unit mass. The relative
variations of v are linked to variations of density

and to variations of volume by the following
simple equation:

(12.56)

Therefore, (12.55) can be rewritten in terms of
density as follows:

d¡ D ¡ .“dP � ’dT / (12.57)

When the rock body can change freely its
volume after a temperature variation, the pressure
P is invariant, so that (12.57) assumes the form:

d¡

¡
D �’dT (12.58)

Conversely, when the rock is confined, so
that its volume does not change (dv D 0), the
variations of temperature and pressure are related
by the following equation:

“dP � ’dT D 0 (12.59)

In the oceanic lithosphere, Parsons and Sclater
(1977) estimated that the thermal expansion coef-
ficient ’ assumed the value ’D 3.28� 10–5 K–1,
while the more recent best-fitting value obtained
by Stein and Stein (1992) is ’D 3.1� 10–5 K–1.
We can use this estimate and the HSC model
isotherms of Fig. 12.9 to calculate the horizontal
gradient of density in the oceanic lithosphere. For
example, Fig. 12.9 shows that at 70 km depth the
distance between the 1,000 and 800 ıC isotherms
is �tD 48 Myrs. Therefore, assuming a spread-
ing rate vD 30 mm/year, we obtain a horizontal
distance �xD½v�tD 720 km between the two
isotherms. This implies a horizontal gradient of
temperature @T/@xŠ 0.28 ıC/km at 70 km depth.
Consequently, using (12.58) and assuming that ’
does not change significantly with temperature,
we can easily integrate (12.58) obtaining a total
variation of density of �21 kg/m3 in 720 km.
Regarding the isothermal compressibility, it in-
creases with temperature and assumes values be-
tween “D 0.80� 10–12 Pa–1 (at T	 700 K) and
“ D 1.20� 10– 12 Pa– 1atT 	 2, 750 K (Arafin
et al. 2008).

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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If we consider the lithosphere as an elastic
solid layer “floating” over the fluid (in rheo-
logical sense) asthenosphere, we will easily re-
alize that the lateral variability of density in
the oceanic lithosphere must determine a hydro-
static imbalance that can be compensated locally
only by vertical displacements and shear. This
phenomenon is known as thermal isostasy and
arises from Archimedes’ principle of hydrostatic
equilibrium. To understand the application of this
important principle to the asthenosphere, we re-
call that fluids cannot support static shear stress,
thereby the equation of hydrostatic equilibrium
reads:

@£ij

@xj
D � @P

@xj
D �¡gi (12.60)

where g D gk is the gravity field vector. Inte-
grating this equation, we see that the hydrostatic
pressure P at any depth z does not depend from
x and y and is simply the weight of the column
of rock having height z and unit area. In the
asthenosphere, this law must hold even when the
column is formed partly by sea water, partly from
oceanic MORBs, and partly from peridotite.

We have:

P.z/ D g
zZ
0

¡ .x; y; z/ d z (12.61)

It should be noted that although the density
¡ in (12.61) in general depends from x and y,
by (12.60) the pressure will be constant along
any horizontal plane. Now let us consider the
hydrostatic pressure at depth h below the sea
floor, where h is the maximum thickness of the
lithosphere in the PCM. Assuming that zD 0 at
the ocean surface and that w1 is the sea floor
depth at large distance from the ridge, we can
use the depth zc D h C w1 as a reference depth,
or compensation depth, for applying the isostasy
principle, which then reads: P(zc)D const. Let us
assume that the coordinate x measures distances
from the spreading ridge, so that direction y is

Fig. 12.12 Thermal isostasy of the oceanic lithosphere.
Thermal subsidence causes an increase of the ocean floor
depth. ¡a, ¡l, and ¡w, are respectively the densities of
the asthenosphere, the lithosphere, and the sea water.
Columns of material having unit cross-section over the
compensation depth zc (dark grey rectangle) must have
equal weight

along the ridge axis and can be ignored. Fur-
thermore, let h(x) and w(x) be respectively the
thickness of the lithosphere at offset x from the
spreading ridge and the corresponding depth of
the sea floor (Fig. 12.12). As shown in Fig. 12.9,
in so far as the age of the ocean floor increases, a
column of height h will include a larger fraction
of dense lithosphere and a corresponding smaller
fraction of the less dense asthenosphere. Further-
more, as x increases, at any depth below the sea
floor the lithosphere will have increasing density
because of thermal contraction. Consequently,
the increased weight of a column of material with
unit cross-section and height h above depth zc

must be compensated by a larger amount of water
between the column and the sea surface, that is by
a greater sea floor depth (Fig. 12.12).

At any time, the depth to the sea floor at dis-
tance x from the ridge must ensure the invariance
of P(zc). Therefore, isostatic equilibrium requires
subsidence of the oceanic lithosphere in so far
as its age increases. If e(x) is the elevation of
the ocean floor with respect to the asymptotic
depth w1 and d(x) is the displacement of the
bottom of the lithosphere above the compensation
depth zc, then the pressure P(zc) at any offset x is
given by:
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P.zc/ D g
2
4¡ww.x/C ¡ad.x/C

h.x/Z
0
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where ¡l0 is the lithosphere density at room tem-
perature (T0) and the integral is performed over
the lithosphere thickness at offset x. The con-
dition of isostatic equilibrium can be expressed
equating the P(zc) at offset x to the asymptotic
value:

¡w .w1 � e.x//C ¡ad.x/

C ¡l0
h.x/Z
0

.1 � ’T .x; �// d�

D ¡ww1 C ¡l0
hZ
0

.1 � ’T .1; �// d�

(12.63)

Parsons and Sclater (1977) used this condition
to determine the depth to the ocean floor. They
obtained the following expression for the eleva-
tion e(x) above the asymptotic depth:

e.x/ D 4’¡l0 .Ta � T0/ h
.¡l0 � ¡w/  2

1X
nD0

1

.2nC 1/2

�exp

�
�
�
R �

q
R2 C .2nC 1/2 2

�
x

�

(12.64)

where R is the Peclet number of the oceanic litho-
sphere and represents the ratio of heat advection
rate to heat diffusion rate (see Sect. 1.3). If v is the
full spreading rate, this dimensionless quantity is
given by:

R D vh

2›
(12.65)

For large offsets x, the depth to the sea floor
assumes values close to following asymptotic
value:

w1 D w0 C ’¡a .Ta � T0/ h
2 .¡a � ¡w/

(12.66)

where w0 is the depth to the ridge crest. This
expression gives the equilibrium depth of old
oceanic basins. Assuming w0D 2.6 km,˛D 3.1�
10– 5 K– 1, ¡a D 3, 300 kg kgm– 3, Ta – T0D
1,270 ıC, hD 100 km, and ¡wD 1,000 kg m–3,
we obtain from (12.66) an asymptotic depth
w1D 5.4 km. In the case of young crust, the
elevation above the asymptotic depth has the
approximate expression:

e.x/ Š ’¡l0 .Ta � T0/ h
2 .¡l0 � ¡w/

� 2’¡l0 .Ta � T0/
.¡l0 � ¡w/

r
2›x

 v
I
r
2›x

v
<< h

(12.67)

Therefore, the depth to the ocean floor will
increase with the square root of the distance from
the ridge or, equivalently, with the square root
of the age. These results have been confirmed
with high accuracy by the observed ocean floor
bathymetry. A good fit was obtained by Stein
and Stein (1992), who proposed the following
reference model, based on the PCM, for the
young and old ocean floor depths:

w.t/ D


2600C 365pt I t < 20 Ma
5651� 2473e�0:0278t I t 
 20 Ma

(12.68)

12.5 Driving Mechanism of Plate
Tectonics: Slab Pull
and Ridge Push

In the previous section, we have seen that the
thermodynamics of the oceanic lithosphere,
which includes both vertical diffusion and
horizontal advection of heat, determines lateral
variations of density and thickness. Although

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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these variations give rise to thermal subsidence,
they cannot be considered as the ultimate
cause of the instability that leads to subduction
initiation of old oceanic lithosphere. In fact, the
most reliable picture of the thermal history of
oceanic plates, which is given by PCM, predicts
asymptotic thermal and isostatic equilibrium as
t ! 1. In addition, a detailed petrological and
geophysical analysis of the density structure of
the oceanic lithosphere has shown that the depth–
averaged value of ¡ at tD 90 Ma (including 7 km
thick crust with lower density ¡D 2,900 kg m–3)
is between 3,310 and 3,312 kg m–3 (Afonso
et al. 2007). In this instance, the density contrast
with respect to the surrounding asthenosphere
would be �¡D 35.5 kg m–3, which is less
than the commonly assumed value, but more
interestingly the predicted depth-averaged
density would be slightly lower than the density
of the asthenosphere immediately below the
compensation depth zc (¡aŠ 3,330 kg m–3).
Therefore, a hypothetical gravitational instability
of the old oceanic lithosphere could hardly
explain the initiation of subduction, a process
that is still poorly known. However, differently
from the unsubducted lithosphere, slabs in the
upper mantle are cooler than the surrounding
mantle and have positive density contrasts up to
�200 kg m–3, although the portions subducted
at depths close to the 670 km discontinuity may
attain hydrostatic equilibrium (Ganguly et al.
2009). It is interesting to note that the model of
Ganguly et al. (2009) predicts that a fragment
of subducted lithosphere may have positive (i.e.,
upward directed) buoyancy in the uppermost
lower mantle. In fact, in the case of old slabs
the endothermic phase transitions of ringwoodite
into perovskite and magnesiowüstite occur at
depths significantly greater than the 670 km
discontinuity. In this instance, we have that
the �9 % negative density anomaly associated
with the mineralogical contrast relative to the
surrounding mantle, which gives a positive
contribution to buoyancy, would prevail over the
negative contribution associated with the thermal
anomaly (see Sect. 1.6).

The increased density of the subducted litho-
sphere is mostly due to the metamorphism of the

oceanic crust at high temperatures and pressures
and to the effect of phase transitions in the upper
mantle (see Sect. 1.6). In fact, shortly after down-
ward bending, the hydrated basalts and gabbros
of the oceanic crust are converted to their high–
pressure eclogitic phases, with release of substan-
tial amounts of H2O and a consequent increase of
the crustal density to values in excess of 3,500 kg
m–3 in a few Myrs (Ahrens and Schubert 1975;
Kirby et al. 1996; Peacock and Wang 1999).
Regarding the effect of phase transitions, we have
seen in Chap. 1 that the exothermic phase tran-
sition of the olivine phase in peridotite to wads-
leyite increases the density by �6 %. Therefore,
the olivine of a slab segment located just above
the 410 km depth discontinuity will be subject
to premature phase transition to wadsleyite. Con-
sequently, the density contrast and the negative
slab buoyancy will increase further at this depth.
Schubert and Turcotte (1971) estimated that the
total body force exerted on a descending slab due
to the shallower phase transition was nearly as
large as the force on the slab due to thermal con-
traction. Tassara et al. (2006) in a study about the
Nazca plate estimated an average density contrast
�¡ D ¡l – ¡a Š 90 kg m–3 in the asthenosphere,
while Ganguly et al. (2009) propose even larger
values of�¡, in the case of old plates, in the deep
asthenosphere just above the transition zone. In
summary, our present knowledge of the complex
thermochemical processes that accompany the
penetration of slabs into the mantle allows to
say that once started, the “subduction factory”
can proceed autonomously, driven by the negative
buoyancy and passive sinking of the slabs, at least
down to the transition zone.

Today most geoscientists accept the idea that
the pull exerted by the subducting slabs on the
tectonic plates is the dominant force driving
plate motions. This concept was originally
proposed by Richter (1973) on the basis of
theoretical arguments. However, it grew into
a widespread theory after that an empirical
analysis about the relative importance of the
different torques exerted on tectonic plates
confirmed that the negative buoyancy of slabs
played a major role (Forsyth and Uyeda 1975).
In their analysis, Forsyth and Uyeda (1975)

http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 12.13 Major stresses and forces exerted on tectonic
plates. Black arrows slab pull (fSP); violet arrows viscous
drag (£D); red arrows ridge push (£RP); blue arrows
friction stress (£F); brown arrows lift (£L) and suction

(£S). Velocities vA and vB are relative to the top transition
zone (O). It is assumed that the ridge R is at rest with
respect to the transition zone frame

considered the slab pull as a hydrostatic body
force having magnitude fsp(z) D [¡l(z)–¡m(z)]g
(by Archimedes’ principle), ¡m and g being
the mantle density and the gravity acceleration,
respectively.

An inventory of stresses and forces exerted
on tectonic plates is illustrated in Fig. 12.13.
According to Forsyth and Uyeda (1975), they can
be divided in driving forces determining plate
motions and resistive forces that oppose them.
The most important elements of the former class
are the slab pull, fsp, exerted by downgoing slabs
and the torque about the centre of the Earth aris-
ing from the lateral variations of thickness of the
oceanic lithosphere, which have been discussed
in the previous section and are associated with its
progressive cooling. The latter is often referred
to as ridge push, NRP, although the key factor
determining this torque is lithospheric thicken-
ing, not ridge elevation (Lister 1975; Hager and
O’Connell 1981; Harper 1984). According to
Harper (1984), the basal traction generated by
ridge push at a location r is given by:

TRP .r/ D g¡a’ .Ta � T0/ ›rt � prt .r/
(12.69)

wherert is the spatial gradient of ocean floor age
at r. Therefore, the traction associated with plate
thickening is higher in the case of slow-spreading
ridges. This expression allows to calculate the
total torque exerted on an oceanic plate as a con-
sequence of cooling. Integrating over the surface
S of the plate and applying Stokes’s theorem (see
Appendix 1), we obtain a total torque:

NRP D
Z
S

r � T RP dS D �pR
Z
S

rt � dS

D �pR
I
C.S/

tdr

(12.70)

where R is the Earth’s radius, C(S) is the bound-
ary of S, and the integral path is clockwise. The
last integral in (12.70) shows that although ridge
push is ultimately the result of hydrostatic forces,
it can be calculated as if it were a boundary
force, and this is effectively the way in which
it is usually considered. The term “ridge push”
comes from its appearance as a force exerted by
ridges, because clearly the youngest ocean floor
age always occurs at spreading centres.

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Now let us come to the resistive forces illus-
trated in Fig. 12.13. There are essentially two
classes of forces that oppose plate motions. The
most important of them is represented by the
basal drag, £D, exerted by the asthenosphere,
which is always opposite to the vector of rela-
tive velocity of the lithosphere with respect to
the asthenosphere. In the next chapter, we shall
prove that the magnitude of this shear stress
increases linearly with relative velocity, astheno-
sphere viscosity, and horizontal pressure gradient
in the asthenosphere. It is generally agreed that
the basal drag is larger beneath the continents
(e.g., Forsyth and Uyeda 1975), but some au-
thors argue that in the case of large continental
masses with deep roots this force could become
even dominant. For example, in his “continental
undertow” model Alvarez (2010) explains the
continued continental collision along the Alpine-
Himalayan belt by the active drag exerted by the
asthenosphere. The other class of resistive forces
is represented by frictional stress along strike-
slip or convergent plate boundaries. This class
also includes friction resistance associated with
slip of bending lithosphere beneath accretionary
wedges. The magnitude of these forces is small
(Forsyth and Uyeda 1975), thereby they can be
generally ignored in numerical modelling.

A class of forces that was not considered by
Forsyth and Uyeda (1975) but has great impor-
tance in the total force balance is represented by
the normal forces on the upper and lower surfaces
of slabs due to dynamic pressure variations in
the surrounding mantle. In reality, Forsyth and
Uyeda (1975) included in their comparative anal-
ysis another force that is also related to dynamic
pressure variations in the asthenosphere. This is
the suction stress, £S, exerted on the overriding
plate (Figs. 12.13 and 12.14) by the low-pressure
field existing beneath the accretionary wedge.

As pointed out by Tovish et al. (1978), the
action of a hydrodynamic lift £L on the subducting
lithosphere (Fig. 12.13) is necessary to explain
why subduction angles are much smaller than
90ı, despite the gravitational torque exerted on
slabs tends to align them with the vertical. Just as
in the case of the ridge push, a quantitative study
of hydrodynamic lifting requires fluid dynamics

Fig. 12.14 Isobars and pressure distribution in a subduc-
tion zone (From Tovish et al. 1978). The unit of pressure
is (v/(2˜3h))1/3, where v is the velocity of convergence and
˜3 is the non-linear viscosity of olivine

concepts that will be discussed in the next chap-
ter. For the moment, it is interesting to mention
the main result of the theoretical modelling per-
formed by Tovish et al. (1978), which is illus-
trated in Fig. 12.14. The isobar field associated
with the corner flows in a subduction zone shows
low pressure in the oceanic corner, increasing
from small suction at the base of the unsubducted
plate to small compression along the lower part of
the slab. Conversely, the magnitude of the pres-
sure field is considerably higher in the arc corner
and determines strong suction of the upper plate
and slab lift, both increasing toward the corner.

Problems

1. Build a continental lithosphere geotherm us-
ing a layered crustal model, assuming 10 km
upper crust, 10 km middle crust, and 15 km
lower crust. Use reasonable values for the
radiogenic heat rates of each layer and for the
other parameters. In particular, use data from
Hofmeister (1999) for the thermal conductiv-
ity;

2. Determine the thickness of the magnetic
crustal layers in continental and oceanic
regions;

3. Determine the vertical slip rate along a frac-
ture zone;

4. Write a computer program that converts an
ocean floor age grid into a basement paleo-
depth grid for any assigned time t in the
geologic past. Any point having age t0 < t
is removed from the output grid assigning a
NODATA_value �99999.0;
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5. Determine the shear stress of a 100 Ma old
and 100 km thick continental margin, which
deforms by simple shear, assuming a vertical
contact with the continental lithosphere. Re-
peat the exercise for a 20 Ma old continental
margin and comment the differences;
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13Flow and Fluid Behaviour
of theMantle

Abstract

With Chap. 13, we move from the lithosphere to the underlying mantle. In
fact, this chapter introduces the important theme of mantle dynamics, in
particular thermal convection and asthenosphere currents. Navier-Stokes
and energy balance equations are derived and discussed, along with the
classic Boussinesq approximation.

