
Contributing Authors

Richard Witek
Alpha co-architect

and
Ellen M. Batbouta
Richard A. Brunner
Wayne M. Cardoza
Daniel W. Dobberpuhl
Robert A. Giggi
Henry N. Grieb
Richard B. Grove
Robert H. Halstead, Jr.
Michael S. Harvey
Nancy P. Kronenberg
Raymond J. Lanza
Stephen J. Morris
William B. Noyce
Charles G. Nylander
Mary H. Payne
Audrey R. Reith
Robert M. Supnik
Benjamin J. Thomas
Catharine Van Ingen

α

Alpha
Architecture
Reference
Manual

Edited by

Richard L. Sites
Alpha co-architect

EHHUDSD D I G I T A L P R E S S

Copyright © 1992 by Digital Equipment Corporation

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of the publisher.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

Order number EY-L520E-DP
ISBN 1-55558-098-X

Technical Writer: Charles Greenman
Production Editor: Kathe Rhoades
Technical Illustrator: Lynne Kenison
Cover Design: Marshall Henrichs

The following are trademarks of Digital Equipment Corporation:
DEC, the Digital logo, OpenVMS, PALcode, PDP-11, VAX, VMS,
and ULTRIX. Cray is a registered trademark of Cray Research, Inc.
IBM is a registered trademark of International Business Machines
Corporation. OSF/1 is a registered trademark of Open Software
Foundation, Inc. UNIX is a registered trademark of UNIX System
Laboratories, Inc.

Digital believes the information in this book is accurate as of its
publication date; such information is subject to change without
notice. Digital is not responsible for any inadvertent errors.

Foreword

In the foreword to the VAX Architecture Reference Manual, Sam Fuller , Digital 's Vice
Pres iden t for Research a n d Archi tecture , wrote, "Computer design continues to be
a dynamic field; I expect we will see more r a t h e r t h a n less change and innovation
in t he decades ahead." The Alpha Architecture Reference Manual demons t ra tes the
accuracy of t h a t prediction.

Alpha follows VAX by about fifteen years . Those fifteen years have witnessed a to r ren t
of change in computer technology, one t h a t shows no sign of abat ing:

• More t h a n a 1000-fold increase in t he performance of microprocessors

• More t h a n a 1000-fold increase in t h e densi ty of semiconductor memories

• More t h a n a 500-fold increase in t he densi ty of magnet ic s torage devices

• More t h a n a 100-fold increase in t h e speed of ne twork connections

Dur ing the same period, the in te rna l organizat ion of computer sys tems h a s changed
as well, based on developments such as RISC archi tecture , symmetr ic mult ipro-
cessing, and coherent d is t r ibuted systems. Moreover, t he fundamenta l paradigms
of computing have changed not once, bu t several t imes , wi th t h e introduction of
personal computers , graphics worksta t ions , local a rea networks , and client/server
computing.

These developments p resen t an enormous challenge for computing in t he 21st cen-
tury . F u t u r e computers will be called upon to solve problems of g rea t scale and
complexity, worldwide, in a dis t r ibuted manner . They will have to provide unprece-
dented performance, flexibility, reliability, and scalability in order to implement a
global infras t ructure of information, and to give users a n u n t r a m m e l e d window on
the world.

Alpha is Digital 's response to t he challenges of 21st-century computing. I t represents
t h e culminat ion of t h e company's knowledge and belief about how t h e next genera-
t ions of computers should be built . Alpha is based on a decade's exper imenta l and
engineering work in RISC archi tecture , high-speed implementa t ion, software com-
patibil i ty and migrat ion, and sys tem serviceability. I t provides t he foundation for
implementa t ions rang ing from mobile computing un i t s to massively paral lel super-
computers .

Alpha is designed to handle the largest computing problems of today a n d tomorrow.
When the Alpha archi tecture is compared to i ts predecessor, t he VAX archi tecture,
two differences s t and out immediately. Fi rs t , Alpha is a 64-bit archi tecture; VAX is
a 32-bit archi tecture . This m e a n s t h a t Alpha 's v i r tua l address extends to a 64-bit
l inear range of bytes in memory. Suppor t ing th is extended vi r tua l address space
a re a n extended m a x i m u m physical address range (up to 48 bits) and larger pages
(8KB to 64KB). Alpha's extended v i r tua l address r ange allows direct manipula t ion

vii

of the gigabytes and terabytes of da t a produced in electrical and mechanical design,
da tabase and t ransact ion processing, and imaging.

Second, Alpha is a RISC archi tecture; VAX is a CISC archi tecture . RISC s tands for
Reduced Instruct ion Set Computer , CISC for Complex Instruct ion Set Computer .
RISC archi tectures a re characterized by simple, fixed-length instruct ion formats;
a small number of address ing modes; large register files; a load-store instruct ion
set model; and direct ha rdware execution of instruct ions. CISC archi tectures are
characterized by variable-length instruct ion formats; a large number of address ing
modes; small-to-medium-sized register files; a full set of register-to-memory (or
even memory-to-memory) instruct ions; and microcoded execution of instruct ions.
Alpha's s t reamlined organization facilitates high-speed implementa t ion in a variety
of technologies, while providing s t rong compatibility wi th today's programs and da ta .

The following tabula t ion contras ts the archi tectural differences between VAX and
Alpha:

Architecture
Virtual address range
Physical address range
Page size
Instruction lengths
General registers
Addressing modes
Instruction set architecture
Directly supported data types

VAX

CISC
32 bits
Up to 32 bits
512 bytes
1-51 bytes
16 χ 32 bits
21
General
Integer, floating, bit
field, queue, character
string, decimal string

Alpha

RISC
Up to 64 bits
Up to 48 bits
8KB-64KB
4 bytes
64 χ 64 bits
3
Load-store
Integer, floating

This book is the culmination of an effort begun th ree years ago. In t h a t t ime, Alpha
h a s grown from a paper specification to a cohesive set of chips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of m a n y
hundreds of people in Engineering, Market ing , Sales, Service, and Manufactur ing.
This book is documentat ion of, and a t r ibute to, t he ou ts tanding work they have
done.

Bob Supnik
Corporate Consul tant ,
Vice Pres ident

Foreword viii

Preface

The Alpha archi tecture is a RISC archi tecture t h a t was designed for high per-
formance and longevity. Following Amdahl , Blaauw, and Brooks, 1 we dist inguish
between archi tecture and implementa t ion:

• Computer archi tecture is defined as t h e a t t r ibu tes of a computer seen by a machine-
language programmer . This definition includes t he ins t ruct ion set, instruct ion
formats, operat ion codes, address ing modes, and all regis ters and memory locations
t h a t m a y be directly manipu la ted by a machine- language programmer .

• Implementa t ion is defined as the actual h a r d w a r e s t ruc ture , logic design, and data-
p a t h organization.

This archi tecture book describes the required behavior of all Alpha implementa t ions ,
as seen by the machine- language programmer . The archi tecture does not speak to
implementa t ion considerations such h a s how fast a p rogram r u n s , w h a t specific
bit p a t t e r n is left in a h a r d w a r e regis ter after a n unpredictable operation, how
to schedule code for a par t icu lar chip, or how to wire up a given chip; those
considerations a re described in implementation-specific documents .

Various Alpha implementa t ions a re expected over t he coming years , s t a r t ing wi th
t he Digital 21064 chip.

Goals

When we s ta r ted the Alpha project in the fall of 1988, we h a d a small n u m b e r of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migrat ion from VAX (and soon-to-be MIPS) customer base

As principal architects , Rich Witek and I m a d e design decisions t h a t were driven
directly by these goals.

We assumed t h a t h igh performance was needed to m a k e a new archi tecture a t t ract ive
in the marketp lace , and to keep Digital competitive.

We set a 15 -25 year design horizon (longevity) and t r ied to avoid any design e lements
t h a t we thought would become l imitat ions dur ing th i s t ime. The design horizon
led directly to t he conclusion t h a t Alpha could not be a 32-bit archi tecture: 32-
bit addresses will be too small wi th in 10 years . We t h u s adopted a full 64-bit

1. Amdahl, G.M., G A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/SeO." IBM
Journal of Research and Development, vol. 8, no. 2 (April 1964): 87-101.

ix

archi tecture, wi th a minimal number of 32-bit operat ions for backward compatibility.
Wherever possible, 32-bit operands a re pu t in regis ters in a 64-bit canonical form
and operated upon wi th 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years . Over the pas t 25 years , computers have become
about 1000 t imes faster. This suggested to us t h a t Alpha implementa t ions would
need to do the same, or we would have to bet t h a t t he indus t ry would fall off t he
historical performance curve. We were unwill ing to bet agains t t he industry , and
were unwill ing to ignore the issue, so we seriously examined the consequences of
longevity.

We thought t h a t i t would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years , bu t not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of 100 over the pas t 25 years , bu t physical l imits are now
slowing down the r a t e of increase.)

We concluded t h a t the remain ing factor of 100 would have to come from other
design dimensions. If you cannot m a k e the clock faster, t he next dimension is to
do more work per clock cycle. So the Alpha archi tecture is focused on allowing
implementat ions t h a t issue m a n y instruct ions every clock cycle. We thought t h a t
it would be realistic for implementors to achieve about a factor of 10 over 25 years
by us ing mult iple instruct ion issue, bu t not a factor of 100. Even a factor of 10 will
require perhaps a decade of compiler research.

We concluded t h a t the remain ing factor of 10 would have to come from some other
design dimension. If you cannot m a k e the clock faster, and cannot do more work per
clock, the next dimension is to have mult iple clocked instruct ion s t reams , t h a t is,
mult iple processors. So the Alpha archi tecture is focused on allowing implementa-
tions t h a t apply mult iple processors to a single problem. We thought t h a t it would
be realistic for implementors to achieve the remain ing factor of 10 over 25 years by
us ing mult iple processors.

Overall , the factor-of-1000 increase in performance looked reasonable, bu t required
factor-of-10 increases in th ree different dimensions. These th ree dimensions therefore
formed pa r t of our design framework:

• Gracefully allow fast cycle-time implementa t ions

• Gracefully allow multiple-instruction-issue implementa t ions

• Gracefully allow multiple-processor implementa t ions

The cycle-time goal encouraged us to keep the instruct ion definitions very simple, and
to keep the interact ions between instruct ions very simple. The multiple-instruction-
issue goal encouraged us to el iminate specialized registers , architected delay slots,
precise ar i thmet ic t r aps , and byte wri tes (with the i r embedded read-modify-write
bottleneck). The multiple-processor goal encouraged us to consider the memory model
and atomic-update primit ives carefully. We adopted load-locked/store-conditional
sequences as the atomic-update primitive, and el iminated strict read-wri te ordering
between processors.

All of the above design decisions were driven directly by the performance and

χ Preface

longevity goals. The lack of byte wri tes , precise ar i thmet ic t r aps , and multiprocessor
read/wri te ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To r u n both OpenVMS and UNIX wi thout burden ing the h a r d w a r e implementa-
tions wi th elaborate (and sometimes conflicting) operat ing system underpinnings ,
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for in te r rup t delivery and r e tu rn , exceptions, context switching, memory
managemen t , and error hand l ing in a set of privileged software subrout ines called
PALcode (privileged archi tecture l ibrary code). PALcode subrout ines have controlled
ent r ies , r u n wi th in t e r rup t s t u r n e d off, and have access to real h a r d w a r e (implemen-
tat ion) registers . By having different sets of PALcode for different operat ing systems,
the archi tecture itself is not biased toward a specific operat ing system or computing
style.

PALcode allowed us to design an archi tecture t h a t could r u n OpenVMS gracefully
wi thout e laborate ha rdware and wi thout massively rewri t ing t he VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha archi tecture support some
complex VAX primit ives (such as t he interlocked queue instruct ions) t h a t a re heavily
used by OpenVMS, wi thout burden ing a UNIX implementa t ion in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of "compatibility mode" ha rdware , because they would have severely
compromised the performance and t ime-to-market of t he first implementat ion. After
some experimentat ion, we adopted the s t ra tegy of runn ing exist ing b inary code by
building software t rans la tors . One t r ans la to r converts OpenVMS VAX images to
functionally identical OpenVMS Alpha images. A second t r ans la to r converts MIPS
U L T R K images to functionally identical DEC OSF/1 Alpha images.

Fundamenta l ly , PALcode gave us a migrat ion pa th for exist ing operat ing systems,
and the t rans la to rs (and nat ive compilers) gave us a migrat ion pa th for existing
user-mode code. PALcode and the t r ans la to r s provided a clean sheet of design paper
for the bulk of the Alpha archi tecture . Othe r t h a n an ext ra set of VAX floating-point
formats (included for good business reasons , bu t subset table later) , no specific VAX
or MIPS features a re carried directly into t he Alpha archi tecture for compatibility
reasons.

These considerations substant ia l ly shaped the archi tecture described in the res t of
th is book.

Organization

The first p a r t of th is book describes t he instruct ion-set archi tecture , and is largely
self-contained for readers who a re involved wi th compilers or wi th assembly language
programming. The second and th i rd pa r t s describe the support ing PALcode rout ines
for each operat ing sys tem—the specific opera t ing system PALcode archi tecture.

Acknowledgments

My collaboration wi th Rich Witek over the pas t few years ha s been extremely
rewarding, both personally and professionally. By combining our backgrounds and
viewpoints, we have produced an archi tecture t h a t is substant ia l ly be t te r t h a n ei ther
of u s could have produced alone. T h a n k you, Rich.

Preface xi

A work of th is magni tude cannot be done on a shoestr ing or in isolation. Rich and
I were blessed wi th a rich environment of dozens and la ter hundreds of bright ,
thoughtful, and outspoken professional peers . I t h a n k the managemen t of Digital
Equipment Corporation for providing t h a t rich environment , and those peers for
mak ing the archi tecture so much more robust and well-considered.

Three people have especially influenced my views of computer archi tecture , th rough
personal interact ion and l a n d m a r k machine design: Fred Brooks, J o h n Cocke, and
Seymour Cray. This work is buil t directly upon thei rs , and could not exist without
them.

The organization, editing, and production of th is text in final form is largely the work
of Charl ie Greenman, whose clear wri t ing is much appreciated.

Richard L. Sites
May 1992

xii Preface

A Note on the Structure of This Book

The Alpha Architecture Reference Manual is divided into th ree pa r t s , th ree ap-
pendixes, and an index. Each pa r t describes a major portion of the Alpha archi tecture.
Each contains i ts own table of contents .

The following tabula t ion outl ines the book's contents:

Name Contents

Par t I Common Architecture

This part describes the instruction-set architecture tha t is common to
and required by all implementations.

Par t II OpenVMS Alpha Software

This part describes how the OpenVMS operating system relates to the
Alpha architecture.

Par t III DEC OSF/1 Alpha Software

This par t describes how the DEC OSF/1 operating system relates to the
Alpha architecture.

Appendixes The appendixes describe implementation considerations, IEEE floating-
point conformance, and instruction encodings.

Index Index entries are called out by the symbol (I), (II), or (III). Each symbol is
associated with the corresponding Part . Index entries for the appendixes
are called out by appendix name and page number.

xiii

Parti Common Architecture

Thi s p a r t descr ibes t h e common A l p h a a r c h i t e c t u r e
a n d c o n t a i n s t h e following c h a p t e r s :

1. I n t roduc t i on

2. Bas ic A r c h i t e c t u r e

3 . I n s t r u c t i o n F o r m a t s

4. I n s t r u c t i o n Descr ip t ions

5. S y s t e m A r c h i t e c t u r e a n d P r o g r a m m i n g
Impl i ca t ions

6. C o m m o n PALcode Arch i t e c tu r e

7. Console S u b s y s t e m Overv iew

8. I n p u t / O u t p u t

Chapter 1

Introduction (I)

Alpha is a 64-bit load/store RISC archi tecture t h a t is designed wi th par t icular
emphas is on t he th ree e lements t h a t most affect performance: clock speed, mult iple
instruct ion issue, and mult iple processors.

The Alpha architects examined and analyzed cur ren t and theoretical RISC
archi tecture design e lements and developed high-performance a l ternat ives for the
Alpha archi tecture. The architects adopted only those design e lements t h a t appeared
valuable for a projected 25-year design horizon. Thus , Alpha becomes the first 21st
century computer archi tecture .

The Alpha archi tecture is designed to avoid bias toward any par t icular operat ing
system or p rogramming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operat ing systems, and supports simple software migrat ion from
applications t h a t r u n on those operat ing systems.

This m a n u a l describes in detai l how Alpha is designed to be t he leadership 64-bit
archi tecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit archi tecture . All regis ters a re 64 bi ts in length and
all operat ions a re performed be tween 64-bit regis ters . I t is not a 32-bit archi tecture
t h a t was la ter expanded to 64 bits .

Alpha Is Designed for Very High-Speed Implementations

The instruct ions a re very simple. All inst ruct ions a re 32 bits in length. Memory
operat ions a re e i ther loads or stores. All da t a manipula t ion is done between
regis ters .

The Alpha archi tecture facilitates pipelining mult iple ins tances of t h e same
operat ions because the re a re no special regis ters and no condition codes.

The instruct ions in terac t wi th each other only by one instruct ion wri t ing a register
or memory and another instruct ion reading from the same place. Tha t makes it
par t icular ly easy to build implementa t ions t h a t issue mult iple instruct ions every
CPU cycle. (The first implementa t ion issues two instruct ions per cycle.)

Alpha makes it easy to ma in t a in b inary compatibility across mult iple
implementa t ions and easy to ma in t a in full speed on mult iple-issue implementat ions .
For example, the re a re no implementation-specific pipeline t iming hazards , no load-
delay slots, and no branch-delay slots.

Introduction (I) 1-1

Alpha's Approach to Byte Manipulation

The Alpha archi tecture does byte shifting and mask ing wi th normal 64-bit register-
to-register instruct ions, crafted to keep instruct ion sequences short .

Alpha does not include single-byte store instruct ions. This h a s several advantages :

• Cache and memory implementat ions need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementa t ion and t ends to slow down
cache access to normal 32-bit or 64-bit aligned quant i t ies .

• Alpha's approach to byte manipula t ion makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementat ion busy.

• Alpha's approach can m a k e it easier to pipeline mult iple byte operat ions.

Alpha's Approach to Arithmetic Traps

Alpha lets the software implementor determine t he precision of a r i thmet ic t raps .
With the Alpha archi tecture, ar i thmet ic t r aps (such as overflow and underflow)
are imprecise—they can be delivered an a rb i t ra ry n u m b e r of instruct ions after the
instruction t h a t tr iggered the t r ap . Also, t r aps from m a n y different instruct ions can
be reported a t once. Tha t makes implementa t ions t h a t use pipelining and mult iple
issue substant ia l ly easier to build.

However, if precise ar i thmet ic exceptions are desired, t r a p bar r ie r instruct ions can
be explicitly inser ted in the program to force t r aps to be delivered a t specific points.

Alpha's Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and
wri tes issued by one processor may be arbi t rar i ly reordered by an implementat ion.
This allows implementa t ions to use mul t ibank caches, bypassed wri te buffers, wri te
merging, pipelined wri tes with re t ry on error, and so forth. If s tr ict ordering
between two accesses m u s t be mainta ined , explicit memory bar r ie r instruct ions can
be inser ted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load jocked , modify,
store_conditional sequence. If t he sequence r u n s without in te r rupt , exception, or
an interfering wri te from another processor, t hen the conditional store succeeds.
Otherwise, t he store fails and the program eventual ly m u s t branch back and re t ry
the sequence. This style of interlocking scales well wi th very fast caches, and makes
Alpha an especially a t t ract ive archi tecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed

A number of Alpha instruct ions include h in t s for implementat ions , all a imed a t
achieving higher speed.

• Calculated j u m p instruct ions have a t a rge t h in t t h a t can allow much faster
subrout ine calls and re tu rns .

• There are prefetching h in t s for the memory system t h a t can allow much higher
cache h i t ra tes .

1-2 Common Architecture (I)

• There are granular i ty h in t s for t he vi r tual -address mapping t h a t can allow much
more effective use of t rans la t ion lookaside buffers for large contiguous s t ructures .

PALcode—Alpha's Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subrout ines t h a t are
specific to a par t icular Alpha operat ing system implementat ion. These subrout ines
provide operat ing-system primit ives for context switching, in te r rup t s , exceptions,
and memory management . PALcode is s imilar to t he BIOS l ibraries t h a t are
provided in personal computers .

PALcode subrout ines a re invoked by implementa t ion ha rdware or by software
CALL_PAL instruct ions.

PALcode is wr i t t en in s t anda rd machine code wi th some implementation-specific
extensions to provide access to low-level ha rdware .

One version of PALcode lets Alpha implementa t ions r u n the full OpenVMS operat ing
system by mirror ing m a n y of t he OpenVMS VAX features. The OpenVMS PALcode
instruct ions let Alpha r u n OpenVMS with little more ha rdware t h a n t h a t found on
a conventional RISC machine: the PAL mode bit itself, plus 4 ext ra protection bits
in each Translat ion Buffer entry.

Another version of PALcode lets Alpha implementa t ions r u n the OSF/1 operat ing
system by mirror ing m a n y of t h e RISC ULTRIX features. Othe r versions of PALcode
can be developed for real- t ime, teaching, and other applications.

PALcode makes Alpha an especially a t t ract ive archi tecture for mult iple operat ing
systems.

Alpha and Programming Languages

Alpha is an a t t ract ive archi tecture for compiling a large var iety of programming
languages . Alpha h a s been carefully designed to avoid bias toward one or two
programming languages. For example:

• Alpha does not contain a subrout ine call instruct ion t h a t moves a regis ter window
by a fixed amount . Thus , Alpha is a good ma tch for p rogramming languages wi th
m a n y pa rame te r s and programming languages wi th no pa ramete r s .

• Alpha does not contain a global in teger overflow enable bit. Such a bit would
need to be changed a t every subrout ine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview

Alpha is a load/store RISC archi tecture wi th the following da t a characterist ics:

• All operat ions a re done between 64-bit regis ters .

• Memory is accessed via 64-bit v i r tua l l i t t le-endian byte addresses .

• There a re 32 integer regis ters and 32 floating-point registers .

• Longword (32-bit) and quadword (64-bit) integers a re supported.

Introduction (I) 1-3

• Four floating-point da t a types are supported:

— VAX F l o a t i n g (32-bit)

— VAX G_floating (64-bit)

— IEEE single (32-bit)

— IEEE double (64-bit)

1.3 Instruction Format Overview

As shown in Figure 1 -1 , Alpha instruct ions a re all 32 bi ts in length. As represented
in Figure 1 -1 , there are four major instruct ion format classes t h a t contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1 : Instruction Format Overview

31 26 25 21 20 16 15 5 4 0

Opcode Number PALcode Format

Opcode RA Disp Branch Format

Opcode RA RB Disp Memory Format

Opcode RA RB Function RC Operate Format

• PALcode i n s t r u c t i o n s specify, in the function code field, one of a few dozen
complex operations to be performed.

• C o n d i t i o n a l b r a n c h i n s t r u c t i o n s t es t register Ra and specify a signed 21 -
bit PC-relative longword ta rge t displacement. Subrout ine calls pu t the r e tu rn
address in register Ra.

• L o a d a n d s t o r e i n s t r u c t i o n s move longwords or quadwords between register
Ra and memory, us ing Ra plus a signed 16-bit displacement as the memory
address .

• O p e r a t e i n s t r u c t i o n s for floating-point and integer operat ions a re both
represented in Figure 1-1 by the operate format i l lustrat ion and a re as follows:

— Floating-point operations use Ra and Rb as source registers , and wri te t he
resul t in register Rc. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit l i teral as t he source operand,
and wri te the resul t in register Rc.

Integer operate instruct ions can use t he Rb field and pa r t of t he function field
to specify an 8-bit l i teral. There is a 7-bit extended opcode in the function
field.

1-4 Common Architecture (I)

1.4 Instruction Overview

PALcode Instructions

As described above, a Privileged Archi tecture Library (PALcode) is a set of
subrout ines t h a t is specific to a par t icu lar Alpha operat ing-system implementat ion.
These subrout ines can be invoked by ha rdware or by software CALL_PAL
instruct ions, which use t he function field to vector to the specified subrout ine.

Branch Instructions

Conditional b ranch instruct ions can tes t a regis ter for positive/negative or for zero
/nonzero. They can also tes t in teger regis ters for even/odd.

Uncondit ional b ranch instruct ions can wri te a r e t u r n address into a register.

There is also a calculated j u m p instruct ion t h a t b ranches to an a rb i t ra ry 64-bit
address in a register.

Load/Store Instructions

Load and store instruct ions move e i ther 32-bit or 64-bit aligned quant i t ies from
and to memory. Memory addresses a re flat 64-bit v i r tua l addresses , wi th no
segmentat ion.

The VAX floating-point load/store ins t ruct ions swap words to give a consistent
regis ter format for floating-point operat ions.

A 32-bit in teger d a t u m is placed in a regis ter in a canonical form t h a t makes 33 copies
of t he high bit of the da tum. A 32-bit floating-point d a t u m is placed in a register in
a canonical form t h a t extends the exponent by 3 bi ts and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There a re facilities for doing byte manipula t ion in registers , e l iminat ing t he need
for 8-bit or 16-bit load/store instruct ions.

Compilers, as directed by use r declarat ions, can genera te any mix ture of 32-bit and
64-bit operations. The Alpha archi tecture h a s no 32/64 mode bit.

Integer Operate Instructions

The integer operate instruct ions man ipu la te full 64-bit values, and include the usua l
assor tment of ar i thmet ic , compare, logical, and shift instruct ions.

There a re j u s t th ree 32-bit integer operates : add, subtract , and multiply. They
differ from the i r 64-bit counterpar t s only in overflow detection and in producing
32-bit canonical resul ts .

There is no integer divide instruct ion.

The Alpha archi tecture also suppor ts the following addit ional operations:

• Scaled add/subtract ins t ruct ions for quick subscript calculation

• 128-bit mult iply for division by a constant , and multiprecision ar i thmet ic

• Conditional move ins t ruct ions for avoiding branch instruct ions

Introduction (I) 1-5

• An extensive set of in-register byte and word manipula t ion instruct ions

Integer overflow t r a p enable is encoded in the function field of each instruction,
r a the r t h a n kept in a global s ta te bit. Thus , for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and wi thout overflow checking. Tha t
makes it easier to pipeline implementat ions .

Floating-Point Operate Instructions
The floating-point operate instruct ions include four complete sets of VAX and
IEEE ar i thmet ic instruct ions, plus instruct ions for performing conversions between
floating-point and integer quant i t ies .

In addition to the operations found in conventional RISC archi tectures , Alpha
includes conditional move instruct ions for avoiding branches and merge sign
/exponent instruct ions for simple field manipulat ion.

The ar i thmet ic t r a p enables and rounding mode are encoded in the function field
of each instruction, r a the r then kept in global s ta te bi ts . Tha t makes it easier to
pipeline implementat ions .

1.5 Instruction Set Characteristics

Alpha instruction set characterist ics a re as follows:

• All instruct ions are 32 bits long and have a regular format.

• There are 32 integer registers (RO through R31), each 64 bi ts wide. R31 reads
as zero, and wri tes to R31 are ignored.

• There are 32 floating-point registers (FO through F31), each 64 bi ts wide. F31
reads as zero, and wri tes to F31 are ignored.

• All integer da ta manipula t ion is between integer regis ters , wi th up to two
variable register source operands (one may be an 8-bit l i teral), and one register
dest inat ion operand.

• All floating-point da ta manipula t ion is between floating-point registers , wi th up
to two register source operands and one register dest inat ion operand.

• All memory reference instruct ions are of the load/store type t h a t move da t a
between registers and memory.

• There are no branch condition codes. Branch instruct ions tes t an integer or
floating-point register value, which may be the resul t of a previous compare.

• Integer and logical instruct ions operate on quadwords.

• Floating-point instruct ions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating "format compatibility, ,, in which b inary files
of D_floating numbers may be processed, bu t wi thout the las t 3 bi ts of fraction
precision, is also provided.

• A minimal number of VAX compatibility instruct ions are included.

1-6 Common Architecture (I)

1.6 Terminology and Conventions

The following sections describe t he terminology and conventions used in th i s book.

1.6.1 Numbering

All number s a re decimal unless otherwise indicated. Where the re is ambiguity,
number s o ther t h a n decimal a re indicated wi th t he n a m e of t he base in subscript
form, for example, 1 0 i 6.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system t h a t
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (tha t is, software runn ing outside
of kernel mode) can:

• Affect t he operation of ano ther process wi thout author izat ion from the operat ing
system;

• Amplify i ts privilege wi thout author izat ion from the operat ing system; or

• Communicate wi th ano ther process, e i ther overtly or covertly, without
authorizat ion from the operat ing system.

The Alpha archi tecture h a s been designed to contain no archi tectural security holes.
H a r d w a r e (processors, buses , controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The t e rms UNPREDICTABLE a n d U N D E F I N E D are used th roughout th i s book.
Their meanings a re quite different and m u s t be carefully dist inguished.

In part icular , only privileged software (software runn ing in kernel mode) can tr igger
U N D E F I N E D operations. Unprivileged software cannot t r igger U N D E F I N E D
operations. However, e i ther privileged or unprivileged software can tr igger
UNPREDICTABLE resu l t s or occurences.

UNPREDICTABLE resul t s or occurences do not d is rupt the basic operat ion of the
processor; i t continues to execute instruct ions in i ts normal manner . In contrast ,
U N D E F I N E D operation can ha l t t he processor or cause it to lose information.

The t e rms UNPREDICTABLE and U N D E F I N E D can be fur ther described as follows:

UNPREDICTABLE

• Resul ts or occurrences specified as UNPREDICTABLE m a y vary from moment
to moment , implementa t ion to implementat ion, and instruct ion to instruction
wi thin implementat ions . Software can never depend on resul ts specified as
UNPREDICTABLE.

• An UNPREDICTABLE resul t m a y acquire an a rb i t ra ry value subject to a few
constra ints . Such a resu l t may be an a rb i t ra ry function of t he inpu t operands

Introduction (I) 1-7

or of any s ta te information t h a t is accessible to the process in i ts cur ren t access
mode. UNPREDICTABLE resul ts may be unchanged from thei r previous values.

Operat ions t h a t produce UNPREDICTABLE resul ts may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arb i t ra ry choice function. The choice function is subject to the same constra ints
as are UNPREDICTABLE resul ts and, in part icular, m u s t not const i tute a
security hole.

Specifically, UNPREDICTABLE resul ts m u s t not depend upon, or be a function
of, t he contents of memory locations or regis ters which are inaccessible to the
cur ren t process in the cur ren t access mode.

Also, operations t h a t may produce UNPREDICTABLE resul ts m u s t not:

- Write or modify the contents of memory locations or registers to which the
cur ren t process in t he cur ren t access mode does not have access, or

- Hal t or h a n g the system or any of i ts components.

For example, a security hole would exist if some UNPREDICTABLE resul t
depended on the value of a register in another process, on t he contents of
processor temporary registers left behind by some previously runn ing process,
or on a sequence of actions of different processes.

UNDEFINED

• Operat ions specified as U N D E F I N E D may vary from moment to moment ,
implementat ion to implementat ion, and instruct ion to instruct ion within
implementat ions . The operation may vary in effect from nothing, to stopping
system operation.

• U N D E F I N E D operations may ha l t t he processor or cause it to lose information.
However, U N D E F I N E D operations m u s t not cause the processor to hang , t h a t
is, reach an unha l t ed s ta te from which the re is no t rans i t ion to a normal s ta te
in which t h e machine executes instruct ions.

1.6.4 Ranges and Extents

Ranges are specified by a pai r of numbers separa ted by a and are inclusive. For
example, a range of integers 0..4 includes the integers 0 , 1 , 2, 3, and 4.

Ex ten t s a re specified by a pai r of numbers in angle brackets separa ted by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the t e rms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to da t a objects t h a t a re powers of two in size. An aligned
d a t u m of size 2**N is stored in memory a t a byte address t h a t is a mult iple of 2**N,
t h a t is, one t h a t h a s Ν low-order zeros. Thus , an aligned 64-byte s tack frame h a s a
memory address t h a t is a mult iple of 64.

1-8 Common Architecture (I)

If a d a t u m of size 2**N is stored a t a byte address t h a t is not a mult iple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Mus t be Zero (MBZ) m u s t never be filled by software wi th a non-
zero value. These fields m a y be used a t some future t ime. If t he processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) r e t u r n a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software wi th a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE resul t s and may
produce ext raneous instruct ion-issue delays.

1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when wri t ten .

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementa t ion Dependent (IMP) m a y be used for implementat ion-
specific purposes. Each implementa t ion m u s t document fully t he behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures t h a t depict regis ters or memory follow the convention t h a t increasing
addresses r u n r ight to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instruct ions in macro code examples a re e i ther listed in Chap te r 4 or OpenVMS
Section, Chapter 2, or a re stylized code forms found in Appendix A.

Introduction (I) 1-9

Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable un i t in Alpha is t he 8-bit byte. Vir tual addresses a re 64
bi ts long. An implementa t ion m a y support a smal ler v i r tual address space. The
min imum vir tual address size is 43 bi ts .

Vir tual addresses as seen by the program are t r ans la ted into physical memory
addresses by the memory m a n a g e m e n t mechanism.

2.2 Data Types

Following are descriptions of t he Alpha archi tecture da t a types.

2.2.1 Byte

A byte is 8 contiguous bi ts s t a r t ing on an addressable byte boundary. The bits a re
numbered from right to left, 0 th rough 7, as shown in Figure 2 - 1 .

Figure 2-1 : Byte Format

7 0

:A

A byte is specified by i ts address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract , mask , inser t , and zap instruct ions.

2.2.2 Word

A word is 2 contiguous bytes s t a r t ing on an a rb i t ra ry byte boundary. The bi ts a re
numbered from r ight to left, 0 th rough 15, as shown in Figure 2 -2 .

Basic Architecture (I) 2-1

Figure 2-2: Word Format

15 0

:A

A word is specified by its address , the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the extract , mask,
and inser t instruct ions.

2.2.3 Longword

A longword is 4 contiguous bytes s ta r t ing on an a rb i t ra ry byte boundary. The bits
are numbered from r ight to left, 0 through 31 , as shown in Figure 2 - 3 .

Figure 2-3: Longword Format

31 0

:A

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two's-complement integer with bi ts
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instruct ions and by
longword ar i thmet ic instruct ions.

NOTE
Alpha implementat ions will impose a significant
performance penal ty when accessing longword operands
t h a t are not na tura l ly aligned. (A na tura l ly aligned
longword h a s zero as the low-order two bi ts of i ts
address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes s ta r t ing on an arb i t ra ry byte boundary. The bits
are numbered from r ight to left, 0 through 63, as shown in Figure 2-4 .

2-2 Common Architecture (I)

Figure 2-4: Quadword Format

:A

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When in terpre ted arithmetically, a quadword is e i ther
a two's-complement integer with bi ts of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer wi th bi ts of increasing significance
from 0 th rough 63.

NOTE
Alpha implementa t ions will impose a significant perfor-
mance penal ty when accessing quadword operands t h a t
a re not na tura l ly aligned. (A na tura l ly aligned quad-
word has zero as t he low-order th ree bi ts of i ts address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point number s are stored in one set of formats in memory and in a
second set of formats in registers . The floating-point load and store instruct ions
convert between these formats purely by rea r rang ing bits; no rounding or range-
checking is done by the load and store instruct ions.

2.2.5.1 FJIoating

An F J I o a t i n g d a t u m is 4 contiguous bytes in memory s ta r t ing on an arb i t ra ry
byte boundary. The bits are labeled from r ight to left, 0 th rough 3 1 , as shown
in Figure 2 - 5 .

Figure 2-5: FJIoating Datum

1514 7 6 0

S Exp. Frac. Hi

Fraction Lo

An F J I o a t i n g operand occupies 64 bi ts in a floating register, left-justified in the
64-bit register, as shown in Figure 2 -6 .

Basic Architecture (I) 2-3

Figure 2-6: FJIoating Register Format

63 62 52 51 45 44 29 28 0

S Exp. Frac. Hi Fraction Lo 0

The F_floating load instruct ion reorders bi ts on t he way in from memory, expands the
exponent from 8 to 11 bits , and sets the low-order fraction bits to zero. This produces
in the register an equivalent G J l o a t i n g number sui table for e i ther F J I o a t i n g or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2 - 1 .

Table 2-1 : FJIoating Load Exponent Mapping
Memory <14:7> Register <62:52>

1 1111111 1 000 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's)

0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values .

The F J I o a t i n g store instruct ion reorders register bi ts on the way to memory and
does no checking of the low-order fraction bits . Register bi ts <61:59> and <28:0> are
ignored by the store instruction.

An F J I o a t i n g d a t u m is specified by i ts address A, the address of the byte containing
bit 0. The memory form of an F J I o a t i n g d a t u m is sign magni tude wi th bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bi ts <6:0> and <31:16>
a normalized 24-bit fraction with the r edundan t most significant fraction bit not
represented. Within t he fraction, bi ts of increasing significance are from 16 th rough
31 and 0 th rough 6. The 8-bit exponent field encodes the values 0 th rough 255.
An exponent value of 0, together wi th a sign bi t of 0, is t aken to indicate t h a t the
F J I o a t i n g d a t u m h a s a value of 0.

If the resul t of a VAX floating-point format instruct ion h a s a value of zero, the
instruct ion always produces a d a t u m with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate t rue b inary exponents
of -127. .127. An exponent value of 0, together with a sign bi t of 1, is t a k e n as a
reserved operand. Floating-point instruct ions processing a reserved operand t ake an
ar i thmet ic exception. The value of an F J I o a t i n g d a t u m is in the approximate range
0.29*10**-38..1.7*10**38. The precision of an F J I o a t i n g d a t u m is approximately
one pa r t in 2**23, typically 7 decimal digits.

2-4 Common Architecture (I)

NOTE
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing F J I o a t i n g operands
t h a t a re not na tu ra l ly aligned. (A na tura l ly aligned F_
floating d a t u m h a s zero as t he low-order two bi ts of i ts
address.)

2.2.5.2 GJloating

A G J l o a t i n g d a t u m in memory is 8 contiguous bytes s ta r t ing on an a rb i t ra ry byte
boundary. The bi ts a re labeled from r ight to left, 0 th rough 63, as shown in
Figure 2 -7 .

Figure 2-7: GJloating Datum

Exp. Frac.Hi

Fraction Midh

Fraction Midi

Fraction Lo

:A

:A+2

:A+4

:A+6

A G J l o a t i n g operand occupies 64 bi ts in a floating register, a r ranged as shown in
Figure 2 - 8 .

Figure 2-6: GJloating Format

63 62 52 51 48 47 32 31 16 15 0

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo

A G J l o a t i n g d a t u m is specified by i ts address A, t he address of t he byte containing
bit 0. The form of a G J l o a t i n g d a t u m is sign magni tude wi th bit 15 t he sign bit, bi ts
<14:4> a n excess-1024 binary exponent, and bi ts <3:0> and <63:16> a normalized 53-
bit fraction wi th the r edundan t most significant fraction bit not represented. Within
t he fraction, bi ts of increasing significance a re from 48 th rough 63, 32 th rough 4 7 , 1 6
th rough 3 1 , and 0 th rough 3. The 11-bit exponent field encodes the values 0 th rough
2047. An exponent value of 0, together wi th a sign bit of 0, is t a k e n to indicate t h a t
the G J l o a t i n g d a t u m h a s a value of 0.

If t he resul t of a floating-point ins t ruct ion h a s a value of zero, the instruct ion
always produces a d a t u m wi th a sign bit of 0, a n exponent of 0, and all
fraction bi ts of 0. Exponent values of 1..2047 indicate t rue b inary exponents of

Basic Architecture (I) 2-5

-1023. .1023. An exponent value of 0, together wi th a sign bi t of 1, is t a k e n as a
reserved operand. Floating-point instruct ions processing a reserved operand t ake
a user-visible ar i thmet ic exception. The value of a G J l o a t i n g d a t u m is in the
approximate range 0.56*10**-308..0.9*10**308. The precision of a G J l o a t i n g d a tu m
is approximately one pa r t in 2**52, typically 15 decimal digits.

NOTE
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing G_floating operands
t h a t a re not na tura l ly aligned. (A na tura l ly aligned G_
floating d a t u m h a s zero as the low-order th ree bi ts of i ts
address.)

2.2.5.3 DJIoating

A D_floating da tum in memory is 8 contiguous bytes s t a r t ing on an a rb i t ra ry byte
boundary. The bits are labeled from r ight to left, 0 th rough 63 , as shown in
Figure 2 -9 .

Figure 2-9: DJIoating Datum

Exp. Frac. Hi

Fraction Midh

Fraction Midi

Fraction Lo

:A

:A+2

:A+4

:A+6

A D J I o a t i n g operand occupies 64 bi ts in a floating register, a r ranged as shown in
Figure 2-10 .

Figure 2-10: DJIoating Register Format

63 62 55 54 48 47 32 31 16 15 0

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo

The reordering of bi ts required for a D J I o a t i n g load or store are identical to those
required for a G J l o a t i n g load or store. The G J l o a t i n g load and store instruct ions
are therefore used for loading or s toring D J I o a t i n g da ta .

A D J I o a t i n g d a t u m is specified by its address A, the address of the byte containing
bit 0. The memory form of a D J I o a t i n g d a t u m is identical to an F J I o a t i n g d a t u m

2-6 Common Architecture (I)

except for 32 addit ional low significance fraction bits . Within the fraction, bi ts of
increasing significance are from 48 th rough 63 , 32 th rough 4 7 , 1 6 th rough 31 , and 0
th rough 6. The exponent conventions and approximate range of values is t he same
for D J I o a t i n g as FJ Ioa t i ng . The precision of a D J I o a t i n g d a t u m is approximately
one p a r t in 2**55, typically 16 decimal digits.

NOTE
D J I o a t i n g is not a fully supported da t a type; no
D J I o a t i n g ar i thmet ic operat ions are provided in t he
archi tecture. For backward compatibility, exact D_
floating ar i thmet ic m a y be provided via software
emulat ion. D J I o a t i n g "format compatibility' ' in which
b inary files of D J I o a t i n g number s m a y be processed,
bu t wi thout the las t 3 bi ts of fraction precision, can
be obtained via conversions to GJ loa t ing , G ar i thmet ic
operat ions, t hen conversion back to DJIoa t ing .

NOTE
Alpha implementa t ions will impose a significant
performance penal ty on access to D J I o a t i n g operands
t h a t a re not na tura l ly aligned. (A na tura l ly aligned D_
floating d a t u m h a s zero as t he low-order th ree bi ts of i ts
address.)

2.2.6 IEEE Floating-Point Formats

The IEEE s t anda rd for b inary floating-point ar i thmet ic , ANSI/ IEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths , single and double. The Alpha archi tecture suppor ts t he basic single
and double formats, with t he basic double format serving as t he extended single
format. The values representable wi th in a format a re specified by us ing th ree integer
pa ramete r s :

1. Ρ—the n u m b e r of fraction bits

2. Emax—the m a x i m u m exponent

3. Emin—the m i n i m u m exponent

Within each format, only the following ent i t ies a re permit ted:

1. Numbers of t he form (-1)**S χ 2**E χ b(0).b(l)b(2). .b(P-l) where:

a. S = 0 or 1

b. Ε = any integer between Emin and Emax, inclusive

c. b(n) = 0 or 1

2. Two infinities—positive and negat ive

Basic Architecture (I) 2-7

3. At leas t one Signaling N a N

4. At least one Quiet N a N

N a N is an acronym for Not-a-Number. A N a N is an IEEE floating-point bit
pa t t e rn t h a t represents something other t h a n a number . NaNs come in two forms:
Signaling NaNs and Quiet NaNs . Signaling N a N s are used to provide values
for uninit ial ized variables and for ar i thmet ic enhancements . Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavai lable da t a
and resul ts . Signaling N a N s signal a n invalid operat ion when they are an operand
to an ar i thmet ic instruction, and may genera te an ar i thmet ic exception. Quiet
NaNs propagate th rough almost every operation wi thout genera t ing an ar i thmet ic
exception.

Ari thmetic with the infinities is handled as if t he operands were of arbi t rar i ly large
magni tude . Negative infinity is less t h a n every finite number ; positive infinity is
grea ter t h a n every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, d a t u m occupies 4 contiguous bytes in
memory s ta r t ing on an a rb i t ra ry byte boundary. The bi ts a re labeled from r ight
to left, 0 through 31 , as shown in Figure 2 - 1 1 .

Figure 2 -11: S_floafing Datum

15 14 7 6 0

Fraction Lo

S Exp. Frac. Hi

An S_floating operand occupies 64 bits in a floating register, left-justified in t he
64-bit register, as shown in Figure 2-12 .

Figure 2-12: SJIoating Register Format

63 62 52 51 45 44 29 28 0

S Exp. Frac. Hi Fraction Lo 0

The S_floating load instruct ion reorders bi ts on the way in from memory, expanding
the exponent from 8 to 11 bits , and sets the low-order fraction bi ts to zero. This
produces in the register an equivalent T_floating number, sui table for e i ther S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2 -2 .

2-8 Common Architecture (I)

Table 2-2: SJIoating Load Exponent Mapping
Memory <30:23> Register <62:52>

1 1111111 1 111 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's)

0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note t h a t the
mapp ing for all l ' s differs from t h a t of F_floating load, since for S_fioating all l ' s is
an exceptional value and for F_floating all l ' s is a normal value.

The S_floating store instruct ion reorders register bi ts on t he way to memory and
does no checking of the low-order fraction bits . Register bi ts <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruct ion does no checking of
the input .

The S_floating store instruct ion does no checking of the data ; the preceding operation
should have specified an S_floating resul t .

An S_floating d a t u m is specified by i ts address A, the address of t h e byte containing
bit 0. The memory form of an S_floating d a t u m is sign magni tude with bit 31 the sign
bit, bi ts <30:23> an excess-127 b inary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an S_floating number is inferred from its const i tuent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F o O , t hen V is NaN, regardless of S.

2. If E=255 and F=0, t hen V = (-1)**S χ Infinity.

3. If 0 < Ε < 255, then V = (-1)**S χ 2**(E-127) χ (l .F) .

4. If E=0 and F o O , then V = (-1)**S χ 2**(-126) χ (0.F).

5. If E=0 and F=0, then V = (-1)**S χ 0 (zero).

Floating-point operat ions on S_floating numbers may t ake an ar i thmet ic exception
for a var iety of reasons , including invalid operations, overflow, underflow, division
by zero, and inexact resul ts .

Alpha implementa t ions will impose a significant per-
formance penal ty when accessing S_floating operands
t h a t a re not na tura l ly aligned. (A na tura l ly aligned S_
floating da tum h a s zero as the low-order two bits of i ts
address.)

NOTE

Basic Architecture (I) 2-9

2.2.6.2 TJIoating

An IEEE double-precision, or TJ Ioa t ing , d a t u m occupies 8 contiguous bytes in
memory s ta r t ing on an arb i t ra ry byte boundary. The bi ts a re labeled from r ight
to left, 0 th rough 63, as shown in Figure 2 -13 .

Figure 2-13: TJIoating Datum

4 3

Fraction Lo

Fraction Midi

Fraction Midh

Exponent Frac.Hi

:A

:A+2

:A+4

:A+6

A T_floating operand occupies 64 bits in a floating register, a r ranged as shown in
Figure 2-14.

Figure 2-14: TJIoating Register Format

63 62 52 51 48 47 32 31 16 15 0

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo

The T_floating load instruct ion performs no bit reorder ing on input , nor does it
perform checking of the inpu t da ta .

The T_floating store instruct ion performs no bit reorder ing on output . This
instruct ion does no checking of the da ta ; the preceding operation should have
specified a T_floating resul t .

A T_floating d a t u m is specified by its address A, the address of the byte containing
bit 0. The form of a T_floating d a t u m is sign magni tude wi th bit 63 the sign bit, bits
<62:52> an excess-1023 b inary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T J I o a t i n g number is inferred from its const i tuent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F o O , then V is NaN, regardless of S.

2. If E=2047 and F=0, t hen V = (-1)**S χ Infinity.

3. If 0 < Ε < 2047, t hen V = (-1)**S χ 2**(E-1023) χ (l .F) .

4. If E=0 and F o O , t hen V = (-1)**S χ 2**(-1022) χ (0.F).

2-10 Common Architecture (I)

5. If E=0 and F=0, t hen V = (-1)**S χ 0 (zero).

Floating-point operat ions on T_floating number s m a y t ake an ar i thmet ic exception
for a var iety of reasons, including invalid operat ions, overflow, underflow, division
by zero, and inexact resul ts .

NOTE
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing T__floating operands
t h a t a re not na tu ra l ly aligned. (A na tura l ly aligned T_
floating d a t u m h a s zero as t he low-order th ree bi ts of i ts
address.)

2.2.7 Longword Integer Format In Floating-Point Unit

A longword integer operand occupies 32 bi ts in memory, a r ranged as shown in
Figure 2 -15 .

Figure 2-15: Longword Integer Datum

Integer Lo

Integer Hi

:A

:A+2

A longword integer operand occupies 64 bi ts in a floating register, a r ranged as shown
in Figure 2-16 .

Figure 2-16: Longword Integer Floating-Register Format

63 62 61 59 58

Integer Hi Integer Lo :Fx

There is no explicit longword load or store instruction; the S_floating load/store
instruct ions a re used to move longword da t a into or out of t he floating registers .
The register bi ts <61:59> are set by t he S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer
operate instruct ion, and they a re set to 000 in t he resu l t of a longword operate
instruction.

The register format bit <62>, " P , in Figure 2 -16 is pa r t of t he Integer Hi field
in Figure 2 -15 and represen ts the high-order bit of t h a t field. Bits <58:45> of
Figure 2 -16 a re t h e remain ing bi ts of the In teger Hi field of Figure 2 -15 .

Basic Architecture (I) 2-11

NOTE
Alpha implementa t ions will impose a significant
performance penal ty when accessing longwords t h a t a re
not na tura l ly aligned. (A na tura l ly aligned longword
d a t u m has zero as the low-order two bits of i ts address.)

2.2.8 Quadword Integer Format In Floating-Point Unit

A quadword integer operand occupies 64 bi ts in memory, a r ranged as shown in
Figure 2 -17 .

Figure 2-17: Quadword Integer Datum

Integer Lo

Integer Midi

Integer Midh

Integer Hi

:A

:A+2

:A+4

:A+6

A quadword integer operand occupies 64 bits in a floating register, a r ranged as
shown in Figure 2 -18 .

Figure 2-18: Quadword Integer Floating-Register Format

63 62 48 47 32 31 16 15 0

S Integer Hi Integer Midh Integer Midi Integer Lo

There is no explicit quadword load or store instruction; the T_floating load/store
instruct ions are used to move quadword da t a into or out of the floating registers.

The T_floating load instruct ion performs no bit reorder ing on input . The T J I o a t i n g
store instruction performs no bit reorder ing on output . This instruct ion does no
checking of the da ta ; when used to store quadwords, the preceding operation should
have specified a quadword result .

NOTE
Alpha implementat ions will impose a significant
performance penal ty when accessing quadwords t h a t
a re not na tura l ly aligned. (A na tura l ly aligned
quadword d a t u m has zero as the low-order th ree bi ts
of its address.)

2-12 Common Architecture (I)

2.2.9 Data Types with No Hardware Support

The following VAX da t a types a re not directly supported in Alpha ha rdware .

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Charac te r S t r ing

• Trail ing Numeric St r ing

• Leading Separa te Numeric St r ing

• Packed Decimal St r ing

Basic Architecture (I) 2-13

Chapter 3

Instruction Formats (I)

3.1 Alpha Registers

Each Alpha processor h a s a set of regis ters t h a t hold the cur ren t processor s ta te .
If a n Alpha system contains mult iple Alpha processors, t he re a re mult iple per-
processor sets of these regis ters .

3.1.1 Program Counter

The Program Counter (PC) is a special regis ter t h a t addresses t h e instruct ion s t ream.
As each instruct ion is decoded, the PC is advanced to the next sequent ia l instruction.
This is referred to as t he updated PC. Any instruct ion t h a t uses t h e value of the PC
will use t he upda ted PC. The PC includes only bi ts <63:2> with bi ts <1:0> t rea ted as
RAZ/IGN. This quant i ty is a longword-aligned byte address . The PC is an implied
operand on conditional b ranch and subrout ine j u m p instruct ions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers

There a re 32 integer regis ters (RO th rough R31), each 64 bits wide.

Register R31 is assigned special mean ing by the Alpha archi tecture . When R31 is
specified as a regis ter source operand, a zero-valued operand is supplied.

For all cases except the Uncondit ional Branch and J u m p instruct ions, resul ts of
a n instruct ion t h a t specifies R31 as a dest inat ion operand are discarded. Also,
it is UNPREDICTABLE whe the r the other dest inat ion operands (implicit and
explicit) a re changed by the instruct ion. I t is implementa t ion dependent to w h a t
extent t he instruct ion is actually executed once it h a s been fetched. I t is also
UNPREDICTABLE whe ther exceptions a re signaled dur ing the execution of such
an instruct ion. Note, however, t h a t exceptions associated wi th the instruct ion fetch
of such an instruct ion a re always signaled.

There a re some in teres t ing cases involving R31 as a dest inat ion:

• STx_C R31,disp(Rb)

Although th i s might seem like a good way to zero out a shared location and reset
t he lock_flag, th is ins t ruct ion causes t he lock_flag and v i r tua l location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDxJL R31,disp(Rb)

This instruct ion produces no useful resul t since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.

Instruction Formats (I) 3-1

Unconditional Branch (BR and BSR) and J u m p (JMP, JSR, RET, and JSR_
COROUTINE) instruct ions, when R31 is specified as the Ra operand, execute
normally and upda te the PC with the t a rge t v i r tual address . Of course, no PC
value can be saved in R31 .

3.1.3 Floating-Point Registers

There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a t rue zero-valued operand is
supplied. See Section 4.7.2 for a definition of t rue zero.

Resul ts of an instruct ion t h a t specifies F31 as a dest inat ion operand are discarded
and it is UNPREDICTABLE whether the other dest inat ion operands (implicit and
explicit) a re changed by the instruction. In th is case, it is implementat ion-dependent
to wha t extent the instruct ion is actually executed once it ha s been fetched. I t is also
UNPREDICTABLE whether exceptions are signaled dur ing the execution of such an
instruction. Note, however, t h a t exceptions associated with the instruct ion fetch of
such an instruct ion are always signaled.

A floating-point instruct ion t h a t operates on single-precision da t a reads all bits
<63:0> of the source floating-point register. A floating-point instruct ion t h a t
produces a single-precision resul t wri tes all bits <63:0> of the dest inat ion floating-
point register.

3.1.4 Lock Registers

There a re two per-processor registers associated wi th the LDx__L and STx_C
instruct ions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers

Some Alpha implementa t ions may include optional memory prefetch or VAX
compatibility processor registers .

3.1.5.1 Memory Prefetch Registers

If the prefetch instruct ions FETCH and FETCH_M are implemented, an
implementat ion will include two sets of s ta te prefetch regis ters used by those
instruct ions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instruct ions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notat ion used to describe the operation of each instruct ion is given as a sequence
of control and ass ignment s t a t ements in an ALGOL-like syntax.

3-2 Common Architecture (I)

3.2.1 Operand Notation

Tables 3 - 1 , 3-2 , and 3 -3 list t he notat ion for the operands , t he operand values, and
the other expression operands.

Table 3-1 : Operand Notation
Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

Table 3-2: Operand Value Notation
Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation
Notation Meaning

IPR_x Contents of Internal Processor Register χ

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register η

Fn Contents of floating-point register η

X[m] Element m of array X

Instruction Formats (I) 3-3

3.2.2 Instruction Operand Notation

The notat ion used to describe instruct ion operands follows from the operand specifier
notat ion used in the VAX Architecture Standard. Ins t ruct ion operands are described
as follows:

<name>.<access typexdata type>

<name>
Specifies the instruct ion field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name Meaning

disp The displacement field of the instruction.

fnc The PAL function field of the instruction.

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer l i teral operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

F a A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

<access type>
Is a le t ter denoting the operand access type:

Access TVpe Meaning

a The operand is used in an address calculation to form an effective
address . The da ta type code t h a t follows indicates the un i t s of
addressabil i ty (or scale factor) applied to th is operand when the
instruct ion is decoded.
For example:
".al" means scale by 4 (longwords) to get byte un i t s (used in branch
displacements); ".ab" m e a n s the operand is a lready in byte uni t s
(used in load/store instructions).

i The operand is an immedia te l i teral in the instruction.

r The operand is read only.

m The operand is both read and wri t ten.

3-4 Common Architecture (I)

Access Type Meaning

<data type>

Is a le t ter denoting the da t a type of t he operand:

Data Type Meaning

b Byte

f F_floating

g G_floating

1 Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

χ The da t a type is specified by the instruct ion

3.2.3 Operators

The operators shown in Table 3 -4 a re used:

Table 3-4: Operators
Operator Meaning

! Comment delimiter

+ Addition

Subtraction

* Signed multiplication

*U Unsigned multiplication

** Exponentiation (left argument raised to right argument)

/ Division

Replacement

I I Bit concatenation

{) Indicates explicit operator precedence

(x) Contents of memory location whose address is χ

x<m:n> Contents of bit field of χ defined by bits η through m

Instruction Formats (I) 3-5

w The operand is wri te only.

Table 3-4 (Cont.): Operators
Opera to r Mean ing

ACCESS(x,y)

AND

ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(x,y)

CASE

M'thbit of χ

Accessibility of the location whose address is χ using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

Logical product

Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to χ byte
correspondence is y<n> <-> x<8n+7:8n>. This correspondence
also exists between y and the result.
For each bit of y from η = 0 to 7, if y <n> is 0 then byte <n>
of χ is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: actional
argvalue2: action_2

DIV

LEFT_SHIFT(x,y)

argvaluen: action__n
[otherwise: default_action]

ENDCASE

If the value of argument is argvaluel then actional is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.
Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.
Optionally, the last argvalue may be the atom Otherwise'. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.
Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag.

Log to the base 2

3-6 Common Architecture (I)

x<m>

LOAD.LOCKED

Table 3-4 (Cont.): Operators
Operator

NOT

OR

χ MOD y

Relational Operators

Meaning

Logical (ones) complement

Logical sum

χ modulo y

Operator Meaning

LT Less t h a n signed

LTU Less t h a n unsigned

LE Less or equal signed

LEU Less or equal uns igned

E Q Equa l signed and unsigned

N E Not equal signed and unsigned

GE Grea te r or equal signed

G E U Grea te r or equal uns igned

GT Grea te r signed

GTU Grea te r uns igned

LBC Low bit clear

LBS Low bit set

MINU(x,y)

PHYSICAL_ADDRESS

PRIORITY_ENCODE

RIGHT_SHIFT(x,y)

SEXT(x)

STORE.CONDITIONAL

Returns the smaller of χ and y, with χ and y interpreted as
unsigned integers

Translation of a virtual address

Returns the bit position of most significant set bit, interpret-
ing its argument as a positive integer (= int(lg(χ))).
For example:

priority_encode(255) = 7

Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_flag is set, then do the indicated store and clear
the lock_flag.

Instruction Formats (I) 3-7

Table 3-4 (Cont.): Operators

Operator Meaning

TEST(x,cond) The contents of register χ are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if χ bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

XOR Logical difference

X is zero-extended to the required size. ZEXT(x)

3.2.4 Notation Conventions

The following conventions are used:

1. Only operands t h a t appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other t h a n t h a t replacement (<-) has the
lowest precedence. Explicit precedence is indicated by the use of "{}".

3. All ar i thmetic , logical, and relat ional operators a re defined in the context of thei r
operands. For example, "+" applied to G_floating operands m e a n s a G_floating
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT"
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruct ion formats:

• Memory

• Branch

• Operate

• Floating-point Opera te

• PALcode

All instruct ion formats a re 32 bits long with a 6-bit major opcode field in bi ts <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruct ion m u s t be set to a va lue
of 31 .

3-8 Common Architecture (I)

SOFTWARE NOTE
There a re several instruct ions, each formatted as a
memory instruct ion, t h a t do not use the Ra and/or Rb
fields. These ins t ruct ions are : Memory Barrier , Fetch,
FetchJM, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format

The Memory format is used to t ransfer da t a between regis ters and memory, to
load a n effective address , and for subrout ine j umps . I t h a s t he format shown in
Figure 3 - 1 .

Figure 3-1 : Memory Instruction Format

31 26 25 21 20 16 15 0

Opcode Ra Rb Memory_disp

A Memory format instruct ion contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. I t is sign-extended and added to t he contents
of regis ter Rb to form a v i r tua l address . Overflow is ignored in th i s calculation.

The v i r tua l address is used as a memory load/store address or a resul t value,
depending on the specific instruct ion. The v i r tua l address (va) is computed as follows
for all memory format ins t ruct ions except t he load address high (LDAH):

va <— {Rbv + SEXT(Memory_disp)}

For LDAH the v i r tua l address (va) is computed as follows:

va {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instruct ions wi th a function code replace the memory displacement
field in the memory instruct ion format wi th a function code t h a t designates a set of
miscellaneous instruct ions. The format is shown in Figure 3-2 .

Figure 3-2: Memory Instruction with Function Code Format

31 26 25 21 20 16 15 0

Opcode Ra Rb Function

Instruction Formats (I) 3-9

The memory instruct ion wi th function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE bu t
not U N D E F I N E D resul ts ; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instruct ions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction h in t s as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional b ranch instruct ions and for PC-relative
subrout ine jumps . I t h a s the format shown in Figure 3 - 3 .

Figure 3-3: Branch Instruction Format

26 25 21 20

Opcode Ra Branch_disp

A Branch format instruct ion contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is t r ea ted as a longword offset. This m e a n s it is shifted left two bits
(to address a longword boundary) , sign-extended to 64 bi ts and added to the upda ted
PC to form the ta rge t v i r tual address . Overflow is ignored in th is calculation. The
ta rge t v i r tual address (va) is computed as follows:

va <- PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Opera te format is used for instruct ions t h a t perform integer register to integer
register operations. The Opera te format allows the specification of one dest inat ion
operand and two source operands. One of the source operands can be a l i teral
constant . The Opera te format in Figure 3-4 shows the two cases when bit <12> of
the instruction is 0 and 1.

3-10 Common Architecture (I)

Figure 3-4: Operate Instruction Format

31 2625 21 20 16 151312 11 5 4 0

Opcode Ra Rb SBZ 0 Function Rc

31 26 25 21 20 131211 5 4 0

Opcode Ra LIT 1 Function Rc

An Opera te format instruct ion contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE bu t not U N D E F I N E D
resul ts ; they are not security holes.

There a re th ree operand fields, Ra, Rb, and Rc.

The Ra field specifies a source operand. Symbolically, t he integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav <- 0

ELSE
Rav «— Ra

END

The Rb field specifies a source operand. Integer operands can specify a l i teral or an
integer register us ing bit <12> of t he instruct ion.

If bit <12> of the instruct ion is 0, t h e Rb field specifies a source regis ter operand.

If bit <12> of the instruct ion is 1, an 8-bit zero-extended l i teral constant is formed
by bits <20:13> of the instruct ion. The l i teral is in terpre ted as a positive integer
between 0 and 255 and is zero-extended to 64 bits . Symbolically, t he integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv 4 - ZEXT(inst<20:13>)

ELSE
IF inst<20:16> EQ 31 THEN

Rbv <- 0
ELSE

Rbv <- Rb
END

END

The Rc field specifies a dest inat ion operand.

Instruction Formats (I) 3-11

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Opera te format is used for instruct ions t h a t perform floating-
point register to floating-point register operations. The Floating-point Opera te
format allows the specification of one dest inat ion operand and two source operands.
The Floating-point Opera te format is shown in Figure 3 - 5 .

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 21 20 16 15 5 4 0

Opcode Fa Fb Function Fc

A Floating-point Opera te format instruct ion contains a 6-bit opcode field and an 11-
bit function field. Unused function encodings produce UNPREDICTABLE resul ts ,
as defined in Section 1.6.3.

There a re th ree operand fields, Fa , Fb, and Fc. Each operand field specifies e i ther
an integer or floating-point operand as defined by the instruction.

The F a field specifies a source operand. Symbolically, t he Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav <— 0

ELSE
Fav <— Fa

END

The Fb field specifies a source operand. Symbolically, t he Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv <- 0

ELSE
Fbv «- Fb

END

NOTE
Nei ther F a nor Fb can be a l i teral in Floating-point
Opera te instruct ions.

The Fc field specifies a dest inat ion operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instruct ions use a subset of the Floating-point Opera te
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the F a field m u s t be F 3 1 .

The floating-point register to be used is specified by the Fa , Fb, and Fc fields all
pointing to the same floating-point register. If t he Fa , Fb, and Fc fields do not all

3-12 Common Architecture (I)

point to the same floating-point register, t h e n it is UNPREDICTABLE which register
is used.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. I t h a s the format shown in Figure 3-6 .

Figure 3-6: PALcode Instruction Format

Opcode PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and dest inat ion operands for PALcode instruct ions a re supplied in fixed
regis ters t h a t a re specified in the individual instruct ion descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.

Instruction Formats (I) 3-13

Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the ins t ruct ions implemented by the Alpha archi tecture. The
instruct ion set is divided into t he following sections:

Instruction TVpe Section

Integer load and store 4.2

Integer control 4.3

In teger ar i thmet ic 4.4

Logical and shift 4.5

Byte manipula t ion 4.6

Floating-point load and store 4.8

Floating-point control 4.9

Floating-point operate 4.10

Miscellaneous 4.11

Within each major section, closely re la ted instruct ions a re combined into groups and
described together. The instruct ion group description is composed of the following:

• The group n a m e

• The format of each instruct ion in the group, which includes the name , access
type, and da t a type of each instruct ion operand

• The operation of the instruct ion

• Exceptions specific to the instruct ion

• The instruct ion mnemonic and n a m e of each instruct ion in the group

• Qualifiers specific to the ins t ruct ions in t he group

• A description of the inst ruct ion operat ion

• Optional p rogramming examples and optional notes on the instruct ion

Instruction Descriptions (I) 4-1

4.1.1 Subsetting Rules

An instruction t h a t is omitted in a subset implementa t ion of the Alpha archi tecture
is not performed in e i ther ha rdware or PALcode. System software may provide
emulat ion rout ines for subset ted instruct ions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementat ion t h a t
supports floating-point m u s t implement the 32 floating-point regis ters , t he Floating-
point Control Register (FPCR) and the instruct ions to access it, floating-point
b ranch instruct ions, floating-point copy sign (CPYSx) instruct ions, floating-point
convert instruct ions, floating-point conditional move instruct ion (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE
A system t h a t will not support floating-point operat ions
is still required to provide the 32 floating-point
registers , the Floating-point Control Register (FPCR)
and the instruct ions to access it, and the T_floating
memory operations if t he system in tends to support the
OpenVMS Alpha operat ing system. This requi rement
facilitates the implementat ion of a floating-point
emula tor and simplifies context-switching.

In addition, floating-point support requires a t least one of the following subset
groups:

1. VAX Floating-point Opera te and Memory instruct ions (F_ and G_floating).

2. IEEE Floating-point Opera te instruct ions (S_ and T_floating). Within th is group,
an implementat ion can choose to include or omit separate ly the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruct ion in a group is provided, all other instruct ions in t h a t group
m u s t be provided. An implementat ion wi th full floating-point support includes
both groups; a subset floating-point implementat ion suppor ts only one of these
groups. The individual instruct ion descriptions indicate whe ther an instruct ion can
be subsetted.

4.1.2 Software Emulation Rules

General-purpose layered and application software t h a t executes in User mode may
assume t h a t cer tain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unal igned da t a a re emula ted by system
software. General-purpose layered and application software t h a t executes in User
mode may assume t h a t subset ted instruct ions are emula ted by system software.
F requen t use of emulat ion may be significantly slower t h a n us ing a l ternat ive code
sequences.

4-2 Common Architecture (I)

Emula t ion of loads and stores of unal igned da t a and subset ted instruct ions need
not be provided in privileged access modes. System software t h a t supports special-
purpose dedicated applications need not provide emulat ion in User mode if emulat ion
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers

Some Opera te format and Floating-point Opera te format instruct ions have several
var ian ts . For example, for the VAX formats, Add Fjfloating (ADDF) is supported
wi th and wi thout floating underflow enabled, and wi th e i ther chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different va r ian t s of such instruct ions a re denoted by opcode qualifiers, which
consist of a s lash (/) followed by a s t r ing of selected qualifiers. Each qualifier is
denoted by a single charac ter as shown in Table 4 - 1 . The opcodes for each qualifier
a re listed in Appendix C.

Table 4 - 1 : Opcode Qualifiers

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

S Software completion enable

υ Floating underflow enable

ν Integer overflow enable

The default values a re normal rounding, software completion disabled, inexact resul t
disabled, floating underflow disabled, and integer overflow disabled.

Instruction Descriptions (I) 4-3

4.2 Memory Integer Load/Store Instructions

The instruct ions in th is section move da t a between the integer registers and memory.

They use the Memory instruct ion format. The instruct ions a re summar ized in
Table 4 -2 .

Table 4 - 2 : Memory Integer Load/Store Instructions

Mnemonic Opera t ion

LDA Load Address

LDAH Load Address High

LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ_L Load Quadword Locked

LDQ_U Load Quadword Unaligned

STL Store Longword

STL.C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ_U Store Quadword Unaligned

4-4 Common Architecture (I)

4.2.1 Load Address

Format:

LDAx Ra.wq,disp.ab(Rb.ab) '.Memory format

Operation :

Ra «- Rbv + SEXT(disp)

Ra <- Rbv + SEXT(disp*65536)

! LDA

•LDAH

Exceptions:

None

Instruction mnemonics:

LDA Load Address

LDAH Load Address High

Qualifiers:

None

Description:

The vi r tua l address is computed by adding register Rb to t he sign-extended 16-bit
displacement for LDA, and 65536 t imes the sign-extended 16-bit displacement for
LDAH. The 64-bit resul t is wr i t ten to regis ter Ra.

Instruction Descriptions (I) 4-5

4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:

va

Ra
Ra

{Rbv + SEXT(disp)}

SEXT((va)<31:0>)
(va)<63:0>

•LDL
!LDQ

Exceptions:

Access Violation

Alignment

Fau l t on Read

Translat ion Not Valid

Instruction mnemonics:

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

Qualifiers:

None

Description:

The vir tual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory, sign-extended, and
wri t ten to register Ra. If t he da t a is not na tura l ly aligned, an a l ignment exception
is generated.

4-6 Common Architecture (I)

4.2.3 Load Unaligned Memory Data into Integer Register

Format:

L D Q J J Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:

va <- {{Rbv + SEXT(disp)} AND NOT 7}

Ra <- (va)<63:0>

Exceptions:

Access Violation

Fau l t on Read

Translat ion Not Valid

Instruction mnemonics:

LDQ_U Load Unal igned Quadword from Memory to Register

Qualifiers:

None

Description:

The vi r tua l address is computed by adding register Rb to the sign-extended 16-
bit displacement, t hen the low-order th ree bi ts a re cleared. The source operand is
fetched from memory and wr i t t en to regis ter Ra.

Instruction Descriptions (I) 4-7

4.2.4 Load Memory Data into Integer Register Locked

Format:

LDx_L Ra.wq,disp.ab(Rb.ab) ÎMemory format

Operation:

va «- {Rbv + SEXT(disp)}

lock_flag «— 1
locked_physical_address
Ra 4 - SEXT((va)<31:0>)
Ra <- (va)<63:0>

Exceptions:

Access Violation

Alignment

Fau l t on Read

Translat ion Not Valid

Instruction mnemonics:

LDL_L Load Sign-Extended Longword from Memory to Register Locked

LDQJL Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The vi r tual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, sign-extended for LDL_
L, and wri t ten to register Ra.

When a LDx_L instruct ion is executed without faulting, the processor records the
ta rge t physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruct ion is executed, the
store occurs; otherwise, it does not occur, as described for the STx_C instruct ions.

If processor A's lock_flag is set and processor Β successfully does a store wi thin A's
locked range of physical addresses , t hen A's lock_flag is cleared. A processor's locked

PHYSICAL_ADDRESS(va)
! LDL_L
!LDQ L

4-8 Common Architecture (I)

range is the aligned block of 2**N bytes t h a t includes the locked_physical_address.
The 2**N value is implementa t ion dependent . I t is a t least 8 (minimum lock range
is an aligned quadword) and is a t most the page size for t h a t implementat ion
(maximum lock range is one physical page).

A processor's lock_flag is also cleared if t h a t processor encounters a CALL_PAL REI
instruct ion. I t is UNPREDICTABLE whe the r or not a processor's lock_flag is cleared
on any other CALL_PAL instruct ion. I t is UNPREDICTABLE whe the r a processor's
lock_flag is cleared by t h a t processor's executing a normal load or store instruction.
I t is UNPREDICTABLE whe the r a processor's lock_flag is cleared by t h a t processor's
executing a t aken branch (including BR, BSR, and Jumps) ; conditional branches t h a t
fall th rough do not clear the lock_flag.

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an
atomic read-modify-write of a d a t u m in shared memory if t he b ranch falls through;
if t he b ranch is t aken , the store did not modify memory and the sequence may be
repeated unt i l it succeeds.

Notes:

• LDx_L instruct ions do not check for wri te access; hence a match ing STx__C may
t ake a n access-violation or fault-on-write exception.

Execut ing a LDx_L instruct ion on one processor does not affect any
archi tectural ly visible s ta te on ano ther processor, and in par t icular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instruct ions need not be paired. In part icular, an LDx_L may
be followed by a conditional branch: on the fall-through pa th an STx_C is done,
whereas on the t a k e n pa th no match ing STx_C is done.

If two LDx_L instruct ions execute wi th no in tervening STx_C, the second one
overwrites t he s ta te of t he first one. If two STx_C instruct ions execute wi th no
in tervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emula te unal igned LDx_L instruct ions.

• If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementat ions; hence, no useful program should do this .

• If a b ranch is t a k e n between the LDx_L and the STx_C, t he sequence above may
always fail on some implementa t ions ; hence, no useful program should do this .
(CMOVxx may be used to avoid branching.)

• If a subset ted instruct ion (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementat ions ,
because of the Illegal Ins t ruct ion Trap; hence, no useful program should do this .

• If a large number of instruct ions a re executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementat ions , because of a t imer
in te r rup t always clearing the lock_flag before the sequence completes; hence, no
useful program should do this .

Instruction Descriptions (I) 4-9

• Hardware implementa t ions are encouraged to lock no more t h a n 128 bytes.
Software implementat ions are encouraged to separa te locked locations by a t
least 128 bytes from other locations t h a t could potential ly be wr i t ten by another
processor while the first location is locked.

IMPLEMENTATION NOTES
Implementa t ions t h a t impede the mobility of a cache
block on LDx_L, such as t h a t which m a y occur in a Read
for Ownership cache coherency protocol, m a y release the
cache block and m a k e the subsequent STx_C fail if a
branch- taken or memory instruct ion is executed on t h a t
processor.

All implementa t ions should gua ran tee t h a t a t least
40 non-subset ted operate instruct ions can be executed
between t imer in te r rup ts .

4-10 Common Architecture (I)

4.2.5 Store Integer Register Data into Memory Conditional

Format:

STx_C Ra.mq,disp.ab(Rb.ab) ÎMemory format

Operation:

va <- {Rbv + SEXT(disp)}

IF lock_flag EQ 1 THEN
(va)<31:0> «- Rav<31:0>
(va) «— Rav

! STL_C
!STQ C

Ra <— lock__flag
lock_flag <- 0

Exceptions:

Access Violation

Fau l t on Write

Alignment

Transla t ion Not Valid

Instruction mnemonics:

STL_C Store Longword from Register to Memory Conditional

STQ_C Store Quadword from Register to Memory Conditional

Qualifiers:

None

Description:

The vi r tua l address is computed by adding regis ter Rb to the sign-extended 16-bit
displacement. If t he lock_flag is set, t he Ra operand is wr i t ten to memory a t th is
address . (See t he LDx_L description for conditions t h a t clear t he lock_flag.) The
lock_flag is r e tu rned in RA and then set to a zero.

• Software will not emula te unal igned STx_C instruct ions.

• Each implementa t ion m u s t do the tes t and store atomically, so t h a t if two
processors execute store conditionals wi thin the same lock range , exactly one
of t he stores succeeds.

Notes:

Instruction Descriptions (I) 4-11

• The following sequence should not be used:

try_again: LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl, try_again

T h a t sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be t a k e n in the
Alpha archi tecture. In the case where the STQ_C succeeds and the b ranch
will actually fall through, t h a t sequence incurs unnecessary delay due to a
mispredicted backward branch. Ins tead, a forward b ranch should be used to
handle the failure case as shown in Section 5.5.2.

SOFTWARE NOTE
The address specified by a STx_C instruct ion need not
ma tch t h a t given in a preceding LDx_L. Specifying
unmatched addresses for those instruct ions requires an
MB in between to gua ran tee ordering.

IMPLEMENTATION NOTES
A STx_C m u s t propagate to the point of coherency,
where it is guaran teed to prevent any other store from
changing the s ta te of the lock bit, before i ts outcome can
be determined.

If an implementat ion could encounter a TB or cache miss
on the da t a reference of t he STx_C in the sequence above
(as might occur in some shared I- and D-st ream direct-
mapped TBs/caches), i t m u s t be able to resolve the miss
and complete the store wi thout always failing.

4-12 Common Architecture (I)

4.2.6 Store Integer Register Data into Memory

Format:

STx Ra.rq,disp.ab(Rb.ab) ÎMemory format

Operation:

va <- {Rbv + SEXT(disp)}
(va)<31:0> <- Rav<31:0>
(va) <— Rav

!STL
ISTQ

Exceptions:

Access Violation

Fau l t on Write

Alignment

Translat ion Not Valid

Instruction mnemonics:

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

Qualifiers:

None

Description:

The v i r tua l address is computed by adding register Rb to t he sign-extended 16-bit
displacement. The Ra operand is wr i t t en to memory a t th i s address . If t he da ta is
not na tura l ly aligned, an a l ignment exception is generated.

Instruction Descriptions (I) 4-13

4.2.7 Store Unaligned Integer Register Data into Memory

Format:

STQ_U Ra.rq,disp.ab(Rb.ab) ÎMemory format

Operation:

va <- {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> «- Rav<63:0>

Exceptions :

Access Violation

Fau l t on Write

Translat ion Not Valid

Instruction mnemonics:

STQ_U Store Unal igned Quadword from Register to Memory

Qualifiers:

None

Description:

The vi r tual address is computed by adding register Rb to t he sign-extended 16-bit
displacement, t hen clearing t he low order th ree bi ts . The Ra operand is wr i t ten to
memory a t th is address .

4-14 Common Architecture (I)

4.3 Control Instructions

Alpha provides integer conditional branch, uncondit ional branch, b ranch to
subrout ine, and j u m p instruct ions. The PC used in these instruct ions is the updated
PC, as described in Section 3.1.1.

To allow implementa t ions to achieve high performance, t h e Alpha archi tecture
includes explicit h in t s based on a branch-predict ion model:

1. For m a n y implementa t ions of computed branches (JSR/RET/JMP), the re is a
subs tan t ia l performance gain in forming a good guess of t he expected t a rge t I-
cache address before register Rb is accessed.

2. For m a n y implementat ions , t he first-level (or only) I-cache is no bigger t h a n a
page (8 KB to 64 KB).

3. Correctly predict ing subrout ine r e t u r n s is impor tan t for good performance. Some
implementa t ions will therefore keep a small s tack of predicted subrout ine r e tu rn
I-cache addresses .

The Alpha archi tecture provides th ree k inds of branch-predict ion h in t s : likely t a rge t
address , re tu rn-address s tack action, and conditional branch- taken.

For computed branches , t h e otherwise unused displacement field contains a function
code (JMP/JSR/RET/JSR^COROUTINE), and, for J S R and JMP, a field t h a t
statically specifies t he 16 low bits of t he most likely t a rge t address . The PC-
relat ive calculation us ing these bi ts can be exactly the PC-relat ive calculation used
in uncondit ional branches . The low 16 bi ts a re enough to specify an I-cache block
wi thin the largest possible Alpha page and hence a re expected to be enough for
branch-predict ion logic to s t a r t an early I-cache access for the most likely target .

For all branches , h in t or opcode bi ts a re used to dis t inguish simple branches ,
subrout ine calls, subrout ine r e tu rns , and coroutine l inks. These dist inctions allow
branch-predict logic to ma in t a in an accurate s tack of predicted r e t u r n addresses .

For conditional branches , t he sign of t h e t a rge t displacement is used as a t a k e n
/fall-through hint . The inst ruct ions a re summar ized in Table 4 - 3 .

Instruction Descriptions (I) 4-15

Table 4 - 3 : Control Instructions Summary

Mnemonic Opera t ion

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

4-16 Common Architecture (I)

4.3.1 Conditional Branch

Format:

Bxx Ra.rq,disp.al ÎBranch format

Operation:

{update PC}
va 4 - PC + {4*SEXT(disp)>
IF TEST(Rav, Condition_based_on__0pcode) THEN

PC <— va

Exceptions:

None

Instruction mnemonics:

BEQ Branch if Register Equa l to Zero

BGE Branch if Register Grea te r T h a n or Equa l to Zero

BGT Branch if Register Grea te r T h a n Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less T h a n or Equa l to Zero

BLT Branch if Register Less T h a n Zero

BNE Branch if Register Not Equa l to Zero

Qualifiers:

None

Description:

Register Ra is tested. If t he specified rela t ionship is t rue , t he PC is loaded wi th
t he t a rge t v i r tua l address ; otherwise, execution continues wi th the next sequent ial
instruct ion.

The displacement is t r ea ted as a signed longword offset. This means it is shifted
left two bi ts (to address a longword boundary) , sign-extended to 64 bi ts , and added
to t he upda ted PC to form t h e t a rge t v i r tua l address .

The conditional b ranch inst ruct ions a re PC-relat ive only. The 21-bit signed
displacement gives a forward/backward b ranch dis tance of + / - 1M instruct ions.

Instruction Descriptions (I) 4-17

The tes t is on the signed quadword integer in terpre ta t ion of the register contents;
all 64 bi ts a re tested.

Notes:

• Forward conditional branches (positive displacement) a re predicted to fall
through. Backward conditional branches (negative displacement) a re predicted
to be taken . Conditional branches do not affect a predicted r e t u r n address stack.

4-18 Common Architecture (I)

4.3.2 Unconditional Branch

Format:

BxR Ra.wq,disp.al ÎBranch format

Operation:

{update PC}
Ra <- PC
PC <- PC + {4*SEXT(disp)>

Exceptions:

None

Instruction mnemonics:

BR Uncondit ional Branch

BSR Branch to Subrout ine

Qualifiers:

None

Description:

The PC of t he following inst ruct ion (the upda ted PC) is wr i t t en to regis ter Ra, and
t hen the PC is loaded wi th the t a rge t address .

The displacement is t r ea ted as a signed longword offset. This m e a n s it is shifted
left two bi ts (to address a longword boundary) , sign-extended to 64 bi ts , and added
to t he upda ted PC to form the t a rge t v i r tua l address .

The uncondit ional b ranch ins t ruct ions a re PC-relative. The 21-bit signed
displacement gives a forward/backward b ranch distance of + / - 1M instruct ions.

PC-relat ive addressabil i ty can be establ ished by:

BR Rx,Ll
LI:

Notes:

• BR and BSR do identical operat ions. They only differ in h in t s to possible branch-
prediction logic. BSR is predicted as a subrout ine call (pushes t he r e t u r n address
on a branch-predict ion stack), whereas BR is predicted as a b ranch (no push) .

Instruction Descriptions (I) 4-19

4.3.3 Jumps

Format:

mnemonic Ra.wq,(Rb.ab),hint ÎMemory format

Operation:

{update PC}
va *- Rbv AND {NOT 3}
Ra <- PC
PC <— va

Exceptions:

None

Instruction mnemonics:

J M P

J S R

RET

JSR_COROUTINE

Qualifiers:

None

Description:

The PC of the instruct ion following the J u m p instruct ion (the upda ted PC) is wr i t ten
to register Ra, and t hen the PC is loaded wi th the t a rge t v i r tua l address .

