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Preface

The aim of this book is to present researchers and graduated students, working in
the field of atomic, plasma, and accelerator physics, the basic aspects of atomic
interaction processes, occurring in penetration of fast heavy-ion beams through
matter—gaseous, solid, and plasma targets. Although an interest to investigate
interactions of ion beams with penetrated media has arisen more than 100 years
ago, this topic is still actual because of fast development of acceleration techniques
of heavy ions, progress in astrophysics, which includes unknown phenomena, as
well as new material production, progress in cancer/tumor therapy, industrial
tokamak devices, and plasma technique applied for effective production of
microchips and integrated circuits.

This book is a continuation of a previous series of the books such as Physics of
Highly Charged Ions by R. K. Janev, L. P. Presnyakov, and V. P. Shevelko,
Springer, Berlin (1985), Introduction to the Physics of Highly Charged Ions by
H. Beyer, V. P. Shevelko, IOP, Bristol (2003), The Physics of Multiply and Highly
Charged Ions by F. J. Currell, ed., Kluwer Academic Pub., Dordrecht, Boston,
London (2003), Atomic Processes in Basic and Applied Physics by V. P. Shevelko,
H. Tawara, eds., Springer, Heidelberg (2012).

In the present book, the interaction processes of accelerated ions with the target
particles are described and interpreted in terms of the atomic radiative and collision
properties such as electron-loss and electron-capture cross sections, transition
probabilities, and other characteristics. The main attention is paid to many-electron
projectiles and heavy target particles. The principle peculiarity of such heavy
systems is the role of inner-shell electrons which in many cases play a major role,
and a contribution of the outermost electrons can be neglected. The influence of
inner-shell electrons leads to a change in the scaling laws for the collision cross
sections as a function of atomic parameters.

A big part of the book is devoted to consideration of the cross sections
responsible for interaction of ion beams with gaseous, solid, and plasma targets,
including experimental results, theoretical methods, and computer codes used for
calculations such as CTMC, CAPTURE, DEPOSIT, RICODE, and others. Atomic
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processes are mainly responsible for kinetic energy losses of ion beams in pene-
trating matter (stopping power) and evolution of the charge-state fractions.

Dynamics of the charge-state fractions and equilibrium mean charges of ion
beams interacting with media are considered on the basis of the balance equilibrium
equations, including equilibration of the charge-state fractions and mean charges,
equilibrium target thickness. A short description of the computer programs
ETACHA, GLOBAL, CHARGE, BREIT, and others for calculation of the
charge-state fractions as a function of the target thickness is given as well as some
applications such as detection of super-heavy elements and creating an inverse
population in a capillary discharge plasma.

A special aspect, considered here, is electron-capture processes at low collision
energies and related topics such as the influence of the isotope effect on the cross
sections of resonant and quasi-resonant electron capture in collisions with hydrogen
isotopes H, D, and T. These processes are of high interest for specialists studying
DT plasmas due to two main reasons. First, these processes exhibit the dominant
mechanisms for creating in a plasma the impurity ions in excited states, radiative
short-wavelength spectra of which are used for plasma diagnostics. Second, a high
interest is now related to W(Z = 74) atoms and ions because tungsten is considered
as the most perspective element for making walls and diverter in plasma devices
with magnetic confinement, where the interactions of W atoms and ions with
hydrogen and its isotopes play an important role. It should be noted that the
common scaling laws for electron-capture cross sections are not valid for
low-energy collisions with hydrogen isotopes, and that the influence of the isotope
effect on the resonant and quasi-resonant electron-capture cross sections is extre-
mely strong: The cross sections for the reactions with different isotopes may differ
by more than three orders of magnitude; therefore, investigation of these processes
requires a special attention.

The book does not contain a detailed description of theoretical methods and
complicated formulae but presents the data in a compact form using figures in the
scaled units, tables, and simple analytical formulae which allows one to estimate the
atomic characteristics (mainly cross sections) without resorting to computer. Such
presentation may be of interest, especially to experimentalists working in the field
of atomic, plasma, and accelerator physics.

Moscow, Russia Inga Tolstikhina
Kyoto, Japan Makoto Imai
Paris, France Nicolas Winckler

Viacheslav Shevelko
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Units and Notations

Units

The system of atomic units is used unless otherwise specified: e2 ¼ m ¼ �h ¼ 1.
The values in atomic units are based on the 2014 CODATA adjustment of the

values of the constants. From: Mohr P. J., Newell D. B., and Taylor B.
N. CODATA recommended values of the fundamental physical constants: 2014.
Rev. Mod. Phys. 88 (2016).

Quantity Numerical Value

Length (Bohr radius) a0 ¼ 0:529 177 210 67ð12Þ � 10�8 cm

Energy (Hartree energy) Eh = e2
�
a0 = 2Ry = 27.211 386 02(17) eV

Rydberg 1Ry = me4
�
2�h2 = 13.605 693 009(84) eV

Velocity t0 = e2
�
�h = 2.187 691 262 77ð50Þ � 108cm=s

Time s0 = a0
.
t0 = �h3

.
me4 = 1.288 088 667 12ð58Þ � 10�21 s

Cross section pa20 = 0.879 735 5419ð60Þ � 10�16 cm2

Velocity of light c = 2.997 92458� 1010 cm=s

Fine-structure constant a ¼ e2
�
�hc = 1=137.035 999 139(31)

Bohr magneton lB = e�h=2m = 5.788 381 8012ð26Þ � 10�5 eV T

Notations

Xqþ Incident ion with the charge q
q; Z1 Incident ion charge
E Incident ion energy
Z Atomic number
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ZN Nuclear charge of incident ion
ZT Target atomic number (nuclear charge)
I Binding energy; ionization potential; average excitation energy
n, l Principal and orbital quantum numbers
A Radiative transition probability
f Oscillator strength
r Cross section
YT Fraction of residual gas component in accelerator
s Ion beam lifetime
x Target thickness
FqðxÞ Nonequilibrium charge-state fraction
Fqð1Þ Equilibrium charge-state fraction
xeq Equilibrium thickness
qðxÞ Mean charge of exit ions
q Equilibrium mean charge of exit ions
t Projectile ion velocity
te Orbital electron velocity
Zeff Effective charge of the projectile ion
b Impact parameter
EL Electron loss
EC Electron capture
CE Charge exchange
RCE Resonant charge exchange
DE Target-density effect
MI Multiple-electron ionization
DI Direct ionization
EA Excitation-autoionization
NRC Non-radiative capture
MEC Multiple-electron capture
REC Radiative electron capture
RR Radiative recombination
DR Dielectronic recombination
TR Ternary (three-body) recombination
SP, S Stopping power
CSD Charge-state distribution
DOS Density of states
PFC Plasma-facing component
NPR Neutral particle rejector
HSCC Hyper-spherical close coupling
END Electron–nuclear dynamics
Lrad Radiation length
SHE Super-heavy element
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Chapter 1
Introduction

Abstract Characteristics of an ion beam, penetrating through matter, are changed
due to interactions with media particles: the beam energy becomes lower, energy
spread and angular scattering broader etc. Both incident beam ions and target parti-
cles undergo various atomic processes, which change their radiative and collisional
properties. In this chapter, macro (energy loss, angular straggling, range) and micro
characteristics (charge-changing processes in gaseous and solid targets), describ-
ing collisions of ion beams with different targets, are discussed. Atomic processes
between incident ions and plasma particles are discussed in Chap. 7.

1.1 Role of Atomic Processes in Penetration of Ion Beams
Through Matter

Interactions of ion beams penetrating gaseous, solid and plasma targets are based on
the atomic elementary processes occurring between beam ions and target particles:
atoms, ions,molecules and electrons.Nuclear reactions, leading to a change of nucle-
ons in the projectiles and targets, have much smaller cross sections and, therefore,
are neglected in a wide energy and target-thickness ranges, or nuclear processes are
considered in a special way (see Chap. 10). Here, the main attention is paid to atomic
processes which play a key role for solving many fundamental problems in atomic,
plasma and accelerator physics as well as in many applications—from particle radi-
ation therapy to development of powerful heavy-ion accelerators, from creation of
new materials to simulation of biochemical processes in living cells and others (see
[1–15]).

Atomic interactions of ions with penetrating medium lead to a strong evolution
of ion charge-state fractions as a function of the target thickness and are princi-
pally defined by the charge-changing processes such as electron capture and loss,
recombination as well as by photo-processes—dielectronic and photorecombina-
tion, radiative electron capture etc. Information about atomic characteristics (cross
sections, radiation and Auger transition rates etc.) are required to solve many

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
https://doi.org/10.1007/978-3-319-74992-1_1
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2 1 Introduction

problems of atomic physics and spectroscopy, plasma physics, quantum electron-
ics, accelerator physics and thermonuclear fusion, as well as for reliable methods
of spectroscopic and particle diagnostics of laboratory and astrophysical plasmas.
Properties of interaction cross sections of ions with the target and their dependen-
cies on ion velocity, atomic structure of colliding particles and target density (the
target-density effect) are considered in many review papers and books (see, e.g., [1,
6, 16–43]).

In recent years, due to intensive development of accelerator techniques, the inter-
est to study processes involving heavy many-electron ions (of the type Arq+, Xeq+,
Auq+, Wq+, Biq+, Uq+) has significantly grown up because of their use in thermonu-
clear fusion [39, 44] , slowing downof heavy-ion beams inmatter [45], fragmentation
of exotic nuclei [46], generation of extreme states of matter [47], investigation of
structure of new materials [9], in astrophysics [48], in beam radiotherapy [13], in
the design of the new types of accelerators and storage rings [49], and many others.
Information about atomic databases on electron structure, cross sections for electron-
atom, ion-atom, ion-ion processes and other characteristics can be found, e.g., on the
IAEA (International Atomic Energy Agency) website [50].

Optimization of the residual-gas density and composition in an accelerator to get
maximal intensity and lifetimes of ion beams with desired charge states and energy
(the so-called vacuum conditions) is one of the most important tasks in designing the
modern accelerators and storage rings. For example, this issue is a subject of detailed
investigation of accelerated heavy ions within the FAIR International projects (Facil-
ity for Antiproton and Ion Research) started in 2011 at GSI (Gesellschaft für Schw-
erionen Forschung), Darmstadt, Germany [51]. Another example is a new NICA
project [52] (Nuclotron-based Ion Collider fAcility), started in 2013 at JINR (Joint
Institute for Nuclear Research), Dubna, Russia, and intended to create a collider for
protons and heavy ions for investigation of super-dense matter, in which collisions
of two gold-ion beams (atomic number Z = 79) with energy of about 10GeV/u will
be substantiated.

An interest to interactions of accelerated ions with penetrating media has arisen
more than 100 years ago in experimental investigations of neutralization processes
in collisions with gaseous targets [53]. Experiments involving accelerated heavy
many-electron ions are intensively carrying out at the world largest accelerators
in JINR in Dubna, CERN (European Organization for Nuclear Research), Geneva,
Switzerland, GANIL (Grand Accélérateur National d’Ions Lourds in CAen), France,
UNILAC (UNIversal Linear ACcelerator) in Darmstadt, Germany, NSCL (National
Superconducting Cyclotron Laboratory) and SuperHILAC (Super Heavy Ion Linear
ACcelerator), USA, and HIRFL (Heavy Ion Research Facility) in Lanzhou, China.
Todaymanymodern accelerator facilities such asRIBF (RadioisotopeBeamFactory)
(RIBF),RIKEN, Japan [54], the futureFRIB (Facility forRare IsotopeBeams),MSU,
USA [55], HIFF (High Intensity heavy ion Accelerator Facility), HIRFL in Lanzhou
[56], and the future FAIR (Facility for Antiproton and Ion Research), Darmstadt,
[51], are planning to provide high-intensity, heavy-ion beams with energies higher
than 200 MeV/u.
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1.2 Targets

In reliable experiments with ion beams passing through targets, not only informa-
tion about beam properties (energy-loss, angular distributions) is required, but also
physical and chemical properties of the target such as chemical structure, composi-
tion, density or pressure, amorphous or crystalline structure and others. Obviously,
knowledge of the target properties is very essential for interpretation of experimental
results, especially, as concerns to influence of the target-density (gas-solid) effect
(Sects. 2.6, 4.3 and 6.6). The target-thickness values are usually expressed in units
of atoms/cm2 or g/cm2, or given in pressure units atoms/cm3 (Sect. 3.1). Below the
properties of gaseous, plasma and liquid targets, which are used in experiments with
fast heavy-ion beams (see, e.g., [45]) are briefly described.

1.2.1 Solid Targets

The solid targets (foils) are made from metals of elements from Li (Z = 3) up to U
(Z = 92) and used in practice, where Z is the atomic number of the element. The
techniques used for producing foils strongly dependend on the atomic number and
the target thickness. The thickness range of solid targets is very broad and varies
from a few µg/cm2 for projectiles with energy of a few keV/u, to several g/cm2 for
relativistic heavy ions [57]. The carbon foils (Z = 6) are mostly used since they are
produced with a very high accuracy (concerning density and crystal lattice length).
In recent years, multi-layer foils made from different materials, have started to play
a relevant role in experiments to obtain a required ion charge after such multi-layer
foils (see [58] and references in it).

The foils used in many experiments, for example, for detection of heavy and
super-heavy elements (Sect. 9.3), should have a long lifetime, i.e., not to be destroyed
and keep their atomic properties during a long irradiation of high-energy ion beam
on them. This mostly concerns a thin layer of a heavy element (Pb), which really
participates in a fusion reaction, deposited on a thick substrate (for example, C).
The lifetime of solids, i.e., time before their demolition, depends mainly on radiative
action of the incident ion beam and target evaporation, and is varying from a fraction
of a second to hundreds of hours depending on the foil material, energy and charge
state of the ion beam before and after the target penetration [59]. Calculations of
lifetimes of foils constitute a very complicated problem and are performed with
account for thermodynamic and hydrodynamic conditions which should be fulfilled
in the solid targets [60, 61].

1.2.2 Gaseous Targets

As for gaseous targets, molecular hydrogen, nitrogen and noble gases are usually
used in two main configurations: in special cells with solid windows to maintain

http://dx.doi.org/10.1007/978-3-319-74992-1_2
http://dx.doi.org/10.1007/978-3-319-74992-1_4
http://dx.doi.org/10.1007/978-3-319-74992-1_6
http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_9
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high vacuum outside the cell (closed cells) and those differentially pumped with a
very small aperture (windowless gas cells). The first gas targets are used to measure
the stopping powers (Sect. 1.2) in gases with a relatively high density exceeding
∼100µg/cm2 to exclude the influence of solid windows [62, 63]. The windowless
gas cells are used when very thin gaseous targets are required, e.g., as an internal
target in the storage-cooler rings or in experiments on measuring the cross sections
where a single-collision condition is required, i.e. a low target density. The main
disadvantages of such gas targets are blow-out of the target gas towards the beampath,
which influences the target density and thickness estimation, and a large scattering
angle that makes a detection of events more difficult. For such systems, special
control methods are developed based on pulsed fast valves opened only during the
beam pulse duration (see [45, 64, 65]).

1.2.3 Plasma Targets

Atomic interactions of ion beams with dense plasma targets are of importance for
investigation of inertial confinement fusion driven by heavy ions, plasma diagnostics
with ion beams and for obtaining maximum charge state of the exit ions. For these
kinds of experiments, special plasma discharge devices are designed to be inserted
in beam lines to study ion slowing down and charge-changing reactions. Such exper-
imental setups involve an electric discharge in a quartz tube containing the gas with
an initial pressure of several Torr [66, 67]. Particle abundances inside gag-filled tube
depend on the gas composition, plasma density and temperature [68, 69].

Interactions of ion beams with D-T plasmas constitute a special interest [70, 71].
Determination of plasma temperature and density is usually performed by spectro-
scopic methods or with the laser interferometry or absorption [72, 73].

Another important direction in investigation of ion-beam-plasma interactions is
a stripping in a dense plasma accompanied by an increase in the equilibrium mean
charge of exit ions up to more than 10 times (and, hence, the stopping power)
compared to the cold gas targets of the same chemical element. This mean-charge
increasing takes place in the plasma windows at specific ion energies when the
capture probability of the bound electrons in a gas target is much smaller than the
probability of radiation capture of plasma free electrons [72–76].

1.2.4 Liquid Targets

Besides a pure interest to physical properties of liquids, interaction of ion beams
with liquid targets is of practical interest, first of all, for biological investigations and
medicine, especially, for particle cancer therapy [7, 8, 13]. Double-strand breaks of
cancer-cell DNAs, brought by beams of protons and bare carbon ions at energies
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of a few MeV/u, are effectively used in various medical centers in Japan, USA,
Germany, Russia, France, Switzerland and other countries (see [77]). Therefore,
the most intensive investigations are devoted to ion beams interacting with water
molecules since in a human body, water constitutes 80% of its mass. In general, in
using liquid targets many physical and technical problems have to be solved related
with the complicated structure of organic molecules, role of secondary electrons and
chemical bonding, validity of the Bragg’s additivity rule and other questions [77–80].

1.3 Characteristics of Ion Beams: Energy-Loss and
Angular Straggling, Range, and Penetration Depth

1.3.1 Energy Loss

Penetration of ion beam through matter is accompanied by the beam energy loss in
shifting the initial energy value to lower energies and broadening of the energy profile
(see Fig. 1.1, left). Mean energy loss <ΔE> of the fast ion beam, averaged over all
collisions, is given by collision fluctuations due to two main processes: ionization of
the target particles and variations of the charge states as a function of the penetration
depth of the beam in matter. The quantity <ΔE> is defined by [14]:

<ΔE> = Nx
∑

i

Tiσi = Nx
∫

Tdσ = Nx
∫

T
dσ

dT
dT, (1.1)

where N denotes the density of the target particles, x the target thickness, T the
energy loss in a single collision and σ the energy-loss cross section (see [14, 32]).
Brackets mean statistic average over all collisions of beam ions with the media
particles. At relatively low energies E ≈ 10–100keV/u, the energy losses are defined
mainly by elastic collisions with the nuclei of the media particles, and at E ≈ 10–
100MeV/u they are caused by inelastic processes involving projectile and target
electrons: electron capture, loss and ionization of the media particles (see Sect. 1.4).

In practice, the kinetic energy losses of the ion beam in penetrated media are
characterized by the stopping power S = −dE/dx :

<ΔE> = −
∫ L

0

dE

dx
dx, (1.2)

where L denotes the target thickness.
In a dense matter, energy shape of the ion beam, distributed on energy due to

many-fold collisions, is close to the Gaussian function with the width Ω , called
energy-loss straggling [14]:
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Ω2 = 〈(<ΔE> − ΔE)2〉 = Nx
∑

i

T 2
i σi = Nx

∫
T 2dσ = Nx

∫
T 2 dσ

dT
dT .

(1.3)
In general, to present the Ω quantity in a close analytical form is not possible but

in the case of two charge-state fractions Fq with the charge-state q0 and q1, the width
Ω has the form [82]:

Ω2 = 2L
F∞
0 F∞

0

N (σ01 + σ10)

[
dE

dx
(q0) − dE

dx
(q1)

]2

, (1.4)

where L and N denote the thickness and density of the target,σ01 andσ10 electron loss
and capture cross sections between charge states q0 and q1, respectively,−dE/dx(q)

partial stopping powers [45] and F∞
0,1 equilibriumfractions (Sect. 3.3).

In a low density media (dilute gas), energy shape of the ion beam is much broader
than the Gaussian distribution and is described by the Landau-Vavilov formula [83,
84]. A spread of energy loss at relativistic energies is considered in [85].

Exact energy distribution of exit ions is required for many applications, for exam-
ple, in production of electronic chips and semiconductor detectors, in medicine in
cancer therapy where it is necessary to know ion energy before and after interaction
of ion beam with a patient body. Experimental methods of deposited energy of ion
beams with keV/u–MeV/u energy range are considered in [5, 86].

1.3.2 Angular Straggling. Radiation Length

Angular spread of the ion beam in passage through media is caused by elastic scat-
tering of ions on medium particles when a well collimated beam becomes broadened
on angles as shown in Fig. 1.1, middle. The angular straggling is also described by
the Gaussian function.

Fig. 1.1 Schematic changing of the incident beam energy and angular profiles due to interaction
with media particles before and after penetration, and penetration depth. Left: energy loss <ΔE>

and stragling of the beam energy distribution with the width Ω . Middle: angular straggling—
broadening over scattering angles with the distribution width σα . Right: penetration depth R (range)
with the depth σR . From [81]

http://dx.doi.org/10.1007/978-3-319-74992-1_3
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Multiple scattering of ions on media particles is considered in many theoretical
[87–90] and experimental (e.g., [45]) works. In practice, for determination of the
width σα of the Gaussian function, the following formula is used [88]:

σ 2
α = Z2

1 · 199 · [MeV2]
(pβc)2

L

Lrad

[
1 + 1/9 · log(L/Lrad)

] [rad2], (1.5)

where L denotes the target thickness, Z1 and p the charge and momentum of the
incident ion, β = υ/c, c the speed of light, and Lrad the radiation length.

The radiation length is a distancewhere the intensity of γ -radiation or flux of high-
energy electrons is decreased on e times. The radiation length is given in g/cm2, i.e.,
in the form independent on aggregation state of matter (liquid, gas, solid state) [89]:

Lrad ≈ 1433 · M
Z(Z + 1)(11.32 − lnZ)

[g/cm2], (1.6)

where Z and M denote atomic number and atomic mass of the target atom. To get
radiation length in units of cm, LRad value should be divided on material density.
For example, for lead atoms one has: Z = 82, M = 207, Lrad = 6.37 g/cm2, and Lrad

(solid Pb, density 11.34 g/cm3) = 0.57 cm.

1.3.3 Range (Penetration Depth)

In passage through matter, fast heavy ions lose their kinetic energy mainly due to
ionization of the target particles and deviate slightly from their trajectory, which is
nearly rectilinear. Therefore, the range (penetration depth) of heavy charged particle
is defined by a distance from the impinging point to the point of the slow down to a
stop. The range of the ion beam as well as other characteristics (energy and angular
straggling) depend on the stopping power −dE/dx and is defined by expression:

R =
∫ E0

0

(
−dE

dx

)−1

dE, (1.7)

where E0 denotes the initial beam energy. The quantity R is given in cm or g/cm2

depending on units used for the stopping power.
Since the stopping power depends on the characteristics of the projectile ions and

target atoms roughly as (see Sect. 1.2):

∣∣∣∣
dE

dx

∣∣∣∣ ∼ Z2
1

υ2
ρ, (1.8)

the penetration depth has the following properties
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R ∼ Mυ4

Z2
1ρ

∼ E2

MZ2
1ρ

, (1.9)

where M, υ, E, Z1 denote mass, velocity, energy and charge of the projectile,
respectively, and ρ the material density. In other words, at fixed velocity of the
projectiles their range is proportional to their mass and inversely proportional to
their squared charge, and at fixed energy are inversely proportional to their mass.
Since with Z1 and ρ increasing, the stopping power increases as in (1.8), the range
in matter decreases. For example, for α-particles with energy of 10 MeV/u in air and
aluminum foil, the ranges are 11.0 and 0.007 cm, respectively.

Information about ranges of ions in different media is of interest for many applica-
tions in radiation physics, biology, medicine etc. The data on ranges R can be found
in [5, 12, 14, 91, 92].

Slowing-down time of a charged particle with kinetic energy E0 is defined as

Tstop =
∫ E0

0

(
−υ

dE

dx

)−1

dE . (1.10)

1.4 Atomic Charge-Changing Processes in Gas/Solid
Targets

Charge-changing processes arising in collisions of heavy ions with atoms (and mole-
cules), are described by a general reaction called transfer ionization which involves
simultaneous capture and ionization of both projectile and target electrons:

Xq+ + A → Xq ′+ + Am+ + (q ′ − q + m)e−, (1.11)

where q and q ′ denote charges of the projectile X before and after collision, respec-
tively, and m the charge of the target A after collision.

Experimentally and theoretically the following elementary processes are investi-
gated in more detail:

1. multiple-electron ionization of the projectile called loss, or stripping:

Xq+ + A → X (q+m)+ +
∑

A + me−, m ≥ 1, (1.12)

where
∑

A means that the target can be excited or ionized,
2. target multiple-electron ionization called target ionization:

Xq+ + A → Xq+ + Am+ + me−, m ≥ 1, (1.13)

3. multiple-electron capture also called charge exchange, or electron transfer, or
charge transfer:
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Xq+ + A → X (q−k)+ + Ak+, k ≥ 1. (1.14)

At high but non-relativistic collision energies E < 200MeV/u, all these processes
are accompanied by multiple-electron transitions that confirmed experimentally and
theoretically. Besides pure theoretical interest to the nature of multiple-electron
processes, they strongly contribute to the total (summed overm and k) cross sections
and, therefore, should be taken into account together with single-electron processes,
especially when heavy projectile and/or target atoms are involved. As the energy
E increases to the relativistic region, a contribution of atomic multiple-electron
processes decreases, and single-electron processes begin to play the main role.

At relativistic collision energies E > 200 MeV/u, besides a non-radiative capture
(NRC) (1.14), one-electron radiative electron capture (REC), accompanied by a
photon radiation, becomes important:

Xq+ + A → X (q−1)+ + A+ + � ωREC . (1.15)

Radiative electron capture is similar to radiative recombination (RR), or photo-
recombination process with one important difference: in REC the target bound elec-
trons are captured meanwhile RR is a capture of free electrons, which usually takes
places in plasmas.

At relativistic energies, the total capture cross section is given by the sum of both
NRC and REC cross sections:

σtot = σN RC + σREC , (1.16)

where a contribution of each process may be of the same order of magnitude, espe-
cially, in collisions of heavy ions with many-electron targets like Ar, Kr, Xe etc. (see
[40, 42] and [43] for more detail).

At high non-relativistic energies E , single-electron cross sections of NRC, REC
and electron loss (EL) reactions have the following asymptotic behavior:

σN RC ∼ q5 I 5/2T /Ek, 1 ≤ k ≤ 5.5, υ2 >> IT , (1.17)

σREC ∼ q5NT /Ek, 1 ≤ k ≤ 2, υ2 >> IT , (1.18)

σEL ∼ Z2
T lnE/(q2E), υ2 >> IP , (1.19)

where IP and IT are the binding energies of the projectile ion and target atom,
respectively, υ is the projectile velocity, and ZT and NT are the nuclear charge and
number of electrons of the target atom. The index k depends on the collision energy
and atomic structure of electronic shells of colliding particles.

At present, there are a lot of data on experimental and theoretical electron capture
and loss cross sections of reactions (1.12)–(1.14). At high energies, the experimen-
tal charge-changing cross sections of uranium ions (the heaviest natural element
on Earth), colliding with various targets have been measured in a few laborato-
ries: Super-HILAC at Lawrence Livermore National Laboratory, Princeton tokamak,
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Fig. 1.2 EL, NRC and REC cross sections in collisions of U39+ ions with Ar atoms as a function of
ion energy. Experiment: open symbols—one-electron processes, solid symbols—the total EL and
NRC cross sections from [95] and [103]. Theory: solid curves—results by DEPOSIT and RICODE
codes for EL and by CAPTURE code for NRC cross sections (see [42] for details); dashed curve
denotes the REC cross sections calculated by the Kramers formula [114]. From [113]

A&Mcyclotron at Texas, SIS/ESRatGSI,Darmstadt, andRadioactive-IsotopeBeam
Factory (RIBF) at RIKEN, Saitama, Japan. The corresponding experimental and the-
oretical data can be found in [93–113].

It is well known that at low collision energies electron capture is the dominant
process, whereas electron loss is a minor one, particularly, for highly charged ions
where most of electrons are tightly bound and hard to be ionized. With increasing
ion energy E , electron-capture (EC) cross sections decrease rapidly (∼E−k, k > 3)
due to the velocity mismatch, and then EL processes begin to play a major role in
charge-changing collisions. It should be also noted that, above 500 MeV/u energy
range, where practically no experiments have been reported so far, the EL cross
sections show very weak dependence on the collision energy and finally tend to be
more or less constant due to the relativistic effects. For molecular targets, the Bragg’s
additive rule is assumed so that the cross section for a molecule is represented as a
sum of those for atoms composing the target molecule.

A typical example of pure electron-loss and capture cross-section behavior in
collisions of U39+ ions with Ar atoms are shown in Fig. 1.2. At energies 100keV/u
< E < 3MeV/u, NRC process plays the main role, and EL process dominates at
E >20 MeV/u. REC process becomes the main capture process at E > 300 MeV/u,
i.e., at relativistic energies.



Chapter 2
Stopping Power of Ions in Matter (SP)

Abstract This chapter is devoted to properties of the stoppingpower (SP)—the
important quantity characterizing the energy losses of projectile ions slowing down
in gaseous, solid and plasma targets. The energy losses are resulted due to atomic
processes between projectiles and target particles, mainly electron-loss, capture and
target ionization. Energy and target-thickness (Bragg peak) dependencies of the
SP are considered. Special attention is paid to the SP in plasmas as well as to the
influence of the target-density effect on the SP values.

2.1 Introductory Remarks. Average Excitation Energy

In passing through matter, accelerated ions undergo thousands of collisions with the
medium particles and loose their kinetic energy. Kinetic energy losses are character-
ized by the quantity −dE/dx called stoppingpower of ions in matter [5]:

− dE

dx
= lim�x→0

E0 − E1

�x
> 0, (2.1)

where E0,1 denote ion kinetic energies before and after passing a target layer of the
thickness �x. The quantity (2.1) called a linear stopping power and has a dimension
of eV/cm.

Energy losses in matter are also called ionization losses because in many cases
they are caused by target-electron ionization. Information about ion stopping power
(SP) are required for solving many problems in accelerator physics, controlled ther-
monuclear fusion, medicine etc. At present, SPs are investigated quite well exper-
imentally for gaseous and solid targets (foils) in the energy range E ≈ 1keV/u
−200GeV/u for projectiles from protons to uranium (see, e.g., [92, 115–120]). At
relativistic energies, the SPs are measured mainly at accelerators in BEVALAC,
Berkeley [3], UNILAC, GSI, Darmstadt [62], and CERN [118].

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
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Fig. 2.1 Recommended
average relative excitation
energies I/Z for neutral
atoms with atomic numbers
Z . From [119]

In the relativistic Born approximation SP of a heavy particle with the charge
Z1 and kinetic energy E, passing through gas target, has the form described by the
Bethe-Bloch formula [16, 121]:

− dE

dx
= 4πe4

m
· Z2

1

c2β2
· Ne ·

[
ln
2mc2β2

I
+ lnγ 2 − β2

]
, (2.2)

where m and e denote the electron mass and charge, β = υ/c, Ne electron density in
matter, γ the relativistic factor, I the average excitation energy of the target atom.
The formula (2.2)was obtained taking into account the deviation of the precise theory
from first-order quantum perturbation in terms of the momentum-transfer (transport)
cross section for scattering of a free electron by the structureless ion with the charge
Z1.

Recommended average excitation energies I of neutral atoms are given in Fig. 2.1
as a function of the atomic number Z . In practice, the semiempirical Bloch formula
[122] is used:

I ≈ 10 Z [eV], (2.3)

which gives the mean value of the data in Fig. 2.1.
Electron and atomic densities of matter, Ne and Nat , respectively, are related by

Ne = ZNat = ZNAρ/M, (2.4)

where NA = 6.022 × 1023 is the Avogadro number. Z, M and ρ denote atomic
number, atomic mass (in a.m.u) and material density of matter (in g/cm3). Atomic
masses M are given in the Mendeleev periodic table of the chemical elements.

At non-relativistic energies, the SP in (2.2) reduces to the form:

− dE

dx
= 4πe4

mυ2
· Z2

1 · Z · Nat · ln 2mυ2

I
. (2.5)
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This formula coincides with the one obtained in [17] on the basis of “effective
slowdown” of ions in matter:

− dE

dx
= Natκ, dκ =

∑
n

(En − E0) dσn, (2.6)

where E0,n and σn denote energy levels of the ground and excited n-states and the
excitation (ionization) cross sections to the n-states of the target atom, respectively.
The sum is made over the discrete and continuous states. In derivation of (2.6), the
first-order perturbation theory in dipole approximation is applied to the cross sections
as well as the sum rule for the dipole oscillator strengths fon [16]. Then the average
excitation energy I is written in the form:

lnI =
∑

n lnfon(En − E0)∑
n fon

= 1

Z

∑
n

lnfon(En − E0),
∑
n

lnfon = Z. (2.7)

Along with the linear SP in (2.1), the mass stopping power

− 1

ρ

dE

dx
[MeV · cm2/g], (2.8)

is often used as it is independent on the material density ρ.
Experimental data show (see, e.g., [45]) that the (2.2) gives quite good results in

cases when the collision parameter Z1/υ is less than the unity:

Z1
υ

= Z1α

β
≤ 1, (2.9)

where Z1 and υ denote the charge and velocity of the projectile ion, α = 1/137 is the
fine-structure constant.

As the parameter Z1/υ increases, the agreement between experimental SP data
and the (2.2) becomes poorer. For a better description of experiment, the Lindhard-
Sørensen (LS) approximation is used [121] based on the Dirac equation with account
for the higher-order corrections such as the Bloch correction for close relativistic
collisions [122], Barkas correction for polarization effects in media [123], Fermi
correction for the density effects [124], the nuclear finite-size correction [121], shell-
effect correction [119] and others.

Figure 2.2, left, shows experimental SPs for relativistic bare ions from oxygen
to uranium in Be target as a function of the collision parameter, (2.9), at β = 0.84
in comparison with the Bethe-Bloch and the Lindhard-Sørensen models. With para-
meter Z1/υ increasing, the Lindhard-Sørensen model gives a better agreement with
experiment.

In the case of dressed heavy projectiles, the situation with SP behavior is not so
clear: as the ion energy decreases, the projectile “effective” chargeZeff becomesmuch
smaller than its nuclear charge ZN due to screening effects by projectile electrons and
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Fig. 2.2 Left: Relative SPs for bare nuclei from O (Z1 = 8) to U (Z1 = 92) projectiles in Be
targets at β = 0.84 υ = 115 a.u. as a function of the collision parameter (2.9). Circles—experiment,
dashed line—Bether-Bloch formula (2.2), solid line—Lindhard-Sørensen approximation [121].
From [125]. Right: SP ratios for Au, Pb and Bi projectiles in solid targets from Be to Pb relative to
those of the Lindhard-Sørensen approximation as a function ion energy. The charges of the projectile
ions are close to their equilibrium values. From [126]

influence of atomic charge-changing processes—electron loss and electron capture.
The existence of the screening effect is illustrated in Fig. 2.2, right, where the ratios
of the experimental SPs to those calculated by the Lindhard-Sørensen model are
shown for heavy Al, Pb and Bi ions in targets from Be to U as a function of ion
energy. At energies E < 300MeV/u, the ratios become smaller than unity indicating
that Zeff < ZN and that the electron screening becomes quite strong.

2.2 General Dependence of Stopping Power on the Ion
Energy

On the basis of available experimental and theoretical data, the stopping power of
ions in matter is presented as a sum of three components: interactions with target
nuclei, electrons and photons. Schematically those dependencies on the ion energy
is shown in Fig. 2.3 indicating the main atomic processes responsible for the SP in
media.

At projectile energies E < 1keV/u, the SP is caused by elastic collisions of
projectile with the target nuclei. At E > 10keV/u, slowdown of ions is due to atomic
processes involving both projectile and target electrons. At ion velocities 1 a.u. <

υ < υe (E > 25keV/u), where υe is the average electron velocity of the target atom,
SP increases as ∼υ due to inelastic processes (electron capture and electron loss) in
accordance with the Lindhard-Sørensen theory, reaches its maximum at υ ∼ υe and
then falls down as ∼ υ−2 until minimum value, given by the Bethe-Bloch formula
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Fig. 2.3 Schematic behavior of the mass stopping power as a function of the projectile energy
showing contributions of atomic processes at different energies

(2.2) is reached:

(
− 1

ρ

dE

dx

)
min

≈ 1.7 MeV · cm2/g, at βγ = p/Mc ≈ 3.5, (2.10)

where p and M denote momentum and mass of the projectile.
At energies E ≈ 10–103MeV/u the energy losses are associated with ionization

of the target electrons, and the ∼υ−2 law corresponds to the asymptotic behavior
of the ionization cross sections. At E ≥ 5GeV/u, the SP increases logarithmically
∼ lnγ with energy showing the so-called relativistic rise described by the second log
term in (2.2).

In the range of super high energies E > 106MeV/u (βγ ≥ 100), the relativistic
rise of SP is cancelled due to the density correction and SP reaches the Fermiplateau
[124]—a range of energies where SP no longer increases with increasing ion energy
and stays nearly constant.

To calculate SP values, various computer codes used online such as SRIM (Stop-
ping and Range of Ions in Matter) and TRIM (TRansport of Ions in Matter) [127],
MSTAR [128, 129] and others.

2.3 Projectile Effective Charge

One of the relevant questions arising in passage of projectile ions in matter is the
problem of the charge state of ions inside matter. Since this value can not be mea-
sured, two values are introduced: the equilibrium q̄ and the effective Zeff charges of
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penetrating ions. The q̄ values are determined on the basis of competition of ioniza-
tion and recombination processes, or electron-loss and electron-capture in gas/solid
targets. The difference between q̄ and Zeff charges is discussed in Sect. 3.6 (see also
[130–137]).

Experimental SP data for various projectiles and targets are given in [5, 138–146],
and also are available in websites of the NIST [92]—National Institute of Standards
and Technology, ICRU [119]—Intl. Commission on Radiological Units and Mea-
surements, and IAEA [120]—Intl. Atomic Energy Agency. Detailed comparative
analysis of available experimental and theoretical SP data of ions from Li to Kr at
energies 0.001–1000MeV/u is given in [145].

The effective charge of projectile ions is found experimentally from measured
SPs of ions in question and reference ions, usually protons or α-particles, in the form:

Z2
eff = Z2

0
dE/dx(υ,ZN )

dE/dx(υ,Z0)
, (2.11)

where υ and ZN denote the projectile velocity and nuclear charge, and Z0 the effective
charge of the reference ions: Z0 = 1 for protons and Z0 = 2 for α-particles. Equation
(2.11) is based on the perturbation theory, according to which the SP of bare ions
with the charge ZN is proportional to Z2

N if the ion velocity satisfies the Bohr criterion
(Sect. 3.4):

ZNe
2/�υ � 1. (2.12)

The condition (2.12) is not fulfilled in many cases, in which the quantity Zeff does
not play a role, e.g., in slow collisions where the SPs undergo strong oscillations (see
[146]). In general, calculations of the ion effective charge require non-perturbative
quantum calculations including higher-order terms (see, e.g., [147–149]).

Inmany cases, the use of semiempirical formulae of the projectile effective charge
allows one to describe and predict the SPs quite effectively for heavy ions in a wide
energy range. The following formula, which has the exponential form (the Thomas-
Fermi scaling) suggested in [5, 140] using protons as the reference ion is often used
for Zeff :

Zeff (υ) = ZN
[
1 − exp

(
−0.92Z−2/3

N

)]
, (2.13)

where υ and ZN are the velocity and charge of the projectile. According to compi-
lations [5], (2.13) reproduces experimental data within 10% at ion velocities υ > 3
a.u.

As for α-particle, a fitting formula suggested in [5], is used at any projectile
energy:

Zeff /2 = 1 − exp

(
−

5∑
i=0

ai lni(E)

)
, (2.14)

where the ion energy E is in keV/u and the fitting coefficients a0 through a5 are equal
to 0.2865, 0.1266, 0.001429, 0.02402, 0.01135, and 0.00175, respectively.

http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_3
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Fig. 2.4 Calculated effective charges Zeff of light and heavy projectiles relative to their nuclear
charge ZN in aluminum foil. Numbers near curves indicate the references used for the calculation
of Zeff : 1—[5], 2—[138], 3—[132] and 4—[130]. From [136]

Fig. 2.5 Mass stopping power in Ar gas and foils as a function of ion energy. Symbols: experiment
[62, 150–152]; curves: theory—the mix-and-match procedure [136] using a point-like projectile.
Left: mass SPs for lead ions in aluminum. Right: mass SPs for uranium ions in solid (C, Al and Au)
targets. From [136]

Calculated ratios of ion effective charge to the nuclear charge of He, Al and U
projectiles in collisions with Al foil are presented in Fig. 2.4 as a function of the ion
energy and nuclear charge using different approximation formulae. As seen from the
figure, the effective charge increases with the ion nuclear charge.

Experimental data on SPs for ions with the nuclear charge 2 ≤ ZN ≤ 103 and
energies E = 0.0125–12MeV/u in gases and foils are given in [89]. There, SPs for
heavy ions are obtained using semiempirical formula (2.11) with protons as reference
ions. Since experimental data at that time were quite limited, the accuracy of the data
in [89] in some cases is not better than about 50%.

Mass SPs of heavy ions in foils and Ar gas, calculated by the MARSMonte Carlo
code [136], are presented in Fig. 2.5, in comparison with available experimental
data. Calculations include various corrections to dE/dx at low and high energies.
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Fig. 2.6 Penetration depth
profiles of incident flux of
photons of different
wavelengths and carbon ions
(Bragg peaks for 250 and
300MeV/u) in passage
through water. From [7]

In calculations the mix-and-match procedure is employed providing a good, within
10%, agreement with experiment at low energies. The experimental data for Al foil
at 160GeV/u [152] in Fig. 2.5, right, corresponds to the highest energy achieved for
accelerated heavy ions at present time.

2.4 Bragg Peak

One of the important properties of the SP is its dependence on the target thickness
manifesting in the Braggpeak [153]. In passage of fast heavy ions through a thick
target, they lose their energy and the SP drastically increases due to increase of
the target ionization cross section proportionally to the square of the ion velocity
∼υ2, which results in a sharp peak at a certain target thickness, called a particle
range (Sect. 1.7). As an example, the penetration depth profiles for short-wavelength
photons and carbon ions in a water target are shown in Fig. 2.6.

The presence of the Bragg peak on the ionization loss curves is widely used
in practice, mainly in cancer therapy (see [7, 8, 13]) using proton beams or heav-
ier ions (Cq+,Nq+) as well as photons. In the case of beam therapy, the radiation
dose peak gives rise to deeper penetration depths compared to photon irradiations;
moreover, intensity and the position of the Bragg peak can be controlled by ion

http://dx.doi.org/10.1007/978-3-319-74992-1_1
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species and energy. The latter gives large advantages of using ion therapy compared
to photon radiation with short and ultra short wavelengths as is demonstrated in
Fig. 2.6.

2.5 SP of Heavy Ions in Plasmas

Theoretical problems of slowdown of fast heavy ion beams in a cold plasma are
considered in many works (e.g., [74, 75, 137, 154–161]. The projectile stopping
power on plasma free electrons has the form [154] [(cf. (2.5)]:

−
[
dE

dx

]
free

=
(
Zeff eωp

υ

)2

· ln
(

mυ3

Zeff eωp

)
, υ � υth = 1.13

√
kTe/m, (2.15)

where Te and Ne denote the electron temperature and density, respectively, k the
Boltzman constant, υ the projectile velocity.

The plasma frequency ωp is given by:

ωp = (
4πNee

2/m
)1/2

. (2.16)

For non-relativistic ions penetrating gaseous targets, (2.5) can be rewritten in the
form similar to eq. (2.15):

−
[
dE

dx

]
gas

=
(
Zeff eωp

υ

)2

· ln
(
2mυ2

I

)
, (2.17)

where I is the average excitation energy (Sect. 2.1) and Ne in (2.16) is the density
of the bound electrons belonging to plasma atoms, ions and molecules.

Equations (2.15) and (2.17) differ from each other by the logarithmic function,
that means that even in the case of equal effective charges Zeff in a cold gas and a
fully ionized plasma, SP on free electrons in a plasma is always greater than that in
a gas target. For partly ionized plasma, ion energy losses are defined by a sum of the
terms (2.17) for bound electrons and (2.15) for free electrons, and each term should
be multiplied on the corresponding density of particles in the plasma.

The presence of free electrons significantly changes the character of atomic inter-
actions of ion beams with plasmas compared with a cold gas target. Along with
free electrons in a plasma, there is a fraction of positive ions, and, in addition, den-
sities of each particle components depend on the plasma temperature and density.
Besides electron loss and capture processes involving neutral atoms in gas/solid tar-
gets, interaction with plasma free electrons leads to additional atomic processes such
as radiative recombination (capture of free electron accompanied by photon emis-
sion), dielectronic recombination, three-body recombination, ionization of ions by
electron and ion impact and so on (see Chap. 7).

http://dx.doi.org/10.1007/978-3-319-74992-1_7
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Fig. 2.7 Left: Schematic illustration of increasing the ion SP in plasmas compared to cold gas as
a function of ion velocity provided the ion effective charge is the same for both cases. From [74].
Right: SPs of Kr-ions in a fully ionized hydrogen plasma and a cold gas as a function of the ion
energy. Experiment—symbols, theory—solid and dash-dotted curves. From [76]

Reaction rates of recombination processes on free electrons aremuch smaller than
those of electron capture processes on bound electrons which leads to significant
increase of ion effective charge Zeff in plasma targets compared to gas targets of the
same element. This increase, predicted in [155], also causes an increase of the ion
stopping power because in the first approximation, the stopping power is proportional
to Z2

eff .
Experimental investigations of SPs of heavy ions were carried out in [162–170].

For example, in [162, 170] a hydrogen plasma was used in a Z-pinch machine with
electron density Ne ∼ 1016 − 1019 cm−3 and temperature Te ≈ 10–20eV.

An increase of ion SP in a fully ionized plasma compared to a cold gas is illustrated
in Fig. 2.7, left. As has been mentioned before, for a fully ionized plasma the SP is
greater because of the different logarithmic dependencies: free electrons in a plasma
are much easier to be excited (plasma waves) than the bound electrons in atoms and
ions; this conclusion is confirmed by experimental data in [162, 170, 171].

Figure 2.7, right shows experimental data on SPs for Kr ions in a fully ionized
hydrogen plasma and a cold gas as a function of the ion energy. At rather low energy
E ∼ 0.1MeV/u SP in a hydrogen plasma is about 200 times larger than in a hydrogen
cold gas whereas at high energies E > 10MeV/u, the difference in SPs for a plasma
and a gas is a factor of 2.

At present, intensive investigations are being carried out on slowdown of heavy
ions in a laser-produced carbon plasmaswith higher electron densityNe ∼ 1021 cm−3

and temperature Te = 60–250eV (see [163–188]). Higher Ne and Te plasma para-
meters and a presence of complex ions with different charges (Cq+) allow one to
perform more detailed investigations of atomic processes of ion beams with plasmas
such as dielectronic recombination that can not occur in a hydrogen plasma with
creation of doubly-excited states [(see (7.2)].

http://dx.doi.org/10.1007/978-3-319-74992-1_7


2.6 Influence of the Target-Density Effect on SP in Plasmas 21

Fig. 2.8 Experimental stopping powers of uranium ions in solid targets (Ti, Ar) and nearby gases
(Kr, Ar) as a function of ion energy. The lines are fits to the data. From [115]

2.6 Influence of the Target-Density Effect on SP in Plasmas

The density effect, or target-density or gas-solid effect, was discovered experimen-
tally [175] in investigation of the charge-state fractions of uranium ion beams passing
through carbon foils and gaseous targets, and later—inmeasurements of the ion stop-
ping powers in gaseous and solid media [115, 176]. The density effect consists in
the increase of the equilibrium mean charge (Sect. 3.6) of the ion beam penetrating
through solid targets compared to the gaseous targets.

First theoretical models of the target-density effect on charge-state fractions
and stopping powers were presented in the works [177–181]. With development of
powerful accelerators of heavy ions, experimental and theoretical investigations of
the density effect were continued (see [1, 5, 151–185]). At present, the term density
effect is treated more widely, i.e., as an influence of the target density on the charge-
changing cross sections, on the stopping power in a dense media, on equilibrium
mean charges in passage of ion beam through gas, solid and plasma targets etc.

Qualitatively the effect can be explained in the following way (see also Sects. 4.3
and 6.6). As the target density increases, the collision frequency of accelerated ions
with media particles also increases so that the time between successive collisions
becomes shorter than the lifetimes of the ion excited states and a part of ions, being
in the excited states, undergoes further collisions with the target particles. Excited
ions have no time to make transitions into lower and the ground states by radiative
decay or someotherway that leads to ionization of these ions by subsequent collisions
with the target particles.

As a result, with increasing the target density, electron-capture cross sections
decrease because the number of the vacant excited states decreases, but electron-loss

http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_4
http://dx.doi.org/10.1007/978-3-319-74992-1_6
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cross sections, on the contrary, increase due to ionization not only from the ground
but also from closest excited states. Because the average mean charge of the incident
ion is created due to a balance between ionization (electron loss) and recombination
(electron capture) processes, the combined influence of the density effect on the
both processes leads to the increase of the mean charge in more dense media and,
therefore, to the stopping power. Quantitative explanation of the influence of the
density effect on the ion mean charge in a dense media is given in [182] in terms of
the electron-loss and capture cross sections, depending on the target density, relative
collision energy and atomic structure of colliding particles.