13.1 Continuity Equation

In this chapter, we are going to introduce the
fluid behaviour of the Earth’s mantle, in par-
ticular of the asthenosphere, and the influence
of mantle flows on plate tectonics. As we have
seen in Chap. 7, the fluid behaviour of solids is
described by rheological constitutive equations
that link stresses to strain rates rather than strains.
Therefore, differently from seismology, where
displacements and infinitesimal strains are the
basic kinematic variables, a formulation of the
laws that determine the long-term dynamics of
the mantle will require a kinematic framework
based on velocity fields and strain rates. In fluid
dynamics, just as in the more general context
of continuum mechanics (see Sect.2.1), the ma-
terial is ideally subdivided into small parcels
(or particles) of volume dV and it is assumed
that the intensive variables of the system, such
as velocity, density, temperature, and pressure,
change continuously from point to point through-
out the material. There are two different ap-
proaches to the formulation of the equations of

motion and conservation laws in fluid dynamics.
In the Eulerian formulation, the changes of any
intensive variable through time are considered at
arbitrary fixed locations r. For example, the fluid
velocity v(r,t), which represents the fundamental
kinematic variable, is viewed as the velocity of
the parcel that travels through a location r �
(x,y,z) at time t, while its time derivative @v/@t
represents the variation of velocity between the
particles that travel through r at times t and tC dt.
Therefore, in this representation the coordinates
of r are expressed in an inertial reference frame
and the velocity is a function of four indepen-
dent variables: v D v(x,y,z,t). Conversely, in the
Lagrangian representation we consider a single
particle P, which is assigned a path r D r(t)
from an initial location r0. In this instance, any
change of the intensive variables is referred to
a frame that is moving with P. For example,
we can consider the variations of temperature
or density of P while it is moving between two
locations. Substituting the parametric equations
r D r(t) into the velocity field v gives a ve-
locity vector v(t)D dr/dtD v(r(t),t) that depends
only from time. In the context of the Lagrangian
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representation, this quantity represents the veloc-
ity of the parcel P at time t. This approach is par-
ticularly useful if we want to formulate Newton’s
second law of motion for a fluid particle. In fact,
if ¡(t) is the particle density at time t, then ¡(t)v(t)
represents its momentum density. Therefore, in
the context of fluid dynamics, Newton’s second
law states that the rate of change of the momen-
tum density, ¡Pv, must be equal to the net force per
unit volume, f, exerted on a fluid particle P:

¡
dv
dt
D f (13.1)

Let qD q(x, y, z, t) be a scalar field in the
Eulerian representation and consider the equiv-
alent Lagrangian variable q(t)D q(x(t),y(t),z(t),t)
for an assigned path r(t)� (x(t),y(t),z(t)). The
total derivative dq/dt, which represents the rate
of change of q following the fluid, is called the
material derivative (or the substantive derivative)
of q. By the chain rule, we have that this quantity
can be expressed in terms of Eulerian variables:

dq

dt
D d

dt
q .x.t/; y.t/; z.t/; t/

D @q

@x

dx

dt
C @q

@y

dy

dt
C @q

@z

d z

dt
C @q

@t

D @q

@t
C v � rq (13.2)

This formula allows to determine the rate of
change of a Lagrangian variable from the spatial
and temporal variations of the equivalent Eulerian
quantity. We are now ready to consider one of
the most important differential equations of fluid
dynamics, which is an expression of the mass
conservation law. Let us consider an arbitrary
region of space, R, crossed by the fluid, fixed
with respect to an Eulerian coordinate system.
Some fluid enters this volume through its surface
S(R), while other fluid moves out. Clearly, at any
point on S(R) only the component of v along the
normal direction n contributes to fluid transfer in
or out of R. Therefore, if m D m(t) is the mass
of fluid in R at time t, then the outward mass flux
per unit time through S(R), which determines the
total rate of mass change, dm/dt, is given by:

dm

dt
D �

I
S.R/

¡v � dS (13.3)

However, the total rate of mass change in R
can be also expressed as follows:

dm

dt
D d

dt

Z
R

¡dV D
Z
R

@¡

@t
dV (13.4)

Therefore, applying Gauss’ theorem (see Ap-
pendix I) to (13.3) and equating to (13.4), we
obtain the identity:

Z
R

�
@¡

@t
Cr � .¡v/

�
dV D 0 (13.5)

Since this identity holds for any arbitrary re-
gion R, it is equivalent to:

@¡

@t
Cr � .¡v/ D 0 (13.6)

This equation is known as the continuity equa-
tion and represents a local differential form of the
mass conservation law. It should be noted that
in (13.6) both the density ¡ and the velocity v
are Eulerian variables. A Lagrangian version of
this equation can be obtained differentiating the
product ¡v in (13.6) and using (13.2). We obtain:

d¡

dt
C ¡r � v D 0 (13.7)

Therefore, when the Lagrangian density ¡

of any fluid particle remains constant through
time, so that d¡/dtD 0, then the velocity field is
solenoidal:

r � v D 0 (13.8)

In this instance, the fluid parcels may deform
and rotate, but they do not expand or shrink.
Consequently, the fluid is said to be incompress-
ible. In terms of Eulerian variables, the continuity
equation assumes now the form:

@¡

@t
C v � r¡ D 0 (13.9)
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This equation shows that the density may
locally change, even in the case of incompressible
fluids. The hypothesis of incompressibility has
been widely used in the modelling of mantle flow.
It implies that the volume dV of each mantle
parcel remains invariant, thereby it is assumed
that changes in pressure do not determine neither
adiabatic compressional heating nor adiabatic ex-
tensional cooling during mantle convection.

13.2 Navier-Stokes Equations

Now we are going to formulate the equations of
motion for a fluid in the framework of the Eule-
rian representation. To this purpose, we can start
from the Cauchy momentum Eq. (7.50), taking
into account that the acceleration of a volume
element must be calculated as the material deriva-
tive of the velocity, a D dv/dt, and that gravity is
the unique relevant body force in the context of
mantle dynamics. Therefore, if £ D £(r,t) is the
stress field and fD ¡g represents the gravitational
body force density, applying (13.2) we have that
in index notation the Eulerian version of the
equations of motion assumes the form:

¡

�
@vi
@t
C @vi
@xj

vj

�
D @£ij

@xj
C ¡gi (13.10)

These equations are completely general (ex-
cept for the assumption of a specific body force
field) and do not depend from a particular rheol-
ogy of the material. To be used in the solution of
geodynamical problems, they must be combined
with a constitutive rheological equation that spec-
ifies the relation existing between stress, kine-
matic variables, which now are represented by
strain rates, intrinsic parameters of the material,
and state variables (see Sect. 7.4). In the case
of an incompressible Newtonian fluid (see Sect.
7.4), it is possible to show that the constitutive
equation reads (e.g., Ranalli 1995):

£ij D �p•ij C 2˜P©ij D �p•ij C ˜
�
@vi
@xj
C @vj
@xi

�

(13.11)

where ˜ is the viscosity and p is the thermody-
namic pressure. As the fluid is incompressible,
by (13.8) we have that the trace of the strain
rate tensor is zero. Therefore, taking the trace of
(13.11) we obtain:

p D �1
3
£kk (13.12)

This is an interesting relation that links the
thermodynamic pressure of incompressible flu-
ids, which must satisfy an equation of state that
involves temperature and density, to an invariant
of the stress tensor. In particular (13.12), estab-
lishes the equivalence between thermodynamic
pressure and mean mechanical pressure in the
case of incompressible fluids.

Finally, combining (13.11) and (13.10) and
taking into account of (13.8) gives the equations
of motion for an incompressible Newtonian fluid
with uniform viscosity:
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(13.13)

Equations (13.13) are known as Navier-Stokes
equations for an incompressible fluid. The first
two terms at the right-hand side of these equa-
tions represent surface forces (per unit volume)
exerted on a fluid particle. They are, respectively,
the pressure force, and the viscous force. More
general equations of motion for Newtonian fluids
can be written releasing the incompressibility
constraint. The most general form of the constitu-
tive equation describing a Newtonian fluid reads
(e.g., Schubert et al. 2004):

£ij D �p•ij C 2˜P©ij C œP©kk•ij (13.14)

where œ is called second viscosity. Note that
£0
ij D 2˜P©ij C œP©kk•ij represents the analog of

the deviatoric stress introduced in Chap. 7 (see
Eq. 7.26). The average pressure associated with
the stress tensor is:

http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
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p � �1
3
£kk D p � 2

3
˜P©kk � œP©kk

D p �
�
œC 2

3
˜

�
P©kk � p � kB P©kk

(13.15)

The quantity kB is referred to as bulk viscosity and
represents a measure of dissipation after volumet-
ric changes. When kBD 0, thereby œD�2˜/3,
the thermodynamic pressure p coincides with the
average mechanical pressure p. This is known as
Stokes’ condition. As mentioned above, p D p

also when P©kk D r � v D 0, that is, when the fluid
incompressible. Substitution of the constitutive
Eqs. (13.14) into (13.10) allows to write the most
general form of the equations of motion for a
Newtonian fluid:
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(13.16)

In many cases, the term containing the bulk
viscosity kB in (13.15) is considered very small
and set to zero. This is sometimes expressed by
saying that the time rate of change in relative
volume (i.e., the trace of the strain rate tensor)
is negligible, so that the volume change is ap-
proximately elastic. In this hypothesis, the Stokes
condition holds and (13.16) reduces to:
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A further simplification can be obtained as-
suming an incompressible flow (@vk/@xk D 0).
This hypothesis gives:
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We note that this form of the equations of
motion is different from that of Navier-Stokes Eq.
(13.13), despite the fluid is considered incom-
pressible in both cases. The reason is that Eq.
(13.13) holds only under the additional hypoth-
esis that the viscosity ˜ is constant.

Navier-Stokes equations and the other variants
of the equations of motion for Newtonian fluids
are second-order non-linear partial differential
equations in the velocity v. Such a non-linearity
originates instability, chaos, and turbulence in
the velocity fields and has represented a major
problem in the application of these equations to
the study of fluid dynamics. Therefore, much
of our knowledge about the physics of fluids
comes from the direct observation of natural
phenomena or from laboratory experiments. In
reality, few analytical solutions of these equa-
tions have been found so far, thereby it was
only with the advent of computer science and
the design of high–speed computer architectures
that meaningful (non-trivial) numerical solutions
were found. Chorin (1968) was the first to pro-
pose a solution to Eq. (13.13) using a finite-
difference approach. Today the technique used by
Chorin is known as the time-dependent method,
which consists into a discretization of the time t
and an iteration over time towards a steady-state
flow field that is approached after a large num-
ber of time steps. Furthermore, a new scientific
discipline was born, computational fluid dynam-
ics (CFD), which combines advanced computer
algorithms, numerical techniques, and theoretical
fluid physics principles to perform numerical
experiments, that is, graphical computer simula-
tions of fluid flow that represent an inexpensive
“virtual laboratory” for the study of fluid dy-
namics. A good introduction to this interesting
subject can be found in the books of Ferziger
and Perić (2002), Chung (2002), and Versteeg
and Malalasekera (2007). In the more specific
field of mantle and core dynamics, several open-
source CFD tools have been developed during
the last years, which can be used to test models
of mantle flow or geodynamo. Most of them are
freely available from the Computational Infras-
tructure for Geodynamics (CIG), an organization
that supports the developing and maintaining of
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computational geophysics software (available at:
http://www.geodynamics.org/).

13.3 Energy Balance

The Navier-Stokes equations (or other more com-
plex versions of the equations of motion for
Newtonian fluids) and the continuity Eq. (13.6)
form a system of four differential equations in
the five unknowns p (thermodynamic pressure),
(vx,vy,vz) (velocity), and ¡ (density). Therefore, at
least an additional equation is needed to solve the
system (either numerically or analytically). We
note that thermodynamic pressure and density are
not independent each other, because they must
satisfy an equation of state together with the
temperature T:

f .¡; p; T / D 0 (13.19)

This introduces an additional equation but also
an extra unknown, the temperature T. With a total
of six unknowns, we now need to solve a system
of six differential equations. However, in addition
to mass conservation, momentum conservation,
and the state Eq. (13.19), it must be satisfied the
law of conservation of energy, which then com-
pletes the set of equations that are needed to solve
any geodynamic problem. Now we are going to
consider in detail the equation corresponding to
this conservation law.

The thermal structure of the mantle is essen-
tially determined by the convective transport of
heat. This concept is easily proved noting that
if the continental or oceanic geotherms contin-
ued downwards below the LAB, a large part of
the asthenosphere would be molten. Therefore,
the temperature in the sub-lithospheric mantle
must increase with depth approximately along an
adiabat. Assuming that convection is sufficiently
vigorous, mantle rocks that are carried to higher
depth experience larger hydrostatic pressure by
the overlying material and are compressed adi-
abatically, that is, without substantial conductive
heat transfer to or from the surrounding mantle.
Accordingly, their temperature increases only by
adiabatic heating. The opposite occurs when hot

Fig. 13.1 Shearing of a fluid bounded by two rigid plates
in relative motion with velocity v. Arrows show the veloc-
ity field in the fluid, which varies between v and zero

mantle rocks are carried to shallow depth. In this
case, the rocks experience a decrease of pressure
and cool adiabatically in so far as they travel
towards the LAB.

The adiabatic temperature gradient in the up-
per mantle has been determined in Sect. 1.3 (Eq.
1.8). However, as mentioned in Sect. 13.1, if
the mantle material is considered incompress-
ible, variations of hydrostatic pressure cannot
change the volume of a small patch of convecting
asthenosphere. Consequently, in this hypothesis
the adiabatic temperature gradient is zero. To
have an idea of the error associated with this
approximation, we recall that the temperature
gradient determined in Sect. 1.3 for the upper-
most asthenosphere was (@T/@z)SŠ 0.5ıK km� 1.
At depth exceeding 300 km, a more appropriate
values is 0.3ıK km�1, but this is still a significant
variation of temperature with depth. Therefore,
the approximation appears justified only if we
limit our attention on upper mantle small-scale
convection.

The most general equation describing the local
energy balance in the fluid mantle must account
for the transport of heat both by conduction
and by advection, as well as for the effect of
frictional heating associated with deformation.
Therefore, we are looking for an equation that
generalizes the heat diffusion Eq. (12.15), which
only describes non-steady conduction of heat. To
understand the contribution of frictional heating
to the energy balance, let us consider a fluid sheet
of thickness h and area A, which is sheared by
the relative motion of two rigid plates as shown
in Fig. 13.1. The volume of the fluid sheet is
V D Ah. The fluid at contact with the fixed plate
has velocity zero, while at the upper boundary
the fluid velocity coincides with the velocity v

http://www.geodynamics.org/
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_12
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of the overlying plate. This is a consequence of
a fundamental empirical law of fluid dynamics
that is known as no-slip boundary condition (e.g.,
Pozrikidis 2009), which states that in a fluid the
tangential component of the velocity field is con-
tinuous across a solid boundary. Accordingly, the
average strain rate through a cross-section of the
fluid sheet in Fig. 13.1 will be: P© D v=h. If £ is
the shear stress that the overlying plate exerts on
the fluid, then the total force is F D £A, thereby
the power dissipated by shearing is: PW D F v D
£AhP© D £V P©. In general, the power dissipated
in a fluid by viscous deformation is referred to
as viscous dissipation and is associated with an
irreversible conversion of mechanical energy into
temperature increases.

If w is the work per unit volume associated
with the viscous flow, than the viscous dissipation
function,ˆ, has the expression:

ˆ D Pw D £0
ij

@vi
@xj

(13.20)

where £0 is the deviatoric stress tensor. Substi-
tuting the deviatoric part of expression (13.14)
gives:
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�
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�
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Therefore, both dynamic and second viscosities
lead to dissipation in a fluid. Now we are ready
to formulate the law of energy conservation for a
fluid parcel. Differently from the heat diffusion
Eq. (12.15), the energy balance will take into
account of the advection of material, thereby the
partial derivative of the temperature will be sub-
stituted by a material derivative. In general, the
conservation of energy of a mass of fluid requires
that the rate of change of the kinetic energy, PK,
plus the rate of change of the internal energy, PU ,
be equal to the mechanical power input, PW , plus
the rate of heat produced within or entering the
body, PQ:

PK C PU D PW C PQ (13.22)

The rate of change of the kinetic energy can be
obtained taking the total derivative of the volume
integral (2.19). If § is an arbitrary scalar field,
then the material derivative of the volume integral
of § over a region R is given by:
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Therefore, using the continuity Eq. (13.7), for
the kinetic energy we obtain:

PK D d

dt

1
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¡vk PvkdV (13.24)

Let us consider now the internal energy U,
which can be written as follows:

U.t/ D
Z
R

¡ .r; t/ u .r; t/ dV (13.25)

where u is the internal energy per unit mass.
Using (13.23) we obtain for the rate of change
of the internal energy:
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(13.26)

The total energy content of the region of fluid
R may change as a consequence of flow through
its surface S(R), heat conduction, work done by
the gravity field or by surface tractions, and ra-
dioactive heat production. The mechanical power
input arises from surface forces applied along
S(R) and from the gravity force exerted on each
volume element in R. Let us consider first the
surface force exerted on a surface element dS
with orientation n. If T(n) is the traction, then the
power input on dS is given by:

http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_2
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d PW D T .n/ � vdS D vi �ij nj dS

D ��ij vj
�
nidS D .£v/ � dS (13.27)

where we have applied Cauchy’s theorem (7.3)
and the symmetry condition (7.2) for the stress
tensor. Therefore, using Gauss’ theorem (see Ap-
pendix I) we see that the power done by surface
forces on S(R) is given by:
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The total mechanical power on R is then
calculated as follows:
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where we have used the Lagrangian version of
the equations of motion (13.10). Finally, the heat
power associated with the heat flow q into R
and with the radiogenic heat H can be obtained
easily generalizing (12.10) through inclusion of
the contribution of H:

PQ D
Z
R

�
kr2T C ¡H 	 dV (13.30)

The energy balance and conservation law can
be formulated by substituting the expressions
(13.24), (13.26), (13.29), and (13.30) into (13.22)
and taking into account that the equation holds for
any arbitrary region R. Therefore:

¡Pu D £ij @vj
@xi
C kr2T C ¡H (13.31)

The first term at the right-hand side of (13.31)
can be expressed in terms of viscous dissipation
function and pressure power input. In fact, by the
symmetry of the stress tensor we have that:
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Therefore, the conservation law (13.31) can be
rewritten as follows:

¡Pu D �pr � vCˆC kr2T C ¡H (13.33)

The internal energy density u in (13.33) is
not independent from the temperature T and the
pressure p, thereby it is useful to find a form of the
energy conservation law such that u is substituted
by an expression of T and p. To this purpose,
we can use the first law of thermodynamics,
which states that in absence of mass exchange
the infinitesimal variation of internal energy, du,
of a region is the sum of the energy per unit
mass absorbed in the from of heat, •q, and the
infinitesimal work done by the surrounding on the
system, •w:

du D •q C •w (13.34)

Although irreversible processes occur in
a fluid, for example viscous dissipation, a
simple expression for du can be obtained only
assuming that the transformation is quasi-static
(i.e., reversible), thereby frictional heating and
other irreversible processes are considered of
secondary importance. In this hypothesis, the
first law of thermodynamics can be rewritten as
follows:

du D •q � pd (13.35)

where D 1/¡ is the specific volume (volume per
unit mass). The heat per unit mass adsorbed by
the system can be expressed as follows:

http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_7
http://dx.doi.org/10.1007/978-3-319-09135-8_12
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where cp is the specific heat per unit mass at
constant pressure (see Eq. 1.5), ’ is the coef-
ficient of thermal expansion (Eq. 1.3), and s is
the specific entropy (entropy per unit mass). In
this expression, we have assumed again that the
process is reversible, so that •q D Tds by the
second law of thermodynamics. Substituting into
(13.35) gives:

du D cpdT � ’T
¡
dp � pd (13.37)

Now, by the continuity Eq. (13.7), the material
derivative of the specific volume can be calcu-
lated as follows:
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Therefore, by (13.37) the material derivative
of the internal energy per unit mass will be
given by:
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D cp dT
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Finally, substituting into (13.33) gives the final
canonical form of the energy balance equation:

¡cp PT � ’T Pp D ˆC kr2T C ¡H (13.40)

This equation holds in the hypothesis that the
coefficient of thermal conductivity k is constant
throughout the mantle. In the more general case
of variable k, the law of conservation of energy
will assume the following form:

¡cp PT � ’T Pp D ˆC @
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(13.41)

13.4 Flow in the Asthenosphere

Now we are going to consider some simple ap-
plications of the equations of fluid dynamics to
the study of the Earth’s mantle. In particular, the
objective is to provide physical insights regarding
the behavior of the upper mantle, which has direct
influence on plate motions, despite the extreme
computational difficulty associated with the nu-
merical solution of these equations in more real-
istic applications. In the following, we will focus
our attention on the Earth’s asthenosphere, and
we will search analytic solutions of the Navier-
Stokes equations in simple situations, such that
thermodynamic considerations can be neglected.
Let us assume that that a one-dimensional steady
flow of asthenosphere material, considered as a
Newtonian incompressible fluid, exists in a space
of constant thickness h between the lithosphere
and the transition zone (Fig. 13.2).

We also assume that the lithosphere moves at
constant velocity v0 relative to the transition zone
(Fig. 13.2). As discussed in the previous section,
the no-slip boundary condition requires that the
velocity field vectors just below the LAB has
magnitude v0, while the velocity is zero at the
lower boundary with the transition zone. With the
conventions used in Fig. 13.2, a velocity vector
v has components v� (vx(z),0,0) for 0�z �h.
Therefore, the stress tensor has components:

£ D
2
4 �p 0 ˜@vx=@z

0 �p 0

˜@vx=@z 0 �p

3
5 (13.42)

In this expression, the pressure p is assumed
to be a function of x and z only: pD p(x,z).