The new PC is supplied from register Rb. The low two bi ts of Rb are ignored. Ra
and Rb may specify the same register; t he t a rge t calculation us ing the old value is
done before the new value is assigned.

All J u m p instruct ions do identical operations. They only differ in h in t s to possible
branch-prediction logic. The displacement field of t he instruct ion is used to pass th is
information. The four different "opcodes" set different bit pa t t e rns in disp<15:14>,
and the h in t operand sets disp<13:0>.

J u m p

J u m p to Subrout ine

Re tu rn from Subrout ine

J u m p to Subrout ine Re tu rn

4-20 Common Architecture (I)

These bi ts a re in tended to be used as shown in Table 4 - 4 .

Table 4-4: Jump Instructions Branch Prediction

disp<15:14> Meaning
Predicted
Target<15:0>

Prediction
Stack Action

00 JMP PC + {4*disp<13:0>} -
01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR.COROUTINE Prediction stack Pop, push PC

The design in Table 4—4 allows specification of t he low 16 bi ts of a likely longword
ta rge t address (enough bi ts to s t a r t a useful I-cache access early), and also allows
dis t inguishing call from r e t u r n (and from the other two less frequent operations).

Note t h a t t he above information is used only as a h int ; correct se t t ing of these bi ts
can improve performance b u t is not needed for correct operation. See Appendix A
for more information on b ranch prediction.

An uncondit ional long j u m p can be performed by:

JMP R31,(Rb),hint

Coroutine l inkage can be performed by specifying the same regis ter in both the Ra
and Rb operands. When disp<15:14> equals 1 0 ' (RET) or 1 1 ' (JSR.COROUTINE)
(tha t is, t he t a rge t address prediction, if any, would come from a predictor
implementa t ion stack), t hen bi ts <13:0> are reserved for software and m u s t be
ignored by all implementa t ions . All encodings for bi ts <13:0> a re used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

ΟΟΟΟχβ Indicates non-procedure r e t u r n

000116 Indicates procedure r e t u r n

All o ther encodings a re reserved to Digital.

Instruction Descriptions (I) 4-21

4.4 Integer Arithmetic Instructions

The integer ar i thmet ic instruct ions perform add, subtract , multiply, and signed and
unsigned compare operations.

The integer instruct ions a re summar ized in Table 4 - 5 .

Table 4 - 5 : Integer Arithmetic Instructions Summary

Mnemonic Opera t ion

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than

CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH; division by a variable can be done via a subrout ine. See Appendix A.

4-22 Common Architecture (I)

4.4.1 Longword Add

Format:

ADDL

ADDL Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

iOperate format

!Operate format

Operation:

Rc <- SEXT((Rav + Rbv)<31:0>)

Exceptions:

In teger Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

In teger Overflow Enab le (/V)

Description:

Register Ra is added to regis ter Rb or a l i teral , and t h e sign-extended 32-bit sum is
wr i t ten to Rc.

The high order 32 bits of Ra and Rb a re ignored. Rc is a proper sign extension
of t h e t runca ted 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.

Instruction Descriptions (I) 4-23

4.4.2 Scaled Longword Add

Format:

SxADDL

SxADDL

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

CASE
S4ADDL: Rc «- SEXT (((LEFT__SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Rc <- SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL Scaled Add Longword by 4

S8ADDL Scaled Add Longword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register
Rb or a li teral, and the sign-extended 32-bit sum is wr i t ten to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
t runca ted 32-bit sum.

4-24 Common Architecture (I)

4.4.3 Quadword Add

Format:

ADDQ

ADDQ

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

îOperate format

O p e r a t e format

Operation:

Rc <— Rav + Rbv

Exceptions:

In teger Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to regis ter Rb or a l i teral , and the 64-bit sum is wr i t ten to Rc.

On overflow, t he least significant 64 bi ts of t he t r ue resul t a re wr i t ten to the
dest inat ion register.

The unsigned compare ins t ruct ions can be used to genera te carry. After adding two
values, if t he sum is less unsigned t h a n e i ther one of t he inputs , t he re was a carry
out of the most significant bit.

Instruction Descriptions (I) 4-25

4.4.4 Scaled Quadword Add

Format:

SxADDQ

SxADDQ

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

O p e r a t e format

Operation :

CASE
S4ADDQ:
S8ADDQ:

ENDCASE

Rc <- LEFT_SHIFT(Rav,2) + Rbv
Rc <- LEFT_SHIFT(Rav,3) + Rbv

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4

S8ADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register
Rb or a li teral, and the 64-bit sum is wr i t ten to Rc.

On overflow, the leas t significant 64 bi ts of t he t r ue resul t a re wr i t ten to the
dest inat ion register.

4-26 Common Architecture (I)

4.4.5 Integer Signed Compare

Format:

CMPxx

CMPxx Ra.rq,Rt>.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

IF Rav SI GNED__RELAT I ON Rbv THEN
Rc <- 1

ELSE
RC <- 0

Exceptions:

None

Instruction mnemonics:

CMPEQ Compare Signed Quadword Equa l

CMPLE Compare Signed Quadword Less T h a n or Equa l

CMPLT Compare Signed Quadword Less T h a n

Qualifiers:

Description:

Register Ra is compared to Register Rb or a l i teral . If t he specified relat ionship is
t rue , t he value one is wr i t ten to regis ter Rc; otherwise, zero is wr i t ten to Rc.

Notes:

• Compare Less T h a n A,B is t he same as Compare Grea te r T h a n B,A; Compare
Less T h a n or Equa l A,B is t h e same as Compare Grea te r T h a n or Equa l B,A.
Therefore, only t h e less- than operat ions a re included.

None

Instruction Descriptions (I) 4-27

4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rcwq

CMPUxx Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

IF Rav UN SIGNED_RELATION Rbv THEN
Rc <- 1

ELSE
RC « - 0

Exceptions:

None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less T h a n or Equa l

CMPULT Compare Unsigned Quadword Less T h a n

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a l i teral . If t he specified relat ionship is
t rue , t he value one is wr i t ten to register Rc; otherwise, zero is wr i t ten to Rc.

4-28 Common Architecture (I)

4.4.7 Longword Multiply

Format:

MULL

MULL Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

.Operate format

.Operate format

Operation:

Rc <- SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

In teger Overflow Enable (/V)

Description:

Register Ra is mult ipl ied by regis ter Rb or a l i teral , and the sign-extended 32-bit
product is wr i t t en to Rc.

The high 32 bi ts of Ra and Rb a re ignored. Rc is a proper sign extension
of t he t runca ted 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of t he t r u e resu l t a r e wr i t t en to t he dest inat ion register.

The MULQ instruct ion can be used to r e t u r n t he full 64-bit product.

Instruction Descriptions (I) 4-29

4.4.8 Quadword Multiply

Format:

MULQ

MULQ

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

Rc <— Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description :

Register Ra is multiplied by register Rb or a l i teral , and the 64-bit product is wr i t ten
to register Rc. Overflow detection is based on considering the operands and the resul t
as signed quant i t ies . On overflow, the least significant 64 bi ts of the t rue resul t a re
wr i t ten to the dest inat ion register.

The UMULH instruct ion can be used to genera te the upper 64 bits of the 128-bit
resul t when an overflow occurs.

4-30 Common Architecture (I)

4.4.9 Unsigned Quadword Multiply High

Format:

U M U L H Ra.rq,Rb.rq,Rc.wq

U M U L H Ra.Rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

Rc <- {Rav *U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

U M U L H Unsigned Multiply Quadword High

Qualifiers:

Description:

Register Ra and Rb or a l i teral a re mult ipl ied as unsigned number s to produce a
128-bit resul t . The high-order 64-bits a re wr i t t en to register Rc.

The U M U L H instruct ion can be used to genera te t he upper 64 bi ts of a 128-bit resul t
a s follows:

Ra and Rb a re unsigned: resul t of U M U L H

Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra

The MULQ instruct ion gives t he low 64 bits of the resul t in e i ther case.

None

Instruction Descriptions (I) 4-31

4.4.10 Longword Subtract

Format:

SUBL

SUBL Ra.rq,Rt>.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation :

Rc «- SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtrac t Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a l i teral is subtracted from regis ter Ra, and the sign-extended 32-bit
difference is wr i t ten to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
t runca ted 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> - Rbv<31:0>.

4-32 Common Architecture (I)

4.4.11 Scaled Longword Subtract

Format:

SxSUBL Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format SxSUBL

Operation:

CASE
S4SUBL: Rc <- SEXT (((LEFTJSHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc <- SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBL Scaled Subt rac t Longword by 4

S8SUBL Scaled Subt rac t Longword by 8

Qualifiers:

None

Description:

Register Rb or a l i teral is subt rac ted from the scaled value of regis ter Ra, which is
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit différence
is wr i t ten to Rc.

The high 32 bi ts of Ra and Rb are ignored. Rc is a proper sign extension of t he
t runca ted 32-bit difference.

Instruction Descriptions (I) 4-33

4.4.12 Quadword Subtract

Format:

SUBQ

SUBQ

Ra.rq,Rb.rq,Re.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

Rc <— Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtrac t Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a l i teral is subtracted from register Ra, and the 64-bit difference is
wr i t ten to register Rc. On overflow, t he least significant 64 bits of the t r ue resul t
a re wr i t ten to the dest inat ion register.

The unsigned compare instruct ions can be used to genera te borrow. If t he minuend
(Rav) is less unsigned t h a n the sub t rahend (Rbv), the re will be a borrow.

4-34 Common Architecture (I)

4.4.13 Scaled Quadword Subtract

Format:

SxSUBQ

SxSUBQ

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

CASE
S4SUBQ: Rc «- LEFT_SHIFT(Rav ,2) - Rbv
S8SUBQ: Rc «- LEFT_SHIFT (Rav, 3) - Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ Scaled Subt rac t Quadword by 4

S8SUBQ Scaled Subt rac t Quadword by 8

Qualifiers:

None

Description:

Register Rb or a l i teral is subt rac ted from the scaled value of regis ter Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), a n d the 64-bit difference is wr i t ten to
Rc.

Instruction Descriptions (I) 4-35

4.5 Logical and Shift Instructions

The logical instruct ions perform quadword Boolean operat ions. The conditional move
integer instruct ions perform conditionals wi thout a branch. The shift instruct ions
perform left and r ight logical shift and r ight ar i thmet ic shift. These a re summar ized
in Table 4 -6 .

Table 4 - 6 : Logical and Shift Instructions Summary
Mnemonic Opera t ion

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical

SOFTWARE NOTE
There is no ar i thmet ic left shift instruction. Where an
ar i thmet ic left shift would be used, a logical shift will
do. For mult iplying by a small power of two in address
computat ions, logical left shift is acceptable.

Integer mult iply should be used to perform an ar i thmet ic left shift wi th overflow
checking.

Bit field extracts can be done wi th two logical shifts. Sign extension can be done
with left logical shift and a right ar i thmet ic shift.

4-36 Common Architecture (I)

4.5.1 Logical Functions

Format:

mnemonic Ra.rq,Rb.rq,Rc.wq ÎOperate format

mnemonic Ra.rq,#b.ib,Rc.wq ÎOperate format

Operation:

RC <— Rav AND Rbv ! AND
Rc «— Rav OR Rbv •BIS
Rc <— Rav XOR Rbv !XOR
Rc 4 - Rav AND {NOT Rbv} !BIC
Rc <— Rav OR {NOT Rbv} !ORNOT
Rc <— Rav XOR {NOT Rbv} !EQV

Exceptions:

None

Instruction mnemonics:

AND Logical Product

BIC Logical Product wi th Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

Qualifiers:

None

Description:

These instruct ions perform the designated Boolean function between register Ra and
regis ter Rb or a l i teral . The resu l t is wr i t t en to regis ter Rc.

The "NOT" function can be performed by doing an ORNOT with zero (Ra = R31).

Instruction Descriptions (I) 4-37

4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq ÎOperate format

CMOVxx Ra.rq,#b.ib,Rc.wq '.Operate format

Operation:

IF TEST(Rav, Condition_based_on__Opcode) THEN

Rc «— Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ CMOVE

CMOVGE CMOVE

CMOVGT CMOVE

CMOVLBC CMOVE

CMOVLBS CMOVE

CMOVLE CMOVE

CMOVLT CMOVE

CMOVNE CMOVE

Qualifiers:

None

Description:

Register Ra is tested. If t he specified relat ionship is t rue , t he value Rbv is wr i t ten
to register Rc.

if Register Equa l to Zero

if Register Grea te r T h a n or Equa l to Zero

if Register Grea te r T h a n Zero

if Register Low Bit Clear

if Register Low Bit Set

if Register Less T h a n or Equa l to Zero

if Register Less T h a n Zero

if Register Not Equa l to Zero

4-38 Common Architecture (I)

Notes:

Except t h a t i t is likely in m a n y implementa t ions to be substant ia l ly faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label: ...

For example, a branchless sequence for:

R1=MAX(R1,R2)

is:

CMPLT R1,R2,R3 ! R3=l if R K R 2

CMOVNE R3,R2,R1 i Move R2 to Rl if R K R 2

Instruction Descriptions (I) 4-39

4.5.3 Shift Logical

Format:

SxL Ra.rq,Rb.rq,Rc.wq ÎOperate format

SxL Ra.rq,#b.ib,Rc.wq ÎOperate format

Operation:

Rc <- LEFT_SHIFT(Rav, Rbv<5:0>) ! SLL
Rc «- RIGHT__SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical

SRL Shift Right Logical

Qualifiers:

None

Description:

Register Ra is shifted logically left or r ight 0 to 63 bi ts by the count in register Rb
or a l i teral. The resul t is wr i t ten to register Rc. Zero bi ts a re propagated into the
vacated bit positions.

4-40 Common Architecture (I)

4.5.4 Shift Arithmetic

Format:

SRA Ra.rq ,Rb.rq ,Rcwq

Ra.rb,#b.ib,Rc.wq

ÎOperate format

ÎOperate format SRA

Operation:

Rc 4 - ARITH__RIGHTJ3HIFT(Rav, Rbv<5:0>)

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Ari thmet ic

Qualifiers:

None

Description:

Register Ra is r ight shifted ar i thmetical ly 0 to 63 bi ts by t he count in register Rb or
a l i teral . The resul t is wr i t ten to regis ter Rc. The sign bit (Rav<63>) is propagated
into the vacated bit positions.

Instruction Descriptions (I) 4-41

4.6 Byte-Manipulation Instructions

Alpha provides instruct ions for operat ing on byte operands wi thin registers .
These instruct ions allow full-width memory accesses in the load/store instruct ions
combined with powerful in-register byte manipula t ion.

The instruct ions a re summar ized in Table 4 - 7 .

Table 4 - 7 : Byte-Manipulation Instructions Summary

Mnemonic Opera t ion

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

4-42 Common Architecture (I)

Table 4-7 (Cont.): Byte-Manipulation Instructions Summary
Mnemonic Opera t ion

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Instruction Descriptions (I) 4-43

4.6.1 Compare Byte

Format:

CMPBGE Ra.rq,Rb.rq,Rc.wq ÎOperate format

CMPBGE Ra.rq,#b.ib,Rc.wq ÎOperate format

Operation:

FOR i FROM 0 TO 7

temp<8:0> <- {0 | | Rav<i*8+7:i*8>} +
{0|| NOT Rbv<i*8+7:i*8>> + 1

Rc<i> «— temp<8>
END
Rc<63:8> «- 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight paral lel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight resul t s in t he low eight bi ts of Rc. The
high 56 bi ts of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc
corresponds to byte 1, and so forth. A resul t bit is set in Rc if the corresponding byte
of Rav is grea ter t h a n or equal to Rbv (unsigned).

4-44 Common Architecture (I)

Notes:

To compare two character s t r ings for greater/ less:

<initialize Rl to aligned QW address of stringl>
<initialize R2 to aligned QW address of string2>

LOOP:

LDQ R2,0(R1)
LDA R1,8(R1)
CMPBGE R31,R2,R3
BEQ R3,LOOP

Pick up 8 bytes
Increment string pointer
If NO bytes of zerof R3<7:0>=0
Loop if no terminator byte found
At this point, R3 can be used to
determine which byte terminated

LDQ R3,0(R1)
LDA R1,8(R1)
LDQ R4,0(R2)
LDA R2,8(R2)
XOR R3,R4,R5
BEQ R5,LOOP
CMPBGE R31,R5,R5

Pick up 8 bytes of stringl
Increment stringl pointer
Pick up 8 bytes of string2
Increment string2 pointer
Test for all equal bytes
Loop if all equal

At this point, R5 can be used to
determine the first not-equal
byte position.

To range-check a s t r ing of charac ters in R l for Ό \ / 9 ' :

LDQ R2,litOs Pick up 8 bytes of the character
BELOW '0' '////////'
Pick up 8 bytes of the character
ABOVE '9' '::::::::'
Some R4<i>=l if character is LT '0'
Some R5<i>=l if character is GT '9'
Branch if some char too low
Branch if some char too high

LDQ R3,lit9s

CMPBGE R2,Rl,R4
CMPBGE R1,R3,R5
BNE R4,ERROR
BNE R5,ERROR

Instruction Descriptions (I) 4-45

The resul t of CMPBGE can be used as an inpu t to ZAP and ZAPNOT.

To scan for a byte of zeros in a charac ter s t r ing:

<initialize Rl to aligned QW address of string>
LOOP:

4.6.2 Extract Byte

Format:

EXTxx Ra

EXTxx Ra

Operation:

CASE

EXTBL:
EXTWx:
EXTLx:
EXTQx:

ENDCASE

CASE

EXTxL:
byte__loc <- Rbv<2:0>*8
temp «- RIGHT_SHIFT(Rav, byte_
Rc <- BYTE_ZAP (temp, NOT(byte_

EXTxH:
byte_loc <- 64 - Rbv<2:0>*8
temp <- LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc <- BYTE_ZAP (temp, NOT(byte_mask))

ENDCASE

Exceptions:

None

.rq,Rb . rq ,Rcwq

..rq,#b.ib,Rc.wq

byte_mask <—
byte_mask +—
byte_mask <—
byte_mask <—

0000 00012
0000 00112
0000 11112

1111 11112

ÎOperate format

ÎOperate format

loc<5:0>)
mask))

Instruction mnemonics:

EXTBL Extrac t Byte Low

EXTWL Extrac t Word Low

EXTLL Extrac t Longword Low

EXTQL Extrac t Quadword Low

EXTWH Ext rac t Word High

EXTLH Extract Longword High

EXTQH Extrac t Quadword High

4-46 Common Architecture (I)

Qualifiers:

None

Description:

EXTxL shifts register Ra r ight by 0 to 7 bytes, inser ts zeros into vacated bit positions,
and t h e n extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left
by 0 to 7 bytes, inser t s zeros into vacated bit positions, and t hen extracts 2, 4, or 8
bytes into regis ter Rc. The n u m b e r of bytes to shift is specified by Rbv<2:0>. The
n u m b e r of bytes to extract is specified in the function code. Remaining bytes are
filled wi th zeros.

Notes:

The comments in t he examples below assume t h a t t he effective address (ea) of
X(R11) is such t h a t (ea mod 8) = 5, t he value of the aligned quadword containing
X(R11) is CBAx xxxx, and the value of t he aligned quadword containing X+7(R11) is
yyyH GFED.

The examples below are t he most general case unless otherwise noted; if more
information is known about the value or in tended a l ignment of X, shor ter sequences
can be used.

The in tended sequence for loading a quadword from unal igned address X(R11) is:

LDQ_U
LDQ_U
LDA
EXTQL
EXTQH
OR

R1,X(R11)
R2,X+7(R11)
R3,X(R11)
R1,R3,R1
R2 , R3, R2
R2,R1,R1

Ignores va<2:0>, Rl = CBAx xxxx
Ignores va<2:0>, R2 = yyyH GFED
R3<2:0> = (X mod 8) = 5
Rl = 0000 OCBA
R2 = HGFE DO00
Rl = HGFE DCBA

The in tended sequence for loading and zero-extending a longword from unal igned
address X is:

LDQ_U
LDQ_U
LDA
EXTLL
EXTLH
OR

R1,X(R11)
R2,X+3(R11)
R3,X(R11)
R1,R3,R1
R2,R3,R2
R2,R1,R1

Ignores va<2:0>, Rl = CBAx xxxx
Ignores va<2:0>, R2 = yyyy yyyD
R3<2:0> = (X mod 8) = 5
Rl = 0000 OCBA
R2 = 0000 D000
Rl = 0000 DCBA

The in tended sequence for loading and sign-extending a longword from unal igned
address X is:

LDQ U R1,X(R11) • Ignores va<2:0>, Rl = CBAx XXXX

LDQ U R2,X+3(R11) • Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) • R3<2:0> = (X mod 8) = 5
EXTLL R1,R3,R1 • Rl = 0000 OCBA
EXTLH R2,R3,R2 • R2 = 0000 D000
OR R2,R1,R1 • Rl = 0000 DCBA
SLL R1,#32,R1 • Rl = DCBA 0000
SRA R1,#32,R1 Rl = ssss DCBA

Instruction Descriptions (I) 4-47

The intended sequence for loading and zero-extending a word from unal igned address
X i s :

LDQ_U
LDQ_U
LDA
EXTWL
EXTWH
OR

Rl,X(R11)
R2fX+l(Rll)
R3,X(R11)
R1,R3,R1
R2,R3,R2
R2,R1,R1

Ignores va<2:0>,
Ignores va<2:0>,
R3<2:0> = (X mod 8)
Rl = 0000 00ΒΑ
R2 = 0000 0000
Rl = 0000 00ΒΑ

Rl = yBAx xxxx
R2 = yBAx xxxx

5

The intended sequence for loading and sign-extending a word from unal igned address
X i s :

LDQ U R1,X(R11) • Ignores va<2:0>, Rl = yBAx xxxx
LDQ U R2,X+1(R11) • Ignores va<2:0>, R2 = yBAx xxxx
LDA R3,X(R11) • R3<2:0> = (X mod 8) = 5
EXTWL R1,R3,R1 ; Rl = 0000 00ΒΑ
EXTWH R2 , R3 , R2 • R2 = 0000 0000
OR R2,R1,R1 ; Rl = 0000 00ΒΑ
SLL Rl,#48,Rl ? Rl = ΒΑ00 0000
SRA R1,#48,R1 ; Rl = ssss ssBA

The intended sequence for loading and zero-extending a byte from address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, Rl = yyAx xxxx
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTBL R1,R3,R1 ; Rl = 0000 000A

The intended sequence for loading and sign-extending a byte from address X is:

LDQ_U Rl, X(R11)
LDA R3, X+1(R11)

EXTQH Rl, R3, Rl

SRA Rl, #56, Rl

Ignores va<2:0>, Rl = yyAx xxxx
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based
Places the desired byte into byte 7
of Rl.final by left shifting
Rl.initial by (8 - R3<2:0>) byte
positions
Arithmetic Shift of byte 7 down
into byte 0,

O p t i m i z e d e x a m p l e s :

Assume t h a t a word fetch is needed from 10(R3), where R3 is in tended to contain
a longword-aligned address . The optimized sequences below t ake advantage of the
known constant offset, and the longword a l ignment (hence a single aligned longword
contains the ent i re word). The sequences genera te a Da ta Alignment Fau l t if R3 does
not contain a longword-aligned address .

The intended sequence for loading and zero-extending an aligned word from 10(R3)
is:

LDL R1,8(R3) ; Rl = ssss BAxx
; Faults if R3 is not longword aligned

EXTWL R1,#2,R1 ; Rl = 0000 00ΒΑ

4-48 Common Architecture (I)

The in tended sequence for loading and sign-extending an aligned word from 10(R3)
is:

LDL R1,8(R3) ; Rl = S S S S BAxx
; Faults if R3 is not longword aligned

SRA R1,#16,R1 ; Rl = ssss ssBA

Instruction Descriptions (I) 4-49

4.6.3 Byte Insert

Format:

INSxx

INSxx

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

ÎOperate format

ÎOperate format

Operation:

CASE
INSBL: byte_mask <- 0000 0000 0000 00012
INSWx: byte_mask «- 0000 0000 0000 OOII2
INSLx: byte_mask <- 0000 0000 0000 IIII2
INSQx: byte_mask <- 0000 0000 1111 IIII2

ENDCASE
bytejnask «- LEFT_SHIFT(byte_mask, rbv<2:0>)

INSxL:
byte_loc <- Rbv<2:0>*8
temp <- LEFT__SHIFT(Rav, byte_loc<5:0>)
Rc <- BYTE_ZAP(temp, NOT(byte_mask<7:0>))

INSxH:
byte_loc <- 64 - Rbv<2:0>*8
temp <- RIGHT__SHIFT (Rav, byte_loc<5 : 0>)
Rc <- BYTE_ZAP(temp, NOT(byte_mask<15:8>))

ENDCASE

Exceptions:

None

Instruction mnemonics:

INSBL Inser t Byte Low

INSWL Inser t Word Low

INSLL Inser t Longword Low

INSQL Inser t Quadword Low

INSWH Inser t Word High

INSLH Inser t Longword High

INSQH Inser t Quadword High

CASE

4-50 Common Architecture (I)

Qualifiers:

None

Description:

INSxL and INSxH shift bytes from regis ter Ra and inser t t h e m into a field of zeros,
s toring the resul t in regis ter Rc. Register Rb<2:0> selects t he shift amount , and the
function code selects the m a x i m u m field width: 1, 2, 4, or 8 bytes. The instruct ions
can genera te a byte, word, longword, or quadword d a t u m t h a t is spread across two
regis ters a t an a rb i t ra ry byte a l ignment .

Instruction Descriptions (I) 4-51

4.6.4 Byte Mask

Format:

MSKxx Ra.rq,Rb.rq,Rcwq '.Operate format

MSKxx Ra.rq,#b. ib,Rcwq ÎOperate format

Operation:

Exceptions:

None

Instruction mnemonics:

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

Qualifiers:

None

4-52 Common Architecture (I)

CASE

MSKBL: byte_mask 4 - 0000 0000 0000 OOOI2
MSKWx: byte_mask <- 0000 0000 0000 OOII2
MSKLx: byte_mask <- 0000 0000 0000 IIII2
MSKQx: byte_mask <- 0000 0000 1111 IIII2

ENDCASE
byte__mask <- LEFT_SHIFT(byte_mask, rbv<2:0>)

CASE
MSKxL:

Rc <- BYTE_ZAP (Rav, bytejnask<7:0>)

MSKxH:

Rc BYTE_ZAP (Rav, byte__mask<15: 8>)

ENDCASE

Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, s toring the resul t
in register Rc. Register Rb<2:0> selects the s t a r t ing position of the field of zero
bytes, and the function code selects the max imum width: 1, 2, 4, or 8 bytes. The
instruct ions genera te a byte, word, longword, or quadword field of zeros t h a t can
spread across two regis ters a t an a rb i t ra ry byte al ignment .

Notes:
The comments in the examples below assume t h a t the effective address (ea) of X(R11)
is such t h a t (ea mod 8) = 5, t h e value of t he aligned quadword containing X(R11) is
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED,
and the value to be stored from R5 is hgfe dcba.

The examples below are the most general case; if more information is known about
t he value or in tended a l ignment of X, shor ter sequences can be used.

The in tended sequence for s toring a n unal igned quadword R5 a t address X(R11) is:

LDA R6,X(R11) R6<2:0> = (X mod 8) = 5
LDQ U R2,X+7(R11) Ignores va<2:0>, R2 = yyyH GFED
LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAx xxxx
INSQH R5,R6,R4 R4 = OOOh gfed
INSQL R5,R6,R3 R3 = cbaO 0000
MSKQH R2fR6,R2 , R2 = yyyO 0000
MSKQL R1,R6,R1 - Rl = OOOx xxxx
OR R2,R4,R2 R2 = yyyh gfed
OR R1,R3,R1 • Rl - cbax xxxx
STQ U R2,X+7(R11) • Must store high then low for
STQ U R1,X(R11) » degenerate case of aligned QW

The in tended sequence for s tor ing an unal igned longword R5 a t X is:

LDA R6,X(R11) R6<2:0> = (X mod 8) = 5
LDQ U R2,X+3(R11) Ignores va<2:0>, R2 = yyyy yyyD
LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAx xxxx
INSLH R5,R6,R4 R4 = 0000 OOOd
INSLL R5,R6,R3 R3 = cbaO 0000
MSKLH R2,R6,R2 . R2 = yyyy yyyO
MSKLL Rl,R6,Rl Rl = OOOx xxxx
OR R2,R4,R2 ' R2 = yyyy yyyd
OR R1,R3,R1 Rl = cbax xxxx
STQ U R2,X+3(R11) ' Must store high then low for
STQ U R1,X(R11) • degenerate case of aligned

Instruction Descriptions (I) 4-53

The intended sequence for storing an unal igned word R5 a t X is:

LDA R6 ,X(R11)
LDQ U R2 ,X+1(R11)
LDQ U Rl ,X(R11)
INSWH R5 ,R6,R4
INSWL R5 ,R6,R3
MSKWH R2 , R6, R2
MSKWL Rl ,R6fRl
OR R2 ,R4,R2
OR Rl ,R3,R1
STQ U R2 ,X+1(R11)
STQ U Rl ,X(R11)

The intended sequence for storing a

LDA R6,X(R11)
LDQ_U R1,X(R11)
INSBL R5,R6,R3
MSKBL R1,R6,R1
OR R1,R3,R1
STQ_U Rl,X(Rll)

; R6<2:0> = (X mod 8) = 5
; Ignores va<2:0>, R2 = yBAx xxxx
; Ignores va<2:0>, Rl = yBAx xxxx
; R4 = 0000 0000
; R3 = ObaO 0000
; R2 = yBAx xxxx
; Rl = yOOx xxxx
; R2 = yBAx xxxx
; Rl = ybax xxxx
; Must store high then low for
; degenerate case of aligned

byte R5 a t X is:

; R6<2:0> = (X mod 8) = 5
; Ignores va<2:0>, Rl = yyAx xxxx
; R3 = OOaO 0000
; Rl = yyOx xxxx
; Rl = yyax xxxx

4-54 Common Architecture (I)

4.6.5 Zero Bytes

Format:

ZAPx Ra.rq,Rb.rq,Rc.wq ÎOperate format

ZAPx Ra.rq,#b.ib,Rc.wq ÎOperate format

Operation:

CASE

ZAP:
Rc

ΖΑΡΝΟΤ:
Rc

ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of regis ter Ra to zero, and store t h e resul t in
regis ter Rc. Register Rb<7:0> selects t he bytes to be zeroed; bi t 0 of Rbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A resul t byte is set to zero
if t he corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.

BYTE_ZAP(Rav, rbv<7:0>)

BYTE_ZAP(Rav, NOT rbv<7:0>)

Instruction Descriptions (I) 4-55

4.7 Floating-Point Instructions

Alpha provides instruct ions for operat ing on floating-point operands in each of four
da t a formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S.floating (IEEE single)

• T.floating (IEEE double, 11-bit exponent)

Da ta conversion instruct ions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and
between quadword and longword integers .

NOTE
D_floating is a part ial ly supported da ta type; no D_
floating ar i thmet ic operat ions are provided in the
archi tecture. For backward compatibility, exact D_
floating ar i thmet ic m a y be provided via software
emulat ion. D_floating "format compatibility," in which
b inary files of D_floating numbers may be processed
bu t without the last 3 bi ts of fraction precision, can
be obtained via conversions to G_floating, G ar i thmet ic
operations, t hen conversion back to D_floating.

The choice of da t a formats is encoded in each instruction. Each instruct ion also
encodes t h e choice of rounding mode and t h e choice of t r app ing mode.

All floating-point operate instruct ions (tha t is, not including loads or stores) t h a t
yield an F_ or G_floating zero resul t m u s t mater ia l ize a t r ue zero.

4.7.1 Floating Subsets and Floating Faults

All floating-point operat ions may t ake floating disabled faults. Any subset ted
floating-point instruct ion may t ake an Illegal Instruct ion Trap. These faults are
not explicitly listed in the description of each instruct ion.

All floating-point loads and stores m a y t ake memory managemen t faults (access
control violation, t rans la t ion not valid, fault on read/wri te , da t a al ignment) .

The Floating-point Enable (FEN) in te rna l processor regis ter (IPR) allows system
software to restr ict access to the floating registers .

If a floating instruct ion is implemented and F E N = 0, a t t empts to execute the
instruct ion cause a floating disabled fault.

If a floating instruct ion is not implemented, a t t empts to execute the instruct ion
cause an Illegal Instruct ion Trap. This ru le holds regardless of t he value of FEN.

An Alpha implementat ion may provide both VAX and IEEE floating-point operations,
either, or none.

4-56 Common Architecture (I)

Some floating-point ins t ruct ions a re common to the VAX and IEEE subsets , some
are VAX only, and some are IEEE only. These are designated in t he descriptions
t h a t follow. If e i ther subset is implemented, all t he common instruct ions m u s t be
implemented.

An implementa t ion including IEEE floating-point may subset the ability to perform
rounding to plus infinity and minus infinity. If not implemented, instruct ions
reques t ing these rounding modes t ake Illegal Ins t ruct ion Trap.

4.7.2 Definitions

The following definitions apply to Alpha floating-point support .

true result
The mathemat ica l ly correct resul t of an operation, a ssuming t h a t t he inpu t operand
values a re exact. The t r ue resul t is typically rounded to t he neares t representable
resul t .

representable result
a real number t h a t can be represented exactly as a VAX or IEEE floating-point
number, wi th finite precision and bounded exponent range .

LSB
The leas t significant bit. For a positive representable n u m b e r A whose fraction is
not all ones, A + 1 LSB is the next larger representable number , and A + 1/2 LSB
is exactly halfway between A and the next larger representable number .

Instruction Descriptions (I) 4-57

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

Alpha finite number
A floating-point number wi th a definite, in-range value. Specifically, all numbers
in the inclusive ranges -MAX. . -MIN, zero, +MIN..+MAX, where MAX is t he largest
non-infinite representable floating-point number and MIN is the smallest non-zero
representable normalized floating-point number .

For VAX floating-point, finîtes do not include reserved operands or dir ty zeros (this
differs from the usua l VAX in terpre ta t ion of dir ty zeros as finite). For IEEE floating-
point, finîtes do not include infinites, NaNs , or denormals , b u t do include minus zero.

Not-a-Number
An IEEE floating-point bit pa t t e rn t h a t represen ts something other t h a n a number.
This comes in two forms: signaling N a N s (for Alpha, those wi th an init ial fraction
bi t of 1) and quiet N a N s (for Alpha, those wi th init ial fraction bi t of 0).

infinity
An IEEE floating-point bit pa t t e rn t h a t represen ts plus or minus infinity.

denormal
An IEEE floating-point bit pa t t e rn t h a t represen ts a n u m b e r whose magni tude lies
between zero and the smallest finite number.

dirty zero

A VAX floating-point bit pa t t e rn t h a t represen ts a zero value, bu t not in true-zero
form.

reserved operand
A VAX floating-point bit pa t t e rn t h a t represents an illegal value,

trap shadow
The set of instruct ions potentially executed after an instruct ion t h a t signals an
ar i thmet ic t r a p bu t before the t r a p is actually t aken .

4.7.3 Encodings
Floating-point numbers a re represented wi th th ree fields: sign, exponent, and
fraction. The sign is 1 bit; t he exponent is 8 or 11 bits; and the fraction is 23,
52, or 55 bits . Some encodings represent special values:

Vax VAX IEEE IEEE
Sign Exponen t F rac t ion Meaning F in i te Mean ing F in i te

X All-l 's Non-zero Fini te Yes + / -NaN No

X Aii-rs 0 Fini te Yes +/-Infinity No

0 0 Non-zero Dirty zero No +Denormal No

1 0 Non-zero Resv. operand No - D e n o r m a l No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No - 0 Yes

X Other X Fini te Yes finite Yes

The values of MIN and MAX for each of the four floating-point da t a formats are:

Data Format MIN MAX

F_floating

G_floating

S_floating

2**_127 * 0.5
(0.294e-38)

2**-1023 * 0.5
(0.56e-308)

2**-126 * 1.0
(1.175e-38)

2**127 * (1.0 - 2**-24)
(1.70e38)

2**1023 * (1.0 - 2**-53)
(0.899e308)

2**127 * (2.0 - 2**-23)
(3.40e38)

4-58 Common Architecture (I)

Data Format MIN MAX

T J I o a t i n g 2**-1022 * 1.0
(2.225e-308)

2**1023 * (2.0 - 2**-52)
(1.798e308)

4.7.4 Floating-Point Rounding Modes

All rounding modes m a p a t r u e resu l t t h a t is exactly representable to t h a t
representable value.

VAX Rounding Modes

For VAX floating-point operat ions, two rounding modes a re provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding m a p s t he t r u e resu l t to t he nea res t of two representable
resul ts , wi th t rue resul ts exactly halfway between mapped to t he larger in absolute
value (sometimes called biased rounding away from zero); m a p s t r u e resul ts
> MAX + 1/2 LSB in magni tude to an overflow; m a p s t rue resul ts < MIN - 1/2 LSB
in magni tude to an underflow.

Chopped VAX rounding m a p s the t r ue resul t to the smaller in magni tude of two
sur rounding representable resul ts ; m a p s t r u e resul t s > MAX + 1 LSB in magni tude
to an overflow; maps t rue resul ts < MIN in magni tude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operat ions, four rounding modes a re provided: normal
rounding (unbiased round to neares t) , rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first th ree can be specified in the
instruct ion. Rounding toward plus infinity can be obtained by se t t ing the Floating-
point Control Register (FPCR) to select i t and then specifying dynamic rounding
mode in the instruct ion (See Section 4.7.7). Alpha IEEE ar i thmet ic does rounding
before detecting overflow/underflow.

Normal IEEE rounding m a p s the t r ue resul t to the neares t of two representable
resul ts , wi th t rue resul t s exactly halfway between mapped to t he one whose
fraction ends in 0 (sometimes called unbiased rounding to even); m a p s t rue resul ts
> MAX + 1/2 LSB in magni tude to a n overflow; maps t r ue resul ts < MIN - 1/2 LSB
in magni tude to an underflow.

Plus infinity IEEE rounding m a p s t he t rue resul t to the larger of two surrounding
representable resul ts ; m a p s t r ue resul t s > MAX in magni tude to an overflow; maps
positive t rue resul ts < +MIN - 1 LSB to an underflow; and m a p s negative t rue
resul ts > - M I N to an underflow.

Minus infinity IEEE rounding m a p s the t r ue resul t to the smaller of two surrounding
representable resul ts ; m a p s t rue resul t s > MAX in magni tude to an overflow; maps
positive t r ue resul ts < +MIN to a n underflow; and m a p s negat ive t rue resul ts
> - M I N + 1 LSB to an underflow.

Instruction Descriptions (I) 4-59

Chopped IEEE rounding maps the t rue resul t to the smaller in magni tude of two
surrounding representable resul ts ; maps t rue resul ts > MAX + 1 LSB in magni tude
to an overflow; and maps non-zero t rue resul ts < MIN in magni tude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summar ize the floating-point rounding modes:

VAX Rounding Mode

Normal rounding

Chopped

Instruction Notation

(No modifier)

/C

IEEE Rounding Mode Instruction Notation

Normal rounding (No modifier)

Dynamic rounding /D

Plus infinity /D and ensure t h a t FPCR<DYN> = 1 1 '

Minus infinity M

Chopped /C

4.7.5 Floating-Point Trapping Modes

There a re six exceptions t h a t can be genera ted by floating-point operate instruct ions,
all signaled by an ar i thmet ic exception t r ap . These exceptions are :

• Invalid operation

• Division by zero

• Overflow

• Underflow, may be disabled

• Inexact result , may be disabled

• In teger overflow (conversion to integer only), m a y be disabled

For more detail on the information passed to an ar i thmet ic exception handler , see
Part II, Operating Systems.

VAX Trapping Modes

For VAX floating-point operations other t h a n CVTxQ, four t rapp ing modes a re
provided. They specify software completion and whe ther t r aps a re enabled for
underflow.

For VAX conversions from floating-point to integer, four t rapp ing modes a re provided.
They specify software completion and whe ther t r ap s are enabled for in teger overflow.

4-60 Common Architecture (I)

IEEE Trapping Modes

For IEEE floating-point operat ions other t h a n CVTxQ, four t r app ing modes a re
provided. They specify software completion and whe the r t r ap s a re enabled for
underflow and inexact resul ts .

For IEEE conversions from floating-point to integer, four t r app ing modes are
provided. They specify software completion, and whe the r t r a p s a re enabled for
integer overflow and inexact resul ts .

The modes and instruct ion notat ion are :

VAX Trap Mode Instruction Notation

Imprecise, underflow disabled (No modifier)

Imprecise, underflow enabled /U

Software, underflow disabled /S

Software, underflow enabled /SU

VAX Convert-to-Integer Trap Mode Instruction Notation

Imprecise, integer overflow disabled (No modifier)

Imprecise, in teger overflow enabled /V

Software, in teger overflow disabled /S

Software, in teger overflow enabled /sv

IEEE Trap Mode Instruction Notation

Imprecise, unfl disabled, inexact disabled (No modifier)

Imprecise, unfl enabled, inexact disabled /U

Software, unfl enabled, inexact disabled /SU

Software, unfl enabled, inexact enabled /SUI

IEEE Convert-to-Integer Trap Mode Instruction Notation

Imprecise, int.ovfl disabled, inexact disabled (No modifier)

Imprecise, int.ovfl enabled, inexact disabled /V

Software, int.ovfl enabled, inexact disabled /SV

Software, int.ovfl enabled, inexact enabled /SVI

Instruction Descriptions (I) 4-61

4.7.5.1 Imprecise /Software Completion Trap Modes

Floating-point instruct ions may be pipelined, and all exceptions are imprecise t r aps :

• The t rapping instruct ion may wri te an UNPREDICTABLE resul t value.

• The t r a p PC is an a rb i t ra ry number of instruct ions pas t the one tr iggering
the t r ap . The tr igger instruct ion plus all in tervening executed instruct ions a re
collectively referred to as the trap shadow of the t r igger instruction.

• The extent of the t r a p shadow is bounded only by a TRAPB instruct ion (or the
implicit TRAPB within a CALL_PAL instruction).

• Inpu t operand values may have been overwri t ten in t he t r a p shadow.

• Result values may have been overwri t ten in t he t r a p shadow.

• An UNPREDICTABLE resul t value m a y have been used as an input operand in
the t r a p shadow.

• Additional t r aps m a y occur in the t r a p shadow.

• In general , it is not feasible to fix up the resul t value or to continue from the
t r ap .

This behavior is ideal for operations on finite operands t h a t give finite resul ts . For
programs t h a t deliberately operate outside t he overflow/underflow range, or use
IEEE NaNs , software assis tance is required to complete floating-point operations
correctly. This assis tance can be provided by a software ar i thmet ic t r a p handler ,
plus constra ints on the instruct ions sur rounding the t r ap .

For a t r a p handle r to complete non-finite ar i thmet ic , t he following conditions m u s t
hold:

1. On ent ry to the t r a p shadow, if any Alpha register or memory location contains
a value t h a t is used as an operand value by some instruct ion i n t he t r a p shadow
(live on entry), t hen no instruct ion in the t r a p shadow may modify the register
or memory location.

2. Within the t r a p shadow, the computat ion of the base regis ter for a memory load
or store instruct ion may not involve us ing the resul t of an instruct ion t h a t might
genera te an UNPREDICTABLE resul t .

3. Within the t r a p shadow, no register may be used more t h a n once as a dest inat ion
register.

4. The t r a p shadow may not include any branch instruct ions.

5. Each floating instruct ion to be completed m u s t be so marked , by specifying the
/S software completion modifier.

The first condition allows a software t r a p hand le r to emula te t he tr igger instruct ion
with i ts original input operand values and then to reexecute t he res t of t he t r a p
shadow.

The second condition prevents memory accesses a t unpredictable addresses .

4-62 Common Architecture (I)

The remain ing conditions m a k e i t possible for a software t r a p handle r to find t he
t r igger instruct ion via a l inear scan backwards from the t r a p PC.

NOTE
The /S modifier does not affect instruct ion operat ion
or t r a p behavior; i t is an informational bi t passed to
a software t r a p handler . I t allows a t r a p hand le r to
t es t easily whe the r an instruct ion is in tended to be
completed. (The /S bi ts of ins t ruct ions signaling t r aps
a re carried into the t r a p summary.) The hand le r may
t hen a s sume t h a t the other conditions a re m e t wi thout
examining the code s t ream.

If a software t r a p hand le r is provided, i t m u s t hand le the completion of all floating-
point operat ions marked /S t h a t follow the rules above. In effect, one TRAPB
instruct ion per basic block can be used.

4.7.5.2 Invalid Operation Arithmetic Trap

An invalid operat ion ar i thmet ic t r a p is signaled if any operand of a floating
ar i thmetic-operate inst ruct ion is non-finite. (CMPTxy is an exception to the rule
and operates normally wi th plus and m i n u s infinity and does not t r a p in th is case.)
This t r a p is always enabled. If th i s t r a p occurs, an UNPREDICTABLE value is
stored in the resul t register. (IEEE-compliant system software m u s t also supply an
invalid operation indication to t he use r for SQRT of a negat ive non-zero number,
0/0, χ REM 0, and conversions to integer t h a t t ake an integer overflow trap.)

4.7.5.3 Division by Zero Arithmetic Trap

A division by zero ar i thmet ic t r a p is t a k e n if t he numera to r does not cause an invalid
operation t r a p and the denominator is zero. This t r a p is a lways enabled. If th is t r a p
occurs, an UNPREDICTABLE value is stored in t he resul t register.

4.7.5.4 Overflow Arithmetic Trap

An overflow ar i thmet ic t r a p is signaled if t he rounded resul t exceeds in magni tude
t he largest finite number of the dest inat ion format. This t r a p is a lways enabled. If
th is t r a p occurs, an UNPREDICTABLE value is stored in the resul t register.

4.7.5.5 Underflow Arithmetic Trap

An underflow occurs if t he rounded resu l t is smal ler in magni tude t h a n the smallest
finite n u m b e r of t he dest inat ion format.

If an underflow occurs, a t r ue zero (64 bi ts of zero) is a lways stored in the resul t
register, even if t he proper I E E E resul t would have been - 0 (underflow below the
negative denormal range) .

If a n underflow occurs and underflow t r a p s a re enabled by the instruction, an
underflow ar i thmet ic t r a p is signaled.

Instruction Descriptions (I) 4-63

4.7.5.6 Inexact Result Arithmetic Trap

An inexact resul t occurs if t he infinitely precise resul t differs from the rounded
result .

If an inexact resul t occurs, t he normal rounded resul t is still stored in the resul t
register.

If an inexact resul t occurs and inexact resul t t r aps a re enabled by the instruction,
an inexact resul t ar i thmet ic t r a p is signaled.

4.7.5.7 Integer Overflow Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if t he
rounded resul t is outside the range -2**63. .2**63-1. In conversions from quadword
integer to longword integer, an integer overflow occurs if t he resul t is outside the
range-2**31 . -2**31-1 .

If an integer overflow occurs in CVTxQ or CVTQL, the t r ue resul t t runca ted to the
low-order 64 or 32 bits respectively is stored in the resul t register.

If an integer overflow occurs and integer overflow t r aps a re enabled by the
instruction, an integer overflow ar i thmet ic t r a p is signaled.

4.7.6 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) a re stored in the floating registers
in canonical form, as subsets of double-precision values , wi th 11-bit exponents
restr icted to the corresponding single-precision range , and wi th the 29 low-order
fraction bits restr icted to be all zero.

Single-precision operat ions applied to canonical single-precision values give single-
precision resul ts . Single-precision operat ions applied to non-canonical operands give
UNPREDICTABLE resul ts .

Longword integer values in floating regis ters a re stored in bi ts <63:62,58:29>, wi th
bits <61:59> ignored and zeros in bi ts <28:0>.

4.7.7 FPCR Register and Dynamic Rounding Mode

When a n IEEE floating-point operate instruct ion specifies dynamic mode (/D) in i ts
function field (function code bits <7:6> = 11), t he rounding mode to be used for the
instruct ion is derived from the FPCR register. The layout of the rounding mode bi ts
and the i r ass ignments matches exactly the format used in the 11-bit function field
of t he floating-point operate instruct ions.

In addition, the FPCR gives a summary for each exception type of the exceptions
conditions detected by all IEEE floating-point operates t h u s far as well as an
overall summary bit t h a t indicates whe the r any of these exception conditions has
been detected. The individual exception bits ma tch exactly in purpose and order
the exceptions bi ts found in the exception s u m m a r y quadword t h a t is pushed for
ar i thmet ic t r aps . However, for each instruction, these exceptions bi ts are set
independent of the t rapp ing mode specified for the instruction. Therefore, even
though t rapp ing may be disabled for a cer tain exceptional condition, the fact t h a t

4-64 Common Architecture (I)

t he exceptional condition was encountered by an instruct ion will still be recorded in
t he FPCR.

Floating-point operates t h a t belong to t he IEEE subset and CVTQL, which belongs
to both VAX and IEEE subsets , appropriately set t h e FPCR exception bits . I t is
UNPREDICTABLE whe ther floating-point operates t h a t belong only to the VAX
floating-point subset set t he FPCR exception bi ts .

Alpha floating-point ha rdware only t rans i t ions these exception bi ts from zero to one.
Once set to one, these exception bi ts a re only cleared when software wri tes zero into
these bi ts by wri t ing a new value into t he FPCR.

The format of the FPCR is shown in Figure 4 - 1 and described in Table 4 - 8 .

Figure 4-1 : Floating-Point Control Register (FPCR) Format

63 62 60 59 58 57 56 55 54 53 52 51 0

s
υ RAZ/

IGN

D
Y

I
0

I
Ν

U
Ν

0
V N

O

I

I
Ν RAZ/IGN

M

RAZ/
IGN

Ν V Ε F F Ε V

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
(FPCR[57] I FPCR[56] I FPCR[55] I FPCR[54] I FPCR[53] I FPCR[52]).

62-60 Reserved. Read As Zero; Ignored when written.

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction's function field
specifies dynamic mode (/D). Assignments are:

DYN IEEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 P lus infinity

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

Instruction Descriptions (I) 4-65

Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions
Bit Descr ip t ion

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51-0 Reserved. Read As Zero; Ignored when written.

FPCR is read from and wr i t ten to the floating-point regis ters by the MTJFPCR and
MF_FPCR instruct ions respectively, which are described in Section 4.7.7.1.

FPCR and the instruct ions to access it a re required for an implementat ion t h a t
supports floating-point (see Section 4.1.1.1). On implementa t ions t h a t do not support
floating-point, the instruct ions t h a t access FPCR (MF_FPCR and MT_FPCR) t ake
an Illegal Instruct ion Trap.

4.7.7.1 Accessing the FPCR

Because Alpha floating-point ha rdware can overlap the execution of a number of
floating-point instruct ions, accessing the FPCR m u s t be synchronized wi th other
floating-point instruct ions. A TRAPB m u s t be issued both prior to and after accessing
the FPCR to ensure t h a t the FPCR access is synchronized wi th the execution of
previous and subsequent floating-point instruct ions; otherwise synchronization is
not ensured.

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures
t h a t only floating-point instruct ions issued after the second TRAPB are affected
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_
FPCR followed by another TRAPB ensures t h a t t he value read from the FPCR only
records the exception information for floating-point instruct ions issued prior to the
first TRAPB.

Consider the following example:

SOFTWARE NOTE
As noted in Section 4.1.1.1, support for FPCR is
required on a system t h a t suppor ts the OpenVMS Alpha
operat ing system even if t h a t system does not support
floating-point.

4-66 Common Architecture (I)

ADDT/D
TRAPB ; 1
MT_FPCR Fl,Fl,Fl
TRAPB ; 2
SUBT/D

Without the first TRAPB, it is possible in an implementa t ion for the ADDT/D
to execute in parallel wi th the MT_FPCR. Thus , it would be UNPREDICTABLE
whe the r t he ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whe the r fields cleared by the MT_FPCR in the exception s u m m a r y were
subsequent ly set by the ADDT/D.

Without the second TRAPB, it is possible in an implementa t ion for the MT_FPCR to
execute in paral lel wi th the SUBT/D. Thus , it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by t he MT_FPCR and
whe the r fields cleared by the MT_FPCR in the exception s u m m a r y field of FPCR
were previously set by t he SUBT/D.

4.7.7.2 Default Values of the FPCR

Processor init ialization leaves t he value of FPCR UNPREDICTABLE.

SOFTWARE NOTE
Digital software should initialize FPCR<DYN> = 11
dur ing program activation. Us ing th is default, in terval
ar i thmet ic code can switch from plus to minus infinity
rounding wi th no penal ty in performance by us ing /M
and /D qualifiers.

P rogram activation should clear all o ther fields of the
FPCR.

4.7.7.3 Saving and Restoring the FPCR

The FPCR m u s t be saved and restored across context switches so t h a t the FPCR
value of one process does not affect t he rounding behavior and exception summary
of another process.

The dynamic rounding mode pu t into effect by the p rogrammer (or initialized by
image activation) is valid for the ent i re ty of t he program and remains in effect unt i l
subsequent ly changed by the p rogrammer or unt i l image run-down occurs.

SOFTWARE NOTE
The IEEE s t anda rd precludes saving and res tor ing the
FPCR across subrout ine calls.

4.7.8 IEEE Standard

The I E E E S t a n d a r d for Binary Floating-Point Ari thmet ic (ANSI/IEEE S tanda rd 754-
1985) is included by reference.

Instruction Descriptions (I) 4-67

4.8 Memory Format Floating-Point Instructions

The instruct ions in th is section move da t a between the floating-point regis ters and
memory. They use the Memory instruct ion format. They do not in terpre t the bi ts
moved in any way; specifically, they do not t r a p on non-finite values.

The instruct ions are summar ized in Table 4 - 9 .

Table 4-9: Memory Format Floating-Point Instructions Summary
Mnemonic Opera t ion Subse t

LDF Load F_floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F_floating VAX

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both

4-68 Common Architecture (I)

4.8.1 Load FJIoating

Format:

LDF Fa.wf,disp.ab(Rb.ab) ÎMemory format

Instruction Descriptions (I) 4-69

Operation :

va <- {Rbv + SEXT(disp)}

Fa <- (va)<15> || MAP_F((va)<14:7>) ||
(va)<6:0> || (va)<31:16> || 0<28:0>

Exceptions:

Access Violation

Fau l t on Read

Alignment

Transla t ion Not Valid

Instruction mnemonics:

LDF Load F J I o a t i n g

Qualifiers:

None

Description:

LDF fetches an F J I o a t i n g d a t u m from memory and wri tes it to regis ter Fa . If t he
da t a is not na tura l ly aligned, an a l ignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2 - 1 .

The v i r tua l address is computed by adding regis ter Rb to t h e sign-extended 16-
bit displacement. The source operand is fetched from memory and the bytes a re
reordered to conform to the F J I o a t i n g regis ter format. The resu l t is t h e n zero-
extended in the low-order longword and wr i t t en to regis ter Fa .

4.8.2 Load GJIoating

Format:

LDG Fa.wg,disp.ab(Rb.ab) ÎMemory format

Operation:

va «- {Rbv + SEXT(disp)}

Fa <- (va)<15:0> || (va)<31:16> ||
(va)<47:32> || (va)<63:48>

Exceptions:

Access Violation

Fau l t on Read

Alignment

Translat ion Not Valid

Instruction mnemonics:

LDG Load GJ Ioa t i ng (Load D_floating)

Qualifiers:

None

Description:

LDG fetches a G_floating (or D_floating) d a t u m from memory and wri tes it to register
Fa. If t he da t a is not na tura l ly aligned, an a l ignment exception is generated.

The vi r tual address is computed by adding regis ter Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, t he bytes a re reordered to
conform to t he G_floating register format (also conforming to the D_floating register
format), and the resul t is t hen wr i t ten to register Fa .

4-70 Common Architecture (I)

4.8.3 Load SJIoating

Format:

LDS Fa.ws,disp.ab(Rb.ab) ÎMemory format

Instruction Descriptions (I) 4-71

Operation:

va 4 - {Rbv + SEXT(disp)}

Fa 4 - (va)<31> || MAP_S((va)<30:23>) ||
(va)<22:0> || 0<28:0>

Exceptions:

Access Violation

Fau l t on Read

Alignment

Translat ion Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and wri tes it to register
Fa. If t he da t a is not na tura l ly aligned, an a l ignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2 -2 .

The v i r tua l address is computed by adding regis ter Rb to t he sign-extended 16-bit
displacement. The source operand is fetched from memory, is zero-extended in the
low-order longword, and then wr i t ten to regis ter Fa .

Notes:

• Longword integers in floating regis ters a re stored in bi ts <63:62,58:29>, wi th bi ts
<61:59> ignored and zeros in bi ts <28:0>.

4.8.4 Load TJIoating

Format:

LDT Fa.wt,disp.ab(Rb.ab) ÎMemory format

4-72 Common Architecture (I)

Operation:

va <- {Rbv + SEXT(disp)}

Fa <- (va)<63:0>

Exceptions:

Access Violation

Fau l t on Read

Alignment

Translat ion Not Valid

Instruction mnemonics:

LDT Load T J I o a t i n g (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or TJIoa t ing) from memory and wri tes it to register
Fa . If t he da t a is not na tura l ly aligned, an a l ignment exception is generated.

The vi r tual address is computed by adding register Rb to t he sign-extended 16-bit
displacement. The source operand is fetched from memory and wr i t ten to register
Fa.

4.8.5 Store FJIoating

Format:

STF Fa.rf,disp.ab(Rb.ab) ÎMemory format

Instruction Descriptions (I) Φ-73

Operation:

va «- {Rbv + SEXT(disp)}

(va)<31:0> <- Fav<44:29> || Fav<63:62>|| Fav<58:45>

Exceptions:

Access Violation

Fau l t on Write

Alignment

Transla t ion Not Valid

Instruction mnemonics:

STF Store F J I o a t i n g

Qualifiers:

None

Description:

STF stores an F J I o a t i n g d a t u m from F a to memory. If t he da t a is not na tura l ly
aligned, an a l ignment exception is generated.

The v i r tua l address is computed by adding regis ter Rb to t he sign-extended 16-bit
displacement. The bi ts of t h e source operand a re fetched from regis ter Fa , the bi ts
a re reordered to conform to F J I o a t i n g memory format, and the resu l t is t h e n wr i t ten
to memory. Bits <61:59> and <28:0> of F a a re ignored. No checking is done.

4.8.6 Store GJIoating

Format:

STG Fa.rg,disp.ab(Rb.ab) ÎMemory format

4-74 Common Architecture (I)

Operation:

va «- {Rbv + SEXT(disp)}

(va)<63:0> «- Fav<15:0> || Fav<31:16> ||
Fav<47:32> || Fav<63:48>

Exceptions:

Access Violation

Fau l t on Write

Alignment

Translat ion Not Valid

Instruction mnemonics:

STG Store GJ Ioa t i ng (Store D.floating)

Qualifiers:

None

Description:

STG stores a G_floating (or D_floating) d a t u m from F a to memory. If t he da t a is not
na tura l ly aligned, an a l ignment exception is generated.

The vi r tual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa , the bytes a re
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the resul t is t hen wr i t t en to memory.

4.8.7 Store SJIoating

Format:

STS Fa.rs,disp.ab(Rb.ab) ÎMemory format

Instruction Descriptions (I) 4-75

Operation:

va <- {Rbv + SEXT(disp)}

(va)<31:0> <- Fav<63:62>||Fav<58:29>

Exceptions:

Access Violation

Fau l t on Write

Al ignment

Transla t ion Not Valid

Instruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) d a t u m from F a to memory. If t he da t a
is not na tura l ly aligned, an a l ignment exception is generated.

The v i r tua l address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bi ts of t h e source operand are fetched from regis ter Fa , t he bi ts
a re reordered to conform to S_floating memory format, and t h e resu l t is t h e n wr i t ten
to memory. Bits <61:59> and <28:0> of F a a re ignored. No checking is done.

4.8.8 Store TJIoating

Format:

STT Fa.rt ,disp.ab(Rb.ab) ÎMemory format

4-76 Common Architecture (I)

Operation:

va <- {Rbv + SEXT(disp)}

(va)<63:0> <- Fav<63:0>

Exceptions:

Access Violation

Fau l t on Write

Alignment

Translat ion Not Valid

Instruction mnemonics:

STT Store T J I o a t i n g (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or TJIoa t ing) d a t u m from F a to memory. If the da t a
is not na tura l ly aligned, an a l ignment exception is generated.

The vi r tual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register F a and wr i t ten to memory.

4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional b ranch instruct ions. These branch-format
instruct ions tes t t he value of a floating-point regis ter and conditionally change the
PC.

They do not in te rpre t t he bi ts tes ted in any way; specifically, they do not t r a p on
non-finite values.

The tes t is based on the sign bit and whe the r t he res t of the regis ter is all zero bits .
All 64 bi ts of the regis ter a re tested. The tes t is independent of t he format of the
operand in the register. Both plus and minus zero a re equal to zero. A non-zero
value wi th a sign of zero is g rea te r t h a n zero. A non-zero value wi th a sign of one
is less t h a n zero. No reserved operand or non-finite checking is done.

The floating-point b ranch operat ions a re summar ized in Table 4 -10 .

Table 4-10: Floating-Point Branch Instructions Summary

Mnemonic Opera t ion Subse t

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both

Instruction Descriptions (I) 4-77

4.9.1 Conditional Branch

Format:

FBxx Fa.rq,disp.al ÎBranch format

Operation:

{update PC}
va <- PC + {4*SEXT(disp)>
IF TEST(Fav, Condition_based_on_Opcode) THEN

PC <— va

Exceptions:

None

Instruction mnemonics:

FBEQ Float ing Branch Equa l

FBGE Float ing Branch Grea te r T h a n or Equa l

FBGT Float ing Branch Grea te r T h a n

FBLE Float ing Branch Less T h a n or Equa l

FBLT Float ing Branch Less T h a n

FBNE Float ing Branch Not Equal

Qualifiers:

None

Description:

Register F a is tested. If t he specified relat ionship is t rue , t he PC is loaded wi th
the ta rge t v i r tual address ; otherwise, execution continues wi th the next sequent ial
instruction.

The displacement is t r ea ted as a signed longword offset. This m e a n s it is shifted
left two bits (to address a longword boundary) , sign-extended to 64 bi ts , and added
to the upda ted PC to form the t a rge t v i r tua l address .

The conditional b ranch instruct ions a re PC-relative only. The 21-bit signed
displacement gives a forward/backward b ranch distance of + / - 1M instruct ions.

4-78 Common Architecture (I)

Notes:

• Tb branch properly on non-finite operands , compare to F 3 1 , t h e n branch on the
resul t of the compare.

• The largest negat ive integer (8000 0000 0000 0 0 0 0 1 6) is t he same bit pa t t e rn as
floating minus zero, so it is t r ea ted as equal to zero by the b ranch instruct ions.
To b ranch properly on the largest negat ive integer, convert i t to floating or move
i t to an integer regis ter and do a n in teger branch.

Instruction Descriptions (I) 4-79

4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instruct ions perform copy and integer convert
operations on 64-bit register values. The bit-operate instruct ions do not in terpre t
the bits moved in any way; specifically, they do not t r a p on non-finite values.

The floating-point ar i thmetic-operate instruct ions perform add, subtract , multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruct ion specifies the source and dest inat ion formats of t he values, as well
as the rounding mode and t rapp ing mode to be used. These instruct ions use the
Floating-point Opera te format.

The floating-point operate instruct ions a re summar ized in Table 4 - 1 1 .

Table 4-11 : Floating-Point Operate Instructions Summary

Mnemonic Opera t ion Subse t

Bit a n d FPCR Opera t ions

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both

4-80 Common Architecture (I)

Table 4-11 (Co η t.): Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Arithmetic Operations

ADDF Add FJIoating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F_floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F_floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

MULF Multiply F_floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply TJIoating IEEE

SUBF Subtract F_floating VAX

Instruction Descriptions (I) 4-81

Table 4-11 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Opera t ion Subse t

Ar i thmet ic Opera t ions

SUBG Subtract GJIoating VAX

SUBS Subtract S.floating IEEE

SUBT Subtract TJIoating IEEE

4-82 Common Architecture (I)

4.10.1 Copy Sign

Format:

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Opera te format

Operation:

CASE
CPYS: Fc
CPYSN: Fc
CPYSE: Fc

ENDCASE

Exceptions:

None

Instruction mnemonics:

CPYS Copy Sign

CPYSE Copy Sign and Exponent

CPYSN Copy Sign Negate

Qualifiers:

None

Description:

For CPYS and CPYSN, t he sign bit of F a is fetched (and complemented in the case
of CPYSN) and concatenated wi th the exponent and fraction bi ts from Fb; the resul t
is stored in Fc.

For CPYSE, the sign and exponent b i ts from F a a re fetched and concatenated wi th
the fraction bi ts from Fb; the resul t is stored in Fc.

No checking of the operands is performed.

Notes:

• Register moves can be performed us ing CPYS Fx,Fx,Fy. Floating-point absolute
value can be done us ing CPYS F31,Fx,Fy. Floating-point negat ion can be done
us ing CPYSN Fx,Fx,Fy. Float ing values can be scaled to a known range by using
CPYSE.

<- Fav<63> Π Fbv<62:0>
<- NOT(Fav<63>) Π Fbv<62:0>
<- Fav<63:52> || Fbv<51:0>

Instruction Descriptions (I) 4-83

4.10.2 Convert Integer to Integer

Format:

CVTxy Fb.rq,Fc.wx

Operation:

CASE

!Floating-point Opera te format

CVTQL: Fc

CVTLQ: Fc
ENDCASE

Fbv<31:30> || 0<2:0> ||
Fbv<29:0> || 0<28:0>

SEXT(Fbv<63:62> || Fbv<58:29>)

Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

Convert Longword to Quadword

Convert Quadword to Longword

Software (/S)

In teger Overflow Enable (/V) (CVTQL only)

CVTLQ

CVTQL

Qualifiers:

Trapping:

Description:

The two's-complement operand in register Fb is converted to a two's-complement
resul t and wr i t ten to regis ter Fc.

The conversion from quadword to longword is a reposit ioning of the low 32 bits of
the operand, wi th zero fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range -2**31. .2**31-1. If integer overflow occurs, t he
t runca ted resul t is stored in Fc, and a n ar i thmet ic t r a p is t aken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of t h e
operand, wi th sign extension.

4-84 Common Architecture (I)

4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq

Operation:

!Floating-point Opera te format

IF TEST(Fav, Condition_based_on_Opcode) THEN

Fc <— Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ

FCMOVGE

FCMOVGT

FCMOVLE

FCMOVLT

FCMOVNE

FCMOVE if Register Equa l to Zero

FCMOVE if Register Grea te r T h a n or Equa l to Zero

FCMOVE if Register Grea te r T h a n Zero

FCMOVE if Register Less T h a n or Equa l to Zero

FCMOVE if Register Less T h a n Zero

FCMOVE if Register Not Equal to Zero

Qualifiers:

None

Description:

Register F a is tested. If t he specified rela t ionship is t rue , regis ter Fb is wr i t ten to
register Fc; otherwise, t he move is suppressed and register Fc is unchanged. The
tes t is based on the sign bit and whe the r the res t of t he regis ter is all zero bi ts , as
described for floating branches in Section 4.9.

Instruction Descriptions (I) 4-85

Notes:

FByy Fa,label
CPYS Fb,Fb,Fc

; yy = NOT xx

label:

For example, a branchless sequence for:

F1=MAX(F1,F2)

is:
CMPxLT F1,F2,F3
FCMOVNE F3,F2,F1

! F3=one if F K F 2 ; x=F/G/S/T
! Move F2 to Fl if F K F 2

4-86 Common Architecture (I)

Except t h a t i t is likely in many implementa t ions to be substant ia l ly faster, t he
instruction:

FCMOVxx FafFb,Fc

is exactly equivalent to:

4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq ,Fa.rq ,Fa.wq !Floating-point Opera te format

Operation:

CASE
MT_FPCR: FPCR <— Fav
MF_FPCR: Fa <- FPCR

ENDCASE

Exceptions:

None

Instruction mnemonics:

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or wr i t ten
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fc fields all point ing to t he same floating-point register.
If t he Fa, Fb, and Fc fields do not all point to the same floating-point register, t hen
it is UNPREDICTABLE which regis ter is used.

The use of these instruct ions and the FPCR are described in Section 4.7.7.

Instruction Descriptions (I) 4-87

4.10.5 VAX Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx

Operation:

Fc <— Fav + Fbv

!Floating-point Opera te format

Exceptions:

Invalid Operat ion

Overflow

Underflow

Instruction mnemonics:

ADDF

ADDG

Qualifiers:

Rounding:

Trapping:

Add F.f loating

Add GJ Ioa t i ng

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Description:

Register F a is added to register Fb, and the sum is wr i t ten to register Fc.

The sum is rounded or chopped to the specified precision, and t hen the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result .

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue
zero (tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are
UNPREDICTABLE if th is occurs. See Section 4.7.5 for detai ls of the stored resul t
on overflow or underflow.

4-88 Common Architecture (I)

4.10.6 IEEE Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format

Operation:

Fc «— Fav + Fbv

Exceptions:

Invalid Operat ion

Overflow

Underflow

Inexact Resul t

Instruction mnemonics:

ADDS Add S_floating

ADDT Add T J I o a t i n g

Qualifiers:

Rounding:

Trapping:

Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

Register F a is added to register Fb, and the sum is wr i t ten to register Fc.

The sum is rounded to t h e specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operat ion on canonical single-
precision values produces a canonical single-precision resul t .

Instruction Descriptions (I) 4-89

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE N a N s and infinities t rap) .

The contents of Fc a re UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact
result .

4-90 Common Architecture (I)

4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq !Floating-point Opera te format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc 4 - 4000 0000 0000 OOOOig

ELSE
Fc <- 0000 0000 0000 0000i6

Exceptions:

Invalid Operat ion

Instruction mnemonics:

CMPGEQ Compare G J I o a t i n g Equa l

CMPGLE Compare G J I o a t i n g Less T h a n or Equa l

CMPGLT Compare G J I o a t i n g Less T h a n

Description:

The two operands in F a and Fb are compared. If t he relat ionship specified by the
qualifier is t rue , a non-zero floating value (0.5) is wr i t ten to register Fc; otherwise,
a t rue zero is wr i t ten to Fc.

Comparisons a re exact and never overflow or underflow. Three mutua l ly exclusive
relat ions a re possible: less than , equal , and grea ter t han .

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue
zero (tha t is, VAX reserved operands and d ir ty zeros t rap) . The contents of Fc a re
UNPREDICTABLE if th i s occurs.

Notes:

• Compare Less T h a n A,B is t he same as Compare Grea te r T h a n B,A; Compare
Less T h a n or Equa l A,B is t h e same as Compare Grea te r T h a n or Equal B,A.
Therefore, only the less- than operat ions a re included.

Qualifiers:

Trapping: Software (/S)

Instruction Descriptions (I) 4-91

4.10.8 IEEE Floating Compare

Format:

CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Opera te format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc 4 - 4000 0000 0000 0000i6

ELSE
Fc 0000 0000 0000 ΟΟΟΟ16

Exceptions:

Invalid Operat ion

Instruction mnemonics:

CMPTEQ Compare T_floating Equa l

CMPTLE Compare T_floating Less T h a n or Equal

CMPTLT Compare T J I o a t i n g Less T h a n

CMPTUN Compare T J I o a t i n g Unordered

Qualifiers:

Trapping: Software (/S)

Description:

The two operands in F a and Fb are compared. If t he relat ionship specified by the
qualifier is t rue , a non-zero floating value (2.0) is wr i t t en to register Fc; otherwise,
a t rue zero is wr i t ten to Fc.

Comparisons are exact and never overflow or underflow. Four mutua l ly exclusive
relat ions are possible: less t han , equal, g rea ter t han , and unordered. The unordered
relat ion is t rue if one or both operands a re NaN. (This behavior m u s t be provided
by a software t r a p handler , since N a N s trap.) Comparisons ignore the sign of zero,
so +0 = - 0 .

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones and a non-zero fraction (IEEE
NaNs). The contents of Fc are UNPREDICTABLE if th is occurs.

Comparisons with plus and minus infinity execute normally and do not t ake an
invalid operation t r ap .

4-92 Common Architecture (I)

Notes:

Instruction Descriptions (I) Φ-93

• Compare Less T h a n Α,Β is t he same as Compare Grea ter T h a n B,A; Compare
Less T h a n or Equa l Α,Β is t he same as Compare Grea te r T h a n or Equal B,A.
Therefore, only the less- than operat ions a re included.

4.10.9 Convert VAX Floating to Integer

Format:

CVTGQ Fb.rx,Fc.wq !Floating-point Opera te format

Operation:

Fc <— {conversion of Fbv}

Exceptions:

Invalid Operat ion

Integer Overflow

Instruction mnemonics:

CVTGQ Convert G J I o a t i n g to Quadword

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Integer Overflow Enable (/V)

Description:

The floating operand in register Fb is converted to a two's-complement quadword
number and wr i t ten to register Fc. The conversion aligns t he operand fraction wi th
the binary point j u s t to the right of bit zero, rounds as specified, and complements
the resul t if negative.

An invalid operation t r ap is signaled if the operand h a s exp=0 and is not a t rue
zero (tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are
UNPREDICTABLE if th is occurs.

See Section 4.7.5 for details of the stored resul t on integer overflow.

4-94 Common Architecture (I)

4.10.10 Convert Integer to VAX Floating

Format:

CVTQy Fb.rq,Fc.wx !Floating-point Opera te format

Operation:

Fc <— {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

CVTQF Convert Quadword to F J I o a t i n g

CVTQG Convert Quadword to G J l o a t i n g

Qualifiers:

Rounding: Chopped (/C)

Description:

The two's-complement quadword operand in register Fb is converted to a single-
or double-precision floating resul t and wr i t t en to regis ter Fc. The conversion
complements a number if negative, normalizes it, rounds to the ta rge t precision,
and packs the resul t wi th a n appropr ia te sign and exponent field.

Instruction Descriptions (I) 4-95

4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy Fb.rx,Fc.wx

Operation:

Fc <— {conversion of Fbv}

Exceptions:

Invalid Operat ion

Overflow

Underflow

!Floating-point Opera te format

Instruction mnemonics:

CVTDG

CVTGD

CVTGF

Qualifiers:

Rounding:

Trapping:

Convert D_floating to G_floating

Convert G_floating to D_floating

Convert G_floating to F_floating

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified a l te rna te floating
format and wri t ten to register Fc.

An invalid operation t r a p is signaled if t he operand h a s exp=0 and is not a t rue
zero (that is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are
UNPREDICTABLE if th is occurs.

See Section 4.7.5 for details of the stored resul t on overflow or underflow.

4-96 Common Architecture (I)

Notes:

• The only ar i thmet ic operat ions on D_floating values a re conversions to and from
G_floating. The conversion to G__floating rounds or chops as specified, removing
th ree fraction bi ts . The conversion from G_floating to D_floating adds th ree low-
order zeros as fraction bits , t h e n the 8-bit exponent range is checked for overflow
/underflow.

• The conversion from G_floating to F_floating rounds or chops to single precision,
t hen the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values
a re always stored in regis ters as equivalent G_floating values.

Instruction Descriptions (I) 4-97

4.10.12 Convert IEEE Floating to Integer

Format:

CVTTQ Fb.rx,Fc.wq !Floating-point Opera te format

Operation:

Fc <— {conversion of Fbv}

Exceptions:

Invalid Operat ion

Inexact Result

Integer Overflow

Instruction mnemonics:

CVTTQ Convert T J I o a t i n g to Quadword

Qualifiers:

Rounding: Dynamic (/D)

Description:

The floating operand in register Fb is converted to a two's-complement number and
wri t ten to register Fc. The conversion aligns the operand fraction wi th the binary
point j u s t to the right of bit zero, rounds as specified, and complements the resul t if
negative.

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE NaNs and infinities t rap) .

The contents of Fc are UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of t he stored resul t on integer overflow and inexact
result .

Trapping:

Minus infinity (/M)

Chopped (/C)

Software (/S)

Integer Overflow Enable (/V)

Inexact Enable (/I)

4-98 Common Architecture (I)

4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy Fb.rq,Fc.wx !Floating-point Opera te format

Operation:

Fc {conversion of Fbv<63:0>}

Exceptions:

Inexact Resul t

Instruction mnemonics:

CVTQS Convert Quadword to S . f loat ing

CVTQT Convert Quadword to T J I o a t i n g

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Inexact Enable (/I)

Description:

The two's-complement operand in regis ter Fb is converted to a single- or double-
precision floating resul t and wr i t t en to regis ter Fc. The conversion complements
a n u m b e r if negative, normalizes it, rounds to t he ta rge t precision, and packs the
resul t wi th an appropr ia te sign and exponent field.

See Section 4.7.5 for detai ls of t he stored resu l t on inexact resul t .

Instruction Descriptions (I) 4-99

4.10.14 Convert IEEE Floating to IEEE Floating

Format:

CVTTS Fb.rx,Fc.wx !Floating-point Opera te format

Operation:

Fc {conversion of Fbv}

Exceptions:

Invalid Operat ion

Overflow

Underflow

Inexact Result

Instruction mnemonics:

CVTTS Convert T_floating to S J l o a t i n g

Qualifiers:

Rounding: Dynamic (/D)

Description:

The floating operand in register Fb is converted to the specified a l te rna te floating
format and wr i t ten to register Fc.

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE N a N s and infinities t rap) .

The contents of Fc a re UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact
result .

Trapping:

Minus infinity (/M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

4-100 Common Architecture (I)

Notes:

Instruction Descriptions (I) 4-101

• No conversion from S_floating to T_floating is required, since S_floating values
a re always stored in regis ters as equivalent T_floating values .

4.10.15 VAX Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format

Operation:

Fc +- Fav / Fbv

Exceptions:

Invalid Operat ion

Division by Zero

Overflow

Underflow

Instruction mnemonics:

DIVF Divide F J I o a t i n g

DIVG Divide G J l o a t i n g

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

The dividend operand in register F a is divided by the divisor operand in register Fb,
and the quotient is wr i t ten to register Fc.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result .

4-102 Common Architecture (I)

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue
zero (tha t is, VAX reserved operands and d ir ty zeros t rap) . The contents of Fc a re
UNPREDICTABLE if th is occurs.

A division by zero t r a p is signaled if Fbv is zero. The contents of Fc a re
UNPREDICTABLE if th i s occurs.

See Section 4.7.5 for detai ls of the stored resul t on overflow or underflow.

Instruction Descriptions (I) 4-103

4.10.16 IEEE Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format

Operation:

Fc <— Fav / Fbv

Exceptions:

Invalid Operat ion

Division by Zero

Overflow

Underflow

Inexact Result

Instruction mnemonics:

DIVS Divide S J l o a t i n g

DIVT Divide T J I o a t i n g

Qualifiers:

Rounding: Dynamic (/D)

Description:

The dividend operand in register F a is divided by the divisor operand in register Fb,
and the quotient is wr i t ten to register Fc.

The quotient is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result .

Trapping:

Minus infinity (/M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

4-104 Common Architecture (I)

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE N a N s and infinities t rap) .

The contents of Fc a re UNPREDICTABLE if th i s occurs.

A division by zero t r a p is signaled if Fbv is zero. The contents of Fc a re
UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of t he stored resul t on overflow, underflow, or inexact
resul t .

Instruction Descriptions (I) 4-105

4.10.17 VAX Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx

Operation:

!Floating-point Opera te format

FC F a v * F b v

Exceptions:

Invalid Operat ion

Overflow

Underflow

Instruction mnemonics:

MULF Multiply F_floating

MULG Multiply G_floating

Qualifiers:

Rounding:

Trapping:

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Description:

The mult ipl icand operand in register Fb is mult iplied by the mult ipl ier operand in
register Fa , and the product is wr i t ten to register Fc.

The product is rounded or chopped to the specified precision, and t hen the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
resul t .

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t r ue
zero (tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are
UNPREDICTABLE if th is occurs.

See Section 4.7.5 for details of t he stored resul t on overflow or underflow.

4-106 Common Architecture (I)

4.10.18 IEEE Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format

Operation:

Fc «— Fav * Fbv

Exceptions:

Invalid Operat ion

Overflow

Underflow

Inexact Result

Instruction mnemonics:

MULS Multiply S_floating

MULT Multiply T J I o a t i n g

Qualifiers:

Rounding: Dynamic (/D)

Description:

The mult ipl icand operand in regis ter Fb is mult ipl ied by the mult ipl ier operand in
register Fa , and the product is wr i t t en to regis ter Fc.

The product is rounded to t he specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operat ion on canonical single-
precision values produces a canonical single-precision resul t .

Trapping:

Minus infinity (/M)

Chopped (/C)

Software (/S)

Underflow Eenable (/U)

Inexact Enable (/I)

Instruction Descriptions (I) 4-107

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE N a N s and infinities t rap) .

The contents of Fc are UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact
result .

4-108 Common Architecture (I)

4.10.19 VAX Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx

Operation:

Fc <— Fav - Fbv

!Floating-point Opera te format

Exceptions:

Invalid Operat ion

Overflow

Underflow

Instruction mnemonics:

SUBF

SUBG

Qualifiers:

Rounding:

Trapping:

Subt rac t F_floating

Subt rac t G_floating

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Description:

The sub t rahend operand in regis ter Fb is subt rac ted from the minuend operand in
regis ter Fa , and the difference is wr i t t en to register Fc.

The difference is rounded or chopped to t he specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
resul t .

Instruction Descriptions (I) 4-109

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t r ue
zero (tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are
UNPREDICTABLE if th is occurs.

See Section 4.7.5 for detai ls of the stored resul t on overflow or underflow.

4-110 Common Architecture (I)

4.10.20 IEEE Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx

Operation:

Fc «— Fav - Fbv

Exceptions :

Invalid Operat ion

Overflow

Underflow

Inexact Resul t

!Floating-point Opera te format

Instruction mnemonics:

SUBS

SUBT

Qualifiers:

Rounding:

Trapping:

Subt rac t S_floating

Subt rac t T_floating

Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description :

The sub t rahend operand in regis ter Fb is subt rac ted from the minuend operand in
register Fa , and the difference is wr i t ten to register Fc.

The difference is rounded to t he specified precision, and t hen the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision resul t .

An invalid operat ion t r a p is signaled if e i ther operand h a s exp=0 and a non-zero
fraction (IEEE denormals t rap) , or if exp=all-ones (IEEE N a N s and infinities t rap) .

Instruction Descriptions (I) 4-111

The contents of Fc a re UNPREDICTABLE if th is occurs.

See Section 4.7.5 for details of the stored resul t on overflow, underflow, or inexact
result .

4-112 Common Architecture (I)

4.11 Miscellaneous Instructions

Alpha provides the miscellaneous ins t ruct ions shown in Table 4 -12 .

Table 4-12: Miscellaneous Instructions Summary
Mnemonic Opera t ion

CALLJPAL Call Privileged Architecture Library Routine

FETCH Prefetch Data

FETCH.M Prefetch Data, Modify Intent

MB Memory Barrier

RPCC Read Process Cycle Counter

TRAPB Trap Barrier

Instruction Descriptions (I) 4-113

4.11.1 Call Privileged Architecture Library

Format:

CALL.PAL fnc.ir !PAL format

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.>
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

CALL.PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL.PAL instruct ion is not issued unt i l all previous instruct ions a re
guaran teed to complete wi thout exceptions. If an exception occurs, t he continuation
PC in the exception stack frame points to the CALL_PAL instruction. The C A L L .
PAL instruct ion causes a t r a p to PALcode.

Φ-114 Common Architecture (I)

4.11.2 Prefetch Data

Format:

FETCHx O(Rb.ab) ÎMemory format

Operation:

va <— {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

F E T C H Prefetch D a t a

F E T C H J M Prefetch Data , Modify In t en t

Qualifiers:

None

Description:

The vi r tua l address is given by Rbv. This address is used to designate an aligned
512-byte block of da ta . An implementa t ion may optionally a t t emp t to move all or
pa r t of th i s block (or a larger sur rounding block) of da t a to a faster-access p a r t of
t he memory hierarchy, in ant icipat ion of subsequent Load or Store instruct ions t h a t
access t h a t da ta .

