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Supervisors’ Foreword

Constructing a consistent fundamental quantum theory of gravity is often consid-
ered one of the most challenging open problems in modern physics. While a
number of approaches are actively explored at present, none can yet claim complete
success.

In particular, the idea of “Asymptotic Safety”, originally due to Nobel Laureate
Steven Weinberg, has attracted considerable attention over the past two decades.
After the advent of modern functional techniques in the 1990s, there was mounting
evidence hinting at the existence of a non-perturbatively renormalizable quantum
field theory of the gravitational field. The corresponding framework makes essential
use of Wilson’s generalized notion of renormalization and renormalizability,
proposing a strategy for circumventing the notorious non-renormalizability of
quantized General Relativity in perturbation theory. According to Weinberg’s idea,
the limit of an infinite ultraviolet cutoff should be taken at a nontrivial renormal-
ization group fixed point. This guarantees the absence of fatal divergences and is
likely to lead to a quantum field theory which retains its predictive power at all
scales. As a consequence, a main task of the Asymptotic Safety program consists in
establishing the existence of a suitable fixed point and analyzing the properties
of the renormalization group trajectories emanating from it. The latter contain the
essential information about the dynamics predicted by the theory.

This thesis is devoted to an in-depth analysis of two aspects within the
Asymptotic Safety program which are of central importance for the research field
and beyond. The first aspect concerns the signature of the spacetime metrics that
underlies the functional integral and the related RG equations. Almost all earlier
investigations were based on fluctuations of the spacetime metric and assumed a
Euclidean signature for technical simplicity. The present thesis develops an alter-
native formulation based on the Arnowitt–Deser–Misner (ADM)-decomposition
of the metric which lends itself to a representation of both Lorentzian and Euclidean
metrics, and under certain conditions even allows switching from one to the other
(in the presence of a time-like Killing vector field). The construction of the
renormalization group equation for the ADM-framework, successfully tested in this
thesis, contains a considerable number of very creative and original conceptual
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developments and spearheads the development of a quantum theory of gravity
incorporating Lorentzian spacetime signature. Particularly ingenious is the novel
gauge-fixing scheme which it uses; it ensures a relativistic dispersion relation for all
field components so that they propagate with the same speed. This property is likely
to reduce the necessary quantum corrections to their physically required minimum,
making the calculations particularly reliable and precise.

The second main topic of this thesis concerns the astrophysical and cosmological
implications of Asymptotic Safety. In both cases, the method of “renormalization
group improvement” is used in order to determine the leading quantum gravity
corrections, exploiting the running couplings (Newton and cosmological constant)
as the key input. The detailed discussion clarifies all steps leading to a viable
low-energy effective action for inflation within the slow-roll framework. Besides
the R2-term characteristic for the Starobinsky Lagrangian, the resulting actions also
contain additional curvature corrections expected from Asymptotic Safety.
Fundamental questions regarding the fate of a star that undergoes a gravitational
collapse are also discussed in connection with the Cosmic Censorship conjecture,
so that the reader is introduced to many interesting facets of the phenomenological
implications related to Asymptotic Safety.

The thesis is at the very forefront of modern quantum gravity research. Its
exceptionally broad range of topics makes it appealing to a vast part of the inter-
national research community. We congratulate Dr. Platania on her technically
outstanding and at the same time accessible work.

Catania, Italy Dr. Alfio Bonanno
Nijmegen, The Netherlands
June 2018

Dr. Frank Saueressig
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Abstract

General Relativity provides a remarkably successful description of gravity in terms
of the geometric properties of spacetime. Nevertheless, the quantum nature of
matter and the existence of regimes in which the classical description of gravity
breaks down suggest that the short-distance behavior of spacetime may require a
more fundamental quantum theory for the gravitational interaction. However, as it
is well known, the quantization of General Relativity leads to a (perturbatively)
non-renormalizable theory.

The Asymptotic Safety scenario for Quantum Gravity provides a natural
mechanism for constructing a fundamental quantum theory for the gravitational
force within the framework of Quantum Field Theory. In this scenario, the
short-distance behavior of gravity is governed by a Non-Gaussian Fixed Point
(NGFP) of the underlying renormalization group flow. The high-energy modifi-
cations of gravity resulting from the scaling of couplings around the NGFP may
have profound implications in astrophysics and cosmology. The Functional
Renormalization Group (FRG) constitutes an ideal tool to explore both the fun-
damental aspects and phenomenological implications of this scenario.

The aim of this Ph.D. thesis is twofold. First, we discuss the formulation of a
Functional Renormalization Group Equation (FRGE) tailored to the Arnowitt–
Deser–Misner (ADM) formalism. The construction also includes an arbitrary
number of matter fields minimally coupled to gravity. This allows us to analyze the
effect of matter on the fixed point structure of the gravitational renormalization
group flow. Within a certain class of approximations, it will be shown that most
of the commonly studied matter models, including the Standard Model of particle
physics, give rise to an NGFP with real critical exponents. This result is important
for the second part of this thesis, the phenomenological implications of Asymptotic
Safety. Specifically, using a renormalization group improvement procedure, we
study the quantum gravitational corrections arising in two different situations: the
inflationary phase in the very early universe and the formation of black holes in the
gravitational collapse of massive stars. In the context of cosmology, it will be
shown that the predictions of Asymptotic Safety lead to an inflationary model
compatible with the recent Planck data. In addition, a comparison between the
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inflationary models derived from foliated quantum gravity-matter systems with
observations can put constraints on the primordial matter content of the universe.
Finally, the study of gravitational collapse reveals that the anti-screening behavior
of Newton’s coupling in the short-distance limit renders the strength of the gravi-
tational tidal forces weaker: the strong singularity appearing in the classical treat-
ment is turned into a weak singularity once corrections from the renormalization
group are included.
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Chapter 1
Introduction

Quantum Field Theory is the standard framework for the description of the weak,
electromagnetic and strong interactions, and results in an extremely well tested the-
ory known as Standard Model (SM) of particle physics. Similarly, General Rela-
tivity provides a successful description of the gravitational interaction and most of
its predictions have been confirmed by observations. Although Standard Model and
General Relativity show a very good agreement with experimental observations,
there are several inconsistencies and unsolved problems suggesting that these the-
ories are incomplete and may not be able to describe all fundamental aspects of
our universe. For instance, the SM cannot explain the observed baryon asymmetry
characterizing the observable universe and cannot incorporate the neutrino masses,
required to explain neutrino flavor oscillation, in a natural way.Moreover, most of the
energy density filling our universe cannot be explained in terms of ordinary matter.
In particular, the existence of “dark energy” governing the current phase of accel-
erated expansion constitutes a real conundrum. In principle it could be explained
by a negative pressure associated with the vacuum energy of our universe (cosmo-
logical constant). However, the observed value is much smaller than the vacuum
energy predicted by the Standard Model of particle physics, thus making the phys-
ical origin of dark energy completely obscure. In addition to the above issues, one
of the most fundamental problems of General Relativity is the existence of regimes
where the gravitational tidal forces blow up and result in the formation of spacetime
singularities. Examples are the big bang in the very early universe and singularities
associated with black holes. In these cases the impossibility of uniquely determining
the evolution of the spacetime beyond the singularity marks the breakdown of the
classical description of gravity within the context of General Relativity. On the other
hand, the occurrence of such singularities is encountered in regimes where neither
gravity nor quantum effects can be neglected. It is commonly believed that a quantum
theory for the gravitational interaction may shed some light on these problems. A
full fledged quantum theory of gravity in which these questions can be addressed is
not yet available though.

© Springer Nature Switzerland AG 2018
A. B. Platania, Asymptotically Safe Gravity, Springer Theses,
https://doi.org/10.1007/978-3-319-98794-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98794-1_1&domain=pdf


4 1 Introduction

The formulation of a quantum theory for the gravitational interaction presents
several conceptual problems and difficulties. In the framework of Quantum Field
Theory the goal would be to combine the SM (on curved spacetimes) with a quan-
tum causal theory of the spacetime, capable of describing the fundamental, micro-
scopic aspects of the gravitational interaction. In this setting, quantum fluctuations of
spacetime trigger an energy-scale-dependence of the gravitational couplings, just as
quantum fluctuations of matter give rise to the running matter couplings of the SM.
However, the quantization of General Relativity results in a (perturbatively) non-
renormalizable theory, as the Newton’s coupling has negative mass dimension and
grows boundlessly towards high energies. A compelling solution to this problem, first
proposed by Weinberg [1], is a generalization of the notion of renormalizability [2]
based on the Wilsonian idea of renormalization [3]. The Wilsonian Renormalization
Group (RG) relies on non-perturbative functional methods and naturally produces a
scale-dependent effective action which interpolates between the fundamental micro-
scopic theory and the low-energy effective dynamics. The set of trajectories “drawn”
by the running couplings in the theory space is called RG flow. A quantum theory is
then renormalizable and possesses a well-defined high-energy completion if the RG
flow attains a fixed point in the ultraviolet (UV) limit [2]. In fact, an UV-attractive
fixed point might govern the asymptotic high-energy behavior of the theory, thus
preventing the appearance of unphysical divergences. In the case of a UV-attractive
Gaussian Fixed Point (GFP), i.e. an asymptotically free theory, this generalized defi-
nition of renormalizability matches the perturbative one. The statement that General
Relativity is (perturbatively) non-renormalizable means that the RG flow is repelled
by the GFP in the high-energy regime. On the other hand, the gravitational RG
flow might converge to a Non-Gaussian Fixed Point (NGFP) in the ultraviolet limit,
thus rendering the theory “asymptotically safe”. Such a non-trivial fixed point cor-
responds to an interacting theory and, as proposed by Weinberg [1], its existence
would guarantee the renormalizability of gravity within the framework of Quantum
Field Theory. The Asymptotic Safety conjecture can thus be summarized as follows:
gravity is a finite and predictiveQuantumFieldTheorywhose continuum limit is gov-
erned by a finite-dimensional critical surface in the theory space of diffeomorphism
invariant metric theories. Accordingly, the quantization of gravity would result in a
(non-pertubatively) renormalizable quantum theory whose high-energy completion
is defined by a NGFP. This is called the Asymptotic Safety scenario for Quantum
Gravity and the corresponding quantum theory is usually referred to as Quantum
Einstein Gravity (QEG).

In recent years Asymptotically Safe Gravity has received much attention as sev-
eral studies, employing the (non-perturbative) approach of the Functional Renor-
malization Group (FRG) [4–7], have established the presence of a NGFP suitable
for Asymptotic Safety in a vast number of approximations [8–36]. An interesting
consequence of Asymptotic Safety is that the original four-dimensional spacetime
undergoes a dimensional reduction in the short-distance regime. Starting from the
classical four-dimensional spacetime, realized atmacroscopic length scales, the spec-
tral dimension of the “emergent” effective spacetime varies with the energy scale and
reaches the value deff = 2 in the ultraviolet limit [12]. Notably, the same result has
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been obtained in other approaches to Quantum Gravity, such as Hořava-Lifshitz
gravity [37], Causal Dynamical Triangulation (CDT) [38], Loop Quantum Gravity
(LQG) [39] and, quite recently, double special relativity [40]. This coincidence opens
the possibility that all these approaches may describe different facets of the same
quantum theory.

In the context of Asymptotic Safety, the quantization of gravity is achieved in the
path integral formalism, where the action is specified in its Euclidean version and the
gravitational degrees of freedom are encoded in the fluctuations of the (Euclidean)
spacetimemetric. This construction defines the so-called metric approach to Asymp-
totic Safety. The causal structure of the spacetime dictated by General Relativity is
however encoded in aLorentzianmetric and it should be taken into account in order to
consistently describe the fundamental aspects of quantum-relativistic theories. In the
case of non-gravitational quantum theories, this issue can be circumvented because
Lorentzian and Euclidean theories are related by a Wick rotation of the time coor-
dinate. In the case of the gravitational interaction this problem turns out to be much
more tricky and conceptual. Firstly, the interpretation of time in quantum mechan-
ics and in General Relativity is different. In the former the flow of time is absolute
and the time evolution of quantum states is determined by the Hamiltonian of the
system. In the latter, time is relative and “hidden” in the spacetime metric. More-
over, the Hamiltonian of General Relativity must vanish to allow general covariance.
This Hamiltonian constraint, in combination with the basic concepts of quantum
mechanics, imply that time does not exist in General Relativity and results in the
so-called “problem of time” [41]. Secondly, the spacetime metric is the dynamical
field describing the gravitational interaction and, due to the general covariance of the
theory, performing a Wick rotation is non-trivial. A quantum theory of gravity based
on Euclidean computations may not be sufficient for the description of our universe,
as the causal structure of the spacetime is not taken into account and cannot be recov-
ered through the standard Wick rotation. A natural way to address the latter issue
is the Arnowitt–Deser–Misner (ADM) formalism, in which the spacetime metric is
decomposed into a stack of space-like surfaces, each one labeled by a given instant
of time. The resulting distinguished time direction allows in principle the contin-
uation of the flow equation from Euclidean to Lorentzian signature. In particular,
recent studies based on the Matsubara-formalism have shown that the NGFP under-
lying Asymptotically Safe Gravity is stable under Wick rotation from Euclidean to
Lorentzian signature [42, 43]. Moreover, the ADM-formalism in Quantum Gravity
constitutes the natural bridge connecting the FRG to the CDT program [44].

The FRG approach to quantum gravity presents two important advantages: firstly,
it permits to systematically analyze the non-perturbative renormalizability of gravity
and to study formal aspects of the theory by means of non-perturbative methods.
Secondly, it acts as a “microscope” capable of showing the properties of gravity at
different length scales. In fact, the modern FRG techniques are based on the concept
of the “effective average action”, a scale-dependent effective action which smoothly
interpolates between the short and long-distance regimes. The FRG thus provides
an ideal tool to study astrophysical and cosmological implications of Asymptotic
Safety. The quantum gravitational effects produced in proximity to the NGFP can in
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fact be encoded in a set of scale-dependent couplings. In particular, the RG-induced
evolution of the Newton’s coupling and cosmological constant could entail a natural
and consistent “cosmic history” of our universe, from the initial Big Bang singularity
to the current phase of accelerated expansion (see [45] for a comprehensive review).

This Ph.D. thesis focuses on two different fundamental aspects of Asymptotic
Safety. Firstly,wewill discuss the construction ofAsymptotically SafeGravitywithin
the ADM-formalism, and we will initiate the study of gravity-matter systems on
foliated spacetimes. Secondly,wewill focus on somephenomenological implications
of Asymptotic Safety.

In the present dissertation the formulation of a Functional Renormalization Group
Equation (FRGE) within the ADM-formalismwill be discussed. At variance of other
related studies in the literature, our construction of the FRGE for foliated spacetimes
does not require the time direction to be compact. As an application, wewill study the
renormalization group flow resulting from the ADM-decomposed Einstein–Hilbert
truncation, evaluated on a D = (d + 1)-dimensional Friedmann–Robertson–Walker
(FRW) background [46]. This construction will also include an arbitrary number of
scalar, vector andDirac fieldsminimally coupled to gravity [47]. The derivation of the
beta functions for the cosmological constant and Newton’s coupling will be reported
and analyzed in detail. The resulting gravitational renormalization group flow will
be studied and the fixed point structure induced by the presence of matter fields
will be discussed. In addition, we will analyze the existence of fixed points for the
pure gravitational flow as a function of the spacetime dimension [46]. Remarkably,
the formalism we constructed constitutes a first important step towards connecting
the FRG framework to the CDT program [48]. Furthermore, the study of foliated
gravity-matter systems we propose in this dissertation employs the same fluctuation
fields used in cosmology. This construction is thus perfectly suited to investigate the
early universe cosmology within the context of Asymptotic Safety.

The recent observations of the cosmic microwave background (CMB) radia-
tion [49] and the discovery of gravitational waves [50] have marked the begin-
ning of a “golden era” for observational astrophysics and cosmology. In particular,
observations on gamma ray bursts constitute an extremely important resource for
investigating ultra-high energy phenomena. In these high-energy regimes, the quan-
tum gravitational effects dynamically generated around the NGFP might drastically
change the spacetime dynamics and could indirectly affect macroscopic details of
various gravitational phenomena. Accordingly, the short-distance modifications of
gravity induced by Asymptotic Safety could result in observable consequences. The
Renormalization Group allows to describe the behavior of the gravitational inter-
action from the high-energy regime down to the low-energy world. The FRG thus
provides a natural framework to investigate the astrophysical and cosmological impli-
cations of Asymptotic Safety and make predictions that can be compared with obser-
vations. Starting from a classical model, leading-order quantum gravitational effects
can be taken into account by employing a renormalization group improvement pro-
cedure. The latter is a standard strategy developed in the context of QFT and it has
been used successfully to study radiative corrections in scalar electrodynamics [51]
and vacuum polarizations effects in both Quantum Electrodynamics and Quantum
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Chromodynamics [52–56]. The RG improvement procedure thus constitutes a pow-
erful tool to study the impact of quantum gravity effects on classical gravitational
phenomena. In particular, the present dissertation focuses on the implications of
Asymptotically Safe Gravity in two different scenarios: inflationary cosmology and
black holes physics.

The short-distance modifications of gravity are expected to have an important
impact in the primordial evolution of the universe. According to standard cosmol-
ogy, the primordial quantum fluctuations were exponentially stretched during infla-
tion, resulting in small density perturbations at the decoupling era. In the context
of Asymptotically Safe Gravity these quantum fluctuations can be identified with
the fluctuations of the spacetime geometry described by the NGFP regime [57]. The
anisotropies in the CMB, due to the density fluctuations at the last scattering surface,
can thus be traced back to the quantum gravity effects occurring during the Planck
era. As the NGFP state corresponds to a scale-invariant theory, the scaling properties
of the 2-point correlation function of the graviton around the NGFP induce a nearly
scale-invariant spectrum of the primordial perturbations. Using an RG improvement
procedure, a class of inflationary models arising from the short-distance modifica-
tions of pure gravity will be derived. A systematic comparison with the Planck data
will be also be reported. Remarkably, our study shows that Asymptotic Safety pre-
dicts values for the spectral index in good agreement with the Planck data, and a
tensor-to-scalar ratio which is significantly higher than the typical values obtained
within classical inflationary models [58, 59]. This result is of crucial importance to
test Asymptotic Safety. In fact, although the Planck data [49] provides only an upper
limit for the tensor-to-scalar ratio, future experiments on the CMB anisotropies will
provide more precise measurements [60–62]. We will then study a class of effective
cosmological models emerging from quantum gravity-matter systems. By requiring
the compatibility of these models with observational data, our analysis will provide
important constraints on the matter content of the primordial universe [63].

As a final application of the Asymptotic Safety scenario for Quantum Gravity, we
will discuss the problem of singularities in General Relativity and, more precisely,
their formation during the gravitational collapse of amassive spherical star. Although
the inclusion of the leading quantum corrections is not capable of removing the
central singularity, it will be shown that the anti-screening character of the running
Newton’s coupling renders the classical singularity much milder (“gravitationally
weak”, according to the Tipler classification [64]), thus allowing the spacetime to be
continuously extended beyond the singularity [65–67].

The present dissertation is organized in three parts. Part I summarizes the basics
of functional renormalization. In particular, starting from the concept of universality
in statistical physics, Chap. 2 provides a brief summary of the Wilsonian idea of
renormalization. In particular, it introduces the generalized notion of renormaliz-
ability which is the starting point for investigating the Asymptotic Safety conjecture
in Quantum Gravity. The latter is discussed in detail in Chap. 3, where the renor-
malization group equations are derived and some of the basic results of Functional
Renormalization in QuantumGravity are reviewed. The special case of the Einstein–
Hilbert truncation is also discussed. Part II, and specifically Chap. 4, initiates our
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investigation of QuantumGravity on foliated spacetimes. It provides a detailed expo-
sition of the ADM-formalism in Asymptotic Safety and the derivation of the beta
functions for foliated gravity-matter systems within the Einstein–Hilbert truncation
[46–48]. Some technical details of the construction have been moved to Appendix A.
The last part of this thesis, Part III, discusses astrophysical and cosmological impli-
cations of Asymptotic Safety. Chapter 5 is devoted to the study of the inflationary
scenario arising from Asymptotically Safe Gravity [58, 59, 63]. The comparison
of our theoretical predictions with the recent Planck data will also be reported. In
Chap. 6 we will discuss the problem of the gravitational collapse and the formation
of spacetime singularities in the framework of Asymptotically Safe theories of grav-
ity [65–67]. At last, in Chap. 7, we will provide a summary and discussion of our
findings.
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Chapter 2
The Wilsonian Idea of Renormalization

In the early decades of the 20th century, many investigations in the context of Quan-
tumField Theory showed that quantum-relativistic theories were affected by unphys-
ical ultraviolet divergences. For instance, a systematic study of scattering amplitudes
in Quantum Electrodynamics show that, due to the singular high-energy behavior of
the theory, Feynman diagrams containing loops result in an infinite contribution to
the transition amplitude.

The concept of renormalizationwas initially introduced in the context of Quantum
Electrodynamics as a mathematical trick to solve the problem of infinities. The main
idea was to absorb infinities into a redefinition of the parameters of the theory (bare
couplings). For a renormalizable theory this procedure leads to a new effective theory
where the bare couplings are replaced by a finite number of “renormalized” coupling
constants [1], whose values can be fixed by experiments. As a consequence, the
physical coupling constants depend on the energy scale at which they are measured.
In particular, an equation describing the variation of the electric charge with the
energy scale was devised by Gell-Mann and Low in 1954 [2] and can be considered
as the first Renormalization Group equation.

In the same years, investigations of critical phenomena in condensed matter
physics showed how different physical systems behave the same in the proximity
of the critical point. A possible explanation for this phenomenon was suggested by
Kadanoff in 1966 [3]: near the critical point the correlation length of the system blows
up and the system “looks the same on all the length scales”. This idea represented
the starting point for the development of the Renormalization Group theory.

In the 1970s K. Wilson, inspired by the Gell-Mann and Low equation and the
recent studies of Kadanoff, realized that in both quantum and statistical field theo-
ries fluctuations (quantum or thermal) play an important role, as they can explain
both the renormalization effects and the universality properties of critical
phenomena [4]. This idea led Wilson [5], as well as Kadanoff and Fisher [6, 7],
to develop a set of non-perturbative techniques aimed at investigating the role of
fluctuations in both quantum and thermal field theories, resulting in the modern
formulation of the Renormalization Group.
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14 2 The Wilsonian Idea of Renormalization

In this chapter we shall review the Wilsonian idea of renormalization and its
implementation via non-perturbative functional techniques.

2.1 Scale Invariance, Universality and Kadanoff Blocking
Transformations

Most of the laws of nature can be cast in the form of scaling laws. Such relations can
generally be obtained by a dimensional analysis, and so the power index is expected
to be a rational number. This number represents, in some sense, a “classical” scaling
exponent. There is however a large class of phenomena, including continuous phase
transitions, in which the characteristic exponents are real numbers and the scaling
laws cannot be explained by a simple dimensional argument. In this section we will
see how this feature is related to the lack of a characteristic length (or energy) scale,
and howKadanoff used this hypothesis to explain the universality properties of phase
transitions.

2.1.1 The Role of Scaling Laws

In order to introduce the problem of critical phenomena and proceed with the study
of the Wilsonian Renormalization Group, we first need to set up some notation
and terminology. Let us consider a physical system (continuous or on a lattice)
whose behavior depends upon N parameters {gi }. The phase space is defined as
the N -dimensional space whose points (g1, . . . , gN ) represent all possible physical
configurations of the system. Therefore, for a given initial condition, the dynamical
evolution of the system can be visualized as a trajectory in the phase space. In the
context of thermal field theory, a fundamental question is whether or not physical
quantities are well defined along these trajectories. A phase transition is indeed
associated with a singular behavior in the derivatives of the bulk free energy density
fb(gi ) (free energy per unit of volume or per site) and the corresponding singular
loci of the phase space can have any dimensionality Ds ≤ N . These non-analyticity
regions can be classified according to their co-dimensionC = N − Ds , and the phase
boundaries1 are precisely the singular loci having co-dimension C = 1.

Phase transitions can be divided into two classes. First order phase transitions take
place when a singular behavior of fb(gi ) occurs in its first derivative, while a second
order or continuous phase transition is realized when the non-analyticity shows up

1Different phases are generally separated by the phase boundaries, but a change of phase does
not necessarily involve a phase transition. In principle two different phases can be “connected”
without passing through a phase boundary. In the latter case the two phases share the same degree
of symmetry and it is not clear how these phases can actually be distinguished (see [8] for an
extensive discussion).
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only in higher derivatives. The dynamics of the system near the singular loci of the
phase diagram constitutes a critical phenomenon.

Among the variety of critical phenomena, the liquid-gas and ferromagnetic
phase transitions constitute the most important examples. Both these systems are
characterized by a continuous phase transition at a finite (critical) value of the
temperature, Tc. Continuous phase transitions can be modeled by using a “con-
trol parameter”, for example the reduced temperature t = |T − Tc|/Tc, and an order
parameter which allows to distinguish among different phases. In particular, a non-
zero order parameter means that the system has reached a long-range ordered state.
One of the most important feature of critical phenomena is that physical quantities
exhibit “scaling” in proximity to the phase transition, namely they are related to
each others through simple power laws. For instance, the physical law governing the
dependence of the order parameter O upon the temperature can be cast in the form

O ∼ |T − Tc|β, β ∈ R. (2.1)

The characteristic exponent β is an example of a critical exponent, and it turns out
that almost all thermodynamical quantities follow a similar behavior in the vicinity
of the critical point. Furthermore, even if ferromagnetic-paramagnetic and liquid-gas
phase transitions are characterized by different order parameters, the corresponding
characteristic exponents β are identical within the experimental error bars. In these
cases, the value of this critical exponent was found to be β ∼ 0.325 [9, 10]. This
evidence was one of the first experimental proofs of the universality properties of
systems at criticality,which is perhaps themost important treat of phase transitions. In
particular, all systems having a Curie (critical) point show similar scaling properties
in proximity to the critical region and systems characterized by the same set of critical
exponents are said to be part of the same universality class.

Within the context of critical phenomena, the theoretical investigations of liquid-
gas and ferromagnetic systems were initiated by Van der Waals and Weiss respec-
tively. Their studies, based on a Mean Field Theory (MFT) approach, resulted in a
good qualitative description of phase transitions, but they could neither predict the
correct critical exponents nor explain the universal properties of such systems. The
key problem was that their analyses were based on a “classical” description of the
phenomena, in the sense that (thermal) fluctuations were not taken into account. The
Mean Field Theory approximation is by construction an “effective” description of the
theory, inwhich fundamental physical quantities are replacedwith average fields. The
reasonwhyMFT failed to predict the correct critical exponents was indeed originated
from its basic assumptions. As suggested by Wilson, a phase transition involves the
interplay of fluctuations on all length scales, and hence, fluctuations constitute the key
ingredient to understand the mechanism underlying critical phenomena. The failure
of the Mean Field Theory approach and the subsequent development of Kadanoff’s
scaling hypothesis represented a fundamental step towards the development of the
Wilsonian Renormalization Group.
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2.1.2 Kadanoff Blocking Transformations

In order to introduce the Kadanoff scaling hypothesis, let us consider a spin
system with lattice spacing a, described by the nearest neighborhood Ising model
Hamiltonian

H [σ]
kBT

= −h
N∑

i=1

σ(ri ) − g
∑

〈i j〉
σ(ri )σ(r j ) (2.2)

where ri ≡ (ma, na, la), with m, n, l ∈ Z, is a vector on the lattice which uniquely
identifies the spins degrees of freedom σi ≡ σ(ri ), g is a dimensionless coupling
constant and h is a dimensionless source (an external magnetic field, for instance).
The idea underlying Kadanoff blocking transformations is to introduce a real number
l > 1, and then study a new effective system with Nl−d spin blocks variables, where
d is the dimension of the system. These effective degrees of freedom are defined on
a new hypercubic domain with lattice spacing al = la, and given by

σl(rI ) = 1

ld
∑

i∈I
σ(ri ) (2.3)

where the above sum extends over the original spin variables located within the
block I . The original degrees of freedom are thus replaced by a set of effective
variables describing the system with a smaller resolution. This procedure is known
as blocking transformation.

The first fundamental assumption is that

al � ξ(T ) (2.4)

where the correlation length ξ(T ) is defined as the average extent of fluctuations
about the mean value. In fact, by deriving the the two-point correlation function in
the Ornstein-Zernike form

G(r = |ri − r j |) = e−r/ξ(T )

rd−2
−→
T → Tc

G(r) 
 r−(d−2+η) (2.5)

it is clear that ξ represents a measure of the correlation range of the system. This
characteristic range depends upon the parameters of the theory, in particular the
reduced temperature t . In proximity to the critical temperature the correlation length
blows up and diverges as t−ν once the critical point is reached.2 In this limit the
canonical scaling dimension of the correlation function gains an extra contribution
η, which is usually referred to as anomalous dimension.

2It is important to remark that in principle continuous phase transitions can take place only in the
thermodynamic limit. In fact, if the linear size of the system is finite, the correlation length cannot
grow beyond the size of the system and so, in principle, the phase transition is smoothed out.
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Kadanoff suggested that, approaching the critical point, the correlation length
should become the only relevant length scale of the system. In particular, as
ξ(t) → ∞ at the critical temperature, the system is invariant under scale transforma-
tions and hence the Hamiltonian itself must remain unchanged (in form). Under this
assumption, the blocking transformation does not modify the original symmetries,
and thereby coupling constants, sources and the reduced temperature itself must be
homogeneous functions under such transformations

tl = t l yt , hl = h l yh , gl = g l yg . (2.6)

Kadanoff’s scaling hypothesis thusmade it possible to explain the scaling behavior of
physical quantities at criticality.Despite the fact that the blocking transformation does
not allow to compute critical exponents nor explains universality, it gave important
insights for the formulation of the Renormalization Group.

2.2 The Wilsonian Idea of Renormalization

In this section we will introduce the idea underlying the Renormalization Group in
the intuitive framework of discrete dynamical systems.

The main questionWilson wanted to address in his work was what happens under
repeated blocking transformations. Since fluctuations at criticality do not have a
characteristic length scale, the very first insight of Wilson was to use dimensionless
quantities from the beginning. Furthermore, as critical behavior involves infinitely
many length scales,Wilson thoughtwas to divide thewhole problem into a “sequence
of subproblems” [11]. Each subproblem does have a characteristic length scale and
corresponds to a single step of the renormalization procedure. The starting point is
a general Hamiltonian

H[σ] = H [σ]
kBT

= −
∑

n

gn �n[σ] (2.7)

where �n are local operators in the spin variables σi = σ(ri ) and gn are the corre-
sponding dimensionless coupling constants. The main idea underlying the Renor-
malization Group (RG) mechanism is to combine a blocking transformation with a
rescaling of the length unit by a factor l. This dilatation makes the system identical
to the original one in terms of its domain and degrees of freedom, while the new
Hamiltonian can be much more complicated. Such combined transformations take
the name of Renormalization Group transformations and can be described by an
abstract (non-linear) operator Rl which maps the original set of couplings g ≡ {gi }
into

gl = Rl · g (2.8)

where gl are the new renormalized couplings describing the system at the renormal-
ization scale l. In particular, the set of transformations Rl constitute a semi-group.
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In fact, once the original degrees of freedom have been averaged out it is impossi-
ble to restore them back and so the transformations Rl cannot be inverted. In other
words the length scale l must be l ≥ 1, with l = 1 corresponding to the identity
transformation. It is worth mentioning that there is no unique way to perform the
coarse-graining, and different RG recursion relations may be employed depending
on the problem at hand.

After a single RG transformation has been performed, the system is described
by Nl = Nl−d degrees of freedom whose dynamics is governed by an effective
HamiltonianHl . The latter naturally emerges by summing over the original dynam-
ical variables and requiring that the partition function Z remains unchanged

e−Hl [σl ] = Tr{σ}
(P[σl(rI ),σ(ri )]e−H[σ]) (2.9)

where the projection operator P[σl,σ] is a positive definite function such that

Tr{σl }P[σl(rI ),σ(ri )] = 1 ⇒ Zl ≡ Tr{σl }e
−Hl [σl ] ≡ Z (2.10)

and it depends upon the particular renormalization scheme (definition of the new
blocks). As the projection operator acts non-linearly on H, the Renormalization
Group iteration can generate all local operators compatible with the original symme-
tries. The phase space to be considered is thus thewhole theory space ofHamiltonians
compatible with a given symmetry group.

A very important aspect of this step-by-step procedure relies in the analyticity of
each RG transformation. The singular behavior arising in phase transitions can only
emerge once all (wavelengths) fluctuations are taken into account, namely after the
RG transformation has been repeated an infinite number of times. Hence, the critical
behavior should result as a possible asymptotic (l → ∞) state of the system. The goal
of this procedure is then to find all possible asymptotic behaviors of Hamiltonians
belonging to the same symmetry group.