Fig. 13.2 A Poiseuille-Couette viscous flow in the as-
thenosphere (in the case of active drag)

http://dx.doi.org/10.1007/978-3-319-09135-8_1
http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 13.3 Couette flow (a) and Poiseuille flow (b)

Furthermore, for a stationary incompressible flow
it results: @vx/@xD @vx/@tD 0. Accordingly, the
Navier-Stokes equations reduce to the following
simple equations:
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(13.43)

The second equation follows from the hypoth-
esis that the velocity field is horizontal. It simply
says that the variations of pressure with depth are
hydrostatic, thereby @p/@x is independent from z
and the pressure field has the form:

p .x; z/ D f .x/C g
zZ
0

¡.z/d z (13.44)

Therefore, the first equation can be rewritten
as an ordinary second-order differential equation:
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Finally, using the no-slip boundary conditions:
vx(0)D v0 and vx(h)D 0, we have the following
simple solution:
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The solution (13.46) states that a velocity
profile through the asthenosphere has a parabolic
shape, granted that the assumptions done are
valid. This kind of flow and its variants are known

as Poiseuille-Couette flows and have been used
by several authors, especially in recent years, to
model flows in the asthenosphere (e.g., Schubert
and Turcotte 1972; Parmentier and Oliver 1979;
Conrad et al. 2010; Höink and Lenardic 2010;
Höink et al. 2011; Natarov and Conrad 2012).
When @p/@x¤ 0, the flow is said to be pressure
driven, whereas for @p/@xD 0, the magnitude
of vx decreases linearly with depth (Fig. 13.3a)
and we say that the flow is a Couette flow.
Finally, when a non-zero horizontal pressure gra-
dient exists but v0D 0, then the velocity profile
is parabolic and symmetric with respect to the
plane zD h/2. This kind of pressure-driven flow is
called a Poiseuille flow (Fig. 13.3b) and is always
in the direction of decreasing pressure.

By (13.46), we note that the effect of an in-
creasing viscosity is a tendency towards a Couette
flow for any assigned pressure gradient:
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It is useful to calculate the net areal flux per
unit area through a vertical cross-section in the
asthenosphere. This quantity coincides with the
average horizontal velocity in the asthenospheric
channel and is given by:
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Assuming hD 300 km, an average viscosity
˜D 1020 Pa s, and a pressure gradient of 10 kPa
km�1, we have that the pressure-driven contribu-
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tion to the net areal flux, which coincides with
the first term at the right-hand side of (13.48), is
�2.50� 10�10 ms�1D 8 mm year�1. With a plate
velocity v0D 50 mm year�1, approximately ¼ of
the total areal flux would come from pressure
gradients, but for @p/@xD 1 kPa this contribution
would be reduced to �3 %. Therefore, granted
that the average viscosity assumed for the as-
thenosphere is correct, the pressure-driven flow
becomes important only when the horizontal gra-
dient of pressure is significant. Substantial pres-
sure gradients in the asthenosphere have been hy-
pothesized since the 1990s (e.g., Phipps Morgan
et al. 1995). More recently, lateral pressure varia-
tions of 7,500–8,000 Pa km�1 have been reported
for the East Pacific Rise region (Conder et al.
2002), and possibly in excess of 100 kPa km�1

along the Tonga trench (Conder and Wiens 2007).
An interesting consequence of the asthenospheric
flow is represented by the drag, £D, exerted on the
overlying tectonic plates. This is easily calculated
from (13.42) and (13.46):
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Using the same parameters of the example
above, we see that the viscous drag term v0˜/h
gives a contribution of �0.53 MPa to the total
drag, while with a pressure gradient of 10 kPa
km�1 the pressure-driven component is three
times larger: (h/2)@p/@x�1.5 MPa. Therefore, for
˜D 1020 Pa s, substantial variations of pressure in
the asthenosphere generate active drag of tectonic
plates. The expression (13.49) shows that when v0

and @p/@x have opposite sign (as in Fig. 13.2), the
active pressure-driven drag opposes the passive
viscous stress, thereby an equilibrium velocity
exists such that £DD 0. This is given by:

veq D � h
2
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(13.50)

When @p/@xD 10 kPa km�1 and using the
same asthenosphere thickness and average
viscosity of the examples above, we have that
veqD 4.5� 10�9 ms�1D 142 mm year�1. This

Fig. 13.4 Poiseuille-Couette flow and counterflow (this
is an example of passive drag)

is the velocity (relative to the transition zone
reference frame) at which a tectonic plate,
initially at rest, would be accelerated by an
asthenospheric pressure-driven flow. When v0

and @p/@x have the same sign, the pressure-
driven drag reinforces the viscous stress and the
flow assumes the shape illustrated in Fig. 13.4.
This is called the asthenospheric counterflow
(Schubert and Turcotte 1972; Chase 1979) and
represents a hypothetical situation that does not
find confirmation in the observed pattern of
gravity anomalies and dynamic topography (e.g.,
Turcotte and Schubert 2002).

Another interesting feature of the simple
model discussed above is the predicted amount of
shear heating. From (13.20) and (13.42) we have
that the viscous dissipation function is given by:

ˆ.x; z/ D £0
ij

@vi
@xj
D ˜

�
@vx
@z

�2

D ˜
�
1

˜

�
z � h

2

�
@p

@x
� v0
h

�2
(13.51)

In the case of a Couette flow this expression
reduces to:

ˆ D ˜ v20
h2

(13.52)

Now let us consider the law of conservation
of energy (13.41), which now assumes the simple
form:

ˆC k @
2T

@z2
D 0 (13.53)
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Substituting (13.52) gives:

˜
v20
h2
C k @

2T

@z2
D 0 (13.54)

This equation can be integrated immediately
assigning the boundary conditions: T(0)D T0 and
T(h)D Ta. The result is:

T .z/ D T0 C z

h

�
Ta � T0 C ˜v20

2k

�
� ˜v20
2k

z2

h2

(13.55)

It is useful to rewrite this expression in terms
of dimensionless temperature ratio. We have:

™.z/ � T .z/� T0
Ta � T0 D

z

h

�
1C ˜v20=.2k/

Ta � T0
�

� z2

h2

�
˜v20=.2k/

Ta � T0
�

(13.56)

Therefore, in the case of a pure Couette flow,
the temperature distribution in the asthenosphere
is governed by the single dimensionless pa-
rameter (˜v2

0/(2k))/(Ta� T0). The dimensionless
quantity:

Pr � ˜

¡›
(13.57)

is a characteristic of the fluid and represents the
ratio of the momentum diffusivity (or kinematic
viscosity) ��˜/¡ to the thermal diffusivity ›. It
is called Prandtl number and says how much
rapidly a fluid diffuses its momentum relative
to the heat diffusion rate. Another dimensionless
parameter that describes a fluid property is the
Eckert number, which represents the ratio of
kinetic to thermal energy:

E � v20
cp .Ta � T0/ (13.58)

Combining the definitions (13.57) and (13.58),
we see that the temperature distribution in the
asthenosphere is governed by the dimensionless
parameter ½PrE:

™.z/ D z

h

�
1C 1

2
PrE

�
� z2

h2

�
1

2
PrE

�

(13.59)

Plots of the expected temperatures in the
asthenosphere for various plate velocities are
shown in Fig. 13.5. When v0D 0 (PrED 0),
there is no frictional heating and the geotherm
is a straight line. The temperatures in excess
of this linear trend are associated with viscous
dissipation. In terms of dimensionless quantities,
the excess temperature due to frictional heating
is given by:

•™.z/ D 1

2
PrE

z

h

�
1 � z

h

�
(13.60)

The excess temperature has a maximum
•™maxD (1/8)PrE for z/hD½. For example, for
v0D 50 mm year�1 (PrED 0.21) we would
have •TmaxD 7.86 K at zD 150 km below the
LAB. In this example, the maximum increase of
temperature due to shear heating would be only
�2.6 % of the temperature difference between
the base and the top of the asthenospheric
channel. However, if the average viscosity in
the asthenosphere were one order of magnitude
greater, say ˜D 1021 Pa s, a fast moving plate
that travels at v0D 100 mm year�1 would
trigger an asthenospheric flow with PrED 8.38.
Accordingly, the maximum excess temperature
would be �314 K and we would have downward
heat loss at the base of the asthenosphere! This
simple thermodynamic consideration suggests
that an appropriate value of the average viscosity
in the asthenosphere should not exceed 1020 Pa
s. This value is confirmed by recent accurate
estimates based on surface wave tomography and
seismic anisotropy (Conrad et al. 2007; Conrad
and Behn 2010), which give an average upper
mantle viscosity ˜umD 0.5–1.0� 1021 Pa s, and
a value of asthenosphere viscosity ˜D 0.5–
1� 1020 Pa s. Consequently, there is strong
evidence that active asthenospheric drag of
tectonic plates associated with pressure-driven
flows represents a real mechanism explaining
the non-equilibrium states discussed in Sect.
6.7. The lateral variations of pressure that

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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Fig. 13.5 Predicted temperatures in the asthenosphere in
the case of Couette flow. Here z is the depth starting
from the LAB and the curves refer to the case v0 D 0
(dashed line), v0 D 50 mm year�1 (solid black line),

v0 D 100 mm year�1 (red line), and v0 D 150 (green line).
The other parameters are: T0 D 1,450 K, Ta D 1,750 K,
cp D 1 kJ kg�1 K�1, k D 4 W m�1 K�1, ¡D 3,450 kg
m�3, ˜D 1020 Pa s, and h D 300 km

originate pressure-driven flows are associated
with a variety of sources of upper mantle
inhomogeneity. The first, obvious, possibility is
represented by thermo-chemical discontinuities
at the COBs or close to the cratonic roots.
This edge-driven convection is a form of small-
scale mantle convection that explains several
interesting geological phenomena (King and
Anderson 1998 and refs. therein), such as surface
topography anomalies, uplift of rift flanks, and
the anomalous igneous activity along some
COBs (see Sect. 1.3). Another, much more
important, source of upper mantle inhomogeneity
is represented by mantle plumes, which could
be responsible for large-scale flows in the
mantle and the acceleration of continents of
the dimensions of India (Cande and Stegman
2011; Becker and Faccenna 2011). It is likely
that in the next future we will be able to
improve our knowledge about these interesting

phenomena through a better comprehension of
the spatial distribution and kinematics of mantle
heterogeneity.

13.5 Stream Functions
and Two-Dimensional Flows

Let v D v(r,t) be the instantaneous velocity field
at a fixed time t and let r0 be an arbitrary space
point. Starting from r0, we can build a parametric
curve rD r(—) such that:

dr

d—
D v .r .—/ ; t/ (13.61)

A curve based on (13.61) is referred to as a
streamline. Velocity vectors are always tangent to
these lines, which are commonly used to illustrate
the instantaneous pattern of velocity in a fluid

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 13.6 Parabolic
streamline pattern,
resulting from
superposition of a linear
flow and a source S. It is
clearly visible a stagnation
point close to S. This
pattern is often used as a
model of the interaction
between a mantle plume
and the large-scale
asthenospheric flow (Sleep
1987, 1990)

(Fig. 13.6). The kinematic pattern at any given
time t may include stagnation points, that is,
points where vD 0, either in the fluid interior
or along its boundary. Two or more streamlines
may meet at a stagnation point, as illustrated in
Fig. 13.6. In general, streamlines can be closed
lines, extend to infinity, or terminate at stagnation
points. It should be noted that the path r D r(t)
of a fluid parcel does not coincide, in general,
with any streamline unless the motion is steady. A
flow field is said to be two-dimensional when the
velocity v(r,t) is at any point normal to some fixed
direction. In this instance, it is always possible to
choose a Cartesian reference frame such that v(r)
has components (u(r),0, (r)) at any point r. Two-
dimensional velocity fields in fluid materials have
some interesting properties that greatly simplify
the solution of the Navier-Stokes equations when
the fluid can be considered incompressible.

For a two-dimensional incompressible fluid,
the mass conservation Eq. (13.8) reduces to:

@u

@x
C @

@z
D 0 (13.62)

This condition is clearly satisfied if u and are
derivatives of a scalar field §D§(x,z,t):

u D @§

@z
I D �@§

@x
(13.63)

Fig. 13.7 Areal flux through a path between two points
A and B

The function § is termed the stream func-
tion and represents a valuable tool for solving a
number of problems in geodynamics. By (13.63),
we see that the stream function associated with
any two-dimensional flow is not unique, because
an arbitrary constant may be added to § that
generates the same velocity field (u, ). Now let
us consider an arbitrary path in the (x,z) plane
between two points A and B (Fig. 13.7). At any
point along this curve, the versor normal to the
tangent vector drD (dx,dy) is given by:

n D
�
dy

dr
;�dx
dr

�
(13.64)

The areal flux across the path is defined as
the line integral of the normal component of the
velocity along the path. By (13.63) and (13.64),
this quantity is given by:
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ˆ.A;B/ D
BZ
A

.v � n/ dr D
BZ
A

.ud z- dx/

D
BZ
A

�
@§

@z
d zC @§

@x
dx

�

D
BZ
A

r§ � dr D
BZ
A

d§ D §.B/� §.A/

(13.65)

Therefore, the change of the stream function
between two points is equal to the areal flow rate
across any path linking the two points. In the
case that the path coincides with a streamline,
there is no flux through the curve, because by
definition the velocity is always tangent to a
streamline. Consequently, a fundamental prop-
erty of the stream function is that it is invariant
along streamlines. Another important property is
associated with the vorticity of the velocity field.
In general, this is a vector field defined as follows:

¨ D r � v (13.66)

In the case of case of a two-dimensional field,
this is a vector in the invariant y direction:

¨ D �j

�
@v

@x
� @u

@z

�
� j¨y (13.67)

Therefore, substituting the definitions (13.63)
it results:

¨y D @2§

@x2
C @2§

@z2
D r2§ (13.68)

This expression implies that when the stream
function is a harmonic function, then the flow is
irrotational, thereby v is a potential field. Now
let us consider the Navier-Stokes Eq. (13.13) and
assume that the inertial term �Pv can be neglected
because of the very low accelerations. In this in-
stance, introducing the variable P(x, z) � p(x, z)–
¡gz, we have that in the two-dimensional case the
equations can be rewritten as follows:

8̂
<̂
ˆ̂:
�@P
@x
C ˜

�
@2u

@x2
C @2u

@z2

�
D 0

� @P
@z
C ˜

�
@2

@x2
C @2

@z2

�
D 0

(13.69)

Substituting the stream function gives:

8̂̂
<
ˆ̂:
�@P
@x
C ˜

�
@3§

@x2@z
C @3§

@z3

�
D 0

� @P
@z
� ˜

�
@3§

@x3
C @3§

@z2@x

�
D 0

(13.70)

We can eliminate the pressure term from these
equations and obtain a single differential equation
for§ taking the partial derivative of the first equa-
tion with respect to z and the partial derivative
of the second equation with respect to x. Then,
subtracting the resulting equations gives:

@4§

@x4
C 2 @4§

@x2@z2
C @4§

@z4
D r4§ D 0 (13.71)

Therefore, the stream function is biharmonic.
It is common practice in geodynamics to display
flow fields through sets of streamlines, which are
usually chosen in such a way that the variation
•§ between neighbouring streamlines is constant.
With this convention, in so far as the distance d
between two streamlines increases, the velocity
decreases, because v	 •§/d. Finally, it is of-
ten useful to express the components of a two-
dimensional velocity field in polar coordinates
(r,™). In this instance, the relation between stream
function and velocity components (ur,u™) is:

ur D 1

r

@§

@™
I u™ D �@§

@r
(13.72)

Two-dimensional modelling through stream
functions has been widely used in geodynamics
because of its simplicity and because some com-
plex flows can be represented by superposition
of elementary model flows. The most simple
model is a uniform flow in which the streamlines
are parallel each other (Fig. 13.8). Source and
sink flows are purely radial outward or inward
flows, respectively. The velocity is everywhere
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Fig. 13.8 Basic flow
fields: uniform flow
(top-left), source monopole
(top-right), vortex flow
(middle-left), sink (middle
right), and doublet flow
(bottom)

radial and constant along circles about the source
or the sink. In a vortex flow the streamlines
are concentric circles about a point (Fig. 13.8).
Finally, doublet flows result from the combination
of a source SC and a sink S�with equal strength.
In this case, the streamlines are circles passing
through SC and S�, as illustrated in Fig. 13.8. It
is a simple exercise to find the stream function
associated with these basic flows. In the case of a
uniform flow in the x direction, we have:

@§

@z
D u I @§

@x
D 0 (13.73)

Integrating these equations gives:

§ D vz (13.74)

In polar coordinates, this expression assumes
the form:

§ .r; ™/ D vr sin ™ (13.75)

Let us consider now source flows. In this case,
the velocity v D v(r) D ur and we can assume

that the source emits fluid isotropically at a steady
volumetric flowrate Q. Therefore, for any circle
C(r) about the source we must have:

Q D
I
C.r/

vd` D 2 rur (13.76)

Accordingly, the velocity field in polar coordi-
nates will be given by:

ur D Q

2 r
I u™ D 0 (13.77)

Finally, by (13.72) we have for the stream
function:

§ D Q

2 
™ (13.78)

In the case of a sink flow, (13.78) holds with
a strength Q <0. Now let us turn to the vortex
flows, in which the radial pressure gradient is
always zero. Clearly, urD 0 for this class of
flows, and the velocity then depends only on the
distance from the vortex center. Therefore, in this
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Fig. 13.9 Method for calculating the stream function of
a doublet flow at a point P by superposition of elemental
source and sink stream functions

case § does not depend from ™ by (13.72). In the
simplest case, the tangential component of v is
given by:

u™ D K

r
(13.79)

where K is a constant whose sign discriminates
between clockwise and counterclockwise vor-
tices.

Solving (13.72) from this velocity field gives:

§ D �K ln r (13.80)

Finally, let us consider a doublet flow. As
illustrated in Fig. 13.9, the stream function results
from the superposition of the individual stream
functions associated with the source and with the
sink:

§ D Q

2 
.™2 � ™1/ (13.81)

Taking the tangent of (13.81) gives:

tan

�
2 §

Q

�
D tan.™2 � ™1/ D tan ™2 � tan ™1

1C tan ™1 tan ™2
(13.82)

From elementary geometry considerations we
have that:

tan ™1 D r sin ™

r cos ™ � a I tan ™2 D r sin ™

r cos ™C a
(13.83)

Therefore, substituting these expressions into
(13.82) and taking the arctangent gives, for small
values of the parameter a:

§ D Q

2 
tan�1

�
2ar sin ™

r2 � a2
�
Š Qar sin ™

  .r2 � a2/
(13.84)

Finally, taking the limit as a! 0 and Q!1,
we obtain:

§ D K sin ™

r
(13.85)

where the parameter K is the doublet strength.
As mentioned above, the most important feature
of the basic flows in fluid dynamics is that more
complex and realistic flows can be constructed
by superposition of the elemental stream func-
tions associated with the basic flows. A more
in-depth introduction to this topic can be found
in Batchelor (2000). Here we mention the so-
called Rankine half -body, which results from
superposition of a uniform flow of velocity v0 and
a source of strength Q. Assuming that the source
S is placed at the origin of the reference frame,
the stream function of this flow can be obtained
summing the functions (13.75) and (13.78):

§ D v0r sin ™C Q

2�
™ (13.86)

The corresponding flow is illustrated in
Fig. 13.6 and has a parabolic pattern. This model
originally was introduced to explain the shape
of the broad topographic swell associated with
the Hawaiian hotspot (Sleep 1987, 1990), but
has been successfully employed to represent in
general the interaction of mantle plumes with the
asthenospheric flow (e.g., Ribe and Christensen
1994; Walker et al. 2005). By (13.72) we obtain
for the velocity components:

ur D v0 cos ™C Q

2 r
I u™ D �v0 sin ™

(13.87)

For (r,™)D (Q/2 v0,  ) both components of
the velocity vanish and we have a stagnation
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Fig. 13.10 Corner flows and streamlines at a subduction
zone

point. The stream function at this location is given
by: §D½Q. The corresponding streamline has
a parabolic shape and is called the stagnation
streamline. It indeed forms the outline of an
object, the Rankine half-body. Streamlines within
the Rankine half-body do not belong to the large-
scale flow surrounding the source, as it is evident
from Fig. 13.6.