The F E T C H instruct ion is a h in t to the implementa t ion t h a t may allow faster
execution. An implementa t ion is free to ignore t he h in t . If prefetching is
done in an implementat ion, the order of fetch within the designated block is
UNPREDICTABLE.

The FETCH_M instruct ion gives t he addit ional h in t t h a t modifications (stores) to
some or all of t he da t a block a re ant icipated.

No exceptions a re genera ted by FETCHx. If a Load (or Store in the case of FETCH_
M) t h a t uses the same address would fault, t he prefetch reques t is ignored. I t is
UNPREDICTABLE whe the r a TB-miss fault is ever t a k e n by FETCHx.

Instruction Descriptions (I) 4-115

IMPLEMENTATION NOTE
Implementa t ions are encouraged to t ake the TB-miss
fault, t hen continue t he prefetch.

The programming model for effective use of F E T C H and FETCH_M is given in
Appendix A.

SOFTWARE NOTE
F E T C H is in tended to help software overlap memory
latencies on the order of 100 cycles. F E T C H is unlikely
to help (or be implemented) for memory latencies on the
order of 10 cycles. Code scheduling should be used to
overlap such short latencies.

4-116 Common Architecture (I)

4.11.3 Memory Barrier

Format:

MB ÎMemory format

Operation:

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barr ie r

Qualifiers:

None

Description:

The use of t he Memory Barr ie r (MB) instruct ion is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations
a re allowed to complete out of order on the issuing processor as observed by other
processors. The MB instruct ion allows memory accesses to be serialized on the
issuing processor as observed by other processors. See Chap te r 5 for detai ls on us ing
the MB instruct ion to serialize these accesses. Chap te r 5 also detai ls coordinating
memory accesses across processors.

Note t h a t MB ensures serialization only; i t does not necessari ly accelerate the
progress of memory operat ions.

Instruction Descriptions (I) 4-117

4.11.4 Read Process Cycle Counter

Format:

RPCC Ra.wq '.Memory format

Operation:

Ra *- {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Process Cycle Counter

Qualifiers:

None

Description:

Register Ra is wr i t ten wi th the process cycle counter (PCC).

The low-order 32 bits of the process cycle counter is an unsigned 32-bit integer t h a t
increments once per Ν CPU cycles, where Ν is an implementation-specific integer in
the range 1..16. The cycle counter frequency is the n u m b e r of t imes the process cycle
counter gets incremented per second, rounded to a 64-bit integer. The integer count
wraps to 0 from a count of F F F F F F F F 1 6. The counter wraps no more frequently t h a n
1.5 t imes the implementat ion 's interval clock in te r rup t period (which is two th i rds
of the interval clock in te r rup t frequency). The high-order 32 bi ts of the process cycle
counter are an offset t h a t when added to the low-order 32 bi ts gives the cycle count
for th is process.

The process cycle counter is suitable for t iming intervals on t he order of nanoseconds
and may be used for detailed performance characterizat ion. I t is required on all
implementat ions . PCC is required for every processor, and each processor in a
multiprocessor system has i ts own private , independent PCC.

4-118 Common Architecture (I)

As an example, consider t he following code t h a t r e t u r n s in RO the cur ren t cycle count
MOD 2**32.

RPCC RO
SLL RO, #32, Rl
ADDQ R0 f Rl, RO
SRL RO, #32, RO

Read the process cycle counter
line up the offset and count fields
do add
zero extend the cycle count to 64 bits

Instruction Descriptions (I) 4-119

4.11.5 Trap Barrier

Format:

4-120 Common Architecture (I)

Operation:

{Stall instruction issuing until all prior instructions are
guaranteed to complete without incurring arithmetic traps.}

Exceptions:

None

Instruction mnemonics:

TRAPB Trap Barr ie r

Qualifiers:

None

Description:

The TRAPB instruct ion allows software to gua ran tee t h a t in a pipelined
implementat ion, all previous ar i thmet ic instruct ions will complete wi thout incurr ing
any ar i thmet ic t r aps before any instruct ions after t he TRAPB are issued. For
example, TRAPB should be used before changing an exception hand le r to ensure
t h a t all exceptions on previous instruct ions a re processed in the cur ren t exception-
handl ing environment .

TRAPB ÎMemory format

4.12 VAX Compatibility Instructions

Alpha provides t he instruct ions shown in Table 4 - 1 3 for use in t r ans la ted VAX code.
These instruct ions a re not a p e r m a n e n t p a r t of the archi tecture and will not be
available in some future implementa t ions . They are in tended to preserve customer
assumpt ions about VAX instruct ion atomicity in port ing code from VAX to Alpha.

These instruct ions should be genera ted only by the VAX-to-Alpha software
t rans la tor ; they should never be used in nat ive Alpha code. Any nat ive code t h a t
uses t h e m m a y cease to work.

Table 4-13: VAX Compatibility Instructions Summary
Mnemonic Opera t ion

RC Read and Clear

RS Read and Set

Instruction Descriptions (I) 4-121

4.12.1 VAX Compatibility Instructions

Format:

Rx Ra.wq ÎMemory format

Operation:

Ra <— intr_flag
intr_flag <— 0
intr__flag +- 1

!RC
1RS

Exceptions:

None

Instruction mnemonics:

RC Read and Clear

RS Read and Set

Qualifiers:

None

Description:

The intr_flag is r e tu rned in Ra and t hen cleared to zero (RC) or set to one (RS).

These instruct ions may be used to determine whe the r the sequence of Alpha
instructions between RS and RC (corresponding to a single VAX instruction) was
executed without in terrupt ion or exception.

Intr__flag is a per-processor s ta te bit. The intr_flag is cleared if t h a t processor
encounters a CALL_PAL REI instruction.

I t is UNPREDICTABLE whether a processor's intr_flag is affected when t h a t
processor executes an LDx_L or STx_C instruction. A processor's intr_flag is not
affected when t h a t processor executes a normal load or store instruction.

A processor's intr_flag is not affected when t h a t processor executes a t a k e n branch.

NOTE
These instruct ions a re in tended only for use by the VAX-
to-Alpha software t rans la tor ; they should never be used
by nat ive code.

4-122 Common Architecture (I)

Chapter 5

System Architecture and Programming Implications

(I)

5.1 Introduction

Port ions of t he Alpha archi tecture have implications for programming, and
the system s t ruc ture , of both uniprocessor and multiprocessor implementat ions .
Archi tectural implications considered in t h e following sections are :

• Physical memory behavior

• Caches and wri te buffers

• Transla t ion buffers and v i r tua l caches

• D a t a shar ing

• Read/wri te ordering

• S tacks

• Ari thmetic t r ap s

l b mee t t he requi rements of t he Alpha archi tecture , software and ha rdware
implementors need to t ake these issues into consideration.

5.2 Physical Memory Behavior

Alpha physical memory space is divided into four regions, based on the two most
significant, implemented, physical address bi ts . Each region's behavior can be
described in t e r m s of i ts coherency, granulari ty, width, and memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementa t ions m u s t provide a coherent view of memory, in which each wri te
by a processor or I/O device (hereafter, called "processor") becomes visible to all other
processors. No distinction is made between coherency of "memory space" and "I/O
space".

Memory coherency m a y be provided in different ways, for each of t h e four physical
address regions.

Possible per-region policies include, bu t a re not restr icted to:

1. No caching

No copies a re kept of da t a in a region; all r eads and wri tes access t he actual da t a
location (memory or I/O register) .

System Architecture and Programming Implications (I) 5-1

2. Write-through caching

Copies are kept of any da ta in the region; reads may use the copies, bu t wri tes
upda te the actual da t a location and ei ther upda te or inval idate all copies.

3. Write-back caching

Copies are kept of any da t a in t he region; reads and wri tes may use t he copies,
and wri tes use addit ional s ta te to determine whe ther there a re o ther copies to
invalidate or upda te .

P a r t of the coherency policy implemented for a given physical address region may
include restr ict ions on excess da t a t ransfers (performing more accesses to a location
t h a n is necessary to acquire or change the location's value), or may specify da ta
t ransfer widths (the granular i ty used to access a location).

Independent of coherency policy, a processor may use different ha rdware or different
ha rdware resource policies for caching or buffering different physical address
regions.

5.2.2 Granularity of Memory Access

For each region, an implementat ion mus t support aligned quadword access and may
optionally support aligned longword access.

For a quadword access region, accesses to physical memory m u s t be implemented
such t h a t independent accesses to adjacent aligned quadwords produce t he same
resul ts regardless of the order of execution. Fur ther , an access to an aligned
quadword m u s t be done in a single atomic operation.

For a longword access region, accesses to physical memory m u s t be implemented
such t h a t independent accesses to adjacent aligned longwords produce the same
resul ts regardless of the order of execution. Fur ther , an access to an aligned
longword m u s t be done in a single atomic operation, and an access to an aligned
quadword m u s t also be done in a single atomic operation.

In th is context, "atomic" means t h a t if different processors do s imul taneous reads
and wri tes of the same data , i t m u s t not be possible to observe a par t ia l wri te of the
subject longword or quadword.

5.2.3 Width of Memory Access

Subject to the granulari ty, ordering, and coherency constra ints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory m a y be freely cached, buffered,
and prefetched.

A processor may read more physical memory da t a (such as a full cache block) t h a n
is actually accessed, wri tes may tr igger reads , and wri tes may wri te back more da ta
t h a n is actually updated. A processor m a y elide mult iple r eads and/or wri tes to t h e
same data .

5-2 Common Architecture (I)

5.2.4 Memory-Like Behavior

A memory-like region obeys the following rules:

• Each page frame in t he region e i ther exists in i ts ent i re ty or does not exist in i ts
ent irety; the re a re no holes wi thin a page frame.

• All locations t h a t exist a re read/wri te .

• A wri te to a location followed by a read from t h a t location r e tu rn s precisely the
bi ts wri t ten; all bi ts act as memory.

• A wri te to one location does not change any other location.

• Reads have no side effects.

• Longword access g ranula r i ty is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional a re supported.

Non-memory-like regions m a y have much more a rb i t ra ry behavior:

• Unimplemented locations or bi ts m a y exist anywhere .

• Some locations or bi ts m a y be read-only and others write-only.

• Address ranges may overlap, such t h a t a wri te to one location changes the bi ts
read from a different location.

• Reads may have side effects, a l though th is is strongly discouraged.

• Longword granula r i ty need not be supported.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

HARDWARE/SOFTWARE COORDINATION NOTE
The detai ls of such behavior a re outside the scope
of the Alpha archi tecture . Specific processor and
I/O device implementa t ions m a y choose and document
whatever behavior they need. I t is t he responsibility of
system designers to impose enough consistency to allow
processors successfully to access match ing non-memory
devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a a v i r tua l instruct ion cache (virtual I-cache) or a
vi r tual da t a cache (virtual D-cache). A system m a y also choose to include e i ther
a combined da t a and instruct ion Transla t ion Buffer (TB) or separa te da t a and
instruct ion TBs (DTB and ITB). The contents of these caches and/or t rans la t ion

System Architecture and Programming Implications (I) 5-3

buffers may become invalid, depending on w h a t operat ing system activity is being
performed.

Whenever a nonsoftware field of a valid Page Table En t ry (PTE) is modified, copies
of t h a t PTE m u s t be made coherent. PALcode mechanisms are available to clear all
TBs, both DTB and ITB entr ies for a given VA, e i ther DTB or ITB entr ies for a given
VA, or all entr ies wi th the Address Space Match (ASM) bit clear. Virtual D-cache
entr ies are made coherent whenever the corresponding DTB ent ry is requested to
be cleared by any of the appropr ia te PALcode mechanisms. Virtual I-cache entr ies
can be made coherent via the CALL_PALL 1MB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has
the address space ma tch (ASM) bit clear (ASNs in use) and the valid bit set, t hen
entr ies can also effectively be made coherent by assigning a new, unused ASN to
the current ly runn ing process and not reus ing the previous ASN before calling the
appropriate PALcode rout ine to inval idate t he Translat ion Buffer (TB).

In a multiprocessor environment , mak ing the TBs and/or caches coherent on only
one processor is not always sufficient. An operat ing system m u s t a r range to perform
the above actions on each processor t h a t could possibly have copies of t he PTE or
da ta for any affected page.

5.4 Caches and Write Buffers

A ha rdware implementat ion may include mechanisms to reduce memory access t ime
by mak ing local copies of recently used memory contents (or those expected to be
used) or by buffering wri tes to complete a t a la ter t ime. Caches and wri te buffers a re
examples of these mechanisms. They m u s t be implemented so t h a t the i r existence
is t r an spa ren t to software (except for t iming, error reporting/control/recovery, and
modification to the I-stream).

The following requi rements m u s t be me t by all cache/write-buffer implementat ions .
All processors m u s t provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate wri tes . From the viewpoint
of another processor, buffered wri tes appear not to have happened yet. (Write
buffers m u s t not delay wri tes indefinitely. See Section 5.6.1.9.)

2. Write-back caches m u s t be able to detect a la ter wri te from another processor
and invalidate or upda te the cache contents .

3. A processor m u s t gua ran tee t h a t a da t a store to a location followed by a da t a
load from the same location m u s t read the updated value.

4. Cache prefetching is allowed, bu t v i r tua l caches m u s t not prefetch from invalid
pages.

5. A processor m u s t gua ran tee t h a t all of i ts previous wri tes a re visible to all other
processors before a HALT instruct ion completes. A processor m u s t gua ran tee
t h a t i ts caches a re coherent with the res t of the system before continuing from
a HALT.

5-4 Common Architecture (I)

6. If ba t te ry backup is supplied, a processor m u s t gua ran t ee t h a t the memory
system remains coherent across a powerfail/recovery sequence. Da ta t h a t was
wr i t t en by t h e processor before the powerfail m a y not be lost, and any caches
m u s t be in a valid s ta te before (and if) normal inst ruct ion processing is continued
after power is restored.

7. Vir tual instruct ion caches a re not required to notice modifications of the v i r tua l
I -s t ream (they need not be coherent wi th t h e res t of memory). Software t h a t
creates or modifies the instruct ion s t r eam m u s t execute a CALL J?AL 1MB before
t ry ing to execute t he new instruct ions.

For example, if two different v i r tua l addresses , VA1 and VA2, m a p to the same
page frame, a store to VA1 modifies t he v i r tua l I -s t ream fetched via VA2.

However, t h e sequence:

1. Change the mapping of a n I -s t ream page from valid to invalid, t hen

2. Copy the corresponding page frame to a new page frame, t h e n

3. Change t h e original mapp ing to be valid and point to t he new page frame

does not modify the vi r tual I -s t ream (this might happen in soft page faults).

8. Physical instruct ion caches a re not required to notice modifications of t he
physical I -s t ream (they need not be coherent wi th the res t of memory), except for
cer ta in paging activity. (See Section 5.6.1.9.) Software t h a t creates or modifies
t he instruct ion s t r eam m u s t execute a CALL_PAL 1MB before t ry ing to execute
t he new instruct ions.

In th i s context, to "modify t h e physical I-s tream" m e a n s any Store to the same
physical address t h a t is subsequent ly fetched as a n instruct ion.

In th i s context, to "modify the v i r tua l I -s t ream" m e a n s any Store to t h e same physical
address t h a t is subsequent ly fetched as an instruct ion via some corresponding
(virtual address , ASN) pair, or to change the virtual-to-physical address mapping
so t h a t different values a re fetched.

5.5 Data Sharing

In a mult iprocessor environment , wri tes to shared da t a m u s t be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum
The ordinary STL and STQ instruct ions can be used to perform a n atomic change
of a shared aligned longword or quadword. ("Change" m e a n s t h a t t he new value is
not a function of t he old value.) In part icular , an ordinary STL or STQ instruct ion
can be used to change a var iable t h a t could be s imultaneously accessed via an LDx_
L/STx_C sequence.

System Architecture and Programming Implications (I) 5-5

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional ins t ruct ions m a y be used to perform an atomic
upda te of a shared aligned longword or quadword. ("Update" m e a n s t h a t the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instruct ions and branch fall-throughs may occur in the
sequence:

try_again:
LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl, no__store

no_store:
<code to check for excessive iterations>
BR try_again

If th is sequence r u n s wi th no exceptions or in te r rup ts , and no other processor wri tes
to location χ (more precisely, t he locked range including x) be tween the LDQ_L and
STQ_C instruct ions, t hen the STQ_C shown in the example stores t he modified value
in χ and sets R l to 1. If, however, t he sequence encounters exceptions or in te r rup t s
t h a t eventually continue the sequence, or another processor wri tes to x, t hen the
STQ_C does not store and sets R l to 0. In th i s case, t h e sequence is repea ted via
the branches to no_store and try_again. This repeti t ion continues unt i l t he reasons
for exceptions or in te r rup t s a re removed, and no interfering store is encountered.

To be useful, t he sequence m u s t be constructed so t h a t it can be replayed an arb i t ra ry
number of t imes, giving the same resul t values each t ime. A sufficient (but not
necessary) condition is tha t , wi thin the sequence, t he set of operand dest inat ions
and the set of operand sources a re disjoint.

NOTE
A sufficiently long instruct ion sequence between LDQ_
L and STQ_C will never complete, because periodic
t imer in te r rup t s will a lways occur before the sequence
completes. The rules in Appendix A describe
sequences t h a t will eventual ly complete in all Alpha
implementat ions .

This load-locked/store-conditional parad igm may be used whenever an atomic upda te
of a shared aligned quadword is desired, including get t ing the effect of atomic byte
wri tes .

5.5.3 Atomic Update of Data Structures

Before accessing shared wri table da t a s t ruc tures (those t h a t are not a single aligned
longword or quadword), t he p rogrammer can acquire control of the da t a s t ruc ture
by us ing a n atomic upda te to set a software lock variable. Such a software lock can
be cleared with an ordinary store instruction.

5-6 Common Architecture (I)

A software-critical section, therefore, m a y look like t he sequence:

stq_c_loop :
spin_loop:

LDQ_L Rl,lock_variable \
BLBS Rl,already_set \

OR R1,#1,R2 > Set lock bit
STQ_C R2, lock__variable /
BEQ R2,stq_c_fail /

MB
<critical section: updates various data structures>
MB

STQ R31, lock__variable Clear lock bit

already_set:
<code
BR

stq^c^fail:
<code
BR

to block or reschedule or test for too many iterations>
spin_loop

to test for too many iterations>
stq__c_loop

This code h a s a number of subtlet ies:

1. If t he lock_variable is a l ready set, t he spin loop is done wi thout doing any stores.
This avoidance of s tores improves memory subsystem performance and avoids
t he deadlock described below.

2. If t he lock_variable is actually being changed from 0 to 1, and the STQ_C fails
(due to a n in te r rupt , or because another processor s imultaneously changed lock_
variable), t he ent i re process s t a r t s over by reading the lock_variable again.

3. Only t h e fall-through p a t h of t he BLBS does a STx_C; some implementa t ions
m a y not allow a successful STx_C after a branch- taken.

4. Only register-to-register operate instruct ions a re used to do the modify.

5. Both conditional branches a re forward branches , so they a re properly predicted
not to be t a k e n (to ma tch t h e common case of no contention for t h e lock).

6. The OR wri tes i ts resul t to a second register; th is allows the OR and the BLBS
to be in terchanged if t h a t would give a faster instruct ion schedule.

7. Othe r operate ins t ruct ions (from the critical section) m a y be scheduled into
t he LDQ_L..STQ_C sequence, so long as they do not fault or t r ap , and they
give correct resu l t s if repeated; o ther memory or operate instruct ions may be
scheduled between the STQ_C and BEQ.

8. The MB instruct ions a re discussed in Section 5.5.4.

9. An ordinary STQ instruct ion is used to clear the lock__variable.

I t would be a performance mis take to spin-wait by repea t ing t he full LDQ_L..STQ_C
sequence (to move the BLBS after the BEQ) because t h a t sequence may repeatedly
change the software lock_variable from "locked" to "locked," wi th each wri te causing

System Architecture and Programming Implications (I) 5-7

extra access delays in all other caches t h a t contain the lock_variable. In the extreme,
spin-waits t h a t contain wri tes may deadlock as follows:

If, when one processor spins wi th wri tes , ano ther processor is modifying (not
changing) the lock_variable, t hen the wri tes on the first processor may cause the
STx_C of the modify on the second processor always to fail.

This deadlock si tuat ion is avoided by:

• Having only one processor do a store (no STx_C), or

• Having no wri te in t he spin loop, or

• Doing a wri te only if t he shared variable actually changes s ta te (1 -* 1 does not
change state) .

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only th ree
steps:

1. Acquire software lock

2. Critical section—read/write shared da t a

3. Clear software lock

In the absence of explicit instruct ions to the contrary, the Alpha archi tecture allows
reads and wri tes to be reordered. While th is m a y allow more implementa t ion speed
and overlap, it can also create undesired side effects on shared da t a s t ructures .
Normally, the critical section j u s t described would have two instruct ions added to it:

<acquire software lock>
MB (memory barrier #1)
<critical section — read/write shared data>
MB (memory barrier #2)
<clear software lock>

The first memory bar r ie r prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data .

The second memory bar r ie r prevents any reads or wri tes (from within the critical
section) from being delayed pas t the clearing of the software lock; such delayed
accesses could in teract with the next user of the shared da ta , defeating the purpose
of the software lock entirely.

SOFTWARE NOTE
In the VAX archi tecture, m a n y instruct ions provide non-
in ter ruptable read-modify-write sequences to memory
variables. Most p rogrammers never regard da t a shar ing
as a n issue.

In the Alpha archi tecture, p rogrammers m u s t pay more
a t tent ion to synchronizing access to shared data ; for

5-8 Common Architecture (I)

example, to AST rout ines . In t he VAX, a p rogrammer
can use an ADDL2 to upda te a var iable t h a t is shared
between a "MAIN" rout ine and an AST rout ine, if
r u n n i n g on a single processor. In t he Alpha archi tecture ,
a p rogrammer m u s t deal wi th AST shared da t a by us ing
multiprocessor shared da t a sequences.

5.6 Read/Write Ordering

This section does not apply to programs t h a t r u n on a single processor and do not
wri te to t he instruct ion s t ream. On a single processor, all memory accesses appear
to happen in the order specified by the programmer. This section deals entirely wi th
predictable read/wri te ordering across mult iple processors.

The order of r eads and wri tes done in an Alpha implementa t ion m a y differ from t h a t
specified by the programmer.

For any two memory references A and B, e i ther A m u s t occur before Β in all Alpha
implementa t ions , Β m u s t occur before A, or they are UNORDERED. In t he las t
case, software cannot depend upon one occurring first: t he order m a y vary from
implementa t ion to implementat ion, and even from r u n to r u n or moment to moment
on a single implementat ion.

If two references cannot be shown to be ordered by the ru les given, they are
UNORDERED and implementa t ions a re free to do t h e m in any order t h a t is
convenient. Implementa t ions m a y t ake advantage of th i s freedom to deliver
substant ia l ly h igher performance.

The discussion t h a t follows first defines t he archi tectural issue sequence of memory
references on a single processor, t h e n defines t he (partial) ordering on th i s issue
sequence t h a t all Alpha implementa t ions a re required to main ta in .

The individual issue sequences on mult iple processors a re merged into access
sequences a t each shared memory location. The discussion defines t he (partial)
ordering on t h e individual access sequences t h a t all Alpha implementa t ions are
required to main ta in .

The ne t resul t is t h a t for any code t h a t executes on mult iple processors, one can
de termine which memory accesses a re required to occur before o thers on all Alpha
implementa t ions and hence can wri te useful shared-variable software.

Software wri ters can force one reference to occur before ano ther by inser t ing a
memory bar r ie r instruct ion (MB or 1MB) between the references.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection of processors and shared coherent memories
t h a t a re accessible by all processors. (There m a y also be unsha red memories , bu t
they are outside the scope of th i s section.)

A processor is an Alpha CPU or an I/O device (or any th ing else t h a t gets added).

A shared memory is t he p r imary storage place for one or more locations.

System Architecture and Programming Implications (I) 5-9

A location is an aligned quadword, specified by i ts physical address . Multiple v i r tual
addresses may m a p to the same physical address . Order ing considerations a re based
only on the physical address .

IMPLEMENTATION NOTE
An implementat ion may allow a location to have
mult iple physical addresses , bu t the rules for accesses
via mixtures of the addresses a re implementat ion-
specific and outside the scope of th is section. Accesses
via exactly one of t he physical addresses follow t h e rules
described next.

Each processor may genera te accesses to shared memory locations. There are five
types of accesses:

1. Instruct ion fetch by processor i to location x, r e tu rn ing value a, denoted Pi:I(x,a).

2. D a t a read by processor i to location x9 r e tu rn ing value a, denoted Pi:R(x,a).

3. Da ta wri te by processor i to location x, s toring value a, denoted Pi:W(x,a).

4. Memory bar r ie r instruct ion issued by processor i, denoted Pi:MB.

5. I-s tream memory bar r ie r instruct ion issued by processor i, denoted Pi:IMB.

The first access type is also called an I-s t ream access or I-fetch. The next two are
also called D-s t ream accesses. The first t h ree types collectively a re called read/wri te
accesses, denoted Pi:*(x,a). The las t two types collectively a re called barr iers .

Dur ing actual execution in an Alpha system, each processor h a s a t ime-ordered issue
sequence of all the memory references presented by t h a t processor (to all memory
locations), and each location has a t ime-ordered access sequence of all t he accesses
presented to t h a t location (from all processors).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architectural ly defined wi th respect to a
hypothetical simple implementat ion t h a t contains one processor and a single shared
memory, with no caches or buffers. This is the instruct ion execution model:

1. I-fetch: An Alpha instruct ion is fetched from memory.

2. Read/Write: Tha t instruct ion is executed and r u n s to completion, including a
single da ta read from memory for a Load instruct ion or a single da t a wri te to
memory for a Store instruction.

3. Update : The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If t he instruct ion fetch step gets a memory managemen t fault, t he I-fetch is not done
and the PC is upda ted to point to a PALcode fault handler . If t he read/wri te s tep
gets a memory managemen t fault, the read/wri te is not done and the PC is upda ted
to point to a PALcode fault handler .

5-10 Common Architecture (I)

All memory references a re aligned quadwords . For t he purpose of defining ordering,
aligned longword references a re modeled as quadword references to t he containing
aligned quadword.

5.6.1.2 Definition of Processor Issue Order

A par t ia l ordering, called processor issue order, is imposed on the issue sequence
defined in Section 5.6.1.1.

For two accesses u and υ i ssued by processor Pi, u is said to PRECEDE υ IN ISSUE
ORDER (<) if u occurs earl ier t h a n υ in the issue sequence for Pi, and e i ther of the
following applies:

1. The access types a re of the following issue order:

Table 5-1 : Processor Issue Order

l s t j / 2 n d - Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:IMB

Pi:I(x,a) < if x=y < if x=y < <

Pi:R(x,a) < if x=y < if x=y < <

Pi:W(x,a) < if x=y < if x=y < <

Pi:MB < < < <

Pi:IMB < < < < <

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss , and υ is
an I- or D-s t ream access us ing t h a t PTE (see Section 5.6.2).

Issue order is t h u s a par t ia l order imposed on the archi tectural ly specified issue
sequence. Implementa t ions a re free to do memory accesses from a single processor
in any sequence t h a t is consistent wi th th i s par t ia l order.

Note t h a t accesses to different locations a re ordered only wi th respect to bar r ie rs
and TB fill. The table asymmet ry for I-fetch allows wri tes to t he I-s t ream to be
incoherent unt i l a n 1MB is executed.

5.6.1.3 Definition of Memory Access Sequence

The access sequence for a location cannot be observed directly, nor fully
predicted before an actual execution, nor reproduced exactly from one execution
to another. Nonetheless , some useful order ing propert ies m u s t hold in all Alpha
implementa t ions .

5.6.1.4 Definition of Location Access Order

A par t ia l ordering, called location access order, is imposed on the memory access
sequence defined above.

For two accesses u and υ to location x, u is said to PRECEDE υ IN ACCESS ORDER
(<) if u occurs earl ier t h a n υ in t he access sequence for x, and a t least one of t hem
is a wri te:

System Architecture and Programming Implications (I) 5-11

Table 5 - 2 : Location Access Order

l s t i / 2 n d - Pi:I(x,b) Pi:R(x,b) Pi:W(x,b)

Pi:I(x,a) <
Pi:R(x,a) <
Pi:W(x,a) < < <

Access order is t h u s a par t ia l order imposed on the actual access sequence for a
given location. Each location h a s a separa te access order. There is no direct ordering
relat ionship between accesses to different locations.

Note t h a t reads and I-fetches are ordered only with respect to wri tes.

5.6.1.5 Definition of Storage

If u is Pi:W(x,a), and υ is e i ther Pj:I(x,b) or Pj:R(x,b), and u < v , and no w Pk:W(x,c)
exists such t h a t u < w < v , then the value b r e tu rned by ν is exactly the value a
wri t ten by u.

Conversely, if u is Pi:W(x,a), and ν is e i ther Pj:I(x,b) or Pj:R(x,b), and b=a (and a is
dist inguishable from values wr i t ten by accesses other t h a n u), t hen u < v and for any
other w Pk:W(x,c) e i ther w < u or v < w .

The only way to communicate information between different processors is for one to
wri te a shared location and the other to read the shared location and receive the
newly wr i t ten value. (In th is context, t he sending of an in te r rup t from processor
Pi to processor Pj is modeled as Pi wri t ing to a location INTij, and Pj reading from
INTij.)

5.6.1.6 Relationship Between Issue Order and Access Order

If u is Pi:*(x,a), and i; is Pi:*(x,b), one of which is a wri te , and u<v in the issue order
for processor Pi, t hen u<cv in the access order for location x.

In other words, if two accesses to the same location are ordered on a given processor,
they are ordered in the same way a t the location.

5.6.1.7 Definition of Before

For two accesses u and v, u is said to be BEFORE ν (<=) if:

u < ν or
u < v o r
there exists an access w such tha t :

(u < w and w <= v) or
(u <c w and w <= v).

In other words, "before" is the t ransi t ive closure over issue order and access order.

5-12 Common Architecture (I)

5.6.1.8 Definition of After

If u <= v, t hen υ is said to be AFTER u.

At most one of u <= ν and ν <= u is t rue .

5.6.1.9 Timeliness

Even in the absence of a bar r ie r after the wri te , a wri te by one processor to a given
location may not be delayed indefinitely in t he access order for t h a t location.

5.6.2 Litmus Tests

Many issues about wri t ing and read ing shared da t a can be cast into quest ions about
whe the r a wri te is before or after a read. These quest ions can be answered by
rigorously applying the ordering rules described previously to demons t ra te whe ther
the accesses in question are ordered a t all.

Assume, in the l i tmus tes t s below, t h a t initially all memory locations contain 1.

5.6.2.1 Litmus Test 1 (Impossible Sequence)

P i P j

[Ul]Pi:W(x,2) [VI] Pj:R(x,2)

[V2] Pj:R(x,l)

VI reading 2 implies U l <c V I , by the definition of storage
V2 reading 1 implies V2 < U l , by t he definition of storage
VI < V2, by t he definition of issue order

The first two orderings imply t h a t V2 <= V I , whereas t he las t implies t h a t VI <= V2.

Both implications cannot be t rue . Thus , once a processor reads a new value from a
location, it m u s t never see an old value—time m u s t not go backward. V2 m u s t read
2.

5.6.2.2 Litmus Test 2 (Impossible Sequence)

P i P j

[Ul] Pi:W(x,2) [VI] Pj:W(x,3)

[V2] Pj:R(x,2)

[V3] Pj:R(x,3)

V2 reading 2 implies VI <= U l
V3 reading 3 implies U l <= VI

Both implications cannot be t rue . Thus , once a processor reads a new value wr i t ten
by U l , any other wri tes t h a t m u s t precede t h e read m u s t also precede U l . V3 m u s t
read 2.

System Architecture and Programming Implications (I) 5-13

5.6.2.3 Litmus Test 3 (Impossible Sequence)

P i P j P k

[Ul] Pi:W(x,2) [VI] Pj : W(x,3) [Wl] Pk:R(x,3)

[U2] Pi:R(x,3) [W2] Pk:R(x,2)

U2 reading 3 implies U l <= VI
W2 reading 2 implies VI ·*= U l

Both implications cannot be t rue . Again, t ime cannot go backward. If U2 reads 3
t hen W2 m u s t read 3. Alternately, if W2 reads 2, t hen U2 m u s t read 2.

5.6.2.4 Litmus Test 4 (Sequence Okay)

P i F̂ j

[Ul]Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in th is sequence. U2 VI and V2 <= U l . U l and U2 are not
ordered wi th respect to each other. VI and V2 are not ordered wi th respect to each
other. There is no conflicting implication t h a t U l V2.

5.6.2.5 Litmus Test 5 (Sequence Okay)

P i P j

[Ul]Pi:W(x,2) [VI] Pj:R(y,2)

[V2] Pj:MB

[U2] Pi:W(y,2) [V3] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= VI <= V3 <= U l . There is no conflicting
implication t h a t U l «<= U2.

5.6.2.6 Litmus Test 6 (Sequence Okay)

P i Pj

[Ul]Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi.MB

[U3] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in th is sequence. V2 <= U l <= U3 <Φ= V I . There is no conflicting
implication t h a t VI <= V2.

In scenarios 4, 5, and 6, wri tes to two different locations χ and y a re observed
(by another processor) to occur in the opposite order t h a n t h a t in which they were
performed. An upda te to y propagates quickly to Pj , bu t the upda te to χ is delayed,
and Pi and Pj do not both have MBs.

5-14 Common Architecture (I)

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Pi Pj

[Ul]Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:W(y,2) [V3] Pj:R(x,l)

VI reading 2 implies U3 <= VI
V3 reading 1 implies V3 <= U l
But , by transit ivity, U l <= U3 <= VI <= V3

Both cannot be t rue , so if VI reads 2, t h e n V3 m u s t also read 2.

5.6.2.8 Litmus Test 8 (impossible Sequence)

Pi Pj

[Ul]Pi :W(x,2) [VI] Pj:W(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:R(y,l) [V3] Pj:R(x,l)

U 3 reading 1 implies U3 <= VI
V3 reading 1 implies V3 <= U l
But , by transit ivity, U l <= U 3 <= VI V3

Both cannot be t rue , so if U 3 reads 1, t h e n V3 m u s t read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

P i Pj

[Ul]Pi:W(x,2) [VI] Pj:W(x,3)

[U2] Pi:R(x,2) [V2] Pj:R(x,3)

[U3] Pi:R(x,3) [V3] Pj:R(x,2)

V3 reading 2 implies U l <= V3
V2 <= V3 and V2 read ing 3 implies V2 <= U l
VI <= V2 and V2 <= U l implies VI «= U l

U 3 reading 3 implies VI <= U 3
U2 <= U 3 and U2 reading 2 implies U2 <= VI
U l <= U2 and U2 VI implies U l <= VI

Both VI <<= U l and U l <= VI cannot be t rue . Time cannot go backwards . If V3 reads
2, t hen U 3 m u s t read 2. Alternatively, If U 3 reads 3, t hen V3 m u s t read 3.

System Architecture and Programming Implications (I) 5-15

5.6.3 Implied Barriers

In Alpha, there are no implied barr iers . If an implied bar r ie r is needed for
functionally correct access to shared da ta , it m u s t be wr i t t en as an explicit
instruction. (Software m u s t explicitly include any needed MB or 1MB instructions.)

Alpha t rans i t ions such as the following have no built-in implied memory bar r ie rs :

• En t ry to PALcode

• Sending and receiving in te r rup t s

• Return ing from exceptions, in te r rup ts , or machine checks

• Swapping context

• Inval idat ing the Translat ion Buffer (TB)

Depending on implementat ion choices for main ta in ing cache coherency, some PAL
/cache implementat ions may have an implied 1MB in the I -s t ream TB fill routine,
bu t th is is t r a n s p a r e n t to the non-PAL programmer.

5.6.4 Implications for Software

Software m u s t explicitly include MB or 1MB instruct ions in the following
circumstances.

5.6.4.1 Single-Processor Data Stream

No barr ie rs are ever needed. A read to physical address χ will a lways r e tu rn
the value wri t ten by the immediately preceding wri te to χ in the processor issue
sequence.

5.6.4.2 Single-Processor Instruction Stream

An I-fetch from vir tual or physical address χ does not necessarily r e tu rn t he value
wr i t ten by the immediately preceding wri te to χ in t h e issue sequence. To m a k e
the I-fetch reliably get the newly wr i t ten instruction, an 1MB is needed between the
wri te and the I-fetch.

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O)

The only way to communicate shared da t a reliably is to wri te the shared da t a on one
processor, t hen do an MB on t h a t processor, t hen wri te a flag (equivalently, send an
in ter rupt) signaling the other processor t h a t the shared da t a is ready. Each receiving
processor mus t read the new flag (equivalently, receive the in ter rupt) , t hen do an
MB, then read or upda te the shared data .

Leaving out the first MB removes the assurance t h a t the shared da t a is wr i t ten
before the flag is.

Leaving out the second MB removes t he assurance t h a t the shared da t a is read or
updated only after the flag is seen to change; in th is case, an early read could see
an old value, and an early upda te could be overwrit ten.

This implies t h a t after a CPU h a s prepared some d a t a buffer to be r ead from memory
by a DMA I/O device (such as wri t ing a buffer to disk), it m u s t do an MB before

5-16 Common Architecture (I)

s ta r t ing t he I/O, and t h e I/O device after receiving the s t a r t signal m u s t logically do
an MB before reading t h e da t a buffer.

This also implies t h a t after a DMA I/O device h a s wr i t t en some d a t a to memory
(such as paging in a page from disk), t h e DMA device m u s t logically do an MB
before posting a completion in te r rup t , and the in t e r rup t hand le r software m u s t do
an MB before t h e da t a is gua ran teed to be visible to the in te r rup ted processor. Other
processors m u s t also do MBs before they a re gua ran teed to see the new data .

An impor tan t special case occurs when a wri te is done (perhaps by a n I/O device) to
some physical page frame, t h e n a n MB, t h e n a previously invalid P T E is changed to
be a valid mapping of the physical page frame t h a t was j u s t wri t ten . In th is case,
all processors t h a t access us ing the newly valid PTE m u s t gua ran tee to deliver the
newly wr i t t en da t a after t he TB miss , for both I -s t ream and D-s t ream accesses.

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O)

The only way to upda te t he I -s t ream reliably is to wri te t he shared I -s t ream on one
processor, t hen do an 1MB (MB if t he wri t ing processor is not going to execute t he
new I-stream) on t h a t processor, t h e n wri te a flag (equivalently, send an in ter rupt)
s ignaling the other processor t h a t t he shared I -s t ream is ready. Each receiving
processor m u s t read the new flag (equivalently, receive t he in ter rupt) , t hen do an
1MB, t hen fetch t he shared I-s t ream.

Leaving out the first IMB(MB) removes t he assurance t h a t t he shared I -s t ream is
wr i t ten before the flag is.

Leaving out t he second 1MB removes t h e assurance t h a t t he shared I -s t ream is read
only after t he flag is seen to change; in th i s case, an early read could see an old
value.

This implies t h a t after a DMA I/O device h a s wr i t t en some I-s t ream to memory (such
as paging in a page from disk), t he DMA device m u s t logically do an IMB(MB) before
posting a completion in te r rupt , and the in te r rup t hand le r software m u s t do an 1MB
before the I -s t ream is gua ran teed to be visible to the in te r rup ted processor. Other
processors m u s t also do IMBs before they are gua ran teed to see t he new I-stream.

An impor tan t special case occurs when a wri te is done (perhaps by an I/O device)
to some physical page frame, t hen an IMB(MB), t hen a previously invalid PTE is
changed to be a valid mapp ing of t he physical page frame t h a t was j u s t wri t ten. In
th is case, all processors t h a t access us ing the newly valid PTE m u s t gua ran tee to
deliver the newly wr i t ten I -s t ream after the TB miss .

5.6.4.5 Multiple-Processor Context Switch

If a process migra tes from executing on one processor to executing on another, t he
context switch operat ing system code m u s t include a n u m b e r of bar r ie rs .

A process migra tes by having i ts context stored into memory, t h e n eventual ly having
t h a t context reloaded on ano ther processor. In between, some shared mechanism
m u s t be used to communicate t h a t t h e context saved in memory by the first processor
is available to t he second processor. This could be done by us ing an in ter rupt , by

System Architecture and Programming Implications (I) 5-17

using a flag bit associated with the saved context, or by us ing a shared-memory
multiprocessor da t a s t ruc ture , as follows:

F i r s t P rocessor Second Processo r

Save s ta te of cur ren t process.
MB [1]
Pass ownership of process context => Pick up ownership of process context
da ta s t ruc ture memory. da t a s t ruc ture memory.

MB [2]
Restore s ta te of new process context da t a
s t ruc ture memory.
Make I-s t ream coherent [3].
Make TB coherent [4].

Execute code for new process t h a t
accesses memory t h a t is not common to
all processes.

MB [1] ensures t h a t the wri tes done to save the s ta te of the cur ren t process happen
before the ownership is passed.

MB [2] ensures t h a t the reads done to load the s ta te of the new process happen
after the ownership is picked up and hence are reliably the values wr i t ten by the
processor saving the old s ta te . Leaving this MB out makes the code fail if an old
value of the context r emains in the second processor's cache and invalidates from
the wri tes done on the first processor a re not delivered soon enough.

The TB on the second processor mus t be made coherent with any wri te to the page
tables t h a t may have occurred on the first processor j u s t before the save of the process
s ta te . This m u s t be done wi th a series of TB inval idate instruct ions to remove any
nonglobal page mapping for th is process, or by assigning an ASN t h a t is unused on
the second processor to the process. One of these actions m u s t occur sometime before
s ta r t ing execution of the code for the new process t h a t accesses memory (instruction
or data) t h a t is not common to all processes. A common method is to assign a new
ASN after gaining ownership of the new process and before loading i ts context, which
includes i ts ASN.

The D-cache on the second processor m u s t be m a d e coherent wi th any wri te to the D-
s t ream t h a t may have occurred on the first processor j u s t before the save of process
s ta te . This is ensured by MB [2] and does not require any addit ional instruct ions.

5-18 Common Architecture (I)

The I-cache on the second processor m u s t be made coherent wi th any wri te to the
I -s t ream t h a t may have occurred on the first processor j u s t before t he save of process
s ta te . This can be done wi th a n 1MB PAL call sometime before the execution of any
code t h a t is not common to all processes, More commonly, th is can be done by forcing
a TB miss (via t he new ASN or via TB inval idate instruct ions) and us ing the TB-
fill rule (see Section 5.6.4.3). This l a t t e r approach does not require any addit ional
instruct ion.

Combining all these considerat ions gives:

First Processor Second Processor

Pick up ownership of process
context da t a s t ruc ture memory.
MB
Assign new ASN or inval idate TBs.
Save s ta te of cur ren t process.
Restore s ta te of new process.
MB
Pass ownership of process context => Pickup ownership of new process context
da t a s t ruc ture memory. da t a s t ruc ture memory.

MB
: Assign new ASN or inval idate TBs.

Save s ta te of cur ren t process.
Restore s ta te of new process.
MB
Pass ownership of old process context
da t a s t ruc ture memory.

Execute code for new process t h a t
accesses memory t h a t is not common to
all processes.

Note t h a t on a single processor the re is no need for the bar r ie rs .

System Architecture and Programming Implications (I) 5-19

5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor wri tes some shared data , t hen sends an in te r rup t to a second
processor, and t h a t processor receives the in te r rupt , t hen accesses the shared data ,
the sequence from Section 5.6.4.3 m u s t be used:

F i r s t P rocessor Second Processor

Write da ta
MB
Send int. => Receive int.

MB
Access da ta

Leaving out the MB a t the beginning of the interrupt-receipt rout ine makes the
code fail if an old value of the context r emains in the second processor's cache and
invalidates from the wri tes done on the first processor are not delivered soon enough.

5.6.5 Implications for Hardware

The coherency point for physical address χ is the place in the memory subsystem a t
which accesses to χ a re ordered. I t may be a t a ma in memory board, or a t a cache
containing χ exclusively, or a t t he point of winning a common bus arbi t ra t ion.

The coherency point for χ may move with t ime, as exclusive access to χ migra tes
between main memory and various caches.

MB and 1MB force all preceding wri tes to a t leas t reach the i r respective coherency
points. This does not mean t h a t main-memory wri tes have been done, j u s t t h a t the
order of the eventual wri tes is committed. For example, on the XMI wi th retry, th is
means get t ing the wri tes acknowledged as received wi th good par i ty a t t he inputs
to memory board queues; the actual RAM wri te happens later.

MB and 1MB also force all queued cache inval idates to be delivered to the local
caches before s ta r t ing any subsequent reads (that may otherwise cache hi t on stale
data) or wri tes (tha t may otherwise wri te the cache, only to have the wri te effectively
overwrit ten by a late-delivered invalidate).

Implementat ions may allow reads of χ to hi t (by physical address) on pending wri tes
in a wri te buffer, even before the wri tes to χ reach the coherency point for x. If th is
is done, it is still t rue t h a t no earl ier value of χ may subsequent ly be delivered to
the processor t h a t took the hi t on the wri te buffer value.

Virtual da ta caches are allowed to deliver da t a before doing address t ransla t ion, bu t
only if there cannot be a pending wri te unde r a synonym vir tual address . Lack of a
write-buffer match on un t rans la t ed address bits is sufficient to gua ran tee this .

Virtual da ta caches m u s t invalidate or otherwise become coherent wi th the new value
whenever a PALcode rout ine is executed t h a t affects the validity, fault behavior,

5-20 Common Architecture (I)

protection behavior, or virtual-to-physical mapping specified for one or more pages.
Becoming coherent can be delayed unt i l t he next subsequent MB instruct ion or TB
fill (using the new mapping) , if t he implementa t ion of the PALcode rout ine always
forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha implementa t ions a re allowed to execute mult iple instruct ions concurrently
and to forward resul ts from one instruct ion to another. Thus , when an ar i thmet ic
t r a p is detected, the PC may have advanced an arbi t rar i ly large number of
instruct ions pas t the instruct ion Τ (calculating resul t R) whose execution tr iggered
the t r ap .

When the t r a p is detected, any or all of these subsequent instruct ions may r u n to
completion before the t r a p is actually t aken . Instruct ion Τ and the set of instruct ions
subsequent to Τ t h a t complete before the t r a p is t aken are collectively called the t r a p
shadow of T. The PC pushed on the s tack when the t r a p is t a k e n is the PC of the
first instruct ion pas t the t r a p shadow.

The instruct ions in the t r a p shadow of Τ m a y use the undefined resul t R of T, they
may genera te addit ional t r aps , and they may completely change the PC (branches,
JSR) .

Thus , by the t ime a t r a p is t aken , the PC pushed on the s tack may bear no useful
re la t ionship to the PC of the t r igger instruct ion T, and the s ta te visible to the
p rogrammer may have been upda ted us ing the undefined resul t R. If an instruct ion
in t he t r a p shadow of Τ uses R to calculate a subsequent register value, t h a t register
value is undefined, even though the re may be no t r a p associated wi th the subsequent
calculation. Similarly:

• If an instruct ion in the t r a p shadow of Τ stores R or any subsequent undefined
resul t , t he stored value is undefined.

• If an instruct ion in the t r a p shadow of Τ uses R or any subsequent undefined
resul t as the basis of a conditional or calculated branch, the b ranch t a rge t is
undefined.

• If an instruct ion in t he t r a p shadow of Τ uses R or any subsequent undefined
resul t as the basis of an address calculation, the memory address actually
accessed is undefined.

Software t h a t is in tended to bound how far the PC may advance before t ak ing a t r ap ,
or how far an undefined resul t may propagate , m u s t inser t TRAPB instruct ions a t
appropr ia te points.

Software t h a t is in tended to continue from a t r a p by supplying a well-defined resul t
R within an ar i thmet ic t r a p handler , can do so reliably by following the rules for
software completion code sequences given in Section 4.7.5.

System Architecture and Programming Implications (I) 5-21

Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines , both users and operat ing system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code t h a t uses those functions can be used on several different
implementa t ions wi thout modification.

These functions range from the b inary encoding of the instruct ion and da t a to the
exception mechanisms and synchronization primit ives. Some of these functions can
be implemented cost effectively in ha rdware , bu t others a re impractical to implement
directly in ha rdware . These functions include low-level ha rdware support functions
such as Translat ion Buffer miss fill rout ines , in te r rup t acknowledge, and vector
dispatch. They also include support for privileged and atomic operat ions t h a t require
long instruct ion sequences.

In the VAX, these functions a re generally provided by microcode. This is not seen as
a problem because the VAX archi tecture lends itself to a microcoded implementat ion.

One of the goals of Alpha is t h a t microcode will not be necessary for practical
implementat ion. However, it is still desirable to provide an architected interface
to these functions t h a t will be consistent across the ent i re family of machines . The
Privileged Architecture Library (PALcode) provides a mechanism to implement these
functions wi thout resor t ing to a microcoded machine.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Ins t ruct ions t h a t require complex sequencing as a n atomic operat ion

• Inst ruct ions t h a t require VAX-style interlocked memory access

• Privileged instruct ions

• Memory m a n a g e m e n t control (including t rans la t ion buffer (TB) management)

• Context swapping

• In t e r rup t and exception dispatching

• Power-up init ialization and booting

• Console functions

• Emula t ion of ins t ruct ions wi th no h a r d w a r e support .

Common PALcode Architecture (I) 6-1

The Alpha archi tecture lets these functions be implemented in s t andard machine
code t h a t is res ident in ma in memory. PALcode is wr i t ten in s t anda rd machine
code wi th some implementation-specific extensions to provide access to low-level
ha rdware . This lets an Alpha implementa t ion make various design trade-offs based
on the ha rdware technology being used to implement t he machine. The PALcode
can abst ract these differences and m a k e t hem invisible to system software.

For example, in a MOS VLSI implementat ion, a small (32 entry) fully associative
TB can be the r ight ma tch to the media, given t h a t chip a rea is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing t r a n s p a r e n t TB miss service rout ines . The
operat ing system code would not need to know the re were any differences.

Part II, Operating Systems describes the Digital-supplied Alpha Privileged
Architecture Library (PALcode) rout ines and environment . Other systems may use
the Digital-supplied PALcode l ibrary or architect and implement a different l ibrary of
rout ines. Alpha systems are required to support t he replacement of Digital-defined
PALcode with an operat ing system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal envi ronment in the following
ways:

• Complete control of the machine s ta te .

• In te r rup t s are disabled.

• Implementation-specific ha rdware functions a re enabled, as described below.

• I -s t ream memory managemen t t r a p s a re prevented (by disabling I -s t ream
mapping, mapping PALcode with a pe rmanen t TB entry, or by other
mechanisms) .

Complete control of the machine s ta te allows all functions of the machine to be
controlled. Disabling in te r rup t s allows the system to provide mult i- instruct ion
sequences as atomic operations. Enabl ing implementation-specific ha rdware
functions allows access to low-level system ha rdware . Prevent ing I-s t ream memory
managemen t t r aps allows PALcode to implement memory managemen t functions
such as t rans la t ion buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruct ion set for most of i ts operations. A small number
of addit ional functions a re needed to implement the PALcode. There a re five
opcodes reserved to implement PALcode functions: PALRESO, PALRES1, PALRES2,
PALRES3 and PALRES4. These instruct ions produce an Illegal Instruct ion Trap if
executed outside the PALcode environment .

6-2 Common Architecture (I)

• PALcode needs a mechanism to save the cur ren t s ta te of the machine and
dispatch into PALcode.

• PALcode needs a set of instruct ions to access ha rdware control registers .

• PALcode needs a h a r d w a r e mechanism to t rans i t ion the machine from the
PALcode environment to the non-PALcode environment . This mechanism loads
t he PC, enables in te r rup t s , enables mapping, and disables PALcode privileges.

An Alpha implementa t ion may also choose to provide addit ional functions to simplify
or improve performance of some PALcode functions. The following are some
examples:

• An Alpha implementa t ion may include a read/wri te v i r tua l function t h a t allows
PALcode to perform mapped memory accesses us ing t h e mapp ing ha rdware
r a t h e r t h a n providing the virtual-to-physical t rans la t ion in PALcode rout ines.
PALcode may provide a special function to do physical reads and wri tes and
have the Alpha loads and stores continue to operate on v i r tua l address in the
PALcode environment .

• An Alpha implementa t ion m a y include h a r d w a r e ass is ts for var ious functions—
for example, saving the v i r tua l address of a reference on a memory managemen t
error r a t h e r t h a n having to genera te it by s imula t ing the effective address
calculation in PALcode.

• An Alpha implementa t ion may include pr ivate registers so it can function without
hav ing to save and res tore t he na t ive general regis ters .

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may be res ident
in ma in memory and ma in t a in privileged da t a s t ruc tures in ma in memory, t he
operat ing system code t h a t allocates physical memory cannot use all of physical
memory.

The amoun t of memory PALcode requires is small , so the loss to t he system is
negligible.

6.6 PALcode Replacement

Alpha systems are required to support t he replacement of Digital-supplied PALcode
wi th an operat ing system-specific version. The following functions m u s t be
implemented in PALcode, not directly in ha rdware , to facilitate replacement with
different versions.

1. Translat ion Buffer fill. Different operat ing systems will wan t to replace the
Transla t ion Buffer (TB) fill rout ines . The replacement rout ines will use different
da t a s t ruc tures . The page tables documented in Part II, Operating Systems will
not be presen t in these systems. Therefore, no portion of t he TB fill flow t h a t
would change wi th a change in page tables may be placed in ha rdware , unless
i t is placed in a m a n n e r t h a t can be overridden by PALcode.

Common PALcode Architecture (I) 6-3

2. Process s t ructure . Different operat ing systems might w a n t to replace the process
context switch rout ines . The replacement rout ines will use different d a t a
s t ructures . The HWPCB or PCB documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the context switching
flows t h a t would change wi th a change in process s t ruc ture may be placed in
ha rdware .

PALcode m u s t be wr i t ten in a modular m a n n e r t h a t facilitates easy replacement of
major subsections. The subsections t h a t need to be simple to replace are :

• Translat ion Buffer fill

• Process s t ruc ture and context switch

• In te r rup t and exception frame format and rout ine dispatch

• Privileged PALcode instruct ions

6.7 Required PALcode Instructions

The PALcode instruct ions listed in Table 6-1 and Appendix C m u s t be recognized by
mnemonic and opcode in all operat ing system implementat ions , bu t the effect of each
instruction is dependent on the implementat ion. The operation of these PALcode
instruct ions for Digital-supplied operat ing system implementa t ions is described in
Part II, Operating Systems.

Table 6-1: PALcode Instructions that Require Recognition
Mnemonic Name

BPT Breakpoint trap

BUGCHK Bugcheck trap

GENTRAP Generate trap

RDUNIQUE Read unique value

WRUNIQUE Write unique value

The PALcode instruct ions listed in Table 6-2 and described in the following sections
m u s t be supported by all Alpha implementat ions:

Table 6-2: Required PALcode Instructions
Mnemonic Type Opera t ion

DRAINA Privileged Drain aborts

HALT Privileged Halt processor

1MB Unprivileged I-stream memory barrier

6-4 Common Architecture (I)

6.7.1 Drain Aborts

Format:

CALL.PAL DRAINA ÎPALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Inst ruct ion

Instruction Mnemonics:

CALL.PAL DRAINA Dra in Aborts

Description:

If aborts a re deliberately genera ted and handled (such as non-existent-memory
aborts while sizing memory or searching for I/O devices), the DRAINA instruct ion
forces any ou ts tanding aborts to be t aken before continuing.

Aborts a re necessarily implementat ion-dependent . DRAINA stalls instruct ion issue
a t least unt i l all previously-issued instruct ions have completed and any associated
aborts have been signaled. For operate instruct ions, th is will usual ly m e a n stall ing
unt i l t he resul t register h a s been wri t ten. For b ranch instruct ions, th is will
usual ly m e a n stal l ing unt i l t he resul t register and PC have been wri t ten. For
load instruct ions, th is will usual ly m e a n stal l ing unt i l the resul t register h a s been
wri t ten . For store instruct ions, th is will usual ly m e a n stal l ing unt i l a t least the first
level in a potentially multi-level memory hierarchy h a s been wri t ten .

For load instruct ions, DRAINA does not necessarily gua ran tee t h a t the unaccessed
portions of a cache block have been t ransferred error-free before continuing.

For store instruct ions, DRAINA does not necessarily gua ran tee t h a t the u l t imate
t a rge t location of the store ha s received error-free da t a before continuing.
An implementation-specific technique m u s t be used to gua ran tee the u l t imate
completion of a wri te in implementa t ions t h a t have multi-level memory hierarchies
or store-and-forward bus adap te rs .

Common PALcode Architecture (I) 6-5

6.7.2 Halt

Format:

CALL_PAL HALT '.PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF
halt:
restart/halt :
restart/boot/halt :
boot/halt:

ENDCASE

{halt}
{restart/halt}
{restart/boot/halt}
{boot/halt}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALL.PAL HALT Hal t Processor

Description:

The HALT instruct ion stops normal instruct ion processing, and depending on the
HALT action sett ing, t he processor may ei ther en te r console mode or the r e s t a r t
sequence.

6-6 Common Architecture (I)

6.7.3 Instruction Memory Barrier

Format:

CALL.PAL 1MB IPALcode format

Operation:

{Make instruction stream coherent with Data stream}

Exceptions:

None

Instruction mnemonics:

CALL_PAL 1MB I-s t ream Memory Barr ie r

Description:

An 1MB instruct ion m u s t be executed after software or I/O devices wri te into the
instruct ion s t r eam or modify the instruct ion s t r eam vi r tua l address mapping, and
before t he new value is fetched as an instruct ion. An implementa t ion may contain
an instruct ion cache t h a t does not t rack e i ther processor or I/O wri tes into the
instruct ion s t ream. The instruct ion cache and memory are m a d e coherent by an
1MB instruct ion.

If t he instruct ion s t r eam is modified and an 1MB is not executed before fetching an
instruct ion from the modified location, it is UNPREDICTABLE whe the r the old or
new value is fetched.

The cache coherency and shar ing rules a re described in Chap te r 5.

Common PALcode Architecture (I) 6-7

Chapter 7

Console Subsystem Overview (I)

On an Alpha system, under ly ing control of the system platform ha rdware is provided
by a console. The console:

1. Initializes, tes ts , and prepares t he system platform h a r d w a r e for Alpha system
software.

2. Bootstraps (loads into memory and s t a r t s t he execution of) system software.

3. Controls and monitors the s ta te and s ta te t rans i t ions of each processor in a
multiprocessor system.

4. Provides services to system software t h a t simplify system software control of and
access to platform ha rdware .

5. Provides a means for a console operator to monitor and control the system.

The console in teracts wi th system platform ha rdware to accomplish the first th ree
t a sks . The actual mechanisms of these interact ions a re specific to the platform
ha rdware ; however, the ne t effects are common to all systems.

The console in terac ts wi th system software once control of t he system platform
h a r d w a r e h a s been t ransferred to t h a t software.

The console in terac ts wi th the console operator th rough a v i r tua l display device or
console terminal. The console operator may be a h u m a n being or a managemen t
application.

Console Subsystem Overview (I) 7-1

Chapter 8

Input/Output (I)

8.1 Introduction

Conceptually, Alpha systems consist of processors, memory, processor-memory
interconnect (PMI), I/O buses , bridges, and I/O devices.

Figure 8-1 shows the Alpha system overview.

Figure 8-1 : Alpha System Overview

Processor-Memory Interconnect

Local
I/O Device

Processor Memory

I/O Bus

Remote Remote
I/O Device I/O Device

Local
Side

Hose
I

Remote
Side

> Bridge

As shown in Figure 8 - 1 , processors and memory are connected by the PMI.

A bridge connects a t ightly coupled I/O bus to the system, e i ther directly to the PMI
or th rough another t ightly coupled I/O bus . A t ightly coupled I/O bus is one whose
address space is accessible to the processor e i ther directly or th rough an I/O mailbox.

A bridge h a s a t least a local side and a remote side, connected by a hose. The local
side is electrically closer to the PMI; the remote side is electrically further.

I/O devices can be connected to t he PMI or to an I/O bus . A local device connects to
t he PMI; a remote device connects to a n I/O bus .

The following sections discuss Alpha I/O operat ions:

• Accesses to local I/O space a re discussed in Section 8.2.

• Accesses to remote I/O space a re discussed in Section 8.3.

Input/Output (I) S-1

• Reads and wri tes to processor memory-like regions ini t ia ted by I/O devices, or
"DMAs", are discussed in Section 8.4.

• Processor in te r rup t s requested by devices are discussed in Section 8.5.

• Bus-specific I/O accesses are discussed in Section 8.6.

8.2 Local I/O Space Access

Local I/O space locations may appear in e i ther memory or non-memory-like regions.
Local I/O space locations which appear in memory regions m a y be cached subject to
the platform cache coherency scheme. See Chap te r 5.

An Alpha platform need only support atomic quadword accesses. The
Alpha instruct ion archi tecture requires only quadword accesses. Processor
implementat ions may further restr ict t he access granular i ty of local I/O space. For
example, a given implementat ion could permi t address ing of only cache blocks. To
support byte or word accesses to a local device, t he device m u s t be mapped into
a non-memory-like region wi th a sparse address space. The necessary mapping is
dependent on the implementat ion of the processor, cache, and PMI protocol. For
example, the four individual bytes of a longword device control register could be
mapped into the low order byte of each of four contiguous quadwords.

8.2.1 Read/Write Ordering

Access to local I/O space does not cause any implicit read/wri te ordering; explicit
barr ier instruct ions m u s t be used to ensure any desired ordering. Bar r ie r
instruct ions m u s t be used:

• After upda t ing a memory-resident da t a s t ruc ture and before wri t ing a local I/O
space location to notify the device of t he upda tes .

• Between mult iple consecutive direct accesses to local I/O space, e.g. device control
registers , if those accesses a re expected to be ordered a t t he device.

Again, note t h a t implementa t ions may cache not only memory-resident da t a
s t ructures , bu t also local I/O space locations.

8.3 Remote I/O Space Access

Remote I/O space locations are accessed indirectly th rough a memory-resident
"mailbox" da t a s t ruc ture . To post an access, t he physical address of t he mailbox is
wr i t ten into a MailBox Pointer Register (MBPR) on a local bridge side. For remote
I/O space wri tes , t he command and da t a a re posted in t he mailbox, and s t a tus is
re turned . For remote I/O space reads , t he command is posted in the mailbox, and
s t a tus and da t a a re re turned .

An Alpha system may have any number of local bridge sides. Each local side may
provide connections for up to 256 hoses. Each hose may connect to a single remote
side or may connect to mult iple remote sides. A single remote side m a y connect to
one or more hoses. A bridge need not include a hose; the local and remote sides

8-2 Common Architecture (I)

may be implemented as a single entity. A local side or an ent i re bridge may be
incorporated into a processor board.

8.3.1 Mailbox Posting

A remote I/O space access is denned by the contents of the mailbox s t ruc ture . A
remote I/O space access is invoked by wri t ing the base physical address of the
mailbox s t ruc ture into the appropr ia te bridge MailBox Pointer Register (MBPR).
Each I/O bus may be associated wi th one and only one MBPR. A single MBPR may
be associated wi th one or more remote I/O buses and a single bridge may have
mult iple MBPR registers . The MBPR appears in local I/O space.

The MBPR is accessed only wi th the STQ_C instruct ion. Flow control is achieved
by the associated (per-processor) lock_flag as follows:

post_mbx:

<derive PA of mailbox and load Rl>
<derive VA of MBPR and load R0>
STQ__C R1,R0
BEQ Rl,wait_post_mbx

wait_post_mbx:
<backoff delay>
BR post_mbx

If t he STQ_C lock_flag is set, t he mailbox h a s been posted to the bridge. If t he
STQ_C lock_flag is clear, all MBPR resources a re occupied; the MBPR wri te m u s t be
retr ied. In multi-processor configurations, th is use of the STQ_C instruct ion affects
only the local per-processor lock_flag. The s ta te of the per-processor lock_flag of
other processors is unchanged.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The use above of the STQ_C instruct ion is specific to t he
first Alpha implementa t ions . F u t u r e implementa t ions
may use a different access mechanism.

A given remote I/O space location is uniformly accessible to all processors in a mult i-
processor configuration. A given hose, hence a given remote I/O bus , m a y be accessed
via an MBPR a t the same physical address from any processor. A software th read
need have no knowledge of t he specific processor on which it is executing.

A F IFO s t ruc ture may be implemented behind each MBPR register to permi t the
posting of mult iple ou ts tanding mailbox operat ions. A set of processor-specific
reques t queues m a y be implemented behind each MBPR regis ter to ensure fair access
to all processors. Any such F IFO or queue is invisible to software.

Bridge implementa t ions m u s t protect agains t lockout and ensure fair MBPR access
to all processors in a multi-processor configuration. Multiple wri tes to an MBPR by

Input/Output (I) 8-3

a single processor m u s t not be able to cause the s tarvat ion or t imeout of competing
wri tes to the same MBPR by other processors.

Multiple software th reads executing a t different IPLs on a single processor may
cause s tarvat ion or t imeout of the lower IPL th reads . IPL levels are inherent ly
unfair.

Bridge implementat ions m u s t gua ran tee forward progress on mailbox operations
regardless of direct memory access or in te r rup t load.

8.3.2 Mailbox Pointer Register (MBPR)

The MBPR format is shown in Figure 8-2 and described in Table 8 - 1 .

Figure 8-2: Mailbox Pointer Register Format

Table 8 -1 : Mailbox Pointer Register Format

Bit(s) Descr ip t ion

<5:0> SBZ

<47:6> Physical address of the mailbox structure. The mailbox structure must be at
least 64-byte aligned.

<63:48> SBZ

8-4 Common Architecture (I)

63 4847 6 5 Ο

SBZ Mailbox Address<47:6> SBZ

8.3.3 Mailbox Structure

The mailbox is a 64-byte, na tu ra l ly aligned, da t a s t ruc ture . The format is shown in
Figure 8-3 and described in Table 8-2.

Figure 8-3: Mailbox Data Structure Format

SBZ HOSE SBZ MASK IWlB CMD

RBADR

WDATA

UNPREDICTABLE

UNPREDICTABLE RDATA

Status

UNPREDICTABLE

UNPREDICTABLE

Table 8 - 2 : Mailbox Data Structure Format

Offset Bit(s) Name Description

<29:0> CMD Remote bus command. Controls the actual remote bus
operation and can include fields such as address only,
address width, and data width. See Section 8.6.2.

<30> Β Remote bridge access. If set, the command is a special
or diagnostic command directed to the remote side. See
Section 8.6.3.

<31> W Write access. If set, the remote bus operation is a write.

<39:32> MASK Disable Byte Mask. Disables bytes within the remote bus
address. Mask bit <i> set causes the byte to be disabled;
e.g. data byte <i> will NOT be written to the remote
address. See Section 8.6.2.

<47:40> SBZ

<55:48> HOSE Hose. Specifies the remote bus to be accessed. Bridges may
directly connect to up to 256 remote buses per hose.

<63:56> SBZ

<63:0> RBADR Remote Bus Address. Contains the target address of the
device on the remote bus. See Section 8.6.2.

Input/Output (I) 8-5

Table 8-2 (Cont.): Mailbox Data Structure Format
Offset Bit(s) Name Descr ip t ion

16 <63:0> WDATA Write Data. For write commands, contains the data to be
written. For read commands, the field is not used by the
bridge.

24 <63:0> UNPREDICTABLE.

32 <31:0>

<63:32>

RDATA Read Data. For read commands, contains the data
returned. For write data commands, the field is
UNPREDICTABLE.

UNPREDICTABLE.

40 <0> DON Done. Indicates that the ERR, STATUS, and RDATA fields
are valid; that the mailbox structure may be safely modified
by host software.

<1> ERR Error. If set, indicates that an error was encountered
and that the STATUS field contains additional information.
Valid only when DON is set. See Sections 8.3.7 and 8.3.8.

<63:2> STATUS Operation completion status. Contains information specific
to the bridge implementation. Valid only when DON is set.
The bridge specification must include a definition of this
field. See Sections 8.3.7 and 8.3.8.

48 <63:0> UNPREDICTABLE.

56 <63:0> UNPREDICTABLE.

8.3.4 Mailbox Access Synchronization

The ownership of the mailbox s t ruc ture is exchanged between the posting software
and the servicing bridge. The first 3 quadwords m u s t be initialized by the software
prior to posting the mailbox to the bridge. Once posted, the contents of the mailbox
are owned by the bridge and are UNPREDICTABLE unt i l the DON bit is set by
the bridge. If the mailbox contents are al tered by software prior to the DON
bit becoming set, the action of the bridge and the resul t ing mailbox contents a re
UNPREDICTABLE. Once the DON bit ha s been set by the bridge, the mailbox
contents are again owned by the software and m u s t not be al tered by the bridge.

Software use of the DON bit for synchronization is encouraged. If t he DON bit is set
in the mailbox a t the t ime t h a t the mailbox is posted, it is not possible to determine
when the mailbox s t ruc ture may be safely al tered nor is it possible to determine
when any re tu rned information (RDATA or STATUS or ERR) becomes valid. Use of
a static, not dynamically altered, mailbox s t ruc ture is recommended only for t rue
wri te-and-run of stat ic da ta such as se t t ing a "go" bit in a device control register.

Note t h a t the DON bit set does NOT guaran tee t h a t a remote I/O space wri te ha s
actually completed a t the device. The DON bit may be set by any in tervening bridge.
See Section 8.3.8.

8-6 Common Architecture (I)

The servicing bridge ignores t he contents of t he DON, ERR, and STATUS fields;
these fields a re t r ea t ed as wri te only.

8.3.5 Mailbox Read/Write Ordering

Mailbox accesses to a given remote bus a re ordered by the MBPR and bus bridge.
After post ing in t he MBPR, t he order ing m u s t be re ta ined by the bridge. The bridge
may reorder operations only across different hoses. Mailboxes ta rge ted to different
buses connected to the same local bridge side m a y occur in a sequence different from
the posting order.

Mailbox operat ions a re implicitly ordered when one and only one MBPR is used to
access a given remote I/O bus . In general , the re is only one p a t h to a given remote
I/O bus via a unique hose and remote side. In such configurations, t he ha rdware
m u s t re ta in the ordering of mailbox accesses. In configurations in which there are
mult iple pa ths , software should order mailbox operat ions by us ing one and only one
MBPR to access a given remote bus .

8.3.6 Remote I/O Space Access Granularity

The granula r i ty of remote I/O space accesses is not symmetric:

• Mailbox reads a re defined to bytes , words, and longwords.

• Mailbox wri tes a re defined to bytes, words, longwords and quadwords .

Mailbox wri tes were optimized to permi t efficient and atomic wri tes of a full 48-bit
Alpha physical address .

Not all bus bridges will support all possible remote I/O space access granular i t ies .
The supported granula r i ty will be de termined by the capabili t ies of the remote bus
and the remote bus side.

The MASK and RBADR fields a re de termined by the address ing and mask ing modes
of t he remote I/O bus . Invalid MASK fields, or invalid combinations of MASK and
RBADR fields, will not cause ERR to be set. Er ro r checking (if any) is done on
the remote (I/O bus) side of the bridge; the local (PMI) side of the bridge employs
disconnected wri tes . If error checking is done by t h e remote side of t h e bridge, t he
error is reported by an error in te r rup t .

On mailbox wri te accesses, bridges (and chains of bridges) deliver t he valid WD ATA,
RBADR, and MASK information to t h e remote I/O device. The valid da ta may be
encapsulated, along wi th invalid da ta , into larger da t a packets; t he invalid da t a may
simply be invalid fields from the WDATA quadword. For some remote I/O buses , the
RBADR and MASK fields m a y be t runca ted or otherwise mapped.

On mailbox read accesses, bridges (and chains of bridges) deliver t he valid RBADR,
MASK, and command information to t he remote I/O device. The bridge h a s no
knowledge of the in tended size of t he read da t a - th is is known only to the reques t ing
software and the device, which are assumed to agree. The valid da t a may be
encapsulated, along wi th invalid da ta , into larger da t a packets . Again, for some
remote I/O buses , t he RBADR and MASK fields m a y be t runca ted or otherwise
mapped.

Input/Output (I) 8-7

8.3.7 Remote I/O Space Read Accesses

The bridge m u s t r e tu rn s t a tus and da t a for remote I/O space reads . When the
mailbox DON bit is set by the bridge, t he operation h a s completed, and the ERR
and STATUS fields may be examined. If t he ERR bit is not set, t he requested
remote bus operation was successful and valid da t a was re turned . If t he ERR bit is
set, an error was encountered and the STATUS field contains information as to t he
n a t u r e of the error.

Er rors encountered on remote I/O space read accesses may also be reported by bridge
error in te r rupts . The bridge side which encounters the error reques ts the in ter rupt .
Thus , a non-existent hose error may be reported by the local (PMI) side of the bridge,
while a non-existent remote bus address error is reported by the remote (I/O bus)
side of the bridge.

Remote I/O space read accesses may be performed as follows:

remote r e a d :
<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>

STQ R31, 40(Rm) ; Clear DON/ERR/STATUS fields

MB

post_mbx:
<derive PA of mailbox and load Rl>
<derive VA of MBPR and load R0>
STQ_C R1,R0
BEQ Rl,wait_post_mbx

wait__mbxdone :
LDQ
BLBS
LDQ RO, 40(Rm)
BLBS RO, check_err
<backoff delay>
BR wait mbxdone

Fetch STATUS/DON
Branch on DON set

check_err:
SRL
BLBS

RO, #1, RO
RO, read_err

MB

LDQ RO, 32(Rm) Fetch RDATA

read err:
<handle error>

wait_j?ost_mbx :
<backoff delay>
BR post_mbx

8-8 Common Architecture (I)

Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit h a s been set
by t he servicing bridge or is newly allocated.

2. The first ba r r i e r is required to ensure t h a t t he bridge will r ead t he mailbox
contents as upda ted by the processor. Any pending processor wri tes to t he
mailbox will have completed by the t ime t h a t the load of the MBPR h a s
completed.

3. The second bar r ie r is required to ensure t h a t the processor will r ead the mailbox
contents as upda ted by the bridge. The re tu rned da t a is accessed only after the
DON bit is observed to be set by t he servicing bridge.

4. Software need not wai t for the DON bit to become set.

5. The mailbox RDATA is valid only when DON is set and ERR is clear.

8.3.8 Remote I/O Space Write Accesses

The bridge need not r e t u r n s t a tu s for remote I/O space wri tes . When the mailbox
DON bit is set by t he bridge, t he bridge h a s completed access to t he mailbox
s t ruc ture . The ERR bit and STATUS fields a re tes table . The actual wri te operation
need NOT have completed a t t he device and the ERR bit and STATUS fields can
indicate success (be cleared) even though success is not ensured. However, t he ERR
bit and STATUS fields, if set, do accurately report an error condition.

The actual completion of a remote I/O space wri te access can only be observed
indirectly. E i the r t he appropr ia te device s ta te m u s t be read hack, or the device m u s t
upda te a memory-resident d a t a s t ruc tu re and/or reques t an in te r rupt . Remote I/O
space read access(es) m a y be posted anyt ime after post ing the wri te access. Because
mailbox operat ions to t he same remote bus are guaran teed to be ordered, t he read
is gua ran teed to occur after the wri te .

Er rors encountered on remote I/O space wri te accesses a re reported by bridge error
in te r rup t s . The bridge side which encounters the error reques ts t he in te r rup t . Thus ,
a non-existent hose error may be reported by the local (PMI) side of t he bridge, while
a non-existent remote bus address error is reported by the remote (I/O bus) side of
the bridge.

Remote I/O space wri te accesses m a y be performed as follows:

remote_write:

<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>
STQ R31, 40(RM) ; Clear DON/ERR/STATUS

MB

post_mbx:

Input/Output (I) 8-9

«dérive PA of mailbox and load Rl>
<derive VA of MBPR and load R0>
STQ_C R1,R0
BEQ R1twait_post_mbx

wait_post_mbx:

<backoff delay>
BR post_mbx

Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit ha s been set
by the servicing bridge or is newly allocated.

2. The bar r ie r is required to ensure t h a t t he bridge will read t he mailbox contents
as upda ted by the processor. Any pending processor wri tes to the mailbox will
have completed by the t ime t h a t the load of the MBPR h a s completed.

3. If the mailbox da t a is static, e.g. used to set a "go" bit in a device control
register, the mailbox may be posted wi thout regard to the s ta te of the DON
bit. Barr iers a re not required each t ime a s tat ic mailbox is posted, however a
bar r ie r is required after the mailbox contents are initialized and prior to i ts first
use.

8.4 Direct Memory Accesss (DMA)

8.4.1 Access Granularity

A device or bridge side access to a memory-like region, or "DMA", is t aken to be
atomic when:

• I t is not possible for a single device read DMA of a d a t a s t ruc ture which is
upda ted by a single processor wri te to observe a par t ia l upda te of t h a t s t ruc ture .

• I t is not possible for a processor reading a da t a s t ruc ture which is upda ted by a
single device wri te DMA to observe a par t ia l upda te of t h a t s t ruc ture .

A processor t r ea t s any memory-resident da t a s t ruc tures which are shared wi th
an I/O device as though the s t ruc tures were shared wi th another processor. The
processor m u s t follow the guidelines given in Common Architecture, Chapter 5.
Specifically, bar r ie r instruct ions m u s t be used:

1. After upda t ing a shared memory-resident da t a s t ruc ture and before set t ing an
associated flag indicating t h a t the da t a s t ruc ture is valid.

2. After observing a newly upda ted flag, and prior to accessing the associated shared
memory-resident da t a s t ruc ture .

The atomic DMA size guaran teed to a local device is a function of the PMI protocol.
The min imum size is an aligned hexword. Locally connected devices m u s t obey the
PMI protocol and may part ic ipate in the memory cache coherency policy. See t he
guidelines in Common Architecture, Chapter 5.

8-10 Common Architecture (I)

The atomic DMA size gua ran teed to a remote device is a function of the remote I/O
bus protocol. Remote devices a re gua ran teed atomic access to aligned hexwords or
the remote I/O bus t ransfer bu r s t size, whichever is smaller. I t is t he responsibility
of the local bridge side to ensure t he atomicity of t he device DMA.

Larger atomic DMA granula r i ty permi ts optimization of device control protocols.
When a da t a s t ruc ture and the associated flag a re contained wi th in a single aligned
hexword, t he device can upda te both s imultaneously wi th a single wri te DMA.
Similarly, t he device may access both t he da t a s t ruc ture and the associated flag with
a single read DMA. If the flag is valid, t he da t a s t ruc ture contains valid information;
a n addit ional read DMA is not necessary to obtain t h e valid da ta .

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The hexword wri te DMA size was chosen as t he smallest
cache block size of t h e first Alpha implementa t ions .

8.4.2 Read/Write Ordering

DMAs m a y be divided into t he "control" s t r eam and the "data" s t ream. These
s t r eams differ in the i r ordering propert ies .

• Control s t r eam accesses a re gua ran teed to be ordered. An implicit ba r r ie r occurs
before and after each access. Control s t r eam ordering m u s t be preserved by all
bridges between a given remote I/O device and processor memory.

• D a t a s t r eam DMAs m a y be arbi t rar i ly reordered if permi t ted by the protocol of
t h a t I/O bus . No implicit ba r r ie r s a re associated wi th th i s s t ream.

A device may use control s t r eam DMAs to ensure ordering of t he da t a s t r eam DMAs
and of in t e r rup t reques ts as seen by a processor or other device shar ing the same
memory-res ident s t ruc tures . D a t a s t r eam DMAs m u s t not be reordered wi th respect
to control s t r eam DMAs. In t e r rup t reques ts m u s t not be reordered wi th respect to
control s t r eam DMAs.

Control s t r eam DMAs m u s t be used:

• As the las t DMA issued to upda te a memory-resident da t a s t ruc ture before
reques t ing a processor in t e r rup t to notify the processor of the upda te . This DMA
ensures t h a t any previously issued d a t a s t r eam DMAs become visible to t he
processor prior to t he in te r rup t .

• To upda te any pointer or o ther l inkage between memory-res ident da t a s t ructures .
Consider a s t a tu s buffer which is located by a s t a tu s r ing pointer. The s t a tus
buffer may be upda ted wi th e i ther a control or da t a s t r eam DMA. The r ing pointer
m u s t be upda ted wi th a control s t r eam DMA which is issued after the last DMA
used to upda te the s t a tu s buffer.

A bridge m u s t preserve the ordering of control s t r eam DMAs regardless of whe ther
the accesses a re reads or wri tes .

The division of direct memory accesses into t he control s t r eam and the d a t a s t r eam is
t he responsibility of t he device. I/O bus protocols which do not permi t t he separat ion

Input/Output (I) a-11

of control and da ta s t ream DMAs m u s t preserve the ordering of all DMAs and
in te r rup t requests ; all DMAs are considered to be control s t ream DMAs. Similarly,
hose protocols which do not permit the separat ion of control and da t a s t ream DMAs
mus t preserve the ordering of all DMAs and in te r rup t requests .

Bridge implementat ions m u s t gua ran tee forward progress on all DMA operations.

8.4.3 Device Address Translation

I/O devices use only physical addresses; devices m u s t not access page tables for
the purpose of address t ransla t ion. Devices are independent of any vi r tua l memory
t rans la t ion scheme and processor page size.

8.5 Interrupts

An in te r rup t request from an I/O device consists of an in te r rup t priority level and
an in te r rup t vector. Device in te r rup t reques ts are defined to be priorities 20 to 23.
The in te r rup t vector identifies the appropr ia te in te r rup t service rout ine; the s ta r t ing
address of the in te r rup t service rout ine is obtained by us ing the vector as an offset
from the base of the System Control Block (SCB).

All bridge implementat ions m u s t ma in ta in both the temporal order and relat ive
priority of device in te r rup ts . A bridge m u s t not expedite a lower priority request if
a higher priority request ha s been received. With one exception, a bridge m u s t not
reorder two in te r rup t requests a t t he same priority level. A bridge is permit ted to
expedite delivery of a fatal bridge error in ter rupt ; th is in te r rup t m u s t be a t IPL 23
and may take precedence over any IPL 23 device in te r rup ts .

A bridge may prefetch the in te r rup t vector from an I/O device to reduce the processor
overhead associated wi th in te r rup t dispatch. Vector prefetch reduces the processor
latency necessary to dispatch to the in te r rup t service rout ine by reducing the delay
associated with the delivery of the in te r rup t vector to the processor.

When a bridge delivers an in te r rup t from an I/O device, any pending control s t ream
DMA writes issued by the device m u s t have become visible to the processors. Note
t h a t due to the ordering of control s t r eam DMAs, any da t a s t r eam DMAs wri tes
prior to the las t pending control s t r eam DMA m u s t also have become visible to the
processors.

In multi-processor configurations, in te r rup t s may be directed to a subset of the
processors in the configuration. Such ta rge t t ing is implementat ion specific.

8.6 I/O Bus-Specific Mailbox Usage

The following sections per ta in to I/O bus-specific mailbox usage.

8.6.1 Mailbox Field Checking

Bridge sides check only implemented functions. I t is t he responsibility of t he posting
software to ensure t h a t the mailbox da ta s t ruc ture fields are valid and t h a t the
s t ruc ture is posted correctly.

Ô-12 Common Architecture (I)

1. Local sides need not check the MASK, B, CMD, RBADR, or WDATA fields.

2. Local sides which connect to a single hose need not check the HOSE field.

3. Local sides need not pass the HOSE or W fields to the remote bridge side.

4. Remote bridge sides which do not implement mask ing need not check the MASK
field.

5. There is no consistency checking between the W and CMD fields. If the W
bit is set and the CMD field indicates a read, the resul t is UNPREDICTABLE.
Similarly, if t he W bit is clear and the CMD field indicates a wri te , the resul t is
UNPREDICTABLE.

6. Remote bridge sides check only implemented CMD and RBADR bits .

8.6.2 CMD Field

The CMD field consists of two subfields:

• A remote I/O bus specific subfield.

This subfield is common to all Alpha systems and contains the controls for a given
remote bus . The common subfield m u s t be backward compatible; all systems
which connect to a given I/O bus share th is subfield.