At this stage it is important to make the connection between the Renormaliza-
tion Group iteration and the phase diagram of the system. The original system can
be represented as a point in the theory space whose coordinates are the couplings
g ≡ {gi }. The RG transformationRl can be iteratively applied and each step relates
an initial point g(m)

l to a new point g(m+1)
l in the theory space. These points, or inter-

mediate theories, are related to each others through recursion relations in the form

g(n)
l = Rl · g(n−1)

l = R2
l · g(n−2)

l = · · · = Rn
l · g (2.11)

where, as a result of the semi-group properties ofRl , g
(n)
l ≡ gln . Therefore, the whole

set of iterations traces out a trajectory in the phase space, whose initial condition is
the original system described by the couplings g. The family of all RG trajecto-
ries obtained by varying the initial conditions in the theory space constitutes the
renormalization group flow.
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It is natural to think that after a sufficiently large number of iterations the renor-
malization group flow will converge to an equilibrium stationary solution which
represents the macroscopic state of the system. Such a solution is called a fixed point
and is defined by the condition

g∗ = Rl · g∗. (2.12)

The set of couplings satisfying the above relation identify all possible asymptotic
behaviors of the system, i.e. all possible endpoints of the RG trajectories. In principle
the solutions of (2.12) can be loci of any dimensionality (fixed points, limit cycles,
strange attractors), but generically one finds only fixed points. In particular, Eq. (2.12)
can have several fixed point solutions, which play the role of infrared (long-distance)
or ultraviolet (high-energy) attractors for the renormalization group flow. The whole
theory space is thus divided into a set of basins of attraction, each one defined as
the set of initial conditions whose renormalization group flow is attracted by a given
fixed point in the long-distance limit.

A first classification of fixed points comes from the behavior of the correlation
length. Since for each RG transformation the relevant length units are rescaled by
the dilatation parameter l, the correlation length itself must follow the scaling law
ξ(g(n)

l ) = ξ(g(n−1)
l )/ l. It follows that the correlation length at the fixed point must

satisfy
ξ(g∗) = ξ(g∗)/ l (2.13)

and hence it can only take the values zero or infinity. Infrared fixed points with
ξ(g∗) = 0 correspond to possible bulk phases of the system. Such solutions basically
describe non-interacting theories and are usually referred to as “trivial” or Gaussian
solutions. On the other hand, a fixed point solution for which ξ(g∗) → ∞ is called
critical fixed point. It is the existence of such critical points that causes universality.
The basin of attraction of a critical fixed point is also called critical manifold and
represents the set of initial conditions which flow towards criticality in the infrared
limit. Fixed points can be further classified according to the co-dimension of the
corresponding basin of attraction. In particular, critical and multicritical manifolds
have co-dimension C ≥ 2 [8].

In order to describe the renormalization of couplings as a dynamical system,
Eq. (2.8) must be put in differential form. Let us consider an RG transformation
associated with a scale s

gr=ls = Rs · gl . (2.14)

The question we need to answer is what happens under an infinitesimal transfor-
mation. Such a transformation is associated with an infinitesimal change of scale
s ≡ 1 + ε and differs from the identity just for a small quantity

Rs 
 1 + ∂Rs

∂s

∣∣∣∣
s=1

ε (2.15)
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where ∂sRs |s=1 is a matrix valued function acting on the vectors gl of the theory
space. The left-hand-side of Eq. (2.14) can thus be written as

gr 
 gl + ∂gr
∂r

∣∣∣∣
r=l

ε l (2.16)

and, on substituting the latter two equations into (2.14), one finds

l∂l gl = B(gl), (2.17)

with B(gl) = ∂sRs |s=1 · gl . According to the above expression, the dynamics of
the couplings in the theory space is described by a continuous trajectory gl(τ )

parametrized by the “RG time”3 τ = log l. The fixed points are thus the station-
ary solutions of Eq. (2.17), B(g∗) = 0. The behavior of the flow in the proximity of
a fixed point can be obtained by linearizing Eq. (2.17) about g∗

∂τ δg(τ ) 
 S(g∗) δg(τ ) (2.18)

where δg(τ ) ≡ g(τ ) − g∗ and the stability matrix Si j ≡ ∂g j Bi has been introduced.
Denoting the eigenvalues of the stability matrix by yn and the corresponding eigen-
perturbations by Ŷn , the function δg(τ ) can be expanded as

δg(τ ) =
∑

n

λn(τ ) Ŷn. (2.19)

Thus the evolution of δg(τ ) is completely determined by the functions λn(τ ). By
substituting the above expansion into Eq. (2.18), one finds

λn(τ ) = λn(0) e
ynτ . (2.20)

At this point it is of central importance to discuss the properties of eigenperturbations
and eigenvalues. Eigenoperators can be firstly classified according to their physical
relevance. Eigenvectors whose eigenvalues depend on the particular renormalization
scheme do not affect physics and are called redundant [12]. On the contrary, if the
characteristic exponents are invariant under changes of the renormalization scheme,
the corresponding eigenperturbations are referred to as scaling operators [12]. On
this basis, only the scaling operators are associated with the universality proper-
ties of physical systems, while redundant operator do not contribute to the critical
behavior [12]. Scaling operators can be further classified as follows. Operators whose
eigenvalues satisfy Re(yn) > 0 are called relevant, and λn(τ ) grows with τ . Vice
versa, if Re(yn) < 0 then λn(τ ) decreases with τ and the corresponding operator is

3The appearance of the RG time τ = log l, which is a non-linear function of the length scale, is due
to the multiplicative character of the RG transformations.
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called irrelevant. The limiting case Re(yn) = 0 corresponds to a marginal scaling
operator if Im(yn) = 0, and in this case λn(τ ) is constant.

For a given fixed point, the number of relevant operators defines the co-dimension
of its domain of attraction and so it establishes the nature of the fixed point in terms
of criticality. As long as ξ → ∞, the behavior of the RG trajectories near a critical
fixed point is completely determined by the critical exponents and does not depend
upon the microscopic details of the theory. Therefore, the universal scaling observed
in critical phenomena is due to the dynamics of the renormalization group flow in the
vicinity of a critical fixed point. A universality class can thus be interpreted as the
basin of attraction of a critical fixed point: although the theories belonging to the same
universality class may differ microscopically (different set of irrelevant parameters),
they share the same set of relevant operators in the infrared (long-distance) limit and
thus such theories behave the same at criticality.

2.3 Functional Renormalization Group

In the previous section we have seen how Renormalization Group transformations
can be implemented within the context of lattice models. In the spirit of extend-
ing these ideas to systems with an infinite number of degrees of freedom, the path
integral formalism is the key ingredient. In fact, as we shall see, the functional
formulation of field theories provides the perfect framework to study renormaliza-
tion non-perturbatively. The Wilsonian Renormalization Group complemented by
these non-perturbative methods resulted in the so-called Functional Renormaliza-
tion Group (FRG). The key idea is to introduce an infrared cutoff scale k and con-
struct a generalized scale-depend action which smoothly interpolates between the
bare action (high-energy regime) and the ordinary effective action (infrared limit).
The FRG allows to deeply understand what renormalization really means and, as we
shall see, it furnishes a natural generalization of the notion of renormalizability.

2.3.1 Wilsonian Average Action

Let us consider a field theory of a single scalar field whose bare action S�[φ] is
defined at the ultraviolet (UV) cutoff scale �. This UV cutoff plays the role of a
microscopic minimal length a 
 �−1. The original scalar field φ(x) is thus defined
on a spacetime lattice with lattice spacing �−1. For the moment it is convenient to
keep � finite, while the limit � → ∞ can eventually be considered at the end of the
calculation.

As the renormalization of a Quantum Field Theory is usually carried out in
momentum space, we first introduce an arbitrary energy scale k < �which plays the
role of an infrared cutoff. The aim of this subsection is to find the general form of the
Wilsonian action at the scale k. As we have seen, a blocking transformation consists
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of a redefinition of the bare degrees of freedom in terms of new effective variables
describing the system at smaller resolutions. In the case of field theories one may
follow the same strategy [11, 13]. The “block fields” φk(x) can be defined by aver-
aging over spacetime blocks of linear dimensions k−1 > �−1. The corresponding
effective interactions can be obtained by integrating out the fluctuating modes with
momenta q ∈ [k,�[. All information corresponding to these fast-fluctuations is thus
“hidden” in averaged fields interacting through the effective action at the scale k.

Let us consider a finite region of the spacetime Bk(x) having linear dimension
k−1 and volume �(Bk). The average field φk(x) can be defined as follows

φk(x) = 1

�(Bk)

∫

Bk (x)
φ(y) dD y =

∫
ρk(x − y)φ(y) dD y (2.21)

where the smearing function ρk(x − y) vanishes when y falls outside the block,
i.e. for |x − y| � k−1. A Renormalization Group transformation modifies the funda-
mental components and interactions of the system, but it must leave its long-distance
properties, i.e. the averaged quantities, unchanged. Then one must require

Z =
∫

D[φ] e−S�[φ] ≡
∫

D[�] e−Sk [�]. (2.22)

Here the partition function Z is written in terms of a Euclidean field integral and �

denotes the new average field at the scale k. Given the similarities of quantum and
thermal systems under RG transformations, it is natural to define the k-dependent
effective action Sk[�] as

e−Sk [�] =
∫

D[φ]P[�(x),φ(x)]e−S�[φ] (2.23)

where the projection operator P[�,φ] plays the same role as the one introduced in
Eq. (2.9) and shares similar properties. The action Sk[�] defined above is known as
Wilsonian action. This generalized action describes the physics at the scale k and
includes all (quantum or thermal) fluctuations at higher energy scales. In addition, the
action Sk[�] is a continuous function of the infrared cutoff k. The bare and effective
action are indeed recovered in the ultraviolet and infrared limit respectively.

With the purpose of finding an explicit expression for Sk[�], the Fourier modes
φ(q)with momenta q � k must be integrated out. This integration can be performed
by employing a sharp cutoff function

ρk(q) = θ(k − q). (2.24)

This choice for the smearing function provides a natural splitting of φ(x) into the
slow and fast varying contributions, φ(x) = φk(x) + ξ(x). In the momentum space
this splitting reads
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φ(q) =
{

φk(q) q ∈ [0, k[
ξ(q) q ∈ [k,�[. (2.25)

Hence, the Fourier components φk(q) define the effective background field φk(x),
whilst ξ(x) corresponds to the fluctuations around this background. In order to obtain
the action functional at the scale k,we need to remove thesefluctuations by integrating
out, shell by shell, all Fourier modes from the ultraviolet cutoff � to the (variable)
infrared scale k. The Fourier components ξ(q) are thus the fields over which the
integration will be performed. In addition, we require that the average field �(x) in
Eq. (2.23) coincides with the background field φk(x) defined above. Therefore the
projection operator is constrained to be a delta functional

P[�(x),φ(x)] ≡
∏

x

δ[φk(x) − �(x)]. (2.26)

Following the arguments in [13–15], we now expand S�[φ] around ξ = 0

S�[φ] = S�[φk] +
∫ �

k

{
S(1)

� [φk] ξ(q) + 1
2 ξ(q) S(2)

� [φk] ξ(−q)
} dDq

(2π)d
+ · · ·
(2.27)

and thus

e−Sk [�] 

∫

[Dφk] δ(φk − �)

∫
[Dξ] e−S�[φk ]− 1

2 ξ(q)· S(1)
� [φk ]− 1

2 ξ(q)· S(2)
� [φk ] ·ξ(−q)+···

(2.28)
where the de Witt notation has been used. Performing the Gaussian integral, the
Wilsonian action Sk[�] finally reads

Sk[�] 
 S�[�] + 1
2 STr

′
[
log

(
S(2)

� [�]
)]

− 1
2 Tr

′
[
S(1)

� [�]
(
S(2)

� [�]
)−1

S(1)
� [�]

]
.

(2.29)
Here the trace Tr′ stands for an integration over the momenta q ∈ [k,�[. In addition,
the super trace STr′ also includes a sum over the appropriate internal space when
more than one field is involved. It is important to stress that the above expression for
the Wilsonian action is not exact. However, as we will see in the next subsection,
considering an infinitesimal RG transformation allows to derive an exact equation
which is capable of describing the renormalization group flow of infinitely many
couplings.

2.3.2 Wegner-Houghton Equation

The Renormalization Group transformations considered so far deal with an integra-
tion over a finite momentum shell [k,�[. Such an integration furnishes an approx-
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imate expression for the average action Sk[�], but it does not allow to study the
renormalization group flow. In order to address this issue, it is crucial to analyze
the variation of the action Sk under an infinitesimal RG transformation. The idea
is to start from the action Sk[�] and integrate the Fourier modes belonging to the
infinitesimal momentum shell [k − δk, k]. According to the previous discussion, this
procedure gives rise to a new effective action Sk−δk[�] which is related to Sk[�] by
means of

k(Sk−δk [�]−Sk [�])
δk = 1

2
k
δk

{
STr′

[
log(S(2)

k [�])
]

− Tr′
[
S(1)
k [�](S(2)

k [�])−1S(1)
k [�]

]
+ · · ·

}
.

(2.30)
Since δk � 1 is assumed, each loop integration yields a volume term ∼δk/k [15].
All higher loop contributions included in the “dots” are thus suppressed in the limit
δk → 0. In this limit, the previous approximate (one loop) equation becomes an
exact integro-differential equation for the action functional Sk[�]

k∂k Sk [�] = − lim
δk→0

k
δk

{
1
2 STr

′ [log(S(2)
k [�])

]
− 1

2 Tr
′ [S(1)

k [�](S(2)
k [�])−1S(1)

k [�]
]}

.

(2.31)
For instance, for a scalar theory with Z2 symmetry one obtains

k∂k Sk[�] = −�D

2

kD

(2π)D
log

(
S(2)
k [�]

)
(2.32)

where �D is the volume of the (D − 1)-dimensional unit sphere. This flow equa-
tion, derived by Wegner and Houghton in 1972 [14] and subsequently improved by
Polchinski [16], can be considered as the first Exact Renormalization Group Equa-
tion (ERGE). The Wegner-Houghton equation describes the flow of the Wilsonian
action Sk[φ] through the entire theory space. It is important to notice that this RG
equation does not depend on the UV cutoff �, which can also be taken infinite.

Although Eq. (2.31) is formally exact, it is not possible to find a general analytical
solution. One possible strategy is that of expanding the effective action Sk[�] in
powers of field derivatives [17–19]

Sk [�] =
∫

dDx {Uk [�] + 1
2 (∂μ�)2Zk [�] + (∂μ�)4Yk [�] + (��)2Hk [�] + . . . } .

(2.33)
The simplest approximation one can do is the Local Potential Approximation (LPA).
It represents the zeroth-order approximation of the derivative expansion (2.33) and
corresponds to the assumption that the field � is uniform through spacetime. In
fact, if the field is � = const, the effective action Sk[�] reduces to the function
Sk(�) = �Uk(�), where� is the total spacetime volume. In the LPA approximation
the Wegner-Houghton Eq. (2.32) assumes the simple form [13]

k ∂kUk(�) = − kD

�
(
D/2

)
(4π)D/2

log
(
k2 +U (2)

k (�)
)

(2.34)
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whereUk(φ) is the natural generalization of the standard effective potential [20]. At
this point, the strategy is to expand the potential as

Uk(�) =
N∑

n=0

gn(k)�n, (2.35)

where N defines the order of the truncation scheme, and then project the flowequation
onto the subspace spanned by (2.35). The resulting subset of coupling constants will
satisfy a set of ordinary differential equations in the form

k∂k gn(k) = βn(g1, . . . , gN ) (2.36)

where the right-hand-side is completely defined by the beta functions βn . The zeros
of these functions furnish the fixed point solutions of the renormalization group
flow. In the next section we shall examine the properties of the fixed point solutions,
completing the analogy with the case of statistical field theory, and we will discuss
the important relation between fixed points and renormalizability.

2.4 Fixed Points and Generalized Renormalizability

TheWegner-Houghton equation captures the renormalization group flowof infinitely
many couplings. However, as we have seen, this equation cannot be analytically
solved and one has to project the flow into a subspace of the theory space. The
resulting set of Eq. (2.36) is analogous to that of Eq. (2.17). By lowering the infrared
cutoff k from the ultraviolet regime (k → ∞) to the long-distance limit (k → 0),
the running couplings gn(k) draw a trajectory in the theory space. This evolution is
again parametrized by theRG time τ = log k, and all possible “asymptotic states” are
determined by the Fixed Point (FP) structure of the renormalization group flow. The
stability properties of each fixed point can then be studied by means of the stability
matrix Si j ≡ ∂g j βi (g∗).

As we have already seen, a Gaussian Fixed Point (GFP) describes a free theory.
Conventionally it corresponds to the origin of the theory space. Notably, as for a
trivial fixed point ξ = 0, the scaling exponents will be defined by the canonical mass
dimensions of the corresponding operators. On the other hand, a Non-Gaussian Fixed
Point (NGFP) represents an interacting theory and its critical exponents generally
differ from the canonical ones by an anomalous dimension contribution. Just like the
case of statistical physics, the scaling operators associatedwith a particular fixedpoint
can be classified according to their scaling exponents. The relevant coupling constants
increase by lowering the energy scale, while the irrelevant couplings become small
in the infrared limit. Hence, the relevant observables are the only parameters needed
to describe effective field theories and they can be fixed by experiments.
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In this discussion it is of central importance to specify the fixed point one refers
to. An operator which is irrelevant with respect to one fixed point, may be relevant
for another fixed point. The perturbative expansions used in Quantum Field Theory
to compute scattering amplitudes are valid when all couplings are small, i.e. near
the GFP. Hence the “renormalizable” interactions of perturbative Quantum Field
Theory correspond, in the Wilsonian picture, to those operators which are relevant
with respect to the GFP. Since the perturbation theory is valid in proximity to the
GFP, the perturbative notion of renormalizability is related to the existence of such
relevant couplings. In fact, for a theory involving just a set of relevant operators, the
renormalization group flow approaches the GFP in the ultraviolet limit and the the-
ory is (perturbatively) renormalizable. Conversely, the irrelevant operators drive the
renormalization group flow away from the GFP. Therefore, from a perturbative point
of view, non-renormalizable operators (irrelevant directions) are associated with irre-
movable ultraviolet divergences. In their presence the perturbative quantization of
the theory leads to several inconsistencies.

The conclusion that the theory is sick cannot be drawn unless the complete fixed
point structure of the renormalization group flow is known. The non-perturbative
techniques developed to study the Renormalization Group led in fact to a change of
perspective. A Quantum Field Theory is fully consistent if and only if its renormal-
ization group flow is well defined for all energy scales [21] . In particular, according
to [22], the fundamental requirement is the existence of a UV-attractive fixed point,
coming with a finite-dimensional UV critical surface (basin of attraction). Assum-
ing that such a FP exists, all RG trajectories belonging to the critical manifold run
towards this fixed point in the ultraviolet limit. On this basis, such an ultraviolet fixed
point defines the UV completion of the theory under consideration.

On the basis of these arguments, the Wilsonian Renormalization Group naturally
lead to a generalized notion of renormalizability. Even if a theory (RG trajectory) is
perturbatively non-renormalizable, it may be renormalizable from a non-perturbative
point of view if the renormalization group flow, repelled by the GFP, is attracted to
a NGFP. The resulting theory is called asymptotically safe because, despite of the
presence of perturbatively non-renormalizable operators, the NGFP saves the theory
fromunphysical divergences. TheNGFPmakes the theorywell definedup to arbitrary
large energy scales and perfectly acceptable and consistent. On the other hand, if the
ultraviolet fixed point is trivial, this generalized renormalizability criterion reduces
to the perturbative one, and the underlying theory becomes asymptotically free.
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Chapter 3
Functional Renormalization
and Asymptotically Safe Gravity

Einstein’s theory of General Relativity provides a successful framework for the
description of the gravitational interaction, but it breaks down in those regimes
where the spacetime curvature diverges, and the spacetime becomes singular. In such
ultra-Planckian regimes we expect Quantum Gravity effects to become important.
However, a fully consistent theory of Quantum Gravity is still lacking and this issue
represents one of themajor unsolved problems in theoretical physics. Themain prob-
lem arising in the construction of a quantum theory for the gravitational interaction
is that General Relativity turns out to be (perturbatively) non-renormalizable. Most
of the theories proposed so far are based on radical rethinking of quantum theory and
require the introduction of new physics. An exception is the Asymptotic Safety sce-
nario for Quantum Gravity, which is based on pure Quantum Field Theory. It builds
on the generalized notion of renormalizability naturally arising from the Wilsonian
Renormalization Group.

TheWilsonian formulation of the Renormalization Group has led to a deep under-
standing of the meaning of renormalization in Quantum Field Theory. By means of a
generalization of the Kadanoff blocking transformation and the functional methods
developed in the context of Quantum Field Theory, Wegner and Houghton derived
an exact equation [1] capable of describing the evolution of the renormalization
group flow through the theory space. The resulting (non-perturbative) FRG methods
allow to investigate the strongly-interacting regimes characterizing the physics far
away from the GFP. In this framework it is possible to study the complete fixed
point structure of the renormalization group flow. In particular the method allows to
search for non-trivial fixed points unaccessible by the standard perturbative methods.
In particular, as proposed by Wilson and Kogut [2] in 1974, the high-energy com-
pletion of a Quantum Field Theory can be defined if there exist a fixed point which
attracts the renormalization group flow in the ultraviolet (UV) limit. As we have seen
in the previous chapter, this observation leads to a generalized notion of renormal-
izability based on the existence of UV-attractive non-trivial fixed points. Perturba-
tively non-renormalizable quantum field theories can thus be renormalizable from a
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non-perturbative point of view. From this standpoint, as first proposed by Weinberg
in [3], gravity may be a perfectly renormalizable Quantum Field Theory and the
existence of a NGFP may provide the UV-completion of the gravitational interac-
tion. This framework is commonly referred to as Asymptotically Safe scenario for
Quantum Gravity.

Due to the difficulties related to the study of gauge theories within the FRG
approach, the progresses along this line of research slowed down for several years.
In the 90’s, new functional methods based on the concept of Effective Average
Action (EAA) were developed and a Functional Renormalization Group Equation
(FRGE) for scalar field theories, known asWetterich equation,was derived [4, 5]. The
subsequent generalization of the EAA formalism to gauge theories [6] renewed the
interest in the possibility of finding a NGFP underlying the renormalizability of the
gravitational interaction. In 1996,M. Reuter derived an exact equation describing the
renormalization groupflowof the gravitational interaction [7]. This result represented
the starting point for a systematic investigation of the Asymptotic Safety scenario
for Quantum Gravity.

Although the Asymptotic Safety conjecture is still unproved, there is a number of
evidences supporting its validity. In particular, for the case where the gravitational
degrees of freedom are encoded in fluctuations of the (Euclidean) spacetime met-
ric, defining the so-called metric approach to Asymptotic Safety, the existence of a
suitable NGFP has been shown in a vast number of approximations [8, 9, 11–35].

In this chapter we shall review the basic FRG techniques developed during the
90’s. Subsequentlywewill apply the EAA formalism to the case ofQuantumGravity,
summarizing the fundamental results obtained by Reuter in [7] and describing the
features of the corresponding phase diagram, first constructed in [10].

3.1 The Wetterich Equation for Scalars

TheWegner-Houghton equation (2.31) is a formally exact equation and its derivation
requires the introduction of an infrared cutoff k which allows to define theWilsonian
average action. In the 90’s new functional techniques based on the concept of the
Effective Average Action (EAA) were introduced and resulted in the derivation of
another ERGE, known as Wetterich equation [4, 5].

In contrast to the Wegner-Houghton equation, the Wetterich equation makes use
of a smooth cutoff function and its derivation is very similar to that of the standard
effective action inQuantumField Theory. In theWetterich formalism the dependence
of the effective action on the infrared scale k is encoded in a smooth cutoff function
�k S defined as

�k S[φ] ≡ 1

2

∫
φ∗(−q)Rk(q

2)φ(q)
dDq

(2π)D
. (3.1)
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The cutoff operator Rk(q2) is a matrix valued function and plays the role of an
effective mass term suppressing all fluctuations with momenta q < k. Explicitly
Rk(q2) can be rewritten as Rk(q2) ≡ Zk Rk(q2), where the scalar function Rk(q2)

smoothly interpolates between the two regimes

Rk(q
2) =

{
0 q � k

k2 q � k
(3.2)

so that the slow Fourier modes are suppressed by the dynamical mass k2, and the
functional integration is automatically restricted to the only fast Fourier modes.

The cutoff function �k S is explicitly introduced in the functional integral, thus
defining a scale-dependent generating functional

Zk[J ] ≡ eWk [J ] =
∫

D[φ] e−S�[φ]−�k S[φ]+J ·φ (3.3)

with J (x) an external source field. The scale-dependent functional Wk[J ] allows to
define the effective average field as

�[x; J ] ≡ 〈φ〉k = δWk[J ]
δJ (x)

. (3.4)

The source field can thus be thought as a functional of the field �, J = J [x;�].
By recalling how the standard effective action is obtained in Quantum Field
Theory [36], it is natural to define the EAA �k[�] by means of the Legendre trans-
form of Wk[J ]. Because of the explicit introduction of the cutoff function �k S, the
Legendre transform of Wk[J ] is the functional �̃k[φ] = �k[φ] + �k S[φ],1 with the
EAA �k[φ] defined as

�k[�] ≡ (−Wk[J ] + J [�] · �) − 1
2 � · Rk · �. (3.5)

In particular the external source J [x;�] can be written as the following functional
derivative

J [x;�] ≡ δ(�k[�] + �k S[�])
δ�

. (3.6)

At this point the flow equation for the action functional �k[�] can be obtained by
differentiating Eq. (3.5) with respect to the infrared scale k

∂k�k[�] = −∂kWk[J ] − 1
2 � · (∂kRk) · �

= + 1
2

(
δWk [J ]

δJ · ∂Rk
∂k · δWk [J ]

δJ + Tr
[(

δJ [�]
δ�

)−1 ∂Rk
∂k

])
− 1

2 � · ∂Rk
∂k · �.

(3.7)

1Since the action �k [�] is not the Legendre transform of Wk [J ], it is not restricted to be a convex
functional. The convexity properties of the effective action can only be recovered in the limit k → 0.
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Combining the above equation with (3.6) we conclude that

k∂k�k[�] = 1
2 Tr

[
(�

(2)
k + Rk)

−1 k∂kRk

]
. (3.8)

Here �
(2)
k is the second functional derivative of �k[�] with respect to the field �.

Analogously to the Wegner-Houghton equation, the Wetterich equation (3.8)
describes the renormalization group flow of a scale-dependent average action. The
effective action �k[�] is supposed to smoothly interpolate between the ultravio-
let limit and the low-energy regime. Compared to the Wegner-Houghton approach,
the EAA has the advantage of providing a direct relation to the connected Green’s
functions. In particular, by noting that δ�[J ]

δJ ≡ W (2)
k and δJ [�]

δ�
≡ �

(2)
k + Rk , we can

deduce the following identity

W (2)
k (�

(2)
k + Rk) ≡ 1 (3.9)

Therefore, the functional (�(2)
k + Rk)

−1 represents an effective (modified) propagator
at the scale k. As already mentioned, even though the FRG techniques allow a non-
perturbative description of the renormalization group flow, the exact Eqs. (2.31) and
(3.8) cannot be solved exactly. On the other hand, once an ansatz for the EAA has
been chosen, the beta functions determine an approximate renormalization group
flow living in the sub-theory space associated with the initial ansatz. This strategy
allows to investigate the fixed point structure of the theory.

3.2 The Wetterich Equation for Gauge Theories

In this section we will extend the FRG techniques to gauge theories and in particular
to the case of gravity.

3.2.1 Gauge Fixing and Ghosts

In the path integral quantization the key object is the generating functionalZ[J ]. This
functional allows to compute the Green’s functions of any Quantum Field Theory
and its expression is determined by a functional integral over all field configurations.
However, if the theory has some internal (gauge) symmetry, the functional integral
would extend over an infinite number of equivalent configurations and thus Z[J ]
would be ill defined. More precisely, the redundant field configurations are those
obtained under gauge transformations and must be removed from the functional
integral by fixing the gauge. A method to implement a gauge-fixing within the path-
integral approach was developed by Faddeev and Popov in 1967 [37].
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Let us consider a gauge field A(x), and letGμ(A) be a function such thatGμ(A) =
0 defines a gauge-fixing condition. According to the Faddeev-Popov method, the
gauge-fixing condition can be inserted in the functional integral by means of the
identity ∫

D[α̃ν] δ[Gμ(A
α̃ν )] det

(
δG(Aα̃)

δα̃

)
= 1 (3.10)

where α̃(x) denotes the set of auxiliary functions α̃ν(x) such that Aα̃ν (x) describes
all configurations gauge-equivalent to A(x), and G(A) briefly denotes the set of
conditions {Gμ}. Requiring the functional G(Aα̃) to be linear, the Faddeev-Popov
determinant can be isolated and treated as a constant. Therefore, the integration
over α̃ν(x) reduces to a multiplicative factor N defining the “volume” of the gauge
group [38]. The functional integral thus reads

Z[JA] = N det
(

δG(Aα̃)

δα̃

) ∫
D[A] δ[Gμ(A)] e−S[A]+JA ·A. (3.11)

Without loss of generality we can assume the gauge-condition to be in the form
Gμ(A) ≡ Fμ[A] − ωμ. Since ωμ(x) is an arbitrary gauge invariant function, we can
rewrite Eq. (3.11) as follows

Z[JA] = N det
(

δF(Aα̃)
δα̃

) ∫
D[A] e−S[A]+JA ·A

∫
D[ωμ] δ[Fμ[A] − ωμ] e− ∫ ωμωμ

2α dDx

= N det
(

δF(Aα̃)
δα̃

) ∫
D[A] e−S[A]+JA ·A e− ∫

(FμFμ/2α) dDx . (3.12)

The resulting exponential can be regarded as a gauge-fixing action, and α is the
corresponding gauge parameter. Now it only remains to study the Faddeev-Popov
determinant. This determinant is taken into account by introducing a new set of
anti-commuting fields {C̄μ,Cμ} and “exponentiating” the determinant as follows

detM ≡ det
(

δF(Aα̃)

δα̃

)
=

∫
D[C̄μ]D[Cμ] e− ∫

(C̄μ Mμν Cν ) dDx (3.13)

withMμν = δFμ

δα̃ν . The set of fields introduced take the name of ghosts, and their intro-
duction in the field integral concludes the Faddeev-Popov procedure. This method
allows to remove all gauge-equivalent field configurations and lead to the following
generating functional

Z[J ] = N
∫

D[χ] exp
{
−S[χ] −

∫
FμFμ

2α
dDx −

∫
(C̄μMμνC

ν) dDx + J · χ

}

(3.14)
where χ denotes the set χ ≡ {A, C̄μ,Cμ} and J stands for the corresponding set of
sources J ≡ {JA,σμ, σ̄μ}. The functional (3.14) can now be taken as starting point
for the generalization of the EAA formalism to gauge theories.
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3.2.2 Background Field Method

With the purpose of defining a scale-dependent action for the gravitational field, one
of the most important requirements is the principle of background independence.
The diffeomorphism invariance is in fact the gauge symmetry underlying the theory
of General Relativity and therefore it must be recovered at least in the infrared
limit, k → 0. The problem lies in the path integral quantization procedure. In fact,
the gauge-fixing and ghost terms generally break this symmetry and, in the EAA
formalism, the same holds for the cutoff action�k S. Furthermore, when considering
General Relativity, the metric defining the scalar products (in particular the infrared
scale k) is the same dynamical field over which the functional integral is extended
over. TheBackgroundFieldMethod (BFM)provides a tool to implement the principle
of background independence. This method is essential to define the EAA for the
gravitational interaction while preserving the diffeomorphism invariance.

The background field formalism was initially introduced in the context of Quan-
tum Field Theory to quantize gauge theories without losing the gauge invariance
[39, 40]. The key idea is to split the physical field into a classical background φ̄ and
the fluctuation field φ̂

φ = φ̄ + φ̂. (3.15)

It is important to stress that the fluctuations described by φ̂ are not required to be
“small”. As the background is fixed, the partition function can then be defined as the
following function of the background field

Z[J ; φ̄] ≡ eW [J ;φ̄]
∫

D[φ̂] e−S�[φ̄+φ̂]+J ·φ̂ ≡ Z[J ; 0]e−J ·φ̄. (3.16)

The functionalZ[J ; φ̄] allows to derive the expectation value of the field φ̂, �̂ = 〈φ̂〉,
and the corresponding effective action in the standard way. The generating functional
W [J ; φ̄] is related to W [J ; 0] through the relation

W [J ; φ̄] = W [J ; 0] − J · φ̄ (3.17)

and thus the classical field� = 〈φ〉 can be decomposed as� = �̄ + �̂. At this point
the remaining task is that of determining the relation between the effective action
functionals with and without the background field

�[�̂; �̄] = −W [J ; �̄] + J · �̂ = −W [J ] + J · (�̄ + �̂) ≡ �[�̄ + �̂]. (3.18)

This relationmeans that the effective action for the fluctuation field �̂ in the presence
of a background �̄ is equivalent to the usual effective action�[�] if the physical field
� is decomposed as � = �̄ + �̂. The crucial observation is that �[0; �̄] = �[�̄].
The gauge-fixing can thus be constructed in a way that guarantees the gauge invari-
ance of the standard effective action. In fact, the linear split (3.15) allows to realize
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the transformation � → � + δ� of the original gauge group as the overlap of a
background gauge transformation and a “quantum” gauge transformation. While the
former acts on both the background and fluctuation fields, � → � + δ̄�, the latter
leaves the background invariant, � → � + δ̂�̂. Hence, the quantum gauge invari-
ance corresponds to the symmetry respect to which the gauge-fixing has to be added.
Only the quantum gauge symmetry is thus explicitly broken by the gauge-fixing and
regulator terms, while the whole action remains invariant under background gauge
transformations. The latter property guarantees that the standard effective action
�[0; �̄] = �[�̄] preserves the gauge symmetry.