The first measurements of SPs of heavy many-electron ions, confirming the influ-
ence of the density effect, were carried out at the UNILAC accelerator at GSI, Darm-
stadt, using partly ionized ions from Kr to U energies around a few MeV/u [151]. It
was shown that SPs in gaseous targets are about 20–30% smaller than in solid targets
which is shown in Fig. 2.8 for SPs of uranium ions passing through heavy gaseous
and solid targets with neighboring atomic numbers.



Chapter 3
Evolution of the Projectile Charge-State
Fractions in Matter

Abstract The key question arising in passage of ion beams through media is the
evolution of the projectile charge-state fractions Fq(x) in matter as a function of
the target thickness x. Experimental and theoretical information on Fq(x) values are
required for solving many problems in atomic, plasma and accelerator physics. For
example, electron-loss and capture cross sections are usually determined by mea-
sured equilibrium charge-state fractions [1], [186]. After a number of subsequent
collisions with the target particles, the charge-state distribution becomes dynami-
cally stable and reaches its equilibrium with an average (mean) charge state q̄. This
chapter is devoted to determination of equilibrium and non-equilibrium charge-state
fractions on the basis of differential balance rate equations with coefficients equal to
the interaction charge-changing cross sections. The Allison three-charge-state model
as well as different computer codes are considered. To solve the balance rate equa-
tions, semi-classical and semiempirical formulae for the equilibrium mean charges
q̄ are given for ion beams passing through gaseous and solid targets.

3.1 Balance Rate Equations for Charge-State Fractions.
Equilibrium Regime

The charge-state fraction Fq(x) is characterized by a probability of the projectile ion
to be in a certain charge state q at a target thickness x. As the target thickness x
increases, Fq(x) values strongly change due to the influence of competing ionization
(electron loss) and recombination (electron capture) processes, i.e., due to charge-
changing processes occurring in media. As a rule, x-dependence of the fractions
Fq(x) is found by solving first-order partial differential balance rate equations in
which the coefficients are equal to charge-changing cross sections.

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
https://doi.org/10.1007/978-3-319-74992-1_3
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For gas/foil targets, the rate equations are written in the form [1]:

dFq(x)

dx
=

∑

q′ �=q

Fq′(x) · σq′q − Fq(x)
∑

q′ �=q

σqq′ , (3.1)

∑

q

Fq(x) = 1, x = NL, (3.2)

where x denote the target thickness or an areal density having a dimension of
atom/cm2 or molecule/cm2, N the target density, L the penetration depth or
effectivedepth in cm, σij multiple-electron loss cross sections (projectile ioniza-
tion by target particles) at i < j, and multiple electron capture cross sections
at i > j. The sum on q′ is made over cross sections with all possible charge
states q.

It is assumed that the charge-changing cross sections σij are independent on the
projectile energy within considered target thickness x. This dependence arises in a
dense matter (dense gas or foil), e.g., when the influence of the target-density effect
should be accounted for (see Sects. 4.3 and 6.6).

The set of equations (3.1) and (3.2) is solved numerically using the Runge-Kutta
method ormatrix-diagonalizationmethod (Sect. 3.7). In a plasma target, the equation
system (3.1) and (3.2) is solved using the rate coefficients Nυσ instead of the cross
sections (N denotes a density of different plasma particles, and υ the average velocity
of ions) and with account for additional atomic processes induced by plasma free
electrons and ions: radiative and dielectronic recombination, ionization by electron
and ion impact and others which are absent in case of gas/solid targets (see, e.g., [75,
187, 188] and Chap.7).

The areal density x can be used in different units through the relation:

x[atom/cm2] = N[atom/cm3] · L[cm] = x[g/cm2] NA

M
, (3.3)

where NA = 6.022 ×1023 is the Avogadro number andM is the target particle (atom
or molecule) mass number in atomic units.

Charge-state fractionsFq(x) inmedia have a significant property: at a certain target
thickness, called equilibriumthickness xeq, all fractions become nearly independent
on the target thickness and reach their equilibrium stages, called equilibrium fractions
Fq(∞). Therefore, at x > xeq one has:

Fq(x > xeq) = constant ≡ Fq(∞). (3.4)

The equilibrium thickness depends on the ion energy and interaction cross sections
of the ions beam with the target particles according to (3.1) and (3.2) and, generally
speaking, on the charge of incoming ions [14].

http://dx.doi.org/10.1007/978-3-319-74992-1_4
http://dx.doi.org/10.1007/978-3-319-74992-1_6
http://dx.doi.org/10.1007/978-3-319-74992-1_7
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Fig. 3.1 Evolution of
charge-state fractions of
bromine ions formed in
collisions of Br10+ with Ar
at energy 13.9MeV
(174keV/u) as a function of
Ar-atom thickness.
Symbols—experimental
data, curves—calculation
with account for
multiple-electron loss
processes. Charge states q of
bromine ions are indicated
on the right-hand side of the
figure. From [189]

An example of evolution of the charge-state fraction is shown in Fig. 3.1 for
174keV/u Br10+ ions in collisions with Ar gas as a function of the gas thick-
ness. Experimental data are indicated by symbols and calculated fractions by solid
curves. The initial conditions for Fq(x) values are shown at x = 0, and the charge
states q are indicated on the right side of the figure. At target densities (thickness)
x ≥ xeq ≈ 3 ×1016 atom/cm2 all fractions are saturated independently on the further
increasing of the thickness.

The mean charge of the ion beam at the target thickness x is defined as:

q(x) =
∑

q

qFq(x),
∑

q

Fq(x) = 1. (3.5)

Equilibrium mean charge is given by

q̄ ≡ q(∞) =
∑

q

qFq(∞), (3.6)

where Fq(∞) are the equilibrium fractions. The q̄ value needs not to be an integer
number.

Themean charge q(x) keeps constant in the equilibrium regime, i.e., q(x > xeq) =
q̄. This is a very important property of the ion beam—target interactions which is
used for optimization of the mean charge of exit ions. Figure3.2 shows experimental
dependence of the mean-charge q(x) on the carbon-foil thickness x for collisions of
2MeV/u - Sq+ ions with initial charges q0 = 6–16 and ion energy of 2MeV/u. Curves
of the mean charges q̄(x) converge into one point corresponding to the equilibrium
charge q̄ ≈ 12.7 at xeq ≈ 200µg/cm2 even for ion beams with initial charge states
q0 = 14 − 16, i.e., higher than q̄.
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Fig. 3.2 Experimental
dependence of the mean
charge state q(x) of sulfur
ions as a function the target
thickness x in collisions of
Sq+, q = 6–16, ions with
C-foil at energy of
2.0MeV/u. From [190, 191]

We note that themean charge states for initial charge states q0 = 6− 14 oncemerge
at the target thickness 6.9µ/cm2 and increase simultaneously as the target thickness
is further increased, whereas those for q0 = 15 and 16 evolve straight forwardly to the
equilibrium. This phenomenon is also described by the interaction cross sections of
ions with different charge states, which the authors of [190] call a quasi-equilibrium.

3.2 Allison Three-Charge-State Model

In the case of three-state system, where fractions are F0, F1 and F2, the rate equations
(3.1) and (3.2) can be solved analytically as was shown by Allison in [186]. There,
the balance equations are presented in the form:

dF0

dx
= −F0(σ01 + σ02 + σ20) + F1(σ10 − σ20) + σ20, (3.7)

dF1

dx
= F0(σ01 − σ21) − F1(σ10 + σ12 + σ21) + σ21, (3.8)

F2 = 1 − (F0 + F1), (3.9)

i.e., when the system includes single- and double-electron loss cross sections σ01, σ12

and σ02, and capture cross sections σ10, σ21 and σ20, respectively. Analytical solution
of (3.7)–(3.8) is presented in [186] in a close analytical form as a function of the
target thickness x, using initial condition Fq(x = 0) and equilibrium charge-state
values Fq(∞) for q = 0, 1, 2.

In the case of two charge-state fractions F1 and F2, the solution of (3.7)–(3.8) has
the form:

Fi(x) = Fi(∞) + (Fi(0) − Fi(∞)) · exp [−(σ12 + σ21) x] , i = 1, 2, (3.10)

F1(∞) = σ21

σ12 + σ21
, F2(∞) = σ12

σ12 + σ21
, F1 + F2 = 1. (3.11)



3.2 Allison Three-Charge-State Model 27

For two cases with different initial conditions, one has:
(1) F1(0) = 0, F2(0) = 1:

F1(x) = σ21

σ12 + σ21
(1 − exp [−(σ12 + σ21) x]) , (3.12)

F2(x) = σ12

σ12 + σ21
+ σ21

σ12 + σ21
exp [−(σ12 + σ21) x] . (3.13)

(2) F1(0) = 1, F2(0) = 0:

F1(x) = σ21

σ12 + σ21
+ σ12

σ12 + σ21
exp [−(σ12 + σ21) x] , (3.14)

F2(x) = σ12

σ12 + σ21
(1 − exp [−(σ12 + σ21) x]) . (3.15)

The cases (1) and (2) are considered in [184] for investigation of the densityeffect
(Sect. 6.6), in which fractions of bare and H-like nickel ions colliding with solid and
gaseous targets at 200MeV/uweremeasured as a function of the target thickness (see
Fig. 3.3). Experimental data are compared with theoretical two-component model
for H-like and bare nickel ions, Ni27+ and Ni28+ using (3.12)–(3.15). Electron-loss
and capture cross sections are calculated in relativistic approximation with account
for the density effect. A gas-solid effect was clearly demonstrated experimentally
and theoretically using the two-component model for non-equilibrium charge-state
fractions.

Allison analytical three-component model is often used in case of fast ions with
large charge states q � 1 when only three charge states are dominant, i.e., bare, H-

Fig. 3.3 Charge-state
fractions for 200MeV/u
Ni27+ ions emerging from
targets of solid
(polypropylene ((C3H6)n)),
triangles, and gaseous
(ethylene C2H4), circles,
targets as a function of the
target thickness x for
incoming beams of Ni27+,
qin =27+ and of Ni28+,
qin =28+. The solid and
dashed curves represent the
least-squares fits to (3.14)
and (3.12). From [184]

http://dx.doi.org/10.1007/978-3-319-74992-1_6
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Fig. 3.4 Evolution of
charge-state fractions of
950-MeV/u bare U ions
impinging on Ti targets.
Symbols—experiment,
curves—results of the
CHARGE code. From [117]

and He-like ions. The three-state model is also used when the projectile is stripped
up to the K-shell and the Bohr criterion is fulfilled (Sect. 3.4).

The analytical solution for three-state systems was used in [192] to calculate non-
equilibrium fractions and charges for collisions of light ions with celluloid at low
energy (0.75MeV/u). Another example of using the three-component model is the
CHARGE code [117], which is intended to describe the charge-state evolution in
the high-energy domain where only bare, H-, and He-like ions present (Sect. 3.7).
The last example is shown in Fig. 3.4, where evolution of charge-state fractions of
950-MeV/u bare U ions impinging on Ti targets are presented as a function of the
target thickness.

3.3 Equilibrium Charge-State Distribution
and Mean Charge

Equilibrium charge-state fractions Fq(∞) correspond to the equilibrium regime of
the fraction evolution. They are found experimentally or from the balance equations,
when all derivatives turns to dFq/dx = 0 and the system (3.1) and (3.2) becomes a
simple system of linear algebraic equations:

∑

q′ �=q

Fq′(∞) · σq′q − Fq(∞)
∑

q′ �=q

σqq′ = 0,
∑

q

Fq(∞) = 1. (3.16)

The equilibrium mean charge q̄ is given by eq. (3.6).
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The algebraic system (3.16) has a simple analytical solution if only single-electron
processes are accounted for, i.e., |q− q′| = 1. Then the equilibrium fractions Fq(∞)

are expressed as the ratios of single-electron loss-to-capture cross sections [1, 117].
For example, for a four-state model the solution of (3.16) has the form:

F1(∞) = 1

1 + σ12
σ21

(
1 + σ23

σ32

(
1 + σ34

σ43

)) , (3.17)

F2(∞) = F1(∞)
σ12

σ21
,

F3(∞) = F2(∞)
σ23

σ32
,

F4(∞) = 1 − [F1(∞) + F2(∞) + F3(∞)],

whereσ12,σ23,σ34 denote single-electron loss cross sections for transitionsq → q + 1,
and σ21, σ32, σ43 single-electron capture cross sections for transitions q + 1 → q.
Analytical expressions for the equilibrium charge-state fractions can be easily
generalized for the case of an arbitrary number of the charge states taken into
account.

Experimental equilibrium charge-state distributions (CSD) of Fq(∞) values over
q are presented in Fig. 3.5 for collisions of Cu ions with Mo foil at energy of around
1.8MeV/u [193, 195]. As it is seen, two different measurements are in a very good
agreement with each other.

As was mentioned above, the equilibrium fractions Fq(∞) depend on the interac-
tion cross sections between projectile ions and target particles but are independent on
the charge state q0 of incident ions. This feature follows from experimental data (see,
e.g., [190]) and theory [14], and is widely used in applications, e.g., for detection of
super-heavy elements (Sect. 9.3).

Fig. 3.5 Equilibrium CSD
of Cu ions in Mo measured
in [195], inverted triangles
and in [193], upright
triangles. From [193]

http://dx.doi.org/10.1007/978-3-319-74992-1_9
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3.4 Bohr Semi-classical Velocity Criterion

There are various semi-classical and semiempirical formulae to estimate the equi-
librium mean charge q̄ of fast ion beams penetrating gas/solid target. We note that
although these formulae are quite simple and very useful for many applications, they
have some serious disadvantages, namely, they do not account for atomic structure
of colliding particles and the target-density effect.

First semi-classical formulae for q̄ values were obtained independently in the
works of Bohr [179] and Lamb [194] (see also [14, 181] for more details). The Bohr
criterion for equilibrium ion charge in matter was obtained for dilute gaseous targets
assuming that the projectile loses all electrons whose, orbital velocity υe exceeds the
ion velocity, υ: υe > υ. The Bohr formula was obtained using the semi-classical
atom model and two expressions:

υe ≈ q/n, n ≈ Z1/3
N , (3.18)

where q and ZN denote projectile ion and nuclear charges, respectively, and n the
principal quantum number. With these approximations, the Bohr criterion is written
in the form:

q̄/ZN ≈ υ/Z2/3
N , 1 < υ < Z2/3

N , (3.19)

where Z2/3
N = υTF is an electron velocity in the Thomas-Fermi model. According to

(3.19), the total loss of projectile electrons, forming bare ions, occurs at ion velocity
υ ≈ Z2/3

N .
Since the ratio q̄/ZN can not exceed the unity, the Bohr formula can be applied

only for ion velocity given in (3.19). In order to extrapolate the Bohr formula to
higher ion velocities, the formula (3.19) was modified in the form [130]:

q̄ ≈ ZN
(
1 − e−υ/Z2/3

N

)
. (3.20)

The Bohr formula (3.19), although derived from simple physical assumptions, is
still useful as a basic formula for solving many problems in the field of heavy-ion
penetration.

3.5 Semi-empirical Formulae for Equilibrium Mean
Charges. Gaussian Distribution

Equilibrium charge-state distribution (CSD) of fractions Fq(∞) over charge-state q
are well-described by the Gaussian function with the width d:

Fq(∞) = 1/(
√
2π d) · exp [−(q − q̄)2/(2d2)

]
, (3.21)
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d =
[
∑

q

(q − q̄)2 Fq(∞)

]1/2

, (3.22)

and the asymmetry parameter s (skewness):

s =
∑

q

(q − q̄)3Fq(∞)

d3
. (3.23)

Yielding the equilibrium mean charge q̄ from the balance rate equations (3.1)
and (3.2) is a quite complicated problem because of the necessity to know a lot of
charge-changing cross sections and to use a limited number of equations. Therefore,
in practice, the q̄ values are found experimentally from the crossing point of two
curves of ionization and recombination cross sections as a function of an ion charge
q, i.e., from equality:

σion(q̄) = σrec(q̄). (3.24)

This method gives approximate estimates for q̄ compared to (3.6) but is simpler and
clearer. The difference in q̄ values obtained by (3.24) and (3.6) can be of the order
of 20–30% (see [196, 197]).

Below, various frequently used semiempirical formulae are given the most often
used for the mean equilibrium charge in applications. A recent review and evaluation
of the relevant semiempirical models for mean charge q̄, distribution width d and
skewness s are presented in [191, 193].

The Betz et al. formula [198] was obtained for gaseous and solid targets on the
basis of experimental data for projectile ions with the nuclear charge ZN > 10 and
energies E = 5−80MeV:

q̄ = ZN
[
1 − Ce−υZ−γ

N

]
, υ > 1, (3.25)

where the fitting parameters C ≈ 1 and γ ≈ 2/3. At υZ−2/3
N � 1, (3.25) coincides

with the Bohr formula (3.19).
The Nicolaev and Dmitriev formula [199] was derived for heavy many-electron

ions with energy E >100 MeV penetrating solid targets (foils) and has the from:

q̄ = ZN

[
1 +

(
0.608υ

Za
N

)−1/k
]−k

, υ > 1, (3.26)

with fitting parameters a = 0.45 and k = 0.6.
For carbon-foil targets, the Shima et al. formula [200] is often used:

q̄ = ZN
(
1 − e−1.25x+0.32x2−0.11x3

)
, x = 0.608υZ−0.45

N , x < 2.4. (3.27)
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Another semiempirical formula suggested by Baron et al. [201] for ions with
18 ≤ ZN ≤ 92 and energies E < 10.6MeV/u in carbon foils is also used:

q̄ = ZN
[
1 − C · exp (−83.275β/Z0.477

N

)]
(3.28)

× [
1 − exp

(−12.905 + 0.2124ZN − 0.00122Z2
N

)]
,

C = 0.9 + 0.0769E, E < 1.3MeV/u, (3.29)

C = 1, 1.3MeV/u < E < 10.6MeV/u. (3.30)

For gaseous and solid targets, the Schiwietz formulae are used [202]:

q̄gas = ZN
376x + x6

1428 − 1206x0.5 + 690x + x6
, x =

(
a

Z0.017a−0.03

)1+0.4/ZN
, a = υZ−0.52

N ,

(3.31)
for gaseous targets and

q̄solid = ZN
12x + x4

0.07/x + 6 + 0.3x0.5 + 10.37x + x4
, x =

( a

Z0.019a

)1+1.8/ZN
, a = υZ−0.52

N

(3.32)
for solid targets where Z denotes the target atomic number.

In Fig. 3.6, experimental equilibrium CSD in solid (left) and gas (right) targets are
shown in comparison with results obtained by different formulae. Experimental data
on CSD of krypton ions in collisions with C foil at 6 MeV/u are in better agreement
with the Shima formula (3.27). The CSD data of Mg ion beam passing through
hydrogen gas (right figure) are well described by the Gaussian functions, (3.21).

Fig. 3.6 Equilibrium charge-state distributions (CSD) in solid and gas targets. Left: CSDof krypton
ions in collisions with C foil at 6MeV/u. Crosses—experiment [205], curves—result of using
different semiempirical formulae: 1—Shima [200], 2—Schiwietz [202], 3—To [204]. Right: CSD
ofMg ion beampassing through hydrogen gas at different energies indicated. Symbols—experiment
[203], solid curves—the Gaussian distribution fits
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3.6 Difference Between Effective and Mean Charges of Fast
Heavy Ions in Solids

Effective Zeff and equilibriummean q̄ charges of fast ions are introduced in (2.11) and
(3.6), respectively. The effective charge Zeff is expressed via ratio of the measured
ion stopping power to SP of the reference ion, and q̄ is a state of charge equilibrium,
determined by a competition of electron-loss and capture processes. Both charges are
used inmany applications, as well as to clarify one of themost important questions—
what is the equilibriummean charge q̄ of the projectile in a solid target ? The q̄ value
can not directly be measured inside the matter but only the mean charge q̄exit after
emerging from a solid.

The question about difference between effective Zeff and the mean q̄ charges
is considered in many papers. Recently, the authors of [149] found a relationship
between the charge state inside the solid and the effective charge and explained
a seeming contradiction between these values by performing non-linear stopping
power calculations, which demonstrated consistency between the charge state of
ions in solids and the empirical effective charge values. It was concluded that in the
realistic approximation, the value of the ion charge within the solid q̄ ≈ qexit , i.e., to
the mean ion charge after emerging from a solid.

As has been mentioned before (see (2.11), the effective charge Zeff is defined
experimentally through the ratio of stopping powers dE/dx as

Z2
eff = Z2

0
dE/dx(υ,ZN )

dE/dx(υ,Z0)
, (3.33)

where ZN denotes the nuclear charge of the projectile ion and Z0 of the reference ion.
This relation follows from the results of the perturbation theory according to which
dE/dx is proportional to Z2

N provided the Bohr criterion (Sect. 3.4)

Z2
N/υ � 1, (3.34)

is fulfilled where υ is the projectile velocity. Under this condition, it is adopted that

q̄exit > Zeff . (3.35)

However, the condition (3.34) is violated in many cases, for example if υ = 14 a.u.
(E ≈ 5MeV/u) and ZN > 14, i.e., if the projectile is heavier than silicon. Therefore,
the quantity Zeff defined through the SP is not a very good parameter (see [14]).

In the work [149] the SPs are calculated in the non-linear approximation for
projectiles with 1 < ZN < 92 and Z0 = 1 at energies of 0.1–100MeV/u. The SPs
values are found with a help of the transport cross sections, and the phase shifts by
numerical integration of the radial Schrödinger equation for the projectile moving
in a carbon media. As an input values of the projectile charge q(υ) inside the solid,
the q̄exit , calculated by Nikolaev (3.26) and Schiwietz (3.32) formulae are used. The

http://dx.doi.org/10.1007/978-3-319-74992-1_2
http://dx.doi.org/10.1007/978-3-319-74992-1_2
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Fig. 3.7 Left:Mean and effective charges of heavy ions collidingwithC foil at energy of 2MeV/u as
a function of the projectile nuclear charge ZN . Curves A:Mean charges given by Nikolaev-Dmitriev
formula (3.26), dashed curve, and Schiwietz formula (3.32), solid curve, used as input values for
non-linear calculations of effective charges represented by curves B. The circles are experimental
data of effective charges obtained from energy lossmeasurements [206]. Right: Differences between
the mean charge of ions emerging from solid targets qexit , using the Schiwietz formula (3.32), and
the effective charges Zeff using the non-linear calculations for Cl, Br, I and U ions as a function of
the ion energy. From [149]

results of calculated mean and effective charges of projectile ions are presented in
Fig. 3.7.

In Fig. 3.7, left, two sets of calculated charges of projectiles with the nuclear
charge 1 < ZN < 92 impinging the carbon target are displayed (curves A and B)
in comparison with effective charges obtained from the energy-loss measurements
(circles). Curves A represent q̄exit values calculated by Nikolaev-Dmitriev formula
(3.26), dashed curve, and Schiwietz formula (3.32), solid curve. Effective charges
calculated this way are shown by curves B which are in a good agreement with
experimental data [206].

As seen from Fig. 3.7, left, the curves A and B diverge at ZN > 20, i.e., for pro-
jectiles heavier than calcium. The difference between q̄exit , calculated by Schiwietz
formula (3.32), and Zeff by non-perturbative method in for Cl, Br, I and U projectiles
in C foil as a function of ion energy is shown in Fig. 3.7, right. The largest deviation
between q̄exit and Zeff is seen for E ≈ 1–6MeV/u. On the basis of results obtained
in [149], it was concluded that the ion charge within the solid is reasonably well
represented by the emerging ion charge, i.e., q̄ ≈ q̄exit .

3.7 Computer Codes for Calculating Evolutions of
Charge-State Distributions (CSD)

At present, there are a few computer codes for calculation of charge-state distri-
butions, i.e., evolutions of non-equilibrium and equilibrium fractions, for heavy
many-electron ions passing through media, mainly gaseous and solid targets. Below,
a brief description of these codes is given.
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3.7.1 ETACHA Code

ETACHA (old version) [207] is one of the first computer codes created for cal-
culation of the evolution of ion charge-state fractions in foils at energies E = 10–
80MeV/u, corresponding to the working diapason of the GANIL accelerator, (Grand
Accélérateur National d’Ions Lourds in Caen, France). The code is based on solving
84 differential balance rate equations (3.1) and (3.2) for projectiles with 28 electrons
at maximum (up to Ni-like ions) with 1s, 2s, ..., 3d electron shells.

The code calculates the cross sections, required for solving the balance equations,
in the 1st-order perturbation approximation and its modifications (PWBA, CDW,
eikonal) for electron loss and capture (NRC and REC), excitation and de-excitation
cross sections, radiative andAuger transition probabilitieswith account for the kinetic
energy loss of the incident ions. Some cross sections can be enter into the input data
by the user. The program is very useful and quite easy to use. However, comparison
with experimental data shows that an applicability of ETACHA code is limited in
the case of heavy projectiles with the nuclear charge ZN > 18 and high energies E >

30MeV/u (see, e.g., [205, 208, 209]).
Figure3.8 shows a comparison of experimental data of charge-state fractions

of C2+ (light) and Ar8+ (heavy) ions in carbon foil at energies 4.3 and 6MeV/u,
respectively, with calculations by ETACHA code [207]. In the case of C2+ ions, there
is quite good agreement between experiment and theory, meanwhile, for heavy ions,
Ar8+, the discrepancy is large. As is seen from the figure, the general behaviour seems
to be similar both in the observed and calculated charge-state fraction distributions but

Fig. 3.8 Left: Charge-state fractions as a function of the carbon-foil thickness for 4.3MeV/u C2+
projectile ions: symbols experimental data, solid curves results of ETACHA code [207]. From
[209]. Right: Charge-state fractions as a function of the carbon-foil thickness for the 6.0MeV/u
Ar8+ projectile ions: symbols experimental data, solid curves result of ETACHA code [207]. From
[208]
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the charge-state distributions are in a serious disagreement with each other at large
thicknesses corresponding to the charge equilibrium. This disagreement between
experimental data and results by ETACHA code is increased with the projectile
atomic number increasing. The authors of [208, 209] concluded that the main reason
for such discrepancies can arise from the fact that the ETACHA code does not take
properly into account the target-density effect in the solid targets which is expected
to be very large for heavy ions and and many-electron targets (see Sects. 4.3 and 6.6).
ETACHA old code can be downloaded from GSI website [210].

A description of a new version of ETACHA code is presented in [212]. It
is extended towards lower velocities, covering approximately an energy range
E = 0.05–0.5MeV/u, and heavier ions with up to 60 electrons in n = 1–4 shells.
For this purpose, five versions of a new ETACHA code (ETACHA23, ETACHA3,
ETACHA34, ETACHA4, ETACHA45, depending on up to which shells are taken
into account) were developed on the basis of non-perturbative approximations for the
cross sections such as CDW-EIS (Continuum Distorted Wave Eikonal Initial State),
and SEIK (Symmetric Eikonal) models, and increasing the total number of the pro-
jectile electronic configurations from 84 up to 1283. Comparisons of evolutions
calculated by new ETACHA4 subroutine for selected charge-states of 13.6MeV/u
Ar10+ in carbon foil with ETACHA old is presented in [212], and with the BREIT
code (Sect. 3.7.3) in Fig. 3.12.

As a demonstration for lower-energy and more-electronic configurations, charge-
state evolutions for 2.0-MeV/u Sq+ ions (q = 6–16) and 1.0-MeV/u Cq+ ions
(q = 3–6) after C-foil penetration reproduced by ETACHA4 and ETACHA3 versions,
respectively, are shown in Fig. 3.9a, b, as well as charge-state distributions for 1.0-
MeV/uW30+ ions after C-foils of 4.6, 9.9, and 20µg/cm2 reproduced by ETACHA45
and ETACHA4 versions in Fig. 3.9c. It is seen that equilibrium mean charge for 2.0-
MeV/u S ions by ETACHA4 was 12.63, which reproduced the experimental value
12.7within 0.5%, and that ETACHA4qualitatively reproduced the quasi-equilibrium
described in Sect. 3.1. Experimental charge-state distributions for W30+ initial ions
after 9.9 and 20µg/cm2 C-foils almost coincided, showing an equilibrium thickness
is 9.9µg/cm2,which ETACHA45 successfully reproduced, although calculated equi-
librium mean charge was higher and distribution width wider than the experiment.

3.7.2 CHARGE and GLOBAL Codes

CHARGE and GLOBAL codes [117] have been developed for calculation of evo-
lutions of the charge-state fractions for projectiles at high and relativistic energies,
30 < E < 2000MeV/u, in gaseous and solid targets with atomic numbers
1≤ ZT ≤ 92. The CHARGE and GLOBAL codes are available online at GSI web-
site [210] (see also [211] for descriptions of the codes). The code CHARGE is based
on the Allison three-component model (see [186] and Sect. 3.2), and is applied to
describe three largest charge-state fractions, for example, bare, H- and He-like ions
at relativistic collisions.

http://dx.doi.org/10.1007/978-3-319-74992-1_4
http://dx.doi.org/10.1007/978-3-319-74992-1_6
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Fig. 3.9 a Mean
charge-state evolutions
for 2.0-MeV/u Sq+ ions
(q = 6–16) after C-foil
penetration calculated by
ETACHA4 code.
b Charge-state evolutions for
1.0-MeV/u Cq+ projectile
ions (q = 3–6) after C-foil
penetration. Circles, squares,
triangles, and diamonds
denote experimental
fractions for C6+, C5+, C4+,
and C3+ outgoing ions,
respectively, whereas full
lines are calculated fractions
by ETACHA3 code.
c Charge-state distributions
for 1.0-MeV/u W30+ ions
after C-foils of 4.6, 9.9, and
20µg/cm2. Symbols denote
experimental results and
calculated distributions by
ETACHA45 and ETACHA4
codes are drawn with full and
dashed lines, respectively

GLOBAL is used for projectiles with a nuclear charges ZN > 30. The main
advantages of the GLOBAL compared to CHARGE are as follows:

1. GLOBAL can calculate up to 28 fractions instead of 3 in the CHARGE code.
2. GLOBAL takes into account the energy loss of projectiles in matter.

In the case of three charge states, results of both codes almost coincide. The accuracy
of the charge-state fraction calculations by the CHARGE and GLOBAL codes is
within a factor of 2. Figure3.10 shows experimental charge-state evolution of 955-
MeV/u uranium ions passing through thin Al, Ag, and Au foils as a function of
the target thickness in comparison with the GLOBAL calculations. Charge-states
distributions of heavy ions in foils at lower energies, 18MeV/u < E < 44MeV/u,
are given in [213].
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Fig. 3.10 Charge-state evolution as a function of target thickness for 955-MeV/u U68+ ions (with
24 initial electrons) in thin Al, Ag, and Au targets. The lines represent the predictions of GLOBAL.
The numbers written next to the lines denote the number of electrons in the projectile. The curves
are predicted by the GLOBAL code. From [117]

3.7.3 BREIT Code

Recently [214], a new code BREIT (Balance Rate Equations for Ion Transportation)
has been developed for calculation of the charge-state fractions Fq(x) for any ions
with energy 50keV/u ≤ E ≤ 50GeV/u and number of fractions 3 ≤ NF ≤ 200
for gaseous, solid and plasma targets. The code is based on numerical solution of
a set of the balance equations (3.1) and (3.2) using the diagonalization method of
the interaction matrix, consisting of electron-loss and electron-capture cross sections
(see Appendix A in detail). Unlike the codes mentioned above, in the BREIT code
the cross sections are not calculated but need to be given in a input file, including
cross sections for single- and multiple-electron processes. Therefore, the users of
BREIT are free to choose the charge-changing cross sections from any theory or
experiment.

The BREIT is available for using online [215]. The web interface allows one to
use the code from any platform via web browsers. The results are made available
in the text, PDF and interactive figures formats. The description of the code and
examples of the input files are available on websites [216, 217], respectively.

For calculating the charge-state fractions in plasma targets, the input file into
the BREIT should contain information about rate coefficients Nυσ with account
for additional processes occurring in plasmas—radiative and dielectronic
recombinations, ionization by plasma particles with the density N (see [42, 43]
and Chap.7).

Typical example of the BREIT output is shown in Fig. 3.11 for collisions of
1.4MeV/u U4+ ions with molecular hydrogen target at 20mbar pressure. There, the
calculated evolutions (left figure) and equilibrium fractions (right figure) of 37 charge
states are shown for 4 ≤ q ≤ 40, using 104 input single- and multiple-electron loss

http://dx.doi.org/10.1007/978-3-319-74992-1_7
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Fig. 3.11 Left:Anexample of theBREIToutput figure of the non-equilibriumcharge-state fractions
Fq(x) as a function of molecular hydrogen thickness for charge states 4 ≤ q ≤ 40 of the 1.4MeV/u
incident U4+ ions at 20 mbar gas pressure. Right: An example of the BREIT output figure of
the equilibrium charge-state fractions Fq as a function of the uranium charge-state. This example
corresponds to the asymptotic (equilibrium) limit of the charge-state fractions of the left figure
distributed along the charge axis. The mean charge < q > and the standard deviation σ of the
Gaussian distribution are given in the left upper corner of the right figure. From [214]

and capture cross sections calculated with account for the target density effect (see
[214] for detail). A Gaussian distribution of equilibrium charge-state fractions is
given in the right figure also showing the equilibrium mean charge q̄ and a standard
deviation σ .

Calculations of non-equilibrium and equilibrium charge-state fractions, per-
formed by the BREIT code, are compared with experimental data as well as results
of ETACHA (new) and GLOBAL codes in Fig. 3.12. The target-density effect is
important in these cases and was taken into account in the BREIT input for loss and
capture cross sections using the results of [182]. The losses of ion kinetic energy,
obtained experimentally or calculated by the SRIM code [127], do not exceed 10%
of the incident ion energy.

The evolution of the largest charge states of argon ions in collisions of Ar10+
ions with a carbon foil at 13.6MeV/u is shown in Fig. 3.12, left. Experimental data,
recorded at GANIL, France, are denoted by symbols with error bars. Calculations
by the new ETACHA code [212] are shown by dashed curves and the BREIT results
by solid curves. Charge-state fractions F16(x), F17(x), and F18(x), calculated by both
codes, are in good agreement with experimental data. The BREIT results give the
equilibrium thickness for this case: xeq ≈ 1000 µg/cm2.

In Fig. 3.12, right, comparison of experimental evolution [117] of various charge-
state fractions with theoretical predictions is given for Ne-like Au69+ ions in a
gold foil at 1 GeV/u energy. Dashed curves represent the results of the GLOBAL
code [117] and the solid curves the BREIT results. Calculated results for the most
intense fraction F79 are in agreement with experiment and with each other within a
factor of 2.
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Fig. 3.12 Left: Charge-state fractions of argon ions in collisions of 13.6MeV/u Ar10+ ions with
carbon foil as a function of a foil thickness. Experimental data [212] are denoted by symbols with
error bars, the dashed curves are the new ETACHA code result [212] and solid curves are the BREIT
results with 16 input cross sections accounting for the density effect. Right: Charge-state evolutions
of 1000-MeV/u Ne-like Au ions downstream Au foil. Symbols experimental data [117], dashed
curves the GLOBAL code [117], solid curves the BREIT result with 50 input cross sections. From
[214]

3.7.4 Other Codes

One has to mention other computer codes and methods used for calculation of the
charge-state fractions but not so often used than those mentioned above. Recently, a
Monte-Carlo (MC) code was developed in [173, 188, 218] to calculate charge-state
fractions of fast heavy ions colliding at energies E > 10MeV/u with plasma targets.
The MC code uses the ETACHA old version [207] for calculation of the input cross
sections: NRC and REC cross sections, ionization and excitation of projectiles, as
well as de-excitation and recombination cross sections. Similar to ETACHAold code,
the MC code can calculate the fractions of ions with the number of electrons less
than 28 for penetration through plasmas with ion densities 1018 < Ni < 1023 cm−3

and temperatures 10 < Ti < 200eV. The density effect is taken into account in the
MC code.

In practice, various methods are also used for solving the balance rate equations,
for example, a matrix method [219], a semiempirical method [203, 220] and others.

Finally, concerning calculations of the charge-state fractions on the basis of the
differential balance equations (3.1) and (3.2) with the cross sections as coefficients,
we have to stress the following:

1. since the accuracy of determination of experimental and theoretical cross sections
lies in the limits of 10–50%, the accuracy of calculated charge-state fractions
Fq(x) is about a factor of 2, especially concerning small charge-state fractions.
The situation with equilibrium fractions Fq(∞) is a little better because they are
defined mainly through the ratios of one-electron loss-to-capture cross sections
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(see (3.17)) which can be determinedwith higher accuracy than themulti-electron
cross sections,

2. in a dense target (dense gas or plasma, foil) charge-changing cross sections, in
principle, depend on the target thickness x that should be taken into account. The
dependence on x includes two main factors: the target-density effect and the loss
of the projectile kinetic energy since cross sections depend on the beam energy,

3. in the case of heavy projectile colliding with many-electron targets, an influence
of multi-electron processes can be very large (20–30%), therefore, such multiple-
electron processes, if possible, should be included into calculations.



Chapter 4
Electron Capture Processes

Abstract This chapter is devoted to consideration of electron capture (EC), which
is one of the most important recombination mechanisms in collisions of ions with
various targets. Special features of EC are described such as the presence different
atomic particles before and after collision, a preferential capture of inner-shell target
electrons at high energies, the role of excited states of the projectile ion after EC,
different scaling laws at low and high energies and so on. The influence of the target-
density effect as well as the use of the Bragg’s additivity rule for EC cross sections
are described. Information on multiple-electron capture, which is very important
for many applications, is also given. EC processes at very low energies, where the
molecular effects play a key role, are considered in detail in Chap. 5.

4.1 Main Properties of Electron-Capture Processes

This section is devoted to the consideration of single-electron capture processes
arising in collisions of fast heavy projectiles with atomic targets:

Xq+ + A → X (q−1)+ + A+, (4.1)

where Xq+ and A denote the projectile ion with charge q and the target atom or
molecule, respectively.

Usually, single-electron capture is a dominant process, i.e., gives the main con-
tribution to the total capture cross section, but in the case of heavy projectile ions,
multiple-electron capture becomes very important and contributes up to more than
50% to the total capture cross section because of a strong long-range Coulomb field
of the projectile makes it possible to capture a few target electrons simultaneously
with a large probability.

Cross sections of reaction (4.1) can be very large,∼ 10−14−10−16 cm2, especially
at low and intermediate energies, hence, these processes play a significant role in
atomic physics, astrophysics, plasma and accelerator physics.

Reaction (4.1) strongly influences the charge-state distributions in ion beams
passing through solid, gaseous and plasma targets [1], and plays a key role in
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thermonuclear plasma confinement in tokamaks [32, 221] creation of an inversion
population in a short-wavelength spectral range [222, 223]. In particular, reaction
(4.1) is an effective mechanism of excitation transfer in plasmas [25–27], in astro-
physics [48], in accelerator techniques [45, 224], and other areas.

The main competitive process to electron capture is electron loss—ionization of
a projectile by a target atom or molecule (see Chap. 6). Both processes have different
dependencies on relative collision velocity υ, projectile ion charge q, and atomic
structure of the target atom and, therefore, the contribution of each process strongly
depends on the considered ion energy range (see Fig. 1.2).

As electron capture process (4.1) is a complicated rearrangement reaction with
different particles before and after collision; therefore, theoretical investigation of
these reactions, even at high collision energies, constitutes a much more difficult
problem than that of electron-ion collisions. If the cross sections for electron-ion
collisions can be calculated quite accurately, with an accuracy of 10–20%, to describe
the capture reactions with an accuracy of a factor of 2 is a rather tedious task even in
a high-energy region. This is due to the great difficulties arising in a description of
these processes: the use of different interaction potentials before and after collision
(the so-called post-prior discrepancy), the non-orthogonality of the wave functions
of the system in the initial and the final channels, the Coulomb interaction between
two ions in the final channel and its absence in a collision of an ion with an atom in
the initial channel, and so on.

In practice, approximate methods are applied to electron capture depending on
the atomic parameters: relative velocity υ of the colliding particles, their atomic
structures, and the resonance defect ΔE of the reaction, i.e., the difference between
binding energies of the active electron in the target atom IA before collision and the
resulting ion IX after collision (Fig. 4.1):

ΔE = IA(n0l0) − IX (n1l1), IA > 0, IX > 0, (4.2)

Fig. 4.1 Scheme of the target atom A, where the active electron was in the state n0l0 with the
binding energy IA(n0l0)before capture reaction, and the ion X (q−1)+ after reactionwith the captured
electron in the state n1l1 and the binding energy IX (n1l1). n0l0 and n1l1 the principal and orbital
quantum numbers of the target atom and the resulting ion, respectively, gr-state denotes the ground
state of the X (q−1)+ ion, and ΔE the resonance defect. From [225]

http://dx.doi.org/10.1007/978-3-319-74992-1_6
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where n0l0 and n1l1 denote the principal and orbital quantum numbers of the target
atom A and the resulting ion X (q−1)+, respectively. We note that the resonance defect
ΔE can be both positive and negative.

Among the different theoretical methods of calculating electron-capture cross
sections, one can mention a few basic ones which give a satisfactory description of
the experimental data: the close-coupling method with an atomic or molecular basis
[226–228], the electron tunneling (through the Coulomb barrier) model [229], the
absorbing sphere model based on the Landau- Zener theory [230], the classical over-
barrier-transition model [231], the distorted-wave approximation with normalization
[232, 233], relativistic treatment based on solving the two-center Dirac equation for
the colliding system ‘nucleus + H-like target’ [234], and others. Most of the meth-
ods mentioned are described in [23–42]. Methods for calculating electron-capture
cross sections at low-energy collisions (for example, the adiabatic approximation,
the ARSENY code) are described in detail in Chap.5.

At different ion-atom collision energies, electron capture occurs as a result of
different physical processes, and two main ranges of relative collision velocity υ are
usually defined: the adiabatic region with υ < υe, and the non-adiabatic one with
υ > υe, where υe denotes an electron orbital velocity of the target atom. At low-
energy collisions υ < υe, the target bound electrons adiabatically react to the varying
field of the moving incident ion, and, thus, a quasi-molecular treatment is applied,
when the solution of the problem is based on the expansion of the total wave function
of the system in terms of the quasi-molecular wave functions at fixed internuclear
distance R, and transitions between different states proceed as occurring between
quasi-molecular potential terms corresponding to localization of the active electron
close to one of the nuclei. This treatment is especially effective for describing the
resonance (ΔE = 0) and quasi-resonance (ΔE ≈ 0) electron capture (see, e.g., [19,
28, 36]).

For collision energies E > 25keV/u (υ > 1a.u.), when the impact (projectile)
velocity is higher than the target-electron orbital velocity, υ > υe, the non-resonant
electron capture prevails and the quasi-molecular method is not valid. This is mainly
related to an influence of the momentum transfer carried away by the captured elec-
tron, the translation factor exp(iv·r), which can be neglected at low ion velocities,
allowing one to present the interaction matrix elements through a splitting of the
corresponding molecular terms (see [235]).

At intermediate energies E ∼ 1–25keV/u, the target outer-most electrons are cap-
tured by ions with high probabilities, and due to a contribution of electron capture
into a large number of excited n-states of the X (q−1)+(n) ion, the total electron-
capture cross section has a quasi-constant character, i.e., its magnitude is nearly
independent of the collision energy. The quasi-constant behavior of the electron-
capture cross sections in collisions of highly charged ions with neutral atoms was
predicted in the paper [236]. This quasi-constant magnitude of the capture cross sec-
tion, which is closest to experimental data, was estimated in the model of electron
tunneling through the Coulomb barrier created by the target atom and the projectile
as [229]:

http://dx.doi.org/10.1007/978-3-319-74992-1_5
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σ(υ) ≈ constant ≈ 10−15 q

(IT /Ry)3/2
[cm2], q ≥ 5, υ2 < IT /Ry, (4.3)

where IT /Ry denotes the ionization potential of the target atom in Ry units
(1 Ry ≈ 13.606eV). At intermediate collision energies, the electron capture leads
to a preferential population of excited n-states of the resulting ion X (q−1)+(n) given
as:

n ≈ q3/4

(
IT
Ry

)−1/2

. (4.4)

If the ion velocity υ exceeds the orbital velocity of the target electron, electron-
capture processes can be described in the first-order perturbation theory (or its mod-
ifications) on interaction of the active electron with the projectile, e.g., the distorted-
wave approximation or the Brinkman-Kramers approximation with a multichannel
normalization in the impact-parameter representation (see Sect. 4.2).

At relatively high, but non-relativistic, energies corresponding to E = 25keV/u–
30MeV/u, EC is characterized by the preferential capture of inner-shell target elec-
trons, as the electron-shell structure of the target atom becomes substantial. The
preferential role of the inner-shell target electrons is the main property of the cap-
ture reactions, which makes it different from other processes in collisions of fast ions
with atoms.

Let us consider an electron capture from the target shell a with the binding en-
ergy Ia and the orbital velocity υa ∼ I 1/2a . The corresponding cross section has its
maximum when the ion velocity υ is close to υa , υ ≈ υa , i.e., when the so-called
velocity matching takes place. At υ > υa the capture cross section falls off as

σEC ∼ q5Z5
T /υ11 ∼ E−5.5. (4.5)

With the energy increasing, the velocity matching takes place for another electron of
the deeper shell b having orbital velocity υb > υa , Ib > Ia , the capture cross section
will have a local maximum, and so on until a capture of the target 1s electrons
will occur. As a result, the total capture cross section σ

(tot)
EC , summed over all target

electrons, decreases much more slowly than by the E−5.5 law valid only at very high
energies, where the cross section is mainly defined by the capture of the deepest 1 s
electrons. Due to capture of all target electrons, the cross sections for collisions with
light targets (H, He) decrease much faster than those with heavy ones (Ne, Ar, Kr,
Xe) having several electron shells.

The effect of the preferential capture of inner-shell target electrons is illustrated
in Fig. 4.2 for collisions of protons and U42+ ions with Ar target. As is seen, at high
enough energies, capture of inner-shell electrons gives the main contribution to the
total cross sections, while a contribution of outer-most electrons of Ar atoms is very
small due to the asymptotic law (4.5).

As has been discussed in Sect. 1.4, at high energies E > 200MeV/u, radiative
electron capture accompanied by a photon radiation, begins to play a major role in
recombination processes; REC processes are considered in Sect. 4.6.

http://dx.doi.org/10.1007/978-3-319-74992-1_1
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Fig. 4.2 Left: Electron-capture cross section between protons and argon atoms. Symbols—
experiment: open [237] and solid [238] circles—total cross sections, x and + correspond to capture
from L and M electrons of Ar - [238, 239], respectively. Theory: broken and solid curves—
contribution from electron capture from different shells of Ar [225]. From [225]. Right: Single-
electron capture cross sections of U42+ ions colliding with Ar target. Experiment: solid circle
[95], open circle [103]. Solid curves: calculations by the CAPTURE code using the normalized
Brinkman-Kramers approximation. Contributions from different shells of Ar are shown as well as
the total cross section summed over capture of all Ar electrons. From [235]

4.2 Methods and Computer Codes for Calculating
Single-Electron Capture Cross Sections

At present, there are several methods and computer codes often used for calculating
single-electron capture cross sections in collisions of heavy many-electron ions with
atoms: CTMC (classical trajectory Monte Carlo) method for energies E > 1MeV/u,
CDW (Continuum Distorted Wave) approximation for E > 10MeV/u, and the nor-
malized Brinkman-Kramers approximation for E > 10keV/u. The accuracy of these
calculations iswithin a factor of 2. Thesemethods and corresponding computer codes
are briefly discussed here.

The CTMC method [240] (and corresponding computer code) is a based on the
numerical solution of a system of the Hamilton classical-motion equations for all
projectile and target electrons using a large number of impact parameters ∼5000 for
the particle trajectories. The ‘ion + atom’ system consists of 6(N +2) nonlinear first-
order equations in partial derivatives and is solved numerically for the coordinates
and momenta for all N electrons and two nuclei of the system. Thus, for one electron
moving in the Coulomb field of two nuclei a and b, the classical Hamilton equations
can be written as
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H = p2a
2Ma

+ p2b
2Mb

+ p2e
2Me

+ Za Zb

Rab
+ Zae

Rae
+ Zbe

Rbe
, (4.6)

∂C j

∂t
= ∂H

∂p j
,

∂p j

∂t
= ∂H

∂C j
, j = x, y, z, (4.7)

where C j and p j denote coordinates and momenta of an electron and nuclei, me and
e electron mass and charge, Ma,b and Za,b masses and charges of the nuclei a and
b, and Rab the distance between the nuclei. From (4.7) one has 18 bound first-order
differential equations for coordinate and momentum evolutions of all particles.