• A system-specific subfield.

This subfield is specific to each Alpha system and contains the controls for a
given bridge implementa t ion or system-specific diagnostic functions.

The size of each is specific to the remote I/O bus . The bridge specification m u s t
include t he definitions of all valid commands. This par t i t ion promotes software
portability. A given device driver uses the same CMD for a given type of device
access, regardless of the platform. Diagnostic software can also in te rpre t the
common field wi thout regard to the platform on which the mailbox was posted.

8.6.3 Special Commands

The special "WHO_ARE_YOU" command (W=0, B = l , CMD=0) is common to all
bridge implementat ions . WHO_ARE_YOU is used to de termine the type of remote
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command
and RBADR of 0, t he remote bridge side r e tu rn s a unique remote bus side identifier.
All other commands are specific to the type of remote bus and independent of the
bridge implementat ion.

Input/Output (I) 8-13

Part II OpenVMS Alpha Software

Thi s sect ion descr ibes h o w t h e O p e n V M S o p e r a t i n g
s y s t e m r e l a t e s to t h e A l p h a a r c h i t e c t u r e a n d
con t a in s t h e following c h a p t e r s :

1. I n t roduc t i on to O p e n V M S A l p h a

2. O p e n V M S PALcode I n s t r u c t i o n Desc r ip t ions

3 . O p e n V M S M e m o r y M a n a g e m e n t

4. O p e n V M S Process S t r u c t u r e

5. O p e n V M S I n t e r n a l P rocessor Reg i s t e r s

6. O p e n V M S Excep t ions , I n t e r r u p t s , a n d M a c h i n e
Checks

α

Chapter 1

Introduction to OpenVMS Alpha (II)

The goals of th is design are to provide a h a r d w a r e implementa t ion independent
interface between OpenVMS and the ha rdware . Fur ther , t he design provides the
needed abst ract ions to minimize t h e impact between OpenVMS and t h e different
h a r d w a r e implementat ions . Finally, t he design m u s t contain only t h a t overhead
necessary to satisfy those requ i rements , while still suppor t ing high-performance
systems.

1.1 Register Usage

Besides those regis ters described in Part I, Common Architecture, OpenVMS defines
t he regis ters described in t he following sections.

1.1.1 Processor Status

The Processor S t a tus (PS) is a special regis ter t h a t contains t he cur ren t s t a tu s of the
processor. I t can be read by the CALL_PAL RD_PS instruct ion. The software field
(PS<SW>) can be wr i t ten by the CALL.PAL WR_PS_SW rout ine. See Chapte r 6 for
a description of t h e P S register.)

1.1.2 Stack Pointer (SP)

In teger register R30 is the Stack Pointer (SP).

The S P contains the address of t h e top of t h e s tack in t h e cur ren t mode.

Cer ta in PALcode instruct ions, such as CALL_PAL REI, use R30 as a n implicit
operand. Dur ing such operat ions, t h e address va lue in R30, in terpre ted as a n
unsigned 64-bit integer, decreases (predecrements) when i tems are pushed onto t he
stack, and increases (postincrements) when they a re popped from the stack. After
push ing (writing) an i tem to t he stack, S P points to t h a t i tem.

1.1.3 Internal Processor Registers (IPRs)

The IPRs provide an architected mapp ing to in te rna l h a r d w a r e or provide other
specialized uses . They a r e available only to privileged software th rough PALcode
rout ines and allow OpenVMS to in ter rogate or modify system s ta te . The IPRs are
described in Chap te r 5.

Introduction to OpenVMS Alpha (II) 1-1

Chapter 2

OpenVMS PALcode Instruction Descriptions (II)

This chapter describes the PALcode instruct ions t h a t a re implemented for the
OpenVMS Alpha environment . The PALcode inst ruct ions a re a set of unprivileged
and privileged CALLJPAL inst ruct ions t h a t a re used to ma tch specific operat ing
system requ i rements to t he under ly ing h a r d w a r e implementat ion.

For example, privileged PALcode instruct ions switch t he h a r d w a r e context
of a process s t ruc ture . Unprivileged PALcode instruct ions implement the
un in te r rup tab le queue operat ions. Also, PALcode instruct ions provide s t anda rd
in te r rup t and exception repor t ing mechanisms t h a t a re independent of the
under lying ha rdware implementat ion.

Table 2 -1 l ists all t he unprivileged and privileged OpenVMS PALcode instruct ions
and the section in th i s chapter in which they a re described.

Table 2 - 1 : OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section

AMOVRM Atomic move register/memory Section 2.4

AMOVRR Atomic move register/register Section 2.4

BPT Breakpoint Section 2.1

BUGCHK Bugcheck Section 2.1

CHME Change mode to executive Section 2.1

CHMK Change mode to kernel Section 2.1

CHMS Change mode to supervisor Section 2.1

CHMU Change mode to user Section 2.1

GENTRAP Generate software trap Section 2.1

1MB I-stream memory barrier Common Architecture, Chap-
ter 6

INSQxxx Insert in specified queue Section 2.3

PROBER Probe read access Section 2.1

PROBEW Probe write access Section 2.1

RD.PS Read processor status Section 2.1

OpenVMS PALcode Instruction Descriptions (II) 2-1

Table 2 - 1 (Cont.): OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section

READJJNQ Read unique context Section 2.5

REI Return from exception or interrupt Section 2.1

REMQxxx Remove from specified queue Section 2.3

RSCC Read system cycle counter Section 2.1

SWASTEN Swap AST enable Section 2.1

WRITE.UNQ Write unique context Section 2.5

WR.PS.SW Write processor status software field Section 2.1

Privileged OpenVMS PALcode Instructions

Mnemonic Operation Section

CFLUSH Cache flush Section 2.6

DRAINA Drain aborts Common Architecture, Chap-
ter 6

HALT Halt processor Common Architecture, Chap-
ter 6

LDQP Load quadword physical Section 2.6

MFPR Move from processor register Section 2.6

MTPR Move to processor register Section 2.6

STQP Store quadword physical Section 2.6

SWPCTX Swap privileged context Section 2.6

2-2 OpenVMS Alpha Software (II)

2.1 Unprivileged General OpenVMS PALcode Instructions

The general unprivileged inst ruct ions in th is section, together with those in Sections
2.3, 2.4, and 2.5, provide suppor t for t he under ly ing OpenVMS Alpha model.

Table 2-2: Unprivileged General OpenVMS PALcode Instruction Summary
Mnemonic Opera t ion

BPT Breakpoint

BUGCHK Bugcheck

CHME Change mode to executive

CHMK Change mode to kernel

CHMS Change mode to supervisor

CHMU Change mode to user

GENTRAP Generate software trap

1MB I-stream memory barrier

See Common Architecture, Chapter 6

PROBER Probe read access

PROBEW Probe write access

RD_PS Read processor status

REI Return from exception or interrupt

RSCC Read system cycle counter

SWASTEN Swap AST enable

WR_PS_SW Write processor status software field

OpenVMS PALcode Instruction Descriptions (II) 2-3

2.1.1 Breakpoint

Format:

2-4 OpenVMS Alpha Software (II)

CALL.PAL BPT ÎPALcode format

Operation:

{initiate BPT exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL.PAL BPT Breakpoint

Description:

The BPT instruct ion is provided for program debugging. I t switches to Kernel mode
and pushes R2..R7, the upda ted PC, and P S on the Kernel stack. I t t hen dispatches
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1.

2.1.2 Bugcheck

Format:

OpenVMS PALcode Instruction Descriptions (II) 2-5

CALL_PAL BUGCHK ÎPALcode format

Operation:

{initiate BUGCHK exception with new__mode=kernel}

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL.PAL BUGCHK Bugcheck

Description:

The BUGCHK instruct ion is provided for error report ing. I t switches to Kernel mode
and pushes R2..R7, the upda ted PC, and P S on the Kernel stack. I t t h e n dispatches
to t he address in t he Bugcheck SCB vector. See Section 6.3.3.2.2.

2.1.3 Change Mode Executive

Format:

CALL_PAL CHME ÎPALcode format

Operation:

tmpl <- MINU(1, PS<CM>)
{initiate CHME exception with new_mode=tmpl>

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL.PAL CHME Change Mode to Executive

Description:

The CHME instruct ion lets a process change i ts mode in a controlled manner .

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved,
the new pointer is loaded. R2..R7, PC and P S are pushed onto the selected stack.
The saved PC addresses the instruct ion following the CHME instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers . The
contents of these registers are not preserved across a CHME.

2-6 OpenVMS Alpha Software (II)

2.1.4 Change Mode to Kernel

Format:

OpenVMS PALcode Instruction Descriptions (II) 2-7

CALL.PAL CHMK ÎPALcode format

Operation:

{initiate CHMK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

C A L L P A L CHMK Change Mode to Kernel

Description:

The CHMK instruct ion lets a process change i ts mode to kernel in a controlled
manner .

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved,
the new pointer is loaded. R2..R7, PC, and P S a re pushed onto t he kernel stack.
The saved PC addresses t he inst ruct ion following t he CHMK instruct ion. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch regis ters . The
contents of these regis ters a re not preserved across a CHMK.

2.1.5 Change Mode Supervisor

Format:

2-θ OpenVMS Alpha Software (II)

CALL_PAL CHMS ÎPALcode format

Operation :

tmpl <- MINU(2, PS<CM>)
{initiate CHMS exception with new_mode=tmpl>

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL_PAL CHMS Change Mode to Supervisor

Description:

The CHMS instruct ion lets a process change i ts mode in a controlled manner .

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved,
the new pointer is loaded. R2..R7, PC, and P S are pushed onto the selected stack.
The saved PC addresses the instruct ion following t he CHMS instruction.

2.1.6 Change Mode User

Format:

CALL_PAL CHMU ÎPALcode format

Operation:

{initiate CHMU exception with new_mode=PS<CM>}

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL.PAL CHMU Change Mode to User

Description:

The CHMU instruct ion lets a process call a rout ine via the change mode mechanism.

R2..R7, PC, and P S are pushed onto t he cur ren t stack. The saved PC addresses the
instruct ion following the CHMU instruct ion.

The CALL_PAL CHMU instruct ion is provided for VAX compatibility only.

OpenVMS PALcode Instruction Descriptions (II) 2-9

2.1.7 Generate Software Trap

Format:

CALL_PAL GENTRAP ÎPALcode format

Operation:

{initiate GENTRAP exception with new_mode=kernel>
! R16 contains the value encoding of the software trap

Exceptions:

Kernel Stack Not Valid Ha l t

Instruction mnemonics:

CALL_PAL GENTRAP Genera te Software Trap

Description:

The GENTRAP instruct ion is provided for report ing run t ime software conditions. I t
switches to Kernel mode, and pushes R2...R7, t he upda ted PC and P S on the Kernel
stack. I t t hen dispatches to the address in the GENTRAP SCB Vector. See Section
Section 6.6.

The value in R16 identifies the par t icular software condition t h a t h a s occurred. The
encoding for the software t r a p values is given in t he software calling s t anda rd for
the system.

2-10 OpenVMS Alpha Software (II)

2.1.8 Probe Memory Access

Format:

CALL_PAL PROBE ÎPALcode format

Operation:

! R16 contains the base address
! R17 contains the signed offset
1 R18 contains the access mode
I R0 receives the completion status
I <— 1 if success
I <— 0 if failure

first <- R16
last 4 - {R16+R17}

IF R18<1:0> GTU PS<CM> THEN
probe__mode <— R18<1:0>

ELSE
probe_mode <— PS<CM>)

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN
R0 <- 1

ELSE
R0 4- 0

Exceptions:

Translat ion Not Valid

Instruction mnemonics:

CALL_PAL PROBER Probe for Read Access

CALL_PAL PROBEW Probe for Write Access

Description:

The PROBE instruct ion checks t h e r ead or wri te accessibility of t h e first and las t
byte specified by the base address and the signed offset; t he bytes in between are
not checked.

System software m u s t check all pages between the two bytes if they are to be
accessed. If both bytes a re accessible, PROBE re tu rn s the value 1 in RO; otherwise,
PROBE r e t u r n s 0. The Fau l t On Read and Fau l t On Write PTE bits a re not checked.
A Translat ion Not Valid exception is signaled only if t he the mapping s t ruc tures can
not be accessed. A Transla t ion Not Valid exception is signaled only if t he first or
second level PTE is invalid.

OpenVMS PALcode Instruction Descriptions (II) 2-11

The protection is checked agains t the less privileged of t he modes specified by
R18<1:0> and the Cur ren t Mode (PS<CM>). See Section 6.2 for access mode
encodings.

PROBE is only intended to check a single d a t u m for accessibility. I t does not check
all in tervening pages because th is could resul t in excessive in te r rup t latency.

2-12 OpenVMS Alpha Software (II)

2.1.9 Read Processor Status

Format:

CALL_PAL RD_PS ÎPALcode format

OpenVMS PALcode Instruction Descriptions (II) 2-13

Operation:

RO « - P S

Exceptions:

None

Instruction mnemonics:

CALL_PAL RD_PS Read Processor S t a tus

Description :

The RD_PS instruct ion r e t u r n s t he Processor S t a tu s (PS) in regis ter RO. The
Processor S t a tus is described in Section 6.2. The PS<SP_ALIGN> field is always
a zero on a RDJPS.

2.1.10 Return from Exception or Interrupt

Format:

CALL.PAL REI ÎPALcode format

Operation:

! See Chapter 6
! for information on interrupted registers

IF SP<5:0> NE 0 THEN
{illegal operand }

tmpl <- (SP) ! Get saved R2
tmp2 «- (SP+8) ! Get saved R3
tmp3 <- (SP+16) ! Get saved R4
tmp4 <- (SP+24) ! Get saved R5
tmp5 <- (SP+32) 1 Get saved R6
tmp6 <- (SP+40) i Get saved R7
tmp7 «- (SP+48) ! Get new PC
tmp8 <- (SP+56) ! Get new PS

ps_chk «— tmp8 ! Copy new ps
ps_chk<cm> <— 0 ! Clear cm field
ps_chk<sp_align> «- 0 ! Clear sp_align field
ps_chk<sw> «— 0 ! Clear Software Field
intr_flag «- 0 ! Clear except/inter/mcheck flag
{ clear lock_flag>

! If current mode is not kernel check the new ps is valid.
IF {ps<cm> NE 0} AND

{{tmp8<cm> LT ps<cm>> OR {ps__chk NE 0}> THEN
BEGIN
{illegal operand}

END

s ρ <— {sp + 8*8} OR tmp8<sp_align>
IF {internal registers for stack pointers} THEN

CASE ps<cm> BEGIN
[0] : ipr_ksp <— sp
[1] : ipr_esp «— sp
[2]: ipr_ssp <— sp
[3] : ipr_usp <— sp

ENDCASE
CASE tmp8<cm> BEGIN
[0] : sp 4 — ipr_ksp
[1] : s ρ ipr_esp
[2] : sp ipr_ssp
[3] : sp ipr_usp

ENDCASE
ELSE

(pcbb + 8*ps<cm>) «— sp
sp «- (pcbb + 8*tmp8<cm>)

END IF

2-14 OpenVMS Alpha Software (II)

R2 «- tmpl
R3 <- tmp2
R4 <— tmp3
R5 <— tmp4
R6 <— tmp5
R7 <— tmp6
PC <- tmp7
PS <— tmp8 <12:00>

{Initiate interrupts or AST interrupts that are now pending)

Exceptions:

Access Violation

Fau l t on Read

Illegal Operand

Kernel Stack Not Valid Ha l t

Translat ion Not Valid

Instruction mnemonics:

CALL_PAL REI Re tu rn from Exception or In t e r rup t

Description:

The REI instruct ion pops the PS , PC, and saved R2...R7 from the cur ren t s tack and
holds t h e m in temporary registers .

The new P S is checked for validity and consistency. If it is invalid or inconsistent,
an illegal operand exception occurs; otherwise t he operation continues. A kernel
to nonkernel REI wi th a new PS<IPL> not equal to zero may yield U N D E F I N E D
resul ts .

The cur ren t s tack pointer is t hen saved and a new stack pointer is selected according
to the new PS<CM> field. R2 th rough R7 are restored us ing the saved values held in
t he t emporary regis ters . A check is m a d e to de termine if an AST or other in te r rup t
is pending (see Section 6.7.6).

If t he enabl ing conditions a re presen t for a n in t e r rup t or AST in te r rup t a t t he
completion of th is instruct ion, the in t e r rup t or AST in te r rup t occurs before the next
instruction.

OpenVMS PALcode Instruction Descriptions (II) 2-15

When an REI is issued, the cur ren t s tack m u s t be wri table from the cur ren t mode
or an Access Violation may occur.

IMPLEMENTATION NOTE
This is necessary so t h a t an implementa t ion can choose
to clear the lock_flag by doing a STx_C to above the top-
of-stack after popping PS , PC, and saved R2..R7 off the
t he cur ren t stack.

2-16 OpenVMS Alpha Software (II)

2.1.11 Read System Cycle Counter

Format:

CALL_PAL RSCC ÎPALcode format

Operation:

RO <— {System Cycle Counter}

Exceptions:

None

Instruction mnemonics:

CALL_PAL RSCC Read System Cycle Counter

Description:

The RSCC instruct ion wri tes regis ter RO wi th the value of t he system cycle counter.
This counter is an unsigned 64-bit integer t h a t increments a t t he same r a t e as the
process cycle counter. The cycle counter frequency, which is the n u m b e r of t imes
t h e system cycle counter gets incremented per second rounded to a 64-bit integer, is
given in t he HWRPB.

The system cycle counter is sui table for t iming a general r ange of in tervals to wi thin
10% error and m a y be used for detailed performance characterizat ion. I t is required
on all implementa t ions . SCC is required for every processor, and each processor in
a mult iprocessor system h a s i ts own private , independent SCC.

Notes:

1. Processor init ialization s t a r t s t he SCC a t 0.

2. SCC is required for every processor and each processor in a multiprocessor system
h a s i ts own private , independent SCC.

3. SCC is monotonically increasing. On the same processor, t he values re tu rned
by two successive reads of SCC m u s t e i ther be equal or the value of the second
m u s t be g rea te r (unsigned) t h a n the first.

4. SCC ticks a re never lost so long as t he SCC is accessed a t least once per each PCC
overflow period (2**32 PCC increments) dur ing periods when the ha rdware clock
in t e r rup t r emains blocked. The h a r d w a r e clock in t e r rup t is blocked whenever
t he IPL is a t or above CLOCK_IPL or whenever the processor en ters console I/O
mode from program I/O mode.

OpenVMS PALcode Instruction Descriptions (II) 2-17

5. The 64-bit SCC may be constructed from the 32-bit PCC ha rdware counter and
a 32-bit PALcode software counter. As pa r t of the ha rdware clock in te r rup t
processing, PALcode increments the software counter whenever a PCC wrap is
detected. Thus , SCC ticks may be lost only when PALcode fails to detect PCC
wraps . In a machine where the PCC is incremented a t a 1 nsec ra te , th is may
occur when ha rdware clock in te r rup t s are blocked for g rea te r t h a n 4 seconds.

6. An implementat ion-dependent mechanism m u s t exist to, when enabled, cause
the RSCC instruction, as implemented by s t anda rd PALcode, to always r e tu rn
a zero in RO. This mechanism m u s t be usable by privileged system software. A
similar mechanism m u s t exist for RPCC. Implementa t ions a re allowed to have
ju s t a single mechanism which when enabled causes both RSCC and RPCC to
r e tu rn zero.

2-18 OpenVMS Alpha Software (II)

2.1.12 Swap AST Enable

Format:

CALL.PAL SWASTEN ÎPALcode format

Operation:

RO <- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» <- R16<0>

{check for pending ASTs}

Exceptions:

None

Instruction mnemonics:

CALLJPAL SWASTEN Swap AST Enable for Cur ren t Mode

Description:

The SWASTEN instruct ion swaps the AST enable bit for the cur ren t mode. The
new s ta te for the enable bit is supplied in regis ter R16<0> and previous s ta te of the
enable bit is re turned , zero extended, in RO.

A check is made to de termine if an AST in te r rup t is pending (see Section 6.7.6.6).

If t he enabl ing conditions are presen t for an AST in te r rup t a t t he completion of th is
instruction, t he AST occurs before the next instruction.

OpenVMS PALcode Instruction Descriptions (II) 2-19

2.1.13 Write Processor Status Software Field

Format:

2-20 OpenVMS Alpha Software (II)

CALL.PAL WR_PS_SW ÎPALcode format

Operation:

PS<SW> <- R16<1:0>

Exceptions:

None

Instruction mnemonics:

CALLJPAL WR_PS_SW Write Processor S t a tu s Software Field

Description:

The WR_PS_SW instruct ion wri tes the Processor S t a tu s software field (PS<SW>)
wi th the low order two bits of R16. The Processor S t a tus is described in Section 6.2.

2.2 OpenVMS Alpha Queue Data Types

The following sections describe the queue da t a types t h a t a re manipu la ted by the
OpenVMS queue PALcode. Section 2.3 describes t he PALcode instruct ions t h a t
perform t h e manipula t ion.

2.2.1 Absolute Longword Queues

A longword queue is a circular, doubly l inked list. A longword queue en t ry is specified
by i ts address . Each longword queue en t ry is l inked to t he next wi th a pai r of
longwords. A queue is classified by t h e type of l ink it uses . Absolute longword
queues use absolute addresses as l inks.

The first (lowest addressed) longword is t he forward link; it specifies the address of
t he succeeding longword queue entry. The second (highest addressed) longword is
the backward link; it specifies the address of t he preceding longword queue entry.

A longword queue is specified by a longword queue heade r which is identical to a
pa i r of longword queue l inkage longwords. The forward l ink of t he header is the
address of the en t ry t e rmed the head of t he longword queue. The backward l ink of
the heade r is t he address of t he en t ry t e rmed the tai l of the longword queue. The
forward l ink of the tai l points to t he header.

An empty longword queue is specified by i ts header a t address H, as shown in
Figure 2 -1 If an en t ry a t address Β is inser ted into an empty longword queue (at
e i ther t he head or tail) , t he longword queue shown in Figure 2 -2 resul ts . Figures
2 - 3 , 2-4, and 2 - 5 , respectively, i l lus t ra te t he resul ts of subsequent insert ion of an
en t ry a t address A a t t he head, inser t ion of a n ent ry a t address C a t the tai l , and
removal of t he en t ry a t address B.

2.2.2 Self-Relative Longword Queues

Self-relative longword queues use displacements from longword queue entr ies as
l inks. Longword queue entr ies a re l inked by a pai r of longwords. The first longword
(lowest addressed) is the forward link; i t is a displacement of t he succeeding longword
queue en t ry from the presen t entry. The second longword (highest addressed) is t h e
backward link; it is t he displacement of the preceding longword queue ent ry from
the present entry. A longword queue is specified by a longword queue header, which
also consists of two longword l inks.

An empty longword queue is specified by i ts header a t address H. Since the longword
queue is empty, t he self-relative l inks a re zero, as shown in Figure 2 -6 .

Four types of operat ions can be performed on self-relative queues: inser t a t head,
inser t a t tai l , remove from head, and remove from tail . Fur the rmore , these
operat ions a re interlocked to allow cooperating processes in a multiprocessor system
to access a shared list wi thout addit ional synchronization. A hardware-suppor ted ,
interlocked memory access mechanism is used to modify t he queue header. Bit <0>
of t he queue header is used as a secondary interlock and is set when the queue is
being accessed.

OpenVMS PALcode Instruction Descriptions (II) 2-21

If an interlocked queue CALL_PAL instruct ion encounters the secondary interlock
set, then , in the absence of exceptions, it t e rmina tes after se t t ing RO to - 1 to indicate
failure to gain access to the queue. If t he secondary interlock bit is not set, t hen
it is set dur ing the interlocked queue operation and is cleared upon completion of
t he operation. This prevents o ther interlocked queue CALL_PAL instruct ions from
operat ing on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whe ther the exception will be reported.

Figures 2 -7 , 2 - 8 , and 2 -9 , respectively, i l lus t ra te t he resul t s of subsequent insert ion
of an ent ry a t address Β a t t he head, insert ion of an ent ry a t address A a t the tai l ,
and insert ion of an en t ry a t address C a t the tail .

Figures 2 -9 , 2 - 8 , and 2 -7 (in t h a t order) i l lus t ra te the effect of removal a t t he tai l
and removal a t t he head.

Figure 2-1 : Empty Absolute Longword Queue

:H

:H+4

Figure 2-2: Absolute Longword Queue with One Entry

:H

:H+4

:B

:B+4

2-22 OpenVMS Alpha Software (II)

Figure 2-3: Absolute Longword Queue with Two Entries

:H

:H+4

:A

:A+4

:B

:B+4

Figure 2-4: Absolute Longword Queue with Three Entries

:H

:H+4

:A

:A+4

:B

:B+4

:C

:C+4

OpenVMS PALcode Instruction Descriptions (II) 2-23

Figure 2-5: Absolute Longword Queue with Three Entries After Removing the Second
Entry

:H

:H+4

:A

:A+4

:C

:C+4

Figure 2-6: Empty Self-Relative Longword Queue

:H

:H+4

Figure 2-7: Self-Relative Longword Queue with One Entry

B - H

Β - H

H Β

H Β

:Η

:Η+4

:Β

:Β+4

2-24 OpenVMS Alpha Software (II)

Figure 2-8: Self-Relative Longword Queue with Two Entries

A Η

Β Η

:Η

:Η+4

Β - Α

Η - Α

:Α

:Α+4

Η - Β

Α - Β

:Β

:Β+4

Figure 2-9: Self-Relative Longword Queue with Three Entries

A - H

C - H

B - A

Η - A

C - B

A - B

H - C

B - C

:H

:H+4

:A

:A+4

:B

:B+4

:C

:C+4

2.2.3 Absolute Quadword Queues

A quadword queue is a circular, doubly l inked list. A quadword queue en t ry is
specified by i ts address . Each quadword queue ent ry is l inked to t h e next wi th
a pa i r of quadwords. A queue is classified by the type of l ink it uses . Absolute
quadword queues use absolute addresses as l inks.

The first (lowest addressed) quadword is t he forward link; it specifies t he address of
the succeeding quadword queue entry. The second (highest addressed) quadword is
the backward link; it specifies the address of the preceding quadword queue entry.

A quadword queue is specified by a quadword queue header which is identical to a
pai r of quadword queue l inkage quadwords . The forward l ink of t h e header is the
address of the en t ry t e rmed the head of the quadword queue. The backward link of
the header is the address of the en t ry t e rmed the tai l of t he quadword queue. The
forward l ink of the tai l points to the header.

OpenVMS PALcode Instruction Descriptions (II) 2-25

An empty quadword queue is specified by i ts header a t address H, as shown in
Figure 2-10. If an ent ry a t address Β is inser ted into an empty quadword queue (at
e i ther the head or tail), t he quadword queue shown in Figure 2-11 resul ts . Figures
2 -12 , 2 -13 , and 2-14 , respectively, i l lus t ra te the resul ts of subsequent insert ion of
an ent ry a t address A a t the head, insert ion of an ent ry a t address C a t the tail , and
removal of the en t ry a t address B.

2.2.4 Self-Relative Quadword Queues

Self-relative quadword queues use displacements from quadword queue entr ies
as l inks. Quadword queue entr ies a re l inked by a pai r of quadwords. The
first quadword (lowest addressed) is the forward link; it is a displacement of the
succeeding quadword queue ent ry from the present entry. The second quadword
(highest addressed) is the backward link; it is t he displacement of the preceding
quadword queue ent ry from the present entry. A quadword queue is specified by a
quadword queue header, which also consists of two quadword l inks.

An empty quadword queue is specified by i ts header a t address H. Since the
quadword queue is empty, the self-relative l inks a re zero, as shown in Figure 2 -15 .

Four types of operations can be performed on self-relative queues: inser t a t head,
inser t a t tail , remove from head, and remove from tail . Fur the rmore , these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list wi thout addit ional synchronization. A hardware-suppor ted,
interlocked memory access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

If an interlocked queue CALL_PAL instruct ion encounters the secondary interlock
set, then , in the absence of exceptions, it t e rmina tes after se t t ing RO to - 1 to indicate
failure to gain access to the queue. If t he secondary interlock bit is not set, t hen
it is set dur ing the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instruct ions from
operat ing on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whe ther the exception will be reported.

Figures 2-16, 2 -17 , and 2 -18 , respectively, i l lus t ra te the resul ts of subsequent
insert ion of an ent ry a t address Β a t the head, insert ion of an en t ry a t address
A a t the tail , and insert ion of an ent ry a t address C a t the tail .

Figures 2 -18 , 2 -17 , and 2-16 , (in t h a t order) i l lus t ra te the effect of removal a t the
tai l and removal a t t he head.

2-26 OpenVMS Alpha Software (II)

Figure 2-10: Empty Absolute Quadword Queue

:H

Figure 2-11 : Absolute Quadword Queue with One Entry

:H

:H+8

:B

:B+8

Figure 2-12: Absolute Quadword Queue with Two Entries

:H

:H+8

:A

:A+8

:B

:B+8

OpenVMS PALcode Instruction Descriptions (II) 2-27

:H+8

Figure 2-13: Absolute Quadword Queue with Three Entries

:H

Figure 2-14: Absolute Quadword Queue with Three Entries After Removing the Second Entry

:H

:H+8

:A

:A+8

:C

:C+8

Figure 2-15: Empty Self-Relative Quadword Queue

:H

:H+8

2-28 OpenVMS Alpha Software (II)

:H+8

:A

:A+8

:B

:B+8

:C

:C+8

Figure 2-16: Absolute Quadword Queue with One Entry

B - H

B - H

:H

H - B

H - B

:B

:B+8

Figure 2-17: Self-Relative Quadword Queue with Two Entries

63 0

A - H

B - H

:H

:H+8

:A

:A+8

:B

:B+8

B - A

H - A

H - B

A - B

Figure 2-18: Self-Relative Quadword Queue with Three Entries

A - H :H

C - H :H+8

B - A :A

H - A :A+8

C - B :B

A - Β :B+8

H - C :C

Β - C :C+8

OpenVMS PALcode Instruction Descriptions (II) 2-29

:H+8

2.3 Unprivileged OpenVMS Queue PALcode Instructions

The following unprivileged PALcode instruct ions perform atomic modification of t h e
queue da t a types t h a t a re described in Section 2.2.

Table 2 - 3 : VAX Queue Palcode Instruction Summary

Mnemonic Opera t ion

INSQHIL Insert into longword queue at head, interlocked

INSQHILR Insert into longword queue at head, interlocked, resident

INSQHIQ Insert into quadword queue at head, interlocked

INSQHIQR Insert into quadword queue at head, interlocked, resident

INSQTIL Insert into longword queue at tail, interlocked

INSQTILR Insert into longword queue at tail, interlocked, resident

INSQTIQ Insert into quadword queue at tail, interlocked

INSQTIQR Insert into quadword queue at tail, interlocked, resident

INSQUEL Insert into longword queue

INSQUEQ Insert into quadword queue

REMQHIL Remove from longword queue at head, interlocked

REMQHILR Remove from longword queue at head, interlocked, resident

REMQHIQ Remove from quadword queue at head, interlocked

REMQHIQR Remove from quadword queue at head, interlocked, resident

REMQTIL Remove from longword queue at tail, interlocked

REMQTILR Remove from longword queue at tail, interlocked, resident

REMQTIQ Remove from quadword queue at tail, interlocked

REMQTIQR Remove from quadword queue at tail, interlocked, resident

REMQUEL Remove from longword queue

REMQUEQ Remove from quadword queue

2-30 OpenVMS Alpha Software (II)

2.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

CALL_PAL INSQHIL ÎPALcode format

Operation:

! R16 contains the address of the queue header
i R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry,
ι
! check entry and header alignment and
! that the header and entry not same location and
! that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17> OR
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN
BEGIN

{illegal operand exception}
END

Ν <- {retry_amount> ! Implementation-specific

LOAD__LOCKED (tmpO <— (R16)) ! Acquire hardware interlock.

done <- S TORE_C ONDIΤI ON AL ((R16) «- {TMPO OR Rl})
Ν «— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <— -1, {return} ! Retry exceeded

MB
tmpl <- SEXT(tmpO<31:0>)
IF {tmpl<2:l> NE 0} THEN BEGIN ! Check alignment

BEGIN ! Release secondary interlock.
(R16) <- tmpO
{illegal operand exception}

END
! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + tmpl
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock.
(R16) <- tmpO
{initiate memory management fault}

END

REPEAT

IF tmp0<0> EQ 1 THEN
RO -1, {return}

! Try to set secondary interlock.
! Already set

OpenVMS PALcode Instruction Descriptions (II) 2-31

! All accesses can be done so enqueue the entry

tmp2 <- SEXT({R16 - R17}<31:0>)
(R17)<31:0> <- tmpl + tmp2 !
(R17 + 4)<31:0> «- tmp2 !
(R16 + tmpl + 4)<31:0> <- -tmpl - tmp2 !

Forward link
Backward link
Successor back link

MB

(R16)<31:0> <- -tmp2 Forward link of header
Release lock

IF tmpl EQ 0 THEN
RO <- 1

ELSE
RO <- 0

Queue was empty

Queue was not empty
END

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALL_PAL INSQHIL Inser t into Longword Queue a t Head Interlocked

Description:

If the secondary interlock is clear, INSQHIL inser ts the en t ry specified in R17 into
the self-relative queue following the header specified in R16.

If t he ent ry inser ted was t he first one in t he queue, RO is set to a 1; else i t is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same
queue by another process, in a multiprocessor environment . Before the insertion, the
processor val idates t h a t the ent i re operation can be completed. This ensures t h a t if
a memory managemen t exception occurs, t he queue is left in a consistent s ta te (see
Chapte rs 3 and 6). If t he instruct ion fails to acquire the secondary interlock after
"N" re t ry a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The
value "N" is implementat ion dependent .

2-32 OpenVMS Alpha Software (II)

2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

CALLJPAL INSQHILR ÎPALcode format

Operation:

! R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry

! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

Ν <- {retry_amount>
REPEAT

LOAD_LOCKED (tmpO «- (Rl6))
IF tmpO<0> EQ 1 THEN

RO «- -1, {return}
done <- STORE__CONDITIONAL ((R16)
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO «— -1, {return}

MB

tmpl <- SEXT(tmpO<31:0>)
tmp2 <- SEXT({R16 - R17}<31:0>)
(R17)<31:0> <- tmpl + tmp2
(R17 + 4)<31:0> <- tmp2

! Implementation-specific

! Acquire hardware interlock.
! Try to set secondary interlock.
! Already set

{TMPO OR Rl})

Retry exceeded

! Enqueue the entry
! Forward link of entry.
i Backward link of entry.

(R16 + tmpl + 4)<31:0>

MB
(R16)<31:0> -tmp2

IF tmpl EQ 0 THEN
RO 4— 1

ELSE
RO «— 0

END

-tmpl - tmp2 ! Successor back link

! Forward link of header
! Release the lock

! Queue was empty

! Queue was not empty

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-33

Instruction mnemonics:

CALL.PAL INSQHILR Inser t En t ry into Longword Queue
a t Head Interlocked Resident

Description:

If t he secondary interlock is clear, INSQHILR inser t s the en t ry specified in R17 into
the self-relative queue following the header specified in R16.

If t he ent ry inser ted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same
queue by another process, in a multiprocessor environment . If t he instruct ion fails
to acquire the secondary interlock after "N" re t ry a t t empts , t hen (in the absence of
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent .

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue
header and e lements a re quadword aligned. No a l ignment or memory managemen t
checks a re made before s ta r t ing queue modifications to verify these requi rements .
Therefore, should any of these requi rements not be met , t he queue may be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2-34 OpenVMS Alpha Software (II)

2.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

CALLJPAL INSQHIQ ÎPALcode format

Operation:

! R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
I 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
ι
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry.
!
! check entry and header alignment and
i that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}

END

Ν <- {retry_amount} 1 Implementation-specific
REPEAT

LOAD_LOCKED (tmpO <— (R16)) ί Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

RO «— -l f {return} ! Already set
done <- STORE__CONDITIONAL ((R16) <- {TMPO OR Rl})
Ν <- Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO «— -1, {return} 1 Retry exceeded

MB

IF {tmpl<3:l> NE 0} THEN BEGIN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) «- tmpl
{illegal operand exception}

END
! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + tmpl
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) <- tmpl
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-35

! All accesses can be done so enqueue the entry
tmp2 «- R16 - R17
(R17) <- tmpl + tmp2 ! Forward link
(R17 + 8) +- tmp2 ! Backward link
(R16 + tmpl + 8) -tmpl - tmp2 ! Successor back link

MB

(R16) -tmp2 ! Forward link of header
! Release the lock.

IF tmpl EQ 0 THEN
1 RO

ELSE
RO 0

! Queue was empty

! Queue was not empty
END

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALL_PAL INSQHIQ Inser t into Quadword Queue a t Head Interlocked

Description:

If t he secondary interlock is clear, INSQHIQ inser ts the en t ry specified in R17 into
the self-relative queue following the header specified in R16.

If the ent ry inser ted was the first one in the queue, RO is set to a 1 ; else it is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked insert ions or removals a t the head or tai l of the same
queue by another process, in a multiprocessor environment . Before the insert ion, the
processor val idates t h a t the ent i re operation can be completed. This ensures t h a t if
a memory managemen t exception occurs, t he queue is left in a consistent s ta te (see
Chapte rs 3 and 6). If t he instruct ion fails to acquire t he secondary interlock after
"N" re t ry a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The
value "N" is implementat ion dependent .

2-36 OpenVMS Alpha Software (II)

2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHIQR ÎPALcode format

Operation:

! R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry

1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

! Header cannot be equal to entry,
î All parts of the Queue must be memory resident

! Implementation-specific

(R16)) ! Acquire hardware interlock.
! Try to set secondary interlock.
! Already set

{TMPO OR Rl})

Ν <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO «-
IF tmpO<0> EQ 1 THEN

RO «— -1, {return} !
done <- STORE_COND IΤIONAL ((R16)
Ν <- Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded

MB
tmp2 «— R16 - R17 ! Enqueue the entry
(R17) <— tmpl + tmp2 ! Forward link of entry.
(R17 + 8) «- tmp2 ! Backward link of entry.
(R16 + tmpl + 8) <— -tmpl - tmp2 ! Successor back link

MB
(R16) -tmp2

IF tmpl EQ 0 THEN
RO 4- 1

ELSE
RO <- 0

END

! Forward link of header,
! Release the lock

! Queue was empty

! Queue was not empty

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-37

Instruction mnemonics:

CALL_PAL INSQHIQR Inser t En t ry into Quadword Queue
a t Head Interlocked Resident

Description :

If t he secondary interlock is clear, INSQHIQR inser ts t he en t ry specified in R17 into
the self_relative queue following the header specified in R16.

If t he ent ry inser ted was the first one in the queue, RO is set to a 1; else i t is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same
queue by another process, in a multiprocessor environment . If t he instruct ion fails
to acquire the secondary interlock after "N" re t ry a t t empts , t hen (in the absence of
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent .

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue
header and elements are octaword aligned. No a l ignment or memory managemen t
checks are made before s ta r t ing queue modifications to verify these requi rements .
Therefore, should any of these requi rements not be met , t he queue may be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2-38 OpenVMS Alpha Software (II)

2.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

CALLJPAL INSQTIL ÎPALcode format

Operation:

l R16 contains the address of the queue header
! R17 contains the address of the new entry
I RO receives status:
1 -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
I Must have write access to header and queue entries
i Header and entries must be quadword aligned.
! Header cannot be equal to entry.
1
! check entry and header alignment and
1 that the header and entry not same location and
! that the header and entry are valid 32 bit addresses
IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR

{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R16} THEN
BEGIN
{illegal operand exception}

END

Ν <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmpO (R16)) i Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

RO -1, {return} ! Already set
done <- STORE_CONDITIONAL ((R16) «- {TMPO OR Rl})
Ν «— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO «— -1, {return} I Retry exceeded

MB

tmpl «- SEXT(tmpO<31:0>)
tmp2 <- SEXT(tmpO<63:32>)

IF {tmpl<2:l> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) <- tmpO
{illegal operand exception}

END

OpenVMS PALcode Instruction Descriptions (II) 2-39

! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + (header + 4)
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) <- tmpO
{initiate memory management fault}

END

! All Accesses can be done so enqueue entry
tmp3 <- SEXT({R16 - R17}<31:0>)
(R17)<31:0> «- tmp3 ! Forward link
(R17 + 4)<31:0> <- tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2)<31:0> <- -tmp3 - tmp2
ELSE

tmpl <- SEXT({-tmp3 - tmp2}<31:0>)
(R16+4)<31:0> <- -tmp3 ! Backward link of header

MB

(R16)<31:0> <- tmpl
IF tmpl EQ -tmp3 THEN

RO «— 1
ELSE

RO <— 0
END

! Forward link, release lock

! Queue was empty

! Queue was not empty

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALLJPAL INSQTIL Inser t into Longword Queue a t Tail Interlocked

Description :

If t he secondary interlock is clear, INSQTIL inser ts the en t ry specified in R17 into
the self-relative queue preceding the header specified in R16.

If the ent ry inser ted was the first one in the queue, RO is set to a 1 ; else i t is set to
a 0. The insert ion is a non-interruptible operation. The insert ion is interlocked to
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of t he same
queue by another process, in a multiprocessor environment . Before performing any
pa r t of the operation, the processor val idates t h a t t he insert ion can be completed.

2-40 OpenVMS Alpha Software (II)

This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue is left in
a consistent s ta te (see Chap te r s 3 and 6). If t he inst ruct ion fails to acquire the
secondary interlock after "N" re t ry a t t empts , t hen (in t he absence of exceptions) R<
0> is set to a - 1 . The value "N" is implementa t ion dependent .

OpenVMS PALcode Instruction Descriptions (II) 2-41

2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident

Format:

CALL.PAL INSQTILR !PALcode format

Operation :

! R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
i 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
ι

! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

Ν <- {retry_amount> ! Implementation-specific
REPEAT

LOAD__LOCKED (tmpO (R16)) ! Acquire hardware interlock.
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock.

RO <— -1, {return} ! Already set
done «- STORE_CONDITIONAL ((R16) «- {TMPO OR Rl})
Ν <— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +— -1, {return} ! Retry exceeded

MB

tmpl <- SEXT(tmpO<31:0>)
tmp2 <- SEXT(tmpO<63:32>)
tmp3 <- SEXT({R16 - R17}<31:0>)
(R17)<31:0> <- tmp3 ! Forward link
(R17 + 4)<31:0> <- tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2)<31:0> «- -tmp3 - tmp2
ELSE

tmpl 4 - <- SEXT({-tmp3 - tmp2}<31:0>)

(R16+4)<31:0> «- -tmp3 ! Backward link of header

MB

(R16)<31:0> <- tmpl ! Forward link
! Release the lock

IF tmpl EQ -tmp3 THEN
RO <— 1 1 Queue was empty

ELSE
RO 0 ! Queue was not empty

END

2-42 OpenVMS Alpha Software (II)

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-43

Instruction mnemonics:

CALLJPAL INSQTILR Inser t En t ry into Longword Queue
a t Tail Interlocked Resident

Description:

If t he secondary interlock is clear, INSQTILR inser ts the en t ry specified in R17 into
the self-relative queue preceding the header specified in R16.

If t he en t ry inser ted was t he first one in t he queue, RO is set to a 1; else it is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of the same
queue by another process, in a mult iprocessor environment . If t he instruct ion fails
to acquire t he secondary interlock after "N" re t ry a t t empts , t hen (in the absence of
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent .

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue
header and e lements a re quadword aligned. No a l ignment or memory managemen t
checks a re made before s ta r t ing queue modifications to verify these requi rements .
Therefore, should any of these requ i rements not be met , t he queue may be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIQ ÎPALcode format

Operation:

1 R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry

1 Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry,
ι
! check entry and header alignment and
! that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}

END

Ν <- {retry_amount} i Implementation-specific
REPEAT

LOAD__LOCKED (tmpO <- (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

RO 4 — -1, {return} ! Already set
done 4 - S TORE__COND IΤI ON AL ((R16) 4 - {TMPO OR Rl})
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded

MB
tmp2 4 - (R16+8)
IF {tmpl<3:l> NE 0} OR {tmp2<3:0> NE 0} THEN I Check Alignment.

BEGIN ! Release secondary interlock.
(R16) 4 - tmpl
{illegal operand exception}

END

i Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + (header + 8)
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock.
(R16) 4 - tmpl
{initiate memory management fault}

END

2-44 OpenVMS Alpha Software (II)

i All accesses can be done so enqueue the entry
tmp3 <- R16 - R17
(R17) «- tmp3 ! Forward link
(R17 + 8) <- tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2) <- -tmp3 - tmp2
ELSE

tmpl «— {-tmp3 - tmp2}
(R16+8) «— -tmp3 ! Backward link of header

MB

(R16) tmpl Forward link
Release the lock

IF tmpl
RO <-

EQ -tmp3 THEN
1 Queue was empty

ELSE
RO <- 0 Queue was not empty

END

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Transla t ion Not Valid

Instruction mnemonics:

CALL_PAL INSQTIQ Inser t into Quadword Queue a t Tail Interlocked

Description:

If t h e secondary interlock is clear, INSQTIQ inser ts the en t ry specified in R17 into
t he self-relative queue preceding the header specified in R16.

If t h e en t ry inser ted was t he first one in the queue, RO is set to a 1 else it is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of the same
queue by another process, in a mult iprocessor environment . Before performing any
pa r t of t he operation, t he processor val idates t h a t t he insert ion can be completed.
This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue is left in
a consistent s ta te (see Chap te r s 3 and 6). If t he instruct ion fails to acquire the
secondary interlock after "N" re t ry a t t empts , t h e n (in t he absence of exceptions) R<
0> is set to a - 1 . The value "N" is implementa t ion dependent .

OpenVMS PALcode Instruction Descriptions (II) 2-45

2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident

Format:

CALL.PAL INSQTIQR ÎPALcode format

Operation:

! R16 contains the address of the queue header
! R17 contains the address of the new entry
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
ι
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
I Header cannot be equal to entry.
ί All parts of the Queue must be memory resident

Ν <- {retry__amount> ! Implementation-specific
REPEAT

LOAD_LOCKED (tmpO <— (R16)) ! Acquire hardware interlock.
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock.

RO 4 — -l, {return} ! Already set
done 4 - STORE__COND IΤIONAL ((R16) <- {TMPO OR Rl})
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <— -1, {return} ! Retry exceeded

MB
tmp2 4 - (R16+8)
tmp3 4 - R16 - R17
(R17) 4 - tmp3
(R17 + 8) 4 - tmp2 + tmp3
IF {tmp2 NE 0} THEN

! Forward link
ί Backward link
! Forward link of predecessor

(R16+tmp2)
ELSE

tmpl 4 — {-tmp3
(R16+8) 4 - -tmp3

MB

-tmp3 - tmp2

tmp2}

(R16) 4 - tmpl
IF tmpl EQ -tmp3 THEN

RO 4- 1
ELSE

RO 4- 0
END

1 Backward link of header

! Forward link and release the lock

! Queue was empty

! Queue was not empty

2-46 OpenVMS Alpha Software (II)

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-47

Instruction mnemonics:

CALL.PAL INSQTIQR Inser t En t ry into Quadword Queue
a t Tail Interlocked Resident

Description:

If t he secondary interlock is clear, INSQTIQR inser t s t he en t ry specified in R17 into
t he se l f r e l a t ive queue preceding the header specified in R16.

If t he en t ry inser ted was the first one in the queue, RO is set to a 1 else it is set to
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to
prevent concurrent interlocked inser t ions or removals a t t he head or ta i l of t he same
queue by ano ther process, in a mult iprocessor environment . If t he instruct ion fails
to acquire the secondary interlock after "N" re t ry a t t empts , t h e n (in the absence of
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent .

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue
heade r and e lements a re octaword aligned. No a l ignment or memory managemen t
checks a re made before s t a r t ing queue modifications to verify these requi rements .
Therefore, should any of these requ i rements not be met , t h e queue m a y be left in
a n unpredictable s ta te and a n illegal operand fault may be reported.

2.3.9 Insert Entry into Longword Queue

Format:

CALL_PAL INSQUEL !PALcode format

Operation :

! R16 contains the address of the predecessor entry
! or the 32 bit address of the 32 bit address of the
! predecessor entry for INSQUEL/D
! R17 contains the address of the new entry
! RO receives status:
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
i
! Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 «- SEXT((R16)<31:0>) ! Address of predecessor
ELSE

tmp2 <— R16

IF {all memory accesses can be completed) THEN
BEGIN
tmp<31:0> <- SEXT((tmp2)<31:0>) ! Get Forward Link
(R17)<31:0> <- tmp ! Set forward link
(R17 + 4)<31:0> <- tmp2 ! Backward link
(SEXT((tmp2)<31:0>) + 4)<31:0> +- R17

1 Backward link of Successor
(tmp2)<31:0> «- R17 ! Forward link of Predecessor
IF tmp EQ tmp2 THEN

RO «- 1
ELSE

RO «- 0
END

ELSE
BEGIN
{initiate fault}

END
END

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Translat ion Not Valid

2-48 OpenVMS Alpha Software (II)

Instruction mnemonics:

CALL_PAL INSQUEL Inser t E n t r y into Longword Queue

CALL_PAL INSQUEL/D Inser t E n t r y into Longword Queue Deferred

Description:

INSQUEL inser ts the en t ry specified in R17 into the absolute queue following the
en t ry specified by the predecessor addressed by R16. INSQUEL/D performs the
same operation on the en t ry specified by the contents of the longword addressed by
R16.

In e i ther case, if t he en t ry inser ted was the first one in the queue, a 1 is r e tu rned in
RO; otherwise a 0 is r e tu rned in RO. The insert ion is a non-interrupt ible operation.
Before performing any p a r t of t he insert ion, t he processor val idates t h a t t he ent i re
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception
occurs, t he queue is left in a consistent s t a te (see Chap te r s 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-49

2.3.10 Insert Entry Into Quadword Queue

Format:

CALL_PAL INSQUEQ ÎPALcode format

Operation:

ï R16 contains the address of the predecessor entry
I or the address of the address of the
! predecessor entry for INSQUEQ/D
! R17 contains the address of the new entry
! RO receives status:
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
I
! Must have write access to header and queue entries
! Header and entries must be octaword aligned

IF opcode EQ INSQUEQ/D THEN
IF {rl6<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
tmp2 4 — (R16) ! Address of predecessor

ELSE
tmp2 4 - R16

END
IF {tmp2<3:0> NE 0} OR {R17<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmp 4 — (tmp2) ! Get forward link of entry
IF {tmp<3:0> NE 0} THEN
BEGIN ! Check alignment
{illegal operand exception}

END
(R17) 4 — tmp ! Set forward link of entry
(R17 + 8) 4 - tmp2 ! Backward link of entry
(tmp + 8) 4 — R17 ! Backward link of successor
(tmp2) 4 — R17 ! Forward link of predecessor
IF tmp EQ tmp2 THEN

R0 4- 1
ELSE

R0 4- 0
END

ELSE
BEGIN
{initiate fault}

END
END

2-50 OpenVMS Alpha Software (II)

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Translat ion Not Valid

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQUEQ Inser t E n t r y into Quadword Queue

CALL.PAL INSQUEQ/D Inser t E n t r y into Quadword Queue Deferred

Description:

INSQUEQ inser ts the en t ry specified in R17 into the absolute queue following the
en t ry specified by the predecessor addressed by R16. INSQUEQ/D performs the
same operation on the en t ry specified by the contents of the quadword addressed by
R16.

In e i ther case, if t he en t ry inser ted was the first one in the queue, a 1 is r e tu rned
in RO; otherwise a 0 is r e tu rned in RO. The insert ion is a non-interrupt ible
operation. Before performing any pa r t of t he insert ion, the processor val idates t h a t
the ent i re operation can be completed. This ensures t h a t if a memory managemen t
exception occurs, t h e queue is left in a consistent s t a te (see Chap te r s 3 and 6). RO
is unpredictable if an exception occurs. The relat ive order of report ing memory
m a n a g e m e n t and illegal operand exceptions is unpredictable .

OpenVMS PALcode Instruction Descriptions (II) 2-51

2.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

CALL.PAL REMQHIL ÎPALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
! Header and entries must be quadword aligned.
!
! Check header alignment and
! that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN

BEGIN
{illegal operand exception}

END

I Implementation-specific

(R16))

Ν <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO <-
IF tmp0<0> EQ 1 THEN

RO <— -1, {return}
done «- STORE_CONDIΤIONAL ((R16)
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO «— -1, {return} ! Retry exceeded

MB

! Acquire hardware interlock.
! Try to set secondary interlock.
! Already set

{TMPO OR Rl})

tmpl «- SEXT(tmpO<31:0>)
IF tmpl<2:0> NE 0 THEN

BEGIN
(R16) <- tmpO
{illegal operand exception}

END

! Check Alignment
! Release secondary interlock

! Check if the following can be done without
! causing a memory management exception:
! read contents of header + tmpl {if tmpl NE 0}
! write into header + tmpl + (header + tmpl) {if tmpl NE 0}
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) «- tmpO
{initiate memory management fault}

END

2-52 OpenVMS Alpha Software (II)

tmp2 <- SEXT({R16 + tmpl><31:0>)
IF {tmpl EQL 0} THEN

tmp3 <- R16
ELSE

tmp3 «- SEXT({tmp2 + SEXT((tmp2)<31:0>)})

IF tmp3<2:0> NE 0 THEN Î Check Alignment
BEGIN ! Release secondary interlock
(R16) «- tmpO
{illegal operand exception}

END

(tmp3 + 4)<31:0> «— R16 - tmp3 ! Backward link of successor

MB

(R16)<31:0> «- tmp3 - R16 ! Forward link of header
! Release lock

IF tmpl EQ 0 THEN
RO 4 — 0 ! Queue was empty

ELSE
BEGIN
IF {tmp3 - R16} EQ 0 THEN
RO 4 — 2 ! Queue now empty

ELSE
RO <— 1 ! Queue not empty

END
END
Rl <— tmp2 ! Address of removed entry

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALL_PAL REMQHIL Remove from Longword Queue a t Head Interlocked

Description:

If t he secondary interlock is clear, REMQHIL removes from the self-relative queue
the en t ry following the header, pointed to by R16, and the address of the removed
en t ry is r e tu rned in R l .

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t
t he s t a r t of the removal and the queue is empty after the removal, a 2 is re tu rned
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry

OpenVMS PALcode Instruction Descriptions (II) 2-53

a t tempts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementat ion dependent .

The removal is interlocked to prevent concurrent interlocked insert ions or removals
a t t he head or tai l of t he same queue by ano ther process, in a multiprocessor
environment. The removal is a non-interrupt ible operation. Before performing
any pa r t of the removal, the processor val idates t h a t the ent i re operation can be
completed. This ensures t h a t if a memory managemen t exception occurs, t he queue
is left in a consistent s ta te (see Chapte rs 3 and 6).

2-54 OpenVMS Alpha Software (II)

2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

CALL.PAL REMQHILR ÎPALcode format

Operation:

! R16 contains the address of the queue header
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
1 2 if entry removed and queue empty
! Rl receives the address of the removed entry
!
i Must have write access to header and queue entries
Î Header and entries must be quadword aligned.
! All parts of the Queue must be memory resident

Ν <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmpO <— (R16)) I Acquire hardware interlock.
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock.

RO <— -1, {return} 1 Already set
done +- STORE_CONDITIONAL ((R16) 4 - {TMPO OR Rl})
Ν Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded

MB

tmpl <- SEXT(tmpO<31:0>)
tmp2 <- SEXT({R16 + tmpl}<31:0>)
IF {tmpl EQL 0} THEN

tmp3 «- R16
ELSE

tmp3 <- SEXT({tmp2 + SEXT((tmp2)<31:0>)})
END

(tmp3 + 4)<31:0> <— R16 - tmp3 ! Backward link of successor

MB
(R16)<31:0> <- tmp3 - R16 ! Forward link of header

! Release lock
IF tmpl EQ 0 THEN

RO «— 0 ! Queue was empty
ELSE

BEGIN
IF {tmp3 - R16} EQ 0 THEN

RO <— 2 ! Queue now empty
ELSE

RO <— 1 ! Queue not empty
END

END
Rl «— tmp2 I Address of removed entry

OpenVMS PALcode Instruction Descriptions (II) 2-55

Exceptions:

Illegal Operand

2-56 OpenVMS Alpha Software (II)

Instruction mnemonics:

CALL_PAL REMQHILR Remove En t ry from Longword Queue
a t Head Interlocked Resident

Description:

If t he secondary interlock is clear, REMQHILR removes from the self-relative queue
the ent ry following the header, pointed to by R16, and the address of the removed
ent ry is r e tu rned in R l .

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t
the s t a r t of the removal and the queue is empty after t he removal, a 2 is r e tu rned
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementat ion dependent .

The removal is interlocked to prevent concurrent interlocked inser t ions or removals
a t the head or tai l of t he same queue by ano ther process, in a multiprocessor
environment . The removal is a non-interrupt ible operation.

This instruction requires t h a t the queue be memory res ident and t h a t t he queue
header and e lements a re quadword aligned. No a l ignment or memory managemen t
checks a re made before s ta r t ing queue modifications to verify these requi rements .
Therefore, should any of these requi rements not be met , t he queue m a y be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

CALL_PAL REMQHIQ ÎPALcode format

Operation:

1 R16 contains the address of the queue header
! RO receives status:
I -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
1 2 if entry removed and queue empty
! Rl receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
1
1 Check header alignment
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

Ν <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmpO <— (R16)) i Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

RO <— -1, {return} ! Already set
done <- STORE_CONDITIONAL ((R16) 4 - {TMPO OR Rl})
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO 4 — -l, {return} ! Retry exceeded

MB

IF tmpl<3:0> NE 0 THEN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) 4 - tmpl
{illegal operand exception}

END
! Check if the following can be done without
I causing a memory management exception:
! read contents of header + tmpl {if tmpl NE 0}
! write into header + tmpl + (header + tmpl) {if tmpl NE 0}
IF {all memory accesses can NOT be completed} THEN

BEGIN 1 Release secondary interlock
(R16) 4 - tmpO
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-57

tmp2 <- R16 + tmpl
IF {tmpl EQL 0} THEN

tmp3 <- R16
ELSE

tmp3 «- tmp2 + (tmp2)

IF tmp3<3:0> NE 0 THEN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) tmpl
{illegal operand exception}

END

(tmp3 + 8) 4 — R16 - tmp3 ! Backward link of successor

MB

(R16) <— tmp3 - R16 ! Forward link of header
! Release lock

IF tmpl EQ 0 THEN
RO 0 ! Queue was empty

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO <— 2 ! Queue now empty

ELSE
RO <— 1 ! Queue not empty

END
END
Rl <— tmp2 ! Address of removed entry

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALLJPAL REMQHIQ Remove from Quadword Queue a t Head
Interlocked

Description:

If t he secondary interlock is clear, REMQHIQ removes from the self-relative queue
the ent ry following the header, pointed to by R16, and the address of t he removed
entry is r e tu rned in R l .

If the queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t

2-58 OpenVMS Alpha Software (II)

t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry
a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementa t ion dependent .

The removal is interlocked to prevent concurrent interlocked insert ions or removals
a t t he head or tai l of the same queue by ano ther process, in a multiprocessor
environment . The removal is a non-interrupt ible operation. Before performing
any pa r t of the removal, t he processor val idates t h a t the ent i re operation can be
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue
is left in a consistent s t a te (see Chap te r s 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-59

2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHIQR ÎPALcode format

Operation:

l R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

1 Must have write access to header and queue entries
i Header and entries must be octaword aligned.
I All parts of the Queue must be memory resident

Ν <- {retry_amount>
REPEAT

L0AD_L0CKED (tmpO
IF tmpO<0> EQ 1 THEN !

RO -1, {return} !
done <- STORE_CONDIΤIONAL ((R16)
Ν <— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

! Implementation-specific

(R16)) ! Acquire hardware interlock.
Try to set secondary interlock.
Already set
<- {TMPO OR Rl})

IF done NEQ 1, RO

MB

-1, {return} ! Retry exceeded

tmp2 <— R16 + tmpl
IF {tmpl EQL 0} THEN

tmp3 <- R16
ELSE

tmp3 <- tmp2 + (tmp2)
END
(tmp3 + 8) 4 - R16 - tmp3

MB

(R16) tmp3 - R16

IF tmpl EQ 0 THEN
RO 0

ELSE
IF {tmp3 - R16} EQ 0 THEN

RO 4— 2
ELSE

RO <— 1
END
Rl <- tmp2

1 Backward link of successor

1 Forward link of header
! Release lock

! Queue was empty

1 Queue now empty

1 Queue not empty

! Address of removed entry

2-60 OpenVMS Alpha Software (II)

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-61

Instruction mnemonics:

CALL_PAL REMQHIQR Remove E n t r y from Quadword Queue
a t Head Interlocked Resident

Description:

If t he secondary interlock is clear, REMQHIQR removes from the self-relative queue
t h e en t ry following the header, pointed to by R16, and the address of t h e removed
en t ry is r e tu rned in R l .

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t
t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementa t ion dependent .

The removal is interlocked to prevent concurrent interlocked insert ions or removals
a t t h e head or ta i l of t he same queue by ano ther process, in a multiprocessor
environment . The removal is a non-interrupt ible operation.

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue
header and e lements a re octaword aligned. No a l ignment or memory managemen t
checks a re made before s t a r t ing queue modifications to verify these requi rements .
Therefore, should any of these requ i rements not be met , t he queue m a y be left in
an unpredictable s ta te and an illegal operand fault m a y be reported.

2.3.15 Remove Entry from Longword Queue at Tail Interlocked

Format:

CALL.PAL REMQTIL ÎPALcode format

Operation:

! R16 contains the address of the queue header
! RO receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! Rl receives the address of the removed entry
!
1 Must have write access to header and queue entries
! Header and entries must be quadword aligned.
ι
! Check header alignment and
! that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16> THEN

BEGIN
{illegal operand exception}

END

Ν <- {retry_amount} ! Implementation-specific
REPEAT

LOAD__LOCKED (tmpO <— (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

RO -1, {return} ! Already set
done «- S TORE_C ONDIΤI ON AL ((R16) <- {TMPO OR Rl})
Ν <- Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded

MB

tmpl <- SEXT(tmpO<31:0>)
tmp5 <- SEXT(tmpO<63:32>)
IF tmp5<2:0> NE 0 THEN ! Check alignment

BEGIN ! Release secondary interlock
(R16) <- tmpO
{illegal operand exception}

END

! Check if the following can be done without
! causing a memory management exception:
! read contents of header + (header + 4) {if tmpl NE 0}
! write into header + (header + 4)
! + (header + 4 + (header + 4)){if tmpl NE 0}
IF {all memory accesses can NOT be completed} THEN

BEGIN ί Release secondary interlock
(R16) <- tmpO
{initiate memory management fault}

END

2-62 OpenVMS Alpha Software (II)

addr 4 - SEXT({R16 + tmp5}<31:0>)
tmp2 <- SEXT({addr + SEXT((addr+4)<31:0>)}<31:0>)
IF tmp2<2:0> NE 0 THEN i Check alignment

BEGIN I Release secondary interlock
(R16) <- tmpO
{illegal operand exception}

END

(R16 + 4)<31:0> <- tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16)<31:0> <- 0
ELSE

BEGIN
(tmp2)<31:0> <- R16 - tmp2

MB
(R16)<31:0> <- tmpl

END
IF tmpl EQ 0 THEN

RO 4— 0
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO 4— 2
ELSE

RO 4— 1
END

Rl <- addr

! Backward link of header

! Forward linkf release lock

! Forward link of predecessor

I Release lock

! Queue was empty

Î Queue now empty

! Queue not empty

I Address of removed entry

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Transla t ion Not Valid

Instruction mnemonics:

CALL_PAL REMQTIL Remove from Longword Queue a t Tail Interlocked

Description:

If t he secondary interlock is clear, REMQTIL removes from the self-relative queue
the en t ry preceding the header, pointed to by R16, and the address of the removed
en t ry is r e tu rned in R l .

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t
the s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry

OpenVMS PALcode Instruction Descriptions (II) 2-63

a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementat ion dependent .

The removal is interlocked to prevent concurrent interlocked insert ions or removals
a t t he head or tai l of the same queue by another process, in a multiprocessor
environment . The removal is a non-interrupt ible operation. Before performing
any pa r t of the removal, t he processor val idates t h a t the ent i re operation can be
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue
is left in a consistent s ta te (see Chapte rs 3 and 6).

2-64 OpenVMS Alpha Software (II)

2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTILR ÎPALcode format

Operation:

! R16 contains the address of the queue header
I RO receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
I 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! Rl receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! All parts of the Queue must be memory resident

Ν <- {retry_amount} î Implementation-specific
REPEAT

L0AD__L0CKED (tmpO <— (R16)) ! Acquire hardware interlock.
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock.

RO 4 — -1, {return} ! Already set
done 4 - ST0RE__C0ND IΤ10NAL ((R16) «- {TMPO OR Rl})
Ν 4— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded

MB
tmpl 4 - SEXT(tmpO<31:0>)
tmp5 4 - SEXT(tmpO<63:32>)
addr 4 - SEXT({R16 + tmp5}<31:0>)
tmp2 4 - SEXT({addr + SEXT((addr+4)<31:0>)}<31:0>)
(R16 + 4)<31:0> 4 - tmp2 - R16 I Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> 4 - 0 ! Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> 4 - R16 - tmp2 I Forward link of predecessor
MB
(R16)<31:0> 4 - tmpl ! Release lock

END
IF tmpl EQ 0 THEN

RO 4 — 0 1 Queue was empty
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO 4 - 2 ! Queue now empty

ELSE
RO 4 — l ! Queue not empty

END
END
Rl 4 — addr ! Address of removed entry

OpenVMS PALcode Instruction Descriptions (II) 2-65

Exceptions:

Illegal Operand

2-66 OpenVMS Alpha Software (II)

Instruction mnemonics:

CALL_PAL REMQTILR Remove En t ry from Longword Queue
a t Tail Interlocked Resident

Description:

If t he secondary interlock is clear, REMQTILR removes from the self-relative queue
the ent ry preceding the header, pointed to by R16, and the address of the removed
entry is r e tu rned in R l .

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If the interlock succeeded and the queue was not empty a t
the s t a r t of the removal, and the queue is empty after t he removal a 2 is r e tu rned
in RO. If the instruct ion fails to acquire the secondary interlock after "N" re t ry
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementat ion dependent .

The removal is interlocked to prevent concurrent interlocked insert ions or removals
a t t he head or tai l of the same queue by another process, in a multiprocessor
environment . The removal is a non-interrupt ible operation.

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue
header and e lements a re quadword aligned. No a l ignment or memory managemen t
checks are made before s ta r t ing queue modifications to verify these requi rements .
Therefore, should any of these requi rements not be met , t he queue may be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

CALL.PAL REMQTIQ ÎPALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

i Check header alignment
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

Ν <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO <- (R16))
IF tmp0<0> EQ 1 THEN

RO <— -1, {return}
done <- STORE_CONDIΤIONAL ((R16)
Ν <- Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO <— -1, {return}

I Implementation-specific

! Acquire hardware interlock.
! Try to set secondary interlock.
! Already set

{TMPO OR Rl})

Retry exceeded

MB

! Check Alignment
! Release secondary interlock

tmp5 <- (R16+8)
IF tmp5<3:0> NE 0 THEN

BEGIN
(R16) <- tmpl
{illegal operand exception}

END
Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 8) {if tmpl NE 0}
write into header + (header + 8)
+ (header + 8 + (header + 8)){if tmpl NE 0}

IF {all memory accesses can NOT be completed} THEN
BEGIN 1 Release secondary interlock
(R16) <- tmpl
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-67

addr <- R16 + tmp5
tmp2 4 - addr + (addr + 8)
IF tmp2<3:0> NE 0 THEN ! Check alignment

BEGIN ! Release secondary interlock
(R16) 4 - tmpl
{illegal operand exception}

END

(R16 + 8) 4 - tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16) +- 0
ELSE

BEGIN
(tmp2) 4 - R16 - tmp2
MB
(R16) 4 - tmpl

END
END
IF tmpl EQ 0 THEN

RO 4- 0
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO 4- 2
ELSE

RO 4- 1
END

END
Rl 4 - addr

! Backward link of header

! Forward link, release lock

1 Forward link of predecessor

! Release lock

! Queue was empty

ï
! Queue now empty

! Queue not empty

I Address of removed entry

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALL.PAL REMQTIQ Remove from Quadword Queue a t Tail Interlocked

Description:

If t he secondary interlock is clear, REMQTIQ removes from the self-relative queue
the ent ry preceding the header, pointed to by R16, and the address of t he removed
en t ry is r e tu rned in R l .

If the queue was empty prior to th is instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t

2-68 OpenVMS Alpha Software (II)

t h e s t a r t of t h e removal , a n d the queue is empty after t h e removal a 2 is r e tu rned
in RO. If t h e inst ruct ion fails to acquire t he secondary interlock after "N" re t ry
a t t empts , t hen (in t h e absence of exceptions) R< 0> is set to a - 1 . The value u

N
n is

implementa t ion dependent .

The removal is interlocked to prevent concurrent interlocked inser t ions or removals
a t t he head or ta i l of t h e same queue by ano ther process, in a multiprocessor
environment . The removal is a non-interrupt ible operation. Before performing
any p a r t of t he removal, t he processor val idates t h a t t he ent i re operat ion can be
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t h e queue
is left in a consistent s t a te (see Chap te r s 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-69

2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTIQR ÎPALcode format

Operation:

! R16 contains the address of the queue header
! RO receives status:
1 -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! Rl receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! All parts of the Queue must be memory resident

Ν <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmpO <- (R16)) ί Acquire hardware interlock.
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock.

RO <— -1, {return} ! Already set
done «- STORE_CONDITIONAL ((R16) <- {TMPO OR Rl})
Ν <— Ν - 1

UNTIL {done EQ 1} OR {N EQ 0}

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded

MB

tmp5 «- (R16+8)
addr «- R16 + tmp5
tmp2 <- addr + (addr + 8)
(R16 + 8) <- tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16) <- 0
ELSE

BEGIN
(tmp2) <- R16 - tmp2
MB
(R16) <- tmpl

END
END
IF tmpl EQ 0 THEN

RO 4— 0
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO «- 2

ELSE
RO 4— 1

END
Rl 4 - addr

1 Backward link of header

Î Forward link, release lock

Î Forward link of predecessor

1 Release lock

1 Queue was empty

1 Queue now empty

! Queue not empty

! Address of removed entry

2-70 OpenVMS Alpha Software (II)

Exceptions:

Illegal Operand

OpenVMS PALcode Instruction Descriptions (II) 2-71

Instruction mnemonics:

CALL.PAL REMQTIQR Remove En t ry from Quadword Queue
a t Tail Interlocked Resident

Description:

If t he secondary interlock is clear, REMQTIQR removes from the self-relative queue
the en t ry preceding the header, pointed to by R16, and the address of the removed
en t ry is r e tu rned in R l .

If t he queue was empty prior to th i s instruct ion and secondary interlock succeeded,
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t
t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry
a t t empts , t h e n (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is
implementa t ion dependent .

The removal is interlocked to prevent concurrent interlocked inser t ions or removals
a t t he head or tai l of t he same queue by ano ther process, in a multiprocessor
environment . The removal is a non-interrupt ible operation.

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue
header and e lements a re octaword aligned. No a l ignment or memory managemen t
checks a re made before s t a r t ing queue modifications to verify these requi rements .
Therefore, should any of these requ i rements not be met , t he queue may be left in
an unpredictable s ta te and an illegal operand fault may be reported.

2.3.19 Remove Entry from Longword Queue

Format:

CALL_PAL REMQUEL ÎPALcode format

Operation:

R16 contains the address of the entry to remove
or the address of the 32 bit address of the
entry for REMQUEL/D

RO receives status:
-1 if the queue was empty
0 if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

Rl receives the address of the removed entry

! Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

Rl <- SEXT((R16)<31:0>)
ELSE

Rl «- SEXT(R16<31:0>)

IF {all memory accesses can be completed} THEN
BEGIN
tmpl <- (Rl)<31:0>
((Rl+4)<31:0>)<31:0> <- tmpl
tmp2 «- (Rl+4)<31:0>
((Rl)<31:0>+4)<31:0> «- tmp2
RO 4— 1
IF {tmpl EQ tmp2} THEN

RO 4— 0
IF {Rl EQ tmp2} THEN

RO «- -1
END

ELSE
BEGIN
{initiate fault}

END
END

! Forward Link of Predecessor

! Backward Link of Successor

I Queue not empty

! Queue now empty

! Queue was empty

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Translat ion Not Valid

2-72 OpenVMS Alpha Software (II)

Instruction mnemonics:

CALL_PAL REMQUEL Remove En t ry from Longword Queue

CALL_PAL REMQUEL/D Remove E n t r y from Longword Queue Deferred

Description:

REMQUEL removes the en t ry addressed by R16 from t h e longword absolute queue.
The address of t he removed en t ry is r e tu rned in R l . REMQUEL/D performs the
same operation on the queue en t ry addressed by the longword addressed by R16.

In e i ther case, if the re was no en t ry in t h e queue to be removed, RO is set to - 1 . If
t he re was an en t ry to remove and the queue is empty a t t he end of th is instruction,
RO is set to 0. If t he re was an en t ry to remove and the queue is not empty a t the
end of th is instruction, RO is set to 1. The removal is a non-interrupt ible operation.
Before performing any pa r t of the removal, t he processor val idates t h a t the ent i re
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception
occurs, t he queue is left in a consistent s t a te (see Chap te r s 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-73

2.3.20 Remove Entry from Quadword Queue

Format:

CALLJPAL REMQUEQ ÎPALcode format

Operation:

! R16 contains the address of the entry to remove
! or address of address of entry for REMQUEQ/D
! RO receives status:
! -1 if the queue was empty
! 0 if the queue is empty after removing an entry
! 1 if the queue is not empty after removing an entry
! Rl receives the address of the removed entry
! Must have write access to header and queue entries
! Header and entries must be octaword aligned
IF opcode EQ REMQUEQ/D THEN

IF {rl6<3:0> NE 0} THEN
BEGIN
{illegal operand exception}

END
Rl 4- (R16)

ELSE
Rl 4- R16

IF {Rl<3:0> NE 0} THEN ! Check alignment
BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmpl 4 - (Rl) ! Forward link of Predecessor
IF {tmpl<3:0> NE 0} THEN
BEGIN ! Check alignment
{illegal operand exception}

END
tmp2 4 — (Rl+8) ! Find predecessor
IF {tmp2<3:0> NE 0} THEN
BEGIN ! Check alignment
{illegal operand exception}

END
(tmp2) 4 — tmpl ! Update Forward link of predecessor
((Rl)+8) 4 - tmp2
R0 4 — l ! Queue not empty
IF {tmpl EQ tmp2} THEN
R0 4 — 0 I Queue now empty
IF {Rl EQ tmp2} THEN
R0 4 — -l i Queue was empty

END
ELSE

BEGIN
{initiate fault}

END
END

2-74 OpenVMS Alpha Software (II)

Exceptions:

Access Violation

Fau l t on Read

Fau l t on Write

Translat ion Not Valid

Illegal Operand

Instruction mnemonics:

CALL.PAL REMQUEQ Remove En t ry from Quadword Queue

CALL_PAL REMQUEQ/D Remove En t ry from Quadword Queue Deferred

Description:

REMQUEQ removes the queue en t ry addressed by R16 from the quadword absolute
queue. The address of t he removed en t ry is r e tu rned in R l . REMQUEL/D performs
t h e same operation on t h e queue en t ry addressed by t h e quadword addressed by
R16.

In e i ther case, if the re was no en t ry in the queue to be removed, RO is set to —1. If
the re was an en t ry to remove and the queue is empty a t the end of th is instruction,
RO is set to 0. If t he re was an en t ry to remove and the queue is not empty a t the
end of th is instruction, RO is set to 1. The removal is a non-interrupt ible operation.
Before performing any p a r t of the removal, t he processor val idates t h a t the ent i re
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception
occurs, t he queue is left in a consistent s ta te (see Chap te r s 3 and 6). RO and R l
a re unpredictable if an exception occurs. The relat ive order of repor t ing memory
managemen t and illegal operand exceptions is unpredictable.

OpenVMS PALcode Instruction Descriptions (II) 2-75

2.4 Unprivileged VAX Compatibility PALcode Instructions

The Alpha archi tecture provides the following PALcode instruct ions for use in
t rans la ted VAX code. These instruct ions a re not a pe rmanen t pa r t of the archi tecture
and will not be available in some future implementat ions . They are provided to help
customers preserve VAX instruct ion atomicity assumpt ions in port ing code from VAX
to Alpha. These calls should be user mode. They m u s t not be used by any code other
t h a n t h a t genera ted by the VEST software t r ans la to r and i ts support ing run t ime
code (TIE).

2-76 OpenVMS Alpha Software (II)

2.4.1 Atomic Move Operation

Format:

AMOVRR ÎPALcode format

AMOVRM ÎPALcode format

Operation:

! R16 contains the first source
ί R17 contains the first destination address
! R18 contains the first length
î R19 contains the second source
! R20 contains the second destination address
1 R21 contains the second length
CASE

AMOVRR:
IF intr_flag EQ 0 THEN

R18 4- 0
{return}

END

intr_flag <— 0
(R17) 4 - R16 1 length specified by R18<1:0>
(R20) <- R19 ! length specified by R21<1:0>
IF {both moves successful} THEN

R18 4- l
ELSE

R18 4- 0
END

AMOVRM:
IF intr_flag EQ 0 THEN

R18 4- 0
{return}

END

intr_flag 4 — 0
(R17) 4 - R16 ! length specified by R18<1:0>
IF R21<5:0> NE 0 THEN

BEGIN
IF R19<1:0> NE 00 OR R20<1:0> NE 00

{Illegal operand exception}
ELSE

(R20) 4 - (R19) ! length specified by R21<5:0>
END

IF {both moves successful} THEN
R18 4- 1

ELSE
R18 4- 0

END
ENDCASE

OpenVMS PALcode Instruction Descriptions (II) 2-77

Exceptions:

2-78 OpenVMS Alpha Software (II)

AMOVRR: Access Violation

Fau l t On Write

Translat ion Not Valid

AMOVRM: Access Violation

Fau l t On Read

Fau l t On Write

Illegal Operand

Translat ion Not Valid

Instruction mnemonics:

CALL.PAL AMOVRR Atomic Move Register/Register

CALLJPAL AMOVRM Atomic Move Register/Memory

Description:

NOTE
The CALL_PAL AMOVxx instruct ions are only for the
support of t r ans la ted VAX code. They will d isappear
from the archi tecture a t some t ime in the future. They
m u s t be used only in t r ans la ted VAX code and its
support rout ines (TIE).

CALL_PAL AMOVRR

The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register
stores to a rb i t ra ry byte addresses. E i ther both stores a re done or ne i ther store is
done. R18 is set to one if both stores a re done, and zero otherwise. The two source
registers are R16 and R19. The two dest inat ion byte addresses a re in R17 and R20.
The two lengths are specified in R18<1:0> and R21<1:0>. The length encoding is:
00 - store byte, 01 - store word, 10 - store longword, 11 - store quadword. The low
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of
the source registers are ignored. The unused bits of the length registers (R18<63:2>
and R21<63:2>) should be zero (SBZ).

If, upon ent ry to the PALcode rout ine, the intr_flag is clear t hen the instruct ion
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the
PALcode rout ine proceeds. This is the same per-processor intr_flag used by the RS
and RC instruct ions.

The AMOVRR memory addresses may be unal igned. If e i ther store would resul t in
a Translat ion Not Valid fault, Fau l t on Write, or Access Violation fault, ne i ther store
is done and the corresponding fault is t aken . If both stores would resul t in faults, it
is UNPREDICTABLE which one is t aken .

NOTE
A fault does not set R18, since the inst ruct ion h a s not
been completed.

If both stores can be completed wi thout faulting, they a re both a t t empted
us ing multiprocessor-safe LDQ_L..STQ_C sequences. If all t he sequences store
successfully wi th no in terrupt ion, t h e PALcode rout ine completes wi th R18 set to
one. Otherwise, t he PALcode rout ine completes wi th R18 set to zero. In addition,
R16, R17, R19, R20 and R21 a re UNPREDICTABLE upon r e t u r n from the PALcode
rout ine, even if a n exception h a s occurred.

If t he dest inat ions overlap, the stores m u s t appear be done in t he order specified.

CALL.PAL AMOVRM

The CALL_PAL AMOVRM instruct ion specifies one mult iprocessor safe register
store to a n a rb i t ra ry byte address , plus an atomic memory-to-memory move of 0
to 63 aligned longwords. E i the r t he store and the move a re both done in the i r
ent i re ty or ne i ther is done. R18 is set to one if both a re done, and zero otherwise.

The first source register is R16, the first dest inat ion address is in R17, and the first
length is in R18. These th ree a re specified exactly as in AMOVRR.

The second source address is in R19, the second dest inat ion address is in R20,
and the second length is in R21<5:0>. The length is a longword length, in the
range 0 to 63 longwords (0 to 252 bytes). The unused bytes of t he source register
R16 a re ignored. The unused bits of the length regis ters regis ters (R18<63:2> and
R21<63:6>) should be zero (SBZ).

If, upon en t ry to t he PALcode rout ine , the intr_flag is clear t h e n the instruct ion
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the
PALcode rout ine proceeds. This is t he same per-processor intr_flag used by the RS
and RC instruct ions.

The memory address in R17 m a y be unal igned.

If t he length for the move is zero, no move is done, no memory accesses a re made
via R19 and R20, and no fault checking of these addresses is done. In th is case, the
move is a lways considered to have succeeded in de termining the se t t ing of R18.

If t he length in R21 is non-zero, the two addresses in R19 and R20 m u s t be aligned
longword addresses , otherwise an Illegal Operand exception is t aken .

If e i ther t he store or t he move would resu l t in a Transla t ion Not Valid, Fau l t on Read,
Fau l t on Write, or Access Violation fault, ne i ther is done and t h e corresponding fault
is t aken . If both would resu l t in faults, i t is UNPREDICTABLE which one is t aken .

NOTE
A fault does not set R18, since t he instruct ion h a s not
been completed.

If both the store and the move can be completed wi thout faulting, they are both
a t tempted , us ing multiprocessor-safe LDQ__L..STQ_C sequences for the store. If

OpenVMS PALcode Instruction Descriptions (II) 2-79

all t he operations store successfully with no interrupt ion, the PALcode rout ine
completes with R18 set to one. Otherwise, t he PALcode rout ine completes wi th
R18 set to zero. In addition, R16, R17, R19, R20 and R21 are UNPREDICTABLE
upon r e tu rn from the PALcode rout ine, even if an exception h a s occurred.

If t he memory fields overlap, the store m u s t appear be done first, followed by the
move. The ordering of the reads and wri tes of the move is unspecified. Thus , if the
move dest inat ion overlaps the move source, the move resul ts are UNPREDICTABLE.

These instruct ions contain no implicit MB.

Notes:

• Typical use of these instruct ions would be a sequence s ta r t ing with CALL_PAL
RS and ending wi th CALL.PAL AMOVxx, Bxx R18,label. The failure pa th from
the conditional b ranch would eventual ly go back to the RS instruction. When
such a sequence succeeds, i t h a s done everything from the RS up to and including
the CALL_PAL AMOVxx completely wi th no in te r rup t s or exceptions.

• The CALL_PAL AMOVxx instruct ion is typically be followed by a conditional
branch on R18. If t he CALL_PAL AMOVxx is likely to succeed, the conditional
branch should be a FORWARD branch on failure (BEQ R18,forward_label)
or backward branch on success (BNE R18, backward_label), to match the
architected branch-prediction rule.

2-80 OpenVMS Alpha Software (II)

2.5 Unprivileged PALcode Thread Instructions

The PALcode th read inst ruct ions provide support for mul t i th read implementat ions ,
which require t h a t a given t h r ead be able to genera te a reproducable unique value in
a "timely'' fashion. This value can t hen be used to index into a s t ruc ture or otherwise
genera te fur ther t h read unique da ta .