According to the above discussion, the background field formalism is perfectly
suited to study the quantization of the gravitational field within the FRG approach.
The fluctuations, central object of the functional renormalization, are integrated out
leaving the diffeomorphism invariance of the effective action unaffected. In particu-
lar, the metric degree of freedom can be decomposed through the linear split

gμν = ḡμν + hμν (3.19)

and the generating functional reads

Zk[J ; χ̄] =
∫

D[χ̂] e−Sgrav−Sgf−Sghost−�k S+J · χ̂ (3.20)

where χ is a set of fields which includes the metric gμν and the Faddeev-Popov
ghosts, and J is the corresponding set of sources. The cutoff action �k S has to be
constructed through the BFM and is given by

�k S = 1

2

∫√
ḡ

{
χ̂Rk[χ̄] χ̂

}
dDx . (3.21)

Finally, the action functional �k can be decomposed into the physical action, and the
gauge-fixing and ghost contributions. For pure gravity �k can thus be written as

�k[χ̂; χ̄] ≡ �
grav
k [h; ḡ] + �

gf
k [h; ḡ] + �

ghost
k [h,C, C̄; ḡ] (3.22)

with

�
gf
k [h; ḡ] = 1

2α

∫ √
ḡ {ḡμνFμFν} dDx , (3.23a)

�
ghost
k [C, C̄, h; ḡ] =

∫ √
ḡ {C̄μ Mμ

ν C
ν} dDx, (3.23b)

and where the functional Fμ[h; ḡ] fixes the gauge through Fμ[h; ḡ] = 0. At last,
for a given truncation scheme, the left-hand-side of the Wetterich equation can be
determined by differentiating the action functional (3.22) with respect to the Renor-
malization Group time τ = log k. This variation basically involves the derivatives of
the couplings with respect to k, and the comparison with the right-hand-side allow
to read off the corresponding beta functions.
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3.2.3 Cutoff Function and Heat-Kernel Techniques

Once an ansatz for the EAA has been chosen, and the gauge fixing and ghosts terms
have been added, the left-hand-side of the flow equation is completely determined.
The next step of the procedure is to compute the right-hand-side. Typically this can
be done by using the off-diagonal heat-kernel technique (see [41] and the Appendix
of [15] for details). In this section we will show how this method works for a physical
system described by a generic set of fields χ(x), which can include scalar, vector
and tensor fields, as well as the Faddeev-Popov ghosts.

The basic ingredient in the right-hand-side is the cutoff function Rk which has
the role of regularizing the inverse propagator �(2)

k (Hessian). Following the notation
in [41], the latter differential operator can be written as

�
(2)
k = K + D + M. (3.24)

The operators K, D and M denote the kinetic, uncontracted derivatives and back-
ground interaction terms respectively. In order to make the computation easier, and
use the standard heat-kernel techniques, it is useful to “eliminate” the D-terms. The
standard procedure consists of using a Transverse-Traceless (TT), or York, decom-
position of the fluctuation fields. For instance, vector and tensor fields can be decom-
posed into their transverse and longitudinal parts as follows

Âμ = ÂT
μ + D̄μB , (3.25a)

hμν = hTT
μν + D̄μξν + D̄νξμ − 2

D ḡμν D̄
γξγ + 1

D ḡμν h. (3.25b)

Here D̄μ denotes the background covariant derivative, ÂT
μ is a transverse vector

field (D̄μ Âμ = 0), hTT
μν is a transverse-traceless tensor field (D̄μhTT

μν = 0 and ḡμν

hTT
μν = 0), and h ≡ ḡμνhμν stands for the trace of hμν . In particular, the vectors ξμ can

be further decomposed according to (3.25a). When applying the TT-decomposition
defined above to the set of fluctuation fields χ̂ appearing in the second variation of
the action, δ2�k ≡ 1

2 χ̂ · �
(2)
k · χ̂ , all D-terms reduce to contributions to K and M.

The differential operator �
(2)
k is a block matrix given by the sum of the kinetic

K and interaction M operators. In particular the operator K has the structure of a
block-diagonal matrix, whose non-zero blocks K

(s)
i i are defined on the subspaces

spanned by the fields χ̂i having s spacetime indices. The blocks K(s)
i j thus read

K
(s)
i j ∝ δi j �s 1̂i (3.26)

where �s ≡ −ḡμν D̄μ D̄ν is the D-dimensional Laplacian acting on fields having s
indices, and 1̂i stands for the identity 1̂di×di in the di -dimensional internal subspace
spanned by the field χ̂i . The interaction operator M is usually much more compli-
cated, and can be decomposed in the following way
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M = Ê + Q̂k . (3.27)

Here both Ê and Q̂k contain interaction terms, but the explicit dependence on the
running couplings is now enclosed in the scale-dependent operator Q̂k . The most
general block element of �

(2)
k can thus be written as

�
(2)
k

∣∣∣
χ̂l χ̂ j

= (L̂k)li

(
δi j �si 1̂i + (Ê + Q̂k)i j

)
(3.28)

where a diagonal scale-dependent operator (L̂k)i j ≡ δi j γi (k) 1̂i has been introduced.
At this point it is important to specify the cutoff scheme, namely how to imple-

ment the regularization of �
(2)
k through the operator Rk . As the latter represents a

generalized mass-term suppressing the modes with q < k, the most natural way to
regularize the Hessian is that of replacing

�s 
→ Pk(�s) ≡ �s + Rk(�s) (3.29)

where the scalar function Rk(�s) has to be chosen according to the requirement (3.2).
The regularization scheme introduced through Eq. (3.29) defines the so-called Type
I cutoff Rk |i j ≡ δi j γi (k) Rk(�si ) [15]. Other cutoff choices are however possible
and their implementation make use of Eq. (3.29) with the Laplacian �s replaced by
a generic differential operator � which includes the interaction terms. Specifically,
� = �s + Ê implements the Type II regulator, while the scale-dependent choice
� = �s + Ê + Q̂k corresponds to the Type III regulator, which is also referred to as
“spectrally adjusted” cutoff because of its dependence on the running couplings [15].
By using the Type I cutoff, the modified inverse propagator can be written as

�̃
(2)
k

∣∣∣
χ̂l χ̂ j

= (�
(2)
k + Rk)

∣∣∣
χ̂l χ̂ j

= (L̂k)li

(
Pk(�si ) δi j 1̂i + (Ê + Q̂k)i j

)
(3.30)

while the numerator in the right-hand-side of the flow equation reads

k∂kRk(�si )
∣∣
χ̂l χ̂ j

= (L̂k)li

(
k∂k Rk + Rk k∂k log[γ j (k)]

)
δi j . (3.31)

At this point we are left with the task of inverting the regularized inverse propagator
and evaluate the operator traces by means of the off-diagonal heat-kernel technique.
For this purpose it is useful to specialize the discussion to the case of the gravitational
field. In this regard, we consider for the gravitational action the following polynomial
truncation

�
grav
k [gμν] =

∫ √
g

(
M∑

m=0

gm(k)Rm

)
dDx (3.32)

whereM defines the order of the truncation. As the initial assumption on the physical
action is a polynomial approximation, the computation of the beta functions for
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the running couplings requires a comparison between expansion coefficients in the
left and right hand-sides of the Wetterich equation. Therefore, the operator to be
traced needs to be developed in powers of the expansion parameter (for instance the
curvature R). At this stage it is convenient to decompose

�̃
(2)
k = L̂k (P̃(�s) + Ṽ(R̄)) (3.33)

where the scale-dependent matrix P̃ collects all kinetic and constant terms, while
the curvature-dependent operators (evaluated on the background) are enclosed in
the interaction matrix Ṽ. Hence, putting Ñ(�s) ≡ L̂−1

k k∂kRk , the operator in the
right-hand-side of the Wetterich equation can be expanded as follows

(
�̃

(2)
k

)−1
(k∂kRk) = (P̃−1 − P̃−1 Ṽ P̃−1 + P̃−1 Ṽ P̃−1 Ṽ P̃−1 + · · · ) Ñ . (3.34)

The only point remaining concerns the evaluation of the operator traces, for which
the covariant heat-kernel methods are needed [41]. The trace of a general function
W (�) of the operator � can be written as

Tr [W (�)] =
∫ ∞

0

{
Tr[K (s)]} W̃ (s) ds (3.35)

where the function W̃ (s) is the inverse Laplace transform of W (s), and K (s) ≡
e−s� is the heat kernel of the operator �. The trace in the above expression can be
developed through the “early-time expansion”

Tr[K (s)] ≡
∑
i

e−sλi =
∫ √

g

{
1

(4πs)D/2

∞∑
n=0

Tr[b2n(�)] sn
}

dDx . (3.36)

Here λi are the eigenvalues of � and b2n are the Seeley-Gilkey coefficients [42] of
the heat-kernel expansion. In particular each coefficient bm contains m derivatives
and for a differential operator � = �s + Ê the first two coefficients are b0 = 1̂ and
b2 = R

6 1̂ − Ê . Combining (3.35) and (3.36) finally gives

Tr [W (�)] = 1

(4π)D/2

∫ √
g

{ ∞∑
n=0

Q D−2n
2

[W ]Tr[b2n(�)]
}

dDx (3.37)

where the functionals Qn are defined as the Mellin transforms of W (s)

Qn[W ] =
∫ ∞

0
W̃ (s) s−n ds ≡ 1

�(n)

∫ ∞

0
W (z) zn−1 dz (3.38)

for n ∈ N0, while Q0[W ] = W (0) for n = 0.
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Finally, the formula (3.37) can be used to evaluate the trace in the right-hand-side
of the flow equation. Considering a truncation scheme in the form (3.32), involving
up toM powers in the curvature scalar, the trace in the right-hand-side can accordingly
be approximated by

Tr

[
k∂kRk

�̃
(2)
k

]
� 1

(4π)D/2

M∑
m=0

M−m∑
n=0

(−1)m
∫ √

ḡ
{
Q D−2n

2

[
W(m)(z)

]
Tr[b2n]

}
vm R̄m dDx

(3.39)
where the heat-kernel coefficients are functions of the box operator, b2n = b2n(�s)

[42], the coefficients vm depends on the structure of Ṽ(R̄) and the family of functions
W(m)(z) is defined as follows

W(m)(z) = Ñ(z)[P̃(z)
]m+1 . (3.40)

Following the procedures described in this section, we are now ready to analyze
the renormalization group flow for the gravitational field in the Einstein-Hilbert
truncation.

3.3 Asymptotic Safety in Quantum Einstein Gravity

This section is devoted to the study of the renormalization group flow of pure Quan-
tum Gravity in the Einstein-Hilbert truncation. This ansatz approximates the gravi-
tational part of the EAA by

�
grav
k [g] = 1

16πGk

∫ √
g {−R(g) + 2�k} dDx (3.41)

where the Newton’s coupling and cosmological constant depend on the RG scale k.
The left-hand-side of theWetterich equation can thus be computed by differentiating
the action functional (3.41) with respect to the RG time τ = log k.

The total average action defined in Eq. (3.22) has to satisfy theWetterich equation

k∂k�k[h; ḡ] = 1

2
STr

[
k∂kRk

�
(2)
k + Rk

]
(3.42)

where �
(2)
k denotes the second functional derivative of the effective action �k[h; ḡ]

with respect to the fluctuation fields

�
(2)
k

∣∣∣
i j

= ε
1√
ḡ

1√
ḡ

δ2�k

δχ̂i δχ̂ j
(3.43)
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with ε = 1 for bosons and ε = −1 for fermion fields. In order to derive the beta func-
tions and determine the renormalization group flow in the Einstein-Hilbert subspace,
we introduce the dimensionless couplings

gk ≡ kD−2Gk , λk ≡ k−2�k (3.44)

and the anomalous dimension of the Newton’s constant, defined as

η ≡ (Gk)
−1k∂k Gk = (gk)

−1 k∂k gk − (D − 2). (3.45)

Following the notation introduced in the previous section, the scale dependent func-
tion γi (k) is given by

γi (k) =
(

1

16πGk

)αi

(3.46)

where αi = 0, 1 depending on whether the matrix element arises from the gravi-
tational or ghost sector. Therefore the operators P̃ and Ñ assume the simple form

P̃i j = (�si + w)δi j , (3.47a)

Ñi j = (k∂k Rk − αi η Rk)δi j , (3.47b)

where w can be either zero or w = −2�k , and η is the anomalous dimension intro-
duced in Eq. (3.45). As we need to compute the functionals Qn[W(m)], with W(m)(z)
defined in Eq. (3.40), it is convenient to introduce the following dimensionless thresh-
old functions [7]

�p
n (w) = 1

�(n)

∫ ∞

0

R(0)(z) − z R(0)′(z)
[z + R(0)(z) + w]p zn−1 dz (3.48a)

�̃p
n (w) = 1

�(n)

∫ ∞

0

R(0)(z)

[z + R(0)(z) + w]p zn−1 dz (3.48b)

with the scalar profile function R(0)(�s/k2) defined through the relation Rk(�s) =
k2 R(0)(�s/k2). At this point, the right-hand-side of Eq. (3.42) can be expanded using
the heat-kernel techniques. The RenormalizationGroup equations for the dimension-
less Newton’s and cosmological constants can then be written as

k∂kgk = βg(gk,λk; D) , k∂kλk = βλ(gk,λk; D). (3.49)

In particular the beta functions can be obtained by comparing the left and right
hand-sides of the Wetterich equation, and can be cast in the following form [7]
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βg = +(D − 2 + η) g , (3.50a)

βλ = −(2 − η) g + g
2(4π)D/2−1

{
2D(D + 1)�1

D/2(−2λ) (3.50b)

− 8D �1
D/2(0) − η D(D + 1) �̃1

D/2(−2λ)
}
.

Here the anomalous dimension η is given by

η = g B1(λ)

1 − g B2(λ)
(3.51)

and the functions B1(λ) and B2(λ) defined as follows

B1(λ) = + 1

3

1

(4π)D/2−1

{
D(D + 1)�1

D/2−1(−2λ) − 6D(D − 1)�2
D/2(−2λ)

− 4D �1
D/2−1(0) − 24�2

D/2(0)
}

, (3.52a)

B2(λ) = − 1

6

1

(4π)D/2−1

{
D(D + 1) �̃1

D/2−1(−2λ) − 6D(D − 1) �̃2
D/2(−2λ)

}
.

(3.52b)

The beta functions in Eq. (3.50) describe the renormalization group flow for the
gravitational interaction projected onto the Einstein-Hilbert subspace, for arbitrary
spacetime dimensions D. The fixed point structure can then be studied by solving
the fixed point (FP) equations

βg(g∗,λ∗) = 0 , βλ(g∗,λ∗) = 0. (3.53)

As extensively discussed in Chap.2, the critical exponents associated with each fixed
point play a central role in determining the properties of the renormalization group
flow.With the aim of studying the high-energy behavior of the quantum gravitational
field, it is useful to define the critical exponents θi as minus the eigenvalues of the
stability matrix Si j ≡ ∂g j βi (g∗), and throughout this dissertation we will use this
definition.

In the case of D = 4 spacetime dimensions, using a sharp profile function
R(0)
k (q2/k2) = θ(1 − q2/k2), the beta functions (3.50) assume a very simple form

[10], and the Eq. (3.53) have two fixed point solutions with g∗ ≥ 0. The first one is
the usual GFP, g∗ = λ∗ = 0 and its scaling exponents are the canonical ones. This
means that, due to the negative mass dimension of the Newton’s constant, the GFP is
a saddle point for the gravitational renormalization group flow. The second solution
of (3.53) is a non-trivial fixed point with coordinates

g∗ = 0.403 , λ∗ = 0.330. (3.54)

This NGFP is characterized by a complex pair of critical exponents [10]
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Fig. 3.1 Flow diagram for the Einstein-Hilbert truncation obtained in [10]. The arrows indicate
the evolution of the renormalization group flow for decreasing values of the RG time τ = log k.
In the high-energy regime the physical part of the flow (gk > 0) is controlled by the NGFP, while
the infrared behavior depends upon the particular RG trajectory and allows to classify the physical
trajectories according to (3.56)

θ1,2 = 1.941 ± 3.147i (3.55)

and since Re(θ1,2) > 0, the non-trivial fixed point (3.54) is attractive in the ultraviolet
limit. i.e. the renormalization group flow approaches the NGFP for k → ∞. In order
to study the global behavior of the renormalization group flow, the Eqs. (3.49) have
to be solved numerically. The RG trajectories can be obtained as the parametric
curves (λk, gk), with the renormalization group scale k as parameter. The resulting
phase portrait [10], shown in Fig. 3.1, allows to visualize the long-term (infrared and
ultraviolet) behavior of the system (3.49) for a representative set of its solutions. The
interesting, physical part of the flow diagram corresponds to the half-plane gk > 0.
The infrared behavior (k → 0) of the renormalization group flow depends on the
particular trajectory. The physical RG trajectories can thus be classified according
to their infrared behavior [10]

Type Ia lim
k→0

(λk, gk) = (−∞, 0) �0 < 0

Type IIa lim
k→0

(λk, gk) = (0, 0) �0 = 0

Type IIIa lim
k→kt

(λk, gk) = (λkt , gkt ) �kt > 0

(3.56)
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Fig. 3.2 Qualitative behavior of the running Newton’s coupling and cosmological constant as
functions of the RG scale k. In the high-energy regime the flow is governed by the NGFP and the
couplings vary with k. By lowering the energy scale k from the ultraviolet to the infrared regime, the
physical RG trajectory matches the classical regime described by General Relativity. The couplings
Gk and �k become constants at k ∼ MPl and k ∼ kT respectively, kT being the “turning point” at
which the trajectory is maximally close to the GFP

Here kt stands for the value of the RG scale k at which the anomalous dimension
η becomes singular. In fact, for the Type IIIa trajectories, the renormalization group
flow terminates at kt �= 0, and the infrared limit is not well defined. On the other
hand, Type Ia trajectories are well defined for all k, but in the infrared limit the
dimensionful cosmological constant is negative, �0 < 0. At last, the only Type IIa
trajectory is the “separatrix line” starting from theNGFPand terminating into theGFP
for k → 0.More generally a separatrix is a curve connecting different fixed points and
represents the boundary separating qualitatively different behaviors in the solutions
of a dynamical system. In the case at hand the separatrix (Type IIa) curve separates
the Type Ia and IIIa families of solutions, which in fact differ from each other in their
infrared behaviors, and correspond to different cosmologies. Notably, as the observed
cosmological constant is positive, the physical trajectory describing the evolution of
our universe must be a Type IIIa solution [43]. The corresponding running Newton’s
constant Gk and cosmological constants �k are depicted in Fig. 3.2 [43]. In the
Quantum Gravity regime, k � MPl, the renormalization group flow is controlled by
the NGFP and the running couplings scale as

Gk ∼ k−2 , �k ∼ k2. (3.57)

Notably, one of the most important predictions of Asymptotic Safety is that the
Newton’s constant vanishes in the ultraviolet limit [44]. By lowering the RG scale
k, the trajectory approaches the GFP and at the “turning point” k ∼ kT it enters into
the classical regime. Hence, in the final part of the RG evolution, the couplings Gk
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and �k stop their running and become constants. In particular, one can choose the
RG trajectory so that the infrared (constant) values of the Newton’s constant G0 and
cosmological constant �0 match the observed ones.
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Chapter 4
Quantum Gravity on Foliated Spacetimes

In Chap. 3 of this dissertation we introduced the metric formulation of the Asymp-
totic Safety scenario for Quantum Gravity. Although General Relativity requires the
spacetime to be Lorentzian, the EAA is defined bymeans of a Euclidean path integral.
In the context of Quantum Field Theory, the Lorentzian signature can be recovered
by Wick-rotating all time-like quantities. However, while Quantum Field Theory is
defined on a fixed Minkowski background, which furnishes a natural notion of time,
the concept of time in a dynamical (and possibly fluctuating) spacetime becomes
rather involved. In General Relativity the dynamical metric describing gravity is the
same field defining the coordinate system. What is then the role of time in a dynam-
ical theory of the spacetime? A way to address this question in General Relativity is
the Arnowitt-Deser-Misner (ADM) formalism [1, 2]. In this construction the space-
time metric is decomposed into a lapse function N , a shift vector Ni, and a metric σij

which measures distances on the spatial slices �t , defined as hypersurfaces where
the time-variable t is constant. Since the ADM-formalism imprints spacetime with
a foliation structure, the resulting distinguished time direction allows to compute
transition amplitudes from an initial to a final slice.

A FRGE for the effective average action [3–6] tailored to the ADM-formalism
has been constructed in [7, 8]. A first evaluation of the resulting renormalization
group flow within the Matsubara-formalism provided strong indications that the UV
fixed point underlying the Asymptotic Safety scenario is robust under a change from
Euclidean to Lorentzian signature [7, 8].

This chapter is based on the following publications:
• J. Biemans, A. Platania, F. Saueressig-Quantum gravity on foliated spacetimes-Asymptotically
safe and sound-Phys. Rev. D 95 (2017) 086013 [arXiv:1609.04813]
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• A. Platania, F. Saueressig-Functional Renormalization Group flows on Friedman-Lemaitre-
Robertson-Walker backgrounds Found. Phys. (2018). https://doi.org/10.1007/s10701-018-0181-0.
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In this chapter we employ the ADM-formalism for evaluating the gravitational
renormalization group flow on a cosmological Friedmann-Robertson-Walker (FRW)
background. In particular we will show that the renormalization group flow resulting
from projecting the FRGE onto the Einstein-Hilbert action exhibits a NGFP suitable
for Asymptotic Safety. Furthermore, given that asymptotic safety is a rather general
concept whose applicability is not limited to the gravitational interaction, it is also
interesting to study the renormalization group flow of gravity minimally coupled to
matter fields. In the context of the metric formulation of Quantum Gravity, it has
been shown that the Asymptotic Safety mechanism may also play a key role in the
high-energy completion of a large class of gravity-matter models [9–22]. Thus the
final part of the present chapter is devoted to the study of matter effects in the ADM
setting. In particular we will discuss the fixed point structure arising from foliated
gravity-matter systems containing an arbitrary number of minimally coupled scalars,
NS , vector fields NV , and Dirac fermions ND.

The inclusion of the matter fields leads to a two-parameter deformation of the
beta functions controlling the flow of Gk and �k . Analyzing the beta functions of
the gravity-matter systems utilizing these deformation parameters allows classifying
their fixed point structure. The fixed points for a specific gravity-matter model can
then be determined by evaluating the map relating its field content to the deformation
parameters. In particular, we will see that the matter content of the Standard Model
of particle physics as well as many of its phenomenologically motivated extensions
are located in areas which give rise to a single UV fixed point with real critical
exponents. These findings provide a first indication that the asymptotic safety mech-
anism encountered in the case of pure gravity may carry over to the case of foliated
gravity-matter systems with a realistic matter content.

4.1 Spacetime Foliation and Functional Renormalization

The FRGE on foliated spacetimes has been constructed in [7, 8] and we review the
formalism in the following sections.

4.1.1 Arnowitt-Deser-Misner Decomposition of Spacetime

Let us consider a D-dimensional Euclidean manifold M with metric gμν , carrying
coordinates xα. In order to set up a preferred “time”-direction, we define a time func-
tion τ (x) which assigns a specific time τ to each spacetime point x. This can be used
to decompose M into a stack of spatial slices �τi ≡ {x : τ (x) = τi} encompassing
all points x with the same value of the “time-coordinate” τi. The gradient of the time
function∂μτ can be used to define a vector nμ normal to the spatial slices, nμ ≡ N∂μτ .
The lapse function N (τ , yi) ensures the normalization gμν nμ nν = 1. Furthermore,
the gradient can be used to introduce a vector field tμ satisfying tμ∂μτ = 1. Denoting
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the coordinates on�τ by yi, i = 1, . . . , d , the tangent space on a point inM can then
be decomposed into the space tangent to �τ and its complement. The corresponding
basis vectors can be constructed from the Jacobians

tμ = ∂xμ

∂τ

∣
∣
∣
∣
yi

, ei
μ = ∂xμ

∂yi

∣
∣
∣
∣
τ

. (4.1)

The normal vector then satisfies gμν nμ eiν = 0.
The spatial coordinate systems on neighboring spatial slices can be connected by

constructing the integral curves of tμ and requiring that yi is constant along these
curves. A priori tμ is neither tangent nor orthogonal to the spatial slices. Using the
Jacobians (4.1) it can be decomposed into its components normal and tangent to �τ

tμ = N nμ + Ni ei
μ , (4.2)

where Ni(τ , yi) is called shift vector. Analogously, the coordinate one-forms trans-
form according to

dxμ = tμdτ + ei
μdyi = Nnμdτ + ei

μ (dyi + Nidτ ) . (4.3)

Defining the metric on the spatial slice σij = eiμ ejν gμν , the line-element ds2 =
gμν dxμdxν written in terms of the ADM fields takes the form

ds2 = gαβ dx
αdxβ = N 2dτ 2 + σij (dy

i + Nidτ )(dyj + Njdτ ) . (4.4)

Note that in this case the lapse function N , the shift vector Ni and the induced metric
on the spatial slices σij depend on the spacetime coordinates (τ , yi).1 In terms of
metric components, the decomposition (4.4) implies

gαβ =
(

N 2 + NiN i Nj

Ni σij

)

, gαβ =
(

1
N 2 − Nj

N 2

− Ni

N 2 σij + Ni N j

N 2

)

(4.5)

where spatial indices i, j are raised and lowered with the metric on the spatial slices.
An infinitesimal coordinate transformation vα(τ , y) acting on the metric can be
expressed in terms of the Lie derivative Lv

δgαβ = Lv gαβ . (4.6)

Decomposing
vα = (

f (τ , y), ζ i(τ , y)
)

(4.7)

1This situation differs fromprojectableHořava-Lifshitz gravitywhereN is restricted to be a function
of (Euclidean) time τ only.
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into its temporal and spatial parts, the transformation (4.6) determines the transfor-
mation properties of the component fields under Diff(M)

δN = ∂τ (fN ) + ζk∂kN − NNi∂if ,

δNi = ∂τ (Nif ) + ζk∂kNi + Nk∂iζ
k + σki∂τ ζ

k + NkN
k∂if + N 2∂if ,

δσij = f ∂τσij + ζk∂kσij + σjk∂iζ
k + σik∂jζ

k + Nj∂if + Ni∂j f .

(4.8)

For completeness, we note

δNi = ∂τ (N
if ) + ζ j∂jN

i − Nj∂jζ
i + ∂τ ζ

i − NiN j∂j f + N 2σij∂jf . (4.9)

Denoting expressions in Euclidean and Lorentzian signature by subscripts E and L,
the Wick rotation is implemented by

τE → −iτL , Ni
E → iN i

L . (4.10)

In the case where τ is associated with a Killing vector, this transformation allows to
go from Euclidean to Lorentzian metrics.

The (Euclidean) Einstein-Hilbert action written in ADM fields reads

SEH = 1

16πG

∫

dτddy N
√

σ
[

Kij Gij,kl Kkl − (d)R + 2�
]

. (4.11)

Here (d)R denotes the intrinsic curvature on the d -dimensional spatial slice,

Kij ≡ 1

2N

(

∂τσij − DiNj − DjNi
)

, K ≡ σijKij (4.12)

are the extrinsic curvature and its trace, and Di denotes the covariant derivative
constructed from σij. The kinetic term is determined by the Wheeler-de Witt metric

Gij,kl ≡ σik σjl − λσij σkl . (4.13)

The parameter λ = 1 is fixed by requiring invariance of the action with respect to
Diff(M) and, in what follows, we adhere to this value.

4.1.2 Renormalization Group Equations on Foliated
Spacetimes

In Chap. 3 we reviewed the FRG in the metric approach to QuantumGravity [6]. The
study of the gravitational renormalization group flow on foliated spacetimes requires
a formulation of the FRGE
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k∂k�k [h; ḡ] = 1

2
STr

[(

�
(2)
k + Rk

)−1
k∂kRk

]

(4.14)

where the (Euclidean) spacetime metric gμν is decomposed according to (4.4), and
the gravitational degrees of freedom are encoded in the ADM-fields {N ,Ni,σij}
[7, 8]. The effective average action�k is then obtained in the usual way. In particular,
the construction of �k makes manifest use of the BFM, introduced in Sect. 3.2.2.
Following [8] we use a linear split of the ADM fields into background fields (marked
with an bar) and fluctuations (indicated by a hat)2

N = N̄ + N̂ , Ni = N̄i + N̂i , σij = σ̄ij + σ̂ij . (4.15)

Owed to the non-linearity of the ADM decomposition, the transformation of the
ADM fields under the full diffeomorphism group is non-linear. In combination with
the linear split (4.15) this entails that �kS, which, by construction, is quadratic in
the fluctuation fields, preserves a subgroup of the full diffeomorphism group as a
background symmetry only. Inspecting Eqs. (4.8) and (4.9) one sees that restricting
the symmetry group to foliation preserving diffeomorphisms where, by definition,
f (τ , y) = f (τ ) is independent of the spatial coordinates, eliminates the quadratic
terms in the transformation laws. This indicates that the regulator appearing in (4.14),
as well as the gauge-fixing and ghost contributions, only respects foliation preserving
diffeomorphisms as a background symmetry. The resulting FRGE retains foliation-
preserving background diffeomorphisms as a background symmetry only (see [8]
for a detailed discussion).

Following the notation introduced in Chap. 3, we will denote the sets of physical
fields, background fields and fluctuations by χ, χ̄, and χ̂, respectively. Accordingly,
the generating functional has the form (3.20), namely

Zk [J ; χ̄] ≡
∫

D[χ̂] exp [−Sgrav − Smatter − Sgf − Sghost − �kS + Ssource
]

,

(4.16)
where Sgrav[N ,Ni,σij] is a generic diffeomorphism invariant action, supplemented
by a suitable gauge-fixing term Sgf , a corresponding ghost action Sghost, and source
terms Ssource ≡ J · χ̂ for the fluctuation fields. In addition to the gravitational action
Sgrav[N ,Ni,σij], we also consider NS scalar fields, NV abelian gauge fields and ND

Dirac fields minimally coupled to gravity through the action

Smatter = Sscalar + Svector + S fermion , (4.17)

where

2Strictly speaking, the fields appearing in the EAAare the vacuum expectation values of the classical
fields introduced in the previous subsection. In order to keep our notation light, we use the same
notation for both fields, expecting that the precise meaning is clear from the context.
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Sscalar =1

2

NS∑

i=1

∫

dτdd xN
√

σ
[

φi �0 φi
]

,

Svector =1

4

NV∑

i=1

∫

dτdd xN
√

σ
[

gμνgαβFi
μαF

i
νβ

]

+ 1

2ξ

NV∑

i=1

∫

dτdd xN̄
√

σ̄
[

ḡμν D̄μA
i
ν

]2

+
NV∑

i=1

∫

dτdd xN̄
√

σ̄
[

C̄i �0 C
i
]

,

Sfermion = i
ND∑

i=1

∫

dτdd xN
√

σ
[

ψ̄i /∇ ψi
]

. (4.18)

The summation index i runs over the matter species. Moreover, we adopt Feynman
gauge for the vector fields, setting ξ = 1. In the context of Asymptotic Safety, mat-
ter sectors of this type have been discussed in covariant approach in [9, 10] with
extensions considered recently in [15, 17, 19, 23]. In particular, our treatment of the
Dirac fermions follows [15, 24]. All matter actions are finally converted to the ADM
framework by using the projector (4.1).

At this stage it is instructive to contrast the background field formalism set up
in terms of ADM-variables with the covariant field decompositions discussed in
[25, 26]. We start by considering a linear split of the spacetime metric gμν into
background ḡμν and fluctuations hμν

gμν = ḡμν + hμν . (4.19)

Applying the ADM-decomposition (4.5) to ḡμν expresses ḡμν in terms of the back-
ground ADM-fields (N̄ , N̄i, σ̄ij). Performing the same decomposition for gμν and
subsequently substituting the linear decomposition of the ADM-fields (4.15) then
provides a relation between the fluctuations hμν and the fields appearing in the ADM-
formulation

h00 = 2N̄ N̂ + N̂ 2 + σij(N̄i + N̂i)(N̄j + N̂j) − σ̄ijN̄iN̄j ,

h0i = N̂i ,

hij = σ̂ij .

(4.20)

The relations containing spatial indices are linearwhile the expression forh00 involves
both the background and fluctuating ADM fields to arbitrary high powers. This is
reminiscent of the exponential parameterization of the metric fluctuation which also
involves hμν to arbitrary high powers. Themap (4.20) then establishes that the ADM-
decomposition gives rise to a natural parameterization of the metric fluctuations.
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4.2 Renormalization Group Flow on a FRW Background

In this section we use the flow equation to study the gravitational RG flow pro-
jected on the ADM-decomposed Einstein-Hilbert action evaluated on a flat FRW
background [27]. In this case the flow of the cosmological constant and Newton’s
constant is encoded in the volume factor and extrinsic curvature terms constructed
from the background. This bypasses one of the main limitations of the Matsubara-
type computations [7, 8] where time-direction was taken compact. We will start
our discussion by considering the case of pure gravity, while the case of gravity
minimally coupled to non-interacting matter fields will be studied in Sect. 4.3.2.

4.2.1 The Einstein-Hilbert Ansatz

Finding exact solutions of the FRGE (4.14) is rather difficult. As discussed in the
previous chapters, a standard way of constructing approximate solutions is to restrict
the interaction monomials in �k to a specific subset and subsequently project the
renormalization group flow onto the subspace spanned by the ansatz.