The CTMC method is applied to the intermediate collision energy range, where
molecular effects can be neglected. The use of the method is quite complicated, but
electron-loss and excitation cross sections are also obtained in the calculation. This
method is quite complicated because many electrons and atomic trajectories should
be taken into account to get enough statistics for the calculated electron-capture,
electron-loss and excitation cross sections.We note that because of the computational
difficulties mentioned, the number of publications on CTMC electron-capture cross
sections involving heavy ions is quite sparse (see, e.g., [241–243]).

The CDW method [233] is based on the modified Born (distorted-wave) ap-
proximation at sufficiently high energies E > 10 MeV/u. This method utilizes the
Clementi-Roetti functions as the bound-state wave functions, and the Coulomb func-
tions for continuum states.

The eikonal approximation [244] is used for computing one-electron capture cross
sections and is based on the semi-classical approximation with three main assump-
tions: a straight ion trajectory, hydrogen-like bound electron wave functions, and
distorted wave functions in the final channel described by the eikonal phase factor
(see, e.g., [241]).

The CAPTURE code [245] is intended for calculating probabilities and cross sec-
tions of one-electron capture and is based on the Brinkman-Kramers approximation
[246]. This code calculates the normalized electron-capture probabilities PN (b, υ)

as functions of the impact parameter b and collision velocity υ, as well as single-
electron capture cross sections into excited n-states of the resulting ion X (q−1)+(n)

and the total (summed over n) cross sections σtot (υ):

σtot (υ) =
ncut∑
n=n0

σn(υ), σn(υ) =
∑
s

σsn(υ), (4.8)

∑
s

σsn(υ) = 2π
∫ ∞

0
P (N )
sn (b, υ) bdb, (4.9)

P (N )
sn (b, υ) = Psn(b, υ)

1 + ∑nmax
n′=n0

Psn′(b, υ)
. (4.10)
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Here, Psn(b, υ) denotes the Brinkman-Kramers probability of a capture from the
target electron shell s into the n-state of the X (q−1)+(n) ion, and nmax is themaximum
principal quantum number accounted for in the CAPTURE code. The parameter ncut
depends on the target density: ncut is large for low-density targets (rarefied gases) and
significantly decreases in the case of high-density targets (foils) due to the influence
of target-density effect (see Sect. 4.3).

In the CAPTURE code for the active electron (electron to be transferred), the
hydrogen-like wave functions are employed in the initial (the target atom) and final
states, with the effective charge accounting for the screening of non-active electrons.
The main advantage of the CAPTURE code is the use of the normalized capture
probabilities which are always less than unity: P (N )(b, υ) < 1. This circumstance
allows one to perform calculations over a wide energy range: from a few tens keV/u
to a few tens MeV/u. We note that the CAPTURE code can provide calculations
with account for the final states with a large number n (up to nmax ∼500), which re-
quires for calculation of the capture cross sections for highly charged projectile ions,
q � 1, e.g., U92+ projectile.

For rough estimation of single-electron capture cross sections, a semiempirical
formula introduced by Schlachter et al. [247] is often used:

σSch = 1.1 · 10−8 [cm2/atom]
× q0.5

Z1.8
T Ẽ4.8

[
1 − exp(−0.037Ẽ2.2)

]
·
[
1 − exp(−2.44 · 10−5 Ẽ2.6

]
, (4.11)

Ẽ = E/
(
Z1.25
T q0.7

)
, q ≥ 3, 10 ≤ Ẽ ≤ 1000, (4.12)

where q denotes the incident projectile charge, ZT atomic number of the target, Ẽ a
reduced energy, and E the ion energy in keV/u. This formula is based on the exper-
imental data available at that time with some general assumptions on the EC cross
section behavior. The formula can be used for practical applications with accuracy
of a factor of 2 over a wide energy range.

At low and high energy limits, the Schlachter semiempirical formula (4.11) has
the following asymptotic behavior:

σSch(E → 0) ≈ 10−14 [cm2/atom] × q0.5

Z1.8
T

, (4.13)

σSch(E → ∞) ≈ 10−8 [cm2/atom] × q3.86Z4.2
T

E4.8
. (4.14)

Amore accurate estimation of EC cross sections at E → 0 is given by (4.3). Because
of the different dependencies of (4.13) and (4.3) on atomic parameters, the Schlachter
formula should be used with caution at very low energies as it is known to over/under
estimate experimental cross-section values.
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In the middle-to-high energy range, a semiempirical formula by Knunsen et al.
[248] is often used (Sect. 4.4), which is based on the extended Bohr-Lindhard model,
for estimating single-electron capture cross sections for ions with initial charge states
q ≥ 4 from atomic target.

For low-energy collisions, a scaling formula byMüller and Salzborn [249] is used
for highly charged initial ions, which is described in detail in Sect. 4.5. Recently, Imai
et al. proposed a scaling formula for low-energy low-q projectile ions colliding with
atomic and molecular targets [250], where the collisions become endothermic (or
near-resonant) (see Chap.5).

Typical examples for the EC cross sections, calculated by different methods, are
presented in Fig. 4.3, left and right, in comparison with experimental data. Capture
cross sections of H-like Ge31+ ions in Ne target are shown in Fig. 4.3, left,where
experimental data are compared with results obtained with the CTMC, eikonal, and
CDW approximations, as well as using the CAPTURE code and Schlachter semi-
empirical formula (4.11). As is seen from the figure, all theoretical data are in rather
good agreement with experiment. Electron-capture cross sections in collisions of
lead ions with Ar target are displayed in Fig. 4.3, right. For collision energies E >

3MeV/u, both Schlachter semiempirical formula (4.11) and the CAPTURE result
reproduce rather well reproduce experimental data but at lower energies, formula
(4.11) is not valid due to the energy limitation given in the formula (4.12).

Fig. 4.3 Left: Single-electron capture cross sections in collisions of Ge31+ ions with Ne. Solid
circles—experiment [97]. Theory: open squares—CTMC result [97]; dashed curve Schlachter em-
pirical formula (4.11); the eikonal calculations [295] are practically identical with the values given
by the Schlachter empirical formula; solid curve—CAPTURE code [235]. Right: Electron capture
cross sections of Pb25+ with Ar. Experiment: solid circles [95]. Theory-same as in the left figure.
From [97]

http://dx.doi.org/10.1007/978-3-319-74992-1_5
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Molecular gaseous targets are of a special importance in interaction with residual-
gas components in accelerator, stripping of heavy ions in diatomic gases etc., but even
for ‘simple’ H2 gas target an estimation of electron-capture cross sections meets
severe difficulties because of a deviation from the Bragg’s additivity rule (see [251–
255] and Sect. 4.4).

4.3 The Target-Density Effect in Electron-Capture
Processes

The density effect (DE) is highly important for electron-loss and capture processes in
high-density targets. It drastically changes charge-changing cross sections and other
related properties like equilibrium charge state q̄ , stopping powers in dense media
and so on. The influence of the DE on electron-loss cross sections is considered in
Sect. 6.6.

Let us consider an influence of the target density effect (DE) on one-electron
capture cross sections for reaction:

Xq+ + A → X (q−1)+∗(n) + A+, (4.15)

where A denotes a target atom or molecule, n the principal quantum number of the
captured electron into the projectile ion in the final state, the asterisk stands for an
excited state.

In the case of a low-density medium (a rarefied gas), there are only a few ion-atom
collisions, and the X(q−1)+(n) ions are created in all possible quantum states n, which
then decay into the ground state n0 via radiative decay transitions. In this case, the
total electron-capture cross section can be written in the form:

σtot (υ) =
∞∑

n=n0

σn(υ). (4.16)

In a high-density target, a collision frequency increases and the time interval
between successive collisions becomes shorter than the lifetime of excited states so
that the ions with the principal quantum numbers, higher than a certain number nmax ,
are ionized by the target particles in subsequent collisions, and ions with n ≤ nmax

are stabilized via radiative transitions to the ground state. Then, the total electron-
capture cross section with account for the density effects, σ DE

tot , is defined by sum
over n (4.16) but with the finite upper limit:

σ DE
tot (υ) =

nmax∑
n=n0

σn(υ), nmax = n0 + ncut , (4.17)

where ncut denotes the maximum principal quantum number of survived excited
states. In the limiting case of very high target density ρT → ∞, ncut → 0, and

http://dx.doi.org/10.1007/978-3-319-74992-1_6
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electron capture occurs only into the ground state:

σ DE
tot (υ) ≈ σn0(υ). (4.18)

This is a very important property of electron-capture processes that limits the average
meancharges of ions penetratingvarious targets. Therefore, the number of ‘surviving’
X (q−1)+(n) ions decreases as the target density increases, resulting in a cross-section
reduction.

The cut-off parameter ncut , i.e., the maximum principal quantum number of non-
ionized ions, can be estimated from a balance equation between ionization rate and
the radiative decay probability of the excited state:

ρTυσEL(ncut ) = A(ncut ), (4.19)

where ρT denotes the density of the target particles, σEL the electron-loss cross
section of the X (q−1)+(n) ion by the target atoms and A(ncut ) the total radiative
decay rate of the ncut state. Using the classical Thomson formula for σEL and the
classical Kramers formula for A(n), one has [245]:

σEL ∼ Z2
T n

2

q2υ2
, A(n) ∼ q4

n5
, (4.20)

ncut ≈ q

(
1018

Z2
T · ρT [cm−3]

)1/7 (
υ2

10q2

)1/14

≈ q

(
1018

Z2
T · ρT [cm−3]

)1/7 (
E[keV/u]
250q2

)1/14

, (4.21)

where E is the projectile energy. As is seen, the target density effect is large (i.e., ncut
is small) when the density ρT and the target nuclear charge ZT are large, and also
when the projectile charge q and energy E are small. Although (4.21) is approximate,
it exhibits the main dependencies of the cut-off value ncut on the target density and
other atomic parameters.

There is another formula for the ncut parameter used for calculations, which
is based on a step ionization of the scattered ion: the ion is first excited to the
nearest states and then ionized by collisions with the target particles (see [255]). The
corresponding formula has a more strict dependence on the atomic parameters:

ncut ≈ q

(
5 · 1016

Z2
T · ρT [cm−3]

)1/9 (
E[keV/u]

q6

)1/18

. (4.22)

The influence of the density effect on the single-electron capture in collisions of
1.4 MeV/u U28+ ions with atomic hydrogen is demonstrated in Fig. 4.4a, b, where
gas-pressure dependencies of nmax value and EC cross section are shown. As seen
from the Fig. 4.4b, the density effect leads to a decrease by approximately two-thirds
of EC cross sections in this case.
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Fig. 4.4 Influence of the
density effect on
electron-capture process for
collisions of 1.4MeV/u
U28+(n0 = 5) ground-state
ions with atomic hydrogen. a
Dependence of the nmax on
the hydrogen pressure P ,
(4.22). b Gas-pressure
dependence of EC cross
section, (4.17) and (4.22).
From [255]

4.4 Bragg’s Additivity Rule for Electron-Capture Cross
Sections

The Bragg’s additivity rule is used to interpret experimental data and to theoretically
predict the atomic interaction data of fast ions with molecular targets. According to
the rule, the projectile interaction with a molecule is presented as a sum of the
interaction cross sections for its constituent atoms:

σmol =
∑
i

niσi (Zi ), (4.23)

where ni denotes the number of i-th atoms in the molecule and σi (Zi ) the interaction
cross section with an i-th atom of atomic number Zi . For example, the electron-
capture (or electron-loss) cross section of an ion colliding with H2O molecule is
presented as: σ (H2O) = 2σ (H) + σ (O). The Bragg’s additivity rule is used because
of the computational difficulties for molecular targets; however, this is partly justified
because at high collision energies the main contribution to the electron-capture cross
sections is made by the capture of inner-shell target electrons, which are approxi-
mately identical in atomic and molecular targets.

Quite often (but not always) the Bragg’s additivity rule provides a reasonable
agreement between theory and experiment depending on the projectile charge and
velocity. For example, it works quite well for electron-loss processes, i.e., ionization
of fast projectiles by molecules (Sect. 6.5) but for electron capture the situation is
more complicated.

http://dx.doi.org/10.1007/978-3-319-74992-1_6
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First of all, the Bragg’s rule does not work for electron capture of ions colliding
even with the simplest H2 molecule. In [251, 252], the ratio σEC(H2)/σEC(H) of ex-
perimental single-electron capture cross sections in atomic and molecular hydrogen
was analyzed and found not to be equal to 2 but changing in the range:

0.8 ≤ σEC(H2)/σEC(H) ≤ 3.8, (4.24)

depending on the incident ion charge and kinetic energy.
Experimental ratios σ(H2)/σ (H) are given in Fig. 4.5 as a function of a scaled ion

energy showing that the ratio changes from 0.8 to 3.84 and equals to 2 only around
the scaled energy E(keV/u)/q4/7 ≈ 40 where q is the incident ion charge. Symbols
in Fig. 4.5 correspond to experimental data and the dashed curve is an empirical fit,
which is valid within 20% (see [251]):

σ(H2)

σ (H)
= 0.76, X < 6,

= 1.76 + 0.0328(X − 6), 6 < X < 100, (4.25)

= 3.84, X > 100,

X = E[keV/u] /q4/7, q ≥ 5. (4.26)

Equation (4.25) is valid for ions with rather high charge states q ≥ 5 with the
scaled energy, (4.26), taken from Bohr-Lindhard classical model for electron capture

Fig. 4.5 Ratio of single-electron cross sections σEC (H2)/σEC (H) as a function of a scaled ion
energy. Symbols—experimental data, the dashed curve—empirical fit, (4.25). From [251]
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[180]. Possible reasons of deviation of the ratio from 2 are investigated theoretically
in [230, 253] using the absorbing-sphere model.

Another semiempirical formulae for the σ(H2)/σ (H) ratio (within 30%) was
suggested in [252] for H, H2 and He targets for projectiles with q > 5 and energies
E = 1eV/u–10MeV/u.

Themolecular-to-atomic-target ratio of the capture cross sections σ(H2)/σ (H) is
relevant in many applications in plasma and accelerator physics, for example in pre-
dicting the optimal conditions (type of gaseous target and its pressure) for stripping
low charges heavy ions into highly charged ions with high efficiency. Recently, mea-
surements of non-equilibrium and equilibrium charge state fractions were carried out
at the UNILAC accelerator at GSI, Darmstadt, Germany for stripping of 1.4MeV/u
U, Ti and Ar ions in different gases: H2, He, Ne, N2, O2, Ar, and CO2 [65]. The
results for equilibrium charge-state distributions for uranium ions with energies 1.4
and 0.74MeV/u are given in Fig. 4.6, showing that at energy of 1.4MeV/u the H2

gas is the best stripper leading to creation of uranium stripped ions with the mean
charge q̄ ≈ 29.

In [254], an investigation of an atomic hydrogen gas as a stripper for 1.4MeV/u-
U4+ ions with final charge states q = 4–40 was considered using the following
relations between EL and EC cross section for H2 and H targets:

σEL(H2)/σEL(H) = 2.0, (4.27)

σEC(H2)/σEC(H) = 3.8, (4.28)

where (4.27) for electron loss cross sections follows the Bragg’s rule, and (4.28) for
electron capture from (4.25). Experimental and theoretical charge-changing cross
section used for calculation in [254] are given in [255].

Figure4.7 shows calculated equilibrium fractions for H2 and H targets at low
(10−4 mbar) and high (100mbar) gas pressures eye-guided by solid and dashed
curves, respectively. As it is seen, the lowest possible mean-charge state q̄ ≈ 26

Fig. 4.6 Experimental charge-state distributions for U ions on gaseous targets at 1.4MeV/u (left)
and 0.74 MeV/u (right) energies. From [65]
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Fig. 4.7 Calculated
equilibrium charge-state
fractions of 1.4 MeV/u-U4+
ions, q = 4–40, in H2 and H
stripper gases at low P =
10−4 and high 100 mbar gas
pressures. From [254]

can be obtained in H2 gas, and the highest q̄ ≈ 34 in H gas as a stripper. The dif-
ferent ranges of q for the charge-state distributions in H2 and H targets are due to
the different relations for EL and EC cross sections for H2 and H targets, (4.27) and
(4.28). We note that if the coefficient 2.0 would be used for both EL and EC cross
sections instead of the value 3.8 for electron capture the fraction distributions for H2

and H targets would practically coincide and give the same equilibrium charges q̄ .
It would constitute an interesting check of the theory if charge-state distributions for
atomic and molecular hydrogen stripper would obtained experimentally.

4.5 Multiple-Electron Capture in Collisions of Heavy Ions
with Gas/Solid Targets

As for multiple-electron capture (MEC) processes, involving fast heavy highly
charged ions, it was found experimentally that the total capture cross section in-
creases with increasing projectile charge, but the general cross-section dependencies
on energy and atomic structures of the target and projectile have not yet been inves-
tigated experimentally in detail.

Experimental data on multiple-electron capture at very low energies (E =
0.01eV/u–10keV/u) are presented in [256–266]. For heavy low-charged ions, 268
cross sections in collisions with noble gases andmolecules are reported in [249, 256]
for the following reactions:

Xq+ + A → X (q−k)+ + Ak+, 1 ≤ k ≤ 4, q ≤ 7, (4.29)

X = Ne,Ar,Kr,Xe, (4.30)

A = He,Ne,Ar,Kr,Xe,H2,N2,O2,CH4,CO2. (4.31)
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These data demonstrate a semi-constant behavior of the capture cross sections at low
energies. Experimental cross-section data can be fitted by a simple formula within
35% accuracy as [249]:

σq,q−k = 10−12 [cm2] · C(k) · q A(k) · (IT /eV)−B(k) , (4.32)

1 ≤ k ≤ 4, q ≤ 7, E < 25 keV/u, (4.33)

where IT is the ionization potential of the target atom, and C, A, and B are the fitting
parameters given in Table4.1.

Experimental data on MEC of Xeq+ ions, 15 ≤ q ≤ 43, colliding with He, Ar,
and Xe atoms at slow collision velocities υ = 0.1–0.2a.u. are presented in [261],
and these data are approximated by a semiempirical formula in the paper [262]. For
slow ion collisions, υ � 1a.u., with atoms and molecules, experimental multiple-
electron capture cross sections are also given in [263–267]. It is also worth noting
the results of experimental [268–270] and theoretical [268, 271] studies of single-
and multiple-electron capture cross sections involving fullerenes (hexagonal carbon
rings); these data are of a particular interest for electron capture in ion collisions with
complex targets (Fig. 4.8).

Table 4.1 Fitting parameters for experimental k-fold electron capture cross sections (4.32) at small
ion velocities υ � 1a.u. From [249]

k C(k) A(k) B(k)

1. 1.43 ± 0.76 1.17 ± 0.09 2.76 ± 0.19

2. 1.08 ± 0.95 0.71 ± 0.14 2.80 ± 0.32

3. (5.50 ± 5.8)× 10−2 2.10 ± 0.24 2.89 ± 0.39

4. (3.57 ± 8.9)× 10−4 4.20 ± 0.79 3.03 ± 0.86

Fig. 4.8 Left: Experimental cross sections for electron capture of highly charged Ar ions in Ar
target as a function of ion energy. Right: Electron capture cross sections for 30keV Xei+ ions
incident on Kr. Symbols—experimental data. The solid lines correspond to (4.32). From [249, 256]
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Fig. 4.9 Experimental k-fold electron capture σ+k and m-fold electron loss σ−m cross sections in
collisions of 1.4MeV/u-Pbq+ ions with He and Ar targets as a function of the ion charge q. σtot is
a sum of all capture and loss cross sections. From [95]

At higher energies, E = 1–10MeV/u, experimentalMECcross sections aremainly
obtained for heavy Xe, Pb, and U ions colliding with gaseous targets (see [95, 96,
102, 103]. As an example, Fig. 4.9 shows experimental electron-capture and loss
cross sections in collisions of 1.4MeV/u-Pbq+ ions with He and Ar targets [95] as
a function of ion charge q. It is seen that the contribution of multiple-electron cross
sections is large, especially for heavy target atoms (Ar).

The importance of MEC processes is also demonstrated in Table4.2 where
experimental partial and total cross sections of Uq+ ions colliding with Ar at
3.5MeV/u is shown. It is seen that for highly charged uranium ions U53+ a con-
tribution of multiple-electron capture processes to the total cross sections reaches
close to 40%.

Theoretical investigations of MEC are rather limited and refer mainly to low and
intermediate collision energies. Here one has to mention the classical Bohr-Lindhard
model [180], developed later in papers [272, 273]; this model is primarily used for
capture processes involving few-electron projectiles. Numerical calculations of the
multiple-electron capture cross sections have been generally performed for double-
electron capture using the close-coupling method [274–276], the quasi-molecular
model [278], and the independent-particle model (IPM) [279]. As for theoretical
models for multiple- electron capture k > 2 by heavy ions from atoms, one has to
admit that at present they are somewhat incompletely developed.
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Table 4.2 Experimental partial and total electron-capture cross sections (in 10−18cm2) of Uq+
ions in collisions with Ar at 3.5MeV/u

Reaction Energy,
MeV/u

σ1 σ2 σ3 ... σtot
∑

m σm≥2/σtot ,
%

U28+ + Ar 3.5 12.6 – – … 12.6 0

U31+ + Ar 3.5 19.7 1.1 – … 20.8 5.3

U33+ + Ar 3.5 25.0 2.0 – … 27.3 7.5

U39+ + Ar 3.5 52.3 8.1 0.30 … 60.7 13.8

U42+ + Ar 3.5 61.6 16.1 2.0 … 79.7 22.7

U53+ + Ar 3.5 82.5 35.3 10.6 … 129.8 36.4

Relative contributions
∑

m σm≥2/σtot of multiple-electron capture processes to the total cross sec-
tions are also given. From [103]

Fig. 4.10 Scaled
double-electron capture
cross sections σ2(EC)/q0.5

of positive ions with charge
state q ≥ 2 on He atoms as a
function of scaled ion energy
E/q. Solid
circles—experimental data,
solid curve—fitting formula
(4.36). From [197]

Finally, we have to mention about double-electron capture on He atoms. The
corresponding cross sections σ2(EC) are measured for many projectiles over a wide
energy range (see [197] for references) for reactions:

Xq+ + He(1s2) → X (q−2)+ + He2+, q ≥ 2. (4.34)

In [197] experimental data for σ2(EC) values in He target are analyzed and
presented in the scaled coordinates (see Fig. 4.10):

σ̃ = σ2(EC)[cm2]/q0.5, Ẽ = E[keV/u]/q, (4.35)

where q and E denote the incident ion charge and energy, respectively. The solid
line in the figure represents the polynomial fit of the scaled experimental data by the
formula:
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log10 σ̃ =
5∑

k=0

Ak (log10 Ẽ)k, (4.36)

whose fitting parameters are: A0 = −15.92026, A1 = −0.79322, A2 = −0.21674, A3

= +0.06236, A4 = −0.04224, A5 = −0.02414. As seen from Fig. 4.10, the accuracy
of the semiempirical formula (4.36) is a factor of 2–3.

Semiempirical formula (4.36) for He target can be used to estimate the double-
electron capture cross sections σ2(EC) for arbitrary projectile ions except for He2+
projectile: because of the resonance character of this reaction, the corresponding
cross section σ2(EC) is about one order of magnitude higher than that given by
the semiempirical formula (4.36). Resonant high-energy double-electron capture
processes are considered in various papers (see, e.g., [279, 280]), and double capture
processes of slow ions colliding with excited helium atoms He∗(1s2�) are considered
in [281]. Again, the semiempirical formula (4.36) and Fig. 4.10 for double-electron
capture cross sections can be used, e.g., for calculation of the mean charge states of
heavy and super-heavy ions passing through He-filled separator (see Sect. 9.3).

4.6 Electron Capture at Relativistic Energies. Radiative
Electron Capture (REC)

As has been considered before (Sect. 1.4), as the ion energy increases, the radiative
electron capture REC processes

Xq+ + A → X (q−1)+ + A+ + �ωREC , (4.37)

begin to contribute to the total capture cross section

σtot = σN RC + σREC . (4.38)

where �ωREC denotes a photon emitted in the REC reaction, σN RC and σREC denote
cross sections of non-radiative capture (NRC) and radiative-electron capture, respec-
tively. REC is similar to radiative recombination process (RR) but is accompanied by
capture of bound electrons of the target atom. REC processes are considered in detail
in [40].

NRCprocessesmore strongly dependon the atomic number thanRECanddecease
more rapidly with the ion energy:

σN RC ∼ q5Z5/E5.5, σREC ∼ q5Z/E, υ2 >> IT , (4.39)

where Z and IT denote the atomic number and ionization potential of the target atom.
At high relativistic energies

http://dx.doi.org/10.1007/978-3-319-74992-1_9
http://dx.doi.org/10.1007/978-3-319-74992-1_1
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γ = 1√
1 − (υ/c)2

> 10, β > 0.99, (4.40)

electron capture of ions on atoms is accompanied by creation of electron-positron
pairs (see [40, 282]), but these processes are not considered here.

First measurements of the REC cross sections were performed in [283–285] at
BEVALAC accelerator in Lawrence Berkeley National Laboratory (USA) and later,
with development of powerful heavy-ion accelerators and other devices such as
SUPER-EBIT in Berkeley and UNILAC in Darmstadt, Germany (see [40]).

Calculations of NRC cross sections at relativistic energies are performed in the
eikonal approximation [244, 286, 287], and of REC cross sections in impulse ap-
proximation [40], density-matrix approach [282] and relativistic approximation [288,
289]. Results of calculated NRC cross sections at relativistic energies are presented
in [290] and RR and REC cross sections in [291], respectively.

In Fig. 4.11, experimental and theoretical total electron capture cross sections
for H-like Au, Bi and U projectiles in C, Ni, Cu and Au targets are presented in

Fig. 4.11 Experimental and
calculated electron-capture
cross-sections σ/q5 for
H-like gold, bismuth and
uranium projectiles in C, Ni,
Cu and Au targets at
different ion energies [117].
The experimental data
(symbols) are compared with
theoretical predictions REC
(dashed lines), NRC (dotted
lines) [289]. The full lines
represent the sum of both
capture processes. From
[117]
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the energy range from 80 to 1000MeV/u. The theoretical cross sections for REC,
NRC [289] and the sum of both are compared with the experiment. For the C target
the REC process dominates, and for Ni and Cu targets the contribution of REC is
smaller up to 300MeV/u and for Au the REC is one order of magnitude smaller
than the NRC in the whole energy range. The NRC cross sections in the figure are
calculated using the relativistic eikonal approximation [290]. Experimentally each
contribution can be distinguished by measuring the X-rays (�ωREC ) in coincidence
with the corresponding charge state after electron capture.

Another examples of different contributions of NRC and REC processes to the
total capture cross sections corresponding to non-relativistic and low relativistic
regimes are shown in Fig. 4.12. These calculations are based on the eikonal approx-
imation [244, 286, 287].

At energies E < 1GeV/u, a non-relativistic theory by Stobbe for the REC based
on the dipole approximation [292] describes experimental data quite well, but at E >

1GeV/u the relativistic theory describes the data better as was shown, e.g., in [293,
294].

Fig. 4.12 a Electron-capture cross sections for U92+ ions on theN2 target as a function of projectile
energy. The dashed line represents the result of the eikonal approximation for the NRC process [244,
287]. The dotted line gives the prediction for REC within the dipole approximation. The solid line
corresponds to the sum of both contributions. b Electron-capture cross sections for bare U92+ ions
at 295MeV/u colliding with gaseous targets: solid squares (U92+ → N2, Ar) and with solid targets:
solid circles (U92+ → Be, C). For N2 the cross section per atom is given. The results are compared
with the theoretical cross sections for the NRC and the REC processes (dashed and dotted line,
respectively). The total electron-capture cross sections are given by the solid line. From [295]
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Fig. 4.13 X-ray spectrum
observed at nearly 150◦ for
U92+ → N2 collisions at
310MeV/u. The data were
taken in coincidence with
outgoing U91+ ions. From
[298]

In practice, the REC cross sections are estimated by the Kramers formulae, which
are applied also to radiative recombination cross sections, capturing free (not bound
like in REC) electrons (see Sect. 7.1 and formulae (7.7)–(7.9) in it).

X-ray spectra of REC photons constitute important part in spectroscopy of highly
charged ions, in particular, in determination of radiation polarization, photoionization
of heavy ions, radiation transition probabilities, influence of QED effects and so on
(see [289, 296, 297]).

An example of X-ray spectrum of REC is displayed in Fig. 4.13. The spectrum
was obtained at an observation angle of 150◦ for 310MeV/u U92+ → N2 collisions.
Besides the Lyman ground-state transitions Lyα1 (2p3/2 → 1s1/2), Lyα2 (2p1/2 →
1s1/2) and M1 (2s1/2 → 1s1/2), the important features observed in the spectrum are
radiative electron capture into the ground and excited projectile states. The widths of
these lines reflect the Compton profile of the bound target electrons (see, e.g., [295]).

http://dx.doi.org/10.1007/978-3-319-74992-1_7
http://dx.doi.org/10.1007/978-3-319-74992-1_7
http://dx.doi.org/10.1007/978-3-319-74992-1_7


Chapter 5
Charge Exchange in Slow Ion-Atom
Collisions. Adiabatic Approach

Abstract This chapter is devoted to consideration of electron-capture processes at
very low collision velocities υ � 1 a.u. At present time, these processes are of a high
importance because of two main reasons: first, they constitute the dominant mecha-
nisms in a low-temperature plasma for creating the impurity ions in excited states,
radiation short-wavelength spectra of which are used for plasma diagnostics. Second,
at low-energy collisions, electron-capture cross sections, occurring in collisions with
hydrogen isotopes (H, D, and T), are strongly influenced by the so-called isotope
effectwhich changes the cross sections values by orders of magnitude. This influence
is important for estimating, e.g., the capture cross sections of tungsten atoms and
ions, colliding with neutral plasma atoms, because tungsten is adopted now as the
most perspective element for making walls and diverter in plasma devices aiming at
magnetic plasma confinement.

5.1 Introductory Remarks

In penetration of projectiles through low-temperature plasmas (near-wall plasma and
plasma in a divertor of tokamaks and stellarators), charge exchange (electron capture)
constitutes the dominant process in the population of excited states of heavy ions in
plasma and, therefore, plays an important role in ion charge-state distribution, radia-
tive cooling, and the transport of particles. The adiabatic approach is a powerful tool
for the calculation of the charge exchange cross sections in slow ion-atom collisions.
Comparing to close-coupling methods, adiabatic approach has a strong advantage:
it is based on the adiabatic theory of transitions in slow collisions [28] but not on
the numerical methods. In adiabatic theory, there are no assumptions on the specific
form of the electronic Hamiltonian, and only the smallness of the relative nuclear
velocity is used. It leads to analytical expressions for the transition probabilities,
which results in a deeper understanding of the nature of nonadiabatic transitions.

The isotope effect, found in slow collisions of α-particles with hydrogen isotopes
[299], is considered here and it is shown that the strong isotope effect exists also for
heavier projectiles. The results obtained, apart from their general interest for collision

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
https://doi.org/10.1007/978-3-319-74992-1_5
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physics, have important implications for diagnostics and simulation of elementary
processes in fusion edge plasmas.

At present, the charge exchange process with tungsten projectiles is of great
interest, since W is selected as a key material of the plasma facing components in
the ITER tokamak, where tritium plasma is planned to be used [300, 301]. Here, the
charge exchange cross sections for W ions calculated in the adiabatic approach are
presented for the low-energy collisions [302].

A part of this chapter is devoted to the role of the electron-nuclear interaction
in slow collisions. This interaction affects the nuclear trajectories which, in turn,
affects theoretical results for the cross sections of various collision processes. The
results are especially sensitive to the details of the internuclear dynamics in the
presence of a strong isotope effect on the cross sections for the charge transfer in
low-energy collisions with H, D, and T [299]. A potential, governing the ion-atom
collision dynamics, is introduced in the frame of the adiabatic approach [303]. The
potential accounts for the interaction between the electron and nuclei by adding to
the Coulomb potential the potential of the initial electronic state obtained by solving
the three-body Coulomb problem. It is shown that the use of the ’adiabatic’ trajectory
instead of the Coulomb one in the charge exchange calculations within the adiabatic
approach improves the agreement of the results with ab initio calculations.

Also, the resonance charge exchange in slow (the center-of-mass energy E � 1
a.u.) proton-hydrogen collisions is discussed. Due to its large cross section, this
process has significant influence on the energy and momentum transfer in low tem-
perature plasmas in the divertor region of magnetic confinement fusion devices.
Recent experiments on cold plasmas diagnostics have shown a necessity to include
in simulations the resonance charge exchange between excited states [304, 305].

This chapter also describes an application of the adiabatic approach in the inter-
pretation of the experimental results.

5.2 Adiabatic Approach

In the theory of atomic collisions, the adiabatic approximation is used to describe
electronic transitions when the collision velocity is small and the nuclear motion can
be treated classically. Transitions between electronic states of the colliding atoms
are described in a classical on the nuclei motion approach by the time-dependent
Schrödinger equation

ı
∂ψ(r, t)

∂t
= H(R)ψ(r, t), (5.1)

where r is a set of electronic coordinates, H(R) is an electronic Hamiltonian of
diatomic quasi-molecule, R = R(vt) is an internuclear distance and v is a relative
nuclear velocity. In the most common form the adiabatic approximation is an as-
ymptotic expansion of the solution of equation (5.1) in the small parameter υ. In this
approximation, the electron wave function is sought in the form of expansion
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ψ(r, t) =
∑

p

gp(t)ϕp(r, R) exp

(
−ı

∫ t

E p(R(υt ′))dt ′
)

(5.2)

in eigenfunctions of instant electronic Hamiltonian

H(R)ϕp(r, R) = Ep(R)ϕp(r, R) (5.3)

which depend on R as on a parameter included in the Hamiltonian. The eigenvalues
Ep(R) are called themolecular potential curves. Adiabatic approximation reduces to
the calculation of the principal terms of the asymptotic of the expansion coefficients
gp(t) when υ → 0.

In the adiabatic representation, the boundary conditions are formulated as fol-
lows: when R → ∞ the adiabatic energies Ep(R) tend to energy levels of isolated
fixed atoms, and ϕp(r, R)—to the corresponding atomic wave functions ϕa

p(r, R).
Therefore, if the effect of momentum transfer is ignored, the population of atomic
states ϕa

p(r, R) before and after collision coincides with gp(t = ∓∞), and the prob-
ability of a transition from the initial atomic state ϕa

q(r, R) to the final state ϕa
p(r, R)

is
Ppq = lim

t→∞ |gp(t)|2, lim
t→−∞ gp(t) = δpq . (5.4)

The probability of the transition depends on the impact parameter ρ which defines
the nuclear trajectory R(t). Integration over ρ gives the cross section of the inelastic
transition

σpq = 2π
∫ ∞

0
Ppq(ρ)ρdρ, (5.5)

which is the most important characteristic of the collision process.
The range of collision energies where the adiabatic approximation is applicable

essentially depends on the process considered. From below, it is limited by the con-
dition of the classical description of the nuclear motion, and the upper limit is a
condition for the applicability of the asymptotic expansion in small υ.

To illustrate the adiabatic approach for calculating the charge exchange cross
sections in slow collisions, the following reaction is considered

Li3+ + H(D, T )(1s) → Li2+(nl) + H(D, T )+. (5.6)

Figure5.1 shows electronic energies for the states that are related to this reaction.
These energies are the eigenvalues of the two-center Coulomb problem [307]. The
problem is separable in the prolate spheroidal coordinates and is solved for the
complex internuclear distance R. To denote the quasi-molecular states in the figure
the spherical quantum numbers of the united atom limit are used. In the adiabatic
theory, a rapid change of the electronic wave function induces the charge exchange
transitions. It happens at the internuclear distances where non-adiabatic coupling
has its maximum.
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Fig. 5.1 Potential curves E(R) for the charge exchange process Li3+ +H(1s) → Li2+(nl)+H+
as a function of the internuclear distance R (in a.u.). From [306]

Transitions between two states caused by the radial coupling occur in the crossings
(branch points) at complex internuclear separation R where electronic energies of the
states are equal. Hidden crossings, which arise when the full-dimensional classical
trajectory of the electron collapses into an unstable periodic orbit, are invisible on
the plot of the adiabatic potential curves at the real value of the adiabatic parameter
R. It requires the direct calculation in the complex R-plane. In Fig. 5.1 the ‘radial’
transitions are indicated by arrows (Rad) locating at real R values of the correspond-
ing hidden crossings and connecting initial (H(1s) in separated atom limit) and final
states of the electron.

Here, the resonance channel H(1s) + Li3+ → H+ + Li2+(n = 3), which is
responsible for the isotope effect, is considered. There are three ‘radial’ transitions:
at the internuclear distance 1.5, 4, and 7 a.u. Since the hidden crossing at Re(R)

= 1.5a.u. belongs to S-series (the so-called super promotion to continuum), which
pairs Enlm(R) and En+1 lm(R) electronic states (n, l,m are the principle, orbital
and magnetic quantum numbers) and are responsible for the ionization process in
the adiabatic approximation, the corresponding transition does not contribute to the
charge exchange process. Two other transitions change the charge state, and the one,
between 3dσ and 4 fσ states, is the main radial transition for the resonance charge
exchange channel.

Rotational coupling is associatedwith internuclear axis rotation in close collisions
and induces transitions between Enlm(R) and Enlm±1(R) electronic states. These
states are degenerate in the united atom limit. An exact crossing of potential curves of
these states occurs at complex R values (Re(R) = 0). In Fig. 5.1 ‘rotational’ transitions
are shown by arrows (Rot) located at arbitrary values of R.
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5.3 Code ARSENY

The calculation of the charge exchange cross sections in slow collisions is performed
using the ARSENY code [308], based on the method of hidden crossings. In the
adiabatic approximation, radial inelastic transitions take place in the regions of the
closest approach of potential curves and are decomposed into a sequence of individual
two-level transitions via hidden crossings. First, the two-center Coulomb problem is
solved in the code in the complex R-plane to calculate the adiabatic potential curves.
Then all branching points are found and the corresponding Stückelberg parameter is
calculated:

Δpq =
∣∣∣∣Im

∫ Rc

ReRc

[
Ep(R) − Eq(R)

] dR

υ(R, ρ)

∣∣∣∣ , (5.7)

where p and q is the set of quantum numbers, Rc is a complex branch point, Ep and
Eq are the energies of the final and initial electron states, respectively, υ(R, ρ) is the
radial internuclear velocity and ρ is the impact parameter.

The probability Ppq is calculated for the entire set of non-adiabatic transitions as
a function of the impact parameter:

Ppq = exp(−2Δpq). (5.8)

The S-matrix calculated in the code is a product of elementary S-matrices correspond-
ing to the individual transitions induced by the separated branch points. Starting with
the initial S-matrix S(n)

i j = δi j , the n-th individual transition between p and q states
in a brunch point at internuclear distance Rn changes the S matrix according to

S(n)
i p = S(n−1)

i p (1 − Ppq) + S(n−1)
iq Ppq , (5.9)

S(n)
iq = S(n−1)

iq (1 − Ppq) + S(n−1)
i p Ppq . (5.10)

A complete set of the cross sections of transitions between arbitrary initial and final
states are found by integration of the S-matrix over the impact parameter:

σqq = 2π
∫ ∞

0

∣∣1 − Sqq
∣∣2 ρdρ, (5.11)

for elastic scattering and

σpq = 2π
∫ ∞

0

∣∣Spq

∣∣2 ρdρ (5.12)

for inelastic transition, where Spq are the S-matrix elements.
The amplitudes of m-changing transitions induced by rotational interaction are

found by numerical solution of the time-dependent Schrödinger equation for the
Coulomb trajectory in the united atom approximation. In the present approach,
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Fig. 5.2 A Coulomb
trajectory for close collisions

rotational interaction is considered when the internuclear separation is less than
Rmax (Fig. 5.2) given by

Rmax = (l + 1
2 )

2

Z1 + Z2
, (5.13)

where l is the electron orbital momentum, Z1 and Z2 are the nuclear charges. This
condition sets the boundary of the united atom region. The scattering angle is ex-
pressed as

χ = 2 arctan

(
Z1Z2

μρυ2

)
, (5.14)

and the angle of the internuclear axis rotation as

ϕ = arccos

(
sin

χ

2
+ ρ

Rmax
cos

χ

2

)
. (5.15)

For the Coulomb trajectory one has:

R = ρ cos χ
2

cosϕ − sin χ
2

. (5.16)

The internuclear separation corresponding to the closest approach is

Rclmb = ρ cos χ
2

1 − sin χ
2

. (5.17)

The dependence of the scattering angle on the reduced mass μ causes the difference
in trajectories of the heavy particles in the reactions with H, D, and T and, conse-
quently, leads to a difference in the corresponding cross sections. The amplitude of
the rotational transition is the solution of the time-dependent Schrodinger equation
(ρ < Rmax and Rmax > Rclmb):
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i ȧm − Emam + i
l∑

m ′=−l

〈
φnlm

∣∣∣∣
∂

∂t

∣∣∣∣φnlm ′

〉
am ′ = 0, (5.18)

Em = 3γm2R2, γ = Z1Z2(Z1 + Z2)
2

n3l(l + 1)(2l − 1)(2l + 1)(2l + 3)
, (5.19)

l∑

m ′=−l

〈
φnlm

∣∣∣∣
∂

∂t

∣∣∣∣ φnlm ′

〉
= (5.20)

1

2

∂ϕ

∂t

[√
(l + m)(l − m + 1)δm ′,m−1 + √

(l − m)(l + m + 1)δm ′,m+1

]
,

whereφnlm are the adiabaticwave functions. In theARSENYcode, they are expressed
in terms of the spherical functions in the fixed coordinate system using the Wigner
d-functions [28].

5.4 Influence of the Isotope Effect on Charge Exchange
of Light Ions in Slow Collisions

The theory of slow ion-atom collisions has a wide application in plasma physics,
controlled fusion and astrophysics. Although the study of heavy particle collisions
has a long history and the theory is considered to be well established [30], new
results continue to appear. A considerable difference in the cross sections of charge
exchange process in collisions of He2+ ions with H, D, T atoms (isotope effect) has
been theoretically found at very low collision energies (1–500eV/amu) [299]. This
effect is caused by the rotational interaction of electronic states in close collisions
when the internuclear distance R is small. This interaction couples the electronic
states of the same parity with the same principal and orbital quantum numbers n, l
and themagnetic quantumnumbersm, differing by unity (Δm = ±1). The amplitude
of m-changing transition due to rotational interaction depends on the trajectories of
the colliding particles which, in turn, depend on their reduced masses: the heavier
the isotope the larger the charge exchange cross section.

Non-adiabatic transitions due to rotational interaction between quasi-molecular
states, degenerate in the united atom limit (R = 0), represent the transitions of non-
Landau-Zener type [28] and are of interest from the theoretical point of view. The
effect of the rotational coupling on the cross sections of the charge exchange in slow
collisions was studied in [309] where He2+ + H(1s) charge exchange reaction was
considered. It was shown that at collision energy below 1 keV/amu transitions due
to the rotational mixing in close collisions give the main contribution to the charge
exchange cross section.

The strong isotope effect caused by rotational interaction was found and inves-
tigated for He2+ + H, D, T processes [299, 310, 311] using theoretical approach



72 5 Charge Exchange in Slow Ion-Atom Collisions. Adiabatic Approach

known as the Electron Nuclear Dynamics (END) [312]. This processes are of con-
siderable interest for plasma modeling in a fusion devices. In the END approach
the time-dependent Schrödinger equation is solved with trajectories of heavy parti-
cles, determined by the scattering potential, which develops in accordance with the
dynamics of the electrons.

The isotopic effect is manifested at collision energies for which the adiabatic
theory is applicable, so the adiabatic approximation is a natural theoretical basis for
studying the effect. It was applied to study the influence of the isotope effect on the
charge exchange process in slow collisions of the H, D, T isotopes with Li, Be, and
C ions, and in the inverse reactions [306]. These processes play a key role in the
transport of particles and in the distribution of the charge states of impurity atoms
in D − T burning plasmas. The adiabatic approach is valid when the energy of the
system ε = μυ2/2 is much higher than the energy of the electron in the initial state.
This condition determines the lower limit of the collision energy for the reactions
under study: E � 10eV/amu. In [306], to calculate the probabilities and cross
sections of charge exchange the ARSENY code [308] was used. The amplitudes of
m-changing transitions due to rotational mixing was found by numerical solution of
the time-dependent Schrödinger equation for the Coulomb trajectory in the united
atom approximation.

In Fig. 5.3, the cross sections for the charge exchange process

He2+ + H(1s) → He+(n = 2) + H+, (5.21)

calculated by the ARSENY code, are compared with two other theoretical results
obtained by the hyperspherical close-coupling (HSCC)method based on the solution
of the three-bodyCoulombproblem [313] and theElectronNuclearDynamics (END)
method [312]. The result [306] agrees well with the HSCC calculations [313] (the
most precise data available now) for energies above 60 eV/amu which corresponds
to the evaluation of the applicability of our method. For lower energies, where a
quantumapproach should beused, the cross sections calculatedwith [306]method are

Fig. 5.3 Charge exchange
cross sections as a function
of collision energy for the
reaction He2+ + H(1s) →
He+(n = 2) + H+: present
calculations [306],
Chien-Nan Liu et al. [313],
Stolterfoht et al. [299]
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overestimated, although the dependence of the cross section on energy is described
correctly. Later in this chapter, the cross sections of discussed charge exchange
reactions are calculated for collision energies E >10eV/amu. Unfortunately, there
is no other data for comparison.

Figure5.4a shows the total cross section for the reactions Li3++H(D, T )(1s) →
Li2+ + H(D, T )+ calculated with the ARSENY code. The charge exchange cross
section, denoted as ‘w/o PR’ in the figure, are calculated without taking into ac-
count the rotational coupling. As can be seen from the figure, the rotational coupling
starts to affect the cross section when the energy decreases below 10keV/amu. This
contribution increases with decreasing energy and is larger for the heavier isotope.
Results of the calculation for the reaction with H target are in a good agreement with
experimental data from [314]. The effect of the rotational coupling on the charge
exchange cross sections diminishes with further energy decrease. At the energies
below 60eV/amu rotational interaction no longer affects the cross section of charge
exchange on the H target, but still completely determines the cross sections for D
and T targets. It can be explained by the fact that for the collision of Li3+ ion with
H target the internuclear separation Rt , which satisfies the following condition (the
turning point, L is the total orbital momentum of the system) [17]:

ε = (L + 1
2 )

2

2μR2
t

+ Z1Z2

Rt
, (5.22)

is larger than Rmax (5.13). Consequently, for these collision energies Li3+ projectile
does not reach the region where rotational coupling occurs.

The probabilities as functions of the impact parameter, averaged over the Stückel-
berg oscillations, for the resonance channel of reaction (5.6) (capture into n = 3 level
of Li2+ ion) are shown in Fig. 5.4b, c for the collision energies E1 = 0.04keV/amu
and E2 = 0.1keV/amu, correspondingly (see in Fig. 5.4a). At collision energy E1 the
probabilities of the rotational transition 3dσ − 3dπ define the electron capture prob-
abilities for D and T targets, while for H target the probability coincides with the
one calculated without rotational coupling is and close to zero. Also, as is seen from

(a) (b) (c)

Fig. 5.4 Total charge exchange cross sections for the reaction Li3++H(D, T )(1s) as a function of
collision energy, E1, E2—see text, H∗—without otational interaction, H∗∗—experimental results
from [314](a); (b), (c)—probabilities as a function of impact parameter calculated with and without
taking into account the rotational interaction for the the reaction Li3++H(D, T )(1s) → Li2+(n =
3) + H(D, T )+. From [306]
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the figure, range of the impact parameters where charge exchange cross section is
affected by rotational coupling is wider for collisions with T target than with D one.
At the energy E2, the projectile in collisions with H target reaches the rotational
interaction region as well and all three probabilities are defined by the rotational
transitions.

Total charge exchange cross sections (a) and probabilities (b, c) [306] for the
reaction

Be3+(1s) + H(D, T )(1s) → Be2+(1snl) + H(D, T )+ (5.23)

are shown in Fig. 5.5. For the calculation the effective charge Zef f = 3.68 for the final
state of the electron in Be2+ was used. It was defined using the CDW2 code [315]
based on the distorted waves approximation (CDW). In the energy range where the
rotational interaction dominates the main contribution to the total cross section is
given by the quasi-resonant channel with final Be2+(n = 3) state. For this channel,
the probabilities as a function of the impact parameter are plotted in Fig. 5.5b and c
for the collision energies E1 = 0.05keV/amu and E2 = 0.1 keV/amu. The behavior
of the cross sections and probabilities for the reaction (5.23) has the same features a
for the reaction (5.6) discussed above.