The two instruct ions in Table 2 - 4 a re provided to read and wri te a process unique
value from the process's h a r d w a r e context.

Table 2-4: Unprivileged PALcode Thread Instructions
Mnemonic Opera t ion

READ_UNQ Read unique context

WRITE.UNQ Write unique Context

The process unique value is stored in the HWPCB a t [HWPCB+72] when the process
is not active. When the process is active, t he process unique value can be cached in
h a r d w a r e in te rna l s torage or res ident in the HWPCB only.

OpenVMS PALcode Instruction Descriptions (II) 2-81

2.5.1 Read Unique Context

Format:

C A L L P A L R E A D . U N Q ÎPALcode format

Operation:

IF {internal storage for process unique context} THEN
RO «— {process unique context}

ELSE
RO «- (HWPCB+72)

Exceptions:

None

Instruction mnemonics:

CALL_PAL R E A D J J N Q Read Unique Context

Description:

The READ_UNQ instruct ion causes the ha rdware process (thread) unique context
value to be placed in RO. If th is value h a s not previously been wr i t t en us ing a CALL_
PAL W R I T E J J N Q or stored into the quadword in t he HWPCB a t [HWPCB+72]
while the th read was inactive then the resul t r e tu rned in RO is UNPREDICTABLE.
Implementat ions can cache th is unique context value while t he ha rdware process is
active. The unique context may be thought of as a "slow register". Typically, th is
value will be used by software to establ ish a unique context for a given th read of
execution.

2-82 OpenVMS Alpha Software (II)

2.5.2 Write Unique Context

Format:

CALL.PAL W R I T E J J N Q ÎPALcode format

Operation:

IR16 contains value to be written to the hardware process
I unique context

IF {internal storage for process unique context} THEN
{process unique context} <— R16

ELSE
(HWPCB+72) <- R16

Exceptions:

None

Instruction mnemonics:

CALL.PAL W R I T E J J N Q Write Unique Context

Description:

The WRITE__UNQ instruct ion causes the value of R16 to be stored in in ternal
s torage for h a r d w a r e process (thread) unique context, if implemented, or in the
HWPCB a t [HWPCB+72], if t he in te rna l s torage is not implemented. When the
process is context switched, SWPCTX ensures th is value is stored in the HWPCB
a t [HWPCB+72]. Implementa t ions can cache th i s un ique context va lue in in te rna l
s torage while t h e h a r d w a r e process is active. The unique context m a y be thought
of as a "slow register". Typically, th i s value will be used by software to establ ish a
un ique context for a given th read of execution.

OpenVMS PALcode Instruction Descriptions (II) 2-63

2.6 Privileged PALcode Instructions

Privileged instruct ions can be called in Kernel mode only; otherwise, a privileged
instruction exception occurs. The following privileged instruct ions a re provided:

Table 2 - 5 : PALcode Privileged Instructions Summary

Mnemonic Opera t ion

CFLUSH Cache flush

DRAINA Drain aborts
See Common Architecture, Chapter 6

HALT Halt processor
See Common Architecture, Chapter 6

LDQP Load quadword physical

MFPR Move from processor register

MTPR Move to processor register

STQP Store quadword physical

SWPCTX Swap privileged context

2-84 OpenVMS Alpha Software (II)

2.6.1 Cache Flush

Format:

OpenVMS PALcode Instruction Descriptions (II) 2-85

Operation:

! R16 contains the Page Frame Number (PFN)
! of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALL.PAL CFLUSH Cache F lush

Description:

The CFLUSH instruct ion may be used to flush an ent i re physical page specified by
the P F N in R16 from any da t a caches associated with t he cur ren t processor. All
processors m u s t implement th i s instruct ion.

On processors which implement a backup power option which ma in ta ins only the
contents of memory in the event of a powerfail, th is instruct ion is used by the
powerfail i n t e r rup t handle r to force da t a wr i t t en by the hand le r to t he ba t te ry backed
up ma in memory. After a CFLUSH, the first subsequent load (on the same processor)
to an a rb i t ra ry address in t he t a rge t page is e i ther fetched from physical memory or
from the da t a cache of another processor.

Note t h a t in some multiprocessor systems, CFLUSH is not sufficient to ensure t h a t
the da t a a re actually wr i t t en to memory and not exchanged between processor
caches. Additional platform-specific cooperation between the powerfail in te r rup t
hand le rs executing on each processor may be required.

On systems which implement other backup power options (including none), CFLUSH
may r e t u r n wi thout affecting the da t a cache contents .

To order CFLUSH properly wi th respect to preceding wri tes , an MB instruct ion is
needed before the CFLUSH; to order CFLUSH properly wi th respect to subsequent
reads , an MB instruct ion is needed after the CFLUSH.

CALL.PAL CFLUSH ÎPALcode format

2.6.2 Load Quadword Physical

Format:

CALLJPAL LDQP ÎPALcode format

Operation:

! R16 contains the quadword aligned physical address
! RO receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

RO «— (R16) {physical access}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALLJPAL LDQP Load Quadword Physical

Description:

The LDQP instruct ion fetches and wri tes to RO the quadword aligned memory
operand, whose physical address is in R16.

If t he operand address in R16 is not quadword aligned, t he resul t is
UNPREDICTABLE.

2-86 OpenVMS Alpha Software (II)

2.6.3 Move From Processor Register

Format:

OpenVMS PALcode Instruction Descriptions (II) 2-87

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand
{RO «— result of IPR specific function}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALLJPAL MFPR_xxx Move from Processor Register xxx

Description:

The MFPR_xxx instruct ion reads t he in te rna l processor register specified by the
PALcode function field and wri tes it to RO.

Registers R l , R16, and R17 contain unpredictable resul t s after an MFPR.

See Chap te r 5 for a description of each IPR.

CALLJPAL MFPR_IPR_Name ÎPALcode format

2.6.4 Move to Processor Register

Format:

CALLJPAL MTPR_IPR_Name '.PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception)

! R16 may contain an IPR specific source operand

{RO <— result of IPR specific function}
{IPR «— result of IPR specific function}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALL_PAL MTPR_xxx Move to Processor Register xxx

Description:

The MTPR_xxx instruct ion wri tes the IPR-specific source operands in integer
registers R16 and R17 (R17 reserved for future use) to t he in te rna l processor register
specified by the PALcode function field. The effect of loading a processor register is
guaran teed to be active on the next instruction.

Registers R l , R16, and R17 contain unpredictable resul t s after an MTPR. The MTPR
may r e tu rn resul ts in RO. If t he specific IPR being accessed does not r e t u rn resul ts
in RO, then RO contains an unpredictable resul t after an MTPR.

See Chapter 5 for a description of each IPR.

2-88 OpenVMS Alpha Software (II)

2.6.5 Store Quadword Physical

Format:

C A L L P A L STQP ÎPALcode format

Operation:

l R16 contains the quadword aligned physical address
1 R17 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception)

(R16) «— R17 {physical access}

Exceptions:

Privileged Instruct ion

Instruction mnemonics:

CALL_PAL STQP Store Quadword Physical

Description:

The STQP instruct ion wri tes the quadword contents of R17 to the memory location
whose physical address is in R16.

If t he operand address in R16 is not quadword aligned, t he resul t is
UNPREDICTABLE.

OpenVMS PALcode Instruction Descriptions (II) 2-89

2.6.6 Swap Privileged Context

Format:

CALLJPAL SWPCTX ÎPALcode format

Operation:

! R16 contains the physical address of the new HWPCB.

! check HWPCB alignment

IF R16<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE 0} THEN
{privileged instruction exception}

! Store old HWPCB contents

(IPR_PCBB + HWPCB_KSP) <- SP
IF {internal registers for stack pointers} THEN

IF {internal registers for ASTxx} THEN
BEGIN
(IPR_PCBB + HWPCB_ASTSR) <- IPR_ASTSR
(IPR_PCBB + HWPCB_ASTEN) <- IPR_ASTEN

END
tmpl <- PCC
tmp2 4 - ZEXT(tmpl<31:0>)
tmp3 <- ZEXT(tmpl<63:32>)
(IPR_PCBB + HWPCB_PCC) <- {tmp2 + tmp3}<31:0>
IF {internal storage for process unique value} THEN

BEGIN
(IPR_PCBB + HWPCB_UNQ) <— process unique value

END

! Load new HWPCB contents

IPR_PCBB <- R16

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}

IF {ASNs not implemented in TB} THEN
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN

{invalidate trans, buffer entries with PTE<ASM> EQ 0}
ELSE

IPR_ASN «- (IPR_PCBB + HWPCB_ASN)

BEGIN
(IPR_PCBB
(IPR_PCBB
(IPR_PCBB

END

+ HWPCB_ESP)
+ HWPCB_SSP)
+ HWPCB_USP)

IPR_ESP
IPR_SSP
IPR USP

2-90 OpenVMS Alpha Software (II)

SP «- (IPR_PCBB + HWPCB__KSP)
IF {internal registers for stack pointers} THEN

BEGIN
IPR_ESP «- (IPR_PCBB + HWPCB__ESP)
IPR_SSP <- (IPR_PCBB + HWPCB_SSP)
IPR_USP <- (IPR_PCBB + HWPCB_USP)

END

IPR__PTBR <- (IPR_PCBB + HWPCB__PTBR)

IF {internal registers for ASTxx} THEN
BEGIN
IPR_ASTSR <- (IPR_PCBB + HWPCB_ASTSR)
IPR_ASTEN <- (IPRJPCBB + HWPCB_ASTEN)

END

IPR_FEN <- (IPR_PCBB + HWPCB_FEN)
tmp4 <- ZEXT((IPR_PCBB + HWPCB__PCC)<31: 0>)
tmp4 «— tmp4 - tmp2
PCC<63:32> <- tmp4<31:0>

IF {internal storage for process unique value} THEN
BEGIN

process unique value <— (IPR_PCBB + HWPCB_UNQ)
END

IF {internal storage for Data Alignment trap setting} THEN
BEGIN

DAT <- (IPR_PCBB + HWPCB_DAT)
END

Exceptions:

Reserved Operand

Privileged Instruct ion

Instruction mnemonics:

CALL.PAL SWPCTX Swap Privileged Context

Description:

The SWPCTX instruct ion r e t u r n s ownership of t h e cur ren t H a r d w a r e Privileged
Context Block (HWPCB) to the operat ing system and passes ownership of the new
HWPCB to the processor. The HWPCB is described in Chap te r 4.

SWPCTX saves the privileged context from the in te rna l processor regis ters into the
HWPCB specified by t h e physical address in t he PCBB in te rna l processor register.
I t t hen loads the privileged context from the new HWPCB specified by the physical
address in R16. Note t h a t t he actual sequence of the save and res tore operation is
not specified so any overlap of t he cur ren t and new HWPCB storage a reas produces
U N D E F I N E D resul ts .

The privileged context includes the four s tack pointers , t he Page Table Base Register
(PTBR), the Address Space N u m b e r (ASN), the AST enable and summary registers ,

OpenVMS PALcode Instruction Descriptions (II) 2-91

the Floating-point enable register (FEN), the Performance monitor (PME) register,
t he Da ta a l ignment t r a p (DAT) register, and the process cycle counter (PCC).
However, PTBR is never saved in the HWPCB and it is UNPREDICTABLE whe ther
or not ASN is saved. These values cannot be changed for a runn ing process. The
process integer and floating registers a re saved and restored by the operat ing system.
See Figure 4 -1 for the HWPCB format.

Any change to the cur ren t HWPCB while the processor h a s ownership resul ts in
U N D E F I N E D operation. All t he values in the cur ren t HWPCB can be read through
IPRs.

If t he HWPCB is read while ownership resides wi th the processor, it is
UNPREDICTABLE whe ther the original or an upda ted value of a field is read. The
processor is free to upda te an HWPCB field a t any t ime. The decision as to whe ther
or not a field is upda ted is made individually for each field.

If the enabling conditions are present for an in te r rup t a t t he completion of th is
instruction, the in te r rup t occurs before the next instruct ion.

PALcode sets up the PCBB a t boot t ime to point to the HWPCB storage a rea in the
Hardware Res ta r t P a r a m e t e r Block (HWRPB).

The operation is U N D E F I N E D if SWPCTX accesses a non-memory region.

A reference to non-existent memory causes a machine check. Unimplemented
physical address bi ts a re SBZ. The operation is U N D E F I N E D if any of these bits
are set.

NOTE
Processors may keep a copy of each of the per-process
stack pointers in in te rna l registers . In those processors,
SWPCTX stores the in te rna l regis ters into t he HWPCB.
Processors t h a t do not keep a copy of the s tack pointers
in in ternal registers , keep only the s tack pointer for
the cur ren t access mode in SP and switch th is wi th
the HWPCB contents whenever the cur ren t access mode
changes.

2-92 OpenVMS Alpha Software (II)

Chapter 3

OpenVMS Memory Management (II)

3.1 Introduction

Memory m a n a g e m e n t consists of the ha rdware and software which control the
allocation and use of physical memory. Typically, in a mul t ip rogramming system,
several processes may reside in physical memory a t the same t ime; see Chapte r 4.
OpenVMS Alpha uses memory protection and mult iple address spaces to ensure t h a t
one process will not affect e i ther other processes or the operat ing system.

To improve further software reliability, four hierarchical access modes provide
memory access control. They are , from most to least privileged: kernel , executive,
supervisor, and user. Protection is specified a t t he individual page level, where a
page may be inaccessible, read-only, or read/wri te for each of the four access modes.
Accessible pages can be restr ic ted to have only da t a or instruct ion access.

A program uses vi r tual addresses to access i ts da t a and instruct ions. However, before
these v i r tua l addresses can be used to access memory, they m u s t be t r ans la ted into
physical addresses . Memory m a n a g e m e n t software ma in ta ins tables of mapping
information (page tables) t h a t keep t rack of where each vi r tua l page is located in
physical memory. The processor util izes th is mapping information when it t r ans la tes
v i r tua l addresses to physical addresses .

Therefore, memory m a n a g e m e n t provides both memory protection and memory
mapping mechanisms. The OpenVMS Alpha memory m a n a g e m e n t archi tecture is
designed to mee t several goals:

• Provide a large address space for instruct ions and da ta .

• Allow programs to r u n on h a r d w a r e wi th physical memory smaller t h a n the
v i r tua l memory used.

• Provide convenient and efficient sha r ing of instruct ions and data .

• Allow sparse use of a large address space wi thout excessive page table overhead.

• Contr ibute to software reliability.

• Provide independent read and wri te access protection.

3.2 Virtual Address Space

A vir tua l address is a 64-bit uns igned integer specifying a byte location within the
vi r tual address space. Implementa t ions subset the address space supported to one
of four sizes (43, 47, 51 , or 55 bits) as a function of page size. The minimal vir tual

OpenVMS Memory Management (II) 3-1

address size supported is 43 bits . If an implementat ion supports less t h a n 64-
bit v i r tual addresses i t m u s t check t h a t all t he VA<63:VA_SIZE> bi ts are equal
to VA<VA_SIZE-1>. This gives two disjoint ranges for valid v i r tual addresses .
For example, for a 43-bit v i r tual address space valid v i r tua l addresses ranges
a re 0..3FF F F F F F F F F 1 6 and F F F F FCOO 0000 0000 i 6. .FFFF F F F F F F F F F F F F 1 6.
Accesses to v i r tual addresses outside of the valid v i r tua l address ranges for an
implementat ion cause an access violation exception.

The vir tual address space is broken into pages, which a re the un i t s of relocation,
shar ing, and protection. The page size ranges from 8K bytes to 64K bytes.
System software should, therefore, allocate regions wi th differing protection on 64-
Kbyte vi r tual address boundar ies to ensure image compatibility across all Alpha
implementat ions .

Memory managemen t provides the mechanism to m a p the active pa r t of the vir tual
address space to the available physical address space. The operat ing system controls
the virtual-to-physical address mapping tables, and saves the inactive pa r t s of the
vir tual address space on external s torage media.

3.2.1 Virtual Address Format

The processor genera tes a 64-bit v i r tual address for each instruct ion and operand
in memory. The vi r tual address consists of th ree level-number fields, and a byte_
within_page field.

Figure 3-1 : Virtual Address Format

63 0

Sext(Level1<Level Size-1>) Level 1 Level2 Level3 byte_within_page

The byte_within_page field can be e i ther 13, 14, 15, or 16 bits depending on a
par t icular implementat ion. Thus , the allowable page sizes a re 8K bytes, 16K bytes,
32K bytes, and 64K bytes. Each level-number field contains 0-n bits , where η is, for
example, 9 wi th an 8K-byte page size. The level-number fields a re the same size for
a given implementat ion.

The level number fields are a function of t he page size; all page table entr ies a t any
given level do not exceed one page. The P F N field in t he PTE is always 32 bi ts wide.
Thus , as the page size grows the vi r tual and physical address size also grows.

3-2 OpenVMS Alpha Software (II)

Table 3 - 1 : Virtual Address Options
Page Byte Level Virtual Physical
Size Offset Size Address Address
(bytes) (bits) (bits) (bits) (bits)

8 K 13 10 43 45

16 Κ 14 11 47 46

32 Κ 15 12 51 47

64 Κ 16 13 55 48

3.3 Physical Address Space

Physical addresses a re a t most 48 bi ts . A processor m a y choose to implement a
smaller physical address space by not implement ing some number of high order
bits . The two most significant implemented physical address bi ts select a caching
policy or implementa t ion dependent type of address space. Implementa t ions will use
these bi ts as appropr ia te for the i r sys tems. For example, in a worksta t ion wi th a 30-
bit physical address space, bit <29> might select between memory and non-memory
like regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.4 Memory Management Control

Memory m a n a g e m e n t is always enabled. Implementa t ions m u s t provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode migh t r u n wi th I -s t ream mapp ing disabled and
use t he privileged CALL_PAL LDQP and STQP instruct ions to access da t a stored in
physical addresses .

3.5 Page Table Entries

The processor uses a quadword Page Table En t ry (PTE) to t r ans l a t e v i r tual addresses
to physical addresses . A PTE contains ha rdware and software control information
and the physical Page F r a m e Number .

Figure 3-2: Page Table Entry

PFN

1 6 1 5 1 4 1 3 1 2 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
for

Software
WWh/VWR GH

E M

OpenVMS Memory Management (II) 3-3

Fields in the page table en t ry are in terpre ted as shown in Table 3-2 .

Table 3 - 2 : Page Table Entry

Bits Descr ip t ion

0 Valid (V)
Indicates the validity of the the PFN field. When V is set the PFN field is valid for
use by hardware. When V is clear, the PFN field is reserved for use by software.
The V bit does not affect the validity of PTE<15:1> bits.

1 Fault On Read (FOR)
When set, a Fault On Read exception occurs on an attempt to read any location in
the page.

2 Fault On Write (FOW)
When set, a Fault On Write exception occurs on an attempt to write any location
in the page.

3 Fault On Execute (FOE)
When set, a Fault On Execute exception occurs on an attempt to execute an
instruction in the page.

4 Address Space Match (ASM)
When set, this PTE matches all Address Space Numbers. For a given VA,
ASM must be set consistently in all processes, otherwise the address mapping
is UNPREDICTABLE.

3-4 OpenVMS Alpha Software (II)

Table 3-2 (Co n t.): Page Table Entry
Bits Descr ip t ion

6:5 Granularity hint (GH)
Software may set these bits to a non-zero value to supply a hint to translation
buffer implementations that a block of pages can be treated as a single larger
page:

1. The block is an aligned group of 8**N pages, where Ν is the value of PTE<6:5>,
e.g. a group of 1, 8, 64, or 512 pages starting at a virtual address with page_
size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned both
virtually and physically. Within the block, the low 3*N bits of the PFNs
describe the identity mapping and the high 32-3*N PFN bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>, i.e. protection,
fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry, instead
of 8, 64, or 512 separate TB entries.
Note that it is UNPREDICTABLE which PTE values within the block are used if
the granularity bits are set inconsistently.

PROGRAMMING NOTE
A granula r i ty h in t might be appropri-
a te for a large memory s t ruc ture such
as a frame buffer or nonpaged pool t h a t
in fact is mapped into contiguous vir-
tua l pages wi th identical protection, fault,
and valid bi ts .

7 Reserved for future use by Digital.

PROGRAMMING NOTE
The reserved bi t will be used by future
h a r d w a r e sys tems and should not be
used by software even if PTE<V> is
clear.

8 Kernel Read Enable (KRE)
This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in kernel mode, an Access Violation occurs.
This bit is valid even when V=0.

9 Executive Read Enable (ERE)
This bit enables reads from executive mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in executive mode, an Access Violation occurs.
This bit is valid even when V=0.

OpenVMS Memory Management (II) 3-5

Table 3 - 2 (Cont.): Page Table Entry

Bits Descr ip t ion

10 Supervisor Read Enable (SRE)
This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in supervisor mode, an Access Violation occurs.
This bit is valid even when V=0.

11 User Read Enable (URE)
This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid
even when V=0.

12 Kernel Write Enable (KWE)
This bit enables writes from kernel mode. If this bit is a 0 and a STORE is
attempted while in kernel mode, an Access Violation occurs. This bit is valid even
when V=0.

13 Executive Write Enable (EWE)
This bit enables writes from executive mode. If this bit is a 0 and a STORE is
attempted while in executive mode, an Access Violation occurs. This bit is valid
even when V=0.

14 Supervisor Write Enable (SWE)
This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is
attempted while in supervisor mode, an Access Violation occurs. This bit is valid
even when V=0.

15 User Write Enable (UWE)
This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted
while in user mode, an Access Violation occurs. This bit is valid even when V=0.

NOTE
If a wri te enable bit is set and
the corresponding read enable bit is
not, the operation of the processor is
UNDEFINED.

31:16 Reserved for software.

63:32 Page Frame Number (PFN)
The PFN field always points to a page boundary. If V is set, the PFN is
concatenated with the byte_within_page bits of the virtual address to obtain the
physical address; see Section 3.7. If V is clear, this field may be used by software.

3.5.1 Changes to Page Table Entries

The operat ing system changes PTEs as pa r t of i ts memory managemen t functions.
For example, the operat ing system may set or clear the valid bit, change the P F N
field as pages a re moved to and from external storage media, or modify t he software
bits . The processor ha rdware never changes PTEs .

3-6 OpenVMS Alpha Software (II)

Software m u s t gua ran tee t h a t each PTE is a lways consistent wi th in itself. Changing
a PTE one field a t a t ime m a y give incorrect sys tem operation, e.g., se t t ing PTE<V>
with one instruct ion before establ ishing PTE<PFN> with another. Execution of an
in te r rup t service rout ine between the two instruct ions could use an address t h a t
would m a p us ing the inconsistent PTE. Software can solve th is problem by building
a complete new PTE in a regis ter and t hen moving the new PTE to the page table
us ing a Store Quadword inst ruct ion (STQ).

Multiprocessing makes t he problem more complicated. Another processor could be
reading (or even changing) t he same PTE t h a t the first processor is changing. Such
concurrent access m u s t produce consistent resul ts . Software m u s t use some form of
software synchronization to modify PTEs t h a t a re a l ready valid. Once a processor
ha s modified a valid PTE, it is possible t h a t o ther processors in a multiprocessor
system may have old copies of t h a t PTE in the i r Translat ion Buffer. Software m u s t
inform other processors of changes to PTEs .

Software m a y wri te new values into invalid PTEs us ing quadword store instruct ions
(i.e., STQ). H a r d w a r e m u s t ensure t h a t aligned quadword reads and wri tes a re
atomic operat ions. The following procedure m u s t be used to change any of the PTE
bi ts <15:0> of a shared valid PTE (PTE<0>=1) such t h a t an access t h a t was allowed
before t he change is not allowed after the change.

1. The PTE<0> is cleared wi thout changing any of t he PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE t h a t changed. The VA
used in the TBIS m u s t a s sume t h a t t he PTE Granula r i ty h in t bi ts a re zero.

3. After all processors have done the TBIS, t he new PTE m a y be wr i t t en changing
any or all fields.

PROGRAMMING NOTE
The procedure above allows the QUEUE instruct ions
t h a t have probed to check t h a t all can complete, to
service a TB miss . The Q U E U E instruct ion will use the
PTE even though the V bi t is clear, if dur ing i ts init ial
probe flow the V bi t was set.

3.6 Memory Protection

Memory protection is t he function of val idat ing whe the r a par t icular type of access
is allowed to a specific page from a par t icu lar access mode. Access to each page is
controlled by a protection code t h a t specifies, for each access mode, whe ther read or
wri te references a re allowed.

The processor uses t he following to de termine whe the r an in tended access is allowed:

• The vi r tual address , which is used to index page tables .

• The in tended access type (read da ta , wri te da ta , or instruct ion fetch).

• The cur ren t access mode from the Processor S ta tus .

OpenVMS Memory Management (II) 3-7

If t he access is allowed and the address can be mapped (the Page Table En t ry
is valid), the resul t is t he physical address corresponding to the specified vi r tual
address .

For protection checks, t he in tended access is read for da t a loads and instruct ion
fetch, and wri te for da t a stores.

If an operand is an address operand, t hen no reference is made to memory. Hence,
the page need not be accessible nor m a p to a physical page.

3.6.1 Processor Access Modes

There a re four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a runn ing process is stored in t he Cur ren t Mode bits of the
Processor S t a tus (PS); see Section 6.2.

3.6.2 Protection Code

Every page in the vi r tual address space is protected according to i ts use. A program
may be prevented from reading or wri t ing portions of i ts address space. Associated
with each page is a protection code t h a t describes t he accessibility of the page for
each processor mode. The code allows a choice of read or wri te protection for each
processor mode.

• Each mode's access can be read/wri te , read-only, or no-access.

• Read and wri te accessibility a re specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bi ts in the PTE; see Table 3-2 .

The OpenVMS Alpha archi tecture allows a page to be designated as execute only by
set t ing the read enable bit for the access mode and by set t ing the fault on read and
wri te bi ts in the PTE.

3.6.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is a t tempted , as determined by
the current processor mode and the page's protection field.

Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead)
th rough a mapping to a l inear region of t he vi r tual address space. All
implementat ions m u s t support t he vi r tual access method and are expected to use it
as the pr imary access method to enhance performance.

OpenVMS Alpha Software (II)

3.7

a-8

The following sections describe both access methods .

3.7.1 Physical Access for Page Table Entries

Physical address t rans la t ion is performed by accessing entr ies in a three-level page
table s t ruc ture . The Page Table Base Register (PTBR) contains the physical Page
F r a m e N u m b e r of t he highest level (Level 1) page table. Bits <levell> of the vir tual
address a re used to index into t he first level page table to obtain the physical page
frame n u m b e r of the base of the second level (Level 2) page table. Bits <level2> of
the v i r tua l address a re used to index into the second level page table to obtain the
physical page frame n u m b e r of the base of t he th i rd level (Level 3) page table. Bits
<level3> of the v i r tua l address a re used to index the th i rd level page table to obtain
t he physical Page F r a m e Number (PFN) of t he page being referenced. The P F N is
concatenated wi th v i r tua l address bi ts <byte_within_page> to obtain the physical
address of t he location being accessed.

If p a r t of any page table resides in I/O space, or in nonexis tent memory, t he operation
of the processor is U N D E F I N E D .

If the first-level or second-level PTE is valid, t he protection bi ts a re ignored; the
protection code in t he third-level PTE is used to de te rmine accessibility. If a first-
level or second-level PTE is invalid, an Access Violation occurs if t he PTE<KRE>
equals zero. An Access Violation on a first-level or second-level PTE implies t h a t all
lower-level page tables mapped by t h a t PTE do not exist.

PROGRAMMING NOTE
This mapping scheme does not require mult iple
contiguous physical pages. There a re no length
registers . With a page size of 8K bytes, 3 pages (24K
bytes) m a p 8M bytes of v i r tua l address space; 1026
pages (approximately 8M bytes) m a p an 8-Gbyte address
space; and 1,049,601 pages (approximately 8G bytes)
m a p the ent i re 8T byte 2**43 byte address space.

The algori thm to genera te a physical address from a v i r tua l address follows:

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT(VA<VA_SIZE-1>} THEN
{initiate Access Violation fault}

1 Read Physical

levell_pte «- ({PTBR * page_size} + {8 * VA<levell_number>>)

IF levell_pte<V> EQ 0 THEN
IF levell_pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

1 Read Physical

level2__pte <—
({levell_pte<PFN> * page_size} + {8 * VA<level2_number>})

OpenVMS Memory Management (II) 3-9

IF level2_pte<V> EQ 0 THEN
IF level2_pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

! Read Physical

level3_pte <—
({level2_pte<PFN> * page_size} + {8 * VA<level3_number>})

IF {{{level3_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR
{{level3_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR
{{level3_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR
{{level3_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR
{{level3_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{level3__pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR
{{level3_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{level3_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ 0}}}

THEN
{initiate Access Violation fault}

ELSE
IF level3_pte<V> EQ 0 THEN

{initiate Translation Not Valid fault}

IF {level3_pte<FOW> EQ 1} AND { write access} THEN
{initiate Fault On Write fault}

IF {level3_pte<FOR> EQ 1} AND { read access} THEN
{initiate Fault On Read fault}

IF {level3_pte<FOE> EQ 1} AND { execute access} THEN
{initiate Fault On Execute fault}

Physical_Address <—
{level3_pte<PFN> * page_size} OR VA<byte_within_page>

3.7.2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address t rans la t ion in a three-level page
table s t ructure , t he page tables a re mapped into a l inear region of the vi r tual address
space. The vi r tual address of the base of the page table s t ruc ture is set on a system
wide basis and is contained in the VPTB IPR.

When a nat ive mode DTB or ITB Miss occurs, t he TBMISS flows a t t emp t to load
the level th ree page table ent ry us ing a single v i r tua l mode load instruction.

The algori thm involving the manipula t ion of the missing VA is:

tmp <- left__shift(VA, {64 - {{lg(PageSize) *4} -9 }})
tmp <—

right_shift(tmp,{64 - {{lg(PageSize)*4} -9} + lg(PageSize) -3})
tmp <- VPTB OR tmp
tmp<2:0> «- 0

At th is point, t m p contains t he VA of the level 3 page table entry. A LDQ from t h a t
VA will resul t in the acquistion of the PTE needed to satisfy the init ial TBMISS
condition.

3-10 OpenVMS Alpha Software (II)

However, in the PALcode environment , if a TBMISS occurs dur ing an a t t empt
to fetch t he level3 PTE, t hen it is necessary to use the longer sequence of th ree
dependent loads described in Section 3.7.

Chap te r 5 contains t he description of t h e VPTB IPR used to contain t he vi r tua l
address of t he base of the page table s t ruc ture .

The mapp ing of the page tables necessary for the correct function of the algori thm
is done as follows:

1. Select a 2
(3

*
1
^

(
P

a
^

e
-

s i z e
/

8)) + 3
) byte-aligned region (an address wi th 3*lg(page_size

/8)+3 low order zeros) in t he v i r tua l address space. This value will be wr i t ten
into the VPTB register.

2. Crea te a levell PTE to m a p the page tables as follows:

Levell_PTE «- 0 ! Init all fields to 0
Level1_PTE<63:32> <- PFN of Levell Pagetable

! Set PFN to PFN of levell pagetable
Level 1_PTE<8> <- 1 I Kernel Read Enable (KRE)
Level 1_PTE<0> <- 1 ! Valid bit

3. Write t he created levell PTE into the Levell page table en t ry t h a t corresponds
to t he VPTB value.

4. Set all Level l and Level2 Valid P T E s to allow kerne l r ead access.

5. Write t he VPTB register wi th t he selected base value.

No validity checks
in t he VPTB in a
VPTB contains an
U N D E F I N E D .

NOTE
need be made on
r u n n i n g system,
invalid address ,

t he value stored
Therefore, if t h e
the operation is

3.8 Translation Buffer

In order to save actual memory references when repeatedly referencing t he
same pages, h a r d w a r e implementa t ions include a t rans la t ion buffer to remember
successful v i r tua l address t rans la t ions and page s ta tes .

When t he process context is changed, a new value is loaded into the Address
Space N u m b e r (ASN) in te rna l processor regis ter wi th a Swap Privileged Context
instruct ion (CALL.PAL SWPCTX); see Section 2.6 and Chap te r 4. This causes
address t rans la t ions for pages wi th PTE<ASM> clear to be inval idated on a processor
t h a t does not implement address space numbers . Additionally, when the software
changes any pa r t (except for t he Software field) of a valid Page Table Entry, it m u s t
also move a v i r tua l address wi th in t h e corresponding page to t he Transla t ion Buffer
Inval idate Single (TBIS) in te rna l processor regis ter wi th the MTPR instruction; see
Chapte r 5.

OpenVMS Memory Management (II) 3-11

IMPLEMENTATION NOTE
Some implementa t ions may inval idate the ent i re
Translat ion Buffer on an MTPR to TBIS. In general ,
implementa t ions may inval idate more t h a n the required
t rans la t ions in the TB.

The ent i re Translat ion Buffer can be inval idated by doing a wri te to Translat ion
Buffer Inval idate All register (CALL_PAL MTPR_TBIA), and all ASM=0 entr ies can
be invalidated by doing a wri te to Translat ion Buffer Inval idate All Process register
(CALL.PAL MTPR.TBIAP); see Chapte r 5.

The Translat ion Buffer m u s t not store invalid PTEs . Therefore, t he software is not
required to invalidate Translat ion Buffer ent r ies when mak ing changes for PTEs
t h a t are already invalid.

The TBCHK in terna l processor register is available for in terrogat ing the presence
of a valid t rans la t ion in the Translat ion Buffer; see Chapte r 5.

IMPLEMENTATION NOTE
Hardware implementors should be aware t h a t a single,
direct mapped TB has a potential problem when a load
/store instruct ion and i ts da ta m a p to the same TB
location. If TB misses a re handled in PALcode, there
could be an endless loop unless the instruct ion is held
in an instruct ion buffer or a t r ans la ted physical PC is
main ta ined by the ha rdware .

3.9 Address Space Numbers

The Alpha archi tecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
t rans la t ions for process specific addresses when a context switch occurs. The
supported ASN range is O..MAX_ASN.

NOTE
If an ASN outside of the range O..MAX_ASN is
assigned to a process, the operation of the processor is
UNDEFINED.

The address space number for the cur ren t process is loaded by software in the
Address Space Number (ASN) in te rna l processor register wi th a Swap Privileged
Context instruction. ASNs are processor specific and the ha rdware makes no a t t empt
to ma in ta in coherency across mult iple processors. In a mult iprocessor system,
software is responsible for ensur ing the consistency of TB entr ies for processes t h a t
might be rescheduled on different processors.

PROGRAMMING NOTE
System software should not a s sume t h a t the number
of ASNs is a power of two. This allows, for example,

3-12 OpenVMS Alpha Software (II)

ha rdware to use N TB t a g bi ts to encode (2**N)-3 ASN
values, one value for ASM=1 PTEs , and one for invalid.

There a re several possible ways of us ing ASNs. There
a re several complications in a multiprocessor system.
Consider t he case where a process t h a t executed on
processor -1 is rescheduled on processor -2 . If a page
is deleted or i ts protection is changed, the TB in
processor -1 h a s s tale da ta . One solution would be to
send an interprocessor in te r rup t to all t he processors on
which th is process could have r u n and cause t h e m to
inval idate t he changed PTE. This resul t s in significant
overhead in a system wi th several processors. Another
solution would be to have software inval idate all TB
entr ies for a process on a new processor before it can
begin execution, if t he process executed on ano ther
processor dur ing i ts previous execution. This ensures
t h e deletion of possibly s tale TB ent r ies on t h e new
processor. A th i rd solution would assign a new ASN
whenever a process is r u n on a processor t h a t is not the
same as the las t processor on which it r an .

3.10 Memory Management Faults

Five types of faults a re associated wi th memory access and protection:

• Access Control Violation (ACV)

Taken when the protection field of t he third-level PTE t h a t maps t he da t a
indicates t h a t t he in tended page reference would be illegal in the specified access
mode. An Access Control Violation fault is also t aken if t he KRE bit is zero in
a n invalid first or second level PTE.

• Fau l t On Read (FOR)

Occurs when a read is a t t empted wi th PTE<FOR> set.

• Fau l t On Write (FOW)

Occurs when a wri te is a t t empted wi th PTE<FOW> set.

• Fau l t On Execute (FOE)

Occurs when instruct ion execution is a t t empted wi th PTE<FOE> set.

• Translat ion Not Valid (TNV)

Taken when a read or wri te reference is a t t empted th rough an invalid PTE in a
first-, second-, or third-level page table.

See Chapte r 6 for a detailed description of these faults.

Note t h a t these five faults have distinct vectors in t he System Control Block. The
Access Violation (ACV) fault t akes precedence over t he faults TNV, FOR, FOW, and

OpenVMS Memory Management (II) 3-13

FOE. The Translat ion Not Valid (TNV) fault t akes precedence over the faults FOR,
FOW, and FOE.

The faults FOR and FOW can occur s imultaneously in the CALL_PAL queue
instruct ions, in which case the order t h a t t he exceptions a re t aken is
UNPREDICTABLE; see Section 2 .1 .

3-14 OpenVMS Alpha Software (II)

Chapter 4

OpenVMS Process Structure (II)

4.1 Process Definition

A process is the basic ent i ty t h a t is scheduled for execution by the processor. A
process represen ts a single t h r e a d of execution a n d consists of a n address space and
both h a r d w a r e and software context.

The h a r d w a r e context of a process is defined by:

• 31 Integer regis ters and 31 Floating-point regis ters

• Processor S t a tu s (PS)

• P rogram Counter (PC)

• 4 s tack pointers

• Asynchronous System Trap Enable and s u m m a r y regis ters (ASTEN, ASTSR)

• Process Page Table Base Register (PTBR)

• Address Space Number (ASN)

• Float ing Enable Register (FEN)

• Process Cycle counter (PCC)

• Process Unique value

• D a t a Alignment Trap (DAT)

• Performance Monitoring Enable Register (PME)

The software context of a process is defined by operat ing system software and is
system dependent .

A process m a y share the same address space wi th other processes or have an address
space of i ts own. There is, however, no separa te address space for system software,
and therefore, t h e operat ing system m u s t be mapped into t he address space of each
process; see Chap te r 3.

In order for a process to execute, i ts h a r d w a r e context m u s t be loaded into the integer
registers , Floating-point regis ters , and in te rna l processor registers . While a process
is executing, i ts h a r d w a r e context is continuously updated . When a process is not
being executed, i ts h a r d w a r e context is stored in memory.

Saving the ha rdware context of t he cu r ren t process in memory, followed by loading
the ha rdware context for a new process, is t e rmed context switching. Context

OpenVMS Process Structure (II) 4-1

switching occurs as one process after another is scheduled by the operat ing system
for execution.

4.2 Hardware Privileged Process Context

The ha rdware context of a process is defined by a privileged pa r t which is context
switched wi th the Swap Privileged Context instruct ion (SWPCTX) (see Section 2.6),
and a non-privileged pa r t which is context switched by operat ing system software.

When a process is not executing, i ts privileged context is stored in a 128 byte
na tura l ly aligned memory s t ruc ture called the Ha rdware Privileged Context Block
(HWPCB).

Figure 4-1 : Hardware Privileged Context Block

Kernel Stack Pointer (KSP) :HWPCB

:+8

:+16

:+24

:+32

:+40

:+48

Executive Stack Pointer (ESP)

Supervisor Stack Pointer (SSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

ASN

AST
SR

AST
EN

:+56

:+64

:+72

:+80

Process Cycle Counter (PCC)

Process Unique Value

PALcode Scratch Area of 6 Quadwords

The Hardware Privileged Context Block (HWPCB) for the cur ren t process is specified
by the Privileged Context Block Base register (PCBB); see Chapte r 5.

The Swap Privileged Context instruct ion (SWPCTX) saves the privileged context of
the cur ren t process into the HWPCB specified by PCBB, loads a new value into
PCBB, and then loads the privileged context of the new process into the appropr ia te
ha rdware registers .

The new value loaded into PCBB, as well as the contents of the Privileged Context
Block, m u s t satisfy certain constra ints or an U N D E F I N E D operation resul ts :

4-2 OpenVMS Alpha Software (II)

1. The physical address loaded into PCBB m u s t be 128 byte aligned and describes
sixteen contiguous quadwords t h a t a re in a memory-like region; see Common
Architecture, Chapter 5.

2. The value of PTBR m u s t be the Page F r a m e Number of an existent page t h a t is
in a memory-like region.

I t is t he responsibili ty of the operat ing system to save and load the non-privileged
pa r t of t he h a r d w a r e context.

The SWPCTX instruct ion r e t u r n s ownership of the cur ren t HWPCB to operat ing
system software and passes ownership of the new HWPCB from the operat ing system
to the processor. Any a t t emp t to wri te a HWPCB while ownership resides wi th the
processor h a s U N D E F I N E D resul ts . If t he HWPCB is read while ownership resides
wi th t he processor, i t is UNPREDICTABLE whe the r t he original or an upda ted value
of a field is read. The processor is free to upda te an HWPCB field a t any t ime. The
decision as to whe the r or not a field is upda ted is made individually for each field.

If ASNs are not implemented, t he ASN field is not read or wr i t t en by PALcode.

The F E N bit reflects the se t t ing of t he F E N IPR.

The DAT bit controls whe ther da t a a l ignment t r aps t h a t a re fixed up in PALcode
are reported to t he operat ing system. If t he bit is clear, t he t r a p is reported. If the
bit is set, after t he fixup, r e t u r n is to t he user. See Section 6.6.

Set t ing the P M E bit a ler ts any performance h a r d w a r e or software in the system to
monitor the performance of th is process.

The Process Unique value is t h a t value used in support of mul t i th read
implementa t ions . The value is stored in t he HWPCB when the process is not active.
When the process is active, t he value m a y be cached in h a r d w a r e in te rna l storage
or kept in the HWPCB only.

4.3 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) a re a m e a n s of notifying a process of events t h a t
a re not synchronized wi th i ts execution bu t which m u s t be deal t wi th in t he context
of t he process wi th min imum delay.

Asynchronous System Traps (ASTs) in te r rup t process execution and are controlled by
the AST Enable (ÄSTEN) and AST S u m m a r y (ASTSR) in te rna l processor registers;
see Chap te r 5.

The AST Enable register (ÄSTEN) contains an enable bit for each of the four
processor access modes. When the bit corresponding to an access mode is set,
ASTs for t h a t mode are enabled. The AST enable bit for a n access mode may be
changed by executing a Swap AST Enable instruct ion (SWASTEN; see Section 2.6),
or by executing a Move To Processor Register instruct ion specifying ASTEN (MTPR
ÄSTEN; see Chapte r 5).

OpenVMS Process Structure (II) Φ-3

The AST Summary Register (ASTSR) contains a pending bi t for each of the four
processor access modes. When the bit corresponding to an access mode is set, an
AST is pending for t h a t mode.

Kernel mode software may reques t an AST for a par t icular access mode by executing
a Move To Processor Register instruct ion specifying ASTSR (MTPR ASTSR); see
Chapte r 5).

Ha rdware or PALcode monitors the s ta te of ÄSTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is less t h a n 2, and there is an AST pending and enabled
for an access mode t h a t is less t h a n or equal to PS<CM> (i.e. an equal or more
privileged access mode), an AST is ini t ia ted a t IPL 2.

ASTs t h a t a re pending and enabled for a less privileged access mode are not allowed
to in te r rup t execution in a more privileged access mode.

4.4 Process Context Switching

Process context switching occurs as one process after another is scheduled for
execution by operat ing system software. Context switching requires t he ha rdware
context of one process to be saved in memory followed by the loading of the ha rdware
context for another process into the ha rdware registers .

The privileged ha rdware context is swapped wi th t he CALL_PAL Swap Privileged
Context instruct ion (SWPCTX). Other ha rdware context m u s t be saved and restored
by operat ing system software.

The sequence in which process context is changed is impor tan t since the SWPCTX
instruct ion changes the environment in which the context switching software itself
is executing. Also, a l though not enforced by ha rdware , i t is advisable to execute
the actual context switching software in an environment which cannot be context
switched (i.e. a t an IPL high enough t h a t rescheduling cannot occur).

The SWPCTX instruct ion is the only method provided for loading certain in te rna l
processor registers . The SWPCTX instruct ion always saves the privileged context of
the old process and loads the privileged context of a new process. Therefore, a valid
HWPCB m u s t be available to save the privileged context of the old process as well
as load the privileged context of the new process.

4-4 OpenVMS Alpha Software (II)

Chapter 5

OpenVMS Internal Processor Registers (II)

5.1 Internal Processor Registers

This chapter describes the OpenVMS Alpha In te rna l Processor Registers (IPRs).
These regis ters a re read and wr i t ten wi th Move From Processor Register (MFPR)
and Move To Processor Register (MTPR) instruct ions; see Section 2.6.

These instruct ions accept an inpu t operand in R16 and r e t u r n a resul t , if any, in
RO. Registers R l , R16, and R17 a re UNPREDICTABLE after a CALL_PAL MxPR
rout ines . If a CALL_PAL MxPR rout ine does not r e t u r n a resul t in RO, t hen RO is
also UNPREDICTABLE on r e tu rn .

Some IPRs (for example, ASTSR, ASTEN, IPL) m a y be both read and wr i t ten in a
combined operation by performing an MTPR instruct ion.

In te rna l Processor Registers may or m a y not be implemented as actual ha rdware
regis ters . An implementa t ion m a y choose any combination of PALcode and ha rdware
to produce t he archi tectural ly specified function.

In te rna l Processor Registers a re only accessible from Kernel mode.

5.2 Stack Pointer Internal Processor Registers

The s tack pointers for User, Supervisor, and Executive s tacks a re accessible as IPRs
th rough the CALL_PAL MTPR and MFPR instruct ions. An implementa t ion may
re ta in some or all of these s tack pointers only in the HWPCB. In th i s case, MTPR and
MFPR for these regis ters m u s t access t he corresponding PCB locations. However,
implementa t ions t h a t have these s tack pointers in in te rna l h a r d w a r e regis ters a re
not required to access t h e corresponding HWPCB locations for MTPR and MFPR.
The HWPCB locations get upda ted when a SWPCTX instruct ion is executed.

An implementa t ion may also choose to keep the Kernel Stack Pointer (KSP) in an
in te rna l h a r d w a r e register (labelled IPR_KSP); however, th i s regis ter is not directly
accessible th rough MTPR and M F P R instruct ions. Because access to t he KSP
requires Kernel mode, t he actual KSP is the cur ren t mode stack pointer (R30); t h u s
access to KSP is provided th rough R30 and no MTPR or MFPR access is required.
PALcode rout ines can directly access IPR_KSP as needed.

At system initialization, the value of t he K S P is t a k e n from the init ial HWPCB (see
Chap te r 4).

OpenVMS Internal Processor Registers (II) 5-1

5.3 IPR Summary

Table 5-1 : Internal Processor Register (IPR) Summary

Input Output Context
Register Name MnemonicAccess

1
R16 RO Switched

Address Space Number ASN R — number Yes

AST Enable ÄSTEN RAV* mask mask Yes

AST Summary Register ASTSR RAV* mask mask Yes

Data Align Trap Fixup DATFX W value — Yes

Floating-point Enable FEN R/W value value Yes

Interprocessor Int. Request IPIR W number — No

Interrupt Priority Level IPL R/W* value value No

Machine Check Error Summary MCES R/W value value No

Performance Monitor PERFMON W* IMP IMP No

Privileged Context Block Base PCBB R — address No

Processor Base Register PRBR R/W value value No

Page Table Base Register PTBR R — frame Yes

System Control Block Base SCBB R/W frame frame No

Software Int. Request Register SIRR W level — No

Software Int. Summary Register SISR R — mask No

TB Check TBCHK R number status No

TB Invalid. All TBIA W — — No

TB Invalid. All Process TBIAP W — — No

TB Invalid. Single TBIS W address — No

TB Invalid. Single Data TBISD W address — No

TB Invalid. Single Instruct. TBISI W address — No

Kernel Stack Pointer KSP None — — Yes

Exec Stack Pointer ESP R/W address address Yes

Supervisor Stack Pointer SSP R/W address address Yes

User Stack Pointer USP RW address address Yes

Virtual Page Table Base VPTB R/W address address No

Who-Am-I WHAMI R — number No

1
 Access symbols are defined in Table 5 -2 .

5-2 OpenVMS Alpha Software (II)

Table 5-2: Internal Processor Register (IPR) Access Summary
Access
Type Meaning

R Access by MFPR only.

W Access by MTPR only.

RAV Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR; see Section 5.1 for details.

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR; see Section 5.1 for details.

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.

OpenVMS Internal Processor Registers (II) 5-3

5.3.1 Address Space Number (ASN)

Access:

Read

Operation:

IF {ASN are implemented} THEN
RO <- ZEXT(ASN)

ELSE
RO <- 0

Value at System Initialization:

Zero

Format:

Figure 5-1 : Address Space Number Register (ASN)

63 0

Address Space Number

RO

Description:

Address Space Numbers (ASNs) are used to further qualify Translat ion Buffer
references; see Chapte r 3. If ASNs are implemented, t he cur ren t ASN may be read
by executing an MFPR instruct ion specifying ASN.

As processes are scheduled for execution, t he ASN for the next process to execute
is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see Chapters 2
and 4.

The ASN register is an implicit operand to the CALL_PAL M F P R J P R , TBCHK,
and TBISx PALcode instruct ions, in which i t is used to qualify the vi r tual address
supplied in R16.

5-4 OpenVMS Alpha Software (II)

5.3.2 AST Enable (ASTEN)

Access:

Read

Write*

Operation :

RO «- ZEXT (ASTEN<3:0>) ! Read (MFPR)
RO <- ZEXT(ASTEN<3:0>) ! Write* (MTPR)
ASTEN<3:0> <- {{ASTEN<3:0> AND R16<3:0>> OR R16<7:4>>
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-2: AST Enable Register (ÄSTEN)

63 8 7 6 5 4 3 2 1 0

u S Ε Κ υ S Ε Κ
IGN 0 0 0 0 C c C C

Ν Ν Ν Ν L L L L

Format of RO

63 4 3 2 1 0

υ S Ε Κ
RAZ Ε Ε Ε Ε

Ν Ν Ν Ν

Description:

The AST Enable Register records t he AST enable s ta te for each of the modes:
Kernel (KEN), Executive (EEN), Supervisor (SEN) and User (UEN). By wri t ing R16
appropriately and then executing an MTPR instruct ion specifying ÄSTEN, the value
of ÄSTEN may be s imultaneously read and modified. R16 contains bi t masks used
to de termine t he new value of ÄSTEN:

• Bits R16<0> and R16<4> control t he new s ta te of Kernel enable.

• Bits R16<1> and R16<5> control the new s ta te of Executive enable.

OpenVMS Internal Processor Registers (II) 5-5

• Bits R16<2> and R16<6> control the new s ta te of Supervisor enable.

• Bits R16<3> and R16<7> control the new s ta te of User enable.

An MFPR to ÄSTEN reads the cur ren t value of t he ÄSTEN and r e tu rn s th is value
in RO.

An MTPR to ÄSTEN begins by reading the cur ren t value of ÄSTEN and re tu rn ing
th is value in RO. The cur ren t value of ÄSTEN is t hen ANDed wi th bi ts R16<3:0>;
these bi ts preserve (if set to T) or clear (if equal to Ό') t he cur ren t s ta te of the i r
corresponding enable modes. The value produced by th is operation is t hen ORed
with bi ts R16<7:4>; these bi ts t u r n on (if set to 1') or do not affect (if equal to
Ό') the i r corresponding enable modes. The resul t ing value is t hen wr i t ten to the
ÄSTEN.

NOTE
All AST enables can be cleared by loading a zero into
R16 and executing an MTPR instruct ion specifying
ASTEN. To enable an AST for a given mode, load R16
with a m a s k t h a t h a s bi ts <3:0> set and one of the bi ts
<7:4> corresponding to t he AST mode to be set. Then
execute an MTPR instruct ion specifying ÄSTEN.

As processes are scheduled for execution, the s ta te of the AST enables for the
next process to execute is loaded us ing the Swap Privileged Context (SWPCTX)
instruction. The Swap AST Enable (SWASTEN) instruct ion can be used to change
the enable s ta te for the cur ren t access mode; See Chapte rs 2 and 4.

5-6 OpenVMS Alpha Software (II)

5.3.3 AST Summary Register (ASTSR)

Access:

Read

Write*

Operation:

RO <- ZEXT(ASTSR<3:0>) ! Read (MFPR)
RO «- ZEXT(ASTSR<3:0>) 1 Write* (MTPR)
ASTSR<3:0> <- {{ASTSR<3:0> AND R16<3:0>> OR R16<7:4>>
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-3: AST Summary Register (ASTSR)

63 8 7 6 5 4 3 2 1 0

U s Ε Κ υ s Ε Κ
IGN 0 0 0 0 C c C C

Ν Ν Ν Ν L L L L

R16

63 4 3 2 1 0

υ s Ε Κ
RAZ Ρ Ρ Ρ Ρ

D D D D

RO

Description:

The AST S u m m a r y Register records the AST pending s ta te for each of the modes:
Kernel (KPD), Executive (EPD), Supervisor (SPD), and User (UPD).

OpenVMS Internal Processor Registers (II) 5-7

By wri t ing R16 appropriately and t hen executing an MTPR instruct ion specifying
ASTSR, the value of ASTSR may be s imultaneously read and modified. R16 contains
bit masks used to determine t he new value of ASTSR:

• Bits R16<0> and R16<4> control the new s ta te of Kernel pending.

• Bits R16<1> and R16<5> control the new s ta te of Executive pending.

• Bits R16<2> and R16<6> control the new s ta te of Supervisor pending.

• Bits R16<3> and R16<7> control the new s ta te of User pending.

An MFPR reads the cur ren t value of ASTSR and r e t u r n s th is value in RO.

An MTPR to ASTSR begins by reading the cur ren t value of ASTSR and re tu rn ing
th is value in RO. The cur ren t value of ASTSR is t hen ANDed wi th bi ts R16<3:0>;
these bi ts preserve (if set to 1') or clear (if equal to Ό') t he cur ren t s ta te of the i r
corresponding pending modes. The value produced by th is operation is t hen ORed
with bi ts R16<7:4>; these bi ts t u r n on (if set to T) or do not affect (if equal to
Ό') the i r corresponding pending modes. The resul t ing value is t hen wr i t ten to the
ASTSR.

NOTE
All AST reques ts can be cleared by loading a zero in R16
and executing an MTPR instruct ion specifying ASTSR.
To reques t an AST for a given mode, load R16 with a
m a s k t h a t h a s bi ts <3:0> set and one of t he bi ts <7:4>
corresponding to the AST mode to be set. Then execute
an MTPR instruct ion specifying ASTSR.

As processes a re scheduled for execution, t he pending AST s ta te for the next process
to execute is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see
Chapters 2 and 4.

When the processor IPL is less t h a n 2, and proper enabl ing conditions a re present ,
an AST in te r rup t is ini t ia ted a t IPL 2 and the corresponding access mode bit in
ASTSR is cleared; see Section 6.7.6.

5-8 OpenVMS Alpha Software (II)

5.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Write

Operation:

DATFX <- R16<0>
(HWPCB+56)<63> <- DATFX

Value at System Initialization:

Zero

Format:

Figure 5-4: Data Alignment Trap Fixup (DATFX)

63 2 1 0

D
A
Τ

Description:

D a t a Alignment t r aps a re fixed u p in PALcode and a re reported to the operat ing
system unde r t he control of t he DAT bit. If t he bi t is zero, t he t r a p is reported.
For t h e LDx_L and STx_C instruct ions, no fixup is possible and an illegal operand
exception is generated. For the description of the d a t a a l ignment t r aps , see
Section 6.6.

OpenVMS Internal Processor Registers (II) 5-9

5.3.5 Floating Enable (FEN)

Access:

Read/Write

Operation:

RO «- ZEXT(FEN)

FEN <- R16<0>
(HWPCB+56)<0> <- FEN

! Read

! Write
! Update PCB on Write

Value at System Initialization:

Zero

Format:

Figure 5-5: Floating Enable (FEN) Register

Description:

The Floating-point un i t can be disabled. If t he Float ing Enable Register (FEN) is
zero, all instruct ions t h a t have floating regis ters as operands cause a Floating-point
disabled fault; see Section 6.3.1.1.

5-10 OpenVMS Alpha Software (II)

5.3.6 Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:

IPIR <- R16

Value at System Initialization:

Not applicable

Format:

Figure 5-6: Interprocessor Interrupt Request Register (IPIR)

63 0

Processor Number

R16

Description:

An interprocessor in t e r rup t can be reques ted on a specified processor by wri t ing
t h a t processor's n u m b e r into t he IPIR regis ter th rough an MTPR instruction. The
in te r rup t reques t is recorded on the t a rge t processor and is ini t ia ted when proper
enabl ing conditions a re present .

PROGRAMMING NOTE
The in te r rup t need not be ini t ia ted before t he next
instruct ion is executed on the reques t ing processor, even
if t h e reques t ing processor is also t h e t a rge t processor
for t he request .

For addit ional information on interprocessor in te r rup ts , see Section 6.4.5.1.

OpenVMS Internal Processor Registers (II) 5-11

5.3.7 Interrupt Priority Level (IPL)

Access:

Read/Write*

Operation:

RO <- ZEXT(PS<IPL>) ! Read
RO <- ZEXT(PS<IPL>) ! Write*
PS<IPL> «- R16<4:0> ! Write
{check for pending ASTs or interrupts}

Value at System Initialization:

31

Format:

Figure 5-7: Interrupt Priority Level (IPL)

Description:

An MFPR IPL re tu rns the cur ren t in te r rup t priori ty level in RO. An MTPR IPL
re tu rns the cur rent in te r rup t priority level in RO and sets t he in te r rup t priority
level to the value in R16. If proper enabl ing conditions a re present , an in te r rup t or
AST is ini t ia ted prior to issuing the next instruction; see Sections 6.4.1 and 6.7.6.
R16<63:5> are defined as RAZ/SBZ. Therefore, t he presence of non-zero bits upon
wri te in R16<63:5> may cause U N D E F I N E D resul ts .

5-12 OpenVMS Alpha Software (II)

5.3.8 Machine Check Error Summary Register (MCES)

Access:

Read/Write

Operation:

RO <- ZEXT(MCES)

IF {R16<0> EQ 1} THEN
IF {R16<1> EQ 1} THEN
IF {R16<2> EQ 1} THEN
MCES<3> <- R16<3>
MCES<4> <- R16<4>

! Read

MCES<0> <- 0 ! Write
MCES<1> <- 0
MCES<2> <- 0

Value at System Initialization:

Zero

Format:

Figure 5-8: Machine Check Error Summary Register (MCES)

63 32 31 5 4 3 2 1 0

D D Ρ S M
IMP Reserved S Ρ C C C

C C Ε Ε Κ

Description:

The use of the MCES IPR is described in Section 6.5.

MCES<0> is set by t he h a r d w a r e or PALcode when a processor or system machine
check occurs. MCES<1> is set by t he h a r d w a r e or PALcode when a system
correctable error occurs. MCES<2> is set by t he h a r d w a r e or PALcode when a
processor correctable error occurs. Writ ing a 1 to any of these th ree bi ts clears t h a t
bit.

MCES<0> is cleared by the operat ing system machine check error handle r and
used by the h a r d w a r e or PALcode to detect double machine checks. MCES<1>
and MCES<2> are cleared by the operat ing system system or processor system
correctable error handle rs ; these bi ts a re used to indicate t h a t the associated
correctable error logout a rea may be reused by ha rdware or PALcode. In the event

OpenVMS Internal Processor Registers (II) 5-13

of double correctable errors , PALcode does not overwrite the logout a rea and does
not force the processor to en te r console I/O mode; see Section 6.5.1.

MCES<4:3> are used to disable report ing of correctable errors . When set, t h e error is
corrected, bu t no system correctable error in te r rup t or processor correctable machine
check is generated.

Implementa t ion dependent (IMP) bits may be used to report implementa t ion specific
errors .

5-14 OpenVMS Alpha Software (II)

5.3.9 Performance Monitoring Register (PERFMON)

Access:

Write*

Operation:

! R<16> contains implementation specific input values
! R<0> may return implementation specific values
i Operations and actions taken are implementation specific

Value at System Initialization:

Implementa t ion Dependent

Format:

Figure 5-9: Performance Monitoring Register (PERFMON)

63 0

IMP

Description:

The a rgumen t s and actions of th i s performance monitor ing function a re platform
and chip dependent .

R<16> contains implementa t ion dependent inpu t values. Implementa t ion specific
values m a y be re tu rned in R<0>.

OpenVMS Internal Processor Registers (II) 5-15

5.3.10 Privileged Context Block Base (PCBB)

Access:

Read

Operation:

RO <- ZEXT(PCBB)

Value at System Initialization:

Address of processor's boots t rap HWPCB

Format:

Figure 5-10: Privileged Context Block Base Register (PCBB)

RAZ Physical Address

RO

Description:

The Privileged Context Block Base Register contains the physical address of the
privileged context block for the cur rent process. I t may be read by executing an
MFPR instruct ion specifying PCBB.

PCBB is wr i t ten by the Swap Privileged Context (SWPCTX) instruction; see
Chapters 2 and 4.

5-16 OpenVMS Alpha Software (II)

5.3.11 Processor Base Register (PRBR)

Access:

Read/Write

Operation:

RO <- PRBR ! Read

PRBR <- R16 ! Write

Value at System Initialization:

UNPREDICTABLE

Format:

Figure 5-11 : Processor Base Register (PRBR)

63 0

Operating System-Dependent Value

Description:

In a mult iprocessor system, i t is desirable for the operat ing system to be able to
locate a processor-specific d a t a s t ruc tu re in a simple and s t ra ightforward manner .
The Processor Base Register provides a quadword of opera t ing system-dependent
s ta te t h a t can be read and wr i t ten via MFPR and MTPR instruct ions t h a t specify
PRBR.

OpenVMS Internal Processor Registers (II) 5-17

5.3.12 Page Table Base Register (PTBR)

Access:

Read

Operation:

RO 4 - PTBR

Value at System Initialization:

Value in the boots t rap HWPCB

Format:

Figure 5-12: Page Table Base Register (PTBR)

RAZ Page Frame Number

RO

Description:

The Page Table Base Register contains the page frame n u m b e r of t he first-level page
table for the cur ren t process. I t may be read by executing an MFPR instruct ion
specifying PTBR; see Chapte r 3.

As processes a re scheduled for execution, t he PTBR for the next process to execute
is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see Chapte rs 2
and 4.

5-18 OpenVMS Alpha Software (II)

5.3.13 System Control Block Base (SCBB)

Access:

Read/Write

Operation:

RO <- ZEXT(SCBB) ! Read

SCBB <- R16 ! Write

Value at System Initialization:

UNPREDICTABLE

Format:

Figure 5-13: System Control Block Base Register (SCBB)

IGN/RAZ Page Frame Number

Description:

The System Control Block Base Register holds the Page F r a m e N u m b e r (PFN) of
t he System Control Block, which is used to dispatch exceptions and in te r rup ts , and
may be read and wr i t ten by executing MFPR and MTPR instruct ions t h a t specify
SCBB; see Section 6.6.

When SCBB is wri t ten , t he specified physical address m u s t be t he P F N of a page
which is ne i ther in I/O space nor non-existent memory, or U N D E F I N E D operation
will resul t .

OpenVMS Internal Processor Registers (II) 5-19

5.3.14 Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

IF R16<3:0> NE 0 THEN
SISR<R16<3:0» <- 1

Value at System Initialization:

Not applicable

Format:

Figure 5-14: Software Interrupt Request Register (SIRR)

IGN LVL

R16

Description:

A software in te r rup t may be requested for a par t icular In t e r rup t Priori ty Level
(IPL) by executing an MTPR instruct ion specifying SIRR. Software in te r rup t s m a y
be requested a t levels 0 through 15 (requests a t level 0 are ignored).

An MTPR SIRR sets t he bit corresponding to the specified in te r rup t level in the
Software In te r rup t S u m m a r y Register (SISR).

If proper enabling conditions a re present , a software in te r rup t is ini t ia ted prior to
issuing the next instruction; see Sections 6.4.1 and 6.7.6.

5-20 OpenVMS Alpha Software (II)

5.3.15 Software Interrupt Summary Register (SISR)

Access:

Read

Operation:

RO <- ZEXT(SISR<15:0>)

Value at System Initialization:

Zero

Format:

Figure 5-15: Software Interrupt Summary Register (SISR)

63 16 1 5 1 4 1 3 1 2 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I R
RAZ R R R R R R R R R R R R R R R A

F Ε D C Β A 9 8 7 6 5 4 3 2 1 Ζ

RO

Description:

The Software In t e r rup t S u m m a r y Register records the in te r rup t pending s ta te for
each of t he in te r rup t levels 1 th rough 15. The cur ren t in te r rup t pending s ta te may
be read by executing an MFPR instruct ion specifying SISR.

MTPR SIRR (see SIRR) reques ts an in te r rup t a t a par t icular in te r rup t level and
sets t he corresponding pending bit in SISR.

When the processor IPL falls below the level of a pending request , an in te r rup t is
ini t ia ted and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6.

OpenVMS Internal Processor Registers (II) 5-21

5.3.16 Translation Buffer Check (TBCHK)

Access:

Read

Operation:

RO <- 0
IF {implemented} THEN

R0<0> «- {entry in TB for VA in R16}
ELSE

R0<63> 1

Value at System Initialization:

Correct resul ts a re always re tu rned

Format:

Figure 5-16: Translation Buffer Check Register (TBCHK)

63 0

Virtual Address

R16
63 62 2 1 0

I Ρ
M RAZ R
Ρ s

RO

Description:

The Translat ion Buffer Check Register provides the capability to determine if
a vi r tual address is present in the Translat ion Buffer by executing an MFPR
instruct ion specifying TBCHK; see Chapte r 3.

The vir tual address to be checked is specified in R16 and may be any address wi thin
the desired page. If ASNs are implemented, only those Translat ion Buffer entr ies
which are associated wi th the cur ren t value of the ASN IPR will be checked for the
vir tual address . The value read contains an indication of whe ther the function is
implemented and whether the vir tual address is present in the Translat ion Buffer.

5-22 OpenVMS Alpha Software (II)

If t he function is not implemented, a value is r e tu rned wi th bit <63> set and bit <0>
clear. Otherwise, a value is r e tu rned wi th bit <63> clear, and wi th bit <0> indicating
whe the r t he v i r tua l address is p resen t in (1) or absen t from (0) t he Translat ion
Buffer.

The TBCHK Register can be used by system software for working set management .

OpenVMS Internal Processor Registers (II) 5-23

5.3.17 Translation Buffer Invalidate All (TBIA)

5-24 OpenVMS Alpha Software (II)

Access:

Write

Operation:

{Invalidate all TB entries}

Value at System Initialization:

Not applicable

Format:

Figure 5-17: Translation Buffer Invalidate All Register (TBIA)

63 0

Unused

R16

Description:

The Translat ion Buffer Inval idate All Register provides the capability to inval idate
all entr ies in the Translat ion Buffer by executing an MTPR instruct ion specifying
TBIA; see Chapte r 3.

5.3.18 Translation Buffer Invalidate All Process (TBIAP)

OpenVMS Internal Processor Registers (II) 5-25

Access:

Write

Operation:

{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Not applicable

Format:

Figure 5-18: Translation Buffer Invalidate All Process Register (TBIAP)

63 0

Unused

R16

Description:

The Transla t ion Buffer Inval idate All Process Register provides t he capability to
inval idate all ent r ies in t h e Transla t ion Buffer t h a t do not have t h e ASM bit set by
executing an MTPR instruct ion specifying TBIAP; see Chap te r 3.

Notes:

More entr ies m a y be inval idated by th i s operation. For example, some
implementa t ions may flush t he ent i re TB on a TBIAP.

5.3.19 Translation Buffer Invalidate Single (TBISx)

Access:

Write

Operation:

TBIS:
{Invalidate single Data TB entry using R16}
{Invalidate single Instruction TB entry using R16}

TBISD:
{Invalidate single Data TB entry using R16>

TBISI:
{Invalidate single Instruction TB entry using R16}

Value at System Initialization:

Not applicable

Format:

Figure 5-19: Translation Buffer Invalidate Single (TBIS)

63 0

Virtual Address

R16

Description:

The Translat ion Buffer Inval idate Single Registers provide t he capability to
inval idate a single en t ry in t he Instruct ion Transla t ion Buffer (TBISI), t he Da ta
Translat ion Buffer (TBISD), or both t rans la t ion buffers (TBIS). The vi r tua l address
to be invalidated is passed in R16 and may be any address wi thin the desired page.

Notes:

More t h a n the single ent ry may be invalidated by th is operation. For example
some implementat ions may flush the ent i re TB on a TBIS. As a result , if t he
specified address does not match any ent ry in the Translat ion Buffer, t hen i t is
implementat ion-dependent whe ther t he s ta te of the Translat ion Buffer is affected
by the operation.

5-26 OpenVMS Alpha Software (II)

5.3.20 Executive Stack Pointer (ESP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN I Read
RO «- ESP

ELSE
RO <- (IPR_PCBB + HWPCB_ESP)

IF {internal registers for stack pointers} THEN ! Write
ESP <- R16

ELSE
(IPR_PCBB + HWPCB_ESP) <- R16

Value at System Initialization:

Value in the init ial HWPCB

Format:

Figure 5-20: Executive Stack Pointer (ESP)

63 0

Stack Address

Description:

This register allows t he s tack pointer for Executive mode (ESP) to be read and
wr i t ten via MFPR and MTPR instruct ions t h a t specify ESP.

The cur ren t s tack pointer m a y be read and wr i t ten directly by specifying scalar
regis ter SP (R30).

As processes a re scheduled for execution, t he stack pointers for t he next process to
execute a re loaded us ing t h e Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chap te r 4.

OpenVMS Internal Processor Registers (II) 5-27

5.3.21 Supervisor Stack Pointer (SSP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN ! Read
RO <- SSP

ELSE
RO <- (IPR_PCBB + HWPCB_SSP)

IF {internal registers for stack pointers} THEN ! Write
SSP <- R16

ELSE
(IPR_PCBB + HWPCB_SSP) <- R16

Value at System Initialization:

Value in the init ial HWPCB

Format:

Figure 5-21 : Supervisor Stack Pointer (SSP)

63 0

Stack Address

Description:

This register allows the stack pointer for Supervisor mode (SSP) to be read and
wri t ten via MFPR and MTPR instruct ions t h a t specify SSP.

The cur rent s tack pointer may be read and wr i t ten directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, t he stack pointers for t he next process to
execute are loaded us ing the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapte r 4.

5-28 OpenVMS Alpha Software (II)

5.3.22 User Stack Pointer (USP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN I Read
RO <- USP

ELSE
RO <- (IPR_PCBB + HWPCB_USP)

IF {internal registers for stack pointers} THEN ! Write
USP <- R16

ELSE
(IPR_PCBB + HWPCB_USP) <- R16

Value at System Initialization:

Value in t he init ial HWPCB

Format:

Figure 5-22: User Stack Pointer (USP)

63 0

Stack Address

Description:

This regis ter allows the s tack pointer for User mode (USP) to be read and wr i t ten
via MFPR and MTPR instruct ions t h a t specify U S P

The cur ren t s tack pointer m a y be read a n d wr i t t en directly by specifying scalar
register S P (R30).

As processes a re scheduled for execution, t he two stack pointers for t he next process
to execute a re loaded us ing t he Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chap te r 4.

OpenVMS Internal Processor Registers (II) 5-29

5.3.23 Virtual Page Table Base (VPTB)

Access:

Read/Write

Operation:

RO <- VPTB ! Read

VPTB <- R16 ! Write

Value at System Initialization:

Initialized by the console in t he boots t rap address space.

Format:

Figure 5-23: Virtual Page Table Base Register (VPTB)

63 0

VA of Page Table Structure

RO

Description:

The Virtual Page Table Base Register contains t he vi r tua l address of t he base of
the ent i re three-level Page table s t ruc ture . I t may be read by executing a n MFPR
instruct ion specifying VPTB. I t is wr i t ten a t system init ialization us ing a n MTPR
instruct ion specifying VPTB. See Section 3.7.2 for init ialization considerations.

5-30 OpenVMS Alpha Software (II)

5.3.24 Who-Am-I (WHAMI)

Access:

Read

Operation:

RO «- WHAMI

Value at System Initialization:

Processor number

Format:

Figure 5-24: Who-Am-I Register (WHAMI)

631 0

Processor Number

RO

Description:

The Who-Am-I Register provides t he capability to read the cur ren t processor number
by executing a n MFPR instruct ion specifying WHAMI. The processor number
r e tu rned is in the range 0 to t he n u m b e r of processors minus one t h a t can be
configured in the system. Processor n u m b e r F F F F F F F F F F F F F F F F 1 6 is reserved.

The cur ren t processor n u m b e r is useful in a mult iprocessing system to index
a r rays t h a t store per processor information. Such information is operat ing system
dependent .

OpenVMS Internal Processor Registers (II) 5-31

Chapter 6

OpenVMS Exceptions, Interrupts, and Machine
Checks (II)

6.1 Introduction

At cer ta in t imes dur ing the operat ion of a system, events wi th in t he system require
t he execution of software outside t he explicit flow of control. When such an
exceptional event occurs, an Alpha processor forces a change in control flow from
t h a t indicated by the cur ren t instruct ion s t ream. The notification process for such
events is of one of th ree types:

• Exceptions

These events a re re levant pr imari ly to t he current ly executing process and
normally invoke software in t he context of t he cur ren t process. The th ree types
of exceptions a re faults, a r i thmet ic t r aps , and synchronous t r aps . Exceptions are
described in Section 6.3.

• In t e r rup t s

These events a re pr imari ly re levant to other processes, or to the system as a
whole, and are typically serviced in a system-wide context.

Some in te r rup t s a re of such urgency t h a t they require high-priority service, while
o thers m u s t be synchronized wi th independent events . To mee t these needs, each
processor h a s priority logic t h a t g r an t s in t e r rup t service to t he h ighes t priority
event a t any point in t ime. In t e r rup t s a re described in Section 6.4.

• Machine Checks

These events a re generally t h e resu l t of serious h a r d w a r e failure. The registers
and memory a re potentially in an inde te rmina te s ta te such t h a t t he instruct ion
execution cannot necessarily be correctly res ta r ted , completed, s imulated, or
undone. Machine checks a re described in Section 6.5.

For all such events , t he change in flow of control involves changing the Program
Counter (PC), possibly changing the execution mode (current mode) and/or in te r rup t
priority level (IPL) in the Processor S t a tu s (PS), and saving the old values of the
PC and PS . The old values a re saved on the t a rge t s tack as p a r t of a n Exception,
In te r rup t , or Machine Check Stack F rame . Collectively, those e lements a re described
in Section 6.2.

The service rout ines t h a t hand le exceptions, in te r rup t s , and machine checks are
specified by en t ry points in t he System Control Block (SCB), described in Section 6.6.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-1

Return from an exception, in ter rupt , or machine check, is done via the CALL_PAL
REI instruction. As pa r t of i ts work, CALL_PAL REI restores the saved values of
PC and PS and pops t hem off the stack.

6.1.1 Contrast Between Exceptions, Interrupts, and Machine Checks

Generally, exceptions, in te r rup ts , and machine checks a re similar. However, the re
are four impor tan t differences:

1. An exception condition is caused by the execution of an instruction. An in te r rup t
is caused by some activity in the system t h a t may be independent of any
instruction. A machine check is associated wi th a ha rdware error condition.

2. The IPL of the processor is not changed when the processor ini t ia tes an exception.
The IPL is always raised when a n in te r rup t is ini t iated. The IPL is always
raised when a machine check is ini t iated, and for all machine checks other t h a n
system correctable, is ra ised to 31 (highest priority level). (For system correctable
machine checks, t he IPL is ra ised to 20.)

3. Exceptions a re always ini t iated immediately, no m a t t e r w h a t the processor IPL
is. In te r rup t s a re deferred unt i l t he processor IPL drops below the IPL of the
request ing source. Machine checks can be ini t ia ted immediately or deferred,
depending on error conditions.

4. Some exceptions can be selectively disabled by selecting instruct ions t h a t do
not check for exception conditions. If an exception condition occurs in such an
instruction, the condition is totally ignored and no s ta te is saved to signal t h a t
condition a t a la ter t ime.

If an in te r rup t reques t occurs while the processor IPL is equal to or grea ter t h a n
t h a t of the in te r rup t ing source, the condition will eventual ly ini t ia te an in te r rup t
if t he in te r rup t reques t is still p resent and the processor IPL is lowered below
t h a t of the in te r rup t ing source.

Machine checks cannot be disabled. Machine checks can be ini t iated immediately
or deferred, depending on the error condition. Also, they can be deliberately
generated by software.

6.1.2 Exceptions, Interrupts, and Machine Checks Summary

The table below summar izes the actions t aken on an exception, in ter rupt , or machine
check. The remain ing sections in th is chapter describe these in grea ter detail .

• The "SavedPC" column describes w h a t is saved in t he " P C field of the exception
or in te r rup t or machine check stack frame. Here ,

1. "Current" indicates the PC of the instruct ion a t which the exception or
in te r rup t or machine check was t aken , while

2. "Next" indicates the PC of the successor instruction.

• The "NewMode" column specifies t he mode and stack t h a t t he exception or
in te r rup t or machine check rout ine will s t a r t with. For change mode t raps ,
"MostPrv" indicates the more privileged of the cur ren t and new modes.

&-2 OpenVMS Alpha Software (II)

• The "R2" column specifies t he value wi th which R2 is loaded, after i ts original
value h a s been saved in the exception or in te r rup t or machine check stack frame.
The SCB vector quadword, "SCBv", is loaded into R2 for all in te r rup t s and
exceptions and machine checks.

• The "R3" column specifies the value wi th which R3 is loaded, after i ts original
value h a s been saved in t h e exception or i n t e r rup t or machine check stack frame.
The SCB pa rame te r quadword, "SCBp", is loaded into R3 for all in te r rup t s and
exceptions and machine checks.

• The "R4" column specifies t he value wi th which R4 is loaded, after i ts original
value h a s been saved in t he exception or in t e r rup t or machine check stack frame.
If t he "R4" column is b lank the value in R4 is UNPREDICTABLE on en t ry to an
in t e r rup t or exception. Here ,

1. "VA" indicates the exact v i r tua l address which tr iggered a memory
m a n a g e m e n t fault or da t a a l ignment t r ap .

2. "Mask" indicates t he Register Write Mask.

3. "LAOff" indicates the offset from the base of t he logout a rea in the HWRPB;
see Section 6.5.2.

• The "R5" column specifies t he value wi th which R5 is loaded, after i ts original
value h a s been saved in the exception or in te r rup t or machine check stack frame.
If t he "R5" column is b lank the value in R5 is UNPREDICTABLE on en t ry to an
in t e r rup t or exception or machine check. Here ,

1. "MMF" indicates the Memory Managemen t Flags.

2. "Exc" indicates t he Exception S u m m a r y parameter .

3. "RW" indicates Read/Load =0 Write/Store =1 for da t a align t r aps

Table 6 -1 : Exceptions, Interrupts, and Machine Checks Summary

SavedPC NewMode R2 R3 R4 R5

Exceptions - Faults

Floating Disabled Fault Current Kernel SCBv SCBp

Memory Management Faults

Access Control Violation Current Kernel SCBv SCBp VA MMF

Translation Not Valid Current Kernel SCBv SCBp VA MMF

Fault on Read Current Kernel SCBv SCBp VA MMF

Fault on Write Current Kernel SCBv SCBp VA MMF

Fault on Execute Current Kernel SCBv SCBp VA MMF

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-3

Table 6-1 (Co n t.): Exceptions, Interrupts, and Machine Checks Summary
SavedPC NewMode R2 R3 R4 R5

Except ions - Ar i thmet ic Traps

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc

Except ions - Synchronous Traps

Breakpoint Trap Next Kernel SCBv SCBp

Bugcheck Trap Next Kernel SCBv SCBp

Change Mode to K/E/S/U Next MostPrv SCBv SCBp

Illegal Instruction Next Kernel SCBv SCBp

Illegal Operand Next Kernel SCBv SCBp

Data Alignment Trap Next Kernel SCBv SCBp VA RW

I n t e r r u p t s

Asynch System Trap (4) Current Kernel SCBv SCBp

Interval Clock Current Kernel SCBv SCBp

Interprocessor Interrupt Current Kernel SCBv SCBp

Software Interrupts Current Kernel SCBv SCBp

Performance
monitor

Current Kernel SCBv SCBp IMP IMP

Passive Release Current Kernel SCBv SCBp

Powerfail Current Kernel SCBv SCBp

I/O Device Current Kernel SCBv SCBp

Machine Checks

Processor Correctable Current Kernel SCBv SCBp LAOff

System Correctable Current Kernel SCBv SCBp LAOff

System Current Kernel SCBv SCBp LAOff

Processor Current Kernel SCBv SCBp LAOff

6-4 OpenVMS Alpha Software (II)

6.2 Processor State and Exception/Interrupt/Machine Check Stack
Frame

Processor s ta te consists of a quadword of privileged information called the Processor
S t a tus (PS) and a quadword containing the Program Counter (PC), which is the
vi r tual address of the next instruct ion.

When an exception, in te r rupt , or machine check is ini t iated, the cur ren t processor
s ta te dur ing the exception, in te r rupt , or machine check m u s t be preserved. This is
accomplished by automatical ly push ing the P S and the PC on t h e t a rge t stack.

Subsequently, instruct ion execution can be continued a t t he point of the exception,
in te r rupt , or machine check by executing a CALL_PAL REI instruction; see
Chapte r 2.

Process context such as memory mapping information is not saved or restored on
each exception, in te r rupt , or machine check. Ins tead, it is saved and restored when
process context switching is performed. Other processor s t a tu s is changed even less
frequently; see Chapte r 4.

6.2.1 Processor Status

The P S can be explicitly read wi th the CALL.PAL RD_PS instruction. The PS<SW>
field can be explicitly wr i t ten wi th the CALL_PAL WR_PS_SW instruction. See
Section 2 .1 .

The t e rms cur ren t P S and saved P S are used to dis t inguish between th is s t a tus
information when it is stored in te rna l to the processor and when copies of i t a re
mater ial ized in memory.

Figure 6-1 : Current Processor Status (PS Register)

63 13 12 8 7 6 5 4 3 2 1 0

V M ι
MBZ IPL M Β CM ι

D
sw

M Ζ r

Figure 6-2: Saved Processor Status (PS on Stack)

63 62 56 55 13 12 8 7 6 5 4 3 2 1 0

M V M
B SP_ALIGN MBZ IPL M B CM I sw
Ζ M Ζ Ρ

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-5

Table 6-2: Processor Status Register Summary
Bits Descr ip t ion

1:0 Reserved for Software (SW). These bits are reserved for software use and can be
read and written at any time by the software, regardless of the current mode. The
value of these bits is ignored by the hardware. The software field is set to zero at
the initiation of either an exception or an interrupt.

2 Interrupt pending (IP). Set when an interrupt (software or hardware but NOT AST)
is initiated; indicates an interrupt is in progress.

4:3 Current mode (CM). The access mode of the currently executing process as follows:

0 - Kernel

1 - Executive

2 - Supervisor

3 - User

6:5 Reserved to Digital, MBZ.

7 Virtual machine monitor (VMM) - When set, the processor is executing in a virtual
machine monitor. When clear, the processor is running in either real or virtual
machine mode.

PROGRAMMING NOTE
This bit is only meaningful when
runn ing with PALcode t h a t implements
vi r tual machine capabilities.

12:8 Interrupt priority level (IPL) - The current processor priority, in the range 0 to 31.

55:13 Reserved to Digital, MBZ.

61:56 Stack alignment (SP_ALIGN) - The previous stack byte alignment within a 64 byte
aligned area, in the range 0 to 63. This field is set in the saved PS during the act
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to
restore the previous stack byte alignment.

63:62 Reserved to Digitial, MBZ.

At bootstrap, the init ial value of P S is set to 1 F 0 0 1 6. Previous stack a l ignment is
zero, IPL is 3 1 , VMM is clear, CM is Kernel , and the SW and IP fields are zero.

