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Foreword 

In the foreword to the VAX Architecture Reference Manual, Sam Fuller , Digital 's Vice 
Pres iden t for Research a n d Archi tecture , wrote, "Computer design continues to be 
a dynamic field; I expect we will see more r a t h e r t h a n less change and innovation 
in t he decades ahead." The Alpha Architecture Reference Manual demons t ra tes the 
accuracy of t h a t prediction. 

Alpha follows VAX by about fifteen years . Those fifteen years have witnessed a to r ren t 
of change in computer technology, one t h a t shows no sign of abat ing: 

• More t h a n a 1000-fold increase in t he performance of microprocessors 

• More t h a n a 1000-fold increase in t h e densi ty of semiconductor memories 

• More t h a n a 500-fold increase in t he densi ty of magnet ic s torage devices 

• More t h a n a 100-fold increase in t h e speed of ne twork connections 

Dur ing the same period, the in te rna l organizat ion of computer sys tems h a s changed 
as well, based on developments such as RISC archi tecture , symmetr ic mult ipro-
cessing, and coherent d is t r ibuted systems. Moreover, t he fundamenta l paradigms 
of computing have changed not once, bu t several t imes , wi th t h e introduction of 
personal computers , graphics worksta t ions , local a rea networks , and client/server 
computing. 

These developments p resen t an enormous challenge for computing in t he 21st cen-
tury . F u t u r e computers will be called upon to solve problems of g rea t scale and 
complexity, worldwide, in a dis t r ibuted manner . They will have to provide unprece-
dented performance, flexibility, reliability, and scalability in order to implement a 
global infras t ructure of information, and to give users a n u n t r a m m e l e d window on 
the world. 

Alpha is Digital 's response to t he challenges of 21st-century computing. I t represents 
t h e culminat ion of t h e company's knowledge and belief about how t h e next genera-
t ions of computers should be built . Alpha is based on a decade's exper imenta l and 
engineering work in RISC archi tecture , high-speed implementa t ion, software com-
patibil i ty and migrat ion, and sys tem serviceability. I t provides t he foundation for 
implementa t ions rang ing from mobile computing un i t s to massively paral lel super-
computers . 

Alpha is designed to handle the largest computing problems of today a n d tomorrow. 
When the Alpha archi tecture is compared to i ts predecessor, t he VAX archi tecture, 
two differences s t and out immediately. Fi rs t , Alpha is a 64-bit archi tecture; VAX is 
a 32-bit archi tecture . This m e a n s t h a t Alpha 's v i r tua l address extends to a 64-bit 
l inear range of bytes in memory. Suppor t ing th is extended vi r tua l address space 
a re a n extended m a x i m u m physical address range (up to 48 bits) and larger pages 
(8KB to 64KB). Alpha's extended v i r tua l address r ange allows direct manipula t ion 
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of the gigabytes and terabytes of da t a produced in electrical and mechanical design, 
da tabase and t ransact ion processing, and imaging. 

Second, Alpha is a RISC archi tecture; VAX is a CISC archi tecture . RISC s tands for 
Reduced Instruct ion Set Computer , CISC for Complex Instruct ion Set Computer . 
RISC archi tectures a re characterized by simple, fixed-length instruct ion formats; 
a small number of address ing modes; large register files; a load-store instruct ion 
set model; and direct ha rdware execution of instruct ions. CISC archi tectures are 
characterized by variable-length instruct ion formats; a large number of address ing 
modes; small-to-medium-sized register files; a full set of register-to-memory (or 
even memory-to-memory) instruct ions; and microcoded execution of instruct ions. 
Alpha's s t reamlined organization facilitates high-speed implementa t ion in a variety 
of technologies, while providing s t rong compatibility wi th today's programs and da ta . 

The following tabula t ion contras ts the archi tectural differences between VAX and 
Alpha: 

Architecture 
Virtual address range 
Physical address range 
Page size 
Instruction lengths 
General registers 
Addressing modes 
Instruction set architecture 
Directly supported data types 

VAX 

CISC 
32 bits 
Up to 32 bits 
512 bytes 
1-51 bytes 
16 χ 32 bits 
21 
General 
Integer, floating, bit 
field, queue, character 
string, decimal string 

Alpha 

RISC 
Up to 64 bits 
Up to 48 bits 
8KB-64KB 
4 bytes 
64 χ 64 bits 
3 
Load-store 
Integer, floating 

This book is the culmination of an effort begun th ree years ago. In t h a t t ime, Alpha 
h a s grown from a paper specification to a cohesive set of chips, systems, and software, 
spanning the computer spectrum. This achievement is due to the efforts of m a n y 
hundreds of people in Engineering, Market ing , Sales, Service, and Manufactur ing. 
This book is documentat ion of, and a t r ibute to, t he ou ts tanding work they have 
done. 

Bob Supnik 
Corporate Consul tant , 
Vice Pres ident 
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Preface 

The Alpha archi tecture is a RISC archi tecture t h a t was designed for high per-
formance and longevity. Following Amdahl , Blaauw, and Brooks, 1 we dist inguish 
between archi tecture and implementa t ion: 

• Computer archi tecture is defined as t h e a t t r ibu tes of a computer seen by a machine-
language programmer . This definition includes t he ins t ruct ion set, instruct ion 
formats, operat ion codes, address ing modes, and all regis ters and memory locations 
t h a t m a y be directly manipu la ted by a machine- language programmer . 

• Implementa t ion is defined as the actual h a r d w a r e s t ruc ture , logic design, and data-
p a t h organization. 

This archi tecture book describes the required behavior of all Alpha implementa t ions , 
as seen by the machine- language programmer . The archi tecture does not speak to 
implementa t ion considerations such h a s how fast a p rogram r u n s , w h a t specific 
bit p a t t e r n is left in a h a r d w a r e regis ter after a n unpredictable operation, how 
to schedule code for a par t icu lar chip, or how to wire up a given chip; those 
considerations a re described in implementation-specific documents . 

Various Alpha implementa t ions a re expected over t he coming years , s t a r t ing wi th 
t he Digital 21064 chip. 

Goals 

When we s ta r ted the Alpha project in the fall of 1988, we h a d a small n u m b e r of 
goals: 

1. High performance 

2. Longevity 

3. Run VMS and UNIX 

4. Easy migrat ion from VAX (and soon-to-be MIPS) customer base 

As principal architects , Rich Witek and I m a d e design decisions t h a t were driven 
directly by these goals. 

We assumed t h a t h igh performance was needed to m a k e a new archi tecture a t t ract ive 
in the marketp lace , and to keep Digital competitive. 

We set a 15 -25 year design horizon (longevity) and t r ied to avoid any design e lements 
t h a t we thought would become l imitat ions dur ing th i s t ime. The design horizon 
led directly to t he conclusion t h a t Alpha could not be a 32-bit archi tecture: 32-
bit addresses will be too small wi th in 10 years . We t h u s adopted a full 64-bit 

1. Amdahl, G.M., G A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/SeO." IBM 
Journal of Research and Development, vol. 8, no. 2 (April 1964): 87-101. 
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archi tecture, wi th a minimal number of 32-bit operat ions for backward compatibility. 
Wherever possible, 32-bit operands a re pu t in regis ters in a 64-bit canonical form 
and operated upon wi th 64-bit operations. 

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years . Over the pas t 25 years , computers have become 
about 1000 t imes faster. This suggested to us t h a t Alpha implementa t ions would 
need to do the same, or we would have to bet t h a t t he indus t ry would fall off t he 
historical performance curve. We were unwill ing to bet agains t t he industry , and 
were unwill ing to ignore the issue, so we seriously examined the consequences of 
longevity. 

We thought t h a t i t would be realistic for implementors to improve clock speeds by 
a factor of 10 over 25 years , bu t not by a factor of 100 or 1000. (Clock speeds have 
improved by about a factor of 100 over the pas t 25 years , bu t physical l imits are now 
slowing down the r a t e of increase.) 

We concluded t h a t the remain ing factor of 100 would have to come from other 
design dimensions. If you cannot m a k e the clock faster, t he next dimension is to 
do more work per clock cycle. So the Alpha archi tecture is focused on allowing 
implementat ions t h a t issue m a n y instruct ions every clock cycle. We thought t h a t 
it would be realistic for implementors to achieve about a factor of 10 over 25 years 
by us ing mult iple instruct ion issue, bu t not a factor of 100. Even a factor of 10 will 
require perhaps a decade of compiler research. 

We concluded t h a t the remain ing factor of 10 would have to come from some other 
design dimension. If you cannot m a k e the clock faster, and cannot do more work per 
clock, the next dimension is to have mult iple clocked instruct ion s t reams , t h a t is, 
mult iple processors. So the Alpha archi tecture is focused on allowing implementa-
tions t h a t apply mult iple processors to a single problem. We thought t h a t it would 
be realistic for implementors to achieve the remain ing factor of 10 over 25 years by 
us ing mult iple processors. 

Overall , the factor-of-1000 increase in performance looked reasonable, bu t required 
factor-of-10 increases in th ree different dimensions. These th ree dimensions therefore 
formed pa r t of our design framework: 

• Gracefully allow fast cycle-time implementa t ions 

• Gracefully allow multiple-instruction-issue implementa t ions 

• Gracefully allow multiple-processor implementa t ions 

The cycle-time goal encouraged us to keep the instruct ion definitions very simple, and 
to keep the interact ions between instruct ions very simple. The multiple-instruction-
issue goal encouraged us to el iminate specialized registers , architected delay slots, 
precise ar i thmet ic t r aps , and byte wri tes (with the i r embedded read-modify-write 
bottleneck). The multiple-processor goal encouraged us to consider the memory model 
and atomic-update primit ives carefully. We adopted load-locked/store-conditional 
sequences as the atomic-update primitive, and el iminated strict read-wri te ordering 
between processors. 

All of the above design decisions were driven directly by the performance and 
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longevity goals. The lack of byte wri tes , precise ar i thmet ic t r aps , and multiprocessor 
read/wri te ordering have been the most controversial decisions, so far. 

Clean Sheet of Paper 

To r u n both OpenVMS and UNIX wi thout burden ing the h a r d w a r e implementa-
tions wi th elaborate (and sometimes conflicting) operat ing system underpinnings , 
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for in te r rup t delivery and r e tu rn , exceptions, context switching, memory 
managemen t , and error hand l ing in a set of privileged software subrout ines called 
PALcode (privileged archi tecture l ibrary code). PALcode subrout ines have controlled 
ent r ies , r u n wi th in t e r rup t s t u r n e d off, and have access to real h a r d w a r e (implemen-
tat ion) registers . By having different sets of PALcode for different operat ing systems, 
the archi tecture itself is not biased toward a specific operat ing system or computing 
style. 

PALcode allowed us to design an archi tecture t h a t could r u n OpenVMS gracefully 
wi thout e laborate ha rdware and wi thout massively rewri t ing t he VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha archi tecture support some 
complex VAX primit ives (such as t he interlocked queue instruct ions) t h a t a re heavily 
used by OpenVMS, wi thout burden ing a UNIX implementa t ion in any way. 

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected 
various forms of "compatibility mode" ha rdware , because they would have severely 
compromised the performance and t ime-to-market of t he first implementat ion. After 
some experimentat ion, we adopted the s t ra tegy of runn ing exist ing b inary code by 
building software t rans la tors . One t r ans la to r converts OpenVMS VAX images to 
functionally identical OpenVMS Alpha images. A second t r ans la to r converts MIPS 
U L T R K images to functionally identical DEC OSF/1 Alpha images. 

Fundamenta l ly , PALcode gave us a migrat ion pa th for exist ing operat ing systems, 
and the t rans la to rs (and nat ive compilers) gave us a migrat ion pa th for existing 
user-mode code. PALcode and the t r ans la to r s provided a clean sheet of design paper 
for the bulk of the Alpha archi tecture . Othe r t h a n an ext ra set of VAX floating-point 
formats (included for good business reasons , bu t subset table later) , no specific VAX 
or MIPS features a re carried directly into t he Alpha archi tecture for compatibility 
reasons. 

These considerations substant ia l ly shaped the archi tecture described in the res t of 
th is book. 

Organization 

The first p a r t of th is book describes t he instruct ion-set archi tecture , and is largely 
self-contained for readers who a re involved wi th compilers or wi th assembly language 
programming. The second and th i rd pa r t s describe the support ing PALcode rout ines 
for each operat ing sys tem—the specific opera t ing system PALcode archi tecture. 
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A Note on the Structure of This Book 

The Alpha Architecture Reference Manual is divided into th ree pa r t s , th ree ap-
pendixes, and an index. Each pa r t describes a major portion of the Alpha archi tecture. 
Each contains i ts own table of contents . 

The following tabula t ion outl ines the book's contents: 

Name Contents 

Par t I Common Architecture 

This part describes the instruction-set architecture tha t is common to 
and required by all implementations. 

Par t II OpenVMS Alpha Software 

This part describes how the OpenVMS operating system relates to the 
Alpha architecture. 

Par t III DEC OSF/1 Alpha Software 

This par t describes how the DEC OSF/1 operating system relates to the 
Alpha architecture. 

Appendixes The appendixes describe implementation considerations, IEEE floating-
point conformance, and instruction encodings. 

Index Index entries are called out by the symbol (I), (II), or (III). Each symbol is 
associated with the corresponding Part . Index entries for the appendixes 
are called out by appendix name and page number. 
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Parti Common Architecture 

Thi s p a r t descr ibes t h e common A l p h a a r c h i t e c t u r e 
a n d c o n t a i n s t h e following c h a p t e r s : 

1. I n t roduc t i on 

2. Bas ic A r c h i t e c t u r e 

3 . I n s t r u c t i o n F o r m a t s 

4. I n s t r u c t i o n Descr ip t ions 

5. S y s t e m A r c h i t e c t u r e a n d P r o g r a m m i n g 
Impl i ca t ions 

6. C o m m o n PALcode Arch i t e c tu r e 

7. Console S u b s y s t e m Overv iew 

8. I n p u t / O u t p u t 



Chapter 1 

Introduction (I) 

Alpha is a 64-bit load/store RISC archi tecture t h a t is designed wi th par t icular 
emphas is on t he th ree e lements t h a t most affect performance: clock speed, mult iple 
instruct ion issue, and mult iple processors. 

The Alpha architects examined and analyzed cur ren t and theoretical RISC 
archi tecture design e lements and developed high-performance a l ternat ives for the 
Alpha archi tecture. The architects adopted only those design e lements t h a t appeared 
valuable for a projected 25-year design horizon. Thus , Alpha becomes the first 21st 
century computer archi tecture . 

The Alpha archi tecture is designed to avoid bias toward any par t icular operat ing 
system or p rogramming language. Alpha initially supports the OpenVMS Alpha 
and DEC OSF/1 operat ing systems, and supports simple software migrat ion from 
applications t h a t r u n on those operat ing systems. 

This m a n u a l describes in detai l how Alpha is designed to be t he leadership 64-bit 
archi tecture of the computer industry. 

1.1 The Alpha Approach to RISC Architecture 

Alpha Is a True 64-Bit Architecture 

Alpha was designed as a 64-bit archi tecture . All regis ters a re 64 bi ts in length and 
all operat ions a re performed be tween 64-bit regis ters . I t is not a 32-bit archi tecture 
t h a t was la ter expanded to 64 bits . 

Alpha Is Designed for Very High-Speed Implementations 

The instruct ions a re very simple. All inst ruct ions a re 32 bits in length. Memory 
operat ions a re e i ther loads or stores. All da t a manipula t ion is done between 
regis ters . 

The Alpha archi tecture facilitates pipelining mult iple ins tances of t h e same 
operat ions because the re a re no special regis ters and no condition codes. 

The instruct ions in terac t wi th each other only by one instruct ion wri t ing a register 
or memory and another instruct ion reading from the same place. Tha t makes it 
par t icular ly easy to build implementa t ions t h a t issue mult iple instruct ions every 
CPU cycle. (The first implementa t ion issues two instruct ions per cycle.) 

Alpha makes it easy to ma in t a in b inary compatibility across mult iple 
implementa t ions and easy to ma in t a in full speed on mult iple-issue implementat ions . 
For example, the re a re no implementation-specific pipeline t iming hazards , no load-
delay slots, and no branch-delay slots. 
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Alpha's Approach to Byte Manipulation 

The Alpha archi tecture does byte shifting and mask ing wi th normal 64-bit register-
to-register instruct ions, crafted to keep instruct ion sequences short . 

Alpha does not include single-byte store instruct ions. This h a s several advantages : 

• Cache and memory implementat ions need not include byte shift-and-mask logic, 
and sequencer logic need not perform read-modify-write on memory locations. 
Such logic is awkward for high-speed implementa t ion and t ends to slow down 
cache access to normal 32-bit or 64-bit aligned quant i t ies . 

• Alpha's approach to byte manipula t ion makes it easier to build a high-speed 
error-correcting write-back cache, which is often needed to keep a very fast RISC 
implementat ion busy. 

• Alpha's approach can m a k e it easier to pipeline mult iple byte operat ions. 

Alpha's Approach to Arithmetic Traps 

Alpha lets the software implementor determine t he precision of a r i thmet ic t raps . 
With the Alpha archi tecture, ar i thmet ic t r aps (such as overflow and underflow) 
are imprecise—they can be delivered an a rb i t ra ry n u m b e r of instruct ions after the 
instruction t h a t tr iggered the t r ap . Also, t r aps from m a n y different instruct ions can 
be reported a t once. Tha t makes implementa t ions t h a t use pipelining and mult iple 
issue substant ia l ly easier to build. 

However, if precise ar i thmet ic exceptions are desired, t r a p bar r ie r instruct ions can 
be explicitly inser ted in the program to force t r aps to be delivered a t specific points. 

Alpha's Approach to Multiprocessor Shared Memory 

As viewed from a second processor (including an I/O device), a sequence of reads and 
wri tes issued by one processor may be arbi t rar i ly reordered by an implementat ion. 
This allows implementa t ions to use mul t ibank caches, bypassed wri te buffers, wri te 
merging, pipelined wri tes with re t ry on error, and so forth. If s tr ict ordering 
between two accesses m u s t be mainta ined , explicit memory bar r ie r instruct ions can 
be inser ted in the program. 

The basic multiprocessor interlocking primitive is a RISC-style load jocked , modify, 
store_conditional sequence. If t he sequence r u n s without in te r rupt , exception, or 
an interfering wri te from another processor, t hen the conditional store succeeds. 
Otherwise, t he store fails and the program eventual ly m u s t branch back and re t ry 
the sequence. This style of interlocking scales well wi th very fast caches, and makes 
Alpha an especially a t t ract ive archi tecture for building multiple-processor systems. 

Alpha Instructions Include Hints for Achieving Higher Speed 

A number of Alpha instruct ions include h in t s for implementat ions , all a imed a t 
achieving higher speed. 

• Calculated j u m p instruct ions have a t a rge t h in t t h a t can allow much faster 
subrout ine calls and re tu rns . 

• There are prefetching h in t s for the memory system t h a t can allow much higher 
cache h i t ra tes . 
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• There are granular i ty h in t s for t he vi r tual -address mapping t h a t can allow much 
more effective use of t rans la t ion lookaside buffers for large contiguous s t ructures . 

PALcode—Alpha's Very Flexible Privileged Software Library 

A Privileged Architecture Library (PALcode) is a set of subrout ines t h a t are 
specific to a par t icular Alpha operat ing system implementat ion. These subrout ines 
provide operat ing-system primit ives for context switching, in te r rup t s , exceptions, 
and memory management . PALcode is s imilar to t he BIOS l ibraries t h a t are 
provided in personal computers . 

PALcode subrout ines a re invoked by implementa t ion ha rdware or by software 
CALL_PAL instruct ions. 

PALcode is wr i t t en in s t anda rd machine code wi th some implementation-specific 
extensions to provide access to low-level ha rdware . 

One version of PALcode lets Alpha implementa t ions r u n the full OpenVMS operat ing 
system by mirror ing m a n y of t he OpenVMS VAX features. The OpenVMS PALcode 
instruct ions let Alpha r u n OpenVMS with little more ha rdware t h a n t h a t found on 
a conventional RISC machine: the PAL mode bit itself, plus 4 ext ra protection bits 
in each Translat ion Buffer entry. 

Another version of PALcode lets Alpha implementa t ions r u n the OSF/1 operat ing 
system by mirror ing m a n y of t h e RISC ULTRIX features. Othe r versions of PALcode 
can be developed for real- t ime, teaching, and other applications. 

PALcode makes Alpha an especially a t t ract ive archi tecture for mult iple operat ing 
systems. 

Alpha and Programming Languages 

Alpha is an a t t ract ive archi tecture for compiling a large var iety of programming 
languages . Alpha h a s been carefully designed to avoid bias toward one or two 
programming languages. For example: 

• Alpha does not contain a subrout ine call instruct ion t h a t moves a regis ter window 
by a fixed amount . Thus , Alpha is a good ma tch for p rogramming languages wi th 
m a n y pa rame te r s and programming languages wi th no pa ramete r s . 

• Alpha does not contain a global in teger overflow enable bit. Such a bit would 
need to be changed a t every subrout ine boundary when a FORTRAN program 
calls a C program. 

1.2 Data Format Overview 

Alpha is a load/store RISC archi tecture wi th the following da t a characterist ics: 

• All operat ions a re done between 64-bit regis ters . 

• Memory is accessed via 64-bit v i r tua l l i t t le-endian byte addresses . 

• There a re 32 integer regis ters and 32 floating-point registers . 

• Longword (32-bit) and quadword (64-bit) integers a re supported. 
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• Four floating-point da t a types are supported: 

— VAX F l o a t i n g (32-bit) 

— VAX G_floating (64-bit) 

— IEEE single (32-bit) 

— IEEE double (64-bit) 

1.3 Instruction Format Overview 

As shown in Figure 1 -1 , Alpha instruct ions a re all 32 bi ts in length. As represented 
in Figure 1 -1 , there are four major instruct ion format classes t h a t contain 0, 1, 2, 
or 3 register fields. All formats have a 6-bit opcode. 

Figure 1-1 : Instruction Format Overview 

31 26 25 21 20 16 15 5 4 0 

Opcode Number PALcode Format 

Opcode RA Disp Branch Format 

Opcode RA RB Disp Memory Format 

Opcode RA RB Function RC Operate Format 

• PALcode i n s t r u c t i o n s specify, in the function code field, one of a few dozen 
complex operations to be performed. 

• C o n d i t i o n a l b r a n c h i n s t r u c t i o n s t es t register Ra and specify a signed 21 -
bit PC-relative longword ta rge t displacement. Subrout ine calls pu t the r e tu rn 
address in register Ra. 

• L o a d a n d s t o r e i n s t r u c t i o n s move longwords or quadwords between register 
Ra and memory, us ing Ra plus a signed 16-bit displacement as the memory 
address . 

• O p e r a t e i n s t r u c t i o n s for floating-point and integer operat ions a re both 
represented in Figure 1-1 by the operate format i l lustrat ion and a re as follows: 

— Floating-point operations use Ra and Rb as source registers , and wri te t he 
resul t in register Rc. There is an 11-bit extended opcode in the function field. 

— Integer operations use Ra and Rb or an 8-bit l i teral as t he source operand, 
and wri te the resul t in register Rc. 

Integer operate instruct ions can use t he Rb field and pa r t of t he function field 
to specify an 8-bit l i teral. There is a 7-bit extended opcode in the function 
field. 
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1.4 Instruction Overview 

PALcode Instructions 

As described above, a Privileged Archi tecture Library (PALcode) is a set of 
subrout ines t h a t is specific to a par t icu lar Alpha operat ing-system implementat ion. 
These subrout ines can be invoked by ha rdware or by software CALL_PAL 
instruct ions, which use t he function field to vector to the specified subrout ine. 

Branch Instructions 

Conditional b ranch instruct ions can tes t a regis ter for positive/negative or for zero 
/nonzero. They can also tes t in teger regis ters for even/odd. 

Uncondit ional b ranch instruct ions can wri te a r e t u r n address into a register. 

There is also a calculated j u m p instruct ion t h a t b ranches to an a rb i t ra ry 64-bit 
address in a register. 

Load/Store Instructions 

Load and store instruct ions move e i ther 32-bit or 64-bit aligned quant i t ies from 
and to memory. Memory addresses a re flat 64-bit v i r tua l addresses , wi th no 
segmentat ion. 

The VAX floating-point load/store ins t ruct ions swap words to give a consistent 
regis ter format for floating-point operat ions. 

A 32-bit in teger d a t u m is placed in a regis ter in a canonical form t h a t makes 33 copies 
of t he high bit of the da tum. A 32-bit floating-point d a t u m is placed in a register in 
a canonical form t h a t extends the exponent by 3 bi ts and extends the fraction with 
29 low-order zeros. The 32-bit operates preserve these canonical forms. 

There a re facilities for doing byte manipula t ion in registers , e l iminat ing t he need 
for 8-bit or 16-bit load/store instruct ions. 

Compilers, as directed by use r declarat ions, can genera te any mix ture of 32-bit and 
64-bit operations. The Alpha archi tecture h a s no 32/64 mode bit. 

Integer Operate Instructions 

The integer operate instruct ions man ipu la te full 64-bit values, and include the usua l 
assor tment of ar i thmet ic , compare, logical, and shift instruct ions. 

There a re j u s t th ree 32-bit integer operates : add, subtract , and multiply. They 
differ from the i r 64-bit counterpar t s only in overflow detection and in producing 
32-bit canonical resul ts . 

There is no integer divide instruct ion. 

The Alpha archi tecture also suppor ts the following addit ional operations: 

• Scaled add/subtract ins t ruct ions for quick subscript calculation 

• 128-bit mult iply for division by a constant , and multiprecision ar i thmet ic 

• Conditional move ins t ruct ions for avoiding branch instruct ions 
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• An extensive set of in-register byte and word manipula t ion instruct ions 

Integer overflow t r a p enable is encoded in the function field of each instruction, 
r a the r t h a n kept in a global s ta te bit. Thus , for example, both ADDQ/V and ADDQ 
opcodes exist for specifying 64-bit ADD with and wi thout overflow checking. Tha t 
makes it easier to pipeline implementat ions . 

Floating-Point Operate Instructions 
The floating-point operate instruct ions include four complete sets of VAX and 
IEEE ar i thmet ic instruct ions, plus instruct ions for performing conversions between 
floating-point and integer quant i t ies . 

In addition to the operations found in conventional RISC archi tectures , Alpha 
includes conditional move instruct ions for avoiding branches and merge sign 
/exponent instruct ions for simple field manipulat ion. 

The ar i thmet ic t r a p enables and rounding mode are encoded in the function field 
of each instruction, r a the r then kept in global s ta te bi ts . Tha t makes it easier to 
pipeline implementat ions . 

1.5 Instruction Set Characteristics 

Alpha instruction set characterist ics a re as follows: 

• All instruct ions are 32 bits long and have a regular format. 

• There are 32 integer registers (RO through R31), each 64 bi ts wide. R31 reads 
as zero, and wri tes to R31 are ignored. 

• There are 32 floating-point registers (FO through F31), each 64 bi ts wide. F31 
reads as zero, and wri tes to F31 are ignored. 

• All integer da ta manipula t ion is between integer regis ters , wi th up to two 
variable register source operands (one may be an 8-bit l i teral), and one register 
dest inat ion operand. 

• All floating-point da ta manipula t ion is between floating-point registers , wi th up 
to two register source operands and one register dest inat ion operand. 

• All memory reference instruct ions are of the load/store type t h a t move da t a 
between registers and memory. 

• There are no branch condition codes. Branch instruct ions tes t an integer or 
floating-point register value, which may be the resul t of a previous compare. 

• Integer and logical instruct ions operate on quadwords. 

• Floating-point instruct ions operate on G_floating, F_floating, IEEE double, and 
IEEE single operands. D_floating "format compatibility, ,, in which b inary files 
of D_floating numbers may be processed, bu t wi thout the las t 3 bi ts of fraction 
precision, is also provided. 

• A minimal number of VAX compatibility instruct ions are included. 
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1.6 Terminology and Conventions 

The following sections describe t he terminology and conventions used in th i s book. 

1.6.1 Numbering 

All number s a re decimal unless otherwise indicated. Where the re is ambiguity, 
number s o ther t h a n decimal a re indicated wi th t he n a m e of t he base in subscript 
form, for example, 1 0 i 6. 

1.6.2 Security Holes 

A security hole is an error of commission, omission, or oversight in a system t h a t 
allows protection mechanisms to be bypassed. 

Security holes exist when unprivileged software ( tha t is, software runn ing outside 
of kernel mode) can: 

• Affect t he operation of ano ther process wi thout author izat ion from the operat ing 
system; 

• Amplify i ts privilege wi thout author izat ion from the operat ing system; or 

• Communicate wi th ano ther process, e i ther overtly or covertly, without 
authorizat ion from the operat ing system. 

The Alpha archi tecture h a s been designed to contain no archi tectural security holes. 
H a r d w a r e (processors, buses , controllers, and so on) and software should likewise 
be designed to avoid security holes. 

1.6.3 UNPREDICTABLE and UNDEFINED 

The t e rms UNPREDICTABLE a n d U N D E F I N E D are used th roughout th i s book. 
Their meanings a re quite different and m u s t be carefully dist inguished. 

In part icular , only privileged software (software runn ing in kernel mode) can tr igger 
U N D E F I N E D operations. Unprivileged software cannot t r igger U N D E F I N E D 
operations. However, e i ther privileged or unprivileged software can tr igger 
UNPREDICTABLE resu l t s or occurences. 

UNPREDICTABLE resul t s or occurences do not d is rupt the basic operat ion of the 
processor; i t continues to execute instruct ions in i ts normal manner . In contrast , 
U N D E F I N E D operation can ha l t t he processor or cause it to lose information. 

The t e rms UNPREDICTABLE and U N D E F I N E D can be fur ther described as follows: 

UNPREDICTABLE 

• Resul ts or occurrences specified as UNPREDICTABLE m a y vary from moment 
to moment , implementa t ion to implementat ion, and instruct ion to instruction 
wi thin implementat ions . Software can never depend on resul ts specified as 
UNPREDICTABLE. 

• An UNPREDICTABLE resul t m a y acquire an a rb i t ra ry value subject to a few 
constra ints . Such a resu l t may be an a rb i t ra ry function of t he inpu t operands 
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or of any s ta te information t h a t is accessible to the process in i ts cur ren t access 
mode. UNPREDICTABLE resul ts may be unchanged from thei r previous values. 

Operat ions t h a t produce UNPREDICTABLE resul ts may also produce exceptions. 

• An occurrence specified as UNPREDICTABLE may happen or not based on an 
arb i t ra ry choice function. The choice function is subject to the same constra ints 
as are UNPREDICTABLE resul ts and, in part icular, m u s t not const i tute a 
security hole. 

Specifically, UNPREDICTABLE resul ts m u s t not depend upon, or be a function 
of, t he contents of memory locations or regis ters which are inaccessible to the 
cur ren t process in the cur ren t access mode. 

Also, operations t h a t may produce UNPREDICTABLE resul ts m u s t not: 

- Write or modify the contents of memory locations or registers to which the 
cur ren t process in t he cur ren t access mode does not have access, or 

- Hal t or h a n g the system or any of i ts components. 

For example, a security hole would exist if some UNPREDICTABLE resul t 
depended on the value of a register in another process, on t he contents of 
processor temporary registers left behind by some previously runn ing process, 
or on a sequence of actions of different processes. 

UNDEFINED 

• Operat ions specified as U N D E F I N E D may vary from moment to moment , 
implementat ion to implementat ion, and instruct ion to instruct ion within 
implementat ions . The operation may vary in effect from nothing, to stopping 
system operation. 

• U N D E F I N E D operations may ha l t t he processor or cause it to lose information. 
However, U N D E F I N E D operations m u s t not cause the processor to hang , t h a t 
is, reach an unha l t ed s ta te from which the re is no t rans i t ion to a normal s ta te 
in which t h e machine executes instruct ions. 

1.6.4 Ranges and Extents 

Ranges are specified by a pai r of numbers separa ted by a and are inclusive. For 
example, a range of integers 0..4 includes the integers 0 , 1 , 2, 3, and 4. 

Ex ten t s a re specified by a pai r of numbers in angle brackets separa ted by a colon 
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7, 
6, 5, 4, and 3. 

1.6.5 ALIGNED and UNALIGNED 

In this document the t e rms ALIGNED and NATURALLY ALIGNED are used 
interchangeably to refer to da t a objects t h a t a re powers of two in size. An aligned 
d a t u m of size 2**N is stored in memory a t a byte address t h a t is a mult iple of 2**N, 
t h a t is, one t h a t h a s Ν low-order zeros. Thus , an aligned 64-byte s tack frame h a s a 
memory address t h a t is a mult iple of 64. 
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If a d a t u m of size 2**N is stored a t a byte address t h a t is not a mult iple of 2**N, it 
is called UNALIGNED. 

1.6.6 Must Be Zero (MBZ) 

Fields specified as Mus t be Zero (MBZ) m u s t never be filled by software wi th a non-
zero value. These fields m a y be used a t some future t ime. If t he processor encounters 
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs. 

1.6.7 Read As Zero (RAZ) 

Fields specified as Read as Zero (RAZ) r e t u r n a zero when read. 

1.6.8 Should Be Zero (SBZ) 

Fields specified as Should be Zero (SBZ) should be filled by software wi th a zero 
value. Non-zero values in SBZ fields produce UNPREDICTABLE resul t s and may 
produce ext raneous instruct ion-issue delays. 

1.6.9 Ignore (IGN) 

Fields specified as Ignore (IGN) are ignored when wri t ten . 

1.6.10 Implementation Dependent (IMP) 

Fields specified as Implementa t ion Dependent (IMP) m a y be used for implementat ion-
specific purposes. Each implementa t ion m u s t document fully t he behavior of all 
fields marked as IMP by the Alpha specification. 

1.6.11 Figure Drawing Conventions 

Figures t h a t depict regis ters or memory follow the convention t h a t increasing 
addresses r u n r ight to left and top to bottom. 

1.6.12 Macro Code Example Conventions 

All instruct ions in macro code examples a re e i ther listed in Chap te r 4 or OpenVMS 
Section, Chapter 2, or a re stylized code forms found in Appendix A. 
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Chapter 2 

Basic Architecture (I) 

2.1 Addressing 

The basic addressable un i t in Alpha is t he 8-bit byte. Vir tual addresses a re 64 
bi ts long. An implementa t ion m a y support a smal ler v i r tual address space. The 
min imum vir tual address size is 43 bi ts . 

Vir tual addresses as seen by the program are t r ans la ted into physical memory 
addresses by the memory m a n a g e m e n t mechanism. 

2.2 Data Types 

Following are descriptions of t he Alpha archi tecture da t a types. 

2.2.1 Byte 

A byte is 8 contiguous bi ts s t a r t ing on an addressable byte boundary. The bits a re 
numbered from right to left, 0 th rough 7, as shown in Figure 2 - 1 . 

Figure 2-1 : Byte Format 

7 0 

:A 

A byte is specified by i ts address A. A byte is an 8-bit value. The byte is only 
supported in Alpha by the extract , mask , inser t , and zap instruct ions. 

2.2.2 Word 

A word is 2 contiguous bytes s t a r t ing on an a rb i t ra ry byte boundary. The bi ts a re 
numbered from r ight to left, 0 th rough 15, as shown in Figure 2 -2 . 
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Figure 2-2: Word Format 

15 0 

:A 

A word is specified by its address , the address of the byte containing bit 0. 

A word is a 16-bit value. The word is only supported in Alpha by the extract , mask, 
and inser t instruct ions. 

2.2.3 Longword 

A longword is 4 contiguous bytes s ta r t ing on an a rb i t ra ry byte boundary. The bits 
are numbered from r ight to left, 0 through 31 , as shown in Figure 2 - 3 . 

Figure 2-3: Longword Format 

31 0 

:A 

A longword is specified by its address A, the address of the byte containing bit 0. A 
longword is a 32-bit value. 

When interpreted arithmetically, a longword is a two's-complement integer with bi ts 
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword 
is only supported in Alpha by sign-extended load and store instruct ions and by 
longword ar i thmet ic instruct ions. 

NOTE 
Alpha implementat ions will impose a significant 
performance penal ty when accessing longword operands 
t h a t are not na tura l ly aligned. (A na tura l ly aligned 
longword h a s zero as the low-order two bi ts of i ts 
address.) 

2.2.4 Quadword 

A quadword is 8 contiguous bytes s ta r t ing on an arb i t ra ry byte boundary. The bits 
are numbered from r ight to left, 0 through 63, as shown in Figure 2-4 . 
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Figure 2-4: Quadword Format 

:A 

A quadword is specified by its address A, the address of the byte containing bit 0. A 
quadword is a 64-bit value. When in terpre ted arithmetically, a quadword is e i ther 
a two's-complement integer with bi ts of increasing significance from 0 through 62 
and bit 63 as the sign bit, or an unsigned integer wi th bi ts of increasing significance 
from 0 th rough 63. 

NOTE 
Alpha implementa t ions will impose a significant perfor-
mance penal ty when accessing quadword operands t h a t 
a re not na tura l ly aligned. (A na tura l ly aligned quad-
word has zero as t he low-order th ree bi ts of i ts address.) 

2.2.5 VAX Floating-Point Formats 

VAX floating-point number s are stored in one set of formats in memory and in a 
second set of formats in registers . The floating-point load and store instruct ions 
convert between these formats purely by rea r rang ing bits; no rounding or range-
checking is done by the load and store instruct ions. 

2.2.5.1 FJIoating 

An F J I o a t i n g d a t u m is 4 contiguous bytes in memory s ta r t ing on an arb i t ra ry 
byte boundary. The bits are labeled from r ight to left, 0 th rough 3 1 , as shown 
in Figure 2 - 5 . 

Figure 2-5: FJIoating Datum 

1514 7 6 0 

S Exp. Frac. Hi 

Fraction Lo 

An F J I o a t i n g operand occupies 64 bi ts in a floating register, left-justified in the 
64-bit register, as shown in Figure 2 -6 . 
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Figure 2-6: FJIoating Register Format 

63 62 52 51 45 44 29 28 0 

S Exp. Frac. Hi Fraction Lo 0 

The F_floating load instruct ion reorders bi ts on t he way in from memory, expands the 
exponent from 8 to 11 bits , and sets the low-order fraction bits to zero. This produces 
in the register an equivalent G J l o a t i n g number sui table for e i ther F J I o a t i n g or G_ 
floating operations. The mapping from 8-bit memory-format exponents to 11-bit 
register-format exponents is shown in Table 2 - 1 . 

Table 2-1 : FJIoating Load Exponent Mapping 
Memory <14:7> Register <62:52> 

1 1111111 1 000 1111111 

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's) 

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's) 

0 0000000 0 000 0000000 

This mapping preserves both normal values and exceptional values . 

The F J I o a t i n g store instruct ion reorders register bi ts on the way to memory and 
does no checking of the low-order fraction bits . Register bi ts <61:59> and <28:0> are 
ignored by the store instruction. 

An F J I o a t i n g d a t u m is specified by i ts address A, the address of the byte containing 
bit 0. The memory form of an F J I o a t i n g d a t u m is sign magni tude wi th bit 15 the 
sign bit, bits <14:7> an excess-128 binary exponent, and bi ts <6:0> and <31:16> 
a normalized 24-bit fraction with the r edundan t most significant fraction bit not 
represented. Within t he fraction, bi ts of increasing significance are from 16 th rough 
31 and 0 th rough 6. The 8-bit exponent field encodes the values 0 th rough 255. 
An exponent value of 0, together wi th a sign bi t of 0, is t aken to indicate t h a t the 
F J I o a t i n g d a t u m h a s a value of 0. 

If the resul t of a VAX floating-point format instruct ion h a s a value of zero, the 
instruct ion always produces a d a t u m with a sign bit of 0, an exponent of 0, and 
all fraction bits of 0. Exponent values of 1..255 indicate t rue b inary exponents 
of -127. .127. An exponent value of 0, together with a sign bi t of 1, is t a k e n as a 
reserved operand. Floating-point instruct ions processing a reserved operand t ake an 
ar i thmet ic exception. The value of an F J I o a t i n g d a t u m is in the approximate range 
0.29*10**-38..1.7*10**38. The precision of an F J I o a t i n g d a t u m is approximately 
one pa r t in 2**23, typically 7 decimal digits. 
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NOTE 
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing F J I o a t i n g operands 
t h a t a re not na tu ra l ly aligned. (A na tura l ly aligned F_ 
floating d a t u m h a s zero as t he low-order two bi ts of i ts 
address.) 

2.2.5.2 GJloating 

A G J l o a t i n g d a t u m in memory is 8 contiguous bytes s ta r t ing on an a rb i t ra ry byte 
boundary. The bi ts a re labeled from r ight to left, 0 th rough 63, as shown in 
Figure 2 -7 . 

Figure 2-7: GJloating Datum 

Exp. Frac.Hi 

Fraction Midh 

Fraction Midi 

Fraction Lo 

:A 

:A+2 

:A+4 

:A+6 

A G J l o a t i n g operand occupies 64 bi ts in a floating register, a r ranged as shown in 
Figure 2 - 8 . 

Figure 2-6: GJloating Format 

63 62 52 51 48 47 32 31 16 15 0 

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo 

A G J l o a t i n g d a t u m is specified by i ts address A, t he address of t he byte containing 
bit 0. The form of a G J l o a t i n g d a t u m is sign magni tude wi th bit 15 t he sign bit, bi ts 
<14:4> a n excess-1024 binary exponent, and bi ts <3:0> and <63:16> a normalized 53-
bit fraction wi th the r edundan t most significant fraction bit not represented. Within 
t he fraction, bi ts of increasing significance a re from 48 th rough 63, 32 th rough 4 7 , 1 6 
th rough 3 1 , and 0 th rough 3. The 11-bit exponent field encodes the values 0 th rough 
2047. An exponent value of 0, together wi th a sign bit of 0, is t a k e n to indicate t h a t 
the G J l o a t i n g d a t u m h a s a value of 0. 

If t he resul t of a floating-point ins t ruct ion h a s a value of zero, the instruct ion 
always produces a d a t u m wi th a sign bit of 0, a n exponent of 0, and all 
fraction bi ts of 0. Exponent values of 1..2047 indicate t rue b inary exponents of 
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-1023. .1023. An exponent value of 0, together wi th a sign bi t of 1, is t a k e n as a 
reserved operand. Floating-point instruct ions processing a reserved operand t ake 
a user-visible ar i thmet ic exception. The value of a G J l o a t i n g d a t u m is in the 
approximate range 0.56*10**-308..0.9*10**308. The precision of a G J l o a t i n g d a tu m 
is approximately one pa r t in 2**52, typically 15 decimal digits. 

NOTE 
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing G_floating operands 
t h a t a re not na tura l ly aligned. (A na tura l ly aligned G_ 
floating d a t u m h a s zero as the low-order th ree bi ts of i ts 
address.) 

2.2.5.3 DJIoating 

A D_floating da tum in memory is 8 contiguous bytes s t a r t ing on an a rb i t ra ry byte 
boundary. The bits are labeled from r ight to left, 0 th rough 63 , as shown in 
Figure 2 -9 . 

Figure 2-9: DJIoating Datum 

Exp. Frac. Hi 

Fraction Midh 

Fraction Midi 

Fraction Lo 

:A 

:A+2 

:A+4 

:A+6 

A D J I o a t i n g operand occupies 64 bi ts in a floating register, a r ranged as shown in 
Figure 2-10 . 

Figure 2-10: DJIoating Register Format 

63 62 55 54 48 47 32 31 16 15 0 

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo 

The reordering of bi ts required for a D J I o a t i n g load or store are identical to those 
required for a G J l o a t i n g load or store. The G J l o a t i n g load and store instruct ions 
are therefore used for loading or s toring D J I o a t i n g da ta . 

A D J I o a t i n g d a t u m is specified by its address A, the address of the byte containing 
bit 0. The memory form of a D J I o a t i n g d a t u m is identical to an F J I o a t i n g d a t u m 
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except for 32 addit ional low significance fraction bits . Within the fraction, bi ts of 
increasing significance are from 48 th rough 63 , 32 th rough 4 7 , 1 6 th rough 31 , and 0 
th rough 6. The exponent conventions and approximate range of values is t he same 
for D J I o a t i n g as FJ Ioa t i ng . The precision of a D J I o a t i n g d a t u m is approximately 
one p a r t in 2**55, typically 16 decimal digits. 

NOTE 
D J I o a t i n g is not a fully supported da t a type; no 
D J I o a t i n g ar i thmet ic operat ions are provided in t he 
archi tecture. For backward compatibility, exact D_ 
floating ar i thmet ic m a y be provided via software 
emulat ion. D J I o a t i n g "format compatibility' ' in which 
b inary files of D J I o a t i n g number s m a y be processed, 
bu t wi thout the las t 3 bi ts of fraction precision, can 
be obtained via conversions to GJ loa t ing , G ar i thmet ic 
operat ions, t hen conversion back to DJIoa t ing . 

NOTE 
Alpha implementa t ions will impose a significant 
performance penal ty on access to D J I o a t i n g operands 
t h a t a re not na tura l ly aligned. (A na tura l ly aligned D_ 
floating d a t u m h a s zero as t he low-order th ree bi ts of i ts 
address.) 

2.2.6 IEEE Floating-Point Formats 

The IEEE s t anda rd for b inary floating-point ar i thmet ic , ANSI/ IEEE 754-1985, 
defines four floating-point formats in two groups, basic and extended, each having 
two widths , single and double. The Alpha archi tecture suppor ts t he basic single 
and double formats, with t he basic double format serving as t he extended single 
format. The values representable wi th in a format a re specified by us ing th ree integer 
pa ramete r s : 

1. Ρ—the n u m b e r of fraction bits 

2. Emax—the m a x i m u m exponent 

3. Emin—the m i n i m u m exponent 

Within each format, only the following ent i t ies a re permit ted: 

1. Numbers of t he form (-1)**S χ 2**E χ b(0).b(l)b(2). .b(P-l) where: 

a. S = 0 or 1 

b. Ε = any integer between Emin and Emax, inclusive 

c. b(n) = 0 or 1 

2. Two infinities—positive and negat ive 
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3. At leas t one Signaling N a N 

4. At least one Quiet N a N 

N a N is an acronym for Not-a-Number. A N a N is an IEEE floating-point bit 
pa t t e rn t h a t represents something other t h a n a number . NaNs come in two forms: 
Signaling NaNs and Quiet NaNs . Signaling N a N s are used to provide values 
for uninit ial ized variables and for ar i thmet ic enhancements . Quiet NaNs provide 
retrospective diagnostic information regarding previous invalid or unavai lable da t a 
and resul ts . Signaling N a N s signal a n invalid operat ion when they are an operand 
to an ar i thmet ic instruction, and may genera te an ar i thmet ic exception. Quiet 
NaNs propagate th rough almost every operation wi thout genera t ing an ar i thmet ic 
exception. 

Ari thmetic with the infinities is handled as if t he operands were of arbi t rar i ly large 
magni tude . Negative infinity is less t h a n every finite number ; positive infinity is 
grea ter t h a n every finite number. 

2.2.6.1 S_Floating 

An IEEE single-precision, or S_floating, d a t u m occupies 4 contiguous bytes in 
memory s ta r t ing on an a rb i t ra ry byte boundary. The bi ts a re labeled from r ight 
to left, 0 through 31 , as shown in Figure 2 - 1 1 . 

Figure 2 -11: S_floafing Datum 

15 14 7 6 0 

Fraction Lo 

S Exp. Frac. Hi 

An S_floating operand occupies 64 bits in a floating register, left-justified in t he 
64-bit register, as shown in Figure 2-12 . 

Figure 2-12: SJIoating Register Format 

63 62 52 51 45 44 29 28 0 

S Exp. Frac. Hi Fraction Lo 0 

The S_floating load instruct ion reorders bi ts on the way in from memory, expanding 
the exponent from 8 to 11 bits , and sets the low-order fraction bi ts to zero. This 
produces in the register an equivalent T_floating number, sui table for e i ther S_ 
floating or T_floating operations. The mapping from 8-bit memory-format exponents 
to 11-bit register-format exponents is shown in Table 2 -2 . 
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Table 2-2: SJIoating Load Exponent Mapping 
Memory <30:23> Register <62:52> 

1 1111111 1 111 1111111 

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's) 

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's) 

0 0000000 0 000 0000000 

This mapping preserves both normal values and exceptional values. Note t h a t the 
mapp ing for all l ' s differs from t h a t of F_floating load, since for S_fioating all l ' s is 
an exceptional value and for F_floating all l ' s is a normal value. 

The S_floating store instruct ion reorders register bi ts on t he way to memory and 
does no checking of the low-order fraction bits . Register bi ts <61:59> and <28:0> are 
ignored by the store instruction. The S_floating load instruct ion does no checking of 
the input . 

The S_floating store instruct ion does no checking of the data ; the preceding operation 
should have specified an S_floating resul t . 

An S_floating d a t u m is specified by i ts address A, the address of t h e byte containing 
bit 0. The memory form of an S_floating d a t u m is sign magni tude with bit 31 the sign 
bit, bi ts <30:23> an excess-127 b inary exponent, and bits <22:0> a 23-bit fraction. 