In the inverse processes

H(D, T )+ + C(1s22s22p2) → H(D, T )(nl) + C+(1s22s22p) (5.24)

the initial state of the electron is 2p state inC atom. These processes were studied and
for the calculation of charge exchange cross sections and probabilities the effective
charge of the initial state of the electron Zef f = 1.86 was used [306]. Figure5.6
shows results of the calculation. In this reactions, the main contribution to the total
cross section is given by two channels with the final states H(D, T )(n = 1) and
H(D, T )(n = 2) : n = 2 for lower and n = 1 for higher collision energies where
the rotational interaction prevails. The presence of two channels results in a non-
monotonic behavior of the charge exchange cross sections.

(a) (b) (c)

Fig. 5.5 Total charge exchange cross sections for the reaction Be3+(1s) + H(D, T )(1s) →
Be2+(1snl) + H(D, T )+ as a function of collision energy, E1, E2—see text, H∗— without
rotational interaction (a); (b), (c)—probabilities as a function of impact parameter calculated
with and without taking into account the rotational interaction for the the reaction Be3+(1s) +
H(D, T )(1s) → Be2+(1s3l) + H(D, T )+. From [306]
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(a) (b) (c)

Fig. 5.6 Total charge exchange cross sections for the reaction C(1s22s22p2) + H(D, T )+ as a
function of collision energy, E1, E2—see text, H∗—without rotational interaction (a); probabilities
as a function of impact parameter calculated with and without taking into account the rotational
interaction for the the reactionsC(1s22s22p2)+H(D, T )+ → C+(1s22s22p)+H(D, T )(n = 2)
(b) and (n = 1, 2) (c). From [306]

Fig. 5.7 Calculated
potential curves describing
the charge exchange process
C(1s22s22p2) + H+ →
C+(1s22s22p) + H(nl) as a
function of internuclear
distance. From [306]

The contribution of each channel to the total cross section in collisions with
H+ projectile is shown in Fig. 5.6a. Electronic potential curves of the states which
contribute to the isotope effect of the charge exchange process (5.24) are plotted
in the Fig. 5.7. The states corresponding to the 2p0 and 2p1 initial states of the
electron in C atom are the 3dσ and 2pπ states in the united atom limit. The rotational
transition 2pπ − 2pσ governs the transition from the initial state C(2p1) to the final
state H(D, T )(1s0)which corresponds to the 2pσ in the united atom limit. Transition
to the final state H(D, T )(n = 2) occurs as a result of two successive transitions:
rotational transition 3dσ − 3dπ and radial transition 3dπ − 4 fπ which occurs at R =
13.7a.u. (4 fπ corresponds to the H(D, T )(2p1) state in the separated atom limit).

In Fig. 5.6b the probabilities for the collision energy E1 = 0.015 keV/amu are
shown as functions of the impact parameter. There is no rotational interaction in
collisions with H+ projectile at this energy and the probabilities for the D+ and
T+ projectiles are defined by the transitions to n = 2 final states. For the energy
E2 = 0.08 keV/amu (Fig. 5.6c), H+ projectile also enters the region of the rotational
interaction. Contributions of the n = 1 and n = 2 channels to the total cross section
are shown for the H+ projectile.
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Analysis of the data obtained suggests that a strong isotopic effect arises in the
presence of a resonant or quasi resonant channel in the charge exchange reaction,
when the energies of the initial and final states of the electron are exactly equal or
differ by a very small value. In such a case, in collisions with energies satisfying
the condition Rt < Rmax (5.22, 5.13), rotational interaction predominates over the
radial one, rotational transitions provide the main contribution to the cross sections
and the isotopic effect occurs (see, e.g., [306]).

5.5 Charge-Changing Collisions of Tungsten and Its Ions
with Neutral Atoms

The development, creation and commissioning of new powerful thermonuclear
plasma installations (tokamak of the international project ITER) and the transition
to the use of plasma with deuterium-tritium ignition (LHD stellarator, Japan) basi-
cally determine the fields of plasma physics that are most effectively developed in
the present time. Atomic charge-changing collision processes, involving very heavy
particles, are of great interest, especially collisions with Tungsten,W (Z = 74), while
applying it in high-power nuclear-fusion studies.

Tungsten is the most promising material for manufacturing surfaces that are in
contact with the plasma in high power fusion plasma devices. It was chosen as one
of the key components in the plasma facing component material in ITER tokamak
[316] due to its unique characteristics [300]: good thermo-mechanical properties,
high melting point, low retention of tritium, and low sputtering rates. These features
minimize the influx ofW particles into the central high-temperature plasmas, which
avoids plasma instabilities, such as plasma energy losses, radiation collapses and
disruptions. On the other hand, due to very high atomic number (Z = 74), even a
very tiny concentration ofW (of the order of 0.01%) can destroy the high-temperature
plasmas and cause serious disruptions.

Thus, the detailed study of atomic features of tungsten and its ions while colliding
with plasma particles and knowledge of the cross sections of such collisions in a
wide range of parameters (charge, state, collision energy) is necessary for clear and
accurate understanding of the general characteristics (stability, ignition) of the main,
near-wall and diverter plasmas in high-temperature fusion devices. Still limited data
on the collisions ofW atoms and ions iswith plasmaparticles requires further research
(see, e.g., [301]).

Paper [302] is devoted to the experimental and theoretical investigations of the
charge-changing collisions of tungsten and its ions with neutral atoms. In [302] the
charge exchange cross sections were measured for the following reactions:

W+(6s) + H2 → W + H+
2 , (5.25)

W+(6s) + He(1s2) → W + He+(1s) (5.26)
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and
W 2+(5d4) + He(1s2) → W+ + He+(1s). (5.27)

The measurements of the charge exchange cross sections are performed for the
following collisional energies: 55eV/u [reactions (5.25) and (5.26)] and 82eV/u
[reaction (5.27)]. These reactions, taking place in detached plasmas of fusion devices
with tungsten as a PFC material, have a strong influence on plasma dynamics.

The experimental set-up for the measurements of the charge exchange cross sec-
tion in reactions (5.25)–(5.27) is described in [317, 318]. In the [302], a 99.95%
purity tungsten wire is bombarded with a pump beam of CO+ ions with the energy
0.9MeV. To perform a mass/charge analysis of the extracted ions a Wien filter is
used which acted as a velocity filter. Other undesired ions of the same velocity as the
W ions, which could also pass through the filter, are removed with a neutral particle
rejector (NPR), composed of 4 sets of electric fields to make ions of different masses
(with the same velocity) follow different trajectories. In the NPR, the ion beam tra-
jectory is shifted aside by the upstream two electric fields according to ion mass.
OnlyW+ ions pass through a movable slit before restoring the straight path with the
electric fields downstream. Figure5.8 shows an example of the q/M spectrum (q is
the charge and M is the ion mass), obtained by scanning the Wien filter electric field
with a fixed magnetic field. The figure illustrates the clear separation of the W+ and
W 2+ ion peaks fromWO+ andWO+

2 peaks (the horizontal axis is proportional to the
square root of q/M value). The calculation of the charge exchange cross sections are
performed in adiabatic approximation using the ARSENY code [308] based on the
hidden crossing method. The calculated data are compared with experimental charge
exchange cross sections and results of their comparison are presented in Fig. 5.9 for
the He target [reactions (5.26) and (5.27)] and in Fig. 5.10 for the H target [reaction
(5.25)]. Experimental value of the charge exchange cross section in collisions ofW+
ions with He target for the energy 55eV/u is (3.2±0.2)×10−18 cm2 and forW 2+ ion

Fig. 5.8 An example of the
q/M spectrum, obtained by
scanning the electric field of
the Wien filter. From [317]
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Fig. 5.9 Total charge exchange cross sections for W+ and W 2+ ions colliding with He atom as a
function of ion energy: solid square—W++He, experiment; solid circle—W 2++He, experiment;
thick solid line—W+ +He, theory; thin solid line—W+ +He, theory (without taking into account
the rotational interaction PR); thick dashed line—W 2++He, theory; thin dashed line—W 2++He,
theory (without taking into account the rotational interaction PR). All experimental and theoretical
data are from [302], see text

Fig. 5.10 Total charge exchange cross sections for W+ and W 2+ ions colliding with H and H2
targets: solid triangle—W+ + H2, experiment; thick solid line—W+ + H , theory; thin solid line—
W+ + H , theory (without taking into account the rotational interaction PR); thick dashed line—
W 2+ + H , theory; thin dashed line—W 2+ + H , theory (without taking into account the rotational
interaction PR). All experimental and theoretical data are from [302], see text

for the energy 82eV/u is (1.14± 0.01) × 10−16 cm2. The corresponding theoretical
values are 9.4 × 10−18 cm2 and 9.45 × 10−17 cm2.

The electronic energies relevant to the collisions with He target are found as
a solution of the two-center Coulomb problem [307] with the effective charges of
the initial and final electronic states: Zef f = 1.34 for the 1s state in He, 4.56 and
6.31 for the 6s state in W+ and W 2+, respectively. The calculations assume that the
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target and the projectile are in the initial ground state. In the adiabatic approximation
the electronic transitions are induced by the radial interaction, associated with the
change of the internuclear separation, and the rotational one doe to internuclear axis
orientation. Here, the charge exchange cross section are calculated with and without
accounting for the rotational coupling (PR).

As is seen fromFig. 5.9, the rotational interaction starts to affect the cross sections
in reactions (5.26) and (5.27) when the energy of collisions decreases below 3keV/u
and, while the energy decreases to 50eV/u, the contribution of transitions caused by
the rotational mixing to the charge exchange cross sections increases. With further
energy decrease, the effect of the rotational coupling on cross sections diminishes.
The main contribution to the charge exchange cross sections measured at energies 55
and 82eV/u is given by transitions caused by rotational coupling. It can be also noted
that the experimental energy 55eV/u for measuring the cross section in collisions
with W+ projectile is close to the boundary of the energy range where the rotational
coupling affects the charge exchange cross section.

The calculations [302] are performed with the Coulomb trajectory in close colli-
sions. In [311] the END approach [312] is used to study the charge exchange process
in slow collisions of He2+ with H . In this approach the trajectory of heavy parti-
cles differs from the Coulomb one and it was shown that the scattering angle at low
collisional energies obtained by the END differs from the scattering angle for the
Coulombic case. It means that changing the trajectory can lead to a change of the
energy range where the rotational mixing influences charge exchange cross sections.
This may be the reason for the greater difference between the experimental and the-
oretical results for the W+ projectile. A good agreement between experimental and
theoretical results confirms the concept used in the adiabatic approach for description
of the mechanism of transitions in slow collisions.

Theoretical results for charge exchange cross sections in collisions of W+ and
W 2+ ions with H atom as an energy functions together with experimental value
of the cross section for charge exchange in W+ + H2 reaction (σH2 = (8.05 ±
0.22) × 10−18cm2) measured at E = 55eV/u are shown in Fig. 5.10. As seen in the
figure, an influence of the rotational coupling on the charge exchange cross section
in collisions with W 2+ projectile is stronger and an its energy range is wider than in
collisions withW+ projectile. Unfortunately, experimental data on collisions ofW+
and W 2+ ions with atomic hydrogen is currently absent. To evaluate the rationality
of the theoretical results, the experimental result available for the cross section in
reaction ofW+ with H2 target and the data on the ratio σH2/σH of the single electron
capture are considered. This ratio in collisions of highly charged ions with atomic
and molecular hydrogen targets can be found in [251]. It rises from 0.7 to 4 while
the collisional energy increases. Results of investigation of heavy low charged ions
including Wq+ ions (6 ≤ q ≤ 15) colliding with H and H2 targets (the case under
consideration) are described in [319–321]. It was found that the ratio of charge
exchange cross sections σH2/σH in collisions with low charged ions differs from
that for highly charged projectiles—as the energy of collisions decreases the ratio
becomes greater than 1 and continues to rise [319].
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In the experiment from [322], σH and σH2 were measured for charge exchange
in collisions of Al2+ ions with atomic and molecular hydrogen at 185eV/u–1keV/u
energy range. The ratio σH2/σH increases from 1.2 at E =1keV/u to 2.5 at E =
185eV/u which confirms the conclusion made in [319]. Since theoretical method
[302] reproduces experimental results for atomic targets very well (for the collisions
with Al2+ projectiles at energy 185eV/u experimentalσH is (1.97±0.31)×10−16cm2

and theoretical one is 1.85×10−16cm2), theoretical value of the ratioσH2/σH in colli-
sions of theW+ projectile at energy 55eV/u is estimated. According to experimental
(σH2 ) and theoretical (σH ) values this ratio is lower than 5.4. The energy considered,
55eV/u, is on the boundary of the range of the influence of the rotational mixing
(see Fig. 5.10). If the non-Coulombic trajectory will be used in the calculations the
range of the rotational coupling influence will be wider and therefore the theoretical
value of the CE cross section will increase. This will reduce the ratio σH2/σH but
not less than 1 ([319, 322]). The role of the trajectory in adiabatic approximation is
considered later in this chapter.

5.6 Isotope Effect in Low Energy Collisions of W+ and
W2+ ions with H, D and T

In this section, the isotope effect is studied for reactions

W+(6s) + H(D, T )(1s) → W + H(D, T )+ (5.28)

and
W 2+(5d4) + H(D, T )(1s) → W+ + H(D, T )+ (5.29)

in the framework of the adiabatic theory of transitions in slow collisions [28]. These
reactions can occur in detached low-temperature plasmas of fusion machines (near-
wall or diverter regions) where collision energies correspond to the energy range
of the isotope effect (from 5 to 500eV/u). In ITER experiments, the DT burning
plasma is planned to use, which make the influence of the isotope effect on plasma
parameters an important issue. Here, the same theoretical approach [302] is used
for calculations of the charge exchange cross sections for the reactions (5.28, 5.29).
Results of the calculations show a significant difference between the cross sections
in collisions with different isotopes (the isotope effect).

Total charge exchange cross sections in collisions of W+ and W 2+ ions with
H, D and T targets are calculated with (Fig. 5.11a) and without (Fig. 5.11b) taking
into account the rotational coupling. If neglecting the rotational interactions, the
difference between cross sections in collisions with different isotopes disappears. In
the reaction with W+ projectile (Fig. 5.11a) the isotope effect is manifested when
the collision energy decreases below 200eV/u. At the energies below 56eV/u the
cross section for the collisions with H target is not affected by the rotational mixing
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(a) (b)

Fig. 5.11 Total charge exchange cross sections for the reactions W+ + H, D, T (a) and W 2+ +
H, D, T (b): solid triangle— W+ + H2, experiment; solid line—reaction with H , theory; dashed
line—reaction with T , theory; dashed dotted line— reaction with D, theory; dotted line with solid
circles—reaction with H, D, T , theory (without taking into account the rotational interaction PR).
All experimental and theoretical data are from [302], see text

since the W+ projectile does not enter the region of rotational interaction ( Rclmb is
larger than Rmax ). The same happens in collisions with D and T targets when energy
decreases below 23 and 18 eV/u, respectively. The heavier the isotope the wider the
energy range of the effect of rotational interaction. In collisions with W+ projectile,
the highest ratio σD/σH is about 3 and σT /σH is about 4 orders of magnitude.

As can be seen from Fig. 5.11b, not only increasing the mass of the target, but
also increasing the charge of the projectile enlarges the energy range where the
rotational interaction affects the charge exchange cross sections. This is due to the
fact, that as the energy decreases the condition defining the rotational interaction
region (R < Rmax and Rmax > Rclmb) can be satisfied for the electronic states with
larger orbital momenta. In the united atom limit, the larger orbital momentum of the
electronic states correspond to the collisions with the projectile of a higher nuclear
charge. Since the effective nuclear charge of W 2+ (6.31) is higher than that of W+
(4.56) the W 2+ projectile can enter the rotational mixing region at lower collision
energies. For the same collisional energy, the contribution of the rotational transitions
to the charge exchange cross section in collisions with W 2+ projectile is also larger
because the condition (R < Rmax and Rmax > Rclmb) is valid for a wider range
of impact parameter. It results in more strong isotope effect for the W 2+ projectile:
σD/σH is about 8 and σT /σH is about 10 orders of magnitude. As far as we know, the
experimental data on the charge exchange cross sections for collisions with hydrogen
isotopes, which can confirm the theoretical prediction of the isotope effect [302], are
still absent. The only indirect confirmation of the present calculation is the discussed
above experimental result for the collision of W+ projectile with molecular target
H2 (Fig. 5.11a).

Since an influence of the isotope effect on charge exchange cross sections is very
strong in the energy range, which corresponds to the collision energies in detached
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plasmas of fusion machines, the data considered are indispensable in theoretical
studies and numerical simulations of the D− T burning plasmas behavior, and must
be taken into account when planning future experiments.

5.7 Influence of the Electron-Nuclear Interaction on
Charge Exchange Cross Sections

The classical treatment of the nuclei motion in slow ion-atom collisions is applicable
if the nuclear interaction is described by some certain effective potential. This in-
teraction determines the internuclear trajectory which depends on the masses of the
colliding nuclei. The dependance of the trajectory on the nuclei masses results in the
isotope effect. In the END approach [312] used in [299, 310, 311], the trajectories
are controlled by the scattering potential, which develops in accordance with the
dynamics of the electrons. At certain collision parameters, this approach produces
counterintuitive result for the internuclear motion: in the reaction

He2+ + A(1s) → He+(n = 2) + A+, A = H, D, T, (5.30)

the scattering angles are negative [311]. This result cannot be explained by any purely
repulsive interaction. The adiabatic approximation uses the Coulomb trajectory of
the internuclear motion with a different dependence on the collision parameters.
Obviously, the presence of a strong isotopic effect leads to the dependence of the
theoretical results on the trajectory, and, consequently, on the features of the inter-
nuclear interaction.

The influence of the electron-nuclei interaction on the internuclear trajectory, and
therefore on the observable charge exchange cross sections in slow ion-atom colli-
sions, was investigated in [303]. The conclusion made in the work is very clear: to
describe the internuclear motion the Born-Oppenheimer (BO) potential correspond-
ing to the entrance channel of the reaction should be used. It was shown that the use of
BO potential, which effectively accounts for the electron-nuclei interaction, allows
to explain qualitatively and reproduce quantitatively the negative scattering angles
reported in [311]. This demonstrates that the BO approximation can be used to re-
produce the accurate ab initio calculation of the internuclear trajectory, so significant
for the END approach used in [299, 310, 311].

System under consideration consists of an electron and two nuclei with charges
Zi and masses Mi , i = 1, 2. It is assumed that the electron is initially bound to the
second nucleus in the nondegenerate ground state with energy E0 = −Z2

2/2 in order
to avoid complexities caused by the Coulomb degeneracy [323]. Let us consider
a collision of the first nucleus (projectile) with the bound pair (target) with initial
relative velocity of the nuclei v. The energy of the internuclear motion in the center-
of-mass frame is E = μv2/2, where μ = M1M2/(M1 + M2) denotes the reduced
mass. The interaction between two bare nuclei is described by the Coulomb potential
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VC(R) = Z1Z2

R
, (5.31)

where R is the internuclear distance. The internuclear interaction in the BO approx-
imation is described by

VBO(R) = VC(R) + E(R) − E0, (5.32)

where E(R) is an eigenvalue of the two-center Coulomb problem [307], solved for
the present system, and corresponds to the energy of the electron in the field of
the nuclei fixed in space at an internuclear distance R. According to the adiabatic
theorem, electronic transitions in slow collisions are suppressed. This leads to an
adiabatic evolution of the electronic state, which defines the potential (5.32). It means
that the electronic state is the two-center Coulomb problem eigenstate coincidedwith
the initial state for R → ∞, therefore E(R → ∞) = E0. In (5.32), the electronic
terms account for the electron-nuclei interaction. Figure5.12 shows the different
terms in (5.32) for the system with Z1 = 2, Z2 = 1, and E0 = −0.5. It can be
noted that the Coulomb potential is repulsive (dVC(R)/dR < 0) for all internuclear
separations R, while the BO potential has a shallow minimum at R ≈ 3.9 and is
attractive (dVBO(R)/dR > 0) for larger R.

The trajectories defined by the potentials (5.31) and (5.32) are different. To find
out which one best describes the internuclear motion, the trajectories should be com-
pared with reliable results. Accurate ab initio results for the considered system (5.30)
were reported in [311]. These results were obtained in the END approach [312] based
on the solution of the time-dependent Schrödinger equation incorporating coupled
electron and nuclear dynamics. In the END approach, the internuclear trajectory
is self-consistently defined by the instantaneous forces, acting on the nuclei, deter-
mined by the instantaneous distribution of the electronic density. As a result, the
END approach yields a nontrivial trajectory, but not a time-independent internuclear
potential.

Fig. 5.12 The Coulomb
(5.31) and BO (5.32)
internuclear potentials for the
system (5.30). From [303]
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In [311], the scattering angle is considered as feature of the trajectory which
characterizes the internuclear dynamics. It was shown that this angle obtained in the
END approach for the system (5.30) depends on the target for the certain collision
parameters. A comparison with the classical scattering angles obtained for two time-
independent potentials gives the following result: the END results agree with the
results for theCoulombpotential (5.31) at high collision energies (E � 10keV/amu),
but at lower energies strong discrepancies occur.

The results for a screened Coulomb potential obtained by means of a screened
frozen charge distribution for a target in the initial state are in closer agreement
with the END results at lower energies, but only at large impact parameters. There
is a qualitative difference at smaller impact parameters. Namely, it was found in
[311] that the scattering angle is negative for a certain interval of impact parameters
and sufficiently low energies (E � 1keV/amu). Since the Coulomb and screened
Coulomb potentials are purely repulsive, and the repulsive interaction leads to posi-
tive scattering angles, they cannot reproduce negative scattering angles obtained in
the END approach. It can be assumed that the negative scattering angles occur due
to an attractive part of the internuclear interaction.

Let us consider whether the negative scattering angles can be reproduced by the
BO potential (5.32). For a given internuclear potential V (R), the classical scattering
angle as a function of the impact parameter ρ and collision energy E is given by
[324]

θ(ρ, E) = π −
∫ ∞

Rmin

2ρdR

R2F(R)
, (5.33)

where

F(R) =
√
1 − ρ2

R2
− V (R)

E
, (5.34)

and Rmin is the internuclear distance of closest approach defined by the equation
F(Rmin) = 0. For the Coulomb interaction potential between two bare nuclei (5.31)
one obtains θ(ρ, E) = θC(ρE), where

θC(ρE) = 2 arctan

(
Z1Z2

2ρE

)
. (5.35)

In the Coulombic case the scattering angle is a unique function of product ρE , but
this scaling rule does not applies to other potentials.

In [303], the BO potential (5.32) was used to calculate the scattering angle in
collisions (5.30) at a fixed energy E = 50 eV/amu, as was also considered in [311].
Figure5.13 shows the results of the present calculations as functions of the parameter
ρE for collisions with H , D, and T targets by the solid, dashed, and dashed-dotted
lines, respectively, together with the END results from [311], which are shown by
symbols. A good agreement of the results for all the considered ρE values proves
that the BO potential (5.32) can well reproduce the collision dynamics predicted by
the END approach. It can be concluded that the negative scattering angles found in
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[311] arise due to the attractive part of the BO potential caused by the inclusion of
the electron-nuclei interaction. For comparison, the scattering angle for the Coulomb
potential (5.31) is shown in Fig. 5.13 with the dotted line. Due to the scaling rule in
the Coulombic case, there is no difference between H , D, and T targets. This line,
locating rather far from the ab initio results, obviously fails to describe the negative
scattering angles.

Figure5.14 shows the Coulomb and BO trajectories calculated for the collision
parameters E = 50eV/u and ρ = 4.68a.u. where they have different signs. The
value of ρ = 4.68a.u. is chosen to be close to the values of the impact parameter
in the minima of the scattering angles for the BO trajectories: ρ = 4.68, 4.66, and
4.64a.u. for H , D, and T , respectively (Fig. 5.13). Since these collision parameters
correspond to the attractive region of the interaction, the scattering angles for the BO
trajectories are negative.

Comparison of the geometrical parameters of the trajectories plotted in Fig. 5.14
is given in Table5.1 and results in two main conclusions. First, trajectories for the
different targets governed by the samepotential are different,which eventually causes
the isotope effect. Second, in some region of the collision parameters E and ρ, BO
trajectories significantly differ from the corresponding Coulomb trajectories. It can
be noted that with an increase in the target mass the distance of closet approach
demonstrates opposite behaviors for the Coulomb and BO potentials. The effect of
the Rmin value on the cross sections is considered in the next section.

Let us determine whether the cross sections of charge transfer in collisions (5.30)
are sensitive to the difference between the Coulomb and BO trajectories. In [303], the
cross sections were calculated in the the adiabatic approach, realized in the ARSENY
code. This approach is based on the asymptotical solution of the time-dependent
Schrödinger equation for an electron in the three-body system for relative velocity
υ → 0.Adetailed description of the adiabatic approach is given in one of the previous

Fig. 5.13 Scattering angle for the internuclear motion in the system (5.30) at collision energy
E = 50eV/amu as a function of the product ρE . Solid, dashed, and dashed-dotted lines: present
results for H, D, and T, respectively, calculated using the BO potential (5.32) in (5.14). Symbols: ab
initio END results from [311]. Dotted line (the same for all three targets): results for the Coulomb
potential (5.31) from (5.35). From [303]
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Fig. 5.14 Internuclear trajectories for the system (5.30) calculated with the Coulomb (thin lines)
and BO (thick lines) potentials at energy E = 50eV/amu and impact parameter ρ = 4.68a.u. shown
in the collision plane with Cartesian coordinates (x, y) in the center-of-mass frame. The trajectories
are oriented in such a way that they coincide with each other and with the corresponding straight-
line trajectories shown by horizontal thin dotted lines as x → −∞, which emphasizes the different
signs of the scattering angle for the Coulomb and BO trajectories. From [303]

Table 5.1 Scattring angles and geometrical parameters of the Coulomb and BO trajectories calcu-
lated at E = 50eV/u and ρ = 4.68a.u., (see Fig. 5.14). From [303]

Target VC (R) VBO (R)

θ (deg) Rmin (a.u.) θ (deg) Rmin (a.u.)

H 16.5 5.409 −1.82 4.639

D 9.97 5.106 −1.09 4.655

T 7.76 5.008 −0.85 4.661

sections. Recall here, that radial interactions are considered analytically by searching
for hidden crossings (branch points) of the electron energy, which is a multivalued
analytic function of the complex internuclear separation R. The amplitudes of radial
transitions are averaged over the Stückelberg oscillations and do not depend on the
trajectory.

The rotational couplings associated with internuclear axis rotation are treated nu-
merically. They arise in close collisions at small R and are described in the basis
of the united-atom hydrogen-like states φnlm(r). Rotational interaction induces tran-
sitions between states with the same principle n and orbital l quantum numbers,
but different projections m of the angular momentum on the internuclear axis.
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To describe the evolution of the amplitudes of the states, the time-dependent
Schrödinger equation is solved (5.18)–(5.20). The quantity in (5.20) of main in-
terest here is the angle ϕ(t) which defines the internuclear axis orientation in the
collision plane. This angle depends on the trajectory, and this is how the trajectory
affects the results obtained in the adiabatic approach. In the original ARSENY code
[308], the Coulomb internuclear trajectory is used. The Coulomb trajectories in
collisions with different targets (5.30) give different time dependencies of the ori-
entation angle ϕ(t), which leads to different rotational coupling contributions to the
charge exchange cross sections. The isotope effect corresponding to this mechanism
was already described in a previous section. Below we consider another effect of the
trajectory caused by using the BO potential instead of the Coulomb one in calculating
the angle ϕ(t).

The results of the present calculations of the charge exchange cross sections in
collisions of the α-particle with H, D, T targets (5.30) with the use of the BO tra-
jectory are shown in Fig. 5.15 (thick lines) together with our previous results [306]
corresponding to the calculations with the Coulomb trajectory in close collisions
(thin lines) and results of the END approach [299] (solid symbols). As can be seen
in the figure, all the results manifest a strong isotope effect in the energy range under
consideration. In the adiabatic approximation, this effect is due to the difference in
internuclear trajectories, defined by the same potential, in collisions with targets of
different masses. Besides the isotope effect, Fig. 5.15 shows a strong dependence
of the adiabatic results on the potential which defines the internuclear trajectory.
Figure5.16 illustrates the difference between the Coulomb and BO trajectories cal-
culated for the following collision parameters: E = 100 eV/amu and ρ = 0.17. At

Fig. 5.15 Charge transfer cross sections for the reaction (5.30). Thin and thick lines: present results
obtained in the adiabatic approach using the Coulomb andBO internuclear trajectories, respectively.
Solid symbols: results of the END approach [312] from [299]. Thin dotted line (the same for all
three targets): adiabatic results calculated without rotational couplings. Open circles: results for H
from hyperspherical close-coupling calculations [313]. From [303]
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Fig. 5.16 Internuclear trajectories for the system (5.30) calculated with the Coulomb (thin lines)
and BO (thick lines) potentials at energy E = 100eV/amu and impact parameter ρ = 0.17a.u.
shown in the collision plane with Cartesian coordinates (x, y) in the center-of-mass frame. The
trajectories are oriented to emphasize the different values of Rmin , which has a strong impact on
the rotational coupling. From [303]

this parameters, the effect of the trajectory on the cross sections and the rotational
couplings that cause this effect are strong. The rotational couplings arises in close
collisions (distance R is small), which results in the sensitivity of the cross sections
to the distance of closest internuclear approach Rmin . The smaller Rmin the larger the
effect of rotational coupling and the stronger the dependence on the trajectory. As
seen from Fig. 5.16, Rmin decreases as the target mass increases from H to T , which
leads to an increase in the corresponding charge exchange cross section. In the case
of the Born-Oppenheimer potential effectively accounting for the electron-nuclei in-
teraction, the values of Rmin are smaller than that for the Coulomb potential, which
leads to a further increase of the cross section.

It can be seen from Fig. 5.15 that the account for the electron-nuclear interaction
in adiabatic approximation enlarges the range of the collisional energies where the
rotational interaction affects the cross section and improves the agreement of the
adiabatic results with the ab initio END results [299]. This is due to the fact that
Rmin is smaller for the BO trajectory than for the Coulomb one for the same energy
and impact parameter (see Fig. 5.16), and therefore the BO trajectory describes the
rotational couplings at small R more accurately. Improved agreement is achieved at
lower energies, while at higher energies the sensitivity of the results to the trajectory
is low. The use of the BO trajectory gives better agreement with the END results at
energies below E ≈ 0.05keV/u for T target, while for H target it happens already
at energy E ≈ 0.1keV/u. This is explained by the fact that a heavier target can enter
the region of strong rotational couplings at lower energies.

The adiabatic results corresponding to the calculation without taking into account
the rotational couplings, shown in Fig. 5.15 by a thin dotted line, do not depend on the
trajectory. Since the effect of the rotational couplings responsible for this dependence
decreases at higher energies, all the adiabatic and END results converge to the thin
dotted line. At lower energies, where the rotational couplings (5.20) decrease due to
the vanishing of the derivative dϕ(t)/dt as v → 0, the adiabatic results calculated
for the different trajectories and targets again coincide with each other. This energy
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regionwas not considered in [299], so this prediction of the adiabatic approach cannot
be confirmed by comparison with the END results.

The internuclear motion is treated classically in both approaches, so the adiabatic
and END results should be the same for the same internuclear trajectory. A good
agreement between the BO and END ab initio trajectory used in [299], demonstrated
in [303], leads to the conclusion that the difference between the two results is due to
an inaccuracy of the adiabatic approximation and/or possible disadvantages of the
numerical scheme used to solve the time-dependent Schrödinger equation in [299].
The results of fully quantum hyperspherical close-coupling (HSCC) calculations
for the collisions (5.30) with H target [313] are shown in Fig. 5.15 by open cir-
cles. The HSCC method based on the solution of the quantum three-body Coulomb
problem does not use any approximations, provided that its numerical realization
yields converged results. It is noteworthy that the adiabatic results obtained with the
BO trajectory are in better agreement with the HSCC results than the END results.
Assuming the numerical convergence of the ab initio calculations [299, 313], this
means that the adiabatic approach partially compensates for the error caused by the
classical treatment of the internuclear motion.

The results of these studies lead to an important consequence: in the implemen-
tation of the adiabatic approach, the BO trajectory should be used instead of the
Coulomb one, which in fact fully corresponds to the spirit of this approach.

5.8 Resonance Charge Exchange Between Excited States in
Slow Proton-Hydrogen Collisions

The study of the resonance charge exchange (RCE) between ground (initial and
final) states of the hydrogen atom in slow proton-hydrogen collisions has a long
history: starting from the pioneering works where the Firsov [325] and Demkov
[326] theory of the RCE was developed, the process was investigated in detail in
[327–329]. However, the RCE between excited states can not be described by the
existing theory because of their degeneracy. The available data on the RCE process
involving excited degenerate states obtained by the close-coupling calculations [313,
330] is very limited, and for energies below 1a.u. ≈ 27.2eV such data is absent. In
[323], a theory for the RCE between excited states was developed, extending the
Firsov-Demkov theory for the case of degenerate initial and final states.

To illustrate the reliability of the method proposed in [323], we start with the well
studied reaction

H(n = 1) + H+ → H+ + H(n = 1), (5.36)

using the available data for comparison.Method for calculating theRCEcross section
in the low energies collisions (5.36) has been developed by Firsov in 1951 [325].
This method yields the following semiclassical expression for the RCE cross section
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σ = 2π
∫ ∞

0
sin2

(∫ ∞

ρ

Eg(R) − Eu(R)

2v
√
R2 − ρ2

RdR

)
ρdρ, (5.37)

where R is the internuclear distance, ρ is the impact parameter, v is the collision
velocity and Eg,u(R) are the electronic energies corresponded to gerade (even) and
ungerade (odd) states. They are found as the eigenvalues of the two-center Coulomb
problem [307] and are shown in Fig. 5.17. The parity of an electronic state charac-
terized by spheroidal quantum numbers nη, nξ and m is defined as (−1)nη [307].

Firsov’s theory provides a method for calculating the RCE section, but does
not disclose the transition mechanism. In [326], Demkov considered a more general
case when the energies of the initial and final states differ byΔE value, the so-called
quasi-resonance charge exchange. Based on the exactly solvable Rosen-Zener model
[331], he developed a theory widely used in the physics of atomic collisions. In this
theory, the electronic states are diabatic in the separated atoms limit, and are adiabatic
in the quasi-molecular region. The adiabatic states coincide with the diabatic ones for
R → ∞. The electronic transition occurs at the internuclear distance where diabatic
(atomic) states rearrange into adiabatic (molecular) ones and the nonadiabatic cou-
pling has its maximum. Thus, a very general mechanism of electronic transitions in
the quasi-resonance charge exchange is revealed in the Demkov theory. Importantly,
in the limit ΔE = 0 results of this theory are described by (5.37) obtained by Firsov
[325].

Theone-electron collision system (5.36) allows amuchmore in-depth analysis due
to separability of the two-center Coulomb problem in prolate spheroidal coordinates
[307]. As discussed in the previous sections, transitions in slow collisions in the
Z1 − e − Z2 system, where Z1 and Z2 are nuclear charges, can be described by
the adiabatic theory developed by Solov’ev [28]. It was shown in [332] that in the
adiabatic theory transitions due to the Demkov mechanism occur in the so-called
P-series of hidden crossings that exists when |1− Z1/Z2| � 1, that is, in the quasi-
resonance case. The P-series was analyzed in detail in [333] and it was found that

Fig. 5.17 Electronic
energies for gerade and
ungerade states participating
in the charge exchange
process H(n = 1) + H+ →
H+ + H(n = 1) as
functions of the internuclear
distance. The electronic
charge exchange transition
via the Demkov mechanism
occurs in the circled region
near the point R0 defined by
(5.38). From [323]
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the exchange (underbarrier) coupling between quasi-resonance states in the Rosen-
Zener model is described only with exponential accuracy. Nevertheless, taking into
account the pre-exponential factor in the exchange interaction [333] leads to almost
the same transition probability as in [326].

In the symmetric case Z1 = Z2, the gerade and ungerade states are exactly decou-
pled and the RCE process can not be described by the adiabatic theory [28] because
there are no branch points in the complex R plane, connecting the corresponding
electronic energy surfaces. As for the Demkov theory, it is applicable to a more gen-
eral class of collision systems and remains valid even in the resonant case ΔE = 0.
A conclusion is drawn (this should be regarded as a probable assumption, and not a
proven statement), that the charge exchange transitions in the system (5.36) occur in
the regions of rearrangement of atomic states into molecular ones. This happens in
the vicinity of a point R0 (Fig. 5.17) where the corresponding gerade and ungerade
states become approximately degenerate. The value of R0 can be estimated in the
semiclassical approach [307] from the equation

R2 · E(R) + 2λ(R) + 4
√

λ(R) = 0, (5.38)

where E(R) is the electronic energy and λ(R) is the separation constant for the
ungerade state.

In quantum approach (5.37) is presented as [327, 328]:

σ = π

(υμ)2

∑

L=0

(2L + 1) sin2[δg(L) − δu(L)], (5.39)

where δg,u(L) are the shifts of the scattering phases, μ is the reduced mass and L
is the angular momentum associated with the internuclear axis. Using (5.39), the
cross sections for the charge exchange reaction (5.36) were calculated and their
energy dependence was studied in many papers beginning with pioneering works
[327] and [328]; see, for example, [329]. In this approach, the internuclear motion
of colliding particles (protons) were treated classically. To our knowledge, the only
fully quantum calculation for a related process was reported in [334] where the quasi-
resonance charge exchange between hydrogen in the ground state and deuteron was
considered. The calculation was based on the solution of the three-body Coulomb
problem.

The Firsovmethod is used in [323] to calculate the RCE cross sections in collision
(5.36). The calculations are performed in three different ways: semiclassical with the
cross section defined by (5.37), quantum (5.39) with quantum scattering phase shifts
defined from the stationary Schrödinger equation

d2

dr2 ψg,u(R) +
[
2μ

(
1
R + Eg,u(R) − εcm

) + L(L+1)
R2

]
ψg,u(R) = 0 (5.40)

and quantum (5.39) with semiclassical scattering phase shifts [17]:
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δg,u(L) =
∫ ∞
Rt

[√
2μ

(
εcm − 1

R − Eg,u(R)
) − (L+ 1

2 )2

R2 − k

]
dR

+ π
2 (L + 1

2 ) − kRt , (5.41)

where μ is the reduced mass, εcm is the center-of-mass collision energy, Rt is the
turning point and k = √

2μεcm .
The results for the RCE cross sections [323] converged with respect to all numeri-

cal parameters are presented in Fig. 5.18. For comparison, the cross sections obtained
in [328] are plotted by dots in the same figure. The cross sections calculated with
quantum scattering phase shifts δg,u(L) [323] are represented by a solid line. These
results are in a good agreement with the results from [328] for all collision energies,
with the exception of low energies, where there is an insignificant difference in cross
sections. The reason for the difference is the following: in [328], the non-adiabatic
corrections to the potential are taken into account while these corrections are not
included in the calculations in [323] because of their insignificant influence on the
cross sections. The oscillatory structure of the RCE cross sections and locations of
the orbiting resonances (angular momentum L of some of them are shown in the fig-
ure) are in very good agreement with the corresponding data from [335] and [329].
The region where the calculations with the semiclassical (dashed line) and the quan-
tum (solid line) scattering phase shifts δg,u(L) converge is shown in Fig. 5.19 on a
larger scale. As seen from the figure, for the energies above 0.017a.u., where the
agreement is very good, the semiclassical phase shifts δg,u(L) can be used for the
RCE calculation instead of the quantum phase shifts, the calculation of which is very
time-consuming. The results obtained using the equation (5.37) (dotted line) do not
describe the oscillations of the RCE cross sections and converge with the quantum
results obtained with (5.39) at energies above 1a.u.

Fig. 5.18 Resonance charge
exchange cross sections of
H(n = 1) + H+ →
H+ + H(n = 1) reaction as
a function of the
center-of-mass collision
energy: solid line—(5.39)
with quantum δg,u(L),
dashed line—(5.39) with
semiclassical δg,u(L), dotted
line—(5.37),
dots—experiment [328].
From [323]
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Fig. 5.19 Same as in
Fig. 5.18, region of
convergence of quantum and
semiclassical calculations.
From [323]

As an example of RCE between excited degenerate states, the following reaction
is considered in [323]

H(n = 2) + H+ → H+ + H(n = 2). (5.42)

Six electronic states participate in the reaction (5.42). In the separated-atom limit,
R → ∞, these states converge to the n = 2 threshold. Electronic energies for
the six states are shown in Fig. 5.20. In the limit of separated atoms, the principle
quantum number n is expressed through the spheroidal quantum numbers nη, nξ , and
m, identifying an electronic state, as:

n = nξ +
[nη

2

]
+ m + 1, (5.43)

with [x] denoting the integer part of x . In this limit, spheroidal coordinates are trans-
formed into parabolic ones and the correspondence between spheroidal (nη, nξ,m)

and parabolic (n1, n2,m) quantum numbers is given by [307]

n1 = nξ, n2 =
[nη

2

]
. (5.44)

As is clear from Fig. 5.20, the electronic states of the n = 2 manifold can be
divided into three pairs of gerade and ungerade states with the same values of nξ

and m. Within each pair, the value of nη for the ungerade state exceeds that for
the gerade states by unity, therefore both states have the same values of parabolic
quantum numbers (n1, n2,m) at R → ∞. One can notice that degeneracy within
pairs occur at much smaller R than that between pairs. Below, pairs of states defined
in this way will be called degenerate. The states constituting the degenerate pair are
drawn by lines of the same style in Fig. 5.20.
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Fig. 5.20 Electronic
energies for gerade and
ungerade states participating
in the charge exchange
process H(n = 2) + H+ →
H+ + H(n = 2) as functions
of internuclear distance. The
electronic charge exchange
transitions via the Demkov
mechanism within each
degenerate pair occur in the
circled regions defined by
(5.38). From [323]

To calculate the cross sections in the RCE process (5.42), the following approach
is suggested in [323]: charge exchange transitions within each degenerate pair are
considered using the Firsov-Demkov theory, while interactions between the different
pairs, as well as with states of other manifolds, are neglected. This approach is jus-
tified in adiabatic approximation by the following condition: the circles in Fig. 5.20,
indicating the regions of localized charge exchange transitions in degenerate pairs
via the Demkov mechanism, are well separated from each other. A similar approach
for calculating the quasi-resonance charge exchange cross sections in the process
dμ(n)+ t → d+ tμ(n) between states of the n = 2 manifold was used in [336]. The
results obtained with allowance for only the Demkov couplings within each quasi-
degenerate pair and neglecting all other interactions are in good agreement with the
results of fully quantum calculation available for this three-body Coulomb system
[337].

Figure5.21 shows the cross sections of RCE between parabolic states with
n = 2,m = 0, 1 calculated using approach suggested in [323]. As can be seen
from the figure, the RCE cross sections for the transitions between the parabolic
states 010−010 and 001−001 have a resonant structure and increase with decreas-
ing energy, and the cross section corresponding to the transition 100−100 does not
exhibit resonances and decreases. The potentials U (R) = 1

2n2 + 1
R + Eg,u(R) for

three pairs of spheroidal states are plotted in Fig. 5.22. The potentials of 010 and 110
spheroidal states (100 in parabolic coordinates) are purely repulsive. It is possible to
analyze the behaviour of the cross section by comparing the positions of the turning
point Rt (internuclear distance where the argument of the square root function in
(5.41) turns zero) and R0 (internuclear distance where these states become approx-
imately degenerate). As the energy of collision decreases, the turning point moves
to the right and at some point becomes larger than 10a.u. (R0 for these states). This
happens at an energy of about 0.02 a.u., and when the energy becomes less than
this value, the cross section must decrease rapidly. This is indeed the case for the
transitions between the parabolic states 100−100 in Fig. 5.21.
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Fig. 5.21 Resonance charge exchange cross sections of H(n1, n2,m)+H+ → H++H(n1, n2,m)

reaction as functions of the center-of-mass collision energy for parabolic states 010, 100 (a) and
001 (b): solid line—(5.39) with quantum δg,u(L), dashed line—(5.39) with semiclassical δg,u(L),
dotted line—(5.37). From [323]

Fig. 5.22 Potentials
U (R) = 1

2n2
+ 1

R + Eg,u(R)

for gerade and ungerade
spheroidal states as functions
of internuclear distance.
From [323]

Figure5.23 shows resonances corresponding to the total angular momentum L in
the transition between parabolic states 010−010. The potentials

U (R) = 1

2n2
+ 1

R
+ Eg,u(R) + L(L + 1)

2μR2
(5.45)

for spheroidal states 200 and 300 and the angular momentum L = 90 are plotted in
the insert. The barrier in the 200 state potential causes the first orbiting resonance in
Fig. 5.23. The collision energy EL=90, where this resonance occurs, is very close to
the top of the barrier, which leads to a rather large resonance width.

Figure5.24a illustrates the convergence of RCE cross sections between 010−010
parabolic states obtained with semiclassical and quantum phase shifts δg,u(L). The
convergence of cross sections defined by (5.37) and (5.39) is shown in Fig. 5.24b.
From the figures, one can draw the following conclusion: the semiclassical phase
shifts δg,u(L) can be used to calculate the RCE cross sections defined by (5.39) when
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Fig. 5.23 Orbiting resonances in RCE cross sections as functions of the center-of-mass collision
energy between parabolic states 010−010. Insert: Potentials (5.45)U (R) = 1

2n2
+ 1

R + Eg,u(R)+
L(L+1)
2μR2 , L = 90 for 200 and 300 spheroidal states as functions of internuclear distance. From [323]

(a) (b)

Fig. 5.24 Same as in Fig. 5.21, region of convergence of calculations with quantum and semiclas-
sical δg,u(L) (a), quantum and (5.37) (b). From [323]

the collision energy is above 0.008a.u., and when the collision energy is higher than
2a.u., one can use (5.37).

The Clebsch-Gordan coefficients are used to transform parabolic coordinates into
spherical [17]. The RCE cross section in transitions between nlm and nl ′m spherical
states can be written as

σnlm−nl ′m(v) = π
(vμ)2

∑
L=0(2L + 1) ×

∣∣∑
n1n2m

c(n1n2m − nlm)An1n2m(L)c(n1n2m − nl ′m)
∣∣2 , (5.46)

where
An1n2m(L) = sin(δg(L) − δu(L)) ei(δg(L)+δu(L)) (5.47)
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is the amplitude of the RCE transition in parabolical coordinates and

c(n1n2m − nlm) = (−1)n1+m
√
2l + 1

×
(

n−1
2

n−1
2 l

n2−n1+m
2

n1−n2+m
2 −m

)
. (5.48)

The second summation in (5.46) is performed over parabolic states having the
same n and m quantum numbers. In [323], the cross sections were calculated for
the following RCE transitions: 2s0−2s0, 2p0−2p0, 2s0−2p0 and 2p1−2p1. The
cross sections of the 2s0−2s0 and 2p0−2p0 transitions, presented in Fig. 5.25, are
equal because of the properties of the Clebsch-Gordan coefficients. The RCE cross
section of the 2s0−2s0 transition for the velocity 0.1 a.u. was calculated in [338]
where the semiclassical close-couplingmethodwas used. The result of the calculation
is shown by the solid point in Fig. 5.25. The results of the present calculations and
calculations performed in [338] differ by about 30%. The difference can be explained
in the following way: in the method proposed in [323], other processes such as non
resonant charge exchange, excitation and ionization are not taken into account, but the
probabilities of these processes become significant when collision energy increases.

The summed cross sections of the 2s0−2s0 and 2s0−2p0 transitions [323] to-
gether with the total cross section from 2s0 state at a collision velocity 0.05 a.u.,
calculated using the six-state molecular close-coupling formalism [330] (solid point)
are shown in Fig. 5.26. Compared with the velocity 0.1 a.u., the difference between
the two results reduced to 9%. This means that the contribution of the processes
unaccounted in [323] decreases when the velocity decreases from 0.1 a.u. to 0.05
a.u. To our knowledge, there are no other data which would lie closer or inside the
region of applicability of this theory.