6.2.2 Program Counter

The PC is a 64-bit v i r tual address . All instruct ions a re aligned on longword
boundaries and, therefore, ha rdware can assume zero for the two low-order PC bits .

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All
branching instruct ions also load a new value into the PC.

S-6 OpenVMS Alpha Software (II)

Figure 6-3: Program Counter (PC)

6.2.3 Processor Interrupt Priority Level (IPL)

Each processor h a s 32 in te r rup t priori ty levels (IPLs) divided into 16 software levels
(numbered 0 to 15), and 16 h a r d w a r e levels (numbered 16 to 31). User applications
and most operat ing system software r u n a t IPL 0, which may be thought of as process
level. Higher numbered in te r rup t levels have higher priority; i.e., any request a t an
in te r rup t level h igher t h a n the processor's cur ren t IPL will i n t e r rup t immediately,
bu t reques ts a t lower or equal levels a re deferred.

In t e r rup t levels 0 to 15 exist solely for use by software. No h a r d w a r e event can
reques t an in te r rup t on these levels. Conversely, in t e r rup t levels 16 to 31 exist
solely for use by ha rdware . Serious system failures, such as a machine check abort,
however, ra ise t he IPL to t he h ighes t level (31), to minimize processor in ter rupt ion
unt i l t he problem is corrected, and execute in Kernel mode on the Kernel stack.

6.2.4 Protection Modes

Each processor h a s four protection modes. The modes a re Kernel , Executive,
Supervisor, and User. Per-page memory protection varies as a function of mode (for
example, a page can be made read-only in User mode, bu t read-wri te in Supervisor,
Executive, or Kernel mode).

For each process, the re is a separa te s tack associated wi th each mode. Corruption
of one s tack does not affect use of the other s tacks.

Some instruct ions, t e rmed privileged instruct ions, may only be executed in Kernel
mode.

6.2.5 Processor Stacks

Each processor h a s four s tacks. There a re four process-specific s tacks associated
wi th the four modes of the cur ren t process. At any given t ime, only one of these
s tacks is actively used as t he cur ren t stack.

6.2.6 Stack Frames

When an exception, in te r rupt , or machine check occurs, a s tack frame is pushed
on t h e t a rge t stack. Regardless of t h e type of event notification, th i s s tack frame
consists of a 64 byte-aligned s t ruc ture containing the saved contents of registers
R2..R7, the Program Counter (PC), and the Processor S t a tu s (PS). Registers R2 and
R3 are t hen loaded wi th vector and pa rame te r from the SCB for the exception,
in te r rupt , or machine check. Registers R4 and R5 may be loaded with da ta
per ta in ing to the exception, in te r rupt , or machine check. The specific da t a loaded is
described below in conjunction wi th each exception, in te r rupt , or machine check; if

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-7

no specific da t a is specified, the contents of R4 and R5 are UNPREDICTABLE. After
the stack is built , t he contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value saved is t h a t of the instruct ion encounter ing the
exception in the case of faults, t h a t of the next instruct ion in the case of t r aps
and in te r rupts , and, on a best-effort basis , and t h a t of the next instruct ion in the
case of machine checks. Re tu rn from an exception, in te r rupt , or machine check is
done via the CALL_PAL REI instruction, which restores the saved values of PC, PS ,
and R2..R7, t h u s re-executing the instruct ion in the case of faults, and proceeding
to the next instruct ion in the case of t r aps , in te r rup ts , and machine checks.

Figure 6-4: Stack Frame

R2 :SP

R3 :+08

R4 :+16

R5 :+24

R6 :+32

R7 :+40

Program Counter (PC) :+48

Processor Status (PS) :+56

6.3 Exceptions

Exception service rout ines execute in response to exception conditions caused by
software. Most exception service rout ines execute in Kernel mode, on the Kernel
stack; all exception service rout ines execute a t t he cur ren t processor IPL. Change
Mode exception rout ines for CHMU/CHMS/CHME execute in t he more privileged
of the cur ren t mode or the ta rge t mode (U/S/E), on the match ing stack. Exception
service rout ines are usual ly coded to avoid exceptions; however, nes ted exceptions
can occur.

There are th ree types of exceptions:

• A fault is an exception condition t h a t occurs dur ing an instruct ion and leaves
the registers and memory in a consistent s ta te such t h a t el imination of the fault
condition and subsequent re-execution of t he instruct ion will give correct resul t s .
Fau l t s are not guaran teed to leave the machine in exactly the same s ta te it was
in immediately prior to the fault, bu t r a t h e r in a s ta te such t h a t the instruct ion
can be correctly executed if the fault condition is removed. The PC saved in the
exception stack frame is the address of the fault ing instruction. A CALL_PAL
REI instruct ion to th is PC will reexecute the faulting instruction.

6-8 OpenVMS Alpha Software (II)

• An ar i thmet ic t r a p is an exception condition t h a t occurs a t t he completion of
the operation t h a t caused the exception. Since several instruct ions may be
in various s tages of execution a t any point in t ime, i t is possible for mult iple
ar i thmet ic t r aps to occur simultaneously. The PC t h a t is saved in the exception
frame on t r aps is t h a t of t he next ins t ruct ion t h a t would have been issued if t he
t r app ing condition(s) had not occurred. This is not necessari ly the address of the
instruct ion immediately following the one(s) encounter ing the t r a p condition, and
in tervening instruct ions m a y have changed operands or other s ta te used by the
instruction(s) encounter ing the t r a p condition(s). A CALL_PAL REI instruct ion
to th is PC will not reexecute the t r app ing instruction(s), nor will it reexecute
any in tervening instruct ions; it will simply continue execution from the point a t
which the t r a p was taken .

In general , i t is difficult to fixup resul t s and continue program execution a t the
point of an ar i thmet ic t r ap . Software can force a t r a p to be continued more easily
wi thout the need for complicated fixup code. This is accomplished by following
a set of code-generation restr ict ions in code t h a t could cause ar i thmet ic t r aps
which a re to be completed by a software t r a p handle r (see Common Architecture,
Chapter 4), including specifying the /S software completion modifier in each such
instruct ion.

The AND of all t he software completion modifiers for t r app ing instruct ions is
provided to the ar i thmet ic t r a p hand le r in the exception s u m m a r y SWC bit. If
SWC is set, a t r a p hand le r may find t he t r igger instruct ion by scanning backward
from the t r a p PC unt i l each regis ter in the register wri te m a s k h a s been an
instruct ion dest inat ion. The t r igger instruct ion is the first instruct ion in I-s t ream
order to get a t r a p within a t r a p shadow (see Common Architecture, Chapter 4
for definition of t r a p shadow). If t he SWC bit is clear, no fixup is possible (the
t r igger instruct ion m a y have been followed by a t aken branch, so the t r a p PC
cannot be used to find it).

• A synchronous t r a p is an exception condition t h a t occurs a t t he completion of
the operation t h a t caused the exception (or, if t he operation can only be part ial ly
carried out, a t the completion of t h a t pa r t of the operation), and no subsequent
instruct ion is issued before t he t r a p occurs.

Synchronous t r aps a re divided into da t a a l ignment t r aps and all other
synchronous t r aps .

6.3.1 Faults

The six types of faults signal t h a t an instruct ion or i ts operands a re in some way
illegal. These faults a re all ini t ia ted in Kernel mode and push an exception stack
frame onto the stack. Upon en t ry to the exception rout ine, the saved PC (in the
exception stack frame) is the v i r tua l address of the fault ing instruct ion.

The six faults include the Float ing Disable Fau l t described in the next subsection
and five memory m a n a g e m e n t faults.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-9

Memory managemen t faults occur when a v i r tual address t rans la t ion encounters an
exception condition. This can occur as the resul t of instruct ion fetch or dur ing a load
or store operation.

Immediately following a memory managemen t fault, register R4 contains the exact
vi r tual address encounter ing the fault condition.

The register R5 contains the "MM Flag" quadword.

"MM Flag" is set as follows:

0000 0000 0000 OOOOie for a faulting da ta read

0000 0000 0000 0001 iß for a fault ing I-fetch operation

8000 0000 0000 ΟΟΟΟχβ for a faulting wri te operation

The faulting instruct ion is the instruct ion whose fetch faulted, or the load, store, or
PALcode instruction t h a t encountered the fault condition.

Chapter 3 describes the memory managemen t archi tecture of Alpha in more detail .

6.3.1.1 Floating Disabled Fault

A Float ing Disabled Fau l t is an exception t h a t occurs when an a t t empt is made to
execute a floating-point instruct ion and the floating enable (FEN) bit in the HWPCB
is not set.

6.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory managemen t fault indicat ing t h a t an a t t empted access
to a vi r tual address was not allowed in the cur ren t mode.

ACV faults usual ly indicate program errors , bu t in some cases, such as automat ic
stack expansion, can m e a n implicit operat ing system functions.

ACV faults t ake precedence over Translat ion Not Valid, Fau l t on Read, Fau l t on
Write, and Fau l t on Execute faults.

ACV faults t ake precedence over Translat ion Not Valid faults so t h a t a malicious
user could not degrade system performance by causing spurious page faults to pages
for which no access is allowed.

6.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory managemen t fault t h a t indicates t h a t an a t t empted access
was made to a vi r tual address whose Page Table En t ry (PTE) was not valid.

Software may use TNV faults to implement v i r tual memory capabilities.

6.3.1.4 Fault On Read (FOR)

An FOR fault is a memory managemen t fault t h a t indicates t h a t a n a t t empted da t a
read access was made to a v i r tual address whose Page Table En t ry (PTE) had the
Fau l t on Read bit set.

As a pa r t of ini t ia t ing the FOR fault, t he processor inval idates t he Translat ion Buffer
ent ry t h a t caused the fault to be generated.

6-10 OpenVMS Alpha Software (II)

IMPLEMENTATION NOTE
This allows an implementa t ion only to inval idate entr ies
from the Da ta - s t r eam Transla t ion Buffer on Fau l t On
Read faults.

Note t h a t the Translat ion Buffer m a y reload and cache the old PTE value between
the t ime when the FOR fault inval idates the old value from the Translat ion Buffer
and the t ime when software upda tes the PTE in memory. Software t h a t depends on
the processor-provided inval idate m u s t t h u s be prepared to t ake another FOR fault
on a page after clearing the page's PTE<FOR> bit. The second fault will inval idate
t he stale PTE from the Transla t ion Buffer, and the processor cannot load another
s tale copy. Thus in the worst case, a multiprocessor system will t ake an init ial FOR
fault and t h e n a n addit ional FOR fault on each processor. In practice, even a single
repeti t ion is unlikely.

Software may use FOR faults to implement watchpoints , to collect page usage
stat ist ics, and to implement execute-only pages.

6.3.1.5 Fault On Write (FOW)

A FOW fault is a memory m a n a g e m e n t fault t h a t indicates t h a t an a t t empted da t a
wri te access was made to a v i r tua l address whose Page Table E n t r y (PTE) had the
Fau l t On Write bit set.

As a pa r t of ini t ia t ing the FOW fault, t he processor inval idates the Translat ion
Buffer en t ry t h a t caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementa t ion only to inval idate ent r ies
from the Da ta - s t ream Transla t ion Buffer on Fau l t On
Write faults.

Note t h a t the Translat ion Buffer m a y reload and cache the old PTE value between
the t ime when the FOW fault inval idates the old value from the Translat ion Buffer
and the t ime when software upda tes t he PTE in memory. Software t h a t depends on
the processor-provided inval idate m u s t t h u s be prepared to t ake another FOW fault
on a page after clearing the page's PTE<FOW> bit. The second fault will inval idate
the stale PTE from the Translat ion Buffer, and the processor cannot load another
s tale copy. T h u s in t he worst case, a mult iprocessor system will t ake an init ial FOW
fault and then an addit ional FOW fault on each processor. In practice, even a single
repet i t ion is unlikely.

Software m a y use FOW faults to ma in t a in modified page information, to implement
copy on wri te and watchpoint capabilit ies, and to collect page usage stat ist ics.

6.3.1.6 Fault On Execute (FOE)

An FOE fault is a memory m a n a g e m e n t fault indicat ing t h a t an a t tempted
instruct ion s t r eam access was made to a v i r tua l address whose Page Table En t ry
(PTE) had the Fau l t On Execute bit set.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-11

As a pa r t of ini t ia t ing the FOE fault, t he processor inval idates the Translat ion Buffer
ent ry t h a t caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementat ion only to inval idate entr ies
from the Ins t ruct ion-s t ream Translat ion Buffer on Fau l t
On Execute faults.

Note t h a t the Translat ion Buffer may reload and cache the old PTE value between
the t ime when the FOE fault invalidates the old value from the Translat ion Buffer
and the t ime when software upda tes the PTE in memory. Software t h a t depends on
the processor-provided invalidate m u s t t h u s be prepared to t ake another FOE fault
on a page after clearing the page's PTE<FOE> bit. The second fault will inval idate
the stale PTE from the Translat ion Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will t ake an initial FOE
fault and then an addit ional FOE fault on each processor. In practice, even a single
repeti t ion is unlikely.

Software may use FOE faults to implement access mode changes and protected ent ry
to Kernel mode, to collect page usage stat ist ics, and to detect programming errors
t h a t t ry to execute da ta .

6.3.2 Arithmetic Traps

An ar i thmet ic t r a p is an exception t h a t occurs as the resul t of performing an
ar i thmetic or conversion operation.

If integer register R31 or floating register F31 is specified as the dest inat ion of an
operation t h a t can cause an ar i thmet ic t r ap , it is UNPREDICTABLE whether the
t r a p will actually occur, even if t he operation would definitely produce an exceptional
result .

Ari thmetic t r aps are ini t iated in Kernel mode and push the exception stack frame
on the Kernel stack. The Register Write Mask is saved in R4, and the Exception
Summary pa ramete r is saved in R5. These a re described below.

When an ar i thmet ic exception condition is detected, several instruct ions may be
in various stages of execution. These instruct ions are allowed to complete before
the ar i thmet ic t r a p can be init iated. Some of these instruct ions may themselves
cause further ar i thmet ic t raps . Thus it is possible for several ar i thmet ic t r aps to be
reported simultaneously.

I t is also possible for the resul t of an instruct ion t h a t causes an ar i thmet ic t r a p to
be used as an operand in a subsequent instruct ion before the t r a p is t aken . If th is
would produce undesired behavior, software is responsible for inser t ing appropr ia te
TRAPB instruct ions to cause the t r a p to be recognized before the resul t is used.

Integer exceptional resul t s (integer overflow) can be forwarded to the address
calculation for load and store instruct ions, to the address calculation for j u m p
instruct ions, as the source da t a for a store instruction, or as the source da ta for a
conditional branch instruction. This can resul t in the generat ion of an inappropr ia te
address , t he storing of exceptional resul ts in memory, or an un in tended branch.

6-12 OpenVMS Alpha Software (II)

If th i s would produce undes i red behavior, software is responsible for inser t ing
appropr ia te TRAPB instruct ions to cause t he t r a p to be recognized before the resul t
is used.

6.3.2.1 Exception Summary Parameter

The Exception S u m m a r y pa rame te r records the various types of ar i thmet ic t r aps
t h a t can occur together. These types of t r ap s a re described in subsections below.

Figure 6-5: Exception Summary

63 7 6 5 4 3 2 1 0

Zero NlWl

Table 6-3: Exception Summary
Bit Description

Software Completion (SWC)
Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 6.3 for rules about using the SWC bit in a trap handler.

Invalid Operation (INV)
An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

Division by Zero (DZE)
An attempt was made to perform a floating divide operation with a divisor of zero.

Overflow (OVF)
A floating arithmetic or conversion operation overflowed the destination exponent.

Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

Inexact Result (INE)
A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

Integer Overflow (IOV)
An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-13

ï

1

2

3

4

5

6

6.3.2.2 Register Write Mask

The Register Write Mask pa rame te r records all regis ters t h a t were ta rge ts of
instruct ions t h a t set the bi ts in the exception summary register. There is a one-
to-one correspondence between bi ts in t he Register Write Mask quadword and the
register numbers . The quadword records, s t a r t ing a t bit 0 and proceeding r ight
to left, which of the regis ters RO through R31 , t h e n FO through F 3 1 , received an
exceptional result .

if the add overflows and the mult iply does not, t he OVF
bit is set in the exception summary, and the F 3 bit is
set in the register mask , even though the overflowed
sum in F3 can be overwri t ten wi th an in-range product
by the t ime the t r a p is t aken . (This code violates the
dest inat ion reuse rule for software completion. See
Common Architecture, Chapter 4 for the dest inat ion
reuse rules.)

The PC value saved in the exception stack frame is the vi r tual address of the next
instruction. This is defined as the vi r tual address of the first instruct ion not executed
after the t r a p condition was recognized.

6.3.2.3 Invalid Operation (INV) Trap

An INV t r a p is reported for most floating-point operate instruct ions with an input
operand t h a t is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity,
or IEEE denormal.

Float ing INV t r aps are always enabled. If th is t r a p occurs, t he resul t register is
wr i t ten with an UNPREDICTABLE value.

6.3.2.4 Division by Zero (DZE) Trap

A DZE t r a p is reported when a finite number is divided by zero. Float ing DZE
t r aps are always enabled. If th is t r a p occurs, the resul t register is wr i t ten with an
UNPREDICTABLE value.

6.3.2.5 Overflow (OVF) Trap

An OVF t r a p is reported when the destination's largest finite number is exceeded in
magni tude by the rounded t rue result . Float ing OVF t r aps are always enabled. If
th is t r a p occurs, the resul t register is wr i t ten wi th an UNPREDICTABLE value.

NOTE
For a sequence such as:

ADDF
MULF

F1,F2,F3
F4,F5,F3

6-14 OpenVMS Alpha Software (II)

6.3.2.6 Underflow (UNF) Trap

A U N F t r a p is reported when t h e dest ination's smallest finite number exceeds in
magni tude t he non-zero rounded t r u e resul t . Float ing U N F t r a p enable can be
specified in each floating-point operate instruct ion. If underflow occurs, t he resul t
register is wr i t t en wi th a t rue zero.

6.3.2.7 Inexact Result (INE) Trap

An INE t r a p is reported if t he rounded resul t of an IEEE operation is not exact.
INE t r a p enable can be specified in each IEEE floating-point operate instruction.
The unchanged resul t value is stored in all cases.

6.3.2.8 Integer Overflow (IOV) Trap

An IOV t r a p is reported for any integer operation whose t rue resul t exceeds the
dest inat ion regis ter size. IOV t r a p enable can be specified in each ar i thmet ic integer
operate instruct ion and each floating-point convert-to-integer instruct ion. If integer
overflow occurs, t he resul t register is wr i t t en wi th the t runca ted t r u e resul t .

6.3.3 Synchronous Traps

A synchronous t r a p is an exception condition t h a t occurs a t t he completion of the
operation t h a t caused the exception (or, if t he operat ion can only be part ial ly carried
out, a t t he completion of t h a t pa r t of the operation), bu t no successor instruct ion is
allowed to s tar t . All t r aps t h a t a re not ar i thmet ic t r aps a re synchronous t raps .

Some synchronous t r aps a re caused by PALcode instruct ions: BPT, BUGCHK,
CHMU, CHMS, CHME, and CHMK. For synchronous t r aps , t he PC saved in the
exception s tack frame is the address of the instruct ion immediately following the one
causing the t r a p condition. A CALL_PAL REI instruct ion to th is PC will continue
wi thout reexecuting the t r app ing instruct ion. The following subsections describe the
synchronous t r aps in detail .

6.3.3.1 Data Alignment Trap

All da t a m u s t be na tura l ly aligned or an a l ignment t r a p may be generated. Na tu r a l
a l ignment m e a n s t h a t da t a bytes a re on byte boundar ies , da t a words a re on word
boundar ies , d a t a longwords a re on longword boundar ies , and da t a quadwords a re
on quadword boundar ies .

A D a t a Alignment t r a p is genera ted by the ha rdware when an a t t emp t is made to
load or store a longword or quadword to/from a regis ter us ing an address t h a t does
not have the n a t u r a l a l ignment of t he par t icu lar da t a reference.

Da ta a l ignment t r ap s a re fixed up by the PALcode and are optionally reported to the
operat ing system unde r the control of the DAT bit. If t he bit is zero, the t r a p will
be reported. If t he bit is set, after t h e a l ignment is corrected, control is r e tu rned to
t he user. In e i ther case, if t he PALcode detects a LDx_L or STx__C instruction, no
correction is possible and an illegal operand exception is generated.

The system software is notified via the generat ion of a Kernel mode exception
through the Unaligned_Access SCB vector (280 1 6) The vi r tual address of the

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-15

unal igned da ta being accessed is stored in R4. R5 indicates whe ther the operation
was a read or a wri te (0 = read/load 1 = write/store).

PALcode may wri te par t ia l resul t s to memory wi thout probing to make sure all
wri tes will succeed when dealing wi th unal igned store operations.

If a memory managemen t exception condition occurs while reading or wri t ing pa r t
of the unal igned data , t he appropr ia te memory m a n a g e m e n t fault is generated.

Software should avoid da t a misa l ignment whenever possible since the emulat ion
performance penal ty may be as large as 100 to 1.

The Da ta Alignment t r a p control bit is included in the HWPCB a t offset +56 bit 63.
In order to change th is bit for the current ly executing process, t he DATFX IPR may
be wr i t ten via a CALL_PAL MTPR_DATFX instruct ion. This operation will also
upda te the value in the HWPCB.

6.3.3.2 Other Synchronous Traps

With the t r aps described in th is subsection, the SCB vector quadword is saved in
R2 and the SCB pa rame te r quadword is saved in R3. The change mode t r aps a re
ini t iated in the more privileged of the cur ren t mode and the t a rge t mode, while the
other t r aps are ini t ia ted in Kernel mode.

6.3.3.2.1 Breakpoint Trap

A Breakpoint t r a p is an exception t h a t occurs when a CALL_PAL BPT instruct ion
is executed; see Chapte r 2. Breakpoint t r aps are in tended for use by debuggers and
can be used to place breakpoints in a program.

Breakpoint t r aps are ini t ia ted in Kernel mode so t h a t system debuggers can capture
breakpoint t r aps t h a t occur while the user is executing system code.

6.3.3.2.2 Bugcheck Trap

A Bugcheck t r a p is an exception t h a t occurs when a CALL_PAL BUGCHK
instruction is executed; see Chapte r 2. Bugchecks a re used to log errors detected by
software.

6.3.3.2.3 Illegal Instruction Trap

An Illegal instruct ion Trap is an exception t h a t occurs when an a t t empt is made
to execute an instruct ion whose opcode is reserved to Digital, is a subset ted opcode
t h a t requires emulat ion on the host implementat ion, or is a privileged instruct ion
and the cur ren t mode is not Kernel.

6.3.3.2.4 Illegal Operand Trap

An Illegal Operand Trap occurs when an a t t empt is made to execute PALcode wi th
operand values t h a t a re illegal or reserved for future use by Digital.

Illegal operands include:

• An invalid combination of bi ts in the P S restored by the CALL_PAL REI
instruction.

6-16 OpenVMS Alpha Software (II)

• An unal igned operand passed to PALcode.

6.3.3.2.5 Generate Software Trap

A Genera te Software Trap is an exception t h a t occurs when a CALL_PAL GENTRAP
instruct ion is executed; see Chap te r 2. The in tended use is for low-level compiler-
genera ted code t h a t detects conditions such as divide-by-zero, range errors , subscript
bounds and negat ive s t r ing lengths .

6.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel t r a p is an exception t h a t occurs when a CALL_PAL CHMK
instruct ion is executed; see Chap te r 2. Change Mode to Kernel t r ap s a re ini t iated
in Kernel mode and push the exception frame on the Kernel stack.

6.3.3.2.7 Change Mode to Executive Trap

A Change Mode to Executive t r a p is an exception t h a t occurs when a CALL_PAL
CHME instruct ion is executed; see Chap te r 2. Change Mode to Executive t r aps a re
ini t ia ted in t he more privileged of t he cur ren t mode and Executive mode, and push
the exception frame on the t a rge t stack.

6.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor t r a p is an exception t h a t occurs when a CALL_PAL
CHMS instruct ion is executed; see Chap te r 2. Change Mode to Supervisor t r ap s are
ini t ia ted in t he more privileged of the cur ren t mode and Supervisor mode, and push
the exception frame on the t a rge t stack.

6.3.3.2.9 Change Mode to User Trap

A Change Mode to User t r a p is an exception t h a t occurs when a CALL_PAL CHMU
instruct ion is executed; see Chap te r 2. Change Mode to User t r aps a re ini t iated
in t he more privileged of the cur ren t mode and User mode, and push the exception
frame on the t a rge t stack.

6.4 Interrupts

The processor a rb i t ra tes in t e r rup t reques t s according to priority. When the priority
of an in t e r rup t reques t is h igher t h a n the cur ren t processor IPL, the processor will
ra ise t he IPL and service the in t e r rup t request . The in te r rup t service rout ine is
entered a t t he IPL of the in te r rup t ing source, in Kernel mode, and on the Kernel
stack. In t e r rup t reques ts can come from I/O devices, memory controllers, other
processors, or the processor itself.

The priority level of one processor does not affect the priority level of other
processors. Thus , in a mult iprocessor system, in t e r rup t levels alone cannot be used
to synchronize access to shared resources.

Synchronization wi th other processors in a mult iprocessor system involves a
combination of ra is ing t he IPL and executing an interlocking instruct ion sequence.
Raising the IPL prevents the synchronization sequence itself from being in te r rupted
on a single processor while the interlock sequence gua ran tees m u t u a l exclusion
with other processors. Alternately, one processor can issue explicit interprocessor

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-17

in te r rup ts (and wai t for acknowledgment) to pu t other processors in a known
software s ta te , t h u s achieving m u t u a l exclusion.

In some implementat ions , several instruct ions may be in various s tages of execution
simultaneously. Before the processor can service an in te r rup t request , all active
instruct ions m u s t be allowed to complete wi thout exception. Thus , when an
exception occurs in a current ly active instruction, the exception is ini t ia ted and
the exception stack frame buil t immediately before the in te r rup t is ini t ia ted and i ts
stack frame built.

The following events will cause an in ter rupt :

• Software in te r rup t s — IPL 1 to 15

• Asynchronous System Traps — IPL 2

• Passive Release in te r rup t s — IPL 20 to 23

• I/O Device in te r rup t s — IPL 20 to 23

• Interval Clock in te r rup t — IPL 22

• Interprocessor in te r rup t — IPL 22

• Performance Monitor in te r rup t — IPL 29

• Powerfail in te r rup t — IPL 30

In te r rup t s are ini t ia ted in Kernel mode and push the in te r rup t s tack frame of eight
quadwords onto the Kernel stack. The PC saved in the in te r rup t s tack frame is
the vi r tual address of the first instruct ion not executed after the in te r rup t condition
was recognized. A CALL_PAL REI instruct ion to the saved PC/PS will continue
execution a t the point of in ter rupt .

Each in te r rup t source h a s a separa te vector location (offset) wi thin the System
Control Block (SCB); see Section 6.6. With the exception of I/O device in te r rup ts ,
each of the above events h a s a unique fixed vector. I/O device in te r rup t s occupy a
range of vectors t h a t can be both statically and dynamically assigned. Upon ent ry to
the in te r rup t service rout ine, R2 contains the SCB vector quadword and R3 contains
the SCB pa ramete r quadword. For Corrected Er ro r in te r rup ts , R4 optionally locates
additional information; see Section 6.5.2.

In order to reduce in te r rup t overhead, no memory mapping information is changed
when an in te r rup t occurs. Therefore, t he instruct ions, da ta , and the contents of the
in te r rup t vector for the in te r rup t service rout ine m u s t be present in every process
a t the same vi r tual address .

In te r rup t service rout ines should follow the discipline of not lowering IPL below
the i r init ial level. Lowering IPL in th is way could resul t in an in te r rup t a t an
in termedia te level which would cause the stack nes t ing to be incorrect.

Kernel mode software may need to ra ise and lower IPL dur ing certain instruct ion
sequences t h a t m u s t synchronize wi th possible in te r rup t conditions (such as
powerfail). This can be accomplished by specifying the desired IPL and executing

6-18 OpenVMS Alpha Software (II)

a CALL_PAL M T P R J P L instruct ion or by executing a CALL_PAL REI instruct ion
t h a t res tores a P S t h a t contains t he desired IPL; see Chapte r 2.

6.4.1 Software Interrupts — IPLs 1 to 15
6.4.1.1 Software Interrupt Summary Register

The archi tecture provides fifteen priority in te r rup t levels for use by software (level
0 is also available for use by software bu t in te r rup t s can never occur a t th is level).
The Software In te r rup t S u m m a r y Register (SISR) stores a m a s k of pending software
in te r rup ts . Bit positions in th is m a s k which contain a 1 correspond to the levels on
which software in te r rup t s a re pending.

When the processor IPL drops below t h a t of the highest requested software in ter rupt ,
a software in te r rup t is ini t ia ted and the corresponding bit in t he SISR is cleared.

The SISR is a read-only in te rna l processor register which may be read by Kernel
mode software by executing a CALL_PAL MFPR_SISR instruction; see Section 5.3.

6.4.1.2 Software Interrupt Request Register

The Software In t e r rup t Request Register (SIRR) is a write-only in te rna l processor
register used for mak ing software in t e r rup t reques ts .

Kernel mode software may reques t a software in te r rup t a t a par t icular level by
executing a CALL_PAL MTPR_SIRR instruct ion; see Section 5.3.

If t he requested in te r rup t level is g rea te r t h a n the cur ren t IPL, the in te r rup t will
occur before the execution of the next instruct ion. If, however, t he requested level is
equal to or less t h a n the cur ren t processor IPL, the in te r rup t reques t will be recorded
in the Software In t e r rup t S u m m a r y Register (SISR) and deferred unt i l t he processor
IPL drops to the appropr ia te level.

Note t h a t no indication is given if the re is a l ready a reques t a t t he specified level.
Therefore, t he respective in te r rup t service rout ine m u s t not a s sume t h a t the re is a
one-to-one correspondence between in te r rup t s requested and in te r rup t s generated.
A valid protocol for genera t ing th i s correspondence is:

1. The reques ter places information in a control block and t h e n inser ts the control
block in a queue associated wi th the respective software in t e r rup t level.

2. The reques ter uses CALL_PAL MTPR_SIRR to reques t an in te r rup t a t the
appropr ia te level.

3. When enabl ing conditions arise, processor HW clears the appropr ia te SISR bit
as pa r t of ini t ia t ing the software in te r rupt .

4. The in te r rup t service rout ine a t t empt s to remove a control block from the reques t
queue. If t he re are no control blocks in t he queue, t he in te r rup t is dismissed wi th
a CALL_PAL REI instruction.

5. If a valid control block is removed from the queue, t he requested service is
performed and Step 3 is repeated.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-19

6.4.2 Asynchronous System Trap — IPL 2

Asynchronous System Traps (ASTs) are a m e a n s of notifying a process of events t h a t
are not synchronized wi th i ts execution, bu t which m u s t be deal t wi th in the context
of the process. An AST is ini t iated in Kernel mode a t IPL 2 when the cur ren t mode
is less privileged t h a n or equal to a mode for which an AST is pending and not
disabled, with PS<IPL> less t h a n 2; see Sections 6.7.6 and 4.3.

There are four separa te per-mode SCB vectors, one for each of Kernel, Executive,
Supervisor, and User modes.

On encounter ing an AST, the in te r rup t s tack frame is pushed on the Kernel stack;
the value of the PC saved in th is s tack frame is the address of the next instruct ion
to have been executed if t he in te r rup t had not occurred. The SCB vector quadword
is saved in R2 and the SCB pa rame te r quadword in R3.

6.4.3 Passive Release Interrupts — IPLs 20 to 23

Passive releases occur when the source of an in te r rup t g ran ted by a processor cannot
be determined. This can happen when the reques t ing I/O device de termines t h a t i t
no longer requires an in te r rup t after reques t ing one, or when a previously requested
in te r rup t ha s a l ready been serviced by ano ther processor in some multiprocessor
configurations. The in te r rup t handle r for passive releases executes a t t he priority
level of the in te r rup t request .

6.4.4 I/O Device Interrupts — IPLs 20 to 23

The archi tecture provides four priority levels for use by I/O devices. I/O device
in te r rup t s are requested when the device encounters a completion, a t tent ion, or
error condition and the respective in te r rup t is enabled.

6.4.5 Interval Clock Interrupt — IPL 22

The Interval Clock reques ts an in te r rup t periodically.

At least 1000 interval clock in te r rup t s occur per second. An ent ry in the HWRPB
contains the number of interval clock in te r rup t s per second t h a t occur in an actual
Alpha implementat ion, scaled up by 4096, and rounded to a 64-bit integer.

The accuracy of the interval clock m u s t be a t least 50 pa r t s per million (ppm).

HARDWARE/SOFTWARE NOTE
For example, an interval of 819.2 usee derived from a 10
MHz E the rne t clock and a 13-bit counter is acceptable.

To guaran tee software progress, t he interval clock
in te r rup t should be no more frequent t h a n the t ime it
t akes to do 500 ma in memory accesses. Over the life of
the archi tecture, th is interval may well decrease much
more slowly t h a n CPU cycle t ime decreases.

Other constra ints may apply to Secure Kernel systems.

6-20 OpenVMS Alpha Software (II)

6.4.5.1 Interprocessor Interrupt — IPL 22

Interprocessor in t e r rup t s a re provided to enable operat ing system software runn ing
on one processor to in t e r rup t activity on another processor and cause operat ing
system dependent actions to be performed.

6.4.5.1.1 Interprocessor Interrupt Request Register

The Interprocessor In t e r rup t Request Register (IPIR) is a write-only in ternal
processor register used for mak ing a reques t to in te r rup t a specific processor.

Kernel mode software may reques t to in te r rup t a par t icular processor by executing
a CALL.PAL M T P R J P I R instruct ion; see Section 5.3.

If t he specified processor is t he same as the cur ren t processor and the cur ren t IPL is
less t h a n 22, t hen the in te r rup t may be delayed and not ini t ia ted before the execution
of the next instruction.

Note tha t , like software in te r rup t s , no indication is given as to whe the r the re is
a l ready an interprocessor in t e r rup t pending when one is requested. Therefore,
t he interprocessor in te r rup t service rout ine m u s t not a s sume the re is a one-to-one
correspondence between in te r rup t s reques ted and in te r rup t s generated. A valid
protocol s imilar to t he one for software in t e r rup t s for genera t ing th i s correspondence
is:

1. The reques te r places information in a control block and t hen inser ts the control
block in a queue associated wi th the t a rge t processor.

2. The reques ter uses CALL_PAL M T P R J P I R to reques t an interprocessor
in t e r rup t on the t a rge t processor.

3. The interprocessor in te r rup t service rout ine on the t a rge t processor a t t empt s to
remove a control block from i ts reques t queue. If the re are no control blocks
remaining, the in te r rup t is dismissed wi th a CALL_PAL REI instruct ion.

4. If a valid control block is removed from the queue, t he specified action is
performed and Step 3 is repeated.

6.4.6 Performance Monitor Interrupts — IPL 29

These in te r rup t s provide some of the suppor t for processor or system performance
measu remen t s . The implementa t ion is processor or system specific.

6.4.7 Powerfall Interrupt — IPL 30

If t he system power supply backup option permi ts powerfail recovery, a Powerfail
in te r rup t is genera ted to each processor when power is about to fail.

In systems in which the backup option ma in ta ins only the contents of memory and
keeps system t ime with the BB_WATCH, the power supply reques ts a powerfail
i n t e r rup t to permi t volatile system s ta te to be saved. Prior to dispatching to the
powerfail i n t e r rup t service rout ine, PALcode is responsible for saving all system
s ta te which is not visible to system software. Such s ta te includes, bu t is not l imited
to, processor in te rna l regis ters and PALcode temporary variables .

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-21

PALcode is also responsible for saving the contents of any wri teback caches
or buffers, including the powerfail in te r rup t s tack frame. System software is
responsible for saving all other system s ta te . Such s ta te includes, bu t is not l imited
to, processor registers and wri teback cache contents . S ta te can be saved by forcing
all wr i t ten da ta to a backed-up pa r t of the memory subsystem; software may use
the CALL_PAL CFLUSH instruction.

The Powerfail i n t e r rup t will not be ini t ia ted unt i l t he processor IPL drops below
30. Thus , critical code sequences can block the power-down sequence by ra is ing the
IPL to 31 . Software, however, m u s t t ake ext ra care not to lock out the power-down
sequence for an extended period of t ime.

Explicit s ta te is not provided by the archi tecture for software to directly determine
whe ther there were outs tanding in te r rup t s when powerfail occurred. I t is t he
responsibility of software to leave sufficient information in memory so t h a t i t may
determine the proper action on power-up.

6.5 Machine Checks

A Machine Check, or mcheck, indicates t h a t a h a r d w a r e error condition was detected
and may or may not be successfully corrected by ha rdware or PALcode. Such
error conditions can occur e i ther synchronously or asynchronously wi th respect to
instruct ion execution. There are four types:

1. System Machine Check (IPL 31)

These machine checks a re genera ted by error conditions which are detected
asynchronously to processor execution bu t are not successfully corrected by
ha rdware or PALcode. Examples of system machine check conditions include
protocol errors on the processor-memory-interconnect and unrecoverable memory
errors .

System machine checks are always maskable and deferred unt i l processor IPL
drops below IPL 31 .

2. Processor Machine Check (IPL 31)

These machine checks indicate t h a t a processor in te rna l error was detected
and not successfully corrected by ha rdware or PALcode. Examples of processor
machine check conditions include processor in te rna l cache errors , t rans la t ion
buffer par i ty errors , or read access to a non-existent local I/O space location
(NXM).

Processor machine checks may be nonmaskable or maskable . If nonmaskable ,
they are ini t iated immediately, even if the processor IPL is 31 . If maskable , they
are deferred unt i l processor IPL drops below IPL 31 .

3. System Correctable Machine Check (IPL 20)

These machine checks are genera ted by error conditions t h a t a re detected
asynchronously to processor execution and are successfully corrected by
ha rdware or PALcode. Examples of system correctable machine check conditions
include single bit errors wi thin the memory subsystem.

6-22 OpenVMS Alpha Software (II)

System correctable machine checks a re always maskable and deferred unt i l
processor IPL drops below IPL 20.

4. Processor Correctable Machine Check (IPL 31)

These machine checks indicate t h a t a processor in te rna l error was detected
and successfully corrected by h a r d w a r e or PALcode. Examples of processor
correctable machine check conditions include corrected processor in te rna l cache
errors and corrected t rans la t ion buffer t a b errors .

Processor correctable machine checks m a y be nonmaskable or maskable . If
nonmaskable , they are ini t ia ted immediately, even if t he processor IPL is 31 .
If maskable , they are deferred unt i l processor IPL drops below IPL 3 1 .

Machine Checks a re ini t ia ted in Kernel mode, on the Kernel stack, and cannot be
disabled.

Correctable machine checks permi t t he pa t t e rn and frequency of cer ta in errors to be
captured. The delivery of these machine checks to system software can be disabled
by set t ing IPR MCES<4:3>, as described in Chapte r 5. Note t h a t se t t ing IPR
MCES<4:3> does not disable the generat ion of the machine check or t he correction of
the error, bu t r a t h e r suppresses t he repor t ing of t h a t correction to system software.

The PC in t he machine check stack frame is t h a t of t he next instruct ion t h a t would
have issued if t he machine check condition h a d not occurred. This is not necessarily
the address of the instruct ion immediately following the one encounter ing the error,
and in tervening instruct ions may have changed operands or o ther s ta te used by the
instruct ion encounter ing t h e error condition. A CALL_PAL REI instruct ion to th is
PC will simply continue execution from the point a t which the machine check was
taken .

NOTE
On machine checks, a meaningful PC is delivered on a
best-effort basis . The machine s ta te , processor registers ,
memory, and I/O devices may be inde terminate .

Machine checks m a y be deliberately genera ted by software, such as by probing non-
existent-memory dur ing memory sizing or searching for local I/O devices. In such
a case, t he DRAINA PALcode inst ruct ion can be called to force any outs tanding
machine checks to be t a k e n before continuing.

6.5.1 Software Response

The reaction of system software to machine checks is specific to the characterist ics
of the processor, platform, and system software. System software m u s t de termine if
operation should be discontinued on a n implementation-specific basis .

To assis t system software, PALcode provides a re t ry flag in the machine check logout
frame (see Figure 6—6. If set, t he s ta te of t he processor and platform ha rdware has
not been compromised; system software operation should be able to continue.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-23

If t he re t ry flag is clear, the s ta te of the processor is e i ther unknown or is known to
have been updated dur ing par t ia l execution of one or more instruct ions. System
software operation can continue only after system software determines t h a t the
ha rdware s ta te change permi ts and/or t akes corrective action.

PALcode should t ake appropr ia te implementation-specific actions prior to set t ing
the re t ry flag. PALcode should also a t t empt to ensure t h a t each encountered error
condition genera tes only one machine check.

IMPLEMENTATION NOTE
An impor tan t example of us ing the re t ry flag is read
NXM.

Also, a read NXM should not genera te both a Processor
Machine Check and a System Machine Check.

PALcode sets an in ternal Machine-Check-In-Progress flag in the Machine Check
Error Summary (MCES) register prior to ini t ia t ing a system or processor machine
check. System software m u s t clear t h a t flag to dismiss the machine check If a second
uncorrectable machine check ha rdware error condition is detected while the flag is
set, or if PALcode cannot deliver the machine check, PALcode forces the processor to
en ter console I/O mode, and subsequent actions, such as processor res ta r t , a re t a k e n
by the console. The REASON FOR HALT code is "double error abort encountered".

Similiarly, PALcode sets an in te rna l correctable Machine-Check-In-Progress flag in
the Machine Check Er ro r S u m m a r y (MCES) regis ter prior to ini t ia t ing a system
correctable error in te r rup t or processor correctable machine check. System software
m u s t clear t h a t flag to dismiss the condition and permi t the reuse of the logout area .
If a second correctable ha rdware error condition is detected while the flag is set, t he
error is corrected, bu t not reported. PALcode does not overwrite the logout a rea and
the processor r emains in program I/O mode.

6.5.2 Logout Areas

When a ha rdware error condition is encountered, PALcode optionally builds a logout
frame prior to pass ing control to the machine check service rout ine.

Figure 6-6: Corrected Error and Machine Check Logout Frame

R S SBZ

System Offset

Frame Size

CPU Offset

PALcode-Specific Information

CPU-Specific Information

System-Specific Information

:FRAME

:+8

:+16

:+CPU Offset

:+SYS Offset

:+FRAME_SIZE

6-24 OpenVMS Alpha Software (II)

Table 6-4: Corrected Error and Machine Check Logout Frame Fields

Offset Descr ip t ion

FRAME FRAME SIZE - Size in bytes of the logout frame including the FRAME SIZE
longword.

+04 FRAME FLAGS - Informational flags.

Bit Descr ip t ion

31 RETRY FLAG - Indicates whe the r execution can be resumed
after dismissing th i s machine check. Set on Corrected Error
in te r rup t s ; m a y be set on Machine Checks.

30 SECOND ERROR FLAG - Indicates t h a t a second correctable
error was encountered. Set on Corrected Er ro r in te r rup t s
when a correctable error was encountered while the re levant
correctable error bi t (PCE or SCE) is set in t he MCES register.
Clear on Machine Checks.

29 -0 SBZ.

+08 CPU OFFSET - Offset in bytes from the base of the logout frame to the
cpu-specific information. If 16 the frame contains no PALcode-specific
information. If CPU OFFSET is equal to SYS OFFSET, the frame contains
no cpu-specific information.

+12 SYS OFFSET - Offset in bytes from the base of the logout frame to the
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the
frame contains no system-specific information.

+16 PALCODE INFORMATION - PALcode-specific logout information.

+CPU OFFSET CPU INFORMATION - Cpu-specific logout information.

+SYS OFFSET SYS INFORMATION - System platform-specific logout information.

The logout frame is optional; t he service rout ine uses R4 to locate the frame, if
any. Upon en t ry to the service rout ine, R4 contains the byte offset of the logout
frame from the base of t he logout area . If no frame was built , R4 contains - 1
(FFFF F F F F F F F F F F F F 1 6) .

6.6 System Control Block

The System Control Block (SCB) specifies t he ent ry points for exception, in ter rupt ,
and machine check service rout ines . The block is from 8K to 32K bytes long, m u s t
be page aligned, and m u s t be physically contiguous. The P F N is specified by the
value of the System Control Block Base (SCBB) in te rna l register.

The SCB consists of from 512 to 2048 entr ies , each 16 bytes long. The first 8 bytes
of an entry, t he vector, specify the v i r tua l address of the service rout ine associated

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-25

with t h a t entry. The second 8 bytes, t he parameter , a re an a rb i t ra ry quadword value
to be passed to the service routine.

The S C B entr ies a re grouped into those for:

1. Fau l t s

2. Ari thmetic t r aps

3. Asynchronous system t r aps

4. Da ta a l ignment t r a p

5. Other synchronous t r aps

6. Processor software in te r rup t s

7. Processor ha rdware in te r rup t s

8. I/O device in te r rup t s

9. Machine checks

The first 512 entr ies (offsets 0000 th rough 1 F F 0 I 6) contain all archi tectural ly defined
and any statically allocated entr ies . All remain ing S C B entr ies , if any, are used
only for those I/O device in te r rup t vectors t h a t a re assigned dynamically by system
software. I t is the responsibility of t h a t software to ensure the consistency of t he
assigned vector and the S C B entry.

6.6.1 SCB Entries for Faults

The exception handle r for a fault executes wi th the IPL unchanged, in Kernel mode,
on the Kernel stack.

Table 6-5: SCB Entries for Faults
Byte
offset ig E n t r y n a m e

000 Unused

010 Floating disabled fault

020-070 Unused

080 Access Control Violation fault

090 Translation Not Valid fault

0A0 Fault on Read fault

0B0 Fault on Write fault

0C0 Fault on Execute fault

0A0-0F0 Unused

6-26 OpenVMS Alpha Software (II)

6.6.2 SCB Entries for Arithmetic Traps

The exception hand le r for an ar i thmet ic t r a p executes wi th t he IPL unchanged, in
Kernel mode, on the Kernel stack.

Table 6-6: SCB Entries for Arithmetic Traps

Byte

offset i6 Entry name

200 Arithmetic Trap

210-230 Unused

6.6.3 SCB Entries for Asynchronous System Traps (ASTs)

The in t e r rup t hand le r for an asynchronous system t r a p executes a t IPL 2, in Kernel
mode, on t he Kernel stack.

Table 6-7: SCB Entries for Asynchronous System Traps

Byte
offsetie Entry name

240 Kernel Mode AST

250 Executive Mode AST

260 Supervisor Mode AST

270 User Mode AST

6.6.4 SCB Entries for Data Alignment Traps

The exception handle r for a da t a a l ignment t r a p executes wi th the IPL unchanged
in Kernel mode, on the Kernel Stack.

Table 6-8: SCB Entries for Data Alignment Trap

Byte
offset ig Entry name

280 Unaligned_Access

290-3F0 Unused

6.6.5 SCB Entries for Other Synchronous Traps

The exception hand le r for a synchronous t r ap , o ther t h a n those described above,
executes wi th t he IPL unchanged, in t he mode and on the stack indicated below.
"MostPriv" indicates t h a t t he hand le r executes in e i ther the original mode or the
new mode, whichever is the most privileged.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-27

Table 6-9: SCB Entries for Other Synchronous Traps

400 Breakpoint Trap

410 Bug Check Trap

420 Illegal Instruction Trap

430 Illegal Operand Trap

440 Generate Software Trap

450 Unused

460 Unused

470 Unused

480 Change Mode to Kernel

490 Change Mode to Executive

4A0 Change Mode to Supervisor

4B0 Change Mode to User

4C0-4F0 Reserved for Digital

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

MostPriv

MostPriv

Current

6.6.6 SCB Entries for Processor Software Interrupts

The exception handle r for a processor software in te r rup t executes a t t he ta rge t IPL,
in Kernel mode, on the Kernel stack.

Table 6-10: Entries for Processor Software Interrupts
Byte
Offset! 6 E n t r y Name Targe t I P L 10

500 Unused

510 Software interrupt level 1 1

520 Software interrupt level 2 2

530 Software interrupt level 3 3

540 Software interrupt level 4 4

550 Software interrupt level 5 5

560 Software interrupt level 6 6

570 Software interrupt level 7 7

580 Software interrupt level 8 8

590 Software interrupt level 9 9

5A0 Software interrupt level 10 10

6-28 OpenVMS Alpha Software (II)

Byte
Offse t 6 E n t r y Name Mode

Table 6-10 (Cont.): Entries for Processor Software Interrupts

Byte
Offse t 6 E n t r y Name Targe t I P L 10

5B0 Software interrupt level 11 11

5C0 Software interrupt level 12 12

5D0 Software interrupt level 13 13

5E0 Software interrupt level 14 14

5F0 Software interrupt level 15 15

6.6.7 SCB Entries for Processor Hardware Interrupts

The in te r rup t handle r for a processor h a r d w a r e in te r rup t executes a t t he ta rge t IPL,
in Kernel mode, on the Kernel stack.

Table 6-11 : SCB Entries for Processor Hardware Interrupts

Byte
Offse t β E n t r y n a m e Targe t IPLio

600 Interval clock interrupt 22

610 Interprocessor interrupt 22

640 Powerfail interrupt 30

650 Performance monitor 29

680-6E0 Reserved — processor specific

6F0 Passive Release 20-23

Processor-specific SCB entr ies include those used by console devices (if any) or other
per ipherals dedicated to system suppor t functions.

6.6.8 SCB Entries for I/O Device Interrupts

The in te r rup t handle r for an I/O device in t e r rup t executes a t t he ta rge t IPL, in
Kernel mode, on t he Kernel stack. SCB entr ies for offsets of 8 0 0 i 6 th rough 7 F F 0 i 6

a re reserved for I/O device in te r rup ts .

6.6.9 SCB Entries for Machine Checks

The hand le r for machine checks executes in Kernel mode, on the Kernel stack. The
handle r for system correctable machine checks executes a t IPL 20; the handler for
all other machine checks executes a t IPL 31 .

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-29

Table 6 - 1 2 : SCB Entries for Machine Checks

Byte
Offset^ E n t r y Name Target I P L i 0

620 System correct, machine check 20

630 Processor correct, machine check 31

660 System machine check 31

670 Processor machine check 31

6-30 OpenVMS Alpha Software (II)

6.7 PALcode Support

6.7.1 Stack Writeability

In response to various exceptions, in te r rup t s , and machine checks, PALcode pushes
information on the Kernel stack. PALcode may wri te th is information without
first probing to ensure t h a t all such wri tes to the Kernel s tack will succeed. If a
memory m a n a g e m e n t exception occurs while pushing information, PALcode forces
the processor to en te r console I/O mode, and subsequent actions, such as processor
res ta r t , a re t a k e n by the console. The REASON FOR HALT code is "processor ha l ted
due to kernel-stack-not-valid ,\

6.7.2 Stack Residency

The User, Supervisor, and Executive s tacks for the cur ren t process do not need to be
resident . Software runn ing in Kernel mode can br ing in or allocate s tack pages as
TNV faults occur. However, since th is activity is t ak ing place in Kernel mode, the
Kernel s tack m u s t be fully resident .

The faults TNV, ACV, FOR, and FOW, occurring on Kernel mode references to the
Kernel stack, a re considered serious system failures from which recovery is not
possible. If any of these faults occur, PALcode forces the processor to en te r console I/O
mode, and subsequent actions, such as processor res ta r t , a re t aken by the console.
The REASON FOR HALT code is "processor ha l ted due to kernel-stack-not-valid".

6.7.3 Stack Alignment

Stacks m a y have a rb i t ra ry byte a l ignment , bu t performance may suffer if a t least
octaword a l ignment is not ma in ta ined by software.

PALcode creates stack frames in response to exceptions and in te r rup ts . Before doing
so, t he t a rge t s tack is aligned to a 64-byte boundary by se t t ing t h e six low bi ts of the
t a rge t S P to 000000 2. The previous value of these bi ts is stored in t he SP_ALIGN
field of the saved P S in memory, for use by a CALL_PAL REI instruct ion.

Software-constructed stack frames m u s t be 64 byte aligned and have SP_ALIGN
properly set; otherwise, a CALL_PAL REI instruct ion will t ake an illegal operand
t r ap .

6.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions and in te r rup t s and machine checks a re ini t ia ted by PALcode with
in te r rup t s disabled. When an exception, in te r rupt , or machine check, is init iated,
the associated SCB vector is read to de termine the address of the service routine.
PALcode t hen a t t empt s to push the PC, PS , and R2..R7 onto t he t a rge t stack. When
an in te r rup t (software or h a r d w a r e bu t not AST) is ini t iated, PS<IP> is set to 1 to
indicate an in t e r rup t is in progress. Additional pa r ame te r s may be passed in R4
and R5 on exceptions and machine checks.

Dur ing the a t t emp t to push th is information, the exceptions (faults) TNV, ACV, and
FOW can occur:

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-31

• If any of those faults occur when the t a rge t s tack is User, Supervisor, or
Executive, t hen the fault is t a k e n on the Kernel stack.

• If any of those faults occur when the t a rge t s tack is t he Kernel stack, PALcode
forces the processor to en ter console I/O mode, and subsequent actions, such as
processor res ta r t , a re t aken by the console. The REASON FOR HALT code is
"processor ha l ted due to kernel-stack-not-valid".

6.7.5 Initiate Exception or Interrupt or Machine Check Model
check_f or_exception__or__interrupt_or_mcheck :

IF NOT {ready__to__initiate_exception OR
ready__to__initiate_interrupt OR
ready__to_initiate_mcheck} THEN

BEGIN
{fetch next instruction}
{decode and execute instruction}

END
ELSE

BEGIN
{wait for instructions in progress to complete}

! clear interrupt pending
tmp <- 0

IF {unmaskable mcheck pending} THEN
BEGIN

{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<0> = 1 } THEN

{enter console}
ELSE IF {uncorrectable} THEN

new_mode <— Kernel
new_ipl <— 31

! set mcheck error flag
MCES<0> <- 1

ELSE IF {reporting enabled} THEN
new_mode «— Kernel
new_ji.pl <— 31
MCES<2> <- 1

END
END

ELSE IF {data alignment trap} THEN
new_mode <— Kernel

ELSE IF {synchronous trap} THEN
CASE {opcode} OF

{back up implementation specific state if necessary}
CHME: new_mode <— min(PS<CM>,Executive)
CHMS: new_mode <— min(PS<CM>,Supervisor)
CHMU: new_mode <— min(PS<CM>,User)
otherwise: new_mode +- Kernel

ENDCASE

6-32 OpenVMS Alpha Software (II)

http://new_ji.pl

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN

{back up implementation specific state if necessary}
IF {MCES<0> = 1 } THEN

{enter console}
ELSE

new__mode «— Kernel
new__ipl <— 31
MCES<0> «— 1 ! set mcheck error flag

END
END

ELSE
new_mode <— Kernel

END

IPR_SP[PS<CM>] <- SP
new_sp <— IPR_JSP [new__mode]

IF {exception pending} THEN
BEGIN

{back up implementation specific state if necessary}
new_ipl *- PS<IPL>

END

ELSE IF {interrupt pending} THEN
new_ipl «— {interrupt source IPL}
tmp <— 1 ! set interrupt pending

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN

new_ipl <— 20
MCES<1> «- 1

END

save_align <— new__sp<5:0>
new_sp<5:0> <- 0

PUSH(PS OR LEFT_SHIFT(save_align,56), old__pc, new_mode)
PUSH(R7f R6, newjnode)
PUSH(R5f R4, new_mode)
PUSH(R3, R2, new_mode)

PS<SW> *- 0
PS<CM> new__mode
PS<IP> <- tmp
PS<IPL> 4 - new_ipl
SP <— new_sp

IF {memory management fault} THEN
R4 <- VA
R5 «- MMF

END

IF {data alignment trap} THEN
R4 <- VA
R5 <— { 0 if read/load 1 if write/store }

END

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-33

IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}

R4 <— logout_area__of fset
ELSE

R4 «- -1
END

END

IF {arithmetic Trap} THEN
R4 «- register write mask
R5 <— exception summary

END

IF {software interrupt} THEN
SISR «- SISR AND NOT{ 2**{ PRIORITY_ENCODE(SISR) } }

END

vector <— {exception or interrupt or mcheck SCB offset}

R2 4 - (SCBB + vector)
R3 <- (SCBB + vector + 8)
PC 4 - R2

END

GOTO check_for_exception_or_interrupt_or__mcheck

PROCEDURE PUSH(first, last, mode)
BEGIN

IF ACCESS(new_sp - 16, mode) THEN
BEGIN

(new__sp - 8) <— first
(new_sp - 16) <— last
new_sp <— new__sp - 16
RETURN

END
ELSE

{initiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}

END
END

6.7.6 PALcode Interrupt Arbitration

The following sections describe the logic for the in te r rup t conditions produced by the
specified operation.

6.7.6.1 Writing the AST Summary Register

Writing the ASTSR in terna l processor register (see Section 5.3) reques ts an AST for
any of the four processor modes. This may reques t an AST on a formerly inactive
level and t h u s cause an AST in ter rupt .

The logic required to check for th is condition is:

ASTSR<3:0> <- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6-34 OpenVMS Alpha Software (II)

6.7.6.2 Writing the AST Enable Register

Writ ing t he ÄSTEN in te rna l processor regis ter (see Section 5.3) enables ASTs for
any of the four processor modes. This m a y enable an AST on a formerly inactive
level and t h u s cause an AST in te r rup t .

The logic required to check for th is condition is:

ASTEN<3:0> <- {ASTEN<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6.7.6.3 Writing the IPL Register

Writing t he IPL in terna l processor regis ter (see Section 5.3) changes the current
IPL. This may enable an AST or software in te r rup t on a formerly inactive level and
t h u s cause an AST or software in te r rupt .

The logic required to check for this condition is:

PS<IPL> «- R16<4:0>

! check for software interrupt at level 2..15

IF {RIGHT_SHIFT({SISR AND FFFCig }, PS<IPL> + 1) NE 0} THEN
{initiate software interrupt at IPL of high bit set in SISR)

! check for AST

IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}

6.7.6.4 Writing the Software Interrupt Request Register

Writ ing the SIRR in terna l processor register (see Section 5.3) reques ts a software
in te r rup t a t one of the fifteen software in te r rup t levels. This m a y cause a formerly
inactive level to cause a software in te r rupt .

The logic required to check for th i s condition is:

SISR<level> «- 1
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

6.7.6.5 Return from Exception or Interrupt

The CALL_PAL REI instruct ion (see Chap te r 2) wri tes both the Cur ren t Mode and
IPL fields of the PS ; see Section 6.2. This may enable a formerly disabled AST or
software in te r rup t to occur.

The logic required to check for this condition is:

PS «- New PS

I check for software interrupt at level 2..15

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-35

IF {RIGHT_SHIFT({SISR AND FFFCiß }, PS<IPL> + 1) NE 0} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

tmp «- NOT LEFT_SHIFT(1110(bin), PS<CM>)
IF {{tmp AND ÄSTEN AND ASTSR}<3:0> NE 0} AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}

6.7.6.6 Swap AST Enable

Swapping the AST enable s ta te for the Cur ren t Mode resul t s in wri t ing the ÄSTEN
internal processor register (see Section 5.3). This may enable a formerly disabled
AST to cause an AST in ter rupt .

The logic required to check for th is condition is:

RO «- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» <- R16<0>

IF ASTEN<PS<CM» AND ASTSR<PS<CM» AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

6.7.7 Processor State Transition Table

Table 6-13 shows the operations t h a t can produce a s ta te t rans i t ion and the specific
t ransi t ion produced. For example, if a processor's init ial s ta te is Supervisor mode, i t
is not possible for the processor to t rans i t ion to a program ha l t condition. A processor
can only t ransi t ion to program ha l t from Kernel mode.

In Table 6 -13 :

• REI increases mode or lowers IPL.

• MTPR changes IPL, or is a CALL_PAL M T P R A S T S R
or CALL_PAL MTPR_ASTEN instruct ion t h a t causes an in te r rup t request .

• Exc is a s ta te change caused by an exception.

• Int is a s ta te change caused by an in ter rupt .

• Mcheck is a s ta te change caused by a machine check.

6-36 OpenVMS Alpha Software (II)

Table 6-13: Processor State Transitions

Initial State: Final State:

User Super. Exec. Kernel
Program
Halt

User CHMU CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Supervisor REI CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Executive REI REI CHME CHMK Not Possible
REI Exc

Int
Mcheck
SWASTEN

Kernel REI REI REI CHMK HALT
REI
Int
Exc
Mcheck
MTPR
SWASTEN

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-37

Part III DEC OSF/1 Alpha Software

Thi s sect ion descr ibes how D E C OSF/1 o p e r a t i n g
s y s t e m r e l a t e s to t h e A l p h a a r c h i t e c t u r e a n d
inc ludes t h e following c h a p t e r s :

1. I n t roduc t ion to D E C OSF/1 A l p h a

2. OSF/1 PALcode I n s t r u c t i o n Descr ip t ions

3 . OSF/1 M e m o r y M a n a g e m e n t

4. OSF/1 Process S t r u c t u r e

5. OSF/1 Excep t ions a n d I n t e r r u p t s

α

Chapter 1

Introduction to DEC OSF/1 Alpha (III)

The goals of th is design are to provide a ha rdware implementa t ion independent
interface between the h a r d w a r e and DEC OSF/1 Alpha. The interface needs to
provide t he needed abstract ions to minimize the impact of different ha rdware
implementa t ions on the operat ing system. The interface also needs to be low in
overhead to support high-performance systems. Last ly the interface needs to only
support the features used by DEC OSF/1 Alpha.

The register usage in th is interface is based on the cur ren t calling s t anda rd used by
DEC OSF/1 Alpha. If t he calling s t anda rd changes, th is interface will be changed
to reflect t ha t . The cur ren t calling s t anda rd register usage is shown in Table 1-1 .

Table 1-1: DEC OSF/1 Alpha Register Usage
Regis te r
Name

Software
Name

Use a n d
l inkage

rO vO Used for expression evaluations and to hold integer function
results.

r l . . r8 t0..t7 Temporary registers; not preserved across procedure calls.

r9..rl4 s0..s5 Saved registers; their values must be preserved across
procedure calls.

r l 5 FP or s6 Frame pointer or a saved register.

rl6..r21 a0..a5 Argument registers; used to pass the first 6 integer type
arguments; their values are not preserved across procedure
calls.

r22..r25 t8. . t l l Temporary registers; not preserved across procedure calls.

r26 ra Contains the return address; used for expression evaluation.

r27 ρ ν or t l 2 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across procedure
calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value 0.

Introduction to DEC OSF/1 Alpha (III) 1-1

1.1 Programming Model

The programming model of the machine is the combination of the s ta te visible e i ther
directly via instruct ions, or indirectly via actions of the machine. The following four
tables define constants , s ta te variables, t e rms , and subrout ines used in t he res t of
the document.

1.1.1 Code Flow Constants

Table 1-2: Code Flow Constants
Term Meaning a n d va lue

IPL = 2:0

maxCPU

mode = 3

pageSize

vaSize

The range 2:0 used in the PS to access the IPL field of the PS
(PS<IPL>).

The maximum number of processors in a given system.

Used as a subscript in PS to select current mode (PS<mode>).

Size of a page in an implementation in bytes.

Size of virtual address in bits in a given implementation.

1.1.2 Machine State Terms

Table 1-3: Machine State Terms
Term Mean ing

ASN An implementation-dependent size register to hold the current
address space number (ASN). The size and existence of ASN is an
implementation choice.

entArith<63:0> The arithmetic trap entry address register. The entArith is an
internal processor register that holds the dispatch address on an
arithmetic trap. There can be a hardware register for the entArith
or the PALcode can use private scratch memory.

entIF<63:0> The instruction fault entry address register. The entIF is an internal
processor register that holds the dispatch address on an instruction
fault. There can be a hardware register for the entIF or the PALcode
can use private scratch memory.

entlnt<63:0> The interrupt entry address register. The entlnt is an internal
processor register that holds the dispatch address on an interrupt.
There can be a hardware register for the entlnt or the PALcode can
use private scratch memory.

entMM<63:0> The memory-management fault entry address register. The entMM
is an internal processor register that holds the dispatch address on
a memory-management fault. There can be a hardware register for
the entMM or the PALcode can use private scratch memory.

1-2 DEC OSF/1 Alpha Software (III)

The system call entry address register. The entSys is an internal
processor register that holds the dispatch address on an callsys
instruction. There can be a hardware register for the entSys or the
PALcode can use private scratch memory.

The unaligned fault entry address register. The entUna is an internal
processor register that holds the dispatch address on an unaligned
fault. There can be a hardware register for the entUna or the PALcode
can use private scratch memory.

The floating-point enable register. The FEN is a one-bit register that
is used to enable or disable floating-point instructions. If a floating-
point instruction is executed with FEN equal to zero, a FEN fault is
initiated.

The current instruction being executed. This is a fake register used
in the flows to CASE on different instructions.

A per-processor state bit. The intr_flag bit is cleared if that processor
executes an rti or retsys instruction.

The kernel global pointer. The KGP is an internal processor register
that holds the kernel global pointer that is loaded into R15, the GP,
when an exception is initiated. There can be a hardware register for
the KGP or the PALcode can use private scratch memory.

The kernel stack pointer. The KSP is an internal processor register
that holds the kernel stack pointer while in user mode. There can be
a hardware register for the KSP or the storage space in the PCB can
be used.

A one-bit register that is used by the load locked and store conditional
instructions.

The program counter. The PC is a pointer to the next instruction in
the flows. The low-order two bits of the PC always read as zero and
writes to them are ignored.

The process control block. The PCB holds the state of the process.

The process control block base address register. The PCBB holds the
address of the PCB for the current process.

The processor status. The PS is a four-bit register that stores the
current mode in bit <3> and stores the three-bit IPL in bits <2:0>.
The mode is 0 for kernel and 1 for user.

The page table base register. The PTBR contains the physical page
frame number (PFN) of the highest level (level 1) page table.

Table 1-3 (Cont.): Machine State Terms

Introduction to DEC OSF/1 Alpha (III) 1-3

Term Mean ing

entSys<63:0>

entUna<63:0>

FEN<0>

ins t ruc t iona l :0>

intr_flag

KGP<63:0>

KSP<63:0>

lock_flag<0>

PC<63:0>

PCB

PCBB<63:0>

PS<3:0>

PTBR<63:0>

Table 1-3 (Cont.): Machine State Terms

Term Mean ing

SP<63:0>

sysvalue<63:0>

unique<63:0>

USP<63:0>

VPTPTR<63:0>

whami<63:0>

Another name for R30. The SP points to the top of the current stack.
PALcode only accesses the kernel stack. The kernel stack must
be quadword aligned whenever PALcode reads or writes it. If the
PALcode accesses the kernel stack and the stack is not aligned, a
kernel-stack-not-valid halt is initiated. Although PALcode does not
access the user stack, that stack should also be at least quadword
aligned for best performance.

The system value register. The sysvalue holds the per-processor
unique value. There can be a hardware register for the sysvalue
register or the storage space in the PALcode scratch memory can be
used.
The sysvalue register can only be accessed by kernel mode code and
there is one sysvalue register per CPU.

The process unique value register. The unique register holds the
per-process unique value. There can be a hardware register for the
unique register or the storage space in the PCB can be used.
The unique register can be accessed by both user and kernel code and
there is one unique register per process.

The user stack pointer. The USP is an internal processor register
that holds the user stack pointer while in kernel mode. There can be
a hardware register for the USP or the storage space in the PCB can
be used.

The virtual page table pointer. The VPTPTR holds the virtual address
of the first level page table.

The processor number of the current processor. This number is in the
range 0..maxCPU-l.

1.1.3 Code Flow Terms

Table 1-4: Code Flow Terms

Term Mean ing

opDec An attempt was made to execute a reserved instruction or execute a
privileged instruction in user mode.

1-4 DEC OSF/1 Alpha Software (III)

Chapter 2

OSF/1 PALcode Instruction Descriptions (III)

2.1 Unprivileged PALcode Instructions

Table 2 -1 l ists the OSF/1 PALcode unprivileged inst ruct ion mnemonics , names , and
t h e envi ronment from which they can be called:

Table 2 - 1 : Unprivileged OSF/1 PALcode Instructions
Mnemonic Name Call ing env i ronmen t

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes

callsys System call User mode

gentrap Generate trap Kernel and user modes

imb I-Stream memory barrier Kernel and user modes
Described in Common Architecture, Chap-
ter 6

rdunique Read unique Kernel and user modes

wrunique Write unique Kernel and user modes

OSF/1 PALcode Instruction Descriptions (III) 2-1

2.1.1 Breakpoint Trap

Format:

bpt

Operation:

temp <— PS
if (ps<mode> NE 0) then

USP «- SP
SP <- KSP
PS <- 0

endif
SP <- SP - {6 * 8}
(SP+00) + - temp
(SP+08) <— PC
(SP+16) < - GP
(SP+24) «- aO
(SP+32) <- al
(SP+40) <- a2
aO <- 0
GP <- KGP
PC <- entIF

! PALcode format

! Mode is user so switch to kernel

Exceptions:

Kernel s tack not valid

Instruction mnemonics:

bpt Breakpoint t r a p

Description:

The breakpoint t r a p (bpt) instruct ion switches mode to kernel , bui lds a stackframe
on the kernel stack, loads the G P wi th the KGP, loads a value of 0 into aO, and
dispatches to the breakpoint code pointed to by the en t IF register. The regis ters
a l . . a2 a re UNPREDICTABLE on ent ry to the t r a p handler . The saved PC a t (SP+08)
is t he address of the instruct ion following t he t r a p instruct ion t h a t caused the t r ap .

Notes:

• The opcode and function code for the bpt instruct ion a re t he same in t he
OpenVMS and the OSF/1 PALcode.

2-2 DEC OSF/1 Alpha Software (III)

2.1.2 Bugcheck Trap

Format:

bugchk ! PALcode format

Operation:

temp <— P S
if (PS<mode> NE 0) then

USP <— SP ! Mode is user so switch to kernel
S P <- KSP
PS <- 0

endif
SP «— SP - {6 * 8}
(SP+00) <- temp
(SP+08) <- PC
(SP+16) «- GP
(SP+24) <- aO
(SP+32) <- al
(SP+40) <- a2
aO <- 1
GP <- KGP
PC <- entIF

Exceptions:

Kernel s tack not valid

Instruction mnemonics:

bugchk Bugcheck t r a p

Description:

The bugcheck t r a p (bugchk) instruct ion switches mode to kernel , builds a stackframe
on the kernel stack, loads the G P wi th the KGP, loads a value of 1 into aO, and
dispatches to the breakpoint code pointed to by the en t IF register. The registers
a l . . a2 a re UNPREDICTABLE on en t ry to t he t r a p handler . The saved PC a t (SP+08)
is the address of the instruct ion following the t r a p instruct ion t h a t caused the t r ap .

Notes:

• The opcode and function code for the bugchk instruct ion are the same in the
OpenVMS and the OSF/1 PALcode.

OSF/1 PALcode Instruction Descriptions (III) 2-3

2.1.3 System Call

Format:

callsys ! PALcode format

Operation:

if (PS<mode> EQ 0) then
machineCheck

endif
USP <- SP
SP <- KSP
PS 4- 0
SP <— SP - {6*8}
(SP+00) «- 8
(SP+08) <- PC
(SP+08) <- GP
GP «- KGP
PC <— entSys

Exceptions:

Machine check—invalid kernel mode callsys

Kernel s tack not valid

Instruction mnemonics:

callsys System call

Description:

The system call (callsys) instruct ion is supported only from user mode. (Issuing a
callsys from kernel mode causes a machine check exception).

The callsys instruct ion switches mode to kernel and builds a callsys s tack frame.
The GP is loaded wi th the KGP. The exception t hen dispatches to t he system call
code pointed to by the entsys register. On en t ry to the callsys code, the scratch
registers t 8 . . t l l a re UNPREDICTABLE.

! Mode=kernel

! PS of mode=user, IPL=0

2-4 DEC OSF/1 Alpha Software (III)

2.1.4 Generate Trap

Format:

gen t rap ! PALcode format

Operation:

temp <— PS
if (PS<mode> NE 0) then

USP «— SP ! Mode is user so switch to kernel
SP <- KSP
PS 0

endif
SP <- SP - {6 * 8}
(SP+00) <- temp
(SP+08) <- PC
(SP+16) <- GP
(SP+24) <- aO
(SP+32) <- al
(SP+40) <- a2
aO <- 2
GP <- KGP
PC entIF

Exceptions:

Kernel s tack not valid

Instruction mnemonics:

gen t rap Genera te t r a p

Description:

The genera te t r a p (gentrap) instruct ion switches mode to kernel , builds a stackframe
on the kernel stack, loads t h e G P wi th t he KGP, loads a value of 2 into aO, and
dispatches to the breakpoint code pointed to by the en t IF register. The registers
a l . . a2 a re UNPREDICTABLE on en t ry to t he t r a p handler . The saved PC a t (SP+08)
is the address of the instruct ion following the t r a p instruct ion t h a t caused the t r ap .

Notes:

• The opcode and function code for t he gen t rap instruct ion are the same in the
OpenVMS and the OSF/1 PALcode.

OSF/1 PALcode Instruction Descriptions (III) 2-5

2.1.5 Read Unique Value

Format:

rdunique ! PALcode format

2-6 DEC OSF/1 Alpha Software (III)

Operation:

vO <— unique

Exceptions:

None

Instruction mnemonics:

rdunique Read unique value

Description:

The read unique value (rdunique) instruct ion r e tu rn s the process unique value in
vO. The wri te unique value (wrunique) instruction, described in Section 2.1.6, sets
the process unique value register.

Notes:

• The opcode and function code for the rdunique instruct ion are the same in the
OpenVMS and the OSF/1 PALcode.

2.1.6 Write Unique Value

Format:

wrunique ! PALcode format

OSF/1 PALcode Instruction Descriptions (III) 2-7

Operation:

unique <— aO

Exceptions:

None

Instruction mnemonics:

wrunique Write un ique value

Description:

The wri te un ique value (wrunique) inst ruct ion sets t he process unique register to
the value passed in aO. The read unique value (rdunique) instruct ion, described in
Section 2.1.5, r e t u r n s the process un ique value.

Notes:

• The opcode and function code for t he wrunique instruct ion a re the same in the
OpenVMS and t h e OSF/1 PALcode.

2.2 Privileged OSF/1 PALcode Instructions

The Privileged OSF/1 PALcode instruct ions provide an abs t rac ted interface to control
the privileged s ta te of the machine.

Table 2 - 2 : Privileged OSF/1 PALcode Instructions
Mnemonic Name

halt Halt the processor
Described in Common Architecture, Chapter 6

rdps Read processor status

rdusp Read user stack pointer

rdval Read system value

retsys Return from system call

rti Return from trap, fault, or interrupt

swpctx Swap process context

swpipl Swap IPL

tbi TB (translation buffer) invalidate

whami Who am I

wrent Write system entry address

wrfen Write floating-point enable

wrkgp Write kernal global pointer

wrvptptr Write virtual page table pointer

2-8 DEC OSF/1 Alpha Software (III)

2.2.1 Read Processor Status

Format:

rdps ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO <- PS

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdps Read processor s t a tus

Description:

The read processor s t a tus (rdps) ins t ruct ion r e t u r n s t he P S in vO. On r e tu rn from
the rdps instruction, regis ters tO and t 8 . . t l l a re UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-9

2.2.2 Read User Stack Pointer

Format:

rdusp ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO <- USP

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdusp Read user s tack pointer

Description:

The read user stack pointer (rdusp) instruct ion r e tu rn s t he user stack pointer
in vO. The user stack pointer is wr i t ten by the wrusp instruction, described in
Section 2.2.13. On r e t u r n from the rdusp instruction, regis ters tO and t 8 . . t l l a re
UNPREDICTABLE.

2-10 DEC OSF/1 Alpha Software (III)

2.2.3 Read System Value

Format:

rdval '.PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO <— sysvalue

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdval Read system value

Description:

The read system value (rdval) instruct ion r e tu rn s t he sysvalue in vO, allowing access
to a 64-bit per-processor value for use by the operat ing system. On r e t u r n from the
rdval instruction, regis ters tO and t 8 . . t l l a re UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-11

2.2.4 Return From System Call

Format:

retsys ! PALcode format

Operation:

if {PS<mode> EQ 1} then
{Initiate opDec fault}

endif
tmp «- (SP+08)
GP «- (SP+16)
KSP <- SP + {6*8}
SP <- USP
intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag
PS <— 8 ! Mode=user
PC <— tmp

Exceptions:

Opcode reserved to Digital

Kernel s tack not valid (halt)

Instruction mnemonics:

retsys Re tu rn from system call

Description:

The r e tu rn from system call (retsys) instruct ion pops t he r e tu rn address and the user
mode global pointer from the kernel stack. I t t hen saves the kernel s tack pointer,
sets t he mode to user, sets t he IPL to zero, and enters the user mode code a t the
address popped off the stack.

2-12 DEC OSF/1 Alpha Software (III)

2.2.5 Return From Trap, Fault or Interrupt

Format:

r t i ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
tempps «- (SP+0)
temppc <- (SP+8)
GP <- (SP+16)
aO 4 - (SP+24)
al <- (SP+32)
a2 <- (SP+40)
SP <- SP + {6 * 8}
if { tempps<3> EQ 1} then

PC «— temppc

Exceptions:

Opcode reserved to Digital

Kernel s tack not valid (halt)

Instruction mnemonics:

r t i Re tu rn from t r ap , fault, or in te r rup t

Description:

The r e tu rn from fault, t r ap , or in t e r rup t (rti) ins t ruct ion pops regis ters (a0. .a3, and
GP), t he PC, and the PS , from the kernel stack. If t he new mode is user, the kernel
s tack is saved and the user s tack is restored.

KSP <- SP
SP <- USP
tempps «— 8

! New mode is user

endif
intr_flag = 0
lock_flag = 0
PS <- tempps<3:0>

! Clear the interrupt flag
! Clear the load lock flag
! Set new PS

OSF/1 PALcode Instruction Descriptions (III) 2-13

2.2.6 Swap Process Context

Format:

swpctx

Operation:

! PALcode format

1 Save current state

! Return old PCBB
! Switch PCBB
! Restore new state

if (PS<mode> EQ 1)
{Initiate opDec fault}

endif
(PCBB) <- SP
(PCBB+8) <- USP
tmp <- PCC
tmpl «- tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> <- tmpl<31:0>
vO <- PCBB
PCBB aO
SP +- (PCBB)
USP *- (PCBB+8)
oldPTBR <- PTBR
PTBR <- (PCBB+16)
tmpl <- (PCBB+24)
PCC<63:32> <- {tmpl - tmp}<31:0>
FEN <- (PCBB+40)
if {process unique register implemented} then

(vO+32) «— unique
unique «- (PCBB+32)

endif
if {ASN implemented}

ASN +- tmpl<63:32>
else

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=0}

endif
endif

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swpctx Swap process context

2-14 DEC OSF/1 Alpha Software (III)

Description:

The swap process context (swpctx) instruct ion saves the cur ren t process da ta in
the cur ren t PCB. Then swpctx switches to t he PCB passed in aO and loads the
new process context. The old PCBB is r e tu rned in vO. On r e t u r n from the swpctx
instruct ion, regis ters tO, t 8 . . t l l , and aO a re UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-15

2.2.7 Swap IPL

Format:

swpipl ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO <- PS<IPL>
PS<IPL> <- a0<2:0>

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swpipl Swap IPL

Description:

The swap IPL (swpipl) instruct ion r e tu rns the cur rent value of the PS<IPL> bits in
vO and sets the IPL to the value passed in aO. On r e tu rn from the spwipl instruction,
registers tO, t 8 . . t l l , and aO are UNPREDICTABLE.

2-16 DEC OSF/1 Alpha Software (III)

2.2.8 TB Invalidate

Format:

tbi ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case aO begin

1: I tbisi
{Invalidate ITB entry for va=al}
break;

2: ! tbisd
{Invalidate DTB entry for va=al}
break;

3: ! tbis
{Invalidate both ITB and DTB entry for va=al}
break;

-1: l tbiap
{Invalidate all TB entries with ASM=0}
break;

-2: ! tbia
{Flush all TBs}
break;

otherwise:
break;

endcase

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

tbi TB (t ransla t ion buffer) inval idate

Description:

The TB inval idate (tbi) ins t ruct ion removes specified entr ies from the I and D
t rans la t ion buffers (TBs) when t he mapp ing changes. The tbi instruct ion removes
specific en t ry types based on a CASE selection of the value passed in register
aO. On r e t u r n from the tbi instruct ion, regis ters tO, t 8 . . t l l , aO, and a l are
UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-17

2.2.9 Who Am I

Format:

whami ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO <— whami

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

whami Who a m I

Description:

The who am I (whami) instruct ion r e tu rn s the processor n u m b e r for the current
processor in vO. The processor number is in t he range 0 to the number of processors
minus one (0 . .maxCPU- l) t h a t can be configued in t he system. On r e tu rn from the
whami instruction, registers tO and t 8 . . t l l a re UNPREDICTABLE.

2-18 DEC OSF/1 Alpha Software (III)

2.2.10 Write System Entry Address

Format:

wren t ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case al begin

0: ! Write the Entlnt:
entlnt <— aO
break;

1: ! Write the EntArith:
entArith «— aO
break;

2: ! Write the EntMM:
entMM <- aO
break;

3: ! Write the EntIF:
entIF <— aO
break;

4: ! Write the EntUna:
entUna <— aO
break;

5: ! Write the EntSys:
entSys <— aO
break;

otherwise:
break;

endcase;

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wren t Write system en t ry address

Description:

The wri te system ent ry address (wrent) instruct ion de termines the specific system
entry point based on a CASE selection of t h e value passed in regis ter a l . The wrent
instruct ion t hen sets t he v i r tua l address of t he specified system ent ry point to the
value passed in aO.

OSF/1 PALcode Instruction Descriptions (III) 2-19

For best performance all t he addresses should be kseg addresses . (See Chapte r 3
for a definition of kseg addresses) .

On r e tu rn from the wren t instruction, regis ters tO, t 8 . . t l l , aO, and a l are
UNPREDICTABLE.

2-20 DEC OSF/1 Alpha Software (III)

2.2.11 Write Floating-Point Enable

Format:

wrfen ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
FEN <- a0<0>
(PCBB+40) «- aO AND 1

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrfen Write floating-point enable

Description:

The wri te floating-point enable (wrfen) instruct ion wri tes bit zero of t he value passed
in aO to the floating-point enable register. The wrfen instruct ion also wri tes the value
for F E N to the PCB a t offset (PCBB+40). On r e t u r n from the wrfen instruction,
regis ters tO, t 8 . . t l l , and aO a re UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-21

2.2.12 Write Kernel Global Pointer

Format:

wrkgp ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
KGP «- aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrkgp Write kerna l global pointer

Description:

The wri te kernel global pointer (wrkgp) instruct ion wri tes the value passed in aO to
the kernel global pointer (KGP) in ternal register. The KGP is used to load the G P
on exceptions. On r e t u r n from the wrkgp instruction, regis ters tO, t 8 . . t l l , and aO
are UNPREDICTABLE.

2-22 DEC OSF/1 Alpha Software (III)

2.2.13 Write User Stack Pointer

Format:

OSF/1 PALcode Instruction Descriptions (III) 2-23

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
USP aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrusp Write use r s tack pointer

Description:

The wri te use r s tack pointer (wrusp) instruct ion wri tes the value passed in aO to the
user s tack pointer. On r e t u r n from the wrusp instruction, regis ters tO, t 8 . . t l l , and
aO a re UNPREDICTABLE.

wrusp ! PALcode format

2.2.14 Write System Value

Format:

wrval ÎPALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
sysvalue <— aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrval Write system value

Description:

The wri te system value (wrval) instruct ion wri tes the value passed in aO to a 64-
bit system value register. The combination of wrval wi th the rdval instruction,
described in Section 2.2.3, allows access by t he operat ing system to a 64-bit per-
processor value. On r e tu rn from the wrval instruction, regis ters tO, t 8 . . t l l , and aO
are UNPREDICTABLE.