Now we are going to consider another interest-
ing application of the techniques based on stream
function analysis. In Sect. 12.5, we mentioned
the corner flows that form at subduction zones
(Fig. 13.10). Here we shall solve the equations of
motion in the case of a Newtonian incompressible
flow and assuming that the contribution of the
inertial terms is negligible in the Navier-Stokes
equations. In this instance, we have seen that the
equations of motion reduce to the biharmonic Eq.
(13.71) for §. In plane polar coordinates, this
equation assumes the form:

r4§ D r2
�
@2§

@r2
C 1

r

@§

@r
C 1

r2
@2§

@™2

�
D 0
(13.88)

Let us assume that the overriding plate of a
subduction system is at rest with respect to the
top transition zone. In this instance, the hinge line
is at rest and we can set up a reference frame as
indicated in Fig. 13.10. The boundary conditions
of this model are:

8̂
<̂
ˆ̂:

u™ .r; 0/ D � @§
@r

ˇ̌
ˇ̌
™D0
D 0

ur .r; 0/ D 1

r

@§

@™

ˇ̌̌
ˇ
™D0
D �v0

(13.89)

Furthermore,

8̂̂
<
ˆ̂:

u™ .r; ™0/ D � @§
@r

ˇ̌
ˇ̌
™D™0
D 0

ur .r; ™0/ D 1

r

@§

@™

ˇ̌
ˇ̌
™D™0
D v0

(13.90)

These boundary conditions are compatible
with a solution by separation of variables of the
form:

§ .r; ™/ D rf .™/ (13.91)

Substituting into (13.88) gives:

r4§ D r2
�
1

r
f .™/C 1

r

d2f

d™2

�

D 1

r3

�
f .™/C 2d

2f

d™2
C d4f

d™4

�
D 0
(13.92)

The general solution for f is:

f .™/ D a sin ™C b cos ™C ™ .c sin ™C d cos ™/
(13.93)

The constants a, b, c, and d must be chosen so
that the boundary conditions (13.89) and (13.90)
are satisfied. Therefore, we must have:

f .0/ D 0 I f .™0/ D 0 (13.94)

Furthermore, by (13.91) we have that
urD f0(™). Consequently,

f 0.0/ D �v0 I f 0 .™0/ D v0 (13.95)

From the condition f (0)D 0 we have immedi-
ately: bD 0. Similarly, from the first of the condi-
tions (13.95) we obtain: aC dD�v0. Therefore,
we are left with two linear equations in the
unknown parameters c and d.

The solution for a, c, and d is then:

a D � v0™0
™0 C sin ™0

I c D v0 .1C cos ™0/

™0 C sin ™0
I

d D � v0 sin ™0
™0 C sin ™0 (13.96)

http://dx.doi.org/10.1007/978-3-319-09135-8_12
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Finally, the complete expression for the stream
function for the corner flow is:

§ D r
�
� v0™0
™0 C sin™0

sin ™C ™
�

v0 .1C cos ™0/

™0 C sin ™0

� sin ™ � v0 sin ™0
™0 C sin ™0

cos ™

��
(13.97)

The streamlines of this function are shown
in Fig. 13.10. It is interesting to note that both
components of the velocity field generated by the
stream function (13.97) are independent from r.
Lastly, we mention that a very similar solution
exists also in the case of non-Newtonian fluids
(Tovish et al. 1978).

13.6 Rayleigh-Bénard Convection

Rayleigh-Bénard convection, or thermal convec-
tion, is a natural convection that occurs in a fluid
layer that is heated from below and cooled from
above. In these conditions, a regular pattern of
convection cells develops between the top and
the bottom of the layer, because the hot light
fluid near the lower boundary tends to ascend,
while cooled fluid near the top becomes denser
than the average and sinks. At the scale of the
upper mantle Richter and Parsons (1975), proved
that small-scale convective rolls superimpose the
large-scale upper mantle flow determining the
complex flow pattern illustrated in Fig. 13.11. To
describe quantitatively this process, it is neces-

sary to start from the consideration that thermal
convection ultimately is driven by density varia-
tions arising from thermal expansion or contrac-
tion. Consequently, we will be concerned with the
problem to give a specific form to the equation
of state (13.19), which determines the relation-
ship between thermodynamic pressure, density,
and temperature. Unfortunately, solids lack an
equation of state that can be formulated on the
basis of theoretical arguments, similar to the well-
known ideal gas equation, PV D nRT. In general,
each solid has its own equation of state based
on empirical grounds, which specifies how the
density changes as a function of temperature and
pressure: ¡ D ¡(T,p). However, in the Earth’s
mantle there are also significant density changes
associated with phase transitions or, possibly,
with variations of chemical composition.

Despite these complications, most of the den-
sity variations in the Earth’s mantle are due
to hydrostatic compression. Therefore, starting
from a hypothetical homogeneous mantle in hy-
drostatic equilibrium, where heat is transferred
only by conduction, it should be possible to find
an approximate solution of the equations that
describe the onset of thermal instabilities and the
formation of steady Rayleigh-Bénard rolls. Such
an approximation exists and is called Boussinesq
approximation. Although this method has been
widely used in mantle geodynamics studies, its
theoretical ground is often outlined using confus-
ing arguments, both in articles and books. With
the objective to delimitate precisely the field of

Fig. 13.11 Large scale
upper-mantle circulation
(blue lines) and
Rayleigh-Bénard rolls (in
red). The total flow pattern
in the upper mantle results
from superposition of these
two flows
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applicability of this method, here we will follow
the more rigorous approach of Spiegel and Vero-
nis (1960) and Furbish (1997). Let us assume that
pressure, p, temperature, T, and density, ¡, have
expressions of the type:

p .r ; t/ D p C p0.z/C p0 .r ; t/
T .r ; t/ D T C T0.z/C T 0 .r; t/
¡ .r ; t/ D ¡C ¡0.z/C ¡0 .r ; t/

(13.98)

where p, T , and ¡ are global spatial averages,
p0, T0, and ¡0 are variations about the mean in
the pure conductive limit (that is, in hydrostatic
conditions), and the primed variables denote fluc-
tuations associated with fluid motion.

It is also assumed that these variables are
defined in a fluid layer of thickness H, heated
from below and maintained at temperature Tm,
while the top is cooled from above and main-
tained at a lower temperature Ta. Now let us
introduce scale heights for the state variables
defined above. These parameters measure the dis-
tance over which the corresponding state variable
changes by a factor e (the Napier’s constant)
along a vertical profile:

Hp D
ˇ̌̌
ˇ 1p
dp0

d z

ˇ̌̌
ˇ
�1
I HT D

ˇ̌̌
ˇ 1
T

dT0

d z

ˇ̌̌
ˇ
�1
I

H� D
ˇ̌
ˇ̌1
¡

d¡0

d z

ˇ̌
ˇ̌�1

(13.99)

Our first approximation is to assume that H
throughout the fluid is much less than the smallest
scale height, and that the latter coincides with the
density scale height:

H << H¡ (13.100)

This condition can be rewritten as follows:
ˇ̌̌
ˇ1¡
d¡0

d z

ˇ̌̌
ˇ << 1

H
(13.101)

Then, integrating from zD 0 to z D H we
conclude that:

�¡0

¡
� © << 1 (13.102)

where 4¡0 is the maximum change of the static
density variation ¡0 over the distance H. The
quantity © should be considered as the maxi-
mum acceptable error in simplifying the equa-
tions governing mantle convection, in particular
thermal convection. Therefore, we shall neglect
any term in these equations having the same
order of magnitude of ©. Condition (13.102) is
sufficient to produce simplified equations when
the velocities have infinitesimal magnitude, for
example at the onset of convection. However,
in the context of non-linear dynamics it is also
necessary to assume that the relative magnitude
of the fluctuations associated with fluid motion
does not exceed the static variation ©.

Thus, we require that:

ˇ̌̌
ˇ¡

0

¡

ˇ̌̌
ˇ � O .©/ (13.103)

In normal conditions, we expect that ¡0 �
�¡0, thereby it should not be necessary to verify
a posteriori that condition (13.103) is satisfied.
Now let us consider the equation of state (13.19)
of the fluid, which can be written in the form:

¡ D ¡ .p; T / (13.104)

Expanding ¡ in Taylor series about the state�
¡; p; T

�
yields:

¡ D ¡C @¡

@T

�
T � T �C @¡

@p
.p � p/

C 1

2

@2¡

@T 2

�
T �T �2C 1

2

@2¡

@T @p

�
T�T �.p�p/

C 1

2

@2¡

@p2
.p � p/2 C : : :

(13.105)

where it is intended that the derivatives are calcu-
lated at the mean state

�
p; T

�
. Now let us define

the average coefficient of thermal expansion, ’,
and the average isothermal compressibility, “, as
follows:

’ � �1
¡

@¡

@T

ˇ̌̌
ˇ
TDT ;pDp

I “ � 1

¡

@¡

@p

ˇ̌̌
ˇ
TDT ;pDp

(13.106)
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Substituting into (13.105) gives:

¡ D ¡
h
1 � ’ �T � T �C “ .p � p/

C 1

2¡

@2¡

@T 2

�
T � T �2

C 1

2¡

@2¡

@T @p

�
T � T � .p � p/

C 1

2¡

@2¡

@p2
.p � p/2 C : : :

�
(13.107)

Therefore,

¡ � ¡
¡
D �’ �T � T �C “ .p � p/

C 1

2¡

@2¡

@T 2

�
T � T �2 C : : : (13.108)

Now, because j¡0j ��¡0, it follows that
¡0 =¡�O(©). Consequently, by (13.103) it
results:

¡ � ¡
¡
D ¡0 C ¡0

¡
� O .©/ (13.109)

This relation implies that also the right-hand
side of (13.108) is of order O(©). Therefore, we
must have:

1

2¡

@2¡

@T 2

�
T � T �2 < O �©2� I

1

2¡

@2¡

@T @p

�
T � T � .p � p/ < O �©2� etc:

(13.110)

Hence, to order – the expression (13.107) can
be rewritten as follows:

¡ D ¡
h
1 � ’ �T � T �C “ .p � p/i (13.111)

This is a linearized version of the equation of
state in the Boussinesq approximation. Substitut-
ing (13.98) into (13.111) gives:

¡0 C ¡0 D �’¡ �T0 C T 0�C “¡ �p0 C p0�
(13.112)

In the static conductive state, p0D T 0D ¡0D 0.
Then:

¡0 D ¡
�
�’T0 C “p0

�
(13.113)

¡0 D ¡
�
�’T 0 C “p0� (13.114)

Let us consider now the continuity Eq. (13.7).
Substituting (13.98) and solving for the diver-
gence of v gives:

r � v D �1
¡

�
1C ¡0

¡
C ¡0

¡

��1
d

dt

�
¡0 C ¡0�

(13.115)

The factor within the brackets can be ex-
panded into a geometric series, giving:

�
1C ¡0

¡
C ¡0

¡

��1
D 1 � ¡0

¡
� ¡

0

¡
C
�
¡0

¡
C ¡0

¡

�2

� � � � D 1CO .©/
(13.116)

Therefore, using (13.102) we conclude that:

r � v D � ©

�¡0

d

dt

�
¡0 C ¡0�CO �©2� (13.117)

Consequently, to the first order in ©,

r � v Š 0 (13.118)

This surprising result says that to the first order
in – the velocity field has the same solenoidal
property of velocity fields associated with in-
compressible fluids. Such conclusion should not
lead to think that we are modelling the mantle
as an incompressible fluid. Equation (13.118)
only specifies a property of the velocity field in
the Boussinesq approximation for compressible
fluids. Now let us turn to the equations of motion.
In absence of motion, we have that ¡0D p0D 0,
thereby substitution of (13.98) into the vertical
component of Navier–Stokes equations gives:

0 D �@p0
@z
C .¡C ¡0/ g (13.119)
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Now, assuming ˜ and œ constants in
the Navier-Stokes equations, substituting the
expressions (13.98) for the pressure and the
density at the right-hand side of (13.16), using the
approximation (13.118), and applying (13.119)
we obtain:

¡Pv D �rp0 C ˜r2vC ¡0gk (13.120)

This equation still contains the full density ¡.
Substituting (13.98) and applying the approxima-
tion (13.116) leads to the following simplified
equation of motion:

Pv D �1
¡
rp0 C �r2vC ¡0©

�¡0
gk (13.121)

where � � ˜=¡ is the average (constant) kine-
matic viscosity. In this equation, the buoyancy
term is the only place where the infinitesimal
factor – is retained. This is a consequence of the
fact that convective motions arise from buoyancy
forces that are associated with fluctuations in the
density field. Therefore, the acceleration j@v/@tj
must have the same order of magnitude of the
acceleration associated with buoyancy:

ˇ̌̌
ˇ@v
@t

ˇ̌̌
ˇ �

ˇ̌̌
ˇ ¡

0©
�¡0

g

ˇ̌̌
ˇ (13.122)

or,

ˇ̌̌
ˇ @v=@t
.¡0©=�¡0/

ˇ̌̌
ˇ � g (13.123)

Therefore, in a convective system the accel-
eration of gravity is always much greater than
j@v/@tj. Equation (13.121) can be simplified fur-
ther taking the vertical component. If v is the
vertical component of the velocity, then:

@v

@t
C v � rv D �1

¡

@p0

@z
C �r2vC ¡0©

�¡0
g

(13.124)

Now let us consider the first and the last terms
at the right-hand side of (13.124). Using (13.114)
and (13.102) we obtain:

�1
¡

@p0

@z
C ¡0©
�¡0

g D �1
¡

�
@p0

@z
� ¡0g

�

D �1
¡

�
@p0

@z
� ¡“p0g

�
� ’T 0g

D �1
¡

�
@p0

@z
� 1

D
p0
�
� ’T 0g

(13.125)

where:

D � 1

¡“g
(13.126)

has the dimensions of a length and can be re-
garded as the thickness of a fluid layer with
constant density ¡ and hydrostatic pressure p that
varies from zero to 1=“. Substituting (13.119) in
(13.99) for Hp gives:

Hp D
ˇ̌
ˇ̌ 1
p

dp0

d z

ˇ̌
ˇ̌�1 D

ˇ̌
ˇ̌ 1
p
.¡C ¡0/ g

ˇ̌
ˇ̌�1

D
ˇ̌̌
ˇ p

.¡C¡0/ g
ˇ̌̌
ˇ D p

¡g

1

1C ¡0=¡ D
p

¡g
CO.©/

(13.127)

Therefore substituting into (13.126),

D D Hp

p“
(13.128)

In the Earth’s upper mantle, “ � 10�12 Pa�1

and p � 1010 Pa, thereby p“ � 10�2. Fur-
thermore, we have that in any case p0/H� @p0/@z.
Thus, the quantity:

1

D
p0 D

 
p“

Hp

!
p0 <<

 
p“

H

!
p0 <

1

H
p0

(13.129)

is negligible compared to @p0/@z. Consequently,
the Eq. (13.121) are simplified to:

Pv D �1
¡
rp0 C �r2v � ’T 0gk (13.130)

These are the equations of motion in
the Boussinesq approximation. The same
considerations used to derive (13.130) can
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be used to further simplify (13.114). In fact,
the buoyancy term associated with pressure
fluctuations p0 in (13.125) is small relative to the
contribution coming from thermal fluctuations T 0.
Therefore, (13.114) can be rewritten as follows:

¡0

¡
Š �’T 0 (13.131)

This is the simplified equation of state in the
Boussinesq approximation. Now let us turn to
the equation of conservation of energy (13.40).
Neglecting the viscous dissipation and internal
heat production terms, this equations assumes the
form:

¡cp PT � ’T Pp D kr2T (13.132)

Substituting (13.98) for T, using the definition
(13.2) of material derivative, and dividing by ¡cv

gives:

PT 0 C v
@T0

@z
� ’T
¡cp

�
v
@p0

@z
C Pp0

�
D �r2T

(13.133)

The variation of the hydrostatic pressure p0

with depth is simply ¡g. The other term in brack-
ets represents the time variation of pressure fluc-
tuation and can be neglected. The other variable
quantities in (13.133) are the term ’T at the left-
hand side and the diffusivity › D k/(¡cp) at the
right-hand side (assuming k constant). To order
O(©), by (13.116) we can set:

› Š › D k

¡cp
(13.134)

Regarding the term ’T, by hypothesis HT 

H¡ >> H. Accordingly,

ˇ̌
ˇ̌ 1
T

dT0

d z

ˇ̌
ˇ̌ << 1

H
(13.135)

Then, integrating from zD 0 to z D H we
conclude that:

�T0

T
D O .©/ (13.136)

where �T0 is the maximum change of the con-
ductive temperature variation T0 over the distance
H. In agreement with (13.103) we also assume
that:

ˇ̌
ˇ̌T 0

T

ˇ̌
ˇ̌ � O .©/ (13.137)

Therefore, because jT0j ��T0, it follows that
T0=T � O .©/. Now, using (13.111) we can
write, to order O(–):

’T D �T
¡

�
@¡

@T

�
p

D ’T ¡
¡

D ’T

�
1C T0

T
C T 0

T

�
�
1C ¡0

¡
C ¡0

¡

� Š ’T (13.138)

Substituting (13.138) and (13.134) into the
energy Eq. (13.133) gives the final form of the
conservation of energy in the Boussinesq approx-
imation.

PT 0 C v

 
@T0

@z
� ’T g

cp

!
D ›r2T 0 (13.139)

The term in brackets at the left-hand side of
this equation represents the static temperature
gradient in excess of the adiabatic gradient (see
Eq. 1.8). When using these equations, it should
be ensured that the thickness H of the fluid layer
be much less than the smallest among the scale
heights (13.99). Furthermore, the fluctuations of
temperature, pressure, and density induced by
fluid motions should not exceed the total varia-
tions of these quantities under static conditions.
We also note that temperature and velocity are
coupled through the equations of motion (13.130)
and the conservation of energy (13.139). This is
a consequence of the fact that in thermal convec-
tion the velocity field is governed by temperature
fluctuations, which in turn depend from velocity
through the advection of heat.