The theory suggested in [323] can not treat the rotational coupling of 2p0 and
2p1 states, but a general scaling formula for the σ − π transition probability in the
united-atom limit [339] can be used to evaluate the cross section of the 2p0−2p1

Fig. 5.25 Resonance charge
exchange cross sections of
H(n, l,m) + H+ →
H+ + H(n, l,m) reaction as
functions of the
center-of-mass collision
energy for spherical states
2s0 and 2p0: solid
line—(5.39) with quantum
δg,u(L), dashed line—(5.39)
with semiclassical δg,u(L),
dotted line—(5.37),
dot—results from [338].
From [323]
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Fig. 5.26 Total resonance
charge exchange cross
sections of H(2s0) + H+ →
H+ + H(2s0, 2p0) reaction
as functions of the
center-of-mass collision
energy: solid line—(5.39),
dotted line—(5.37),
dot—data from [330]. From
[323]

Fig. 5.27 Electronic
energies for gerade and
ungerade states participating
in the charge exchange
process
H(n = 7,m = 0) + H+ →
H+ + H(n = 7,m = 0) as
functions of internuclear
distance

transition caused by this coupling. This formula gives the following estimates: the
cross section value changes from 0.1 to 1.85a.u. over the considered energy region
and is small compared with m-conserved transitions. In the present approach, the
rotational mixing in the separated-atom limit, which is considered in [340–342],
is neglected. This is justified by the fact that, in the adiabatic approximation, the
evolution operator mixing the different states of the same n manifold [340] reduces
to unity operator in the parabolic basis representation.

The RCE cross section of the 2p1−2p1 transition in spherical coordinates coin-
cides with the one in parabolic coordinates and is shown in Fig. 5.21b.

To illustrate that the theory, developed in [323] for the case of the n = 2 states, is
valid for any excited states, the following RCE process is considered:

H(n = 7,m = 0) + H+ → H+ + H(n = 7,m = 0). (5.49)
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Figure5.27 shows the electronic energies of the excited degenerate states of hydrogen
in the reaction (5.49). As can be clearly seen from the figure, the system of 14
electronic states are split into 7 pairs of the gerade and ungerade states and the
regions of the transitions in each degenerate pair (circles in the figure) are well
separated in internuclear distance. This means that the theory [323] can be applied
to calculate the RCE cross sections between any excited states at collision energies,
where the processes caused by interaction between pairs are negligible.



Chapter 6
Electron Loss Processes

Abstract Electron loss, or stripping of projectiles is a competitive charge-changing
process to electron capture (Chap. 4), both playing an important role inmany fields of
physics, for example, in accelerator physics due to their strong influence on ion-beam
lifetimes, beam intensities, energy losses (stopping power) and so on. In this chapter,
the general features of electron-loss (EL) processes of fast many-electron ions are
discussed including the role of the target-density effect, the Bragg’s additivity rule
and other topics. A special attention is paid tomultiple-electron loss (MEL) processes
which are of a especial importance at low and intermediate collision energies where
they significantly (up to more than 50%) enhance the total EL cross sections.

6.1 Non-relativistic Energies E < 200 MeV/u. The Role
of Multiple-Electron Processes

Ionization of projectile ion by a target atom or molecule, also called electron loss, or
stripping, is described by reaction:

Xq+ + A → X (q+m)+ +
∑

A + me−, m ≥ 1, (6.1)

whereXq+ denotes a projectile ionwith the charge q, A the target atom (ormolecule),
m the number of ejected electrons, and

∑
A means that the target can be excited or

ionized.
The total electron-loss (EL) cross section is defined by the sum over all m-values

σ EL
tot =

N∑

m=1

σm(υ), (6.2)

where N denotes the total number of projectile electrons, υ the ion velocity, and
σm(υ) the multiple-electron loss (MEL) cross section to ionize m electrons in one
collision.
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One of the most important properties of electron loss is a large (up to 70%)
contribution of MEL processes to the total loss cross sections that is significantly
pronounced at low and intermediate ion energies. This feature is demonstrated in
Table6.1 where experimental MEL σm and total σtot cross sections are given. As
it is seen, even for middle-Z Ar8+ ion, having 10 electrons, a contribution of MEL
processes with m ≥ 2 is about 50%. In general, a contribution of MEL processes to
the total loss cross sections increases with the target atomic number increasing.

Measurements of the total electron-loss cross sections σtot have been performed
in a wide energy range from a few keV/u up to hundreds of MeV/u in collisions of
heavy ions with gaseous targets H2, He, N2, O2, Ne, Kr and Xe (see, e.g., [42, 43,
48, 343–350], and references therein), complex molecules [343], and solid targets
(foils) of atoms from Be to U (see, e.g., [351–359]). At low energies, experimental
σtot values increase and reach their maximum approximately at a projectile electron
velocity υmax given by

υ2
max ∼ 1.5 IP , (6.3)

and, then decrease as collision velocity increases. Here IP denotes the first ionization
potential of the projectile in the atomic units of energy (1 a.u. ≈ 27.212 eV). Similar
estimate for υmax follows from the plane-wave Born calculations of single-electron
loss cross sections [346, 350].

Scaling features of the total electron-loss cross sections are useful for estimations
of σtot in collisions of ions with arbitrary targets in a wide energy range. Figure6.1
shows a dependence of the scaled experimental total electron-loss cross sections σ sc

exp

as a function of the Born scaled energy uB for projectiles from Ar6+ to U63+ and
targets from H2 to Xe. The following scaling variables are used in the figure:

Table 6.1 Experimental single- and multiple-electron loss cross sections (in 10−18 cm2) of Ar8+,
Xe18+ and Uq+, q = 28–42, ions in collisions with noble gases, where σ1, σ2, σ3 and σtot denote
single-, double-, triple- and total electron-loss cross sections

Reaction Energy,
MeV/u

σ1 σ2 σ3 ... σtot
∑

m σm≥2/σtot ,
%

References

Ar8+ + Xe 19.0 23 10 5.5 . . . 44 48 [104]

Xe18+ + He 6.0 3.0 1.7 0.2 . . . 4.9 39 [343]

Xe18+ + Ne 6.0 16 7.8 3.8 . . . 36 56 [343]

Xe18+ + Ar 6.0 24 11 5.6 . . . 56 57 [343]

Xe18+ + Kr 6.0 27 13 7.2 . . . 75 64 [343]

Xe18+ + Xe 6.0 34 16 9.0 . . . 95 64 [343]

U28+ + Ar 3.5 13.4 6.8 4.6 . . . 40.6 67 [103]

U31+ + Ar 3.5 12.5 5.9 3.9 . . . 34.7 64 [103]

U33+ + Ar 3.5 8.7 4.4 3.5 . . . 26.3 67 [103]

U39+ + Ar 3.5 8.0 4.1 2.9 . . . 19.7 59 [103]

U42+ + Ar 3.5 6.7 3.2 2.0 . . . 13.8 51 [103]

The ratios
∑

m σm≥2/σtot show a relative contribution of multiple-electron loss to the total cross
sections
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Fig. 6.1 Scaled total
electron-loss cross sections
for heavy ions colliding with
atoms as a function of the
Born scaled velocity uB ,
(6.4). The solid curve
denotes a fitted scaled total
cross section, see text. From
[344]

σ sc
exp = σtot

I 1.5P

u2.7B Z1.3
T

, uB = υ2/IP , (6.4)

where ZT denotes the target atomic number. Experimental data, shown by solid cir-
cles, correspond to energies from 0.7 to 140 MeV/u and taken from measurements
performed at Super-HILAC (LLL), LEIR (CERN), Texas A&M cyclotron and GSI,
Darmstadt (see [344] for references). The solid curve represents an ‘average’ scaled
cross section, which is described by a sixth-order polynomial formula within 5%
uncertainty obtained without relativistic corrections. At high non-relativistic ener-
gies, experimental total cross sections are described by the Born asymptotic formula:

σ tot
exp ≈ 1.0 × 10−15 (cm2/atom)

Z1.3
T

υ2 I 0.5P

. (6.5)

Scaling relations for MEL and total electron-loss cross sections of ions by neutral
atoms, are considered in several papers (see, e.g., [360–363]), where cross sections
are scaled using a set of atomic parameters such as the projectile ion velocity and
nuclear charge, effective number of active electrons and others. There, the scaling
relations describe experimental data within a factor of 2–3 and are very useful for
practical application.

For calculation of EL cross sections of fast heavy ions, the following approxima-
tions are usually used: sudden perturbation method [364], relativistic Born approx-
imation [365], CTMC approach [366, 367] and the energy-deposition (ED) model
[368].At lowenergies theBorn approximation, as a rule, gives strongly overestimated
cross-section values, and in this energy range the classical methods for calculation,
such as CTMC and ED models, are used.
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At energies of E ≈ 50–500 MeV/u, the total EL cross sections of light projectiles
are scaled by the Bohr formula:

σ EL
tot ≈ Z2

T + ZT , υ � I 1/2P , (6.6)

i.e., the EL cross sections strongly increase with ZT , where ZT is the target atomic
number,

In the case of heavy projectiles, a scaling law of the total loss cross sections is not
so strong as one given in (6.6):

σ EL
tot ≈ Za(q)

T , 1.2 ≤ a(q) ≤ 1.8, (6.7)

where q is the projectile charge. This result follows from calculations by theRICODE
and RICODE-M programs, based on the Born approximation (see [43]). Here the
exponent a(q) depends on the electronic structure and the charge of the projectile:
with the ion charge increasing, the a(q) increases approximately from 1.2 to 1.8. This
feature is due to the influence of screening effects in the target atoms: ionization of
low-charged ions (q ∼ 1) occurs at large impact parameters, when the target nucleus
is strongly screened by atomic electrons, meanwhile for highly charged ions (q �
1) the electron ejection from the incident ion takes place at close distances to the
target, where the screening effects mentioned are small (see [113]). For example, in
[343], where MEL and total EL cross sections were measured for 6-MeV/u Xe18+
ions colliding with He, Ne, Ar, Kr, and Xe, a simple liner dependence of σtot was
found, i.e., a(q) ∼ 1.

A large amount ofMEL and total loss cross sections of heavy ions were calculated
in the classical approximations such as theCTMCmethod [366, 367], and the energy-
deposition model [368] (see next section). We note that the CTMC calculations
have led to significant physical results: a large contribution of multiple-electron loss
to the total cross section at low and intermediate collision energies, more gradual
dependence of the loss cross sections on the velocity σEL ∼ υ−1 compared with
the Born approximation σB ∼ υ−2, a preferential single-electron loss at high non-
relativistic energies, and others.

The use of the CTMC method is quite complicated because many electrons and
ion trajectories should be taken into account to get enough statistics for the calculated
electron-loss or electron-capture cross sections (see Sect. 4.2). The CTMC method
is applied to the intermediate collision energy range, where molecular effects can
be neglected. Because of the computational difficulties mentioned, the number of
publications on CTMC electron-capture cross sections involving heavy ions is quite
limited, even for single-electron capture data (see, e.g., [42]).

At high not relativistic energies E , EL cross sections decrease as

E → ∞, υ → ∞, σEL → Z2
T lnυ/υ2 ∼ Z2

T lnE/E . (6.8)

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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At relativistic energies, EL cross sections do not follow the Born asymptotic law
lnE/E but turns to quasi-constant value due to the influence of relativistic effects (see
Sect. 6.4 and [365]). Unlike asymptotic low for ionization of ions by neutral atoms,
(6.8), electron-loss (projectile ionization) cross sections by ions increase asymptot-
ically as lnγ :

E → ∞, υ → c, σEL ∼ lnγ for ion−ion impact, (6.9)

σEL ≈ constant for ion−atom impact, (6.10)

where γ is the relativistic factor and c is the speed of light.

6.2 Energy-Deposition Model for Multiple-Electron Loss
of Heavy Ions

6.2.1 Classical Approximation. Basic Assumptions

Classical energy-depositionmodel (ED)was suggested byBohr [154] and is based on
the assumption that if the kinetic energy T (b), transferred to the projectile electrons
by the target atom, exceeds the first ionization potential I1 of the projectile, i.e.,
T (b) ≥ I1, then ionization occurs with ejection of one or more projectile electrons;
here b is the impact parameter.

The ED model was applied in [369] to explain experimental data on multiple-
electron ionization of the atoms by ions. Later, this model was developed in [368]
for ionization of ions by atoms, i.e., for calculating electron-loss cross sections.
It should be noticed that these two cases of ion-atom collisions are not identical:
ionization of an atom by an ion occurs due to interaction of atomic electrons with
a long-range Coulomb field of the projectile, whereas ionization of a projectile by
an atom is due to interaction of projectile with a field of a neutral target, which is
close to the Coulomb interaction at small inter-particle distances and is exponentially
small at large distances.

Using the ED model, a DEPOSIT code was created in [368] for calculation of
single- andmultiple-electron loss cross sections of heavy projectiles by neutral atoms
at low and intermediate ion energies. In the code, the kinetic energy T (b), transferred
to all projectile electrons, is calculated using the classical Bohr formula [154]:

T (b) =
∑

γ

∫
ργ (r)�Eγ (p) dr, (6.11)

where ργ denotes the electron density of the projectile γ -th shell at a distance r from
its nucleus, �Eγ a gain of kinetic energy of projectile electron, interacting with the
target, p the impact parameter between the projectile electron and the target nucleus,
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and the sum over smeans summation over all projectile electron shells. The vectors r,
b, and p are related through a simple geometrical expression. The projectile electron
density ρ(r) is normalized to the total number N of the electrons:

∫ ∞

0

∑

γ

ργ (r)dr =
∫ ∞

0
ρ(r)dr =

∑

γ

Nγ = N . (6.12)

In the DEPOSIT code, the electron density ργ (r) is calculated using the Slater
nodeless functions, and �Eγ via the derivative dU (R)/dR of the fieldU (R) created
by the target atom at a distance R from its nucleus. In the code, the analytical
expression is used to describe theU (R) with approximation parameters obtained by
the Dirac-Hartree-Fock-Slater method for neutral atoms from H to U [370]:

U (R) = − ZT

R

3∑

i=1

Ai exp(−αi R),

3∑

i=1

Ai = 1, (6.13)

where ZT denotes the target nuclear charge, Ai and αi the approximation parameters.
The analytical form of the neutral-atom fields (6.13) is very useful for theoretical
investigations in many fields of atomic physics and widely used for different appli-
cations.

The total electron-loss cross section, i.e., summed over all numbers of ejected
electrons, has the form (6.2):

σtot (b) ≡
N∑

m=1

σm = πb2max , (6.14)

were the bmax is found from equation

T (bmax ) = I1. (6.15)

Therefore, the problem of finding the total electron-loss cross sections in the
classical ED model is reduced to a calculation of the 3D integral (6.11) (in the
CTMCmethod a few hundred equations should be solved). The calculation accuracy
of the ED model is within a factor of 2, i.e., similar to that of the CTMC method.
In the ED model there is no limitation on the total number of projectile and target
electrons, unlike in the CTMC method, and, moreover, in the ED model the heavier
the colliding particles, the more accurate results are obtained.

Experimental total EL cross sections of U28+ ions colliding with H2, N2, Ar,
Kr and Xe targets are shown in Fig. 6.2 in comparison with classical calculations—
CTMCand energy-deposition approximations. Experimental data are in a reasonable
overall agreement (within a factor of 2) with both treatments except for the H2 target
because for light targets and high collision energies the applicability of the classical
approximations is seriously limited.
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Fig. 6.2 Total EL cross sections of U28+ ions colliding with H2, N2, Ar, Kr and Xe targets as
a function of ion energy. Experiment: H2 target—solid diamonds, N2 target—solid squares, Ar
target—solid circles, from [95, 96, 101, 102]. Theory: curves with open symbols—CTMC calcula-
tions [102], curves with solid symbols (except for Kr target, given by open stars)—DEPOSIT code
results. From [368]

Calculations performed by the DEPOSIT code [344] give the following asymp-
totic behavior of the total EL cross sections on ion energy E :

σEL ∼ E−a(ZT ), a(ZT ) ≈ 0.8/Z0.3
T , υ2 � IP , (6.16)

where υ denotes the ion velocity, and coefficients a have the following values for
different targets: a(H) = 0.80, a(Ne) = 0.40, a(Ar) = 0.34, a(Xe) = 0.24, and a(U)
= 0.21, i.e., σ cl

EL ≈ E−a, a < 1. In other words, in the classical approximation the
total EL cross sections decrease slower than the Born single-electron cross sections:
σ B
EL ∼ E−1. These different asymptotic behaviors constitute an important issue in

calculation of the total EL cross sections in a wide energy range.

6.2.2 DEPOSIT Code: MEL Cross Sections

As was mentioned before, MEL cross sections for heavy projectile can be very
large and therefore, they should be accounted for along with single-electron loss
cross sections, especially at law and intermediate collision energies (see Table6.1).
With energy increasing, EL processes take place preferentially with ejection of a
single projectile electron (see, e.g., [366]) and are well described by relativistic Born
approximation (RICODE-M program) (Sect. 6.4).

In the DEPOSIT code, a probability of ejection m projectile electrons at the
impact parameter b is calculated using the statistical Russek-Meli model for m-fold
ionization probability Pm(b, υ [371]:
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Pm(b, υ) =
(
N
m

)
Sm(Ekin/I1)/

N∑

i=1

(
N
i

)
Si (Ekin/I1), (6.17)

Sm(x) = 2{m−1/2}π {m/2}x (3m−2)/2/(3m − 2)!!, Ekin = T (b) −
m∑

i=1

Ii , (6.18)

N∑

m=1

Pm(b, υ) = 1, (6.19)

where
(

N
m

)
denotes the binomial coefficient, T (b) the energy deposited into the

projectile by the target atom, (6.11), Ii the i-th ionization potential of the projectile
ion, Ekin the kinetic energy of m-th ejected electrons, and {a} the integer part of a.
The binding energies Ii for atoms and ions can be found in [372–375]. The Russek-
Meli model has been previously used for studying multiple-electron ionization of
neutral atoms by protons and positive ions (see, e.g., [369, 376]).

The m-fold and total EL cross sections are calculated by the formulae:

σm(υ) = 2π
∫ ∞

0
bdb Pm(b, υ), σtot (υ) =

N∑

m=1

σm(υ). (6.20)

According to (6.19), theRussek-Melimodel provides the unitarity of the Pm(b, υ)

probabilities valid for all impact parameters and all ion velocities υ, therefore, the
total EL cross sections σtot , given by (6.14) and (6.20), are equivalent.

The deposited energy T (b) and multiple-electron loss probabilities Pm(b) calcu-
lated by the DEPOSIT code for Xe18+ ions colliding with Xe atoms at energy of E
= 6 MeV/u are shown in Fig. 6.3(left and right) as a function of impact parameter b.
The left figure shows that the curve T (b) intersects with the first ionization potential
IP of Xe18+ at bmax ∼ 1.2 a0 (a0 is the Bohr radius), which is the maximum impact
parameter contributing to the loss process: collisions with b > bmax do not contribute
because they cannot ionize even a single electron from Xe18+ ion.

As also seen from the Fig. 6.3, left, that at small impact parameters b < 0.5 a0 , the
deposited energy is transferred mainly to the inner-shell electrons of Xe18+ resulting
in multiple-electron loss,m � 1, as seen on the right figure. This is a clear indication
of importance of ejection of the projectile inner-shell electrons in EL process.

Figure6.4 shows experimental [343] and calculatedMEL cross sections for Xe18+
ions bz inert gases He, Ne, Ar and Xe at 6 MeV/u. It is seen an overall agreement
between theory and experiment, except for light atoms (He) because for projectile
ionization of light ions, the classical approximation tends to fail, but it woks quite
well for heavy atoms where the Born approximation fails (see [377–382]).

A comparison ofMEL cross sections, calculated by the classical method—CTMC
method [240] and the energy-deposition model [377]—for U28+ + Ar collisions as
a function of ion energy is shown in Fig. 6.5. At relatively low energies E = 3–10
MeV/u, an agreement between both models for σm form < 10 is quite good, whereas
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Fig. 6.3 Electron loss of Xe18+ ions by Xe atoms at collision energy of E = 6 MeV/u (υ = 15.5
a.u.). Left: deposited energies T (b) (in a.u.) to different electron shells of Xe18+ and the total energy
as a function of impact parameter b, DEPOSIT code. The horizontal line IP = 21 a.u. (572.5 eV)
corresponds to the first ionization potential of Xe18+ showing the minimum energy deposit required
for ionization. Right: multiple-electron probabilities Pm(b) for ionization of Xe18+ colliding with
Xe atom. Calculations by the DEPOSIT code from [344]

Fig. 6.4 Multiple-electron loss cross sections of Xe18+ ions colliding with He, Ne, Ar and Xe at
6 MeV/u: experiment—solid circles [343], theory—open circles, DEPOSIT code. From [377]
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Fig. 6.5 Multiple-electron loss cross sections of U28+ ions colliding with Ar at low to high energy
range. Open circles—CTMC results [240], solid circles—DEPOSIT code. For large m values,
discrepancy between two models increases with collision energy increasing. From [377]

at energies E = 30–100 MeV/u the discrepancy is poorer, except for ejection ofm <

4 electrons. We note, that since electron-loss processes are dominated by losses of
m = 1, 2 and 3 electrons, this discrepancy is not very important when the total loss
cross sections are of interest for applications.

6.3 Recommended Total EL Cross Sections at
Non-relativistic Energies

Experimental data, classical (CTMC method and ED model) and the Born calcula-
tions of the total EL cross sections show that at high non-relativistic energies, themain
contribution to the total loss cross section σtot is given by single-electron processes
and σtot decreases as σtot ≈ lnE/E according to the Born approximation (see, e.g.,
[11, 42, 346]). At relativistic energies, σtot shows a quasi-constant behavior due to
relativistic effects (see Sect. 6.4).

At present, there is no one theory that can reproduce a behavior of EL cross
sections over the whole collision energy range: at low and intermediate energies the
classical approach is used, and the Born approximation is applied at high energies. In
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order to present EL cross sections in a wide energy range, a semiempirical procedure
is suggested in [368] to match cross sections at low, intermediate and high energies
and to present ‘recommended’ data using a simple formula:

1/σrec = 1/σDEPOSIT + 1/σRICODE, (6.21)

where σrec denotes recommended EL cross section, σDEPOSIT the total cross section
calculated by the DEPOSIT code, and σRICODE the single-electron loss cross section,
calculated by the RICODE or RICODE-M program (latest version of RICODE) at
relativistic collision energies. A formula similar to (6.21) is previously used in [378]
for electron-impact ionization collisions to match cross sections at very low and very
high electron energies.

Experimental totalELcross sections ofU10+ andU28+ ions, collidingwith gaseous
targets as a function of ion energy, are shown in Fig. 6.6 in comparison with calcula-
tions performed by the DEPOSIT and RICODE-M programs—‘recommended’ data
(see [379] for detail). Electron-loss cross sections increase with the target atomic
number, decrease with ion energy increasing and then saturate due to relativistic
effects (see below).

Figure6.7 shows calculated total electron-loss cross sections for Wq+ ions col-
liding with H and He atoms. These data are required for applications in high-power

Fig. 6.6 Total electron-loss cross sections of U10+ and U28+ ions colliding with gaseous targets
as a function of energy. Left: U10+ projectile. Experiment: H2 target—open circle [96]; N2—solid
circle [96] and solid triangle [361]; Ar—open square [361]. Right: U28+ projectile. Experiment: H2
target—solid circles [96, 99, 100, 103]; N2—open circles [96, 99, 100, 103]; Ar—solid triangles,
[95, 103]. Theory: solid curves on both figures—recommended data (DEPOSIT + RICODE-M
result), [379]. From [379]
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Fig. 6.7 Calculated ‘recommended’ total electron-loss cross sections of Wq+, ions q = 0–40, in
collisions with H and He as a function of ion energy—DEPOSIT + RICODE result, (6.21). From
[302]

Fig. 6.8 EL and EC cross
sections of 11 MeV/u Uq+
ions colliding with H2, He,
N2 and Ar atoms as a
function of uranium ion
charge q. Experiment: solid
circles—EL and solid
triangles—EC for He, q =
60–70 [107]. Theory: solid
curves—combined
DEPOSIT and RICODE
electron-loss calculations
and dashed curves—EC
cross sections, CAPTURE
code, from [380]. From [380]

fusion plasma devices because tungsten is used as a most preferable material for
plasma-facing components (see [302]).

Calculated electron-capture (EC) and electron-loss (EL) cross sections of uranium
ions in collisions with H, He, N and Ar atoms at ion energy of 11 MeV/u as a
function of uranium charge states are shown in Fig. 6.8 in comparison with recent
RIKEN experimental data for He [107]. As seen from the figure, EC cross sections
increase monotonically with increasing the ion charge q as all theories predict. A q-
dependence of EL cross sections is different for different q: at small and intermediate
q values, q < 40, corresponding to heavy many-electron systems, EL cross sections
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decrease quite slowly due to contribution of ionization from inner-shell electrons of
uranium ions.At highq, i.e., for highly charged ions, process clearly shows a different
dependencies on the ion charge, and EL cross sections decrease very rapidly for q >

70. The figure clearly shows that for 11 MeV/u uranium ions, the best strippers are
the lightest atoms—H and He.

Experimental multiple-electron and total loss cross sections of U28+ ions, collid-
ing with the main accelerator residual-gas components H2, N2 and Ar, are shown
in Fig. 6.9 as a function of ion energy in comparison with combined calculations
performed by the DEPOSIT and RICODE-M programs (see [379] for detail). A
contribution ofMEL processes decreases with the ion energy, and at relativistic ener-
gies E > 300 MeV/u the main contribution to the total cross sections is given by
single-electron loss processes.

Fig. 6.9 Multiple-electron and total loss cross sections of U28+ ions colliding with H2, N2 and
Ar as a function of ion energy. H2 target: Experiment: open and solid circles—MEL and total
cross sections [96]; open and solid squares—MEL and total cross sections at 3.5 and 6.5 MeV/u,
[103]. CTMC calculations: diamonds—MEL data for m = 1, 2, 3 [103]. N2 target: Experiment:
open and solid triangles—MEL and total cross sections, [96]; open and solid circles—MEL and
total cross sections at 3.5 and 6.5 MeV/u, [103], crosses—total cross sections [99, 100]. CTMC
calculations: open and solid diamonds—MEL and total data [362]. Ar target: Experiment: open
and solid squares—MEL and total cross sections [95], open and solid circles—MEL and total cross
sections at 3.5 and 6.5 MeV/u, [103]. CTMC data: crosses, [362]. In both figures, solid curves—
DEPOSIT + RICODE-M result, (6.21), [379]. From [379]
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6.4 Electron Loss at Relativistic Energies

At relativistic energies E ≥ 200MeV/u, experimental and theoretical data on single-
electron loss cross sections are quite limited and available mainly for few-electron
ions [289, 383–387].

A general treatment for single EL cross sections of an arbitrary projectile and a
target atom is described in [387] using a relativistic Born approximationwith account
for magnetic interactions between colliding particles. Based on this treatment, two
computer programs RICODE and RICODE-M (Relativistic Ionization CODE) were
developed (see [113, 365], respectively) in the momentum-transfer representation.
Unlike the RICODE, the RICODE-M uses relativistic wave functions for the active
projectile electron in the bound and continuous states (see below).

In the relativistic Born approximation, the ionization matrix element Mif has the
form [289]:

Mif = 〈 f |(1 − βαz)e
iQ·r|i〉, (6.22)

where Q denotes the momentum transfer, β = υ/c the relativistic factor, c the speed
of light, αz the z-component of the Dirac matrix α, r the distance from the projectile
nucleus, |i> and | f > the total wave functions of the system in the initial and final
states.

The first term in (6.22) is the ‘usual’ non-relativistic matrix element, describing
the electric (Coulomb) interactions between colliding particles, whereas the second
term describes themagnetic interactions between them. Calculation of the ionization
matrix elements Mif with both terms constitutes quite complicated problem which
was solved before only for ionization of H- and He-like ions (see, e.g., [289]).

An order of magnitude of the second (relativistic) term in (6.22) can be estimated
as

βαz ∼ υ/c · <pe>/me ∼ υ/c · υe/c, (6.23)

where me, υe and < pe > denote mass, orbital velocity and impulse matrix element
for the active projectile electron. As is seen from (6.23), the relativistic interaction is
the largest (βαz ∼ 1) when both velocities υ and υe are close to the speed of light c.

In the RICODE-M program [365], the relativistic interaction (6.22) is used and
relativistic radial wave functions for the bound and ejected projectile electrons. The
relativistic radial wave functions are found by solving the Schrödinger equation with
the effective field of the atomic core calculatedwith relativistic Diracwave functions.

Themain goal of theRICODE-Mprogram is to calculate single-electron loss cross
section σEL for arbitrary heavy many-electron projectiles colliding with arbitrary
atoms and ions. In the RICODE-M, the EL cross section σEL(υ) has the structure
[365, 387]:

σEL(v) = 8πa20Nnl

υ2

∫ ∞

q0

Z2
T (Q)

dQ

Q3

(
|F(Q)|2 + β2(1 − Q2

0/Q
2)

(1 − β2Q2
0/Q

2)2
|G(Q)|2

)
,

(6.24)
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υ = βc, Q0 = (Inl + ε)/υ, (6.25)

where a0 ≈ 0.5292 × 10−8 cm denotes the Bohr radius, υ the ion velocity, n and
l the principal and orbital quantum numbers of the projectile electron shell with
ionization potential Inl and Nnl number of equivalent electrons, respectively, ε the
energy of ejected electron, ZT (Q) the effective charge of the target, which does not
coincidewith the target nuclear charge and, in general, depends on Q and theminimal
momentum transfer Q0. The term proportional to |F |2 is used for non-relativistic
collisions, meanwhile the one proportional to |G|2 takes into account the relativistic
(magnetic) interactions.

As an example of the influence of relativistic effects on the radial wave func-
tion, an electron density of the 7s-orbital in a super-heavy neutral Rg atom (nuclear
charge Z = 111, configuration 6d97s2), calculated by different approaches, is shown
in Fig. 6.10. The dotted curve represents a fully non-relativistic calculation, i.e., with
non-relativistic binding energy and non-relativistic core potentialUc(r). The dashed
curve is a result of the RICODE program with relativistic binding energy but with
non-relativistic potential Uc(r), and the curve with open circles corresponds to the
RICODE-Mcalculations using both relativistic core potential and relativistic binding
energy. All three curves are compared with relativistic coupled-cluster calculations
based on the Dirac-Coulomb-Breit Hamiltonian [388]. As it is seen from the figure,
the RICODE-M result is very close to the fully relativistic calculations [388], espe-
cially concerning the main maximum of the radial wave function. The relativistic
effects increase the maximum value of 7s-electron density by a factor of 1.5 and

Fig. 6.10 Calculated electron density P2
7s(r) of the 7s-orbital in neutral super-heavy Rg atom with

the nuclear charge Z = 111. Solid curve—fully relativistic calculation [388]; dashed curve—the
non-relativistic wave function but relativistic binding energy, RICODE result; solid curve with open
circles—relativistic wave function and relativistic binding energy, the RICODE-M result; dotted
curve—fully non-relativistic calculation (see text). From [365]
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Table 6.2 Calculated relativistic (rel), calculated by the RICODE-M code, and non-relativistic
(non-rel) binding energies ε (a.u.) of neutral Rg atom (Z = 111), having electronic configuration
1s22s2...5d106s26p65f146d97s2

Shell εrel HF [373] εrel [365] εnon-rel [365]

7s1/2 0.4276 0.4278 0.2441

6d5/2 0.4119 0.4118 0.6477

6d3/2 0.5172 0.5171 0.6477

6p3/2 2.2765 2.2764 2.3227

6p1/2 3.8476 3.8477 2.3227

6s1/2 5.3549 5.3564 3.8094

5 f7/2 3.0226 3.0224 2.7984

5 f5/2 2.7986 2.7984 2.7984

5d5/2 10.1982 10.1979 11.0519

5d3/2 11.2795 11.2791 11.0519

5p3/2 17.2870 17.2865 16.6413

5p1/2 24.6863 24.6874 16.6413

5s1/2 28.7578 28.7645 19.7148

. . . . . . . . . . . .

1s1/2 6898.68 6900.22 5481.18

The data are compared with relativistic Hartree-Fock calculations [373]

shift it towards the nucleus. As is seen below, the influence of relativistic effects on
the wave functions leads to a change in electron-loss cross sections in maximum of
about 30–40%.

The influence of the relativistic effects on the binding energies in neutral super-
heavy Rg atom (Z = 111) is illustrated in Table6.2, where the non-relativistic and
relativistic results obtainedby theRICODE-Mare comparedwith relativisticHartree-
Fock calculations [373]. As expected, the effects are very significant (a factor of 1.5)
for ns orbitals because only the wave functions Rns(r) = Pns(r)/r for ns states are
non-zero at the origin and, therefore, are strongly influenced by interaction with the
nucleus.

Some results of numerical calculations of electron-loss cross sections of heavy
and super-heavy many-electron atoms and ions are presented in Figs. 6.11 and 6.12.
The influence of the relativistic effects in the case of collisions between Rg (Z =
111) and He atoms is demonstrated in Fig. 6.11 for the projectile ionization of and
outer 7s- and inner 6d-electrons. The difference in cross-sections due to the use of
relativistic and non-relativistic wave functions for the active electron is shown (solid
and dashed curves, respectively). For both cases, this effect is rather small (�10%)
although the effect is a little larger for electron-loss cross section with ejection of
6d-electron. But the influence of the relativistic interactions between the colliding
Rg and He atoms is very significant (∼40–50%) for both 7s- and 6d-electrons shown
in the figure by difference in the cross sections labeled Vrel and Vnon-rel . In the case
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Fig. 6.11 Electron-loss cross sections of neutral Rg atom (nuclerar charge Z = 111) colliding with
He atom with ejection of 7s (left) and 6d (right) electrons as a function of ion energy. Dashed
curves—calculations with the non-relativistic wave functions for the bound and continuum states,
the RICODE program [113]; solid curves—with relativistic wave functions, the RICODE-M pro-
gram [365]. Vrel and Vnon-rel show cross sections calculated using relativistic and non-relativistic
interactions, respectively. From [365]

Fig. 6.12 Calculated total electron-loss cross sections of uranium and tin ions by residual gas atoms
H, He, C, N, O, F, Ar, Kr and Xe: results of RICODE-M program. From [389]

of ejection of 7s-electron, the relativistic interaction leads to a decrease of the cross
section, meanwhile the electron-loss cross section for 6d-electron is increased.



118 6 Electron Loss Processes

Calculations show [365]) that the use of relativistic wave functions changes the
electron-loss cross-sections of neural atoms and low-charged ions by about 20–30%
around the cross-sectionmaximumcompared to those calculatedwith non-relativistic
wave functions; for electron loss of highly charged ions, the influence of using the
relativistic wave functions is rather small—about 10%. At present, the RICODE-M
can provide the most accurate data on single-electron loss cross sections for heavy
many-electron ions at high ion energies including the relativistic domain. At low
and intermediate energies, it is necessary to take into account multiple-electron loss
cross sections which strongly contribute to the total EL cross sections even for highly
charged projectile ions.

Figure6.12 shows the result of calculations by the RICODE-M program of the
total electron-loss cross sections of uranium and tin ions by gaseous targets H2, He,
C, N2, O2, F, Ar, Kr and Xe at relativistic energies E > 400 MeV/u [389]. These
data are required to estimate lifetimes of relativistic heavy-ion beams in a new High
Energy Storage Ring (HESR), GSI, Darmstadt. As seen from the figure, the EL cross
sections shows the approximate dependence σEL ∼ Z2

T where ZT is the target atomic
number.

In Fig. 6.13 all available experimental data and theoretical calculations of the
total EL cross sections for U28+ ions colliding with Ar are shown as a function of ion
energy to show the influence of various approximations on the EL cross sections. The
cross section, marked non-rel., is the result of the LOSS code [350] in a pure Born
approximation, i.e., using both a non-relativistic interaction andwave functions. This
method leads to the Born asymptotic behavior: σB ≈ lnE/E and an overestimation
of experimental data by up to a factor of 2 at E ∼ 2 MeV/u, where the cross section
shows its maximum.

Classical CTMCcross sections give quite good description of experimental data at
intermediate energies, including maximum, but overestimates them at high energies

Fig. 6.13 Total EL cross
sections for U28+ + Ar
collisions as a function of ion
energy. Experiment: solid
triangle up [95], solid
triangle down [103], open
square [101], solid circles
[100]. Theory: dashed
line—CTMC result [102],
non-rel. Non-relativistic
result by the LOSS code
[350], recommended
data—DEPOSIT +
RICODE-M result. From
[365]
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because the CTMC method does not take into account the relativistic interaction
between colliding particles. The best agreement between theory and experiment
is achieved by recommended cross sections [(DEPOSIT + RICODE codes, (6.21)],
which agreewellwith experiment in the intermediate energies and turn to the constant
value at relativistic energies. Unfortunately, experimental electron-loss cross sections
are available only at non-relativistic energies E < 200 MeV/u, therefore, it would
be very important to perform such measurements in the energy range, e.g., between
200 MeV/u and 10 GeV/u which will be possible in the framework of the new FAIR
project [51]. In general, the quasi-constant behavior of the electron-loss cross sections
is the most striking feature of the loss processes of heavy ions by neutral atoms at
relativistic energies.

6.5 Bragg’s Additivity Rule for EL Cross Sections

Information about multiple and total electron-loss cross sections for heavy ions col-
liding with molecular targets is highly required for many applications but is limited
in both experimental and calculated data (see, e.g. [43, 109, 110, 343, 361, 363]).
For example, these data are needed to estimate the vacuum conditions in accelerator
machines where molecules like H2, H2O, CO2, CH4 etc. constitute an important part
of the residual-gas components in vacuum systems (see [224, 379]).

Calculations of electron-capture (and electron-loss) cross sections even for a “sim-
ple” molecular target H2 meet big difficulties as it is seen from calculations using
the absorbing sphere model [229], the electron tunneling model [390] or a classical
phase-space model [391, 392]. Therefore, to interpret collisions of fast ions with
molecules, the Bragg’s additivity rule is usually used, in accordance with which the
interaction cross section for a molecule is presented as a sum of the cross sections
for atoms in the molecule:

σmol =
∑

i

niσi (Zi ), (6.26)

where ni is the number of atoms with atomic number Zi . For example, the electron-
loss (or capture) cross section of an ion colliding with CO2 molecule is presented as:
σEL (CO2) = σEL(C) + 2σEL(O). The Bragg’s additivity rule quite often (not always)
provides a reasonable agreement between theory and experiment depending on the
projectile charge and velocity (see Sect. 4.4, devoted to the Bragg’s rule for electron
capture).

The additivity rule was examined experimentally in the work [343] by comparing
the measured partial σm and total σtot EL cross sections of 6 MeV/u-Xe18+ ions col-
liding with noble-gas atoms and various molecular targets: H2, CH4, C3H8, SiH4, N2,
CO, CO2, O2, C3H8, CF4, and CF6. It was found that under experimental conditions,
the additivity rule works very well for the measured total and many-fold EL cross
sections showing that the target molecule acts as an ensemble of individual atoms in
the loss processes, which is illustrated in Fig. 6.14. There, the total EL cross sections
σmol are shown as a function of the target average atomic number Z :

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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Fig. 6.14 Electron loss of 6-MeV/u-Xe18+ projectiles stripped in molecular targets. Left: total
electron-loss cross sections per atom as a function of target average atomic number, (6.27). The
solid line is fitted through experimental data points from He to Ne. Right: ratio of the measured
total EL cross sections and calculated ones using the additivity rule, (6.26), as a function of the total
number of the target electrons Ne. From [343]

Z =
∑

i

Zini/N , σmol = Nσ(Z), (6.27)

where N denotes the total number of atoms in the molecule, and σ(Z) the cross
section for an atom with atomic number Zi=Z . The solid line corresponds to exper-
imental data obtained for atomic targets from He to Ne. It is seen that the EL cross
sections increase linearly with Z and are very close to the data measured for atomic
targets.

The validity of the additivity rule for the total EL processes is clearly seen in
Fig. 6.14, right, where ratios of the measured and calculated EL cross sections using
(6.26) are shown as a function of the total number of molecular electrons. All data,
except H2 and CH4 molecules, are described by the additivity rule within 6% uncer-
tainty or better.

In [343] it was also demonstrated the validity of the additivity rule for the many-
fold EL cross sections as shown in Fig. 6.14 (left and right figures), where experimen-
tal cross sections for molecular targets are compared with the data for atomic targets
having close atomic numbers. There is a small dependence of the cross sections on
the number of atoms per molecules except for cases with a large number of ejected
electrons �q ∼ 6–8, which is more probably related to collisions with small impact
parameters.

In general, the additivity rule can be applied to EL cross sections of heavy ions
at rather high energies when molecular effects, such as molecular bonding and
others, can be neglected and the molecule can be treated as an ensemble of individual
atoms.
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6.6 Influence of the Target-Density Effect on Electron-Loss
Processes

The influence of the target-density (gas-solid) effect on electron-capture cross sec-
tions, discussed in Sect. 4.3, is found to be very large (up to more than one order
of magnitude) leading to a strong decrease of the capture cross sections depending
on the relative velocity and atomic structure of colliding particles. In contrast, the
density effect (DE) in electron-loss processes results in an increase of the loss cross
sections by a factor of 2–3.

Let us consider single-electron loss process, i.e., projectile ionization by the target
atom in the form:

Xq+(n0) + A → X (q+1)+ + A + e−, (6.28)

where n0 is the principal quantum number of the projectile ground state, and A is the
target atom. As the target density increases, more projectile ions begin to be excited
into n-states due to excitation by the target atoms, so the total loss cross section
σ DE
ion (υ) with the density effects included can be written in the form [182]:

σ DE
EL (υ) = σEL(n0) +

∑

n≥n0

σex (n0 − n) B(n), (6.29)

B(n) = 1

1 + A(n − n0)/ρTυσEL(n)
, (6.30)

where ρT denotes the target density, B(n) the branching-ratio coefficient of the
excited state n, σEL(n0) electron-loss cross sections from the ground state n0 without
account for the DE, σex (n0 − n) excitation cross section into n state, arising in col-
lisions with the target atom, and A(n − n0) the total radiative transition probability
from the excited state n into the ground state n0. As a rule, the largest contribution to
the sum in (6.29) is given by transition from the ground state into resonance (near-
est optically-allowed) level nr with the largest excitation cross section. Equations
(6.29) and (6.30) show the main dependencies of the loss cross section on the target
density and other atomic parameters, which can easily be generalized to the case of
ionization from levels with the orbital quantum numbers nl [182].

Equation (6.30) show that the influence of the density effect is large if the ion-
ization rate from excited state is larger than the radiative decay rate from the same
level:

ρTυσEL(nr ) � A(nr − n0), (6.31)

where nr is the principal quantum number of the resonance level.
If a target density is small (a dilute gas), ρ → 0, the branching ratio coefficient

B → 0, and the electron-loss cross section is given by the ‘usual’ formula for binary
collisions:

σDE
EL (υ) ≈ σEL(n0), ρT → 0, B → 0. (6.32)

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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In the opposite case of a very dense target (solid state), the coefficient B → 1,
and the loss cross section is approximately defined by the sum of electron-loss cross
section from the ground state and excitation cross section from the ground state into
the resonance one:

σDE
EL (υ) ≈ σEL(n0) + σex (n0 − nr ), ρT → ∞, B → 1. (6.33)

Since
σEL(n0) ≈ σex (n0 − nr ), (6.34)

equation (6.33) reads that the electron-loss cross section of ions in a dense target is
roughly two times larger than that in the low-density target.

Let us recall that, under the conditions of electron capture, the influence of the
DE is more significant on the cross section and can lead to its reduction by more
than 10 times. The mutual changes in electron-loss and capture-cross sections with
the target density give a qualitative explanation to an increase of the mean charge for
ion beams passing through dense media (see Sect. 4.3).

Figure6.15a demonstrates the influence of the target-density effect on electron-
loss and capture cross sections for collisions of 6 MeV/u-Ar8+ ions with carbon foil
of the density ρT ≈ 1.1 × 1023 cm−3 as a function of exit-ion charge q. First of all,

Fig. 6.15 a Influence of DE on single-electron loss (EL) and capture (EC) cross sections in colli-
sions of 6 MeV/u-Ar8+ ions with carbon foil as a function of the exit-ion charge q calculated with
(solid curves) and without (marked w/o, dotted curves) the DE. Crossings of EL and EC curves
show approximate mean charge value <q>. Experimental <q>-value is <q>exp = 17.05. From
[393]. b Calculated branching-ratio coefficient B(5d) for 1.4 MeV/u-U28+ collisions with atomic
hydrogen as a function of hydrogen density. From [255]

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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it is seen that the DE is very significant for EC cross sections (about one order of
magnitude at q = 17), whereas the effect is about a factor of 1.5 for EL cross section.
Secondly, the inclusion of the DE leads to a much better agreement with the average
mean charge: <q> ≈ 15 if calculated without DE and <q> ≈ 16.8 obtained with
the DE accounted for, the experimental value <q>exp is 17.05.

In some cases, the influence of theDEonELcross sections can be very small, espe-
cially, in collisions of heavy ions with light target atoms. In Fig. 6.15b, a branching-
ratio coefficient, calculated in the relativistic approximation for excited 5d-state of
1.4MeV/u-U28+ colliding with atomic hydrogen, is shown as a function of hydrogen
density. It is seen that the DE is small for hydrogen densities lower than 1020 cm−3,
and the EL cross sections show little changes at lower target densities (see, (6.29)).

One can conclude that to describe the charge-changing processes occurring in a
dense gas, plasma, or solid-state medium, the standard formulae for effective cross
sections, generally speaking, cannot be applied, and the formulae, taking the target
density effect into account, should be applied (see, e.g., [42, 182] for detail).



Chapter 7
Interaction of Heavy Ion Beams
with Plasmas

Abstract Atomic radiative and collisional characteristics of ion beamswith plasmas
are required for solving many problems in spectroscopic and particle diagnostics of
plasmas (e.g., HIBP method—Heavy-Ion Beam Probe [394], determination of the
stopping power of ion beams in plasmas and optimal conditions for stripping of ion
beams to obtain themaximum charge states and narrow charge-state distributions etc.
As has beenmentioned before, interactions of ion beamswith plasma particles signif-
icantly differ from thosewith neutral particles in gaseous and solid targets.Moreover,
the corresponding interaction cross sections strongly depend on plasma temperature,
density, particle abundances and others. In this chapter, atomic processes of fast
heavy ions with plasma particles are considered such as radiative and ternary recom-
binations, dielectronic recombination, ionization by electron impact and others. A
Maxwellian distribution function of plasma particles depending on the incident-ion
velocity (the so-called shifted velocity distribution) is discussed.

7.1 Atomic Processes Between Projectile Ions
and Plasma Particles

In plasmas, besides electron loss and capture processes, the following additional
charge-changing processes occur:

1. Radiative recombination (RR)—electron capture of free electrons with photon
emission:

Xq+ + e− → X (q−1)+(nl) + �ω, �ω = Ee + E(nl), E(nl) > 0, (7.1)

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
https://doi.org/10.1007/978-3-319-74992-1_7
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where q denotes ion charge, Ee the kinetic energy of a free electron, E(nl) the
binding energy of the ion X (q−1)+ in the final state with the quantum numbers n
and l, and �ω the photon energy. RR is the inverse process to photoionization and
takes place with any energy of a free electron.

2. Dielectronic recombination (DR):

Xq+ + e− → [X (q−1)+]∗∗ → X (q−1)+(nl) + �ω, (7.2)

is a two-step process occurring firstwith a capture of a free electron and simultane-
ous excitation of an ion inner-shell electron into a doubly excited state, and finally
radiatively decaying intonl state of the X (q−1)+ ion.Althoughboth processes (7.1)
and (7.2) have the same products in the final channel, there is a principal difference
between these processes: RR takes place at arbitrary free-electron energy, but DR
occurs only at specific electron energies Ee satisfying the resonance condition:

Ee ≈ ΔE − q2Ry

n2
< ΔE, ΔE > 0, (7.3)

where ΔE is an excitation energy in the X (q−1)+ ion. RR and DR processes are
schematically shown in Fig. 7.1 as a function of a electron-ion collision energy.
Radiative recombination dominates at low electron energies. Resonances associ-
ated with DR into excited Rydberg states n � 1 of X(q−1)+(nl) ion are shown.
About RR and DR processes see [395] in detail.

3. Three-body (ternary) recombination (TR)—inverse process to electron-impact
ionization:

Xq+ + e− + e− → X (q−1)+ + e−. (7.4)

Fig. 7.1 Scheme of
radiative-recombination and
dielectronic-recombination
cross sections as a function
of a electron-ion collision
energy. From [395]
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4. Multiple-electron ionization by electron and ion impact:

Xq+ + e−, Ak+ → X (q+m)+ + Ak+ + me−, m ≥ 1. (7.5)

where Ak+ denotes a plasma ion in the charge state k.
5. Ionization of the projectile ion as a result of ion-ion electron capture:

Xq+ + Ak+ → X (q+1)+ + A(k−1)+. (7.6)

Cross sections and rate coefficients of the processes (7.1)–(7.6), averaged over
Maxwellian velocity distribution for isolated plasma, i.e., without interacting with
incoming beams, are considered in many books (see, e.g., [16–25, 396]).

7.2 Radiative Recombination (RR)

RR is one of the main recombination mechanisms of ion beams, passing through
plasmas, because it occurs with larger probability than electron capture process.