In the present discussion we focus on the study of the renormalization group flow
projected onto the Einstein-Hilbert action in the ADM-formalism, Eq. (4.11). The
gravitational part of the EAA thus reads

�
grav
k � 1

16πGk

∫

dτddy N
√

σ
[

KijK
ij − K2 − (d)R + 2�k

]

. (4.21)

This ansatz contains two scale-dependent couplings, the Newton’s constant Gk and
the cosmological constant �k . Since the background field is arbitrary, it can be cho-
sen in a way that facilitate the computation. For the ansatz (4.21) it then suffices to
evaluate the flow on a flat (Euclidean) Friedmann-Robertson-Walker (FRW) back-
ground

ḡμν = diag
[

1 , a(τ )2 δij
] ⇐⇒ N̄ = 1 , N̄i = 0 , σ̄ij = a(τ )2 δij ,

(4.22)
where a(τ ) is a positive, time-dependent scale factor. In this background the projec-
tors (4.1) take a particularly simple form

tμ = (

1 , 	0 )

, ei
μ = (	0 , δ

j
i

)

, (4.23)

implying that tμ is always normal to the spatial hypersurface �τ . The extrinsic and
intrinsic curvature tensors of this background satisfy

K̄ij = 1
d K̄ σ̄ij ,

(d)R̄ = 0 (4.24)
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where K̄ ≡ σ̄ij K̄ij.Moreover, theChristoffel connection on the spatial slices vanishes
such that D̄i = ∂i. Evaluating (4.21) on this background using (4.24) yields

�
grav
k

∣
∣
χ̂=0 = 1

16πGk

∫

dτddy
√

σ̄
[− d−1

d K̄2 + 2�k
]

, (4.25)

where χ̂ denotes the set of all fluctuation fields. Thus the choice (4.22) is sufficiently
general to distinguish the two interaction monomials encoding the flow of Gk and
�k . Note that we have not assumed that the background is compact. In particular the
“time-coordinate” τ may be taken as non-compact.

4.2.2 Operator Traces on FRW Backgrounds

In order to evaluate the operator traces appearing in the flow equation we need to
resort to heat-kernel techniques with respect to the background spacetime (4.22).
For this purpose, we observe that (4.23) entails that there is a canonical “lifting” of
vectors tangent to the spatial slice to D-dimensional vectors

vi(τ , y) 
→ vμ(τ , y) ≡ (0 , vi(τ , y))T . (4.26)

The D-dimensional Laplacian �s ≡ −ḡμνD̄μD̄ν (s = 0, 1, 2) naturally acts on these
D-vectors. In order to rewrite the variations in terms of D-covariant quantities, we
exploit that �s can be expressed in terms of the flat space Laplacian � ≡ −∂2

τ −
σ̄ij∂i∂j and the extrinsic curvature. For the Laplacian acting on D-dimensional fields
with zero, one, and two indices one has

�0φ =
(

� − K̄∂τ

)

φ ,

�1φμ =
(

� − d−2
d K̄∂τ + 1

d (∂τ K̄) + 1
d K̄

2
)

φμ ,

�2φμν =
(

� − d−4
d K̄∂τ + 2

d (∂τ K̄) + 2(d−1)
d2 K̄2

)

φμν .

(4.27)

When evaluating the traces by covariant heat-kernel methods we then use the embed-
dingmap (4.26) togetherwith the completion (4.27) to express the operator� in terms
of �si . In what follows we use �i ≡ �si to shorten notation.
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Table 4.1 Heat-kernel coefficients for the component fields appearing in the decompositions (4.34)
and (4.35). Here S, V , T , TV , and TTT are scalars, vectors, symmetric two-tensors, transverse
vectors, and transverse-traceless symmetric matrices, respectively

S V T TV TTT

a0 1 d 1
2d(d + 1) d − 1 1

2 (d + 1)(d − 2)

a2
d−1
6d

d−1
6

(d−1)(d+1)
12

d3−2d2+d+6
6d2

d4−2d3−d2+14d+36
12d2

The operator traces appearing in (4.14) are conveniently evaluated using standard
heat-kernel formulas for theD-dimensional Laplacians (4.27). Following the notation
introduced in Sect. 3.2.3, the early-time expansion (3.36) yields

Tr e
−s

(

�i+Ê
)

� 1

(4πs)D/2

∫ √
g

[

Tr 1̂i + s
(
1
6

(D)R Tr 1̂i − Tr Ê
)

+ . . .
]

dDx

(4.28)
where the dots indicate terms built from four andmore covariant derivatives,which do
not contribute to the present computation. For the FRW background, the background
curvature (D)R̄ can readily be replaced by the extrinsic curvature

∫

dDx
√

ḡ (D)R̄ =
∫

dτddy
√

σ̄
[
d−1
d K̄2] . (4.29)

Combining the diagonal form of the projectors (4.23) with the D-dimensional heat-
kernel expansion (4.28) allows to write operator traces for the component fields χi.
On the flat FRW background these have the structure

Tr e−s�i = 1

(4πs)D/2

∫ √
σ̄

[

a0 + a2 s K̄
2 + . . .

]

dτ ddy . (4.30)

The coefficient an depend on the index structure of the fluctuation fields and are
listed in Table4.1. The result (4.30), together with Table4.1, are the key ingredient
for evaluating the operator traces of the flow Eq. (4.14) on a flat FRW background.

4.2.3 Hessians, Gauge-Fixing and Ghost Action

Constructing the right-hand-side of the flow equation requires the Hessian �
(2)
k .

Starting with the contributions originating from the gravitational action �
grav
k , it is

convenient to introduce the building blocks

I1 ≡ ∫

dτddy N
√

σ KijKij , I2 ≡ ∫

dτddy N
√

σ K2 ,

I3 ≡ ∫

dτddy N
√

σ (d)R , I4 ≡ ∫

dτddy N
√

σ ,
(4.31)
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such that

�
grav
k = 1

16πGk
(I1 − I2 − I3 + 2�k I4) . (4.32)

Expanding this expression around the background (4.22), the terms quadratic in the
fluctuation fields then take the form

δ2�
grav
k = 1

16πGk

(

δ2I1 − δ2I2 − δ2I3 + 2�k δ2I4
)

, (4.33)

with the explicit expressions for δ2Ii given in (A.5).
At this stage it convenient to express the fluctuation fields in terms of the com-

ponent fields used in cosmic perturbation theory (see, e.g., [28] for a pedagogical
introduction). Defining � ≡ −σ̄ij∂i∂j, the shift vector is decomposed into its trans-
verse and longitudinal parts according to

N̂i = ui + ∂i
1√
�
B , ∂i ui = 0 . (4.34)

The metric fluctuations are written as

σ̂ij = hij −
(

σ̄ij + ∂i∂j
1
�

)

ψ + ∂i∂j
1
�
E + ∂i

1√
�

vj + ∂j
1√
�

vi , σ̂ ≡ σ̄ijσ̂ij ,

(4.35)
with the component fields subject to the differential constraints

∂i hij = 0 , σ̄ijhij = 0 , ∂ivi = 0 . (4.36)

The partial derivatives and � can be commuted freely, since the background metric
is independent of the spatial coordinates. The normalization of the component fields
has been chosen such that the change of integration variables does not give rise to
non-trivial Jacobians. This can be seen from noting

∫

x
N̂i N̂

i =
∫

x
(ui u

i + B2) ,

∫

x
σ̂ij σ̂

ij =
∫

x
(hijh

ij + (d − 1)ψ2 + E2 + 2 vi v
i) ,

(4.37)

implying that a Gaussian integral over the ADM fluctuations leads to a Gaussian
integral in the component fields which does not give rise to operator-valued deter-
minants. The result obtained from substituting the decompositions (4.34) and (4.35)
into the variations δ2Ii is given in Eqs. (A.10), (A.11), and (A.12). On this basis it is
then rather straightforward to write down the explicit form of (4.33) in terms of the
component fields.

At this stage it is important to investigate the matrix elements of δ2�
grav
k on flat

Euclidean space, obtained by setting K̄ = 0. The result is summarized in the second
column of Table4.2. On this basis, one can make the crucial observation that the
component fields do not possess a relativistic dispersion relation. One may then



4.2 Renormalization Group Flow on a FRW Background 59

Table 4.2 Matrix elements appearing in δ2�k when expanding �k around flat Euclidean space.
The column “index” identifies the corresponding matrix element in field space, � ≡ −σ̄ij∂i∂j is
the Laplacian on the spatial slice, and � ≡ −∂2

τ − σ̄ij∂i∂j . For each “off-diagonal” entry there is
a second contribution involving the adjoint of the differential operator and the order of the fields
reversed

Index Matrix element 32πGk δ2�
grav
k Matrix element 32πGk

(

δ2�
grav
k + �

gf
k

)

h h � − 2�k � − 2�k

v v 2
[ − ∂2

τ − 2�k
]

� − 2�k

E E −�k
1
2 (� − 2�k )

ψ ψ −(d − 1)(d − 2)
[

� − d−3
d−2 �k

] − (d−1)(d−3)
2

[

� − 2�k
]

ψ E −(d − 1)
[ − ∂2

τ − 2�k
] −(d − 1)

[

� − 2�k
]

u u 2� 2�
u v −2 ∂τ

√
� 0

Bψ 2 (d − 1)
√

� ∂τ 0

N̂ ψ 2 (d − 1)
[

� − �k
]

(d − 1)
[

� − 2�k
]

N̂ E −2�k � − 2�k

N̂ N̂ 0 2�

attempt to add a suitable gauge-fixing term �
gf
k ameliorating the structure of the

kinetic part of the Hessian. Inspired by the decomposition (4.7) the gauge-fixing of
the symmetries (4.8) may be implemented via two functions F and Fi

�
gf
k = 1

32πGk

∫

dτddy
√

σ̄
[

Fi σ̄
ijFj + F2] , (4.38)

where F and Fi are linear in the fluctuation fields. The integrand entering �
gf
k may

also be written in terms of aD-dimensional vector Fμ ≡ (F,Fi) and the background
metric (4.22), exploiting that Fμ ḡμν Fν = F2 + Fi σ̄

ij Fj. The most general form of
F and Fi which is linear in the fluctuation fields (N̂ , N̂i, σ̂ij) and involves at most one
derivative with respect to the spatial or time coordinate is given by

F = c1 ∂τ N̂ + c2 ∂i N̂i + c3 ∂τ σ̂ + d c8 K̄
ij σ̂ij + c9 K̄N̂ ,

Fi = c4 ∂τ N̂i + c5 ∂i N̂ + c6 ∂i σ̂ + c7 ∂j σ̂ji + d c10 K̄ijN̂
j .

(4.39)

The ci are real coefficients which may depend on d and the factors d are introduced
for later convenience. Following the calculation in Appendix A.1.2, the gauge-fixing
(4.38) can be written in terms of the component fields (4.34) and (4.35), and the
result is summarized in Eqs. (A.14) and (A.15). Combining δ2�

grav
k with the gauge-

fixing contribution one finally arrives at (A.16). The coefficients ci are then fixed by
requiring, firstly, that all component fields comewith a relativistic dispersion relation
and, secondly, that the resulting gauge-fixed Hessian does not contain square-roots
of the spatial Laplacian,

√
�. The resulting coefficients are given by
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c1 = ε1 , c2 = ε1 , c3 = − 1
2 ε1 , c8 = 0 , c9 = 2 (d−1)

d ε1 ,

c4 = ε2 c5 = −ε2 , c6 = − 1
2 ε2 , c7 = ε2 , c10 = d−2

d ε2 .
(4.40)

Here ε1 = ±1 and ε2 = ±1. Since �
gf
k is quadratic in F and Fi it depends on ε2i only

and the choice of sign does not change�
gf
k . Therefore, the aforementioned conditions

fix the gauge uniquely [29], up to a physically irrelevant discrete symmetry.
Notably, the gauge fixing (4.38) bears a close relation with the de Witt (dW)

background covariant gauge, which reads

�
gf
k = 1

32πGk

∫

dDx
√

ḡ
[

FdW
μ ḡμν FdW

ν

]

, (4.41)

where the gauge-fixing function FdW
μ is defined as follows

FdW
μ ≡ D̄νhνμ − 1

2 D̄μ

(

ḡαβhαβ

)

. (4.42)

This becomes apparent when FdW
μ is decomposed into its time and spatial parts,

FdW
μ = (FdW,FdW

i ). Substituting the relations (4.20) (truncated at linear order in the
fluctuation fields) and choosing a flat space background gives

FdW = ∂τ N̂ + ∂iN̂i − 1
2∂τ σ̂ + O(χ̂2) ,

FdW
i = ∂τ N̂i − ∂iN̂ − 1

2∂iσ̂ + ∂jσ̂ji + O(χ̂2) .
(4.43)

This result coincides with (4.39). Thus it is clear that the gauge fixing (4.38) can
be completed such that it preserves full background diffeomorphism symmetry by
systematically starting from (4.41) and substituting the full map (4.20). Since the
resulting extra terms do not contribute to the present computation, they will not be
considered any further.

Combining (4.33) with the gauge choice (4.38) and (4.40) finally results in the
gauge-fixed Hessian

32πGk

(
1
2 δ2�

grav
k + �

gf
k

)

=
∫

x

{

+ 1
2 h

ij
[

�2 − 2�k − 2(d−1)
d

˙̄K − d2−d+2
d2

K̄2
]

hij

+ ui
[

�1 − d−1
d

˙̄K − 1
d K̄

2
]

ui + vi
[

�1 − 2�k − ˙̄K − 5d−7
d2

K̄2
]

vi

+ B
[

�0 − d−1
d

˙̄K − d−1
d2

K̄2
]

B + N̂
[

�0 − 2(d−1)
d

˙̄K− 4(d−1)
d2

K̄2
]

N̂

+ N̂
[

�0 − 2�k − 5d2−12d+16
4d2

K̄2
](

(d − 1)ψ + E
)

+ 1
4 E

[

�0 − 2�k − 2(d−1)
d

˙̄K − d−1
d K̄2

]

E

− (d−1)(d−3)
4 ψ

[

�0 − 2�k − 2(d−1)
d

˙̄K − d−1
d K̄2

]

ψ

− 1
2 (d − 1)ψ

[

�0 − 2�k − 2(d−1)
d

˙̄K − d−1
d K̄2

]

E
}

.

(4.44)
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Here the operators �i are those defined in (4.27) and the diagonal terms in field
space have been simplified by partial integration. Setting K̄ = 0, the matrix elements
resulting from this expression are shown in the third column of Table 4.2.

The ghost action exponentiating the Faddeev-Popov determinant is obtained from
the variations (4.8) by evaluating (A.17). The ghost sector then comprises one scalar
ghost {c̄, c} and one spatial vector ghost {b̄i, bi} arising from the transformation of
F and Fi, respectively. Restricting to terms quadratic in the fluctuation field and
choosing ε1 = ε2 = −1, the result is given by

�
ghost
k =

∫

dτddy
√

σ̄
{

+c̄
[

�0 + 2
d K̄∂τ + ˙̄K

]

c

+ b̄i
[

�1 + 2
d K̄∂τ + 1

d
˙̄K + d−4

d2 K̄2
]

bi
}

.

(4.45)

Notably, the ghost action does not contain a scale-dependent coupling. The results
(4.44) and (4.45) then complete the construction of the Hessian �

(2)
k .

4.2.4 Regulator and Beta Functions

The Hessians arising from (4.44) and (4.45) contain D-covariant Laplace-type oper-
ators only and can thus be evaluated using the standard heat-kernel techniques intro-
duced in Sect. 3.2.3. In particular we resort to a Type I regulator [30], implicitly
defined in Eq. (3.29), and we choose the scalar function Rk to be of Litim-form [31]

Rk = (k2 − �s) θ(k2 − �s) (4.46)

At this point the flow of Newton’s constant and the cosmological constant has to be
expressed in terms of the dimensionless quantities (3.44) and (3.45), whose expres-
sion for a D = (d + 1)-dimensional manifold is

η ≡ (Gk)
−1k∂k Gk , λk ≡ �k k

−2 , gk ≡ Gk k
d−1 . (4.47)

The scale-dependence of gk and λk is then encoded in

k∂k gk = βg(g,λ; d) , k∂kλk = βλ(g,λ; d) . (4.48)

The explicit expression for the β-functions, whose derivation is reported in
Appendix A.2, is the following

βg = (d − 1 + η) g ,
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βλ = (η − 2)λ + 2g
(4π)(d−1)/2

1
�((d+3)/2)

[ (

d + d2+d−4
2(1−2λ)

+ 3d−3−(4d−2)λ
Bdet(λ)

) (

1 − η
d+3

)

− 2(d + 1) + NS + (d − 1)NV − 2[(d+1)/2] ND

]

(4.49)
where the function Bdet(λ) is defined as

Bdet(λ) ≡ (1 − 2λ)(d − 1 − dλ) (4.50)

and the anomalous dimension of Newton’s constant is given by

η = 16πg B1(λ)

(4π)(d+1)/2 + 16πg B2(λ)
. (4.51)

The functions B1(λ) and B2(λ) depend on λ and d , and read

B1(λ) = − d5+17d4+41d3+85d2+174d−78
24 d(d−1) �((d+5)/2) + d4−5d2+16d+48

12 d(d−1) (1−2λ) �((d+1)/2)

− d4−15d2+28d−10
2d(d−1) (1−2λ)2 �((d+3)/2) + 3d−3−(4d−2)λ

6Bdet(λ) �((d+1)/2)

+ c1,0+c1,1λ+c1,2λ2

4 d Bdet(λ)2 �((d+3)/2) + 1
6�((d+1)/2)

[

NS + d2−13
d+1 NV − d−2

d+1 2
[(d+1)/2]ND

]

(4.52a)

B2(λ) = + d4−10d3+21d2+6d+6
24 d(d−1) �((d+5)/2) + d4−5d2+16d+48

24 d(d−1) (1−2λ) �((d+3)/2)

− d4−15d2+28d−10
4 d(d−1) (1−2λ)2 �((d+5)/2) + 3d−3−(4d−2)λ

12Bdet(λ) �((d+3)/2) + c2,0+c2,1λ+c2,2λ2

8 d Bdet(λ)2 �((d+5)/2) .

(4.52b)

The coefficients ci,j are polynomials in d , and are given by

c1,0 = −5d3 + 22d2 − 24d + 16 , c1,1 = 4
(

d3 − 10d2 + 16d − 16
)

,

c1,2 = 4
(

d3 + 6d2 − 16d + 16
)

, c2,0 = −5d3 + 22d2 − 24d + 16 ,
(4.53)

together with c1,1 = c2,1 and c1,2 = c2,2. Notably B2 is independent of the matter
content of the system, reflecting the fact that the matter sector (4.18) is independent
of Newton’s constant. The resulting beta functions (4.49) together with the explicit
expression for the anomalous dimension of Newton’s constant (4.51) constitutes the
main result of this section.

4.3 Properties of the Renormalization Group Flow

In this section, we analyze the renormalization group flow resulting from the beta
functions (4.49) for aD = (3 + 1)-dimensional spacetime. The case of pure gravity,
corresponding to setting NS = NV = ND = 0, is discussed in Sect. 4.3.1 while the
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classification of the fixed point structures appearing in general gravity-matter systems
is carried out in Sect. 4.3.2.

4.3.1 Pure Gravity

We start our discussion by studying the fixed point structure arising from the beta
functions (4.49) in the case of pure gravity. For d = 3 spatial dimensions the system
under consideration possesses a unique NGFP with positive Newton’s constant

NGFP: g∗ = 0.785 , λ∗ = 0.315 , g∗λ∗ = 0.248 . (4.54)

The NGFP comes with a complex pair of critical exponents

θ1,2 = 0.503 ± 5.377i . (4.55)

The positive real part, Re(θ1,2) > 0, indicates that the NGFP acts as a spiraling UV
attractor for the RG trajectories in its vicinity. Notably, this is the same type of UV-
attractive spiraling behavior encountered when evaluating the renormalization group
flow on foliated spacetimes using the Matsubara formalism [7, 8], and a vast range
of studies building on the metric formalism [32–63].

As we have seen in Sect. 3.3, some solutions of the RG equations may be ill
defined in the infrared limit. For this reason, it is important to determine a priori
the singular loci of the theory space where either βg or βλ diverge. For finite values
of g and λ these may either be linked to one of the denominators appearing in βλ

becoming zero or to divergences of the anomalous dimension of Newton’s constant.
Inspecting βλ, the first case gives rise to two singular lines in the (λ, g)-plane

λ
sing
1 = 1

2 , λ
sing
2 = d−1

d . (4.56)

The singular lines ηsing(g,λ) associated with divergences of the anomalous dimen-
sion η are complicated functions of d . For the specific cases d = 2 and d = 3 the
resulting expressions simplify and are given by the parametric curves

d = 2 : ηsing : g = − 45π(1−2λ)2

2 (76λ2−296λ+147) ,

d = 3 : ηsing : g = − 144π(6λ2−7λ+2)2

144λ4−1884λ3+3122λ2−1688λ+279 .

(4.57)

The position of the singular lines (4.56) and (4.57) are illustrated in Fig. 4.1. Focusing
to the domain g ≥ 0, it is interesting to note that the singularities bounding the flow
of λk for positive values are of different nature in d = 2 and d = 3. Specifically, in
d = 2 the domain is bounded to the right by a fixed singularity of βλ and η remains
finite throughout this domain, while in d = 3 the singular line λ

sing
1 is screened by a
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Fig. 4.1 Singularity structure of the beta functions (4.49) in the (λ, g)-plane in d = 2 (left diagram)
and d = 3 (right diagram). The blue lines indicate the singularities of βλ, Eq. (4.56), while the red
lines illustrate the curves (4.57) where η develops a singularity

divergence of η. Notably, the position of the singular lines is independent of NS , NV ,
and ND and thus also carries over to the analysis of gravity-matter systems. Finally,
we note that the point (λ, g) = (1/2, 0) is special in the sense that the beta functions
(4.49) are of the form 0/0. Notably, in some cases this “quasi-fixed point” C ≡
( 12 , 0)mayprovide an infrared completion for the gravitational renormalization group
flow [29], andwewill discuss this possibility in Sect. 4.4. Upon determining the fixed
point and singularity structure relevant for the renormalization group flow with a
positiveNewton’s constant, it is rather straightforward to construct theRG trajectories
resulting from the beta functions (4.49) numerically. An illustrative sample of RG
trajectories characterizing the flow in D = 3 + 1 spacetime dimensions is shown in
Fig. 4.2. Notably, the high-energy behavior of the flow is controlled by the NGFP
(4.54). Following the nomenclature introduced in [34], and summarized in Sect. 3.3,
the low-energy behavior of the flow can be classified according to the sign of the
cosmological constant. The trajectories belonging to the renormalization group flow
can thus be divided into three families: the RG trajectories flowing to the left (Type
Ia, �0 < 0), to the right (Type IIIa, �t > 0), and that flowing towards the GFP “O”
(Type IIa, �0 = 0), represented by a bold blue line. Once the trajectories enter the
vicinity of theGFP, characterized by gk  1, the dimensionful Newton’s constantGk

and cosmological constant �k are essentially k-independent, so that the trajectories
enter into the “classical regime”. For trajectories of Type Ia this regime extends to
k = 0, while trajectories of Type IIIa terminate in the singularity ηsing (red line) at a
finite value of the RG scale, k = kt .

The high-energy and low-energy regimes are connected by a crossover of the
renormalization group flow. For some of the trajectories, this crossover cuts through
the red line marking a divergence in the anomalous dimension of Newton’s constant.
This peculiar feature can be traced back to the critical exponents (4.55)where the beta
functions (4.49) lead to an exceptionally low value for Re(θ1,2). Compared to other
incarnations of the flow,which comewith significantly higher values for Re(θ1,2), this
makes the spiraling process around the NGFP less compact. As a consequence the
flow actually touches ηsing. Since this feature is absent in the flow diagrams obtained
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Fig. 4.2 Phase diagram of the renormalization group floworiginating from the beta functions (4.49)
in D = 3 + 1 spacetime dimensions. The flow is dominated by the interplay of the NGFP (point
“A”) controlling the flow for ultra-high energies and the GFP (point “O”) governing the low-energy
behavior. The flow undergoes a crossover between these two fixed points. For some of the RG
trajectory this crossover is intersected by the singular locus (4.57) (red line). The arrows indicate
the direction of the renormalization group flow pointing from high to low energy

from the Matsubara computation [7, 8], the foliated renormalization group flows
studied in [29], and the one obtained in the covariant formalism [34], it is likely that
this is rather a particularity of the flow based on (4.49), instead of a genuine physical
feature.

4.3.2 Gravity-Matter Systems

In this section we study the fixed point structure entailed by (4.49) in the presence
of free matter fields. In particular we will specialize to the case of d = 3 space
dimensions.

In order to classify the fixed point structures realized for a generic gravity-matter
system, we first observe that the number of minimally coupled scalar fields, NS ,
vectors, NV , and Dirac spinors ND enter the gravitational beta functions (4.49) in
terms of the combinations

dg ≡ NS + d2 − 13

d + 1
NV − 2

(d+1)
2

d − 2

d + 1
ND , (4.58a)

dλ ≡ NS + (d − 1) NV − 2
(d+1)

2 ND . (4.58b)
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The precise relation between the parameters dg , dλ and thematter contentmay depend
on the precise choice of regulator employed in matter traces (see Appendix A.2.3).
Carrying out the classification of fixed point structures in terms of the deformation
parameters shifts this regulator dependence into the map (dg(NS ,NV ,ND), dλ(NS ,

NV ,ND)) allowing to carry out the classification independently of a particular regu-
larization scheme.

For d = 3 the definitions (4.58) reduce to

dg = NS − NV − ND , dλ = NS + 2NV − 4ND . (4.59)

The relation (4.59) allows to assign coordinates to any matter sector. For example,
the Standard Model of particle physics comprises NS = 4 scalars, ND = 45/2 Dirac
fermions and NV = 12 vector fields and is thus located at (dg, dλ) = (−61/2,−62).
For NS and NV being positive integers including zero and ND taking half-integer
values in order to also accommodate chiral fermions, dg and dλ take half-integer
values and cover the entire (dg ,dλ)-plane.

The beta functions (4.49) then give rise to a surprisingly rich set of NGFPs whose
properties can partially be understood analytically. The condition βg|g=g∗ = 0 entails
that any NGFP has to come with an anomalous dimension η∗ = −2. This relation
can be solved analytically, determining the fixed point coordinate g∗(λ∗; dg) as a
function of λ∗ and dg . Substituting η∗ = −2 together with the relation for g∗ into
the second fixed point condition, βλ|g=g∗ = 0, then leads to a fifth order polynomial
in λ whose coefficients depend on dg, dλ. The roots of this polynomial provide the
coordinate λ∗ of a candidate NGFP. The fact that the polynomial is of fifth order then
implies that the beta functions (4.49)may support at most fiveNGFPs, independently
of the matter content of the system.

The precise fixed point structure realized for a particular set of values (dg, dλ)

can be determined numerically. The number of NGFPs located within the physically
interesting region g∗ > 0 and λ∗ < 1/2 is displayed in Fig. 4.3, where black, blue,
green and red mark matter sectors giving rise to zero, one, two, and three NGFPs,
respectively. On this basis, we learn that systems possessing zero or one NGFP are
rather generic, while matter sectors giving rise to two or three NGFPs are confined
to a small region in the center of the (dg, dλ)-plane.

The classification of the NGFPs according to their stability properties is provided
in Fig. 4.4 with the color-coding explained in Table4.3. The left diagram provides the
classification for the case of zero (black region) and one NGFP. Here green and blue
indicate the existence of a single UV-attractive NGFP with real (green) or complex
(blue) critical exponents. Saddle points with one UV attractive and one UV repulsive
eigendirections (magenta) and IR fixed points (red, orange) occur along a small
wedge paralleling the dλ-axis, only. The gray region supporting multiple NGFPs is
magnified in the right diagram of Fig. 4.3. All points in this region support at least one
UV NGFP suitable for Asymptotic Safety while there is a wide range of possibilities
for the stability properties of the second and third NGFP. The classification in Fig. 4.3
establishes that the existence of aUV-attractiveNGFP suitable for Asymptotic Safety
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Fig. 4.3 Number of NGFPs supported by the beta functions (4.49) as a function of the parameters
dg and dλ. The colors black, blue, green, and red indicate the existence of zero, one, two, and three
NGFPs situated at g∗ > 0, λ∗ < 1/2, respectively

Fig. 4.4 Classification of the NGFPs arising from the beta functions (4.49) in the (dg, dλ)-plane,
following the color-code provided in Table4.3. The left diagram classifies the stability behavior of
the one-fixedpoint sector. In particular, the black regiondoes not support anyNGFPwhile the regions
giving rise to a single, UV-attractive NGFP with complex and real critical exponents are marked in
blue and green, respectively. The field content of the Standard Model is situated in the lower-left
quadrant, (dg, dλ) = (−61/2,−62), andmarkedwith a bold dot. The gray area, supportingmultiple
NGFPs is magnified in the right diagram with empty and filled symbols indicating the existence of
two and three NGFPs, respectively

is rather generic and puts only mild constraints on the admissible values (dg, dλ).
At this stage, it is interesting to relate this classification to phenomenologically
interesting matter sectors including the Standard Model of particle physics (SM) and
its most commonly studied extensions.3 The result is summarized in Table4.4. The
map (4.59) allows to relate the number of scalars NS , vector fields NV and Dirac

3For a similar discussion within metric approach to Asymptotic Safety see [24].
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Table 4.3 Color-code for the fixed point classification provided in Fig. 4.4. The column NGFPs
gives the number of NGFP solutions while the subsequent columns characterize their behavior in
terms of 2 UV-attractive (UV), one UV-attractive and one UV-repulsive (saddle) and 2 IR-attractive
(IR) eigendirections with real (real) and complex (spiral) critical exponents

Class NGFPs NGFP1 NGFP2 NGFP3 Color code

Class 0 0 − − − Black region

Class Ia 1 UV, spiral − − Blue region

Class Ib 1 UV, real − − Green region

Class Ic 1 Saddle − − Magenta
region

Class Id 1 IR, spiral − − Red region

Class Ie 1 IR, real − − Orange region

Class IIa 2 UV, real IR, real − Open circle

Class IIb 2 UV, real IR, spiral − Open square

Class IIc 2 UV, spiral IR, spiral − Open triangle

Class IId 2 UV, spiral UV, real − Open diamond

Class IIIa 3 UV, real Saddle IR, real Filled circle

Class IIIb 3 UV, real Saddle IR, spiral Filled square

Class IIIc 3 UV, spiral Saddle IR, spiral Filled triangle

fermions ND defining the field content of a specific matter sector to coordinates in
the (dg, dλ)-plane. The resulting coordinates are given in the fifth and sixth column
of Table4.4. Correlating these coordinates with the data provided by Fig. 4.4 yields
two important results. Firstly, all matter models studied in Table4.4 are located
in regions of the (dg, dλ)-plane which host a single UV-attractive NGFP with real
stability coefficients. Secondly, we note a qualitative difference between the Standard
Model (SM) and its extensions (first five matter sectors) and Grand Unified Theories
(GUTs). The former all belong to the green region in the lower left part of the (dg, dλ)-
plane while the second class of models sits in the upper-right quadrant. As a result,
the corresponding NGFPs possess very distinct features. The NGFPs appearing in
the first case have a characteristic product g∗λ∗ < 0. Their critical exponents show
a rather minor dependence on the precise matter content of the theory and have
values in the range θ1 ∼ 3.8 − 4.0 and θ2 ∼ 2.0. In contrast, the NGFPs appearing
in the context of GUT-type models come with a positive product g∗λ∗ > 0. Their
critical exponents are significantly larger θ1 > 19 than in the former case and show a
much stronger dependence on the matter field content. Thus while all matter sectors
investigated in Table4.4 give rise to a NGFP suitable for realizing Asymptotic Safety
themagnitude of the critical exponents hints that the SM-type theoriesmay havemore
predictive power in terms of a lower number of relevant coupling constants in the
gravitational sector.

At this stage it is also instructive to construct the phase diagram resulting from
gravity coupled to the matter content of the Standard Model. An illustrative sample
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Table 4.4 Fixed point structure arising from the field content of commonly studied matter models.
Allmodels apart from theMinimal Supersymmetric StandardModel (MSSM) and theGrandUnified
Theory (GUT), sit in the lower-left quadrant of Fig. 4.4. All matter configurations possess a single
ultraviolet attractive NGFP with real critical exponents

Model NS ND NV dg dλ g∗ λ∗ θ1 θ2

Pure gravity 0 0 0 0 0 0.78 + 0.32 0.50 ± 5.38 i

Standard Model (SM) 4 45
2 12 − 61

2 − 62 0.75 − 0.93 3.871 2.057

SM, dark matter (dm) 5 45
2 12 − 59

2 − 61 0.76 − 0.94 3.869 2.058

SM, 3 ν 4 24 12 − 32 − 68 0.72 − 0.99 3.884 2.057

SM, 3 ν, dm, axion 6 24 12 − 30 − 66 0.75 − 1.00 3.882 2.059

MSSM 49 61
2 12 + 13

2 − 49 2.26 − 2.30 3.911 2.154

SU(5) GUT 124 24 24 + 76 + 76 0.17 + 0.41 25.26 6.008

SO(10) GUT 97 24 45 + 28 + 91 0.15 + 0.40 19.20 6.010

of RG trajectories obtained from solving the beta functions (4.49) for (dg, dλ) =
(−61/2,−62) is shown in Fig. 4.5. Similarly to the case of pure gravity, the flow
is dominated by the interplay of the NGFP situated at (g∗,λ∗) = (0.75,−0.93) and
the GFP in the origin. The NGFP controls the UV behavior of the trajectories while
the GFP is responsible for the occurrence of a classical low-energy regime. The
classification of possible low-energy behaviors is again given by the limits (3.56). A
notable difference to the pure gravity case is the absence of the spiraling behavior of
trajectories onto the NGFP. This reflects the property that the NGFPs of the gravity-
matter models come with real critical exponents. Moreover, the shift of the NGFP
to negative values λ∗ entails that the singularity (4.57) (red line) no longer affects
the crossover of the trajectories from the NGFP to the GFP. Other matter sectors
located in the lower-left green region of Fig. 4.4 give rise to qualitatively similar
phase diagrams so that the flow shown in Fig. 4.5 provides a prototypical showcase
for this class of universal behaviors. Notably, these peculiar features of gravity-matter
systems will be fundamental for the discussion of Chap. 5.