The value (V) of an S_floating number is inferred from its const i tuent sign (S), 
exponent (E), and fraction (F) fields as follows: 

1. If E=255 and F o O , t hen V is NaN, regardless of S. 

2. If E=255 and F=0, t hen V = (-1)**S χ Infinity. 

3. If 0 < Ε < 255, then V = (-1)**S χ 2**(E-127) χ ( l .F) . 

4. If E=0 and F o O , then V = (-1)**S χ 2**(-126) χ (0.F). 

5. If E=0 and F=0, then V = (-1)**S χ 0 (zero). 

Floating-point operat ions on S_floating numbers may t ake an ar i thmet ic exception 
for a var iety of reasons , including invalid operations, overflow, underflow, division 
by zero, and inexact resul ts . 

Alpha implementa t ions will impose a significant per-
formance penal ty when accessing S_floating operands 
t h a t a re not na tura l ly aligned. (A na tura l ly aligned S_ 
floating da tum h a s zero as the low-order two bits of i ts 
address.) 

NOTE 
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2.2.6.2 TJIoating 

An IEEE double-precision, or TJ Ioa t ing , d a t u m occupies 8 contiguous bytes in 
memory s ta r t ing on an arb i t ra ry byte boundary. The bi ts a re labeled from r ight 
to left, 0 th rough 63, as shown in Figure 2 -13 . 

Figure 2-13: TJIoating Datum 

4 3 

Fraction Lo 

Fraction Midi 

Fraction Midh 

Exponent Frac.Hi 

:A 

:A+2 

:A+4 

:A+6 

A T_floating operand occupies 64 bits in a floating register, a r ranged as shown in 
Figure 2-14. 

Figure 2-14: TJIoating Register Format 

63 62 52 51 48 47 32 31 16 15 0 

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo 

The T_floating load instruct ion performs no bit reorder ing on input , nor does it 
perform checking of the inpu t da ta . 

The T_floating store instruct ion performs no bit reorder ing on output . This 
instruct ion does no checking of the da ta ; the preceding operation should have 
specified a T_floating resul t . 

A T_floating d a t u m is specified by its address A, the address of the byte containing 
bit 0. The form of a T_floating d a t u m is sign magni tude wi th bit 63 the sign bit, bits 
<62:52> an excess-1023 b inary exponent, and bits <51:0> a 52-bit fraction. 

The value (V) of a T J I o a t i n g number is inferred from its const i tuent sign (S), 
exponent (E), and fraction (F) fields as follows: 

1. If E=2047 and F o O , then V is NaN, regardless of S. 

2. If E=2047 and F=0, t hen V = (-1)**S χ Infinity. 

3. If 0 < Ε < 2047, t hen V = (-1)**S χ 2**(E-1023) χ ( l .F) . 

4. If E=0 and F o O , t hen V = (-1)**S χ 2**(-1022) χ (0.F). 
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5. If E=0 and F=0, t hen V = (-1)**S χ 0 (zero). 

Floating-point operat ions on T_floating number s m a y t ake an ar i thmet ic exception 
for a var iety of reasons, including invalid operat ions, overflow, underflow, division 
by zero, and inexact resul ts . 

NOTE 
Alpha implementa t ions will impose a significant per-
formance penal ty when accessing T__floating operands 
t h a t a re not na tu ra l ly aligned. (A na tura l ly aligned T_ 
floating d a t u m h a s zero as t he low-order th ree bi ts of i ts 
address.) 

2.2.7 Longword Integer Format In Floating-Point Unit 

A longword integer operand occupies 32 bi ts in memory, a r ranged as shown in 
Figure 2 -15 . 

Figure 2-15: Longword Integer Datum 

Integer Lo 

Integer Hi 

:A 

:A+2 

A longword integer operand occupies 64 bi ts in a floating register, a r ranged as shown 
in Figure 2-16 . 

Figure 2-16: Longword Integer Floating-Register Format 

63 62 61 59 58 

Integer Hi Integer Lo :Fx 

There is no explicit longword load or store instruction; the S_floating load/store 
instruct ions a re used to move longword da t a into or out of t he floating registers . 
The register bi ts <61:59> are set by t he S_floating load exponent mapping. They are 
ignored by S_floating store. They are also ignored in operands of a longword integer 
operate instruct ion, and they a re set to 000 in t he resu l t of a longword operate 
instruction. 

The register format bit <62>, " P , in Figure 2 -16 is pa r t of t he Integer Hi field 
in Figure 2 -15 and represen ts the high-order bit of t h a t field. Bits <58:45> of 
Figure 2 -16 a re t h e remain ing bi ts of the In teger Hi field of Figure 2 -15 . 
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NOTE 
Alpha implementa t ions will impose a significant 
performance penal ty when accessing longwords t h a t a re 
not na tura l ly aligned. (A na tura l ly aligned longword 
d a t u m has zero as the low-order two bits of i ts address.) 

2.2.8 Quadword Integer Format In Floating-Point Unit 

A quadword integer operand occupies 64 bi ts in memory, a r ranged as shown in 
Figure 2 -17 . 

Figure 2-17: Quadword Integer Datum 

Integer Lo 

Integer Midi 

Integer Midh 

Integer Hi 

:A 

:A+2 

:A+4 

:A+6 

A quadword integer operand occupies 64 bits in a floating register, a r ranged as 
shown in Figure 2 -18 . 

Figure 2-18: Quadword Integer Floating-Register Format 

63 62 48 47 32 31 16 15 0 

S Integer Hi Integer Midh Integer Midi Integer Lo 

There is no explicit quadword load or store instruction; the T_floating load/store 
instruct ions are used to move quadword da t a into or out of the floating registers. 

The T_floating load instruct ion performs no bit reorder ing on input . The T J I o a t i n g 
store instruction performs no bit reorder ing on output . This instruct ion does no 
checking of the da ta ; when used to store quadwords, the preceding operation should 
have specified a quadword result . 

NOTE 
Alpha implementat ions will impose a significant 
performance penal ty when accessing quadwords t h a t 
a re not na tura l ly aligned. (A na tura l ly aligned 
quadword d a t u m has zero as the low-order th ree bi ts 
of its address.) 
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2.2.9 Data Types with No Hardware Support 

The following VAX da t a types a re not directly supported in Alpha ha rdware . 

• Octaword 

• H_floating 

• D_floating (except load/store and convert to/from G_floating) 

• Variable-Length Bit Field 

• Charac te r S t r ing 

• Trail ing Numeric St r ing 

• Leading Separa te Numeric St r ing 

• Packed Decimal St r ing 
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Chapter 3 

Instruction Formats (I) 

3.1 Alpha Registers 

Each Alpha processor h a s a set of regis ters t h a t hold the cur ren t processor s ta te . 
If a n Alpha system contains mult iple Alpha processors, t he re a re mult iple per-
processor sets of these regis ters . 

3.1.1 Program Counter 

The Program Counter (PC) is a special regis ter t h a t addresses t h e instruct ion s t ream. 
As each instruct ion is decoded, the PC is advanced to the next sequent ia l instruction. 
This is referred to as t he updated PC. Any instruct ion t h a t uses t h e value of the PC 
will use t he upda ted PC. The PC includes only bi ts <63:2> with bi ts <1:0> t rea ted as 
RAZ/IGN. This quant i ty is a longword-aligned byte address . The PC is an implied 
operand on conditional b ranch and subrout ine j u m p instruct ions. The PC is not 
accessible as an integer register. 

3.1.2 Integer Registers 

There a re 32 integer regis ters (RO th rough R31), each 64 bits wide. 

Register R31 is assigned special mean ing by the Alpha archi tecture . When R31 is 
specified as a regis ter source operand, a zero-valued operand is supplied. 

For all cases except the Uncondit ional Branch and J u m p instruct ions, resul ts of 
a n instruct ion t h a t specifies R31 as a dest inat ion operand are discarded. Also, 
it is UNPREDICTABLE whe the r the other dest inat ion operands (implicit and 
explicit) a re changed by the instruct ion. I t is implementa t ion dependent to w h a t 
extent t he instruct ion is actually executed once it h a s been fetched. I t is also 
UNPREDICTABLE whe ther exceptions a re signaled dur ing the execution of such 
an instruct ion. Note, however, t h a t exceptions associated wi th the instruct ion fetch 
of such an instruct ion a re always signaled. 

There a re some in teres t ing cases involving R31 as a dest inat ion: 

• STx_C R31,disp(Rb) 

Although th i s might seem like a good way to zero out a shared location and reset 
t he lock_flag, th is ins t ruct ion causes t he lock_flag and v i r tua l location {Rbv + 
SEXT(disp)} to become UNPREDICTABLE. 

• LDxJL R31,disp(Rb) 

This instruct ion produces no useful resul t since it causes both lock_flag and 
locked_physical_address to become UNPREDICTABLE. 
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Unconditional Branch (BR and BSR) and J u m p (JMP, JSR, RET, and JSR_ 
COROUTINE) instruct ions, when R31 is specified as the Ra operand, execute 
normally and upda te the PC with the t a rge t v i r tual address . Of course, no PC 
value can be saved in R31 . 

3.1.3 Floating-Point Registers 

There are 32 floating-point registers (FO through F31), each 64 bits wide. 

When F31 is specified as a register source operand, a t rue zero-valued operand is 
supplied. See Section 4.7.2 for a definition of t rue zero. 

Resul ts of an instruct ion t h a t specifies F31 as a dest inat ion operand are discarded 
and it is UNPREDICTABLE whether the other dest inat ion operands (implicit and 
explicit) a re changed by the instruction. In th is case, it is implementat ion-dependent 
to wha t extent the instruct ion is actually executed once it ha s been fetched. I t is also 
UNPREDICTABLE whether exceptions are signaled dur ing the execution of such an 
instruction. Note, however, t h a t exceptions associated with the instruct ion fetch of 
such an instruct ion are always signaled. 

A floating-point instruct ion t h a t operates on single-precision da t a reads all bits 
<63:0> of the source floating-point register. A floating-point instruct ion t h a t 
produces a single-precision resul t wri tes all bits <63:0> of the dest inat ion floating-
point register. 

3.1.4 Lock Registers 

There a re two per-processor registers associated wi th the LDx__L and STx_C 
instruct ions, the lock_flag and the locked_physical_address register. The use of these 
registers is described in Section 4.2. 

3.1.5 Optional Registers 

Some Alpha implementa t ions may include optional memory prefetch or VAX 
compatibility processor registers . 

3.1.5.1 Memory Prefetch Registers 

If the prefetch instruct ions FETCH and FETCH_M are implemented, an 
implementat ion will include two sets of s ta te prefetch regis ters used by those 
instruct ions. The use of these registers is described in Section 4.11. These registers 
are not directly accessible by software and are listed for completeness. 

3.1.5.2 VAX Compatibility Register 

The VAX compatibility instruct ions RC and RS include the intr_flag register, as 
described in Section 4.12. 

3.2 Notation 

The notat ion used to describe the operation of each instruct ion is given as a sequence 
of control and ass ignment s t a t ements in an ALGOL-like syntax. 
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3.2.1 Operand Notation 

Tables 3 - 1 , 3-2 , and 3 -3 list t he notat ion for the operands , t he operand values, and 
the other expression operands. 

Table 3-1 : Operand Notation 
Notation Meaning 

Ra An integer register operand in the Ra field of the instruction. 

Rb An integer register operand in the Rb field of the instruction. 

#b An integer literal operand in the Rb field of the instruction. 

Rc An integer register operand in the Rc field of the instruction. 

Fa A floating-point register operand in the Ra field of the instruction. 

Fb A floating-point register operand in the Rb field of the instruction. 

Fc A floating-point register operand in the Rc field of the instruction. 

Table 3-2: Operand Value Notation 
Notation Meaning 

Rav The value of the Ra operand. This is the contents of register Ra. 

Rbv The value of the Rb operand. This could be the contents of register Rb, or a 
zero-extended 8-bit literal in the case of an Operate format instruction. 

Fav The value of the floating point Fa operand. This is the contents of register Fa. 

Fbv The value of the floating point Fb operand. This is the contents of register Fb. 

Table 3-3: Expression Operand Notation 
Notation Meaning 

IPR_x Contents of Internal Processor Register χ 

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode 

PC Updated PC value 

Rn Contents of integer register η 

Fn Contents of floating-point register η 

X[m] Element m of array X 
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3.2.2 Instruction Operand Notation 

The notat ion used to describe instruct ion operands follows from the operand specifier 
notat ion used in the VAX Architecture Standard. Ins t ruct ion operands are described 
as follows: 

<name>.<access typexdata type> 

<name> 
Specifies the instruct ion field (Ra, Rb, Rc, or disp) and register type of the operand 
(integer or floating). It can be one of the following: 

Name Meaning 

disp The displacement field of the instruction. 

fnc The PAL function field of the instruction. 

Ra An integer register operand in the Ra field of the instruction. 

Rb An integer register operand in the Rb field of the instruction. 

#b An integer l i teral operand in the Rb field of the instruction. 

Rc An integer register operand in the Rc field of the instruction. 

F a A floating-point register operand in the Ra field of the instruction. 

Fb A floating-point register operand in the Rb field of the instruction. 

Fc A floating-point register operand in the Rc field of the instruction. 

<access type> 
Is a le t ter denoting the operand access type: 

Access TVpe Meaning 

a The operand is used in an address calculation to form an effective 
address . The da ta type code t h a t follows indicates the un i t s of 
addressabil i ty (or scale factor) applied to th is operand when the 
instruct ion is decoded. 
For example: 
".al" means scale by 4 (longwords) to get byte un i t s (used in branch 
displacements); ".ab" m e a n s the operand is a lready in byte uni t s 
(used in load/store instructions). 

i The operand is an immedia te l i teral in the instruction. 

r The operand is read only. 

m The operand is both read and wri t ten. 
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Access Type Meaning 

<data type> 

Is a le t ter denoting the da t a type of t he operand: 

Data Type Meaning 

b Byte 

f F_floating 

g G_floating 

1 Longword 

q Quadword 

s IEEE single floating (S_floating) 

t IEEE double floating (T_floating) 

w Word 

χ The da t a type is specified by the instruct ion 

3.2.3 Operators 

The operators shown in Table 3 -4 a re used: 

Table 3-4: Operators 
Operator Meaning 

! Comment delimiter 

+ Addition 

Subtraction 

* Signed multiplication 

*U Unsigned multiplication 

** Exponentiation (left argument raised to right argument) 

/ Division 

Replacement 

I I Bit concatenation 

{) Indicates explicit operator precedence 

(x) Contents of memory location whose address is χ 

x<m:n> Contents of bit field of χ defined by bits η through m 

Instruction Formats (I) 3-5 

w The operand is wri te only. 



Table 3-4 (Cont.): Operators 
Opera to r Mean ing 

ACCESS(x,y) 

AND 

ARITH_RIGHT_SHIFT(x,y) 

BYTE_ZAP(x,y) 

CASE 

M'thbit of χ 

Accessibility of the location whose address is χ using the 
access mode y. Returns a Boolean value TRUE if the address 
is accessible, else FALSE. 

Logical product 

Arithmetic right shift of first operand by the second operand. 
Y is an unsigned shift value. Bit 63, the sign bit, is copied 
into vacated bit positions and shifted out bits are discarded. 

X is a quadword, y is an 8-bit vector in which each bit 
corresponds to a byte of the result. The y bit to χ byte 
correspondence is y<n> <-> x<8n+7:8n>. This correspondence 
also exists between y and the result. 
For each bit of y from η = 0 to 7, if y <n> is 0 then byte <n> 
of χ is copied to byte <n> of result, and if y <n> is 1 then byte 
<n> of result is forced to all zeros. 

The CASE construct selects one of several actions based on 
the value of its argument. The form of a case is: 

CASE argument OF 
argvaluel: actional 
argvalue2: action_2 

DIV 

LEFT_SHIFT(x,y) 

argvaluen: action__n 
[otherwise: default_action] 

ENDCASE 

If the value of argument is argvaluel then actional is 
executed; if argument = argvalue2, then action_2 is executed, 
and so forth. 
Once a single action is executed, the code stream breaks 
to the ENDCASE (there is an implicit break as in Pascal). 
Each action may nonetheless be a sequence of pseudocode 
operations, one operation per line. 
Optionally, the last argvalue may be the atom Otherwise'. The 
associated default action will be taken if none of the other 
argvalues match the argument. 

Integer division (truncates) 

Logical left shift of first operand by the second operand. 
Y is an unsigned shift value. Zeros are moved into the vacated 
bit positions, and shifted out bits are discarded. 

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag. 

Log to the base 2 

3-6 Common Architecture (I) 

x<m> 

LOAD.LOCKED 



Table 3-4 (Cont.): Operators 
Operator 

NOT 

OR 

χ MOD y 

Relational Operators 

Meaning 

Logical (ones) complement 

Logical sum 

χ modulo y 

Operator Meaning 

LT Less t h a n signed 

LTU Less t h a n unsigned 

LE Less or equal signed 

LEU Less or equal uns igned 

E Q Equa l signed and unsigned 

N E Not equal signed and unsigned 

GE Grea te r or equal signed 

G E U Grea te r or equal uns igned 

GT Grea te r signed 

GTU Grea te r uns igned 

LBC Low bit clear 

LBS Low bit set 

MINU(x,y) 

PHYSICAL_ADDRESS 

PRIORITY_ENCODE 

RIGHT_SHIFT(x,y) 

SEXT(x) 

STORE.CONDITIONAL 

Returns the smaller of χ and y, with χ and y interpreted as 
unsigned integers 

Translation of a virtual address 

Returns the bit position of most significant set bit, interpret-
ing its argument as a positive integer ( = int( lg( χ ) ) ). 
For example: 

priority_encode( 255 ) = 7 

Logical right shift of first operand by the second operand. Y 
is an unsigned shift value. Zeros are moved into vacated bit 
positions, and shifted out bits are discarded. 

X is sign-extended to the required size. 

If the lock_flag is set, then do the indicated store and clear 
the lock_flag. 
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Table 3-4 (Cont.): Operators 

Operator Meaning 

TEST(x,cond) The contents of register χ are tested for branch condition 
(cond) true. TEST returns a Boolean value TRUE if χ bears 
the specified relation to 0, else FALSE is returned. Integer 
and floating test conditions are drawn from the preceding list 
of relational operators. 

XOR Logical difference 

X is zero-extended to the required size. ZEXT(x) 

3.2.4 Notation Conventions 

The following conventions are used: 

1. Only operands t h a t appear on the left side of a replacement operator are modified. 

2. No operator precedence is assumed other t h a n t h a t replacement (<-) has the 
lowest precedence. Explicit precedence is indicated by the use of "{}". 

3. All ar i thmetic , logical, and relat ional operators a re defined in the context of thei r 
operands. For example, "+" applied to G_floating operands m e a n s a G_floating 
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT" 
is a G_floating comparison when applied to G_floating operands and an integer 
comparison when applied to quadword operands. 

3.3 Instruction Formats 

There are five basic Alpha instruct ion formats: 

• Memory 

• Branch 

• Operate 

• Floating-point Opera te 

• PALcode 

All instruct ion formats a re 32 bits long with a 6-bit major opcode field in bi ts <31:26> 
of the instruction. 

Any unused register field (Ra, Rb, Fa, Fb) of an instruct ion m u s t be set to a va lue 
of 31 . 
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SOFTWARE NOTE 
There a re several instruct ions, each formatted as a 
memory instruct ion, t h a t do not use the Ra and/or Rb 
fields. These ins t ruct ions are : Memory Barrier , Fetch, 
FetchJM, Read Process Cycle Counter, Read and Clear, 
Read and Set, and Trap Barrier. 

3.3.1 Memory Instruction Format 

The Memory format is used to t ransfer da t a between regis ters and memory, to 
load a n effective address , and for subrout ine j umps . I t h a s t he format shown in 
Figure 3 - 1 . 

Figure 3-1 : Memory Instruction Format 

31 26 25 21 20 16 15 0 

Opcode Ra Rb Memory_disp 

A Memory format instruct ion contains a 6-bit opcode field, two 5-bit register address 
fields, Ra and Rb, and a 16-bit signed displacement field. 

The displacement field is a byte offset. I t is sign-extended and added to t he contents 
of regis ter Rb to form a v i r tua l address . Overflow is ignored in th i s calculation. 

The v i r tua l address is used as a memory load/store address or a resul t value, 
depending on the specific instruct ion. The v i r tua l address (va) is computed as follows 
for all memory format ins t ruct ions except t he load address high (LDAH): 

va <— {Rbv + SEXT(Memory_disp)} 

For LDAH the v i r tua l address (va) is computed as follows: 

va {Rbv + SEXT(Memory_disp*65536)} 

3.3.1.1 Memory Format Instructions with a Function Code 

Memory format instruct ions wi th a function code replace the memory displacement 
field in the memory instruct ion format wi th a function code t h a t designates a set of 
miscellaneous instruct ions. The format is shown in Figure 3-2 . 

Figure 3-2: Memory Instruction with Function Code Format 

31 26 25 21 20 16 15 0 

Opcode Ra Rb Function 

Instruction Formats (I) 3-9 



The memory instruct ion wi th function code format contains a 6-bit opcode field and 
a 16-bit function field. Unused function encodings produce UNPREDICTABLE bu t 
not U N D E F I N E D resul ts ; they are not security holes. 

There are two fields, Ra and Rb. The usage of those fields depends on the instruction. 
See Section 4.11. 

3.3.1.2 Memory Format Jump Instructions 

For computed branch instruct ions (CALL, RET, JMP, JSR_COROUTINE) the 
displacement field is used to provide branch-prediction h in t s as described in 
Section 4.3. 

3.3.2 Branch Instruction Format 

The Branch format is used for conditional b ranch instruct ions and for PC-relative 
subrout ine jumps . I t h a s the format shown in Figure 3 - 3 . 

Figure 3-3: Branch Instruction Format 

26 25 21 20 

Opcode Ra Branch_disp 

A Branch format instruct ion contains a 6-bit opcode field, one 5-bit register address 
field (Ra), and a 21-bit signed displacement field. 

The displacement is t r ea ted as a longword offset. This m e a n s it is shifted left two bits 
(to address a longword boundary) , sign-extended to 64 bi ts and added to the upda ted 
PC to form the ta rge t v i r tual address . Overflow is ignored in th is calculation. The 
ta rge t v i r tual address (va) is computed as follows: 

va <- PC + {4*SEXT(Branch_disp)} 

3.3.3 Operate Instruction Format 

The Opera te format is used for instruct ions t h a t perform integer register to integer 
register operations. The Opera te format allows the specification of one dest inat ion 
operand and two source operands. One of the source operands can be a l i teral 
constant . The Opera te format in Figure 3-4 shows the two cases when bit <12> of 
the instruction is 0 and 1. 

3-10 Common Architecture (I) 



Figure 3-4: Operate Instruction Format 

31 2625 21 20 16 151312 11 5 4 0 

Opcode Ra Rb SBZ 0 Function Rc 

31 26 25 21 20 131211 5 4 0 

Opcode Ra LIT 1 Function Rc 

An Opera te format instruct ion contains a 6-bit opcode field and a 7-bit function 
field. Unused function encodings produce UNPREDICTABLE bu t not U N D E F I N E D 
resul ts ; they are not security holes. 

There a re th ree operand fields, Ra, Rb, and Rc. 

The Ra field specifies a source operand. Symbolically, t he integer Rav operand is 
formed as follows: 

IF inst<25:21> EQ 31 THEN 
Rav <- 0 

ELSE 
Rav «— Ra 

END 

The Rb field specifies a source operand. Integer operands can specify a l i teral or an 
integer register us ing bit <12> of t he instruct ion. 

If bit <12> of the instruct ion is 0, t h e Rb field specifies a source regis ter operand. 

If bit <12> of the instruct ion is 1, an 8-bit zero-extended l i teral constant is formed 
by bits <20:13> of the instruct ion. The l i teral is in terpre ted as a positive integer 
between 0 and 255 and is zero-extended to 64 bits . Symbolically, t he integer Rbv 
operand is formed as follows: 

IF inst<12> EQ 1 THEN 
Rbv 4 - ZEXT(inst<20:13>) 

ELSE 
IF inst<20:16> EQ 31 THEN 

Rbv <- 0 
ELSE 

Rbv <- Rb 
END 

END 

The Rc field specifies a dest inat ion operand. 
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3.3.4 Floating-Point Operate Instruction Format 

The Floating-point Opera te format is used for instruct ions t h a t perform floating-
point register to floating-point register operations. The Floating-point Opera te 
format allows the specification of one dest inat ion operand and two source operands. 
The Floating-point Opera te format is shown in Figure 3 - 5 . 

Figure 3-5: Floating-Point Operate Instruction Format 

31 26 25 21 20 16 15 5 4 0 

Opcode Fa Fb Function Fc 

A Floating-point Opera te format instruct ion contains a 6-bit opcode field and an 11-
bit function field. Unused function encodings produce UNPREDICTABLE resul ts , 
as defined in Section 1.6.3. 

There a re th ree operand fields, Fa , Fb, and Fc. Each operand field specifies e i ther 
an integer or floating-point operand as defined by the instruction. 

The F a field specifies a source operand. Symbolically, t he Fav operand is formed as 
follows: 

IF inst<25:21> EQ 31 THEN 
Fav <— 0 

ELSE 
Fav <— Fa 

END 

The Fb field specifies a source operand. Symbolically, t he Fbv operand is formed as 
follows: 

IF inst<20:16> EQ 31 THEN 
Fbv <- 0 

ELSE 
Fbv «- Fb 

END 

NOTE 
Nei ther F a nor Fb can be a l i teral in Floating-point 
Opera te instruct ions. 

The Fc field specifies a dest inat ion operand. 

3.3.4.1 Floating-Point Convert Instructions 

Floating-point Convert instruct ions use a subset of the Floating-point Opera te 
format and perform register-to-register conversion operations. The Fb operand 
specifies the source; the F a field m u s t be F 3 1 . 

The floating-point register to be used is specified by the Fa , Fb, and Fc fields all 
pointing to the same floating-point register. If t he Fa , Fb, and Fc fields do not all 
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point to the same floating-point register, t h e n it is UNPREDICTABLE which register 
is used. 

3.3.5 PALcode Instruction Format 

The Privileged Architecture Library (PALcode) format is used to specify extended 
processor functions. I t h a s the format shown in Figure 3-6 . 

Figure 3-6: PALcode Instruction Format 

Opcode PALcode Function 

The 26-bit PALcode function field specifies the operation. 

The source and dest inat ion operands for PALcode instruct ions a re supplied in fixed 
regis ters t h a t a re specified in the individual instruct ion descriptions. 

An opcode of zero and a PALcode function of zero specify the HALT instruction. 
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Chapter 4 

Instruction Descriptions (I) 

4.1 Instruction Set Overview 

This chapter describes the ins t ruct ions implemented by the Alpha archi tecture. The 
instruct ion set is divided into t he following sections: 

Instruction TVpe Section 

Integer load and store 4.2 

Integer control 4.3 

In teger ar i thmet ic 4.4 

Logical and shift 4.5 

Byte manipula t ion 4.6 

Floating-point load and store 4.8 

Floating-point control 4.9 

Floating-point operate 4.10 

Miscellaneous 4.11 

Within each major section, closely re la ted instruct ions a re combined into groups and 
described together. The instruct ion group description is composed of the following: 

• The group n a m e 

• The format of each instruct ion in the group, which includes the name , access 
type, and da t a type of each instruct ion operand 

• The operation of the instruct ion 

• Exceptions specific to the instruct ion 

• The instruct ion mnemonic and n a m e of each instruct ion in the group 

• Qualifiers specific to the ins t ruct ions in t he group 

• A description of the inst ruct ion operat ion 

• Optional p rogramming examples and optional notes on the instruct ion 
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4.1.1 Subsetting Rules 

An instruction t h a t is omitted in a subset implementa t ion of the Alpha archi tecture 
is not performed in e i ther ha rdware or PALcode. System software may provide 
emulat ion rout ines for subset ted instruct ions. 

4.1.1.1 Floating-Point Subsets 

Floating-point support is optional on an Alpha processor. An implementat ion t h a t 
supports floating-point m u s t implement the 32 floating-point regis ters , t he Floating-
point Control Register (FPCR) and the instruct ions to access it, floating-point 
b ranch instruct ions, floating-point copy sign (CPYSx) instruct ions, floating-point 
convert instruct ions, floating-point conditional move instruct ion (FCMOV), and the 
S_floating and T_floating memory operations. 

SOFTWARE NOTE 
A system t h a t will not support floating-point operat ions 
is still required to provide the 32 floating-point 
registers , the Floating-point Control Register (FPCR) 
and the instruct ions to access it, and the T_floating 
memory operations if t he system in tends to support the 
OpenVMS Alpha operat ing system. This requi rement 
facilitates the implementat ion of a floating-point 
emula tor and simplifies context-switching. 

In addition, floating-point support requires a t least one of the following subset 
groups: 

1. VAX Floating-point Opera te and Memory instruct ions (F_ and G_floating). 

2. IEEE Floating-point Opera te instruct ions (S_ and T_floating). Within th is group, 
an implementat ion can choose to include or omit separate ly the ability to perform 
IEEE rounding to plus infinity and minus infinity. 

Note: if one instruct ion in a group is provided, all other instruct ions in t h a t group 
m u s t be provided. An implementat ion wi th full floating-point support includes 
both groups; a subset floating-point implementat ion suppor ts only one of these 
groups. The individual instruct ion descriptions indicate whe ther an instruct ion can 
be subsetted. 

4.1.2 Software Emulation Rules 

General-purpose layered and application software t h a t executes in User mode may 
assume t h a t cer tain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores 
(STL, STQ, STF, STG, STL and STT) of unal igned da t a a re emula ted by system 
software. General-purpose layered and application software t h a t executes in User 
mode may assume t h a t subset ted instruct ions are emula ted by system software. 
F requen t use of emulat ion may be significantly slower t h a n us ing a l ternat ive code 
sequences. 
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Emula t ion of loads and stores of unal igned da t a and subset ted instruct ions need 
not be provided in privileged access modes. System software t h a t supports special-
purpose dedicated applications need not provide emulat ion in User mode if emulat ion 
is not needed for correct execution of the special-purpose applications. 

4.1.3 Opcode Qualifiers 

Some Opera te format and Floating-point Opera te format instruct ions have several 
var ian ts . For example, for the VAX formats, Add Fjfloating (ADDF) is supported 
wi th and wi thout floating underflow enabled, and wi th e i ther chopped or VAX 
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus 
infinity, and round toward minus infinity can be selected. 

The different va r ian t s of such instruct ions a re denoted by opcode qualifiers, which 
consist of a s lash (/) followed by a s t r ing of selected qualifiers. Each qualifier is 
denoted by a single charac ter as shown in Table 4 - 1 . The opcodes for each qualifier 
a re listed in Appendix C. 

Table 4 - 1 : Opcode Qualifiers 

Qualifier Meaning 

C Chopped rounding 

D Rounding mode dynamic 

M Round toward minus infinity 

I Inexact result enable 

S Software completion enable 

υ Floating underflow enable 

ν Integer overflow enable 

The default values a re normal rounding, software completion disabled, inexact resul t 
disabled, floating underflow disabled, and integer overflow disabled. 
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4.2 Memory Integer Load/Store Instructions 

The instruct ions in th is section move da t a between the integer registers and memory. 

They use the Memory instruct ion format. The instruct ions a re summar ized in 
Table 4 -2 . 

Table 4 - 2 : Memory Integer Load/Store Instructions 

Mnemonic Opera t ion 

LDA Load Address 

LDAH Load Address High 

LDL Load Sign-Extended Longword 

LDL_L Load Sign-Extended Longword Locked 

LDQ Load Quadword 

LDQ_L Load Quadword Locked 

LDQ_U Load Quadword Unaligned 

STL Store Longword 

STL.C Store Longword Conditional 

STQ Store Quadword 

STQ_C Store Quadword Conditional 

STQ_U Store Quadword Unaligned 
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4.2.1 Load Address 

Format: 

LDAx Ra.wq,disp.ab(Rb.ab) '.Memory format 

Operation : 

Ra «- Rbv + SEXT(disp) 

Ra <- Rbv + SEXT(disp*65536) 

! LDA 

•LDAH 

Exceptions: 

None 

Instruction mnemonics: 

LDA Load Address 

LDAH Load Address High 

Qualifiers: 

None 

Description: 

The vi r tua l address is computed by adding register Rb to t he sign-extended 16-bit 
displacement for LDA, and 65536 t imes the sign-extended 16-bit displacement for 
LDAH. The 64-bit resul t is wr i t ten to regis ter Ra. 
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4.2.2 Load Memory Data into Integer Register 

Format: 

LDx Ra.wq,disp.ab(Rb.ab) IMemory format 

Operation: 

va 

Ra 
Ra 

{Rbv + SEXT(disp)} 

SEXT((va)<31:0>) 
(va)<63:0> 

•LDL 
!LDQ 

Exceptions: 

Access Violation 

Alignment 

Fau l t on Read 

Translat ion Not Valid 

Instruction mnemonics: 

LDL Load Sign-Extended Longword from Memory to Register 

LDQ Load Quadword from Memory to Register 

Qualifiers: 

None 

Description: 

The vir tual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory, sign-extended, and 
wri t ten to register Ra. If t he da t a is not na tura l ly aligned, an a l ignment exception 
is generated. 
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4.2.3 Load Unaligned Memory Data into Integer Register 

Format: 

L D Q J J Ra.wq,disp.ab(Rb.ab) IMemory format 

Operation: 

va <- {{Rbv + SEXT(disp)} AND NOT 7} 

Ra <- (va)<63:0> 

Exceptions: 

Access Violation 

Fau l t on Read 

Translat ion Not Valid 

Instruction mnemonics: 

LDQ_U Load Unal igned Quadword from Memory to Register 

Qualifiers: 

None 

Description: 

The vi r tua l address is computed by adding register Rb to the sign-extended 16-
bit displacement, t hen the low-order th ree bi ts a re cleared. The source operand is 
fetched from memory and wr i t t en to regis ter Ra. 
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4.2.4 Load Memory Data into Integer Register Locked 

Format: 

LDx_L Ra.wq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va «- {Rbv + SEXT(disp)} 

lock_flag «— 1 
locked_physical_address 
Ra 4 - SEXT((va)<31:0>) 
Ra <- (va)<63:0> 

Exceptions: 

Access Violation 

Alignment 

Fau l t on Read 

Translat ion Not Valid 

Instruction mnemonics: 

LDL_L Load Sign-Extended Longword from Memory to Register Locked 

LDQJL Load Quadword from Memory to Register Locked 

Qualifiers: 

None 

Description: 

The vi r tual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from memory, sign-extended for LDL_ 
L, and wri t ten to register Ra. 

When a LDx_L instruct ion is executed without faulting, the processor records the 
ta rge t physical address in a per-processor locked_physical_address register and sets 
the per-processor lock_flag. 

If the per-processor lock_flag is (still) set when a STx_C instruct ion is executed, the 
store occurs; otherwise, it does not occur, as described for the STx_C instruct ions. 

If processor A's lock_flag is set and processor Β successfully does a store wi thin A's 
locked range of physical addresses , t hen A's lock_flag is cleared. A processor's locked 

PHYSICAL_ADDRESS(va) 
! LDL_L 
!LDQ L 
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range is the aligned block of 2**N bytes t h a t includes the locked_physical_address. 
The 2**N value is implementa t ion dependent . I t is a t least 8 (minimum lock range 
is an aligned quadword) and is a t most the page size for t h a t implementat ion 
(maximum lock range is one physical page). 

A processor's lock_flag is also cleared if t h a t processor encounters a CALL_PAL REI 
instruct ion. I t is UNPREDICTABLE whe the r or not a processor's lock_flag is cleared 
on any other CALL_PAL instruct ion. I t is UNPREDICTABLE whe the r a processor's 
lock_flag is cleared by t h a t processor's executing a normal load or store instruction. 
I t is UNPREDICTABLE whe the r a processor's lock_flag is cleared by t h a t processor's 
executing a t aken branch (including BR, BSR, and Jumps) ; conditional branches t h a t 
fall th rough do not clear the lock_flag. 

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an 
atomic read-modify-write of a d a t u m in shared memory if t he b ranch falls through; 
if t he b ranch is t aken , the store did not modify memory and the sequence may be 
repeated unt i l it succeeds. 

Notes: 

• LDx_L instruct ions do not check for wri te access; hence a match ing STx__C may 
t ake a n access-violation or fault-on-write exception. 

Execut ing a LDx_L instruct ion on one processor does not affect any 
archi tectural ly visible s ta te on ano ther processor, and in par t icular cannot cause 
a STx_C on another processor to fail. 

LDx_L and STx_C instruct ions need not be paired. In part icular, an LDx_L may 
be followed by a conditional branch: on the fall-through pa th an STx_C is done, 
whereas on the t a k e n pa th no match ing STx_C is done. 

If two LDx_L instruct ions execute wi th no in tervening STx_C, the second one 
overwrites t he s ta te of t he first one. If two STx_C instruct ions execute wi th no 
in tervening LDx_L, the second one always fails because the first clears lock_flag. 

• Software will not emula te unal igned LDx_L instruct ions. 

• If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given 
processor between the LDx_L and the STx_C, the sequence above may always 
fail on some implementat ions; hence, no useful program should do this . 

• If a b ranch is t a k e n between the LDx_L and the STx_C, t he sequence above may 
always fail on some implementa t ions ; hence, no useful program should do this . 
(CMOVxx may be used to avoid branching.) 

• If a subset ted instruct ion (for example, floating-point) is done between the LDx_L 
and the STx_C, the sequence above may always fail on some implementat ions , 
because of the Illegal Ins t ruct ion Trap; hence, no useful program should do this . 

• If a large number of instruct ions a re executed between the LDx_L and the STx_C, 
the sequence above may always fail on some implementat ions , because of a t imer 
in te r rup t always clearing the lock_flag before the sequence completes; hence, no 
useful program should do this . 
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• Hardware implementa t ions are encouraged to lock no more t h a n 128 bytes. 
Software implementat ions are encouraged to separa te locked locations by a t 
least 128 bytes from other locations t h a t could potential ly be wr i t ten by another 
processor while the first location is locked. 

IMPLEMENTATION NOTES 
Implementa t ions t h a t impede the mobility of a cache 
block on LDx_L, such as t h a t which m a y occur in a Read 
for Ownership cache coherency protocol, m a y release the 
cache block and m a k e the subsequent STx_C fail if a 
branch- taken or memory instruct ion is executed on t h a t 
processor. 

All implementa t ions should gua ran tee t h a t a t least 
40 non-subset ted operate instruct ions can be executed 
between t imer in te r rup ts . 
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4.2.5 Store Integer Register Data into Memory Conditional 

Format: 

STx_C Ra.mq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {Rbv + SEXT(disp)} 

IF lock_flag EQ 1 THEN 
(va)<31:0> «- Rav<31:0> 
( va ) «— Rav 

! STL_C 
!STQ C 

Ra <— lock__flag 
lock_flag <- 0 

Exceptions: 

Access Violation 

Fau l t on Write 

Alignment 

Transla t ion Not Valid 

Instruction mnemonics: 

STL_C Store Longword from Register to Memory Conditional 

STQ_C Store Quadword from Register to Memory Conditional 

Qualifiers: 

None 

Description: 

The vi r tua l address is computed by adding regis ter Rb to the sign-extended 16-bit 
displacement. If t he lock_flag is set, t he Ra operand is wr i t ten to memory a t th is 
address . (See t he LDx_L description for conditions t h a t clear t he lock_flag.) The 
lock_flag is r e tu rned in RA and then set to a zero. 

• Software will not emula te unal igned STx_C instruct ions. 

• Each implementa t ion m u s t do the tes t and store atomically, so t h a t if two 
processors execute store conditionals wi thin the same lock range , exactly one 
of t he stores succeeds. 

Notes: 
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• The following sequence should not be used: 

try_again: LDQ_L Rl,x 
<modify Rl> 
STQ_C Rl,x 
BEQ Rl, try_again 

T h a t sequence penalizes performance when the STQ_C succeeds, because the 
sequence contains a backward branch, which is predicted to be t a k e n in the 
Alpha archi tecture. In the case where the STQ_C succeeds and the b ranch 
will actually fall through, t h a t sequence incurs unnecessary delay due to a 
mispredicted backward branch. Ins tead, a forward b ranch should be used to 
handle the failure case as shown in Section 5.5.2. 

SOFTWARE NOTE 
The address specified by a STx_C instruct ion need not 
ma tch t h a t given in a preceding LDx_L. Specifying 
unmatched addresses for those instruct ions requires an 
MB in between to gua ran tee ordering. 

IMPLEMENTATION NOTES 
A STx_C m u s t propagate to the point of coherency, 
where it is guaran teed to prevent any other store from 
changing the s ta te of the lock bit, before i ts outcome can 
be determined. 

If an implementat ion could encounter a TB or cache miss 
on the da t a reference of t he STx_C in the sequence above 
(as might occur in some shared I- and D-st ream direct-
mapped TBs/caches), i t m u s t be able to resolve the miss 
and complete the store wi thout always failing. 
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4.2.6 Store Integer Register Data into Memory 

Format: 

STx Ra.rq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {Rbv + SEXT(disp)} 
(va)<31:0> <- Rav<31:0> 
(va) <— Rav 

!STL 
ISTQ 

Exceptions: 

Access Violation 

Fau l t on Write 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

STL Store Longword from Register to Memory 

STQ Store Quadword from Register to Memory 

Qualifiers: 

None 

Description: 

The v i r tua l address is computed by adding register Rb to t he sign-extended 16-bit 
displacement. The Ra operand is wr i t t en to memory a t th i s address . If t he da ta is 
not na tura l ly aligned, an a l ignment exception is generated. 
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4.2.7 Store Unaligned Integer Register Data into Memory 

Format: 

STQ_U Ra.rq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {{Rbv + SEXT(disp)} AND NOT 7} 

(va)<63:0> «- Rav<63:0> 

Exceptions : 

Access Violation 

Fau l t on Write 

Translat ion Not Valid 

Instruction mnemonics: 

STQ_U Store Unal igned Quadword from Register to Memory 

Qualifiers: 

None 

Description: 

The vi r tual address is computed by adding register Rb to t he sign-extended 16-bit 
displacement, t hen clearing t he low order th ree bi ts . The Ra operand is wr i t ten to 
memory a t th is address . 
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4.3 Control Instructions 

Alpha provides integer conditional branch, uncondit ional branch, b ranch to 
subrout ine, and j u m p instruct ions. The PC used in these instruct ions is the updated 
PC, as described in Section 3.1.1. 

To allow implementa t ions to achieve high performance, t h e Alpha archi tecture 
includes explicit h in t s based on a branch-predict ion model: 

1. For m a n y implementa t ions of computed branches (JSR/RET/JMP), the re is a 
subs tan t ia l performance gain in forming a good guess of t he expected t a rge t I-
cache address before register Rb is accessed. 

2. For m a n y implementat ions , t he first-level (or only) I-cache is no bigger t h a n a 
page (8 KB to 64 KB). 

3. Correctly predict ing subrout ine r e t u r n s is impor tan t for good performance. Some 
implementa t ions will therefore keep a small s tack of predicted subrout ine r e tu rn 
I-cache addresses . 

The Alpha archi tecture provides th ree k inds of branch-predict ion h in t s : likely t a rge t 
address , re tu rn-address s tack action, and conditional branch- taken. 

For computed branches , t h e otherwise unused displacement field contains a function 
code (JMP/JSR/RET/JSR^COROUTINE), and, for J S R and JMP, a field t h a t 
statically specifies t he 16 low bits of t he most likely t a rge t address . The PC-
relat ive calculation us ing these bi ts can be exactly the PC-relat ive calculation used 
in uncondit ional branches . The low 16 bi ts a re enough to specify an I-cache block 
wi thin the largest possible Alpha page and hence a re expected to be enough for 
branch-predict ion logic to s t a r t an early I-cache access for the most likely target . 

For all branches , h in t or opcode bi ts a re used to dis t inguish simple branches , 
subrout ine calls, subrout ine r e tu rns , and coroutine l inks. These dist inctions allow 
branch-predict logic to ma in t a in an accurate s tack of predicted r e t u r n addresses . 

For conditional branches , t he sign of t h e t a rge t displacement is used as a t a k e n 
/fall-through hint . The inst ruct ions a re summar ized in Table 4 - 3 . 
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Table 4 - 3 : Control Instructions Summary 

Mnemonic Opera t ion 

BEQ Branch if Register Equal to Zero 

BGE Branch if Register Greater Than or Equal to Zero 

BGT Branch if Register Greater Than Zero 

BLBC Branch if Register Low Bit Is Clear 

BLBS Branch if Register Low Bit Is Set 

BLE Branch if Register Less Than or Equal to Zero 

BLT Branch if Register Less Than Zero 

BNE Branch if Register Not Equal to Zero 

BR Unconditional Branch 

BSR Branch to Subroutine 

JMP Jump 

JSR Jump to Subroutine 

RET Return from Subroutine 

JSR_COROUTINE Jump to Subroutine Return 
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4.3.1 Conditional Branch 

Format: 

Bxx Ra.rq,disp.al ÎBranch format 

Operation: 

{update PC} 
va 4 - PC + {4*SEXT(disp)> 
IF TEST(Rav, Condition_based_on__0pcode) THEN 

PC <— va 

Exceptions: 

None 

Instruction mnemonics: 

BEQ Branch if Register Equa l to Zero 

BGE Branch if Register Grea te r T h a n or Equa l to Zero 

BGT Branch if Register Grea te r T h a n Zero 

BLBC Branch if Register Low Bit Is Clear 

BLBS Branch if Register Low Bit Is Set 

BLE Branch if Register Less T h a n or Equa l to Zero 

BLT Branch if Register Less T h a n Zero 

BNE Branch if Register Not Equa l to Zero 

Qualifiers: 

None 

Description: 

Register Ra is tested. If t he specified rela t ionship is t rue , t he PC is loaded wi th 
t he t a rge t v i r tua l address ; otherwise, execution continues wi th the next sequent ial 
instruct ion. 

The displacement is t r ea ted as a signed longword offset. This means it is shifted 
left two bi ts (to address a longword boundary) , sign-extended to 64 bi ts , and added 
to t he upda ted PC to form t h e t a rge t v i r tua l address . 

The conditional b ranch inst ruct ions a re PC-relat ive only. The 21-bit signed 
displacement gives a forward/backward b ranch dis tance of + / - 1M instruct ions. 
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The tes t is on the signed quadword integer in terpre ta t ion of the register contents; 
all 64 bi ts a re tested. 

Notes: 

• Forward conditional branches (positive displacement) a re predicted to fall 
through. Backward conditional branches (negative displacement) a re predicted 
to be taken . Conditional branches do not affect a predicted r e t u r n address stack. 
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4.3.2 Unconditional Branch 

Format: 

BxR Ra.wq,disp.al ÎBranch format 

Operation: 

{update PC} 
Ra <- PC 
PC <- PC + {4*SEXT(disp)> 

Exceptions: 

None 

Instruction mnemonics: 

BR Uncondit ional Branch 

BSR Branch to Subrout ine 

Qualifiers: 

None 

Description: 

The PC of t he following inst ruct ion ( the upda ted PC) is wr i t t en to regis ter Ra, and 
t hen the PC is loaded wi th the t a rge t address . 

The displacement is t r ea ted as a signed longword offset. This m e a n s it is shifted 
left two bi ts (to address a longword boundary) , sign-extended to 64 bi ts , and added 
to t he upda ted PC to form the t a rge t v i r tua l address . 

The uncondit ional b ranch ins t ruct ions a re PC-relative. The 21-bit signed 
displacement gives a forward/backward b ranch distance of + / - 1M instruct ions. 

PC-relat ive addressabil i ty can be establ ished by: 

BR Rx,Ll 
LI: 

Notes: 

• BR and BSR do identical operat ions. They only differ in h in t s to possible branch-
prediction logic. BSR is predicted as a subrout ine call (pushes t he r e t u r n address 
on a branch-predict ion stack), whereas BR is predicted as a b ranch (no push) . 
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4.3.3 Jumps 

Format: 

mnemonic Ra.wq,(Rb.ab),hint ÎMemory format 

Operation: 

{update PC} 
va *- Rbv AND {NOT 3} 
Ra <- PC 
PC <— va 

Exceptions: 

None 

Instruction mnemonics: 

J M P 

J S R 

RET 

JSR_COROUTINE 

Qualifiers: 

None 

Description: 

The PC of the instruct ion following the J u m p instruct ion (the upda ted PC) is wr i t ten 
to register Ra, and t hen the PC is loaded wi th the t a rge t v i r tua l address . 

The new PC is supplied from register Rb. The low two bi ts of Rb are ignored. Ra 
and Rb may specify the same register; t he t a rge t calculation us ing the old value is 
done before the new value is assigned. 

All J u m p instruct ions do identical operations. They only differ in h in t s to possible 
branch-prediction logic. The displacement field of t he instruct ion is used to pass th is 
information. The four different "opcodes" set different bit pa t t e rns in disp<15:14>, 
and the h in t operand sets disp<13:0>. 

J u m p 

J u m p to Subrout ine 

Re tu rn from Subrout ine 

J u m p to Subrout ine Re tu rn 
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These bi ts a re in tended to be used as shown in Table 4 - 4 . 