RR cross sections, (7.1), into final Rydberg states with n � 1, averaged over
orbital quantumnumbers l, are usually calculated using the classicalKramers formula
[114] or semiempirical formulae [397], introducing an effective charge for resulting
X (q−1)+ ion. For RR cross sections into low-lying levels n, theKramers cross sections
should be multiplied by the quantum-mechanical Gaunt factor [398, 399].

Kramers RR cross sections (7.1) into a specific n state and into all n-states of
X (q−1)+ ion are given with account for free vacancies by:

σRR(n, Ee) = 2.105 × 10−22 [cm2] Z4
eff · 13.6062

n3Ee(Ee + Z2
eff · 13.606/n2) , (7.7)

σ tot
RR(n, Ee) =

(
1 − p

2n20

)
σRR(n0, Ee) +

ncut∑
n>n0

σRR(n, Ee), (7.8)

where p is the number of equivalent electrons in the ground-state configuration np
0 of

the X (q−1)+ ion, and Zeff is an effective charge of the X (q−1)+ ion. The kinetic energy
of a free electron Ee in (7.7) is given in eV. The parameter ncut is the maximum prin-
cipal quantum number up to which recombination can be observed and is defined by
experimental conditions (high electron density, external electric field, etc.). Usually,
the main contribution to the sum in (7.8) is given by recombination into the ground
and nearby n-states. At high energies Ee, the cross section σRR(n, Ee) falls off as

σRR(n, Ee) ∼ q4/(E2
e n

3). (7.9)
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The effective charge Zeff for many-electron heavy ions can be found from ioniza-
tion potential IP of the X (q−1)+ ion using the Rydberg formula:

Zeff = n0
√
IP[eV]/13.606, (7.10)

where n0 denotes the principal quantum number of the ground-state configuration.
For example, for uranium ions Uq+, using the tables for binding energies IP from
[374], the effective charges can be fitted by the formula:

Zeff (U
q+) = 12.75 + 1.15q0.9385, (7.11)

which for q = 91 gives Zeff ≈ 92; here q is the ion charge in the final state.
We note that cross sections for REC processes (4.37) can be also estimated by

the Kramers formulae, (7.7)–(7.10) as a function of projectile energy EP using the
relation

Ee[eV] = 1000

1.8229
EP[MeV/u], (7.12)

which follows from the collision kinematics (see [291]).

7.3 Dielectronic Recombination (DR)

DR is an important recombination process, playing a key role in formation of plasma
ionization balance, slowing down and formation of effective charge of ions in plas-
mas, as well as in investigation of atomic characteristics of heavy many-electron
ions such as the Lamb and isotopic shifts and others (see [395–400]). Moreover, DR
spectral lines, the dielectronic satellites, are effective tools in plasma diagnostics,
i.e., determination of plasma temperature, density, particle abundances etc. (see [21,
402]).

DR cross sections are expressed in terms of radiative and autoionization transition
probabilities in the initial, intermediate and final ionic quantum states and exhibit
as narrow resonances, intensities I of which drastically increase with the ion charge
approximately as q4 but decreases with the principal quantum number n, i.e., I ∼
q4/n3. The widths of DR resonance lines are proportional to kTe where Te denotes a
plasma temperature and k the Boltzmann constant. An example of DR cross section
(rate) of Li-like Ni25+ ions for 2s-2p transition is shown in Fig. 7.2.

We note that experimental and theoretical investigations of DR processes involv-
ing heavy many-electron ions face severe difficulties related with atomic energy
structure of these systems because the number of levels even for the ground state
can be very large. Figure7.3 shows calculated density of states (DOS), i.e., a num-
ber of levels per energy unit, for W19+ ions which are populated due to DR of
W20+(4 f 8 7F6) into 4f8nl excited states. It is seen that DOS is extremely large—
about 107 levels per 1 eV-energy interval! In these cases the usual calculation meth-
ods can not be used and new theoretical approaches have to be found. In the works

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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Fig. 7.2 Experimental DR rate coefficient of Li-like Ni25+ ions for 2s-2p transition, i.e., cross
section averaged over electron-beam velocity distribution function in a storage ring. Principal quan-
tum numbers n for highly excited resonance states are shown. From [403]

Fig. 7.3 Calculated density of states (DOS) of W19+ ions which are populated by DR of W20+
comprising all 4f8nl doubly excited states above theW20+(4 f 8 7F6) ground level with the principal
quantum numbers n < 72. From [400]

[404–407] a quantumchaos method is applied, based on the statistic approach for
spectral analysis and eigenvalues of ion quantum states that leads to a better agree-
ment with experiment (see [405]).

7.4 Single- and Multiple-Ionization of Ions by Electron
Impact

Single and multiple ionization of ions by electron impact are important processes
playing a key role in various physical applications such as plasma kinetics, devel-
opment of new laser schemes, modeling of laboratory and astrophysical plasmas,
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charge-state evolution of atoms and ions exposed to electron beams and others. Here
we consider atomic processes occurring in interactions of projectile ion beams with
plasma free electrons.

7.4.1 Fitting Formulae for Single-Electron Ionization Cross
Sections and Rates of Highly Charged Ions

Single-electron ionization cross sections and rates for heavy ions were calculated
in [408–410] using the Coulomb-Born approximation with exchange (CBE). The
fitting parameters for calculated cross sections σnl and rate coefficients <υσnl> for
nl states nl ≤ 6h, including ionization of inner shells and excited states, are presented
in Table7.1. They were obtained by Least-Square (LS) fitting using the formulae:

σnl(u) = p(Ry/Inl)
2 Cu

(u + 1)(u + ϕ)
[πa20], u = E/Inl − 1, (7.13)

<υσnl>(β) = p(Ry/Inl)
3/2 e−β G(β) [10−8 cm3/s], (7.14)

G(β) = Aβ

β + χ
, β = Inl/T, (7.15)

0 ≤ u ≤ 16, 0.125 ≤ β ≤ 8, (7.16)

where p denotes the number of electrons in the electron shell nl p, Inl the binding
energy of the nl state, E an electron energy and T a plasma temperature. The accuracy
of (7.13)–(7.16) with parameters given in Table7.1 is within 15% compared to the
CBE numerical calculations [409, 410].

For physical applications the l-averaged ionization cross sections

σn = n−2
n−1∑
l=0

(2l + 1)σnl (7.17)

are also required. Using the fitting parameters in Table7.1 and applying the LS
method, one can obtain the fitting parameters for C, ϕ and A, χ in the same form
as in (7.13)–(7.16). The results are given in Table7.2. In this case, the ionization
potentials In correspond to the averaged over l values.

For a target ion having more than one electron shell, the total cross section can
contain a structure on top of the direct-ionization (DI) cross section due to indirect
(multistep) ionization mechanisms. One of such mechanisms is excitation of the
inner-shell electrons into autoionizing states followed by autoionization decay

Xq+ + e− → [Xq+]∗∗ + e− → X (q+1)+ + 2e−, (7.18)

which is termed as Excitation-Autoionization (EA).
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Table 7.1 Fitting parameters for cross sections, (7.13), and rate coefficients, (7.14), for ionization
of highly charged ions from nl-states by electron impact with 0.1 ≤ u ≤ 14, 0.1 ≤ β ≤ 8. From
[408]

nl state C ϕ A χ

1s 7.96 2.70 5.65 0.40

2s 6.69 2.03 6.23 0.52

2P 6.93 1.47 9.05 0.73

3s 6.00 1.59 7.37 0.70

3P 6.24 1.31 9.11 0.82

3d 6.57 1.08 7.76 1.00

4s 5.77 1.43 9.11 0.76

4P 6.00 1.26 11.7 0.86

4d 6.23 1.11 10.8 0.97

4f 7.06 1.00 13.5 1.07

5s 5.66 1.36 7.96 0.79

5P 5.88 1.23 9.13 0.87

5d 6.08 1.12 10.4 0.96

5f 6.26 1.08 11.1 1.00

5g 6.47 1.04 11.9 1.03

6s 5.60 1.32 8.07 0.80

6P 5.82 1.22 9.13 0.88

6d 6.00 1.13 10.2 0.95

6f 6.24 1.07 11.2 1.00

6g 6.33 1.04 11.7 1.03

6h 6.44 1.01 12.2 1.06

Table 7.2 Fitting parameters for the l-averaged cross sections σn and rates < υσn for ionization
of highly charged ions by electron impact, (7.13)–(7.16) and (7.17) with 0.01 ≤ u ≤ 14, 0.1 ≤ β ≤
8. From [408]

n state C ϕ A χ

1 7.96 2.70 5.65 0.40

2 7.82 1.55 8.33 0.68

3 6.44 1.23 10.2 0.90

4 6.30 1.11 10.9 0.97

5 6.24 1.06 11.2 1.01

6 6.21 1.03 11.4 1.03

Figure7.4 shows the contribution of EA to the total ionization cross section in the
case of ionization of U16+ and Si6+ ions. It is seen that in the case of heavy many-
electron ions (U16+), a contribution of EA processes is very large. For medium-heavy
ions (Si6+), excitation of inner-shell electrons followed by autoionization is not very
significant.
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Fig. 7.4 Left: Single-electron ionization cross section of U16+ ions by electron impact: dashed
curve—direct ionization result with semiempirical Lotz parameters [414] for direct ionization of
electrons in the 4 f 145s25p65d76s metastable configuration. The solid curve is a distorted-wave
calculations including excitation-autoionization effects [415]. From [413]. Right: Ionization cross
section of Si6+ ions: solid curve—distorted-wave calculations [412], dashed curve—(7.13) with
inclusion of ionization from the inner 2 s and 2p states; circles—experiment [411]. From [410]

The sum of direct ionization (DI) and ionization via excitation-autoionization
(EA) cross sections is presented in the form:

σ = σDI +
∑
j

B jσexc( j), (7.19)

Bj =
∑
m

Γ jm/

(∑
m

Γ jm +
∑
l

A jl

)
, (7.20)

where Bj is the branching-ratio coefficient of the autoionizing j state of the ion,
A and Γ are the radiative and autoionization probabilities, respectively, σexc is the
excitation cross section of inner-shell electrons. The autoionization probability γ ≈
1013−1014 s−1 weakly depends on the ion charge q. For low-charged ions q ≤ 10, the
radiative probability A 	 Γ and therefore B ≈ 1. In the case of highly charged ions,
the quantities Γ and A differ significantly depending on the states, and it is necessary
to use the general formula (7.20) for the branching ratios that strongly complicates
the ionization cross-section calculations (see, e.g., [416, 417]). EA cross sections
and rates can be estimated by semiempirical formulae (5.51) or using some fitting
approximations [418–420].

Besides DI and EA, there are other important indirect processes leading to ioniza-
tion but showing resonant characteristics, i.e., they occur only at a definite (res-
onance) energy of the incident electron. Such resonant processes are multi-step
processes and lead to an appearance of narrow resonances in the total ionization cross
section. These processes are called Resonant-Excitation-Auto-Double-Ionization

http://dx.doi.org/10.1007/978-3-319-74992-1_5
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(READI) and Resonant-Excitation-Double-Autoionization (REDA). They were pre-
dicted theoretically [421, 422] and confirmed experimentally [423]. Such measure-
ments become possible only by using advanced crossed-beam techniques [425],
which, in particular, permit to study narrow features such as resonance and excita-
tion thresholds with extremely high precision to obtain spectroscopic information on
multiply excited states [426].

7.4.2 Semiempirical Formulae for Double-Ionization Cross
Sections of Heavy Ions by Electron Impact

Double-ionization cross sections σ2(E) of neutral atoms and positive ions by electron
impact are required for many applications in plasma physics and accelerator physics,
especially if the cross sections are presented in the form of semiempirical formulae
which can be used for easy analytical representation of the double-ionization cross
sections of heavy positive ions in the modelling of laboratory and astrophysical
plasmas.

In [427, 428], the σ2(E)-values are considered for incident-electron energies
E < 50 · Ith where Ith is the threshold energy for double-electron ionization and
semiempirical formulae are suggestedwhich describe the experimental cross sections
within an accuracy of 20–30%. The formulae were obtained on the basis of reliable
experimental data and quantum-mechanical calculations.

In [427] simple semiempirical formulaewith threefittingparameters are suggested
for light positive ions from He- to Ne-like isoelectronic sequences, and for heavy
ions of Arq+, (q = 1–7) and Krq+ (q = 1–4) by taking into account the contribution
of direct double-ionization and of inner-shell ionization processes. The suggested
formulae can be used for prediction of the double-ionization cross sections of positive
ions with the nuclear charge ZN ≤ 26 for energies E < 50Ith . All fitting parameters
are found tobe constant for ionswithin the given isoelectronic sequence.The analysis,
made in [427], also provides amethod for indirect determination of K -shell ionization
cross sections for ions from Be-like to Ne-like sequences. In [427], the fluorescence
yields ωK for a single K -shell vacancy in ions from Li-like to Ne-like sequences
with nuclear charges 3 ≤ ZN ≤ 26 are calculated as well.

In Fig. 7.5 (left), experimental σ2(E)-values for Ar atoms, q = 0, and Arq+ ions,
q = 1–7, are compared with semiempirical formulae, obtained in [427], as a function
of electron energy, and in Fig. 7.5 (right) the same comparison is made for Kr2+ ions.

In [428], semiempirical formulae with six fitting parameters are suggested for
many-electron heavy ions fromTi up to Bi (nuclear charge from Z = 22 to Z = 83) for
incident electron energies E < 50 Ith : Tiq+, q = 1–6, Feq+, q = 1, 3−6,Niq+, q =
1−6, Gaq+, q = 1−6, Krq+, q = 1−4, Moq+, q = 1−6, Prq+, q = 1−4, Smq+,

q = 1−6, Wq+, q = 1−6, Pbq+, q = 1−9 and Biq+, q = 1−10, 12. The formulae
are derived on the basis of experimental data, mostly performed at an electron-ion
crossed-beams set-up in Giessen, Germany, with quantum-mechanical considera-
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Fig. 7.5 Left: Double-ionization cross sections of Ar atoms, q = 0, and Arq+ ions, (q = 1–7),
by electron impact. Experiment: open circles double-ionization cross sections of neutral Ar [429],
other symbols double ionization of Arq , (q = 1–5) ions [430]. Solid curves double-ionization cross
sections calculated by semiempirical formulae. Right: Double-ionization cross sections of Kr2+
ions. Experiment: solid circles [425, 429, 430]. Dashed curve direct cross section for simultaneous
ejection of two electrons and dotted curve double-ionization cross section, result of semiempirical
formulae. Arrows indicate the threshold energies for inner-shell ionization. From [427]

Fig. 7.6 Left Electron-impact double-ionization cross section (in 10−18 cm2) of Bi10+ ions. Full
circles experiment [431]; solid line result of semiempirical formulae.Right: Electron-impact double-
ionization cross section (in 10−18 cm2) of W6+ ions. Full circles experiment [432]; solid line result
of semiempirical formulae. From [428]

tions. The contribution of direct double ionization of two outer-shell electrons of the
ions is also taken into account together with single inner-shell ionization processes
followed by autoionizationwith additional ejection of an electron aswas suggested in
[427]. The formulae describe well the available experimental double-ionization cross
sections within an accuracy of 20–30%. However, for multiple-electron ionization of
very heavy ions significant deviations from experiment are found in the low-energy
region. These deviations are most probably caused by higher order processes such
as inner-shell excitation and subsequent double autoionization (EDA).

In Fig. 7.6, experimental σ2(E)-values forW6+ and Bi10+ ions are compared with
semiempirical formulae, obtained in [428], as a function of electron energy.
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7.4.3 Semiempirical Formulae for Multiple-Ionization Cross
Sections of Atoms and Ions by Electron Impact

At present, cross sections σm(E) of m-fold ionization by electron impact

e− + A → e− + Am+ + me−, m ≥ 2, (7.21)

have been measured for most of neutral atoms and a lot of species—negative and
positive ions—including highly charged ions (see, e.g., [421–437] and references
therein) from threshold Ith to electron energies E ≈ 20 keV.

Themost accuratemeasurements ofmultiple-electron ionization cross sections by
electron impact were performed using the crossed-beam technique with the absolute
total uncertainties of the order of a few percents and the smallest investigated cross
section range σm < 10−22 cm2. In contrary to the large volume of the experimen-
tal data obtained, a theory of multiple ionization of atoms and ions by electron
impact still suffers from a lack of the quantum-mechanical treatment even for double-
electron ionization. This is mainly connected with the fact that the independent
electron approximation (IEA), used in ion-atom collisions, fails in the description of
multi-electron transitions induced by electron impact. Therefore, to predict multiple-
ionization cross section behavior and their values, semiempirical formulas are often
used.

Semiempirical formulae for m-fold ionization cross sections, m ≥ 2, of atoms,
negative and positive ions by electron impact have been developed in [435, 436] on
the basis of experimental data and the Bethe-Born behavior of σm(E) at high energies
in the form:

σm(u) = 10−18 [cm2] a(m)Nb(m)

(Ith/Ry)2

(
u

u + 1

)c ln(u + 1)

u + 1
, (7.22)

u = E/Ith − 1, m ≥ 2, (7.23)

where E denotes the incident electron energy, N the total number of the projectile
electrons, Ith the threshold energy, a, b and c fitting parameters andRy is theRydberg
unit, 1 Ry = 13.606 eV.

The threshold energies Ith are given by the sum of ionization potentials:

Ith =
q+m−1∑
q ′=q

Iq ′,q ′+1, (7.24)

where Iq ′,q ′+l is the single-electron ionization energy from the charge q ′ to q ′ + 1. For
single-electron ionization, Ith is the first ionization potential, Ith = I1. The minimal
energy Ith for double ionization is the sum of the first and the second ionization
potentials of the target, and so on. For example, theminimal energy, required to ionize
three electrons in Ar atom is estimated to be: Ith = I(Ar) + I(Ar+) + I(Ar2+) =
15.8 eV + 27.6 eV + 40.9 eV = 84.3 eV. The threshold ionization energies Ith can
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be estimated using the tables for Iq,q+l values for atoms and ions given in [372–375,
438, 439]. The energy required to ionize all N electrons from a neutral atom is well
described by the statistical Thomas-Fermi formula:

Ith(m = N ) = 16 N 7/3 [eV]. (7.25)

The exponent c in (7.22) is determined empirically: c = 1.0 for neutral atoms
and c = 0.75 for positive and negative ions. The fitting parameters a(m) and b(m)

are smooth functions of the number of ejected electrons m; for 2 ≤ m ≤ 10 they
are given in Table7.3. For ionization of m > 10 electrons, the asymptotic values for
a(m) and b(m) can be used:

a(m) ≈ 1350m−5.7, b(m) = constant = 2.00, m > 10, (7.26)

which are obtained by extrapolation of the a(m) and b(m) values for m < 10.

Table 7.3 Fitting parameters a(m) and b(m), (7.22) form-fold ionization cross sections by electron
impact. From [436]

m a(m) b(m)

2 14.0 1.08

3 6.30 1.20

4 0.50 1.73

5 0.14 1.85

6 0.049 1.96

7 0.021 2.00

8 0.0096 2.00

9 0.0049 2.00

10 0.0027 2.00

Fig. 7.7 Multiple ionization of neutral atom, positive and negative ions by electrons. Left figure:
four-fold ionization of neutral uranium atom U0: solid circles—experiment [440], solid line—
(7.22).Middle: three-fold ionization ofW+ ions: experiment [431], solid line—(7.22).Right: double
ionization of C− ions: experiment—open circles [441], solid circles [436], solid line—(7.22). From
[434, 436]
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The average accuracy of the semiempirical formula (7.22) is a factor of 2–3
(Fig. 7.7).

7.5 Rate Coefficients of Atomic Processes in
Ion-Beam-Plasma Interaction. A Shifted Maxwellian
Distribution Function

Plasma constituent particles (atoms, ions, electrons) have a different concentrations
depending on plasma temperature and density, therefore, to describe interaction of
ions with plasma particles the rate coefficients κ = N<vσ> [s−1] of the processes
are used, i.e., averaged over a Maxwellian velocity distribution of particles where N
denotes a particle density in a plasma.

In interaction of ion beam with a plasma, a Maxwellian function F(v, vp, T )

depends on the ion beam velocity vp. Then the quantity <υσ> [cm3/s] is given by
[26]:

<vσ> =
∫ ∞
0

vσ(v) F(v, vp, T ) d3v,

∫ ∞
0

F(v, vp, T ) dv = 1, (7.27)

F(v, vp, T ) =
(

M

2πkT

)3/2
exp

(
− M

2kT
|v − vp|2

)
(7.28)

=
(

M

2πkT

)1/2 v

vp

[
exp

(
− M

2kT
(v − vp)

2
)

− exp

(
− M

2kT
(v + vp)

2
)]

,

where v = vp − ve,i denotes a vector of the incident-ion relative to electron velocity
ve or ion velocity vi in a plasma, M a reduced mass of colliding particles, T an
electron or ion temperature, k the Boltzmann constant.

At low ion velocity vp → 0, the function F(v, vp, T ) turns into the ‘usual’
Maxwellian function F(v, T ), and at low plasma temperature 2T/M → 0 one has:

F(v, vp, T ) = δ(v − vp), 2T/M → 0. (7.29)

and

< vσ > ≈ vpσ(vp), vp � vth = 1.13

√
2T

m
. (7.30)

Here vth is the thermal electron velocity which in equilibrium plasmas is much
higher than the thermal ion velocity due to the difference in masses. Therefore, rate
coefficients of atomic interaction processes of heavy-ion beams passing through cold
plasmas are simply defined by the product Nvσp of the ion velocity and cross section
which leads to two important conclusions:

1. Rate coefficients of fast ions in cold plasmas (vp � vth) are independent on the
plasma temperature and plasma particle distribution over velocities,
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2. In the case of low ion-beam velocities, vp � vth , the rate coefficients are defined
by the general formulae (7.27) and (7.28), i.e., using a shiftedMaxwellian function
depending on the ion-beam velocity vp.

7.6 The Case of Fast Ion Beams Penetrating Cold Plasmas

The case vp � vth is usually achieved in practice for which the rate coefficient is
given by:

κ = Nvrσ(vr )[s−1], vr ≈
√

v2
p + v2

th, (7.31)

where vr is a relative velocity and N is a density of plasma particles.
Three-body recombination (TR), (7.4), constitute a special case because its rate

does not change linearly on electron density like in (7.31) but is proportional to N 2
e .

The TR rate κTR can be calculated in the classical approximation [443]:

κTR = 25π2e10N 3
e q

3

m5v9
r

≈ 2.9 × 10−31[s−1] N
2
e [cm−3]q3

v9
r [a.u.]

, (7.32)

where q denotes the incident ion charge and vr a relative velocity in atomic units,
1 a.u. ≈ 2.2 × 108 cm/s.

A comparison between radiative-recombination (7.1) and TR rates gives an esti-
mate [75]:

κRR

κTR
≈ 1.6 × 1017

qv6
r [a.u.]

Ne[cm−3] , (7.33)

from which it is seen that the TR rate is small and close to the RR rate only at very
high electron density Ne.

A comparison of electron-capture (EC) and radiative recombination (RR) recom-
bination rates gives:

κEC

κRR
≈ 107

Nat

Ne

qZ5
T

v8
r [a.u.]

, (7.34)

where Nat and Ne denote densities of neutral atoms and free electrons in a plasma,
respectively, ZT the atomic number of neutral atoms. It is obvious that this ratio
strongly depends on the relative velocity vr and on the ratio Nat/Ne.

Concentrations (abundances) of atomic particles in plasmas depend on plasma
temperature and density. As an example, the abundances of atoms and ions in H and
He plasmas, calculated by solving the balance equations in the coronal limit [442],
are shown in Fig. 7.8 as a function of electron temperature Te; in the coronal limit,
abundances depend only on the electron temperature but not on plasma density.

In a cold hydrogen plasma with Te = 1 eV (left figure), the ratio Nat/Ne =
NH/NH+ ≈ 30, and for ions with the charge q = 20 and energy 1.5 MeV/u (vr
= 7.7 a.u.) the rate ratio (7.34) is about 103. It means that in a cold plasma, electron



7.6 The Case of Fast Ion Beams Penetrating Cold Plasmas 139

Fig. 7.8 Abundances of neutrals and positive ions in H (left) and He (right) plasmas as a function
of electron temperature—calculations in the coronal limit [442]

Fig. 7.9 Calculated ionization and recombination rate coefficients for 1.5-MeV/u Iq+ ions passing
through hydrogen gas and plasmawith parameters Te = 10 eV and Ne = 1017 cm−3. EC gas (dashed
line) and EC plasma (solid line) correspond to electron-capture rates of bound electrons in a gas
and plasma, respectively. Curve ionization is ionization rate which is nearly the same for a gas
and plasma targets at q > 5. The curves RR and TR are radiative-recombination and three-body
recombination rates, respectively. DR processes are not accounted for. The arrows show the mean
charges of iodine ions created in hydrogen gas and plasma. The rate data are from [75]

capture rate of 1.5-MeV/u beam ions with q = 20 on plasma neutral atoms is much
larger than the radiative recombination rate.

In an almost fully ionized H-plasma with Te = 10 eV, the ratio Nat/Ne ≈ 10−5

and κEC/κRR ≈ 10−3, i.e., in strongly ionized plasmas, RR is the main recombina-
tion process. This is clearly seen from Fig. 7.9, where the rates of ionization and
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recombination processes of I q+ ions in hydrogen cold gas and plasma are shown.
The rates are calculated in [75] with the following parameters: for iodine ion charges
0≤ q <60, energy1.5MeV/u and forHplasmawithTe =10eVand Ne = 1017 cm−3.
Dielectronic recombination are not included in Fig. 7.9. For ions with q > 5, ion-
ization rates are nearly the same for hydrogen cold gas and plasma. As seen from
Fig. 7.9, the RR rate is much larger than EC rate, and TR rate is much smaller than
EC and RR rates in a plasma.

FromFig. 7.9 it is possible to estimate the averagemean charges q̄ of iodine ions in
a hydrogen cold gas and the plasma: q̄gas ≈ 20 and q̄plasma ≈ 40. Therefore, plasmas
are more effective stripper for fast heavy ions compared to a cold-gas target.

Finally we note that the role of DR processes on recombination rates of fast
ions moving through a cold plasma is very important since DR cross sections are
proportional toq4 but has a resonance character:DRcontribution canbe large or small
depending on matching between ion velocity and the energy profiles having a width
∼ kTe. The problem of DR contribution to the recombination rates is discussed in
[75] but still requires a further detailed consideration, especially in the case of heavy
many-electron projectile ions.



Chapter 8
Multiple-Electron Ionization of Atoms
by Fast Heavy Ions

Abstract Single- and multiple-electron ionization of atoms and molecules, induced
by fast highly charged ions, constitute an important issue in accelerator physics (the
vacuum conditions) and in different applications (cancer therapy). Multiple ioniza-
tion of heavy target atoms can strongly (up to 50%) contribute to the total ionization
cross sections similar to projectile ionization (loss) by target atoms, Sect. 1.4. In this
Chapter, various theoretical approaches for multiple-electron probabilities and cross
sections for ionization of neutral atoms are considered and compared with available
experimental data.

8.1 Main Properties of Single- and Multiple-Ionization of
Atoms by Ions

Ionization of media atoms and molecules by heavy accelerated ions is an important
process in atomic physics and its applications. The target-ionization cross sections are
quite large because they are proportional approximately to the square of the incident
projectile charge, q2, significantly contributing to several collisional characteristics
such as the energy loss, straggling, stopping power, mean charge of ion beams etc.
A special case is ionization of residual-gas atoms and molecules by ions in powerful
accelerators leading to the dynamic vacuum effects at very high ion-beam densities
which strongly influences the beam lifetimes of accelerated ions [224, 379]. On the
other hand, multiple ionization (MI) of target atoms greatly contributes to the total
target ionization cross sections (up to about 50%) and, therefore, is an interesting issue
for understanding multiple-electron nature of atomic processes, related to electron-
electron correlation effects.

As has been mentioned in Sect. 1.4, transfer ionization (TI) is the most general
reaction occurring in ion-atom collisions:

Xq+ + A → Xq ′+ + Am+ + (q ′ − q + m)e−. (8.1)
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Fig. 8.1 Left: Experimental partial cross sections σ i
qq ′ for recoil Nem+-ion production in Ar12+ +

Ne → Arq
′+ + Nem+ collisions at 1.05MeV/u. The curve with q ′ = 12 corresponds to pure target

ionization (8.2), other curves are transfer ionization reactions (8.1), and the curve Sum denotes
a sum of all partial cross sections. Right: Total (summed over all recoil charges m) experimental
charge-changing cross sections in Arq+ + Ne→Arq

′+ + Nem+ + (q ′ −q+m)e− collisions at 1.05
MeV/u. The curve with k = q ′ − q = 0 represents the pure target multiple-electron ionization cross
sections. Curves with k = 1,…, 5 show cross sections for single- to five-fold electron-loss cross
sections and curves with k = −1, . . . ,−4 for single- to four-fold electron-capture cross sections
in transfer ionization. From [444]

In some cases, it is experimentally possible to measure partial TI and electron
capture (EC) cross sections, as shown in Fig. 8.1, left and right. Cross sections with
q = q ′, i.e., with no change of the projectile charge, correspond to the so-called pure
target multiple-electron ionization:

Xq+ + A → Xq+ + Am+ + me−, m ≥ 1. (8.2)

Reaction (8.2) is a more complicated one compared to ionization by electron impact
because of a strong influence of the complex atomic structure of the projectile ion.

We note that the data on the experimental partial cross sections, such as displayed
in Fig. 8.1, is rather scarce (see [33, 445–447] and references therein) because such
measurements should be carried out utilizing the coincidence technique to get infor-
mation on the recoil ions correlated with the projectile charge states [448]. Experi-
mentally and theoretically, pure target ionization processes (8.2) are investigated in
more detail.

Experimental loss, capture and pure target ionization cross sections in Arq+ +
Ne → Arq

′+ + Nem+ collisions at 1.05 MeV/u, summed over all recoil charges i ,
are shown in Fig. 8.1, right, as functions of ion charge and a charge-state change
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k = q ′ − q. As the projectile charge q increases, the total cross section for pure
target ionization (k = 0) increase while single- (k = 1) and multiple-electron (k >

1) transfer ionization cross sections decrease. The electron-capture cross sections
(k < 0) increase as the projectile charge increases, and the largest contribution is
given by single-electron capture (k = −1).

Ionization of atoms by highly charged ions has been one of the main topics of
atomic physics investigations in the 1980s and a few decades later. Experimen-
tal data on single- and multiple-electron ionization cross sections of atoms and
molecules have mainly been obtained at BEVALAC, Berkeley, UNILAC, Darm-
stadt and RIKEN, Saitama accelerators for gaseous targets He, Ne, Ar, Kr and Xe
and projectile ions from protons to bare uranium in 1–420MeV/u energy range (see,
e.g., [1, 6, 33, 449–484]). An overall accuracy of measured MI cross sections is
quite large, of 30–50%, due to experimental difficulties.

Some examples of pure target ionization are given in Fig. 8.2 for Ar and Xe
atoms, showing large cross sections and little effects from the target atomic structure.
In these figures, electron-capture cross sections are also displayed, which become
comparable to the pure ionization cross sections with the number of ejected electrons
m = 14 and 25, for Ar and Xe, respectively. In the case of Xe target, simultaneous
ionization of m = 33 electrons (!) in one collision has been observed.

Due to the recent fast developments of high-power accelerators and new appli-
cations, an interest in investigation of target multiple-ionization processes has been
greatly increased again. For example, lifetimes and energy losses of accelerated ion
beams strongly depend on their interaction with residual-gas atoms and molecules
[224, 379]. These data are of a special interest for a recently started International
project FAIR (Facility for Antiproton and Ion Research) [51], Darmstadt, Germany,
and Russian project NICA (Nuclotron-based Ion Collider fAcility) in Dubna.

Fig. 8.2 Experimental pure target ionization of Ar and Xe atoms (crosses) and electron capture
(circles) cross sections in U75+ + Ar (left) and Xe (right) collisions at 15.5MeV/u. From [449]
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Another example of the importance of target ionization by accelerated ions is
related to developments of heavy-ion cancer therapy, where the influence of sec-
ondary electrons in a body, caused by multiple ionization of surrounding atoms by
MeV/u-projectiles, can createmore damage than the projectiles themselves (see, e.g.,
[13]).

8.2 Cross-Section Calculations and Comparison with
Experiment

Multiple-ionization cross sections and probabilities of neutral atoms by fast heavy
ions are calculated using several basic treatments: the independent-particle model
(IPM) [456], the n-particle classical trajectory Monte Carlo method (nCTMC) [240,
366], a classical energy-deposition model [369] and a quantum statistical time-
dependent meanfield theory [457–461]. Recently a method based on a combination
of classical and quantum approaches is suggested [462, 463] for using in a wide
energy range including relativistic domain. In general, multi-particle processes con-
stitute a basic problem for a theoretical investigations, in particular, for collisions of
heavy projectiles with many-electron targets.

Independent Particle Model (IPM) is the basic approach used in ion-atom colli-
sions, where target electrons are treated independently from each other and electron-
electron correlations are usually neglected (see, e.g., [279, 456, 464]). In the IPM
approach, the probability Pm for ejection of m electrons from the target atomic shell
with N electrons is described by the statistical binomial distribution

Pm = Cm
N pms (1 − ps)

N−m, Cm
N =

(
N
m

)
= N !

m!(N − m)! , (8.3)

where Cm
N denotes the binomial coefficient and ps a single-electron removal proba-

bility depending on the impact parameter b and ion velocity υ.
For a target atom with many electron shells, the probability Pm can be written in

the form [465]:

Pm(b, υ) =
∑

γ

T∏
i=1

Cm
N pmi

i (1 − pi )
Ni−mi , (8.4)

T∑
i=1

mi = m,

T∑
i=1

Ni = Ntot , (8.5)

where summation onγ ismade over all target electron shells T ,υ denotes a projectile-
ion velocity, Ni the number of equivalent electrons in the i-th shell and Ntot the total
number of the target electrons.
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The multiple-electron σm(v) and total σtot (v) ionization cross sections are then
given by

σm(υ) = 2π
∫ ∞

0
bdb Pm(b, υ), σtot (υ) =

Ntot∑
m=1

σm(υ). (8.6)

In the IPM approach, single-electron ionization probabilities pnl of the nl tar-
get shell are usually calculated in the Born Approximation (Plane-Wave Born
Approximation—PWBA) [466–468], and semiclassical approximations such as the
deposited energy model [369] and CTMC approach [366]. Here n and l are the
principal and orbital quantum numbers, respectively. The IPM approach has some
serious disadvantages, e.g., it neglects the change of the target ionization potential
during collision that leads to a wrong dependence of ionization cross section on m,
especially, for large m-values. Also, the use of IPM for MI ionization of molecules
is questionable because it requires to make additional approximations which ignore
the molecular structure [469].

CTMC approach was developed in [240, 366, 470] and [471] (see also Sect. 4.2).
In the CTMC-IPM approach the motion of the projectile and target electrons are
described classically. The CTMC is based on the numerical solution of a system
of the Hamilton classical-motion equations for all projectile and target electrons
N using a large number of impact parameters (about a few thousand) for particle
trajectories. The system consists of 6(N +2) nonlinear first-order equations (about a
few hundred) in partial derivatives and is solved numerically for the coordinates and
momenta for all N electrons and two nuclei in Cartesian coordinates. The use of the
CTMCmethod is quite complicated, because many electrons and atomic trajectories
should be taken into account to get enough statistics for the calculated cross sections.

Figure8.3 shows multiple-ionization cross sections of Ar atoms by U90+ at 120
MeV/u, calculated in the CTMC approach, with and without including Auger au-
toionization processes, in comparison with experimental data. We note that an inclu-

Fig. 8.3 MI cross sections
of Ar atoms by U90+ ions at
120 MeV/u. Experiment:
open circles. Theory: dashed
curve—CTMC result
without autoionization
included and solid curve
with autoionization included.
From [452]

http://dx.doi.org/10.1007/978-3-319-74992-1_4
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sion ofAuger processes inMI calculations is a very important (but quite complicated)
problem which will be shortly discussed below.

Energy-deposition (ED) method is the classical model suggested by Bohr [154],
based on an assumption that the projectile kinetic energy Tb, transferred to the target
electrons, should exceed the first ionization potential I1 of the target atom, Tb > I1,
so that the target atom can eject one or more electrons.

The energy-deposition (ED) model was further developed by Cocke [369], using
the statistical model of Russek and Meli [371] for m-electron ionization probability
Pm(b), and explained experimental data on multiple-ionization of atoms by fast
highly charged ions. The ionization probability Pm(b) in the Russek-Meli model
depends on the energy Tb, transferred to the target which is assumed to be statistically
distributed among all electrons of the system (see also Sect. 6.2.2).

The ED model [369] has been later developed in [368] for calculation of
multiple-ionization cross sections of ions by atoms. As it has been mentioned be-
fore (Sect. 6.2.2), these two cases of ion-atom collisions are not identical: ionization
of atoms by ions occurs upon interaction of an atomic electron with a long-range
Coulomb field of the projectile, whereas ionization of a projectile ion by an atom
is due to electron interaction with a field of the neutral target which is close to the
Coulomb one at small distances and is exponentially small at large distances from
atomic nucleus. The ED approach with the Russek-Meli probabilities provides the
unitarity of the ionization probability Pm(b, υ) in the form:

∑
m

Pm(b, υ) = 1 (8.7)

for all ion velocities υ and all impact parameters b.
An example of multiple-ionization probabilities Pm(b) and the deposited energy

Tb, calculated in the ED model, is shown in Fig. 8.4 for collisions of 1 MeV/u-X9+
ions with Ne atoms as a function of impact parameter.

Fig. 8.4 Multiple (m-fold)
ionization probability Pm(b),
m = 1–7, and energy Tb,
deposited to a Ne atom,
bombarded by 1-MeV/u ions
with a charge q = 9,
calculated by the ED model
as a function of impact
parameter b. From [369]

http://dx.doi.org/10.1007/978-3-319-74992-1_6
http://dx.doi.org/10.1007/978-3-319-74992-1_6
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Time-dependent mean-field theory (TDMF) has been developed in [457–461] and
is based on the description of time-dependent many-particle systems in terms of
the quantum-statistical method. Time dependence of a system density is calculated
using the classical Vlasov equation in a phase space. In the TDMF theory, a time
evolution of the target electrons as a function of a nuclear motion for a fixed impact
parameter is similar to that obtained in the time-dependent Hartree-Fock method.
A typical example of TDMF results for production of Nem+ recoil ions in collision
with uranium ions is shown in Fig. 8.5 in comparison with experimental data.

Geometrical model is a simple semiempirical method to obtain a single-electron
ionization probability Ps(b, υ) in the IPM approach, (8.3), in the form [473]:

ps(b, υ) = ps(0, υ) · exp(−b/bmax ), (8.8)

where ps(0, υ) and bmax are the approximation parameters found from experiment.
The use of (8.8) gives quite a good description of experimental MI cross sections
for the small number m of ejected electrons (see, e.g., [444, 474]), when the pure
ionization processes are due to direct ionization of the target outermost electrons. For
multiple-electron ionization,m � 1, the use of this approach leads to underestimated
cross-section values, that is most probably due to the Auger effect which is not
accounted in the IPM: ejection of inner-shell electrons leads to electron cascades
resulting in enhancement of the target ionization cross sections (see [444]).

A geometrical model (GM) has been developed in [475–480] and is used for cal-
culation of the single-electron ionization probability pnl(0) at zero impact parameter
b = 0. The GM model is based on the semiclassical approximation in which the
probability Pnl(0) has the from [477]:

pnl(0) = 1 −
∫ ∞

be

R2
nl(r)

[
1 − (be/r)

2
]1/2

r2dr. (8.9)

Fig. 8.5 Them-fold electron
ionization cross sections of
Ne atoms in collisions with
1.4 MeV/u-U32+ ions X9+
as a function of m. Theory:
curve with open circles—the
TDMF model. Experimental
data—curve with solid
circles—are normalized to
theoretical data at m = 1.
From [472]
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Here be is the maximum radius of the cylinder along the projectile trajectory, inside
which the target electron gains the energy higher than the binding energy Inl due the
interaction with the Coulomb field of the projectile ion. Equation (8.9) the ionization
probability is averaged over the projections of the angular momentum l.

The radius be is given by:

be = 2q

υυnl
V [G(V )]1/2, V = υ/υnl , υnl = (2Inl)

1/2, (8.10)

where q is the projectile ion charge, υ and υnl denote the ion and the atomic orbital
velocities, respectively, in atomic units. The radialwave-functions Rnl are normalized
as ∫ ∞

0
R2
nl(r) r

2dr = 1. (8.11)

Therefore, if the radial wave-functions are known, the single-ionization probability
pnl(0) can be easily calculated.

The dimensionless functionG(V ) is theGerjuoy-Vriens-Garcia function obtained
in the classical BEA (binary encounter) approximation (see [485]). The function
V [G(V )]1/2 is displayed in Fig. 8.6 and has the following asymptotic behavior:

VG(V )1/2 →
{

(5/3)1/2 ≈ 1.291, V ≥ 10,
2√
15
V 3, V 	 1. (8.12)

Figure8.6 shows a strong dependence of V [G(V )]1/2 on ratio V = υ/υnl . There-
fore, the probabilities pnl(0) are also very sensitive to the ratio V in awhole projectile
velocity range υ.

At high-velocity regime V � 1, it follows that V [G(V )]1/2 ≈ (5/3)1/2,
be ≈ 2q

υυnl
(5/3)1/2 and one arrives to a well-known Rutherford formula for the

Fig. 8.6 The function
V [G(V )]1/2 versus the ratio
V = υ/υnl where G(V ) is
Gerjuoy-Vriens-Garcia
function. From [485]
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total ionization cross section (see [34, 486]):

σR = b2e [πa20] = 20

3

(
q

υυnl

)2

[πa20], (8.13)

In [478], the pnl(0) values for nl = 1s, 2s, . . . , 4p, 4d electron shells are ob-
tained in a close analytical form using H-like radial wave-functions with effective
charge accounting the electron screening. For the closed atomic shells, these formu-
lae give a good result for ionization probabilities pn(0) averaged over l, compared
to experimental data as seen in Fig. 8.7.

NormalizedExponentialMethod (NEM) is introduced andused in [462] and [463].
Recently, a simple method was presented in [463] to estimate multiple-ionization
cross sections of atoms by fast ions in a wide energy range E = 1MeV/u–10GeV/u.
The NEM model, described in [463], uses a combination of semiclassical and
quantum-mechanical approaches and includes the following steps:

1. Calculation of single-ionization probabilities pnl(b) for the shell nlN in the form
(8.8):

pnl(b) = pnl(0) · exp(−αnlb), αnl =
[

2pnl(0)

σnl(υ)/(N · πa20)

]1/2

, (8.14)

σnl(υ) = 2π
∫ ∞

0
bdb pnl(b) = 2π

pnl(0)

α2
nl

, (8.15)

Fig. 8.7 Ionization probability pn(0) per electron at zero impact parameter for closed K , L , M and
N target electron shells as a function of q/(υn) · V [G(V )]1/2 parameter, where n is the principal
quantumnumber of the shell. Symbols—experiment: crosses [481] and open circles [482]—fromX-
ray data; open squares—Auger data [483]; full circles [484] and [478]. Theory—curves: calculations
in the GM using the H-like radial wave functions [478]. From [478]
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with pnl(0) is obtained in the GM model [478], single-ionization cross section
σnl(υ) of the nl-electron is calculated in the relativistic Born approximation by
the RICODE-M program [113], and N is the number of electrons in the nl-state.

2. Calculation of multiple-ionization probabilities Pm(b, υ) for in the IPM ap-
proach, (8.4)–(8.6), using a MIT program (Multiple Ionization Transitions) de-
scribed in [462].

For practical applications the function V [G(V )]1/2 in the interval 0.02 < V ≤ 10
was approximated within 10% accuracy by the eight-order polynomial in the form
[463]:

log10
[
V [G(V )]1/2] =

8∑
k=0

Ak · (log10V )k, (8.16)

where the approximation parameters are: A0 = −0.09, A1 = 1.17, A2 = −1.94525,
A3 = 0.77271, A4 = 0.50108, A5 = −0.35763, A6 = −0.01945, A7 = 0.04806,
A8 = −0.0078.

NEM calculations of MI cross sections for Ne and Ar atoms by Ar8+, Fe20+,
Au24+, Bi67+ and U90+ ions are presented in Figs. 8.8 and 8.9 in comparison with
experimental data and CTMC calculations.

Single- andm-fold ionization cross sections ofNe andAr atoms by highly charged
ions are shown in Fig. 8.8 as a function ofm. NEM results (open circles) agree within
a factor of 2 with experimental data (solid circles) for m ≤ 8. An exception is the
case of Ne+U90+ collisions where experimental data are much higher than the NEM
calculations that is most probably due to experimental error. The overall agreement
of a factor of 2 is because the single-electron cross sections σnl(υ) are calculated
in the Born approximation which at some energies, considered here, overestimates
experimental data. The use of more sophisticated theoretical result or experimental
data for σnl(υ) would give a better agreement.

CTMC results [451, 452] for multiple-ionization of Ar atoms by Fe20+ and Au24+
ions are also shown in Fig. 8.8 with Auger autoionization included. For Fe20+ projec-
tiles an agreement of CTMC calculations with experiment is quite poor but better for
Au24+ projectiles. In general, CTMC calculations show that Auger cascades play an
important role in MI processes, especially, for production of recoil target ions with
high charge states. Similar conclusion about importance of Auger processes was also
made in [487] and [465], where MI ionization of Ne and Ar atoms by protons were
calculated by IPM model.

We note that a number of calculations of multiple-ionization cross sections of
heavy atoms with account for Auger decay are quite scarce because of limited exper-
imental data on relative abundances, used in the calculations, for target recoil ions
formed due to the sudden inner-shell vacancies (see, e.g., [488]). For this reason,
calculations of MI cross sections by IPM approach with Auger processes accounted
for are available mainly for Ne atoms with m ≤ 4 and Ar with m ≤ 7. In the work
[463], σm(υ) cross sections are calculated for allm:m ≤ 10 for Ne andm ≤ 18 for Ar
but without accounting for Auger decay. To include Auger processes in calculations
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Fig. 8.8 σm cross sections as a function of m for ionization of Ne and Ar atoms by highly charged
ions. Experiment—solid circles: Ar+Ar8+ [444], Ar+Fe20+ [451], Ar+Au24+ [452], Ne+U90+
[452]. Theory: triangles—CTMC calculations with autoionization included for Ar + Fe20+ [451]
and Ar + Au24+ [452] collisions; open circles—NEM calculations. From [463]

of MI cross sections is a quite complicated problem, the solution of which needs a
special consideration and is not considered here.

Energy dependence of the total andMI cross sections for ionization of atoms with
ejection up to m = 5 electrons are shown in Fig. 8.9. Symbols denote experimental
data [455] for MI (solid circles) and total cross sections (open circles) of Ne+Au24+
and for Ar + Bi67+ collisions. Calculated MI and total ionization cross sections
[463] are shown by thin and thick curves, respectively. The total cross sections are
proportional to the square of the projectile charge: σtot (υ) ∼ q2.

Experimental data for Ar + U90+ collisions in Fig. 8.9 are also compared with a
single-electron Born cross section σBorn calculated in the relativistic approximation
by the RICODE-M program [365] with account for ionization of all target electrons:
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Fig. 8.9 The m-fold and
total σtot cross sections for
ionization of Ne and Ar
atoms colliding with Au24+,
Bi67+ and U90+ ions as a
function of ion energy.
Experiment: solid
circles—Ne + Au24+ at 5.9
MeV/u, m = 1–5; Ar +
Bi67+ at 300MeV/u,
m = 1–5; Ar + U90+ at
120MeV/u, m = 1–5; open
circles—the total cross
sections. All experimental
data are from [455]. Theory,
NEM calculations: thin solid
curves—σm ,m = 1–5, and
thick curves—σtot . In the
lower figure, dashed curve:
σBorn—relativistic Born
approximation for
one-electron ionization cross
section, RICODE-M
program, (8.17). From [463]

σBorn =
∑
nl

σnl(υ). (8.17)

The Born cross section σBorn(υ) and the NEM single-electron σ1(v) cross section
coincide at high energies but at intermediate energies E ∼ 1–10MeV/u, σ1(υ) is
smaller than σBorn(υ) by a factor of 2 because in calculation of σ1(v) a normalized
ionization probability pnl(b) is used. At relativistic energies E ≥ 1 GeV/u, Born
cross sections turn to semiconstant values because of the influence of the relativistic
interactions between colliding particles.