Owed to their relevance for cosmological model building, we close this section
with a more detailed investigation of the fixed point structures appearing in gravity-
scalar models with NV = ND = 0. For illustrative purposes we formally also include
negative values NS in order to capture the typical behavior of matter theories located
in the lower-left quadrant of Fig. 4.4. Notably, all values NS give rise to a NGFP with
two UV attractive eigendirections. The position (λ∗, g∗) and stability coefficients of
this family of fixed points is displayed in Fig. 4.6. The first noticeable feature is a
sharp transition in the position of the NGFP occurring at NS ∼ −6: for NS ≤ −6 the
NGFP is located at λ∗ < 0 while for NS > −5 one has λ∗ > 0. For NS → ∞ the
fixed point approaches C ≡ (1/2, 0), which can be shown to be a fixed point of the
beta functions (4.49) in the large NS limit. The value of the critical exponents shown
in the lower line of Fig. 4.6 indicates that there are two transitions: for NS ≤ −6
there is a UV-attractive NGFP with two real critical exponents θ1 ∼ 4 and θ2 ∼ 2.
These values are essentially independent on NS . On the interval −6 ≤ NS ≤ 46 the



70 4 Quantum Gravity on Foliated Spacetimes

Fig. 4.5 Phase diagram depicting the renormalization group flow of gravity coupled to the matter
content of the Standard Model in D = 3 + 1 spacetime dimensions. Similarly to the pure gravity
case, the phase diagram is determined by the interplay of the NGFP (point “A”) controlling the flow
for ultra-high energies and the GFP (point “O”) governing its low-energy behavior. The singular
locus (4.57) is depicted by the red line and arrows point towards lower values of k

critical exponents turn into a complex pair. In particular for NS = 0, one recovers
the pure gravity fixed point NGFP (4.54). For NS > 46 one again has a UV-attractive
NGFP with two real critical exponents with one of the critical exponents becoming
large. Thus we clearly see a qualitatively different behavior of the NGFPs situated in
the upper-right quadrant (relevant for GUT-type matter models) and the NGFPs in
the lower-left quadrant (relevant for the Standard Model) of Fig. 4.4, reconfirming
that the Asymptotic Safety mechanism realized within these classes of models is of
a different nature.

4.4 Universality Classes for Quantum Gravity

The Wilsonian Renormalization Group encodes the universal critical behavior of a
physical system through the fixed points of the renormalization group flow. Within
the context of Quantum Gravity, the ADM-formalism allows to study such a critical
behavior in the presence of a foliation structure, and the beta functions generally
depend on the spacetime dimension D = d + 1 and the matter content of the theory.
In the previous section we studied the fixed point structure arising from the beta
functions (4.49) in the presence of an arbitrary number of matter fields living in a
(3 + 1)-dimensional spacetime. In this section, we discuss the fixed point structure



4.4 Universality Classes for Quantum Gravity 71

Fig. 4.6 Position (top) and stability coefficients (bottom) of the UV NGFPs appearing in gravity-
scalar systems as a function of NS . The fixed point structure undergoes qualitative changes at
NS ∼ −6 and NS ∼ 46 where the critical exponents change from real to complex values

emerging from the renormalization group flow of pure foliated Quantum Gravity as
a function of the spacetime dimension [29].

4.4.1 Fixed Points and Universality Classes

In the present discussion we use the beta functions derived in [29] for a (d + 1)-
dimensional spacetime. The latter differ from the ones used in [27], Eq. (4.49),
by a different form of the regulator in the transverse-traceless and vector sectors
of the decompositions (4.34) and (4.35). The resulting beta functions (βg,βλ) and
anomalous dimension η still have the form (4.49) and (4.51) respectively, while the
functions B1(λ) and B2(λ) defining the anomalous dimension (4.51) acquire new
contributions. In particular they read

B1(λ) = − d4+14d3−d2+94d+12
12 d(d−1) �((d+3)/2) + d2+d−4

12 (1−2λ) �((d+1)/2) − d4−15d2+28d−10
2d(d−1) (1−2λ)2 �((d+3)/2)

+ 3d−3−(4d−2)λ
6Bdet(λ) �((d+1)/2) + c1,0+c1,1λ+c1,2λ2+c1,3λ3+c1,4λ4

4 d (d2+2d−3)Bdet(λ)2 �((d+3)/2) , (4.60a)

B2(λ) = + d3−9d2+12d+12
24 d �((d+5)/2) + d2+d−4

24 (1−2λ) �((d+3)/2) − d4−15d2+28d−10
4 d(d−1) (1−2λ)2 �((d+5)/2)

+ 3d−3−(4d−2)λ
12Bdet(λ) �((d+3)/2) + c2,0+c2,1λ+c2,2λ2

8 d Bdet(λ)2 �((d+5)/2) , (4.60b)
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with the coefficients ci,j given by

c1,0 = − (d − 1)(5d4 − 7d3 − 74d2 + 56d − 16) ,

c1,1 = + 4(d − 1)(d4 − 7d3 − 62d2 + 16d − 16) ,

c1,2 = + 4d5 + 32d4 + 388d3 − 232d2 − 64d − 64 ,

c1,3 = − 128 d(d + 1)(3d − 2) ,

c1,4 = + 128 d2 (d + 1) ,

c2,0 = − 5d3 + 22d2 − 24d + 16 ,

c2,1 = + 4d3 − 40d2 + 64d − 64 ,

c2,2 = + 4d3 + 24d2 − 64d + 64 .

(4.61)

The resulting (d + 1)-dimensional β functions together with the anomalous dimen-
sion of Newton’s constant completely encode the renormalization group flow result-
ing from the ansatz (4.11) and give rise to a rich fixed point structure.

Firstly, there is the GFP located in the origin, whose stability coefficients are
given by the classical scaling dimensions. In addition, there are two families of
NGFPs whose most important properties are summarized in Fig. 4.7. In D = 2 +
ε dimensions a NGFP with two real, positive stability coefficients (orange line)
emerges from the GFP. Its critical exponents agree with the epsilon-expansion of
perturbative gravity around two dimensions [64] to leading order. This universality
class has an upper critical dimension D = 2.28. At this point there is a transition
to a family of saddle points (SP) characterized by a small UV-attractive and a large
UV-repulsive critical exponent (brown line). In D = 2.37 these critical exponents
swap sign, giving rise to the red line of SP-NGFPs existing for 2.37 ≤ D ≤ 3.25.
Simultaneously, there is a second family of fixed points (green line) with two real,
positive critical exponents. At D = 3.40 the two stability coefficients coincide at
θ1 = θ2 = 1.08. For D > 3.40 the real stability coefficients become complex (blue
line) which reflects the typical characteristics of the UV-NGFP seen in the metric
approach to Asymptotic Safety. The additional information displayed in Fig. 4.7
encodes the stability coefficients found within related Quantum Gravity programs.
The qualitative agreement of the scaling behavior seen within discrete (Monte Carlo)
methods in D = 2 + 1 dimensions and the continuum RG is an important indicator
for the robustness of the underlying universality classes.

The properties of the NGFPs in D = 2 + 1 and D = 3 + 1 are summarized as
follows. In D = 2 + 1, the UV-NGFP and SP-NGFPs are located at

UV-NGFP: g∗ = 0.16 , λ∗ = 0.03 , g∗λ∗ = 0.005 ,

SP-NGFP: g∗ = 0.32 , λ∗ = 0.20 , g∗λ∗ = 0.07 ,
(4.62)

and come with stability coefficients
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Fig. 4.7 Stability coefficients of the two families of fixed points emerging from the β functions
as a function of the spacetime dimension D = d + 1. The dashed line gives the result from the
two-loop epsilon expansion [64], the circles indicate the scaling of Newton’s coupling found within
lattice Quantum Gravity [65] and the square marks the scaling found from the exact solution of
the discretized Wheeler-de Witt equation [66, 67]. InD = 4 the down-triangle indicates the critical
exponents obtained from foliated spacetimes using the Matsubara formalism [7] while the diamond
corresponds to the dynamical fixed point seen in [51]

UV-NGFP: θ1 = +2.47 , θ2 = +0.77 ,

SP-NGFP: θ1 = +2.49 , θ2 = −2.20 .
(4.63)

In D = 3 + 1 there is a unique NGFP for positive Newton’s constant

NGFP: g∗ = 0.90 , λ∗ = 0.24 , g∗λ∗ = 0.21 , (4.64)

with critical exponents

NGFP: θ1,2 = 1.06 ± 3.07i . (4.65)

This NGFP exhibits the typical complex pair of critical exponents familiar from
evaluating the flow equation in the metric formulation [32–38, 51, 56, 57]. In partic-
ular, there is a very good agreement with the critical exponents obtained for foliated
spacetime via the Matsubara formalism [7, 8]. Thus it is highly conceivable that the
NGFPs seen in these computations belong to the same universality class.
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Fig. 4.8 Phase diagrams resulting from the β functions of [29] forD = 2 + 1 (left) andD = 3 + 1
(right) spacetime dimensions. TheGFP,NGFP and SP-NGFP aremarked by the points “O”, “A”, and
“D”. In D = 2 + 1 the interplay of the fixed points “A” and “D” ensures that the QFP “C” provides
the long-distance completion of the renormalization group trajectories with a positive cosmological
constant. In D = 3 + 1 the SP-NGFP “D” is absent and the corresponding trajectories terminate in
a divergence of η (red line)

4.4.2 Phase Diagrams

The phase diagram resulting from the numerical integration of the β functions of
[29] inD = 2 + 1 andD = 3 + 1 is shown in the left and right panel of Fig. 4.8. For
D = 2 + 1 dimensions, the flow is governed by the interplay of the GFP “O”, the
two NGFPs and the two quasi fixed points (QFPs) “B” and “C” located at (λ, g) =
(−∞, 0) and (λ, g) = (1/2, 0), respectively. Notably, the point “C” is the same
QFP encountered in Sect. 4.3.1. The separatrix lines connecting these fixed points
are depicted in blue. In particular, all RG trajectories located below the lineODC are
well-behaved for all k ∈ [0,∞[ and their high-energy behavior is controlled by the
UV-NGFP “A”. Lowering the RG scale they cross over to the GFP or the saddle point
“D”. Trajectories passing sufficiently close to the GFP develop a classical regime
where both the Newton’s coupling and cosmological constant are independent of the
RG scale. Finally, depending on whether the flow approaches “B”, “O”, or “C” in the
infrared limit, the classical regime exhibits a negative, zero, or positive cosmological
constant, thus realizing the same classification described in Sect. 3.3.

The picture found in D = 3 + 1 dimensions is similar: the UV completion of the
flow is controlled by the NGFP and the classical regime emerges from the crossover
of the flow to the GFP. As a consequence of the missing SP-NGFP “D” the trajectory
CD in D = 2 + 1 is replaced by a line of singularities where η diverges (red line).
In this case solutions with a positive cosmological constant terminate at a finite RG
scale, kt . Note that this phase diagram has the same properties of that shown in
Fig. 4.2.

Since the RG trajectory describing our world should exhibit a classical regime
with a positive cosmological constant [68], it is worthwhile to investigate the mech-
anism providing the IR completion of these trajectories in detail. Figure 4.9 displays
the typical scale-dependence of the Newton’s coupling (left) and the cosmological
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Fig. 4.9 Scale dependence of Newton’s constant Gk (left) and the cosmological constant (right)
for a set of RG trajectories exhibiting a classical regime with a positive cosmological constant for
D = 2 + 1. The QFP “C” drives the infrared-value of � to zero dynamically

constant (right) for this class of solutions. Starting from the high-energy part and
decreasing the RG scale k, the trajectories undergo four phases. The fixed point
regime is controlled by the UV-NGFP ensuring the absence of unphysical UV diver-
gences. Subsequently, there is a semi-classical regime followed by a classical regime
where the Newton’s constant and cosmological constant exhibit plateaus. In partic-
ular the latter phases are independent of the spacetime dimension. In D = 2 + 1 the
low-energy completion of the solutions is provided by a novel phase where both
G and � are dynamically driven to zero. This phase is controlled by the QFP “C”
situated at (λ, g) = (1/2, 0). At this point the β functions (4.49) are ambiguous
owed to terms of the form g/(1 − 2λ)2 where both the numerator and denominator
vanish. RG trajectories approaching “C” resolve this ambiguity in such a way that
limk→0 g/(1 − 2λ)2 = 5π/6. In this way “C” is turned into a low-energy attractor
where η = 2. The mechanism providing the low-energy completion in this sector is
essentially the same as the one reported in [47]. Notably, if this mechanism worked
in four spacetime dimensions, the effects of such a gravitational phase (related to the
physics of a QFP similar to “C”) would be visible on cosmic scales.
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Part III
Astrophysical and Cosmological

Implications of Asymptotic Safety



Chapter 5
Inflationary Cosmology from Quantum
Gravity-Matter Systems

The Asymptotic Safety Theory for Quantum Gravity provides a natural framework
for the description of gravity within the context of Quantum Field Theory. As the
resulting effective action smoothly interpolates between the short and long-distance
regimes, the FRG also provides an ideal tool to study phenomenological implica-
tions of Quantum Gravity. The short distances modifications of gravity may in fact
have several implications in astrophysics and cosmology. For instance, it is possible
that quantum gravitational effects may be detected in the measurements of the Cos-
mic Microwave Background (CMB) radiation and in observations of the large scale
structure of the Universe [1].

In the simple case of the Einstein–Hilbert truncation, several investigations have
focused on the implications of the running of the Newton’s constant in models of the
early universe. In particular, the scale-dependent couplings can be encoded in a self-
consistent manner by renormalization group improving the Einstein equations [2–6].
In particular, it has been shown that the renormalization group induced evolution of
the Newton’s constant and cosmological constant can provide a consistent cosmic
history of the universe from the initial singularity to the current phase of accelerated
expansion [2, 3, 5, 7, 8]. Moreover, the scaling properties of the 2-points correlation
function of the graviton near the NGFP induce a scale invariant spectrum of the
primordial perturbations, characterized by a spectral index ns which, to a very good
approximation,must satisfyns ∼ 1 [5].An effectiveLagrangian encoding the leading
quantum gravitational effects near the NGFP has been proposed in [9] within the
Einstein–Hilbert truncation and a family of inflationary solutions has been found.
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Following the strategy advocated in [9], in this chapter we will construct two
classes of modified gravity models and wewill report a systematic comparison of our
resultswith the recent Planckdata [10]. Firstly,wewill discuss a family of inflationary
models derived from quantum-gravity modifications of the well-known (R + R2)

Starobinsky model [11] and it will be shown that the predictions of Asymptotic
Safety are in agreement with the recent Planck data on CMB anisotropies. Secondly,
a similar analysis will be carried out for the case of Quantum Gravity minimally
coupled to matter fields. In particular we will see that combining the results obtained
in Sect. 4.3.2 with the recent Planck data can put constraints on the primordial matter
content of the universe.

5.1 CMB Radiation and Cosmic Inflation

The discovery of theCMB, namely the radiation emitted by the last scattering surface,
represents nowadays themost important evidence of the validity of the Cosmological
Principle. Its spectrum reproduces a perfect black body radiation at a temperature
T ∼ 2.7 K, which is (almost) uniform in all directions. As the CMB provides a
redshifted picture of the universe at the decoupling era, the primordial universe should
have been extraordinary isotropic and homogeneous. Moreover, measurements of
the density parameter suggest that our universe is nearly spatially flat. All these
peculiar features reflect in a very special set of initial conditions at the decoupling
era, and result in a fine-tuning problem. The inflationary scenario provides a possible
solution to this problem. The latter is based on a primordial phase of accelerated
expansion, bymeans of which the original quantum fluctuations have been smoothed
out, resulting in small density fluctuations at the time of decoupling (see [12] for
a review). According to this scenario, the density fluctuations at the last scattering
surface served as “seeds” for the formation of all large-scale structures in the universe.
Moreover, the occurrence of these primordial irregularities indirectly provides an
explanation for the tiny anisotropies, δT/T ∼ 10−5, detected in the CMB radiation.

The power spectrum of CMB anisotropies provides information on the density
fluctuations at the last scattering surface, and it is intrinsically related to the physics of
the very early universe. The main features of the CMB power spectrum are encoded
in the spectral index ns and tensor-to-scalar ratio r . Denoting the power spectrum
of scalar and tensorial perturbations by Pζ (k) and Ph(k) respectively, where k is a
Fourier mode, and approximating their scaling by a power law with constant expo-
nents

Pζ (k) � As

(
k

k∗

)ns−1

, Ph(k) � At

(
k

k∗

)nt

, (5.1)

the spectral index and tensor-to-scalar ratio read

ns = 1 + d(logPζ )

d(log k)

∣∣∣∣
k∗

, r = Ph

Pζ

∣∣∣∣
k∗

. (5.2)
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Here k∗ ∼ 0.05Mpc−1 is a pivot scale, whileAs andAt represent the power spectra
amplitudes (see [12, 13] for details). The recent Planck data suggest that the power
spectrum of scalar perturbations is nearly scale invariant, ns ∼ 1, but the exact equal-
ity ns = 1 seems to be excluded [10]. As we will see in Sect. 5.1.1, the spectral index
and tensor-to-scalar ratio can be theoretically evaluated by means of the slow-roll
approximation and the comparison with the values provided by the Planck collab-
oration constitutes a constistency test for any cosmological model (see [13] for an
overview of the most important inflationary models and their predictions).

5.1.1 Cosmic Inflation and Slow-Roll Approximation

Cosmic inflation can be described by means of a scalar field φ (inflaton) minimally
coupled to gravity and subject to a potential V (φ). In particular, the scalar field is
assumed to depend upon the cosmic time only and its potential can be thought as an
effective vacuum energy, whose negative pressure may provide a period of acceler-
ated expansion. The dynamics of the scalar field φ is determined by the analytical
properties of V (φ) and is described by the Friedmann and conservation equations

H 2 = κ

3

{
φ̇2 + V (φ)

}
, φ̈ + 3H φ̇ + V ′(φ) = 0 (5.3)

where H(t) = ȧ/a stands for the Hubble parameter, a(t) denotes the scale factor
and κ ≡ 8πGN, GN being the observed value of the Newton’s constant. In this
description, the inflaton field gives rise to a phase of accelerated expansion when its
kinetic energy is negligible respect to its potential (the field “slow-rolls”), namely
φ̇2 � 2 V (φ) and φ̈ � 3H φ̇ + V ′(φ). Defining the slow-roll parameters as

ε(φ) ≡ 1

2κ

(
V ′(φ)

V (φ)

)2

, η(φ) ≡ 1

κ

(
V ′′(φ)

V (φ)

)
, (5.4)

the quasi–de Sitter behavior is realized if ε � 1 and η � 1. Under this approxima-
tion inflation is assumed to end when ε(φ f ) = 1 (or η(φ f ) = 1), with φ f = φ(t f ).
The initial state φi = φ(ti ) is implicitly defined by the number of e-folds N (φi ) ≡
log[a(t f )/a(ti )]

N (φi ) =
∫ t f

ti

H(t) dt = κ

∫ φi

φ f

V (φ)

V ′(φ)
dφ (5.5)

characterizing the period of exponential growth. On cosmological grounds one
requires N � 55 [12]. The slow-roll approximation can be used to quantitatively
characterize the power spectrum of CMB anisotropies. In particular, the amplitude
of the primordial scalar power spectrum can be written as [13]

As = κ2 V (φi )

24π2 ε(φi )
(5.6)
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while the spectral index ns and the tensor-to-scalar ratio r read [12, 13]

ns = 1 − 6 ε(φi ) + 2 η(φi ) ,

r = 16 ε(φi ) .
(5.7)

These expressions allow to easily compare the theoretical predictions of single-field
inflationary models with the corresponding results provided by the Planck collabo-
ration.

At this stage it is worth pointing out that the scalar degree of freedom associated
with the inflaton field φ, can also be obtained by means of a f(R) theory (see [14, 15]
for an extensive review). In fact, a generic f(R) theory can be though as a scalar-tensor
theory described by the action

S = 1

16πGN

∫ √−g
[
f ′(χ)(R − χ) + f (χ)

]
d4x . (5.8)

The auxiliary scalar field χ satisfies the equation of motion f ′′(χ)(R − χ) = 0 and
hence, provided that f ′′(χ) 	= 0, the underlying f(R) theory is equivalent to the
scalar-tensor theory (5.8). In particular, the above action can be put in canonical
form (i.e. with a standard propagating scalar field) by means of the conformal trans-
formation

gμν −→ gE
μν = ϕ gμν , ϕ ≡ f ′(χ) = e

√
2κ/3φ . (5.9)

Here ϕ ≡ �2 is the conformal factor inducing the transformation of the theory (5.8)
from the Jordan to the Einstein frame and gE

μν denotes the spacetime metric in the
latter frame. More generally, all physical quantities in the Einstein frame will be
labeled by a subscript “E”. Applying the transformation law (5.9) to the action (5.8)
finally yields

S =
∫ √−gE

[
1
2κ RE + 1

2 g
μν

E ∂μφ ∂νφ − V (φ)
]
d4x (5.10)

where RE denotes the scalar curvature in the Einstein frame, and the scalar potential
V (φ) is given by the following expression

V [ϕ(φ)] = 1
2κ

(
ϕ χ(ϕ) − f

[
χ(ϕ)

])
ϕ−2 . (5.11)

The scalar field φ is the extra degree of freedom associated with the original f(R)

action. Therefore, f(R) theories may provide a suitable period of cosmic inflation,
capable of solving the basic issues for which inflation has been introduced. The
simplest and most successful model based on a modification of the Einstein–Hilbert
action is the (R + R2)–Starobinsky model [11]. The aim of the next section is to
study the inflationary scenario arising from the Quantum Gravity modifications of
the Starobinsky model, due to the scaling of couplings around the NGFP.



5.2 Asymptotically Safe Inflation from (R + R2)-Gravity 87

5.2 Asymptotically Safe Inflation from (R + R2)-Gravity

In this sectionwediscuss a class of inflationarymodels arising fromQuantumGravity
modifications of the well-known Starobinsky model [11]. This study generalizes the
analysis of [9] by the inclusion of the additional relevant direction associated to
the R2 operator. As a main result, it will be shown that the resulting RG-improved
model, obtained by taking into account the scaling of the couplings around theNGFP,
is in agreement with the recent Planck data on the power spectrum of temperature
fluctuations in the CMB radiation.

5.2.1 Motivation and Strategy

According to standard cosmology, the primordial quantum fluctuations were expo-
nentially stretched during inflation. This resulted in small density perturbations at the
decoupling era. In the context of Asymptotically Safe Gravity these quantum fluc-
tuations can be identified with the fluctuations of the spacetime geometry occurring
during the NGFP regime [5]. The anisotropies in the CMB, due to the density fluctu-
ations at the last scattering surface, can thus be traced back to the Quantum Gravity
effects occurring during the Planck era. In this scenario it is important to understand if
QEG can produce a suitable inflationary scenario compatible with the observational
data. In [5] it has been argued that QEG, in the Einstein–Hilbert approximation,
naturally provides a period of power-law inflation caused by the running of the cos-
mological constant in the NGFP regime. Subsequently, when the RG evolution exits
the NGFP regime, the energy density associated to the cosmological constant drops
below that of ordinary matter and inflation ends. This scenario predicts an almost
scale-invariant power spectrum ns � 1 without requiring an inflaton field.

Although the Einstein–Hilbert action provides a successful description of gravity
at a classical level (low-energy regime), the trans-Planckian regime may also include
higher-derivative contributions. In particular, if the gravitational Lagrangian has a
f(R) structure, the leading contribution at the NGFP should be LNGFP ∼ R2 [16].
Therefore the relevant direction associated to the R2 operatormay play a fundamental
role in the description of the early universe cosmology. The aim of this section is
to study the quantum corrections to the Starobinsky model arising from QEG and
compare the corresponding inflationary models with the Planck data [10].

In order to include the quantum effects arising from QEG into the classical
Starobinsky model we will employ a standard strategy used in Quantum Field The-
ory, i.e. the Renormalization Group (RG) improvement. According to this method,
the leading quantum corrections can be included by replacing the classical coupling
constants {g} appearing in the action by the running couplings {gk} obtained as solu-
tions of the RG equations. The resulting model provides an effective description
of the system at the momentum scale k. At last, in order to close the system, one
has to identify this energy scale with a characteristic dynamical scale of the sys-
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tem. This “cutoff identification” is an essential step to link the RG evolution with
the dynamical evolution of the system under consideration. As an illustrative and
important example, this method has been used to compute radiative corrections in
scalar electrodynamics: the Coleman-Weinberg effective potential [17] can in fact
be obtained by RG-improving the classical potential and identifying the RG scale
k with the scalar field itself. In the case of gauge theories this scale identification
must be generalized in a way that preserves gauge invariance. Therefore the infrared
cutoff must be constructed from gauge invariant quantities. Accordingly, one pos-
sibility is to RG-improve the classical Lagrangian and identify the cutoff with the
field strength (FμνFμν)1/4. As pointed out in [18], in the case of Yang–Mills theories
this strategy suffices to capture the most important features of the quantum theory
under consideration. This method has extensively been employed in both Quantum
Electrodynamics and Quantum Chromodynamics [18–22].

Motivated by the successes at the level ofYang–Mills theory, a similar strategy can
be employed to study the quantum gravity effects in actual gravitational phenomena.
Over the years severalworks [4, 5, 23–27] have used theRG improvement procedures
to study phenomenological implications of Asymptotic Safety. In the case of gravity
the field strength is naturally provided by the spacetime curvature. One can therefore
employ the cutoff identification k2 ∼ R. The RG-improved Lagrangian resulting
from the latter scale setting is an effective f(R)-type Lagrangian whose general
structure agrees very well with the high-curvature solution of the fixed point equation
for a generic asymptotically safe f(R) theory [9, 28–30].

5.2.2 Effective Inflationary Potential from Quadratic Gravity

Let us consider the following quadratic gravity Lagrangian

Lk = k2

16πgk
(R − 2λkk

2) − βk R
2 (5.12)

where gk , λk and βk are dimensionless running couplings whose infinite momentum
limit is controlled by the NGFP in the (gk, λk, βk) sub-theory space [31, 32]. The
corresponding UV critical manifold is described by three relevant directions and
the qualitative behavior of the renormalization group flow in the vicinity of the
NGFP is rather simple. In particular there exist trajectories that emanate from the
NGFP and possess a long classical regime where the effective action reduces to
the standard Einstein–Hilbert action [32]. The Lagrangian defined in Eq. (5.12)
classically matches the original Starobinskymodel . The question wewant to address
here is whether the scale-dependence of the couplings induced by the NGFP affects
the Starobinsky inflationary model [11] and if the RG-improved model is compatible
with the Planck data on the power spectrum of CMB anisotropies.

Following the strategy described in Sect. 5.2.1, the first step to find aRG-improved
effective action is to replace the running couplings (gk, λk, βk) with the solutions
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of the FRGE. However, the flow equation associated with these running couplings
cannot be solved analytically. Therefore, one can either use numerical methods or
resort to some approximations. Since the study of inflationary scenario in the slow-
roll approximation requires an analytical expression for the inflationary potential,
we will adopt the latter strategy. First, we approximate the running of λk with its
tree-level scaling λk ∼ c2 k−2, where c2 is a dimensionful constant. Although this
approximation is quite drastic, it is justified by the impressive stability of the critical
exponents for the Newton’s constant against the inclusion of higher order truncations
[33]. Moreover, it allows to decouple the running of gk from the running of βk , so
that an analytical expression for the running Newton’s constant [24] can be used.
Secondly, we approximate the running coupling βk with its scaling around the NGFP.
Under these assumptions the renormalized flow is encoded in the following running
couplings [24]

gk = (c1 μ−2) k2

1 + ω (k2 − μ2) (c1 μ−2)
, (5.13a)

βk = β∗ + b0

(
k2

μ2

)− θ3
2

. (5.13b)

Here μ is an arbitrary scale defining c1 ≡ g(k = μ) , θ3 is the critical exponent asso-
ciated with the R2 relevant direction, ω ≡ 1/g∗ and the parameters g∗ = 6π/23 and
β∗ ∼ 0.002 [31] define the location of theNGFP in the subspace under consideration.
It is important to stress that, as long as c1 < 6π/23, the running described by (5.13a)
smoothly interpolates between the GFP and the NGFP, and therefore it captures the
qualitative features of the flow described in [32]. Finally, the constants b0, c1 and c2
are free parameters, corresponding to the three relevant directions of the UV criti-
cal surface, and must be fixed by confronting the model with observations. In other
words, by changing b0, c1 and c2 it is possible to explore various RG trajectories all
ending at the NGFP. The relevant question is if it is possible to actually constrain
these numbers, in particular the value of b0.

As it will be important for our discussions, we note here that Eq. (5.13a) can be
used to write down the expression for the dimensionful running Newton’s coupling
Gk = k−2gk . Recalling that c1 ≡ g(k = μ), one can identify Gμ ≡ c1 μ−2. Rewrit-
ing (5.13a) in terms of Gμ and fixing the renormalization scale toμ = 0, the running
Newton’s constant is compactly written as [24]

Gk = G0

1 + ωG0 k2
(5.14)

whereG0 is the infrared value of theNewton’s constant. Since in the Einstein–Hilbert
truncation Gk is constant during the entire classical regime, including the observa-
tional scale kobs > 0, in this approximationG0 coincides with the observed Newton’s
constant GN ≡ G(kobs). On the other hand, if a Quasi Fixed Point mechanism gov-
erns the infrared limit,Gk may undergo a further running and its value would deviate
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from the observed one, as we discussed in Sect. 4.4. Such a behavior is not included
in (5.14). Finally it is important to remark that the dimensionful Newton’s coupling
(5.14) vanishes for k → ∞.

According to the arguments of Sect. 5.2.1, an RG-improved f(R) effective action
can be derived by substituting the running couplings (5.13) into Eq. (5.12) and by
employing the cutoff identification [9, 29, 30]

k2 ≡ ξ R (5.15)

where ξ is an arbitrary positive constant.We thus obtain the following effective action

Seff = 1

2κ

∫
d4x

√−g

[
R + α̃ R 2− θ3

2 + R2

6m2
− 2�̃

]
. (5.16)

Here κ ≡ 8πGN, m2, α̃ and �̃ are effective coupling constants given by

κ = 48π2 c1
6πμ2 − 23 (μ2 + 2 ξ c2) c1

, m2 = 8π2

κ
(
23 ξ − 96π2β∗

) , (5.17a)

�̃ = μ2(6π − 23 c1) c2
6πμ2 − 23 (μ2 + 2 ξ c2) c1

, α̃ = −2 b0 κ
(
ξμ−2

)− θ3
2 . (5.17b)

In particular, the effective parameters κ andm2 are positive definite if ξ > 96π2β∗/23
and c2 < μ2(6π − 23c1)/46ξc1. Notably, the coupling constant α only depends on
θ3 and b0. In particular the numerical evidence accumulated so far has shown that the
value of θ3 is rather stable against the introduction of higher order derivatives in the
flow equation [34], as it is expected for a critical exponent. On the contrary b0 is by
construction a non-universal quantity whose value cannot be determined a priori. It
labels a specific trajectory emanating from the fixed point and its actual value should
be determined by matching with a low-energy observable.

In order to obtain the inflationary potential (5.11) associated with the RG-
improved action (5.16), we introduce the auxiliary field ϕ defined via

ϕ(χ) ≡ 1 + α̃

(
2 − θ3

2

)
χ1− θ3

2 + χ

3m2
. (5.18)

Due to its non-linearity, the task of inverting (5.18) can be very difficult and one
should resort to numerical methods. However, according to the analysis of [33],
the critical exponent θ3 is rather close to unity. Hence, in order to obtain analytic
expressions, we can approximate θ3 = 1 for any practical calculation. In this case
we explicitly obtain the two branches

χ± = 3

8

(
27α̃2m4 + 8m2(ϕ − 1) ± 3

√
3

√
27α̃4m8 + 16α̃2m6(ϕ − 1)

)
(5.19)
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with the reality condition ϕ ≥ 1 − 27m2α̃2/16. Using these solutions we can obtain
a canonically coupled scalar field by introducing the conformal metric (5.9).1 In this
way the effective action (5.16), which is of the f(R)–type in the Jordan frame, looks
like a scalar-tensor theory in the Einstein frame and finally reads

Seff =
∫

d4x
√−gE

[
1

2κ
RE − 1

2
gμν

E ∂μφ∂νφ − V±(φ)

]
(5.20)

where the effective scalar potential V±(φ) is given by

V±(φ) =m2e−2
√

2κ
3 φ

256 κ

{
192

(
e
√

2κ
3 φ − 1

)2 − 3α4 + 128�

− √
32α

[ (
α2 + 8 e

√
2κ
3 φ − 8

)
± α

√
α2 + 16 e

√
2κ
3 φ − 16

] 3
2

(5.21)

− 3α2
(
α2 + 16 e

√
2κ
3 φ − 16

)
∓ 6α3

√
α2 + 16 e

√
2κ
3 φ − 16

}

and we have measured α̃ and �̃ in units of the scalaron mass m by introducing the
dimensionless quantities � = m−2 �̃ and α = 3

√
3m α̃.