Table 4-4: Jump Instructions Branch Prediction 

disp<15:14> Meaning 
Predicted 
Target<15:0> 

Prediction 
Stack Action 

00 JMP PC + {4*disp<13:0>} -
01 JSR PC + {4*disp<13:0>} Push PC 

10 RET Prediction stack Pop 

11 JSR.COROUTINE Prediction stack Pop, push PC 

The design in Table 4—4 allows specification of t he low 16 bi ts of a likely longword 
ta rge t address (enough bi ts to s t a r t a useful I-cache access early), and also allows 
dis t inguishing call from r e t u r n (and from the other two less frequent operations). 

Note t h a t t he above information is used only as a h int ; correct se t t ing of these bi ts 
can improve performance b u t is not needed for correct operation. See Appendix A 
for more information on b ranch prediction. 

An uncondit ional long j u m p can be performed by: 

JMP R31,(Rb),hint 

Coroutine l inkage can be performed by specifying the same regis ter in both the Ra 
and Rb operands. When disp<15:14> equals 1 0 ' (RET) or 1 1 ' ( JSR.COROUTINE) 
( tha t is, t he t a rge t address prediction, if any, would come from a predictor 
implementa t ion stack), t hen bi ts <13:0> are reserved for software and m u s t be 
ignored by all implementa t ions . All encodings for bi ts <13:0> a re used by Digital 
software or Reserved to Digital, as follows: 

Encoding Meaning 

ΟΟΟΟχβ Indicates non-procedure r e t u r n 

000116 Indicates procedure r e t u r n 

All o ther encodings a re reserved to Digital. 
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4.4 Integer Arithmetic Instructions 

The integer ar i thmet ic instruct ions perform add, subtract , multiply, and signed and 
unsigned compare operations. 

The integer instruct ions a re summar ized in Table 4 - 5 . 

Table 4 - 5 : Integer Arithmetic Instructions Summary 

Mnemonic Opera t ion 

ADD Add Quadword/Longword 

S4ADD Scaled Add by 4 

S8ADD Scaled Add by 8 

CMPEQ Compare Signed Quadword Equal 

CMPLT Compare Signed Quadword Less Than 

CMPLE Compare Signed Quadword Less Than or Equal 

CMPULT Compare Unsigned Quadword Less Than 

CMPULE Compare Unsigned Quadword Less Than or Equal 

MUL Multiply Quadword/Longword 

UMULH Multiply Quadword Unsigned High 

SUB Subtract Quadword/Longword 

S4SUB Scaled Subtract by 4 

S8SUB Scaled Subtract by 8 

There is no integer divide instruction. Division by a constant can be done via 
UMULH; division by a variable can be done via a subrout ine. See Appendix A. 
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4.4.1 Longword Add 

Format: 

ADDL 

ADDL Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

iOperate format 

!Operate format 

Operation: 

Rc <- SEXT( (Rav + Rbv)<31:0>) 

Exceptions: 

In teger Overflow 

Instruction mnemonics: 

ADDL Add Longword 

Qualifiers: 

In teger Overflow Enab le (/V) 

Description: 

Register Ra is added to regis ter Rb or a l i teral , and t h e sign-extended 32-bit sum is 
wr i t ten to Rc. 

The high order 32 bits of Ra and Rb a re ignored. Rc is a proper sign extension 
of t h e t runca ted 32-bit sum. Overflow detection is based on the longword 
sum Rav<31:0> + Rbv<31:0>. 
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4.4.2 Scaled Longword Add 

Format: 

SxADDL 

SxADDL 

Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

CASE 
S4ADDL: Rc «- SEXT ( ( (LEFT__SHIFT(Rav,2) ) + Rbv)<31:0>) 
S8ADDL: Rc <- SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

S4ADDL Scaled Add Longword by 4 

S8ADDL Scaled Add Longword by 8 

Qualifiers: 

None 

Description: 

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register 
Rb or a li teral, and the sign-extended 32-bit sum is wr i t ten to Rc. 

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the 
t runca ted 32-bit sum. 
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4.4.3 Quadword Add 

Format: 

ADDQ 

ADDQ 

Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

îOperate format 

O p e r a t e format 

Operation: 

Rc <— Rav + Rbv 

Exceptions: 

In teger Overflow 

Instruction mnemonics: 

ADDQ Add Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Ra is added to regis ter Rb or a l i teral , and the 64-bit sum is wr i t ten to Rc. 

On overflow, t he least significant 64 bi ts of t he t r ue resul t a re wr i t ten to the 
dest inat ion register. 

The unsigned compare ins t ruct ions can be used to genera te carry. After adding two 
values, if t he sum is less unsigned t h a n e i ther one of t he inputs , t he re was a carry 
out of the most significant bit. 
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4.4.4 Scaled Quadword Add 

Format: 

SxADDQ 

SxADDQ 

Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

!Operate format 

O p e r a t e format 

Operation : 

CASE 
S4ADDQ: 
S8ADDQ: 

ENDCASE 

Rc <- LEFT_SHIFT(Rav,2) + Rbv 
Rc <- LEFT_SHIFT(Rav,3) + Rbv 

Exceptions: 

None 

Instruction mnemonics: 

S4ADDQ Scaled Add Quadword by 4 

S8ADDQ Scaled Add Quadword by 8 

Qualifiers: 

None 

Description: 

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register 
Rb or a li teral, and the 64-bit sum is wr i t ten to Rc. 

On overflow, the leas t significant 64 bi ts of t he t r ue resul t a re wr i t ten to the 
dest inat ion register. 
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4.4.5 Integer Signed Compare 

Format: 

CMPxx 

CMPxx Ra.rq,Rt>.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

IF Rav SI GNED__RELAT I ON Rbv THEN 
Rc <- 1 

ELSE 
RC <- 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPEQ Compare Signed Quadword Equa l 

CMPLE Compare Signed Quadword Less T h a n or Equa l 

CMPLT Compare Signed Quadword Less T h a n 

Qualifiers: 

Description: 

Register Ra is compared to Register Rb or a l i teral . If t he specified relat ionship is 
t rue , t he value one is wr i t ten to regis ter Rc; otherwise, zero is wr i t ten to Rc. 

Notes: 

• Compare Less T h a n A,B is t he same as Compare Grea te r T h a n B,A; Compare 
Less T h a n or Equa l A,B is t h e same as Compare Grea te r T h a n or Equa l B,A. 
Therefore, only t h e less- than operat ions a re included. 

None 
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4.4.6 Integer Unsigned Compare 

Format: 

CMPUxx Ra.rq,Rb.rq,Rcwq 

CMPUxx Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

IF Rav UN SIGNED_RELATION Rbv THEN 
Rc <- 1 

ELSE 
RC « - 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPULE Compare Unsigned Quadword Less T h a n or Equa l 

CMPULT Compare Unsigned Quadword Less T h a n 

Qualifiers: 

None 

Description: 

Register Ra is compared to Register Rb or a l i teral . If t he specified relat ionship is 
t rue , t he value one is wr i t ten to register Rc; otherwise, zero is wr i t ten to Rc. 

4-28 Common Architecture (I) 



4.4.7 Longword Multiply 

Format: 

MULL 

MULL Ra.rq,Rb.rq,Rc.wq 

Ra.Rq,#b.ib,Rc.wq 

.Operate format 

.Operate format 

Operation: 

Rc <- SEXT ((Rav * Rbv)<31:0>) 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

MULL Multiply Longword 

Qualifiers: 

In teger Overflow Enable (/V) 

Description: 

Register Ra is mult ipl ied by regis ter Rb or a l i teral , and the sign-extended 32-bit 
product is wr i t t en to Rc. 

The high 32 bi ts of Ra and Rb a re ignored. Rc is a proper sign extension 
of t he t runca ted 32-bit product. Overflow detection is based on the longword 
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least 
significant 32 bits of t he t r u e resu l t a r e wr i t t en to t he dest inat ion register. 

The MULQ instruct ion can be used to r e t u r n t he full 64-bit product. 
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4.4.8 Quadword Multiply 

Format: 

MULQ 

MULQ 

Ra.rq,Rb.rq,Rc.wq 

Ra.Rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

Rc <— Rav * Rbv 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

MULQ Multiply Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description : 

Register Ra is multiplied by register Rb or a l i teral , and the 64-bit product is wr i t ten 
to register Rc. Overflow detection is based on considering the operands and the resul t 
as signed quant i t ies . On overflow, the least significant 64 bi ts of the t rue resul t a re 
wr i t ten to the dest inat ion register. 

The UMULH instruct ion can be used to genera te the upper 64 bits of the 128-bit 
resul t when an overflow occurs. 
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4.4.9 Unsigned Quadword Multiply High 

Format: 

U M U L H Ra.rq,Rb.rq,Rc.wq 

U M U L H Ra.Rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

Rc <- {Rav *U Rbv}<127:64> 

Exceptions: 

None 

Instruction mnemonics: 

U M U L H Unsigned Multiply Quadword High 

Qualifiers: 

Description: 

Register Ra and Rb or a l i teral a re mult ipl ied as unsigned number s to produce a 
128-bit resul t . The high-order 64-bits a re wr i t t en to register Rc. 

The U M U L H instruct ion can be used to genera te t he upper 64 bi ts of a 128-bit resul t 
a s follows: 

Ra and Rb a re unsigned: resul t of U M U L H 

Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra 

The MULQ instruct ion gives t he low 64 bits of the resul t in e i ther case. 

None 
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4.4.10 Longword Subtract 

Format: 

SUBL 

SUBL Ra.rq,Rt>.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation : 

Rc «- SEXT ((Rav - Rbv)<31:0>) 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

SUBL Subtrac t Longword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Rb or a l i teral is subtracted from regis ter Ra, and the sign-extended 32-bit 
difference is wr i t ten to Rc. 

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the 
t runca ted 32-bit difference. Overflow detection is based on the longword difference 
Rav<31:0> - Rbv<31:0>. 
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4.4.11 Scaled Longword Subtract 

Format: 

SxSUBL Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format SxSUBL 

Operation: 

CASE 
S4SUBL: Rc <- SEXT (((LEFTJSHIFT(Rav,2) ) - Rbv)<31:0>) 
S8SUBL: Rc <- SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

S4SUBL Scaled Subt rac t Longword by 4 

S8SUBL Scaled Subt rac t Longword by 8 

Qualifiers: 

None 

Description: 

Register Rb or a l i teral is subt rac ted from the scaled value of regis ter Ra, which is 
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit différence 
is wr i t ten to Rc. 

The high 32 bi ts of Ra and Rb are ignored. Rc is a proper sign extension of t he 
t runca ted 32-bit difference. 
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4.4.12 Quadword Subtract 

Format: 

SUBQ 

SUBQ 

Ra.rq,Rb.rq,Re.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

Rc <— Rav - Rbv 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

SUBQ Subtrac t Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Rb or a l i teral is subtracted from register Ra, and the 64-bit difference is 
wr i t ten to register Rc. On overflow, t he least significant 64 bits of the t r ue resul t 
a re wr i t ten to the dest inat ion register. 

The unsigned compare instruct ions can be used to genera te borrow. If t he minuend 
(Rav) is less unsigned t h a n the sub t rahend (Rbv), the re will be a borrow. 
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4.4.13 Scaled Quadword Subtract 

Format: 

SxSUBQ 

SxSUBQ 

Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

CASE 
S4SUBQ: Rc «- LEFT_SHIFT(Rav ,2) - Rbv 
S8SUBQ: Rc «- LEFT_SHIFT ( Rav, 3 ) - Rbv 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

S4SUBQ Scaled Subt rac t Quadword by 4 

S8SUBQ Scaled Subt rac t Quadword by 8 

Qualifiers: 

None 

Description: 

Register Rb or a l i teral is subt rac ted from the scaled value of regis ter Ra, which is 
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), a n d the 64-bit difference is wr i t ten to 
Rc. 
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4.5 Logical and Shift Instructions 

The logical instruct ions perform quadword Boolean operat ions. The conditional move 
integer instruct ions perform conditionals wi thout a branch. The shift instruct ions 
perform left and r ight logical shift and r ight ar i thmet ic shift. These a re summar ized 
in Table 4 -6 . 

Table 4 - 6 : Logical and Shift Instructions Summary 
Mnemonic Opera t ion 

AND Logical Product 

BIC Logical Product with Complement 

BIS Logical Sum (OR) 

EQV Logical Equivalence (XORNOT) 

ORNOT Logical Sum with Complement 

XOR Logical Difference 

CMOVxx Conditional Move Integer 

SLL Shift Left Logical 

SRA Shift Right Arithmetic 

SRL Shift Right Logical 

SOFTWARE NOTE 
There is no ar i thmet ic left shift instruction. Where an 
ar i thmet ic left shift would be used, a logical shift will 
do. For mult iplying by a small power of two in address 
computat ions, logical left shift is acceptable. 

Integer mult iply should be used to perform an ar i thmet ic left shift wi th overflow 
checking. 

Bit field extracts can be done wi th two logical shifts. Sign extension can be done 
with left logical shift and a right ar i thmet ic shift. 
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4.5.1 Logical Functions 

Format: 

mnemonic Ra.rq,Rb.rq,Rc.wq ÎOperate format 

mnemonic Ra.rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

RC <— Rav AND Rbv ! AND 
Rc «— Rav OR Rbv •BIS 
Rc <— Rav XOR Rbv !XOR 
Rc 4 - Rav AND {NOT Rbv} !BIC 
Rc <— Rav OR {NOT Rbv} !ORNOT 
Rc <— Rav XOR {NOT Rbv} !EQV 

Exceptions: 

None 

Instruction mnemonics: 

AND Logical Product 

BIC Logical Product wi th Complement 

BIS Logical Sum (OR) 

EQV Logical Equivalence (XORNOT) 

ORNOT Logical Sum with Complement 

XOR Logical Difference 

Qualifiers: 

None 

Description: 

These instruct ions perform the designated Boolean function between register Ra and 
regis ter Rb or a l i teral . The resu l t is wr i t t en to regis ter Rc. 

The "NOT" function can be performed by doing an ORNOT with zero (Ra = R31). 
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4.5.2 Conditional Move Integer 

Format: 

CMOVxx Ra.rq,Rb.rq,Rc.wq ÎOperate format 

CMOVxx Ra.rq,#b.ib,Rc.wq '.Operate format 

Operation: 

IF TEST(Rav, Condition_based_on__Opcode) THEN 

Rc «— Rbv 

Exceptions: 

None 

Instruction mnemonics: 

CMOVEQ CMOVE 

CMOVGE CMOVE 

CMOVGT CMOVE 

CMOVLBC CMOVE 

CMOVLBS CMOVE 

CMOVLE CMOVE 

CMOVLT CMOVE 

CMOVNE CMOVE 

Qualifiers: 

None 

Description: 

Register Ra is tested. If t he specified relat ionship is t rue , t he value Rbv is wr i t ten 
to register Rc. 

if Register Equa l to Zero 

if Register Grea te r T h a n or Equa l to Zero 

if Register Grea te r T h a n Zero 

if Register Low Bit Clear 

if Register Low Bit Set 

if Register Less T h a n or Equa l to Zero 

if Register Less T h a n Zero 

if Register Not Equa l to Zero 
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Notes: 

Except t h a t i t is likely in m a n y implementa t ions to be substant ia l ly faster, the 
instruction: 

CMOVEQ Ra,Rb,Rc 

is exactly equivalent to: 

BNE Ra,label 
OR Rb,Rb,Rc 

label: ... 

For example, a branchless sequence for: 

R1=MAX(R1,R2) 

is: 

CMPLT R1,R2,R3 ! R3=l if R K R 2 

CMOVNE R3,R2,R1 i Move R2 to Rl if R K R 2 

Instruction Descriptions (I) 4-39 



4.5.3 Shift Logical 

Format: 

SxL Ra.rq,Rb.rq,Rc.wq ÎOperate format 

SxL Ra.rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

Rc <- LEFT_SHIFT(Rav, Rbv<5:0>) ! SLL 
Rc «- RIGHT__SHIFT(Rav, Rbv<5:0>) !SRL 

Exceptions: 

None 

Instruction mnemonics: 

SLL Shift Left Logical 

SRL Shift Right Logical 

Qualifiers: 

None 

Description: 

Register Ra is shifted logically left or r ight 0 to 63 bi ts by the count in register Rb 
or a l i teral. The resul t is wr i t ten to register Rc. Zero bi ts a re propagated into the 
vacated bit positions. 
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4.5.4 Shift Arithmetic 

Format: 

SRA Ra.rq ,Rb.rq ,Rcwq 

Ra.rb,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format SRA 

Operation: 

Rc 4 - ARITH__RIGHTJ3HIFT(Rav, Rbv<5:0>) 

Exceptions: 

None 

Instruction mnemonics: 

SRA Shift Right Ari thmet ic 

Qualifiers: 

None 

Description: 

Register Ra is r ight shifted ar i thmetical ly 0 to 63 bi ts by t he count in register Rb or 
a l i teral . The resul t is wr i t ten to regis ter Rc. The sign bit (Rav<63>) is propagated 
into the vacated bit positions. 
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4.6 Byte-Manipulation Instructions 

Alpha provides instruct ions for operat ing on byte operands wi thin registers . 
These instruct ions allow full-width memory accesses in the load/store instruct ions 
combined with powerful in-register byte manipula t ion. 

The instruct ions a re summar ized in Table 4 - 7 . 

Table 4 - 7 : Byte-Manipulation Instructions Summary 

Mnemonic Opera t ion 

CMPBGE Compare Byte 

EXTBL Extract Byte Low 

EXTWL Extract Word Low 

EXTLL Extract Longword Low 

EXTQL Extract Quadword Low 

EXTWH Extract Word High 

EXTLH Extract Longword High 

EXTQH Extract Quadword High 

INSBL Insert Byte Low 

INSWL Insert Word Low 

INSLL Insert Longword Low 

INSQL Insert Quadword Low 

INSWH Insert Word High 

INSLH Insert Longword High 

INSQH Insert Quadword High 

MSKBL Mask Byte Low 

MSKWL Mask Word Low 

MSKLL Mask Longword Low 

MSKQL Mask Quadword Low 

MSKWH Mask Word High 

MSKLH Mask Longword High 

MSKQH Mask Quadword High 
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Table 4-7 (Cont.): Byte-Manipulation Instructions Summary 
Mnemonic Opera t ion 

ZAP Zero Bytes 

ZAPNOT Zero Bytes Not 
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4.6.1 Compare Byte 

Format: 

CMPBGE Ra.rq,Rb.rq,Rc.wq ÎOperate format 

CMPBGE Ra.rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

FOR i FROM 0 TO 7 

temp<8:0> <- {0 | | Rav<i*8+7:i*8>} + 
{0|| NOT Rbv<i*8+7:i*8>> + 1 

Rc<i> «— temp<8> 
END 
Rc<63:8> «- 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPBGE Compare Byte 

Qualifiers: 

None 

Description: 

CMPBGE does eight paral lel unsigned byte comparisons between corresponding 
bytes of Rav and Rbv, storing the eight resul t s in t he low eight bi ts of Rc. The 
high 56 bi ts of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc 
corresponds to byte 1, and so forth. A resul t bit is set in Rc if the corresponding byte 
of Rav is grea ter t h a n or equal to Rbv (unsigned). 
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Notes: 

To compare two character s t r ings for greater/ less: 

<initialize Rl to aligned QW address of stringl> 
<initialize R2 to aligned QW address of string2> 

LOOP: 

LDQ R2,0(R1) 
LDA R1,8(R1) 
CMPBGE R31,R2,R3 
BEQ R3,LOOP 

Pick up 8 bytes 
Increment string pointer 
If NO bytes of zerof R3<7:0>=0 
Loop if no terminator byte found 
At this point, R3 can be used to 
determine which byte terminated 

LDQ R3,0(R1) 
LDA R1,8(R1) 
LDQ R4,0(R2) 
LDA R2,8(R2) 
XOR R3,R4,R5 
BEQ R5,LOOP 
CMPBGE R31,R5,R5 

Pick up 8 bytes of stringl 
Increment stringl pointer 
Pick up 8 bytes of string2 
Increment string2 pointer 
Test for all equal bytes 
Loop if all equal 

At this point, R5 can be used to 
determine the first not-equal 
byte position. 

To range-check a s t r ing of charac ters in R l for Ό \ / 9 ' : 

LDQ R2,litOs Pick up 8 bytes of the character 
BELOW '0' '////////' 
Pick up 8 bytes of the character 
ABOVE '9' '::::::::' 
Some R4<i>=l if character is LT '0' 
Some R5<i>=l if character is GT '9' 
Branch if some char too low 
Branch if some char too high 

LDQ R3,lit9s 

CMPBGE R2,Rl,R4 
CMPBGE R1,R3,R5 
BNE R4,ERROR 
BNE R5,ERROR 
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4.6.2 Extract Byte 

Format: 

EXTxx Ra 

EXTxx Ra 

Operation: 

CASE 

EXTBL: 
EXTWx: 
EXTLx: 
EXTQx: 

ENDCASE 

CASE 

EXTxL: 
byte__loc <- Rbv<2:0>*8 
temp «- RIGHT_SHIFT(Rav, byte_ 
Rc <- BYTE_ZAP ( temp, NOT(byte_ 

EXTxH: 
byte_loc <- 64 - Rbv<2:0>*8 
temp <- LEFT_SHIFT(Rav, byte_loc<5:0>) 
Rc <- BYTE_ZAP ( temp, NOT(byte_mask) ) 

ENDCASE 

Exceptions: 

None 

.rq,Rb . rq ,Rcwq 

..rq,#b.ib,Rc.wq 

byte_mask <— 
byte_mask +— 
byte_mask <— 
byte_mask <— 

0000 00012 
0000 00112 
0000 11112 

1111 11112 

ÎOperate format 

ÎOperate format 

loc<5:0>) 
mask) ) 

Instruction mnemonics: 

EXTBL Extrac t Byte Low 

EXTWL Extrac t Word Low 

EXTLL Extrac t Longword Low 

EXTQL Extrac t Quadword Low 

EXTWH Ext rac t Word High 

EXTLH Extract Longword High 

EXTQH Extrac t Quadword High 
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Qualifiers: 

None 

Description: 

EXTxL shifts register Ra r ight by 0 to 7 bytes, inser ts zeros into vacated bit positions, 
and t h e n extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left 
by 0 to 7 bytes, inser t s zeros into vacated bit positions, and t hen extracts 2, 4, or 8 
bytes into regis ter Rc. The n u m b e r of bytes to shift is specified by Rbv<2:0>. The 
n u m b e r of bytes to extract is specified in the function code. Remaining bytes are 
filled wi th zeros. 

Notes: 

The comments in t he examples below assume t h a t t he effective address (ea) of 
X(R11) is such t h a t (ea mod 8) = 5, t he value of the aligned quadword containing 
X(R11) is CBAx xxxx, and the value of t he aligned quadword containing X+7(R11) is 
yyyH GFED. 

The examples below are t he most general case unless otherwise noted; if more 
information is known about the value or in tended a l ignment of X, shor ter sequences 
can be used. 

The in tended sequence for loading a quadword from unal igned address X(R11) is: 

LDQ_U 
LDQ_U 
LDA 
EXTQL 
EXTQH 
OR 

R1,X(R11) 
R2,X+7(R11) 
R3,X(R11) 
R1,R3,R1 
R2 , R3, R2 
R2,R1,R1 

Ignores va<2:0>, Rl = CBAx xxxx 
Ignores va<2:0>, R2 = yyyH GFED 
R3<2:0> = (X mod 8) = 5 
Rl = 0000 OCBA 
R2 = HGFE DO00 
Rl = HGFE DCBA 

The in tended sequence for loading and zero-extending a longword from unal igned 
address X is: 

LDQ_U 
LDQ_U 
LDA 
EXTLL 
EXTLH 
OR 

R1,X(R11) 
R2,X+3(R11) 
R3,X(R11) 
R1,R3,R1 
R2,R3,R2 
R2,R1,R1 

Ignores va<2:0>, Rl = CBAx xxxx 
Ignores va<2:0>, R2 = yyyy yyyD 
R3<2:0> = (X mod 8) = 5 
Rl = 0000 OCBA 
R2 = 0000 D000 
Rl = 0000 DCBA 

The in tended sequence for loading and sign-extending a longword from unal igned 
address X is: 

LDQ U R1,X(R11) • Ignores va<2:0>, Rl = CBAx XXXX 

LDQ U R2,X+3(R11) • Ignores va<2:0>, R2 = yyyy yyyD 
LDA R3,X(R11) • R3<2:0> = (X mod 8) = 5 
EXTLL R1,R3,R1 • Rl = 0000 OCBA 
EXTLH R2,R3,R2 • R2 = 0000 D000 
OR R2,R1,R1 • Rl = 0000 DCBA 
SLL R1,#32,R1 • Rl = DCBA 0000 
SRA R1,#32,R1 Rl = ssss DCBA 

Instruction Descriptions (I) 4-47 



The intended sequence for loading and zero-extending a word from unal igned address 
X i s : 

LDQ_U 
LDQ_U 
LDA 
EXTWL 
EXTWH 
OR 

Rl,X(R11) 
R2fX+l(Rll) 
R3,X(R11) 
R1,R3,R1 
R2,R3,R2 
R2,R1,R1 

Ignores va<2:0>, 
Ignores va<2:0>, 
R3<2:0> = (X mod 8) 
Rl = 0000 00ΒΑ 
R2 = 0000 0000 
Rl = 0000 00ΒΑ 

Rl = yBAx xxxx 
R2 = yBAx xxxx 

5 

The intended sequence for loading and sign-extending a word from unal igned address 
X i s : 

LDQ U R1,X(R11) • Ignores va<2:0>, Rl = yBAx xxxx 
LDQ U R2,X+1(R11) • Ignores va<2:0>, R2 = yBAx xxxx 
LDA R3,X(R11) • R3<2:0> = (X mod 8) = 5 
EXTWL R1,R3,R1 ; Rl = 0000 00ΒΑ 
EXTWH R2 , R3 , R2 • R2 = 0000 0000 
OR R2,R1,R1 ; Rl = 0000 00ΒΑ 
SLL Rl,#48,Rl ? Rl = ΒΑ00 0000 
SRA R1,#48,R1 ; Rl = ssss ssBA 

The intended sequence for loading and zero-extending a byte from address X is: 

LDQ_U R1,X(R11) ; Ignores va<2:0>, Rl = yyAx xxxx 
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5 
EXTBL R1,R3,R1 ; Rl = 0000 000A 

The intended sequence for loading and sign-extending a byte from address X is: 

LDQ_U Rl, X(R11) 
LDA R3, X+1(R11) 

EXTQH Rl, R3, Rl 

SRA Rl, #56, Rl 

Ignores va<2:0>, Rl = yyAx xxxx 
R3<2:0> = (X + 1) mod 8, i.e., 
convert byte position within 
quadword to one-origin based 
Places the desired byte into byte 7 
of Rl.final by left shifting 
Rl.initial by ( 8 - R3<2:0> ) byte 
positions 
Arithmetic Shift of byte 7 down 
into byte 0, 

O p t i m i z e d e x a m p l e s : 

Assume t h a t a word fetch is needed from 10(R3), where R3 is in tended to contain 
a longword-aligned address . The optimized sequences below t ake advantage of the 
known constant offset, and the longword a l ignment (hence a single aligned longword 
contains the ent i re word). The sequences genera te a Da ta Alignment Fau l t if R3 does 
not contain a longword-aligned address . 

The intended sequence for loading and zero-extending an aligned word from 10(R3) 
is: 

LDL R1,8(R3) ; Rl = ssss BAxx 
; Faults if R3 is not longword aligned 

EXTWL R1,#2,R1 ; Rl = 0000 00ΒΑ 
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The in tended sequence for loading and sign-extending an aligned word from 10(R3) 
is: 

LDL R1,8(R3) ; Rl = S S S S BAxx 
; Faults if R3 is not longword aligned 

SRA R1,#16,R1 ; Rl = ssss ssBA 
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4.6.3 Byte Insert 

Format: 

INSxx 

INSxx 

Ra.rq,Rb.rq,Rc.wq 

Ra.rq,#b.ib,Rc.wq 

ÎOperate format 

ÎOperate format 

Operation: 

CASE 
INSBL: byte_mask <- 0000 0000 0000 00012 
INSWx: byte_mask «- 0000 0000 0000 OOII2 
INSLx: byte_mask <- 0000 0000 0000 IIII2 
INSQx: byte_mask <- 0000 0000 1111 IIII2 

ENDCASE 
bytejnask «- LEFT_SHIFT(byte_mask, rbv<2:0>) 

INSxL: 
byte_loc <- Rbv<2:0>*8 
temp <- LEFT__SHIFT(Rav, byte_loc<5:0>) 
Rc <- BYTE_ZAP(temp, NOT(byte_mask<7:0>)) 

INSxH: 
byte_loc <- 64 - Rbv<2:0>*8 
temp <- RIGHT__SHIFT ( Rav, byte_loc<5 : 0>) 
Rc <- BYTE_ZAP(temp, NOT(byte_mask<15:8>)) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

INSBL Inser t Byte Low 

INSWL Inser t Word Low 

INSLL Inser t Longword Low 

INSQL Inser t Quadword Low 

INSWH Inser t Word High 

INSLH Inser t Longword High 

INSQH Inser t Quadword High 

CASE 
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Qualifiers: 

None 

Description: 

INSxL and INSxH shift bytes from regis ter Ra and inser t t h e m into a field of zeros, 
s toring the resul t in regis ter Rc. Register Rb<2:0> selects t he shift amount , and the 
function code selects the m a x i m u m field width: 1, 2, 4, or 8 bytes. The instruct ions 
can genera te a byte, word, longword, or quadword d a t u m t h a t is spread across two 
regis ters a t an a rb i t ra ry byte a l ignment . 
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4.6.4 Byte Mask 

Format: 

MSKxx Ra.rq,Rb.rq,Rcwq '.Operate format 

MSKxx Ra.rq,#b. ib,Rcwq ÎOperate format 

Operation: 

Exceptions: 

None 

Instruction mnemonics: 

MSKBL Mask Byte Low 

MSKWL Mask Word Low 

MSKLL Mask Longword Low 

MSKQL Mask Quadword Low 

MSKWH Mask Word High 

MSKLH Mask Longword High 

MSKQH Mask Quadword High 

Qualifiers: 

None 
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CASE 

MSKBL: byte_mask 4 - 0000 0000 0000 OOOI2 
MSKWx: byte_mask <- 0000 0000 0000 OOII2 
MSKLx: byte_mask <- 0000 0000 0000 IIII2 
MSKQx: byte_mask <- 0000 0000 1111 IIII2 

ENDCASE 
byte__mask <- LEFT_SHIFT(byte_mask, rbv<2:0>) 

CASE 
MSKxL: 

Rc <- BYTE_ZAP ( Rav, bytejnask<7:0>) 

MSKxH: 

Rc BYTE_ZAP ( Rav, byte__mask<15: 8> ) 

ENDCASE 



Description: 

MSKxL and MSKxH set selected bytes of register Ra to zero, s toring the resul t 
in register Rc. Register Rb<2:0> selects the s t a r t ing position of the field of zero 
bytes, and the function code selects the max imum width: 1, 2, 4, or 8 bytes. The 
instruct ions genera te a byte, word, longword, or quadword field of zeros t h a t can 
spread across two regis ters a t an a rb i t ra ry byte al ignment . 

Notes: 
The comments in the examples below assume t h a t the effective address (ea) of X(R11) 
is such t h a t (ea mod 8) = 5, t h e value of t he aligned quadword containing X(R11) is 
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED, 
and the value to be stored from R5 is hgfe dcba. 

The examples below are the most general case; if more information is known about 
t he value or in tended a l ignment of X, shor ter sequences can be used. 

The in tended sequence for s toring a n unal igned quadword R5 a t address X(R11) is: 

LDA R6,X(R11) R6<2:0> = (X mod 8) = 5 
LDQ U R2,X+7(R11) Ignores va<2:0>, R2 = yyyH GFED 
LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAx xxxx 
INSQH R5,R6,R4 R4 = OOOh gfed 
INSQL R5,R6,R3 R3 = cbaO 0000 
MSKQH R2fR6,R2 , R2 = yyyO 0000 
MSKQL R1,R6,R1 - Rl = OOOx xxxx 
OR R2,R4,R2 R2 = yyyh gfed 
OR R1,R3,R1 • Rl - cbax xxxx 
STQ U R2,X+7(R11) • Must store high then low for 
STQ U R1,X(R11) » degenerate case of aligned QW 

The in tended sequence for s tor ing an unal igned longword R5 a t X is: 

LDA R6,X(R11) R6<2:0> = (X mod 8) = 5 
LDQ U R2,X+3(R11) Ignores va<2:0>, R2 = yyyy yyyD 
LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAx xxxx 
INSLH R5,R6,R4 R4 = 0000 OOOd 
INSLL R5,R6,R3 R3 = cbaO 0000 
MSKLH R2,R6,R2 . R2 = yyyy yyyO 
MSKLL Rl,R6,Rl Rl = OOOx xxxx 
OR R2,R4,R2 ' R2 = yyyy yyyd 
OR R1,R3,R1 Rl = cbax xxxx 
STQ U R2,X+3(R11) ' Must store high then low for 
STQ U R1,X(R11) • degenerate case of aligned 
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The intended sequence for storing an unal igned word R5 a t X is: 

LDA R6 ,X(R11) 
LDQ U R2 ,X+1(R11) 
LDQ U Rl ,X(R11) 
INSWH R5 ,R6,R4 
INSWL R5 ,R6,R3 
MSKWH R2 , R6, R2 
MSKWL Rl ,R6fRl 
OR R2 ,R4,R2 
OR Rl ,R3,R1 
STQ U R2 ,X+1(R11) 
STQ U Rl ,X(R11) 

The intended sequence for storing a 

LDA R6,X(R11) 
LDQ_U R1,X(R11) 
INSBL R5,R6,R3 
MSKBL R1,R6,R1 
OR R1,R3,R1 
STQ_U Rl,X(Rll) 

; R6<2:0> = (X mod 8) = 5 
; Ignores va<2:0>, R2 = yBAx xxxx 
; Ignores va<2:0>, Rl = yBAx xxxx 
; R4 = 0000 0000 
; R3 = ObaO 0000 
; R2 = yBAx xxxx 
; Rl = yOOx xxxx 
; R2 = yBAx xxxx 
; Rl = ybax xxxx 
; Must store high then low for 
; degenerate case of aligned 

byte R5 a t X is: 

; R6<2:0> = (X mod 8) = 5 
; Ignores va<2:0>, Rl = yyAx xxxx 
; R3 = OOaO 0000 
; Rl = yyOx xxxx 
; Rl = yyax xxxx 
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4.6.5 Zero Bytes 

Format: 

ZAPx Ra.rq,Rb.rq,Rc.wq ÎOperate format 

ZAPx Ra.rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

CASE 

ZAP: 
Rc 

ΖΑΡΝΟΤ: 
Rc 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

ZAP Zero Bytes 

ZAPNOT Zero Bytes Not 

Qualifiers: 

None 

Description: 

ZAP and ZAPNOT set selected bytes of regis ter Ra to zero, and store t h e resul t in 
regis ter Rc. Register Rb<7:0> selects t he bytes to be zeroed; bi t 0 of Rbv corresponds 
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A resul t byte is set to zero 
if t he corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT. 

BYTE_ZAP(Rav, rbv<7:0>) 

BYTE_ZAP(Rav, NOT rbv<7:0>) 
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4.7 Floating-Point Instructions 

Alpha provides instruct ions for operat ing on floating-point operands in each of four 
da t a formats: 

• F_floating (VAX single) 

• G_floating (VAX double, 11-bit exponent) 

• S.floating ( IEEE single) 

• T.floating ( IEEE double, 11-bit exponent) 

Da ta conversion instruct ions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and 
between quadword and longword integers . 

NOTE 
D_floating is a part ial ly supported da ta type; no D_ 
floating ar i thmet ic operat ions are provided in the 
archi tecture. For backward compatibility, exact D_ 
floating ar i thmet ic m a y be provided via software 
emulat ion. D_floating "format compatibility," in which 
b inary files of D_floating numbers may be processed 
bu t without the last 3 bi ts of fraction precision, can 
be obtained via conversions to G_floating, G ar i thmet ic 
operations, t hen conversion back to D_floating. 

The choice of da t a formats is encoded in each instruction. Each instruct ion also 
encodes t h e choice of rounding mode and t h e choice of t r app ing mode. 

All floating-point operate instruct ions ( tha t is, not including loads or stores) t h a t 
yield an F_ or G_floating zero resul t m u s t mater ia l ize a t r ue zero. 

4.7.1 Floating Subsets and Floating Faults 

All floating-point operat ions may t ake floating disabled faults. Any subset ted 
floating-point instruct ion may t ake an Illegal Instruct ion Trap. These faults are 
not explicitly listed in the description of each instruct ion. 

All floating-point loads and stores m a y t ake memory managemen t faults (access 
control violation, t rans la t ion not valid, fault on read/wri te , da t a al ignment) . 

The Floating-point Enable (FEN) in te rna l processor regis ter (IPR) allows system 
software to restr ict access to the floating registers . 

If a floating instruct ion is implemented and F E N = 0, a t t empts to execute the 
instruct ion cause a floating disabled fault. 

If a floating instruct ion is not implemented, a t t empts to execute the instruct ion 
cause an Illegal Instruct ion Trap. This ru le holds regardless of t he value of FEN. 

An Alpha implementat ion may provide both VAX and IEEE floating-point operations, 
either, or none. 
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Some floating-point ins t ruct ions a re common to the VAX and IEEE subsets , some 
are VAX only, and some are IEEE only. These are designated in t he descriptions 
t h a t follow. If e i ther subset is implemented, all t he common instruct ions m u s t be 
implemented. 

An implementa t ion including IEEE floating-point may subset the ability to perform 
rounding to plus infinity and minus infinity. If not implemented, instruct ions 
reques t ing these rounding modes t ake Illegal Ins t ruct ion Trap. 

4.7.2 Definitions 

The following definitions apply to Alpha floating-point support . 

true result 
The mathemat ica l ly correct resul t of an operation, a ssuming t h a t t he inpu t operand 
values a re exact. The t r ue resul t is typically rounded to t he neares t representable 
resul t . 

representable result 
a real number t h a t can be represented exactly as a VAX or IEEE floating-point 
number, wi th finite precision and bounded exponent range . 

LSB 
The leas t significant bit. For a positive representable n u m b e r A whose fraction is 
not all ones, A + 1 LSB is the next larger representable number , and A + 1/2 LSB 
is exactly halfway between A and the next larger representable number . 
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true zero 
The value +0, represented as exactly 64 zeros in a floating-point register. 

Alpha finite number 
A floating-point number wi th a definite, in-range value. Specifically, all numbers 
in the inclusive ranges -MAX. . -MIN, zero, +MIN..+MAX, where MAX is t he largest 
non-infinite representable floating-point number and MIN is the smallest non-zero 
representable normalized floating-point number . 

For VAX floating-point, finîtes do not include reserved operands or dir ty zeros (this 
differs from the usua l VAX in terpre ta t ion of dir ty zeros as finite). For IEEE floating-
point, finîtes do not include infinites, NaNs , or denormals , b u t do include minus zero. 

Not-a-Number 
An IEEE floating-point bit pa t t e rn t h a t represen ts something other t h a n a number. 
This comes in two forms: signaling N a N s (for Alpha, those wi th an init ial fraction 
bi t of 1) and quiet N a N s (for Alpha, those wi th init ial fraction bi t of 0). 

infinity 
An IEEE floating-point bit pa t t e rn t h a t represen ts plus or minus infinity. 



denormal 
An IEEE floating-point bit pa t t e rn t h a t represen ts a n u m b e r whose magni tude lies 
between zero and the smallest finite number. 

dirty zero 

A VAX floating-point bit pa t t e rn t h a t represen ts a zero value, bu t not in true-zero 
form. 

reserved operand 
A VAX floating-point bit pa t t e rn t h a t represents an illegal value, 

trap shadow 
The set of instruct ions potentially executed after an instruct ion t h a t signals an 
ar i thmet ic t r a p bu t before the t r a p is actually t aken . 

4.7.3 Encodings 
Floating-point numbers a re represented wi th th ree fields: sign, exponent, and 
fraction. The sign is 1 bit; t he exponent is 8 or 11 bits; and the fraction is 23, 
52, or 55 bits . Some encodings represent special values: 

Vax VAX IEEE IEEE 
Sign Exponen t F rac t ion Meaning F in i te Mean ing F in i te 

X All-l 's Non-zero Fini te Yes + / -NaN No 

X Aii-rs 0 Fini te Yes +/-Infinity No 

0 0 Non-zero Dirty zero No +Denormal No 

1 0 Non-zero Resv. operand No - D e n o r m a l No 

0 0 0 True zero Yes +0 Yes 

1 0 0 Resv. operand No - 0 Yes 

X Other X Fini te Yes finite Yes 

The values of MIN and MAX for each of the four floating-point da t a formats are: 

Data Format MIN MAX 

F_floating 

G_floating 

S_floating 

2**_127 * 0.5 
(0.294e-38) 

2**-1023 * 0.5 
(0.56e-308) 

2**-126 * 1.0 
(1.175e-38) 

2**127 * (1.0 - 2**-24) 
(1.70e38) 

2**1023 * (1.0 - 2**-53) 
(0.899e308) 

2**127 * (2.0 - 2**-23) 
(3.40e38) 
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Data Format MIN MAX 

T J I o a t i n g 2**-1022 * 1.0 
(2.225e-308) 

2**1023 * (2.0 - 2**-52) 
(1.798e308) 

4.7.4 Floating-Point Rounding Modes 

All rounding modes m a p a t r u e resu l t t h a t is exactly representable to t h a t 
representable value. 

VAX Rounding Modes 

For VAX floating-point operat ions, two rounding modes a re provided and are 
specified in each instruction: normal (biased) rounding and chopped rounding. 

Normal VAX rounding m a p s t he t r u e resu l t to t he nea res t of two representable 
resul ts , wi th t rue resul ts exactly halfway between mapped to t he larger in absolute 
value (sometimes called biased rounding away from zero); m a p s t r u e resul ts 
> MAX + 1/2 LSB in magni tude to an overflow; m a p s t rue resul ts < MIN - 1/2 LSB 
in magni tude to an underflow. 

Chopped VAX rounding m a p s the t r ue resul t to the smaller in magni tude of two 
sur rounding representable resul ts ; m a p s t r u e resul t s > MAX + 1 LSB in magni tude 
to an overflow; maps t rue resul ts < MIN in magni tude to an underflow. 

IEEE Rounding Modes 

For IEEE floating-point operat ions, four rounding modes a re provided: normal 
rounding (unbiased round to neares t ) , rounding toward minus infinity, round toward 
zero, and rounding toward plus infinity. The first th ree can be specified in the 
instruct ion. Rounding toward plus infinity can be obtained by se t t ing the Floating-
point Control Register (FPCR) to select i t and then specifying dynamic rounding 
mode in the instruct ion (See Section 4.7.7). Alpha IEEE ar i thmet ic does rounding 
before detecting overflow/underflow. 

Normal IEEE rounding m a p s the t r ue resul t to the neares t of two representable 
resul ts , wi th t rue resul t s exactly halfway between mapped to t he one whose 
fraction ends in 0 (sometimes called unbiased rounding to even); m a p s t rue resul ts 
> MAX + 1/2 LSB in magni tude to a n overflow; maps t r ue resul ts < MIN - 1/2 LSB 
in magni tude to an underflow. 

Plus infinity IEEE rounding m a p s t he t rue resul t to the larger of two surrounding 
representable resul ts ; m a p s t r ue resul t s > MAX in magni tude to an overflow; maps 
positive t rue resul ts < +MIN - 1 LSB to an underflow; and m a p s negative t rue 
resul ts > - M I N to an underflow. 

Minus infinity IEEE rounding m a p s the t r ue resul t to the smaller of two surrounding 
representable resul ts ; m a p s t rue resul t s > MAX in magni tude to an overflow; maps 
positive t r ue resul ts < +MIN to a n underflow; and m a p s negat ive t rue resul ts 
> - M I N + 1 LSB to an underflow. 
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Chopped IEEE rounding maps the t rue resul t to the smaller in magni tude of two 
surrounding representable resul ts ; maps t rue resul ts > MAX + 1 LSB in magni tude 
to an overflow; and maps non-zero t rue resul ts < MIN in magni tude to an underflow. 

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register 
and is described in more detail in Section 4.7.7. 

The following tables summar ize the floating-point rounding modes: 

VAX Rounding Mode 

Normal rounding 

Chopped 

Instruction Notation 

(No modifier) 

/C 

IEEE Rounding Mode Instruction Notation 

Normal rounding (No modifier) 

Dynamic rounding /D 

Plus infinity /D and ensure t h a t FPCR<DYN> = 1 1 ' 

Minus infinity M 

Chopped /C 

4.7.5 Floating-Point Trapping Modes 

There a re six exceptions t h a t can be genera ted by floating-point operate instruct ions, 
all signaled by an ar i thmet ic exception t r ap . These exceptions are : 

• Invalid operation 

• Division by zero 

• Overflow 

• Underflow, may be disabled 

• Inexact result , may be disabled 

• In teger overflow (conversion to integer only), m a y be disabled 

For more detail on the information passed to an ar i thmet ic exception handler , see 
Part II, Operating Systems. 

VAX Trapping Modes 

For VAX floating-point operations other t h a n CVTxQ, four t rapp ing modes a re 
provided. They specify software completion and whe ther t r aps a re enabled for 
underflow. 

For VAX conversions from floating-point to integer, four t rapp ing modes a re provided. 
They specify software completion and whe ther t r ap s are enabled for in teger overflow. 
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IEEE Trapping Modes 

For IEEE floating-point operat ions other t h a n CVTxQ, four t r app ing modes a re 
provided. They specify software completion and whe the r t r ap s a re enabled for 
underflow and inexact resul ts . 

For IEEE conversions from floating-point to integer, four t r app ing modes are 
provided. They specify software completion, and whe the r t r a p s a re enabled for 
integer overflow and inexact resul ts . 

The modes and instruct ion notat ion are : 

VAX Trap Mode Instruction Notation 

Imprecise, underflow disabled (No modifier) 

Imprecise, underflow enabled /U 

Software, underflow disabled /S 

Software, underflow enabled /SU 

VAX Convert-to-Integer Trap Mode Instruction Notation 

Imprecise, integer overflow disabled (No modifier) 

Imprecise, in teger overflow enabled /V 

Software, in teger overflow disabled /S 

Software, in teger overflow enabled /sv 

IEEE Trap Mode Instruction Notation 

Imprecise, unfl disabled, inexact disabled (No modifier) 

Imprecise, unfl enabled, inexact disabled /U 

Software, unfl enabled, inexact disabled /SU 

Software, unfl enabled, inexact enabled /SUI 

IEEE Convert-to-Integer Trap Mode Instruction Notation 

Imprecise, int.ovfl disabled, inexact disabled (No modifier) 

Imprecise, int.ovfl enabled, inexact disabled /V 

Software, int.ovfl enabled, inexact disabled /SV 

Software, int.ovfl enabled, inexact enabled /SVI 

Instruction Descriptions (I) 4-61 



4.7.5.1 Imprecise /Software Completion Trap Modes 

Floating-point instruct ions may be pipelined, and all exceptions are imprecise t r aps : 

• The t rapping instruct ion may wri te an UNPREDICTABLE resul t value. 

• The t r a p PC is an a rb i t ra ry number of instruct ions pas t the one tr iggering 
the t r ap . The tr igger instruct ion plus all in tervening executed instruct ions a re 
collectively referred to as the trap shadow of the t r igger instruction. 

• The extent of the t r a p shadow is bounded only by a TRAPB instruct ion (or the 
implicit TRAPB within a CALL_PAL instruction). 

• Inpu t operand values may have been overwri t ten in t he t r a p shadow. 

• Result values may have been overwri t ten in t he t r a p shadow. 

• An UNPREDICTABLE resul t value m a y have been used as an input operand in 
the t r a p shadow. 

• Additional t r aps m a y occur in the t r a p shadow. 

• In general , it is not feasible to fix up the resul t value or to continue from the 
t r ap . 

This behavior is ideal for operations on finite operands t h a t give finite resul ts . For 
programs t h a t deliberately operate outside t he overflow/underflow range, or use 
IEEE NaNs , software assis tance is required to complete floating-point operations 
correctly. This assis tance can be provided by a software ar i thmet ic t r a p handler , 
plus constra ints on the instruct ions sur rounding the t r ap . 

For a t r a p handle r to complete non-finite ar i thmet ic , t he following conditions m u s t 
hold: 

1. On ent ry to the t r a p shadow, if any Alpha register or memory location contains 
a value t h a t is used as an operand value by some instruct ion i n t he t r a p shadow 
(live on entry), t hen no instruct ion in the t r a p shadow may modify the register 
or memory location. 

2. Within the t r a p shadow, the computat ion of the base regis ter for a memory load 
or store instruct ion may not involve us ing the resul t of an instruct ion t h a t might 
genera te an UNPREDICTABLE resul t . 

3. Within the t r a p shadow, no register may be used more t h a n once as a dest inat ion 
register. 

4. The t r a p shadow may not include any branch instruct ions. 

5. Each floating instruct ion to be completed m u s t be so marked , by specifying the 
/S software completion modifier. 

The first condition allows a software t r a p hand le r to emula te t he tr igger instruct ion 
with i ts original input operand values and then to reexecute t he res t of t he t r a p 
shadow. 

The second condition prevents memory accesses a t unpredictable addresses . 
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The remain ing conditions m a k e i t possible for a software t r a p handle r to find t he 
t r igger instruct ion via a l inear scan backwards from the t r a p PC. 