Relative contributions of MI cross sections to the total ones for ionization of Ne
and Ar atoms by highly charged ions are shown in Table8.1. At intermediate ion
energies, these contributions are large and decrease with the energy increasing but
remain still high (15–20%) even at relativistic energies 1–10GeV/u (U90+ projectile).
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Table 8.1 Relative contributions (%) of MI processes to the total target ionization cross sections,∑
m σm≥2/σtot , as a function of ion energy. From [463]

Reaction 1MeV/u 10MeV/u 102MeV/u 103MeV/u 104MeV/u

Ne + Ar10+ 31.4 16.9 3.65 0.96 0.75

Ne + Au24+ 35.6 28.7 14.1 5.0 4.0

Ne + U90+ 36.3 35.8 30.3 23.2 21.4

Ar + Au24+ 34.3 23.3 9.3 3.1 2.4

Ar + U28+ 33.9 24.8 11.2 4.0 3.2

Ar + Bi67+ 34.6 33.3 21.5 12.5 10.8

Ar + U90+ 33.6 33.5 25.6 16.7 14.9

The results, discussed in this Section, show that experimental target MI cross sec-
tions can be reproduced within a factor of 2–3. A contribution of multiple-ionization
cross sections to the total ones can be large ∼35% at intermediate energies and de-
creases with E increasing. However, even at relativistic energies, E ∼ 1–10GeV/u,
the contribution can be rather large∼20% for heavy target atoms and highly charged
projectile ions.



Chapter 9
Some Applications of Charge-Changing
Cross Sections and Charge-State Fractions

Abstract In this chapter, some applications of results, obtained in the previous
chapters for charge-changing cross sections and equilibrium charge-state fractions,
are discussed for ion-beam lifetimes, inverse population in a laser plasma, detection
of super-heavy elements, and material modifications.

9.1 Lifetimes of the Heavy-Ion Beams in Accelerator
Devices

One of the most important aspects of accelerator physics is the lifetimes of ion-
beams in accelerators or storage rings, which principally depend on the atomic
charge-changing cross sections of the ion beam interacting with the residual-gas
components—atoms, molecules and ions. The lifetime τ for heavy-ion beams
injected into an accelerator is defined by

I (t) = I0 exp (−t/τ) , (9.1)

where I0 denotes the initial intensity of the injected ion beam, and I (t) is its time
evolution.

9.1.1 Dependence of Ion-Beam Lifetimes on the Projectile
and Target Characteristics

The lifetime τ depends on the so-called vacuum conditions, i.e., on pressure and
concentrations of the residual-gas components, usually H2, He, O2, N2, H2O, CO,
CO2, CH4, and Ar, in the accelerator, as well as on the ion energy and the charge-
changing cross sections of beam ions colliding with the residual-gas (rest-gas) atoms

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
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and molecules. For estimation of the vacuum conditions, the concentrations Y of the
‘reference’ atoms and molecules (H2, N2, and Ar) are often used with the following
proportions: Y (H2) ≈ 70–90%, Y (N2) ≈ 20–30%, and Y (Ar) ≈ 1–3%.

The total ion-beam lifetime in accelerator consists mainly of three parts due to
interactions with a residual gas, a gaseous target and cooling electrons (see [489,
490]). To estimate the ion-beam lifetime in cases of residual- and target-gas atoms
and molecules, the following formula is commonly used:

τ =
(

ρβc
∑
T

YT
[
σ tot
EC(q, υ, ZT ) + σ tot

EL(q, υ, ZT )
])−1

,
∑
T

YT = 1, (9.2)

where ρ denotes the gas density, q and ν the charge and velocity of the projectile,
β = υ/c, ZT and YT the atomic number and fraction of the gas component T ,
σ tot
EC and σ tot

EL the total, i.e., accounting for themultiple-electron processes in electron-
capture and electron-loss cross sections in collisions with target-gas particles. In the
case ofmolecular targets, charge-changing cross sections are obtained by the Bragg’s
additivity rule. According to (9.2), at relativistic energies the ion-beam lifetimes turns
to constant value because at υ → c relativistic limit electron-loss cross sections also
turns to constant values (see Sect. 6.4).

In real experimental conditions, the rest-gas density ρ and concentrations YT are
different at different points of the accelerator volume and are also time-dependent.
Moreover, the rest-gas atoms andmolecules can be ionized by the beam ions, leading
to a change in their interactions with the projectiles, thus, dynamic vacuum effects
arise in the accelerator at very high beam densities [224]. All these circumstances
restrict the application of (9.2) but, as a rule, it gives quite satisfactory results for
estimating the ion-beam lifetimes in accelerators and storage rings.

As an example, experimental U28+-ion beam lifetimes at specified vacuum condi-
tions are shown in Fig. 9.1 as a function of ion energy in comparison with theoretical

Fig. 9.1 U28+-ion beam
lifetimes as a function of ion
energy at a gas pressure in
the vacuum chamber about
10−10 mbar and rest-gas
composition shown in the
figure. Experiment: black
circles—[491], white
circles—[99]. Theory: (9.2)
with electron-loss cross
sections obtained with the
CTMC code—dashed curve
with RICODE
program—solid curve. From
[113]

http://dx.doi.org/10.1007/978-3-319-74992-1_6
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calculations (see [113]). The vacuum parameters employed in the calculations are
indicated in the figure. In calculations, the Bragg’s additivity rule was used for loss
and capture cross sections in collisionswithmolecules. The figure demonstrates quite
good agreement between theory and experiment performed at the SIS18 synchrotron
heavy-ion source at GSI, Darmstadt. We note that in the energy range considered,
E > 9 MeV/u, the electron-capture cross sections of U28+ ions colliding with the
rest-gas atoms andmolecules are negligible compared to electron-loss cross sections.
For relativistic energies, E > 5 GeV/u, the calculated lifetime of the uranium beam
is predicted to be a constant value of about τ ≈ 13 s for the vacuum parameters
considered.

9.1.2 Inverse Problem for Determination of the Vacuum
Conditions in Accelerators

As is seen from (9.1), the ion-beam lifetime in accelerators depends on the vacuum
parameters and charge-changing cross sections. In practice, however, simultaneous
measurement of ion-beam lifetimes and residual-gas density and concentrations is a
complicated problem, but one can solve the inverse problem to estimate the vacuum
conditions from ion lifetimes and charge-changing cross sections known from theory
or experiment.

Lifetimes τ of 11.4-MeV/u Uq+-ion beam are presented in Fig. 9.2 as a func-
tion of ion charge q. Experimental data on τ were obtained at the SIS18 heavy-
ion synchrotron, Darmstadt, for charges q = 34–42, but the vacuum conditions
were not known properly (see report [492]). Based on charge-changing cross sec-
tions calculated by the CAPTURE, DEPOSIT, and RICODE programs (see [43]
for detailed description of the codes), and experimental data on τ , the vacuum para-

Fig. 9.2 11.4-MeV/u
Uq+-ion beam lifetimes as a
function of ion charge q.
Experiment: filled and open
circles—SIS18 data,
Darmstadt [492]. Theory:
dashed curve—calculation
with electron-capture
processes neglected, and
solid curve—calculation
with both electron-capture
and electron-loss processes
included. The vacuum
parameters obtained with the
help of calculations are
indicated in the figure. From
[42]
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meters were estimated as follows: ρ ≈ 1.5 ×10−10 mbar, Y (H2) ≈ 75%, Y (N2) ≈
24%, Y (Ar) ≈ 1%, i.e., a good agreement with experimental ion-beam lifetimes was
achieved with these vacuum conditions and calculated cross sections. The vacuum
parameters obtained are close to expected parameters at the SIS18 synchrotron ion
source.

Here we have to stress a key role of electron-capture processes at energy
E = 11.4MeV/u: inclusion of the capture processes leads to a decrease in the ion-
beam lifetimes for uranium ions with charges q > 60, and neglecting the capture
processes causes an infinite increase in ion-beam lifetime with increasing ion charge.
Therefore, the uranium Uq+ ions with charges q ≈ 60 are the best candidates for
detection of the longest ion-beam lifetime τ ≈ 25s at E = 11.4MeV/u.

Certainly, the solution of the inverse problem considered here is not unambiguous,
but the procedure for estimating the vacuum parameters may be useful for interpreta-
tion of experimental data and planning future experiments with heavy many-electron
ion beams in accelerator facilities.

9.2 Charge Exchange as a Mechanism for Creating an
Inverse Population in a Capillary Discharge Plasma

A lasing on the Balmer-α line of H-like ions of carbon (18.22nm) and oxygen
(10.24nm) in the soft X-ray band (in the transition of n = 3 → n = 2)was identified
in [493] and [494] using a low-inductance ablative discharge in a polyacetal capillary,
where n is the principal quantum number. These results were obtained at the Ruhr
University of Bochum, Germany, using the set-up described in [495].

Studies on inverted population in the soft x-ray spectral region have been carried
out since 1985 in many laboratories including Livermore and Princeton, using pow-
erful lasers and heavy targets ([496, 497]). At present, this problem is still a subject
of high attention (see, for example, [498] and [499]).

Results of [493, 494] are of a special importance because the lasing in the x-ray
range was obtained in a compact laboratory setup (table-top) using light ions. It
should be noted that the first studies on creating inversion in the capillary discharge
were performed in [500].

As it was concluded in [493, 494], a hot plasma of fully stripped C6+ and O8+
ions, produced in the necks of a m = 0 (hose) instability, streamed into the colder
regions and produced population inversion by selective ion-ion charge exchange
(electron capture) into the n = 3 levels of C5+ and O7+ ions:

C6+ + C2+(2s2p) → C5+(n = 3) + C3+, (9.3)

O8+ + O3+(2s2p 2P) → O7+(n = 3) + O4+. (9.4)
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A series of thin discs of population inversion along the axis was thus created
leading to the amplification of the spontaneous emission on the Balmer-α line.

The interpretation of the observed lasing is supported by experiments with collid-
ing laser-produced plasmas as well as theoretical calculations [494] of low-energy
charge exchange cross sections and respective collisional-radiative calculations of
excited level populations [501]. In [494] the charge exchange cross sections are cal-
culated for collisions of oxygen bare nuclei with oxygen ions of lower ionization
degrees that exist in cold regions of the plasma. The calculations are performed in
the adiabatic approach using the ARSENY code [308] (see Chap.5 in detail).

Figure9.3 shows the n-resolved charge exchange cross section in collisions of
bare oxygen with O4+ ions in the states 2s2p 1P (Fig. 9.3a) and 2s2p 3P (Fig. 9.3b)
as a function of collision energy. As seen from the figure, the cross sections of all
channels of these processes decrease rapidly at the energy E ∼ 0.1keV/u.

The charge exchange cross sections of the process (9.4) reveal different behaviour:
there is a reaction channel with final state O7+(n = 3)which has large cross sections

Fig. 9.3 Calculated ion-ion low-energy charge exchange cross sections for processes O8+ +
O4+(2s2p 1,3P) → O7+(n) + O5+, n = 2−5. From [494]

Fig. 9.4 Calculated
low-energy ion-ion charge
exchange cross sections for
the processes
O8+ + O3+(2s22p2P) →
O7+(n) + O4+, n = 2–5.
From [494]

http://dx.doi.org/10.1007/978-3-319-74992-1_5
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Fig. 9.5 Experimental time
evolution of the current in
the capillary discharge
(Current I) and the Balmer-α
line emission (PM) in the
O7+ ion [494]. From [494]

for low-energy collisions (Fig. 9.4). This reaction produces the population inversion
causing the lasing at Balmer-α line.

Figure 9.5 shows a typical example of the time evolution of the current in the
capillary discharge (current I) and the emission of the Balmer-α line of the O7+
ion at 10.24nm detected with a photomultiplier (PM). At a time around 125ns, a
sharp deep peak is observed on the photomultiplier curve, which is interpreted as
the moment of the population inversion [494]. The results of [494] show that lasing
on the Balmer-α line of O7+ in a capillary discharge by charge exchange pumping
during a m = 0 instability is indeed possible.

9.3 Detection of Heavy and Super-Heavy Elements

Uranium is the heaviest natural chemical element on Earth (atomic number Z =
92), and heavier elements, the so-called super-heavy elements (SHE), are produced
artificially by nuclear fusion reaction of two elements. SHEs exist quite a short
time and decay by different ways. In the previous years (2010–2016) the heaviest
elements with Z = 113–118 were synthesized at the world powerful accelerators.
A list of some heavy and super-heavy elements and their characteristics is given
in Table9.1. Properties of heavy and super-heavy elements are of great interests
in atomic physics (structure of electronic shells, QED effects), quantum chemistry,
and, naturally, in nuclear physics in studying nuclear shells, stability of isotopes,
searching for the island of stability etc. (see [15, 503, 504]). Intensive investigations
on creation and detection of SHE are carrying out in JINR (Dubna, Russia), RIKEN
(Japan), Berkeley National Laboratory and Oak Ridge National Laboratory (USA)
and in GSI (Darmstadt, Germany) (see [504]).

Super-heavy elements are produced in collisions of ion beams with foils of heavy
elements at energies about a few hundreds of keV/u, where rates of nuclear reactions
are maximal. For example, to synthesize isotope of Copernicium ion (Cn, Z = 112,
M = 277a.m.u.), ion-beam of 70Zn (Z = 30, M = 70a.m.u.) penetrates a lead foil (Z
= 82, M = 208a.m.u.) at energy ∼ 350keV/u:

70Znp+ +208 Pb →277 Cnq+ + n, (9.5)

where p and q are charge states.
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One of the main principles used in detection of SHE is based on the properties of
equilibrium charge-state fractions, which do not depend on the charge state of initial
ion beam (see Sect. 3.3). This property of atomic interaction of ion beams with
matter became the basis of the method to detect heavy and super-heavy elements.
For detection of super heavy elements, gas-filled separators are used filled with H2

or He, or their mixture at a pressure of about a few mbar ([15, 504–511]).
Experimentally, a distribution of the charge-state fraction Fq over q for the cre-

ated ions (277Cn) is unknown. However, if these ions are directed into gas-filled
separator, i.e., a collision gas camera, then at a certain distance in the camera, the
charge-state distribution becomes equilibriumwith an equilibriummean charge given
by (3.6):

q̄ =
∑
q

qFq(∞),
∑
q

Fq(∞) = 1, (9.6)

where q̄ is independent of the initial charge-state distribution of the incoming (277Cn)
ions and the equilibrium distribution Fq(∞) is quite narrow consisted of only a small
number of fractions.

If a mean charge of SHE in question is known, using the Lorentz formula it is
easy to obtain the required magnetic rigidity of the separator dipole for detection of
SHE with given q̄ value:

Bρ = Mυ/q̄, (9.7)

where B, ρ, M and υ denote a magnetic field, radius of circular path, mass and
velocity of the ion. Therefore, knowing the mean charge of exit ions it is possible to
find the magnetic rigidity of the dipole magnet required for detection of the given
SHE, i.e., to find a required value of the magnetic field.

A knowledge about magnetic rigidity Bρ is a key question in such experiments
because a number of created super-heavy ions is very small and sharply decreases
with the atomic number Z : a rate of creation of synthesized ions can vary from a
few thousand ions per day for rather light ions up to one ion per a few weeks (!) for
super-heavy elements.

For a rough estimate of the mean charge for a given element with atomic number
Z , the Bohr formula (3.19) is usually used:

q̄ = υZ1/3, 1 < υ < Z2/3, (9.8)

which is valid for large Z and medium ion velocities υ. As was mentioned before,
the Bohr formula (9.8) and other semi-classical and semiempirical formulae have
some disadvantages: they do not take into account the atomic structure of colliding
particles and influenceof the target-density effect, i.e., dependenceon thegas pressure
in the separator. Now it is known that these effects are very important and require
introduction semiempirical corrections to (9.8) (see [15, 507–511]).

Figure9.6 shows experimental data [507] of themean charges for heavy and super-
heavy elements Z = 89–116 obtained in a H2-filled separator as a function of ion

http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_3
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Fig. 9.6 Experimental
dependence of the
equilibrium mean (average)
charge for ions with atomic
numbers Z = 89–116 as a
function of ion velocity v at
a pressure of 1Torr of
H2-filled gas. v0 is the Bohr
velocity. The data were
obtained at the DGFRS
separator—Dubna
Gas-Filled Recoil Separator.
The straight line shows a
linear fit of the experimental
data to (9.9). The upper part
of the systematics is shown
in the inset where the
average charges of No (Z =
102) at lower (0.5Torr) and
larger (1.5Torr) pressures are
shown by open circles. From
[507]

velocity υ = 1–2.6a.u. and a pressure P = 1Torr. These data are well approximated
by a formula similar to (9.8):

q̄ ≈ 3.26υ − 1.39. (9.9)

As seen from the inset of Fig. 9.6, experimental q̄ data differ from linear depen-
dence (9.9) because (9.8) does not take the density effect into account.

Similar measurements of the mean charges q̄ for heavy and super-heavy ions with
atomic numbers Z = 80–114 were carried out at TASCA separator (TransActinide
Separator and Chemistry Apparatus) at GSI, Darmstadt, with He gas at pressures
P = 0.2–2.0mbar and energies of about a few hundred keV/u [510]. The result of
the measured q̄ values are given in Table9.2 in comparison with the Bohr (9.8) and
semiempirical formula, and with results of atomic calculations also presented in
[510].

Values q̄SE1 were obtained by semiempirical formula obtained in [508] for SHE
up to Rg (Z = 111) using H2 gas in separator at a pressure of 0.66 mbar. Using the
formula for q̄SE1 for Z = 117, the mean charge q̄ ≈ 6.8 was predicted in [510] at He-
gas pressure of 0.8mbar. This predicted value was later used in [511] for detection
of 117-th elements, called now Tennessine (see Table9.1), at TASCA separator with
magnetic rigidity Bρ = 2.20Tm.

Values q̄SE2 in Table9.2 were estimated by semiempirical formula from [202],
obtained by analysis of experimental data for ions with Z = 1–92 and gaseous targets
with atomic numbers ZT = 1–54. As seen from the Table, the Bohr formula overesti-
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mates results by a factor of 2; a little better agreement is achieved using a formula for
q̄SE1 and the best agreement with experimental data is obtained with q̄SE2 formula.

It is well known that determination of magnetic rigidity by known mean charge is
a quite complicated experimental problem, which is usually solved semiempirically
by calibration of a gas-filled separator on the mean charges of isotopes of stable
elements with account for specific properties of specific experimental device.

As has been mentioned before, calculation of the mean charges q̄ for heavy and
super-heavy elementswith Z =80–120 in [510]was for thefirst timeperformedon the
basis of atomic calculations of electron-loss and electron-capture cross sections with
the density effect accounted for using the balance rate equations (3.1) and (3.2) for
charge-state evolution. The data calculated this way are marked q̄th in Table9.2. As
is seen the q̄th values agree with experimental data within 20%. However, for precise
measurements of super-heavy elements this accuracy of q̄ values is not sufficient
because the required accuracy should be of about a few percent (see [510]).

9.4 Effects of Charge-State Evolutions on Material
Modifications Using Swift Heavy Ions

As has been discussed in the previous chapters, when even a single fast (swift) heavy
ion inMeV/u energy range impinges a target medium, unique characteristic features,
which cannot be brought about by any other means, like photon or electron impacts,
are exhibited as a result of cumulative effects of a number of consecutive elastic and
inelastic collisions between the projectile ion and target atoms. Such interactions of
energetic ions with materials constitute the basis of a wide range of applications, like
materials analysis, materials modification and so on, and are considered as an ideal
tool to alter and control material properties through atomic structure modification of
the target material.

In collisions of swift heavy ions, energies transferred to target electrons via inelas-
tic processes aremuch larger than those to target nucleus via elastic collisions by three
orders of magnitude. Such target-electron excitations are considered to play a role in
materials modification, as they take place as deep as an ion range of 10µm inside the
medium. Since each inelastic collision process is significantly affected by charge and
electronic states of the projectile ions, information on the distribution and evolution
of charge states in matter is essential to basic study and applications of heavy-ion
irradiations. The energies of the excited target-electrons are finally transferred to the
target lattice and provide ultrafast local heating along the ion path, through which a
cylindrical damage region of several nm of diameter (ion track) is formed when the
electronic energy is larger than a material-dependent threshold value [512].

A number of experimental efforts have been devoted to material modifications
via swift-heavy-ion irradiations, in most of the cases however, charge states of the
impinging ions were not so much cared as about ion energies, i.e., the charge states
were selected according to maximum terminal voltage of accelerators and desired

http://dx.doi.org/10.1007/978-3-319-74992-1_3
http://dx.doi.org/10.1007/978-3-319-74992-1_3
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Fig. 9.7 X-ray diffraction
(XRD) intensity degradation
of WO3 films irradiated by
90-MeV Ni10+ and
100-MeV Xe14+ ions
normalized to those
irradiated by those ions with
equilibrium charge states.
From [517]

ion energies. In several recent experiments, it has been proved that ion charge state
plays an important role in material modifications in the near-surface area, such as
electron or photon emission from surfaces or formation of craters and ion tracks in
polymers [513–516].

Lately, Matsunami et al. [517] have studied atomic structure modification of thin
WO3 films irradiated by 90-MeV Ni10+ and 100-MeV Xe14+ ions with and without
a C-film of 4.7× 1012 atoms/cm2 upstream the target, i.e., by Ni/Xe ion beams with
charge state 10+/14+ and with their equilibrium charge states which is higher than
10+/14+. An X-ray diffraction (XRD) observation of the irradiated films has shown
that XRD intensities decrease with ion irradiation and the XRD intensity decrease
is more pronounced for the irradiation with equilibrium-charge-state beams than
with 10+/14+ beams. It has also been observed that the XRD intensity degradations
for Ni10+ and Xe14+ irradiations depend on WO3 film thickness, whereas those for
irradiationwith equilibrium-charge-state beams are nearly constant for differentWO3

target thickness. Those XRD intensity degradations for Ni10+ and Xe14+ irradiations
normalized to those for irradiations with equilibrium-charge-state beams are plotted
in Fig. 9.7. It is obvious that the normalized XRD intensity degradations increase and
finally saturate to the unity as the WO3 film thickness grows, clearly demonstrating
that the material property modification is affected by the evolution and equilibration
of impinging ion charge-states inside the target. Detailed discussion of charge-state
and stopping-power evolutions is made in [517].



Chapter 10
Lifetimes of Radioactive Heavy Ion Beams

Abstract In the previous chapter, it was discussed that for non-radioactive ion
beams, the lifetimes depend on the atomic charge-changing interactions between the
ion beam and residual-gas components. In the case of radioactive ion beams, the
mean lifetimes depend in addition on the nuclear properties of accelerated ions, and
hence, the total mean lifetime comprises both atomic and nuclear components:

1

τ
= 1

τatomic
+ 1

τnuclear
, (10.1)

or equivalently:
λ = λatomic + λnuclear, (10.2)

where λ = 1/τ is the total decay rate. Each decay components may have several
terms, which correspond to different decay channels (e.g., α−, β+−, β−−decay,
fission, etc.) and/or state transitions (e.g., nuclear ground-ground state transitions,
ground-excited state transitions, etc.), so one can define:

λnuclear =
∑

all channels i

λi . (10.3)

The individual decay rate depends on the underlying processes. In the following
sections, we describe mechanisms of the decay rates, or mean lifetimes, due to the
nuclear reactions.

10.1 The α-Decay Mean Lifetime of Heavy Ions

Theα-decay half-lives of heavy radioactive ions are varying froma fewmicroseconds
to about 1017 s. Alpha emitters can be found for elements heavier than Bi (Z = 83),
or for rare-earth elements from Nd (Z = 60) to Lu (Z = 71). Some examples of alpha
emitters are shown in Table10.1.

The decay rate (mean lifetime) can be estimated using a model of a α particle,
bouncing inside a box (potential well) at a frequency υ/R and having a probability

© Springer International Publishing AG 2018
I. Tolstikhina et al., Basic Atomic Interactions of Accelerated Heavy Ions
in Matter, Springer Series on Atomic, Optical, and Plasma Physics 98,
https://doi.org/10.1007/978-3-319-74992-1_10
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Table 10.1 Half-lives of heavy and super-heavy atoms due to the α-decay

Reaction Half-life
238
92 U → 234

90 Th + α 4.5gigayears
218
84 Po → 214

82 Pb + α 3.05min
214
84 Po → 210

82 Pb + α 16.37 ms
222
86 Rn → 218

84 Po + α 3.82days

Fig. 10.1 Quantum
tunneling of a α-particle
inside a potential well. From
[528]

VC

Qα

−V0

R RCRC

Potential well

Coulomb barrier: V (r) ∝ 1/r

r

E

of quantum tunneling (Fig. 10.1) via potential barrier in the form:

λα = υ

R
e−2G, (10.4)

where υ denotes the α-particle velocity inside a nucleus, R the potential well size,
and exp(−2G) the probability of tunneling through the potential well. The factor G
is the so-called Gamow factor, which is defined as:

G = 1

2

√
EG

Qα

g

(√
R

Rc

)
, (10.5)

where g(x) = 2
π

(
arccos(x) − x

√
1 − x2

)
, Rc is the distance from origin to the

point, at which the Coulomb potential VC is equal to the value Qα for the α decay
reaction:

Rc = e2ZαZ

Qα

, (10.6)
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Fig. 10.2 Plot of the
Geiger-Nuttall law (log(λ)

versus Z/
√
Qα) with

a1 ≈ 128 and a2 ≈ 3.97

25 30 35 40

−20

0

20

a1 − a2Z/
√

Qα

Z/
√

Qα (MeV−1/2)

log(λ)

Here Qα = mparent − mDaughter − mα and EG is the Gamow energy [518]:

EG =
(
2π ZαZe2

�c

)2
μc2

2
(10.7)

where Z and Zα denote the atomic numbers of the two decay products, the α particle
and the daughter nucleus, respectively, and μ the reduced mass. We note that this
results is also valid for spontaneous fission if we substitute Zα , and Qα to the above
equations with the corresponding quantities of the fission products. For example,
considering the 238U → 234Th+α decay, we find EG ≈ 122GeV,

√
EG/Qα ≈ 171,

g(
√

(R/RC)) ≈ 0.518, which gives e−2G ≈ 4 × 10−39. For the bounce frequency
υ/R ≈ 4.3 × 1021s−1, one has for the half-life T1/2 = 4.5Gy (gigayears).

The above results for α decay can be approximate and further reduced into a
simpler form (see Fig. 10.2), known as the Geiger-Nuttall law [519]:

ln(λα) = a − b
Z√
Qα

, (10.8)

where a and b are nearly constants. For example, in the approximation of μ ≈ mα

and R � Rc and thus g(
√
R/Rc) ≈ 1, we obtain b = 2πα

√
2mαc2 = 3.97 MeV1/2,

where α = e2/(�c) is the fine structure constant. The parameter a varies around the
value of 128.
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10.2 The β-Decay Mean Lifetime of Heavy Ions

The β-decay stem from the weak interaction and can be described—at the nuclear
level—as the transformation of a nucleon inside a nucleus, e.g., neutron into proton,
with the emission of a lepton pair (electron-neutrino). This is an isobaric transition
(constant mass number A but change in the (Z , N ) pair). The β decay occurs as
soon as the Q-value of the reaction is positive. This can be better seen in an isobar
cut across the valley of stability as shown in Fig. 10.3. For isobars, the binding
energy as a function of Z follow a parabolic shape (BetheWeizsäcker semi-empirical
mass formula). The Q-value is roughly equal to the parent-child binding energy
difference. This difference increase linearly, and then we move from the stability
point, corresponding to increasing β instability (shorter mean lifetime).

There are several distinguished forms of β decay:

n → p + e− + νe β− decay, emits e− to continuum
p → n + e+ + νe β+ decay, emits e+ to continuum
p + e−

b → n + νe EC, orbital electron capture
n → p + e−

b + νe bound state β − decay (βb), emits e− to a free electron orbit

We note that the orbital electron capture and the bound-state β-decay have a
two-body decay kinematics, in which the (anti) neutrinos are emitted with a well-
defined energy. Note also, that electron capture from continuum can only occur at
high electron densities like, for example, in a dense stellar plasma. The β decay
half lives range from few milliseconds to gigayears. Some examples are given in
Table10.2.

Fig. 10.3 Illustration of an
isobar cut across the valley
of stability. The β-stable
isobars minimize the binding
energy,so that the transitions
Z → Z ± 1 have negative Q
values. The further an isobar
is from the stability point,
the higher is the decay rate

ZZ − 1Z − 2 Z + 1 Z + 2

Stable isobar

unstable isobar (β−)

unstable isobar (β+, EC)

Z−2→Z−1

Q≈−ΔEB>0

β− β+, EC

−EB
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Table 10.2 Examples of some beta emitters, their transition type and half-lives

Reaction Transition Half-life
14
6 C → 14

7 N + e− + νe β− 5730years
6
2He → 6

3Li + e− + νe β− 0.8 s
14
8 O → 14

7 N + e+ + νe β+ 70.6 s
55
26Fe + e−

b → 55
25Mn + νe EC 2.6years

57
27Co + e−

b → 57
26Fe + νe EC 271.8days

10.2.1 Fermi Interaction

The decay-rate theory of β decay is usually described by a time-dependent pertur-
bation theory, known as the universal Fermi interaction rule (Fermi’s Golden rule
[520]). The probability of a decay (transition rate per unit time λi→ f ) from the initial
energy eigenstate of a quantum system |i〉 into a final state | f 〉 is given by a Fermi’s
golden rule:

λi→ f = 2π

�
|〈i |H | f 〉|2︸ ︷︷ ︸

=|Mi f |2
ρ(Q), (10.9)

where H is the transition hamiltonian, ρ(Q) is the density of final states, and Q
is the Q-value, the released energy of the reaction. The quantity 〈i |H | f 〉 is the
transition matrix element Mi f . Although the density of final state can be computed,
the transition matrix is usually difficult to compute, as it depends on many factors.
A short introduction to the β-decay theory is given in Appendix B. The description
of β decay, given in the Appendix, is the so-called four fermions interaction, which
is valid for low and medium energies (Fig. 10.4).

Fig. 10.4 Diagram of the
β+ decay, a proton which
decays into a neutron with
the emission of a positron
and a neutrino. Time is going
from bottom to top

p

n

νe

e+
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10.3 Beta Decay in Stellar Environment

In stellar interior, the distribution of the atomic states obeys the Boltzmann distri-
bution (in case of non-degenerate matter), which is sensitive to the temperature. In
extreme conditions like those, encountered in stars, thermal collisions of atoms lead
to their ionization. The ejected electrons from atom form an electron gas, which
co-exists with the gas of atomic ions and neutral atoms. The thermal-ionization rate
per volume increases with the density number ni, j , where i and j denote the atom
species and its j-times ionized state, respectively. However, electron recombination
occurs as well due to the interaction with the surrounding free electrons. The recom-
bination rate per volume involves two particles—electron and the ionized atom—and
increases with the product of their densities ni, j+1 ·ne. At the local thermodynamical
equilibrium, the population of differently ionized states ni, j+1/ni, j is given by the
Saha ionization equation:

ni, j+1 ne
ni, j

= 2
Zi, j+1

Zi, j

(
2πme

h2

)3/2

(kBT )3/2e−χi, j /kBT , (10.10)

where Zi, j denote the atomic partition function, me the electron mass, h the Planck
constant, kB the Boltzmann constant and χi, j the ionization potential. We note that
the charge neutrality has to satisfy the condition ne = ∑

jni, j .
At high density and pressure, free electrons and the neighboring ions can influence

the potential distribution in and near a given ion. This effect leads to reduce the
ionization potential χi, j , compared to the one χ lab

i, j measured in a laboratory:

χi, j = χ lab
i, j − Δi j , (10.11)

whereΔi j can be estimated theoretically [521]. A smaller ionization potential results
in a shift of the equilibrium occupation number in the direction of increased ioniza-
tion. This effect is called a pressure ionization or a depressure of the continuum
[521].

Calculation of the K - and L-shell occupation numbers for Ho atoms have been
performed in [521] for various temperature and mass density, taking into account
both the thermal and pressure ionization. Using the s-process parameters, a mass
density of ρs ≈ 8× 103 g/cm3 and temperature of Ts ≈ 3.5 gives for K- and L-shell
in Ho atom the occupation numbers from 0.22 up to 1.25 and from 0.1 up to 0.67,
respectively.

10.3.1 Influence of the High Charge State on β-Decay

The high ionization state (fully ionized or H-like Ho ions in the previous example)
can drastically affect the β-decay rates. It turned out that the decay modes, known
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in neutral atoms, can become forbidden, while the new ones can be opened up. For
example, the energy release, QK ,L

βb
, for βb-decay to K , L , …shells strongly depends

on the electronic configuration. In the case of a fully ionized mother atom of nuclear
charge number Z and atomic mass number A, which decay by βb-decay to the K
shell, one has:

m(Z ,A) → m(Z+1,A) + me − BK ,L
Z+1, (10.12)

where BK ,L
Z+1 is the binding energy of the K - or L-electron in the H-like daughter with

nuclear charge number Z + 1. In the case of β−-decay in neutral atom we have:

m(Z ,A) + Zme − Be
Z → m(Z+1,A) + (Z + 1)me − Be

Z+1 (10.13)

with the corresponding Q-value,

Qβ− = mZ ,A − mZ+1,A − me − (Be
Z − Be

Z+1), (10.14)

where Be
Z denotes the total binding energy of all bound electrons.

Defining ΔB = Be
Z+1 − Be

Z , we can write the relation between the Q-value for
βb-decay in fully ionized to the Q value for β−-decay in neutral atom as:

QK ,L
βb

= Qβ− − ΔB + BK ,L
Z+1, (10.15)

While values of ΔB range in neutral atoms from 64eV to about 20keV for low
and high nuclear charge number Z , respectively, the K binding energy BK

Z+1 can
reach values as large as 130keV (Z = 92). From these considerations, it follows that
β−-stable neutral atoms with negative Qβc -value can become βb-unstable if

BK ,L
Z+1 > |Qβ−| + ΔB, (10.16)

which is realized for sufficiently small negative Qβ− values. We note that for neutral
parent atoms we have Q(Z ,A)

β− = −Q(Z+1,A)
EC , which means that a stable neutral atoms

with a small Qβ− value can be found in daughter atoms of EC-unstable parents with
a small positive QEC value. It is clear that stable nuclei, which becomes unstable in
stellar medium, may strongly influence a nucleosynthesis paths, and, in particular,
the s-process path, which follows the stability valley. In general, such a dependence
of decay properties on the atomic charge state can have substantial impact on the
nucleosynthesis in hot stellar plasma [521, 522].
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10.3.2 Influence of the Induced Transitions on the Stellar
β-Decay Rates

Excited nuclear states, in addition to ionization effect, are significantly populated
by induced transitions due to the intense thermal photon bath. If one of the excited
states decays faster than the ground state, the effective stellar β-decay rate can be
much larger than the terrestrial rate as well [523]. The stellar β-decay rates become
a combination, levelheaded via the probability pi , of decay rates of all considered
states towards the available states of the product nuclei:

λstar
β =

∑

i

(pi
∑

j

λβi j ), (10.17)

where the probability pi is the product of the statistical weight and the Boltzmann
factor:

pi = (2Ji + 1) exp (−Ei/kT )∑
m(2Jm + 1) exp (−Em/kT )

(10.18)

The effects of ionization, temperature and density on the β-decay rates were
carefully investigated in the comprehensive work of Takahashi and Yokoi [524].

10.4 Example: Orbital Electron Capture Decay of Stored
Highly Charged Ions

As seen in Sect. 10.3.1, the β-decay rate can depend on the ionization state. This
effect has been observed in some experiments [525, 526], performed at GSI, Darm-
stadt, which showed that the orbital electron-capture decay rates of H- and He-like
ions can be larger than of neutral atoms having about 60 electrons. This effect has
been observed in H- and He-like 140Pr and 142Pm ions using the SchottkyMass Spec-
trometry method. These nuclei have been chosen because of their nuclear properties.
Indeed, these two nuclei decay by a pure Gamow-Teller transitions 1+ → 0+ to
almost 100% (ground state to ground state), and thus, are ideal systems for experi-
mental study of such transitions, as they have well defined initial and final states (see
Fig. 10.5).

In both experiments,measurementswere performed using the Fragment Separator
(FRS) and the Experiment Storage Ring (ESR) facilities. The mean lifetime can be
measured using time resolvedSchottkyMassSpectrometrymethod.An illustration of
a slice of the time-resolved spectrum with the different atomic and nuclear processes
occurring during themeasurements is shown in Fig. 10.6. Table10.3 shows the results
of the 142Pm measurements of the β+− and EC-decay rates, as well as the EC
branching ratios for various charge states. A significant increase of the EC branching
from about 23% in neutral atoms to 29% in the one-electron system is observed
(Fig. 10.6).
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Fig. 10.5 Decay scheme of the 140Pr and 142Pm nuclei. Decay schemes of neutral 140Pr and 142Pm.
Both nuclei decay by pure Gamow-Teller transition from ground state to ground state to almost
100%. In these transitions, neither an X-ray, nor γ -rays is emitted. Only a monochromatic electron
neutrino and a corresponding monochromatic recoil of the daughter are left after the decay. From
[528]

≈ 180 kHz ≈ 270 Hz ≈ 180 kHz

e− pick-up

e− loss/pick-up e− loss/pick-up

EC-decay EC-decay

β+-decay

β+-decay

140
59 Pr57+ 140

58 Ce57+ 140
59 Pr58+ 140

58 Ce58+ 140
59 Pr59+

Revolution frequency (30th harmonics)

f

Fig. 10.6 Illustration of the various processes which can occur during a SMSmeasurement at ESR.
In the experiments discussed above, mechanical slits placed on the appropriate orbits (shaded area)
prevents any feeding coming from the β+-daughter ions and/or any charge exchange reaction, so
that only the ions of interest circulate in the storage ring. From [528]

Table 10.3 Averaged results compared to the measured rates of neutral atoms taken from [527]

Ion λβ+[s−1] λEC [s−1] EC/(β + EC)

142Pm61+ (bare) 0.01228 (70) – –
142Pm60+ (H-like) 0.01257 (32) 0.00514 (14) 29.0% (13)
142Pm59+ (He-like) 0.01393 (59) 0.00357 (10) 20.2% (10)
142Pm (Neutral) [527] 0.01319 (49) 0.00392 (46) 22.9% (27)
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TheEC-decay rate ratio in both cases, i.e., 140Pr and 142Pm ions, has been estimated
to as

λH-like
EC

λHe-like
EC

≈ 1.5, (10.19)

meaning that H-like ions decay 1.5 times faster than He-like ions. A behavior of
electron density at the nucleus for these systems does not allow to explain these
results. In principle, the electron density at the nucleus for an electron of shell n, is
given in the plane wave approximation, by

|ψn
e (0)|2 ≈ 1

π

(
mee2

4πε0�2

)3

·
(
Z

n

)3

, (10.20)

which is proportional to 1/n3 for a given nucleus. Therefore, these ratio should be
of about 0.5 since the one- or two bound electrons of the ions are in the K -shell.

It has been shown [529] that this difference can be explained by taking into account
the conservation of the total angular momentum of the system (nucleus+lepton)
before and after the ECdecay process. The general treatment of EC-decay inGamow-
Teller transition for H and He-like ions is given in [529] and leads to the ratio:

PH
EC/PHe

EC = 2I + 1

2F + 1
, (10.21)

where F and I are the total angular momentum and nuclear spin of the initial states,
respectively. With a nuclear spin I = 1 and a total angular momentum F = 1/2 one
also finds a ratio of 3/2, which is in agreement within one standard deviation with
the measured ratio of 1.44 (6).



Appendix A
Solution of the Balance Rate Equations

In this Appendix, analytical solution of the balance rate equations (3.1) and (3.2) for
the charge-state fractionsFq(x) is found using the eigenvalue-decomposition method
(see, e.g., [530]) provided all charge-changing cross sections are given.

A.1 Reducing the Dimension of the Balance Equation
System

Let us first reduce the dimension of the equation system by one. The system of
equations (3.1) and (3.2) for N charge states q1 ≤ q ≤ qN can be written in the
form:

d

dx
Fqi(x) =

qi−1∑

qj=q1

σ EL
qjqi

Fqj (x) +
qN∑

qs=qi+1

σ EC
qsqi

Fqs(x)

−
(

qN∑

qm=qi+1

σ EL
qiqm

+
qi−1∑

qk=q1

σ EC
qiqk

)
Fqi(x), (A.1)

q1 ≤ qi ≤ qN−1, (A.2)

qN∑

q=q1

Fq = 1, (A.3)

where EL and EC denote electron-loss and electron-capture cross sections, respec-
tively.

The fraction FqN can be obtained from the normalization condition (A.3):

FqN = 1 −
qN−1∑

q=q1

Fq. (A.4)

© Springer International Publishing AG 2018
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Substituting (A.4) into (A.1), the equation system can be re-written as an N − 1
dimension system:

d

dx
Fqk =

qN−1∑

qi=q1

aqk ,qi Fqi + gqk , (A.5)

where q1 ≤ qk ≤ qN−1; aqk ,qi is an algebraic sum of the cross sections σqiqj and can
be both positive and negative, and gqk = σ EC

qN qk
is the contribution of electron capture

cross sections from the last state qN into the state qk .

A.2 Solving the System

One can easily recognize that (A.5) is a typical differential equation system with
a constant term gqk . According to the Cauchy-Lipschitz theorem, for a given initial
condition F(x = 0) = F0 there exists a unique solution of the equation system (A.5),
which can be written in the form:

F(x) = Fh(x) + Z(x), (A.6)

where Z(x) is the particular solution of (A.5) and Fh(x) is the solution of the homo-
geneous equation

d

dx
Fh = AFh. (A.7)

Here A denotes an N − 1 dimensional matrix and F the charge-state fraction vector.

A.2.1 Particular Solution

It is convenient to use as a particular solution the equilibrium fractions Z = F(∞),
i.e., the solution of equation

AF(∞) + g = 0. (A.8)

The solution of (A.8) is trivial : F(∞) = −A−1g and corresponds to the asymptotic
solution of equations (A.1) and (A.3) at x → ∞.

A.2.2 Homogeneous Solution

The homogeneous equations (A.7) can be solved using the eigenvalue decomposition
method. If A can be diagonalized then one has
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A = PDP−1, (A.9)

where D is a diagonal matrix with eigenvalues λi, and i being the index of the charge
qi, and P = {v1, . . . , vN−1} is the eigenvector matrix. After change of variable

Y = P−1Fh (A.10)

the equation (A.7) becomes:
d

dx
Y = DY . (A.11)

The solution to this equation has the form:

Y(x) =
⎛

⎜⎝
C1eλ1x

...

CN−1eλN−1x

⎞

⎟⎠ , (A.12)

where coefficients Ci are determined by the initial conditions:

Y(x = 0) =
⎛

⎜⎝
C1
...

CN−1

⎞

⎟⎠ = P−1Fh
0 , (A.13)

with Fh
0 = F0 − F(∞). The homogeneous solution is then obtained by

Fh(x) = PY(x). (A.14)

Therefore, the solution of the rate equations is expressed as a linear combination of
exponential functions with eigenvalues as exponents, and with coefficients that are
proportional to the eigenvectors components. The eigenvalues and eigenvectors can
eventually be complex.

A.2.3 Case of Complex Eigenvalues

If some of the obtained eigenvalues are complex, then they necessarily occur by pair
of complex conjugates with their corresponding complex conjugate eigenvectors. In
that case, it is always possible to find a new and real eigenvector basis by using the
complex conjugates properties. To illustrate this case, we consider a simple example.
Let us assume that we have only one pair of complex eigenvalues, with indexes 1 and
2, e.g., λ1 = θ + ωi and λ2 = θ − ωi. Then the matrix P = {v1, v2, . . . , vN−1} will
have one pair of complex conjugate eigenvectors v1 and v2 and the solution will be
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Fh = C1�(eiωxv1)e
θx + C2�(eiωxv1)e

θx +
∑

i �=1,2

Cie
λixvi, (A.15)

where � and � denote the real and imaginary parts, respectively.
Let us write the complex elements of the eigenvector v1 as ak + ibk . Then, the

complex eigenvectors component can be written as follows:

�(eiωxv1)e
θx = eθx

⎛

⎜⎜⎜⎝

a1 cosωx − b1 sinωx
a2 cosωx − b2 sinωx

...

aN−1 cosωx − bN−1 sinωx

⎞

⎟⎟⎟⎠ (A.16)

�(eiωxv1)e
θx = eθx

⎛

⎜⎜⎜⎝

a1 sinωx + b1 cosωx
a2 sinωx + b2 cosωx

...

aN−1 sinωx + bN−1 cosωx

⎞

⎟⎟⎟⎠ , (A.17)

and the unknown coefficients Ci can finally be determined by the initial condition:

Y(x = 0) = P−1
� Fh

0 ,

where P� = {�(v1),�(v1), v3, . . . , vN−1} is the new eigenvector matrix.
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Introduction to the Theory of β-Decay Rate

As has been shown in Sect. 10.2, the β-decay rate is given by the universal Fermi
theory, also called four fermions interaction theory. The decay rate expression is the
product of two factors, namely the square matrix element |Mif |2 and the density of
final states ρ(Q). The density of final states can be written as:

ρ(Q) = dN

dQ
= dNedNν

dEedEν

,

where dN = dNedNν = (4πp2edpe)(4πp2νdpν) is the product of the two elementary
volumes in the phase space. By differentiation and by neglecting the recoil energy
one can derive the following expression:

ρ(Q) = (4π)2Ee(Q − Ee)

√
E2

e − m2
e

√
(Q − Ee)2 − m2

νdEe (B.1)

where Q = Ee + Eν .
In the Fermi theory, one assumes that a vector current is coupled with a potential

at the same point of the space-time via a “contact” interaction. Since in β-decay,
the relativistic neutrinos and electrons have small masses compared to their kinetic
energies, their wave functions have to be solutions of the Dirac equation. The vector
current is defined as the hadronic vector current density, e.g. Jμ

− = (ψpγ
μψn) and

the potential vector is constructed from the lepton field yielding the leptonic current
density, e.g. Aμ = (ψeγμψν) where γ μ denotes the Dirac matrices.1

1 The Dirac matrices are square matrices of the dimension four. They are defined in the standard

representation as follows: γ 0 = β, γ 1 = βαx , γ 2 = βαy, γ 3 = βαz , where β =
(

I 0
0 −I

)
and

−→α =
(

0 −→σ−→σ 0

)
. The matrix I denotes the identity matrix of the dimension two. The matrices −→σ
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In this formalism ψa means that a particle a has been annihilated (or the anti
particle of a has been created) andψa means that a particle a has been created (or the
anti particle of a has been annihilated). For example the field operator ψe can means
the annihilation of an electron or the creation of a positron.

The corresponding hamiltonians of the β− and β+ decays, H− and H+, can be
written according to the four point interaction as:

H− = GF(ψpγ
μψn)(ψeγμψν) + h.c. (B.2)

and

H+ = GF(ψnγ
μψp)(ψνγμψe) + h.c., (B.3)

respectively. The factor GF is the Fermi coupling constant, GF/(�c)3 = 1.16637 ·
10−5 GeV−2.

B.1 Allowed Transitions and Selection Rules

The lepton current can be aproximated by a plane wave. The Taylor expansion of
this plane wave leads to:

ψ†
e ψν ∼ exp(−i−→pl · −→r ) = 1 − i−→pl · −→r + · · · (B.4)

where −→pl is the momentum carried by the two leptons. The term −→pl · −→r in the
development can be neglected at first order. Variable r corresponds to the radius
of the nucleus of a few fermi. A typical momentum carried by a lepton is of the
order of a few MeV/c. Taking into account that �c ∼ 197MeV fm−1 and using the
corresponding de Broglie wave length

λ = �c

plc

we obtain plr ∼ r/λ ∼ 1/200. The first order in the expansion (B.4) corresponds
to allowed transitions, where the orbital angular momentum carried by the leptons

is
−→
l = −→r × −→pl = 0. The higher orders (l �= 0) are called l-order forbidden

transitions. Since plr is of the order of 10−2, and enters squared into the equation for
the decay constant, (10.9), the decay constant for each l-order forbidden transition
is suppressed by a factor of about 104 compared to the (l − 1)-order.

denote the Pauli matrices, basis of the SU(2) group, which are defined as follows: σx =
(
0 1
1 0

)

σy =
(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. In addition one defines the matrix γ 5 = iγ 0γ 1γ 2γ 3.
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The hadronic part of the hamiltonian has to contain a term accounting for the
annihilation of the neutron(proton) and the creation of a proton(neutron). This is
realized by introducing an isospin operator τ+ such that

Mif =
〈

f |
∑

j

τ
(j)
+ |i

〉
(B.5)

where the index j runs over all nucleons in the nucleus. The nuclear state can be
represented as

|αJMπ〉

where J is the angular momentum of the nucleus, M is the projection on a selected
z-axis, π the parity, and α are all other quantum numbers which are not relevant
for the present discussion. Without polarisation of the nuclei, one has to account
for all possible M states. One can obtain the reduced matrix element defined by the
Wigner-Eckart theorem:

〈αf Jf πf ||T(k, π)||αiJiπi〉 (B.6)

where T(k, π) is an operator of tensorial order k and with parity π . The selection
rules for the angular momentum and parity are then:

|Jf − Ji| ≤ k ≤ Jf + Ji and π = πf πi (B.7)

For k = 0, the tensor T(k, π) reduces to identity and we obtain the case (B.5)
called Fermi transition:

MF =
〈

f |
∑

j

τ
(j)
+ |i

〉
(B.8)

According to (B.7) the selection rules for such transitions are:

ΔJ = 0 and πi = πf (B.9)

Transitions changing the nuclear momentum by one unit ΔJ = 1 have been
observed experimentally (e.g. the transition 6He → 6Li+e− + νe). For k = 1 the
tensor T(k, π) reduces to the spin operator −→σ and the transition corresponding to
this matrix element is called Gamow-Teller:

MGT =
〈

f |
∑

j

−→σ (j)τ
(j)
+ |i

〉
(B.10)

According to (B.7) the selection rules for this transition are:
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ΔJ = 1 and πi = πf (B.11)

and,

ΔJ = 0 and πi = πf (B.12)

excluding Jπ
i = Jπ

f = 0+

In general the nuclear matrix element can also include a mixture of the two terms
MF and MGT . There can be three types of transitions:

• the pure Fermi transition (0+ −→ 0+);
• the pure Gamow-Teller transition (ΔJ = 1);
• and a mixture of these two transition types (ΔJ = 0 except (0+ −→ 0+)).