Numerical solutions to the governing
equations in the Boussinesq approximation have
been found by several authors, among which we
mention Turcotte and Oxburgh (1967), Richter

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 13.12 Time
evolution of the
temperature field within
and around an infinite slab
with initial thermal
anomaly �T and thickness
2a. Numbers close to the
curves are values of the
dimensionless parameter
›t/a2

(1973), Richter and Parsons (1975), Jarvis and
Peltier (1982), Bercovici et al. (1989), and
Tackley (1998). The typical streamline pattern
arising from these models is illustrated in
Fig. 13.11. Here we will limit to do some simple
physical considerations about the conditions for
the onset of thermal convection in the upper
mantle. Let us consider a spherical blob of radius
a and characterized by a temperature excess
or deficit �T with respect to the surrounding
mantle. By (12.58), such a thermal anomaly
induces a density anomaly �¡ D�’¡�T that
corresponds (by Archimedes’ principle) to an
additional buoyancy force given by:

�f b D �’¡�Tg (13.140)

This body will sink or rise with increasing
velocity until the viscous drag is balanced by the
buoyancy (13.140). From this point on, the mo-
tion will proceed at constant velocity vs given by:

vs D �2
9
a2
’¡�T

˜
g (13.141)

This is a form of Stokes’ law and vs is referred
to as the terminal velocity. Clearly, during its rise
or fall the sphere either transfers or adsorbs heat
by diffusion, thereby the thermal anomaly �T
cannot be a constant. To determine the velocity
of this process, let us consider the simple case of
an infinite slab with initial temperature anomaly
�T, placed in the region between xD�a and xD
Ca (Fig. 13.12). This is only an example of how
the temperature can be distributed at time tD 0.
In general, we have:

T .x; 0/ D f .x/ I �1 < x < C1 (13.142)

The solution to the diffusion Eq. (12.13)
with the initial condition (13.142) is known as
Laplace’s solution:

T .x; t/ D 1

2
p
 ›t

C1Z
�1
f
�
x0� e�.x�x0/2=.4�t/dx0

(13.143)

Usually, the integral in (13.143) is evaluated
numerically. However, when f (x) has the shape
of a square pulse like that of Fig. 13.12, so that
f (x)D 0 for jxj > a, the integral reduces to a sum
of two error functions (Carslaw and Jaeger 1959):

T .x; t/ D 1

2
�T

�
erfc

�
a � x
2
p
›t

�
C erfc

�
aC x
2
p
›t

��
I

�1 < x < C1 (13.144)

The time evolution of the temperature field
predicted by (13.144) is illustrated in Fig. 13.12.
We note that for ›t/a2D 5 the slab is not anymore
thermically distinguishable from the surround-
ing region. Therefore, for t 
 £� 5a2/› we can
say that there is temperature equilibration. For
example, for a 100 km thick slab sinking in
the asthenosphere (aD 50 km) we would have
equilibration in �340 Myrs. Now let us come
back to the anomalous blob that is rising or falling
at velocity Vs. During the time interval £, the
blob may travel a distance LD vs£. Consequently,
the free rising or falling of the blob is possible
only for L  a, because if this condition is not

http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_12
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Fig. 13.13 Critical Rayleigh number Racr for the onset of Rayleigh-Bénard convection in a layer of thickness H, as a
function of the dimensionless parameter 2 H/œ

satisfied the process of thermal equilibration is
too fast for allowing motion under the combined
effect of the buoyancy force and the viscous drag.
This suggests that a single parameter can be used
to measure the capacity of thermal anomalies
to be transported by buoyancy forces through a
fluid. In fact, using the expression (13.141) we
see that the condition for thermal convection, L/a
 1, can be expressed as follows:

Ra D ’¡a3g�T

˜›
D ’a3g�T

�›
>> 1 (13.145)

where � is the kinematic viscosity and we
have suppressed the multiplicative constant
10/9	 1. The dimensionless parameter Ra is
called Rayleigh number. It represents the relative
importance of the buoyancy forces with respect to
viscous drag and rate of heat diffusion. However,
the form (13.145) is not quite general to be useful,
because here Ra depends from the blob radius a.
Furthermore, it is still unclear how much greater
than one should be Ra to trigger free thermal
convection. In general, a linear stability analysis
of the Boussinesq equations for a fluid layer of
thickness H, heated from below and cooled from
above, shows that a minimum critical Rayleigh
number, Racr, exists for the onset of thermal
convection (e.g., Turcotte and Schubert 2002;

Ricard 2007). In this instance, the Rayleigh
number and the critical value are defined as
follows:

Ra D ’¡H3g�T

˜›
D ’H3g�T

�›
(13.146)

Racr D
œ2
�
 2 C 4 2H2

œ2

�3

4 2H2
(13.147)

where œis a characteristic wavelength of the ther-
mal fluctuations. If Ra<Racr, any fluctuation
will decay with time, whereas for Ra > Racr

perturbations will grow exponentially with time.
The critical Rayleigh number depends from the
dimensionless parameter 2 H/œ as illustrated in
Fig. 13.13. For any fluctuation wavelength œ, if
Ra lies above the curve, then the correspond-
ing perturbation generates instability. Conversely,
thermal convection is freezed for all wavelengths
such that Ra < Racr.

The curve of Fig. 13.13 shows that the stability
curve has an absolute minimum. It is easy to find
the value of 2 H/œ such that the curve attains a
minimum. This is given by:

2 H

œ
D  p

2
(13.148)
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which furnishes the following minimum for Racr:

min .Racr / Š 657:5 (13.149)

An important feature of thermal convection is
represented by the aspect ratio of the convective
cells, which is the ratio of the horizontal width
of the cells, w, to the vertical thickness H of the
fluid layer. Linear stability analysis shows that the
aspect ratio of the most rapidly growing fluctu-
ations is w/H D œ/(2H)Dp2. Therefore, upper
mantle convective rolls should have a horizontal
width of �950 km.

Problems

1. Write and solve the equations of motion for
a one-dimensional steady flow in the astheno-
sphere, considered as a two-layers Newtonian
incompressible fluid. It is assumed that the up-
per asthenosphere has viscosity ˜1D 1020 Pa s
and thickness h1D 200 km, while the lower
layer has viscosity ˜2D 1021 Pa s and thick-
ness h2D 200 km. v0D 100 mm year�1 is the
velocity of the overlying lithosphere. Deter-
mine the depth of maximum velocity for a
horizontal pressure gradient @p/@xD�10 kPa
km�1;

2. Determine the horizontal pressure gradient
that was necessary to accelerate India to
v0D 180 mm year�1 in the early Paleocene,
assuming a 400 km thick asthenosphere and
an average viscosity ˜D 1020 Pa s. Determine
the time required to attain such a velocity
vD 100 mm/yr starting from vD 0 mm
year�1;

3. Let us assume that the lower boundary of a
tectonic plate can be represented by a function
z D f (x). Assuming that no streamline has
a cusp along this boundary, use the no-slip
boundary condition to determine the boundary
values of velocity for the asthenosphere along
the LAB;

4. Repeat the previous exercise assuming that the
lower boundary of a tectonic plate is repre-
sented by a surface zD f (x,y);

5. Determine the corner flows of a subduction
zone assuming that the subducting plate is at
rest with respect to the transition zone and that
the overriding plate moves with velocity v0 in
the positive x direction;

6. Prove the transformation Eq. (13.72);
7. Write the continuity equation for an incom-

pressible fluid in polar coordinates;
8. Rewrite the equations of motion (13.69) in

polar coordinates;
9. Find the velocity field (u,v) for a fluid that is

moving in the positive (downward) z direction
relative to a spherical object fixed at the ori-
gin of the reference frame. This is a Stokes’
flow. To solve the problem, you must solve
the equations found in exercises (7) and (8).
Assume that the velocity field is a uniform
field in the z direction with magnitude v as
r!1.
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14Gravity Field of the Earth

Abstract

This conclusive chapter introduces the Earth’s gravity field and the concept
of geopotential. The approach follows the potential field techniques
presented in Chap. 4. The concepts of geoid and ellipsoid are discussed,
along with the methods for processing gravity data. The chapter concludes
with the important topic of dynamic topography, which links the geoid to
mantle dynamics.

14.1 Gravity Field
and Geopotential

In this chapter, we shall review some fundamental
properties of the Earth’s gravity field, which have
a strong impact on plate tectonics research. Often,
researchers involved in plate kinematics studies
have a limited “contact area” with the these top-
ics, which essentially consists into the inspection
of gravity anomaly maps with the purpose of
better identifying fracture zone tracks, detect the
presence of seamounts, or analyze the structural
features of sedimentary basins. Conversely, a
more in-depth understanding the Earth’s gravity
field is essential in many geodynamic studies,
because the pressure gradients that are associ-
ated with asthenospheric flows and the upper
mantle heterogeneities have a strong impact on
the gravity anomalies at the Earth’s surface and
the shape of the Earth. In the following, we
will apply the same potential field techniques
discussed in Chap. 4 in the context of geomag-
netism. Therefore, our starting point are the non-

relativistic equations of the Earth’s gravity field
gD g(r):


 r � g D 4 G¡ .r/
r � g D 0

(14.1)

where ¡D ¡(r) is the mass density and G is the
gravitational constant:

G D 6:67259� 10–11m3kg–1s–2 (14.2)

The field equations (14.1) imply that g is a po-
tential field, thereby there exists a scalar function
VDV(r) such that:

g D rV (14.3)

The potential VDV(r) is called the gravita-
tional geopotential and represents the fundamen-
tal quantity for the analysis of the field properties
through spherical harmonic expansions. In fact,
by (14.1) it satisfies Poisson’s equation:

r2V D 4 G¡ .r/ (14.4)

A. Schettino, Quantitative Plate Tectonics, DOI 10.1007/978-3-319-09135-8__14,
© Springer International Publishing Switzerland 2015

363

http://dx.doi.org/10.1007/978-3-319-09135-8_4
http://dx.doi.org/10.1007/978-3-319-09135-8_4


364 14 Gravity Field of the Earth

Consequently, V is harmonic in any region R
where ¡D 0. According to the theorems proved in
Sects. 4.7 and 4.8, V can be determined uniquely
on the basis of a given set of boundary conditions.
However, in geophysics it is also quite com-
mon calculating the potential or the field through
direct integration, starting from the continuous
mechanics version of Newton’s law (see Eqs.
5.10 and 5.11). In the next sections, we shall use
both these approaches to study the Earth’s gravity
field.

14.2 Spherical Harmonic
Expansion of the
Geopotential: The Geoid

A solution of Laplace’s equation for the geopo-
tential can be obtained using the techniques de-
scribed in Sect. 4.8. The corresponding spherical
harmonic expansion has the form:

V .r; ™; ¥/ D GM

r

1X
nD0

�
R

r

�n

�
nX

mD0
Œanm cosm¥C bnm sinm¥�

� Pnm .cos ™/ I r 
 R (14.5)

where M is the Earth’s mass, R is the Equatorial
radius, and the coefficients anm and bnm are called
Stokes’ coefficients. Just like in the case of the
geomagnetic potential, specific orthogonality and
normalization constraints are used for the sur-
face spherical harmonics Rnm(™,¥)�Pnmcosm¥
and Snm(™,¥)�Pnmsinm¥ (e.g., Heiskanen and
Moritz 1993):

2�Z
0

d¥

�Z
0

Rnm .™; ¥/Rsr .™; ¥/ sin ™d™

D 2 

2nC 1
.nCm/Š
.n �m/Š •ns•mr I m ¤ 0 (14.6)

2 Z
0

d¥

 Z
0

Snm .™; ¥/ Ssr .™; ¥/ sin ™d™

D 2 

2nC 1
.nCm/Š
.n �m/Š •ns•mr I m ¤ 0 (14.7)

Furthermore,

2 Z
0

d¥

 Z
0

Rnm .™; ¥/ Ssr .™; ¥/ sin ™d™

D 0 for any n;m; r; s (14.8)

2 Z
0

d¥

 Z
0

ŒRn0 .™/�
2 sin ™d™ D 4 

2nC 1 (14.9)

The determination of the coefficients anm and
bnm in (14.5) can be accomplished multiplying
both sides of this equation by some polynomial
Rrs(™,¥) or, respectively, Srs(™,¥), and integrating
over the unit sphere. Using the orthogonality
relations (14.6), (14.7), (14.8), and (14.9) we
obtain:

anm D 2nC 1
2 

.n �m/Š

.nCm/Š

2 Z
0

d¥

 Z
0

V .™; ¥/

� Rnm .™; ¥/ sin ™d™ I m ¤ 0
(14.10)

an0 D 2nC 1
4 

2 Z
0

d¥

 Z
0

V .™; ¥/ Pn .cos ™/ d™

(14.11)

bnm D 2nC 1
2 

.n �m/Š

.nCm/Š

2 Z
0

d¥

 Z
0

V .™; ¥/

� Snm .™; ¥/ sin ™d™ I m ¤ 0
(14.12)

These are the basic equations used to
determine approximate values of the Stokes’
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coefficients from observed values of gravity.
The conventional normalization (14.6), (14.7),
(14.8), and (14.9) is often substituted by the so-
called full normalization, which allows a better
manipulation of the spherical harmonics. In this
instance, the surface harmonics Rnm(™,¥) and
Snm(™,¥) are replaced by the fully normalized
harmonics defined as follows:



Rnm .™; ¥/

Snm .™; ¥/


D
s
2 .2nC 1/ .n �m/Š

.nCm/Š

�


Rnm .™; ¥/

Snm .™; ¥/


I m ¤ 0

(14.13)

Rn0 .™/ D
p
2nC 1Rn0 .™/ D

p
2nC 1Pn .cos ™/

(14.14)

With these definitions, the orthogonality rela-
tions (14.6), (14.7), (14.8), and (14.9) are then
substituted by more canonical orthogonality re-
lations:

2 Z
0

d¥

 Z
0

Rnm .™; ¥/Rsr .™; ¥/ sin ™d™ D 4 •ns•mr

(14.15)
2 Z
0

d¥

 Z
0

Snm .™; ¥/ Ssr .™; ¥/ sin ™d™ D 4 •ns•mr

(14.16)

Therefore, the average square of fully nor-
malized harmonics over the unit sphere is unity,
whether or not m is zero. Also the coefficients of
the spherical harmonic expansion have now more
simple expressions:

anm D 1

4 

2 Z
0

d¥

 Z
0

V .™; ¥/Rnm .™; ¥/ sin ™d™

(14.17)

bnm D 1

4 

2 Z
0

d¥

 Z
0

V .™; ¥/ Snm .™; ¥/ sin ™d™

(14.18)

Stokes’ coefficients are determined empiri-
cally from the analysis of orbital perturbations

of artificial satellites and updated regularly using
terrestrial data. Examples of recent geopoten-
tial models are GEM–T3 (Lerch et al. 1994),
GRIM4 (Schwintzer et al. 1997), GRIM5 (Bian-
cale et al. 2000), GGM02 (Tapley et al. 2005),
and EGM2008 (Pavlis et al. 2012). These models
can be used to build reliable representations of
the Earth’s gravity field in a variety of techni-
cal and scientific applications. Starting from a
geopotential model, it is possible to build equipo-
tential surfaces that locally define the vertical
direction. Among the infinitely many equipo-
tential surfaces of the Earth’s gravity field, the
one passing through the mean surface of the
oceans (removing the effect of tides) is used as
a reference surface for measuring elevation. This
surface is the geoid and represents the math-
ematical figure of the Earth as determined by
the density distribution in the Earth’s interior
and by rotation. The (usually) curved lines that
intersect orthogonally any equipotential surface
are called plumb lines. As illustrated in Fig. 14.1,
given two values V1 and V2 for the potential, the
corresponding equipotential surfaces V(r)DV1

and V(r)DV2 are not generally parallel each
other. This fact leads to a curious paradox. Let us
consider two near points at the Earth’s surface, A
and B. Now let us assume that a level placed at
an intermediate location C indicates that the two
points lie on the same horizontal surface. In this
instance, they should have the same altitude.

However, the effective altitude of the two
points relative to the geoid will be in most cases
slightly different, depending on the shape of the
plumb lines. In fact the altitude, more precisely
the orthometric height H, of a point P is defined
as the length of the plumb line between the actual
location of P and the geoid. For this reason,
a precise determination of orthometric altitudes
requires in general a combination of gravity mea-
surements and optical leveling.

14.3 Geoid and Ellipsoid

The shape of the geoid is determined by the dis-
tribution of masses in the Earth, especially from
lateral density variations in the Earth’s mantle.
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Fig. 14.1 Geoid (thick
black line), topography
(red line), plumb lines (thin
black lines), and level
surfaces of the gravity
potential (dashed lines). H
is the orthometric height of
a point P

A simple method for describing the geometry of
the Earth’s geoid is to specify its undulations
with respect to a reference regular surface that
would represent the overall shape of the Earth
in absence of lateral density variations. To a
first approximation, the Earth and other planetary
bodies are rigid rotating objects having spherical
symmetry. The main factor controlling the depar-
ture from spherical symmetry of a homogeneous
deformable body that is rotating about a spin
axis is the combined effect of the gravity field
and the centrifugal force. Let us start from a
homogeneous body that is at rest in an inertial
reference frame. The equilibrium shape of this
body is a sphere of radius R, and its gravity
potential for r
R is given by:

V0 .r/ D GM

r
(14.19)

Now let us assume that this body is put in
motion instantaneously, and that this motion con-
sists of a rotation about a fixed spin axis n with
constant angular velocity �. In this instance, a
test unit mass at the surface of the body would be

subject to the combined effect of the gravity force
g and the centrifugal force fc:

f .r/ D g.r/C fc .r/ D g.r/�� � .� � r/

(14.20)

where �D�n. This force depends from the co-
latitude through a factor sin™, thereby the surface
of the body is not anymore an equipotential sur-
face. Consequently, the body will start deforming
to adapt its shape to the new level surfaces.
For rDR, the potential U associated with the
force field (14.20) is initially given by the sum
of the gravity potential, V0(R) plus the potential
associated with the centrifugal force, W(™):

U .™/ D V0.R/CW .™/ D GM

R
C 1

2
�2R2sin2™

D GM

R
� 1
3
�2R2 ŒP2 .cos ™/ � 1�

(14.21)

This expression suggests the shape that the
body should acquire to adapt its surface to
an equipotential surface of the combined field
(14.20). In fact, by (14.21) we have that:
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Fig. 14.2 Mass redistribution (arrows) in a homoge-
neous deformable body once that it is put in motion about
a spin axis. The grey zone indicates the area for which
U(™) 	<U>

U.0/ D U . / D GM

R
I U . =2/

D GM

R
C 1

2
�2R2 (14.22)

The excess potential along the Equator at dis-
tance rDR from the centre implies that the body
must redistribute its mass, pushing material away
from the centre along the equatorial belt and
flattening at the poles, as illustrated in Fig. 14.2.
Consequently, it will acquire an oblate form.
However, such an adjustment will change the
gravity potential VDV(r), because the new shape
does not have anymore a spherical symmetry. It is
quite intuitive that a process would start such that
the new potential first adds a zonal term P2(cos™),
which determines in turn an additional P4(cos™)
term in U(™), that controls now a new change of
shape, and so on.