NOTE 
The /S modifier does not affect instruct ion operat ion 
or t r a p behavior; i t is an informational bi t passed to 
a software t r a p handler . I t allows a t r a p hand le r to 
t es t easily whe the r an instruct ion is in tended to be 
completed. (The /S bi ts of ins t ruct ions signaling t r aps 
a re carried into the t r a p summary.) The hand le r may 
t hen a s sume t h a t the other conditions a re m e t wi thout 
examining the code s t ream. 

If a software t r a p hand le r is provided, i t m u s t hand le the completion of all floating-
point operat ions marked /S t h a t follow the rules above. In effect, one TRAPB 
instruct ion per basic block can be used. 

4.7.5.2 Invalid Operation Arithmetic Trap 

An invalid operat ion ar i thmet ic t r a p is signaled if any operand of a floating 
ar i thmetic-operate inst ruct ion is non-finite. (CMPTxy is an exception to the rule 
and operates normally wi th plus and m i n u s infinity and does not t r a p in th is case.) 
This t r a p is always enabled. If th i s t r a p occurs, an UNPREDICTABLE value is 
stored in the resul t register. ( IEEE-compliant system software m u s t also supply an 
invalid operation indication to t he use r for SQRT of a negat ive non-zero number, 
0/0, χ REM 0, and conversions to integer t h a t t ake an integer overflow trap.) 

4.7.5.3 Division by Zero Arithmetic Trap 

A division by zero ar i thmet ic t r a p is t a k e n if t he numera to r does not cause an invalid 
operation t r a p and the denominator is zero. This t r a p is a lways enabled. If th is t r a p 
occurs, an UNPREDICTABLE value is stored in t he resul t register. 

4.7.5.4 Overflow Arithmetic Trap 

An overflow ar i thmet ic t r a p is signaled if t he rounded resul t exceeds in magni tude 
t he largest finite number of the dest inat ion format. This t r a p is a lways enabled. If 
th is t r a p occurs, an UNPREDICTABLE value is stored in the resul t register. 

4.7.5.5 Underflow Arithmetic Trap 

An underflow occurs if t he rounded resu l t is smal ler in magni tude t h a n the smallest 
finite n u m b e r of t he dest inat ion format. 

If an underflow occurs, a t r ue zero (64 bi ts of zero) is a lways stored in the resul t 
register, even if t he proper I E E E resul t would have been - 0 (underflow below the 
negative denormal range) . 

If a n underflow occurs and underflow t r a p s a re enabled by the instruction, an 
underflow ar i thmet ic t r a p is signaled. 
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4.7.5.6 Inexact Result Arithmetic Trap 

An inexact resul t occurs if t he infinitely precise resul t differs from the rounded 
result . 

If an inexact resul t occurs, t he normal rounded resul t is still stored in the resul t 
register. 

If an inexact resul t occurs and inexact resul t t r aps a re enabled by the instruction, 
an inexact resul t ar i thmet ic t r a p is signaled. 

4.7.5.7 Integer Overflow Arithmetic Trap 

In conversions from floating to quadword integer, an integer overflow occurs if t he 
rounded resul t is outside the range -2**63. .2**63-1. In conversions from quadword 
integer to longword integer, an integer overflow occurs if t he resul t is outside the 
range-2**31 . -2**31-1 . 

If an integer overflow occurs in CVTxQ or CVTQL, the t r ue resul t t runca ted to the 
low-order 64 or 32 bits respectively is stored in the resul t register. 

If an integer overflow occurs and integer overflow t r aps a re enabled by the 
instruction, an integer overflow ar i thmet ic t r a p is signaled. 

4.7.6 Floating-Point Single-Precision Operations 

Single-precision values (F_floating or S_floating) a re stored in the floating registers 
in canonical form, as subsets of double-precision values , wi th 11-bit exponents 
restr icted to the corresponding single-precision range , and wi th the 29 low-order 
fraction bits restr icted to be all zero. 

Single-precision operat ions applied to canonical single-precision values give single-
precision resul ts . Single-precision operat ions applied to non-canonical operands give 
UNPREDICTABLE resul ts . 

Longword integer values in floating regis ters a re stored in bi ts <63:62,58:29>, wi th 
bits <61:59> ignored and zeros in bi ts <28:0>. 

4.7.7 FPCR Register and Dynamic Rounding Mode 

When a n IEEE floating-point operate instruct ion specifies dynamic mode (/D) in i ts 
function field (function code bits <7:6> = 11), t he rounding mode to be used for the 
instruct ion is derived from the FPCR register. The layout of the rounding mode bi ts 
and the i r ass ignments matches exactly the format used in the 11-bit function field 
of t he floating-point operate instruct ions. 

In addition, the FPCR gives a summary for each exception type of the exceptions 
conditions detected by all IEEE floating-point operates t h u s far as well as an 
overall summary bit t h a t indicates whe the r any of these exception conditions has 
been detected. The individual exception bits ma tch exactly in purpose and order 
the exceptions bi ts found in the exception s u m m a r y quadword t h a t is pushed for 
ar i thmet ic t r aps . However, for each instruction, these exceptions bi ts are set 
independent of the t rapp ing mode specified for the instruction. Therefore, even 
though t rapp ing may be disabled for a cer tain exceptional condition, the fact t h a t 
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t he exceptional condition was encountered by an instruct ion will still be recorded in 
t he FPCR. 

Floating-point operates t h a t belong to t he IEEE subset and CVTQL, which belongs 
to both VAX and IEEE subsets , appropriately set t h e FPCR exception bits . I t is 
UNPREDICTABLE whe ther floating-point operates t h a t belong only to the VAX 
floating-point subset set t he FPCR exception bi ts . 

Alpha floating-point ha rdware only t rans i t ions these exception bi ts from zero to one. 
Once set to one, these exception bi ts a re only cleared when software wri tes zero into 
these bi ts by wri t ing a new value into t he FPCR. 

The format of the FPCR is shown in Figure 4 - 1 and described in Table 4 - 8 . 

Figure 4-1 : Floating-Point Control Register (FPCR) Format 
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Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions 
Bit Description 

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to 
(FPCR[57] I FPCR[56] I FPCR[55] I FPCR[54] I FPCR[53] I FPCR[52]). 

62-60 Reserved. Read As Zero; Ignored when written. 

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by 
an IEEE floating-point operate instruction when the instruction's function field 
specifies dynamic mode (/D). Assignments are: 

DYN IEEE Rounding Mode Selected 

00 Chopped rounding mode 

01 Minus infinity 

10 Normal rounding 

11 P lus infinity 

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from 
floating to integer overflowed the destination precision. 

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result 
that differed from the mathematically exact result. 
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Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions 
Bit Descr ip t ion 

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the 
destination exponent. 

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the 
destination exponent. 

53 Division by Zero (DZE). An attempt was made to perform a floating divide 
operation with a divisor of zero. 

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic, 
conversion, or comparison operation, and one or more of the operand values were 
illegal. 

51-0 Reserved. Read As Zero; Ignored when written. 

FPCR is read from and wr i t ten to the floating-point regis ters by the MTJFPCR and 
MF_FPCR instruct ions respectively, which are described in Section 4.7.7.1. 

FPCR and the instruct ions to access it a re required for an implementat ion t h a t 
supports floating-point (see Section 4.1.1.1). On implementa t ions t h a t do not support 
floating-point, the instruct ions t h a t access FPCR (MF_FPCR and MT_FPCR) t ake 
an Illegal Instruct ion Trap. 

4.7.7.1 Accessing the FPCR 

Because Alpha floating-point ha rdware can overlap the execution of a number of 
floating-point instruct ions, accessing the FPCR m u s t be synchronized wi th other 
floating-point instruct ions. A TRAPB m u s t be issued both prior to and after accessing 
the FPCR to ensure t h a t the FPCR access is synchronized wi th the execution of 
previous and subsequent floating-point instruct ions; otherwise synchronization is 
not ensured. 

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures 
t h a t only floating-point instruct ions issued after the second TRAPB are affected 
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_ 
FPCR followed by another TRAPB ensures t h a t t he value read from the FPCR only 
records the exception information for floating-point instruct ions issued prior to the 
first TRAPB. 

Consider the following example: 

SOFTWARE NOTE 
As noted in Section 4.1.1.1, support for FPCR is 
required on a system t h a t suppor ts the OpenVMS Alpha 
operat ing system even if t h a t system does not support 
floating-point. 
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ADDT/D 
TRAPB ; 1 
MT_FPCR Fl,Fl,Fl 
TRAPB ; 2 
SUBT/D 

Without the first TRAPB, it is possible in an implementa t ion for the ADDT/D 
to execute in parallel wi th the MT_FPCR. Thus , it would be UNPREDICTABLE 
whe the r t he ADDT/D was affected by the new rounding mode set by the MT_ 
FPCR and whe the r fields cleared by the MT_FPCR in the exception s u m m a r y were 
subsequent ly set by the ADDT/D. 

Without the second TRAPB, it is possible in an implementa t ion for the MT_FPCR to 
execute in paral lel wi th the SUBT/D. Thus , it would be UNPREDICTABLE whether 
the SUBT/D was affected by the new rounding mode set by t he MT_FPCR and 
whe the r fields cleared by the MT_FPCR in the exception s u m m a r y field of FPCR 
were previously set by t he SUBT/D. 

4.7.7.2 Default Values of the FPCR 

Processor init ialization leaves t he value of FPCR UNPREDICTABLE. 

SOFTWARE NOTE 
Digital software should initialize FPCR<DYN> = 11 
dur ing program activation. Us ing th is default, in terval 
ar i thmet ic code can switch from plus to minus infinity 
rounding wi th no penal ty in performance by us ing /M 
and /D qualifiers. 

P rogram activation should clear all o ther fields of the 
FPCR. 

4.7.7.3 Saving and Restoring the FPCR 

The FPCR m u s t be saved and restored across context switches so t h a t the FPCR 
value of one process does not affect t he rounding behavior and exception summary 
of another process. 

The dynamic rounding mode pu t into effect by the p rogrammer (or initialized by 
image activation) is valid for the ent i re ty of t he program and remains in effect unt i l 
subsequent ly changed by the p rogrammer or unt i l image run-down occurs. 

SOFTWARE NOTE 
The IEEE s t anda rd precludes saving and res tor ing the 
FPCR across subrout ine calls. 

4.7.8 IEEE Standard 

The I E E E S t a n d a r d for Binary Floating-Point Ari thmet ic (ANSI/IEEE S tanda rd 754-
1985) is included by reference. 
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4.8 Memory Format Floating-Point Instructions 

The instruct ions in th is section move da t a between the floating-point regis ters and 
memory. They use the Memory instruct ion format. They do not in terpre t the bi ts 
moved in any way; specifically, they do not t r a p on non-finite values. 

The instruct ions are summar ized in Table 4 - 9 . 

Table 4-9: Memory Format Floating-Point Instructions Summary 
Mnemonic Opera t ion Subse t 

LDF Load F_floating VAX 

LDG Load G_floating (Load D_floating) VAX 

LDS Load S_floating (Load Longword Integer) Both 

LDT Load T_floating (Load Quadword Integer) Both 

STF Store F_floating VAX 

STG Store G_floating (Store D_floating) VAX 

STS Store S_floating (Store Longword Integer) Both 

STT Store T_floating (Store Quadword Integer) Both 
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4.8.1 Load FJIoating 

Format: 

LDF Fa.wf,disp.ab(Rb.ab) ÎMemory format 
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Operation : 

va <- {Rbv + SEXT(disp)} 

Fa <- (va)<15> || MAP_F((va)<14:7>) || 
(va)<6:0> || (va)<31:16> || 0<28:0> 

Exceptions: 

Access Violation 

Fau l t on Read 

Alignment 

Transla t ion Not Valid 

Instruction mnemonics: 

LDF Load F J I o a t i n g 

Qualifiers: 

None 

Description: 

LDF fetches an F J I o a t i n g d a t u m from memory and wri tes it to regis ter Fa . If t he 
da t a is not na tura l ly aligned, an a l ignment exception is generated. 

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent 
according to Table 2 - 1 . 

The v i r tua l address is computed by adding regis ter Rb to t h e sign-extended 16-
bit displacement. The source operand is fetched from memory and the bytes a re 
reordered to conform to the F J I o a t i n g regis ter format. The resu l t is t h e n zero-
extended in the low-order longword and wr i t t en to regis ter Fa . 



4.8.2 Load GJIoating 

Format: 

LDG Fa.wg,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va «- {Rbv + SEXT(disp)} 

Fa <- (va)<15:0> || (va)<31:16> || 
(va)<47:32> || (va)<63:48> 

Exceptions: 

Access Violation 

Fau l t on Read 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

LDG Load GJ Ioa t i ng (Load D_floating) 

Qualifiers: 

None 

Description: 

LDG fetches a G_floating (or D_floating) d a t u m from memory and wri tes it to register 
Fa. If t he da t a is not na tura l ly aligned, an a l ignment exception is generated. 

The vi r tual address is computed by adding regis ter Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from memory, t he bytes a re reordered to 
conform to t he G_floating register format (also conforming to the D_floating register 
format), and the resul t is t hen wr i t ten to register Fa . 

4-70 Common Architecture (I) 



4.8.3 Load SJIoating 

Format: 

LDS Fa.ws,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va 4 - {Rbv + SEXT(disp)} 

Fa 4 - (va)<31> || MAP_S( (va)<30:23>) || 
(va)<22:0> || 0<28:0> 

Exceptions: 

Access Violation 

Fau l t on Read 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

LDS Load S_floating (Load Longword Integer) 

Qualifiers: 

None 

Description: 

LDS fetches a longword (integer or S_floating) from memory and wri tes it to register 
Fa. If t he da t a is not na tura l ly aligned, an a l ignment exception is generated. 

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent 
according to Table 2 -2 . 

The v i r tua l address is computed by adding regis ter Rb to t he sign-extended 16-bit 
displacement. The source operand is fetched from memory, is zero-extended in the 
low-order longword, and then wr i t ten to regis ter Fa . 

Notes: 

• Longword integers in floating regis ters a re stored in bi ts <63:62,58:29>, wi th bi ts 
<61:59> ignored and zeros in bi ts <28:0>. 



4.8.4 Load TJIoating 

Format: 

LDT Fa.wt,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va <- {Rbv + SEXT(disp)} 

Fa <- (va)<63:0> 

Exceptions: 

Access Violation 

Fau l t on Read 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

LDT Load T J I o a t i n g (Load Quadword Integer) 

Qualifiers: 

None 

Description: 

LDT fetches a quadword (integer or TJIoa t ing) from memory and wri tes it to register 
Fa . If t he da t a is not na tura l ly aligned, an a l ignment exception is generated. 

The vi r tual address is computed by adding register Rb to t he sign-extended 16-bit 
displacement. The source operand is fetched from memory and wr i t ten to register 
Fa. 



4.8.5 Store FJIoating 

Format: 

STF Fa.rf,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va «- {Rbv + SEXT(disp)} 

(va)<31:0> <- Fav<44:29> || Fav<63:62>|| Fav<58:45> 

Exceptions: 

Access Violation 

Fau l t on Write 

Alignment 

Transla t ion Not Valid 

Instruction mnemonics: 

STF Store F J I o a t i n g 

Qualifiers: 

None 

Description: 

STF stores an F J I o a t i n g d a t u m from F a to memory. If t he da t a is not na tura l ly 
aligned, an a l ignment exception is generated. 

The v i r tua l address is computed by adding regis ter Rb to t he sign-extended 16-bit 
displacement. The bi ts of t h e source operand a re fetched from regis ter Fa , the bi ts 
a re reordered to conform to F J I o a t i n g memory format, and the resu l t is t h e n wr i t ten 
to memory. Bits <61:59> and <28:0> of F a a re ignored. No checking is done. 



4.8.6 Store GJIoating 

Format: 

STG Fa.rg,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va «- {Rbv + SEXT(disp)} 

(va)<63:0> «- Fav<15:0> || Fav<31:16> || 
Fav<47:32> || Fav<63:48> 

Exceptions: 

Access Violation 

Fau l t on Write 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

STG Store GJ Ioa t i ng (Store D.floating) 

Qualifiers: 

None 

Description: 

STG stores a G_floating (or D_floating) d a t u m from F a to memory. If t he da t a is not 
na tura l ly aligned, an a l ignment exception is generated. 

The vi r tual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa , the bytes a re 
reordered to conform to the G_floating memory format (also conforming to the D_ 
floating memory format), and the resul t is t hen wr i t t en to memory. 



4.8.7 Store SJIoating 

Format: 

STS Fa.rs,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va <- {Rbv + SEXT(disp)} 

(va)<31:0> <- Fav<63:62>||Fav<58:29> 

Exceptions: 

Access Violation 

Fau l t on Write 

Al ignment 

Transla t ion Not Valid 

Instruction mnemonics: 

STS Store S_floating (Store Longword Integer) 

Qualifiers: 

None 

Description: 

STS stores a longword (integer or S_floating) d a t u m from F a to memory. If t he da t a 
is not na tura l ly aligned, an a l ignment exception is generated. 

The v i r tua l address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The bi ts of t h e source operand are fetched from regis ter Fa , t he bi ts 
a re reordered to conform to S_floating memory format, and t h e resu l t is t h e n wr i t ten 
to memory. Bits <61:59> and <28:0> of F a a re ignored. No checking is done. 



4.8.8 Store TJIoating 

Format: 

STT Fa.rt ,disp.ab(Rb.ab) ÎMemory format 
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Operation: 

va <- {Rbv + SEXT(disp)} 

(va)<63:0> <- Fav<63:0> 

Exceptions: 

Access Violation 

Fau l t on Write 

Alignment 

Translat ion Not Valid 

Instruction mnemonics: 

STT Store T J I o a t i n g (Store Quadword Integer) 

Qualifiers: 

None 

Description: 

STT stores a quadword (integer or TJIoa t ing) d a t u m from F a to memory. If the da t a 
is not na tura l ly aligned, an a l ignment exception is generated. 

The vi r tual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from register F a and wr i t ten to memory. 



4.9 Branch Format Floating-Point Instructions 

Alpha provides six floating conditional b ranch instruct ions. These branch-format 
instruct ions tes t t he value of a floating-point regis ter and conditionally change the 
PC. 

They do not in te rpre t t he bi ts tes ted in any way; specifically, they do not t r a p on 
non-finite values. 

The tes t is based on the sign bit and whe the r t he res t of the regis ter is all zero bits . 
All 64 bi ts of the regis ter a re tested. The tes t is independent of t he format of the 
operand in the register. Both plus and minus zero a re equal to zero. A non-zero 
value wi th a sign of zero is g rea te r t h a n zero. A non-zero value wi th a sign of one 
is less t h a n zero. No reserved operand or non-finite checking is done. 

The floating-point b ranch operat ions a re summar ized in Table 4 -10 . 

Table 4-10: Floating-Point Branch Instructions Summary 

Mnemonic Opera t ion Subse t 

FBEQ Floating Branch Equal Both 

FBGE Floating Branch Greater Than or Equal Both 

FBGT Floating Branch Greater Than Both 

FBLE Floating Branch Less Than or Equal Both 

FBLT Floating Branch Less Than Both 

FBNE Floating Branch Not Equal Both 
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4.9.1 Conditional Branch 

Format: 

FBxx Fa.rq,disp.al ÎBranch format 

Operation: 

{update PC} 
va <- PC + {4*SEXT(disp)> 
IF TEST(Fav, Condition_based_on_Opcode) THEN 

PC <— va 

Exceptions: 

None 

Instruction mnemonics: 

FBEQ Float ing Branch Equa l 

FBGE Float ing Branch Grea te r T h a n or Equa l 

FBGT Float ing Branch Grea te r T h a n 

FBLE Float ing Branch Less T h a n or Equa l 

FBLT Float ing Branch Less T h a n 

FBNE Float ing Branch Not Equal 

Qualifiers: 

None 

Description: 

Register F a is tested. If t he specified relat ionship is t rue , t he PC is loaded wi th 
the ta rge t v i r tual address ; otherwise, execution continues wi th the next sequent ial 
instruction. 

The displacement is t r ea ted as a signed longword offset. This m e a n s it is shifted 
left two bits (to address a longword boundary) , sign-extended to 64 bi ts , and added 
to the upda ted PC to form the t a rge t v i r tua l address . 

The conditional b ranch instruct ions a re PC-relative only. The 21-bit signed 
displacement gives a forward/backward b ranch distance of + / - 1M instruct ions. 
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Notes: 

• Tb branch properly on non-finite operands , compare to F 3 1 , t h e n branch on the 
resul t of the compare. 

• The largest negat ive integer (8000 0000 0000 0 0 0 0 1 6) is t he same bit pa t t e rn as 
floating minus zero, so it is t r ea ted as equal to zero by the b ranch instruct ions. 
To b ranch properly on the largest negat ive integer, convert i t to floating or move 
i t to an integer regis ter and do a n in teger branch. 
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4.10 Floating-Point Operate Format Instructions 

The floating-point bit-operate instruct ions perform copy and integer convert 
operations on 64-bit register values. The bit-operate instruct ions do not in terpre t 
the bits moved in any way; specifically, they do not t r a p on non-finite values. 

The floating-point ar i thmetic-operate instruct ions perform add, subtract , multiply, 
divide, compare, and floating convert operations on 64-bit register values in one of 
the four specified floating formats. 

Each instruct ion specifies the source and dest inat ion formats of t he values, as well 
as the rounding mode and t rapp ing mode to be used. These instruct ions use the 
Floating-point Opera te format. 

The floating-point operate instruct ions a re summar ized in Table 4 - 1 1 . 

Table 4-11 : Floating-Point Operate Instructions Summary 

Mnemonic Opera t ion Subse t 

Bit a n d FPCR Opera t ions 

CPYS Copy Sign Both 

CPYSE Copy Sign and Exponent Both 

CPYSN Copy Sign Negate Both 

CVTLQ Convert Longword to Quadword Both 

CVTQL Convert Quadword to Longword Both 

FCMOVxx Floating Conditional Move Both 

MF_FPCR Move from Floating-point Control Register Both 

MT_FPCR Move to Floating-point Control Register Both 
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Table 4-11 (Co η t.): Floating-Point Operate Instructions Summary 
Mnemonic Operation Subset 

Arithmetic Operations 

ADDF Add FJIoating VAX 

ADDG Add G_floating VAX 

ADDS Add S_floating IEEE 

ADDT Add T_floating IEEE 

CMPGxx Compare G_floating VAX 

CMPTxx Compare T_floating IEEE 

CVTDG Convert D_floating to G_floating VAX 

CVTGD Convert G_floating to D_floating VAX 

CVTGF Convert G_floating to F_floating VAX 

CVTGQ Convert G_floating to Quadword VAX 

CVTQF Convert Quadword to F_floating VAX 

CVTQG Convert Quadword to G_floating VAX 

CVTQS Convert Quadword to S_floating IEEE 

CVTQT Convert Quadword to T_floating IEEE 

CVTTQ Convert T_floating to Quadword IEEE 

CVTTS Convert T_floating to S_floating IEEE 

DIVF Divide F_floating VAX 

DIVG Divide G_floating VAX 

DIVS Divide S_floating IEEE 

DIVT Divide T_floating IEEE 

MULF Multiply F_floating VAX 

MULG Multiply G_floating VAX 

MULS Multiply S_floating IEEE 

MULT Multiply TJIoating IEEE 

SUBF Subtract F_floating VAX 
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary 

Mnemonic Opera t ion Subse t 

Ar i thmet ic Opera t ions 

SUBG Subtract GJIoating VAX 

SUBS Subtract S.floating IEEE 

SUBT Subtract TJIoating IEEE 
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4.10.1 Copy Sign 

Format: 

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Opera te format 

Operation: 

CASE 
CPYS: Fc 
CPYSN: Fc 
CPYSE: Fc 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

CPYS Copy Sign 

CPYSE Copy Sign and Exponent 

CPYSN Copy Sign Negate 

Qualifiers: 

None 

Description: 

For CPYS and CPYSN, t he sign bit of F a is fetched (and complemented in the case 
of CPYSN) and concatenated wi th the exponent and fraction bi ts from Fb; the resul t 
is stored in Fc. 

For CPYSE, the sign and exponent b i ts from F a a re fetched and concatenated wi th 
the fraction bi ts from Fb; the resul t is stored in Fc. 

No checking of the operands is performed. 

Notes: 

• Register moves can be performed us ing CPYS Fx,Fx,Fy. Floating-point absolute 
value can be done us ing CPYS F31,Fx,Fy. Floating-point negat ion can be done 
us ing CPYSN Fx,Fx,Fy. Float ing values can be scaled to a known range by using 
CPYSE. 

<- Fav<63> Π Fbv<62:0> 
<- NOT(Fav<63>) Π Fbv<62:0> 
<- Fav<63:52> || Fbv<51:0> 
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4.10.2 Convert Integer to Integer 

Format: 

CVTxy Fb.rq,Fc.wx 

Operation: 

CASE 

!Floating-point Opera te format 

CVTQL: Fc 

CVTLQ: Fc 
ENDCASE 

Fbv<31:30> || 0<2:0> || 
Fbv<29:0> || 0<28:0> 

SEXT(Fbv<63:62> || Fbv<58:29>) 

Exceptions: 

Integer Overflow, CVTQL only 

Instruction mnemonics: 

Convert Longword to Quadword 

Convert Quadword to Longword 

Software (/S) 

In teger Overflow Enable (/V) (CVTQL only) 

CVTLQ 

CVTQL 

Qualifiers: 

Trapping: 

Description: 

The two's-complement operand in register Fb is converted to a two's-complement 
resul t and wr i t ten to regis ter Fc. 

The conversion from quadword to longword is a reposit ioning of the low 32 bits of 
the operand, wi th zero fill and optional integer overflow checking. Integer overflow 
occurs if Fb is outside the range -2**31. .2**31-1. If integer overflow occurs, t he 
t runca ted resul t is stored in Fc, and a n ar i thmet ic t r a p is t aken if enabled. 

The conversion from longword to quadword is a repositioning of 32 bits of t h e 
operand, wi th sign extension. 
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4.10.3 Floating-Point Conditional Move 

Format: 

FCMOVxx Fa.rq,Fb.rq,Fc.wq 

Operation: 

!Floating-point Opera te format 

IF TEST(Fav, Condition_based_on_Opcode) THEN 

Fc <— Fbv 

Exceptions: 

None 

Instruction mnemonics: 

FCMOVEQ 

FCMOVGE 

FCMOVGT 

FCMOVLE 

FCMOVLT 

FCMOVNE 

FCMOVE if Register Equa l to Zero 

FCMOVE if Register Grea te r T h a n or Equa l to Zero 

FCMOVE if Register Grea te r T h a n Zero 

FCMOVE if Register Less T h a n or Equa l to Zero 

FCMOVE if Register Less T h a n Zero 

FCMOVE if Register Not Equal to Zero 

Qualifiers: 

None 

Description: 

Register F a is tested. If t he specified rela t ionship is t rue , regis ter Fb is wr i t ten to 
register Fc; otherwise, t he move is suppressed and register Fc is unchanged. The 
tes t is based on the sign bit and whe the r the res t of t he regis ter is all zero bi ts , as 
described for floating branches in Section 4.9. 
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Notes: 

FByy Fa,label 
CPYS Fb,Fb,Fc 

; yy = NOT xx 

label: 

For example, a branchless sequence for: 

F1=MAX(F1,F2) 

is: 
CMPxLT F1,F2,F3 
FCMOVNE F3,F2,F1 

! F3=one if F K F 2 ; x=F/G/S/T 
! Move F2 to Fl if F K F 2 
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Except t h a t i t is likely in many implementa t ions to be substant ia l ly faster, t he 
instruction: 

FCMOVxx FafFb,Fc 

is exactly equivalent to: 



4.10.4 Move from/to Floating-Point Control Register 

Format: 

Mx_FPCR Fa.rq ,Fa.rq ,Fa.wq !Floating-point Opera te format 

Operation: 

CASE 
MT_FPCR: FPCR <— Fav 
MF_FPCR: Fa <- FPCR 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

MF_FPCR Move from Floating-point Control Register 

MT_FPCR Move to Floating-point Control Register 

Qualifiers: 

None 

Description: 

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or wr i t ten 
to (MT_FPCR), a floating-point register. The floating-point register to be used is 
specified by the Fa, Fb, and Fc fields all point ing to t he same floating-point register. 
If t he Fa, Fb, and Fc fields do not all point to the same floating-point register, t hen 
it is UNPREDICTABLE which regis ter is used. 

The use of these instruct ions and the FPCR are described in Section 4.7.7. 
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4.10.5 VAX Floating Add 

Format: 

ADDx Fa.rx,Fb.rx,Fc.wx 

Operation: 

Fc <— Fav + Fbv 

!Floating-point Opera te format 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Instruction mnemonics: 

ADDF 

ADDG 

Qualifiers: 

Rounding: 

Trapping: 

Add F.f loating 

Add GJ Ioa t i ng 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Description: 

Register F a is added to register Fb, and the sum is wr i t ten to register Fc. 

The sum is rounded or chopped to the specified precision, and t hen the corresponding 
range is checked for overflow/underflow. The single-precision operation on canonical 
single-precision values produces a canonical single-precision result . 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue 
zero ( tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are 
UNPREDICTABLE if th is occurs. See Section 4.7.5 for detai ls of the stored resul t 
on overflow or underflow. 
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4.10.6 IEEE Floating Add 

Format: 

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format 

Operation: 

Fc «— Fav + Fbv 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Inexact Resul t 

Instruction mnemonics: 

ADDS Add S_floating 

ADDT Add T J I o a t i n g 

Qualifiers: 

Rounding: 

Trapping: 

Dynamic (/D) 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Inexact Enable (/I) 

Description: 

Register F a is added to register Fb, and the sum is wr i t ten to register Fc. 

The sum is rounded to t h e specified precision, and then the corresponding range is 
checked for overflow/underflow. The single-precision operat ion on canonical single-
precision values produces a canonical single-precision resul t . 
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An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE N a N s and infinities t rap) . 

The contents of Fc a re UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact 
result . 

4-90 Common Architecture (I) 



4.10.7 VAX Floating Compare 

Format: 

CMPGyy Fa.rg,Fb.rg,Fc.wq !Floating-point Opera te format 

Operation: 

IF Fav SIGNED_RELATION Fbv THEN 
Fc 4 - 4000 0000 0000 OOOOig 

ELSE 
Fc <- 0000 0000 0000 0000i6 

Exceptions: 

Invalid Operat ion 

Instruction mnemonics: 

CMPGEQ Compare G J I o a t i n g Equa l 

CMPGLE Compare G J I o a t i n g Less T h a n or Equa l 

CMPGLT Compare G J I o a t i n g Less T h a n 

Description: 

The two operands in F a and Fb are compared. If t he relat ionship specified by the 
qualifier is t rue , a non-zero floating value (0.5) is wr i t ten to register Fc; otherwise, 
a t rue zero is wr i t ten to Fc. 

Comparisons a re exact and never overflow or underflow. Three mutua l ly exclusive 
relat ions a re possible: less than , equal , and grea ter t han . 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue 
zero ( tha t is, VAX reserved operands and d ir ty zeros t rap) . The contents of Fc a re 
UNPREDICTABLE if th i s occurs. 

Notes: 

• Compare Less T h a n A,B is t he same as Compare Grea te r T h a n B,A; Compare 
Less T h a n or Equa l A,B is t h e same as Compare Grea te r T h a n or Equal B,A. 
Therefore, only the less- than operat ions a re included. 

Qualifiers: 

Trapping: Software (/S) 
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4.10.8 IEEE Floating Compare 

Format: 

CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Opera te format 

Operation: 

IF Fav SIGNED_RELATION Fbv THEN 
Fc 4 - 4000 0000 0000 0000i6 

ELSE 
Fc 0000 0000 0000 ΟΟΟΟ16 

Exceptions: 

Invalid Operat ion 

Instruction mnemonics: 

CMPTEQ Compare T_floating Equa l 

CMPTLE Compare T_floating Less T h a n or Equal 

CMPTLT Compare T J I o a t i n g Less T h a n 

CMPTUN Compare T J I o a t i n g Unordered 

Qualifiers: 

Trapping: Software (/S) 

Description: 

The two operands in F a and Fb are compared. If t he relat ionship specified by the 
qualifier is t rue , a non-zero floating value (2.0) is wr i t t en to register Fc; otherwise, 
a t rue zero is wr i t ten to Fc. 

Comparisons are exact and never overflow or underflow. Four mutua l ly exclusive 
relat ions are possible: less t han , equal, g rea ter t han , and unordered. The unordered 
relat ion is t rue if one or both operands a re NaN. (This behavior m u s t be provided 
by a software t r a p handler , since N a N s trap.) Comparisons ignore the sign of zero, 
so +0 = - 0 . 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction (IEEE denormals t rap) , or if exp=all-ones and a non-zero fraction ( IEEE 
NaNs). The contents of Fc are UNPREDICTABLE if th is occurs. 

Comparisons with plus and minus infinity execute normally and do not t ake an 
invalid operation t r ap . 
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Notes: 

Instruction Descriptions (I) Φ-93 

• Compare Less T h a n Α,Β is t he same as Compare Grea ter T h a n B,A; Compare 
Less T h a n or Equa l Α,Β is t he same as Compare Grea te r T h a n or Equal B,A. 
Therefore, only the less- than operat ions a re included. 



4.10.9 Convert VAX Floating to Integer 

Format: 

CVTGQ Fb.rx,Fc.wq !Floating-point Opera te format 

Operation: 

Fc <— {conversion of Fbv} 

Exceptions: 

Invalid Operat ion 

Integer Overflow 

Instruction mnemonics: 

CVTGQ Convert G J I o a t i n g to Quadword 

Qualifiers: 

Rounding: Chopped (/C) 

Trapping: Software (/S) 

Integer Overflow Enable (/V) 

Description: 

The floating operand in register Fb is converted to a two's-complement quadword 
number and wr i t ten to register Fc. The conversion aligns t he operand fraction wi th 
the binary point j u s t to the right of bit zero, rounds as specified, and complements 
the resul t if negative. 

An invalid operation t r ap is signaled if the operand h a s exp=0 and is not a t rue 
zero ( tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are 
UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for details of the stored resul t on integer overflow. 
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4.10.10 Convert Integer to VAX Floating 

Format: 

CVTQy Fb.rq,Fc.wx !Floating-point Opera te format 

Operation: 

Fc <— {conversion of Fbv<63:0>} 

Exceptions: 

None 

Instruction mnemonics: 

CVTQF Convert Quadword to F J I o a t i n g 

CVTQG Convert Quadword to G J l o a t i n g 

Qualifiers: 

Rounding: Chopped (/C) 

Description: 

The two's-complement quadword operand in register Fb is converted to a single-
or double-precision floating resul t and wr i t t en to regis ter Fc. The conversion 
complements a number if negative, normalizes it, rounds to the ta rge t precision, 
and packs the resul t wi th a n appropr ia te sign and exponent field. 
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4.10.11 Convert VAX Floating to VAX Floating 

Format: 

CVTxy Fb.rx,Fc.wx 

Operation: 

Fc <— {conversion of Fbv} 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

!Floating-point Opera te format 

Instruction mnemonics: 

CVTDG 

CVTGD 

CVTGF 

Qualifiers: 

Rounding: 

Trapping: 

Convert D_floating to G_floating 

Convert G_floating to D_floating 

Convert G_floating to F_floating 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Description: 

The floating operand in register Fb is converted to the specified a l te rna te floating 
format and wri t ten to register Fc. 

An invalid operation t r a p is signaled if t he operand h a s exp=0 and is not a t rue 
zero ( that is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are 
UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for details of the stored resul t on overflow or underflow. 
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Notes: 

• The only ar i thmet ic operat ions on D_floating values a re conversions to and from 
G_floating. The conversion to G__floating rounds or chops as specified, removing 
th ree fraction bi ts . The conversion from G_floating to D_floating adds th ree low-
order zeros as fraction bits , t h e n the 8-bit exponent range is checked for overflow 
/underflow. 

• The conversion from G_floating to F_floating rounds or chops to single precision, 
t hen the 8-bit exponent range is checked for overflow/underflow. 

• No conversion from F_floating to G_floating is required, since F_floating values 
a re always stored in regis ters as equivalent G_floating values. 
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4.10.12 Convert IEEE Floating to Integer 

Format: 

CVTTQ Fb.rx,Fc.wq !Floating-point Opera te format 

Operation: 

Fc <— {conversion of Fbv} 

Exceptions: 

Invalid Operat ion 

Inexact Result 

Integer Overflow 

Instruction mnemonics: 

CVTTQ Convert T J I o a t i n g to Quadword 

Qualifiers: 

Rounding: Dynamic (/D) 

Description: 

The floating operand in register Fb is converted to a two's-complement number and 
wri t ten to register Fc. The conversion aligns the operand fraction wi th the binary 
point j u s t to the right of bit zero, rounds as specified, and complements the resul t if 
negative. 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE NaNs and infinities t rap) . 

The contents of Fc are UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of t he stored resul t on integer overflow and inexact 
result . 

Trapping: 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Integer Overflow Enable (/V) 

Inexact Enable (/I) 
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4.10.13 Convert Integer to IEEE Floating 

Format: 

CVTQy Fb.rq,Fc.wx !Floating-point Opera te format 

Operation: 

Fc {conversion of Fbv<63:0>} 

Exceptions: 

Inexact Resul t 

Instruction mnemonics: 

CVTQS Convert Quadword to S . f loat ing 

CVTQT Convert Quadword to T J I o a t i n g 

Qualifiers: 

Rounding: Dynamic (/D) 

Minus infinity (/M) 

Chopped (/C) 

Trapping: Software (/S) 

Inexact Enable (/I) 

Description: 

The two's-complement operand in regis ter Fb is converted to a single- or double-
precision floating resul t and wr i t t en to regis ter Fc. The conversion complements 
a n u m b e r if negative, normalizes it, rounds to t he ta rge t precision, and packs the 
resul t wi th an appropr ia te sign and exponent field. 

See Section 4.7.5 for detai ls of t he stored resu l t on inexact resul t . 
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4.10.14 Convert IEEE Floating to IEEE Floating 

Format: 

CVTTS Fb.rx,Fc.wx !Floating-point Opera te format 

Operation: 

Fc {conversion of Fbv} 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Inexact Result 

Instruction mnemonics: 

CVTTS Convert T_floating to S J l o a t i n g 

Qualifiers: 

Rounding: Dynamic (/D) 

Description: 

The floating operand in register Fb is converted to the specified a l te rna te floating 
format and wr i t ten to register Fc. 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE N a N s and infinities t rap) . 

The contents of Fc a re UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact 
result . 

Trapping: 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Inexact Enable (/I) 
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Notes: 

Instruction Descriptions (I) 4-101 

• No conversion from S_floating to T_floating is required, since S_floating values 
a re always stored in regis ters as equivalent T_floating values . 



4.10.15 VAX Floating Divide 

Format: 

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format 

Operation: 

Fc +- Fav / Fbv 

Exceptions: 

Invalid Operat ion 

Division by Zero 

Overflow 

Underflow 

Instruction mnemonics: 

DIVF Divide F J I o a t i n g 

DIVG Divide G J l o a t i n g 

Qualifiers: 

Rounding: Chopped (/C) 

Trapping: Software (/S) 

Underflow Enable (/U) 

Description: 

The dividend operand in register F a is divided by the divisor operand in register Fb, 
and the quotient is wr i t ten to register Fc. 

The quotient is rounded or chopped to the specified precision and then the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
result . 
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An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t rue 
zero ( tha t is, VAX reserved operands and d ir ty zeros t rap) . The contents of Fc a re 
UNPREDICTABLE if th is occurs. 

A division by zero t r a p is signaled if Fbv is zero. The contents of Fc a re 
UNPREDICTABLE if th i s occurs. 

See Section 4.7.5 for detai ls of the stored resul t on overflow or underflow. 
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4.10.16 IEEE Floating Divide 

Format: 

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format 

Operation: 

Fc <— Fav / Fbv 

Exceptions: 

Invalid Operat ion 

Division by Zero 

Overflow 

Underflow 

Inexact Result 

Instruction mnemonics: 

DIVS Divide S J l o a t i n g 

DIVT Divide T J I o a t i n g 

Qualifiers: 

Rounding: Dynamic (/D) 

Description: 

The dividend operand in register F a is divided by the divisor operand in register Fb, 
and the quotient is wr i t ten to register Fc. 

The quotient is rounded to the specified precision, and then the corresponding range 
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result . 

Trapping: 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Inexact Enable (/I) 
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An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE N a N s and infinities t rap) . 

The contents of Fc a re UNPREDICTABLE if th i s occurs. 

A division by zero t r a p is signaled if Fbv is zero. The contents of Fc a re 
UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of t he stored resul t on overflow, underflow, or inexact 
resul t . 
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4.10.17 VAX Floating Multiply 

Format: 

MULx Fa.rx,Fb.rx,Fc.wx 

Operation: 

!Floating-point Opera te format 

FC F a v * F b v 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Instruction mnemonics: 

MULF Multiply F_floating 

MULG Multiply G_floating 

Qualifiers: 

Rounding: 

Trapping: 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Description: 

The mult ipl icand operand in register Fb is mult iplied by the mult ipl ier operand in 
register Fa , and the product is wr i t ten to register Fc. 

The product is rounded or chopped to the specified precision, and t hen the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
resul t . 

An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t r ue 
zero ( tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are 
UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for details of t he stored resul t on overflow or underflow. 
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4.10.18 IEEE Floating Multiply 

Format: 

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Opera te format 

Operation: 

Fc «— Fav * Fbv 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Inexact Result 

Instruction mnemonics: 

MULS Multiply S_floating 

MULT Multiply T J I o a t i n g 

Qualifiers: 

Rounding: Dynamic (/D) 

Description: 

The mult ipl icand operand in regis ter Fb is mult ipl ied by the mult ipl ier operand in 
register Fa , and the product is wr i t t en to regis ter Fc. 

The product is rounded to t he specified precision, and then the corresponding range 
is checked for overflow/underflow. The single-precision operat ion on canonical single-
precision values produces a canonical single-precision resul t . 

Trapping: 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Eenable (/U) 

Inexact Enable (/I) 
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An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE N a N s and infinities t rap) . 

The contents of Fc are UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of the stored resul t on overflow, underflow, or inexact 
result . 
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4.10.19 VAX Floating Subtract 

Format: 

SUBx Fa.rx,Fb.rx,Fc.wx 

Operation: 

Fc <— Fav - Fbv 

!Floating-point Opera te format 

Exceptions: 

Invalid Operat ion 

Overflow 

Underflow 

Instruction mnemonics: 

SUBF 

SUBG 

Qualifiers: 

Rounding: 

Trapping: 

Subt rac t F_floating 

Subt rac t G_floating 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Description: 

The sub t rahend operand in regis ter Fb is subt rac ted from the minuend operand in 
regis ter Fa , and the difference is wr i t t en to register Fc. 

The difference is rounded or chopped to t he specified precision, and then the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
resul t . 
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An invalid operation t r a p is signaled if e i ther operand h a s exp=0 and is not a t r ue 
zero ( tha t is, VAX reserved operands and dir ty zeros t rap) . The contents of Fc are 
UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for detai ls of the stored resul t on overflow or underflow. 
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4.10.20 IEEE Floating Subtract 

Format: 

SUBx Fa.rx,Fb.rx,Fc.wx 

Operation: 

Fc «— Fav - Fbv 

Exceptions : 

Invalid Operat ion 

Overflow 

Underflow 

Inexact Resul t 

!Floating-point Opera te format 

Instruction mnemonics: 

SUBS 

SUBT 

Qualifiers: 

Rounding: 

Trapping: 

Subt rac t S_floating 

Subt rac t T_floating 

Dynamic (/D) 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Inexact Enable (/I) 

Description : 

The sub t rahend operand in regis ter Fb is subt rac ted from the minuend operand in 
register Fa , and the difference is wr i t ten to register Fc. 

The difference is rounded to t he specified precision, and t hen the corresponding 
range is checked for overflow/underflow. The single-precision operation on canonical 
single-precision values produces a canonical single-precision resul t . 

An invalid operat ion t r a p is signaled if e i ther operand h a s exp=0 and a non-zero 
fraction ( IEEE denormals t rap) , or if exp=all-ones ( IEEE N a N s and infinities t rap) . 
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The contents of Fc a re UNPREDICTABLE if th is occurs. 

See Section 4.7.5 for details of the stored resul t on overflow, underflow, or inexact 
result . 
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4.11 Miscellaneous Instructions 

Alpha provides the miscellaneous ins t ruct ions shown in Table 4 -12 . 

Table 4-12: Miscellaneous Instructions Summary 
Mnemonic Opera t ion 

CALLJPAL Call Privileged Architecture Library Routine 

FETCH Prefetch Data 

FETCH.M Prefetch Data, Modify Intent 

MB Memory Barrier 

RPCC Read Process Cycle Counter 

TRAPB Trap Barrier 
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4.11.1 Call Privileged Architecture Library 

Format: 

CALL.PAL fnc.ir !PAL format 

Operation: 

{Stall instruction issuing until all 
prior instructions are guaranteed to 
complete without incurring exceptions.> 
{Trap to PALcode.} 

Exceptions: 

None 

Instruction mnemonics: 

CALL.PAL Call Privileged Architecture Library 

Qualifiers: 

None 

Description: 

The CALL.PAL instruct ion is not issued unt i l all previous instruct ions a re 
guaran teed to complete wi thout exceptions. If an exception occurs, t he continuation 
PC in the exception stack frame points to the CALL_PAL instruction. The C A L L . 
PAL instruct ion causes a t r a p to PALcode. 
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4.11.2 Prefetch Data 

Format: 

FETCHx O(Rb.ab) ÎMemory format 

Operation: 

va <— {Rbv} 
{Optionally prefetch aligned 512-byte block surrounding va.} 

Exceptions: 

None 

Instruction mnemonics: 

F E T C H Prefetch D a t a 

F E T C H J M Prefetch Data , Modify In t en t 

Qualifiers: 

None 

Description: 

The vi r tua l address is given by Rbv. This address is used to designate an aligned 
512-byte block of da ta . An implementa t ion may optionally a t t emp t to move all or 
pa r t of th i s block (or a larger sur rounding block) of da t a to a faster-access p a r t of 
t he memory hierarchy, in ant icipat ion of subsequent Load or Store instruct ions t h a t 
access t h a t da ta . 

The F E T C H instruct ion is a h in t to the implementa t ion t h a t may allow faster 
execution. An implementa t ion is free to ignore t he h in t . If prefetching is 
done in an implementat ion, the order of fetch within the designated block is 
UNPREDICTABLE. 

The FETCH_M instruct ion gives t he addit ional h in t t h a t modifications (stores) to 
some or all of t he da t a block a re ant icipated. 

No exceptions a re genera ted by FETCHx. If a Load (or Store in the case of FETCH_ 
M) t h a t uses the same address would fault, t he prefetch reques t is ignored. I t is 
UNPREDICTABLE whe the r a TB-miss fault is ever t a k e n by FETCHx. 
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IMPLEMENTATION NOTE 
Implementa t ions are encouraged to t ake the TB-miss 
fault, t hen continue t he prefetch. 

The programming model for effective use of F E T C H and FETCH_M is given in 
Appendix A. 

SOFTWARE NOTE 
F E T C H is in tended to help software overlap memory 
latencies on the order of 100 cycles. F E T C H is unlikely 
to help (or be implemented) for memory latencies on the 
order of 10 cycles. Code scheduling should be used to 
overlap such short latencies. 
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4.11.3 Memory Barrier 

Format: 

MB ÎMemory format 

Operation: 

{Guarantee that all subsequent loads or stores 
will not access memory until after all previous 
loads and stores have accessed memory, as 
observed by other processors.} 

Exceptions: 

None 

Instruction mnemonics: 

MB Memory Barr ie r 

Qualifiers: 

None 

Description: 

The use of t he Memory Barr ie r (MB) instruct ion is required only in multiprocessor 
systems. 

In the absence of an MB instruction, loads and stores to different physical locations 
a re allowed to complete out of order on the issuing processor as observed by other 
processors. The MB instruct ion allows memory accesses to be serialized on the 
issuing processor as observed by other processors. See Chap te r 5 for detai ls on us ing 
the MB instruct ion to serialize these accesses. Chap te r 5 also detai ls coordinating 
memory accesses across processors. 

Note t h a t MB ensures serialization only; i t does not necessari ly accelerate the 
progress of memory operat ions. 
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4.11.4 Read Process Cycle Counter 

Format: 

RPCC Ra.wq '.Memory format 

Operation: 

Ra *- {cycle counter} 

Exceptions: 

None 

Instruction mnemonics: 

RPCC Read Process Cycle Counter 

Qualifiers: 

None 

Description: 

Register Ra is wr i t ten wi th the process cycle counter (PCC). 

The low-order 32 bits of the process cycle counter is an unsigned 32-bit integer t h a t 
increments once per Ν CPU cycles, where Ν is an implementation-specific integer in 
the range 1..16. The cycle counter frequency is the n u m b e r of t imes the process cycle 
counter gets incremented per second, rounded to a 64-bit integer. The integer count 
wraps to 0 from a count of F F F F F F F F 1 6. The counter wraps no more frequently t h a n 
1.5 t imes the implementat ion 's interval clock in te r rup t period (which is two th i rds 
of the interval clock in te r rup t frequency). The high-order 32 bi ts of the process cycle 
counter are an offset t h a t when added to the low-order 32 bi ts gives the cycle count 
for th is process. 