2-24 DEC OSF/1 Alpha Software (III)

2.2.15 Write Virtual Page Table Pointer

Format:

wrvptp t r ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
VPTPTR «- aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrvptp t r Write v i r tua l page table pointer

Description:

The wri te v i r tua l page table pointer (wrvptptr) instruct ion wri tes t he pointer passed
in aO to t h e vi r tua l page table pointer regis ter (VPTPTR). The VPTPTR is described
in Chapte r 3. On r e t u r n from the wrvp tp t r instruction, regis ters tO, t 8 . . t l l , and aO
are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (III) 2-25

Chapter 3

OSF/1 Memory Management (III)

3.1 Virtual Address Spaces

A vir tual address is a 64-bit uns igned integer t h a t specifies a byte location within the
v i r tua l address space. Implementa t ions subset the supported address space to one
of four sizes (43, 47, 5 1 , or 55 bits) as a function of page size. The minimal supported
v i r tua l address size is 43 bi ts . If an implementa t ion supports less t h a n 64-bit v i r tual
addresses , i t m u s t check t h a t all t he VA<63:vaSize> bi ts a re equal to VA<vaSize- l>.
This gives two disjoint r anges for valid v i r tua l addresses . For example, for a
43-bit v i r tua l address space, valid v i r tua l address ranges a re 0 . . 3 F F F F F F F F F F 16

and F F F F F C 0 0 0 0 0 0 0 0 0 0 i 6. . F F F F F F F F F F F F F F F F 1 6. Access to v i r tua l addresses
outside of an implementat ion 's valid v i r tua l address r ange cause an access-violation
fault.

The v i r tua l address space is divided into 3 segments . The two bits
v a < v a S i z e - l : v a S i z e - 2 > select a segment as shown in Table 3 - 1 .

Table 3-1 : Virtual Address Space Segments
VA<vaSize- l :vaSize -2> Name Mapp ing Access Contro l

Ox segO Mapped via TB Programmed in PTE

10 kseg PA +- sext(VA<vaSize-3:0>) Kernel Read/Write

11 segl Mapped via TB Programmed in PTE

For kseg, t he relocation, shar ing, and protection are fixed. For segO and seg l , t he
vi r tual address space is broken into pages, which are the un i t s of relocation, shar ing,
and protection. The page size ranges from 8 Kbytes to 64 Kbytes. Therefore, system
software should allocate regions wi th differing protection on 64 Kbyte vi r tual address
boundar ies to ensure image compatibility across all Alpha implementa t ions .

Memory m a n a g e m e n t provides t he mechanism to m a p the active pa r t of the vir tual
address space to the available physical address space. The operat ing system controls
the virtual-to-physical address mapp ing tables and saves the inactive (but used)
pa r t s of the v i r tua l address space on external s torage media.

3.1.1 Segment SegO and Segl Virtual Address Format

The processor genera tes a 64-bit v i r tua l address for each instruct ion and operand in
memory. A segO or segl v i r tua l address consists of th ree level-number fields and a
byte_within_page field, as shown in Figure 3 - 1 .

OSF/1 Memory Management (III) 3-1

Figure 3-1 : Virtual Address Format

SEXT (leveM <level size-3>) leveM Ievel2 Ievel3 byte_within_page

Figure 3-2: Kseg Virtual Address Format

Segment Select=102 Physical Address

The byte_within_page field can be e i ther 13, 14, 15, or 16 bits depending on a
par t icular implementat ion. Thus , the allowable page sizes a re 8 Kbytes, 16 Kbytes,
32 Kbytes, and 64 Kbytes. Each level-number field is 0-n bi ts long, where , for
example, η is 9 for an 8K page size. Level-number fields are the same size for a
given implementat ion.

The level-number fields are a function of the page size; all page table entr ies a t any
given level do not exceed one page. The P F N field in the PTE is always 32 bits wide.
Thus as the page size grows the v i r tua l and physical address size also grows.

In Table 3-2 , the physical address column is the max imum physical address
supported by the smaller of segO/segl or kseg, as indicated.

Table 3 - 2 : Virtual Address Options

Page Byte Level Virtual Physical Physical
Size Offset Size Address Address Address
(bytes) (bits) (bits) (bits) (bits) Limited by

8K 13 10 43 41 kseg

16K 14 11 47 45 kseg

32K 15 12 51 47 segO/segl

64K 16 13 55 48 segO/segl

3.1.2 Kseg Virtual Address Format

The processor genera tes a 64-bit v i r tual address for each instruct ion and operand
in memory. A kseg vir tual address consists of segment select field with a value
of 1 0 2 and a physical address field. The segment select field is the two bits
va<vaS ize - l : vaS ize -2> . The physical address field is va<vaSize-3:0>.

3-2 DEC OSF/1 Alpha Software (III)

3.2 Physical Address Space

Physical addresses a re a t most vaS ize -2 bi ts . This allows all of physical memory
to be accessed via kseg. A processor may choose to implement a smaller physical
address space by not implement ing some number of high order bi ts . The two
most significant implemented physical address bits select a caching policy or
implementa t ion dependent type of address space. Implementa t ions will use these
bi ts as appropr ia te for the i r systems. For example, in a workstat ion wi th a 30-bit
physical address space, bit<29> might select between memory and non-memory like
regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.3 Memory Management Control

Memory m a n a g e m e n t is always enabled. Implementa t ions m u s t provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might r u n wi th I-s t ream mapping disabled.

3.4 Page Table Entries

The processor uses a quadword page table en t ry (PTE) to t r ans l a t e segO and segl
v i r tual addresses to physical addresses . A PTE contains ha rdware and software
control information and the physical page frame number (PFN). A PTE is a quadword
with the following fields:

Figure 3-3: Page Table Entry (PTE)

63 32 31 16 15141312 11 10 9 β 7 6 5 4 3 2 1 0

PFN sw
'S 'S

R
S

0

U
W
Ε

Κ
W
Ε

R

s
V
1

υ
R
Ε

Κ
R
Ε

R

s
V
2

GH
A
S
M

F
0
Ε

F
0
W

F
0
R

V

Table 3-3: Page Table Entry (PTE) Bit Summary
Bits Name Mean ing

63:32 PFN Page frame number
The PFN field always points to a page boundary. If V is set, the PFN
is concatenated with the byte_within_page bits of the virtual address to
obtain the physical address.

31:16 SW Reserved for software.

15:14 RSVO Reserved for hardware; SBZ.

OSF/1 Memory Management (III) 3-3

Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary
Bits Name Meaning

13 UWE User write enable.
This bit enables writes from user mode. If this bit is 0 and a store is
attempted while in user mode, an access-violation fault occurs. This bit
is valid even when V=0.

12 KWE Kernel write enable.
This bit enables writes from kernel mode. If this bit is 0 and a store is
attempted while in kernel mode, an access-violation fault occurs. This
bit is valid even when V=0.

11:10 RSV1 Reserved for hardware; SBZ.

9 URE User read enable.
This bit enables reads from user mode. If this bit is 0 and a load or
instruction fetch is attempted while in user mode, an Access Violation
occurs. This bit is valid even when V=0.

8 KRE Kernel read enable.
This bit enables reads from kernel mode. If this bit is 0 and a load or
instruction fetch is attempted while in kernel mode, an access-violation
fault occurs. This bit is valid even when V=0.

7 RSV2 Reserved for hardware; SBZ.

6:5 GH Granularity hint.
Software may set these bits to a non-zero value to supply a hint to
translation buffer implementations that a block of pages can be treated
as a single larger page:

1. A block is an aligned group of 8**N pages where Í is the value of
PTE<6:5>, e.f. a group of 1, 8, 64, or 512 pages starting at a virtual
address with page_size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping and the high 32-3*N PFN
bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>.
Hardware may use this hint to map the entire block with a single
TB entry, instead of 8, 64, or 512 separare TB entries.

ASM Address space match.
When set, this PTE matches all address space numbers. For a given VA,
ASM must he set consistently in all processes, otherwise the address
mapping is UNPREDICTABLE.

FOE Fault on execute.
When set, a Fault on Execute exception occurs on an attempt to execute

-> 4-U~ ~ any location in the page.

3-4 DEC OSF/1 Alpha Software (III)

4

3

Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary
Bits Name Mean ing

2 FOW Fault on write.
When set, a Fault on Write exception occurs on an attempt to write any
location in the page.

1 FOR Fault on read.
When set, a Fault on Read exception occurs on an attempt to read any
location in the page.

0 V Valid.
Indicates the validity of the PFN field. When V is set the PFN field is
valid for use by hardware. When V is clear, the PFN field is reserved
for use by software. The V bit does not affect the validity of PTE<15:1>
bits.

3.4.1 Changes to Page Table Entries

The operat ing system changes P T E s as p a r t of i ts memory m a n a g e m e n t functions.
For example, the operat ing system m a y set or clear the V bit, change the P F N field
as pages a re moved to and from external s torage media, or modify t he software bits .
The processor ha rdware never changes PTEs .

Software m u s t gua ran tee t h a t each PTE is always consistent wi thin itself.
Changing a PTE one field a t a t ime can cause incorrect system operation, such as
set t ing PTE<V> wi th one instruct ion before establ ishing PTE<PFN> wi th another.
Execution of an in te r rup t service rout ine between the two instruct ions could use an
address t h a t would m a p us ing the inconsistent PTE. Software can solve th is problem
by building a complete new PTE in a regis ter and then moving the new PTE to the
page table by us ing a n STQ instruct ion.

Multiprocessing makes the problem more complicated. Another processor could be
reading (or even changing) the same PTE t h a t t he first processor is changing. Such
concurrent access m u s t produce consistent resul ts . Software m u s t use some form
of software synchronization to modify PTEs t h a t a re a l ready valid. Whenever a
processor modifies a valid PTE, it is possible t h a t o ther processors in a multiprocessor
system may have old copies of t h a t PTE in the i r t rans la t ion buffer. Software m u s t
inform other processors of changes to PTEs . H a r d w a r e m u s t ensure t h a t aligned
quadword reads and wri tes a re atomic operat ions. H a r d w a r e m u s t not cache invalid
PTEs (PTEs wi th the V bit equal to 0) in t rans la t ion buffers. See Section 3.7 for
more information.

Memory protection is the function of val idat ing whe the r a par t icular type of access
is allowed to a specific page from a par t icu lar access mode. Access to each page is
controlled by a protection code t h a t specifies, for each access mode, whe the r read or
wri te references a re allowed. The processor uses t he following to de termine whe ther
an in tended access is allowed:

3.5 Memory Protection

OSF/1 Memory Management (III) 3-5

• The v i r tua l address , which is used to e i ther select kseg mapping or provide the
index into the page tables .

• The intended access type (read or write).

• The cur rent access mode base on Processor Mode.

For protection checks, the in tended access is read for da t a loads and instruct ion
fetches, and wri te for da t a stores.

3.5.1 Processor Access Modes

There a re two processor modes, user and kernel . The access mode of a runn ing
process is stored in t he processor s t a tu s mode bi t (PS<mode>).

3.5.2 Protection Code

Every page in the vi r tual address space is protected according to i ts use. A program
may be prevented from reading or wri t ing portions of i ts address space. Associated
wi th each page is a protection code t h a t describes t he accessibility of the page for
each processor mode.

For segO and seg l , t he code allows a choice of read or wri te protection for each
processor mode. For each mode, access can be read/wri te , read-only, or no-
access. Read and wri te accessibility and the protection for each mode are specified
independently.

For kseg, the protection code is kernel read/wri te , user no-access.

3.5.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is
a t tempted, as determined by the cur ren t processor mode and the page's protection.

3.6 Address Translation for SegO and Seg1

The page tables can be accessed from physical memory, or (to reduce overhead) can
be mapped to a l inear region of the vir tual address space. The following sections
describe both access methods.

3.6.1 Physical Access for SegO and Seg1 PTEs

SegO and segl address t rans la t ion can be performed by accessing entr ies in a three-
level page table s t ruc ture . The page table base register (PTBR) contains the physical
page frame number (PFN) of the highest level (level 1) page table. Bits <levell> of
the vi r tual address are used to index into the first level page table to obtain t he
physical P F N of the base of the second level (level 2) page table. Bits <level2> of
the vi r tual address a re used to index into the second level page table to obtain the
physical P F N of the base of the th i rd level (level 3) page table. Bits <level3> of the
vi r tual address a re used to index the th i rd level page table to obtain the physical
P F N of the page being referenced. The P F N is concatenated wi th v i r tua l address bits
<byte_within_page> to obtain the physical address of the location being accessed.

3-6 DEC OSF/1 Alpha Software (III)

If pa r t of any page table does not reside in a memory-like region, or does reside in
nonexis tent memory, t he operat ion of t h e processor is U N D E F I N E D .

If the first-level or second-level PTE is valid, t he protection bits a re ignored; the
protection code in the third-level PTE is used to de termine accessibility. If a first
level or second level PTE is invalid, a n access-violation fault occurs if t he PTE<KRE>
equals zero. An access-violation fault on a first-level or second-level PTE implies t h a t
all lower-level page tables mapped by t h a t PTE do not exist.

The algori thm to genera te a physical address from a segO or segl v i r tua l address
follows:
IF {SEXT(VA<vaSize-l:0>) neq VA} THEN

{ initiate access-violation fault}

levell_PTE <— ({PTBR * page_size} + {8 * VA<levell>}) ! Read physical
IF levell_PTE<v> EQ 0 THEN

IF level1_PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level2_PTE <— ({level1_PTE<PFN> * page_size} + {8 * VA<level2>}) I Read physical
IF level2_PTE<v> EQ 0 THEN

IF level2_PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level3_PTE <— ({level2_PTE<PFN> * page_size} + {8 * VA<level3>}) ! Read physical

IF {{{level3_PTE<UWE> eq 0} AND {write access} AND {ps<mode> EQ 1} } OR
{{level3_PTE<URE> eq 0} AND {read access} AND {ps<mode> EQ 1} } OR
{{level3_PTE<KWE> eq 0} AND {write access} AND {ps<mode> EQ 0} } OR
{{level3_PTE<KRE> eq 0} AND {read access} AND {ps<mode> EQ 0} } }

THEN
{initiate memory-management fault}

ELSE
IF level3_PTE<v> EQ 0 THEN

{initiate memory-management fault}

IF { level3_PTE<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF { level3_PTE<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF { level3_PTE<FOE> eq 1} AND {execute access} THEN

{initiate memory-management fault}

Physical_address «— {level3_PTE<PFN> * page__size} OR VA<byte_within_page>

3.6.2 Virtual Access for SegO or Segl PTEs

The page tables can be mapped into a l inear region of t he vi r tual address space,
reducing the overhead for segO and segl PTE accesses. The mapping is done as
follows:

1. Select a 2
{3
*

l
^P

a
9

eSize
/
8))+s byte-aligned region (an address wi th 3 *\g(pageSize/S) + 3

low-order zeros) in the segO or segl address space. Set the v i r tua l page table
pointer (VPTPTR) wi th a wri te v i r tua l page table pointer instruct ion (wrvptptr)
to the selected value.

2. Crea te a levell PTE to m a p t h e page tables as follows.

OSF/1 Memory Management (III) 3-7

l e v e l l _ P T E = Ο 1 I n i t i a l i z e a l l f i e l d s t o 0
l e v e l l _ P T E < 6 3 : 3 2 > = p f n _ o f _ L e v e l _ _ l _ p a g e t a b l e

! S e t t h e PFN t o t h e PFN o f t h e l e v e l o n e p a g e t a b l e
l e v e l 1_J?TE<8> = 1 ! S e t t h e k e r n e l r e a d e n a b l e b i t
l e v e l l _ P T E < 0 > = 1 ! S e t t h e v a l i d b i t

3. Set the levell page table ent ry t h a t corresponds to the VPTB to the created
l eve l l .PTE .

4. Set all levell and level 2 valid PTEs to allow kernel read access. With th is se tup
in place the algori thm to fetch a segO or segl PTE is:
tmp 4 - left_shift (va, {64 - {{lg(pageSize) *4> - 9}})
tmp «— right_shift (tmp, {64 - {{lg(pageSize) *4} - 9} + lg(pageSize) - 3})
tmp «— VPTB OR tmp
tmp<2:0> <— 0
level3_PTE «— (tmp) ! Load PTE using it's virtual address

The vir tual access method is used by PALcode for most TB fills.

3.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, ha rdware implementa t ions include a t rans la t ion buffer to remember
successful v i r tual address t rans la t ions and page s ta tes . When the process context
is changed, a new value is loaded into t he address space number (ASN) in te rna l
processor register wi th a swap process context (swpctx) instruction. This causes
address t rans la t ions for pages wi th PTE<ASM> clear to be inval idated on a processor
t h a t does not implement address space numbers .

Additionally, when the software changes any pa r t (except the software field) of a
valid PTE, i t m u s t also execute a CALL_PAL tbi instruction. The ent i re t rans la t ion
buffer can be inval idated by tbia, and all ASM=0 entr ies can be invalidated by tbiap.
The t rans la t ion buffer m u s t not store invalid PTEs . Therefore, the software is not
required to invalidate t rans la t ion buffer entr ies when mak ing changes for PTEs t h a t
are already invalid.

3.8 Address Space Numbers

The Alpha archi tecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
t rans la t ions for process specific addresses when a context switch occurs.

The address space number for the cur ren t process is loaded by software in the
address space number (ASN) with a swpctx instruction. ASNs are processor
specific and the ha rdware makes no a t t empt to ma in ta in coherency across mult iple
processors. In a multiprocessor system, software is responsible for ensur ing the
consistency of TB entr ies for processes t h a t might be rescheduled on different
processors.

3-8 DEC OSF/1 Alpha Software (III)

PROGRAMMING NOTE
System software should not a s sume t h a t the number
of ASNs is a power of two. This allows, for example,
ha rdware to use Ν TB t ag bits to encode (2**N)-3 ASN
values, one value for ASM=1 PTEs , and one for invalid.

There a re several possible ways of us ing ASNs. There
a re several complications in a multiprocessor system.
Consider t he case where a process t h a t executed on
processor -1 is rescheduled on processor -2 . If a page
is deleted or i ts protection is changed, the TB in
processor -1 h a s s tale da ta . One solution would be to
send an interprocessor in t e r rup t to all t he processors on
which th i s process could have r u n and cause t hem to
inval idate the changed PTE. This resul t s in significant
overhead in a system with several processors. Another
solution would be to have software inval idate all TB
ent r ies for a process on a new processor before it can
begin execution, if t he process executed on another
processor dur ing i ts previous execution. This ensures
the deletion of possibly stale TB entr ies on t he new
processor. A th i rd solution would assign a new ASN
whenever a process is r u n on a processor t h a t is not the
same as the las t processor on which it ran .

3.9 Memory-Management Faults

On a memory-management fault, t he fault code (MMCSR) is passed in a l to specify
the type of fault encountered, as shown in Table 3-4.

Table 3 - 4 : Memory-Management Fault Type Codes
Fau l t MMCSR va lue

Translation not valid 0

Access violation 1

Fault on read 2

Fault on execute 3

Fault on write 4

• A translat ion-not-valid fault is t a k e n when a read or wri te reference is a t tempted
through an invalid PTE in a first, second, or third-level page table.

OSF/1 Memory Management (III) 3-9

• An access-violation fault is t aken on a reference to a segO or segl address when
the protection field of the third-level PTE t h a t maps the da t a indicates t h a t the
intended page reference would be illegal in the specified access mode. An access-
violation fault is also t aken if the KRE bit is a zero in an invalid first or second
level PTE. An access-violation fault is genera ted for any access to a kseg address
when the mode is user (PS<mode> EQ 1).

• A fault-on-read (FOR) fault occurs when a read is a t t empted wi th PTE<FOR>
set.

• A fault-on-execute (FOE) fault occurs when an instruct ion fetch is a t t empted
with PTE<FOE> set.

• A fault-on-write (FOW) fault occurs when a wri te is a t t empted wi th PTE<FOW>
set.

3-10 DEC OSF/1 Alpha Software (III)

Chapter 4

OSF/1 Process Structure (III)

4.1 Process Definition

A process is a single t h read of execution. I t is t he basic ent i ty t h a t can be scheduled
and is executed by the processor. A process consists of an address space and both
software and ha rdware context. The h a r d w a r e context of a process is defined by the
the following:

• 30 integer registers (excluding R31 and SP)

• 31 floating-point regis ters (excluding F31)

• The program counter (PC)

• The two per-process stack pointers (USP/KSP)

• The processor s t a tus (PS)

• The address space number (ASN)

• The process cycle counter (PCC)

• The page table base register (PTBR)

• The process unique value (unique)

This information m u s t be loaded if a process is to execute.

While a process is executing, some of i ts h a r d w a r e context is being upda ted in the
in te rna l registers . When a process is not being executed, i ts ha rdware context is
stored in memory in a software s t ruc ture te rmed the process control block (PCB).
Saving the process context in t he PCB and loading new values from another PCB for
a new context is t e rmed context switching. Context switching occurs as one process
after another is scheduled for execution.

4.2 Process Control Block (PCB)

As shown in Figure 4—1, the PCB holds t he s ta te of a process.

The contents of the PCB are loaded and saved by the swpctx instruction. The PCB
m u s t be quadword aligned and should be 64 byte aligned for bes t performance.
Kernel mode code can read the PTBR, t he ASN, and the F E N for t he cur ren t process
from the PCB. Kernel mode code m u s t use the rdusp/wrusp instruct ions to access
the USP. The PCC m u s t be read wi th the rpcc instruction. The unique value can be
accessed wi th the rdunique and wrunique instruct ions.

OSF/1 Process Structure (III) 4-1

Figure 4-1 : Process Control Block (PCB)
63 32 31

Kernel Stack Pointer (KSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

Address Space Number (ASN) Cycle Counter (PCC)

Process Unique Value (unique)

Reserved to Digital

Reserved to Digital

4-2 DEC OSF/1 Alpha Software (III)

Chapter 5

OSF/1 Exceptions and Interrupts (III)

5.1 Introduction

At cer ta in t imes dur ing the operation of a system, events wi thin the system require
the execution of software outside the explicit flow of control. When such an event
occurs, an Alpha processor forces a change in control flow from t h a t indicated by the
cur ren t instruct ion s t ream. The notification process for such an event is e i ther an
exception or an in te r rupt .

5.1.1 Exceptions

Exceptions a re re levant pr imari ly to the current ly executing process. Exception
service rout ines execute in response to exception conditions caused by software. All
exception service rout ines execute in kernel mode on the kernel stack. Exception
conditions consist of faults, a r i thmet ic t r aps , and synchronous t r aps :

• A fault occurs dur ing an instruct ion and leaves the regis ters and memory in
a consistent s ta te such t h a t el iminat ion of t he fault condition and subsequent
réexécution of the instruct ion gives correct resul ts . Fau l t s a re not guaran teed to
leave t he machine in exactly t h e same s ta te i t was in immediately prior to the
fault, bu t r a t h e r in a s ta te such t h a t the instruct ion can be correctly executed if
t he fault condition is removed. The PC saved in the exception stack frame is the
address of the fault ing instruct ion. An r t i instruct ion to t h a t PC reexecutes the
fault ing instruction.

• An ar i thmet ic t r a p occurs a t t he completion of the operation t h a t caused the
exception. Since several inst ruct ions may be in various s tages of execution a t any
point in t ime, it is possible for mult iple ar i thmet ic t r aps to occur simultaneously.

The PC t h a t is saved in the exception frame on t r aps is t h a t of the next
instruct ion t h a t would have been issued if t he t r app ing conditions had not
occurred. However, t h a t PC is not necessarily the address of the instruct ion
immediately following the ins t ruct ions t h a t encountered t he t r a p condition.
Fur ther , in tervening instruct ions m a y have changed operands or other s ta te used
by the instruct ions encounter ing t h e t r a p conditions.

An r t i instruct ion to t h a t PC does not reexecute t h e t r app ing instruct ions, nor
does it reexecute any in tervening instruct ions; it simply continues execution from
the point a t which t h e t r a p was t aken .

In general , i t is difficult to fix u p resul t s and continue program execution a t the
point of an ar i thmet ic t r ap . Software can force a t r a p to be continued more easily
wi thout t he need for complicated fixup code. This is accomplished by following a
set of code generat ion restr ict ions in the code t h a t could cause ar i thmet ic t r aps

OSF/1 Exceptions and Interrupts (III) 5-1

which are to be completed by a software t r a p handle r (see Common Architecture,
Chapter 4), including specifying the /S software completion modifier in each such
instruction.

The AND of all t he software completion modifiers for t rapp ing instruct ions is
provided to t he ar i thmet ic t r a p hand le r in t he exception s u m m a r y SWC bit. If
the SWC is set, a t r a p handle r may find t he t r igger instruct ion by scanning
backward from the t r a p PC unt i l each register in the register wri te mask has
been an instruct ion dest ination. The tr igger instruct ion is the first instruct ion in
the I-s tream order to get a t r a p within a t r a p shadow. (See Common Architecture,
Chapter 4 for a definition of t r a p shadow.) If t he SWC bit is clear, no fixup is
possible.

• A synchronous t r a p occurs a t t he completion of the operation t h a t caused the
exception. No instruct ions can be issued between the completion of the operation
t h a t caused the exception and the t r ap .

5.1.2 Interrupts

The processor a rb i t ra tes in te r rup t reques ts . When the in te r rup t priority level (IPL)
of an outs tanding in te r rup t is grea ter t h a n the cur ren t IPL, the processor ra ises IPL
to the level of the in te r rup t and dispatches to en t ln t , t he in te r rup t ent ry to the OS.
In te r rup t s are serviced in kernel mode on the kernel stack. In t e r rup t s can come
from one of four sources: I/O devices, t he clock, performance counters , or machine
checks.

5.2 Processor Status

The processor s t a tus (PS) is a four-bit register t h a t contains the cur ren t mode
(PS<mode>) in bit <3> and a three-bi t in t e r rup t priority level (PS<IPL>) in bi ts
<2..0>. The PS<mode> bit is zero for kernel mode and one for user mode. The
PS<IPL> bits a re always zero if t he mode is user and can be 0 to 7 if t he mode is
kernel . The PS is changed when an in te r rup t or exception is ini t ia ted and by the
r t i , re tsys , and swpipl instruct ions.

The uses of the P S values are shown in Table 5 - 1 .

Table 5 -1 : Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts

5-2 DEC OSF/1 Alpha Software (III)

Table 5-1 (Cont.): Processor Status Summary

PS<mode> PS<IPL> Mode Use

0 5 Kernel Clock, and interprocessor interrupts

0 6 Kernel Real time devices

0 7 Kernel Machine checks

5.3 Stack Frames

There a re two types of system entr ies—those for t he callsys instruct ion and those for
exceptions and in te r rup t s . Both types use t h e same s tack frame layout, a s shown in
Figure 5 - 1 . The stack frame contains space for the PC, the PS , the saved GP, and
the saved regis ters aO, a l , a2. On entry, t he SP points to the saved P S .

The callsys en t ry saves the PC, t he PS , and the GP. The exception and in te r rup t
entr ies save the PC, the PS , the GP, and also save the regis ters a0. .a2.

Figure 5-1 : Stack Frame Layout

63

PS :00

PC :08

GP :16

aO :24

a1 :32

a2 :40

5.4 System Entry Addresses

All system entr ies a re in kernel mode. The in te r rup t priority P S bi ts (PS<IPL>) are
set as shown in t he following table . The system ent ry point address is set by the
CALL_PAL wren t instruct ion, as described in Section 2.2.10.

Table 5-2: Entry Point Address Registers
Entry Point Value in aO Value in a l Value in a2 PS<IPL>

entArith Exception Register mask UNPREDICT- Unchanged
summary ABLE

entIF Fault Type code UNPREDICT- UNPREDICT- Unchanged
ABLE ABLE

OSF/1 Exceptions and Interrupts (III) 5-3

Table 5-2 (Cont.): Entry Point Address Registers
E n t r y Point Value in aO Value in a l Value in a2 PS<IPL>

entlnt Interrupt type Vector UNPREDICT-
ABLE

Priority of interrupt

entMM VA MMCSR Cause Unchanged

entSys pO pl p2 Unchanged

en tUna VA Opcode Src/Dst Unchanged

5.4.1 System Entry Arithmetic Trap (entArith)

The ar i thmet ic t r a p entry, entAri th, is called when an ar i thmet ic t r a p occurs. On
entry, aO contains the exception s u m m a r y register and a l contains the exception
register wri te mask. Section 5.4.1.1 describes the exception s u m m a r y register and
Section 5.4.1.2 describes the register wri te mask .

5.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 5-2 and described in Table 5 - 3 ,
records the various types of ar i thmet ic exceptions t h a t can occur together. Those
types of exceptions a re listed and described in Table 5 - 3 .

Figure 5-2: Exception Summary Register

63 7 6 5 4 3 2 1 0

I I U 0 D I s
Zero 0 Ν Ν V Ζ Ν W

V Ε F F Ε V C

Table 5-3: Exception Summary Register Bit Definitions
Bit Description

0 Software completion (SWC)
Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 5.1.1 for rules about using the SWC bit in a trap
handler.

5-4 DEC OSF/1 Alpha Software (III)

Table 5-3 (Cont.): Exception Summary Register Bit Definitions
Bit Descr ip t ion

1 Invalid operation (INV)
An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.
An INV trap is reported for most floating-point operate instructions with an input
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal.
Floating invalid operation traps are always enabled. If this trap occurs, the result
register is written with an UNPREDICTABLE value.

2 Division by zero (DZE)
An attempt was made to perform a floating divide operation with a divisor of zero.
A DZE trap is reported when a finite number is divided by zero. Floating divide by
zero traps are always enabled. If this trap occurs, the result register is written with
an UNPREDICTABLE value.

3 Overflow (OVF)
A floating arithmetic or conversion operation overflowed the destination exponent.
An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating overflow traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

4 Underflow (UNF)
A floating arithmetic or conversion operation underflowed the destination exponent.
An UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating underflow trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

5 Inexact result (INE)
A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.
An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact
result trap enable can be specified in each IEEE floating-point operate instruction. The
rounded result value is stored in all cases.

6 Integer overflow (IOV)
An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.
An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. Integer overflow trap enable can be specified in each
arithmetic integer operate instruction and each floating-point convert-to-integer
instruction. If integer overflow occurs, the result register is written with the truncated
true result.

OSF/1 Exceptions and Interrupts (III) 5-5

5.4.1.2 Exception Register Write Mask

The exception register wri te mask pa rame te r records all registers t h a t were ta rge ts
of instructions t h a t set the bits in the exception s u m m a r y register. There is a one-
to-one correspondence between bits in the register wri te m a s k quadword and the
register numbers . The quadword records, s ta r t ing a t bit 0 and proceeding r ight
to left, which of the registers rO through r 3 1 , t hen fl) th rough £31, received an
exceptional result .

NOTE
For a sequence such as:

ADDF F 1 , F 2 , F 3
MULF F 4 , F 5 , F 3

if t he add overflows and the mult iply does not, t he OVF
bit is set in the exception summary, and the F 3 bit is
set in the register mask , even though the overflowed
sum in F3 can be overwri t ten with an in-range product
by the t ime the t r a p is t aken . (This code violates the
dest inat ion reuse rule for software completion. See
Common Architecture, Chapter 4 for the dest inat ion
reuse rules.)

The PC value saved in the exception stack frame is the v i r tua l address of the next
instruction. This is defined as the vir tual address of the first instruct ion not executed
after the t r a p condition was recognized.

5.4.2 System Entry Instruction Fault (entIF)

The instruction fault en t ry is called for bpt, bugchk, gent rap , opDec, and for a F E N
fault (floating-point instruct ion when the floating-point un i t is disabled, F E N EQ 0).
On entry, aO contains a 0 for a bpt, a 1 for bugchk, a 2 for gent rap , a 3 for F E N fault,
and a 4 for opDec. No addit ional da ta is passed in a l . . a2 . The saved PC a t (SP+00)
is the address of the instruct ion t h a t caused the fault for F E N faults. The saved
PC a t (SP+00) is the address of the instruct ion after the instruct ion t h a t caused the
fault bpt, bugchk, gent rap , and opDec faults.

5.4.3 System Entry Hardware Interrupts (entlnt)

The in te r rup t ent ry is called to service a ha rdware in te r rupt , or a machine check.
Table 5-4 shows wha t is passed in a0..a2 and the PS<IPL> set t ing for various
in te r rupts .

5-6 DEC OSF/1 Alpha Software (III)

Table 5-4: System Entry Hardware Interrupts

E n t r y Type Value in aO Value in a l Value in a2 PS<IPL>

Interprocessor
interrupt

0 UNPREDICT-
ABLE

UNPREDICT-
ABLE

5

Clock 1 UNPREDICT-
ABLE

UNPREDICT-
ABLE

5

Machine check 2 Interrupt
vector

Pointer to
Logout Area

7

I/O device
interrupt

3 Interrupt
vector

UNPREDICT-
ABLE

Level of device

Performance
counter

4 Interrupt
vector

UNPREDICT-
ABLE

6

On ent ry to the ha rdware in te r rup t rout ine, the IPL h a s been set to the level of the
in ter rupt . For ha rdware in te r rup t s , regis ter a l contains a platform-specific in te r rup t
vector. Tha t platform-specific in t e r rup t vector is typically the same value as the SCB
offset value t h a t would be r e tu rned if t he platform was r u n n i n g OpenVMS PALcode.

For a machine check, a2 contains kseg address of the logout area . The first 4
longwords of the logout a rea a re implementat ion- independent . The res t of the logout
a rea is system specific. The first longword of the logout a rea is a machine check in
progress flag. If t he flag is non zero when a machine check is being init iated, a
double machine check ha l t is ini t ia ted instead. The machine check hand le r needs to
clear the machine check in progress flag when it can hand le a new machine check.
Figure 5-3 describes the logout area .

Figure 5-3: Logout Area

32 0

Machine Check in Progress Flag

Logout Area Size in Quadwords Including Header

Machine Type

Logout Area Version

An Implementation-Dependent Number of
Quadwords of Additional State

5.4.4 System Entry MM Fault (entMM)

The memory-management fault en t ry is called when a memory managemen t
exception occurs. On entry, aO contains the fault ing vi r tual address and a l contains
the MMCSR (See Section 3.9). On entry, a2 is set to a minus one (-1) for an

:04

:08

:12

:16

OSF/1 Exceptions and Interrupts (III) 5-7

instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction,
or to a 0 for a fault caused by a load instruction.

5.4.5 System Entry Call System (entSys)

The system call en t ry is called when a callsys instruct ion is executed in user mode.
On entry, only registers (t8 . . t l l) have been modified. The PC+4 of the callsys
instruction, the user global pointer, and the cur ren t P S are saved on the kernel
stack. Additional space for a0..a2 is allocated. After completion of the system service
routine, the kernel code executes a CALL_PAL retsys instruction.

5.4.6 System Entry Unaligned Access (entUna)

The unal igned access ent ry is called when a load or store access is not aligned. On
entry, aO contains the faulting vi r tual address , a l contains the zero extended six-bit
opcode (bits <31:26>) of the faulting instruction, and a2 contains the zero extended
da ta source or dest inat ion register number (bits<25:21> of the fault ing instruction)

5.5 PALcode Support

5.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel s tack
t h a t would produce a memory-management fault will resu l t in a kernel-stack-not-
valid hal t . The stack pointer m u s t always point to a quadword-aligned address . If
the kernel s tack is not quadword aligned on a PALcode access, a kernel-stack-not-
valid ha l t is init iated.

5-̂ 8 DEC OSF/1 Alpha Software (III)

Appendix A

Software Considerations

A.1 Hardware-Software Compact

The Alpha archi tecture, like all RISC archi tectures , depends on careful a t tent ion to
da t a a l ignment and instruct ion scheduling to achieve high performance.

Since the re will be various implementa t ions of t he Alpha archi tecture , i t is not
obvious how compilers can genera te high-performance code for all implementat ions .
This chapter gives some scheduling guidelines tha t , if followed by all compilers and
respected by all implementat ions , will resul t in good performance. As such, th is
section represents a good-faith compact between ha rdware designers and software
wri ters . I t represents a set of common goals, not a set of archi tectural requi rements .
Thus , an Appendix, not a Chapter .

Many of the performance optimizations discussed below are advantageous only for
frequently executed code. For rare ly executed code, they may produce a bigger
program t h a t is not any faster. Some of the branching optimizations also depend on
good prediction of which pa th from a conditional b ranch is more frequently executed.
These optimizations a re bes t done by us ing a n execution profile, e i ther an es t imate
genera ted by compiler heuris t ics , or a real profile of a previous run , such as t h a t
ga thered by PC-sampling in PCA.

Each computer archi tecture h a s a "na tura l word size." For the P D P - 1 1 , it is 16 bits;
for VAX, 32 bits; and for Alpha, 64 bi ts . Other archi tectures also have a na tu r a l word
size t h a t var ies between 16 and 64 bits . Except for very low-end implementat ions ,
ALU da t a pa ths , cache access pa ths , chip pin buses , and ma in memory da t a pa ths
a re all usual ly the n a t u r a l word size.

As an archi tecture becomes commercially successful, high-end implementat ions
inevitably move to double-width da t a pa th s t h a t can t ransfer an aligned (at an even
n a t u r a l word address) pa i r of n a t u r a l words in one cycle. For Alpha, th is means
eventual 128-bit wide d a t a pa ths . I t is h a r d to get much speed advantage from paired
t ransfers unless the code being executed h a s instruct ions and da t a appropriately
aligned on aligned octaword boundar ies . Since th i s is h a r d to retrofit to old code,
the following sections sometimes encourage "over-aligning" to octaword boundar ies
in anticipation of high-speed Alpha implementa t ions .

In some cases, the re a re performance advantages in aligning instruct ions or da ta
to cache-block boundar ies , or pu t t ing d a t a whose use is correlated into t he same
cache block, or t ry ing to avoid cache conflicts by not having da t a whose use is
correlated placed a t addresses t h a t a re equal modulo the cache size. Since the
Alpha archi tecture will have m a n y implementa t ions , an exact cache design cannot
be outl ined here . Nonetheless , some expected bounds can be s ta ted.

Software Considerations A-1

1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to
8 M B

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes

5. TB sizes will likely be in the range 16 to 1024 entr ies

Thus , if two da ta i tems need to go in different cache blocks, it is desirable to
make t hem a t least 128 bytes apa r t (modulo 2 KB). Doing t h a t creates a high
probability of allowing both i tems to be in a small cache simultaneously, for all
Alpha implementat ions .

In each case below, t he performance implication is given by an order-of-magnitude
number : 1, 3, 10, 30, or 100. A factor of 10 m e a n s t h a t t he performance difference
being discussed will likely range from 3 to 30 across all Alpha implementat ions .

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruct ion s t ream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword-aligned. Targets of frequently t aken branches
should be a t least quadword-aligned, and octaword-aligned for very frequent loops.
Compilers could use execution profiles to identify frequently t aken branches .

Most Alpha implementat ions will fetch aligned quadwords of instruct ion s t ream (two
instructions), and many will was te an instruction-issue cycle on a b ranch to an odd
longword. High-end implementa t ions may eventual ly fetch aligned octawords, and
was te up to 3 issue cycles on a b ranch to an odd longword. Some implementa t ions
may only be able to fetch wide chunks of instruct ions every other CPU cycle.
Fetching four instruct ions from an aligned octaword can get a t most one cache miss,
while fetching t hem from an odd longword address can get 2 or even 3 cache misses.

Quadword I-fetch implementors should give first priority to executing aligned
quadwords quickly. Octaword-fetch implementors should give first priority to
executing aligned octawords quickly, and second priority to executing aligned
quadwords quickly. Dual-issue implementa t ions should give first priority to issuing
both halves of an aligned quadword in one cycle, and second priority to buffering
and issuing other combinations.

A.2.2 Multiple Instruction Issue — Factor of 3

Some Alpha implementat ions will issue mult iple instruct ions in a single cycle. To
improve the odds of multiple-issue, compilers should choose pairs of instruct ions to
pu t in aligned quadwords. Pick one from column A and one from column Β (but only
a total of one load/store/branch per pair) .

A-2 Appendixes

Column A Column Β

Integer Opera te

Float ing Load/Store

Float ing Branch

Float ing Opera te

Integer Load/Store

Integer Branch

BRVBSR/JSR

Implementors of multiple-issue machines should give first priority to dual- issuing a t
least t he above pairs , and second priority to multiple-issue of other combinations.

In general , t he above rules will give a good hardware-software match , bu t compilers
may w a n t to implement model-specific switches to genera te code tuned more exactly
to a specific implementat ion.

A.2.3 Branch Prediction and Minimizing Branch-Taken — Factor of 3

In m a n y Alpha implementat ions , an unexpected change in I -s t ream address will
resul t in about 10 lost instruct ion t imes . "Unexpected" may m e a n any branch- taken
or may m e a n a mispredicted branch. In m a n y implementat ions , even a correctly
predicted branch to a quadword t a rge t address will be slower t h a n straight-l ine
code.

Compilers should follow these rules to minimize unexpected branches :

1. Implementa t ions will predict all forward conditional branches as not- taken,
and all backward conditional b ranches as taken . Based on execution profiles,
compilers should physically r ea r r ange code so t h a t i t h a s match ing behavior.

2. Make basic blocks as big as possible. A good goal is 20 instruct ions on average
between branch- taken. This m e a n s unrol l ing loops so t h a t they contain a t least
20 instruct ions, and pu t t ing subrout ines of less t h a n 20 instruct ions directly in
line. I t also m e a n s us ing execution profiles to r ea r r ange code so t h a t t he frequent
case of a conditional b ranch falls through. For very high-performance loops, it
will be profitable to move instruct ions across conditional branches to fill otherwise
was ted instruct ion issue slots, even if t he instruct ions moved will not always do
useful work. Note t h a t t he Conditional Move instruct ions can sometimes be used
to avoid break ing up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away
from 50%-50% (51-49 is enough), pu t t he infrequent case completely out of line,
so t h a t t he frequent case encounters zero b ranch- takens , and the infrequent case
encounters two b ranch- takens . If t he infrequent case is r a r e (5%), pu t it far
enough away t h a t it never comes into the I-cache. If t he infrequent case is
extremely r a r e (error message code), pu t it on a page of rare ly executed code and
expect t h a t page never to be paged in.

Software Considerations A-3

4. There are two functionally identical branch-format opcodes, BSR and BR.

31 26 25 21 20 0

BSR Ra Displacement

BR Ra Displacement

Branch Format

Branch Format

5.

Compilers should use the first one for subrout ine calls, and the second for GOTOs.
Some implementat ions may push a stack of predicted r e t u r n addresses for BSR
and not push the s tack for BR. Fai lure to compile t h e correct opcode will resul t
in mispredicted r e tu rn addresses , and hence m a k e subrout ine r e tu rns slow.

The memory-format J S R instruct ion h a s 16 unused bits . These should be used
by the compilers to communicate a h in t about expected branch- target behavior
(see Common Architecture, Chapter 4):

31 16 15 0

JSR Ra Rb Memory Format

If the J S R is used for a computed GOTO or a CASE s ta tement , compile bi ts
<15:14> as 00, and bits <13:0> such t h a t (updated PC+Instr<13:0>*4) <15:0>
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so t h a t
a normal PC+displacement*4 calculation will ma tch the low 16 bits of the most
likely ta rge t longword address . (Implementat ions will likely prefetch from the
matching cache block.)

If the J S R is used for a computed subrout ine call, compile bi ts <15:14> as 01 ,
and bits <13:0> as above. Some implementa t ions will prefetch the call t a rge t
us ing the prediction and also push upda ted PC on a return-predict ion stack.

If t he J S R is used as a subrout ine re tu rn , compile bi ts <15:14> as 10. Some
implementat ions will pop an address off a return-predict ion stack.

If t he J S R is used as a coroutine l inkage, compile bi ts <15:14> as 11. Some
implementat ions will pop an address off a return-predict ion stack and also push
updated PC on the return-predict ion stack.

Implementors should give first priority to executing straight- l ine code wi th no
branch- takens as quickly as possible, second priority to predicting conditional
branches based on the sign of the displacement field (backward taken , forward not-
taken) , and th i rd priority to predicting subrout ine r e tu rn addresses by runn ing a
small prediction stack. (VAX traces show a stack of 2 to 4 entr ies correctly predicts
most branches.)

A-4 Appendixes

A.2.4 Improving l-Stream Density — Factor of 3

Compilers should t ry to use profiles to m a k e sure almost 100 percent of the bytes
brought into an I-cache are actually executed. This m e a n s al igning branch ta rge ts
and pu t t ing rare ly executed code out of line. Doing so would consistently m a k e an
I-cache appear about two t imes larger, compared to cur ren t VAX practice.

The example below shows the bytes actually brought into a VAX cache (from pa r t of
an address t race of a DLINPAC). The dots represen t bytes brought into the cache
bu t never executed. They occupy about half of the cache.

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC
and a portion of OpenVMS 4.x a re shown. Uppercase I is t he first byte of an
instruction, and lowercase i m a r k s subsequent bytes. Period (.) shows a byte
brought into t he cache bu t never executed.

I-fetch Byte 0 Byte 63

0 0 0 2 6 8 C 0 Iiiiliiliiliiiiiiiiiliii
0 0 0 2 6 9 0 0 Iiiiiliiiiiiiiii
0 0 0 2 6 9 4 0 Iiliililiililililiiililiililiiiiiiiliiliii
0 0 0 2 6 9 8 0 Iiiiliiliiliiiiiiiiiliii
0 0 0 2 6 9 C 0 I Iiiiiliiliiiililiiiiliiillililiililiiililiii
00026A00 Iiliiiiiiiiiiiiiliiliiiliii
00026A40 Iiiiiiiiiiliiiiiiiililiiiliilii
00026A80 Iiliiiilililiiililililiiiiiiiiliiliiiliii Iiiiii
00026AC0 Iiiliii

8 0 0 0 4 4 4 0 Iiiililiii
8 0 0 0 4 6 8 0 Iiiiiiliii
8 0 0 0 4 9 0 0 Iiiliiliiliiiililiiliiliiliiililiiiililiiiliiiil
8 0 0 0 4 9 4 0 Iiiiiliiiliililiii Iiiiiliii
80004A00 Iiiiiiliiliiiii
80004A40 Iiliiliiiiliiiliiiliiiliii Iiiiiilliiiiiliiiiliiliiil
80004A80 Iiiiiliiiliiliiliii....Iiiiiiliii
8 0 0 0 4 F 4 0 Iiiiiiliiiiiiliiiliiiiiiliii
8 0 0 0 4 F 8 0 Iiiiliiiiiiiliililiiiliiiiiiiiiiiiiiliiil
80004FC0 Iliiiiiliiililiiiliii Iiiiililiii
80008A40 Iiiiliii
80008A80 Iliiliiiliililiiilililiiililiiliiiiiliiliiliiliiiiiiililiii

A.2.5 Instruction Scheduling — Factor of 3

The performance of Alpha programs will be sensitive to how carefully t he code is
scheduled to minimize instruct ion-issue delays.

"Result latency" is defined as t he n u m b e r of CPU cycles t h a t m u s t elapse between an
instruct ion t h a t wri tes a resu l t regis ter and one t h a t uses t h a t register, if execution-
t ime stal ls a re to be avoided. Thus , a latency of zero m e a n s t h a t the instruct ion
wri tes a resul t register and the instruct ion t h a t uses t h a t regis ter can be multiple-
issued in t he same cycle. A latency of 2 m e a n s t h a t if t he wri t ing instruct ion is issued
a t cycle N, t he read ing instruct ion can issue no earl ier t h a n cycle N+2. Latency is
implementation-specific.

Most Alpha instruct ions have a non-zero resul t latency. Compilers should schedule
code so t h a t a resul t is not used too soon, a t least in frequently executed code (inner

Software Considerations A-5

loops, as identified by execution profiles). In general , th is will require loop unroll ing
and short procedure inlining.

"Too soon" is current ly ill-defined, since no implementa t ions have been designed yet.
For s ta r te rs , a ssume t h a t implementa t ions can dual-issue instruct ions. Assume
t h a t Load and J S R instruct ions have a latency of 3, shifts and byte manipula t ion a
latency of 2, integer mult iply a latency of 10, and other integer operates a latency of
1. Assume floating mult iply h a s a latency of 5, floating divide a latency of 10, and
other floating operates a latency of 4. Scheduling to these latencies will give a t least
reasonable performance on current ly ant icipated implementat ions .

Compilers should t ry to schedule code to ma tch the above latency rules and also to
match the multiple-issue rules . If doing both is impractical for a par t icular sequence
of code, the latency rules are more impor tan t (since they apply even in single-issue
implementat ions) .

Implementors should give first priority to minimizing the latency of back-to-back
integer operations, of address calculations immediately followed by load/store, of load
immediately followed by branch, and of compare immediately followed by branch.
Second priority should be given to minimizing latencies in general .

A.3 Data-Stream Considerations

The following sections describe considerations for the da t a s t ream.

A.3.1 Data Alignment — Factor of 10

Data PSECTs should be a t least octaword-aligned, so t h a t aggregates (arrays, some
records, subrout ine s tack frames) can be allocated on aligned octaword boundar ies
to t ake advantage of any implementa t ions wi th aligned octaword da ta pa ths , and to
decrease the number of cache fills in almost all implementat ions .

Aggregates (arrays , records, common blocks, and so forth) should be allocated on
a t least aligned octaword boundar ies whenever language rules allow this . In some
implementat ions , a series of wri tes t h a t completely fill a cache block may be a factor
of 10 faster t h a n a series of wri tes t h a t part ial ly fill a cache block, when t h a t cache
block would give a read miss . This is t rue of wri teback caches t h a t read a part ial ly
filled cache block from memory, bu t optimize away the read for completely filled
blocks.

For such implementat ions , long s tr ings of sequent ial wri tes will be faster if they
s t a r t on a cache-block boundary (a mult iple of 128 bytes will do well for most, if not
all, Alpha implementat ions) . This applies to a r ray resul ts t h a t sweep through large
portions of memory, and also to register-save a reas for context switching, graphics
frame buffer accesses, and other places where exactly 8 , 1 6 , 32, or more quadwords
a re stored sequentially. Allocating the t a rge t s a t mult iples of 8, 16, 32, or more
quadwords, respectively, and doing the wri tes in order of increasing address will
maximize the wri te speed.

I tems within aggregates t h a t a re forced to be unal igned (records, common blocks)
should genera te compile-time warn ing messages and inline byte extract / insert code.

A-6 Appendixes

Users m u s t be educated t h a t t he warn ing message m e a n s t h a t they are t ak ing a
factor of 30 performance hit .

Compilers should consider supplying a switch t h a t allows the compiler to pad
aggregates to avoid unal igned da ta .

Compiled code for pa rame te r s should assume t h a t the pa rame te r s a re aligned.
Unal igned actuals will therefore cause run t ime a l ignment t r ap s and very slow
fixups. The fixup rout ine, if invoked, should genera te warn ing messages to the
user, preferably giving the first few s t a t emen t numbers t h a t a re doing unal igned
pa rame te r access, and a t the end of a r u n the total number of a l ignment t r aps (and
pe rhaps a n es t imate of t h e performance improvement if t h e da t a were aligned).
Again, users m u s t be educated t h a t t he t r a p rout ine warn ing message m e a n s they
are t ak ing a factor of 30 performance hit .

Frequent ly used scalars should reside in registers . Each scalar d a t u m allocated
in memory should normally be allocated a n aligned quadword to itself, even if t he
d a t u m is only a byte wide. This allows aligned quadword loads and stores and avoids
par t ia l -quadword wri tes (which m a y be half as fast as full-quadword wri tes , due to
such factors as read-modify-write a quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second
priority to fast wri tes of full cache blocks. Par t ia l -quadword wri tes need not have a
fast repeti t ion ra te .

A.3.2 Shared Data in Multiple Processors — Factor of 3

Software locks a re aligned quadwords and should be allocated to large cache blocks
t h a t e i ther contain no other da ta , or read-mostly da t a whose usage is correlated with
t he lock.

Whenever the re is high contention for a lock, one processor will have the lock and
be us ing the guarded da ta , while o ther processors will be in a read-only spin loop on
the lock bit. Unde r these circumstances, any wri te to the cache block containing the
lock will likely cause excess bus traffic and cache fills, t h u s having a performance
impact on all processors t h a t a re involved, and the buses between them. In some
decomposed FORTRAN programs, refills of the cache blocks containing one or two
frequently used locks can account for a th i rd of all t he bus bandwid th the program
consumes.

Whenever the re is a lmost no contention for a lock, one processor will have the lock
and be us ing the guarded data . Unde r these circumstances, i t might be desirable to
keep the guarded da t a in t he same cache block as t he lock.

For the high shar ing case, compilers should assume t h a t almost all accesses to
shared da t a resul t in cache misses all t he way back to ma in memory, for each distinct
cache block used. Such accesses will likely be a factor of 30 slower t h a n cache hi ts .
I t is helpful to pack correlated shared d a t a into a small n u m b e r of cache blocks. I t is
helpful also to segregate blocks wr i t t en by one processor from blocks read by others.

Therefore, accesses to shared da ta , including locks, should be minimized. For
example, a 4-processor decomposition of some manipula t ion of a 1000-row ar ray

Software Considerations A-7

should avoid accessing lock variables every row, bu t ins tead might access a lock
variable every 250 rows.

Array manipula t ion should be part i t ioned across processors so t h a t cache blocks do
not t h r a s h between processors. Having each of 4 processors work on every fourth
a r ray element severely impairs performance on any implementat ion wi th a cache
block of 4 e lements or larger. The processors all contend for copies of the same cache
blocks and use only 1/4 of the da t a in each block. Writes in one processor severely
impair cache performance on all processors.

A be t te r decomposition is to give each processor the largest possible contiguous
chunk of da ta to work on (N/4 consecutive rows for 4 processors and row-major
a r ray storage; N/4 columns for column-major storage). With the possible exception
of 3 cache blocks a t the par t i t ion boundaries , th is decomposition will resul t in each
processor caching da ta t h a t is touched by no o ther processor.

Operat ing-system scheduling algori thms should a t t empt to minimize process
migrat ion from one processor to another. Any t ime migrat ion occurs, the re are likely
to be a large number of cache misses on the new processor.

Similarly, operat ing-system scheduling algori thms should a t t empt to enforce some
affinity between a given device's in te r rup t s and the processor on which the in ter rupt-
handler runs . I/O control da t a s t ruc tures and locks for different devices should be
disjoint. Doing both of these allows higher cache hi t r a t e s on the corresponding I/O
control da ta s t ruc tures .

Implementors should give first priority to an efficient (low-bandwidth) way of
t ransferr ing isolated lock values and other isolated, shared wri te da ta between
processors.

Implementors should assume t h a t the amount of shared da t a will continue to
increase, so over t ime the need for efficient shar ing implementa t ions will also
increase.

A.3.3 Avoiding Cache/TB Conflicts — Factor of 1

Occasionally, programs t h a t r u n with a direct-mapped cache or TB will t h ra sh ,
t ak ing excessive cache or TB misses. With some work, t h r a sh ing can be minimized
a t compile t ime.

In a frequently executed loop, compilers could allocate the da t a i tems accessed from
memory so tha t , on each loop i terat ion, all of the memory addresses accessed are
ei ther in exactly the same aligned 64-byte block, or differ in bi ts VA<10:6>. For loops
t h a t go through a r rays in a common direction wi th a common str ide, th is means
allocating the a r rays , checking t h a t the first-iteration addresses differ, and if not,
inser t ing up to 64 bytes of padding between the a r rays . This rule will avoid th ra sh ing
in small direct-mapped da t a caches with block sizes up to 64 bytes and total sizes
of 2K bytes or more.

A-8 Appendixes

Example:

REAL*4 A(1000),B(1000)
DO 60 i=l,1000

60 A(i) = f(B(i))

BAD allocation (A and Β t h r a s h in 8 KB direct-mapped cache):

16K

BETTER allocation (A and Β offset by 64 mod 2 KB, so 16 e lements of A and 16 of
Β can be in cache simultaneously):

4K 8K+64 12K 16K

BEST allocation (A and Β offset by 64 mod 2 KB, so 16 e lements of A and 16 of Β
can be in cache simultaneously, and both a r rays fit entirely in 8 KB or bigger cache):

 ̂ : :" - -Γ- ν ; τ -̂ :-Tyy^T{ ^ ^ ^ " ^ 7 -

A Β ^ 4 f e : ^
0 4K-64 8K 12K 16K

In a frequently executed loop, compilers could allocate the d a t a i tems accessed from
memory so tha t , on each loop i terat ion, all of the memory addresses accessed are
e i ther in exactly the same 8 KB page, or differ in bi ts VA<17:13>. For loops t h a t go
th rough a r rays in a common direction wi th a common str ide, th is m e a n s allocating
the a r rays , checking t h a t the first-iteration addresses differ, and if not, inser t ing
up to 8K bytes of padding between t he a r rays . This rule will avoid t h ra sh ing in
direct-mapped TBs and in some large direct-mapped da t a caches, wi th total sizes of
32 pages (256 KB) or more.

Usually, th is padding will m e a n zero ex t ra bytes in the executable image, j u s t a skip
in v i r tual address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-s tream, in addition to
all t he D-st ream references. Some implementa t ions will have combined I-stream
/D-stream large caches.

Both of the rules above can be satisfied simultaneously, t h u s often el iminating
th ra sh ing in all ant icipated direct-mapped cache/TB implementat ions .

Software Considerations A -9

A.3.4 Sequential Read/Write — Factor of 1

All other th ings being equal, sequences of consecutive reads or wri tes should use
ascending (ra ther t h a n descending) memory addresses . Where possible, t he memory
address for a block of 2**Kbytes should be on a 2**K boundary, since th is minimizes
the number of different cache blocks used and minimizes the number of part ial ly
wr i t ten cache blocks.

To avoid overrunning memory bandwidth , sequences of more t h a n eight quadword
Loads or Stores should be broken up wi th in tervening instruct ions (if t he re is any
useful work to be done).

For consecutive reads , implementors should give first priority to prefetching
ascending cache blocks, and second priority to absorbing up to eight consecutive
quadword Loads (aligned on a 64-byte boundary) wi thout stalling.

For consecutive wri tes , implementors should give first priority to avoiding read
overhead for fully wr i t ten aligned cache blocks, and second priority to absorbing
up to eight consecutive quadword Stores (aligned on a 64-byte boundary) without
stalling.

A.3.5 Prefetching — Factor of 3

To use FETCH and FETCH_M effectively, software should follow this programming
model:

1. Assume t h a t a t most two FETCH instruct ions can be outs tanding a t once,
and t h a t the re a re two prefetch address registers , P R E a and PREb, to hold
prefetching s ta te . FETCH instruct ions a l t e rna te between loading P R E a and
PREb. Each FETCH instruct ion overwrites any previous prefetching s ta te , t h u s
t e rmina t ing any previous prefetch t h a t is still in progress in the register t h a t is
loaded. The order of fetching within a block and the order between P R E a and
PREb are UNPREDICTABLE.

IMPLEMENTATION NOTE
Implementa t ions a re encouraged to a l t e rna te a t
convenient intervals between P R E a and PREb.

2. Assume, for max imum efficiency, t h a t there should be about 64 unre la ted memory
access instruct ions (load or store) between a F E T C H and the first actual da ta
access to the prefetched data .

3. Assume, for instruction-scheduling purposes in a multi level cache hierarchy, t h a t
FETCH does not prefetch da t a to the innermost cache level, bu t r a t h e r one level
out. Schedule loads to bury the las t level of misses.

4. Assume t h a t FETCH is worthwhile if, on average, a t least half the da t a in a
block will be accessed. Assume t h a t FETCH_M is worthwhile if, on average, a t
least half the da t a in a block will be modified.

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch 4
operands, launch the first two prefetches, do about 128 memory references

A-10 Appendixes

worth of work, t hen launch the next two prefetches, do about 128 more memory
references wor th of work, t hen s t a r t us ing the 4 sets of prefetched da ta .

6. Treat F E T C H as hav ing the same effect on a cache as a series of 64 quadword
loads. If t he loads would displace useful da ta , so will FETCH. If two sets of loads
from specific addresses will t h r a s h in a direct-mapped cache, so will two FETCH
instruct ions us ing the same pair of addresses .

IMPLEMENTATION NOTE
Hardware implementa t ions a re expected to provide
e i ther no support for FETCHx or suppor t t h a t closely
matches th i s model.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word Memory Accesses

The instruct ion sequences given in Common Architecture, Chapter 4 for byte and
word accesses a re worst-case code. In t he common case of accessing a byte or aligned
word field a t a known offset from a pointer t h a t is expected to be a t least longword
aligned, t he common-case code is much shorter.

"Expected" m e a n s t h a t the code should r u n fast for a longword-aligned pointer and
t r a p for unal igned. The t r a p hand le r m a y a t i ts option fix up the unal igned reference.

For access a t a known offset D from a longword-aligned pointer Rx, let D.lw be D
rounded down to a mult iple of 4 ((D div 4)*4), and let D.mod be D mod 4.

In t he common case, t he in tended sequence for loading and zero-extending an aligned
word is:

LDL Rl,D.lw(Rx) ! Traps if unaligned
EXTWL Rl,#D.mod,Rl ! Picks up word at byte 0 or byte 2

In the common case, t he in tended sequence for loading and sign-extending an aligned
word is:

LDL Rl,D.lw(Rx) ! Traps if unaligned
SLL Rl,#48-8*D.mod,Rl ! Aligns word at high end of Rl
SRA R1,#48,R1 ! SEXT to low end of Rl

NOTE
The shifts often can be combined wi th shifts t h a t
might sur round subsequent a r i thmet ic operat ions (for
example, to produce word overflow from the high end of
a register).

In the common case, t he in tended sequence for loading and zero-extending a byte is:

LDL Rl,D.lw(Rx) !
EXTBL Rl,#D.mod,Rl !

Software Considerations A-11

In the common case, the in tended sequence for loading and sign-extending a byte is:

LDL Rl,D.lw(Rx) !
SLL Rl,#56-8*D.mod,Rl !
SRA Rl,#56fRl !

In the common case, the in tended sequence for s toring an aligned word R5 is:

LDL Rl,D.lw(Rx) !
INSWL R5,#D.mod,R3 !
MSKWL Rl,#D.mod,Rl !
BIS R3,R1,R1 !
STL Rl,D.lw(Rx) !

In the common case, the in tended sequence for storing a byte R5 is:

LDL Rl,D.lw(Rx) !
INSBL R5,#D.mod,R3 !
MSKBL Rl,#D.mod,Rl !
BIS R3,R1,R1 !
STL Rl,D.lw(Rx) !

A.4.2 Division

In all implementat ions , floating-point division is likely to have a substant ia l ly longer
resul t latency t h a n floating-point multiply; in addition, in m a n y implementa t ions
mult iplies will be pipelined and divides will not.

Thus , any division by a constant power of two should be compiled as a mult iply
by the exact reciprocal, if it is representable wi thout overflow or underflow. If
language rules or sur rounding context allow, other divisions by constants can be
closely approximated via multiplication by the reciprocal.

Integer division does not exist as a ha rdware opcode. Division by a constant can
always be done via UMULH of another appropr ia te constant , followed by a r ight
shift. General quadword division by t rue variables can be done via a subrout ine.
The subrout ine could tes t for small divisors (less t h a n about 1000 in absolute value)
and for those, do a table lookup on the exact constant and shift count for an UMULH
/shift sequence. For the remain ing cases, a table lookup on about a 1000-entry
table and a mult iply can give a l inear approximation to 1/divisor t h a t is accurate to
16 bits . Using th is approximation, a mult iply and a back-multiply and a subt rac t
can genera te one 16-bit quotient "digit" plus a 48-bit new par t ia l dividend. Three
more such steps can genera te the full quotient. Having prior knowledge of the
possible sizes of the divisor and dividend, normalizing away leading bytes of zeros,
and performing an early-out tes t can reduce the average number of mult ipl ies to
about 5 (compared to a best case of 1 and a worst case of 9).

A.4.3 Stylized Code Forms

Using the same stylized code form for a common operation makes compiler ou tput
a little more readable and makes it more likely t h a t an implementat ion will speed
up the stylized form.

A-12 Appendixes

A.4.3.1 NOP

The s t anda rd N O P forms are :

NOP
FNOP

BIS
CPYS

R31,R31,R31
F31,F31,F31

These genera te no exceptions. In most implementat ions , they should encounter no
operand issue delays, no dest inat ion issue delay, and no functional un i t issue delay.
Implementa t ions a re free to optimize these into no action and zero execution cycles.

A.4.3.2 Clear a Register

The s t anda rd clear register forms are :

These genera te no exceptions. In most implementat ions , they should encounter no
operand issue delays, and no functional un i t issue delay.

A.4.3.3 Load Literal

The s t anda rd load integer l i teral (ZEXT 8-bit) form is:

MOV #lit8,Ry == BIS R31, lit8, Ry

The Alpha l i teral construct in Opera te ins t ruct ions creates a canonical longword
constant for values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when
bi ts <63:32>=bit <31>.

A canonical 32-bit l i teral can usual ly be genera ted wi th one or two instruct ions, bu t
sometimes th ree instruct ions a re needed. Use the following procedure to determine
t he offset fields of the instruct ions:

val = <sign-extended, 32-bit value>

low = val<15:0>

tmpl = val - SEXT(low) ! Account for LDA instruction

high = tmpl<31:16>
tmp2 = tmpl - SHIFT_LEFT(SEXT(high,16))
if tmp2 NE 0 then

! original val was in range 7FFF8000i6..7FFFFFFFig
extra = 4000i6
tmpl = tmpl - 40000000ig
high = tmpl<31:16>

else
extra = 0

endif

The general sequence is:

LDA Rdst, low(R31)
LDAH Rdst, extra(Rdst) ! Omit if extra=0
LDAH Rdst, high(Rdst) ! Omit if high=0

CLR
FCLR

BIS
CPYS

R31,R31,Rx
F31,F31,Fx

Software Considerations A-13

A.4.3.4 Register-to-Register Move

The s t andard register move forms are:

MOV RXfRY == BIS RX,RX,RY
FMOV FX,FY == CPYS FX,FX,FY

These genera te no exceptions. In most implementat ions , these should encounter no
functional un i t issue delay.

A.4.3.5 Negate

The s t andard register negate forms are:

NEGz Rx,Ry == SUBz R31,Rx,Ry ! ζ = L or Q
NEGz Fx,Fy == SUBz F31,Fx,Fy ! ζ = F G S or Τ
FNEGz Fx,Fy == CPYSN Fx,Fx,Fy ! ζ = F G S or Τ

The integer subtract genera tes no Integer Overflow t r a p if Rx contains the largest
negative number (SUBz/V would t rap) . The floating subtrac t genera tes a floating-
point exception for a non-finite value in Fx. The CPYSN form genera tes no
exceptions.

A.4.3.6 NOT

The s t andard integer register NOT form is:

NOT Rx,Ry == ORNOT R31,Rx,Ry

This generates no exceptions. In most implementat ions , th is should encounter no
functional un i t issue delay.

A.4.3.7 Booleans

The s t andard a l ternat ive to BIS is:

OR Rx,Ry,Rz == BIS Rx,Ry,Rz

The s t andard a l ternat ive to BIC is:

ANDNOT Rx,Ry,Rz == BIC Rx,Ry,Rz

The s t andard a l ternat ive to EQV is:
XORNOT Rx,Ry,Rz == EQV Rx,Ry,Rz

A.4.4 Trap Barrier

The TRAPB instruct ion guaran tees t h a t following instruct ions do not issue unt i l all
possible preceding t r aps have been signaled. This does not m e a n t h a t all preceding
instruct ions have necessarily r u n to completion (for example, a Load instruct ion may
have passed all t he fault checks bu t not yet delivered da t a from a cache miss).

A.4.5 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha archi tecture t h a t m a y
be used by various software components in an Alpha system. Most of these forms
are discussed in preceding sections.

A-14 Appendixes

In the context of th i s section, pseudo-operations all represen t a single under lying
machine instruction. Each pseudo-operation represents a par t icular instruct ion
wi th e i ther replicated fields (such as FMOV), or hard-coded zero fields. Since the
pa t t e rn is distinct, these pseudo-operations can be decoded by instruct ion decode
mechanisms.

In Table A - 1 , the pseudo-operation codes can be viewed as macros wi th pa ramete r s .
The formal form is listed in the left column, and the expansion in the code s t ream
listed in the r ight column.

Some instruct ion mnemonics have synonyms. These a re different from pseudo-
operat ions in t h a t each synonym represen ts the same under ly ing instruct ion wi th
no special encoding of operand fields. As a result , synonyms cannot be dis t inquished
from each other. They are not listed in the table t h a t follows. Examples of synonyms
are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A-1 : Decodable Pseudo-Operations (Stylized Code Forms)
Pseudo-Opera t ion in Lis t ing Actual In s t ruc t ion Encod ing

No-exception generic floating absolute
value:
FABS Fx, Fy

Branch to target (21-bit signed displace-
ment):
BR target

Clear integer register:
CLR Rx

Clear a floating-point register:
FCLR Fx

Floating-point move:
FMOV Fx, Fy

No-exception generic floating negation:
FNEG Fx, Fy

Floating-point no-op:
FNOP

Move Rx/8-bit zero-extended literal to
Ry:
MOV {Rx/Lit8}, Ry

Move 16-bit sign-extended literal to
Rx:
MOV Lit, Rx

Software Considerations A-15

CPYS F31, Fx, Fy

BR R31, target

BIS R31, R31, Rx

CPYS F31, F31, Fx

CPYS Fx, Fx, Fy

CPYSN Fx, Fx, Fy

CPYS F31, F31, F31

BIS R31, {Rx/Lit8}, Ry

LDA Rx, lit(R31)

Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)
Pseudo-Opera t ion in Lis t ing Actual Ins t ruc t ion Encod ing

Move to FPCR:
MT.FPCR Fx MT.FPCR Fx, Fx, Fx

Move from FPCR:
MFJFPCR Fx MF.FPCR Fx, Fx, Fx

Negate F_floating:
NEGF Fx, Fy

Negate F_floating, semi-precise:
NEGF/S Fx, Fy

Negate G_floating:
NEGG Fx, Fy

Negate G_floating, semi-precise:
NEGG/S Fx, Fy

Negate longword:
NEGL {Rx/Lit8}, Ry

Negate longword with overflow detec-
tion:
NEGL/V {Rx/Lit8}, Ry

Negate quadword:
NEGQ {Rx/Lit8}, Ry

Negate quadword with overflow detec-
tion:
NEGQ/V {Rx/Lit8}, Ry

Negate S_floating:
NEGS Fx, Fy

Negate S_floating, software with un-
derflow detection:
NEGS/SU Fx, Fy

Negate S_floating, software with un-
derflow and inexact result detection:
NEGS/SUI Fx, Fy

Negate T_floating:
NEGT Fx, Fy

SUBF F31, Fx, Fy

SUBF/S F31, Fx, Fy

SUBG F31, Fx, Fy

SUBG/S F31, Fx, Fy

SUBL R31, {Rx/Lit}, Ry

SUBL/V R31, {Rx/Lit}, Ry

SUBQ R31, {Rx/Lit}, Ry

SUBQ/V R31, {Rx/Lit}, Ry

SUBS F31, Fx, Fy

SUBS/SU F31, Fx, Fy

SUBS/SUI F31,Fx, Fy

SUBT F31, Fx, Fy

A-16 Appendixes

Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Negate T_floating, software with un-
derflow detection:
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy

Negate T_floating, software with un-
derflow and inexact result detection:
NEGT/SUI SUBT/SUI F31, Fx, Fy

Integer no-op:
NOP BIS R31, R31, R31

Logical NOT of Rx/8-bit zero-extended
literal storing results in Ry:
NOT {Rx/Lit8}, Ry ORNOT R31, {Rx/Lit}, Ry

Longword sign-extension of Rx storing
results in Ry:
SEXTL {Rx/Lit8}, Ry ADDL R31, {Rx/Lit}, Ry

A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruct ion sequence between LDx_L and STx_C will never
complete, because periodic t imer in t e r rup t s will a lways occur before the sequence
completes. The following rules describe sequences t h a t will eventual ly complete in
all Alpha implementa t ions:

1. At most 40 operate or conditional-branch (not taken) ins t ruct ions executed in t he
sequence between LDx_L and STx_C.

2. At most two I-s t ream TB-miss faults . Sequent ia l instruct ion execution
gua ran tees th is .

3. No other exceptions tr iggered dur ing the las t execution of t he sequence.

IMPLEMENTATION NOTE
On all expected implementa t ions , th is allows for about
50 /isec of execution t ime, even wi th 100 percent cache
misses . This should satisfy any requ i rement for a 1 msec
t imer in t e r rup t r a te .

Software Considerations A-17

Pseudo-Operation in Listing Actual Instruction Encoding

Appendix Β

IEEE Floating-Point Conformance

A subset of I E E E S tanda rd for Binary Floating-Point Ari thmetic (754-1985) is
provided in t he Alpha floating-point instruct ions. This appendix describes how to
construct a complete IEEE implementat ion.

The order of presenta t ion paral lels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha suppor ts IEEE single and double formats. Optional extended double is not
supported.

Alpha ha rdware supports normal and chopped IEEE rounding modes. IEEE plus
infinity and minus infinity rounding modes can be implemented in ha rdware or
software.

Alpha h a r d w a r e does not suppor t optional IEEE software t r a p enable/disable modes;
see the following discussion about software support .

Alpha h a r d w a r e supports add, subtract , multiply, divide, convert between floating
formats, convert between floating and integer formats, and compare. Software
rout ines suppor t square root, remainder , round to integer in floating-point format,
and convert b inary to/from decimal.

In the Alpha archi tecture , copying wi thout change of format is not considered an
operation. (LDx, CPYSx, and STx do not check for non-finite numbers ; an operation
would.) Compilers may genera te ADDx F31,Fx,Fy to get t he opposite effect.

Optional operat ions for differing formats a re not provided.

The Alpha choice is t h a t the accuracy provided will meet or exceed IEEE s t andard
requi rements . I t is implementa t ion-dependent whe ther the software binary/decimal
conversions beyond 9 or 17 digits t r e a t any excess digits as zeros.

Overflow and underflow, NaNs , and infinities encountered dur ing software binary to
decimal conversion r e t u r n s t r ings t h a t specify the conditions. Such s t r ings can be
t runca ted to the i r shor tes t unambiguous length.

Alpha h a r d w a r e suppor ts comparisons of same-format numbers . Software supports
comparisons of different-format numbers .

In the Alpha archi tecture , resu l t s a re true-false in response to a predicate.

Alpha ha rdware suppor ts the required six predicates and the optional unordered
predicate. The other 19 optional predicates can be constructed from sequences of
two comparisons and two branches .

IEEE Floating-Point Conformance B-1

Alpha ha rdware supports infinity ar i thmet ic only by t r app ing when an infinity
operand is encountered and when an infinity is to be created from finite operands
by overflow or division by zero. A software t r a p handle r (interposed between the
ha rdware and the IEEE user) provides correct infinity ar i thmet ic .

Alpha ha rdware supports NaNs only by t r app ing when a N a N operand is
encountered and when a N a N is to be created. A software t r a p handle r (interposed
between the ha rdware and the IEEE user) provides correct Signaling and Quiet N a N
behavior.

In the Alpha archi tecture, Quiet N a N s do not afford retrospective diagnostic
information.

In the Alpha archi tecture, copying a Signaling N a N without a change of format does
not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite
numbers) . Compilers may genera te ADDx F31,Fx,Fy to get the opposite effect.

Alpha ha rdware fully supports negative zero operands, and follows the IEEE rules
for creat ing negative zero resul ts .

Alpha ha rdware does not supply IEEE exception t r a p behavior; t he ha rdware t r aps
are a superset of the IEEE-required conditions. A software t r a p handle r (interposed
between the ha rdware and the IEEE user) provides correct IEEE exception behavior.

In the Alpha archi tecture, t in iness is detected by ha rdware after rounding, and loss
of accuracy is detected by software as an inexact resul t .

In the Alpha archi tecture, user t r a p hand le rs will be supported by compilers and
a software t r a p handle r (interposed between the ha rdware and the IEEE user) , as
described in the next section.

B.2 Alpha Hardware Support of Software Exception Handlers

In Alpha instruct ions, ha rdware t r a p behavior is de termined only a t compile t ime;
short of recompiling, there are no dynamic facilities for changing ha rdware t r a p
behavior.

There is an essential dispari ty between the Alpha design goal of fast execution and
the IEEE design goal of exact t r a p behavior. The Alpha ha rdware archi tecture
provides means for users to choose various degrees of IEEE compliance, a t
appropriate performance cost.

Instruct ions compiled without the /Software modifier cannot produce IEEE-
compliant t r a p behavior, nor can they provide IEEE-compliant non-finite ar i thmetic .
Trapping and stopping on non-finite operands or resul t s (ra ther t h a n the IEEE
default of continuing wi th NaNs propagated) is an Alpha value-added behavior t h a t
some users prefer.

Instruct ions compiled without the /Underflow ha rdware t r a p enable modifier cannot
produce IEEE-compliant underflow t r a p behavior, nor can they provide IEEE-
compliant denormal resul ts . They are fast and provide t rue zero (not minus zero)
resul ts whenever underflow occurs. This is an Alpha value-added behavior t h a t
some users prefer.

B-2 Appendixes

Ins t ruct ions compiled wi thout t he /Inexact h a r d w a r e t r a p enable modifier cannot
produce IEEE-compliant inexact t r a p behavior. Trapping on Inexact will be painfully
slow; few users appear to prefer th is , bu t they can get i t if they really wan t it.

IEEE floating-point instruct ions compiled wi th t he /Software modifier produce
ha rdware t r aps and unpredictable values; a software t r a p hand le r may t hen produce
all IEEE-required behavior.

IEEE floating-point instruct ions compiled with the /Underflow enable modifier
produce ha rdware t r aps and t rue zero values for underflow; a software t r a p handle r
may t hen produce all IEEE-required behavior.

I E E E floating-point instruct ions compiled wi th the /Inexact enable modifier produce
ha rdware t r aps t h a t allow a software t r a p hand le r to produce all IEEE-required
behavior.

Thus , to get full IEEE compliance of all t he required features of the s tandard , users
m u s t compile wi th all th ree options enabled.

To get the optional full IEEE user t r a p hand le r behavior, a software t r a p handler
m u s t be provided t h a t implements t he five exception flags, dynamic user t r a p handle r
disabling, hand le r saving and restoring, default behavior for disabled user t r a p
handle rs , and l inkages t h a t allow a use r hand le r to r e t u r n a subs t i tu te resul t .

Also, users m u s t inser t a TRAPB in every basic block with a floating operation t h a t
can potential ly t r ap , so t h a t a software hand le r h a s an opportuni ty to scale the t rue
resul t by 2**192 or 2**1536, a s appropr ia te for enabled user t r a p handlers ; and to
supply t he default + / - infinity, +/-MAX, +/-MIN, denormal , or zero as appropr ia te
for disabled use r t r a p handlers .

B.3 Mapping to IEEE Standard

There a re five IEEE exceptions, each of which can be "IEEE software t rap-enabled"
or disabled (the default condition). Implement ing the IEEE software t rap-enabled
mode is optional in the IEEE s tandard .

Our assumption, therefore, is t h a t t he only access to IEEE-specified software t rap-
enabled resul t s will be genera ted in assembly language code. The following design
allows this , bu t only if such assembly language code h a s TRAPB instruct ions after
each floating-point instruct ion, and genera tes t he IEEE-specified scaled resul t in a
t r a p hand le r by emula t ing t he ins t ruct ion t h a t was t r apped by h a r d w a r e overflow
/underflow detection, us ing the original operands.

There is a set of detailed IEEE-specified resu l t values , both for operat ions t h a t are
specified to ra ise IEEE t r aps and those t h a t do not. This behavior is created on
Alpha by four layers of ha rdware , PALcode, t he operat ing-system t r a p handler, and
the user I E E E t r a p handler , as shown in Figure B - l .

IEEE Floating-Point Conformance B-3

Figure B-1 : IEEE Trap Handling Behavior

Hardware

Traps to PALcode

PALcode

Traps to Operating System

Optional System

I Traps to User IEEE Trap Handler
: (IEEE Standard)

User Condition Handler

The IEEE-specified t r a p behavior occurs only wi th respect to the user IEEE t r a p
handler (the las t layer in Figure B-1) ; any trap-and-fixup behavior in the first th ree
layers is outside the scope of the IEEE s tandard .

The IEEE number system is divided into finite and non-finite numbers :

• The finîtes are normal numbers :

-MAX.. -MIN, - 0 , 0, +MIN..+MAX

• The non-finites are:

Denormals , + / - Infinity, Signaling NaN, Quiet N a N

Alpha ha rdware m u s t t r e a t minus zero operands and resul t s as special cases, as
required by the IEEE s tandard .

Table B - 1 specifies, for the IEEE /Software modes, which layer does each piece of
t r a p handl ing. See Common Architecture, Chapter 4 for more detail on the ha rdware
instruct ion descriptions.

B-4 Appendixes

Table B-1 : IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

FBEQ FBNE FBLT FBLE FBGT
FBGE

Bits Only--No Exceptions

LDS LDT Bits Only--No Exceptions

STS STT Bits Only--No Exceptions

CPYS CPYSN Bits Only--No Exceptions

FCMOVx Bits Only--No Exceptions

ADDx SUBx INPUT Exceptions

Denormal operand Trap Trap Supply
sum

-

+/-Inf operand Trap Trap Supply
sum

-

QNaN operand Trap Trap Supply
QNaN

-

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

+Inf+- Inf Trap Trap Supply
QNaN

[Invalid Op]

ADDx SUBx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/-Inf
+/-MAX

[Overflow]
Scale by
2**Alpha

Exponent underflow
and disabled

Supply
+0

- - _1

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/-MIN
denorm
+/-0

[Underflow]
Scale by
2**Alpha

Inexact and disabled
in the instruction

- - - -

Inexact and enabled
in the instruction

Trap Trap — [Inexact]

1
An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all
underflows.

IEEE Floating-Point Conformance B-5

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

MULx INPUT Exceptions

Denormal operand Trap Trap Supply
prod.

-

+/-Inf operand Trap Trap Supply
prod.

-

QNaN operand Trap Trap Supply
QNaN

-

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

0 * Inf Trap Trap Supply
QNaN

[Invalid Op]

MULx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/-Inf
+/-MAX

[Overflow]
Scale by
2**Alpha

Exponent underflow
and disabled

Supply
+0

- - -

Exponent underflow
and enabled

Supply
+0 and
Trap

Trap Supply
+/-MIN
denorm
+/-0

[Underflow]
Scale by
2**Alpha

Inexact and disabled - - - -

Inexact and enabled Trap Trap - [Inexact]

DIVx INPUT Exceptions

Denormal operand Trap Trap Supply
quot.

-

+/-Inf operand Trap Trap Supply
quot.

-

QNaN operand Trap Trap Supply
QNaN

-

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

0/0 or Infflnf Trap Trap Supply
QNaN

[Invalid Op]

B-6 Appendixes

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

DIVx INPUT Exceptions

A/0 Trap Trap Supply
+/-Inf

[Div. Zero]

DIVx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/-Inf
+/-MAX

[Overflow]
Scale by
2**Alpha

Exponent underflow
and disabled

Supply
+0

- - -

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/-MIN
denorm
+/-0

[Underflow]
Scale by
2**Alpha

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact]

CMPTEQ CMPTUN INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

-

QNaN operand Trap Trap Supply
False
for EQ, True
for UN

—

SNaN operand Trap Trap Supply
False/
True

[Invalid Op]

CMPTLT CMPTLE INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

-

QNaN operand Trap Trap Supply
False

[Invalid Op]

SNaN operand Trap Trap Supply
False

[Invalid Op]

IEEE Floating-Point Conformance B-7

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

CVTFi INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

-

+/-Inf operand Trap Trap Supply
Cvt

[Invalid Op]

QNaN operand Trap Trap Supply
QNaN

-

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

CVTFi OUTPUT Exceptions

Inexact and disabled - - - -

Inexact and enabled Trap Trap - [Inexact]

Integer overflow Supply
Trunc.
result
and trap
if enabled

Trap [Invalid Op]2

CVTif OUTPUT Exceptions

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact]

CVTff INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

-

+/-Inf operand Trap Trap Supply
Cvt

-

QNaN operand Trap Trap Supply
QNaN

-

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

2
An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a

truncated result on all overflows.