The final shape of the body will be that of
an oblate spheroid whose potential is an infinite
series of zonal harmonics of even degree:

U .r; ™/ D GM

r

"
1 �

1X
nD1

�
R

r

�2n
J2nP2n .cos ™/

#

� 1
3
�2r2 ŒP2 .cos ™/� 1� (14.23)

where the zonal coefficients J2n are analogous to
the Stokes’ coefficients of the spherical harmonic
expansion (14.5). If a and b are the equatorial and
polar radii, respectively, then the flattening f will
be given by:

f D a � b
a

(14.24)

To apply this model to the Earth, we must
assume that the reference figure of the Earth is a
level spheroid, that is, an ellipsoid of revolution
which is an equipotential surface of a normal
gravity field. In this case, the geoid representing
the actual figure of the Earth will be an equipo-
tential surface that deviates from the reference
spheroid because of lateral heterogeneity in the
mass distribution within the Earth. To express
the flattening of the level spheroid in terms of
Stokes’ coefficients, let us consider the approx-
imate equation of a spheroid, which allows to
write the Earth’s radius, R, as a function of the
colatitude:

R .™/ Š a �1 � f cos2™
�

(14.25)

Substituting r in the spherical harmonic ex-
pansion (14.23) by this expression, gives the
constant potential U0 of the reference ellipsoid.
To this purpose, we will consider the second-
order approximation of the geopotential (14.23)
with RD a, which is:

U0 Š GM

R .™/

�
1 � a2

R2 .™/
J2P2 .cos ™/

�

� 1
3
�2R2 .™/ ŒP2 .cos ™/ � 1� (14.26)
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If our assumption that the reference figure of
the Earth is a level spheroid is correct, then this
equation will be satisfied for any colatitude ™. By
hypothesis, the flattening f is a small quantity.
Therefore, the following approximations are ap-
plicable:

1

R .™/
Š 1

a

�
1C f cos2™

� I 1

R2 .™/

Š 1

a2

�
1C 2f cos2™

� I R2 .™/
Š a2 �1 � 2f cos2™

�
(14.27)

Substituting into (14.26) and dividing both
sides by a/GM gives:

aU0

GM
D �1C f cos2™

�

�
�
1�J2

2

�
1C2f cos2™

��
3cos2™�1�

�

� m
2

�
1 � 2f cos2™

� �
3cos2™ � 1�

(14.28)

where the quantity:

m � �2a3

GM
(14.29)

represents the ratio between centrifugal potential
and gravitational potential for a sphere and is
termed rotation parameter. Neglecting all the
quadratic terms in f2, mf, and fJ2 in (14.28) we
obtain:

aU0

GM
D 1�3

2
J2cos2™C fcos2™C m

2
�1
2
mcos2™

(14.30)

To obtain an equation that is independent from
™, it is necessary that the sum of all terms in cos2™

be zero. Therefore, the following relation must be
satisfied:

f D 1

2
.3J2 Cm/ (14.31)

Alternatively, assigning the flattening f, the
parameter J2 must be calculated as follows:

J2 D 1

3
.2f �m/ (14.32)

The Stokes’ parameter J2 plays a fundamental
role in geodesy and is termed dynamic form
factor or ellipticity coefficient. It can be deter-
mined by observation of satellite orbits. In fact,
by (14.23), to the second order the normal gravity
potential at distance r from the Earth’s centre is
given by:

U .r; ™/ Š GM

r
� GMa

2

r3
J2P2 .cos ™/

� 1
3
�2r2 ŒP2 .cos ™/� 1�

(14.33)

While the first term in (14.33) maintains a
satellite on an elliptical orbit, the second one
introduces a precession in the satellite orbit, at
a rate that depends precisely on J2. Therefore,
measuring the precession rate gives a measure of
the dynamic form factor. A recent estimate is:

J2 D 1:081874� 10�3 (14.34)

The World Geodetic System 1984 (WGS84)
represents the most recent consistent set of con-
stants and model parameters for the definition of
the normal gravity and the reference ellipsoid.
In this reference system, the basic parameters
assume the values listed in Table 14.1.

The WGS84 reference can be used to calculate
the parameters of the theoretical normal gravity
associated with the ellipsoid. It can be shown
(e.g., Heiskanen and Moritz 1993) that the gravity
field on the ellipsoid is given by:

” .§/ D a”acos2§C b”bsin2§p
a2cos2§C b2sin2§

(14.35)

In this formula, which is known as formula of
Somigliana,§ is the geodetic latitude, that is, the
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angle between the normal to the ellipsoid and the
equatorial plane, while ”a and ”b are respectively
the equatorial and polar normal gravity. In the
WGS84, these parameters are given by:

”a D 9:7803253359ms�2
”b D 9:8321849378ms�2 (14.36)

while b can be calculated using (14.24) and the
reference values of Table 14.1:

b D a .1� f / D 6;356;752:3 m (14.37)

Table 14.1 Basic reference values in the WGS84 refer-
ence frame

Quantity Symbol Value Units

Semi-major axis a 6,378,137.0 m

Geocentric
gravitational constant
(mass of Earth’s
atmosphere included)

GM 3.986004418
� 1014

m3/s2

Reciprocal of
flattening

1/f 298.257223563

Mean angular velocity � 7,292,115
� 10�11

s�1

Theoretical normal
potential of the
ellipsoid (derived)

U0 62,636,860.8497 m2 s�2

The formula of Somigliana (14.35) pre-
dicts an average latitudinal variation of
”(§) of �0.8 mGal/km in N–S direction
(1 GalD 10–2 m/s2).

Now we are ready to give an intuitive repre-
sentation of the Earth’s figure through a com-
parison of the geoid with the reference ellip-
soid. In fact, any departure from the geometrical
simplicity of the ellipsoid of revolution must be
associated with localized variations of density in
the Earth’s interior. In particular, a local excess of
density in the mantle or in the lithosphere tends to
increase the gravity in that area, possibly leading
to an upward displacement of the geoid relative
to the ellipsoid. Conversely, a mass deficit could
cause a decrease of gravity and a consequent
downward bending of the geoid. The method
for calculating these geoid undulations (or geoid
anomalies) is rather complex and goes beyond
the scope of this book. The interested reader can
find an exhaustive description of the technique in
the classic book of Heiskanen and Moritz (1993),
while a modern approach to the problem can be
found in Rapp (1997). The undulations of the
recent geoid model EGM2008 (Pavlis et al. 2012)
are illustrated in Fig. 14.3. They range from
�107 m in the central Indian Basin to C86 m

Fig. 14.3 Geoid undulations relative to the WGS84 ellipsoid in the EGM2008 model (Pavlis et al. 2012)
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in the area north of Australia. With the exception
of convergence zones, there is poor correlation of
geoid undulations with plate boundaries.

However, in most cases subduction zones
are associated with geoid highs that can be
explained by the presence of dense slabs
below the arcs. Significant examples are the
Peru–Chile, Aleutine, and Tonga subduction
zones (Fig. 14.3). More difficult is to explain
the negative undulations of N. America and
central Asia, although the geoid low over the
Hudson Bay in Canada may be associated
with postglacial rebound. In general, long-
wavelength (>4,000 km) anomalies of the
geoid are mainly associated with large-scale
density anomalies and flows in the lower mantle,
while short-wavelength features correlate with
lithospheric structure (Hager and Richards
1989 and references therein). Interestingly,
Dziewonski et al. (1977) observed that the long-
wavelength lows correlated with seismically
fast, presumably cold and dense, regions of
the lower mantle, while long-wavelength geoid
highs correlated with seismically slow, possibly
light, lower mantle features. Moreover, the geoid
anomaly results to be positive for the regions
surrounding many hot spots, although these
features are located on low-density mantle.
Clearly, this is the reverse of what would be
expected, because in principle the geoid should
exhibit a positive correlation with internal density
anomalies. The solution of this apparent paradox
can be found in a pioneer work of Pekeris (1935),
who focused on thermal convection but showed
that the geoid results from the combined effect
of density distribution in the Earth’s interior and
a process today known as dynamic topography,
which will be the subject of the last section of
this chapter. It is responsible for topographic
uplift over hot upwelling currents and subsidence
over cold downwellings. Pekeris (1935) showed
that the density anomalies generated by dynamic
topography close to the Earth’s surface give
a contribution to the geoid that opposes and
eventually overcomes the contribution of deep
sources, giving geoid highs over low-density
mantle upwellings and lows over high-density
downwellings.

14.4 MacCullagh’s Formula

The potential of a planetary mass, in particular
of the Earth, can be calculated using the classic
Poisson integral, which can be obtained either
integrating (14.1) or simply extending Newton’s
gravity law to a continuous body. Using the
geometry shown in Fig. 14.4, we have for the
potential generated by a density distribution in a
region R:

V .r/ D G
Z
R

¡ .r 0/
jr � r 0jdx

0dy0d z0 (14.38)

The term jr� r0j in the integral (14.38) can be
expanded in power series. In fact, if z is a real
variable such that �1� z< 1, then McLaurin’s
expansion of the function f (z)D (1� z)�1/2 gives:

f .z/ D .1 � z/�1=2 D 1C 1
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zC 1
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2
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C 1
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5

2
z3 C : : : I �1 � z < 1

(14.39)

Therefore, setting z� 2x—� —2 we obtain that
the function:

G .x; —/ D 1p
1 � 2x—C —2 (14.40)

Fig. 14.4 Geometry for the calculation of Poisson’s inte-
gral at a point P
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can be written as follows:
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Consequently, the function G seems to have
the capability to “generate” Legendre polynomi-
als when it is expanded in power series. In this
sense, it is called the generating function for these
polynomials. Now, using (14.40) we see that at
sufficiently large distance from the body it is
possible to write:

jr � r 0j�1 D
�
r2 C r 02 � 2rr 0 cos§

��1=2

D 1

r

�
1C �r 0=r

�2� 2 �r 0=r
�

cos§
��1=2

D 1

r
G
�
cos§; r=r 0�

(14.42)

Therefore, from (14.41) we have that the Pois-
son integral (14.38) can be expressed as follows:

V .r/ D G
Z
R
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Z
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�n

� Pn .cos§/dx0dy0d z0 (14.43)

Now let us apply these concepts to the Earth
and assume that the reference frame is a geocen-
tric frame, so that the origin coincides with the
centre of mass of the Earth (see Sect. 2.3). The
first three terms of the series (14.43) give a good
approximation of the real field at large distances

from the Earth. The nD 0 term is evidently the
potential (14.19) generated by a homogeneous
sphere. Regarding the term for nD 1, noting that
r 0 cos§ Dbr � r 0, we have:
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Z
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Z
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(14.44)

In fact, the last integral in (14.44) represents
the centre of mass of the Earth. Finally, let us
consider the contribution for nD 3. Recalling
(2.20) and (2.24), we have:
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(14.45)

where A� Ixx, B� Iyy, and C� Izz are the mo-
ments of inertia about the three coordinate axes
and I .br/ is the moment of inertia about the
axis of r. Consequently, considering only the first
three terms of the expansion (14.43) we have the
following approximate formula of MacCullagh
for the potential:

http://dx.doi.org/10.1007/978-3-319-09135-8_2
http://dx.doi.org/10.1007/978-3-319-09135-8
http://dx.doi.org/10.1007/978-3-319-09135-8
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V .r/ Š GM

r
C G

2r3
Œ.ACB C C/� 3I .br/�

(14.46)

This formula reveals the role of the moments
of inertia for the determination of the Earth’s
gravity field. Assuming that the Earth can be
approximated by an oblate spheroid and that the
z axis coincides with the rotation axis, we have
that ADB and the inertial tensor is diagonal,
thereby by (2.26) the moment of inertia I .br/ can
be expressed as follows:

I .br/ D A �br2x Cbr2y
�
C Cbr2z

D A
�
1 �br2z

�
C Cbr2z D AC .C � A/br2z

D AC .C � A/ cos2™ (14.47)

where ™ is the colatitude of r. Therefore, assum-
ing axial symmetry we have that MacCullagh’s
formula (14.46) reduces to:

V .r/ Š GM

r
� G
r3
.C � A/P2 .cos ™/

(14.48)

Comparing this expression with the spherical
harmonic expansion (14.23), we obtain an ex-
pression for the first coefficients Jn:

J0 D 1 I J1 D 0 I J2 D �C �A
MR2

(14.49)

Therefore, MacCullagh’s formula allows to
determine the excess moment of inertia about the
spin axis relative to the moment of inertia about
an equatorial axis, associated with the Earth’s
flattening.

14.5 Gravity Measurements
and Reduction of Gravity
Data

Gravity measurements are made through
gravimeters close to the Earth’s surface, by
aircraft, ships, or land surveys. Gravimeters may
be based on precise spring balances, pendulums

or small bodies falling in a vacuum. In the
latter case, a test mass is dropped inside a
vacuum chamber for some centimeters and
the trajectory is monitored accurately using
a laser interferometer and an atomic clock.
The precision of these instruments is of a
few �Gal (10�8 ms�2) in static conditions. In
general, the observed gravity results from the
superposition of several factors, which must
be accurately separated to obtain a data set
that can be interpreted geologically. In fact,
the final objective of most gravity surveys
is to determine gravity anomalies associated
with short-wavelength lateral density variations
close to the Earth’s surface and to reconstruct
the density distribution in the underground.
Therefore, the contribution of these small-scale
density anomalies must be isolated in the gravity
measurements from other factors that influence
the variability of the observed data. These factors
include:
• The variations of latitude, which affect the

formula of Somigliana (14.35);
• The effect of elevation above the sea level;
• The average crustal mass above the sea level;
• The lateral variations of altitude about the

average mass above the sea level;
• Periodic tidal changes in the shape of the

Earth;
• Variations of the centrifugal potential caused

by the motion of the gravimeter, for example
when the measurements are made by aircrafts
or ships. This is called Eötvös effect;
The reduction of raw gravity data to a format

that can be interpreted in terms of density anoma-
lies is performed through a series of corrections.
In small-scale studies, the difference between
geoid and reference ellipsoid is usually neglected,
thereby the orthometric altitude H relative to the
geoid is assumed to be coincident with the geo-
metric altitude h relative to the ellipsoid. While
shipboard gravity data can be compared directly
with the normal gravity ”0, measurements per-
formed at elevation h above the ellipsoid must
be adjusted to take into account of the variation
of gravity with altitude. The normal gravity at a
small altitude h above the reference surface can
be expressed as a Taylor’s series expansion about

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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the distance R of the ellipsoid from the Earth’s
centre:

”.RCh/ D ”0Ch @”
@r

ˇ̌̌
ˇ
rDR
C 1
2
h2
@2”

@r2

ˇ̌̌
ˇ
rDR
C : : :

(14.50)

Dropping high-order terms and rearranging
gives:

”0 Š ” .RC h/� h @”
@r

ˇ̌
ˇ̌
rDR

(14.51)

To first order, the derivative in (14.51) can be
estimated as follows:

@”

@r

ˇ̌
ˇ̌
rDR
Š @

@r

�
GM

r2

�ˇ̌ˇ̌
rDR
D �2GM

r3

ˇ̌
ˇ̌
rDR

D �2”0
R (14.52)

Therefore, substituting into (14.51) gives:

”0 Š ” .R C h/C 2”0h

R
(14.53)

The quantity:

•”FA D ”0�” .RCh/ D 2”0h

R
Š 0:3086�10�5h

(14.54)

is called free-air correction and represents the
adjustment that is required to take into account of
the elevation of the observation point. A free-air
anomaly is calculated from a raw gravity datum
subtracting the theoretical gravity at altitude h
from the observed value at geodetic coordinates
(§,¥) and elevation h:

�gFA .§; ¥; h/ D g .§; ¥; h/� ”h .§/ (14.55)

From (14.54), we have that these anomalies
can be calculated using the following canonical
expression:

�gFA .§; ¥; h/ D g .§; ¥; h/� ”0 .§/
C 0:3086� 10�5h (14.56)

Fig. 14.5 Bouguer slab for the determination of simple
Bouguer anomalies

Free-air anomalies are usually employed in
marine geophysics to analyze the tectonic struc-
ture of the sea floor, especially in oceanic regions,
where they furnish accurate representations of
spreading ridges, fracture zones, etc. (e.g., see
Fig. 2.4). On land, these anomalies show strong
correlation with topography, because they do not
take into account of the presence of masses be-
tween the observation point and sea level. In
some sense, free-air anomalies show the grav-
ity anomalies that would be observed if all the
masses were condensed within the geoid. The
most simple correction that is performed to take
into account of the presence of masses above
the geoid is called simple Bouguer correction.
Let us assume that the topography of a region is
sufficiently smooth (Fig. 14.5). In this instance,
we can approximate the mass above the geoid
by a homogeneous, infinitely extended slab of
constant thickness. The excess gravity generated
by an infinite slab of thickness h and uniform
density ¡ can be calculated starting from a thin
disk of thickness •h and radius a. To simplify the
calculation, it is convenient to choose a reference
frame with the origin coinciding with the disk
centre and with a z axis coinciding with the
symmetry axis of the disk. In this instance, the
volume element in the Poisson integral (14.38)
can be expressed in cylindrical coordinates as:
dV 0D dx 0 dy 0 dz 0D r 0 dr 0 d¥ 0 dz 0.

Therefore, the potential at an arbitrary location
rD zk along the symmetry axis will be given by:

V .r/ D G¡
Z
R

1

jr � r 0jdx
0dy0d z0

D G¡
aZ
0

r 0dr 0
2 Z
0

d¥0
•hZ
0

d z0

jr � r 0j (14.57)

http://dx.doi.org/10.1007/978-3-319-09135-8_2
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For an infinitely thin disk the quantity jr� r 0 j
is independent from z0 and we have: r0Š x0iC y0j.
Then,

V .r/ D G¡•h
RZ
0

r 0dr 0
2 Z
0

d¥0

jr � r 0j

D G¡•h
RZ
0

r 0dr 0
2 Z
0

d¥0p
z2 C r 02

D 2 G¡•h
RZ
0

r 0p
z2 C r 02

dr 0

D 2 G¡•h
h�

z2 CR2�1=2 � z sgn.z/
i

(14.58)

The corresponding gravity field along the z
axis is given by:

g .r/ D rV D 2 G¡•h
�

zp
z2 CR2 � sgn.z/

�
k

(14.59)

To obtain the field generated by a thin lamina
of thickness •h, is sufficient now to take the limit
of (14.59) as R!1.

The result is:

g .r/ D lim
R!12 G¡•h

�
zp

z2 CR2 � sgn.z/

�
k

D �2 G¡•h sgn.z/k (14.60)

This expression shows that the gravity of a
Bouguer slab is independent from the distance
of the observation point from the slab surface.
Therefore, for a slab of thickness h we have
that the simple Bouguer correction, which must
be subtracted from observed gravity data, is
given by:

•gSB .r/ D 2 G¡h (14.61)

A simple Bouguer anomaly is a gravity
anomaly that takes into account of both
altitude and the presence of sufficiently uniform
topography above the geoid. It is obtained

subtracting the correction (14.61) from free-air
anomalies:

�gSB .§; ¥; h/ D �gFA .§; ¥; h/� 2 G¡h
(14.62)

For typical crustal rocks, the value of density
that is usually adopted is ¡D 2,670 kg/m3. In
this instance, the formula for calculating simple
Bouguer anomalies becomes:

�gSB .§; ¥; h/ D �gFA .§; ¥; h/
� 0:1119� 10�5h

D g .§; ¥; h/ � ”0 .§/
C 0:3086 � 10�5h

� 0:1119� 10�5h (14.63)

In the case of marine surveys, the simple
Bouguer correction is made replacing the water,
which has density ¡D 1,000 kg m�3, with a
slab having density ¡D 2,670 kg/m3 and thick-
ness h equal to the bathymetric depth. However,
now the sign of the correction (14.61) must be
reversed, so that the quantity 2 G¡h will be
added to the observed gravity. Bouguer anomalies
calculated through (14.63) reflect the presence of
density contrasts relative to the standard value
¡D 2,670 kg/m3, which is a reference value ap-
propriate for most geological situations.

Simple Bouguer anomalies are mostly appro-
priate when the topography (or the bathymetry)
is sufficiently uniform to be approximated by a
slab of constant thickness. When this condition
is not satisfied, further correction is necessary
to take into account of the presence of masses
above or below the Bouguer slab. For example,
mountains give a positive contribution to the
gravity measurements (although their isostatic
roots give an even greater negative contribution).
Therefore, gravity data measured in regions with
moderate or rugged relief usually undergo the so-
called terrain correction, which leads to calculate
complete Bouguer anomalies.

The procedure of terrain correction usually
requires a high-resolution digital terrain model
(DEM), which specifies a value of altitude
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Fig. 14.6 Terrain correction for the calculation of com-
plete Bouguer anomalies. The mountain to the left of the
observation point is located externally to the Bouguer slab
and exerts a negative (upward) attraction on P. Therefore,
the corresponding correction must have positive sign.

Similarly, the contribution of the dashed region to the
right of P, which was included in the simple Bouguer
correction with negative sign, should be removed through
a correction having positive sign

z0D —(x0,y0) for each location with projected
geographic coordinates (x0,y0) (Fig. 14.6). If
P� (x,y,z) is an observation point, the vertical
component of the gravity field at P generated
by mass elements dmD ¡dx0dy0dz0 at positions
(x0,y0,z0) between the Bouguer slab and the
topographic surface is given by:

•gT .x; y; h/ D �G¡
C1Z
�1
dx0

C1Z
�1
dy0

—.x0;y0/Z
h

� .h� z0/ d z0
h
.x � x0/2 C .y � y0/2 C .h � z0/2

i3=2
(14.64)

This quantity is termed terrain correction. The
corresponding complete Bouguer anomaly is ob-
tained by adding (14.64) to the simple anomaly:

�gCB .§; ¥; h/ D �gSB .§; ¥; h/C •gT .§; ¥; h/
(14.65)

In the case of crustal scale studies, the ter-
rain correction is usually negligible, thereby it
is ignored. In general, Bouguer anomalies are
negative in continental regions and positive over
oceanic basins. This is also a consequence of
the presence of low-density crustal roots below
mountain regions. Free-air and Bouguer anoma-

lies behave differently with respect to the re-
gional isostatic equilibrium. In fact, �gFAŠ 0
when a region is in isostatic equilibrium, whereas
�gSBŠ 0 in case of uncompensated structure.