5.2.3 Inflaton Dynamics and Primordial Power Spectrum

With the aim of discussing inflation in the slow-roll approximation, it is important
to study the analytical properties of the family of potentials V±(φ) (see Figs. 5.1 and
5.2). We firstly notice that for all values (α,�) the scalar potentials V±(φ) in Eq.
(5.21) are characterized by a plateau

lim
φ→+∞ V±(φ) = 3m2

4κ . (5.22)

In order to verify the slow-roll conditions, the inflaton field must start its motion
fromφ > Mpl in a quasi–deSitter state and thenproceed towardsφ � Mpl. The shape
of the potential for φ � Mpl, and thus the inflation dynamics, strongly depends on
the values (α,�). In our case only two behaviors are possible

• V±(φ) develops a minimum for φ � Mpl and lim
φ→−∞ V±(φ) = +∞

• V±(φ) has no stationary points and lim
φ→−∞ V±(φ) = −∞

1Note that thefield redefinition employed in going from the Jordan to theEinstein frame involves new
additional contributions in the path-integral arising from the Jacobians. In investigations including
the presence of matter field in the starting Lagrangian, these new terms cannot be neglected.
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Fig. 5.1 Inflationary potential V−(φ) (black line) and slow-roll function ε(φ) (gray line) for α =
−10 and � = 2 (left panel) and � = −2 (right panel). The dashed line corresponds to the limiting
condition ε(φ) = 1, which separates the slow-roll regime (ε(φ) < 1 ) from non-inflationary phases.
Potentials with V±(φmin) > 0 violate the slow-roll condition ε(φ) < 1 at most for a negligible time
period, thus giving rise to eternal inflation. On the other hand, potential without a minimum can
have a “graceful exit” from inflation, but no standard reheating phase is possible

In particular, if V±(φ) has a minimum then its value V±(φmin) is always positive for
V−(φ), while it can be either positive or negative for V+(φ).

The post-inflationary reheating phase due to damped oscillations of the inflaton is
clearly possible only when V±(φ) has a minimum. In our case inflation can naturally
end by violation of the slow-roll condition ε(φ f ) = 1 only when the minimum value
of the potential is negative, V (φmin) ≤ 0. In fact, when V±(φmin) > 0 the slow-
roll condition ε = 1 is verified at φ f < φmin; subsequently, when the inflaton starts
oscillating around φmin, the field φ enters back the slow-roll regime ε(φ) < 1 and
remains in this region. Hence, this class of potentials (Fig. 5.1, left panel) gives rise to
eternal inflation. On the contrary, the family of potentials which are unbounded from
below is characterized by a well defined exit from inflation (Fig. 5.1, right panel),
but the reheating phase cannot be explained by inflaton parametric oscillations.

In what follows we will restrict our attention to the class of potentials providing a
well defined exit from inflation, followed by a phase of parametric oscillations of the
field φ. These particular features are realized by the family of potentials V+(φ) for
α ∈ [1, 3] and � ∈ [0, 1.5]. This case is illustrated in Fig. 5.2 for various values of α

and � = 1.4. Notably, although for α and � very close to zero the potential (5.21)
is only a small modification of the classical Starobinsky model, for α ∈ [1, 3] and
� ∈ [0, 1.5] the potential V+(φ) develops a non-trivial minimum at negative values
of the potential which makes the quantum-corrected (R + R2)–Starobinsky model
significantly different from the original one.

At this point, it is important to compare the main features of the primordial power
spectrum arising from the RG-improved inflationary potential (5.21) with the data
provided by the Planck collaboration. These important properties are encoded in the
spectral index ns and tensor-to-scalar ratio r , Eq. (5.7). In particular, the evaluation
of such parameters requires the knowledge of the initial value of the inflaton field,
φi = φ(ti ), which can be obtained by inverting (5.5) once the number of e-folds N
is fixed. However, while the final value of the field φ f = φ(t f ) can be analytically
determined by solving ε(φ) = 1 (violation of the slow-roll condition), in our case
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Fig. 5.2 Inflationary potential V+(φ) for various values α and � = 1.4. In this case inflation lasts
for a finite amount of time and a phase of parametric oscillations of the field φ follows

Fig. 5.3 We compare the
theoretical predictions of our
model with the Planck
collaboration 2015 data
release assuming �CDM
[10]. The different
theoretical “points” in the
(r, ns)–plane are obtained by
fixing � = 1.4 and varying
the value of α. In particular,
triangles are for N = 55 and
squares for N = 60 e-folds.
Solid and dashed lines are
the 1σ and 2σ confidence
levels, respectively

the evaluation of the initial value φi requires numerical methods. The values of the
spectral index ns and tensor-to-scalar ratio r resulting from the class of potentials
under consideration are displayed in Table5.1. Confronting ns and r with the Planck
data [10], the present RG-improved model agrees very well, as it is shown in Fig. 5.3.
Notably, the present model significantly differs from the well known Starobinsky
model [11], as it predicts a tensor-to-scalar ratiowhich is significantly higher. Finally,
according to Eq. (5.6), the normalization of the scalar power spectrum at the pivot
scale k∗ = 0.05Mpc−1 provides us with m ∼ (1.5 − 7) · 1014 GeV, depending on
the value of α.
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Table 5.1 Values of the spectral index ns and tensor-to-scalar ratio r obtained from the RG-
improved Starobinsky inflation for different values of (α,�) and number of e-folds N . In particular,
the range of values obtained for the spectral index, ns ∈ [0.965, 0.972], is in agreement with the one
obtained by the Planck Collaboration, ns = 0.968 ± 0.006, and the tensor-to-scalar ratio is always
compatible with their upper limit, r < 0.11

Cases N = 50 N = 55 N = 60

� α ns r ns r ns r

0 1.0 0.965 0.0069 0.968 0.0058 0.971 0.0050

1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

1 1.0 0.965 0.0070 0.968 0.0059 0.971 0.0051

1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

Table 5.2 Values of the spectral index ns and tensor-to-scalar ratio r obtained from the class of
potentials (5.21) without stationary points. Although the latter cannot provide a standard reheating
phase, the values of ns and r are compatible with the recent Planck data

Cases N = 50 N = 55 N = 60

� α ns r ns r ns r

−5 −2.0 0.807 1.5 · 10−6 0.808 6.0 · 10−7 0.808 2.3 · 10−7

+1.0 0.966 0.0066 0.969 0.0056 0.972 0.0048

+2.0 0.966 0.0074 0.969 0.0064 0.972 0.0055

−10 −2.0 0.809 1.6 · 10−6 0.810 6.1 · 10−7 0.810 2.4 · 10−7

+1.0 0.967 0.0063 0.970 0.0054 0.972 0.0047

+2.0 0.967 0.0074 0.970 0.0063 0.972 0.0054

As a final remark, the class of potentials unbounded from below cannot produce a
standard reheating phase but the well defined exit from inflation allows to determine
ns and r within the usual slow-roll approximation. A representative set of values
(ns, r) derived from this class of potentials is reported in Table5.2. Although the way
reheating occurs in these cases is beyond the purpose of this thesis, it is instructive to
compare the values (ns, r) resulting from the families of potentials with and without
a local minimum. Notably, when α > 0 the class of potentials without minima gives
rise to spectral indeces and tensor-to-scalar ratios similar to the ones reported in
Table5.1.

5.2.4 Post-inflationary Dynamics

After the end of inflation, the inflaton field φ starts oscillating about the minimum
φmin of its potential V+(φ). In order to study this phase, we can approximate

V+(φ) ∼ V (φ) = b

2

[
(φ − φmin)

2 − c
]

(5.23)
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where φmin(α,�), b(α,�) = V ′′+(φmin) and c(α,�) = −2 V+(φmin)/V ′′+(φmin)

depend on both α and �, and are given by the following expressions

φmin(α,�) =
√

3
2

(
3α3

(
α2 − 4

) − 32α� + 4
(
α2 − 6

) |α|3)
6α

(
α2 − 8

) (
α2 + 2

) − 64α� + 8
(
α2 − 9

) |α|3 , (5.24)

b(α,�) = 48 + 18α2 − 3α4 + 32� − 4α3 |α| + 36α |α|
24

, (5.25)

c(α,�) = 8α
(
15α4 − 3α6 − 96� + 8α2(15 + 4�)

) |α|
8
3

(
48 + 18α2 − 3α4 + 32� − 4α

(
α2 − 9

) |α|)2
+ −25α8 + 132α6 − 384α2�

8
3

(
48 + 18α2 − 3α4 + 32� − 4α

(
α2 − 9

) |α|)2 (5.26)

+ 48α4(21 + 4�) − 1024�(3 + �)

8
3

(
48 + 18α2 − 3α4 + 32� − 4α

(
α2 − 9

) |α|)2 .

The time evolution of the field φ(t) is described by the conservation equation

φ̈ + 3 H φ̇ + V ′(φ) = 0 (5.27)

where the Hubble parameter H(t) is given by

H 2 ≡ κ

3

(
1

2
φ̇2 + V (φ)

)
= κ

6

[
φ̇(t)2 + b

(
φ(t) − φmin

)2 − bc
]

. (5.28)

Fig. 5.4 Phase diagrams describing the dynamics of the inflaton field in the (φ, φ̇)–plane. The
figure in the left panel is obtained for α = 1 and � = 1 and corresponds to the case V+(φmin) ≤ 0.
The asymptotic behavior is controlled by a limit cycle. In contrast, the phase diagram in the right
panel, obtained setting α = 1.5 and � = 10, is characterized by an attractive fixed point (φmin, 0).
This case arises when V+(φmin) > 0
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Fig. 5.5 Phase diagrams in the (φ, φ̇)–plane describing the inflationary dynamics for the class
of potentials V−(φ). The left panel describes the dynamics arising from unbounded potentials.
The right panel corresponds to the case of potentials with a minimum and V−(φmin) > 0. The
corresponding dynamics matches the one illustrated in the right panel of Fig. 5.4

Putting x(t) = √
b (φ(t) − φmin) and y(t) = φ̇(t), Eq. (5.27) can be written as

{
ẏ = − [

3κ
2

(
y2 + x2 − bc

)] 1
2 y − √

b x ,

ẋ = √
b y .

(5.29)

The long time behavior of this dynamical system is mainly determined by the sign
of z ≡ bc = −2 V (φmin). If z ≤ 0 (V (φmin) ≥ 0) then the origin of the (x, y)–plane,
namely the minimum (φmin, V (φmin)), is an attractive node. On the contrary, if z > 0
(V (φmin) < 0) a limit cycle defined by y2 + x2 = z appears. The limiting case z = 0
thus represents a Hopf bifurcation point.While these findings concern the asymptotic
behavior of the inflaton field, its dynamics can be studied by solving Eq. (5.29).
The phase diagrams corresponding to the cases V+(φmin) < 0 and V+(φmin) ≥ 0 are
depicted in Fig. 5.4. For comparison we also report a sample of phase diagrams
obtained from the potential V−(φ) in Fig. 5.5.

Finally, it is interesting to study the behavior of the scale factor a(t) during the
reheating era. In particular, combining the system (5.29) with Eq. (5.28) and using
the Krylov–Bogolyubov averaging method [35, 36], we obtain

a(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
sin

(√
3
8 |z| t

)]2/3
z > 0

t2/3 z = 0[
sinh

(√
3
8 |z| t

)]2/3
z < 0

(5.30)

In the limiting case z = 0 (V (φmin) = 0, Starobinsky model), the scale factor a(t)
describes a matter-dominated epoch, while the solutions with V (φmin) 	= 0 are com-
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patible with a matter-dominated era only at the beginning of the oscillatory phase.
On the other hand, a consistent treatment of the reheating phase must include the
contribution of the matter fields. This is beyond the scope of this dissertation.

5.3 Constraints on Early Universe Matter Fields
from Foliated Quantum Gravity-Matter Systems

The behavior of gravity in the high-energy regime is controlled by the NGFP of
the renormalization group flow. Assuming that the Asymptotic Safety scenario is
correct, the precise values of the critical exponents may play a fundamental role
in the description of the primordial evolution of the universe. As we have seen, in
the case of pure gravity the critical exponents are complex and conjugate, making
the flow spiraling out from the NGFP. However, the critical exponents associated
with the gravitational couplings also depend on the matter content of the theory and,
according to our findings of Chap. 4, they should be real and positive for a wide class
of models, including the Standard Model and its modifications. Although we have
assumed the matter fields to be minimally coupled to gravity and non-interacting,
this approximation may be suitable for the description of the very early universe.
Following the strategy introduced in Sect. 5.2.1 and using the results of Sect. 4.3.2,
in this section we will see that comparing the RG-improved effective action resulting
from the flow of gravity-matter systems with the Planck data, provides important
constraints on the primordial matter content of the theory.

In the present discussionwe restrict the gravitational sector to the Einstein–Hilbert
truncation. The corresponding scale-dependent Lagrangian reads

Lk = k2

16πgk
(R − 2λkk

2) (5.31)

where the running couplings gk and λk are the solutions of the beta functions (4.49).
For our purpose it suffices to study the linearized flow around the NGFP, where the
scaling behavior for λk and gk is determined by the critical exponents θi

λk = λ∗ + c1 e11 k
−θ1 + c2 e21 k

−θ2 , (5.32a)

gk = g∗ + c1 e12 k
−θ1 + c2 e22 k

−θ2 . (5.32b)

Here ei j ≡ (ei ) j are the eigenvectors of the stability matrix Si j ≡ ∂ jβi |∗, and (−θi )

are the corresponding eigenvalues. The only free parameters, c1 and c2, allow to select
a particular RG trajectory, and can be determined by comparing physical observables
(e.g. physical couplings in the effective Lagrangian) with observations.

Following Sect. 5.2.1, an RG-improved Lagrangian can be obtained by substitut-
ing the running couplings (5.32) into Eq. (5.31). The resulting analytical expression
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strongly depends on the critical exponents θi . According to the discussion in Sect.
4.3.2, the physically interesting gravity-matter models possess positive and real sta-
bility coefficients (see Table 4.4). In order to obtain an analytical expression for
the effective Lagrangian, we make the approximation θi ∈ N. Assuming θ1 > θ2, an
asymptotic expansion of g−1

k , with gk given by (5.32b), yields

g−1
k = g−2

∗ (g∗ − c2 e22 k
−θ2) + O(k−θ2−1) . (5.33)

We can thus approximate the coefficient G−1
k = k2g−1

k in the Lagrangian (5.31) with
its leading asymptotic behavior

1

Gk
� g−2

∗ (g∗ − c2 e22 k
−θ2) k2 . (5.34)

Finally, using (5.34) and setting k2 = ξ R as before, yields the following RG-
improved Lagrangian

Leff = a0 R
2 + b1 R

4−θ1−θ2
2 + b2 R

4−θ1
2 + b3 R

4−θ2
2 + b4 R

2−θ2 . (5.35)

The coefficients bi depend on the initial data, parametrized by ci , the set of parameters
(λ∗, g∗, ξ), the eigenvalues θi and the eigenvector components ei j . They are given
by the following expressions

b1 = c1c2(e11 e22) ξ
4−θ1−θ2

2

8πg2∗
, b2 = c1(−e11) ξ

4−θ1
2

8πg∗
, (5.36)

b3 = c2(2 e22ξλ∗ − 2 e21 ξg∗ − e22) ξ
2−θ2
2

16πg2∗
, b4 = c22 (e21 e22) ξ 2−θ2

8πg2∗
. (5.37)

The coefficient of R2 only depends on the parameters (λ∗, g∗, ξ) and reads

a0 = ξ (1 − 2ξλ∗)
16πg∗

. (5.38)

Notably, the RG improvement of the Einstein–Hilbert action always produces a R2-
term, independently of the precise matter content of the theory. In other words it does
not depend on the stability coefficients θi .

At this point we must require the RG-improved Lagrangian (5.35) to produce an
inflationary scenario in agreement with the Planck data [10]. In particular, the values
of the critical exponents θi should give rise to a Starobinsky-like Lagrangian, with at
least one critical exponent θi ≤ 4. In fact, if all critical exponents satisfy the condition
θi > 4 then all bi -terms are suppressed and the resulting Lagrangian L ∼ R2 gives
rise to a scale invariant scalar power spectrum, ns = 1, which is excluded by the
Planck data. Therefore, as θ1 > θ2 is assumed, the first constraint we find reads

θ2 ≤ 4 . (5.39)
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According to Table 4.4, the only models compatible with the latter condition are the
Standard Model, including its modifications, and the MSSM. In particular for all
these models the critical exponents are

θ1 � 4 , θ2 � 2 , (5.40)

while the eigenvectors ei read

e1 �
(−1

0

)
, e2 �

(+1/2
−1/2

)
. (5.41)

The resulting effective Lagrangian Leff (up to subleading corrections in 1/k2) thus
reads

Leff = c2 (1 − 2g∗ξ − 2λ∗ξ)

32πg2∗
R + ξ(1 − 2λ∗ξ)

16πg∗
R2 − c22 − 4 c1 g∗

32πg2∗
. (5.42)

Hence, when the gravitational renormalization group flow is combined with SM-
type theories, the RG-improved Einstein–Hilbert Lagrangian results in a (R + R2)

theory.
Finally, in order to recast (5.42) in the standard Starobinsky form, we require the

coefficients of R and R2 to define the observed Newton’s constant GN and scalaron
mass m

GN = 2g2∗
c2 (1 − 2g∗ξ − 2λ∗ξ)

, (5.43a)

m2 = g∗
6 ξ (1 − 2λ∗ξ)GN

. (5.43b)

Solving Eq. (5.43a) with respect to ξ and inserting the result into Eq. (5.43b), we
obtain a second order equation for c2 which admits real solutions if

m̃2(g∗ + λ∗)2 (3m̃2 − 4g∗λ∗) > 0 . (5.44)

wherewe introduced the dimensionless quantity m̃2 = GN m2 ≡ m2/Mpl
2. Thevalue

of the massm is fixed by the CMB normalization of the power spectrum, m̃2 ∝ As ∼
10−10, and for a Starobinsky-like model this implies m̃ ∼ 10−5 (see [13] for details).
As a consequence, we obtain the following constraint

g∗λ∗ � 0 . (5.45)

Since g∗ must be positive, only negative values of λ∗ are allowed to produce a
physically acceptable inflationary model. According to Table 4.4, the gravity-matter
models compatible with this second constraint are again the SM (and its minor exten-
sions) and theMSSM. It follows that, under the Einstein–Hilbert approximation, only
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a SM-like theory can provide a suitable period of inflation compatiblewith the Planck
data. However, it is worth pointing out that the results in Table 4.4 slightly change
in the metric approach to Asymptotic Safety [37, 38] and, although the constraints
(5.39) and (5.45) are still valid if the Einstein–Hilbert truncation is assumed, in the
metric approach the matter models compatible with the Planck data may be different.

References

1. J.J. Halliwell, S.W. Hawking, Origin of structure in the Universe. Phys. Rev. D 31, 1777–1791
(1985). https://doi.org/10.1103/PhysRevD.31.1777 (cit. on p. 99)

2. A.Bonanno,M.Reuter, Cosmology of the Planck era froma renormalization group for quantum
gravity. Phys. Rev. D 65(4), 043508 (2002). https://doi.org/10.1103/PhysRevD.65.043508.
arXiv:hep-th/0106133 (cit. on p. 99)

3. M. Reuter, F. Saueressig, From big bang to asymptotic de Sitter: complete cosmologies in a
quantum gravity framework. JCAP 9, 12 (2005). https://doi.org/10.1088/1475-7516/2005/09/
012. arXiv:hep-th/0507167 (cit. on p. 99)

4. A. Bonanno et al., The accelerated expansion of the universe as a crossover phenomenon.
Class. Quantum Gravity 23, 3103–3110 (2006). https://doi.org/10.1088/0264-9381/23/9/020.
eprint: astro-ph/0507670 (cit. on pp. 99, 105)

5. A. Bonanno, M. Reuter, Entropy signature of the running cosmological constant. JCAP 8,
24 (2007). https://doi.org/10.1088/1475-7516/2007/08/024. arXiv:0706.0174 [hep-th] (cit. on
pp. 99, 100, 104, 105)

6. G. D’Odorico, F. Saueressig, Quantum phase transitions in the Belinsky-Khalatnikov-Lifshitz
universe. Phys. Rev. D 92(12), 124068 (2015). https://doi.org/10.1103/PhysRevD.92.124068
(cit. on p. 99)

7. A. Bonanno, M. Reuter, Cosmology with self-adjusting vacuum energy density from a renor-
malization group fixed point. Phys. Lett. B 527, 9–17 (2002). https://doi.org/10.1016/S0370-
2693(01)01522-2. eprint: astro-ph/0106468 (cit. on p. 99)

8. A.Bonanno,A.Contillo, R. Percacci, Inflationary solutions in asymptotically safe f(R) theories.
Class. Quantum Gravity 28(14), 145026 (2011). https://doi.org/10.1088/0264-9381/28/14/
145026. arXiv:1006.0192 [gr-qc] (cit. on p. 99)

9. A. Bonanno, An effective action for asymptotically safe gravity. Phys. Rev. D 85(8), 081503
(2012). https://doi.org/10.1103/PhysRevD.85.081503. arXiv:1203.1962 [hep-th] (cit. on pp.
100, 103, 105, 107)

10. Planck Collaboration et al., Planck 2015 results. XIII. Cosmological parameters. A&A 594,
A13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589 (cit. on pp.
100, 101, 104, 110, 111, 117)

11. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett.
B 91, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X (cit. on pp. 100, 103,
105, 111)

12. D. Baumann, Inflation, in Physics of the Large and the Small: TASI 2009, ed. by C. Csaki,
S. Dodelson (2011), pp. 523–686. https://doi.org/10.1142/9789814327183_0010 (cit. on pp.
100–102)

13. J. Martin, C. Ringeval, V. Vennin, Encyclopædia Inflationaris. Phys. Dark Universe 5, 75–
235 (2014). https://doi.org/10.1016/j.dark.2014.01.003. arXiv:1303.3787 (cit. on pp. 101, 102,
118)

14. A. de Felice, S. Tsujikawa, f(R) Theories. Living Rev. Relativ. 13, 3 (2010). https://doi.org/10.
12942/lrr-2010-3. arXiv:1002.4928 [gr-qc] (cit. on p. 102)

15. S. Capozziello, M. de Laurentis, Extended theories of gravity. Phys. Rep. 509, 167–321 (2011).
https://doi.org/10.1016/j.physrep.2011.09.003. arXiv:1108.6266 [gr-qc] (cit. on p. 102)

16. D. Benedetti, On the number of relevant operators in asymptotically safe gravity.
EPL (Europhys. Lett.) 102, 20007 (2013). https://doi.org/10.1209/0295-5075/102/20007.
arXiv:1301.4422 [hep-th] (cit. on p. 104)

https://doi.org/10.1103/PhysRevD.31.1777
https://doi.org/10.1103/PhysRevD.65.043508
http://arxiv.org/abs/hep-th/0106133
https://doi.org/10.1088/1475-7516/2005/09/012
https://doi.org/10.1088/1475-7516/2005/09/012
http://arxiv.org/abs/hep-th/0507167
https://doi.org/10.1088/0264-9381/23/9/020
https://doi.org/10.1088/1475-7516/2007/08/024
http://arxiv.org/abs/0706.0174
https://doi.org/10.1103/PhysRevD.92.124068
https://doi.org/10.1016/S0370-2693(01)01522-2
https://doi.org/10.1016/S0370-2693(01)01522-2
https://doi.org/10.1088/0264-9381/28/14/145026
https://doi.org/10.1088/0264-9381/28/14/145026
http://arxiv.org/abs/1006.0192
https://doi.org/10.1103/PhysRevD.85.081503
http://arxiv.org/abs/1203.1962
https://doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1142/9789814327183_0010
https://doi.org/10.1016/j.dark.2014.01.003
http://arxiv.org/abs/1303.3787
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
http://arxiv.org/abs/1002.4928
https://doi.org/10.1016/j.physrep.2011.09.003
http://arxiv.org/abs/1108.6266
https://doi.org/10.1209/0295-5075/102/20007
http://arxiv.org/abs/1301.4422


References 101

17. S. Coleman, E. Weinberg, Radiative corrections as the origin of spontaneous symmetry break-
ing. Phys. Rev. D 7, 1888–1910 (1973). https://doi.org/10.1103/PhysRevD.7.1888 (cit. on p.
104)

18. H. Pagels, E. Tomboulis, Vacuum of the quantum Yang-Mills theory and magnetostatics. Nucl.
Phys. B 143, 485–502 (1978). https://doi.org/10.1016/0550-3213(78)90065-2 (cit. on p. 105)

19. A.B. Migdal, Vacuum polarization in strong non-homogeneous fields. Nucl. Phys. B 52, 483–
505 (1973). https://doi.org/10.1016/0550-3213(73)90575-0 (cit. on p. 105)

20. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. I. Phys. Rev. D 8, 3633–3652
(1973). https://doi.org/10.1103/PhysRevD.8.3633 (cit. on p. 105)

21. S.G. Matinyan, G.K. Savvidy, Vacuum polarization induced by the intense gauge field. Nucl.
Phys. B 134, 539–545 (1978). https://doi.org/10.1016/0550-3213(78)90463-7 (cit. on p. 105)

22. S.L. Adler, Short-distance perturbation theory for the leading logarithm models. Nucl. Phys.
B 217, 381–394 (1983). https://doi.org/10.1016/0550-3213(83)90153-0 (cit. on p. 105)

23. F. Fayos, R. Torres, A quantum improvement to the gravitational collapse of radiating stars.
Class. Quantum Gravity 28(10), 105004 (2011). https://doi.org/10.1088/0264-9381/28/10/
105004 (cit. on p. 105)

24. A. Bonanno, M. Reuter, Renormalization group improved black hole spacetimes. Phys. Rev. D
62(4), 043008 (2000). https://doi.org/10.1103/PhysRevD.62.043008. eprint: hep-th/0002196
(cit. on pp. 105, 106)

25. M.Reuter, H.Weyer, Quantumgravity at astrophysical distances? JCAP 12, 001 (2004). https://
doi.org/10.1088/1475-7516/2004/12/001. arXiv:hep-th/0410119 (cit. on p. 105)

26. M. Reuter, H. Weyer, Running Newton constant, improved gravitational actions, and galaxy
rotation curves. Phys. Rev. D 70(12), 124028 (2004). https://doi.org/10.1103/PhysRevD.70.
124028. eprint: hep-th/0410117 (cit. on p. 105)

27. M. Reuter, H. Weyer, Renormalization group improved gravitational actions: a Brans-Dicke
approach. Phys. Rev. D 69(10), 104022 (2004). https://doi.org/10.1103/PhysRevD.69.104022.
eprint: hep-th/0311196 (cit. on p. 105)

28. J.A. Dietz, T.R. Morris, Asymptotic safety in the f(R) approximation. J. High Energy Phys. 1,
108 (2013). https://doi.org/10.1007/JHEP01(2013)108. arXiv:1211.0955 [hep-th] (cit. on p.
105)

29. M. Hindmarsh, I.D. Saltas, f(R) gravity from the renormalization group. Phys. Rev. D 86(6),
064029 (2012). https://doi.org/10.1103/PhysRevD.86.064029 (cit. on pp. 105, 107)

30. E.J. Copeland, C. Rahmede, I.D. Saltas, Asymptotically safe Starobinsky inflation. Phys. Rev.
D 91(10), 103530 (2015). https://doi.org/10.1103/PhysRevD.91.103530 (cit. on pp. 105, 107)

31. O. Lauscher, M. Reuter, Flow equation of Quantum Einstein Gravity in a higher-derivative
truncation. Phys. Rev. D 66(2), 025026 (2002). https://doi.org/10.1103/PhysRevD.66.025026.
eprint: hep-th/0205062 (cit. on pp. 105, 106)

32. S. Rechenberger, F. Saueressig, R2 phase diagram of Quantum Einstein Gravity and its spectral
dimension. Phys. Rev. D 86(2), 024018 (2012). https://doi.org/10.1103/PhysRevD.86.024018.
arXiv:1206.0657 [hep-th] (cit. on pp. 105, 106)

33. A. Codello, R. Percacci, C. Rahmede, Investigating the ultraviolet properties of gravity with a
Wilsonian renormalization group equation. Ann. Phys. 324, 414–469 (2009). https://doi.org/
10.1016/j.aop.2008.08.008. arXiv:0805.2909 [hep-th] (cit. on pp. 106, 108)

34. K. Falls et al., Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 93(10),
104022 (2016). https://doi.org/10.1103/PhysRevD.93.104022 (cit. on p. 107)

35. N.N. Bogolyubov, N.M. Krylov, Introduction to Non-Linear Mechanics (Princeton University
Press, 1947). ISBN: 9780691079851 (cit. on p. 114)

36. N.N. Bogolyubov, Y.A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscil-
lations (Gordon and Breach, 1961). ISBN: 978-0-677-20050-7 (cit. on p. 114)

37. P. Donà, A. Eichhorn, R. Percacci,Mattermatters in asymptotically safe quantum gravity. Phys.
Rev. D 89(8), 084035 (2014). https://doi.org/10.1103/PhysRevD.89.084035. arXiv:1311.2898
[hep-th] (cit. on p. 118)

38. J. Meibohm, J.M. Pawlowski, M. Reichert, Asymptotic safety of gravity matter sys-
tems. Phys. Rev. D 93(8), 084035 (2016). https://doi.org/10.1103/PhysRevD.93.084035.
arXiv:1510.07018 [hep-th] (cit. on p. 118)

https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1016/0550-3213(78)90065-2
https://doi.org/10.1016/0550-3213(73)90575-0
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1016/0550-3213(78)90463-7
https://doi.org/10.1016/0550-3213(83)90153-0
https://doi.org/10.1088/0264-9381/28/10/105004
https://doi.org/10.1088/0264-9381/28/10/105004
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1088/1475-7516/2004/12/001
https://doi.org/10.1088/1475-7516/2004/12/001
http://arxiv.org/abs/hep-th/0410119
https://doi.org/10.1103/PhysRevD.70.124028
https://doi.org/10.1103/PhysRevD.70.124028
https://doi.org/10.1103/PhysRevD.69.104022
https://doi.org/10.1007/JHEP01(2013)108
http://arxiv.org/abs/1211.0955
https://doi.org/10.1103/PhysRevD.86.064029
https://doi.org/10.1103/PhysRevD.91.103530
https://doi.org/10.1103/PhysRevD.66.025026
https://doi.org/10.1103/PhysRevD.86.024018
http://arxiv.org/abs/1206.0657
https://doi.org/10.1016/j.aop.2008.08.008
https://doi.org/10.1016/j.aop.2008.08.008
http://arxiv.org/abs/0805.2909
https://doi.org/10.1103/PhysRevD.93.104022
https://doi.org/10.1103/PhysRevD.89.084035
http://arxiv.org/abs/1311.2898
https://doi.org/10.1103/PhysRevD.93.084035
http://arxiv.org/abs/1510.07018


Chapter 6
Quantum Black Holes and Spacetime
Singularities

The existence of spacetime singularities indicates the failure of the classical descrip-
tion of gravity within the framework of General Relativity. Such singularities typ-
ically emerge at the beginning of the universe and at the endpoint of gravitational
collapse. In these extreme situations the evolution of causal geodesics across the
singularity is not uniquely determined, i.e. the spacetime becomes “geodesically
incomplete” [1, 2], and General Relativity loses its predictive power as a classical,
deterministic theory.

Spacetime singularities are a rather general feature of General Relativity [3].
According to the still unproven Cosmic Censorship Conjecture (CCC) all singular-
ities in physically realistic spacetimes must be covered by an event horizon [4], so
that no signal from the singularity can reach the future null infinity. At variance of
the cosmological singularity at the “origin of time”, a black hole singularity at r = 0
develops in time because the radial coordinate is time-like inside of the black hole
nucleus. In the latter case, both the singularity and the event horizon are dynamically
produced by the inflowing material from the collapsing star and the backscattered
gravitational waves. Although the structure of the interior solution is rather uncer-
tain, most of the classical models describing the gravitational collapse contradict the
Cosmic Censorship Hypothesis. Depending on the initial conditions, they can give
rise to naked singularities (see [5] for a complete review). Leaving aside the pos-
sibility of fine-tuning the initial data to avoid the formation of naked singularities,
one can argue that a consistent theory of Quantum Gravity may provide a solution
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to this problem: when the curvature reaches Planckian values quantum fluctuations
of the geometry may deform the black hole interior and eventually halt the col-
lapse. An interesting possibility, proposed in the context of minisuperspace models
[6, 7] coupled to matter fields, is a transition to a de Sitter core of Planckian size
[8, 9], a scenario which recently emerged also in the framework of Asymptotically
Safe Gravity [10, 11]. The study of quantum-corrected black holes has been carried
out in [12, 13]. Furthermore, recent studies have modeled the collapse in terms of
an homogeneous interior surrounded by an RG-improved Schwarzschild exterior
[14, 15].

In this final chapter we study the process of black hole formation by linking the
dynamics of the gravitational collapse to the renormalization group flow evolution.
In this description quantum gravitational effects emerge dynamically and alter the
way the event horizon (EH) forms during the collapse. Subsequently, we will dis-
cuss the structure of the singularity resulting from the quantum-corrected Vaidya–
Kuroda–Papapetrou (VKP) model [16–18]. Although the antiscreening character of
the gravitational interaction favors the formation of naked singularities, it will be
shown that Quantum Gravity fluctuations turn the classical space-like singularity
into a gravitationally weak singularity [19] which remains naked for a finite amount
of advanced time [20–22].

6.1 Vaidya–Kuroda–Papapetrou Spacetimes

In this section we summarize the relevant material on the VKP model [16–18] for
the gravitational collapse. This model provides a simple description of the gravita-
tional collapse and it was one of the first counterexamples to the Cosmic Censorship
Conjecture.