The existence of Gamow-Teller terms shows that the nature of the weak interaction is
not a pure vector interaction. In order to include other possible types of interactions,
the Hamiltonian can be expanded to a more general form:

H = GF

∑

i=S,V,T ,A,P

Ci(ψpOiψn)(ψeOiψν) (B.13)

where Oi with weights Ci are operators whose properties are characterized by a
proper Lorentz transformation. There are 16 linearly independent 4 × 4 matrices
which fall into five classes: Scalar I ,Vector γ μ, Tensor σμν ,Axial vector γ 5γ μ and
Pseudoscalar γ 5. In the non-relativistic limit, Fermi transitions are of type S or V
and Gamow-Teller transitions are of type T or A.

In the 1950s, spectacular experimental and theoretical findings have modified the
understanding on the weak interaction. The starting push came from the so called
θ − τ puzzle. The particles θ and τ , known presently as kaon K+, have equal masses
and mean life-times. For a long time they were considered as two different particles
because their decay products have different parities. If the conservation of parity
holds in weak interaction then the θ and τ particles must also have different parities.
In 1954, T. D. Lee and C. N. Yang suggested that conservation of parity might be
broken in weak interaction and proposed several experiments for testing this [532].
If parity is conserved then the non-vanishing observables are scalar quantities such

as life time, angular correlations −→p1 · −→p2 , spin correlations
−→
S1 · −→

S2 , etc. In the case
of parity violation, one can in addition observe pseudo-scalar quantities and one has
to add to the hamiltonian (B.13) a pseudoscalar term H ′:

H ′ = G
∑

i=S,V,T ,A,P

C′
i(ψpOiψn)(ψeOiγ

5ψν) (B.14)

where C′
i are the weights of the pseudo-scalar operators and they express the strength

of parity violation. The weak interaction Hamiltonian (B.13) is then generalized to:
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H = G
∑

i=S,V,T ,A,P

(ψpOiψn)[ψeOi(Ci + C′
iγ

5)ψν] (B.15)

In 1957, C. S. Wu performed the first experiment showing the evidence for non-
conservationof parity inβ-decay [532].Directionof the electron emission inGamow-
Teller transition of polarized 60Co has been investigated. From the conservation of
angular momentum, the spins of the emitted electron and antineutrino have to be
parallel to the spin of the parent nucleus. If parity is not conserved, one expects a

non-zero pseudo-scarlar observable such as 〈−→S · −→p 〉 �= 0, which would mean that
there is a preferred direction of the momentum. The experiment realised by C. S. Wu
showed that electrons are emitted predominantly in the opposite direction of their
spin, that is, they have a negative helicity. Further complementary experiments have
been performed [533]. It has been shown that the weak interaction acts always on
the left-handed particle component or on the right-handed antiparticle component:
the parity violation is maximal. Therefore, one has to project the wave functions of
particles on left chirality state, and antiparticles on the right chirality state:

aψ = 1 − γ 5

2
ψ (B.16)

and

aψ = ψ
1 + γ 5

2
(B.17)

where the operators a and a denote the projection operators on the left handed and
right handed chirality states, respectively.

The restriction to the experimentally observed helicity components and the
Lorentz invariance of the β-decay Hamiltonian exclude all coupling except V and A.
This has led to the construction of the V − A theory [534]. The Hamiltonians (B.2)
and (B.3) of the β− and β+ decays can be rewritten as:

H− = GF√
2
(ψpγ

μ(CV + CAγ 5)ψn)(aψeγμaψν) (B.18)

and

H+ = GF√
2
(ψnγ

μ(CV + CAγ 5)ψp)(aψνγμaψe) (B.19)

respectively. Here CV and CA indicate the coupling constants of the nuclear part
of the Hamiltonian. The relation between these constants has been determined and
equals to CA/CV = −1.255 (6). Hamiltonians written in form (B.18) and (B.19)
include the violation of parity.



Appendix C
Theoretical Description of the 3/2 EC-Decay
Rate Ratio Found in H- and He-Like
Stored Ions

In Sect. 10.4, we consider an example of measurement, showing that the decay rate
can depend on the charge state of the ion. For the H-like and He-like case, it is also
possible to find the 3/2 result [535] by taking into account the well defined helicity of
the neutrino. In this approach that we describe in the following, we consider only the
transitions from ground state to ground state. The difference between the following
approach is that the wave function of the neutrino is constructed as beeing a left-
handed particle while in [529] this is the operator H which projects the particle into
its left chirality state. An expression of the EC probabilities for H- and He-like ions
are found in the next two sections.

C.1 H-Like Case

In theH-like case, the spin of the nucleus in the initial state is Ii = 1 and the spin of the
K-electron is Se = 1/2. This leads for the initial state to a total angular momentum
of Fi = 1 ± 1/2, that is, Fi = 1/2 or Fi = 3/2 hyperfine states. In the final state
however, after a pure Gamow-Teller transition occured, the nuclear spin is If = 0.
The neutrino has a spin Sν = 1/2 and does not carry any angular momentum in such
an allowed transition, i.e. Lν = 0. Thus, the total angular momentum of the system
in the final state is restricted to the state Ff = 1/2. It follows that from the possible
transitions given by:

Fi = 3/2 � Ff = 1/2
Fi = 1/2 → Ff = 1/2

only the latter one is permitted. This means that only transitions from the Fi = 1/2
hyperfine state can contribute to the decay. Furthermore, the mother nucleus having a
positivemagneticmoment [536], the electrons are populated in the lower energy state
which coresponds to Fi = 1/2, the possible populated upper hyperfine states beeing
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de-excited in lower hyperfine states with a relaxation time much shorter than the
cooling time. Thus there are two initial states corresponding to the spin projections
(|F = 1/2, mF = +1/2〉 ≡ |+〉Ne and |F = 1/2, mF = −1/2〉 ≡ |−〉Ne) of equal
occupation probabilitiesPH

i (mF) = 1/2withmF = 1/2 ormF = −1/2,mF being the
eigenvalue of the spin projection operator. In the final state, there are two accessible
states: |0, 0〉N ⊗ |1/2,+1/2〉ν and |0, 0〉N ⊗ |1/2,−1/2〉ν . In addition, the neutrino
has a well defined helicity (h = −1). Let assume that the neutrino is emmitted with
a momentum −→p = |p|−→n , where −→n is the unit vector along the direction of the

neutrino emission and is defined as −→n =
⎛

⎝
sin θ cosφ

sin θ sin φ

cos θ

⎞

⎠.

If −→n is the quantization axis, then the projection of the neutrino spin can be only
−1/2 due to its negative helicity. In this frame the final state is expressed as follow:

|0, 0〉N ⊗ |1/2,−1/2〉′ν ≡ |−〉′Nν (C.1)

where the sign ′ denotes a basis with the quantization axis along the direction of the
neutrino emission −→n . The total orbital electron capture probability is thus:

PH = 1

2
|Nν

�〈−|H|+〉Ne|2 + 1

2
|Nν

�〈−|H|−〉Ne|2 (C.2)

The H-like and He-like ions are unpolarized in the ESR. This means that the quanti-
zation axis z of the laboratory frame is chosen arbitrarily. Therefore we can choose
the quantization axis −→n for the initial states as well. Note that this is not appropriate
for the case of polarized H-like ions, although the ratio stays unchanged with respect
to the unpolarized one (see Appendix). The total probability becomes:

PH = 1

2
|Nν

�〈−|H|+〉′Ne|2 + 1

2
|Nν

�〈−|H|−〉′Ne|2 (C.3)

Since theHamiltonianhas nonzeromatrix elements only between stateswith identical
total angular momentum and its projection, the later relation reduces to:

PH = 1

2
|Nν

�〈−|H|−〉′Ne|2 ≡ A/2 (C.4)

where we have defined A = |Nν
�〈−|H|−〉′Ne|2. Finally we find,

2PH = A (C.5)
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C.2 He-Like Case

For helium-like 142Pm ions one uses similar arguments.

C.2.1 Initial States

In the initial state, the two electrons of the K shell are antiparallel due to the Pauli
exclusion principle. Therefore they are in a singlet state:

|0, 0〉e1e2 = |+〉e1 |−〉e2 − |−〉e1 |+〉e2√
2

(C.6)

In the initial state, the nuclear spin I = 1 has 2Ii + 1 = 3 projections, corresponding
to

|1, M〉N =
⎧
⎨

⎩

|1,+1〉N

|1, 0〉N

|1,−1〉N

(C.7)

Finally, the initial state is the tensor product of the nuclear and leptonic part:

|Ψi〉 = |1, M〉N ⊗ |+〉e1 |−〉e2 − |−〉e1 |+〉e2√
2

(C.8)

C.2.2 Final States

In the final state, the nuclear spin is I = 0, the remaining electron has spin Se = 1/2
and the neutrino has spin Sν = 1/2. Because of the conservation of the total angular
momentum in the EC-decay, the spin of the remaining electron and the spin of the
neutrino have to couple to F = 1. Again, if we choose the quantization axis −→n for
the projection of the spin of the neutrino, we obtain two final states:

{ |0, 0〉N ⊗ |+〉e ⊗ |−〉′ν
|0, 0〉N ⊗ |−〉e ⊗ |−〉′ν (C.9)

It is clear that in the “neutrino frame”, the projection of the total angular momentum
of the final state can never be M ′ = 1 because of the well defined helicity of the
neutrino. However the projection can be 0 or −1 depending on the projection of the
remaining electron.
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C.2.3 Total EC-Probability

The total orbital electron capture probability can be expressed as follow:

PHe =
∑

M

1

2Fi + 1
PM (C.10)

where Fi = 1 is the total angular momentum with projection M = 1, 0,−1, and the
probability PM is:

PM = 2 × [ |N 〈0, 0|e〈−|ν �〈−|H|1, M〉N {|+〉e1 |−〉e2 − |−〉e1 |+〉e2}/
√
2|2

+ |N 〈0, 0|e〈+|ν �〈−|H|1, M〉N {|+〉e1 |−〉e2 − |−〉e1 |+〉e2}/
√
2|2 ] (C.11)

The factor 2 express the fact that there are two possibilities of capturing an electron,
that is, the electron e1 or the electron e2. Let us first assume that the electron e2 is
captured. In this case, the remaining electron e1 does not participate on the weak
decay, and we have e1〈m|H|m′〉e1 = e1〈m|m′〉e1 = δm,m′ , where m, m′ = ±1/2.
Therefore equation (C.11) can be simplified to

PM = |N 〈0, 0|ν �〈−|H|1, M〉N |+〉e2 |2
+ |N 〈0, 0|ν �〈−|H|1, M〉N |−〉e2 |2 (C.12)

The hamiltonian H having non zero matrix elements only between states with
same angular momentum and projections, it can be shown [528] using the proper
Clebsch-Gorden coefficients that

P+1 = 0
P0 = A/3
P−1 = 2A/3

(C.13)

The total orbital electron capture probability given by equation (C.10) becomes:

PHe = 1

3
P+1 + 1

3
P0 + 1

3
P−1 = 1

3
× (0 + 1

3
A + 2

3
A) (C.14)

or
3PHe = A (C.15)

Using the latter relation (C.15) and the relation (C.5), found in H-like case, we
find finally:

3PHe = A = 2PH ⇔ PH

PHe
= 3

2
(C.16)
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This ratio of 3/2 is in good agreement with the measured ones. One can show
that this result is the same in case of polarized H- and He-like 142Pm ions. The ratio
PH/PHe = 3/2 is valid for all EC transitions 1+ → 0+.
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329. P.S. Krstić, J.H. Macek, S.Y. Ovchinnikov, D.R. Schultz, Analysis of structures in the cross
sections for elastic scattering and spin exchange in low-energy H+ +H collisions. Phys. Rev.
A 70(4), 042711–8 (2004)

330. S.A. Blanco, C.A. Falcon, R.D. Piacentini, Electron capture fromH(2s) byH+ at low energies.
J. Phy. B: At. Mol. Phy. 19(23), 3945–3950 (1986)

331. N. Rosen, C. Zener, Double Stern-Gerlach Experiment and Related Collision Phenomena.
Phys. Rev. 40, 502–507 (1932)

332. S. Ovchinnikov, E. Solov’ev, Theory of nonadiabatic transitions in a system of three charged
particles. Zh. Eksp. Teor. Fiz. 90, 921–925 (1986). [Sov. Phys. JETP 63, 538-544 (1986)]

333. R.K. Janev, Hidden crossing nature of nonadiabatic coupling between quasiresonant one-
electron molecular states. Phys. Rev. A 55, R1573–R1576 (1997)

334. A. Igarashi, C.D. Lin, Full ambiguity-free quantum treatment of D+ + H(1s) charge transfer
reactions at low energies. Phys. Rev. Lett. 83, 4041–4044 (1999)
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341. R.K. Janev, D.S. Belić, B.H. Bransden, Total and partial cross sections for electron capture
in collisions of hydrogen atoms with fully stripped ions. Phys. Rev. A 28, 1293–1302 (1983)

342. J. Macek, X.Y. Dong, Calculation of electron-capture cross sections in low-energy collisions
of C6+ with H. Phys. Rev. A 40, 95–100 (1989)

343. R.L.Watson, Y. Peng, V. Horvat, G.J. Kim, R.E. Olson, Target Z-dependence and additivity of
cross sections for electron loss by 6-MeV/amu Xe18+ projectiles. Phys. Rev. A 67, 022706–7
(2003)

344. V.P. Shevelko, M.S. Litsarev, M.-Y. Song, H. Tawara, J.-S. Yoon, Electron loss of fast many-
electron ions colliding with neutral atoms: possible scaling rules for the total cross sections.
J. Phys. B: At. Mol. Opt. Phys. 42, 065202–6 (2009)

345. J. Alonso, H. Gould, Charge-changing cross sections for Pb and Xe ions at velocities up to 4
×109 cm/sec. Phys. Rev. A 26, 1134–1137 (1981)

346. H.-P. Hülskötter, B. Feinberg, W.E. Meyerhof, A. Belkacem, J.R. Alonso, L. Blumenf, E.A.
Dillard, H. Gould, N. Guardala, G.F. Kreb, A. McMahan, M.F. Rhodes-Brown, B.S. Rude, J.



References 209

Schweppe, D.W. Spooner, K. Street, P. Thieberger, H.E.Wegner, Electron-electron interaction
in projectile electron loss. Phys. Rev. A 44, 1712–1724 (1991)

347. N. Madsen, Vacuum changes during accumulations of Pb54+ in LEIR PS/DI Note 99–21
(1999)

348. O. Gröbner, et al., GSI/CERN collaboration (1993, unpublished)
349. D. Mueller, L. Grisham, I. Kaganovich, R.L. Watson, V. Horvat, K.E. Zaharakis, Y. Peng,

Multiple electron stripping of heavy ion beams. Laser Part. Beams 20, 551–554 (2002)
350. V.P. Shevelko, IYu. Tolstikhina, Th Stöhlker, Stripping of fast heavy low-charged ions in

gaseous targets. Nucl. Instrum. Methods B 184, 295–308 (2001)
351. W.E. Meyerhof, R. Anholt, J. Eichler, H. Gould, Ch. Munge, J. Alonso, P. Thieberger, H.E.

Wegner, Atomic collisions with relativistic heavy ions. III. Electron capture. Phys. Rev. A 32,
3291–3301 (1985)

352. R. Anholt, W.E. Meyerhof, H. Gould, Ch. Munge, J. Alonso, P. Thieberger, H.E. Wegner,
Atomic collisions with relativistic heavy ions. IV. Projectile K-shell ionization. Phys. Rev. A
32, 3302–3309 (1985)

353. R. Anholt, W.E. Meyerhof, Atomic collisions with relativistic heavy ions. V. The states of
ions in matter. Phys. Rev. A 33, 1556–1568 (1986)

354. R. Anholt, Ch. Stoller, J.D. Molitoris, D.W. Spooner, E. Morenzoni, S.A. Andriamonje, W.E.
Meyerhof, H. Bowman, J.-S. Xu, Z.-Z. Xu, J.O. Rasmussen, D.H.H. Hoffmann, Phys. Rev.
A 33, 2270–2280 (1986)

355. R. Anholt, U. Becker, Atomic collisions with relativistic heavy ions. IX. Ultrarelativistic
collisions. Phys. Rev. A 36, 4628–4636 (1987)

356. H. Th Stöhlker, H. Geissel, C. Folger, P.H. Kozhuharov, G. Mokler, D.Schardt Münzenberg,
M. Th Schwab, H. Steiner, K.Summerer Stelzer, Equilibrium charge state distributions for
relativistic heavy ions. Nucl. Instrum. Meth. B 61, 408–410 (1991)

357. C. Scheidenberger, H. Geissel, H. Th Stöhlker, H. Folger, C. Irnich, A. Kozhuharov, P.H.
Magel, R. Mokler, G. Moshammer, F. Münzenberg, M. Nickel, P. Pfätzner, W. Rymuza, J.
Schwab, B.Voss Ullrich, Charge states and energy loss of relativistic heavy ions in matter.
Nucl. Instr. Meth. B 90, 36–40 (1994)

358. C. Th Stöhlker, P.H. Kozhuharov, A. Mokler, F. Warczak, H. Bosch, R. Geissel, C. Mosham-
mer, J. Scheidenberger, A. Eichler, T. Ichihara, Z. Shirai, P. Rymuza Stachura, Radiative
electron capture studied in relativistic heavy-ionatom collisions. Phys. Rev. A 51, 2098–2111
(1995)

359. D.C.ThStöhlker, P. Ionescu, F.Rymuza,H.Bosch,C.Geissel, T.Kozhuharov, P.H.Ludziejew-
ski, C. Mokler, Z. Scheidenberger, A. Stachura, R.W. Dunford Warczak, K-shell excitation
studied for H- and He-like bismuth ions in collisions with low-Z target atoms. Phys. Rev. A
57, 845–854 (1998)

360. A.C.F. Santos, R.D.DuBois, Scaling laws for single andmultiple electron loss fromprojectiles
in collisions with a many-electron target. Phys. Rev. A 69, 042709–11 (2004)

361. R.D. DuBois, A.C.F. Santos, F. Th Stöhlker, A. Bosch, A. Brauning-Demian, S. Gumberidze,
C.Hagmann, R.Kozhuharov,A.OrsicMann,U.Muthig, S. Spillmann,W. Tachenov, L. Barth,
B.B. Dahl, J. Franzke, L. Glatz, R. Groning, D. Richter, K. Wilms, O. Jagutzki Ullmann,
Electron loss from 1.4-MeV/u U4,6,10+ ions colliding with Ne, N2, and Ar targets. Phys. Rev.
A 70, 032712–5 (2004)

362. R.E. Olson, R.L. Watson, V. Horvat, K.E. Zaharakis, R.D. DuBois, Th Stöhlke, Electron
stripping cross-sections for fast, low charge state uranium ions. Nucl. Instrum. Methods A
544, 333–336 (2005)

363. R.D. DuBois, A.C.F. Santos, R.E. Olson, Scaling laws for electron loss from ion beams. Nucl.
Instrum. Methods A 544, 497–501 (2005)

364. V.I. Matveev, D.B. Sidorov, Energy losses of fast heavy multiply charged structural ions in
collisions with complex atoms. JTP Techn. Phys. 52, 839–844 (2007). [Zh. Tech. Fiz. 77,
18–21 (2007)]

365. IYu. Tolstikhina, I.I. Tupitsyn, S.N. Andreev, V.P. Shevelko, Influence of relativistic effects
on electron-loss cross sections of heavy and superheavy ions colliding with neutral atoms.
JETP 119, 1–7 (2014). [Zh. Eks. Teor. Fyz. 146, 5-12 (2014)]



210 References

366. R.E., Olson, Multiple Electron Capture and Ionization in Ion-Atom Collisions in Electronic
and Atomic Collisions, ed. by H.B. Gilbody,W.R. Newell, F.H. Read, A.C.H. Smith (Elsevier,
New York, 1988), pp. 271–285

367. R.E.Olson,Classical trajectory andmonte carlo techniques, inAtomic, Molecular, and Optical
Physics Handbook, ed. Drake, G.W.F. AIP, Woodbury, NY, (1996), Chap. 56, pp. 869–874

368. V.P. Shevelko, D. Kato, M.S. Litsarev, H. Tawara, The energy-deposition model: electron loss
of heavy ions in collisions with neutral atoms at low and intermediate energies. J. Phys. B:
At. Mol. Opt. Phys. 43, 215202–9 (2010)

369. C.L. Cocke, Production of highly charged low-velocity recoil ions by heavy-ion bombardment
of rare-gas targets. Phys. Rev. A 20, 749–758 (1979)

370. F. Salvat, J.D. Martínes, R. Mayol, J. Parellada, Analytical Dirac-Hartree-Fock-Slater screen-
ing function for atoms (Z = 1–92). Phys. Rev. A 36, 467–474 (1987)

371. A. Russek, J. Meli, Ijnization phenomena in high-energy atomic collisions. Physica 46, 222–
243 (1970)

372. T.A. Carlson, C.W. Nestor Jr., N.Wasserman, J.P. McDowell, Calculated ionization potentials
for multiply charged ions. Atom. Data Nucl. Data Tables 2, 63–99 (1970)

373. J.P. Desclaux, Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120.
Atom. Data Nucl. Data Tables 12, 311–406 (1973)

374. K. Rashid, M.Z. Saadi, M. Yasin, Dirac-Fock total energies, ionization energies, and orbital
energies for uranium ions U I to U XCII. Atom. Data Nucl. Data Tables 40, 365–378 (1988)

375. G.H. Zschornack, Handbook of X-Ray Data (Springer, Heidelberg, 2007)
376. N.M. Kabachnik, V.N. Kondratyev, Z. Roller-Lutz, H.O. Lutz, Multiple ionization of atoms

and molecules in collisions with fast ions: ion-atom collisions. Phys. Rev. A 56, 2848–2854
(1997)

377. V.P. Shevelko, M.S. Litsarev, H. Tawara, Multiple ionization of fast heavy ions by neutral
atoms in the energy deposition model. J. Phys. B: At. Mol. Opt. Phys. 41, 115204–5 (2008)

378. J.M. Rost, T. Pattard, Analytical parametrization for the shape of atomic ionization cross
sections. Phys. Rev. A 55, R5–R7 (1997)

379. L. Bozyk, F. Chill, M.S. Litsarev, IYu. Tolstikhina, V.P. Shevelko, Multiple-electron losses
in uranium ion beams in heavy ion synchrotrons. Nucl. Instrum. Methods Phys. Res. B. 372,
102–108 (2016)

380. V.P. Shevelko, M.-Y. Song, IYu. Tolstikhina, H. Tawara, J.-S. Yoon, Cross sections for charge-
changing collisions of many-electron uranium ions with atomic and molecular targets. Nucl.
Instrum. Methods Phys. Res. B. 278, 63–69 (2012)

381. M.-Y. Song,M.S. Litsarev,V.P. Shevelko,H. Tawara, J.-S.Yoon, Single- andmultiple-electron
loss cross-sections for fast heavy ions colliding with neutrals: semi-classical calculations.
Nucl. Instrum. Methods Phys. Res. B 267, 2369–2375 (2009)

382. V.P. Shevelko, M.S. Litsarev, H. Th Stöhlker, Tawara, IYu. Tolstikhina, G. Weber, Electron
loss and capture processes, in collisions of heavy many-electron ions with neutral atoms, in
Atomic Processes in Basic and Applied Physics, ed. by V. Shevelko, H. Tawara (Springer,
Berlin, 2012), pp. 125–152

383. A.B. Voitkiv, Theory of projectile-electron excitation and loss in relativistic collisions with
atoms. Phys. Rep. 392, 191–277 (2004)

384. A.B. Voitkiv, B. Najjari, A. Surzhykov, Charge states and effective loss cross sections for 33
TeV lead ions penetrating aluminum and gold foils. J. Phys. B 41, 111001–7 (2008)

385. B. Najjari, A. Surzhykov, A.B. Voitkiv, Relativistic time dilation and the spectrum of electrons
emitted by 33-TeV lead ions penetrating thin foils. Phys. Rev. A 77, 042714–5 (2008)

386. A.B.Voitkiv, J. Ullrich,Collisions of Structured Atomic Particles (Springer, Heidelberg, 2008)
387. G. Baur, I.L. Beigman, I.Y. Tolstikhina, V.P. Shevelko, Th Stöhlker, Ionization of highly

charged relativistic ions by neutral atoms and ions. Phys. Rev. A 80, 012713–6 (2009)
388. E. Eliav, U. Kaldor, P. Schwerdtfeger, B.A. Hess, Y. Ishikawa, Ground state electron config-

uration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994)
389. V.P. Shevelko, Yu.A. Litvinov, Th. Stöhlker, I.Yu. Tolstikhina, Lifetimes of relativistic heavy-

ion beams in the high energy storage ring of FAIR (Nucl. Instrum, Methods B, 2018). (in
press)



References 211

390. T.P. Grozdanov, R.K. Janev, Electron capture in slow collisions of multiply charged ions with
hydrogen molecules. J. Phys. B 13, L69–L72 (1980)

391. L. Meng, C.O. Reinhold, R.E. Olson, Electron removal from molecular hydrogen by fully
stripped ions at intermediate energies. Phys. Rev. A 40, 3637–3645 (1989)

392. D.H. Crandall, R.A. Phaneuf, F.W. Meyer, Electron capture by slow multicharged ions in
atomic and molecular hydrogen. Phys. Rev. A 19, 504–514 (1979)

393. T.Miyoshi, K. Noda, Y. Sato, H. Tawara, I.Y. Tolstikhina, V.P. Shevelko, Evaluation of excited
nl-state distributions of fast exit ions after penetrating through solid foils. Part 1: charge-state
fractions for 4.3 MeV/u projectiles with atomic numbers Z = 6–26 passing through carbon
foils. Nucl. Instrum. Methods Phy. Res. B 251, 79–88 (2006)

394. R.L. Hickok, Plasma density measurement by molecular ion breakup. Rev. Sci. Instrum. 38,
142–143 (1967)

395. A. Müller, Electron-ion collisions: fundamental processes in the focus of applied research.
Adv. At. Mol. Opt. Phys. 55, 294–417 (2008)

396. I.I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979)
397. Y.S. Kim, R.H. Pratt, Direct radiative recombimation of electrons with atomic ions: cross

sections ans rate coefficients. Phys. Rev. A 27, 2913–2924 (1983)
398. K. Omidvar, A.M. McAllister, Evaluation of high-level bound-bound and bound-continuum

hydrogenic oscillator strengths by asymptotic expansion. Phys. Rev. A 51, 1063–1066 (1995)
399. M. Pajek, R. Schuch, Radiative recombination in the low-energy regime. Phys. Lett. A 166,

235–237 (1992)
400. S. Schippers, D. Bernhardt, A. Müller, C. Krantz, M. Grieser, R. Repnow, A.Wolf, M. Lestin-

sky, M. Hahn, O. Novotný, D.W. Savin, Dielectronic recombination of xenonlike tungsten
ions. Phys. Rev. A 83, 012711–6 (2011)

401. A. Müller, Fusion-related ionization and recombination data for tungsten ions in low to mod-
erately high charge states. Atoms 3, 120–161 (2015)

402. A.H. Gabriel, Some problems relating to solar line identification, in Highlights of Astronomy,
ed. by C.R. de Jager (Dordrecht, 1971), pp. 486–494

403. S. Schippers, T. Bartsch, C. Brandau, A. Müller, G. Gwinner, G. Wissler, M. Beutelspacher,
M. Grieser, A. Wolf, R.A. Phaneuf, Dielectronic recombination of lithiumlike Ni25+ ions:
high-resolution rate coefficients and influence of external crossed electric andmagnetic fields.
Phys. Rev. A 62, 022708–12 (2000)

404. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, C. Harabati, Electron recombination with
multicharged ions via chaotic many-electron states. Phys. Rev. A 66, 012713–7 (2002)

405. G.F. Gribakin, S. Sahoo, Mixing of dielectronic and multiply excited states in electronion
recombination: a study of Au24+. J. Phys. B: At. Mol. Opt. Phys. 36, 3349–3370 (2003)

406. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, C. Harabati, Chaos-induced enhancement of
resonant multielectron recombination in highly charged ions: statistical theory. Phys. Rev. A
86, 022714–9 (2012)

407. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, C. Harabati, M.G. Kozlov, Electron recombina-
tion, photoionization, and scattering via many-electron compound resonances. Phys. Rev. A
88, 062713–6 (2013)

408. I.L. Beigman,V.P. Shevelko,H. Tawara,Direct electron-impact single ionization ofmedium-Z
ions from the ground and excited states. Phys. Scr. 53, 534–540 (1996)

409. R.E.H. Clark, J. Abdallah Jr., Atomic data for titanium. Phys. Scr. T37, 28–34 (1991)
410. V.P. Shevelko, L.A. Vainshtein, E.A. Yukov, Cross sections and rate coefficients for inelastic

electron collisions with carbon and oxygen ions. Phys. Scr.T28, 39-48 (1989); errata, Physica
Scripta 44,408 (1991)

411. P.A.Z. van Emmichoven, M.E. Bannister, D.C. Gregory, C.C. Havener, R.A. Phaneuf, E.W.
Bell, X.Q. Guo, J.S. Thompson, M. Sataka, Electron-impact ionization of Si6+ and Si7+ ions.
Phys. Rev. A 47, 2888–2892 (1993)

412. M. S. Pindzola, private commun., 1993
413. D.C.Gregory,M.S.Huq, F.W.Meyer,D.R. Swenson,M. Staka, S. Chntrenne, Electron-impact

ionization cross-section measurements for U10+, U13+, U16+. Phys. Rev. A 41, 106–115
(1990)



212 References

414. W. Lotz, Electron-impact ionization cross-sections and ionization rate coefficients for atoms
and ions from hydrogen to calcium Z. Phys. 216, 241–247 (1968)

415. M.S. Pindzola, M.J. Buie, Electron-impact ionization of uranium atomic ions. Phys. Rev. A
39, 1029–1032 (1989)

416. M.S. Pindzola, D.C. Griffin, C. Bottcher,M.J. Buie, D.C. Gregory, Electron-impact ionization
data for the nickel isonuclear sequence. Physica Scripta. T37, 35–46 (1991)

417. M.H. Chen, K.J. Reed, D.L. Moores, Contributions of resonant excitation double autoioniza-
tion to the electron-impact ionization of Fe15+. Phys. Rev. Lett. 64, 1350–1353 (1990)

418. A. Burgess, M.C. Chidichino, Electron inpact ionization of complex ions. Mon. Not. R. Soc.
Astron. Soc. 203, 1269–1280 (1983)

419. M. Arnaud, R. Rothenflug, An updated evaluation of recombination and ionization rates.
Astron. Astrophys. Suppl. Ser. 60, 425–457 (1985)

420. T. Kato, K. Masai, M. Arnaud, Comparison of ionization rate coefficients of ions from hy-
drogen through nickel. NIFS-DATA-014, Nagoya, Japan (1991)

421. K.J. LaGattuta, Y. Hahn, Electron impact ionization of Fe15+ by resonant excitation double
Auger ionization. Phys. Rev. A 24, 2273–2276 (1981)

422. R.J.W. Henry, A.Z. Msezane, Cross sections for inner-shell excitation of Na-like ions. Phys.
Rev. A 26, 2545–2550 (1982)

423. A.Müller, K. Tinschert, G. Hofmann, E. Salzborn, G.H. Dunn, Resonances in electron-impact
single, double, and triple ionization of heavy metal ions. Phys. Rev. Lett. 61, 70–73 (1988)

424. A. Müller, G. Hofmann, K. Tinschert, E. Salzborn, Dielectronic capture with subsequent two-
electron emission in electron-impact ionization of C3+ ions. Phys. Rev. Lett. 61, 1352–1355
(1988)

425. A. Müller, K. Tinschert, C. Achenbach, E. Salzborn, R. Becker, A new technique for the
measurement of ionization cross sections with crossed electron and ion beams. Nucl. Instrum.
Methods Phys. Res. B 10(11), 204–206 (1985)

426. A. Müller, Ion Formation Processes: Ionization, in ion-electron collisions, In Physics of Ion
Impact Phenomena, ed. by D. Mathur, Springer Ser, Chem. Phys., vol. 54, (Springer, Berlin,
Heidelberg, 1991), pp. 13–90

427. V.P. Shevelko, H. Tawara, F. Scheuermann, B. Fabian, A. Müller, E. Salzborn, Semiempirical
formulae for electron-impact double-ionization cross sections of light positive ions. J. Phys.
B: At. Mol. Opt. Phys. 38, 525–545 (2005)

428. V.P. Shevelko,H.Tawara, IYu. Tolstikhina, F. Scheuermann,B. Fabian,A.Müller, E. Salzborn,
Double Ionization of heavy positive ions by electron impact: empirical formula and fitting
parameters for ionization cross sections. J. Phys. B: At.Mol. Opt. Phys. 39, 1499–1516 (2006)

429. J.A. Syage, Electron-impact cross sections for multiple ionization of Ar: detector gain effects
revealed. J. Phys. B: At. Mol. Opt. Phys. 24, L527–L532 (1991)

430. A. Müller, K. Tinschert, C. Achenbach, R. Becker, E. Salzborn, Electron impact double
ionisation of Ar+ and Ar4+ ions. J. Phys. B: At. Mol. Phys. 18, 3011–3024 (1985)

431. M. Stenke, K. Aichele, D. Hathiramani, G. Hofmann, M. Steidl, R. Völpel, V.P. Shevelko,
H. Tawara, E. Salzborn, Electron-impact multiple ionization of singly and multiply charged
tungsten ions. J. Phys. B: At. Mol. Opt. Phys. 28, 4853–4859 (1995)

432. C.D. Loch, M.S. Pindzola, N.R. Badnell, F. Scheuermann, K. Kramer, K. Huber, E. Salzborn,
Electron-impact ionization of Biq+ for q=110. Phys. Rev. A 70, 052714–9 (2004)

433. H. Tawara, T. Kato, Total and partial ionization cross sections of atoms and ions by electron
impact. At. Data Nucl. Data Tables 36, 167–353 (1987)

434. V.P. Shevelko, H. Tawara, E. Salzborn, Mutiple-ionization cross sections of atoms and pos-
itive ions by electron impact. Report NIFS-DATA-27, National Institute for Fusion Science,
Nagoya, Japan (1995)

435. V.P. Shevelko, H. Tawara, Semiempirical formulae for multiple ionization of neutral atoms
and positive ions by electron impact. J. Phys. B 28, L589–L594 (1995)

436. C. Bélenger, P. Defrance, E. Salzborn, V.P. Shevelko, H. Tawara, D.B. Uskov, Double ioniza-
tion of neutral atoms, positive and negative ions by electron impact. J. Phys. B 30, 2667–2679
(1997)



References 213

437. H. Tawara, T. Kato, Electron impact ionization data for atoms and ions. Report NIFS-DATA-
51, National Institute for Fusion Science, Nagoya, Japan (1999)

438. W. Lotz, Subshell binding energies of atoms and ions from hydrogen to zinc. J. Opt. Soc. Am.
59, 915–921 (1968); Electron Binding Energies in Free Atoms. ibid, 60, 206–210 (1970)

439. J. Scofield, Ionization Energies, Internal Report, LLNL, CA 94550, USA
440. J.C. Halle, H.H. Lo, W. Fite, Ionization of uranium atoms bz electron impact. Phys. Rev. A

23, 1708–1716 (1981)
441. M. Steidl, D. Hathiramani, G. Hofmann, M. Stenk,e R. Völpel, E. Salzborn, XIX ICPEAC,

book of abstracts, ed. by J.B.A. Mitchell, J.W. McConkey, C.E. Brion, (Whistler, British
Columbia, Canada 26 July-1 August 1995), pp. 103

442. L. House, Ionization equilibrium of the elements from H to Fe. Astrophys. J. Suppl. 8, 307
(1964)

443. A.V. Gurevich, L.P. Pitaevskii, Recombnation coefficient in a dense low-temperature plasma.
Zh. Eksp. Teor. Fiz. 46, 1281 (1964). [Sov. Phys. JETP 19, 870 (1964)]

444. T. Matsuo, T. Tonuma, H. Kumagai, H. Tawara, Cross sections of recoil Nei+-ion production
through pure ionization, electron loss and electron capture of projectiles in 1.05-MeV/amu
Arq+ + Ne collisions. Phys. Rev. A 50, 1178–1183 (1986)

445. I. Ben-Itzhak, T.G. Gray, J.L. Legg, J.H. McGuire, Inclusive and exclusive cross sections for
multiple ionization by fast, highly charged ions in the independent-electron approximation.
1988. Phys. Rev. A 37, 3685–3691 (1988)

446. T. Tonuma, H. Kumagai, T. Matsuo, H. Tawara, Coincidence measurements of slow recoil
ions with projectile ions in 42-MeV Arq+ - Ar collisions. Phys. Rev. A 40, 6238–6245 (1989)

447. H. Tawara, T. Tonuma, H. Kumagai, T. Matsuo, Production of recoil Nei+ ions accompanied
by electron loss and capture of 1.05-MeV/amu Neq+ (q = 2, 4, 6, 8, and 10) ions. Phys. Rev.
A 41, 116–122 (1990)

448. C.L. Cocke, R.E. Olson, Recoil ions. Phys. Rep. 205, 153–219 (1991)
449. K. Kelbch, J. Ullrich, R.Mann, P. Richard, H. Schmidt-Böking, Cross sections for the produc-

tion of highly charged argon and xenon recoil ions in collisions with high-velocity uranium
projectiles. J. Phys. 18, 323–336 (1985)

450. K.S. Kelbch, H. Schmidt-Böcking, J. Ullrich, R. Schuch, E. Justiniano, M. Ingwersen, C.L.
Cocke, The contribution of K-electron capture for the production of highly charged Ne recoil
ions by 156 MeV bromine impact. Z. Phys. A 317, 9–14 (1984)

451. A. Müller, R. Schuch, W. Groh, E. Salzborn, H.F. Beyer, P.H. Mokler, R.E. Olson, Multiple-
electron capture and ionization in heavy-ion-atom collisions. Nucl. Instrum.Methods B 2425,
111–114 (1987)

452. H. Berg, R. Dörner, C. Kelbch, S. Kelbch, J. Ullrich, S. Hagmann, P. Richard, H. Schmidt-
Böcking, Multiple ionisation of rare gases by high-energy uranium ions. J. Phys. B 21, 3929–
3939 (1988)

453. S. Kelbch, C.L. Cocke, S. Hagmann,M. Horbatsch, C. Kelbch, R. Koch, H. Schmidt-Böcking,
J. Ullrich, Recoil-ion production cross sections and differential scattering angle dependences
in 2.5-15 MeV Fn+ (n = 4, 6, 8) on Ne collisions. J. Phys. B 23, 1277–1301 (1990)

454. W.Wu, S. Datz, N.L. Jones, H.F. Krause, B. Rosner, K.D. Sorge, C.R. Vane, Double ionization
of He by fast protons at large energy transfer. Phys. Rev. Lett. 76, 4324–4327 (1996)

455. H.E. Berg, Die vielfashionization von edelgasen in hochenergetischen schwerionenstössen.
Ph.D. thesis (in German) Report GSI-93-12 (Darmstadt, 1993)

456. J.H. McGuire, L.Weaver, Independent electron approximation for atomic scattering by heavy
particles. Phys. Rev. A 16, 41–47 (1977)

457. M. Horbatsch, Semiclassical description of multiple electron capture and ionization in fast
bare nucleus–rare gas collisions. Z. Phys. D 1, 337–345 (1986)

458. M. Horbatsch, Calculation of transfer ionisation processes in ion-atom collisions. J. Phys. B
19, L193–L198 (1986)

459. M. Horbatsch, R.M. Dreizler, Semiclassical description of multiple electron capture and ion-
ization in fast bare nucleus-rare gas collisions. Z. Phys. D 2, 183–191 (1986)



214 References

460. M. Horbatsch, Theory of multiple ionization and capture in energetic ion-atom collisions. Z.
Phys. D 21, S63–S67 (1991)

461. M. Horbatsch, Independent particle model description of multiple ionization dynamics in fast
ion-atom collisions. J. Phys. B 25, 3797–3821 (1992)

462. T. Kirchner, H. Tawara, I.Y. Tolstikhina, A.D. Ulantsev, V.P. Shevelko, Th Stöhlker, Multi-
electron ionization of atoms by fast ions: an approximation by normalized exponentials. Tech.
Phys. 51, 1127–1136 (2006). [Zh. Tech. Fyz. Vol. 76, 22–30 (2006)]

463. IYu. Tolstikhina, V.P. Shevelko, Multiple ionization of atoms by highly charged ions. Phys.
Scr. 90, 074033–6 (2015)

464. H.O. Heber, R.L. Watson, G. Sampoll, B.B. Bandong, Three-shell model for independent-
electron processes in heavy-ionatom collisions. Phys. Rev. A 42, 6466–6470 (1990)

465. T. Kirchner, L. Gulyas, H.J. Ludde, E. Engel, R.M. Dreizler, Influence of electronic exchange
on single and multiple processes in collisions between bare ions and noble-gas atoms. Phys.
Rev. A 58, 2063–2076 (1998)

466. I. Lesteven-Vaisse, D. Hennecart, R. Gayet, Multiple ionization cross-sections of rare gas
atoms by impact of highly charged particles at 35 MeV/a.m.u. J. Phys. (France) 49, 1529–
1544 (1988)

467. R.Gayet,Multiple capture and ionization in high-energy ion-atom collisions. J. Phys. (France)
50, C1-53–C1-70 (1989)

468. A. Salin, Helium ionisation by high-energy ions at a function of impact parameter and pro-
jectile scattering angle. J. Phys. B 22, 3901–3914 (1989)

469. V. Krishnamurthi, I. Ben-Itzhak, K.G. Carnes, Projectile charge dependence of ionization and
fragmentation of CO in fast collisions. J. Phys. B 29, 287–297 (1996)

470. R.E. Olson, A. Salop, Charge-transfer and impact-ionization cross sections for fully and
partially stripped positive ions colliding with atomic hydrogen. Phys. Rev. A 16, 531–541
(1977)

471. R.E. Olson, Ion-atom differential cross sections at intermediate energies. Phys. Rev. A 27,
1871–1878 (1983)

472. J. Ullrich, M. Horbatsch, V. Dangendorf, S. Kelbch, H. Schmidt-Böcking, Scattering-angle-
dependent multiple ionisation cross sections in high-energy heavy-ion-atom collisions. J.
Phys. B 21, 611–624 (1988)

473. R.D. DuBois, S.T. Manson, Multiple-ionization channels in proton-atom collisions. Phys.
Rev. A 35, 2007–2025 (1987)

474. C.J. Patton, M.B. Shah, M.A. Bolorizadeh, J. Geddes, H.B. Gilbody, Ionization in collisions
of fast H+ and He2+ ions with Fe and Cu atoms. J. Phys. B 28, 3889–3899 (1995)

475. B. Sulik, G.Hock,D. Berényi, Charge scaling of ionisation probabilities in ion-atom collisions
for zero impact parameter. J. Phys. B: At. Mol. Phys. 17, 3239–3244 (1984)

476. I. Kadar, S. Ricz, V.A. Shchegolev, B. Sulik, D. Varga, J. Vegh, D. Berenyi, G. Hock, Auger
electron spectra in 5.5 MeV amu-q Neq+ and Arq+ ion impact on Ne. J. Phys. B: At. Mol.
Phys. 18, 275–287 (1985)

477. B. Sulik, I. Kádár, S. Ricz, D. Varga, J. Vegh, G. Hock, D. Berényi, A simple theoretical
approach tomultiple ionization and its application for 5.1 and 5.5MeV/u Xq+ +Ne collisions.
Nucl. Instrum. Methods B 28, 509–518 (1987)

478. T. Mukoyama, S. Ito, B. Sulik, G. Hock, Wave function effect on the ionization probability
in the geometrical model. Bull. Inst. Chem. Res. Kyoto Univ. 68, 281–294 (1991)

479. B. Sulik, K. Tökési, Y. Awaya, T. Kambara, Y. Kanai, Single and double K-shell vacancy
production in N7+ + Ti collisions. Nucl. Instrum. Methods B 154, 286–290 (1999)

480. A.D. Ulantsev, Geometrical model: the single and multiple ionization of ions and atoms in
ion-atom collisions. J. Phys. B: At. Mol. Opt. Phys. 41, 165203–9 (2008)

481. R.L. Kauffman, C.W. Woods, K.A. Jamison, P. Richard, Relative multiple ionization cross
sections of neon by projectiles in the 1-2-MeV/amu energy range. Phys. Rev. A 11, 872–883
(1975)

482. F. Folkmann, R. Mann, H.F. Beyer, Excited states of few-electron recoil ions from ion impact
on neon studied by x-ray and electron measurements. Phys. Scripta T3, 88–95 (1983)



References 215

483. D. Schneider, M. Prost, R. DuBois, N. Stolterfoht, Ne K-Auger electron emission following
high-energy Ne9+ and Ar9+ ion impact on Ne. Phys. Rev. A 25, 3102–3107 (1982)

484. I. Kadar, S. Ricz, V.A. Shchegolev, D. Varga, J. Vegh, D. Berenyi, G. Hock, B. Sulik, Charac-
terization of multiple ionization processes by means of auger spectra measured in 5.5 MeV/u
Ne3+, Ne10+ and Ar6+ - Ne collisions. Phys. Lett. A 115, 439–442 (1986)

485. G.H. McGuire, P. Richard, Procedure for computing cross sections for single and multiple
ionization of atoms in the binary-encounter approximation by the impact of heavy charged
particles. Phys. Rev. A 8, 1374–1384 (1973)

486. I.C. Percival, D. Richards, Classical theory of transitions between degenerate states of excited
hydrogen atoms in plasmas. J. Phys. B 12, 2051–2065 (1979)

487. E.G. Cavalcanti, G.M. Sigaud, E.C. Montenegro, M.M. SantÁnna, H. Schmit-Böcking, Post-
collisional effects in multiple ionization of neon by protons. J. Phys. B 35, 3937–3944 (2002)

488. T.A. Carlson, W.E. Hunt, M.O. Krause, Relative abundances of ions formed as the result of
inner-shell vacancies in atoms. Phys. Rev. 151, 41–47 (1966)

489. H. Poth, Electron cooling: Theory, experiment, application. Phys. Rep. 196, 135–197 (1990)
490. R.D. DuBois, O.de Lucio, M. Thomason, G. Weber, Th. Stöhlker, K. Beckert, P. Beller, F.

Bosch, C. Brandau, A. Gumberidze, S. Hagmann, C. Kozhuharov, F. Nolden, R. Reuschl,
J. Razdkjewicz, P. Spiller, U. Spillmann, M. Steck, S. Trotsenko, Beam lifetimes for low-
charge-state heavy ions in the GSI storage rings. Nucl. Instrum. Methods B 261, 230–233
(2007)

491. A. Krämer, et al., in Proc. of the 8th European Particle Accelerator Conf., EPAC 2002, Paris,
3 - 7 June 2002 (Geneva: EPS-IGA, CERN, 2002) p. 2547 (2002); http://accelconf.web.cern.
ch/accelconf/e02/PAPERS/WEPLE116.pdf

492. P. Spiller, GSI Scientific Report 2010 (GSI, Darmstadt, 2011), p. 270
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