The process cycle counter is suitable for t iming intervals on t he order of nanoseconds 
and may be used for detailed performance characterizat ion. I t is required on all 
implementat ions . PCC is required for every processor, and each processor in a 
multiprocessor system has i ts own private , independent PCC. 
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As an example, consider t he following code t h a t r e t u r n s in RO the cur ren t cycle count 
MOD 2**32. 

RPCC RO 
SLL RO, #32, Rl 
ADDQ R0 f Rl, RO 
SRL RO, #32, RO 

Read the process cycle counter 
line up the offset and count fields 
do add 
zero extend the cycle count to 64 bits 
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4.11.5 Trap Barrier 

Format: 
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Operation: 

{Stall instruction issuing until all prior instructions are 
guaranteed to complete without incurring arithmetic traps.} 

Exceptions: 

None 

Instruction mnemonics: 

TRAPB Trap Barr ie r 

Qualifiers: 

None 

Description: 

The TRAPB instruct ion allows software to gua ran tee t h a t in a pipelined 
implementat ion, all previous ar i thmet ic instruct ions will complete wi thout incurr ing 
any ar i thmet ic t r aps before any instruct ions after t he TRAPB are issued. For 
example, TRAPB should be used before changing an exception hand le r to ensure 
t h a t all exceptions on previous instruct ions a re processed in the cur ren t exception-
handl ing environment . 

TRAPB ÎMemory format 



4.12 VAX Compatibility Instructions 

Alpha provides t he instruct ions shown in Table 4 - 1 3 for use in t r ans la ted VAX code. 
These instruct ions a re not a p e r m a n e n t p a r t of the archi tecture and will not be 
available in some future implementa t ions . They are in tended to preserve customer 
assumpt ions about VAX instruct ion atomicity in port ing code from VAX to Alpha. 

These instruct ions should be genera ted only by the VAX-to-Alpha software 
t rans la tor ; they should never be used in nat ive Alpha code. Any nat ive code t h a t 
uses t h e m m a y cease to work. 

Table 4-13: VAX Compatibility Instructions Summary 
Mnemonic Opera t ion 

RC Read and Clear 

RS Read and Set 
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4.12.1 VAX Compatibility Instructions 

Format: 

Rx Ra.wq ÎMemory format 

Operation: 

Ra <— intr_flag 
intr_flag <— 0 
intr__flag +- 1 

!RC 
1RS 

Exceptions: 

None 

Instruction mnemonics: 

RC Read and Clear 

RS Read and Set 

Qualifiers: 

None 

Description: 

The intr_flag is r e tu rned in Ra and t hen cleared to zero (RC) or set to one (RS). 

These instruct ions may be used to determine whe the r the sequence of Alpha 
instructions between RS and RC (corresponding to a single VAX instruction) was 
executed without in terrupt ion or exception. 

Intr__flag is a per-processor s ta te bit. The intr_flag is cleared if t h a t processor 
encounters a CALL_PAL REI instruction. 

I t is UNPREDICTABLE whether a processor's intr_flag is affected when t h a t 
processor executes an LDx_L or STx_C instruction. A processor's intr_flag is not 
affected when t h a t processor executes a normal load or store instruction. 

A processor's intr_flag is not affected when t h a t processor executes a t a k e n branch. 

NOTE 
These instruct ions a re in tended only for use by the VAX-
to-Alpha software t rans la tor ; they should never be used 
by nat ive code. 
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Chapter 5 

System Architecture and Programming Implications 

(I) 

5.1 Introduction 

Port ions of t he Alpha archi tecture have implications for programming, and 
the system s t ruc ture , of both uniprocessor and multiprocessor implementat ions . 
Archi tectural implications considered in t h e following sections are : 

• Physical memory behavior 

• Caches and wri te buffers 

• Transla t ion buffers and v i r tua l caches 

• D a t a shar ing 

• Read/wri te ordering 

• S tacks 

• Ari thmetic t r ap s 

l b mee t t he requi rements of t he Alpha archi tecture , software and ha rdware 
implementors need to t ake these issues into consideration. 

5.2 Physical Memory Behavior 

Alpha physical memory space is divided into four regions, based on the two most 
significant, implemented, physical address bi ts . Each region's behavior can be 
described in t e r m s of i ts coherency, granulari ty, width, and memory-like behavior. 

5.2.1 Coherency of Memory Access 

Alpha implementa t ions m u s t provide a coherent view of memory, in which each wri te 
by a processor or I/O device (hereafter, called "processor") becomes visible to all other 
processors. No distinction is made between coherency of "memory space" and "I/O 
space". 

Memory coherency m a y be provided in different ways, for each of t h e four physical 
address regions. 

Possible per-region policies include, bu t a re not restr icted to: 

1. No caching 

No copies a re kept of da t a in a region; all r eads and wri tes access t he actual da t a 
location (memory or I/O register) . 

System Architecture and Programming Implications (I) 5-1 



2. Write-through caching 

Copies are kept of any da ta in the region; reads may use the copies, bu t wri tes 
upda te the actual da t a location and ei ther upda te or inval idate all copies. 

3. Write-back caching 

Copies are kept of any da t a in t he region; reads and wri tes may use t he copies, 
and wri tes use addit ional s ta te to determine whe ther there a re o ther copies to 
invalidate or upda te . 

P a r t of the coherency policy implemented for a given physical address region may 
include restr ict ions on excess da t a t ransfers (performing more accesses to a location 
t h a n is necessary to acquire or change the location's value), or may specify da ta 
t ransfer widths (the granular i ty used to access a location). 

Independent of coherency policy, a processor may use different ha rdware or different 
ha rdware resource policies for caching or buffering different physical address 
regions. 

5.2.2 Granularity of Memory Access 

For each region, an implementat ion mus t support aligned quadword access and may 
optionally support aligned longword access. 

For a quadword access region, accesses to physical memory m u s t be implemented 
such t h a t independent accesses to adjacent aligned quadwords produce t he same 
resul ts regardless of the order of execution. Fur ther , an access to an aligned 
quadword m u s t be done in a single atomic operation. 

For a longword access region, accesses to physical memory m u s t be implemented 
such t h a t independent accesses to adjacent aligned longwords produce the same 
resul ts regardless of the order of execution. Fur ther , an access to an aligned 
longword m u s t be done in a single atomic operation, and an access to an aligned 
quadword m u s t also be done in a single atomic operation. 

In th is context, "atomic" means t h a t if different processors do s imul taneous reads 
and wri tes of the same data , i t m u s t not be possible to observe a par t ia l wri te of the 
subject longword or quadword. 

5.2.3 Width of Memory Access 

Subject to the granulari ty, ordering, and coherency constra ints given in Sections 
5.2.1, 5.2.2, and 5.6, accesses to physical memory m a y be freely cached, buffered, 
and prefetched. 

A processor may read more physical memory da t a (such as a full cache block) t h a n 
is actually accessed, wri tes may tr igger reads , and wri tes may wri te back more da ta 
t h a n is actually updated. A processor m a y elide mult iple r eads and/or wri tes to t h e 
same data . 
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5.2.4 Memory-Like Behavior 

A memory-like region obeys the following rules: 

• Each page frame in t he region e i ther exists in i ts ent i re ty or does not exist in i ts 
ent irety; the re a re no holes wi thin a page frame. 

• All locations t h a t exist a re read/wri te . 

• A wri te to a location followed by a read from t h a t location r e tu rn s precisely the 
bi ts wri t ten; all bi ts act as memory. 

• A wri te to one location does not change any other location. 

• Reads have no side effects. 

• Longword access g ranula r i ty is provided. 

• Instruction-fetch is supported. 

• Load-locked and store-conditional a re supported. 

Non-memory-like regions m a y have much more a rb i t ra ry behavior: 

• Unimplemented locations or bi ts m a y exist anywhere . 

• Some locations or bi ts m a y be read-only and others write-only. 

• Address ranges may overlap, such t h a t a wri te to one location changes the bi ts 
read from a different location. 

• Reads may have side effects, a l though th is is strongly discouraged. 

• Longword granula r i ty need not be supported. 

• Instruction-fetch need not be supported. 

• Load-locked and store-conditional need not be supported. 

HARDWARE/SOFTWARE COORDINATION NOTE 
The detai ls of such behavior a re outside the scope 
of the Alpha archi tecture . Specific processor and 
I/O device implementa t ions m a y choose and document 
whatever behavior they need. I t is t he responsibility of 
system designers to impose enough consistency to allow 
processors successfully to access match ing non-memory 
devices in a coherent way. 

5.3 Translation Buffers and Virtual Caches 

A system may choose to include a a v i r tua l instruct ion cache (virtual I-cache) or a 
vi r tual da t a cache (virtual D-cache). A system m a y also choose to include e i ther 
a combined da t a and instruct ion Transla t ion Buffer (TB) or separa te da t a and 
instruct ion TBs (DTB and ITB). The contents of these caches and/or t rans la t ion 
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buffers may become invalid, depending on w h a t operat ing system activity is being 
performed. 

Whenever a nonsoftware field of a valid Page Table En t ry (PTE) is modified, copies 
of t h a t PTE m u s t be made coherent. PALcode mechanisms are available to clear all 
TBs, both DTB and ITB entr ies for a given VA, e i ther DTB or ITB entr ies for a given 
VA, or all entr ies wi th the Address Space Match (ASM) bit clear. Virtual D-cache 
entr ies are made coherent whenever the corresponding DTB ent ry is requested to 
be cleared by any of the appropr ia te PALcode mechanisms. Virtual I-cache entr ies 
can be made coherent via the CALL_PALL 1MB instruction. 

If a processor implements address space numbers (ASNs), and the old PTE has 
the address space ma tch (ASM) bit clear (ASNs in use) and the valid bit set, t hen 
entr ies can also effectively be made coherent by assigning a new, unused ASN to 
the current ly runn ing process and not reus ing the previous ASN before calling the 
appropriate PALcode rout ine to inval idate t he Translat ion Buffer (TB). 

In a multiprocessor environment , mak ing the TBs and/or caches coherent on only 
one processor is not always sufficient. An operat ing system m u s t a r range to perform 
the above actions on each processor t h a t could possibly have copies of t he PTE or 
da ta for any affected page. 

5.4 Caches and Write Buffers 

A ha rdware implementat ion may include mechanisms to reduce memory access t ime 
by mak ing local copies of recently used memory contents (or those expected to be 
used) or by buffering wri tes to complete a t a la ter t ime. Caches and wri te buffers a re 
examples of these mechanisms. They m u s t be implemented so t h a t the i r existence 
is t r an spa ren t to software (except for t iming, error reporting/control/recovery, and 
modification to the I-stream). 

The following requi rements m u s t be me t by all cache/write-buffer implementat ions . 
All processors m u s t provide a coherent view of memory. 

1. Write buffers may be used to delay and aggregate wri tes . From the viewpoint 
of another processor, buffered wri tes appear not to have happened yet. (Write 
buffers m u s t not delay wri tes indefinitely. See Section 5.6.1.9.) 

2. Write-back caches m u s t be able to detect a la ter wri te from another processor 
and invalidate or upda te the cache contents . 

3. A processor m u s t gua ran tee t h a t a da t a store to a location followed by a da t a 
load from the same location m u s t read the updated value. 

4. Cache prefetching is allowed, bu t v i r tua l caches m u s t not prefetch from invalid 
pages. 

5. A processor m u s t gua ran tee t h a t all of i ts previous wri tes a re visible to all other 
processors before a HALT instruct ion completes. A processor m u s t gua ran tee 
t h a t i ts caches a re coherent with the res t of the system before continuing from 
a HALT. 
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6. If ba t te ry backup is supplied, a processor m u s t gua ran t ee t h a t the memory 
system remains coherent across a powerfail/recovery sequence. Da ta t h a t was 
wr i t t en by t h e processor before the powerfail m a y not be lost, and any caches 
m u s t be in a valid s ta te before (and if) normal inst ruct ion processing is continued 
after power is restored. 

7. Vir tual instruct ion caches a re not required to notice modifications of the v i r tua l 
I -s t ream (they need not be coherent wi th t h e res t of memory). Software t h a t 
creates or modifies the instruct ion s t r eam m u s t execute a CALL J?AL 1MB before 
t ry ing to execute t he new instruct ions. 

For example, if two different v i r tua l addresses , VA1 and VA2, m a p to the same 
page frame, a store to VA1 modifies t he v i r tua l I -s t ream fetched via VA2. 

However, t h e sequence: 

1. Change the mapping of a n I -s t ream page from valid to invalid, t hen 

2. Copy the corresponding page frame to a new page frame, t h e n 

3. Change t h e original mapp ing to be valid and point to t he new page frame 

does not modify the vi r tual I -s t ream (this might happen in soft page faults). 

8. Physical instruct ion caches a re not required to notice modifications of t he 
physical I -s t ream (they need not be coherent wi th the res t of memory), except for 
cer ta in paging activity. (See Section 5.6.1.9.) Software t h a t creates or modifies 
t he instruct ion s t r eam m u s t execute a CALL_PAL 1MB before t ry ing to execute 
t he new instruct ions. 

In th i s context, to "modify t h e physical I-s tream" m e a n s any Store to the same 
physical address t h a t is subsequent ly fetched as a n instruct ion. 

In th i s context, to "modify the v i r tua l I -s t ream" m e a n s any Store to t h e same physical 
address t h a t is subsequent ly fetched as an instruct ion via some corresponding 
(virtual address , ASN) pair, or to change the virtual-to-physical address mapping 
so t h a t different values a re fetched. 

5.5 Data Sharing 

In a mult iprocessor environment , wri tes to shared da t a m u s t be synchronized by the 
programmer. 

5.5.1 Atomic Change of a Single Datum 
The ordinary STL and STQ instruct ions can be used to perform a n atomic change 
of a shared aligned longword or quadword. ("Change" m e a n s t h a t t he new value is 
not a function of t he old value.) In part icular , an ordinary STL or STQ instruct ion 
can be used to change a var iable t h a t could be s imultaneously accessed via an LDx_ 
L/STx_C sequence. 
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5.5.2 Atomic Update of a Single Datum 

The load-locked/store-conditional ins t ruct ions m a y be used to perform an atomic 
upda te of a shared aligned longword or quadword. ("Update" m e a n s t h a t the new 
value is a function of the old value.) 

The following sequence performs a read-modify-write operation on location x. Only 
register-to-register operate instruct ions and branch fall-throughs may occur in the 
sequence: 

try_again: 
LDQ_L Rl,x 
<modify Rl> 
STQ_C Rl,x 
BEQ Rl, no__store 

no_store: 
<code to check for excessive iterations> 
BR try_again 

If th is sequence r u n s wi th no exceptions or in te r rup ts , and no other processor wri tes 
to location χ (more precisely, t he locked range including x) be tween the LDQ_L and 
STQ_C instruct ions, t hen the STQ_C shown in the example stores t he modified value 
in χ and sets R l to 1. If, however, t he sequence encounters exceptions or in te r rup t s 
t h a t eventually continue the sequence, or another processor wri tes to x, t hen the 
STQ_C does not store and sets R l to 0. In th i s case, t h e sequence is repea ted via 
the branches to no_store and try_again. This repeti t ion continues unt i l t he reasons 
for exceptions or in te r rup t s a re removed, and no interfering store is encountered. 

To be useful, t he sequence m u s t be constructed so t h a t it can be replayed an arb i t ra ry 
number of t imes, giving the same resul t values each t ime. A sufficient (but not 
necessary) condition is tha t , wi thin the sequence, t he set of operand dest inat ions 
and the set of operand sources a re disjoint. 

NOTE 
A sufficiently long instruct ion sequence between LDQ_ 
L and STQ_C will never complete, because periodic 
t imer in te r rup t s will a lways occur before the sequence 
completes. The rules in Appendix A describe 
sequences t h a t will eventual ly complete in all Alpha 
implementat ions . 

This load-locked/store-conditional parad igm may be used whenever an atomic upda te 
of a shared aligned quadword is desired, including get t ing the effect of atomic byte 
wri tes . 

5.5.3 Atomic Update of Data Structures 

Before accessing shared wri table da t a s t ruc tures (those t h a t are not a single aligned 
longword or quadword), t he p rogrammer can acquire control of the da t a s t ruc ture 
by us ing a n atomic upda te to set a software lock variable. Such a software lock can 
be cleared with an ordinary store instruction. 
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A software-critical section, therefore, m a y look like t he sequence: 

stq_c_loop : 
spin_loop: 

LDQ_L Rl,lock_variable \ 
BLBS Rl,already_set \ 

OR R1,#1,R2 > Set lock bit 
STQ_C R2, lock__variable / 
BEQ R2,stq_c_fail / 

MB 
<critical section: updates various data structures> 
MB 

STQ R31, lock__variable Clear lock bit 

already_set: 
<code 
BR 

stq^c^fail: 
<code 
BR 

to block or reschedule or test for too many iterations> 
spin_loop 

to test for too many iterations> 
stq__c_loop 

This code h a s a number of subtlet ies: 

1. If t he lock_variable is a l ready set, t he spin loop is done wi thout doing any stores. 
This avoidance of s tores improves memory subsystem performance and avoids 
t he deadlock described below. 

2. If t he lock_variable is actually being changed from 0 to 1, and the STQ_C fails 
(due to a n in te r rupt , or because another processor s imultaneously changed lock_ 
variable), t he ent i re process s t a r t s over by reading the lock_variable again. 

3. Only t h e fall-through p a t h of t he BLBS does a STx_C; some implementa t ions 
m a y not allow a successful STx_C after a branch- taken. 

4. Only register-to-register operate instruct ions a re used to do the modify. 

5. Both conditional branches a re forward branches , so they a re properly predicted 
not to be t a k e n (to ma tch t h e common case of no contention for t h e lock). 

6. The OR wri tes i ts resul t to a second register; th is allows the OR and the BLBS 
to be in terchanged if t h a t would give a faster instruct ion schedule. 

7. Othe r operate ins t ruct ions (from the critical section) m a y be scheduled into 
t he LDQ_L..STQ_C sequence, so long as they do not fault or t r ap , and they 
give correct resu l t s if repeated; o ther memory or operate instruct ions may be 
scheduled between the STQ_C and BEQ. 

8. The MB instruct ions a re discussed in Section 5.5.4. 

9. An ordinary STQ instruct ion is used to clear the lock__variable. 

I t would be a performance mis take to spin-wait by repea t ing t he full LDQ_L..STQ_C 
sequence (to move the BLBS after the BEQ) because t h a t sequence may repeatedly 
change the software lock_variable from "locked" to "locked," wi th each wri te causing 
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extra access delays in all other caches t h a t contain the lock_variable. In the extreme, 
spin-waits t h a t contain wri tes may deadlock as follows: 

If, when one processor spins wi th wri tes , ano ther processor is modifying (not 
changing) the lock_variable, t hen the wri tes on the first processor may cause the 
STx_C of the modify on the second processor always to fail. 

This deadlock si tuat ion is avoided by: 

• Having only one processor do a store (no STx_C), or 

• Having no wri te in t he spin loop, or 

• Doing a wri te only if t he shared variable actually changes s ta te (1 -* 1 does not 
change state) . 

5.5.4 Ordering Considerations for Shared Data Structures 

A critical section sequence, such as shown in Section 5.5.3, is conceptually only th ree 
steps: 

1. Acquire software lock 

2. Critical section—read/write shared da t a 

3. Clear software lock 

In the absence of explicit instruct ions to the contrary, the Alpha archi tecture allows 
reads and wri tes to be reordered. While th is m a y allow more implementa t ion speed 
and overlap, it can also create undesired side effects on shared da t a s t ructures . 
Normally, the critical section j u s t described would have two instruct ions added to it: 

<acquire software lock> 
MB (memory barrier #1) 
<critical section — read/write shared data> 
MB (memory barrier #2) 
<clear software lock> 

The first memory bar r ie r prevents any reads (from within the critical section) from 
being prefetched before the software lock is acquired; such prefetched reads would 
potentially contain stale data . 

The second memory bar r ie r prevents any reads or wri tes (from within the critical 
section) from being delayed pas t the clearing of the software lock; such delayed 
accesses could in teract with the next user of the shared da ta , defeating the purpose 
of the software lock entirely. 

SOFTWARE NOTE 
In the VAX archi tecture, m a n y instruct ions provide non-
in ter ruptable read-modify-write sequences to memory 
variables. Most p rogrammers never regard da t a shar ing 
as a n issue. 

In the Alpha archi tecture, p rogrammers m u s t pay more 
a t tent ion to synchronizing access to shared data ; for 
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example, to AST rout ines . In t he VAX, a p rogrammer 
can use an ADDL2 to upda te a var iable t h a t is shared 
between a "MAIN" rout ine and an AST rout ine, if 
r u n n i n g on a single processor. In t he Alpha archi tecture , 
a p rogrammer m u s t deal wi th AST shared da t a by us ing 
multiprocessor shared da t a sequences. 

5.6 Read/Write Ordering 

This section does not apply to programs t h a t r u n on a single processor and do not 
wri te to t he instruct ion s t ream. On a single processor, all memory accesses appear 
to happen in the order specified by the programmer. This section deals entirely wi th 
predictable read/wri te ordering across mult iple processors. 

The order of r eads and wri tes done in an Alpha implementa t ion m a y differ from t h a t 
specified by the programmer. 

For any two memory references A and B, e i ther A m u s t occur before Β in all Alpha 
implementa t ions , Β m u s t occur before A, or they are UNORDERED. In t he las t 
case, software cannot depend upon one occurring first: t he order m a y vary from 
implementa t ion to implementat ion, and even from r u n to r u n or moment to moment 
on a single implementat ion. 

If two references cannot be shown to be ordered by the ru les given, they are 
UNORDERED and implementa t ions a re free to do t h e m in any order t h a t is 
convenient. Implementa t ions m a y t ake advantage of th i s freedom to deliver 
substant ia l ly h igher performance. 

The discussion t h a t follows first defines t he archi tectural issue sequence of memory 
references on a single processor, t h e n defines t he (partial) ordering on th i s issue 
sequence t h a t all Alpha implementa t ions a re required to main ta in . 

The individual issue sequences on mult iple processors a re merged into access 
sequences a t each shared memory location. The discussion defines t he (partial) 
ordering on t h e individual access sequences t h a t all Alpha implementa t ions are 
required to main ta in . 

The ne t resul t is t h a t for any code t h a t executes on mult iple processors, one can 
de termine which memory accesses a re required to occur before o thers on all Alpha 
implementa t ions and hence can wri te useful shared-variable software. 

Software wri ters can force one reference to occur before ano ther by inser t ing a 
memory bar r ie r instruct ion (MB or 1MB) between the references. 

5.6.1 Alpha Shared Memory Model 

An Alpha system consists of a collection of processors and shared coherent memories 
t h a t a re accessible by all processors. (There m a y also be unsha red memories , bu t 
they are outside the scope of th i s section.) 

A processor is an Alpha CPU or an I/O device (or any th ing else t h a t gets added). 

A shared memory is t he p r imary storage place for one or more locations. 

System Architecture and Programming Implications (I) 5-9 



A location is an aligned quadword, specified by i ts physical address . Multiple v i r tual 
addresses may m a p to the same physical address . Order ing considerations a re based 
only on the physical address . 

IMPLEMENTATION NOTE 
An implementat ion may allow a location to have 
mult iple physical addresses , bu t the rules for accesses 
via mixtures of the addresses a re implementat ion-
specific and outside the scope of th is section. Accesses 
via exactly one of t he physical addresses follow t h e rules 
described next. 

Each processor may genera te accesses to shared memory locations. There are five 
types of accesses: 

1. Instruct ion fetch by processor i to location x, r e tu rn ing value a, denoted Pi:I(x,a). 

2. D a t a read by processor i to location x9 r e tu rn ing value a, denoted Pi:R(x,a). 

3. Da ta wri te by processor i to location x, s toring value a, denoted Pi:W(x,a). 

4. Memory bar r ie r instruct ion issued by processor i, denoted Pi:MB. 

5. I-s tream memory bar r ie r instruct ion issued by processor i, denoted Pi:IMB. 

The first access type is also called an I-s t ream access or I-fetch. The next two are 
also called D-s t ream accesses. The first t h ree types collectively a re called read/wri te 
accesses, denoted Pi:*(x,a). The las t two types collectively a re called barr iers . 

Dur ing actual execution in an Alpha system, each processor h a s a t ime-ordered issue 
sequence of all the memory references presented by t h a t processor (to all memory 
locations), and each location has a t ime-ordered access sequence of all t he accesses 
presented to t h a t location (from all processors). 

5.6.1.1 Architectural Definition of Processor Issue Sequence 

The issue sequence for a processor is architectural ly defined wi th respect to a 
hypothetical simple implementat ion t h a t contains one processor and a single shared 
memory, with no caches or buffers. This is the instruct ion execution model: 

1. I-fetch: An Alpha instruct ion is fetched from memory. 

2. Read/Write: Tha t instruct ion is executed and r u n s to completion, including a 
single da ta read from memory for a Load instruct ion or a single da t a wri te to 
memory for a Store instruction. 

3. Update : The PC for the processor is updated. 

4. Loop: Repeat the above sequence indefinitely. 

If t he instruct ion fetch step gets a memory managemen t fault, t he I-fetch is not done 
and the PC is upda ted to point to a PALcode fault handler . If t he read/wri te s tep 
gets a memory managemen t fault, the read/wri te is not done and the PC is upda ted 
to point to a PALcode fault handler . 
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All memory references a re aligned quadwords . For t he purpose of defining ordering, 
aligned longword references a re modeled as quadword references to t he containing 
aligned quadword. 

5.6.1.2 Definition of Processor Issue Order 

A par t ia l ordering, called processor issue order, is imposed on the issue sequence 
defined in Section 5.6.1.1. 

For two accesses u and υ i ssued by processor Pi, u is said to PRECEDE υ IN ISSUE 
ORDER (<) if u occurs earl ier t h a n υ in the issue sequence for Pi, and e i ther of the 
following applies: 

1. The access types a re of the following issue order: 

Table 5-1 : Processor Issue Order 

l s t j / 2 n d - Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:IMB 

Pi:I(x,a) < if x=y < if x=y < < 

Pi:R(x,a) < if x=y < if x=y < < 

Pi:W(x,a) < if x=y < if x=y < < 

Pi:MB < < < < 

Pi:IMB < < < < < 

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss , and υ is 
an I- or D-s t ream access us ing t h a t PTE (see Section 5.6.2). 

Issue order is t h u s a par t ia l order imposed on the archi tectural ly specified issue 
sequence. Implementa t ions a re free to do memory accesses from a single processor 
in any sequence t h a t is consistent wi th th i s par t ia l order. 

Note t h a t accesses to different locations a re ordered only wi th respect to bar r ie rs 
and TB fill. The table asymmet ry for I-fetch allows wri tes to t he I-s t ream to be 
incoherent unt i l a n 1MB is executed. 

5.6.1.3 Definition of Memory Access Sequence 

The access sequence for a location cannot be observed directly, nor fully 
predicted before an actual execution, nor reproduced exactly from one execution 
to another. Nonetheless , some useful order ing propert ies m u s t hold in all Alpha 
implementa t ions . 

5.6.1.4 Definition of Location Access Order 

A par t ia l ordering, called location access order, is imposed on the memory access 
sequence defined above. 

For two accesses u and υ to location x, u is said to PRECEDE υ IN ACCESS ORDER 
( < ) if u occurs earl ier t h a n υ in t he access sequence for x, and a t least one of t hem 
is a wri te: 
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Table 5 - 2 : Location Access Order 

l s t i / 2 n d - Pi:I(x,b) Pi:R(x,b) Pi:W(x,b) 

Pi:I(x,a) < 
Pi:R(x,a) < 
Pi:W(x,a) < < < 

Access order is t h u s a par t ia l order imposed on the actual access sequence for a 
given location. Each location h a s a separa te access order. There is no direct ordering 
relat ionship between accesses to different locations. 

Note t h a t reads and I-fetches are ordered only with respect to wri tes. 

5.6.1.5 Definition of Storage 

If u is Pi:W(x,a), and υ is e i ther Pj:I(x,b) or Pj:R(x,b), and u < v , and no w Pk:W(x,c) 
exists such t h a t u < w < v , then the value b r e tu rned by ν is exactly the value a 
wri t ten by u. 

Conversely, if u is Pi:W(x,a), and ν is e i ther Pj:I(x,b) or Pj:R(x,b), and b=a (and a is 
dist inguishable from values wr i t ten by accesses other t h a n u), t hen u < v and for any 
other w Pk:W(x,c) e i ther w < u or v < w . 

The only way to communicate information between different processors is for one to 
wri te a shared location and the other to read the shared location and receive the 
newly wr i t ten value. (In th is context, t he sending of an in te r rup t from processor 
Pi to processor Pj is modeled as Pi wri t ing to a location INTij, and Pj reading from 
INTij.) 

5.6.1.6 Relationship Between Issue Order and Access Order 

If u is Pi:*(x,a), and i; is Pi:*(x,b), one of which is a wri te , and u<v in the issue order 
for processor Pi, t hen u<cv in the access order for location x. 

In other words, if two accesses to the same location are ordered on a given processor, 
they are ordered in the same way a t the location. 

5.6.1.7 Definition of Before 

For two accesses u and v, u is said to be BEFORE ν (<=) if: 

u < ν or 
u < v o r 
there exists an access w such tha t : 

(u < w and w <= v) or 
(u <c w and w <= v). 

In other words, "before" is the t ransi t ive closure over issue order and access order. 
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5.6.1.8 Definition of After 

If u <= v, t hen υ is said to be AFTER u. 

At most one of u <= ν and ν <= u is t rue . 

5.6.1.9 Timeliness 

Even in the absence of a bar r ie r after the wri te , a wri te by one processor to a given 
location may not be delayed indefinitely in t he access order for t h a t location. 

5.6.2 Litmus Tests 

Many issues about wri t ing and read ing shared da t a can be cast into quest ions about 
whe the r a wri te is before or after a read. These quest ions can be answered by 
rigorously applying the ordering rules described previously to demons t ra te whe ther 
the accesses in question are ordered a t all. 

Assume, in the l i tmus tes t s below, t h a t initially all memory locations contain 1. 

5.6.2.1 Litmus Test 1 (Impossible Sequence) 

P i P j 

[Ul]Pi:W(x,2) [VI] Pj:R(x,2) 

[V2] Pj:R(x,l) 

VI reading 2 implies U l <c V I , by the definition of storage 
V2 reading 1 implies V2 < U l , by t he definition of storage 
VI < V2, by t he definition of issue order 

The first two orderings imply t h a t V2 <= V I , whereas t he las t implies t h a t VI <= V2. 

Both implications cannot be t rue . Thus , once a processor reads a new value from a 
location, it m u s t never see an old value—time m u s t not go backward. V2 m u s t read 
2. 

5.6.2.2 Litmus Test 2 (Impossible Sequence) 

P i P j 

[Ul ] Pi:W(x,2) [VI] Pj:W(x,3) 

[V2] Pj:R(x,2) 

[V3] Pj:R(x,3) 

V2 reading 2 implies VI <= U l 
V3 reading 3 implies U l <= VI 

Both implications cannot be t rue . Thus , once a processor reads a new value wr i t ten 
by U l , any other wri tes t h a t m u s t precede t h e read m u s t also precede U l . V3 m u s t 
read 2. 
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5.6.2.3 Litmus Test 3 (Impossible Sequence) 

P i P j P k 

[Ul ] Pi:W(x,2) [VI ] Pj : W(x,3) [Wl] Pk:R(x,3) 

[U2] Pi:R(x,3) [W2] Pk:R(x,2) 

U2 reading 3 implies U l <= VI 
W2 reading 2 implies VI ·*= U l 

Both implications cannot be t rue . Again, t ime cannot go backward. If U2 reads 3 
t hen W2 m u s t read 3. Alternately, if W2 reads 2, t hen U2 m u s t read 2. 

5.6.2.4 Litmus Test 4 (Sequence Okay) 

P i F̂ j 

[Ul]Pi:W(x,2) [VI] Pj:R(y,2) 

[U2] Pi:W(y,2) [V2] Pj:R(x,l) 

There are no conflicts in th is sequence. U2 VI and V2 <= U l . U l and U2 are not 
ordered wi th respect to each other. VI and V2 are not ordered wi th respect to each 
other. There is no conflicting implication t h a t U l V2. 

5.6.2.5 Litmus Test 5 (Sequence Okay) 

P i P j 

[Ul]Pi:W(x,2) [VI] Pj:R(y,2) 

[V2] Pj:MB 

[U2] Pi:W(y,2) [V3] Pj:R(x,l) 

There are no conflicts in this sequence. U2 <= VI <= V3 <= U l . There is no conflicting 
implication t h a t U l «<= U2. 

5.6.2.6 Litmus Test 6 (Sequence Okay) 

P i Pj 

[Ul]Pi:W(x,2) [VI] Pj:R(y,2) 

[U2] Pi.MB 

[U3] Pi:W(y,2) [V2] Pj:R(x,l) 

There are no conflicts in th is sequence. V2 <= U l <= U3 <Φ= V I . There is no conflicting 
implication t h a t VI <= V2. 

In scenarios 4, 5, and 6, wri tes to two different locations χ and y a re observed 
(by another processor) to occur in the opposite order t h a n t h a t in which they were 
performed. An upda te to y propagates quickly to Pj , bu t the upda te to χ is delayed, 
and Pi and Pj do not both have MBs. 
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5.6.2.7 Litmus Test 7 (Impossible Sequence) 

Pi Pj 

[Ul]Pi:W(x,2) [VI] Pj:R(y,2) 

[U2] Pi:MB [V2] Pj:MB 

[U3] Pi:W(y,2) [V3] Pj:R(x,l) 

VI reading 2 implies U3 <= VI 
V3 reading 1 implies V3 <= U l 
But , by transit ivity, U l <= U3 <= VI <= V3 

Both cannot be t rue , so if VI reads 2, t h e n V3 m u s t also read 2. 

5.6.2.8 Litmus Test 8 (impossible Sequence) 

Pi Pj 

[Ul]Pi :W(x,2) [VI] Pj:W(y,2) 

[U2] Pi:MB [V2] Pj:MB 

[U3] Pi:R(y,l) [V3] Pj:R(x,l) 

U 3 reading 1 implies U3 <= VI 
V3 reading 1 implies V3 <= U l 
But , by transit ivity, U l <= U 3 <= VI V3 

Both cannot be t rue , so if U 3 reads 1, t h e n V3 m u s t read 2, and vice versa. 

5.6.2.9 Litmus Test 9 (Impossible Sequence) 

P i Pj 

[Ul]Pi:W(x,2) [VI] Pj:W(x,3) 

[U2] Pi:R(x,2) [V2] Pj:R(x,3) 

[U3] Pi:R(x,3) [V3] Pj:R(x,2) 

V3 reading 2 implies U l <= V3 
V2 <= V3 and V2 read ing 3 implies V2 <= U l 
VI <= V2 and V2 <= U l implies VI «= U l 

U 3 reading 3 implies VI <= U 3 
U2 <= U 3 and U2 reading 2 implies U2 <= VI 
U l <= U2 and U2 VI implies U l <= VI 

Both VI <<= U l and U l <= VI cannot be t rue . Time cannot go backwards . If V3 reads 
2, t hen U 3 m u s t read 2. Alternatively, If U 3 reads 3, t hen V3 m u s t read 3. 
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5.6.3 Implied Barriers 

In Alpha, there are no implied barr iers . If an implied bar r ie r is needed for 
functionally correct access to shared da ta , it m u s t be wr i t t en as an explicit 
instruction. (Software m u s t explicitly include any needed MB or 1MB instructions.) 

Alpha t rans i t ions such as the following have no built-in implied memory bar r ie rs : 

• En t ry to PALcode 

• Sending and receiving in te r rup t s 

• Return ing from exceptions, in te r rup ts , or machine checks 

• Swapping context 

• Inval idat ing the Translat ion Buffer (TB) 

Depending on implementat ion choices for main ta in ing cache coherency, some PAL 
/cache implementat ions may have an implied 1MB in the I -s t ream TB fill routine, 
bu t th is is t r a n s p a r e n t to the non-PAL programmer. 

5.6.4 Implications for Software 

Software m u s t explicitly include MB or 1MB instruct ions in the following 
circumstances. 

5.6.4.1 Single-Processor Data Stream 

No barr ie rs are ever needed. A read to physical address χ will a lways r e tu rn 
the value wri t ten by the immediately preceding wri te to χ in the processor issue 
sequence. 

5.6.4.2 Single-Processor Instruction Stream 

An I-fetch from vir tual or physical address χ does not necessarily r e tu rn t he value 
wr i t ten by the immediately preceding wri te to χ in t h e issue sequence. To m a k e 
the I-fetch reliably get the newly wr i t ten instruction, an 1MB is needed between the 
wri te and the I-fetch. 

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O) 

The only way to communicate shared da t a reliably is to wri te the shared da t a on one 
processor, t hen do an MB on t h a t processor, t hen wri te a flag (equivalently, send an 
in ter rupt ) signaling the other processor t h a t the shared da t a is ready. Each receiving 
processor mus t read the new flag (equivalently, receive the in ter rupt) , t hen do an 
MB, then read or upda te the shared data . 

Leaving out the first MB removes the assurance t h a t the shared da t a is wr i t ten 
before the flag is. 

Leaving out the second MB removes t he assurance t h a t the shared da t a is read or 
updated only after the flag is seen to change; in th is case, an early read could see 
an old value, and an early upda te could be overwrit ten. 

This implies t h a t after a CPU h a s prepared some d a t a buffer to be r ead from memory 
by a DMA I/O device (such as wri t ing a buffer to disk), it m u s t do an MB before 
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s ta r t ing t he I/O, and t h e I/O device after receiving the s t a r t signal m u s t logically do 
an MB before reading t h e da t a buffer. 

This also implies t h a t after a DMA I/O device h a s wr i t t en some d a t a to memory 
(such as paging in a page from disk), t h e DMA device m u s t logically do an MB 
before posting a completion in te r rup t , and the in t e r rup t hand le r software m u s t do 
an MB before t h e da t a is gua ran teed to be visible to the in te r rup ted processor. Other 
processors m u s t also do MBs before they a re gua ran teed to see the new data . 

An impor tan t special case occurs when a wri te is done (perhaps by a n I/O device) to 
some physical page frame, t h e n a n MB, t h e n a previously invalid P T E is changed to 
be a valid mapping of the physical page frame t h a t was j u s t wri t ten . In th is case, 
all processors t h a t access us ing the newly valid PTE m u s t gua ran tee to deliver the 
newly wr i t t en da t a after t he TB miss , for both I -s t ream and D-s t ream accesses. 

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O) 

The only way to upda te t he I -s t ream reliably is to wri te t he shared I -s t ream on one 
processor, t hen do an 1MB (MB if t he wri t ing processor is not going to execute t he 
new I-stream) on t h a t processor, t h e n wri te a flag (equivalently, send an in ter rupt ) 
s ignaling the other processor t h a t t he shared I -s t ream is ready. Each receiving 
processor m u s t read the new flag (equivalently, receive t he in ter rupt ) , t hen do an 
1MB, t hen fetch t he shared I-s t ream. 

Leaving out the first IMB(MB) removes t he assurance t h a t t he shared I -s t ream is 
wr i t ten before the flag is. 

Leaving out t he second 1MB removes t h e assurance t h a t t he shared I -s t ream is read 
only after t he flag is seen to change; in th i s case, an early read could see an old 
value. 

This implies t h a t after a DMA I/O device h a s wr i t t en some I-s t ream to memory (such 
as paging in a page from disk), t he DMA device m u s t logically do an IMB(MB) before 
posting a completion in te r rupt , and the in te r rup t hand le r software m u s t do an 1MB 
before the I -s t ream is gua ran teed to be visible to the in te r rup ted processor. Other 
processors m u s t also do IMBs before they are gua ran teed to see t he new I-stream. 

An impor tan t special case occurs when a wri te is done (perhaps by an I/O device) 
to some physical page frame, t hen an IMB(MB), t hen a previously invalid PTE is 
changed to be a valid mapp ing of t he physical page frame t h a t was j u s t wri t ten. In 
th is case, all processors t h a t access us ing the newly valid PTE m u s t gua ran tee to 
deliver the newly wr i t ten I -s t ream after the TB miss . 

5.6.4.5 Multiple-Processor Context Switch 

If a process migra tes from executing on one processor to executing on another, t he 
context switch operat ing system code m u s t include a n u m b e r of bar r ie rs . 

A process migra tes by having i ts context stored into memory, t h e n eventual ly having 
t h a t context reloaded on ano ther processor. In between, some shared mechanism 
m u s t be used to communicate t h a t t h e context saved in memory by the first processor 
is available to t he second processor. This could be done by us ing an in ter rupt , by 
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using a flag bit associated with the saved context, or by us ing a shared-memory 
multiprocessor da t a s t ruc ture , as follows: 

F i r s t P rocessor Second Processo r 

Save s ta te of cur ren t process. 
MB [1] 
Pass ownership of process context => Pick up ownership of process context 
da ta s t ruc ture memory. da t a s t ruc ture memory. 

MB [2] 
Restore s ta te of new process context da t a 
s t ruc ture memory. 
Make I-s t ream coherent [3]. 
Make TB coherent [4]. 

Execute code for new process t h a t 
accesses memory t h a t is not common to 
all processes. 

MB [1] ensures t h a t the wri tes done to save the s ta te of the cur ren t process happen 
before the ownership is passed. 

MB [2] ensures t h a t the reads done to load the s ta te of the new process happen 
after the ownership is picked up and hence are reliably the values wr i t ten by the 
processor saving the old s ta te . Leaving this MB out makes the code fail if an old 
value of the context r emains in the second processor's cache and invalidates from 
the wri tes done on the first processor a re not delivered soon enough. 

The TB on the second processor mus t be made coherent with any wri te to the page 
tables t h a t may have occurred on the first processor j u s t before the save of the process 
s ta te . This m u s t be done wi th a series of TB inval idate instruct ions to remove any 
nonglobal page mapping for th is process, or by assigning an ASN t h a t is unused on 
the second processor to the process. One of these actions m u s t occur sometime before 
s ta r t ing execution of the code for the new process t h a t accesses memory (instruction 
or data) t h a t is not common to all processes. A common method is to assign a new 
ASN after gaining ownership of the new process and before loading i ts context, which 
includes i ts ASN. 

The D-cache on the second processor m u s t be m a d e coherent wi th any wri te to the D-
s t ream t h a t may have occurred on the first processor j u s t before the save of process 
s ta te . This is ensured by MB [2] and does not require any addit ional instruct ions. 
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The I-cache on the second processor m u s t be made coherent wi th any wri te to the 
I -s t ream t h a t may have occurred on the first processor j u s t before t he save of process 
s ta te . This can be done wi th a n 1MB PAL call sometime before the execution of any 
code t h a t is not common to all processes, More commonly, th is can be done by forcing 
a TB miss (via t he new ASN or via TB inval idate instruct ions) and us ing the TB-
fill rule (see Section 5.6.4.3). This l a t t e r approach does not require any addit ional 
instruct ion. 

Combining all these considerat ions gives: 

First Processor Second Processor 

Pick up ownership of process 
context da t a s t ruc ture memory. 
MB 
Assign new ASN or inval idate TBs. 
Save s ta te of cur ren t process. 
Restore s ta te of new process. 
MB 
Pass ownership of process context => Pickup ownership of new process context 
da t a s t ruc ture memory. da t a s t ruc ture memory. 

MB 
: Assign new ASN or inval idate TBs. 

Save s ta te of cur ren t process. 
Restore s ta te of new process. 
MB 
Pass ownership of old process context 
da t a s t ruc ture memory. 

Execute code for new process t h a t 
accesses memory t h a t is not common to 
all processes. 

Note t h a t on a single processor the re is no need for the bar r ie rs . 
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5.6.4.6 Multiple-Processor Send/Receive Interrupt 

If one processor wri tes some shared data , t hen sends an in te r rup t to a second 
processor, and t h a t processor receives the in te r rupt , t hen accesses the shared data , 
the sequence from Section 5.6.4.3 m u s t be used: 

F i r s t P rocessor Second Processor 

Write da ta 
MB 
Send int. => Receive int. 

MB 
Access da ta 

Leaving out the MB a t the beginning of the interrupt-receipt rout ine makes the 
code fail if an old value of the context r emains in the second processor's cache and 
invalidates from the wri tes done on the first processor are not delivered soon enough. 

5.6.5 Implications for Hardware 

The coherency point for physical address χ is the place in the memory subsystem a t 
which accesses to χ a re ordered. I t may be a t a ma in memory board, or a t a cache 
containing χ exclusively, or a t t he point of winning a common bus arbi t ra t ion. 

The coherency point for χ may move with t ime, as exclusive access to χ migra tes 
between main memory and various caches. 

MB and 1MB force all preceding wri tes to a t leas t reach the i r respective coherency 
points. This does not mean t h a t main-memory wri tes have been done, j u s t t h a t the 
order of the eventual wri tes is committed. For example, on the XMI wi th retry, th is 
means get t ing the wri tes acknowledged as received wi th good par i ty a t t he inputs 
to memory board queues; the actual RAM wri te happens later. 

MB and 1MB also force all queued cache inval idates to be delivered to the local 
caches before s ta r t ing any subsequent reads ( that may otherwise cache hi t on stale 
data) or wri tes ( tha t may otherwise wri te the cache, only to have the wri te effectively 
overwrit ten by a late-delivered invalidate). 

Implementat ions may allow reads of χ to hi t (by physical address) on pending wri tes 
in a wri te buffer, even before the wri tes to χ reach the coherency point for x. If th is 
is done, it is still t rue t h a t no earl ier value of χ may subsequent ly be delivered to 
the processor t h a t took the hi t on the wri te buffer value. 

Virtual da ta caches are allowed to deliver da t a before doing address t ransla t ion, bu t 
only if there cannot be a pending wri te unde r a synonym vir tual address . Lack of a 
write-buffer match on un t rans la t ed address bits is sufficient to gua ran tee this . 

Virtual da ta caches m u s t invalidate or otherwise become coherent wi th the new value 
whenever a PALcode rout ine is executed t h a t affects the validity, fault behavior, 
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protection behavior, or virtual-to-physical mapping specified for one or more pages. 
Becoming coherent can be delayed unt i l t he next subsequent MB instruct ion or TB 
fill (using the new mapping) , if t he implementa t ion of the PALcode rout ine always 
forces a subsequent TB fill. 

5.7 Arithmetic Traps 

Alpha implementa t ions a re allowed to execute mult iple instruct ions concurrently 
and to forward resul ts from one instruct ion to another. Thus , when an ar i thmet ic 
t r a p is detected, the PC may have advanced an arbi t rar i ly large number of 
instruct ions pas t the instruct ion Τ (calculating resul t R) whose execution tr iggered 
the t r ap . 

When the t r a p is detected, any or all of these subsequent instruct ions may r u n to 
completion before the t r a p is actually t aken . Instruct ion Τ and the set of instruct ions 
subsequent to Τ t h a t complete before the t r a p is t aken are collectively called the t r a p 
shadow of T. The PC pushed on the s tack when the t r a p is t a k e n is the PC of the 
first instruct ion pas t the t r a p shadow. 

The instruct ions in the t r a p shadow of Τ m a y use the undefined resul t R of T, they 
may genera te addit ional t r aps , and they may completely change the PC (branches, 
JSR) . 

Thus , by the t ime a t r a p is t aken , the PC pushed on the s tack may bear no useful 
re la t ionship to the PC of the t r igger instruct ion T, and the s ta te visible to the 
p rogrammer may have been upda ted us ing the undefined resul t R. If an instruct ion 
in t he t r a p shadow of Τ uses R to calculate a subsequent register value, t h a t register 
value is undefined, even though the re may be no t r a p associated wi th the subsequent 
calculation. Similarly: 

• If an instruct ion in the t r a p shadow of Τ stores R or any subsequent undefined 
resul t , t he stored value is undefined. 

• If an instruct ion in the t r a p shadow of Τ uses R or any subsequent undefined 
resul t as the basis of a conditional or calculated branch, the b ranch t a rge t is 
undefined. 

• If an instruct ion in t he t r a p shadow of Τ uses R or any subsequent undefined 
resul t as the basis of an address calculation, the memory address actually 
accessed is undefined. 

Software t h a t is in tended to bound how far the PC may advance before t ak ing a t r ap , 
or how far an undefined resul t may propagate , m u s t inser t TRAPB instruct ions a t 
appropr ia te points. 

Software t h a t is in tended to continue from a t r a p by supplying a well-defined resul t 
R within an ar i thmet ic t r a p handler , can do so reliably by following the rules for 
software completion code sequences given in Section 4.7.5. 
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Chapter 6 

Common PALcode Architecture (I) 

6.1 PALcode 

In a family of machines , both users and operat ing system implementors require 
functions to be implemented consistently. When functions conform to a common 
interface, the code t h a t uses those functions can be used on several different 
implementa t ions wi thout modification. 

These functions range from the b inary encoding of the instruct ion and da t a to the 
exception mechanisms and synchronization primit ives. Some of these functions can 
be implemented cost effectively in ha rdware , bu t others a re impractical to implement 
directly in ha rdware . These functions include low-level ha rdware support functions 
such as Translat ion Buffer miss fill rout ines , in te r rup t acknowledge, and vector 
dispatch. They also include support for privileged and atomic operat ions t h a t require 
long instruct ion sequences. 