In order to describe the spacetime structure around a spherically symmetric star
of mass m, it is useful to introduce the ingoing Eddington–Finkelstein coordinates,
where the Schwarzschild time coordinate is replaced by the advanced time parameter
v = t + r∗, with

r∗ ≡ r + rs log

∣
∣
∣
∣

r

rs
− 1

∣
∣
∣
∣

, (6.1)

where rs = 2mG0 is the Schwarzschild radius, G0 ≡ GN being the Newton’s
constant.

With the aim of describing the dynamics of the gravitational collapse, we allow
the mass of the black hole to be a function of the advanced time v. The resulting line
element can thus be cast in the form

ds2 = − f (r, v) dv2 + 2 dv dr + r2 d�2 , (6.2)

with the lapse function f (r, v) given by
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f (r, v) = 1 − 2G0 m(v)

r
. (6.3)

This metric, defining the so-called Vaidya spacetimes [23], is an exact solution of
the Einstein field equations in the presence of a Type II fluid with energy density
[16, 23]

ρ(r, v) = ṁ(v)

4πr2
. (6.4)

It describes the spacetime surrounding a spherically symmetric object with variable
mass m(v).

The metric defined by the lapse function (6.3) is part of a larger class of metrics,
known as generalized Vaidya spacetimes. This family of metrics, first introduced by
Wang and Wu [24], is characterized by a lapse function

f (r, v) = 1 − 2M(r, v)

r
, (6.5)

where the generalized mass function M(r, v) depends on both the advanced time and
the radial coordinate. The generalized Vaidya spacetimes are obtained as solutions
of the Einstein field equations in the presence of a mixture of Type-I and Type-II
fluids. The corresponding stress-energy tensor reads [25, 26]

Tμν = ρ lμlν
︸ ︷︷ ︸

Type II

+ (σ + p)(lμnν + lνnν) + pgμν
︸ ︷︷ ︸

Type I

(6.6)

where nμlμ = −1 , lμlμ = 0 and

ρ(r, v) = 1

4πG0r2
∂M(r, v)

∂v
, (6.7)

σ(r, v) = 1

4πG0r2
∂M(r, v)

∂r
, (6.8)

p(r, v) = − 1

8πG0r

∂2M(r, v)

∂r2
. (6.9)

In the standardVaidya spacetimeM(r, v) ≡ G0 m(v), so that the stress-energy tensor
(6.6) reduces to the pure Type II one (radiation).

The gravitational collapse can be modeled as the implosion of a series of radiation
shells, represented by the world lines v = const. The Vaidya spacetime can thus be
used to describe an astrophysical object of growing mass m(v). In the Vaidya–
Kuroda–Papapetrou (VKP) model [16–18] this mass function is parametrized as
follows

m(v) =

⎧

⎪⎨

⎪⎩

0 v < 0

λv 0 ≤ v < v̄

m̄ v ≥ v̄

(6.10)
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The spacetime is initially flat and empty (Minkowski spacetime). At v = 0 the radi-
ation shells emanating from the collapsing star are injected and focused towards the
origin r = 0, causing the mass of the central object to grow asm(v) = λv. The VKP
spacetime thus develops a persistent central singularity. The formation and evolution
of the event horizon depend upon the details of the collapse dynamics. Finally, in
v = v̄ the collapse ends and the metric reduces to the Schwarzschild static solution,
with final mass m̄ = λv̄.

The outcome of the collapse can be studied by solving the geodesic equation
for null outgoing light rays, as it gives information on the causal structure of the
spacetime. In the Vaidya geometry outgoing radial light rays are represented as
solutions of

dr

dv
= 1

2

(

1 − 2G0m(v)

r

)

. (6.11)

The general solution to Eq. (6.11) is implicitly defined by

−
2ArcTan

[
v−4r(v)

v
√−1+16λG0

]

√−1 + 16λG0
+ log

[

2λG0v
2 − r(v) v + 2 r(v)2

]

= C (6.12)

where C is an arbitrary integration constant. A representative set of these solutions
is depicted in Fig. 6.1. The classical VKP model is characterized by a critical value
of the radiation rate, λc ≡ 1/16G0, below which the singularity is globally naked.
In this case the family of solutions in Eq. (6.11) reduces to the following implicit
equation [27–29]

|r(v) − μ−v|μ−

|r(v) − μ+v|μ+
= C̃ (6.13)
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Fig. 6.1 Phase diagrams in the (r, v)–plane for the classical VKP model. The blue line represents
the event horizon (EH), the purple line is the apparent horizon (AH), and the black curves are a
sample of solutions to the classical geodesic equation. Left panel: For λ > 1

16G0
the singularity

in r = 0 is covered by the event horizon. Right panel: In the case λ ≤ 1
16G0

a Cauchy horizon
r+(v) = μ+v (external bold black line) is formed, and the singularity is naked
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where C̃ is a complex constant and

μ± = 1 ± √
1 − 16λG0

4
. (6.14)

The above implicit equation, Eq. (6.13), has two simple linear solutions r±(v) =
μ± v, with μ± defined in (6.14). The line r−(v) = μ− v is the tangent to the event
horizon at (r = 0, v = 0), while r+(v) = μ+ v is the Cauchy horizon. The latter
represents the first light ray emitted from the naked singularity. In particular all
geodesics lying between these two linear solutions in the (r, v)-plane are light rays
starting from the singularity (r = 0, v = 0) and reaching the observer at infinity.
Therefore if the initial conditions of the physical system entails λ ≤ λc, the grav-
itational collapse gives rise to a naked singularity. In this case the Cosmic Censor
Conjecture is violated in its weak formulation.

6.2 Singularity Structure in Generalized Vaidya Spacetimes

Themost severe problem related to the existence of singular spacetimes is the impos-
sibility of uniquely determining the evolution of the spacetime beyond the singularity.
According to the singularity theorems the existence of singularities in the solutions
of Einstein field equations is quite general. However, such theorems do not specify
the properties of such singularities, in particular their “nature”.

The physical relevance of a singularity is determined by its strength [5, 25].
Following the Tipler classification [19], a singularity is “strong” if an object falling
into the singularity is destroyed by the gravitational tidal forces, thus disappearing
from the spacetime once the singularity is reached. According to [19], only strong
curvature singularities are physically relevant. On the contrary the gravitationally
weak or “integrable” singularities are considered as less severe, as the spacetime
may be continuously extended across the singularity (see also [26] for an extensive
discussion).

The singularity strength is determined by the behavior of light-like geodesics in
the vicinity of the singularity [25]. Let us consider a generalized Vaidya spacetime
with mass function M(r, v). The geodesic equation for null rays is conveniently cast
in the form of a system of coupled first order differential equations

{
dv(t)
dt = N (r, v) ≡ 2 r

dr(t)
dt = D(r, v) ≡ r − 2M(r, v) .

(6.15)

The fixed point solutions of the system (6.15) are identified by the conditions r = 0
and M(0, v) = 0, and define the singular loci of the generalized Vaidya spacetime
[25]. Linearizing the system around a fixed point solution (rFP, vFP) yields
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{
dv(t)
dt = ṄFP (v − vFP) + N ′

FP (r − rFP)
dr(t)
dt = ḊFP (v − vFP) + D′

FP (r − rFP)
(6.16)

where a “prime” denotes differentiation respect to r , a “dot” stands for differentiation
with respect to v, and the subscript FP means that the derivatives are evaluated at the
fixed point. The linearized system (6.16) defines the Jacobian matrix J

J ≡
(

ṄFP N ′
FP

ḊFP D′
FP

)

. (6.17)

In this description the behavior of the light-like geodesics in the proximity of the
fixed point is completely determined by the eigenvalues of J

γ± = 1

2

(

Tr J ±
√

(Tr J )2 − 4 det J
)

, (6.18)

where

Tr J = ṄFP + D′
FP ≡ 1 − 2M ′

FP (6.19a)

det J = ṄFPD
′
FP − ḊFPN

′
FP ≡ 4 ṀFP , (6.19b)

and by the corresponding eigendirections. The latter define the characteristic lines

r±(v) = rFP + γ±
2

(v − vFP) (6.20)

passing through the fixed point (rFP, vFP). The slope of these lines, Eq. (6.20), deter-
mines the way radial null geodesics approach the fixed point. This description allows
to locally characterize the singularity and determine its strength.

The central singularity is locally naked if there exists at least one light-like
geodesic starting from the hypersurface r = 0 with a well defined tangent vector
v, and reaching the future null infinity. In terms of the above description, this con-
dition is realized when the fixed point FP is a repulsive node (Tr J > 0, det J > 0,
and (Tr J )2 − 4 det J > 0). In the latter case the slope XFP of the tangent vector v

XFP ≡ lim
(r,v)→FP

v(r)
r (6.21)

is determined by the non-marginal eigendirection (6.20) tangent to light-like
geodesics at the singularity. Denoting by γ̄ the eigenvalue (6.18) associated to this
eigendirection, one easily finds XFP = 2/γ̄. Moreover, following [25], the parameter

S = X2
FP
2 (∂vM)FP (6.22)

is a measure of the singularity strength. A strong curvature singularity is thereby
identified by the condition S > 0. On the contrary, if S ≤ 0, the singularity is grav-
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itationally weak (or integrable). When applying this analysis to the classical VKP
model, onefinds that the central singularity, represented by the fixed point (0, 0) in the
(r, v)–plane, is always strong [25].Moreover the classical critical valueλc = 1/16G0

already emerges at the level of the linearized system: when λ > 1/16G0 the fixed
point is a spiral node, otherwise it is a pure repulsive node and corresponds to a
locally naked singularity [27]. As we shall see, in the RG-improved case the critical
value can only be found through the analysis of full geodesic equation.

6.3 RG-improved VKP Spacetimes

In this sectionwe employ aRG improvement procedure to study theQuantumGravity
effects in the gravitational collapse of a massive star. Following [10], we start from
the classical VKP solution (6.2) and perform the RG improvement by replacing G0

with the runningNewton’s couplingGk , Eq. (5.14). The RG-improved lapse function
thus reads

fI(r, v) = 1 − 2m(v)

r

G0

1 + ω G0 k2
. (6.23)

In contrast to the method employed in Chap. 5, here the RG improvement is applied
to a particular solution of the classical field equations. In this way the inclusion
of quantum corrections directly modifies the spacetime geometry. Therefore, this
strategy is appropriate for studying quantum-corrected black holes solutions [10, 11,
30–32].

A consistent description of the RG-improved gravitational collapse requires to
find a relation between the renormalization group scale k and the actual collapse
dynamics. Since the formation of realistic black holes is caused by the gravitational
collapse of both matter and radiation, one can argue that the energy density of the
collapsing fluid may serve as a physical infrared cutoff. Therefore, for actual calcu-
lations, we shall use the following scale-setting

k ≡ ξ 4
√

ρ (6.24)

where ξ is an arbitrary positive constant and the specific functional form k(ρ) is
dictated by simple dimensional arguments. Moreover, this is the only possible choice
compatible with a conformally invariant theory at the NGFP, as gravity is supposed
to be. The introduction of a generic functional form k(ρ) would imply the presence
of other mass scales not allowed at the NGFP.

In order to derive a quantum-corrected VKP spacetime, we shall first RG-improve
the classical Vaidya solution with the cutoff identification (6.24) and ρ given by the
energy density of the classical (bare) inflowing radiation, Eq. (6.4). Subsequently,
we will compute the quantum-corrected stress-energy tensor arising from the RG-
improved VKP metric. The infrared cutoff k is thus given by
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k(r, v) ≡ ξ
4

√

ṁ(v)

4πr2
. (6.25)

Therefore, the quantum-corrected lapse function reads

fI(r, v) = 1 − 2m(v)G0

r + α
√

λ
, α = ω ξ2 G0√

4π
(6.26)

where m(v) is the mass function introduced in Eq. (6.10). In contrast to the classical
case, the RG-improved lapse function fI(r, v) does not diverge at r = 0

lim
r→0

fI(r, v) = 1 −
√
16πλ

ω ξ2
v . (6.27)

The RG-improved VKP metric can be seen as a generalized Vaidya spacetime with
generalized mass function

MI (r, v) = G(r)m(v) = G0 r

r + α
√

λ
m(v) (6.28)

and corresponds to a non-trivial fluids mixture. In particular, when the collapse ends,
the RG-improved VKP model defined by Eq. (6.26) reduces to a quantum-corrected
Schwarzschild metric with lapse function

fS(r, v) = 1 − 2 m̄ G0

r + α
√

λ
. (6.29)

As expected, the continuity of the RG-improved mass function MI (r, v) along the
v = v̄ light-cone implies that the quantum-corrected spacetime does not converge to
“pure” Schwarzschild, but only approaches it asymptotically (for r → ∞).

Here it is important to notice that the event horizon (EH), separating the light
rays converging back to singularity to the ones diverging to future null infinity,
does not match the zeros of the lapse function, which instead define the so-called
apparent horizon (AH). In the classical case theAH is given by the equation rAH(v) =
2m(v)G0, while in the RG-improved Vaidya–Kuroda–Papapetrou model it reads

rAH(v) = 2m(v)G0 − α
√

λ = 2m(v)G0 − G0 ξ2

g∗

√

λ

4π
, (6.30)

with the condition rAH(v) ≥ 0. When the gravitational collapse ends, the
Schwarzschild solution must be recovered and therefore the apparent and event hori-
zons must converge to the RG-improved Schwarzschild radius rS = 2 m̄ G0 − α

√
λ.

The final mass m̄ of the black hole, the value of v̄, and the radiation rate λ are thus
related by the condition m̄ = λv̄. In contrast to the classical case, the amount of
advanced time v̄ necessary to form a Schwarzschild black hole of radius rS ≥ 0 has
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a minimum value

rS = 2λv̄ G0 − α
√

λ ≥ 0 ⇒ v̄ ≥ vmin(λ) ≡ ξ2

2 g∗

√

1

4πλ
(6.31)

where the minimum vmin is a function of the radiation rate λ.
At last we have to remark that although the metric is regular at r = 0, the hyper-

surface r = 0 is actually singular. In fact in the quantum-corrected VKP model,
assuming m(v) = λv, the Ricci scalar R and Kretschmann scalar Kr = RαβγδRαβγδ

read

R = 4α2m(v)ṁ(v)

r2
(

r + α
√
ṁ(v)

)3 � −G0

√
λ v

αr2
, (6.32a)

Kr =
16m(v)2

(

r4 + (

r + α
√
ṁ(v)

)2
r2 + (

r + α
√
ṁ(v)

)4
)

r4
(

r + α
√
ṁ(v)

)6 � 16G0

√
λ v

α2r4
,

(6.32b)

and diverge as r → 0. Nevertheless, it should be noticed that the r → 0 behavior is
less singular than the classical case, in which Kr ∼ 1/r6.

6.3.1 Gravitational Collapse in the RG-improved VKP
Spacetime

The causal structure of the RG-improved spacetime can be studied in the standard
way, namely by analyzing the solutions to the geodesic equation for outgoing radial
null rays. The RG-improved version of the geodesic equation reads

ṙ(v) = 1

2

(

1 − 2m(v)G0

r(v) + α
√

λ

)

. (6.33)

The running of the Newton’s coupling basically results in a shift of the radial coordi-
nate r(v) by α

√
λ. The general solution to Eq. (6.33) can be analytically determined

and is implicitly defined by

−
2ArcTan

[

v−4 ( r(v)+α
√

λ )

v
√−1+16λG0

]

√−1 + 16λG0
+ log

[

2λG0v
2 − (r(v) + α

√
λ) v + 2 (r(v) + α

√
λ)2

]

= C

(6.34)

where C is an integration constant.
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Fig. 6.2 Relative critical value 16G0λc as a function of ξ. As it is clear from the picture, λc
increases monotonically with ξ and in particular it reduces to the classical value when ξ = 0

In particular, in the case λ ≤ 1
16G0

the above general solution reduces to the
following implicit equation

|r(v) + α
√

λ − μ−v|μ−

|r(v) + α
√

λ − μ+v|μ+
= C̃ . (6.35)

This equation has two linear solutions

r±(v) = −α
√

λ + μ± v, (6.36)

where μ± are the parameters introduced in Eq. (6.14). In the case at hand the critical
value λc cannot be analytically determined. The result of the numerical evaluation
is summarized in Fig. 6.2, where the relative critical value 16G0λc is plotted against
the parameter ξ. This function monotonically increases with ξ and has an absolute
minimum in ξ = 0, where the classical critical value is recovered. Therefore, the
Quantum Gravity effects near the singularity causes an increase of the critical value
λc, thus favoring the occurrence of naked singularities. However, as it will be dis-
cussed in the next section, the effect of the running Newton’s constant vanishing in
the ultraviolet limit is to render the singularity at r = 0 much milder and integrable.

The global behavior of light-like geodesics depends on the radiation rate λ. The
phase diagram resulting from the numerical integration of Eq. (6.33) is shown in
Fig. 6.3 for λ ≤ λc. In the latter case the singularity is globally naked and, moreover,
the event horizon emerges from r = 0 well after the formation of the singularity, thus
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Fig. 6.3 Phase diagrams (r, v(r)) in the RG-improved VKPmodel, for 1
16G0

< λ ≤ λc (left panel)

and λc ≤ 1
16G0

(right panel). The blue line is the EH, the purple line is the AH, and the black curves
are particular solutions of the improved geodesic equation. For λ ≤ λc the singularity in r = 0 is
globally naked, as the EH forms just after the formation of the singularity. Since in the improved
case the linear solution r+(v) has no longer themeaning of a Cauchy horizon, the two cases depicted
in these pictures are physically equivalents

Fig. 6.4 Global structure of the spacetime for λ ≤ λc. The singularity is globally naked and it
extends in time, up to the formation of the event horizon for v > 0

allowing the singularity to be naked and persistent for a finite amount of advanced
time v.

As a final remark, we note that the hypersurface r = 0 is time-like for v < ṽ,
null for v = ṽ and space-like for v > ṽ, where ṽ = α

√
λ

2λG0
is defined by the limiting

condition ∂μr∂μr ≡ fI(r, v) = 0. It coincides with the value of the advanced time v

where the apparent horizon forms, rAH(ṽ) = 0 (see Fig. 6.4).
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6.3.2 Singularity Structure in the RG-improved VKP
Spacetime

We now apply the analysis described in Sect. 6.2 to study the singularity struc-
ture in the RG-improved VKP model. In this case the generalized mass function
is decomposed as M(r, v) = m(v)G(r), where the running Newton’s constant G(r)
is obtained from Eq. (5.14) by replacing k(r)with the infrared cutoff function (6.25),
and results in Eq. (6.28). Since the running Newton’s coupling vanishes for r → 0, it
follows that the fixed point condition M(0, v) = 0 holds at all values of the advanced
time v. The singularity thus extends along the entire hypersurface r = 0 and defines
a line of fixed points. In general a line of fixed points arises when the Jacobian deter-
minant is zero, det J = 0. In the case at hand the latter condition is satisfied due
to the anti-screening behavior of the running Newton’s constant in the high-energy
regime

det J ∝ (∂vM)FP ∝ lim
r→0

G(r) = 0 (6.37)

and implies that
S ∝ (∂vM)FP = 0 . (6.38)

We can conclude that Quantum Gravity fluctuations near the singularity turn the
strong curvature singularity of the classical Vaidya spacetime into a line of grav-
itationally weak singularities. Notably this result does not depend on the cutoff
identification (6.25). In fact, provided that k(r) → ∞ for r → 0, the Newton’s
coupling vanishes for r → 0 and, subsequently, the same holds for the strength
parameter (6.22).

The above analysis shows that the linearized geodesic equation of the quantum-
corrected VKPmodel gives rise to a line of integrable singularities. In order to under-
stand whether these singularities are naked or not, a detailed study of the dynamical
system (6.16) is needed. For a given fixed point situated at P ≡ (0, v0), Eq. (6.19)
reads

Tr J = 1 − 2M ′
FP = 1 − 2λv0 G0

α
√

λ
det J = 4 ṀFP = 0 . (6.39)

Accordingly, the eigenvalue γ− is always zero, while γ+ depends on the particular
fixed point (0, v0) in the singular line r = 0

γ+(v0) ≡ Tr J = 1 − 2λv0 G0

α
√

λ
. (6.40)

In dynamical systems language, these peculiar features entail that the fixed points
(0, v0) are improper nodes. The resulting line of improper nodes is thus characterized
by one marginal direction r = 0 and by a family of non-marginal characteristic lines
whose slope depends on the precise location of the fixed point
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Fig. 6.5 Characteristic lines controlling the behavior of the system near the singular line, Eq.
(6.41). The trajectories starting above (under) the AH (purple line) have negative (positive) slope.
The qualitative behavior of these characteristic directions does not depend on the radiation rate λ

v = v0 + 2 r

γ+(v0)
. (6.41)

For a given fixed point P , the line in Eq. (6.41) is tangent to the geodesic ending in
P . Depending on v0 the slope of such lines can be either positive or negative. The
value ṽ0 at which the slope inverts its sign is set by the condition

rAH(ṽ0) = 0 . (6.42)

Moreover, since γ+(v0) ≡ Tr J , a positive (negative) slope of (6.41) in P implies
that the fixed point is repulsive (attractive) along the corresponding non-marginal
characteristic direction. The family of characteristic lines in Eq. (6.41) is shown in
Fig. 6.5. It is worth noticing that these curves (black lines in the figure) cannot cross
each other and the presence of intersections is due to the linearization of the geodesic
equation around r = 0:moving away from the singularity the non-linear effects of the
original dynamical system deform the characteristic lines so that different solutions
never intersect each others. Note that in contrast to the classical case [25, 27], the
qualitative behavior of the trajectories and the existence of a line of improper nodes do
not depend on the precise value of the radiation rate λ. In particular no critical value
appears. Accordingly, the singularity of the RG-improved model is never locally
naked, independently of λ. On the other hand the analysis in Sect. 6.3 shows that
there exists a critical value λc below which the singularity is globally naked. The
apparent mismatch is due to the fact that the analytical solutions in Sect. 6.3 are
obtained by solving the full geodesic equation, while the study of the singularity
with the approach of [25] is performed by linearizing the system around r = 0. The
critical value of the radiation rate λc is restored once the full RG-improved geodesic
equation is considered, and must then be related to the classical collapse dynamics.
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Fig. 6.6 Solutions of the full RG-improved geodesic equation forλ > λc. Left panel: the non-linear
effects fold and join the characteristic lines (black lines), resulting in a set of characteristic curves
(blue lines) linking couple of fixed points. Right panel: the line of fixed points and the corresponding
characteristic curves can also be understood in terms of the “shifted classical solution”: they are
generated by the shifted spiral node characterizing the classical VKP model for λ > λc

When the non-linear effects are taken into account, the family of characteristic curves
in Eq. (6.41) becomes a continuum set of heteroclinic orbits between couple of fixed
points, as it is shown in the left panel of Fig. 6.6 for λ > λc.

As a final remark, the study of the full geodesic equation allows to interpret the
line of fixed points and the corresponding v0-dependent characteristic curves as result
of a spiral node located in the unphysical part of the diagram, r < 0. In fact, the RG-
improved geodesic equation can be obtained from the classical one by means of a
shift in the radial coordinate r(v) → r(v) + α

√
λ. Since the classical VKP model

has a singularity in (0, 0), which is a spiral node for λ > λc [27], the inclusion of
the leading quantum effects moves this node to the point (−α

√
λ, 0). This (shifted)

spiral node is the “source” which produces the line of fixed points r = 0 in the
RG-improved system, as it is clear from the right panel of Fig. 6.6.
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Chapter 7
Conclusions

The generalized notion of renormalizability, naturally arising from the Wilsonian
Renormalization Group, is related to the existence of ultraviolet fixed points of the
renormalization group flow. On this basis, gravity may result in a finite and predictive
quantum theory if its flow converges to a Non-Gaussian Fixed Point (NGFP) in the
ultraviolet limit. Such a non-trivial fixed point would guarantee the renormalizability
of gravity and define its ultraviolet completion. The resulting Asymptotic Safety sce-
nario for Quantum Gravity may provide a consistent description of the gravitational
interaction from trans-Planckian to cosmological scales.

In this Ph.D. thesis we investigated two important aspects of Asymptotically Safe
gravity. Firstly, we discussed the formulation of a Functional Renormalization Group
Equation (FRGE) in the Arnowitt-Deser-Misner (ADM) formalism and we analyzed
the gravitational renormalization group flow in the presence of an arbitrary number
of matter fields. Secondly we studied the consequences of Asymptotic Safety in
situations where quantum gravitational effects are expected to be important, namely
in the very early universe and at the end-point of a gravitational collapse.

The thesis is organized in three parts. In Part 1 the main idea underlying the
Wilsonian Renormalization Group is introduced. The definition of the Wilsonian
action and the subsequent derivation of the Wegner-Houghton equation allowed us
to introduce the generalized notion of renormalizability in a very intuitive and natural
manner. As we have seen, the renormalizability of quantum field theories is based
on the existence of fixed points which serve as ultraviolet attractors for the renor-
malization group flow and define the high-energy completion of the quantum theory.
Subsequently, we introduced the Effective Average Action (EAA), which is a basic
concept underlying modern Functional Renormalization Group (FRG) techniques,
and we discussed its application to the case of gauge theories. Finally, we focused
on the gravitational renormalization group flow projected onto the Einstein-Hilbert
subspace and derived the beta functions for the cosmological constant and Newton’s
coupling within the metric approach to Asymptotic Safety. The resulting renormal-
ization group flow in four spacetime dimensions has a single UV-attractive NGFP
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coming with a complex pair of critical exponents. Although we only reviewed the
simple case of the Einstein-Hilbert truncation, more elaborate truncations confirm
this picture [1–29].

In Part 2 we employed the ADM-formalism to derive the gravitational renormal-
ization group flow in the presence of a foliation structure. In contrast to previous
studies [30, 31], our construction does not require the time direction to be compact
and also removes spurious singularities in the beta functions. The analytic con-
tinuation can be implemented by Wick-rotating all time-like quantities according to
Eq. (4.10), provided that the background geometry possesses a time-like Killing vec-
tor. In our discussionwe restricted our attention to anADM-decomposed (Euclidean)
Einstein-Hilbert action, supplemented by an arbitrary number of minimally coupled
scalar, vector and Dirac fields. The renormalization group flow is then evaluated
on a cosmological (S1 × T d ) Friedmann-Robertson-Walker background, so that the
flow equations for the cosmological constant and Newton’s coupling are encoded in
the volume factor and extrinsic curvature terms constructed from the background.
It is important to stress that the main features of the renormalization group flow on
foliated spacetimes do not depend on the topology of the background geometry [32].
For instance, in the case of a (S1 × Sd) background the Newton’s coupling is given
by the coefficient multiplying the intrinsic curvature term. Nevertheless, the result-
ing fixed point structure and the main features of the flow diagram [32] match our
findings. On the other hand, our construction is based on a cosmological background
and, therefore, is perfectly suitable for the computation of correlation functions and
power spectra arising in a cosmological context. In particular this formalism can
be used to study the primordial gravitational wave spectrum, a problem we hope to
address in a future work.

One of the peculiar features of our computation lies in a novel gauge-fixing
scheme, which provides relativistic dispersion relations for all component fields
involved in the calculation: all fields propagate with the same speed of light when
the dispersion relations are evaluated on a Minkowski background. This condition
fixes the gauge uniquely. In Sect. 4.2 we derived the beta functions encoding the
running of the Newton’s and cosmological couplings for a general D = (d + 1)-
dimensional spacetime manifold and for an arbitrary number of matter fields,
Eq. (4.49). In the case of pure gravity, the renormalization group equations give
rise, in D = 4 spacetime dimensions, to a unique UV-attractive NGFP coming with
a complex pair of critical exponents. This is the same behavior as the one observed in
the metric formulation of Quantum Einstein Gravity (QEG) [1–29] and earlier work
on the ADM-formalism [30, 31]. Flowing away from the NGFP, the renormaliza-
tion group flow is dominated by the interplay of the NGFP, controlling the behavior
of gravity for ultra-high energies, and the Gaussian Fixed Point (GFP), governing
the long-distance regime. The corresponding phase diagram is depicted in Fig. 4.2.
The latter matches the main features of the renormalization group flow encountered
in the metric approach to Asymptotic Safety [4]. In particular, the renormalization
group trajectories can be classified according to the infrared sign of the cosmological
constant.
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In Sect. 4.3.2 we discussed the fixed point structure arising in foliated gravity-
matter systems. The latter is characterized by a rich family of fixed points and,
depending on the number of scalars, vectors and fermions, the renormalization group
flow can exhibit up to three fixed points. In particular, at the level of the beta functions
(4.49), the effect of the matter fields can be encoded in two “deformation parame-
ters” (dg, dλ) which depend on the number of matter fields in each sector. The fixed
points for a specific gravity-matter model can then be determined by evaluating the
map relating its field content to the deformation parameters. The most important
finding in this regard is that the most commonly studied matter models, including
the Standard Model (SM) of particle physics and its modifications, are located in
areas of the (dg, dλ)–diagram which give rise to a unique UV-attractive fixed point
with λ∗ < 0, and positive and real critical exponents. These results are summarized
in Table 4.4. A prototype of renormalization group flow arising from the latter fam-
ily of gravity-matter models is shown in Fig. 4.5. In these cases the main features
familiar from Asymptotically Safe gravity remain intact. The characteristic spiraling
behavior of the renormalization group flow is lost, though, and the NGFP sits into
the left part of the diagram, λ∗ < 0. These findings complement earlier studies based
on the metric formalism [33, 34] and provide a first indication that the asymptotic
safety mechanism encountered in the case of pure gravity may carry over to the
case of foliated gravity-matter systems with a realistic matter content. On the other
hand, a comparison of Table 4.4 with the results obtained in [33] within the met-
ric approach to Asymptotic Safety shows that these approaches give rise to slightly
different results. For instance, according to [33], only the SM and its minor modifi-
cations are compatible with Asymptotic Safety, while the Minimal Supersymmetric
Standard Model (MSSM) and Grand Unified Theories (GUTs) are excluded. While
this discrepancy can be attributed to a different choice of the regulator, it is very likely
that the coupling of gravity to matter fields may emphasize a substantial difference
between the metric and foliated approaches to Asymptotic Safety. In fact, in the light
of recent studies related to gravity in D = 2 dimensions [35], it is conceivable that
the FRGE based on the metric formalism and the ADM-formalism actually access
different universality classes for gravity and gravity-matter systems.

The final part of Chap. 4 studies the fixed point structure emerging from the
renormalization group flow of gravity as a function of the spacetime dimension. The
GFP is always present and its stability coefficients are given by the canonical scaling
dimensions associated with the cosmological constant and Newton’s coupling. In
addition, we found two families of NGFPs whose most important properties are
summarized in Fig. 4.7. In particular, for 2.37 ≤ D ≤ 3.25 the renormalization group
flow is characterized by a family of non-trivial saddle points and by a family of UV-
attractive fixed points comingwith real and positive critical exponents. For D > 3.40
the latter critical exponents become complex and give rise to the standard NGFP
underlying the Asymptotic Safety of pure Quantum Gravity. Notably, these findings
are in good agreement with the ones obtained within lattice Quantum Gravity [36]
and through the discretized Wheeler-de Witt equation [37, 38]. Moreover, in D = 4
spacetime dimensions, the critical exponents are very similar to those obtained from
foliated spacetimes using theMatsubara formalism [30]. The most interesting aspect



124 7 Conclusions

emerging from this analysis is that the existence of a second non-trivial fixed point
could render the behavior of gravity well defined for all energy scales, resolving the
IR singularity usually encountered when only one NGFP is present. The interplay
of these fixed points leads to a new long-distance modification of gravity in which
both the Newton’s coupling and the cosmological constant are dynamically driven to
zero. This new phase is depicted in Fig. 4.9, while the phase diagram corresponding
to this case is plotted in the left panel of Fig. 4.8. Building up on these observations,
[32] showed that the same mechanism may also be realized in D = 4 dimensions. In
this case, the transition between the classical phase and the new long-distance phase
of gravity may be visible on cosmic scales.

In Part 3 we studied some applications of Asymptotically Safe Gravity in astro-
physics and cosmology.Over the years several investigations in the context ofAsymp-
totic Safety have shown how renormalization group improved cosmology can natu-
rally describe the cosmological evolution of the universe from the initial singularity
to the late time regime described byGeneral Relativity. Away to incorporate the scale
dependence of the gravitational couplings into the description of dynamical gravita-
tional phenomena is the renormalization group improvement procedure. Using this
method, we discussed a family of inflationary models emerging from the Quantum
Gravity modifications due to the scaling of couplings around the NGFP (Chap. 5). In
particular, we extended the analysis of [39] by taking into account the additional rel-
evant direction associated to the R2 operator. Assuming the critical exponents to be
real numbers, we approximated the renormalization group flow in a way that allows
an analytical study of the inflationary dynamics within the slow-roll approxima-
tion. We then restricted ourselves to the class of potentials providing a well definite
exit from inflation, followed by the standard phase of parametric oscillations of
the inflaton field. The resulting family of RG-improved inflationary potentials gives
rise to values for the spectral index and tensor-to-scalar ratio in agreement with the
recent Planck data on the power spectrum of CosmicMicrowave Background (CMB)
anisotropies [40]. In particular, although ourmodel is only a smallmodification of the
well known Starobinsky model [41], it predicts values for the tensor-to-scalar ratio
that are significantly higher. This feature makes the quantum-corrected Starobinsky
model significantly different from the original one.