14.6 Isostasy and Dynamic
Topography

The major part of the Earth’s surface topography
can be explained by isostatic compensation of
density variations within the lithosphere. In Chap.
12, we have seen that the isostasy principle can
be expressed as a law of invariance for the hydro-
static pressure at some compensation depth zc in
the uppermost asthenosphere:

P .x; y; zc/ D g
zcZ

�Hmax

¡ .x; y; z/ d z D const

(14.66)

where Hmax is the maximum altitude. This equa-
tion implies that lateral variations of crustal or
lithospheric thickness must be compensated by
variations of topography, as illustrated in the
example of Fig. 14.7.

The mechanism of isostatic compensation
can explain the �5�8 km elevation of the
Tibetan Plateau and the Hymalayan range, which
result essentially from the crustal thickening that
followed the collision of India with Eurasia.

http://dx.doi.org/10.1007/978-3-319-09135-8_12


376 14 Gravity Field of the Earth

Fig. 14.7 Mechanism of isostatic compensation. Starting
from a hypothetical initial situation where the elevation
is zero everywhere, a lateral increase of crustal thickness
in the continental crust (green regions, density ¡c) will
determine upward motion to compensate the decreased
weight of the column. Similarly, the denser oceanic crust

(¡o>¡c) will subside to compensate the excess weight
with water (blue regions, density ¡w). In this example,
the lithospheric mantle has constant thickness and density
¡l>¡c,¡o. The air (yellow regions) has negligible density.
Finally, it is assumed that the asthenosphere has density
¡a>¡l

Fig. 14.8 Geoid anomalies, N, and dynamic topography
of a fluid mantle layer that incorporates small density
anomalies. The geoid undulations result (thick solid line)
from the combined effect of static density contrasts (thin

solid line) and topography variations (dashed lines) at
the upper and lower boundaries of the layer induced by
mantle flows (dotted lines)

However, in some regions the elevated or
depressed topography cannot be explained in
terms of isostasy. A classic example is given by
the East African and Ethiopian plateaux (Moucha
and Forte 2011). Hager (1984) and Richards
and Hager (1984) were the first to propose
a mechanism that today is known as dynamic
topography.

The basic idea behind the concept of dynamic
topography is illustrated in Fig. 14.8. It starts
from the simple observation that mantle con-

vection should cause deformation and topogra-
phy variations at the Earth’s surface. In fact,
sinking density anomalies pull downwards man-
tle material located above them. At the same
time, they push the mantle downwards at their
front. Similarly, a rising density contrast pulls
or pushes mantle material upwards. Both these
situations determine flexure of the upper man-
tle boundaries and surface topography changes.
The same mechanism would cause variations
in the topography of the CMB associated with
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convective flows in the lower mantle. Therefore,
both the elevation of the mid-ocean ridges and
the deep bathymetry of the trench zones must
be considered as consequences of the dynamic
topography associated with mantle convection.
However, this phenomenon can also explain the
apparent paradox of negative correlation between
long-wavelength geoid undulations and density
anomalies in the mantle mentioned above, which
was first observed by Dziewonski et al. (1977).
In fact, as illustrated in Fig. 14.8, dimples and
swells at the Earth’s surface and along mantle dis-
continuities (e.g., the 670 km discontinuity or the
CMB) give respectively negative or positive con-
tributions to the local geoid undulation, and even-
tually can overcome the component associated
with the static density distribution. Hager (1984)
and Richards and Hager (1984) proved that the
amplitude of dimples and swells is determined by
the magnitude and depth of the density contrasts,
from the depth of the layer, and from the presence
of viscosity stratification in the fluid layer. They
also showed that the process of formation of
dynamic topography could attain a steady state,
because the time interval required to reach sta-
tionary conditions has the same order of magni-
tude of the time employed by a density anomaly
to travel a distance of a few kilometers. There-
fore, a steady state is reached on a postglacial
rebound time interval, essentially instantaneously
on a geological time scale. In general, the effect
of dynamic topography on gravity is quite large.
For example, the topographic low of subduction
zones may reach 10 km depth. Although dynamic
topography is traditionally associated with the
vertical motions of thermal (Rayleigh-Bénard)
convection, horizontal mantle flows also support
changes of elevation. In Chap. 13, we have seen
that horizontal pressure-driven flows (Poiseuille-
Couette flows) are possible and arise from hor-
izontal pressure gradients in the asthenosphere.
The existence of these flows is testified both by
events of non-equilibrium plate kinematics in the
geologic past (discussed in Chap. 6) and by the
non-isostatic topographic slope observed in some
regions (e.g., Conder and Wiens 2007). The re-
lation between topographic slope and horizontal
pressure gradient comes from the observation

that an excess of thermodynamic pressure with
respect to the hydrostatic value at the compensa-
tion depth must be equivalent to uncompensated
topography at the Earth’s surface. Therefore, if
h is the elevation exceeding the normal isostatic
height, we can write the following fundamental
equation (Schubert and Turcotte 1972; Schubert
et al. 1978):

@p

@x
D ¡ag @h

@x
(14.67)

where ¡a is the density of the asthenosphere.
Therefore, assuming ¡aD 3,450 kg m�3 we
have that a pressure gradient of 100 kPa km�1

would generate a dynamic topographic slope of
2.96 m km�1.

Problems

1. Find the gravity anomaly generated by a
spherical object at 1 km depth with density
contrast�¡D 200 kg m�3;

2. Find the gravity anomaly generated by
an infinitely long horizontal dike at 1 km
depth, with cylindrical cross-section of
radius RD 5 m and density contrast
�¡D 100 kg m�3;

3. Find an expression for the thickness hr of the
crustal root generated by a mountain belt with
average altitude hm in excess of a normal con-
tinental crust, assuming that the lithospheric
mantle has constant thickness;

4. A gravimeter based on measurements of
falling body trajectory has uncertainty
˙10�6 s on reading the arrival time at distance
dD 0.5˙ 0.0001 m. Estimate the uncertainty
on gravity.
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Appendix 1: Vector Calculus

A1.1 Scalar Fields

Many physical quantities can be represented by
a single real number. They are called scalars.
Examples of scalar quantities are the temperature,
T, the pressure, P, and the density, ¡. A scalar
field ¥D¥(r) is a continuous function of the
spatial Cartesian coordinates (x,y,z), which can be
represented by a position vector rD xiC yjC zk.
The spatial variability of a scalar field can be
expressed through its gradient:

r¥ �
�
@¥

@x
;
@¥

@y
;
@¥

@z

�
� @¥

@x
i C @¥

@y
j C @¥

@z
k

(A1.1)

The gradient of a scalar field is not a scalar
quantity, because it is formed by the ordered set
of three spatial derivatives. It is an example of
vector field, which defines a vector quantity for
each position (x,y,z). In this instance, the vec-
tor components are the three derivatives @¥/@x,
@¥/@y, and @¥/@z. Many scalar fields considered
in geophysics are functions of only two spatial
coordinates, for example latitude and longitude,
thereby they can be represented as surfaces on the
plane or on the sphere (Fig. A1.1).

Elevation, gravity and magnetic anomalies,
and surface heat flux are examples of scalar
fields in the plane. In this instance, the equation
¥D¥0, ¥0 being a constant field value, defines
a contour line for the scalar field in the (x,y)
plane. This is the set of points (x,y) such that
¥(x,y)D¥0. A set of contour lines for equally
spaced values ¥0, ¥1, : : : is a convenient way to
illustrate the field properties, alternative to the
surface representation (Fig. A1.2).

If r and rC dr are two neighbor points on a
contour line, then it results:

d¥ D ¥ .r C dr/� ¥ .r/ D @¥

@x
dx C @¥

@y
dy

D r¥ � dr D 0 (A1.2)

Therefore,r¥ is always orthogonal to the con-
tour lines of a scalar field in the plane. This im-
plies that the direction of r¥ coincides with the
direction of maximum increase of ¥ (Fig. A1.3).

Similarly, in the general case of three–
dimensional fields, the set of points (x,y,z) such
that ¥(x,y,z)D¥0 is an isosurface in <3. In
this instance, r¥ is always orthogonal to the
isosurfaces of ¥. Given a direction unit vector n,
the quantity:

r¥ � n � @¥

@n
D @¥

@x
nx C @¥

@y
ny C @¥

@z
nz

(A1.3)

is called directional derivative of ¥ in the direc-
tion of n. It represents the variation of ¥ as we
move from the actual position r to a neighbor
position rC dr in the direction n.

A1.2 Vector Fields

A vector field ADA(r) associates a vector A to
each position r� (x,y,z) in the space. Classic ex-
amples are the force fields, in particular electric,
gravity, and magnetic fields, but also velocity
and acceleration fields. The spatial variability of
vector fields is described through two differential
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Fig. A1.1 Surface representation of a scalar field ¥ in the plane (x,y)

Fig. A1.2 Contour lines for the scalar field of Fig. A1.1
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Fig. A1.3 Contour lines and gradient for the scalar field of Fig. A1.1

Fig. A1.4 Fluid flux
through a small volume

operators: the divergence and the curl. The diver-
gence of a vector field is defined as follows:

r �A D @Ax

@x
C @Ay

@y
C @Az

@z
(A1.4)

To understand the physical interpretation of
this scalar field, let us consider a steady velocity
field in a fluid, vD v(r), and a small volume
�VD�x�y�z at location r (Fig. A1.4).

The volume of fluid which enters the volume
through the left face in the x direction per unit
time is given by vx(x, y, z)�y�z. Similarly, the
volume of fluid that leaves �V in the x direction

through the right face per unit time is given by
vx(xC�x, y, z)�y�z. Therefore, the net volume
of fluid per unit volume and per unit time through
�V in the x direction is given by:

vx .x C�x; y; z/ �y�z � vx .x; y; z/ �y�z

�x�y�z

D
h
@vx
@x
�x

i
�y�z

�x�y�z
D @vx
@x (A1.5)

Consequently, the net volume of fluid per unit
volume and per unit time through �V is given
by r�v. The second differential operator that
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Fig. A1.5 Rotors in a pressure–driven fluid flow through a channel

describes the structure of a vector field ADA(r)
is the curl, which is a vector field defined as
follows:

r �A D
ˇ̌
ˇ̌
ˇ̌

i j k

@=@x @=@y @=@z
Ax Ay Az

ˇ̌
ˇ̌
ˇ̌ D

�
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@y
� @Ay

@z

�
i

C
�
@Ax

@z
� @Az

@x

�
j C

�
@Ay

@x
� @Ax
@y

�
k

(A1.6)

The physical interpretation of the curl can
be understood considering again the case of the
velocity field within a fluid. Let us consider a
steady pressure–driven fluid flow through a chan-
nel, as in Fig. A1.5. Two rotors, located close
to the opposite walls would rotate in opposite
directions.

The curl of the velocity field in Fig. A1.5 is
given by:r � vD�(@vx/@y)k. It is in the negative
z direction close to the lower wall and in the
positive z direction close to the upper wall. In
the first case, a rotor placed in the fluid would
rotate clockwise (negative angular velocity) or
counterclockwise (positive rotation) according to
the sign of r � v and with angular velocity pro-
portional to the magnitude of the curl. Curl and

divergence have the following important proper-
ties, which can be easily verified by the reader:

r � r �A D r .r �A/ � r2A (A1.7)

r � .r �A/ D 0 (A1.8)

r � r¥ D 0 (A1.9)

for each vector field A and for any scalar field ¥.
In (A1.7), the operatorr2 is the Laplacian, which
is defined by:

r2¥ � r � r¥ D @2¥

@x2
C @2¥

@y2
C @2¥

@z2
(A1.10)

for an arbitrary scalar field ¥. In the case of a
vector field, it is intended that the operator is
applied to each component independently.

A1.3 Integrals Theorems

A path C in<3 is a line such that each point P 2C
has a position vector r defined by the parametric
equation:

r D r.t/ D x.t/i C y.t/j C z.t/k I t 2 Œa; b�
(A1.11)
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Fig. A1.6 Geometrical
relationships in the
calculation of line integrals

Given a vector field ADA(r), a line integral
over the path C is a scalar quantity given by:

I D
Z
C

A .r/ � dr (A1.12)

Figure A1.6 illustrates the general approach
followed in the computation of line integrals,
such as the work associated with a force field. We
simply substitute the parametric equation (A1.11)
into (A1.12), which reduces the integral to a
standard definite integral. To this purpose, it is
necessary determining a parametric expression
for the infinitesimal displacement vector dr. This
is accomplished differentiating (A1.11). When A
coincides with the gradient of a scalar field, we
say that A is a potential field. In this instance, the
following analogue of the fundamental theorem
of calculus holds:

I D
Z
C

r¥ � dr D ¥ .r.b// � ¥ .r.a//

(A1.13)

When the two end points of a path coincide, so
that C forms a closed loop, we write:

I D
I
C

A .r/ � dr (A1.14)

Clearly, by (A1.13) closed loop line integrals
of potential fields are always zero, so that I results
to be independent from the path linking r(a) to
r(b). For this reason potential fields are said to
be conservative. Just as a curve in the three–
dimensional space, a surface S in <3 can be
defined in parametric form. In this instance, two
parameters, u and v, must be defined in a region
D of <2. These parameters are used to identify
position vectors on S.

Then, likewise paths, parametric surfaces are
defined by equations of the form:

r D r .u; v/ D x .u; v/ iCy .u; v/jCz .u; v/kI
� .u; v/ 2 D � R2 (A1.15)

At any point on S, the normal versor n can be
used to define a vector representing the oriented
surface element dSDndS, which has magnitude
equal to the infinitesimal area dS and normal
versor n. Given a vector field ADA(r), the flux
through the surface S is defined as the integral:

ˆ D
Z
S

A .r/ � dS (A1.16)

Once again, the integral is calculated
substituting the parametric equations (A1.15)
into (A1.16). The following Stokes’ theorem is a
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Fig. A1.7 Base versors for
the transformation from
Cartesian to spherical
derivatives

fundamental theorem of vector calculus, which
allows to convert a surface integral into a closed
loop line integral.

Stokes’ Theorem

Let S be a parametric surface with boundary
C(S). Then, for every vector field ADA(r), it
results:Z

S

r �A � dS D
I
C.S/

A � dr (A1.17)

Another important theorem of vector analy-
sis is the following Gauss’ theorem, which al-
lows to convert a volume integral into a surface
integral.

Gauss (or Divergence) Theorem

Let R�<3 be a region of <3, bounded by the
closed surface S(R). Then, for every vector field
ADA(r), it results:Z

R

r �AdV D
I
S.R/

A � dS (A1.18)

A1.4 Spherical Coordinates

Spherical coordinates are a very common
way to represent positions in Earth Sciences.
Figure A1.7 shows the relation between Carte-
sian, (x,y,z), and spherical, (r,™,¥), coordinates
associated with a position vector r.

The general transformation rule of vector
fields and differential operators from Cartesian to
spherical coordinates requires the introduction
of the three orthogonal versors br, b™, and b¥
(Fig. A1.7), which are directed respectively
toward increasing distance from the origin,
increasing colatitude (that is, southward),
and increasing longitude (i.e., eastward) at
point P� (x,y,z). It is easy to prove that the
transformation from the base (i,j,k) to the base
(br,b™,b¥) is given by:

2
4brb™b¥

3
5D

2
4 sin ™ cos¥ sin ™ sin¥ cos ™

cos ™ cos¥ cos ™ sin¥ � sin ™
� sin¥ cos¥ 0

3
5
2
4 i

j

k

3
5

(A1.19)

The transformation matrix in (A1.19) is an
orthogonal matrix, thereby its inverse is simply
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its transpose. This allows to write immediately
the inverse transformation:

2
4 i

j

k

3
5D

2
4 sin ™ cos¥ cos ™ cos¥ � sin¥

sin ™ sin¥ cos ™ sin¥ cos¥
cos ™ � sin ™ 0

3
5
2
4brb™b¥

3
5

(A1.20)

A1.5 Index Notation

Index notation is a standard way to represent
the Cartesian components of vectors and tensors
in continuum mechanics. In this context, x1� x,
x2� y, x3� z, the base versors (i,j,k) are substi-
tuted by (e1,e2,e3), and the generic component of
a vector A is indicated simply by Ai. This notation
combines with the Einstein summation conven-
tion, which requires that duplicated indices in
expressions are always summed. For example,

AiBi � A1B1 C A2B2 C A3B3
� AxBx C AyBy CAzBz

Some ambiguity is possible where powers of
an indexed quantity occur. Therefore, an expres-
sion such as: X

i

A2i

with the summation convection is always written
in the form:

AiAi

Two tensors are often encountered in compu-
tation based on index notation. The first one is
the Kronecker delta, •ij, which simply represents
a component of the identity matrix:

•ij D


0 if i ¤ j
1 otherwise

(A1.21)

The second tensor is the Levi–Civita tensor,
"ijk, which is defined to be zero if any two of the
indices ijk are equal, and otherwise either C1 or
�1 according as ijk is an even or odd permutation
of 1,2,3. Thus, in terms of the Levi–Civita tensor,
the components of the cross product CDA�B
can be written as follows:

Ci D ©ijkAjBk (A1.22)

Regarding the differential operators, in index
notation the components of the gradient of a
scalar field ¥ are simply:

.r¥/i �
@¥

@xi
I i D 1; 2; 3

The divergence of a vector field ADA(r) will
be written as follows:

r �A � @Ai

@xi

Finally, the components of the curl will be
expressed as:

.r �A/i � ©ijk
@Aj

@xk
I i D 1; 2; 3



Appendix 2: Algorithms and Data
Structures

A2.1 Algorithms

There are three basic components of any software
system. They are: (1) a data collection, (2) a set
of algorithms, and (3) a system of memory data
structures. Data can be classified as numerical
data, strings, and compound data. Numerical
data are binary representations of natural, inte-
ger, or real numbers. Strings are sequences of
symbols of alphabets, for example the ASCII
or UNICODE alphabets. Finally, compound data
are values that contain heterogeneous subsets of
information (numbers, strings, etc.), typically in
fixed number and sequence. The elements of
compound data records are usually called fields.
An algorithm is an ordered sequence of instruc-
tions for a virtual or real processing unit. There
are three fundamental classes of instructions. The
first class includes assignments of the form:

var expr (A2.1)

where var is a variable, that is, a memory location
where we can store a value, and expr is an
expression that combines a homogeneous set
of variables and constants through arithmetical,
logical, or string operators, depending from the
expression type. Differently from physics, in
computer science the fundamental distinction
between variables and constants is not based on
their capability to change their value. Variables
are named memory locations that may contain or
not a value. Constants are parameter values,
generally stored within the algorithm code.
The operation involved into the assignment
instruction (A2.1) includes the evaluation of
the expression and the assignment of the

value to the variable var. For example, the
assignment:

a c C x2– 2
requires reading of the value of variable x, com-
putation of the second power of this value, read-
ing of the value of variable c, addition between
these two values, finally addition of the constant
�2. The resulting value is then assigned to the
variable a. Expressions may also contain func-
tion calls, which invoke execution of specialized
code for the calculation of common mathematical
functions or other code that must be executed
several times. For example,

a y C x2– 2 sin.z/

invokes the execution of the sine function during
the evaluation of the expression. In this instance,
the instruction is executed first calling the func-
tion sin(), to which the value of z is passed,
then using the return value of this function in
the evaluation of the expression. A second class
of algorithm instructions allows to control the
program flow, that is, the sequence of instructions
that will be executed after certain steps. Program
flow control instructions do not execute complex
mathematical operations and do not perform as-
signments. They simply evaluate the state of a
logical variable (a variable whose values can be
true or false), or a logical expression, and decide
the number of the next instruction to be executed
through a jump instruction. For example, the
instruction:

#5 W : : :
#6 W x � 10) jump #20

#7 W : : :

A. Schettino, Quantitative Plate Tectonics, DOI 10.1007/978-3-319-09135-8,
© Springer International Publishing Switzerland 2015
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Fig. A2.1 Control flow programming structures. From
left to right: Conditional branch, pre–conditional loop,
post–conditional loop, and infinite iteration. ExprL is a

logical expression, which can assume the values true (T)
or false (F). Block is a sequence of instructions

at step #6 is a conditional branch. It is executed
comparing the value of x with 10. If x is less
than or equal to 10, then the next instruction that
will be executed is that at line #20, otherwise
it will be executed the instruction at line #7. In
absence of control flow instructions, the sequence
of instructions that are executed by the process-
ing unit is governed by the progression of line
numbers. However, jump instructions determine
a modification of the natural sequence of steps.
This feature can be considered as the most funda-
mental source of algorithms’ power. For example,
backward jumps allow to execute more and more
times a block of instructions, providing the basis
for the construction of cycles (or iterations). Con-
sider the following code segment:

Algorithm A2.1 pow(x,n): n–th power of a real
number x.