In the VAX, these functions a re generally provided by microcode. This is not seen as 
a problem because the VAX archi tecture lends itself to a microcoded implementat ion. 

One of the goals of Alpha is t h a t microcode will not be necessary for practical 
implementat ion. However, it is still desirable to provide an architected interface 
to these functions t h a t will be consistent across the ent i re family of machines . The 
Privileged Architecture Library (PALcode) provides a mechanism to implement these 
functions wi thout resor t ing to a microcoded machine. 

6.2 PALcode Instructions and Functions 

PALcode is used to implement the following functions: 

• Ins t ruct ions t h a t require complex sequencing as a n atomic operat ion 

• Inst ruct ions t h a t require VAX-style interlocked memory access 

• Privileged instruct ions 

• Memory m a n a g e m e n t control (including t rans la t ion buffer (TB) management ) 

• Context swapping 

• In t e r rup t and exception dispatching 

• Power-up init ialization and booting 

• Console functions 

• Emula t ion of ins t ruct ions wi th no h a r d w a r e support . 
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The Alpha archi tecture lets these functions be implemented in s t andard machine 
code t h a t is res ident in ma in memory. PALcode is wr i t ten in s t anda rd machine 
code wi th some implementation-specific extensions to provide access to low-level 
ha rdware . This lets an Alpha implementa t ion make various design trade-offs based 
on the ha rdware technology being used to implement t he machine. The PALcode 
can abst ract these differences and m a k e t hem invisible to system software. 

For example, in a MOS VLSI implementat ion, a small (32 entry) fully associative 
TB can be the r ight ma tch to the media, given t h a t chip a rea is a costly resource. 
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it 
will use RAM chips and does not have fast associative memories available. This 
difference would be handled by implementation-specific versions of the PALcode on 
the two systems, both versions providing t r a n s p a r e n t TB miss service rout ines . The 
operat ing system code would not need to know the re were any differences. 

Part II, Operating Systems describes the Digital-supplied Alpha Privileged 
Architecture Library (PALcode) rout ines and environment . Other systems may use 
the Digital-supplied PALcode l ibrary or architect and implement a different l ibrary of 
rout ines. Alpha systems are required to support t he replacement of Digital-defined 
PALcode with an operat ing system-specific version. 

6.3 PALcode Environment 

The PALcode environment differs from the normal envi ronment in the following 
ways: 

• Complete control of the machine s ta te . 

• In te r rup t s are disabled. 

• Implementation-specific ha rdware functions a re enabled, as described below. 

• I -s t ream memory managemen t t r a p s a re prevented (by disabling I -s t ream 
mapping, mapping PALcode with a pe rmanen t TB entry, or by other 
mechanisms) . 

Complete control of the machine s ta te allows all functions of the machine to be 
controlled. Disabling in te r rup t s allows the system to provide mult i- instruct ion 
sequences as atomic operations. Enabl ing implementation-specific ha rdware 
functions allows access to low-level system ha rdware . Prevent ing I-s t ream memory 
managemen t t r aps allows PALcode to implement memory managemen t functions 
such as t rans la t ion buffer fill. 

6.4 Special Functions Required for PALcode 

PALcode uses the Alpha instruct ion set for most of i ts operations. A small number 
of addit ional functions a re needed to implement the PALcode. There a re five 
opcodes reserved to implement PALcode functions: PALRESO, PALRES1, PALRES2, 
PALRES3 and PALRES4. These instruct ions produce an Illegal Instruct ion Trap if 
executed outside the PALcode environment . 
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• PALcode needs a mechanism to save the cur ren t s ta te of the machine and 
dispatch into PALcode. 

• PALcode needs a set of instruct ions to access ha rdware control registers . 

• PALcode needs a h a r d w a r e mechanism to t rans i t ion the machine from the 
PALcode environment to the non-PALcode environment . This mechanism loads 
t he PC, enables in te r rup t s , enables mapping, and disables PALcode privileges. 

An Alpha implementa t ion may also choose to provide addit ional functions to simplify 
or improve performance of some PALcode functions. The following are some 
examples: 

• An Alpha implementa t ion may include a read/wri te v i r tua l function t h a t allows 
PALcode to perform mapped memory accesses us ing t h e mapp ing ha rdware 
r a t h e r t h a n providing the virtual-to-physical t rans la t ion in PALcode rout ines. 
PALcode may provide a special function to do physical reads and wri tes and 
have the Alpha loads and stores continue to operate on v i r tua l address in the 
PALcode environment . 

• An Alpha implementa t ion m a y include h a r d w a r e ass is ts for var ious functions— 
for example, saving the v i r tua l address of a reference on a memory managemen t 
error r a t h e r t h a n having to genera te it by s imula t ing the effective address 
calculation in PALcode. 

• An Alpha implementa t ion may include pr ivate registers so it can function without 
hav ing to save and res tore t he na t ive general regis ters . 

6.5 PALcode Effects on System Code 

PALcode will have one effect on system code. Because PALcode may be res ident 
in ma in memory and ma in t a in privileged da t a s t ruc tures in ma in memory, t he 
operat ing system code t h a t allocates physical memory cannot use all of physical 
memory. 

The amoun t of memory PALcode requires is small , so the loss to t he system is 
negligible. 

6.6 PALcode Replacement 

Alpha systems are required to support t he replacement of Digital-supplied PALcode 
wi th an operat ing system-specific version. The following functions m u s t be 
implemented in PALcode, not directly in ha rdware , to facilitate replacement with 
different versions. 

1. Translat ion Buffer fill. Different operat ing systems will wan t to replace the 
Transla t ion Buffer (TB) fill rout ines . The replacement rout ines will use different 
da t a s t ruc tures . The page tables documented in Part II, Operating Systems will 
not be presen t in these systems. Therefore, no portion of t he TB fill flow t h a t 
would change wi th a change in page tables may be placed in ha rdware , unless 
i t is placed in a m a n n e r t h a t can be overridden by PALcode. 
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2. Process s t ructure . Different operat ing systems might w a n t to replace the process 
context switch rout ines . The replacement rout ines will use different d a t a 
s t ructures . The HWPCB or PCB documented in Part II, Operating Systems will 
not be present in these systems. Therefore, no portion of the context switching 
flows t h a t would change wi th a change in process s t ruc ture may be placed in 
ha rdware . 

PALcode m u s t be wr i t ten in a modular m a n n e r t h a t facilitates easy replacement of 
major subsections. The subsections t h a t need to be simple to replace are : 

• Translat ion Buffer fill 

• Process s t ruc ture and context switch 

• In te r rup t and exception frame format and rout ine dispatch 

• Privileged PALcode instruct ions 

6.7 Required PALcode Instructions 

The PALcode instruct ions listed in Table 6-1 and Appendix C m u s t be recognized by 
mnemonic and opcode in all operat ing system implementat ions , bu t the effect of each 
instruction is dependent on the implementat ion. The operation of these PALcode 
instruct ions for Digital-supplied operat ing system implementa t ions is described in 
Part II, Operating Systems. 

Table 6-1: PALcode Instructions that Require Recognition 
Mnemonic Name 

BPT Breakpoint trap 

BUGCHK Bugcheck trap 

GENTRAP Generate trap 

RDUNIQUE Read unique value 

WRUNIQUE Write unique value 

The PALcode instruct ions listed in Table 6-2 and described in the following sections 
m u s t be supported by all Alpha implementat ions: 

Table 6-2: Required PALcode Instructions 
Mnemonic Type Opera t ion 

DRAINA Privileged Drain aborts 

HALT Privileged Halt processor 

1MB Unprivileged I-stream memory barrier 
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6.7.1 Drain Aborts 

Format: 

CALL.PAL DRAINA ÎPALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

{Stall instruction issuing until all prior 
instructions are guaranteed to complete 
without incurring aborts.} 

Exceptions: 

Privileged Inst ruct ion 

Instruction Mnemonics: 

CALL.PAL DRAINA Dra in Aborts 

Description: 

If aborts a re deliberately genera ted and handled (such as non-existent-memory 
aborts while sizing memory or searching for I/O devices), the DRAINA instruct ion 
forces any ou ts tanding aborts to be t aken before continuing. 

Aborts a re necessarily implementat ion-dependent . DRAINA stalls instruct ion issue 
a t least unt i l all previously-issued instruct ions have completed and any associated 
aborts have been signaled. For operate instruct ions, th is will usual ly m e a n stall ing 
unt i l t he resul t register h a s been wri t ten. For b ranch instruct ions, th is will 
usual ly m e a n stal l ing unt i l t he resul t register and PC have been wri t ten. For 
load instruct ions, th is will usual ly m e a n stal l ing unt i l the resul t register h a s been 
wri t ten . For store instruct ions, th is will usual ly m e a n stal l ing unt i l a t least the first 
level in a potentially multi-level memory hierarchy h a s been wri t ten . 

For load instruct ions, DRAINA does not necessarily gua ran tee t h a t the unaccessed 
portions of a cache block have been t ransferred error-free before continuing. 

For store instruct ions, DRAINA does not necessarily gua ran tee t h a t the u l t imate 
t a rge t location of the store ha s received error-free da t a before continuing. 
An implementation-specific technique m u s t be used to gua ran tee the u l t imate 
completion of a wri te in implementa t ions t h a t have multi-level memory hierarchies 
or store-and-forward bus adap te rs . 
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6.7.2 Halt 

Format: 

CALL_PAL HALT '.PALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

CASE {halt_action} OF 
halt: 
restart/halt : 
restart/boot/halt : 
boot/halt: 

ENDCASE 

{halt} 
{restart/halt} 
{restart/boot/halt} 
{boot/halt} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALL.PAL HALT Hal t Processor 

Description: 

The HALT instruct ion stops normal instruct ion processing, and depending on the 
HALT action sett ing, t he processor may ei ther en te r console mode or the r e s t a r t 
sequence. 
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6.7.3 Instruction Memory Barrier 

Format: 

CALL.PAL 1MB IPALcode format 

Operation: 

{Make instruction stream coherent with Data stream} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL 1MB I-s t ream Memory Barr ie r 

Description: 

An 1MB instruct ion m u s t be executed after software or I/O devices wri te into the 
instruct ion s t r eam or modify the instruct ion s t r eam vi r tua l address mapping, and 
before t he new value is fetched as an instruct ion. An implementa t ion may contain 
an instruct ion cache t h a t does not t rack e i ther processor or I/O wri tes into the 
instruct ion s t ream. The instruct ion cache and memory are m a d e coherent by an 
1MB instruct ion. 

If t he instruct ion s t r eam is modified and an 1MB is not executed before fetching an 
instruct ion from the modified location, it is UNPREDICTABLE whe the r the old or 
new value is fetched. 

The cache coherency and shar ing rules a re described in Chap te r 5. 
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Chapter 7 

Console Subsystem Overview (I) 

On an Alpha system, under ly ing control of the system platform ha rdware is provided 
by a console. The console: 

1. Initializes, tes ts , and prepares t he system platform h a r d w a r e for Alpha system 
software. 

2. Bootstraps (loads into memory and s t a r t s t he execution of) system software. 

3. Controls and monitors the s ta te and s ta te t rans i t ions of each processor in a 
multiprocessor system. 

4. Provides services to system software t h a t simplify system software control of and 
access to platform ha rdware . 

5. Provides a means for a console operator to monitor and control the system. 

The console in teracts wi th system platform ha rdware to accomplish the first th ree 
t a sks . The actual mechanisms of these interact ions a re specific to the platform 
ha rdware ; however, the ne t effects are common to all systems. 

The console in terac ts wi th system software once control of t he system platform 
h a r d w a r e h a s been t ransferred to t h a t software. 

The console in terac ts wi th the console operator th rough a v i r tua l display device or 
console terminal. The console operator may be a h u m a n being or a managemen t 
application. 
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Chapter 8 

Input/Output (I) 

8.1 Introduction 

Conceptually, Alpha systems consist of processors, memory, processor-memory 
interconnect (PMI), I/O buses , bridges, and I/O devices. 

Figure 8-1 shows the Alpha system overview. 

Figure 8-1 : Alpha System Overview 

Processor-Memory Interconnect 

Local 
I/O Device 

Processor Memory 

I/O Bus 

Remote Remote 
I/O Device I/O Device 

Local 
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Hose 
I 

Remote 
Side 

> Bridge 

As shown in Figure 8 - 1 , processors and memory are connected by the PMI. 

A bridge connects a t ightly coupled I/O bus to the system, e i ther directly to the PMI 
or th rough another t ightly coupled I/O bus . A t ightly coupled I/O bus is one whose 
address space is accessible to the processor e i ther directly or th rough an I/O mailbox. 

A bridge h a s a t least a local side and a remote side, connected by a hose. The local 
side is electrically closer to the PMI; the remote side is electrically further. 

I/O devices can be connected to t he PMI or to an I/O bus . A local device connects to 
t he PMI; a remote device connects to a n I/O bus . 

The following sections discuss Alpha I/O operat ions: 

• Accesses to local I/O space a re discussed in Section 8.2. 

• Accesses to remote I/O space a re discussed in Section 8.3. 
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• Reads and wri tes to processor memory-like regions ini t ia ted by I/O devices, or 
"DMAs", are discussed in Section 8.4. 

• Processor in te r rup t s requested by devices are discussed in Section 8.5. 

• Bus-specific I/O accesses are discussed in Section 8.6. 

8.2 Local I/O Space Access 

Local I/O space locations may appear in e i ther memory or non-memory-like regions. 
Local I/O space locations which appear in memory regions m a y be cached subject to 
the platform cache coherency scheme. See Chap te r 5. 

An Alpha platform need only support atomic quadword accesses. The 
Alpha instruct ion archi tecture requires only quadword accesses. Processor 
implementat ions may further restr ict t he access granular i ty of local I/O space. For 
example, a given implementat ion could permi t address ing of only cache blocks. To 
support byte or word accesses to a local device, t he device m u s t be mapped into 
a non-memory-like region wi th a sparse address space. The necessary mapping is 
dependent on the implementat ion of the processor, cache, and PMI protocol. For 
example, the four individual bytes of a longword device control register could be 
mapped into the low order byte of each of four contiguous quadwords. 

8.2.1 Read/Write Ordering 

Access to local I/O space does not cause any implicit read/wri te ordering; explicit 
barr ier instruct ions m u s t be used to ensure any desired ordering. Bar r ie r 
instruct ions m u s t be used: 

• After upda t ing a memory-resident da t a s t ruc ture and before wri t ing a local I/O 
space location to notify the device of t he upda tes . 

• Between mult iple consecutive direct accesses to local I/O space, e.g. device control 
registers , if those accesses a re expected to be ordered a t t he device. 

Again, note t h a t implementa t ions may cache not only memory-resident da t a 
s t ructures , bu t also local I/O space locations. 

8.3 Remote I/O Space Access 

Remote I/O space locations are accessed indirectly th rough a memory-resident 
"mailbox" da t a s t ruc ture . To post an access, t he physical address of t he mailbox is 
wr i t ten into a MailBox Pointer Register (MBPR) on a local bridge side. For remote 
I/O space wri tes , t he command and da t a a re posted in t he mailbox, and s t a tus is 
re turned . For remote I/O space reads , t he command is posted in the mailbox, and 
s t a tus and da t a a re re turned . 

An Alpha system may have any number of local bridge sides. Each local side may 
provide connections for up to 256 hoses. Each hose may connect to a single remote 
side or may connect to mult iple remote sides. A single remote side m a y connect to 
one or more hoses. A bridge need not include a hose; the local and remote sides 
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may be implemented as a single entity. A local side or an ent i re bridge may be 
incorporated into a processor board. 

8.3.1 Mailbox Posting 

A remote I/O space access is denned by the contents of the mailbox s t ruc ture . A 
remote I/O space access is invoked by wri t ing the base physical address of the 
mailbox s t ruc ture into the appropr ia te bridge MailBox Pointer Register (MBPR). 
Each I/O bus may be associated wi th one and only one MBPR. A single MBPR may 
be associated wi th one or more remote I/O buses and a single bridge may have 
mult iple MBPR registers . The MBPR appears in local I/O space. 

The MBPR is accessed only wi th the STQ_C instruct ion. Flow control is achieved 
by the associated (per-processor) lock_flag as follows: 

post_mbx: 

<derive PA of mailbox and load Rl> 
<derive VA of MBPR and load R0> 
STQ__C R1,R0 
BEQ Rl,wait_post_mbx 

wait_post_mbx: 
<backoff delay> 
BR post_mbx 

If t he STQ_C lock_flag is set, t he mailbox h a s been posted to the bridge. If t he 
STQ_C lock_flag is clear, all MBPR resources a re occupied; the MBPR wri te m u s t be 
retr ied. In multi-processor configurations, th is use of the STQ_C instruct ion affects 
only the local per-processor lock_flag. The s ta te of the per-processor lock_flag of 
other processors is unchanged. 

HARDWARE/SOFTWARE IMPLEMENTATION NOTE 
The use above of the STQ_C instruct ion is specific to t he 
first Alpha implementa t ions . F u t u r e implementa t ions 
may use a different access mechanism. 

A given remote I/O space location is uniformly accessible to all processors in a mult i-
processor configuration. A given hose, hence a given remote I/O bus , m a y be accessed 
via an MBPR a t the same physical address from any processor. A software th read 
need have no knowledge of t he specific processor on which it is executing. 

A F IFO s t ruc ture may be implemented behind each MBPR register to permi t the 
posting of mult iple ou ts tanding mailbox operat ions. A set of processor-specific 
reques t queues m a y be implemented behind each MBPR regis ter to ensure fair access 
to all processors. Any such F IFO or queue is invisible to software. 

Bridge implementa t ions m u s t protect agains t lockout and ensure fair MBPR access 
to all processors in a multi-processor configuration. Multiple wri tes to an MBPR by 

Input/Output (I) 8-3 



a single processor m u s t not be able to cause the s tarvat ion or t imeout of competing 
wri tes to the same MBPR by other processors. 

Multiple software th reads executing a t different IPLs on a single processor may 
cause s tarvat ion or t imeout of the lower IPL th reads . IPL levels are inherent ly 
unfair. 

Bridge implementat ions m u s t gua ran tee forward progress on mailbox operations 
regardless of direct memory access or in te r rup t load. 

8.3.2 Mailbox Pointer Register (MBPR) 

The MBPR format is shown in Figure 8-2 and described in Table 8 - 1 . 

Figure 8-2: Mailbox Pointer Register Format 

Table 8 -1 : Mailbox Pointer Register Format 

Bit(s) Descr ip t ion 

<5:0> SBZ 

<47:6> Physical address of the mailbox structure. The mailbox structure must be at 
least 64-byte aligned. 

<63:48> SBZ 
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8.3.3 Mailbox Structure 

The mailbox is a 64-byte, na tu ra l ly aligned, da t a s t ruc ture . The format is shown in 
Figure 8-3 and described in Table 8-2. 

Figure 8-3: Mailbox Data Structure Format 

SBZ HOSE SBZ MASK IWlB CMD 

RBADR 

WDATA 

UNPREDICTABLE 

UNPREDICTABLE RDATA 

Status 

UNPREDICTABLE 

UNPREDICTABLE 

Table 8 - 2 : Mailbox Data Structure Format 

Offset Bit(s) Name Description 

<29:0> CMD Remote bus command. Controls the actual remote bus 
operation and can include fields such as address only, 
address width, and data width. See Section 8.6.2. 

<30> Β Remote bridge access. If set, the command is a special 
or diagnostic command directed to the remote side. See 
Section 8.6.3. 

<31> W Write access. If set, the remote bus operation is a write. 

<39:32> MASK Disable Byte Mask. Disables bytes within the remote bus 
address. Mask bit <i> set causes the byte to be disabled; 
e.g. data byte <i> will NOT be written to the remote 
address. See Section 8.6.2. 

<47:40> SBZ 

<55:48> HOSE Hose. Specifies the remote bus to be accessed. Bridges may 
directly connect to up to 256 remote buses per hose. 

<63:56> SBZ 

<63:0> RBADR Remote Bus Address. Contains the target address of the 
device on the remote bus. See Section 8.6.2. 
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Table 8-2 (Cont.): Mailbox Data Structure Format 
Offset Bit(s) Name Descr ip t ion 

16 <63:0> WDATA Write Data. For write commands, contains the data to be 
written. For read commands, the field is not used by the 
bridge. 

24 <63:0> UNPREDICTABLE. 

32 <31:0> 

<63:32> 

RDATA Read Data. For read commands, contains the data 
returned. For write data commands, the field is 
UNPREDICTABLE. 

UNPREDICTABLE. 

40 <0> DON Done. Indicates that the ERR, STATUS, and RDATA fields 
are valid; that the mailbox structure may be safely modified 
by host software. 

<1> ERR Error. If set, indicates that an error was encountered 
and that the STATUS field contains additional information. 
Valid only when DON is set. See Sections 8.3.7 and 8.3.8. 

<63:2> STATUS Operation completion status. Contains information specific 
to the bridge implementation. Valid only when DON is set. 
The bridge specification must include a definition of this 
field. See Sections 8.3.7 and 8.3.8. 

48 <63:0> UNPREDICTABLE. 

56 <63:0> UNPREDICTABLE. 

8.3.4 Mailbox Access Synchronization 

The ownership of the mailbox s t ruc ture is exchanged between the posting software 
and the servicing bridge. The first 3 quadwords m u s t be initialized by the software 
prior to posting the mailbox to the bridge. Once posted, the contents of the mailbox 
are owned by the bridge and are UNPREDICTABLE unt i l the DON bit is set by 
the bridge. If the mailbox contents are al tered by software prior to the DON 
bit becoming set, the action of the bridge and the resul t ing mailbox contents a re 
UNPREDICTABLE. Once the DON bit ha s been set by the bridge, the mailbox 
contents are again owned by the software and m u s t not be al tered by the bridge. 

Software use of the DON bit for synchronization is encouraged. If t he DON bit is set 
in the mailbox a t the t ime t h a t the mailbox is posted, it is not possible to determine 
when the mailbox s t ruc ture may be safely al tered nor is it possible to determine 
when any re tu rned information (RDATA or STATUS or ERR) becomes valid. Use of 
a static, not dynamically altered, mailbox s t ruc ture is recommended only for t rue 
wri te-and-run of stat ic da ta such as se t t ing a "go" bit in a device control register. 

Note t h a t the DON bit set does NOT guaran tee t h a t a remote I/O space wri te ha s 
actually completed a t the device. The DON bit may be set by any in tervening bridge. 
See Section 8.3.8. 
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The servicing bridge ignores t he contents of t he DON, ERR, and STATUS fields; 
these fields a re t r ea t ed as wri te only. 

8.3.5 Mailbox Read/Write Ordering 

Mailbox accesses to a given remote bus a re ordered by the MBPR and bus bridge. 
After post ing in t he MBPR, t he order ing m u s t be re ta ined by the bridge. The bridge 
may reorder operations only across different hoses. Mailboxes ta rge ted to different 
buses connected to the same local bridge side m a y occur in a sequence different from 
the posting order. 

Mailbox operat ions a re implicitly ordered when one and only one MBPR is used to 
access a given remote I/O bus . In general , the re is only one p a t h to a given remote 
I/O bus via a unique hose and remote side. In such configurations, t he ha rdware 
m u s t re ta in the ordering of mailbox accesses. In configurations in which there are 
mult iple pa ths , software should order mailbox operat ions by us ing one and only one 
MBPR to access a given remote bus . 

8.3.6 Remote I/O Space Access Granularity 

The granula r i ty of remote I/O space accesses is not symmetric: 

• Mailbox reads a re defined to bytes , words, and longwords. 

• Mailbox wri tes a re defined to bytes, words, longwords and quadwords . 

Mailbox wri tes were optimized to permi t efficient and atomic wri tes of a full 48-bit 
Alpha physical address . 

Not all bus bridges will support all possible remote I/O space access granular i t ies . 
The supported granula r i ty will be de termined by the capabili t ies of the remote bus 
and the remote bus side. 

The MASK and RBADR fields a re de termined by the address ing and mask ing modes 
of t he remote I/O bus . Invalid MASK fields, or invalid combinations of MASK and 
RBADR fields, will not cause ERR to be set. Er ro r checking (if any) is done on 
the remote (I/O bus) side of the bridge; the local (PMI) side of the bridge employs 
disconnected wri tes . If error checking is done by t h e remote side of t h e bridge, t he 
error is reported by an error in te r rup t . 

On mailbox wri te accesses, bridges (and chains of bridges) deliver t he valid WD ATA, 
RBADR, and MASK information to t h e remote I/O device. The valid da ta may be 
encapsulated, along wi th invalid da ta , into larger da t a packets; t he invalid da t a may 
simply be invalid fields from the WDATA quadword. For some remote I/O buses , the 
RBADR and MASK fields m a y be t runca ted or otherwise mapped. 

On mailbox read accesses, bridges (and chains of bridges) deliver t he valid RBADR, 
MASK, and command information to t he remote I/O device. The bridge h a s no 
knowledge of the in tended size of t he read da t a - th is is known only to the reques t ing 
software and the device, which are assumed to agree. The valid da t a may be 
encapsulated, along wi th invalid da ta , into larger da t a packets . Again, for some 
remote I/O buses , t he RBADR and MASK fields m a y be t runca ted or otherwise 
mapped. 
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8.3.7 Remote I/O Space Read Accesses 

The bridge m u s t r e tu rn s t a tus and da t a for remote I/O space reads . When the 
mailbox DON bit is set by the bridge, t he operation h a s completed, and the ERR 
and STATUS fields may be examined. If t he ERR bit is not set, t he requested 
remote bus operation was successful and valid da t a was re turned . If t he ERR bit is 
set, an error was encountered and the STATUS field contains information as to t he 
n a t u r e of the error. 

Er rors encountered on remote I/O space read accesses may also be reported by bridge 
error in te r rupts . The bridge side which encounters the error reques ts the in ter rupt . 
Thus , a non-existent hose error may be reported by the local (PMI) side of the bridge, 
while a non-existent remote bus address error is reported by the remote (I/O bus) 
side of the bridge. 

Remote I/O space read accesses may be performed as follows: 

remote r e a d : 
<load Rm with VA of mailbox> 
<ensure mailbox no longer in use by bridge> 
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields> 

STQ R31, 40(Rm) ; Clear DON/ERR/STATUS fields 

MB 

post_mbx: 
<derive PA of mailbox and load Rl> 
<derive VA of MBPR and load R0> 
STQ_C R1,R0 
BEQ Rl,wait_post_mbx 

wait__mbxdone : 
LDQ 
BLBS 
LDQ RO, 40(Rm) 
BLBS RO, check_err 
<backoff delay> 
BR wait mbxdone 

Fetch STATUS/DON 
Branch on DON set 

check_err: 
SRL 
BLBS 

RO, #1, RO 
RO, read_err 

MB 

LDQ RO, 32(Rm) Fetch RDATA 

read err: 
<handle error> 

wait_j?ost_mbx : 
<backoff delay> 
BR post_mbx 
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Notes: 

1. The mailbox is no longer in use by a bridge whenever the DON bit h a s been set 
by t he servicing bridge or is newly allocated. 

2. The first ba r r i e r is required to ensure t h a t t he bridge will r ead t he mailbox 
contents as upda ted by the processor. Any pending processor wri tes to t he 
mailbox will have completed by the t ime t h a t the load of the MBPR h a s 
completed. 

3. The second bar r ie r is required to ensure t h a t the processor will r ead the mailbox 
contents as upda ted by the bridge. The re tu rned da t a is accessed only after the 
DON bit is observed to be set by t he servicing bridge. 

4. Software need not wai t for the DON bit to become set. 

5. The mailbox RDATA is valid only when DON is set and ERR is clear. 

8.3.8 Remote I/O Space Write Accesses 

The bridge need not r e t u r n s t a tu s for remote I/O space wri tes . When the mailbox 
DON bit is set by t he bridge, t he bridge h a s completed access to t he mailbox 
s t ruc ture . The ERR bit and STATUS fields a re tes table . The actual wri te operation 
need NOT have completed a t t he device and the ERR bit and STATUS fields can 
indicate success (be cleared) even though success is not ensured. However, t he ERR 
bit and STATUS fields, if set, do accurately report an error condition. 

The actual completion of a remote I/O space wri te access can only be observed 
indirectly. E i the r t he appropr ia te device s ta te m u s t be read hack, or the device m u s t 
upda te a memory-resident d a t a s t ruc tu re and/or reques t an in te r rupt . Remote I/O 
space read access(es) m a y be posted anyt ime after post ing the wri te access. Because 
mailbox operat ions to t he same remote bus are guaran teed to be ordered, t he read 
is gua ran teed to occur after the wri te . 

Er rors encountered on remote I/O space wri te accesses a re reported by bridge error 
in te r rup t s . The bridge side which encounters the error reques ts t he in te r rup t . Thus , 
a non-existent hose error may be reported by the local (PMI) side of t he bridge, while 
a non-existent remote bus address error is reported by the remote (I/O bus) side of 
the bridge. 

Remote I/O space wri te accesses m a y be performed as follows: 

remote_write: 

<load Rm with VA of mailbox> 
<ensure mailbox no longer in use by bridge> 
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields> 
STQ R31, 40(RM) ; Clear DON/ERR/STATUS 

MB 

post_mbx: 
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«dérive PA of mailbox and load Rl> 
<derive VA of MBPR and load R0> 
STQ_C R1,R0 
BEQ R1twait_post_mbx 

wait_post_mbx: 

<backoff delay> 
BR post_mbx 

Notes: 

1. The mailbox is no longer in use by a bridge whenever the DON bit ha s been set 
by the servicing bridge or is newly allocated. 

2. The bar r ie r is required to ensure t h a t t he bridge will read t he mailbox contents 
as upda ted by the processor. Any pending processor wri tes to the mailbox will 
have completed by the t ime t h a t the load of the MBPR h a s completed. 

3. If the mailbox da t a is static, e.g. used to set a "go" bit in a device control 
register, the mailbox may be posted wi thout regard to the s ta te of the DON 
bit. Barr iers a re not required each t ime a s tat ic mailbox is posted, however a 
bar r ie r is required after the mailbox contents are initialized and prior to i ts first 
use. 

8.4 Direct Memory Accesss (DMA) 

8.4.1 Access Granularity 

A device or bridge side access to a memory-like region, or "DMA", is t aken to be 
atomic when: 

• I t is not possible for a single device read DMA of a d a t a s t ruc ture which is 
upda ted by a single processor wri te to observe a par t ia l upda te of t h a t s t ruc ture . 

• I t is not possible for a processor reading a da t a s t ruc ture which is upda ted by a 
single device wri te DMA to observe a par t ia l upda te of t h a t s t ruc ture . 

A processor t r ea t s any memory-resident da t a s t ruc tures which are shared wi th 
an I/O device as though the s t ruc tures were shared wi th another processor. The 
processor m u s t follow the guidelines given in Common Architecture, Chapter 5. 
Specifically, bar r ie r instruct ions m u s t be used: 

1. After upda t ing a shared memory-resident da t a s t ruc ture and before set t ing an 
associated flag indicating t h a t the da t a s t ruc ture is valid. 

2. After observing a newly upda ted flag, and prior to accessing the associated shared 
memory-resident da t a s t ruc ture . 

The atomic DMA size guaran teed to a local device is a function of the PMI protocol. 
The min imum size is an aligned hexword. Locally connected devices m u s t obey the 
PMI protocol and may part ic ipate in the memory cache coherency policy. See t he 
guidelines in Common Architecture, Chapter 5. 
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The atomic DMA size gua ran teed to a remote device is a function of the remote I/O 
bus protocol. Remote devices a re gua ran teed atomic access to aligned hexwords or 
the remote I/O bus t ransfer bu r s t size, whichever is smaller. I t is t he responsibility 
of the local bridge side to ensure t he atomicity of t he device DMA. 

Larger atomic DMA granula r i ty permi ts optimization of device control protocols. 
When a da t a s t ruc ture and the associated flag a re contained wi th in a single aligned 
hexword, t he device can upda te both s imultaneously wi th a single wri te DMA. 
Similarly, t he device may access both t he da t a s t ruc ture and the associated flag with 
a single read DMA. If the flag is valid, t he da t a s t ruc ture contains valid information; 
a n addit ional read DMA is not necessary to obtain t h e valid da ta . 

HARDWARE/SOFTWARE IMPLEMENTATION NOTE 
The hexword wri te DMA size was chosen as t he smallest 
cache block size of t h e first Alpha implementa t ions . 

8.4.2 Read/Write Ordering 

DMAs m a y be divided into t he "control" s t r eam and the "data" s t ream. These 
s t r eams differ in the i r ordering propert ies . 

• Control s t r eam accesses a re gua ran teed to be ordered. An implicit ba r r ie r occurs 
before and after each access. Control s t r eam ordering m u s t be preserved by all 
bridges between a given remote I/O device and processor memory. 

• D a t a s t r eam DMAs m a y be arbi t rar i ly reordered if permi t ted by the protocol of 
t h a t I/O bus . No implicit ba r r ie r s a re associated wi th th i s s t ream. 

A device may use control s t r eam DMAs to ensure ordering of t he da t a s t r eam DMAs 
and of in t e r rup t reques ts as seen by a processor or other device shar ing the same 
memory-res ident s t ruc tures . D a t a s t r eam DMAs m u s t not be reordered wi th respect 
to control s t r eam DMAs. In t e r rup t reques ts m u s t not be reordered wi th respect to 
control s t r eam DMAs. 

Control s t r eam DMAs m u s t be used: 

• As the las t DMA issued to upda te a memory-resident da t a s t ruc ture before 
reques t ing a processor in t e r rup t to notify the processor of the upda te . This DMA 
ensures t h a t any previously issued d a t a s t r eam DMAs become visible to t he 
processor prior to t he in te r rup t . 

• To upda te any pointer or o ther l inkage between memory-res ident da t a s t ructures . 
Consider a s t a tu s buffer which is located by a s t a tu s r ing pointer. The s t a tus 
buffer may be upda ted wi th e i ther a control or da t a s t r eam DMA. The r ing pointer 
m u s t be upda ted wi th a control s t r eam DMA which is issued after the last DMA 
used to upda te the s t a tu s buffer. 

A bridge m u s t preserve the ordering of control s t r eam DMAs regardless of whe ther 
the accesses a re reads or wri tes . 

The division of direct memory accesses into t he control s t r eam and the d a t a s t r eam is 
t he responsibility of t he device. I/O bus protocols which do not permi t t he separat ion 
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of control and da ta s t ream DMAs m u s t preserve the ordering of all DMAs and 
in te r rup t requests ; all DMAs are considered to be control s t ream DMAs. Similarly, 
hose protocols which do not permit the separat ion of control and da t a s t ream DMAs 
mus t preserve the ordering of all DMAs and in te r rup t requests . 

Bridge implementat ions m u s t gua ran tee forward progress on all DMA operations. 

8.4.3 Device Address Translation 

I/O devices use only physical addresses; devices m u s t not access page tables for 
the purpose of address t ransla t ion. Devices are independent of any vi r tua l memory 
t rans la t ion scheme and processor page size. 

8.5 Interrupts 

An in te r rup t request from an I/O device consists of an in te r rup t priority level and 
an in te r rup t vector. Device in te r rup t reques ts are defined to be priorities 20 to 23. 
The in te r rup t vector identifies the appropr ia te in te r rup t service rout ine; the s ta r t ing 
address of the in te r rup t service rout ine is obtained by us ing the vector as an offset 
from the base of the System Control Block (SCB). 

All bridge implementat ions m u s t ma in ta in both the temporal order and relat ive 
priority of device in te r rup ts . A bridge m u s t not expedite a lower priority request if 
a higher priority request ha s been received. With one exception, a bridge m u s t not 
reorder two in te r rup t requests a t t he same priority level. A bridge is permit ted to 
expedite delivery of a fatal bridge error in ter rupt ; th is in te r rup t m u s t be a t IPL 23 
and may take precedence over any IPL 23 device in te r rup ts . 

A bridge may prefetch the in te r rup t vector from an I/O device to reduce the processor 
overhead associated wi th in te r rup t dispatch. Vector prefetch reduces the processor 
latency necessary to dispatch to the in te r rup t service rout ine by reducing the delay 
associated with the delivery of the in te r rup t vector to the processor. 

When a bridge delivers an in te r rup t from an I/O device, any pending control s t ream 
DMA writes issued by the device m u s t have become visible to the processors. Note 
t h a t due to the ordering of control s t r eam DMAs, any da t a s t r eam DMAs wri tes 
prior to the las t pending control s t r eam DMA m u s t also have become visible to the 
processors. 

In multi-processor configurations, in te r rup t s may be directed to a subset of the 
processors in the configuration. Such ta rge t t ing is implementat ion specific. 

8.6 I/O Bus-Specific Mailbox Usage 

The following sections per ta in to I/O bus-specific mailbox usage. 

8.6.1 Mailbox Field Checking 

Bridge sides check only implemented functions. I t is t he responsibility of t he posting 
software to ensure t h a t the mailbox da ta s t ruc ture fields are valid and t h a t the 
s t ruc ture is posted correctly. 
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1. Local sides need not check the MASK, B, CMD, RBADR, or WDATA fields. 

2. Local sides which connect to a single hose need not check the HOSE field. 

3. Local sides need not pass the HOSE or W fields to the remote bridge side. 

4. Remote bridge sides which do not implement mask ing need not check the MASK 
field. 

5. There is no consistency checking between the W and CMD fields. If the W 
bit is set and the CMD field indicates a read, the resul t is UNPREDICTABLE. 
Similarly, if t he W bit is clear and the CMD field indicates a wri te , the resul t is 
UNPREDICTABLE. 

6. Remote bridge sides check only implemented CMD and RBADR bits . 

8.6.2 CMD Field 

The CMD field consists of two subfields: 

• A remote I/O bus specific subfield. 

This subfield is common to all Alpha systems and contains the controls for a given 
remote bus . The common subfield m u s t be backward compatible; all systems 
which connect to a given I/O bus share th is subfield. 

• A system-specific subfield. 

This subfield is specific to each Alpha system and contains the controls for a 
given bridge implementa t ion or system-specific diagnostic functions. 

The size of each is specific to the remote I/O bus . The bridge specification m u s t 
include t he definitions of all valid commands. This par t i t ion promotes software 
portability. A given device driver uses the same CMD for a given type of device 
access, regardless of the platform. Diagnostic software can also in te rpre t the 
common field wi thout regard to the platform on which the mailbox was posted. 

8.6.3 Special Commands 

The special "WHO_ARE_YOU" command (W=0, B = l , CMD=0) is common to all 
bridge implementat ions . WHO_ARE_YOU is used to de termine the type of remote 
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command 
and RBADR of 0, t he remote bridge side r e tu rn s a unique remote bus side identifier. 
All other commands are specific to the type of remote bus and independent of the 
bridge implementat ion. 
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Part II OpenVMS Alpha Software 

Thi s sect ion descr ibes h o w t h e O p e n V M S o p e r a t i n g 
s y s t e m r e l a t e s to t h e A l p h a a r c h i t e c t u r e a n d 
con t a in s t h e following c h a p t e r s : 

1. I n t roduc t i on to O p e n V M S A l p h a 

2. O p e n V M S PALcode I n s t r u c t i o n Desc r ip t ions 

3 . O p e n V M S M e m o r y M a n a g e m e n t 

4. O p e n V M S Process S t r u c t u r e 

5. O p e n V M S I n t e r n a l P rocessor Reg i s t e r s 

6. O p e n V M S Excep t ions , I n t e r r u p t s , a n d M a c h i n e 
Checks 

α 



Chapter 1 

Introduction to OpenVMS Alpha (II) 

The goals of th is design are to provide a h a r d w a r e implementa t ion independent 
interface between OpenVMS and the ha rdware . Fur ther , t he design provides the 
needed abst ract ions to minimize t h e impact between OpenVMS and t h e different 
h a r d w a r e implementat ions . Finally, t he design m u s t contain only t h a t overhead 
necessary to satisfy those requ i rements , while still suppor t ing high-performance 
systems. 

1.1 Register Usage 

Besides those regis ters described in Part I, Common Architecture, OpenVMS defines 
t he regis ters described in t he following sections. 

1.1.1 Processor Status 

The Processor S t a tus (PS) is a special regis ter t h a t contains t he cur ren t s t a tu s of the 
processor. I t can be read by the CALL_PAL RD_PS instruct ion. The software field 
(PS<SW>) can be wr i t ten by the CALL.PAL WR_PS_SW rout ine. See Chapte r 6 for 
a description of t h e P S register. ) 

1.1.2 Stack Pointer (SP) 

In teger register R30 is the Stack Pointer (SP). 

The S P contains the address of t h e top of t h e s tack in t h e cur ren t mode. 

Cer ta in PALcode instruct ions, such as CALL_PAL REI, use R30 as a n implicit 
operand. Dur ing such operat ions, t h e address va lue in R30, in terpre ted as a n 
unsigned 64-bit integer, decreases (predecrements) when i tems are pushed onto t he 
stack, and increases (postincrements) when they a re popped from the stack. After 
push ing (writing) an i tem to t he stack, S P points to t h a t i tem. 

1.1.3 Internal Processor Registers (IPRs) 

The IPRs provide an architected mapp ing to in te rna l h a r d w a r e or provide other 
specialized uses . They a r e available only to privileged software th rough PALcode 
rout ines and allow OpenVMS to in ter rogate or modify system s ta te . The IPRs are 
described in Chap te r 5. 
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Chapter 2 

OpenVMS PALcode Instruction Descriptions (II) 

This chapter describes the PALcode instruct ions t h a t a re implemented for the 
OpenVMS Alpha environment . The PALcode inst ruct ions a re a set of unprivileged 
and privileged CALLJPAL inst ruct ions t h a t a re used to ma tch specific operat ing 
system requ i rements to t he under ly ing h a r d w a r e implementat ion. 

For example, privileged PALcode instruct ions switch t he h a r d w a r e context 
of a process s t ruc ture . Unprivileged PALcode instruct ions implement the 
un in te r rup tab le queue operat ions. Also, PALcode instruct ions provide s t anda rd 
in te r rup t and exception repor t ing mechanisms t h a t a re independent of the 
under lying ha rdware implementat ion. 

Table 2 -1 l ists all t he unprivileged and privileged OpenVMS PALcode instruct ions 
and the section in th i s chapter in which they a re described. 

Table 2 - 1 : OpenVMS PALcode Instructions 

Unprivileged OpenVMS PALcode Instructions 

Mnemonic Operation Section 

AMOVRM Atomic move register/memory Section 2.4 

AMOVRR Atomic move register/register Section 2.4 

BPT Breakpoint Section 2.1 

BUGCHK Bugcheck Section 2.1 

CHME Change mode to executive Section 2.1 

CHMK Change mode to kernel Section 2.1 

CHMS Change mode to supervisor Section 2.1 

CHMU Change mode to user Section 2.1 

GENTRAP Generate software trap Section 2.1 

1MB I-stream memory barrier Common Architecture, Chap-
ter 6 

INSQxxx Insert in specified queue Section 2.3 

PROBER Probe read access Section 2.1 

PROBEW Probe write access Section 2.1 

RD.PS Read processor status Section 2.1 
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Table 2 - 1 (Cont.): OpenVMS PALcode Instructions 

Unprivileged OpenVMS PALcode Instructions 

Mnemonic Operation Section 

READJJNQ Read unique context Section 2.5 

REI Return from exception or interrupt Section 2.1 

REMQxxx Remove from specified queue Section 2.3 

RSCC Read system cycle counter Section 2.1 

SWASTEN Swap AST enable Section 2.1 

WRITE.UNQ Write unique context Section 2.5 

WR.PS.SW Write processor status software field Section 2.1 

Privileged OpenVMS PALcode Instructions 

Mnemonic Operation Section 

CFLUSH Cache flush Section 2.6 

DRAINA Drain aborts Common Architecture, Chap-
ter 6 

HALT Halt processor Common Architecture, Chap-
ter 6 

LDQP Load quadword physical Section 2.6 

MFPR Move from processor register Section 2.6 

MTPR Move to processor register Section 2.6 

STQP Store quadword physical Section 2.6 

SWPCTX Swap privileged context Section 2.6 
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2.1 Unprivileged General OpenVMS PALcode Instructions 

The general unprivileged inst ruct ions in th is section, together with those in Sections 
2.3, 2.4, and 2.5, provide suppor t for t he under ly ing OpenVMS Alpha model. 

Table 2-2: Unprivileged General OpenVMS PALcode Instruction Summary 
Mnemonic Opera t ion 

BPT Breakpoint 

BUGCHK Bugcheck 

CHME Change mode to executive 

CHMK Change mode to kernel 

CHMS Change mode to supervisor 

CHMU Change mode to user 

GENTRAP Generate software trap 

1MB I-stream memory barrier 

See Common Architecture, Chapter 6 

PROBER Probe read access 

PROBEW Probe write access 

RD_PS Read processor status 

REI Return from exception or interrupt 

RSCC Read system cycle counter 

SWASTEN Swap AST enable 

WR_PS_SW Write processor status software field 
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2.1.1 Breakpoint 

Format: 
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CALL.PAL BPT ÎPALcode format 

Operation: 

{initiate BPT exception with new_mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL.PAL BPT Breakpoint 

Description: 

The BPT instruct ion is provided for program debugging. I t switches to Kernel mode 
and pushes R2..R7, the upda ted PC, and P S on the Kernel stack. I t t hen dispatches 
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1. 



2.1.2 Bugcheck 

Format: 
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CALL_PAL BUGCHK ÎPALcode format 

Operation: 

{initiate BUGCHK exception with new__mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL.PAL BUGCHK Bugcheck 

Description: 

The BUGCHK instruct ion is provided for error report ing. I t switches to Kernel mode 
and pushes R2..R7, the upda ted PC, and P S on the Kernel stack. I t t h e n dispatches 
to t he address in t he Bugcheck SCB vector. See Section 6.3.3.2.2. 



2.1.3 Change Mode Executive 

Format: 

CALL_PAL CHME ÎPALcode format 

Operation: 

tmpl <- MINU( 1, PS<CM>) 
{initiate CHME exception with new_mode=tmpl> 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL.PAL CHME Change Mode to Executive 

Description: 

The CHME instruct ion lets a process change i ts mode in a controlled manner . 

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved, 
the new pointer is loaded. R2..R7, PC and P S are pushed onto the selected stack. 
The saved PC addresses the instruct ion following the CHME instruction. Registers 
R22, R23, R24, and R27 are available for use by PALcode as scratch registers . The 
contents of these registers are not preserved across a CHME. 
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2.1.4 Change Mode to Kernel 

Format: 
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CALL.PAL CHMK ÎPALcode format 

Operation: 

{initiate CHMK exception with new_mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

C A L L P A L CHMK Change Mode to Kernel 

Description: 

The CHMK instruct ion lets a process change i ts mode to kernel in a controlled 
manner . 

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved, 
the new pointer is loaded. R2..R7, PC, and P S a re pushed onto t he kernel stack. 
The saved PC addresses t he inst ruct ion following t he CHMK instruct ion. Registers 
R22, R23, R24, and R27 are available for use by PALcode as scratch regis ters . The 
contents of these regis ters a re not preserved across a CHMK. 



2.1.5 Change Mode Supervisor 

Format: 
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CALL_PAL CHMS ÎPALcode format 

Operation : 

tmpl <- MINU( 2, PS<CM>) 
{initiate CHMS exception with new_mode=tmpl> 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL_PAL CHMS Change Mode to Supervisor 

Description: 

The CHMS instruct ion lets a process change i ts mode in a controlled manner . 

A change in mode also resul ts in a change of s tack pointers: t he old pointer is saved, 
the new pointer is loaded. R2..R7, PC, and P S are pushed onto the selected stack. 
The saved PC addresses the instruct ion following t he CHMS instruction. 



2.1.6 Change Mode User 

Format: 

CALL_PAL CHMU ÎPALcode format 

Operation: 

{initiate CHMU exception with new_mode=PS<CM>} 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL.PAL CHMU Change Mode to User 

Description: 

The CHMU instruct ion lets a process call a rout ine via the change mode mechanism. 

R2..R7, PC, and P S are pushed onto t he cur ren t stack. The saved PC addresses the 
instruct ion following the CHMU instruct ion. 

The CALL_PAL CHMU instruct ion is provided for VAX compatibility only. 
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2.1.7 Generate Software Trap 

Format: 

CALL_PAL GENTRAP ÎPALcode format 

Operation: 

{initiate GENTRAP exception with new_mode=kernel> 
! R16 contains the value encoding of the software trap 

Exceptions: 

Kernel Stack Not Valid Ha l t 

Instruction mnemonics: 

CALL_PAL GENTRAP Genera te Software Trap 

Description: 

The GENTRAP instruct ion is provided for report ing run t ime software conditions. I t 
switches to Kernel mode, and pushes R2...R7, t he upda ted PC and P S on the Kernel 
stack. I t t hen dispatches to the address in the GENTRAP SCB Vector. See Section 
Section 6.6. 