While theRG-improved Starobinskymodel shows a very good agreementwith the
Planck data, the inclusion of matter fields may be important to correctly describe the
physics of the very early universe. In particular, aswe have seen inChap. 4, the critical
exponents underlying the behavior of gravity in the proximity of the NGFP strongly
depend on the matter content of the theory, and their precise values are important for
the description of the primordial evolution of the universe. When matter fields are
taken into account within the Einstein-Hilbert truncation, the strategy employed to
study theRG-improved cosmic inflation, combinedwith the Planck data on the power
spectrumamplitude and our findings ofChap. 4 actually furnish important constraints
on the primordial matter content of the universe. According to this analysis, the
property of the power spectrum to be nearly scale-invariant indirectly constrains the
second largest critical exponent to θ2 ≤ 4. Moreover, the Planck data on the power
spectrum amplitude suggest that the ultraviolet value of the cosmological constant
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should be negative. Notably, when including the Quantum Gravity corrections into
the beta functions of the StandardModel couplings, a negative value of λ∗ is required
to define the ultraviolet completion for the Higgs-Yukawa couplings [42]. According
to Table 4.4, typicalmodels compatiblewith such constraints are the StandardModel,
its minor modifications including a small number of extra fields, and the MSSM. On
the contrary, GUT-type theories are disfavored by the analysis.

Finally, in Chap. 6, we studied the problem of the black hole formation by link-
ing the dynamics of the gravitational collapse with the RG evolution of the New-
ton’s coupling as predicted by Asymptotic Safety. Under the assumption of spherical
symmetry, the gravitational collapse of a massive star can be modeled by means of a
generalizedVaidya spacetime. Starting from the classicalVaidya-Kuroda-Papapetrou
model,weused theRG improvement procedure to obtain the correspondingquantum-
corrected spacetime. In particular, the inclusion of the leading Quantum Gravity
effects resulted in an effective mass function, whose analytical form is completely
determined by the running Newton’s coupling. In order to study the outcome of the
collapse, we analyzed the global solutions of the RG-improved geodesic equation for
outgoing null rays. This analysis showed that the inclusion of the leading quantum-
effects in the Vaidya-Kuroda-Papapetroumodel is not enough to eliminate the central
singularity. Moreover, the RG-improved model favors the formation of naked sin-
gularities. On the other hand, the anti-screening behavior of the Newton’s coupling
modifies the structure of the central singularity so that the classical strong singular-
ity is turned into a line of integrable, gravitationally weak singularities. Therefore,
in contrast to the classical case, the quantum-corrected Vaidya-Kuroda-Papapetrou
spacetime can be continuously extended across the singularity. Possible general-
izations of this model should clearly include the angular momentum. Moreover, it
would be interesting to investigate possible astrophysical consequences of this class
of models, in particular the possibility that Quantum Gravity effects may be detected
from the signals emitted by integrable naked singularities. In fact, naked singularities
are possible candidate to be considered real astrophysical objects [43]. Whether or
not they are realized in nature depends on the initial conditions and dynamics of the
collapse. The most interesting feature of this possibility is that, since every signal
generated near a naked singularity can reach the future null infinity, these objects
could provide a very interesting laboratory to study high-energy physics, potentially
shedding light on extensions of the SM and Quantum Gravity.

An important limitation of our analyses lies in the simple truncation schemes
and tensorial structures we employed throughout this work. The inclusion of other
relevant operators could change the features of the renormalization group flow and,
subsequently, may slightly modify the dynamics in the RG-improved models we
considered. Most importantly, the RG improvement procedure allows to include the
leading quantum corrections only, and should be seen as a first step towards the
understanding of the high-energy modifications of gravitational phenomena. Nev-
ertheless, we have seen that Quantum Gravity corrections play a crucial role in the
description of the early universe cosmology, as well as in black holes physics. The
Quantum Gravity modifications induced by Asymptotic Safety can in fact lead to
interesting astrophysical consequences and cosmological scenarios. Moreover, the
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high-energy behavior of gravity is sensitive to the matter content of the universe and
it turns out that SM-type theories are favored by this scenario. The inclusion of mat-
ter fields is therefore of fundamental importance for studying Quantum Gravity and
its phenomenological implications. Although falsifying Quantum Gravity theories
through phenomenology is still far from nowadays reach, the study of quantum gravi-
tational effects and their implications can provide important constraints and open the
possibility of finding astrophysical signatures of Quantum Gravity and, eventually,
discriminate between different theories.
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Appendix A
FRG Equations on Foliated Spacetimes

In order to compute the right-hand-side of the Wetterich equation (4.14) on foliated
spacetimes, one needs to compute the second functional derivative �

(2)
k of the action

functional (4.21), complemented by appropriate gauge-fixing and ghost contribu-
tions. The resulting Hessian must be inverted and the corresponding operator traces
have to be evaluate by means of the heat-kernel techniques. This appendix provides
all technical details of this calculation.

A.1 Hessians in a FRW Background

The evaluation of the flow equation (4.14) requires the Hessian �
(2)
k . The details of

this calculation are summarized in this appendix.
In the sequel, indices are raised and lowered with the background metric σ̄i j .

Moreover, we introduce the shorthand notations

∫
x

≡
∫

dτ dd y
√

σ̄ (A.1)

and σ̂ ≡ σ̄ i j σ̂i j to lighten the notation and use� ≡ −σ̄ i j∂i∂ j to denote the Laplacian
on the spatial slices.

A.1.1 Hessians in the Gravitational Sector

When constructing �
(2)
k , it is convenient to consider (4.21) as a linear combination

of the interaction monomials (4.31). These monomials are then expanded in terms
of the fluctuation fields according to

N = N̄ + N̂ , Ni = N̄i + N̂i , σi j = σ̄i j + σ̂i j . (A.2)
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As an intermediate result, we note that the expansion of the extrinsic curvature (4.12)
around the FRW background is given by

δKi j = − N̂ K̄i j + 1
2 (∂τ σ̂i j − ∂i N̂ j − ∂ j N̂i ) ,

δ2Ki j = 2 N̂ 2 K̄i j − N̂
(
∂τ σ̂i j − ∂i N̂ j − ∂ j N̂i

)
+ N̂ k

(
∂i σ̂ jk + ∂ j σ̂ik − ∂k σ̂i j

)
,

(A.3)
were δn denotes the order of the expression in the fluctuation fields. For later refer-
ence, it is also useful to have the explicit form of these expressions contracted with
the inverse background metric

σ̄ i j
(
δKi j

) = − N̂ K̄ + 1
2 σ̄

i j (∂τ σ̂i j ) − ∂ i N̂i ,

σ̄ i j
(
δ2Ki j

) = 2 N̂ 2 K̄ − N̂ σ̄ i j
(
∂τ σ̂i j

) + 2N̂∂ i N̂i + N̂ k
(
2 ∂ i σ̂ik − ∂k σ̂

)
.

(A.4)

Expanding the interaction monomials (4.31), the terms quadratic in the fluctuation
fields are

δ2 I1 =
∫

x

[
2(δKi j )σ̄

ik σ̄ jl(δKkl) + 2
d K̄ σ̄ i j

(
δ2Ki j + (δKi j )(2N̂ + σ̂ )

)

− 8
d K̄ σ̂ i j (δKi j ) + 1

d K̄ 2
(

d−4
d N̂ σ̂ + d−8

4d σ̂ 2 − d−12
2d σ̂i j σ̂

i j
) ]

,

δ2 I2 =
∫

x

[
2(σ̄ i j δKi j )

2 + 2K̄ σ̄ i j
(
δ2Ki j + (δKi j )(2N̂ + σ̂ )

)
− 4K̄ σ̂ i j (δKi j )

+ K̄ 2
(

d−4
d N̂ σ̂ + d2−8d+8

4d2 σ̂ 2 − d−8
2d σ̂i j σ̂

i j
)

− 4
d K̄ σ̂ σ̄ i jδKi j

]
,

δ2 I3 =
∫

x

[(
2N̂ + σ̂

)(
∂i∂ j σ̂

i j + �σ̂
) − 1

2 σ̂i j�σ̂ i j − 1
2 σ̂�σ̂ + (

∂i σ̂
ik
)(

∂ j σ̂
j
k
)]

,

δ2 I4 =
∫

x

[
N̂ σ̂ + 1

4 σ̂
2 − 1

2 σ̂
i j σ̂i j

]
.

(A.5)
In order to arrive at the final form of these expressions, we integrated by parts and
made manifest use of the geometric properties of the background (4.24).

In order to develop a consistent gauge-fixing scheme and to simplify the structure
of the flow equation it is useful to carry out a further TT decomposition of the
fluctuation fields entering into (A.5). A very convenient choice is provided by the
standard decomposition of the fluctuation fields used in cosmic perturbation theory
where the shift vector and the metric on the spatial slice are rewritten according to
(4.34) and (4.35). On this basis the final step expresses the variations (A.5) in terms
of the component fields (4.34) and (4.35). The rather lengthy computation can be
simplified by using the identities

σ̂ = −(d − 1)ψ − E , ∂ i σ̂i j = −∂ j E − √
� v j , ∂ i∂ j σ̂i j = �E , (A.6)

together with the relations (4.37) and (A.6). Starting with the kinetic terms appearing
in δ2 I1 and δ2 I2,
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K1 ≡ 2
∫

x
(δKi j ) σ̄ ik σ̄ jl (δKkl) , K2 ≡ 2

∫
x
(σ̄ i j δKi j )

2 , (A.7)

the resulting expressions written in terms of component fields are

K1 =
∫

x

[
− 1

2 hi j
(
∂2τ + d−4

d K̄∂τ

)
hi j − d−1

2 ψ
(
∂τ + d−2

d K̄
) (

∂τ + 2
d K̄

)
ψ

− 1
2 E

(
∂τ + d−2

d K̄
) (

∂τ + 2
d K̄

)
E − vi

(
∂τ + d−3

d K̄
) (

∂τ + 1
d K̄

)
vi

− 2 B
√

�
(
∂τ + 2

d K̄
)

E − 2 ui
(
∂τ + 2

d K̄
)√

� vi + 2B�B

+ ui �ui − 4
d K̄ N̂

√
� B + 2

d K̄ N̂
(
∂τ + 2

d K̄
) (

(d − 1)ψ + E
)

+ 2
d K̄ 2 N̂2

]
,

(A.8)

and

K2 =
∫

x

[
− 1

2

(
(d − 1)ψ + E

) (
∂τ + d−2

d K̄
) (

∂τ + 2
d K̄

) (
(d − 1)ψ + E

)

− 2B
√

�
(
∂τ + 2

d K̄
) (

(d − 1)ψ + E
) + 2B�B

− 4K̄ N̂
√

� B + 2K̄ N̂
(
∂τ + 2

d K̄
) (

(d − 1)ψ + E
) + 2K̄ 2 N̂2

]
.

(A.9)

On this basis one finds that

δ2 I1 = K1 −
∫

x

[
+ (d−4)(d−8)

4d2 K̄ 2 N̂
(
(d − 1)ψ + E

)

+ 4
d K̄ hi j (∂τ + d−12

8d K̄
)
hi j

− 4
d K̄

(
uk

√
� vk + B

√
� E − vi (∂τ + d−8

4d K̄ ) vi
)

− 1
d K̄

(
(d − 1)ψ + E

)(
∂τ + 1

4 K̄
)(

(d − 1)ψ + E
)

+ 4
d K̄ E

(
∂τ + d+4

8d K̄
)

E + 4(d−1)
d K̄ ψ

(
∂τ + d+4

8d K̄
)
ψ

]

(A.10)

and

δ2 I2 = K2 −
∫

x

[
− d−4

d K̄ 2 N̂
(
(d − 1)ψ + E

) + 2 K̄ hi j (
∂τ + d−8

4d K̄
)

hi j

− K̄
(
(d − 1)ψ + E

)( d−2
d ∂τ + d2−8

4d2 K̄
)(

(d − 1)ψ + E
)

+ 2 K̄ E
(
∂τ + 1

4 K̄
)

E + 2(d − 1)K̄ ψ
(
∂τ + 1

4 K̄
)
ψ

+ 2K̄vi (
∂τ + d−6

2d K̄
)
vi − 4

d K̄ ((d − 1)ψ + E)
√

�B
]
.

(A.11)

Finally, δ2 I3 and δ2 I4 written in terms of the component fields are

δ2 I3 =
∫

x

[
(d−1)(d−2)

2 ψ�ψ − 1
2 hi j �hi j − 2 (d − 1) N̂�ψ

]
,

δ2 I4 =
∫

x

[
(d−1)(d−3)

4 ψ2 + (d−1)
2 ψ E − 1

4 E2 − N̂
(
(d − 1)ψ + E

) − 1
2 hi j hi j − vi v

i
]
.

(A.12)
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Combining these variations according to (4.21) one arrives the matrix entries for
δ2�

grav
k . In the flat space limit, where K̄ = 0, these entries are listed in the second

column of Table 4.2.

A.1.2 Gauge-Fixing Terms

Following the strategy of the previous subsection it is useful to also decompose the
gauge-fixing terms (4.38) into two interaction monomials

δ2 I5 ≡
∫

x
F2 ,

δ2 I6 ≡
∫

x
Fi σ̄ i j Fj .

(A.13)

Since the functionals F and Fi defined in Eq. (4.39) are linear in the fluctuation
fields, the gauge-fixing terms are quadratic in the fluctuations by construction. This
feature is highlighted by adding the δ2 to the definition of the monomials.

Substituting the explicit form of F and Fi and recasting the resulting expressions
in terms of the component fields (4.34) and (4.35) one finds

δ2 I5 =
∫

x

[
c22 B�B − N̂

(
c1∂τ + (c1 − c9)K̄

) (
c1∂τ + c9 K̄

)
N̂

− (
(d − 1)ψ + E

) (
c3∂τ + (c3 − c8)K̄

) (
c3∂τ + c8 K̄

) (
(d − 1)ψ + E

)
− 2 c2 B

√
�

(
c1 ∂τ + c9 K̄

)
N̂

+ 2N̂
(
c1∂τ + (c1 − c9)K̄

) (
c3∂τ + c8 K̄

) (
(d − 1)ψ + E

)
+ 2 c2 B

√
�

(
c3∂τ + c8 K̄

) (
(d − 1)ψ + E

)]
(A.14)

and

δ2 I6 =
∫

x

[
c25 N̂�N̂ − ui

(
c4 ∂τ + ( d−2

d c4 − c10) K̄
)(

c4∂τ + c10 K̄
)

ui

− B
(
c4 ∂τ + ( d−1

d c4 − c10) K̄
)(

c4∂τ + ( 1d c4 + c10) K̄
)

B

+ 2 c5 N̂
(
c4∂τ + ( 2d c4 + c10) K̄

)√
�B

− 2 c6
(
(d − 1)ψ + E

)(
c4∂τ + ( 2d c4 + c10)K̄

)√
�B

− 2 c7 E
(
c4∂τ + ( 2d c4 + c10)K̄

)√
�B

− 2 c7 vi
√

�(c4∂τ + c10 K̄ ) ui − 2c5c6 N̂�
(
(d − 1)ψ + E

)
− 2 c5 c7 N̂�E + c26

(
(d − 1)ψ + E

)
�

(
(d − 1)ψ + E

)
+ 2c6c7

(
(d − 1)ψ + E

)
�E + c27

(
E�E + vi�vi

)]
.

(A.15)
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Here again wemade use of the geometric properties of the background and integrated
by parts in order to obtain a similar structure as in the gravitational sector.

Combining the results (A.10), (A.11), (A.12), (A.14), and (A.15), taking into
account the relative signs between the terms and restoring the coupling constants
according to (4.33) gives the part of the gauge-fixed gravitational action quadratic in
the fluctuation fields. The explicit result is rather lengthy and given by

32πGk

(
1
2δ

2�
grav
k + �

gf
k

)
=∫

x

{
− N̂

[
(c1∂τ + (c1 − c9)K̄ )(c1∂τ + c9 K̄ ) − c25 � + 2(d−1)

d K̄ 2
]

N̂

− B
[
(c4∂τ + ( d−1

d c4 − c10)K̄ )(c4∂τ + ( 1d c4 + c10)K̄ ) − c22 �
]

B

− 2 B
√

�
[
(c1c2 + c4c5)∂τ + (c2c9 + c4c5

d−2
d − c5c10 − 2(d−1)

d )K̄
]

N̂

+ 2 N̂
[
(c1∂τ + (c1 − c9)K̄ )(c3∂τ + c8 K̄ ) − d−1

d K̄∂τ − c5(c6 + c7)�

− 5d2−12d+16
8d2 K̄ 2 − 
k

]
E

+ 2(d − 1) N̂
[
(c1∂τ + (c1 − c9)K̄ )(c3∂τ + c8 K̄ ) − d−1

d K̄∂τ

+ (1 − c5c6)� − 5d2−12d+16
8d2 K̄ 2 − 
k

]
ψ

+ 2 B
√

�
[(

c2c3 + c4(c6 + c7)
)
∂τ + (

c2c8 + (c6 + c7)(
d−2

d c4 − c10)
)
K̄

]
E

+ 2(d − 1)B
√

�
[(
1 + c2c3 + c4c6

)
∂τ + (

c2c8 + d−2
d c4c6 − c6c10

)
K̄

]
ψ

− (d − 1) ψ
[
(d − 1)

(
(c3∂τ + (c3 − c8)K̄ )(c3∂τ + c8 K̄ ) − c26�

)

+ d−2
2 (−∂2

τ + � − 2
d

˙̄K ) + d2−10d+14
2d K̄∂τ + d2−8d+11

4d K̄ 2 − d−3
2 
k

]
ψ

+ E
[
(c6 + c7)

2� − (c3∂τ + (c3 − c8)K̄ )(c3∂τ + c8 K̄ )

− 1
2
k + d−1

d K̄∂τ + d−1
4d K̄ 2

]
E

+ (d − 1) ψ
[
2c6(c6 + c7)� − 2(c3∂τ + (c3 − c8)K̄ )(c3∂τ + c8 K̄ )

+ ∂2
τ + K̄∂τ + d−1

d
˙̄K + d−1

2d K̄ 2 + 
k

]
E

− ui
[(

c4∂τ + ( d−2
d c4 − c10)K̄

)(
c4∂τ + c10 K̄

) − �
]

ui

+ vi
[
−∂2

τ + d−2
d K̄∂τ − 1

d
˙̄K + d2−8d+11

d2 K̄ 2 + c27 � − 2
k

]
vi

− 2 ui
[(
1 − c4c7

)
∂τ + c7

(
c10 − d−2

d c4
)
K̄

] √
� vi

+ 1
2 hi j

[
−∂2

τ + 3d−4
d K̄∂τ + d2−9d+12

d2 K̄ 2 + � − 2
k

]
hi j

}
.

(A.16)
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Based on this general result, one may then search for a particular gauge fixing
which, firstly, eliminates all terms containing

√
� and, secondly, ensures that all

component fields obey a relativistic dispersion relation in the limit when K̄ = 0.
A careful inspection of Eq. (A.16) shows that there is an essentially unique gauge
choice which satisfies both conditions. The resulting values for the coefficients ci

are given in Eq. (4.40). Specifying the general result to these values finally results in
the gauge-fixed Hessian appearing in the gravitational sector (4.44). Taking the limit
K̄ = 0, the propagators resulting from this gauge-fixing are displayed in the third
column of Table 4.2. In this way it is straightforward to verify that the gauge choice
indeed satisfies the condition of a relativistic dispersion relation for all component
fields.

The gauge-fixing is naturally accompanied by a ghost action exponentiating the
resulting Faddeev-Popov determinant. For the gauge-fixing conditions F and Fi the
ghost action comprises a scalar ghost {c̄, c} and a (spatial) vector ghost {b̄i , bi }. Their
action can be constructed in a standard way by evaluating

�
scalar ghost
k =

∫
x

c̄
δF

δχ̂ i
δc,bi χ

i , �
vector ghost
k =

∫
x

b̄ j δFj

δχ̂ i
δc,bi χ

i . (A.17)

Here δF
δχ̂ i denotes the variation of the gauge-fixing condition with respect to the

fluctuation fields χ̂ =
{

N̂ , N̂i , σ̂i j

}
at fixed background and the expressions δc,bi χ

i

are given by the variations (4.8) with the parameters f and ζi replaced by the scalar
ghost c and vector ghost bi , respectively. Taking into account terms quadratic in the
fluctuation fields only, the resulting ghost action is given in Eq. (4.45). Together
with the Hessian in the gravitational sector, Eq. (4.44), this result completes the
construction of the Hessians entering the right-hand-side of the flow Eq. (4.14).

A.2 Evaluation of the Operator Traces

In Sect. 4.2 the operator traces have been written in terms of the standard D =
(d + 1)-dimensional Laplacian �s ≡ −ḡμν Dμ Dν where s = 0, 1, 2 indicates that
the Laplacian is acting on fieldswith zero, one or two spatial indices. In this appendix,
we use the heat-kernel techniques introduced in Sect. 3.2.3 to construct the resulting
contributions to the flow.

A.2.1 Cutoff Scheme and Master Traces

The final step in the construction of the right-hand-side of the flow equation is the
specification of the regulator Rk . In particular we will resort to regulators of Type I,
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which are implicitly defined through the relation that the regulator dresses up each
D-dimensional Laplacian by a scale-dependent mass term according to the rule

�s �→ Pk ≡ �s + Rk . (A.18)

The prescription (A.18) then fixes the matrix-valued regulator Rk uniquely. Fol-
lowing the strategy of Sect. 3.2.3, the resulting modified inverse propagator can be
decomposed as �̃

(2)
k = L̂k(P̃ + Ṽ). In the case at hand the interaction matrix Ṽ is

a function of the extrinsic background curvature K̄ , while P̃ has the form (3.47).
Accordingly, the matrix elements of �

(2)
k found in Sect. A.1 can be cast in the form

�
(2)
k

∣∣
i j = (32πGk)

−αi ci
[
�si + w + Ṽi j (K̄ )

]
, (A.19)

where αi and w are the same parameters appearing in Eqs. (3.46) and (3.47), while
the interaction operator Ṽ(K̄ ) has the following structure

Ṽ(K̄ ) = v̂1 K̄ 2 + v̂2
˙̄K + v̂3 K̄∂τ . (A.20)

Notably, ci and (v̂l)i j are d-dependent numerical coefficients whose values can be
read off from Eqs. (4.44) and (4.45). Applying the rule (A.18) then yields

Rk |i j = (32πGk)
−αi ci Rk . (A.21)

Subsequently, one has to construct the inverse of �̃(2)
k . Given the left-hand-side of the

flow Eq. (4.25) it thereby suffices to keep track of terms containing up to two time-

derivatives of the background quantities, i.e., K̄ 2 and ˙̄K . Hence, defining P = L̂kP̃
and V = L̂kṼ, the effective inverse propagator is conveniently written as

�̃
(2)
k ≡

(
�

(2)
k + Rk

)
≡ P + V , (A.22)

where the matrixP collects all terms containing �si and 
k and the potential-matrix
V collects the terms with at least one power of the extrinsic background curvature
K̄ . The inverse of the modified Hessian �̃

(2)
k can then be constructed as an expansion

inV. Retaining terms containing up to two powers of K̄ only

(P + V)−1 = P−1 − P−1 VP−1 + P−1 VP−1 VP−1 + O(K̄ 3) . (A.23)

At this stage it is instructive to look at a single block for which we assume that it is
spanned by a single field χ̂i having s indices. In a slight abuse of notation we denote
the kinetic and potential operators on this block by P and V. From the structure of
the Hessians one finds that the propagator for a single field has the form

P−1 = (32πGk)
αs c−1 (�s + Rk + w)−1 , (A.24)
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while the potential V is constructed from three different types of insertions

V1 = (32πGk)
−αs c K̄ 2 , V2 = (32πGk)

−αs c ˙̄K , V3 = (32πGk)
−αs c K̄∂τ .

(A.25)
The structure (A.23) can be used to write the right-hand-side of the flow equation
in terms of master traces, which are independent of the particular choice of cutoff
function. Notably, it is convenient to express the operator traces in terms of the
threshold functions defined in Eq. (3.48). In particular, for a cutoff of Litim type

Rk = (k2 − �s) θ(k2 − �s) (A.26)

to which we resort throughout this thesis, the integrals in the threshold functions can
be evaluated analytically and yield

�p
n (w) ≡ 1

�(n + 1)

1

(1 + w)p
, �̃p

n (w) ≡ 1

�(n + 2)

1

(1 + w)p
. (A.27)

The right-hand-side of the flow equation is then conveniently evaluated in terms of
the following master traces. For zero potential insertions one has

Tr
[P−1∂tRk

] = k D

(4π)D/2

∫
x

[
+ a0

(
2�1

D/2(w̃) − η αs �̃1
D/2(w̃)

)

+ a2
(
2�1

D/2−1(w̃) − η αs �̃1
D/2−1(w̃)

)
K̄ 2

k2

]
.

(A.28)

The case with one potential insertion gives

Tr
[P−1 V1 P−1 ∂tRk

] = + k D

(4π)D/2

∫
x

a0
(
2�2

D/2(w̃) − η αs �̃2
D/2(w̃)

)
K̄ 2

k2 ,

Tr
[P−1 V2 P−1 ∂tRk

] = − k D

(4π)D/2

∫
x

a0
(
2�2

D/2(w̃) − η αs �̃2
D/2(w̃)

)
K̄ 2

k2 ,

Tr
[P−1 V3 P−1 ∂tRk

] = 0 .

(A.29)
At the level of two insertions only the trace containing (V3)

2 contributes to the flow.
In this case, the application of off-diagonal heat-kernel techniques yields

Tr
[
(V3)

2 P−3 ∂tRk
] = − 1

2
k D

(4π)D/2

∫
x

a0
(
2�2

D/2+1(w̃) − η αs �̃2
D/2+1(w̃)

)
K̄ 2

k2 .

(A.30)
Here a0 and a2 are the spin-dependent heat-kernel coefficients introduced in
Sect. 4.2.2 and w̃ ≡ wk−2. Note that once a trace contains two derivatives of the
background curvature, all remaining derivativesmay be commuted freely, since com-
mutators give rise to terms which do not contribute to the flow of Gk and 
k .
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A.2.2 Trace Contributions in the Gravitational Sector

At this stage, we have all the ingredients for evaluating the operator traces appearing
on the right-hand-side of the FRGE, keeping all terms contributing to the truncation
(4.47). In order to cast the resulting expressions into compact form, it is convenient
to combine the threshold functions (A.27) according to

q p
n (w) ≡ 2�p

n (w) − η �̃p
n (w) , (A.31)

and recall the definition of the dimensionless quantities (4.47). Moreover, all traces
include the proper factors of 1/2 and signs appearing on the right-hand-side of the
FRGE.

We first evaluate the traces arising from the blocks of (�(2) + Rk) which are one-
dimensional in field space. In the gravitational sector, this comprises the contributions
of the component fields hi j , ui , vi , and B. Applying the master formulas (A.28) and
(A.29) and adding the results, one has

Tr|hh = k D

2 (4π)D/2

∫
x

[
(d+1)(d−2)

2 q1
D/2(−2λ) + d4−2d3−d2+14d+36

12d2 q1
D/2−1(−2λ) K̄ 2

k2

− (d−2)2(d+1)2

2 d2 q2
D/2(−2λ) K̄ 2

k2

]
,

Tr|vv = k D

2 (4π)D/2

∫
x

[
(d − 1) q1

D/2(−2λ) + d3−2d2+d+6
6d2 q1

D/2−1(−2λ) K̄ 2

k2

− (d−1)(d2−5d+7)
d2 q2

D/2(−2λ) K̄ 2

k2

]
,

Tr|uu = k D

2 (4π)D/2

∫
x

[
(d − 1) q1

D/2(0) + d3−2d2+d+6
6d2 q1

D/2−1(0)
K̄ 2

k2

− (d−1)(d−2)
d q2

D/2(0)
K̄ 2

k2

]
,

Tr|B B = k D

2 (4π)D/2

∫
x

[
q1

D/2(0) + d−1
6d q1

D/2−1(0)
K̄ 2

k2 − (d−1)2

d2 q2
D/2(0)

K̄ 2

k2

]
.

(A.32)
The evaluation of the traces in the ghost sector follows along the same lines. In

this case one also has a contribution from the third master trace (A.30). The total
contributions of the scalar ghosts is then given by

− Tr|c̄c = − k D

(4π)D/2

∫
x

{
2�1

D/2 + K̄ 2

k2
[

d−1
3d �1

D/2−1 + 2�1
D/2 − 4

d2 �
1
D/2+1

] }
,

(A.33)
where all threshold functions are evaluated at zero argument. Recalling that the vector
ghost bi is not subject to a transverse constraint, the trace evaluates to

− Tr|b̄b = − k D

(4π)D/2

∫
x

{
2d �1

D/2 + K̄ 2

k2
[

d−1
3 �1

D/2−1 + 8
d �1

D/2 − 4
d �1

D/2+1

] }
.

(A.34)
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The last contribution of the flow is provided by the three scalar fields ξ = (N̂ , E, ψ).
Inspecting (4.44), one finds that the block (�(2) + Rk) appearing in this sector is given
by a (3 × 3)-matrix in field space with non-zero off-diagonal entries. Applying the
decomposition (A.22) the matrix P resulting from (4.44) is

P =(32πGk)
−1

⎡
⎢⎣

�0
1
2 (�0 − 2
) d−1

2 (�0 − 2
)

1
2 (�0 − 2
) 1

4 (�0 − 2
) − d−1
4 (�0 − 2
)

d−1
2 (�0 − 2
) − d−1

4 (�0 − 2
) − (d−1)(d−3)
4 (�0 − 2
)

⎤
⎥⎦ ,

(A.35)
while the matrixV is symmetric with entries

V11 = − 2(d−1)
d2

(
2K̄ 2 + d ˙̄K

)
, V12 = − 5d2−12d+16

8d2 K̄ 2

V22 = − d−1
4d

(
K̄ 2 + 2 ˙̄K

)
, V13 = − (d−1)(5d2−12d+16)

8d2 K̄ 2

V33 = (d−3)(d−1)2

4d

(
K̄ 2 + 2 ˙̄K

)
, V23 = (d−1)2

4d

(
K̄ 2 + 2 ˙̄K

)
.

(A.36)

Applying (A.18), the cutoff Rk in this sector is given by

Rk = (32πGk)
−1 Rk

⎡
⎣ 1 1

2
d−1
2

1
2

1
4 − d−1

4
d−1
2 − d−1

4 − (d−1)(d−3)
4

⎤
⎦ . (A.37)

The master traces (A.28) and (A.29) also hold in the case where P andV are matrix
valued. Constructing the inverse of P on field space explicitly and evaluating the
corresponding traces, the contribution of this block to the flow is found as

Tr|ξξ = k D

2(4π)D/2

∫
x

[
2 q1

D/2(−2λ) + q1
D/2

(− d
d−1λ

)

+ d−1
6d

(
2 q1

D/2−1(−2λ) + q1
D/2−1

(− d
d−1λ

))
K̄ 2

k2

−
(
2(d−1)

d q2
D/2 (−2λ) − 3d3+6d2−16d+16

4d2(d−1) q2
D/2

(− d
d−1λ

))
K̄ 2

k2

]
.

(A.38)
The traces (A.32), (A.33), (A.34), and (A.38) complete the evaluation of the flow
equation on a flat FRW background. Substituting these expressions into the FRGE
(4.14) and retaining the terms present in (4.25) then leads to the beta functions (4.49)
where the threshold functions are evaluated with a Litim type regulator (A.27).

A.2.3 Minimally Coupled Matter Fields

At the level of the Einstein-Hilbert truncation (4.21), including the contribution
of the matter sector (4.18) to the flow of Newton’s constant and the cosmological
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constant is rather straightforward.When expanding thematter fields around a vanish-
ing background value, theHessian�

(2)
k arising in thematter sector contains variations

with respect to the matter fields only and all Laplacians reduce to the background
Laplacians. The resulting contributions of the matter trace are then identical to the
ones obtained in the metric formulation [1–3]. The trace capturing the contributions
of the NS scalar fields φ yields

Tr|φφ = NS
k D

(4π)D/2

∫
x

{
�1

D/2(0) + d−1
6d �1

D/2−1(0)
K̄ 2

k2

}
. (A.39)

The gauge sector, comprising NV gauge fields Aμ and the corresponding Faddeev-
Popov ghosts {C̄μ, Cμ} contributes

Tr|AA = NV
k D

(4π)D/2

∫
x

{
(d + 1)�1

D/2(0) + (d−1)(d2+2d−11)
6d (d+1) �1

D/2−1(0)
K̄ 2

k2

}
,

(A.40)
and

− Tr|C̄C = NV
k D

(4π)D/2

∫
x

{
2�1

D/2(0) + d−1
3d �1

D/2−1(0)
K̄ 2

k2

}
. (A.41)

Adding Eqs. (A.40) and (A.41) gives the total contribution of the gauge fields to the
renormalization group flow

Tr|GF = NV
k D

(4π)D/2

∫
x

{
(d − 1)�1

D/2(0) + (d−1)(d2−13)
6d (d+1) �1

D/2−1(0)
K̄ 2

k2

}
. (A.42)

When evaluating the contribution of the fermionic degrees of freedom, we follow
the discussion [3], resulting in

Tr|ψψ = − ND 2(d+1)/2 k D

(4π)D/2

∫
x

{
�1

D/2(0) + d−1
d

[(
1
6 − r

4

)
�1

D/2−1(0) − 1−r
4 �2

D/2(0)
]

K̄ 2

k2

}
.

(A.43)
Here r is a numerical coefficient which depends on the precise implementation of the
regulating function: r = 0 for a Type I regulator while the Type II construction of [3]
corresponds to r = 1. In order to be consistent with the evaluation of the other traces
in the gravitational and matter sectors, we will resort to the Type I regulator scheme,
setting r = 0. Adding the results (A.39), (A.42), and (A.43) to the contribution from
the gravitational sector gives rise to the NS , NV , and ND-dependent terms in the beta
functions (4.49).
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