Input x 2 <; n 2 N; Output: p D xn 2 <
f
0: p 1; k 0
1: kD n) stop
2: p p� x
3: k kC 1
4: jump #1
g

At step #0, the algorithm initializes a counter
k and the return variable p. Line #1 contains a
conditional branch: if k has attained the value n,

the execution is stopped and the algorithm returns
the actual value of p, else execution proceeds
with step #2. Steps #2 and #3 form the core
block of the algorithm instructions. They calcu-
late xn by the recurrence formula: xkD xxk � 1 ;
kD 1, 2, : : : , n. Finally, step #4 is a backward
jump that forces the program to restart at line
#1. We say that the sequence of steps 1–4 repre-
sents a cycle or iteration. There are three kinds
of cycles in computer programming, which are
illustrated in Fig. A2.1. They can be implemented
using backward or forward conditional branches
or unconditioned jump statements.

The third class of algorithm instructions is rep-
resented by input/output directives, which allow
to display results of computation, create graphics,
or enter input data and parameters. These instruc-
tions are specific of the programming language
used to implement the algorithms and ultimately
depend from the operating system.

A2.2 Data Structures

Let DDfx1,x2, : : : ,xng be a set of n data stored
in memory variables. It is assumed that the in-
dex iD 1,2, : : : ,n associated with the individual
data reflects the order of insertion into the main
memory, not a logical relation between them. The
set could be formed by homogeneous data, for
example a collection of integers, or by heteroge-
neous data, for example compound data records
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Fig. A2.2 An arc linking two nodes in a data structure

of different type and length. The important thing
is that in any case a logical relationship exists
between the elements of the set, which must
be implemented for consistent computation and
data retrieval. As an example, a set of tectonic
elements, faults, and site locations could be char-
acterized by hierarchical relations between the
set items, according to a kinematic model. A
data structure ¢ on D can be defined as a binary
function on D2:

¢ W �xi ; xj � 2 D2 ! ¢ij 2 f0; 1g (A2.2)

This function simply establish the existence
of a qualitative logical relation between two el-
ements xi and xj when ¢ ijD 1. When a data
structure is defined on a set D, the elements of D
are referred to as the nodes or the vertices of the
structure, while the fact that ¢ ijD 1 is rendered
graphically drawing an arc between nodes xi and
xj (Fig. A2.2).

Mathematically, the pair (D,¢) is said to be a
graph, and the binary function ¢ is represented
through a square binary matrix of order n, which
is called adjacency matrix. For example, the
function ¢ associated with the graph of Fig. A2.3
is represented by the following adjacency
matrix:

A D

2
66664

0 0 1 0 0

0 1 0 0 1

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

3
77775

When A is a symmetric matrix, so that
AijDAji for each pair of indices i and j, then
the existence of an arc from a node xi to a node xj

implies the existence of a reversed arc from node
xj to node xi. In this instance, the lines linking

Fig. A2.3 An example of directed graph of order 5 and
size 7

nodes are drawn without arrows and represent
pairs of arcs. These lines are called edges. Data
structures represented by asymmetric adjacency
matrices are called directed graphs or digraphs
(Fig. A2.3). In general, the number n of vertices
in a graph GD (D,¢) is called order of G, while
the number m of arcs or edges is referred to as the
size of G. Two nodes are adjacent when they are
joined by an edge or an arc. The neighborhood
I(x) of a node x is the set of nodes adjacent to x,
and the number of elements in I(x) is called the
degree of x. A path between two vertices x and y
is a sequence of nodes (x, x0, x00, : : : , y), such that
x0 is adjacent to x, x00 is adjacent to x0, etc. If two
nodes are joined by an arc directed from x to y, we
say that x dominates y, or x! y. Therefore, the
existence of a path between x and y can be written
as: x! x0! x00! : : : ! y. Now let us consider
the matrix A2, whose elements are given by:

A2ij D
nX

kD1
AikAkj (A2.3)

Clearly, for each value of the dummy index
k, the term AikAkj contributes to the sum if and
only if xi! xk and xk! xj, thereby there exists
the path (xi,xk,xj). Therefore, the element A2

ij rep-
resents the number of paths of length two joining
nodes xi and xj. We can extend this concept to
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higher powers of A, saying that an element Ak
ij of

the matrix Ak represents the number of paths of
length k joining node xi to xj. In general, given
any two vertices x and y, several distinct paths of
different length may exist that join these nodes.
For example, in Fig. A2.3 node x2 is the end
vertex of three walks that start at x5, namely:
(x5,x2), (x5,x4,x3,x2), and (x5,x4,x1,x3,x2), which
have length one, three, and four respectively. The
distance d(x,y) between two nodes is defined as
the length of the smallest path joining x and y.
It is easy to verify that for any undirected graph
GD (D,¢), the function d is a metric on D:

1: d .x; y/ 
 0I d .x; y/ D 0 ” x D y
(A2.4)

2: d .x; y/ D d .y; x/ (A2.5)

3: d .x; y/C d .y; z/ 
 d .x; z/ (A2.6)

A major task in computer science is to find al-
gorithms that compute the function d for any pair
of nodes in a graph G. The following breadth–
first search algorithm (BFS) is a classic solu-
tion to this problem. Given x 2 D, the BFS
algorithm determines d(x,y) for each y 2 D.
When the algorithm stops, if d(x,y)D1 for some
node y, then vertex y cannot be reached starting
from x:

Algorithm A2.2 bfs(x): Distances from a node x

Input: x 2 D
Output: d(x,y) 8 y 2 D
f
0: i 0; d(x,x) 0;8 y 2D j y¤ x, d(x,y) 1;

f false
1: 8 y 2 D j d(x,y)D i, 8 z 2 I(y) j d(x,z)D1,

d(x,z) iC 1, f true
2: fD false) stop
3: i iC 1; f false
4: jump #1
g

The variable i, which at step #0 is initialized
to zero, represents the current estimate of the
distance of a node from the starting node. All

distances, except d(x,x), are initialized to infinite.
When the algorithm is running, a value of dis-
tance d(x,y)D1 indicates that the corresponding
node y has not yet been visited. Finally, a flag f is
used to test if at least one node with the distance
iC 1 has been found in the current iteration. This
algorithm is structured on three nested loops.
The two innermost loops are located at line #1.
They check if the nodes y with actual distance
i from x have a node z in their neighborhoods
I(y) that has not yet been visited. If a node z
of this kind is found, its distance from x is set
to iC 1 and the flag f is set to true, indicating
that algorithm must execute a new iteration. The
loop between lines #1 and #4 is responsible for
increasing the variable i at each iteration and gov-
erns the mechanism of fan–shaped expansion that
is characteristic of this algorithm. The procedure
ends, at line #2, when all reachable nodes have
been visited. Such a condition is clearly indicated
by a value f D false after the execution of the
inner loops at line #1.

A more general class of data structures is
represented by the weighted graphs. In many
situations, the arcs or the edges of a graph carry
information. For example, in a graph representing
routes between cities, the nodes would contain
information about the cities, while the edges
could store the distance in km between any pair
of neighbor cities. Therefore, the binary func-
tion (A2.2) can be considered as a special case
of data structure, such that each arc has unit
length.

In the most general case, ¢ can be defined as a
non–negative real function on D2:

¢ W �xi ; xj � 2 D2 ! ¢ij 2 Œ0;1� (A2.7)

An example of weighted undirected graph is
illustrated in Fig. A2.4. Just like normal graphs,
in weighted graphs ¢(x,y)D 0 is interpreted as
absence of direct link between nodes x and y.
A substantial difference of this class of graphs
with respect to unweighted data structures is
represented by the possibility that the shortest
path between two nodes x and y does not coin-
cide with the path having the smallest number
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Fig. A2.4 An example of
undirected weighted graph
of order 6 and size 8

of intermediate nodes. This is a consequence
of the fact that in the case of weighted graphs
the distance between two adjacent nodes is not
anymore unity but it is given by the real–valued
measure ¢(x,y). Consequently, the BFS algorithm
is not applicable to weighted graphs.

The following Dijkstra algorithm computes
the minimum distance between two nodes x and
y in a weighted graph. Let x be the starting node
and d(x,z) an ansatz about the distance of a vertex
z from x. The quantity d(x,z) will be updated
several times during the algorithm execution. At
any iteration, the algorithm of Dijkstra considers
a subset T of D, from which a node z having
minimum distance from x is selected. At this
point, for each element w in the neighborhood
of z and belonging to T, such that the distance
d(x,w)> d(x,z)C ¢(z,w), the distance d(x,w) is
set to d(x,z)C ¢(z,w). Then, the algorithm up-
dates T by removing fzg and the operation is
repeated. The algorithm terminates when the se-
lected element of T coincides with y. If y cannot
be reached starting from x, the algorithm ter-
minates with d(x,y)D1. The function select()
called at step #1 is a simple linear search in T,
which returns the first node in T having minimum
distance from x. The algorithm of Dijkstra is used
in seismic tomography and refraction seismology
to determine the best seismic ray path joining a
source to a receiver on the basis of a velocity
model. In fact, according to Fermat’s principle,
the path taken between two points by a seis-
mic ray is the one that can be traversed in the
least time.

Algorithm A2.3 sp(x,y): Shortest path between
two nodes x and y (Dijkstra’s algorithm).

Input: x,y 2 D
Output: d(x,y) 2 <
f
0: d(x,x) 0; 8 y 2 D j y¤ x, d(x,y) 1;

T D
1: z select(T)
2: zD y) stop
3: 8 w 2 I(z) j w 2 T, d(x,w)> d(x,z)C ¢(z,w)

) d(x,w) d(x,z)C ¢(z,w)
4: T T�fzg
5: jump #1
g

Both the BFS and Dijkstra algorithms can be
used to test the connectivity of a data structure. A
graph G is connected if for each pair of nodes
x and y there exists a path joining them. An
alternative and widely used technique for deter-
mining graph connectivity is known as depth–
first search (DFS). In this approach, we start from
a node x0 and visit an arbitrary element x1 in
the neighborhood of x0. At this point, a node x2

in the neighborhood of x1 and not yet visited is
considered. Then, the algorithm proceeds through
a depth search, until a vertex xk is found, such
that the neighborhood I(xk) is empty or any node
in I(xk) has been already visited. Then, the depth
search restarts from xk�1. When all the paths
rooted at xk�1 have been explored, the algorithm
restarts from xk�2, and so on. Therefore, the
procedure alternates depth search with a back-
ward step, until the whole neighborhood of x0
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has been visited, in which case the algorithm
terminates. The procedure described above can
be easily implemented in recursive form, because
the backward steps imply the use of a stack
where the address of starting depth search nodes
is stored. Below we present a variant of the classic
algorithm, which can be used to generate a map of
the distances of all the nodes of G from a starting
node x. This algorithm represents the basis for
building more complex procedures that analyze
properties of graphs.

Algorithm A2.4 dfss(x): Depth–first search
from a node x (shell).

Input: x 2 D
Output: d(x,y) 8 y 2 D
f
0: 8 y 2 D, d(x,y) 1
1: dfs(x,0)
g

Algorithm A2.4 represents a shell from which
we call the ricorsive procedure of DFS. It initial-
izes the distance of all the nodes of G (including
x) to infinity, which means “unreachable”. At
the next step, the algorithm calls the recursive
procedure dfs() listed below, thereby triggering
the depth search sequence within G.

Algorithm A2.5 dfs(y,i): Depth–first search
from a node y (recursive version).

Input: y 2 D, i 2 N
Output: None
f
0: d(x,y)� i) stop

1: d(x,y) i
2: 8 z 2 I(y), dfs(z,iC 1)
g

A2.3 Trees

Trees represent a fundamental class of data struc-
tures, characterized by the absence of cyclic paths
and by connectivity. Therefore, a tree can be de-
fined as an acyclic connected graph (Fig. A2.5).
The nodes having unit degree are called terminal
nodes or leaves, while the remaining vertices
are called internal nodes. An interesting property
of the trees is that removal of a single edge is
sufficient to separate the data structure into two
disjoint parts. This feature implies the lowest
degree of connectivity for a graph. The following
theorems determine the fundamental properties
of this important class of graphs.

Theorem A2.1 A graph G is a tree iff any pair
of nodes is joined by a unique path.

Proof By definition G is connected. Conse-
quently, any pair of nodes is joined by at least
one path. However, if two nodes x and y were
joined by two or more distinct walks, G would
have cyclic paths, which would contradict the
hypothesis that G is a tree. Let us assume now
that any pair of nodes in G is joined by a unique
path. In this instance, G is clearly a connected
graph. Furthermore, if we could find a cyclic path
passing through two nodes x and y, then these
two elements would be joined by distinct paths,

Fig. A2.5 An example of
tree of order 9
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which would contradict the starting hypothesis.
As a consequence, such a path cannot exist and
G is a tree. �

Theorem A2.2 A graph G is a tree iff G is
connected and mD n� 1.

Proof Given a tree G of order n, we can prove
that mD n� 1 by induction. In fact, it is trivially
true that if nD 1 then mD 0. Let us assume now
that the equality is proved up to some order n� 1,
and consider a tree of order n. If we remove
the edge joining two adjacent nodes x and y,
we obtain two disjoint subtrees G1 and G2, each
having order ni< n (iD 1,2) and size miD ni� 1.
Therefore:

m D m1 Cm2 C 1 D n1 C n2 � 1 D n � 1

Conversely, let G be connected and mD n� 1.
We must prove now that G is acyclic. To this
purpose, let us assume that a cyclic path c exists
in G. If we remove an edge from c, we obtain a
graph that is still connected and of the same order
of G, but the size will be decreased to n� 2. This
result is clearly impossible, because a connected
graph must have at least n� 1 edges. Therefore,
G must be acyclic, thereby it is a tree. �

Let us consider now a subclass of tree struc-
tures that has great practical interest: the rooted
trees. These graphs are directed acyclic structures
characterized by the existence of a special node r,
called the root, from which it is possible to reach
any other vertex in the graph through unique
paths (Fig. A2.6). The following theorem de-
termines all the fundamental properties of these
graphs:

Theorem A2.3 A directed connected graph G is
a rooted tree iff : (a) there exists a unique un-
reachable node r in G (that is, without incoming
arcs); (b) any other node in the graph has one
input arc. Furthermore, removal of a single arc
separates G in two disjoint subtrees.

Proof Let G be a rooted tree. In this instance,
there exists a unique path joining the root r with

any other node x. Let us assume now that a node
x can be found such that x! r. In this instance,
the arc from x to r would form, together with the
path from r to x, a cycle. This would contradict
the hypothesis that G is a rooted tree. Therefore,
r cannot have incoming arcs. Let us consider now
a node x¤ r. Clearly, x has at least one incoming
arc, because there exists a path joining r to this
node. Let us assume that x has more than one
input arcs, and let z and y be two nodes such that
z! x and y! x. Two distinct paths exist that join
r with z and y. Therefore, extending these paths
by the arcs z! x and y! x, we would obtain
two alternative paths that reach x starting from the
root. This would be in contrast with the definition
of rooted tree, thereby a node x¤ r must have
a unique incoming arc. We also observe that
removal of any arc x! y would cause y to be un-
reachable, thereby the tree would be decomposed
in two disjoint parts. As a consequence, the root r
is the only node devoid of incoming arcs. Now, let
G be a directed graph containing a unique node r
without incoming arcs and let us assume that any
other node has just one incoming arc. We want to
prove that in this case G is a rooted tree. To this
purpose, we first observe that at most one path
can exist joining r to any other node x, because
the presence of two alternative paths from r to
a node x implies the existence of a convergence
node that could coincide with x or an “upstream”
node. This node would have two input arcs, in
contrast with the starting hypothesis. Regarding
the acyclicity of G, it is sufficient to observe
that the root r cannot be included in any cycle,
while any cycle not including r should have at
least an input arc at some node z. This node
would be joined to the root through a path that
external to the cycle, and to itself through the
cyclic path. Therefore, z would have two incom-
ing arcs, which contrasts the starting hypothesis.
Consequently, G is a rooted tree. �

The previous theorem has the immediate
corollary that the adjacency matrix A will have
a column, corresponding to the root, whose
elements are all zero. Conversely, the remaining
columns will have one element set to unity
and n� 1 elements set to zero. Therefore, the
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Fig. A2.6 An example of
rooted tree of order 9

adjacency matrix of a rooted tree is easily
recognizable. We also note that the nodes of these
structures can be classified according to their
level. This quantity simply represents the distance
from the root node. The height of a rooted tree
is defined as the maximum number of levels
in the tree (including level zero). For example,
the rooted tree of Fig. A2.6 has height three. A
traversal of a tree structure is an algorithm that
visits each node once, independently from the
type of access that is performed to the nodes.
These algorithms have great practical importance
and derive from the DFS algorithm discussed
above. However, in this application the starting
node always coincides with the root and there
are two different traversal modes. In a preorder
traversal, access to each node is performed before
calling the depth search, whereas in a postorder
algorithm, data access is accomplished after
completion of depth search. Let T(r) be a rooted
tree with root r. If x 2 D is a node, we indicate by
T(x) the subtree obtained from T(r) after removal
of the incoming arc to x. Clearly, T(x) is also a
rooted tree and its root is x. If J(x) is the set of
nodes y that can be reached in one step from x, it
is easy to modify the recursive DFS algorithm to
the specific case of rooted trees.

Algorithm A26 preorder(x): Preorder traversal
from a node x (recursive version).

Input: T(x)
Output: Nessuno
f
0: access(x)

1: 8 y 2 J(x), preorder(T(y))
g

Algorithm A2 7 postorder(x): Postorder traver-
sal from a node x (recursive version).

Input: T(x)
Output: Nessuno
f
0: 8 y 2 J(x), postorder(T(y))
1: access(x)
g

For both these algorithms, the function ac-
cess(x) represents any access procedure to the
data associated with node x. In the case of the tree
in Fig. A2.6, the two algorithms would generate
the sequences:

Preorder W x5x3x9x8x4x2x1x6x7
Postorder W x9x8x4x3x2x6x7x1x5

These sequences imply an ordering criterion
within the sets J(x) for each x 2 D. For exam-
ple, in the case of the rooted tree of Fig. A2.6,
we have: J(x5)Dfx3,x2,x1g, thereby the subtrees
T(x3), T(x2), and T(x1) will be traversed in this
order. Clearly, any other ordering of the sets J(x)
will produce a different sequence. In general, the
rooted trees are useful when the data must be
arranged according to a hierarchical order. In
plate kinematics, for example, this is the case
of the rotation models that describe the set of
kinematic relations between conjugate pairs of
tectonic plates.
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