The value in R16 identifies the par t icular software condition t h a t h a s occurred. The 
encoding for the software t r a p values is given in t he software calling s t anda rd for 
the system. 
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2.1.8 Probe Memory Access 

Format: 

CALL_PAL PROBE ÎPALcode format 

Operation: 

! R16 contains the base address 
! R17 contains the signed offset 
1 R18 contains the access mode 
I R0 receives the completion status 
I <— 1 if success 
I <— 0 if failure 

first <- R16 
last 4 - {R16+R17} 

IF R18<1:0> GTU PS<CM> THEN 
probe__mode <— R18<1:0> 

ELSE 
probe_mode <— PS<CM>) 

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN 
R0 <- 1 

ELSE 
R0 4- 0 

Exceptions: 

Translat ion Not Valid 

Instruction mnemonics: 

CALL_PAL PROBER Probe for Read Access 

CALL_PAL PROBEW Probe for Write Access 

Description: 

The PROBE instruct ion checks t h e r ead or wri te accessibility of t h e first and las t 
byte specified by the base address and the signed offset; t he bytes in between are 
not checked. 

System software m u s t check all pages between the two bytes if they are to be 
accessed. If both bytes a re accessible, PROBE re tu rn s the value 1 in RO; otherwise, 
PROBE r e t u r n s 0. The Fau l t On Read and Fau l t On Write PTE bits a re not checked. 
A Translat ion Not Valid exception is signaled only if t he the mapping s t ruc tures can 
not be accessed. A Transla t ion Not Valid exception is signaled only if t he first or 
second level PTE is invalid. 
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The protection is checked agains t the less privileged of t he modes specified by 
R18<1:0> and the Cur ren t Mode (PS<CM>). See Section 6.2 for access mode 
encodings. 

PROBE is only intended to check a single d a t u m for accessibility. I t does not check 
all in tervening pages because th is could resul t in excessive in te r rup t latency. 
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2.1.9 Read Processor Status 

Format: 

CALL_PAL RD_PS ÎPALcode format 
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Operation: 

RO « - P S 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL RD_PS Read Processor S t a tus 

Description : 

The RD_PS instruct ion r e t u r n s t he Processor S t a tu s (PS) in regis ter RO. The 
Processor S t a tus is described in Section 6.2. The PS<SP_ALIGN> field is always 
a zero on a RDJPS. 



2.1.10 Return from Exception or Interrupt 

Format: 

CALL.PAL REI ÎPALcode format 

Operation: 

! See Chapter 6 
! for information on interrupted registers 

IF SP<5:0> NE 0 THEN 
{illegal operand } 

tmpl <- (SP) ! Get saved R2 
tmp2 «- (SP+8) ! Get saved R3 
tmp3 <- (SP+16) ! Get saved R4 
tmp4 <- (SP+24) ! Get saved R5 
tmp5 <- (SP+32) 1 Get saved R6 
tmp6 <- (SP+40) i Get saved R7 
tmp7 «- (SP+48) ! Get new PC 
tmp8 <- (SP+56) ! Get new PS 

ps_chk «— tmp8 ! Copy new ps 
ps_chk<cm> <— 0 ! Clear cm field 
ps_chk<sp_align> «- 0 ! Clear sp_align field 
ps_chk<sw> «— 0 ! Clear Software Field 
intr_flag «- 0 ! Clear except/inter/mcheck flag 
{ clear lock_flag> 

! If current mode is not kernel check the new ps is valid. 
IF {ps<cm> NE 0} AND 

{{tmp8<cm> LT ps<cm>> OR {ps__chk NE 0}> THEN 
BEGIN 
{illegal operand} 

END 

s ρ <— {sp + 8*8} OR tmp8<sp_align> 
IF {internal registers for stack pointers} THEN 

CASE ps<cm> BEGIN 
[ 0 ] : ipr_ksp <— sp 
[ 1 ] : ipr_esp «— sp 
[2]: ipr_ssp <— sp 
[ 3 ] : ipr_usp <— sp 

ENDCASE 
CASE tmp8<cm> BEGIN 
[ 0 ] : sp 4 — ipr_ksp 
[ 1 ] : s ρ ipr_esp 
[2 ] : sp ipr_ssp 
[ 3 ] : sp ipr_usp 

ENDCASE 
ELSE 

(pcbb + 8*ps<cm>) «— sp 
sp «- (pcbb + 8*tmp8<cm>) 

END IF 
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R2 «- tmpl 
R3 <- tmp2 
R4 <— tmp3 
R5 <— tmp4 
R6 <— tmp5 
R7 <— tmp6 
PC <- tmp7 
PS <— tmp8 <12:00> 

{Initiate interrupts or AST interrupts that are now pending) 

Exceptions: 

Access Violation 

Fau l t on Read 

Illegal Operand 

Kernel Stack Not Valid Ha l t 

Translat ion Not Valid 

Instruction mnemonics: 

CALL_PAL REI Re tu rn from Exception or In t e r rup t 

Description: 

The REI instruct ion pops the PS , PC, and saved R2...R7 from the cur ren t s tack and 
holds t h e m in temporary registers . 

The new P S is checked for validity and consistency. If it is invalid or inconsistent, 
an illegal operand exception occurs; otherwise t he operation continues. A kernel 
to nonkernel REI wi th a new PS<IPL> not equal to zero may yield U N D E F I N E D 
resul ts . 

The cur ren t s tack pointer is t hen saved and a new stack pointer is selected according 
to the new PS<CM> field. R2 th rough R7 are restored us ing the saved values held in 
t he t emporary regis ters . A check is m a d e to de termine if an AST or other in te r rup t 
is pending (see Section 6.7.6). 

If t he enabl ing conditions a re presen t for a n in t e r rup t or AST in te r rup t a t t he 
completion of th is instruct ion, the in t e r rup t or AST in te r rup t occurs before the next 
instruction. 
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When an REI is issued, the cur ren t s tack m u s t be wri table from the cur ren t mode 
or an Access Violation may occur. 

IMPLEMENTATION NOTE 
This is necessary so t h a t an implementa t ion can choose 
to clear the lock_flag by doing a STx_C to above the top-
of-stack after popping PS , PC, and saved R2..R7 off the 
t he cur ren t stack. 
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2.1.11 Read System Cycle Counter 

Format: 

CALL_PAL RSCC ÎPALcode format 

Operation: 

RO <— {System Cycle Counter} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL RSCC Read System Cycle Counter 

Description: 

The RSCC instruct ion wri tes regis ter RO wi th the value of t he system cycle counter. 
This counter is an unsigned 64-bit integer t h a t increments a t t he same r a t e as the 
process cycle counter. The cycle counter frequency, which is the n u m b e r of t imes 
t h e system cycle counter gets incremented per second rounded to a 64-bit integer, is 
given in t he HWRPB. 

The system cycle counter is sui table for t iming a general r ange of in tervals to wi thin 
10% error and m a y be used for detailed performance characterizat ion. I t is required 
on all implementa t ions . SCC is required for every processor, and each processor in 
a mult iprocessor system h a s i ts own private , independent SCC. 

Notes: 

1. Processor init ialization s t a r t s t he SCC a t 0. 

2. SCC is required for every processor and each processor in a multiprocessor system 
h a s i ts own private , independent SCC. 

3. SCC is monotonically increasing. On the same processor, t he values re tu rned 
by two successive reads of SCC m u s t e i ther be equal or the value of the second 
m u s t be g rea te r (unsigned) t h a n the first. 

4. SCC ticks a re never lost so long as t he SCC is accessed a t least once per each PCC 
overflow period (2**32 PCC increments) dur ing periods when the ha rdware clock 
in t e r rup t r emains blocked. The h a r d w a r e clock in t e r rup t is blocked whenever 
t he IPL is a t or above CLOCK_IPL or whenever the processor en ters console I/O 
mode from program I/O mode. 
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5. The 64-bit SCC may be constructed from the 32-bit PCC ha rdware counter and 
a 32-bit PALcode software counter. As pa r t of the ha rdware clock in te r rup t 
processing, PALcode increments the software counter whenever a PCC wrap is 
detected. Thus , SCC ticks may be lost only when PALcode fails to detect PCC 
wraps . In a machine where the PCC is incremented a t a 1 nsec ra te , th is may 
occur when ha rdware clock in te r rup t s are blocked for g rea te r t h a n 4 seconds. 

6. An implementat ion-dependent mechanism m u s t exist to, when enabled, cause 
the RSCC instruction, as implemented by s t anda rd PALcode, to always r e tu rn 
a zero in RO. This mechanism m u s t be usable by privileged system software. A 
similar mechanism m u s t exist for RPCC. Implementa t ions a re allowed to have 
ju s t a single mechanism which when enabled causes both RSCC and RPCC to 
r e tu rn zero. 
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2.1.12 Swap AST Enable 

Format: 

CALL.PAL SWASTEN ÎPALcode format 

Operation: 

RO <- ZEXT(ASTEN<PS<CM») 
ASTEN<PS<CM» <- R16<0> 

{check for pending ASTs} 

Exceptions: 

None 

Instruction mnemonics: 

CALLJPAL SWASTEN Swap AST Enable for Cur ren t Mode 

Description: 

The SWASTEN instruct ion swaps the AST enable bit for the cur ren t mode. The 
new s ta te for the enable bit is supplied in regis ter R16<0> and previous s ta te of the 
enable bit is re turned , zero extended, in RO. 

A check is made to de termine if an AST in te r rup t is pending (see Section 6.7.6.6). 

If t he enabl ing conditions are presen t for an AST in te r rup t a t t he completion of th is 
instruction, t he AST occurs before the next instruction. 
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2.1.13 Write Processor Status Software Field 

Format: 
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CALL.PAL WR_PS_SW ÎPALcode format 

Operation: 

PS<SW> <- R16<1:0> 

Exceptions: 

None 

Instruction mnemonics: 

CALLJPAL WR_PS_SW Write Processor S t a tu s Software Field 

Description: 

The WR_PS_SW instruct ion wri tes the Processor S t a tu s software field (PS<SW>) 
wi th the low order two bits of R16. The Processor S t a tus is described in Section 6.2. 



2.2 OpenVMS Alpha Queue Data Types 

The following sections describe the queue da t a types t h a t a re manipu la ted by the 
OpenVMS queue PALcode. Section 2.3 describes t he PALcode instruct ions t h a t 
perform t h e manipula t ion. 

2.2.1 Absolute Longword Queues 

A longword queue is a circular, doubly l inked list. A longword queue en t ry is specified 
by i ts address . Each longword queue en t ry is l inked to t he next wi th a pai r of 
longwords. A queue is classified by t h e type of l ink it uses . Absolute longword 
queues use absolute addresses as l inks. 

The first (lowest addressed) longword is t he forward link; it specifies the address of 
t he succeeding longword queue entry. The second (highest addressed) longword is 
the backward link; it specifies the address of t he preceding longword queue entry. 

A longword queue is specified by a longword queue heade r which is identical to a 
pa i r of longword queue l inkage longwords. The forward l ink of t he header is the 
address of the en t ry t e rmed the head of t he longword queue. The backward l ink of 
the heade r is t he address of t he en t ry t e rmed the tai l of the longword queue. The 
forward l ink of the tai l points to t he header. 

An empty longword queue is specified by i ts header a t address H, as shown in 
Figure 2 -1 If an en t ry a t address Β is inser ted into an empty longword queue (at 
e i ther t he head or tail) , t he longword queue shown in Figure 2 -2 resul ts . Figures 
2 - 3 , 2-4, and 2 - 5 , respectively, i l lus t ra te t he resul ts of subsequent insert ion of an 
en t ry a t address A a t t he head, inser t ion of a n ent ry a t address C a t the tai l , and 
removal of t he en t ry a t address B. 

2.2.2 Self-Relative Longword Queues 

Self-relative longword queues use displacements from longword queue entr ies as 
l inks. Longword queue entr ies a re l inked by a pai r of longwords. The first longword 
(lowest addressed) is the forward link; i t is a displacement of t he succeeding longword 
queue en t ry from the presen t entry. The second longword (highest addressed) is t h e 
backward link; it is t he displacement of the preceding longword queue ent ry from 
the present entry. A longword queue is specified by a longword queue header, which 
also consists of two longword l inks. 

An empty longword queue is specified by i ts header a t address H. Since the longword 
queue is empty, t he self-relative l inks a re zero, as shown in Figure 2 -6 . 

Four types of operat ions can be performed on self-relative queues: inser t a t head, 
inser t a t tai l , remove from head, and remove from tail . Fur the rmore , these 
operat ions a re interlocked to allow cooperating processes in a multiprocessor system 
to access a shared list wi thout addit ional synchronization. A hardware-suppor ted , 
interlocked memory access mechanism is used to modify t he queue header. Bit <0> 
of t he queue header is used as a secondary interlock and is set when the queue is 
being accessed. 
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If an interlocked queue CALL_PAL instruct ion encounters the secondary interlock 
set, then , in the absence of exceptions, it t e rmina tes after se t t ing RO to - 1 to indicate 
failure to gain access to the queue. If t he secondary interlock bit is not set, t hen 
it is set dur ing the interlocked queue operation and is cleared upon completion of 
t he operation. This prevents o ther interlocked queue CALL_PAL instruct ions from 
operat ing on the same queue. 

If both the secondary interlock is set and an exception condition occurs, it is 
UNPREDICTABLE whe ther the exception will be reported. 

Figures 2 -7 , 2 - 8 , and 2 -9 , respectively, i l lus t ra te t he resul t s of subsequent insert ion 
of an ent ry a t address Β a t t he head, insert ion of an ent ry a t address A a t the tai l , 
and insert ion of an en t ry a t address C a t the tail . 

Figures 2 -9 , 2 - 8 , and 2 -7 (in t h a t order) i l lus t ra te the effect of removal a t t he tai l 
and removal a t t he head. 

Figure 2-1 : Empty Absolute Longword Queue 

:H 

:H+4 

Figure 2-2: Absolute Longword Queue with One Entry 

:H 

:H+4 

:B 

:B+4 
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Figure 2-3: Absolute Longword Queue with Two Entries 

:H 

:H+4 

:A 

:A+4 

:B 

:B+4 

Figure 2-4: Absolute Longword Queue with Three Entries 

:H 

:H+4 

:A 

:A+4 

:B 

:B+4 

:C 

:C+4 
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Figure 2-5: Absolute Longword Queue with Three Entries After Removing the Second 
Entry 

:H 

:H+4 

:A 

:A+4 

:C 

:C+4 

Figure 2-6: Empty Self-Relative Longword Queue 

:H 

:H+4 

Figure 2-7: Self-Relative Longword Queue with One Entry 

B - H 

Β - H 

H Β 

H Β 

:Η 

:Η+4 

:Β 

:Β+4 
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Figure 2-8: Self-Relative Longword Queue with Two Entries 

A Η 

Β Η 

:Η 

:Η+4 

Β - Α 

Η - Α 

:Α 

:Α+4 

Η - Β 

Α - Β 

:Β 

:Β+4 

Figure 2-9: Self-Relative Longword Queue with Three Entries 

A - H 

C - H 

B - A 

Η - A 

C - B 

A - B 

H - C 

B - C 

:H 

:H+4 

:A 

:A+4 

:B 

:B+4 

:C 

:C+4 

2.2.3 Absolute Quadword Queues 

A quadword queue is a circular, doubly l inked list. A quadword queue en t ry is 
specified by i ts address . Each quadword queue ent ry is l inked to t h e next wi th 
a pa i r of quadwords. A queue is classified by the type of l ink it uses . Absolute 
quadword queues use absolute addresses as l inks. 

The first (lowest addressed) quadword is t he forward link; it specifies t he address of 
the succeeding quadword queue entry. The second (highest addressed) quadword is 
the backward link; it specifies the address of the preceding quadword queue entry. 

A quadword queue is specified by a quadword queue header which is identical to a 
pai r of quadword queue l inkage quadwords . The forward l ink of t h e header is the 
address of the en t ry t e rmed the head of the quadword queue. The backward link of 
the header is the address of the en t ry t e rmed the tai l of t he quadword queue. The 
forward l ink of the tai l points to the header. 
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An empty quadword queue is specified by i ts header a t address H, as shown in 
Figure 2-10. If an ent ry a t address Β is inser ted into an empty quadword queue (at 
e i ther the head or tail), t he quadword queue shown in Figure 2-11 resul ts . Figures 
2 -12 , 2 -13 , and 2-14 , respectively, i l lus t ra te the resul ts of subsequent insert ion of 
an ent ry a t address A a t the head, insert ion of an ent ry a t address C a t the tail , and 
removal of the en t ry a t address B. 

2.2.4 Self-Relative Quadword Queues 

Self-relative quadword queues use displacements from quadword queue entr ies 
as l inks. Quadword queue entr ies a re l inked by a pai r of quadwords. The 
first quadword (lowest addressed) is the forward link; it is a displacement of the 
succeeding quadword queue ent ry from the present entry. The second quadword 
(highest addressed) is the backward link; it is t he displacement of the preceding 
quadword queue ent ry from the present entry. A quadword queue is specified by a 
quadword queue header, which also consists of two quadword l inks. 

An empty quadword queue is specified by i ts header a t address H. Since the 
quadword queue is empty, the self-relative l inks a re zero, as shown in Figure 2 -15 . 

Four types of operations can be performed on self-relative queues: inser t a t head, 
inser t a t tail , remove from head, and remove from tail . Fur the rmore , these 
operations are interlocked to allow cooperating processes in a multiprocessor system 
to access a shared list wi thout addit ional synchronization. A hardware-suppor ted, 
interlocked memory access mechanism is used to modify the queue header. Bit <0> 
of the queue header is used as a secondary interlock and is set when the queue is 
being accessed. 

If an interlocked queue CALL_PAL instruct ion encounters the secondary interlock 
set, then , in the absence of exceptions, it t e rmina tes after se t t ing RO to - 1 to indicate 
failure to gain access to the queue. If t he secondary interlock bit is not set, t hen 
it is set dur ing the interlocked queue operation and is cleared upon completion of 
the operation. This prevents other interlocked queue CALL_PAL instruct ions from 
operat ing on the same queue. 

If both the secondary interlock is set and an exception condition occurs, it is 
UNPREDICTABLE whe ther the exception will be reported. 

Figures 2-16, 2 -17 , and 2 -18 , respectively, i l lus t ra te the resul ts of subsequent 
insert ion of an ent ry a t address Β a t the head, insert ion of an en t ry a t address 
A a t the tail , and insert ion of an ent ry a t address C a t the tail . 

Figures 2 -18 , 2 -17 , and 2-16 , (in t h a t order) i l lus t ra te the effect of removal a t the 
tai l and removal a t t he head. 
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Figure 2-10: Empty Absolute Quadword Queue 

:H 

Figure 2-11 : Absolute Quadword Queue with One Entry 

:H 

:H+8 

:B 

:B+8 

Figure 2-12: Absolute Quadword Queue with Two Entries 

:H 

:H+8 

:A 

:A+8 

:B 

:B+8 
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Figure 2-13: Absolute Quadword Queue with Three Entries 

:H 

Figure 2-14: Absolute Quadword Queue with Three Entries After Removing the Second Entry 

:H 

:H+8 

:A 

:A+8 

:C 

:C+8 

Figure 2-15: Empty Self-Relative Quadword Queue 

:H 
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Figure 2-16: Absolute Quadword Queue with One Entry 
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Figure 2-17: Self-Relative Quadword Queue with Two Entries 
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Figure 2-18: Self-Relative Quadword Queue with Three Entries 
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2.3 Unprivileged OpenVMS Queue PALcode Instructions 

The following unprivileged PALcode instruct ions perform atomic modification of t h e 
queue da t a types t h a t a re described in Section 2.2. 

Table 2 - 3 : VAX Queue Palcode Instruction Summary 

Mnemonic Opera t ion 

INSQHIL Insert into longword queue at head, interlocked 

INSQHILR Insert into longword queue at head, interlocked, resident 

INSQHIQ Insert into quadword queue at head, interlocked 

INSQHIQR Insert into quadword queue at head, interlocked, resident 

INSQTIL Insert into longword queue at tail, interlocked 

INSQTILR Insert into longword queue at tail, interlocked, resident 

INSQTIQ Insert into quadword queue at tail, interlocked 

INSQTIQR Insert into quadword queue at tail, interlocked, resident 

INSQUEL Insert into longword queue 

INSQUEQ Insert into quadword queue 

REMQHIL Remove from longword queue at head, interlocked 

REMQHILR Remove from longword queue at head, interlocked, resident 

REMQHIQ Remove from quadword queue at head, interlocked 

REMQHIQR Remove from quadword queue at head, interlocked, resident 

REMQTIL Remove from longword queue at tail, interlocked 

REMQTILR Remove from longword queue at tail, interlocked, resident 

REMQTIQ Remove from quadword queue at tail, interlocked 

REMQTIQR Remove from quadword queue at tail, interlocked, resident 

REMQUEL Remove from longword queue 

REMQUEQ Remove from quadword queue 

2-30 OpenVMS Alpha Software (II) 



2.3.1 Insert Entry into Longword Queue at Head Interlocked 

Format: 

CALL_PAL INSQHIL ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
i R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the queue was not empty before adding this entry 
! 1 if the queue was empty before adding this entry 
! 
! Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
! Header cannot be equal to entry, 
ι 
! check entry and header alignment and 
! that the header and entry not same location and 
! that the header and entry are valid 32 bit addresses 

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17> OR 
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN 
BEGIN 

{illegal operand exception} 
END 

Ν <- {retry_amount> ! Implementation-specific 

LOAD__LOCKED (tmpO <— (R16)) ! Acquire hardware interlock. 

done <- S TORE_C ONDIΤI ON AL ((R16) «- {TMPO OR Rl} ) 
Ν «— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 
tmpl <- SEXT(tmpO<31:0>) 
IF {tmpl<2:l> NE 0} THEN BEGIN ! Check alignment 

BEGIN ! Release secondary interlock. 
(R16) <- tmpO 
{illegal operand exception} 

END 
! Check if following addresses can be written 
! without causing a memory management exception: 
! entry 
! header + tmpl 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ! Release secondary interlock. 
(R16) <- tmpO 
{initiate memory management fault} 

END 

REPEAT 

IF tmp0<0> EQ 1 THEN 
RO -1, {return} 

! Try to set secondary interlock. 
! Already set 
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! All accesses can be done so enqueue the entry 

tmp2 <- SEXT({R16 - R17}<31:0>) 
(R17)<31:0> <- tmpl + tmp2 ! 
(R17 + 4)<31:0> «- tmp2 ! 
(R16 + tmpl + 4)<31:0> <- -tmpl - tmp2 ! 

Forward link 
Backward link 
Successor back link 

MB 

(R16)<31:0> <- -tmp2 Forward link of header 
Release lock 

IF tmpl EQ 0 THEN 
RO <- 1 

ELSE 
RO <- 0 

Queue was empty 

Queue was not empty 
END 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALL_PAL INSQHIL Inser t into Longword Queue a t Head Interlocked 

Description: 

If the secondary interlock is clear, INSQHIL inser ts the en t ry specified in R17 into 
the self-relative queue following the header specified in R16. 

If t he ent ry inser ted was t he first one in t he queue, RO is set to a 1; else i t is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same 
queue by another process, in a multiprocessor environment . Before the insertion, the 
processor val idates t h a t the ent i re operation can be completed. This ensures t h a t if 
a memory managemen t exception occurs, t he queue is left in a consistent s ta te (see 
Chapte rs 3 and 6). If t he instruct ion fails to acquire the secondary interlock after 
"N" re t ry a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The 
value "N" is implementat ion dependent . 
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2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident 

Format: 

CALLJPAL INSQHILR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the queue was not empty before adding this entry 
! 1 if the queue was empty before adding this entry 

! Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
! Header cannot be equal to entry. 
! All parts of the Queue must be memory resident 

Ν <- {retry_amount> 
REPEAT 

LOAD_LOCKED (tmpO «- (Rl6)) 
IF tmpO<0> EQ 1 THEN 

RO «- -1, {return} 
done <- STORE__CONDITIONAL ((R16) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «— -1, {return} 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 <- SEXT({R16 - R17}<31:0>) 
(R17)<31:0> <- tmpl + tmp2 
(R17 + 4)<31:0> <- tmp2 

! Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

{TMPO OR Rl} ) 

Retry exceeded 

! Enqueue the entry 
! Forward link of entry. 
i Backward link of entry. 

(R16 + tmpl + 4)<31:0> 

MB 
(R16)<31:0> -tmp2 

IF tmpl EQ 0 THEN 
RO 4— 1 

ELSE 
RO «— 0 

END 

-tmpl - tmp2 ! Successor back link 

! Forward link of header 
! Release the lock 

! Queue was empty 

! Queue was not empty 

Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL.PAL INSQHILR Inser t En t ry into Longword Queue 
a t Head Interlocked Resident 

Description: 

If t he secondary interlock is clear, INSQHILR inser t s the en t ry specified in R17 into 
the self-relative queue following the header specified in R16. 

If t he ent ry inser ted was the first one in the queue, RO is set to a 1; else it is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same 
queue by another process, in a multiprocessor environment . If t he instruct ion fails 
to acquire the secondary interlock after "N" re t ry a t t empts , t hen (in the absence of 
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent . 

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue 
header and e lements a re quadword aligned. No a l ignment or memory managemen t 
checks a re made before s ta r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requi rements not be met , t he queue may be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 

2-34 OpenVMS Alpha Software (II) 



2.3.3 Insert Entry into Quadword Queue at Head Interlocked 

Format: 

CALLJPAL INSQHIQ ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
I 0 if the entry was not empty before adding this entry 
! 1 if the entry was empty before adding this entry 
ι 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned. 
! Header cannot be equal to entry. 
! 
! check entry and header alignment and 
i that the header and entry not same location 
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN 

BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} 1 Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <— (R16)) ί Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO «— -l f {return} ! Already set 
done <- STORE__CONDITIONAL ((R16) <- {TMPO OR Rl} ) 
Ν <- Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO «— -1, {return} 1 Retry exceeded 

MB 

IF {tmpl<3:l> NE 0} THEN BEGIN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) «- tmpl 
{illegal operand exception} 

END 
! Check if following addresses can be written 
! without causing a memory management exception: 
! entry 
! header + tmpl 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ! Release secondary interlock 
(R16) <- tmpl 
{initiate memory management fault} 

END 
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! All accesses can be done so enqueue the entry 
tmp2 «- R16 - R17 
(R17) <- tmpl + tmp2 ! Forward link 
(R17 + 8) +- tmp2 ! Backward link 
(R16 + tmpl + 8) -tmpl - tmp2 ! Successor back link 

MB 

(R16) -tmp2 ! Forward link of header 
! Release the lock. 

IF tmpl EQ 0 THEN 
1 RO 

ELSE 
RO 0 

! Queue was empty 

! Queue was not empty 
END 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALL_PAL INSQHIQ Inser t into Quadword Queue a t Head Interlocked 

Description: 

If t he secondary interlock is clear, INSQHIQ inser ts the en t ry specified in R17 into 
the self-relative queue following the header specified in R16. 

If the ent ry inser ted was the first one in the queue, RO is set to a 1 ; else it is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked insert ions or removals a t the head or tai l of the same 
queue by another process, in a multiprocessor environment . Before the insert ion, the 
processor val idates t h a t the ent i re operation can be completed. This ensures t h a t if 
a memory managemen t exception occurs, t he queue is left in a consistent s ta te (see 
Chapte rs 3 and 6). If t he instruct ion fails to acquire t he secondary interlock after 
"N" re t ry a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The 
value "N" is implementat ion dependent . 
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2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident 

Format: 

CALL_PAL INSQHIQR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the entry was not empty before adding this entry 

1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 

! Header cannot be equal to entry, 
î All parts of the Queue must be memory resident 

! Implementation-specific 

(R16)) ! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

{TMPO OR Rl} ) 

Ν <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO «-
IF tmpO<0> EQ 1 THEN 

RO «— -1, {return} ! 
done <- STORE_COND IΤIONAL ((R16) 
Ν <- Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

MB 
tmp2 «— R16 - R17 ! Enqueue the entry 
(R17) <— tmpl + tmp2 ! Forward link of entry. 
(R17 + 8) «- tmp2 ! Backward link of entry. 
(R16 + tmpl + 8) <— -tmpl - tmp2 ! Successor back link 

MB 
(R16) -tmp2 

IF tmpl EQ 0 THEN 
RO 4- 1 

ELSE 
RO <- 0 

END 

! Forward link of header, 
! Release the lock 

! Queue was empty 

! Queue was not empty 

Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL INSQHIQR Inser t En t ry into Quadword Queue 
a t Head Interlocked Resident 

Description : 

If t he secondary interlock is clear, INSQHIQR inser ts t he en t ry specified in R17 into 
the self_relative queue following the header specified in R16. 

If t he ent ry inser ted was the first one in the queue, RO is set to a 1; else i t is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked insert ions or removals a t t he head or tai l of the same 
queue by another process, in a multiprocessor environment . If t he instruct ion fails 
to acquire the secondary interlock after "N" re t ry a t t empts , t hen (in the absence of 
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent . 

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue 
header and elements are octaword aligned. No a l ignment or memory managemen t 
checks are made before s ta r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requi rements not be met , t he queue may be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 
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2.3.5 Insert Entry into Longword Queue at Tail Interlocked 

Format: 

CALLJPAL INSQTIL ÎPALcode format 

Operation: 

l R16 contains the address of the queue header 
! R17 contains the address of the new entry 
I RO receives status: 
1 -1 if the secondary interlock was set 
! 0 if the entry was not empty before adding this entry 
! 1 if the entry was empty before adding this entry 
! 
I Must have write access to header and queue entries 
i Header and entries must be quadword aligned. 
! Header cannot be equal to entry. 
1 
! check entry and header alignment and 
1 that the header and entry not same location and 
! that the header and entry are valid 32 bit addresses 
IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR 

{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R16} THEN 
BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO (R16)) i Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) «- {TMPO OR Rl} ) 
Ν «— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO «— -1, {return} I Retry exceeded 

MB 

tmpl «- SEXT(tmpO<31:0>) 
tmp2 <- SEXT(tmpO<63:32>) 

IF {tmpl<2:l> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{illegal operand exception} 

END 
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! Check if following addresses can be written 
! without causing a memory management exception: 
! entry 
! header + (header + 4) 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{initiate memory management fault} 

END 

! All Accesses can be done so enqueue entry 
tmp3 <- SEXT( {R16 - R17}<31:0>) 
(R17)<31:0> «- tmp3 ! Forward link 
(R17 + 4)<31:0> <- tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16+tmp2)<31:0> <- -tmp3 - tmp2 
ELSE 

tmpl <- SEXT({-tmp3 - tmp2}<31:0>) 
(R16+4)<31:0> <- -tmp3 ! Backward link of header 

MB 

(R16)<31:0> <- tmpl 
IF tmpl EQ -tmp3 THEN 

RO «— 1 
ELSE 

RO <— 0 
END 

! Forward link, release lock 

! Queue was empty 

! Queue was not empty 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALLJPAL INSQTIL Inser t into Longword Queue a t Tail Interlocked 

Description : 

If t he secondary interlock is clear, INSQTIL inser ts the en t ry specified in R17 into 
the self-relative queue preceding the header specified in R16. 

If the ent ry inser ted was the first one in the queue, RO is set to a 1 ; else i t is set to 
a 0. The insert ion is a non-interruptible operation. The insert ion is interlocked to 
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of t he same 
queue by another process, in a multiprocessor environment . Before performing any 
pa r t of the operation, the processor val idates t h a t t he insert ion can be completed. 
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This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue is left in 
a consistent s ta te (see Chap te r s 3 and 6). If t he inst ruct ion fails to acquire the 
secondary interlock after "N" re t ry a t t empts , t hen (in t he absence of exceptions) R< 
0> is set to a - 1 . The value "N" is implementa t ion dependent . 
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2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident 

Format: 

CALL.PAL INSQTILR !PALcode format 

Operation : 

! R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
i 0 if the entry was not empty before adding this entry 
! 1 if the entry was empty before adding this entry 
ι 

! Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
! Header cannot be equal to entry. 
! All parts of the Queue must be memory resident 

Ν <- {retry_amount> ! Implementation-specific 
REPEAT 

LOAD__LOCKED (tmpO (R16)) ! Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) «- {TMPO OR Rl} ) 
Ν <— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO +— -1, {return} ! Retry exceeded 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 <- SEXT(tmpO<63:32>) 
tmp3 <- SEXT( {R16 - R17}<31:0>) 
(R17)<31:0> <- tmp3 ! Forward link 
(R17 + 4)<31:0> <- tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16+tmp2)<31:0> «- -tmp3 - tmp2 
ELSE 

tmpl 4 - <- SEXT({-tmp3 - tmp2}<31:0>) 

(R16+4)<31:0> «- -tmp3 ! Backward link of header 

MB 

(R16)<31:0> <- tmpl ! Forward link 
! Release the lock 

IF tmpl EQ -tmp3 THEN 
RO <— 1 1 Queue was empty 

ELSE 
RO 0 ! Queue was not empty 

END 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALLJPAL INSQTILR Inser t En t ry into Longword Queue 
a t Tail Interlocked Resident 

Description: 

If t he secondary interlock is clear, INSQTILR inser ts the en t ry specified in R17 into 
the self-relative queue preceding the header specified in R16. 

If t he en t ry inser ted was t he first one in t he queue, RO is set to a 1; else it is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of the same 
queue by another process, in a mult iprocessor environment . If t he instruct ion fails 
to acquire t he secondary interlock after "N" re t ry a t t empts , t hen (in the absence of 
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent . 

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue 
header and e lements a re quadword aligned. No a l ignment or memory managemen t 
checks a re made before s ta r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requ i rements not be met , t he queue may be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 



2.3.7 Insert Entry into Quadword Queue at Tail Interlocked 

Format: 

CALL_PAL INSQTIQ ÎPALcode format 

Operation: 

1 R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the entry was not empty before adding this entry 
! 1 if the entry was empty before adding this entry 

1 Must have write access to header and queue entries 
! Header and entries must be octaword aligned. 
! Header cannot be equal to entry, 
ι 
! check entry and header alignment and 
! that the header and entry not same location 
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN 

BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} i Implementation-specific 
REPEAT 

LOAD__LOCKED (tmpO <- (R16)) ! Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO 4 — -1, {return} ! Already set 
done 4 - S TORE__COND IΤI ON AL ((R16) 4 - {TMPO OR Rl} ) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

MB 
tmp2 4 - (R16+8) 
IF {tmpl<3:l> NE 0} OR {tmp2<3:0> NE 0} THEN I Check Alignment. 

BEGIN ! Release secondary interlock. 
(R16) 4 - tmpl 
{illegal operand exception} 

END 

i Check if following addresses can be written 
! without causing a memory management exception: 
! entry 
! header + (header + 8) 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ! Release secondary interlock. 
(R16) 4 - tmpl 
{initiate memory management fault} 

END 
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i All accesses can be done so enqueue the entry 
tmp3 <- R16 - R17 
(R17) «- tmp3 ! Forward link 
(R17 + 8) <- tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16+tmp2) <- -tmp3 - tmp2 
ELSE 

tmpl «— {-tmp3 - tmp2} 
(R16+8) «— -tmp3 ! Backward link of header 

MB 

(R16) tmpl Forward link 
Release the lock 

IF tmpl 
RO <-

EQ -tmp3 THEN 
1 Queue was empty 

ELSE 
RO <- 0 Queue was not empty 

END 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Transla t ion Not Valid 

Instruction mnemonics: 

CALL_PAL INSQTIQ Inser t into Quadword Queue a t Tail Interlocked 

Description: 

If t h e secondary interlock is clear, INSQTIQ inser ts the en t ry specified in R17 into 
t he self-relative queue preceding the header specified in R16. 

If t h e en t ry inser ted was t he first one in the queue, RO is set to a 1 else it is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked inser t ions or removals a t t he head or tai l of the same 
queue by another process, in a mult iprocessor environment . Before performing any 
pa r t of t he operation, t he processor val idates t h a t t he insert ion can be completed. 
This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue is left in 
a consistent s ta te (see Chap te r s 3 and 6). If t he instruct ion fails to acquire the 
secondary interlock after "N" re t ry a t t empts , t h e n (in t he absence of exceptions) R< 
0> is set to a - 1 . The value "N" is implementa t ion dependent . 
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2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident 

Format: 

CALL.PAL INSQTIQR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! R17 contains the address of the new entry 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the entry was not empty before adding this entry 
! 1 if the entry was empty before adding this entry 
ι 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned. 
I Header cannot be equal to entry. 
ί All parts of the Queue must be memory resident 

Ν <- {retry__amount> ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <— (R16)) ! Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO 4 — -l, {return} ! Already set 
done 4 - STORE__COND IΤIONAL ((R16) <- {TMPO OR Rl} ) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 
tmp2 4 - (R16+8) 
tmp3 4 - R16 - R17 
(R17) 4 - tmp3 
(R17 + 8) 4 - tmp2 + tmp3 
IF {tmp2 NE 0} THEN 

! Forward link 
ί Backward link 
! Forward link of predecessor 

(R16+tmp2) 
ELSE 

tmpl 4 — {-tmp3 
(R16+8) 4 - -tmp3 

MB 

-tmp3 - tmp2 

tmp2} 

(R16) 4 - tmpl 
IF tmpl EQ -tmp3 THEN 

RO 4- 1 
ELSE 

RO 4- 0 
END 

1 Backward link of header 

! Forward link and release the lock 

! Queue was empty 

! Queue was not empty 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL.PAL INSQTIQR Inser t En t ry into Quadword Queue 
a t Tail Interlocked Resident 

Description: 

If t he secondary interlock is clear, INSQTIQR inser t s t he en t ry specified in R17 into 
t he se l f r e l a t ive queue preceding the header specified in R16. 

If t he en t ry inser ted was the first one in the queue, RO is set to a 1 else it is set to 
a 0. The insert ion is a non-interrupt ible operation. The insert ion is interlocked to 
prevent concurrent interlocked inser t ions or removals a t t he head or ta i l of t he same 
queue by ano ther process, in a mult iprocessor environment . If t he instruct ion fails 
to acquire the secondary interlock after "N" re t ry a t t empts , t h e n (in the absence of 
exceptions) R< 0> is set to a - 1 . The value "N" is implementa t ion dependent . 

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue 
heade r and e lements a re octaword aligned. No a l ignment or memory managemen t 
checks a re made before s t a r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requ i rements not be met , t h e queue m a y be left in 
a n unpredictable s ta te and a n illegal operand fault may be reported. 



2.3.9 Insert Entry into Longword Queue 

Format: 

CALL_PAL INSQUEL !PALcode format 

Operation : 

! R16 contains the address of the predecessor entry 
! or the 32 bit address of the 32 bit address of the 
! predecessor entry for INSQUEL/D 
! R17 contains the address of the new entry 
! RO receives status: 
! 0 if the queue was not empty before adding this entry 
! 1 if the queue was empty before adding this entry 
i 
! Must have write access to header and queue entries 
IF opcode EQ INSQUEL/D THEN 

tmp2 «- SEXT((R16)<31:0>) ! Address of predecessor 
ELSE 

tmp2 <— R16 

IF {all memory accesses can be completed) THEN 
BEGIN 
tmp<31:0> <- SEXT((tmp2)<31:0>) ! Get Forward Link 
(R17)<31:0> <- tmp ! Set forward link 
(R17 + 4)<31:0> <- tmp2 ! Backward link 
(SEXT((tmp2)<31:0>) + 4)<31:0> +- R17 

1 Backward link of Successor 
(tmp2)<31:0> «- R17 ! Forward link of Predecessor 
IF tmp EQ tmp2 THEN 

RO «- 1 
ELSE 

RO «- 0 
END 

ELSE 
BEGIN 
{initiate fault} 

END 
END 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Translat ion Not Valid 
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Instruction mnemonics: 

CALL_PAL INSQUEL Inser t E n t r y into Longword Queue 

CALL_PAL INSQUEL/D Inser t E n t r y into Longword Queue Deferred 

Description: 

INSQUEL inser ts the en t ry specified in R17 into the absolute queue following the 
en t ry specified by the predecessor addressed by R16. INSQUEL/D performs the 
same operation on the en t ry specified by the contents of the longword addressed by 
R16. 

In e i ther case, if t he en t ry inser ted was the first one in the queue, a 1 is r e tu rned in 
RO; otherwise a 0 is r e tu rned in RO. The insert ion is a non-interrupt ible operation. 
Before performing any p a r t of t he insert ion, t he processor val idates t h a t t he ent i re 
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception 
occurs, t he queue is left in a consistent s t a te (see Chap te r s 3 and 6). 
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2.3.10 Insert Entry Into Quadword Queue 

Format: 

CALL_PAL INSQUEQ ÎPALcode format 

Operation: 

ï R16 contains the address of the predecessor entry 
I or the address of the address of the 
! predecessor entry for INSQUEQ/D 
! R17 contains the address of the new entry 
! RO receives status: 
! 0 if the queue was not empty before adding this entry 
! 1 if the queue was empty before adding this entry 
I 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned 

IF opcode EQ INSQUEQ/D THEN 
IF {rl6<3:0> NE 0} THEN 

BEGIN 
{illegal operand exception} 

END 
tmp2 4 — (R16) ! Address of predecessor 

ELSE 
tmp2 4 - R16 

END 
IF {tmp2<3:0> NE 0} OR {R17<3:0> NE 0} THEN 

BEGIN 
{illegal operand exception} 

END 
IF {all memory accesses can be completed} THEN 

BEGIN 
tmp 4 — (tmp2) ! Get forward link of entry 
IF {tmp<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
(R17) 4 — tmp ! Set forward link of entry 
(R17 + 8 ) 4 - tmp2 ! Backward link of entry 
(tmp + 8 ) 4 — R17 ! Backward link of successor 
(tmp2) 4 — R17 ! Forward link of predecessor 
IF tmp EQ tmp2 THEN 

R0 4- 1 
ELSE 

R0 4- 0 
END 

ELSE 
BEGIN 
{initiate fault} 

END 
END 

2-50 OpenVMS Alpha Software (II) 



Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Translat ion Not Valid 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL INSQUEQ Inser t E n t r y into Quadword Queue 

CALL.PAL INSQUEQ/D Inser t E n t r y into Quadword Queue Deferred 

Description: 

INSQUEQ inser ts the en t ry specified in R17 into the absolute queue following the 
en t ry specified by the predecessor addressed by R16. INSQUEQ/D performs the 
same operation on the en t ry specified by the contents of the quadword addressed by 
R16. 

In e i ther case, if t he en t ry inser ted was the first one in the queue, a 1 is r e tu rned 
in RO; otherwise a 0 is r e tu rned in RO. The insert ion is a non-interrupt ible 
operation. Before performing any pa r t of t he insert ion, the processor val idates t h a t 
the ent i re operation can be completed. This ensures t h a t if a memory managemen t 
exception occurs, t h e queue is left in a consistent s t a te (see Chap te r s 3 and 6). RO 
is unpredictable if an exception occurs. The relat ive order of report ing memory 
m a n a g e m e n t and illegal operand exceptions is unpredictable . 
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2.3.11 Remove Entry from Longword Queue at Head Interlocked 

Format: 

CALL.PAL REMQHIL ÎPALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
! 
! Check header alignment and 
! that the header is a valid 32 bit address 
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN 

BEGIN 
{illegal operand exception} 

END 

I Implementation-specific 

(R16)) 

Ν <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO <-
IF tmp0<0> EQ 1 THEN 

RO <— -1, {return} 
done «- STORE_CONDIΤIONAL ((R16) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO «— -1, {return} ! Retry exceeded 

MB 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

{TMPO OR Rl} ) 

tmpl «- SEXT(tmpO<31:0>) 
IF tmpl<2:0> NE 0 THEN 

BEGIN 
(R16) <- tmpO 
{illegal operand exception} 

END 

! Check Alignment 
! Release secondary interlock 

! Check if the following can be done without 
! causing a memory management exception: 
! read contents of header + tmpl {if tmpl NE 0} 
! write into header + tmpl + (header + tmpl) {if tmpl NE 0} 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ! Release secondary interlock 
(R16) «- tmpO 
{initiate memory management fault} 

END 
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tmp2 <- SEXT({R16 + tmpl><31:0>) 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 «- SEXT({tmp2 + SEXT((tmp2)<31:0>)}) 

IF tmp3<2:0> NE 0 THEN Î Check Alignment 
BEGIN ! Release secondary interlock 
(R16) «- tmpO 
{illegal operand exception} 

END 

(tmp3 + 4)<31:0> «— R16 - tmp3 ! Backward link of successor 

MB 

(R16)<31:0> «- tmp3 - R16 ! Forward link of header 
! Release lock 

IF tmpl EQ 0 THEN 
RO 4 — 0 ! Queue was empty 

ELSE 
BEGIN 
IF {tmp3 - R16} EQ 0 THEN 
RO 4 — 2 ! Queue now empty 

ELSE 
RO <— 1 ! Queue not empty 

END 
END 
Rl <— tmp2 ! Address of removed entry 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALL_PAL REMQHIL Remove from Longword Queue a t Head Interlocked 

Description: 

If t he secondary interlock is clear, REMQHIL removes from the self-relative queue 
the en t ry following the header, pointed to by R16, and the address of the removed 
en t ry is r e tu rned in R l . 

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
t he s t a r t of the removal and the queue is empty after the removal, a 2 is re tu rned 
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry 
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a t tempts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementat ion dependent . 

The removal is interlocked to prevent concurrent interlocked insert ions or removals 
a t t he head or tai l of t he same queue by ano ther process, in a multiprocessor 
environment. The removal is a non-interrupt ible operation. Before performing 
any pa r t of the removal, the processor val idates t h a t the ent i re operation can be 
completed. This ensures t h a t if a memory managemen t exception occurs, t he queue 
is left in a consistent s ta te (see Chapte rs 3 and 6). 
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2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident 

Format: 

CALL.PAL REMQHILR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the queue was empty 
! 1 if entry removed and queue still not empty 
1 2 if entry removed and queue empty 
! Rl receives the address of the removed entry 
! 
i Must have write access to header and queue entries 
Î Header and entries must be quadword aligned. 
! All parts of the Queue must be memory resident 

Ν <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <— (R16)) I Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} 1 Already set 
done +- STORE_CONDITIONAL ((R16) 4 - {TMPO OR Rl} ) 
Ν Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 <- SEXT({R16 + tmpl}<31:0>) 
IF {tmpl EQL 0} THEN 

tmp3 «- R16 
ELSE 

tmp3 <- SEXT({tmp2 + SEXT((tmp2)<31:0>)}) 
END 

(tmp3 + 4)<31:0> <— R16 - tmp3 ! Backward link of successor 

MB 
(R16)<31:0> <- tmp3 - R16 ! Forward link of header 

! Release lock 
IF tmpl EQ 0 THEN 

RO «— 0 ! Queue was empty 
ELSE 

BEGIN 
IF {tmp3 - R16} EQ 0 THEN 

RO <— 2 ! Queue now empty 
ELSE 

RO <— 1 ! Queue not empty 
END 

END 
Rl «— tmp2 I Address of removed entry 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL REMQHILR Remove En t ry from Longword Queue 
a t Head Interlocked Resident 

Description: 

If t he secondary interlock is clear, REMQHILR removes from the self-relative queue 
the ent ry following the header, pointed to by R16, and the address of the removed 
ent ry is r e tu rned in R l . 

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
the s t a r t of the removal and the queue is empty after t he removal, a 2 is r e tu rned 
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry 
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementat ion dependent . 

The removal is interlocked to prevent concurrent interlocked inser t ions or removals 
a t the head or tai l of t he same queue by ano ther process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. 

This instruction requires t h a t the queue be memory res ident and t h a t t he queue 
header and e lements a re quadword aligned. No a l ignment or memory managemen t 
checks a re made before s ta r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requi rements not be met , t he queue m a y be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 



2.3.13 Remove Entry from Quadword Queue at Head Interlocked 

Format: 

CALL_PAL REMQHIQ ÎPALcode format 

Operation: 

1 R16 contains the address of the queue header 
! RO receives status: 
I -1 if the secondary interlock was set 
! 0 if the queue was empty 
! 1 if entry removed and queue still not empty 
1 2 if entry removed and queue empty 
! Rl receives the address of the removed entry 
! 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned. 
1 
1 Check header alignment 
IF {R16<3:0> NE 0} THEN 

BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <— (R16)) i Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) 4 - {TMPO OR Rl} ) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO 4 — -l, {return} ! Retry exceeded 

MB 

IF tmpl<3:0> NE 0 THEN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) 4 - tmpl 
{illegal operand exception} 

END 
! Check if the following can be done without 
I causing a memory management exception: 
! read contents of header + tmpl {if tmpl NE 0} 
! write into header + tmpl + (header + tmpl) {if tmpl NE 0} 
IF {all memory accesses can NOT be completed} THEN 

BEGIN 1 Release secondary interlock 
(R16) 4 - tmpO 
{initiate memory management fault} 

END 
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tmp2 <- R16 + tmpl 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 «- tmp2 + (tmp2) 

IF tmp3<3:0> NE 0 THEN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) tmpl 
{illegal operand exception} 

END 

(tmp3 + 8) 4 — R16 - tmp3 ! Backward link of successor 

MB 

(R16) <— tmp3 - R16 ! Forward link of header 
! Release lock 

IF tmpl EQ 0 THEN 
RO 0 ! Queue was empty 

ELSE 
BEGIN 

IF {tmp3 - R16} EQ 0 THEN 
RO <— 2 ! Queue now empty 

ELSE 
RO <— 1 ! Queue not empty 

END 
END 
Rl <— tmp2 ! Address of removed entry 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALLJPAL REMQHIQ Remove from Quadword Queue a t Head 
Interlocked 

Description: 

If t he secondary interlock is clear, REMQHIQ removes from the self-relative queue 
the ent ry following the header, pointed to by R16, and the address of t he removed 
entry is r e tu rned in R l . 