B-8 Appendixes

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

Alpha Ins t ruc t ions H a r d w a r e PAL

OS
Trap
H a n d l e r

User
Software
H a n d l e r

CVTff OUTPUT Except ions

Exponent overflow Trap Trap Supply
+/-Inf
+/-MAX

[Overflow]
Scale by
2**Alpha

Exponent underflow
and disabled

Supply
+0

- - -

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/-MIN
denorm
+/-0

[Underflow]
Scale by
2**Alpha

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact]

Other I E E E operat ions (software subrout ines or sequences of instructions), a re listed
here for completeness:

Remainder
SQRT
Round float to integer-valued float
Convert b inary to/from decimal
Compare, o ther combinations t h a n t h e four above

IEEE Floating-Point Conformance B-9

Table B - 2 shows t h e I E E E s t anda rd char ts .

Table B-2: IEEE Standard Charts

Exception

IEEE Software
TRAP Disabled
(IEEE Default)

IEEE Software
TRAP Enabled
(Optional)

Invalid Operation

(1) Input signaling NaN Quiet NaN

(2) Mag. subtract Inf. Quiet NaN

(3) 0 * Inf. Quiet NaN

(4) 0/0 or Inf/Inf Quiet NaN

(5) χ REM 0 or Inf REM y Quiet NaN

(6) SQRT(negative non-zero) Quiet NaN

(7) Cvt to int(ovfl, Inf, NaN) Quiet NaN

(8) Compare unordered Quiet NaN

Division by Zero

χ/0, χ finite <>0 +/-Inf

Overflow

Round nearest +/-Inf. Res/2**192 or 1536

Round to zero +/-MAX Res/2**192 or 1536

Round to -Inf +MAX/-Inf Res/2**192 or 1536

Round to +Inf +Inf/-MAX Res/2**192 or 1536
Underflow 0/denorm/+ -MIN Res*2**192 or 1536

Inexact Rounded/ovfl Res

IEEE software t r a p handler requi rements a re as follows:

Resul t is unpredictable unless supplied by t r a p handler .
Determine which exceptions occurred.
Determine the kind of operation.
Determine the dest inat ion format.
Overflow/underflow/inexact: the correctly rounded result , including pa r t s t h a t do
not fit in the format.
Invalid and divzero: the operand values.

B-10 Appendixes

Appendix C

Instruction Encodings

The encodings for t he Alpha inst ruct ion set a re given in the following sections.
There is one section for each ins t ruct ion format, followed by a s u m m a r y of all t he
instruct ion opcodes in a single table.

C.1 Memory Format Instructions

Table C - l l ists the hexadecimal values of the 6-bit opcode field for the Memory
format instruct ions.

Table C-1: Memory Format Instruction Opcodes
Mnemonic Mnemonic Mnemonic

LDA 08 LDAH 09 LDF 20
LDG 21 LDL 28 LDL_L 2A
LDQ 29 LDQ_L 2B LDQ_U OB
LDS 22 LDT 23 STF 24
STG 25 STL 2C STL C 2E
STQ 2D STQ_C 2F STQ_U OF
STS 26 STT 27

Table C-2 l ists t he hexadecimal values of t h e 6-bit opcode field and the 16-bit
displacement field for the Memory format instruct ions t h a t use t he displacement
field as a function code. The notat ion used is oo.ffff, where oo is t he 6-bit opcode and
the ffffis t he 16-bit displacement field.

Table C-2: Memory Format Instructions with a Function Code
Mnemonic Mnemonic Mnemonic

FETCH 18.8000 FETCH M 18.A000 MB 18.4000
RC 18.E000 RPCC 18.C000 RS 18.F000
TRAPB 18.0000

PROGRAMMING NOTE
The code points 18.4400, 18.4800, and 18.4C00 m u s t
operate as Memory Bar r ie r instruct ions (MB 18.4000).
Software will current ly only use t he 18.4000 code point
for MB. This allows a weaker memory bar r ie r to be
added.

Instruction Encodings C-1

Table C-3 lists the hexadecimal values of the high-order two bits of the displacement
field for the Memory format b ranch instruct ions. The notat ion used is oo.h, where
oo is the 6-bit opcode and the h is t he high-order two bi ts of the displacement field.

Table C-3: Memory Format Branch Instruction Opcodes
Mnemonic Mnemonic Mnemonic

JMP 1A.0 JSR 1A.1 JSR.COROUTINE 1 A.3
RET 1A.2

C.2 Branch Format Instructions

Table C-4 lists the hexadecimal values of the 6-bit opcode field for the Branch format
instruct ions.

Table C-4: Branch Format instruction Opcodes
Mnemonic Mnemonic Mnemonic

BR 30 FBEQ 31 FBLT 32
FBLE 33 BSR 34 FBNE 35
FBGE 36 FBGT 37 BLBC 38
BEQ 39 BLT 3A BLE 3B
BLBS 3C BNE 3D BGE 3E
BGT 3F

C.3 Operate Format Instructions

Table C-5 lists the hexadecimal values of the 6-bit opcode field and the 7-bit function
code field for the Opera te format instruct ions. The notat ion used is oo.ff, where oo is
the 6-bit opcode and the ff is t he 7-bit function code field.

Table C-5: Operate Format Instruction Opcodes and Function Codes
Mnemonic Mnemonic Mnemonic

ADDL 10.00 ADDL/V 10.40 ADDQ 10.20
ADDQ/V 10.60 CMPBGE 10.0F CMPEQ 10.2D
CMPLE 10.6D CMPLT 10.4D CMPULE 10.3D
CMPULT 10.1D SUBL 10.09 SUBL/V 10.49
SUBQ 10.29 SUBQ/V 10.69

S4ADDL 10.02 S4ADDQ 10.22 S4SUBL 10.0B
S4SUBQ 10.2B S8ADDL 10.12 S8ADDQ 10.32
S8SUBL 10.1B S8SUBQ 10.3B

AND 11.00 BIC 11.08 BIS 11.20
CMOVEQ 11.24 CMOVLBC 11.16 CMOVLBS 11.14

C-2 Appendixes

Table C-5 (Cont.): Operate Format Instruction Opcodes and Function Codes

Mnemonic Mnemonic Mnemonic

CMOVGE 11.46 CMOVGT 11.66 CMOVLE 11.64
CMOVLT 11.44 CMOVNE 11.26 EQV 11.48
ORNOT 11.28 XOR 11.40

EXTBL 12.06 EXTLH 12.6A EXTLL 12.26
EXTQH 12.7A EXTQL 12.36 EXTWH 12.5A
EXTWL 12.16 INSBL 12.0B INSLH 12.67
INSLL 12.2B INSQH 12.77 INSQL 12.3B
INSWH 12.57 INSWL 12.1B MSKBL 12.02
MSKLH 12.62 MSKLL 12.22 MSKQH 12.72
MSKQL 12.32 MSKWH 12.52 MSKWL 12.12
SLL 12.39 SRA 12.3C SRL 12.34
ZAP 12.30 ZAPNOT 12.31

MULL 13.00 MULL/V 13.40 MULQ 13.20
MULQ/V 13.60 UMULH 13.30

C.4 Floating-Point Operate Format

Table C-6 lists t he hexadecimal values of the 11-bit function code field for the
Floating-point Opera te format instruct ions t h a t a re da t a type independent . The
6-bit opcode for these ins t ruct ions is 1 7 1 6.

Table C-6: Function Codes for Floating Data Type Independent Operations

Mnemonic Mnemonic Mnemonic

CPYS 020 CPYSE 022 CPYSN 021
CVTLQ 010 CVTQL 030 CVTQL/SV 530
CVTQL/V 130
FCMOVEQ 02A FCMOVGE 02D FCMOVGT 02F
FCMOVLE 02E FCMOVLT 02C FCMOVNE 02B
MF.FPCR 025 MT_FPCR 024

Instruction Encodings C-3

C.4.1 IEEE Floating-Point Instructions

Table C-7 lists the hexadecimal value of the 11-bit function code field for the
IEEE floating-point instruct ions, wi th and wi thout qualifiers. The opcode for these
instruct ions is 1 6 i 6.

Table C - 7 : IEEE Floating-Point Instruction Function Codes

None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 oco 180 100 140 1C0
ADDT 0A0 020 060 0E0 1A0 120 160 1E0
CMPTEQ 0A5
CMPTLT 0A6
CMPTLE 0A7
CMPTUN 0A4
CVTQS OBC 03C 07C 0FC
CVTQT OBE 03E 07E 0FE
CVTTS OAC 02C 06C 0EC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 0E3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 0E2 1A2 122 162 1E2
SUBS 081 001 041 0C1 181 101 141 ICI
SUBT 0A1 021 061 0E1 1A1 121 161 1E1

/SU /SUC /SUM /SUD /SUI /suie /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0
ADDT 5A0 520 560 5E0 7A0 720 760 7E0
CMPTEQ 5A5
CMPTLT 5A6
CMPTLE 5A7
CMPTUN 5A4
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1

None IC /V /VC /sv /SVC /SVI /SVIC

CVTTQ OAF 02F 1AF 12F 5AF 52F 7AF 72F

C-4 Appendixes

Table C-7 (Cont.): IEEE Floating-Point Instruction Function Codes

D /VD /SVD /SVID /M /VM /SVM / S V M

CVTTQ OEF 1EF 5EF 7EF 06F 16F 56F 76F

PROGRAMMING NOTE
Since underflow cannot occur for CMPTxx, there is no
difference in function or performance between CMPTxx
/S and CMPTxx/SU. I t is in tended t h a t software
genera te CMPTxx/SU in place of CMPTxx/S.

C.4.2 VAX Floating-Point Instructions

Table C-8 lists t he hexadecimal value of the 11-bit function code field for the VAX
floating-point instruct ions. The opcode for these instruct ions is 1 5 i 6.

Table C-8: VAX Floating-Point Instruction Function Codes

None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500
CVTDG 09E 01E 19E H E 49E 41E 59E 51E
ADDG 0A0 020 1A0 120 4A0 420 5A0 520
CMPGEQ 0A5 4A5
CMPGLT 0A6 4A6
CMPGLE 0A7 4A7
CVTGF OAC 02C 1AC 12C 4AC 42C 5AC 52C
CVTGD OAD 02D IAD 12D 4AD 42D 5AD 52D
CVTQF OBC 03C
CVTQG OBE 03E
DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 5A1 521

None /C IW /VC /S /SC /SV /SVC

CVTGQ OAF 02F 1AF 12F 4AF 42F 5AF 52F

Instruction Encodings C-5

C.5 Opcode Summary

Table C-9 lists all Alpha opcodes from 00 (CALL.PALL) th rough 3F (BGT). In the
table, the column headings appear ing over the instruct ions have a g ranula r i ty of
8 1 6. The rows benea th the leftmost column supply the individual hex number to
resolve t h a t granulari ty.

If an instruct ion column h a s a 0 in the right (low) hex digit, replace t h a t 0 wi th the
number to the left of t he backslash in the leftmost column on the instruction's row.
If an instruction column h a s an 8 in the right (low) hexadecimal digit, replace t h a t
8 with the number to the right of t he backslash in the leftmost column.

For example, the th i rd row (2/A) unde r the 1 0 i 6 column contains t he symbol INTS*,
represent ing the all integer subtract instruct ions. The opcode for those instruct ions
would then be 1 2 1 6 because the 0 in 10 is replaced by the 2 in the leftmost
column. Likewise, the th i rd row under the 1 8 i 6 column contains the symbol JSR*,
represent ing all j u m p instruct ions. The opcode for those instruct ions is 1A because
the 8 in the heading is replaced by the number to the right of the backslash in the
leftmost column.

The instruction format is l isted under the instruct ion symbol.

The symbols in Table C-9 are explained in Table C-10.

C-6 Appendixes

Table C-9: Opcode Summary
00 08 10 18 20 28 30 38

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (br)

1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)

2/A Res Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (br) (br)

3/B Res LDQ_U INTM* \ P A L \ LDT LDQ_L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)

4/C Res Res Res Res STF STL BSR BLBS
(mem) (mem) (br) (br)

5/D Res Res FLTV* \PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (br) (br)

6/E Res Res FLTI* \ P A L \ STS STL_C FBGE BGE
(op) (mem) (mem) (br) (br)

7/F Res STQ_U FLTL* \ P A L \ STT STQ_C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)

Table C-10: Key to Opcode Summary (Table C-9)
Symbol Mean ing

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer subtract instruction opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Digital

Instruction Encodings C-7

C.6 OpenVMS PALcode Format Instructions

Sections C.6.1 and C.6.2 list t he OpenVMS Alpha unprivileged and privileged
PALcode function codes.

C.6.1 Unprivileged OpenVMS PALcode Function Codes

Table C - l l lists t he hexadecimal values of the 26-bit function code field for the
unprivileged OpenVMS PALcode format instruct ions. The 6-bit opcode for the
PALcode instruct ions is zero.

Table C-11: Unprivileged OpenVMS PALcode Function codes

Mnemonic Mnemonic Mnemonic

AMOVRM 00A1 AMOVRR 00A0 BPT 0080

BUGCHK 0081 CHME 0082 CHMK 0083

CHMS 0084 CHMU 0085 GENTRAP 00ΑΑ

1MB 0086 INSQHIL 0087 INSQHILR 00A2

INSQHIQ 0089 INSQHIQR 00A4 INSQTIL 0088

INSQTILR 00A3 INSQTIQ 008A INSQTIQR 00A5

INSQUEL 008B INSQUEL/D 008D INSQUEQ 008C

INSQUEQ/D 008E PROBER 008F PROBEW 0090

RD_PS 0091 READJJNQ 009E REI 0092

REMQHIL 0093 REMQHILR 00A6 REMQHIQ 0095

REMQHIQR 00A8 REMQTIL 0094 REMQTILR 00A7

REMQTIQ 0096 REMQTIQR 00A9 REMQUEL 0097

REMQUEL/D 0099 REMQUEQ 0098 REMQUEQ/D 009A

RSCC 009D SWASTEN 009B WRITE.UNQ 009F

WR_PS_SW 009C

C.6.2 Privileged OpenVMS PALcode Function Codes

Table C - l 2 l ists t he hexadecimal values of the 26-bit function code field for the
privileged OpenVMS PALcode format instruct ions. The 6-bit opcode for the PALcode
instruct ions is zero.

Table C-12: Privileged OpenVMS PALcode Function Codes

Mnemonic Mnemonic Mnemonic

CFLUSH 0001 DRAINA 0002 HALT 0000

LDQP 0003

MFPR_ASN 0006 MFPR_ASTEN 0026 MFPR.ASTSR 0027

MFPR_ESP 001E MFPRJFEN 000B MFPRJPL 000E

MFPR.MCES 0010 MFPR_PCBB 0012 MFPR.PRBR 0013

MFPR.PTBR 0015 MFPRJ3CBB 0016 MFPRJSISR 0019

MFPR.SSP 0020 MFPR_TBCHK 001A MFPRJJSP 0022

MFPR.VPTB 0029 MFPR_WHAMI 003F

C-8 Appendixes

Table C-12 (Cont.): Privileged OpenVMS PALcode Function Codes

Mnemonic Mnemonic Mnemonic

MTPR.ASTEN 0007 MTPR.ASTSR 0008 MTPR.DATFX 002E

MTPR.ESP 001F MTPR.FEN OOOC MTPR.IPIR 000D

MTPRJPL 000F MTPR.MCES 0011 MTPR.PERFMON 002B

MTPR.PRBR 0014 MTPR.SCBB 0017 MTPR.SIRR 0018

MTPR.SSP 0021 MTPR.TBIA 001B MTPR_TBIAP 001C

MTPR_TBIS 001D MTPR.TBISD 0024 MTPR.TBISI 0025

MTPR_USP 0023 MTPR_VPTB 002A

STQP 0004 SWPCTX 0005 unused 0009

unused 000A

C.7 Unprivileged OSF/1 PALcode Function Codes

Table C-13 lists l ists t he hexadecimal values of the 26-bit function code field for
the unprivileged OSF/1 PALcode instruct ions. The 6-bit opcode for the PALcode
instruct ions is zero.

Table C-13: Unprivileged OSF/1 PALcode Function Codes

Mnemonic Mnemonic Mnemonic

bpt 0080 bugchk 0081 callsys 0083
gentrap 00ΑΑ imb 0086 rdunique 009E
wrunique 009F

C.8 Privileged OSF/1 PALcode function codes

Table C-14 lists l ists t he hexadecimal values of the 26-bit function code field for
the unprivileged OSF/1 PALcode instruct ions. The 6-bit opcode for the PALcode
instruct ions is zero.

Table C-14: Privileged OSF/1 PALcode Function Codes

Mnemonic Mnemonic Mnemonic

halt 0000 rdps 0036 rdusp 003A
rdval 0032 retsys 003D rti 003F
swpctx 0030 swpipl 0035 tbi 0033
whami 003C wrent 0034 wrfen 002B
wrkgp 0037 wrusp 0038 wrval 0031
wrvptptr 002D

Instruction Encodings C-9

C.9 Required PALcode Function Codes

The opcodes listed in Table C - l 5 a re required for all Alpha implementat ions . The
notat ion used is oo.ffif, where oo is t he hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table C-15: Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

1MB Unprivileged 00.0086

C.10 Opcodes Reserved to PALcode

The opcodes listed in Table C - l 6 are reserved for use in implement ing PALcode.

Table C-16: Opcodes Reserved for PALcode

Mnemonic Mnemonic Mnemonic

PALI 9 19 PALI Β IB PAL1D ID
PALI Ε IE PALI F I F

C.11 Opcodes Reserved to Digital

The opcodes listed in Table C - l 7 a re reserved to Digital.

Table C-17: Opcodes Reserved for Digital

Mnemonic Mnemonic Mnemonic

OPC01 01 OPC02 02 OPC03 03
OPC04 04 OPC05 05 OPC06 06
OPC07 07 OPC0A OA OPC0C OC
OPC0D 0D OPC0E 0E OPC14 14
OPC1C 1C

C-10 Appendixes

A
Aborts, forcing, (I), 6-5
Absolute longword queue, (II), 2-21
Absolute quadword queue, (II), 2-25
Access control violation (ACV) fault, (II), 6-10

has precedence, (II), 3-13
memory protection, (II), 3-8
service routine entry point, (II), 6-26

Access-violation fault, (III), 3-10
ADDF instruction, (I), 4-88
ADDG instruction, (I), 4-88
Add instructions

See also Floating-point operate
add longword, (I), 4-23
add quadword, (I), 4-25
add scaled longword, (I), 4-24
add scaled quadword, (I), 4-26

ADDL instruction, (I), 4-23
ADDQ instruction, (I), 4-25
Address space match (ASM)

bit in PTE, (II), 3-4; (III), 3-4
TBIAP register uses, (II), 5-25
virtual cache coherency, (I), 5—4

Address space number (ASN)
denned, (III), 1-2
described, (III), 3-8
in HWPCB, (II), 4-2
privileged context, (II), 2-91
range supported, (II), 3-12
TBCHK register uses, (II), 5-22
TBIS register uses, (II), 5-26
translation buffer with, (II), 3-11
virtual cache coherency, (I), 5—4

Address space number (ASN) register, (II),
5-4

Address translation
algorithm to perform, (II), 3-9
page frame number (PFN), (II), 3-9
page table structure, (II), 3-8
performance enhancements, (II), 3-10
translation buffer with, (II), 3-11
virtual address segment fields, (II), 3-9

ADDS instruction, (I), 4-89
ADDT instruction, (I), 4-89
Aligned byte/word memory accesses, A-11

ALIGNED data objects, (I), 1-9
Alignment

atomic longword, (I), 5-2
atomic quadword, (I), 5-2
D_floating, (I), 2-7
data alignment trap, (II), 6-16
data considerations, A-6
double-width data paths, A-1
F_floating, (I), 2-5
G_floating, (I), 2-6
instruction, A-2
longword, (I), 2-2
longword integer, (I), 2-11
memory accesses, A-11
program counter (PC), (II), 6-6
quadword, (I), 2-3
quadword integer, (I), 2-11
SJloating, (I), 2-8
stack, (II), 6-31
TJIoating, (I), 2-10
when data is unaligned, (II), 6-27

Alpha architecture
See also Conventions
addressing, (I), 2-1
overview, (I), 1-1
porting operating systems to, (I), 1-1
programming implications, (I), 5-1
registers, (I), 3-1
security, (I), 1-7

Alpha privileged architecture library
See PALcode

AMOVRM (PALcode) instruction, (II), 2-76
AMOVRR (PALcode) instruction, (II), 2-76
AND instruction, (I), 4-37
Arithmetic exceptions

See Arithmetic traps
Arithmetic instructions, (I), 4-22

See also specific arithmetic instructions
Arithmetic left shift instruction, (I), 4-36
Arithmetic trap entry (entArith) register,

(III), 1-2, 5-3, 5-4
Arithmetic traps

defined, (II), 6-9; (III), 5-1
described, (II), 6-12

lndex-1

Arithmetic traps (cont'd)
division by zero, (I), 4-63; (II), 6-14; (III),

5-5
F31 as destination, (II), 6-12
inexact result, (I), 4-64; (II), 6-15; (III),

5-5
integer overflow, (I), 4-64; (II), 6-15;

(III), 5-5
invalid operation, (I), 4-63; (ZD, 6-14;

Γ/7/Λ 5-5
overflow, (I), 4-63; f/JJ, 6-15; (III), 5-5
program counter (PC) value, (II), 6-14
programming implications for, (I), 5-21
R31 as destination, (II), 6-12
recorded for software, (II), 6-13
REI instruction with, (II), 6-9
service routine entry point, (II), 6-27
system entry for, (III), 5-3, 5-4
TRAPB instruction with, f/J, 4-120
underflow, (I), 4-63; f/JJ, 6-15; (III), 5-5
when registers affected by, (II), 6-13

AST enable (ÄSTEN) register
changing access modes in, (II), 4-3
described, (II), 5-5
in HWPCB, (II), 4-2
interrupt arbitration, (II), 6-35
operation (with ASTs), (II), 4-3
privileged context, (II), 2-91
SWASTEN instruction with, (II), 2-19

AST summary (ASTSR) register
described, (II), 5-7
indicates pending ASTs, (II), 4-3
in HWPCB, (II), 4-2
interrupt arbitration, (II), 6-34
privileged context, (II), 2-91

Asynchronous system traps (AST)
ASTEN/ASTSR registers with, (II), 4-3
initiating, (II), 4-3
interrupt, defined, (II), 6-20
service routine entry point, (II), 6-27
with PS register, (II), 4-3

Atomic access, (I), 5-2
Atomic move operations, (II), 2-76
Atomic operations

accessing longword datum, (I), 5-2
accessing quadword datum, (I), 5-2
modifying page table entry, (II), 3-7
updating shared data structures, (I), 5-6
using load locked and store conditional, (I),

5-7
Atomic sequences, A-17

Β
Barrier instructions

shared data structures and, (I), 8-10

Barrier instructions (cont'd)
use in I/O space read/write ordering, (I),

8-2, 8-8
BEQ instruction, (I), 4-17
Β field (mailbox), (I), 8-5
BGE instruction, (I), 4-17
BGT instruction, (I), 4-17
BIC instruction, (I), 4-37
BIS instruction, (I), 4-37
BLBC instruction, (I), 4-17
BLBS instruction, (I), 4-17
BLE instruction, (I), 4-17
BLT instruction, (I), 4-17
BNE instruction, (I), 4-17
Boolean instructions, (I), 4-36

logical functions, (I), 4-37
Boolean stylized code forms, A-14
bpt (PALcode) instruction, (III), 2-2

required recognition of, (I), 6-4
BPT (PALcode) instruction, (II), 2-A

required recognition of, (I), 6—4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Branch instruction format, (I), 3-10
Branch instructions, (I), 4-16

See also Control instructions
backward conditional, (I), 4-17
conditional branch, (I), 4-17
displacement, (I), 4-17
floating-point, summarized, (I), 4-77
forward conditional, (I), 4-17
opcodes for, C-2
unconditional branch, (I), 4-19

Branch prediction model, (I), 4-15
Branch prediction stack, with BSR

instruction, (I), 4-19
Breakpoint exception, initiating, (II), 2—4
Bridge

defined, (I), 8-1
MBPR DON bit with, (I), 8-6
prefetch interrupts, (I), 8-12
with I/O space granularity, (I), 8-7

BR instruction, (I), 4-19
BSR instruction, (I), 4-19
Bugcheck exception, initiating, (II), 2-5
bugchk (PALcode) instruction, (III), 2-3

required recognition of, (I), 6-4
BUGCHK (PALcode) instruction, (II), 2-5

required recognition of, (I), 6-4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Byte_within_page field, (II), 3-2; (III), 3-2
Byte data type, (I), 2-1
Byte manipulation instructions, (I), 4—42

lndex-2

Byte manipulation instructions (cont'd)
See also Extract instructions; Insert

instructions; Mask instructions

c
Cache coherency

barrier instructions for, (I), 5-20
defined, (I), 5-1
I/O space access, (I), 8-2
in multiprocessor environment, (I), 5-5
with DMA, (I), 8-10

Caches
design considerations, A-1
flushing physical page from, (II), 2-84
I-stream considerations, A-5
MB and 1MB instructions with, (I), 5-20
requirements for, (I), 5—4
translation buffer conflicts, A-8
with powerfail/recovery, (I), 5-4

CALL_PAL (call privileged architecture
library) instruction, (I), 4-114

callsys (PALcode) instruction, (III), 2-4
entSys with, (III), 5-8
stack frames for, (III), 5-3

Canonical form, (I), 4-64
CFLUSH (PALcode) instruction, (II), 2-84

with powerfail, (II), 6-22
Changed datum, (I), 5-5
CHME (PALcode) instruction, (II), 2-6

service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CHMK (PALcode) instruction, (II), 2-7
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CHMS (PALcode) instruction, (II), 2-8
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CHMU (PALcode) instruction, (II), 2-9
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

Clear a register, A-13
CMD field (mailbox), (I), 8-5
CMOVEQ instruction, (I), 4-38
CMOVGE instruction, (I), 4-38
CMOVGT instruction, (I), 4-38
CMOVLBC instruction, (I), 4-38
CMOVLBS instruction, (I), 4-38
CMOVLE instruction, (I), 4-38
CMOVLT instruction, (I), 4-38
CMOVNE instruction, (I), 4-38
CMPBGE instruction, (I), 4-44
CMPEQ instruction, (I), 4-27
CMPGEQ instruction, (I), 4-91
CMPGLE instruction, (I), 4-91

CMPGLT instruction, (I), 4-91
CMPLE instruction, (I), 4-27
CMPLT instruction, (I), 4-27
CMPTEQ instruction, (I), 4-92
CMPTLE instruction, (I), 4-92
CMPTLT instruction, (I), 4-92
CMPTUN instruction, (I), 4-92
CMPULE instruction, (I), 4-28
CMPULT instruction, (I), 4-28
Code forms, stylized, A-12

Boolean, A-14
load literal, A-13
negate, A-14
NOP, A-13
NOT, A-14
register, clear, A-13
register-to-register move, A-14

Code sequences, A-11
Coherency, cache, (I), 5-1
Compare instructions

See also Floating-point operate
compare byte, (I), 4-44
compare integer signed, (I), 4-27
compare integer unsigned, (I), 4-28

Conditional move instructions, (I), 4-38
See also Floating-point operate

Console, overview, (I), 7-1
Context switching

See also Hardware; Process
defined, (II), 4-1
hardware, (II), 4-2
initiating, (II), 2-90
raising IPL while, (II), 4-4
software, (II), 4-2

Control instructions, (I), 4-15
Control stream DMA, (I), 8-11
Conventions

code examples, (I), 1-10
extents, (I), 1-8
figures, (I), 1-9
instruction format, (I), 3-8
notation, (I), 3-8
numbering, (I), 1-7
ranges, (I), 1-8

/C opcode qualifier
IEEE floating-point, (I), 4-60
VAX floating-point, (I), 4-60

Corrected error interrupts, logout area for,
(II), 6-24

CPSY instruction, (I), 4-83
CPSYN instruction, (I), 4-83
CPYSE instruction, (I), 4-83
Current mode field, in PS register, (II), 6-6

lndex-3

Current PC, (II), 6-2
CVTDG instruction, (I), 4-96
CVTGD instruction, (I), 4-96
CVTGF instruction, (I), 4-96
CVTGQ instruction, (I), 4-94
CVTLQ instruction, (I), 4-84
CVTQF instruction, (I), 4-95
CVTQG instruction, (I), 4-95
CVTQL instruction, (I), 4-84
CVTQS instruction, (I), 4-99
CVTQT instruction, (I), 4-99
CVTTQ instruction, (I), 4-98
CVTTS instruction, (I), 4-100

D
D_floating data type, (I), 2-6

alignment of, (I), 2-7
mapping, (I), 2-6
restricted, (I), 2-7

Data alignment, A-6
Data alignment trap, (II), 6-15
Data alignment trap fixup (DAT) bit, in

HWPCB, (II), 4-2
Data alignment trap fixup (DATFX) register,

(ID, 5-9
Data alignment traps

memory management, (II), 6-16
registers used, (II), 6-16; (III), 5-4
service routine entry point, (II), 6-27
system entry for, (III), 5-8

Data format, overview, (I), 1-3
Data sharing (multiprocessor), A-7

synchonization requirement, (I), 5-5
Data stream considerations, A-6
Data stream DMA, (I), 8-11
Data structures, snared, (I), 5-5
Data types

byte, (I), 2-1
IEEE floating-point, (I), 2-7
longword, (I), 2-2
longword integer, (I), 2-10
quadword, (I), 2-2
quadword integer, (I), 2-11
unsupported in hardware, (I), 2-12
VAX floating-point, (I), 2-3
word, (I), 2-1

Denormal, (I), 4-58
Devices

local, (I), 8-1
remote, (I), 8-1
shared data structures and, (I), 8-10

Dirty zero, (I), 4-58
DIVF instruction, (I), 4-102

DIVG instruction, (I), 4-102
Division

integer, A-12
performance impact of, A-12

Division by zero trap, (II), 6-14; (III), 5-5
DIVS instruction, (I), 4-104
DIVT instruction, (I), 4-104
DMA, (I), 8-10

atomic, (I), 8-10
control stream, (I), 8-11
data stream, (I), 8-11
defined, (I), 8-2
interrupts with, (I), 8-12

DON field (mailbox), (I), 8-6
ZD opcode qualifier

FPCR (floating-point control register), (I),
4-64

IEEE floating-point, (I), 4-60
draina (PALcode) instruction, (I), 6-5
DRAINA (PALcode) instruction, (I), 6-5
Dual-issue instruction considerations, A-2
DZE bit

exception summary parameter, (II), 6-13
exception summary register, (III), 5-5

Ε
entArith

See Arithmetic trap entry
entIF

See Instruction fault entry
entlnt

See Interrupt entry
entMM

See Memory-management fault entry
entSys

See System call entry
EQV instruction, (I), 4-37
ERR field (mailbox), (I), 8-6
Error checking, (I), 8-6
Errors, processor

corrected, (II), 6-23
uncorrected, (II), 6-23

Errors, system
corrected, (II), 6-22
uncorrected, (II), 6-22

Exceptional events
actions, summarized, (II), 6-2
defined, (II), 6-1

Exception handlers, B-2
TRAPB instruction with, (I), 4-120

Exception register write mask, (III), 5-6

lndex-4

Exceptions
See also Arithmetic traps; Faults;

Synchronous traps
actions, summarized, (II), 6-2
defined, (III), 5-1
initiated before interrupts, (II), 6-18
initiated by PALcode, (II), 6-31
introduced, (II), 6-8
processor state transitions, (II), 6-36
stack frames, (II), 6-7
stack frames for, (III), 5-3

Exception service routines
entry point, (II), 6-26
introduced, (II), 6-8

Exception summary parameter, (II), 6-13
Exception summary register, (III), 5-2, 5-6

format of, (III), 5-4
Executive read enable (ERE), bit in PTE, (II),

3-5
Executive stack pointer (ESP)

as internal processor register, (II), 5-1
in HWPCB, (II), 4-2

Executive stack pointer (ESP) register, (II),
5-27

Executive write enable (EWE), bit in PTE,
(ID, 3-6

EXTBL instruction, (I), 4-^6
EXTLH instruction, (I), 4-46
EXTLL instruction, (I), 4-46
EXTQH instruction, (I), 4-46
EXTQL instruction, (I), 4-46
Extract instructions (list), (I), 4—46
EXTWH instruction, (I), 4-46
EXTWL instruction, (I), 4-46

F
F_floating data type, (I), 2-3

alignment of, (I), 2-5
compared to IEEE S_floating, (I), 2-8
MAX/MIN, (I), 4-58
operations, (I), 4-64
when data is unaligned, (II), 6-27

Fault on execute (FOE), (II), 6-12
bit in PTE, (II), 3-4; (III), 3-4
service routine entry point, (II), 6-26
software usage of, (II), 6-12

Fault-on-execute fault, (III), 3-10
Fault on read (FOR), (II), 6-10

bit in PTE, (II), 3-4; (III), 3-5
service routine entry point, (II), 6-26
software usage of, (II), 6-10

Fault-on-read fault, (III), 3-10
Fault on write (FOW), (II), 6-11

bit in PTE, (II), 3-4; (III), 3-5
service routine entry point, (II), 6-26

Fault on write (FOW) (cont'd)
software usage of, (II), 6-11

Fault-on-write fault, (III), 3-10
Faults

access control violation, (II), 6-10
defined, (II), 6-8; (III), 5-1
fault on execute, (II), 6-12
fault on read, (II), 6-10
fault on write, (II), 6-11
floating-point disabled, (II), 6-10
memory management, (III), 3-9
MM flag, (II), 6-10
program counter (PC) value, (II), 6-8
REI instruction with, (II), 6-8
translation not valid, (II), 6-10

FBEQ instruction, (I), 4-78
FBGE instruction, (I), 4-78
FBGT instruction, (I), 4-78
FBLE instruction, (I), 4-78
FBLT instruction, (I), 4-78
FBNE instruction, (I), 4-78
FCMOVEQ instruction, (I), 4-85
FCMOVGE instruction, (I), 4-85
FCMOVGT instruction, (I), 4-85
FCMOVLE instruction, (I), 4-85
FCMOVLT instruction, (I), 4-85
FCMOVNE instruction, (I), 4-85
FETCH (prefetch data) instruction, (I), 4-115

performance optimization, A-10
FETCH.M (prefetch data, modify intent)

instruction, (I), 4-115
performance optimization, A-10

Finite number, Alpha, contrasted with VAX,
(I), 4-57

Floating-point branch instructions, (I), 4-77
Floating-point control register (FPCR), (I),

4-64
accessing, (I), 4-66
at processor initialization, (I), 4-67
bit descriptions, (I), 4-65
instructions to read/write, (I), 4-87
operate instructions that use, (I), 4-80
saving and restoring, (I), 4-67

Floating-point convert instructions, (I), 3-12
Floating-point disabled fault, (II), 6-10

service routine entry point, (II), 6-26
Floating-point division, performance impact

of, A-12
Floating-point enable (FEN) register

defined, (III), 1-3
described, (II), 5-10
in HWPCB, (II), 4-2
privileged context, (II), 2-91

lndex-5

Floating-point format, number representation
(encodings), (I), 4-58

Floating-point instructions
branch (list), (I), 4-77
faults, (Z), 4-56
introduced, (I), 4-56
memory format (list), (I), 4-68
operate (list), (I), 4-80
rounding modes, (I), 4-59
terminology, (I), 4-57
trapping modes, (I), 4-60
traps, (I), 4-56

Floating-point load instructions, (I), 4-68
load F.floating, (I), 4-69
load GJIoating, (I), 4-70
load S.floating, (I), 4-71
load TJIoating, (ZJ, 4-72
with nonfinite values, (I), 4-68

Floating-point operate instructions, (I), 4-80
add (IEEE), (ZJ, 4-89
add (VAX), (ZJ, 4-88
compare (IEEE), (ZJ, 4-92
compare (VAX), (I), 4-91
conditional move, (ZJ, 4-85
convert IEEE floating to IEEE floating, (ZJ,

4-100
convert IEEE floating to integer, (ZJ, 4-98
convert integer to IEEE floating, (ZJ, 4-99
convert integer to integer, (I), 4-84
convert integer to VAX floating, (ZJ, 4-95
convert VAX floating to integer, (ZJ, 4-94
convert VAX floating to VAX floating, (ZJ,

4-96
copy sign, (ZJ, 4-83
divide (IEEE), (ZJ, 4-104
divide (VAX), (ZJ, 4-102
format of, (ZJ, 3-11
move from/to FPCR, (ZJ, 4-87
multiply (IEEE), (ZJ, 4-107
multiply (VAX), (ZJ, 4-106
opcodes for, C-3
subtract (IEEE), (ZJ, 4-111
subtract (VAX), (ZJ, 4-109

Floating-point registers, (ZJ, 3-2
Floating-point rounding modes

IEEE, (ZJ, 4-59
VAX, ah 4-59

Floating-point single-precision operations, (I),
4-64

Floating-point store instructions, (I), 4r-68
store F.floating, (I), 4-73
store G_floating, (I), 4-74
store S_floating, (I), 4-75
store T_floating, (I), 4-76
with nonfinite values, (I), 4-68

Floating-point support
FPCR (floating-point control register), (I),

4-64
IEEE, ah 2-7
IEEE standard 754-1985, ah 4-67
instruction overview, a), 4-56
longword integer, (7J, 2-10
operate instructions, (7), 4-80
optional with Alpha, (I), 4-2
quadword integer, (I), 2-11
rounding modes, 4-59
single-precision operations, (X), 4-64
trap modes, (7J, 4-60
VAX, ah 2-3

Floating-point trapping modes, (7J, 4-60
See also Arithmetic traps
imprecision from pipelining, (7), 4-62

FOE
See Fault on execute

FOR
See Fault on read

FOW
See Fault on write

FPCR (floating-point control register)
See Floating-point control register (FPCR)

Frame pointer (FP), register linkage for, aW,
1-1

G
G_floating data type, (7Λ 2-5

alignment of, (I), 2-6
mapping, ah 2-5
MAX/MIN, ah 4-58
when data is unaligned, (IÎ), 6-27

gentrap (PALcode) instruction, (7//Λ 2-5
required recognition of, a), 6-4

GENTRAP (PALcode) instruction, ai), 2-10
required recognition of, a), 6-4
trap information, (Ii), 6-17

Global pointer (GP), register linkage for, aW,
1-1

Granularity hint (GH)
bits in PTE, ff/J, 3-5; (ZT/j, 3-4

H
halt (PALcode) instruction, (7Λ 6-6
HALT (PALcode) instruction, ah 6-6
Hardware context, (7Z7J, 4-1
Hardware interrupts

interprocessor, (77Λ 6-21
interval clock, (7JJ, 6-20
powerfail, (ZD, 6-22
servicing, (ZZZJ, 5-6

lndex-6

Hardware nonprivileged context, (II), 4-3
Hardware privileged context, (II), 4-2

switching, (II), 4-2
Hardware privileged context block (HWPCB)

format, (II), 4-2
original built by HWRPB, (II), 4-4
PCBB register, (II), 5-16
process unique value in, (II), 2-80
specified by PCBB, (II), 4-2
swapping ownership, (II), 2-90
writing to, (II), 4-3

Hardware restart parameter block (HWRPB)
interval clock interrupt, (II), 6-20
logout area, (II), 6-24

Hose, (I), 8-1
HOSE field (mailbox), (I), 8-5
HWPCB

See Hardware privileged context block
HWRPB

See Hardware restart parameter block

ι
I/O access granularity, (I), 8-2
I/O bus, tightly coupled, (I), 8-1
I/O device interrupts, (II), 6-20
I/O devices, service routine entry points, (II),

6-29
I/O implementation dependencies, (I), 8-13
I/O space, local, (I), 8-2
I/O space, remote, (I), 8-2
I/O space read/write ordering, (X), 8-2, 8-7
I/O subsystem design, implementation

considerations, (I), 8-13
IEEE convert-to-integer trap mode,

instruction notation for, (I), 4-61
IEEE floating-point

See also Floating-point instructions
exception handlers, B-2
format, (I), 2-7
FPCR (floating-point control register), (I),

4-64
hardware support, B-1
NaN, (I), 2-8
options, B-1
S.floating, (I), 2-8
standard, mapping to, B-3
standard charts, B-10
T_floating, (I), 2-9
trap handling, B-4
trap modes, (I), 4-62

IEEE floating-point instructions
add instructions, (I), 4-89
compare instructions, (I), 4-92
convert from integer instructions, (I), 4-99

IEEE floating-point instructions (cont'd)
convert IEEE floating format instructions,

(I), 4-100
convert to integer instructions, (I), 4-98
divide instructions, (I), 4-104
multiply instructions, (I), 4-107
opcodes for, C-4
operate instructions, (I), 4-80
qualifiers, summarized, C-4
subtract instructions, (I), 4-111

IEEE rounding modes, (I), 4-59
IEEE standard

conformance to, B-1
mapping to, B-3
support for, (I), 4-67

IEEE trap modes, required instruction
notation, (I), 4-61

IGN (ignore), (I), 1-9
Illegal instruction trap, (II), 6-16

service routine entry point, (II), 6-28
Illegal operand trap, service routine entry

point, (II), 6-28
Illegal PALcode operand trap, (II), 6-17
imb (PALcode) instruction, (I), 6-7
1MB (PALcode) instruction, (I), 5-17, 6-7

virtual I-cache coherency, (I), 5-5
IMP (implementation dependent), (I), 1-9
INE bit

exception summary parameter, (II), 6-13
exception summary register, (III), 5-5

Inexact result trap, (II), 6-15; (III), 5-5
Infinity, (I), 4-57
Input/output interrupts, (II), 6-22
INSBL instruction, (I), 4-50
Insert instructions (list), (I), 4-50
Insert into queue PALcode instructions

longword at head interlocked, (II), 2-31
longword at head interlocked resident, (II),

2-33, 2 ^ 8
longword at tail interlocked, (II), 2-39
longword at tail interlocked resident, (II),

2-42, 2-50
quadword at head interlocked, (II), 2-35
quadword at head interlocked resident,

(II), 2-37
quadword at tail interlocked, (II), 2-44
quadword at tail interlocked resident, (II),

2-46
INSLH instruction, (I), 4-50
INSLL instruction, (I), 4-50
INSQHIL (PALcode) instruction, (II), 2-31
INSQHILR (PALcode) instruction, (II), 2-33
INSQH instruction, (I), 4-50
INSQHIQ (PALcode) instruction, (II), 2-35

lndex-7

INSQHIQR (PALcode) instruction, (II), 2-37
INSQL instruction, (I), 4-50
INSQTIL (PALcode) instruction, (II), 2-39
INSQTILR (PALcode) instruction, (II), 2-42
INSQTIQ (PALcode) instruction, (II), 2-44
INSQTIQR (PALcode) instruction, (II), 2-A6
INSQUEL (PALcode) instruction, (II), 2-48
INSQUEL/D (PALcode) instruction, (II), 2-48
INSQUEQ (PALcode) instruction, (II), 2-50
INSQUEQ/D (PALcode) instruction, (II), 2-50
Instruction encodings

floating-point format, C-3
summarized, C-l

Instruction fault, system entry for, (III), 5-3
Instruction fault entry (entIF) register, (III),

1-2, 5-3, 5-6
Instruction formats

branch, (I), 3-10
conventions, (I), 3-8
floating-point convert, (I), 3-12
floating-point operate, (I), 3-11
illegal trap, (II), 6-16
memory, (I), 3-9
memory jump, (I), 3-10
operands, (I), 3-8
operand values, (I), 3-8
operate, (I), 3-10
operators, (I), 3-5
overview, (I), 1-4
PALcode, (I), 3-13
registers, (I), 3-1

Instructions, overview, (I), 1-5
Instruction set

See also Floating-point instructions;
PALcode instructions

access type field, (I), 3-4
Boolean (list), (I), 4-36
branch (list), (I), 4-16
byte (list), (I), 4-42
conditional move (integer), (I), 4-38
data type field, (I), 3-5
extract (list), (I), 4-42
floating-point subsetting, (I), 4-2
insert (list), (I), 4-42
integer arithmetic (list), (I), 4-22
introduced, (I), 1-6
jump (list), (I), 4-16
load memory integer (list), (I), 4-4
mask (list), (I), 4^42
miscellaneous (list), (I), 4-113
name field, (I), 3-4
opcode qualifiers, (I), 4-3
operand notation, (I), 3-4
overview, (I), 4-1
shift, arithmetic, (I), 4-41

Instruction set (cont'd)
shift, logical, (I), 4r-4Q

software emulation rules, (I), 4-2
store memory integer (list), (I), 4-4
VAX compatibility, (I), 4-121

Instruction stream
See I-stream

INSWH instruction, (I), 4-50
INSWL instruction, (I), 4-50
Integer arithmetic instructions

See Arithmetic instructions
Integer division, A-12
Integer overflow trap, (II), 6-15; (III), 5-5
Integer registers

defined, (I), 3-1
R31 restrictions, (I), 3-1
usage, (III), 1-1

Internal processor registers (IPR)
address space number (ASN), (II), 5-4
AST enable (ASTEN), (II), 5-5
AST summary (ASTSR), (II), 5-7
CALLJPAL MFPR with, (II), 5-1
CALL.PAL MTPR with, (II), 5-1
data alignment trap fixup (DATFX), (II),

5-9
defined, (II), 1-1
executive stack pointer (ESP), (II), 5-27
floating-point enable (FEN), (II), 5-10
interprocessor interrupt request (IPIR)

register, (II), 5-11
interrupt priority level (IPL), (II), 5-12
kernel mode with, (II), 5-1
machine check error summary (MCES),

(II), 5-13
MFPR instruction with, (II), 2-86
MTPR instruction with, (II), 2-87
page table base (PTBR), (II), 5-18
performance monitoring (PERFMON), (II),

5-15
privileged context block base (PCBB), (II),

5-16
processor base (PRBR), (II), 5-17
software interrupt request (SIRR), (II),

5-20
software interrupt summary (SISR), (II),

5-21
stack pointer, (II), 5-1
summarized, (II), 5-2
supervisor stack pointer (SSP), (II), 5-28
system control block base (SCBB), (II),

5-19
translation buffer check (TBCHK), (II),

5-22
translation buffer invalidate all (TBIA),

(ID, 5-24

lndex-8

Internal processor registers (IPR) (cont'd)
translation buffer invalidate all process

(TBIAP), (11), 5-25
translation buffer invalidate single (TBIS),

(11), 5-26
user stack pointer (USP), (11), 5-29
virtual page base (VPTB), (11), 5-30
Who-Am-I (WHAMI), (II), 5-31

Interprocessor interrupt, (II), 6-21
protocol for, (II), 6-21
service routine entry point, (II), 6-29

Interprocessor interrupt request (IPIR)
register

described, (II), 5-11
protocol for, (II), &-21

Interrupt entry (entlnt) register, (III), 1-2,
5-4, 5-6

Interrupt priority level (IPL)
See also Interrupt priority level (IPL)

register
events associated with, (II), 6-18
field in PS register, (II), 6-6
hardware levels, (II), 6-7
kernel mode software with, (II), 6-18
operation of, (II), 6-17
PS with, (III), 5-2
recording pending software (SISR register),

(II), 5-21
requesting software (SIRR register), (II),

5-20
service routine entry points, (II), 6-29
software interrupts, (II), 6-19
software levels, (II), 6-7

Interrupt priority level (IPL) register
See also Interrupt priority level (IPL)
described, (II), 5-12
interrupt arbitration, (II), 6-35

Interrupts
actions, summarized, (II), 6-2
from I/O devices, (I), 8-12
hardware arbitration, (II), 6-34
I/O device, (II), 6-20
initiated by PALcode, (II), 6-31
initiation, (II), 6-18
input/output, (II), 6-22
instruction completion, (II), 6-17
interprocessor, (II), 6-21
introduced, (II), 6-17
PALcode arbitration, (II), 6-34
passive release, (II), 6-20
powerfail, (II), 6-22
processor state transitions, (II), 6-36
program counter value, (II), 6-2
software, (II), 6-19
sources for, (III), 5-2

Interrupts (cont'd)
stack frames, (II), 6-7
stack frames for, (III), 5-3
system entry for, (III), 5-4
vectors, (I), 8-12

Interrupt service routines
entry point, (II), 6-26
in each process, (II), 6-18
introduced, (II), 6-17

Interval clock interrupt, (II), 6-20
service routine entry point, (II), 6-29

Invalid operation trap, (II), 6-14; (III), 5-5
INV bit

exception summary parameter, (II), 6-13
exception summary register, (III), 5-5

/I opcode qualifier, IEEE floating-point, (I),
4-61

IOV bit
exception summary parameter, (II), 6-14
exception summary register, (III), 5-5

IPR
See Internal processor registers (IPR)

IPR_KSP (internal processor register kernel
stack pointer), (II), 5-1

I-stream
coherency, (I), 6-7
design considerations, A-2
modifying physical, (I), 5-5
modifying virtual, (I), 5-5
PALcode with, (I), 6-2
with caches, (I), 5-5

J
JMP instruction, (I), 4-20
JSR.COROUTINE instruction, (I), 4-20
JSR instruction, (I), 4-20
Jump instructions, (I), 4-16, 4-20

See also Control instructions
branch prediction logic, (I), 4-21
coroutine linkage, (I), 4-21
return from subroutine, (I), 4-20
unconditional long jump, (I), 4-21

Κ
Kernel global pointer (KGP), (III), 1-3
Kernel mode, protection code with, (III), 3-6
Kernel read enable (KRE)

bit in PTE, (II), 3-5; (III), 3-4
with access control violation (ACV) fault,

(II), 3-13
Kernel stack, PALcode access to, (II), 6-31
Kernel stack pointer (KSP)

defined, (III), 1-3
in HWPCB, (II), 4-2

lndex-9

Kernel write enable (KWE)
bit in PTE, (11), 3-6; (III), 3-4

Kseg
format of, (III), 3-2
mapping of, (III), 3-1
physical space with, (III), 3-3

L
LDAH instruction, (I), 4-5
LDA instruction, (I), 4-5
LDF instruction, (I), 4-69

when data is unaligned, (II), 6-27
LDG instruction, (I), 4-70

when data is unaligned, (II), 6-27
LDL_L instruction, (I), 4-8

restrictions, (I), 4-9
when data is unaligned, (II), 6-27
with processor lock register/flag, (I), 4-8
with STx_C instruction, (I), 4-8

LDL instruction, (I), 4-6
when data is unaligned, (II), 6-27

LDQ_L instruction, (I), 4-8
restrictions, (I), 4-9
when data is unaligned, (II), 6-27
with processor lock register/flag, (I), 4-8
with STx_C instruction, (I), 4-8

LDQ_U instruction, (I), 4-7
LDQ instruction, (I), 4-6

when data is unaligned, (II), 6-27
LDQP (PALcode) instruction, (II), 2-85
LDS instruction, (I), 4-71

when data is unaligned, (II), 6-27
LDT instruction, (I), 4-72

when data is unaligned, (II), 6-27
Literals, operand notation, (I), 3-4
Load instructions

See also Floating-point load instructions
emulation of, (I), 4-2
FETCH instruction, (I), 4-115
load address, (I), 4-5
load address high, (I), 4-5
load quadword, (I), 4-6
load quadword locked, (I), 4-8
load sign-extended longword, (I), 4-6
load sign-extended longword locked, (I),

4-8
load unaligned quadword, (I), 4-7
multiprocessor environment, (I), 5-5
serialization, (I), 4-117
when data is unaligned, (II), 6-27

Load literal, A-13
Load memory integer instructions (list), (I),

4-4

Local devices, (I), 8-1
Local I/O space, (I), 8-2
Local side, (I), 8-1
Location, (I), 5-10
Location access order

defined, (I), 5-11
with processor issue order, (I), 5-11

Lock flag, per-processor
defined, (I), 3-2
with load locked instructions, (I), 4-8
with store conditional instructions, (I),

4-11
Lockout, (I), 8-3
Lock registers, per-processor

defined, (I), 3-2
with load locked instructions, (I), 4-8
with store conditional instructions, (I),

4-11
Lock_flag register, (III), 1-3
Logical instructions

See Boolean instructions
Logout area, (II), 6-24; (III), 5-7
Longword data type, (I), 2-2

alignment of, (I), 2-11
atomic access of, (I), 5-2
integer floating-point format, (I), 2-10

LSB (least significant bit), defined for
floating-point, (I), 4-57

M
Machine check error summary (MCES)

register
described, (II), 5-13
using, (II), 6-24

Machine checks, (II), 6-22; (III), 5-6
actions, summarized, (II), 6-2
initiated by PALcode, (II), 6-31
introduced, (II), 6-22
logout area, (II), 6-24
masking, (II), 6-23
no disabling of, (II), 6-24
one per error, (II), 6-24
processor correctable, (II), 6-23
program counter (PC) value, (II), 6-23
REI instruction with, (II), 6-23
retry flag, (II), 6-24
service routine entry points, (II), 6-29
stack frames, (II), 6-7
system correctable, (II), 6-23

Mailbox
address alignment, (I), 8—4
bus-specific implementations for, (I), 8-12
CMD field checking, (I), 8-13
error reporting, (I), 8-8

lndex-10

Mailbox (cont'd)
field checking, (I), 8-12
modification by host, (I), 8-6
operational definition, (I), 8-2
posting, (I), 8-2
posting software with, (I), 8-6
remote reads, (I), 8-6, 8-8
remote writes, (I), 8-6, 8-9
static, (I), 8-6
structure, (I), 8-5
use of STQ_C lockflag, (I), 8-3, 8-8
WHO_ARE_YOU command, (I), 8-13
with I/O space granularity, (I), 8-7

Mailbox pointer (MBPR) register, (I), 8—4
defined, (I), 8-2
ordering, (I), 8-7

MASK field (mailbox), (I), 8-5
Masking, machine checks with, (II), 6-23
Mask instructions (list), (I), 4-52
MAX, defined for floating-point, (I), 4-59
maxCPU, (III), 1-2
MB (memory barrier) instruction, (I), 4-117

See also 1MB
multiprocessors only, (I), 4-117
using, (I), 5-18
with DMA I/O, (I), 5-17
with multiprocessor D-stream, (I), 5-17

MBPR
See Mailbox pointer (MBPR) register

MBZ (must be zero), (I), 1-9
Memory, unrecoverable errors with, (II), 6-22
Memory access

aligned byte/word, A-11
coherency of, (I), 5-1
granularity of, (I), 5-2
width of, (I), 5-2

Memory access sequence, (I), 5-11
Memory alignment, requirement for, (I), 5-2
Memory format instructions

function codes, summarized, C-l
opcodes for, C-l

Memory instruction format, (I), 3-9
with function code, (I), 3-9

Memory jump instruction format, (I), 3-10
Memory-like behavior, (I), 5-3
Memory management

See also Address translation; Pages;
Processor modes; Virtual address
space

address translation, (II), 3-8
always enabled, (II), 3-3
control of, (III), 3-3
faults, (II), 3-13, 6-9; (III), 3-9
introduced, (II), 3-1
page frame number (PFN), (II), 3-6

Memory management (cont'd)
page table entry (PTE), (II), 3-3
protection code, (II), 3-8
protection of individual pages, (II), 3-7
PTE modified by software, (II), 3-7
support in PALcode, (I), 6-2
translation buffer with, (II), 3-11
unrecoverable error, (II), 6-22
with interrupts, (II), 6-18
with multiprocessors, (II), 3-7
with process context, (II), 4-1

Memory-management fault entry (entMM)
register, (III), 1-2, 5-4, 5-7

Memory management faults
registers used, (II), 6-10
system entry for, (III), 5—4
types, (III), 3-9
with unaligned data, (II), 6-16

Memory prefetch registers, A-10
defined, (I), 3-2

Memory protection, (III), 3-5
MF_FPCR instruction, (I), 4^87
MFPR_IPR_name (PALcode) instruction,

(II), 2-86
MIN, defined for floating-point, (I), 4-58
Miscellaneous instructions (list), (I), 4-113
MMCSR, (III), 5-7
MMCSR code, (III), 3-9
/M opcode qualifier, IEEE floating-point, (I),

4-60
Move, register-to-register, A-14
Move instructions (conditional)

See Conditional move instructions
MSKBL instruction, (I), 4-52
MSKLH instruction, (I), 4-52
MSKLL instruction, (I), 4-52
MSKQL instruction, (I), 4-52
MSKWH instruction, (I), 4-52
MSKWL instruction, (I), 4-52
MT_FPCR instruction, (I), 4-87

synchronization requirement, (I), 4-66
MTPRJPR.name (PALcode) instruction,

(II), 2-87
MULF instruction, (I), 4-106
MULG instruction, (I), 4-106
MULL instruction, (I), 4-29

with MULQ, (I), 4-29
MULQ instruction, (I), 4-30

with MULL, (I), 4-29
with UMULH, (I), 4-30

MULS instruction, (I), 4-107
MULT instruction, (I), 4-107
Multiple instruction issue, A-2
Multiply instructions

See also Floating-point operate

lndex-11

Multiply instructions (cont'd)
multiply longword, (I), 4-29
multiply quadword, (I), 4-30
multiply unsigned quadward high, (I), 4-31

Multiprocessor environment
See also Data sharing
cache coherency in, (I), 5-5
context switching, (I), 5-18
interprocessor interrupt, (II), 6-21
I-stream reliability, (I), 5-17
MB instruction with, (I), 5-17
memory faults, (II), 6-10
memory management in, (II), 3-7
move operations in, (II), 2-76
no implied barriers, (I), 5-16
read/write ordering, (I), 5-9
serialization requirements in, (I), 4-117
shared data, (I), 5-5, A-7

Multiprocessors
I/O with, (I), 8-3
interrupts with, (I), 8-12

Multithread implementation, (II), 2-80

Ν
NaN (Not-a-Number)

defined, (I), 2-8
Quiet, (I), 4-57
Signaling, (I), 4-57

NATURALLY ALIGNED data objects, (I), 1-9
Negate stylized code form, A-14
Next PC, (II), 6-2

defined for arithmetic traps, (II), 6-14
Nonmemory-like behavior, (I), 5-3
NOP, A-13
NOT instruction, ORNOT with zero, (I), 4-37
NOT stylized code form, A-14

ο
Opcode qualifiers

See also specific qualifiers
default values, (I), 4-3
notation (list), (I), 4-3

Opcodes
DEC OSF/1, C-9
OpenVMS, C-8
reserved, C-10
summarized, C-6

opDec, (III), 1-4
OpenVMS PALcode instruction opcodes, C-8
OpenVMS PALcode instructions (list), (II),

2-2
Operand expressions, (I), 3-3
Operand notation

defined, (I), 3-3

Operand notation (cont'd)
from VAX architecture standard, (I), 3-4

Operand values, (I), 3-3
Operate format instructions, opcodes for, C-2
Operate instruction format, (I), 3-10

floating-point, (I), 3-11
floating-point convert, (I), 3-12

Operators, instruction format, (I), 3-5
Optimization

See Performance optimizations
ORNOT instruction, (I), 4-37
OSF/1 PALcode instruction opcodes, C-9
Overflow trap, (II), 6-15; (III), 5-5
OVFbit

exception summary parameter, (II), 6-13
exception summary register, (III), 5-5

ρ
Page frame number (PFN)

bits in PTE, (II), 3-6; (III), 3-3
determining validitation, (II), 3-4
finding for SCB, (II), 5-19
PTBR register, (II), 5-18
with address translation, (II), 3-9
with hardware context switching, (II), 4-3

Pages
collecting statistics on, (II), 6-11
individual protection of, (II), 3-7
max address size from, (II), 3-3
possible sizes for, (II), 3-2
size range of, (III), 3-1
virtual address space from, (II), 3-2

pageSize, (III), 1-2
Page sizes, (III), 3-2
Page table base (PTBR) register, (II), 5-18

defined, (III), 1-3
in HWPCB, (II), 4-2
privileged context, (II), 2-91
with address translation, (II), 3-9

Page table entry (PTE), (II), 3-3
atomic modification of, (II), 3-7
bits, summarized, (III), 3-3
changing and managing, (III), 3-5
format of, (III), 3-3
modified by software, (II), 3-7
page protection, (II), 3-8
physical access of, (III), 3-6
virtual access of, (III), 3-7
with multiprocessors, (II), 3-7

PALcode
See also Queues, support for
access to kernel stack, (II), 6-31
barriers with, (I), 5-16
CALL.PAL instruction, (I), 4-114

lndex-12

PALcode (cont'd)
compared to hardware instructions, (I), 6-1
defined for OpenVMS, (II), 2-1
illegal operand trap, (II), 6-17
implementation-specific, (I), 6-2
instead of microcode, (I), 6-1
instruction format, (I), 3-13
memory management requirements, (II),

3-3
OSF/1 support for, (III), 5-8
overview, (I), 6-1
processor state transitions, (II), 6-36
queue data type support, (II), 2-21
recognized instructions, (I), 6-4
replacing, (I), 6-3
required function support, (I), 6-2
required instructions, (I), 6-4
running environment, (I), 6-2
special functions, (I), 6-2

PALcode instructions
OpenVMS (list), (II), 2-2
privileged OpenVMS (list), (II), 2-83
privileged OSF/1 (list), (III), 2-8
required, opcodes for, C-10
reserved, opcodes for, C-10
thread OpenVMS, (II), 2-80
unprivileged general (list), (II), 2-3
unprivileged OSF/1 (list), (III), 2-1

PALcode instructions, privileged
See also individual instructions
cache flush, (II), 2-84
drain aborts, (I), 6-5
halt processor, (I), 6-6
load quadword physical, (II), 2-85
move from processor register, (II), 2-86
move to processor register, (II), 2-87
read processor status, (III), 2-9
read system value, (III), 2-11
read user stack pointer, (III), 2-10
return from system call, (III), 2-12
return from trap, fault, or interrupt, (III),

2-13
store quadword physical, (II), 2-88
swap IPL, (III), 2-16
swap privileged context, (II), 2-89
swap process context, (III), 2-14
TB (translation buffer) invalidate, (III),

2-17
who am I, (III), 2-18
write floating-point enable, (III), 2-21
write kernel global pointer, (III), 2-22
write system entry address, (III), 2-19
write system value, (III), 2-24
write user stack pointer, (III), 2-23
write virtual page table pointer, (III), 2-25

PALcode instructions, thread, (II), 2-80
read unique context, (II), 2-81
write unique context, (II), 2-82

PALcode instructions, unprivileged
See also individual instructions
breakpoint, (II), 2-4; (III), 2-2
bugcheck, (II), 2-5; (III), 2-3
change to executive mode, (II), 2-6
change to kernel mode, (II), 2-7
change to supervisor mode, (II), 2-8
change to user mode, (II), 2-9
generate software trap, (II), 2-10
generate trap, (III), 2-5
insert into queue (list), (II), 2-30
I-stream memory barrier, (I), 6-7
probe for read access, (II), 2-11
probe for write access, (II), 2-11
read processor status, (II), 2-13
read system cycle counter, (II), 2-17
read unique value, (III), 2-6
remove from queue (list), (II), 2-30
return from exception or interrupt, (II),

2-14
swap AST enable, (II), 2-19
system call, (III), 2-4
write PS software field, (II), 2-20
write unique value, (III), 2-7

PALcode instructions, unprivileged general
(list), (II), 2-3

PALRES0, (I), 6-2
PALRES1, (I), 6-2
PALRES2, (I), 6-2
PALRES3, (I), 6-2
PALRES4, (I), 6-2
Passive release interrupt entry point, (II),

6-29
Passive release interrupts, (II), 6-20
PC

See program counter register
PCC

See Process cycle counter
Performance monitoring register (PERF-

MON), (II), 5-15
Performance monitor interrupt entry point,

(II), 6-29
Performance optimizations

branch prediction, A-3
code sequences, A-11
data stream, A-6
for frequently executed code, A-1
for I-streams, A-2
instruction alignment, A-2
instruction scheduling, A-5
I-stream density, A-5

lndex-13

Performance optimizations (cont'd)
multiple instruction issue, A-2
shared data, A-7

PFN
See Page frame number

Physical address translation, (II), 3-9
Physical space, (III), 3-3
PME, bit in HWPCB, (II), 4-2
PMI bus, (I), 8-1

uncorrected protocol errors, (II), 6-22
Powerfail, CFLUSH PALcode instruction

with, (II), 6-22
Powerfail interrupt, (II), 6-22

service routine entry point, (II), 6-29
Prefetch data (FETCH instruction), (I), 4-115
Prefetch data registers, A-10
Prefetching data, considerations, A-10
Privileged Architecture Library

See PALcode
Privileged context, (II), 2-90
Privileged context block base (PCBB) register,

(II), 5-16
Privileged PALcode instructions (list), (II),

2-83; (III), 2-8
PROBER (PALcode) instruction, (II), 2-11
PROBEW (PALcode) instruction, (II), 2-11
Process, (II), 4-1

context switching the, (II), 4—4
Process context, (III), 4—1
Process control block (PCB), (III), 4-1

structure, (III), 4-2
Process control block base (PCBB) register,

(III), 1-3
Process cycle counter (PCC)

in HWPCB, (II), 4-2
privileged context, (II), 2-91
RPCC instruction with, (I), 4-118
system cycle counter with, (II), 2-17

Processor base (PRBR) register, (II), 5-17
Processor issue order

defined, (I), 5-11
with location access order, (I), 5-11

Processor issue sequence, (I), 5-10
Processor memory interconnect

See PMI bus
Processor modes

AST pending state, (II), 5-7
change to executive, (II), 2-6
change to kernel, (II), 2-7
change to supervisor, (II), 2-8
change to user, (II), 2-9
controlling memory access, (II), 3-8
enabling executive mode reads, (II), 3-5
enabling executive mode writes, (II), 3-6

Processor modes (cont'd)
enabling kernel mode reads, (II), 3-5
enabling supervisor mode reads, (II), 3-6
enabling supervisor mode writes, (II), 3-6
enabling user mode reads, (II), 3-6
enabling user mode writes, (II), 3-6
page access with, (II), 3-1
PALcode state transitions, (II), 6-36

Processor number, reading, (II), 5-31
Processor state, defined, (II), 6-5
Processor state transitions, (II), 6-36
Processor status (PS) register

bit meanings for, (III), 5-2
bootstrap values in, (II), 6-6
current, (II), 6-5
current mode field, (II), 6-6
defined, (II), 1-1; (III), 1-3
explicit reading of, (II), 6-5
in processor state, (II), 6-5
interrupt priority level (IPL) field, (II), 6-6
saved on stack, (II), 6-5
saved on stack frame, (II), 6-7
software (SW) field, (II), 6-6
stack alignment field, (II), 6-6
virtual machine monitor bit, (II), 6-6
WR_PS_SW instruction, (II), 2-20

Process unique value (unique) register, (III),
1-4

Program counter (PC) register, (I), 3-1
alignment, (II), 6-6
current PC defined, (II), 6-2
defined, (III), 1-3
explicit reading of, (II), 6-6
in processor state, (II), 6-5
next PC defined, (II), 6-14
saved on stack frame, (II), 6-7
with arithmetic traps, (II), 6-14; (III), 5-1
with faults, (II), 6-8
with interrupts, (II), 6-2
with machine checks, (II), 6-23
with synchronous traps, (II), 6-15

Protection code, (II), 3-8; (III), 3-6
Protection modes, (II), 6-7
PS<SP_ALIGN> field, (II), 2-13
Pseudo-ops, A-14
PTE

See Page table entry

ο
Quadword data type, (I), 2-2

alignment of, (I), 2-3, 2-11
atomic access of, (I), 5-2
integer floating-point format, (I), 2-11
loading in physical memory, (II), 2-85

lndex-14

Quadword data type (cont'd)
storing to physical memory, (II), 2-88
TJIoating with, (I), 2-11

Queues, support for
absolute longword, (II), 2-21
absolute quadword, (II), 2-25
PALcode instructions (list), (II), 2-30
self-relative longword, (II), 2-21
self-relative quadword, (II), 2-26

R
R31

restrictions, (I), 3-1
with arithmetic traps, (II), 6-12

RAZ (read as zero), (I), 1-9
RBADR field (mailbox), (I), 8-5
RC (read and clear) instruction, (I), 4-122
RD_PS (PALcode) instruction, (II), 2-13
RDATA field (mailbox), (I), 8-6
rdps (PALcode) instruction, (III), 2-9
rdunique (PALcode) instruction, (III), 2-6

PCB with, (III), 4-1
required recognition of, (I), 6-4

RDUNIQUE (PALcode) instruction
required recognition of, (I), 6—4

rdusp (PALcode) instruction, (III), 2-10
PCB with, (III), 4-1

rdval (PALcode) instruction, (III), 2-11
READJJNQ (PALcode) instruction, (II),

2-81
Read/write, sequential, A-10
Read/write ordering (multiprocessor), (I), 5-9

determining requirements, (I), 5-9
memory location defined, (I), 5-10

Registers, (I), 3-1
See also specific registers
floating-point, (I), 3-2
integer, (I), 3-1
lock, (I), 3-2
memory prefetch, (I), 3-2
optional, (I), 3-2
program counter (PC), (I), 3-1
value when unused, (I), 3-8
VAX compatibility, (I), 3-2
with IPRs, (II), 5-1

Register-to-register move, A-14
Register write mask, with arithmetic traps,

(ID, 6-14
REI (PALcode) instruction, (II), 2-14

arithmetic traps, (II), 6-9
faults, (II), 6-8
interrupt arbitration, (II), 6-35
interrupts, (II), 6-2
machine checks, (II), 6-23

REI (PALcode) instruction (cont'd)
synchronous traps, (II), 6-15

Remote devices
defined, (I), 8-1
interrupts with, (I), 8-12
with DMA, (I), 8-10

Remote I/O space, (I), 8-2
accessing, (I), 8-2, 8-8
flow control, (I), 8-3
read/write ordering, (I), 8-9

Remote writes (mailbox), (I), 8-5
Remove from queue PALcode instructions

longword, (II), 2-72
longword at head interlocked, (II), 2-52
longword at head interlocked resident, (II),

2-55
longword at tail interlocked, (II), 2-62
longword at tail interlocked resident, (II),

2-65
quadword, (II), 2-74
quadword at head interlocked, (II), 2-57
quadword at head interlocked resident,

(II), 2-60
quadword at tail interlocked, (II), 2-67
quadword at tail interlocked resident, (II),

2-70
REMQHIL (PALcode) instruction, (II), 2-52
REMQHILR (PALcode) instruction, (II), 2-55
REMQHIQ (PALcode) instruction, (II), 2-57
REMQHIQR (PALcode) instruction, (II), 2-60
REMQTIL (PALcode) instruction, (II), 2-62
REMQTILR (PALcode) instruction, (II), 2-65
REMQTIQ (PALcode) instruction, (II), 2-67
REMQTIQR (PALcode) instruction, (II), 2-70
REMQUEL (PALcode) instruction, (II), 2-72
REMQUEL/D (PALcode) instruction, (II),

2-72
REMQUEQ (PALcode) instruction, (II), 2-74
REMQUEQ/D (PALcode) instruction, (II),

2-74
Representative result, (I), 4-57
Reserved instructions, opcodes for, C-10
Reserved operand, (I), 4-58
Result latency, A—5
RET instruction, (I), 4-20
retsys (PALcode) instruction, (III), 2-12

PS with, (III), 5-2
Rounding modes

See Floating-point rounding modes
RPCC (read process cycle counter) instruction,

(I), 4-118
RSCC instruction with, (II), 2-18

RS (read and set) instruction, (I), 4-122
RSCC (PALcode) instruction, (II), 2-17

RPCC instruction with, (II), 2-18

lndex-15

rti (PALcode) instruction, (III), 2-13
PS with, (III), 5-2
with exceptions, (III), 5-1

S
S4ADDL instruction, (I), 4-24
S4ADDQ instruction, (I), 4-26
S4SUBL instruction, (I), 4-33
S4SUBQ instruction, (I), 4-35
S8ADDL instruction, (I), 4-24
S8ADDQ instruction, (I), 4-26
S8SUBL instruction, (I), 4-33
S8SUBQ instruction, (I), 4-35
S_floating data type

alignment of, (I), 2-8
compared to F_floating, (I), 2-8
exceptions, (I), 2-8
format, (I), 2-8
mapping, (I), 2-8
MAX/MIN, (7Λ 4-58
operations, (I), 4-64
when data is unaligned, (II), 6-27

SBZ (should be zero), (I), 1-9
SCC

See System cycle counter
Security holes, (I), 1-7

with UNPREDICTABLE results, (I), 1-8
SegO, mapping of, (III), 3-1
Segl, mapping of, (III), 3-1
Segment number fields, (II), 3-2
Self-relative longword queue, (II), 2-21
Self-relative quadword queue, (II), 2-26
Sequential read/write, A-10
Serialization, MB instruction with, (I), 4-117
Shared data (multiprocessor), A-7

changed vs. updated datum, (I), 5-5
Shared data structures

atomic update, (I), 5-6
ordering considerations, (I), 5-7
using memory barrier (MB) instruction, (I),

5-8
Shared memory

accessing, (I), 5-10
access sequence, (I), 5-10
defined, (I), 5-9
issue sequence, (I), 5-10

Shift arithmetic instructions, (I), 4-41
Shift logical instructions, (I), 4-40
Single-precision floating-point, (I), 4-64
SLL instruction, (I), 4-40
Software (SW) field, in PS register, (II), 6-6
Software completion bit, (II), 6-13
Software considerations, A- l

See also Performance optimizations

Software interrupt request (SIRR) register
described, (II), 5-20
interrupt arbitration, (II), 6-35
protocol for, (II), 6-19
with interrupts, (II), 6-19

Software interrupts, (II), 6-19
asynchronous system traps (AST), (II),

6-20
protocol between summary and request,

(II), 6-19
recording pending state of, (II), 5-21
request (SIRR) register, (II), 6-19
requesting, (II), 5-20
service routine entry points, (II), 6-28
summary (SISR) register, (II), 6-19
supported levels of, (II), 5-20

Software interrupt summary (SISR) register
described, (II), 5-21
protocol for, (II), 6-19
with interrupts, (II), 6-19

Software traps, generating, (II), 2-10
/S opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

SP
See Stack pointer

SRA instruction, (I), 4-41
SRL instruction, (I), 4-40
Stack alignment, (II), 6-31
Stack alignment (SP_ALIGN), field in saved

PS, (II), 6-6
Stack frames, (II), 6-7; (III), 5-3
Stack pointer (SP)

defined, (II), 1-1; (III), 1-4
register linkage for, (III), 1-1

Stack pointer internal processor registers,
(ID, 5-1

Starvation, (I), 8-4
STATUS field (mailbox), (I), 8-6
STF instruction, (I), 4-73

when data is unaligned, (II), 6-27
STG instruction, (I), 4-74

when data is unaligned, (II), 6-27
STL_C instruction, (I), 4-11

when data is unaligned, (II), 6-27
with LDx_L instruction, (I), 4-11
with processor lock register/flag, (I), 4-11

STL instruction, (I), 4-13
when data is unaligned, (II), 6-27

Store instructions
See also Floating-point store instructions
emulation of, (I), 4-2
FETCH instruction, (I), 4-115
multiprocessor environment, (I), 5-5
serialization, (I), 4-117

lndex-16

Store instructions (cont'd)
store longword, (I), 4-13
store longword conditional, (I), 4-11
store quadword, (I), 4-13
store quadword conditional, (I), 4-11
store unaligned quadword, (I), 4-14
when data is unaligned, (II), 6-27

Store memory integer instructions (list), (I),
4-4

STQ_C instruction, (I), 4-11
use in accessing MBPR, (I), 8-3
with LDx_L inst., (I), 4-11
with processor lock register/flag, (I), 4-11

STQ_L instruction
when data is unaligned, (II), 6-27

STQ_U instruction, (I), 4-14
STQ instruction, (I), 4-13

when data is unaligned, (II), 6-27
STQP (PALcode) instruction, (II), 2-88
STS instruction, (I), 4-75

when data is unaligned, (II), 6-27
STT instruction, (I), 4-76

when data is unaligned, (II), 6-27
SUBF instruction, (I), 4-109
SUBG instruction, (I), 4-109
SUBL instruction, (I), 4-32
SUBQ instruction, (I), 4-34
SUBS instruction, (I), 4-111
SUBT instruction, (I), 4-111
Subtract instructions

See also Floating-point operate
subtract longword, (I), 4-32
subtract quadword, (I), 4-34
subtract scaled longword, (I), 4-33
subtract scaled quadword, (I), 4-35

Supervisor read enable (SRE), bit in PTE,
(ID, 3-6

Supervisor stack pointer (SSP)
as internal processor register, (II), 5-1
in HWPCB, (II), 4-2

Supervisor stack pointer (SSP) register, (II),
5-28

Supervisor write enable (SWE), bit in PTE,
(ID, 3-6

SWASTEN (PALcode) instruction, (II), 2-19
interrupt arbitration, (II), 6-36
with ÄSTEN register, (II), 5-6

SWC bit
exception summary parameter, (II), 6-13
exception summary register, (III), 5-2, 5-4

swpctx (PALcode) instruction, (III), 2-14
PCB with, (III), 4-1
with ASNs, (III), 3-8

SWPCTX (PALcode) instruction, (II), 2-89
with ASTSR register, (II), 5-8

swpipl (PALcode) instruction, (III), 2-16
PS with, (III), 5-2

Synchronous traps, (III), 5-2
data alignment, (II), 6-15
denned, (II), 6-9
program counter (PC) value, (II), 6-15
REI instruction with, (II), 6-15

System call entry (entSys) register, (III), 1-3,
5-4, 5-8

System control block (SCB)
arithmetic trap entry points, (II), 6-27
fault entry points, (II), 6-26
finding PFN, (II), 5-19
saved on stack frame, (II), 6-7
structure of, (II), 6-25
with memory management faults, (II),

3-14
System control block base (SCBB) register,

(II), 5-19
System cycle counter (SCC), reading, (II),

2-17
System entry addresses, (III), 5-3
System value (sysvalue) register, (III), 1-4

τ
T_floating data type

alignment of, (I), 2-10
exceptions, (I), 2-10
format, (I), 2-9
MAX/MIN, (I), 4-59
when data is unaligned, (II), 6-27

TB
See Translation buffer

tbi (PALcode) instruction, (III), 2-17
with TBs, (III), 3-8

Tightly coupled I/O bus, (I), 8-1
Timeout, (I), 8-4
Timing considerations, atomic sequences,

A-17
Translation

physical, (III), 3-6
virtual, (III), 3-7

Translation buffer (TB), (III), 3-8
address space number with, (II), 3-11
fault on execute, (II), 6-12
fault on read, (II), 6-11
fault on write, (II), 6-11
granularity hint in PTE, (II), 3-5
with invalid PTEs, (II), 3-12

Translation buffer check (TBCHK) register
described, (II), 5-22
with translation buffer, (II), 3-12

lndex-17

Translation buffer invalidate all (TBIA)
register

described, (II), 5-24
with translation buffer, (II), 3-12

Translation buffer invalidate all process
(TBIAP) register

described, (II), 5-25
with translation buffer, (II), 3-12

Translation buffer invalidate single (TBIS)
register, (II), 5-26

Translation not valid fault, (II), 6-10
service routine entry point, (II), 6-26

Translation-not-valid fault, (III), 3-9
TRAPB (trap barrier) instruction, A-14

described, (I), 4-120
with MT.FPCR, (I), 4-66
with trap shadow, (I), 4-62

Trap handler, with non-finite arithmetic
operands, (I), 4-63

Trap handling, IEEE floating-point, B-4
Trap modes

floating-point, (I), 4-60
IEEE, (I), 4-61
IEEE convert-to-integer, (I), 4-61
VAX, (I), 4-60
VAX convert-to-integer, (I), 4-61

Traps
See Arithmetic traps

Trap shadow, (III), 5-2
defined, (I), 4-62
defined for floating-point, (I), 4-58
trap handler requirement for, (I), 4-62

Trigger instruction, (III), 5-2
True result, (I), 4-57
True zero, (I), 4-57

u
UMULH instruction, (I), 4-31

with MULQ, (I), 4-30
Unaligned access fault

system entry for, (III), 5—4
UNALIGNED data objects, (I), 1-9
Unaligned fault entry (entUna) register, (III),

1-3, 5-8
Unconditional long jump, (I), 4-21
UNDEFINED operations, (I), 1-7
Underflow trap, (II), 6-15; (III), 5-5
UNF bit

exception summary parameter, (II), 6-13
exception summary register, (III), 5—5

UNORDERED memory references, (I), 5-9
UNPREDICTABLE results, (I), 1-7

Unprivileged PALcode instructions (list), (III),
2-1

Unprivileged PALcode instructions, VAX
compatibility, (II), 2-75

/U opcode qualifier
IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

Updated datum, (I), 5-5
User mode, protection code with, (III), 3-6
User read enable (URE)

bit in PTE, (II), 3-6; (III), 3-4
User stack pointer (USP)

defined, (III), 1-4
in HWPCB, (II), 4-2
internal processor register, (II), 5-1

User stack pointer (USP) register, (II), 5-29
User write enable (UWE)

bit in PTE, (II), 3-6; (III), 3-4

y
Valid (V)

bit in PTE, (II), 3-4; (III), 3-5
vaSize, (III), 1-2
VAX compatibility instructions, restrictions

for, (I), 4-121
VAX compatibility register, (I), 3-2
VAX convert-to-integer trap mode, (I), 4-61
VAX floating-point

See also Floating-point instructions
D.floating, (I), 2-6
F.floating, (I), 2-3
GJIoating, (I), 2-5
trap modes, (I), 4-62

VAX floating-point instructions
add instructions, (I), 4-88
compare instructions, (I), 4-91
convert from integer instructions, (I), 4-95
convert to integer instructions, (I), 4-94
convert VAX floating format instructions,

(I), 4-96
divide instructions, (I), 4-102
multiply instructions, (I), 4-106
opcodes for, C-5
operate instructions, (I), 4-80
qualifiers, summarized, C-5
subtract instructions, (I), 4-109

VAX rounding modes, (I), 4-59
VAX trap modes, required instruction

notation, (I), 4-61
Virtual address format, (II), 3-2

segment number fields, (II), 3-2
Virtual address space

minimum and maximum, (II), 3-2
page size with, (II), 3-1

lndex-18

Virtual address spaces, (III), 3-1 Zero byte instructions (list), (I), 4-55
Virtual address translation, (II), 3-10
Virtual D-cache, (I), 5-3

maintaining coherency of, (I), 5-3
Virtual format, (III), 3-1
Virtual I-cache, (I), 5-3

maintaining coherency of, (I), 5-5
Virtual machine monitor (VMM), bit in PS

register, (II), 6-6
Virtual page base (VPTB) register, (II), 5-30
Virtual page table pointer (VPTPTR), (III),

1-4
/V opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

w
Watchpoints

with fault on read, (II), 6-11
with fault on write, (II), 6-11

WDATA field (mailbox), (I), 8-6
W field (mailbox), (I), 8-5
Whami, (III), 1-4
whami (PALcode) instruction, (III), 2-18
WHO_ARE_YOU command, (I), 8-13
Who-Am-I (WHAMI) register, (II), 5-31
Word data type, (I), 2-1
WR_PS_SW (PALcode) instruction, (II),

2-20
wrent (PALcode) instruction, (III), 2-19
wrfen (PALcode) instruction, (III), 2-21
WRITE.UNQ (PALcode) instruction, (II),

2-82
Write-back caches, requirements for, (I), 5—4
Write buffers, requirements for, (I), 5—4
wrkgp (PALcode) instruction, (III), 2-22
wrunique (PALcode) instruction, (III), 2-7

PCB with, (III), 4-1
required recognition of, (I), 6-4

WRUNIQUE (PALcode) instruction
required recognition of, (I), 6—4

wrusp (PALcode) instruction, (III), 2-23
PCB with, (III), 4-1

wrval (PALcode) instruction, (III), 2-24
wrvptptr (PALcode) instruction, (III), 2-25

X
XOR instruction, (I), 4-37

Ζ
ZAP instruction, (I), 4-55
ZAPNOT instruction, (I), 4-55

lndex-19