If the queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
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t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned 
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry 
a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementa t ion dependent . 

The removal is interlocked to prevent concurrent interlocked insert ions or removals 
a t t he head or tai l of the same queue by ano ther process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. Before performing 
any pa r t of the removal, t he processor val idates t h a t the ent i re operation can be 
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue 
is left in a consistent s t a te (see Chap te r s 3 and 6). 
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2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident 

Format: 

CALL_PAL REMQHIQR ÎPALcode format 

Operation: 

l R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

1 Must have write access to header and queue entries 
i Header and entries must be octaword aligned. 
I All parts of the Queue must be memory resident 

Ν <- {retry_amount> 
REPEAT 

L0AD_L0CKED (tmpO 
IF tmpO<0> EQ 1 THEN ! 

RO -1, {return} ! 
done <- STORE_CONDIΤIONAL ((R16) 
Ν <— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

! Implementation-specific 

(R16)) ! Acquire hardware interlock. 
Try to set secondary interlock. 
Already set 
<- {TMPO OR Rl} ) 

IF done NEQ 1, RO 

MB 

-1, {return} ! Retry exceeded 

tmp2 <— R16 + tmpl 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 <- tmp2 + (tmp2) 
END 
(tmp3 + 8) 4 - R16 - tmp3 

MB 

(R16) tmp3 - R16 

IF tmpl EQ 0 THEN 
RO 0 

ELSE 
IF {tmp3 - R16} EQ 0 THEN 

RO 4— 2 
ELSE 

RO <— 1 
END 
Rl <- tmp2 

1 Backward link of successor 

1 Forward link of header 
! Release lock 

! Queue was empty 

1 Queue now empty 

1 Queue not empty 

! Address of removed entry 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL REMQHIQR Remove E n t r y from Quadword Queue 
a t Head Interlocked Resident 

Description: 

If t he secondary interlock is clear, REMQHIQR removes from the self-relative queue 
t h e en t ry following the header, pointed to by R16, and the address of t h e removed 
en t ry is r e tu rned in R l . 

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned 
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry 
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementa t ion dependent . 

The removal is interlocked to prevent concurrent interlocked insert ions or removals 
a t t h e head or ta i l of t he same queue by ano ther process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. 

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue 
header and e lements a re octaword aligned. No a l ignment or memory managemen t 
checks a re made before s t a r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requ i rements not be met , t he queue m a y be left in 
an unpredictable s ta te and an illegal operand fault m a y be reported. 



2.3.15 Remove Entry from Longword Queue at Tail Interlocked 

Format: 

CALL.PAL REMQTIL ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the queue was empty 
! 1 if entry removed and queue still not empty 
! 2 if entry removed and queue empty 
! Rl receives the address of the removed entry 
! 
1 Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
ι 
! Check header alignment and 
! that the header is a valid 32 bit address 
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16> THEN 

BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD__LOCKED (tmpO <— (R16)) ! Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO -1, {return} ! Already set 
done «- S TORE_C ONDIΤI ON AL ((R16) <- {TMPO OR Rl} ) 
Ν <- Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp5 <- SEXT(tmpO<63:32>) 
IF tmp5<2:0> NE 0 THEN ! Check alignment 

BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{illegal operand exception} 

END 

! Check if the following can be done without 
! causing a memory management exception: 
! read contents of header + (header + 4) {if tmpl NE 0} 
! write into header + (header + 4) 
! + (header + 4 + (header + 4)){if tmpl NE 0} 
IF {all memory accesses can NOT be completed} THEN 

BEGIN ί Release secondary interlock 
(R16) <- tmpO 
{initiate memory management fault} 

END 

2-62 OpenVMS Alpha Software (II) 



addr 4 - SEXT( {R16 + tmp5}<31:0> ) 
tmp2 <- SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> ) 
IF tmp2<2:0> NE 0 THEN i Check alignment 

BEGIN I Release secondary interlock 
(R16) <- tmpO 
{illegal operand exception} 

END 

(R16 + 4)<31:0> <- tmp2 - R16 
IF {tmp2 EQL R16} THEN 

(R16)<31:0> <- 0 
ELSE 

BEGIN 
(tmp2)<31:0> <- R16 - tmp2 

MB 
(R16)<31:0> <- tmpl 

END 
IF tmpl EQ 0 THEN 

RO 4— 0 
ELSE 

BEGIN 
IF {tmp2 - R16} EQ 0 THEN 

RO 4— 2 
ELSE 

RO 4— 1 
END 

Rl <- addr 

! Backward link of header 

! Forward linkf release lock 

! Forward link of predecessor 

I Release lock 

! Queue was empty 

Î Queue now empty 

! Queue not empty 

I Address of removed entry 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Transla t ion Not Valid 

Instruction mnemonics: 

CALL_PAL REMQTIL Remove from Longword Queue a t Tail Interlocked 

Description: 

If t he secondary interlock is clear, REMQTIL removes from the self-relative queue 
the en t ry preceding the header, pointed to by R16, and the address of the removed 
en t ry is r e tu rned in R l . 

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
the s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned 
in RO. If t he instruct ion fails to acquire t he secondary interlock after "N" re t ry 
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a t t empts , t hen (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementat ion dependent . 

The removal is interlocked to prevent concurrent interlocked insert ions or removals 
a t t he head or tai l of the same queue by another process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. Before performing 
any pa r t of the removal, t he processor val idates t h a t the ent i re operation can be 
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t he queue 
is left in a consistent s ta te (see Chapte rs 3 and 6). 
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2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident 

Format: 

CALL_PAL REMQTILR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
I RO receives status: 
! -1 if the secondary interlock was set 
! 0 if the queue was empty 
I 1 if entry removed and queue still not empty 
! 2 if entry removed and queue empty 
! Rl receives the address of the removed entry 
! 
! Must have write access to header and queue entries 
! Header and entries must be quadword aligned. 
! All parts of the Queue must be memory resident 

Ν <- {retry_amount} î Implementation-specific 
REPEAT 

L0AD__L0CKED (tmpO <— (R16)) ! Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO 4 — -1, {return} ! Already set 
done 4 - ST0RE__C0ND IΤ10NAL ((R16) «- {TMPO OR Rl} ) 
Ν 4— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

MB 
tmpl 4 - SEXT(tmpO<31:0>) 
tmp5 4 - SEXT(tmpO<63:32>) 
addr 4 - SEXT( {R16 + tmp5}<31:0> ) 
tmp2 4 - SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> ) 
(R16 + 4)<31:0> 4 - tmp2 - R16 I Backward link of header 
IF {tmp2 EQL R16} THEN 

(R16)<31:0> 4 - 0 ! Forward link, release lock 
ELSE 

BEGIN 
(tmp2)<31:0> 4 - R16 - tmp2 I Forward link of predecessor 
MB 
(R16)<31:0> 4 - tmpl ! Release lock 

END 
IF tmpl EQ 0 THEN 

RO 4 — 0 1 Queue was empty 
ELSE 

IF {tmp2 - R16} EQ 0 THEN 
RO 4 - 2 ! Queue now empty 

ELSE 
RO 4 — l ! Queue not empty 

END 
END 
Rl 4 — addr ! Address of removed entry 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL REMQTILR Remove En t ry from Longword Queue 
a t Tail Interlocked Resident 

Description: 

If t he secondary interlock is clear, REMQTILR removes from the self-relative queue 
the ent ry preceding the header, pointed to by R16, and the address of the removed 
entry is r e tu rned in R l . 

If t he queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If the interlock succeeded and the queue was not empty a t 
the s t a r t of the removal, and the queue is empty after t he removal a 2 is r e tu rned 
in RO. If the instruct ion fails to acquire the secondary interlock after "N" re t ry 
a t t empts , t hen (in the absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementat ion dependent . 

The removal is interlocked to prevent concurrent interlocked insert ions or removals 
a t t he head or tai l of the same queue by another process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. 

This instruct ion requires t h a t the queue be memory res ident and t h a t the queue 
header and e lements a re quadword aligned. No a l ignment or memory managemen t 
checks are made before s ta r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requi rements not be met , t he queue may be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 



2.3.17 Remove Entry from Quadword Queue at Tail Interlocked 

Format: 

CALL.PAL REMQTIQ ÎPALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 

i Check header alignment 
IF {R16<3:0> NE 0} THEN 

BEGIN 
{illegal operand exception} 

END 

Ν <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO <- (R16)) 
IF tmp0<0> EQ 1 THEN 

RO <— -1, {return} 
done <- STORE_CONDIΤIONAL ((R16) 
Ν <- Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} 

I Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

{TMPO OR Rl} ) 

Retry exceeded 

MB 

! Check Alignment 
! Release secondary interlock 

tmp5 <- (R16+8) 
IF tmp5<3:0> NE 0 THEN 

BEGIN 
(R16) <- tmpl 
{illegal operand exception} 

END 
Check if the following can be done without 
causing a memory management exception: 
read contents of header + (header + 8 ) {if tmpl NE 0} 
write into header + (header + 8) 
+ (header + 8 + (header + 8)){if tmpl NE 0} 

IF {all memory accesses can NOT be completed} THEN 
BEGIN 1 Release secondary interlock 
(R16) <- tmpl 
{initiate memory management fault} 

END 
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addr <- R16 + tmp5 
tmp2 4 - addr + (addr + 8) 
IF tmp2<3:0> NE 0 THEN ! Check alignment 

BEGIN ! Release secondary interlock 
(R16) 4 - tmpl 
{illegal operand exception} 

END 

(R16 + 8) 4 - tmp2 - R16 
IF {tmp2 EQL R16} THEN 

(R16) +- 0 
ELSE 

BEGIN 
(tmp2) 4 - R16 - tmp2 
MB 
(R16) 4 - tmpl 

END 
END 
IF tmpl EQ 0 THEN 

RO 4- 0 
ELSE 

BEGIN 
IF {tmp2 - R16} EQ 0 THEN 

RO 4- 2 
ELSE 

RO 4- 1 
END 

END 
Rl 4 - addr 

! Backward link of header 

! Forward link, release lock 

1 Forward link of predecessor 

! Release lock 

! Queue was empty 

ï 
! Queue now empty 

! Queue not empty 

I Address of removed entry 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALL.PAL REMQTIQ Remove from Quadword Queue a t Tail Interlocked 

Description: 

If t he secondary interlock is clear, REMQTIQ removes from the self-relative queue 
the ent ry preceding the header, pointed to by R16, and the address of t he removed 
en t ry is r e tu rned in R l . 

If the queue was empty prior to th is instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
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t h e s t a r t of t h e removal , a n d the queue is empty after t h e removal a 2 is r e tu rned 
in RO. If t h e inst ruct ion fails to acquire t he secondary interlock after "N" re t ry 
a t t empts , t hen (in t h e absence of exceptions) R< 0> is set to a - 1 . The value u

N
n is 

implementa t ion dependent . 

The removal is interlocked to prevent concurrent interlocked inser t ions or removals 
a t t he head or ta i l of t h e same queue by ano ther process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. Before performing 
any p a r t of t he removal, t he processor val idates t h a t t he ent i re operat ion can be 
completed. This ensures t h a t if a memory m a n a g e m e n t exception occurs, t h e queue 
is left in a consistent s t a te (see Chap te r s 3 and 6). 

OpenVMS PALcode Instruction Descriptions (II) 2-69 



2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident 

Format: 

CALL_PAL REMQTIQR ÎPALcode format 

Operation: 

! R16 contains the address of the queue header 
! RO receives status: 
1 -1 if the secondary interlock was set 
! 0 if the queue was empty 
! 1 if entry removed and queue still not empty 
! 2 if entry removed and queue empty 
! Rl receives the address of the removed entry 
! 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned. 
! All parts of the Queue must be memory resident 

Ν <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <- (R16)) ί Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) <- {TMPO OR Rl} ) 
Ν <— Ν - 1 

UNTIL {done EQ 1} OR {N EQ 0} 

IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

MB 

tmp5 «- (R16+8) 
addr «- R16 + tmp5 
tmp2 <- addr + (addr + 8) 
(R16 + 8) <- tmp2 - R16 
IF {tmp2 EQL R16} THEN 

(R16) <- 0 
ELSE 

BEGIN 
(tmp2) <- R16 - tmp2 
MB 
(R16) <- tmpl 

END 
END 
IF tmpl EQ 0 THEN 

RO 4— 0 
ELSE 

IF {tmp2 - R16} EQ 0 THEN 
RO «- 2 

ELSE 
RO 4— 1 

END 
Rl 4 - addr 

1 Backward link of header 

Î Forward link, release lock 

Î Forward link of predecessor 

1 Release lock 

1 Queue was empty 

1 Queue now empty 

! Queue not empty 

! Address of removed entry 
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Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL.PAL REMQTIQR Remove En t ry from Quadword Queue 
a t Tail Interlocked Resident 

Description: 

If t he secondary interlock is clear, REMQTIQR removes from the self-relative queue 
the en t ry preceding the header, pointed to by R16, and the address of the removed 
en t ry is r e tu rned in R l . 

If t he queue was empty prior to th i s instruct ion and secondary interlock succeeded, 
a 0 is r e tu rned in RO. If t he interlock succeeded and the queue was not empty a t 
t he s t a r t of the removal, and the queue is empty after the removal a 2 is r e tu rned 
in RO. If t he instruct ion fails to acquire the secondary interlock after "N" re t ry 
a t t empts , t h e n (in t he absence of exceptions) R< 0> is set to a - 1 . The value "N" is 
implementa t ion dependent . 

The removal is interlocked to prevent concurrent interlocked inser t ions or removals 
a t t he head or tai l of t he same queue by ano ther process, in a multiprocessor 
environment . The removal is a non-interrupt ible operation. 

This instruct ion requires t h a t t he queue be memory res ident and t h a t the queue 
header and e lements a re octaword aligned. No a l ignment or memory managemen t 
checks a re made before s t a r t ing queue modifications to verify these requi rements . 
Therefore, should any of these requ i rements not be met , t he queue may be left in 
an unpredictable s ta te and an illegal operand fault may be reported. 



2.3.19 Remove Entry from Longword Queue 

Format: 

CALL_PAL REMQUEL ÎPALcode format 

Operation: 

R16 contains the address of the entry to remove 
or the address of the 32 bit address of the 
entry for REMQUEL/D 

RO receives status: 
-1 if the queue was empty 
0 if the queue is empty after removing an entry 
1 if the queue is not empty after removing an entry 

Rl receives the address of the removed entry 

! Must have write access to header and queue entries 
IF opcode EQ REMQUEL/D THEN 

Rl <- SEXT((R16)<31:0>) 
ELSE 

Rl «- SEXT(R16<31:0>) 

IF {all memory accesses can be completed} THEN 
BEGIN 
tmpl <- (Rl)<31:0> 
((Rl+4)<31:0>)<31:0> <- tmpl 
tmp2 «- (Rl+4)<31:0> 
((Rl)<31:0>+4)<31:0> «- tmp2 
RO 4— 1 
IF {tmpl EQ tmp2} THEN 

RO 4— 0 
IF {Rl EQ tmp2} THEN 

RO «- -1 
END 

ELSE 
BEGIN 
{initiate fault} 

END 
END 

! Forward Link of Predecessor 

! Backward Link of Successor 

I Queue not empty 

! Queue now empty 

! Queue was empty 

Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Translat ion Not Valid 
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Instruction mnemonics: 

CALL_PAL REMQUEL Remove En t ry from Longword Queue 

CALL_PAL REMQUEL/D Remove E n t r y from Longword Queue Deferred 

Description: 

REMQUEL removes the en t ry addressed by R16 from t h e longword absolute queue. 
The address of t he removed en t ry is r e tu rned in R l . REMQUEL/D performs the 
same operation on the queue en t ry addressed by the longword addressed by R16. 

In e i ther case, if the re was no en t ry in t h e queue to be removed, RO is set to - 1 . If 
t he re was an en t ry to remove and the queue is empty a t t he end of th is instruction, 
RO is set to 0. If t he re was an en t ry to remove and the queue is not empty a t the 
end of th is instruction, RO is set to 1. The removal is a non-interrupt ible operation. 
Before performing any pa r t of the removal, t he processor val idates t h a t the ent i re 
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception 
occurs, t he queue is left in a consistent s t a te (see Chap te r s 3 and 6). 
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2.3.20 Remove Entry from Quadword Queue 

Format: 

CALLJPAL REMQUEQ ÎPALcode format 

Operation: 

! R16 contains the address of the entry to remove 
! or address of address of entry for REMQUEQ/D 
! RO receives status: 
! -1 if the queue was empty 
! 0 if the queue is empty after removing an entry 
! 1 if the queue is not empty after removing an entry 
! Rl receives the address of the removed entry 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned 
IF opcode EQ REMQUEQ/D THEN 

IF {rl6<3:0> NE 0} THEN 
BEGIN 
{illegal operand exception} 

END 
Rl 4- (R16) 

ELSE 
Rl 4- R16 

IF {Rl<3:0> NE 0} THEN ! Check alignment 
BEGIN 
{illegal operand exception} 

END 
IF {all memory accesses can be completed} THEN 

BEGIN 
tmpl 4 - (Rl) ! Forward link of Predecessor 
IF {tmpl<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
tmp2 4 — (Rl+8) ! Find predecessor 
IF {tmp2<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
(tmp2) 4 — tmpl ! Update Forward link of predecessor 
((Rl)+8) 4 - tmp2 
R0 4 — l ! Queue not empty 
IF {tmpl EQ tmp2} THEN 
R0 4 — 0 I Queue now empty 
IF {Rl EQ tmp2} THEN 
R0 4 — -l i Queue was empty 

END 
ELSE 

BEGIN 
{initiate fault} 

END 
END 
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Exceptions: 

Access Violation 

Fau l t on Read 

Fau l t on Write 

Translat ion Not Valid 

Illegal Operand 

Instruction mnemonics: 

CALL.PAL REMQUEQ Remove En t ry from Quadword Queue 

CALL_PAL REMQUEQ/D Remove En t ry from Quadword Queue Deferred 

Description: 

REMQUEQ removes the queue en t ry addressed by R16 from the quadword absolute 
queue. The address of t he removed en t ry is r e tu rned in R l . REMQUEL/D performs 
t h e same operation on t h e queue en t ry addressed by t h e quadword addressed by 
R16. 

In e i ther case, if the re was no en t ry in the queue to be removed, RO is set to —1. If 
the re was an en t ry to remove and the queue is empty a t the end of th is instruction, 
RO is set to 0. If t he re was an en t ry to remove and the queue is not empty a t the 
end of th is instruction, RO is set to 1. The removal is a non-interrupt ible operation. 
Before performing any p a r t of the removal, t he processor val idates t h a t the ent i re 
operation can be completed. This ensures t h a t if a memory m a n a g e m e n t exception 
occurs, t he queue is left in a consistent s ta te (see Chap te r s 3 and 6). RO and R l 
a re unpredictable if an exception occurs. The relat ive order of repor t ing memory 
managemen t and illegal operand exceptions is unpredictable. 
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2.4 Unprivileged VAX Compatibility PALcode Instructions 

The Alpha archi tecture provides the following PALcode instruct ions for use in 
t rans la ted VAX code. These instruct ions a re not a pe rmanen t pa r t of the archi tecture 
and will not be available in some future implementat ions . They are provided to help 
customers preserve VAX instruct ion atomicity assumpt ions in port ing code from VAX 
to Alpha. These calls should be user mode. They m u s t not be used by any code other 
t h a n t h a t genera ted by the VEST software t r ans la to r and i ts support ing run t ime 
code (TIE). 
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2.4.1 Atomic Move Operation 

Format: 

AMOVRR ÎPALcode format 

AMOVRM ÎPALcode format 

Operation: 

! R16 contains the first source 
ί R17 contains the first destination address 
! R18 contains the first length 
î R19 contains the second source 
! R20 contains the second destination address 
1 R21 contains the second length 
CASE 

AMOVRR: 
IF intr_flag EQ 0 THEN 

R18 4- 0 
{return} 

END 

intr_flag <— 0 
(R17) 4 - R16 1 length specified by R18<1:0> 
(R20) <- R19 ! length specified by R21<1:0> 
IF {both moves successful} THEN 

R18 4- l 
ELSE 

R18 4- 0 
END 

AMOVRM: 
IF intr_flag EQ 0 THEN 

R18 4- 0 
{return} 

END 

intr_flag 4 — 0 
(R17) 4 - R16 ! length specified by R18<1:0> 
IF R21<5:0> NE 0 THEN 

BEGIN 
IF R19<1:0> NE 00 OR R20<1:0> NE 00 

{Illegal operand exception} 
ELSE 

(R20) 4 - (R19) ! length specified by R21<5:0> 
END 

IF {both moves successful} THEN 
R18 4- 1 

ELSE 
R18 4- 0 

END 
ENDCASE 
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Exceptions: 
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AMOVRR: Access Violation 

Fau l t On Write 

Translat ion Not Valid 

AMOVRM: Access Violation 

Fau l t On Read 

Fau l t On Write 

Illegal Operand 

Translat ion Not Valid 

Instruction mnemonics: 

CALL.PAL AMOVRR Atomic Move Register/Register 

CALLJPAL AMOVRM Atomic Move Register/Memory 

Description: 

NOTE 
The CALL_PAL AMOVxx instruct ions are only for the 
support of t r ans la ted VAX code. They will d isappear 
from the archi tecture a t some t ime in the future. They 
m u s t be used only in t r ans la ted VAX code and its 
support rout ines (TIE). 

CALL_PAL AMOVRR 

The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register 
stores to a rb i t ra ry byte addresses. E i ther both stores a re done or ne i ther store is 
done. R18 is set to one if both stores a re done, and zero otherwise. The two source 
registers are R16 and R19. The two dest inat ion byte addresses a re in R17 and R20. 
The two lengths are specified in R18<1:0> and R21<1:0>. The length encoding is: 
00 - store byte, 01 - store word, 10 - store longword, 11 - store quadword. The low 
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of 
the source registers are ignored. The unused bits of the length registers (R18<63:2> 
and R21<63:2>) should be zero (SBZ). 

If, upon ent ry to the PALcode rout ine, the intr_flag is clear t hen the instruct ion 
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the 
PALcode rout ine proceeds. This is the same per-processor intr_flag used by the RS 
and RC instruct ions. 

The AMOVRR memory addresses may be unal igned. If e i ther store would resul t in 
a Translat ion Not Valid fault, Fau l t on Write, or Access Violation fault, ne i ther store 
is done and the corresponding fault is t aken . If both stores would resul t in faults, it 
is UNPREDICTABLE which one is t aken . 



NOTE 
A fault does not set R18, since the inst ruct ion h a s not 
been completed. 

If both stores can be completed wi thout faulting, they a re both a t t empted 
us ing multiprocessor-safe LDQ_L..STQ_C sequences. If all t he sequences store 
successfully wi th no in terrupt ion, t h e PALcode rout ine completes wi th R18 set to 
one. Otherwise, t he PALcode rout ine completes wi th R18 set to zero. In addition, 
R16, R17, R19, R20 and R21 a re UNPREDICTABLE upon r e t u r n from the PALcode 
rout ine, even if a n exception h a s occurred. 

If t he dest inat ions overlap, the stores m u s t appear be done in t he order specified. 

CALL.PAL AMOVRM 

The CALL_PAL AMOVRM instruct ion specifies one mult iprocessor safe register 
store to a n a rb i t ra ry byte address , plus an atomic memory-to-memory move of 0 
to 63 aligned longwords. E i the r t he store and the move a re both done in the i r 
ent i re ty or ne i ther is done. R18 is set to one if both a re done, and zero otherwise. 

The first source register is R16, the first dest inat ion address is in R17, and the first 
length is in R18. These th ree a re specified exactly as in AMOVRR. 

The second source address is in R19, the second dest inat ion address is in R20, 
and the second length is in R21<5:0>. The length is a longword length, in the 
range 0 to 63 longwords (0 to 252 bytes). The unused bytes of t he source register 
R16 a re ignored. The unused bits of the length regis ters regis ters (R18<63:2> and 
R21<63:6>) should be zero (SBZ). 

If, upon en t ry to t he PALcode rout ine , the intr_flag is clear t h e n the instruct ion 
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the 
PALcode rout ine proceeds. This is t he same per-processor intr_flag used by the RS 
and RC instruct ions. 

The memory address in R17 m a y be unal igned. 

If t he length for the move is zero, no move is done, no memory accesses a re made 
via R19 and R20, and no fault checking of these addresses is done. In th is case, the 
move is a lways considered to have succeeded in de termining the se t t ing of R18. 

If t he length in R21 is non-zero, the two addresses in R19 and R20 m u s t be aligned 
longword addresses , otherwise an Illegal Operand exception is t aken . 

If e i ther t he store or t he move would resu l t in a Transla t ion Not Valid, Fau l t on Read, 
Fau l t on Write, or Access Violation fault, ne i ther is done and t h e corresponding fault 
is t aken . If both would resu l t in faults, i t is UNPREDICTABLE which one is t aken . 

NOTE 
A fault does not set R18, since t he instruct ion h a s not 
been completed. 

If both the store and the move can be completed wi thout faulting, they are both 
a t tempted , us ing multiprocessor-safe LDQ__L..STQ_C sequences for the store. If 
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all t he operations store successfully with no interrupt ion, the PALcode rout ine 
completes with R18 set to one. Otherwise, t he PALcode rout ine completes wi th 
R18 set to zero. In addition, R16, R17, R19, R20 and R21 are UNPREDICTABLE 
upon r e tu rn from the PALcode rout ine, even if an exception h a s occurred. 

If t he memory fields overlap, the store m u s t appear be done first, followed by the 
move. The ordering of the reads and wri tes of the move is unspecified. Thus , if the 
move dest inat ion overlaps the move source, the move resul ts are UNPREDICTABLE. 

These instruct ions contain no implicit MB. 

Notes: 

• Typical use of these instruct ions would be a sequence s ta r t ing with CALL_PAL 
RS and ending wi th CALL.PAL AMOVxx, Bxx R18,label. The failure pa th from 
the conditional b ranch would eventual ly go back to the RS instruction. When 
such a sequence succeeds, i t h a s done everything from the RS up to and including 
the CALL_PAL AMOVxx completely wi th no in te r rup t s or exceptions. 

• The CALL_PAL AMOVxx instruct ion is typically be followed by a conditional 
branch on R18. If t he CALL_PAL AMOVxx is likely to succeed, the conditional 
branch should be a FORWARD branch on failure (BEQ R18,forward_label) 
or backward branch on success (BNE R18, backward_label), to match the 
architected branch-prediction rule. 
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2.5 Unprivileged PALcode Thread Instructions 

The PALcode th read inst ruct ions provide support for mul t i th read implementat ions , 
which require t h a t a given t h r ead be able to genera te a reproducable unique value in 
a "timely'' fashion. This value can t hen be used to index into a s t ruc ture or otherwise 
genera te fur ther t h read unique da ta . 

The two instruct ions in Table 2 - 4 a re provided to read and wri te a process unique 
value from the process's h a r d w a r e context. 

Table 2-4: Unprivileged PALcode Thread Instructions 
Mnemonic Opera t ion 

READ_UNQ Read unique context 

WRITE.UNQ Write unique Context 

The process unique value is stored in the HWPCB a t [HWPCB+72] when the process 
is not active. When the process is active, t he process unique value can be cached in 
h a r d w a r e in te rna l s torage or res ident in the HWPCB only. 
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2.5.1 Read Unique Context 

Format: 

C A L L P A L R E A D . U N Q ÎPALcode format 

Operation: 

IF {internal storage for process unique context} THEN 
RO «— {process unique context} 

ELSE 
RO «- (HWPCB+72) 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL R E A D J J N Q Read Unique Context 

Description: 

The READ_UNQ instruct ion causes the ha rdware process ( thread) unique context 
value to be placed in RO. If th is value h a s not previously been wr i t t en us ing a CALL_ 
PAL W R I T E J J N Q or stored into the quadword in t he HWPCB a t [HWPCB+72] 
while the th read was inactive then the resul t r e tu rned in RO is UNPREDICTABLE. 
Implementat ions can cache th is unique context value while t he ha rdware process is 
active. The unique context may be thought of as a "slow register". Typically, th is 
value will be used by software to establ ish a unique context for a given th read of 
execution. 
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2.5.2 Write Unique Context 

Format: 

CALL.PAL W R I T E J J N Q ÎPALcode format 

Operation: 

IR16 contains value to be written to the hardware process 
I unique context 

IF {internal storage for process unique context} THEN 
{process unique context} <— R16 

ELSE 
(HWPCB+72) <- R16 

Exceptions: 

None 

Instruction mnemonics: 

CALL.PAL W R I T E J J N Q Write Unique Context 

Description: 

The WRITE__UNQ instruct ion causes the value of R16 to be stored in in ternal 
s torage for h a r d w a r e process ( thread) unique context, if implemented, or in the 
HWPCB a t [HWPCB+72], if t he in te rna l s torage is not implemented. When the 
process is context switched, SWPCTX ensures th is value is stored in the HWPCB 
a t [HWPCB+72]. Implementa t ions can cache th i s un ique context va lue in in te rna l 
s torage while t h e h a r d w a r e process is active. The unique context m a y be thought 
of as a "slow register". Typically, th i s value will be used by software to establ ish a 
un ique context for a given th read of execution. 
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2.6 Privileged PALcode Instructions 

Privileged instruct ions can be called in Kernel mode only; otherwise, a privileged 
instruction exception occurs. The following privileged instruct ions a re provided: 

Table 2 - 5 : PALcode Privileged Instructions Summary 

Mnemonic Opera t ion 

CFLUSH Cache flush 

DRAINA Drain aborts 
See Common Architecture, Chapter 6 

HALT Halt processor 
See Common Architecture, Chapter 6 

LDQP Load quadword physical 

MFPR Move from processor register 

MTPR Move to processor register 

STQP Store quadword physical 

SWPCTX Swap privileged context 
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2.6.1 Cache Flush 

Format: 
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Operation: 

! R16 contains the Page Frame Number (PFN) 
! of the page to be flushed 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

{Flush page out of cache(s)} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALL.PAL CFLUSH Cache F lush 

Description: 

The CFLUSH instruct ion may be used to flush an ent i re physical page specified by 
the P F N in R16 from any da t a caches associated with t he cur ren t processor. All 
processors m u s t implement th i s instruct ion. 

On processors which implement a backup power option which ma in ta ins only the 
contents of memory in the event of a powerfail, th is instruct ion is used by the 
powerfail i n t e r rup t handle r to force da t a wr i t t en by the hand le r to t he ba t te ry backed 
up ma in memory. After a CFLUSH, the first subsequent load (on the same processor) 
to an a rb i t ra ry address in t he t a rge t page is e i ther fetched from physical memory or 
from the da t a cache of another processor. 

Note t h a t in some multiprocessor systems, CFLUSH is not sufficient to ensure t h a t 
the da t a a re actually wr i t t en to memory and not exchanged between processor 
caches. Additional platform-specific cooperation between the powerfail in te r rup t 
hand le rs executing on each processor may be required. 

On systems which implement other backup power options (including none), CFLUSH 
may r e t u r n wi thout affecting the da t a cache contents . 

To order CFLUSH properly wi th respect to preceding wri tes , an MB instruct ion is 
needed before the CFLUSH; to order CFLUSH properly wi th respect to subsequent 
reads , an MB instruct ion is needed after the CFLUSH. 

CALL.PAL CFLUSH ÎPALcode format 



2.6.2 Load Quadword Physical 

Format: 

CALLJPAL LDQP ÎPALcode format 

Operation: 

! R16 contains the quadword aligned physical address 
! RO receives the data from memory 

IF PS<CM> NE 0 THEN 
{Privileged Instruction exception} 

RO «— (R16) {physical access} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALLJPAL LDQP Load Quadword Physical 

Description: 

The LDQP instruct ion fetches and wri tes to RO the quadword aligned memory 
operand, whose physical address is in R16. 

If t he operand address in R16 is not quadword aligned, t he resul t is 
UNPREDICTABLE. 
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2.6.3 Move From Processor Register 

Format: 
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Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

! R16 may contain an IPR specific source operand 
{RO «— result of IPR specific function} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALLJPAL MFPR_xxx Move from Processor Register xxx 

Description: 

The MFPR_xxx instruct ion reads t he in te rna l processor register specified by the 
PALcode function field and wri tes it to RO. 

Registers R l , R16, and R17 contain unpredictable resul t s after an MFPR. 

See Chap te r 5 for a description of each IPR. 

CALLJPAL MFPR_IPR_Name ÎPALcode format 



2.6.4 Move to Processor Register 

Format: 

CALLJPAL MTPR_IPR_Name '.PALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception) 

! R16 may contain an IPR specific source operand 

{RO <— result of IPR specific function} 
{IPR «— result of IPR specific function} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALL_PAL MTPR_xxx Move to Processor Register xxx 

Description: 

The MTPR_xxx instruct ion wri tes the IPR-specific source operands in integer 
registers R16 and R17 (R17 reserved for future use) to t he in te rna l processor register 
specified by the PALcode function field. The effect of loading a processor register is 
guaran teed to be active on the next instruction. 

Registers R l , R16, and R17 contain unpredictable resul t s after an MTPR. The MTPR 
may r e tu rn resul ts in RO. If t he specific IPR being accessed does not r e t u rn resul ts 
in RO, then RO contains an unpredictable resul t after an MTPR. 

See Chapter 5 for a description of each IPR. 
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2.6.5 Store Quadword Physical 

Format: 

C A L L P A L STQP ÎPALcode format 

Operation: 

l R16 contains the quadword aligned physical address 
1 R17 contains the data to be written 

IF PS<CM> NE 0 then 
{Privileged Instruction exception) 

(R16) «— R17 {physical access} 

Exceptions: 

Privileged Instruct ion 

Instruction mnemonics: 

CALL_PAL STQP Store Quadword Physical 

Description: 

The STQP instruct ion wri tes the quadword contents of R17 to the memory location 
whose physical address is in R16. 

If t he operand address in R16 is not quadword aligned, t he resul t is 
UNPREDICTABLE. 
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2.6.6 Swap Privileged Context 

Format: 

CALLJPAL SWPCTX ÎPALcode format 

Operation: 

! R16 contains the physical address of the new HWPCB. 

! check HWPCB alignment 

IF R16<6:0> NE 0 THEN 
{reserved operand exception} 

IF {PS<CM> NE 0} THEN 
{privileged instruction exception} 

! Store old HWPCB contents 

(IPR_PCBB + HWPCB_KSP) <- SP 
IF {internal registers for stack pointers} THEN 

IF {internal registers for ASTxx} THEN 
BEGIN 
(IPR_PCBB + HWPCB_ASTSR) <- IPR_ASTSR 
(IPR_PCBB + HWPCB_ASTEN) <- IPR_ASTEN 

END 
tmpl <- PCC 
tmp2 4 - ZEXT(tmpl<31:0>) 
tmp3 <- ZEXT(tmpl<63:32>) 
(IPR_PCBB + HWPCB_PCC) <- {tmp2 + tmp3}<31:0> 
IF {internal storage for process unique value} THEN 

BEGIN 
(IPR_PCBB + HWPCB_UNQ) <— process unique value 

END 

! Load new HWPCB contents 

IPR_PCBB <- R16 

IF {ASNs not implemented in virtual instruction cache} THEN 
{flush instruction cache} 

IF {ASNs not implemented in TB} THEN 
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN 

{invalidate trans, buffer entries with PTE<ASM> EQ 0} 
ELSE 

IPR_ASN «- (IPR_PCBB + HWPCB_ASN) 

BEGIN 
(IPR_PCBB 
(IPR_PCBB 
(IPR_PCBB 

END 

+ HWPCB_ESP) 
+ HWPCB_SSP) 
+ HWPCB_USP) 

IPR_ESP 
IPR_SSP 
IPR USP 
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SP «- (IPR_PCBB + HWPCB__KSP) 
IF {internal registers for stack pointers} THEN 

BEGIN 
IPR_ESP «- (IPR_PCBB + HWPCB__ESP) 
IPR_SSP <- (IPR_PCBB + HWPCB_SSP) 
IPR_USP <- (IPR_PCBB + HWPCB_USP) 

END 

IPR__PTBR <- (IPR_PCBB + HWPCB__PTBR) 

IF {internal registers for ASTxx} THEN 
BEGIN 
IPR_ASTSR <- (IPR_PCBB + HWPCB_ASTSR) 
IPR_ASTEN <- (IPRJPCBB + HWPCB_ASTEN) 

END 

IPR_FEN <- (IPR_PCBB + HWPCB_FEN) 
tmp4 <- ZEXT((IPR_PCBB + HWPCB__PCC )<31: 0>) 
tmp4 «— tmp4 - tmp2 
PCC<63:32> <- tmp4<31:0> 

IF {internal storage for process unique value} THEN 
BEGIN 

process unique value <— (IPR_PCBB + HWPCB_UNQ) 
END 

IF {internal storage for Data Alignment trap setting} THEN 
BEGIN 

DAT <- (IPR_PCBB + HWPCB_DAT) 
END 

Exceptions: 

Reserved Operand 

Privileged Instruct ion 

Instruction mnemonics: 

CALL.PAL SWPCTX Swap Privileged Context 

Description: 

The SWPCTX instruct ion r e t u r n s ownership of t h e cur ren t H a r d w a r e Privileged 
Context Block (HWPCB) to the operat ing system and passes ownership of the new 
HWPCB to the processor. The HWPCB is described in Chap te r 4. 

SWPCTX saves the privileged context from the in te rna l processor regis ters into the 
HWPCB specified by t h e physical address in t he PCBB in te rna l processor register. 
I t t hen loads the privileged context from the new HWPCB specified by the physical 
address in R16. Note t h a t t he actual sequence of the save and res tore operation is 
not specified so any overlap of t he cur ren t and new HWPCB storage a reas produces 
U N D E F I N E D resul ts . 

The privileged context includes the four s tack pointers , t he Page Table Base Register 
(PTBR), the Address Space N u m b e r (ASN), the AST enable and summary registers , 
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the Floating-point enable register (FEN), the Performance monitor (PME) register, 
t he Da ta a l ignment t r a p (DAT) register, and the process cycle counter (PCC). 
However, PTBR is never saved in the HWPCB and it is UNPREDICTABLE whe ther 
or not ASN is saved. These values cannot be changed for a runn ing process. The 
process integer and floating registers a re saved and restored by the operat ing system. 
See Figure 4 -1 for the HWPCB format. 

Any change to the cur ren t HWPCB while the processor h a s ownership resul ts in 
U N D E F I N E D operation. All t he values in the cur ren t HWPCB can be read through 
IPRs. 

If t he HWPCB is read while ownership resides wi th the processor, it is 
UNPREDICTABLE whe ther the original or an upda ted value of a field is read. The 
processor is free to upda te an HWPCB field a t any t ime. The decision as to whe ther 
or not a field is upda ted is made individually for each field. 

If the enabling conditions are present for an in te r rup t a t t he completion of th is 
instruction, the in te r rup t occurs before the next instruct ion. 

PALcode sets up the PCBB a t boot t ime to point to the HWPCB storage a rea in the 
Hardware Res ta r t P a r a m e t e r Block (HWRPB). 

The operation is U N D E F I N E D if SWPCTX accesses a non-memory region. 

A reference to non-existent memory causes a machine check. Unimplemented 
physical address bi ts a re SBZ. The operation is U N D E F I N E D if any of these bits 
are set. 

NOTE 
Processors may keep a copy of each of the per-process 
stack pointers in in te rna l registers . In those processors, 
SWPCTX stores the in te rna l regis ters into t he HWPCB. 
Processors t h a t do not keep a copy of the s tack pointers 
in in ternal registers , keep only the s tack pointer for 
the cur ren t access mode in SP and switch th is wi th 
the HWPCB contents whenever the cur ren t access mode 
changes. 
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Chapter 3 

OpenVMS Memory Management (II) 

3.1 Introduction 

Memory m a n a g e m e n t consists of the ha rdware and software which control the 
allocation and use of physical memory. Typically, in a mul t ip rogramming system, 
several processes may reside in physical memory a t the same t ime; see Chapte r 4. 
OpenVMS Alpha uses memory protection and mult iple address spaces to ensure t h a t 
one process will not affect e i ther other processes or the operat ing system. 

To improve further software reliability, four hierarchical access modes provide 
memory access control. They are , from most to least privileged: kernel , executive, 
supervisor, and user. Protection is specified a t t he individual page level, where a 
page may be inaccessible, read-only, or read/wri te for each of the four access modes. 
Accessible pages can be restr ic ted to have only da t a or instruct ion access. 

A program uses vi r tual addresses to access i ts da t a and instruct ions. However, before 
these v i r tua l addresses can be used to access memory, they m u s t be t r ans la ted into 
physical addresses . Memory m a n a g e m e n t software ma in ta ins tables of mapping 
information (page tables) t h a t keep t rack of where each vi r tua l page is located in 
physical memory. The processor util izes th is mapping information when it t r ans la tes 
v i r tua l addresses to physical addresses . 

Therefore, memory m a n a g e m e n t provides both memory protection and memory 
mapping mechanisms. The OpenVMS Alpha memory m a n a g e m e n t archi tecture is 
designed to mee t several goals: 

• Provide a large address space for instruct ions and da ta . 

• Allow programs to r u n on h a r d w a r e wi th physical memory smaller t h a n the 
v i r tua l memory used. 

• Provide convenient and efficient sha r ing of instruct ions and data . 

• Allow sparse use of a large address space wi thout excessive page table overhead. 

• Contr ibute to software reliability. 

• Provide independent read and wri te access protection. 

3.2 Virtual Address Space 

A vir tua l address is a 64-bit uns igned integer specifying a byte location within the 
vi r tual address space. Implementa t ions subset the address space supported to one 
of four sizes (43, 47, 51 , or 55 bits) as a function of page size. The minimal vir tual 
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address size supported is 43 bits . If an implementat ion supports less t h a n 64-
bit v i r tual addresses i t m u s t check t h a t all t he VA<63:VA_SIZE> bi ts are equal 
to VA<VA_SIZE-1>. This gives two disjoint ranges for valid v i r tual addresses . 
For example, for a 43-bit v i r tual address space valid v i r tua l addresses ranges 
a re 0..3FF F F F F F F F F 1 6 and F F F F FCOO 0000 0000 i 6. .FFFF F F F F F F F F F F F F 1 6. 
Accesses to v i r tual addresses outside of the valid v i r tua l address ranges for an 
implementat ion cause an access violation exception. 

The vir tual address space is broken into pages, which a re the un i t s of relocation, 
shar ing, and protection. The page size ranges from 8K bytes to 64K bytes. 
System software should, therefore, allocate regions wi th differing protection on 64-
Kbyte vi r tual address boundar ies to ensure image compatibility across all Alpha 
implementat ions . 

Memory managemen t provides the mechanism to m a p the active pa r t of the vir tual 
address space to the available physical address space. The operat ing system controls 
the virtual-to-physical address mapping tables, and saves the inactive pa r t s of the 
vir tual address space on external s torage media. 

3.2.1 Virtual Address Format 

The processor genera tes a 64-bit v i r tual address for each instruct ion and operand 
in memory. The vi r tual address consists of th ree level-number fields, and a byte_ 
within_page field. 

Figure 3-1 : Virtual Address Format 

63 0 

Sext(Level1<Level Size-1>) Level 1 Level2 Level3 byte_within_page 

The byte_within_page field can be e i ther 13, 14, 15, or 16 bits depending on a 
par t icular implementat ion. Thus , the allowable page sizes a re 8K bytes, 16K bytes, 
32K bytes, and 64K bytes. Each level-number field contains 0-n bits , where η is, for 
example, 9 wi th an 8K-byte page size. The level-number fields a re the same size for 
a given implementat ion. 

The level number fields are a function of t he page size; all page table entr ies a t any 
given level do not exceed one page. The P F N field in t he PTE is always 32 bi ts wide. 
Thus , as the page size grows the vi r tual and physical address size also grows. 

3-2 OpenVMS Alpha Software (II) 



Table 3 - 1 : Virtual Address Options 
Page Byte Level Virtual Physical 
Size Offset Size Address Address 
(bytes) (bits) (bits ) (bits) (bits) 

8 K 13 10 43 45 

16 Κ 14 11 47 46 

32 Κ 15 12 51 47 

64 Κ 16 13 55 48 

3.3 Physical Address Space 

Physical addresses a re a t most 48 bi ts . A processor m a y choose to implement a 
smaller physical address space by not implement ing some number of high order 
bits . The two most significant implemented physical address bi ts select a caching 
policy or implementa t ion dependent type of address space. Implementa t ions will use 
these bi ts as appropr ia te for the i r sys tems. For example, in a worksta t ion wi th a 30-
bit physical address space, bit <29> might select between memory and non-memory 
like regions, and bit <28> could enable or disable caching; see Common Architecture, 
Chapter 5. 

3.4 Memory Management Control 

Memory m a n a g e m e n t is always enabled. Implementa t ions m u s t provide an 
environment for PALcode to service exceptions and to initialize and boot the 
processor. For example PALcode migh t r u n wi th I -s t ream mapp ing disabled and 
use t he privileged CALL_PAL LDQP and STQP instruct ions to access da t a stored in 
physical addresses . 

3.5 Page Table Entries 

The processor uses a quadword Page Table En t ry (PTE) to t r ans l a t e v i r tual addresses 
to physical addresses . A PTE contains ha rdware and software control information 
and the physical Page F r a m e Number . 

Figure 3-2: Page Table Entry 

PFN 

1 6 1 5 1 4 1 3 1 2 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved 
for 

Software 
WWh/VWR GH 

E M 
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Fields in the page table en t ry are in terpre ted as shown in Table 3-2 . 

Table 3 - 2 : Page Table Entry 

Bits Descr ip t ion 

0 Valid (V) 
Indicates the validity of the the PFN field. When V is set the PFN field is valid for 
use by hardware. When V is clear, the PFN field is reserved for use by software. 
The V bit does not affect the validity of PTE<15:1> bits. 

1 Fault On Read (FOR) 
When set, a Fault On Read exception occurs on an attempt to read any location in 
the page. 

2 Fault On Write (FOW) 
When set, a Fault On Write exception occurs on an attempt to write any location 
in the page. 

3 Fault On Execute (FOE) 
When set, a Fault On Execute exception occurs on an attempt to execute an 
instruction in the page. 

4 Address Space Match (ASM) 
When set, this PTE matches all Address Space Numbers. For a given VA, 
ASM must be set consistently in all processes, otherwise the address mapping 
is UNPREDICTABLE. 
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Table 3-2 (Co n t.): Page Table Entry 
Bits Descr ip t ion 

6:5 Granularity hint (GH) 
Software may set these bits to a non-zero value to supply a hint to translation 
buffer implementations that a block of pages can be treated as a single larger 
page: 

1. The block is an aligned group of 8**N pages, where Ν is the value of PTE<6:5>, 
e.g. a group of 1, 8, 64, or 512 pages starting at a virtual address with page_ 
size + 3*N low-order zeros. 

2. The block is a group of physically contiguous pages that are aligned both 
virtually and physically. Within the block, the low 3*N bits of the PFNs 
describe the identity mapping and the high 32-3*N PFN bits are all equal. 

3. Within the block, all PTEs have the same values for bits <15:0>, i.e. protection, 
fault, granularity, and valid bits. 

Hardware may use this hint to map the entire block with a single TB entry, instead 
of 8, 64, or 512 separate TB entries. 
Note that it is UNPREDICTABLE which PTE values within the block are used if 
the granularity bits are set inconsistently. 

PROGRAMMING NOTE 
A granula r i ty h in t might be appropri-
a te for a large memory s t ruc ture such 
as a frame buffer or nonpaged pool t h a t 
in fact is mapped into contiguous vir-
tua l pages wi th identical protection, fault, 
and valid bi ts . 

7 Reserved for future use by Digital. 

PROGRAMMING NOTE 
The reserved bi t will be used by future 
h a r d w a r e sys tems and should not be 
used by software even if PTE<V> is 
clear. 

8 Kernel Read Enable (KRE) 
This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in kernel mode, an Access Violation occurs. 
This bit is valid even when V=0. 

9 Executive Read Enable (ERE) 
This bit enables reads from executive mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in executive mode, an Access Violation occurs. 
This bit is valid even when V=0. 
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Table 3 - 2 (Cont.): Page Table Entry 

Bits Descr ip t ion 

10 Supervisor Read Enable (SRE) 
This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in supervisor mode, an Access Violation occurs. 
This bit is valid even when V=0. 

11 User Read Enable (URE) 
This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction 
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid 
even when V=0. 

12 Kernel Write Enable (KWE) 
This bit enables writes from kernel mode. If this bit is a 0 and a STORE is 
attempted while in kernel mode, an Access Violation occurs. This bit is valid even 
when V=0. 

13 Executive Write Enable (EWE) 
This bit enables writes from executive mode. If this bit is a 0 and a STORE is 
attempted while in executive mode, an Access Violation occurs. This bit is valid 
even when V=0. 

14 Supervisor Write Enable (SWE) 
This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is 
attempted while in supervisor mode, an Access Violation occurs. This bit is valid 
even when V=0. 

15 User Write Enable (UWE) 
This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted 
while in user mode, an Access Violation occurs. This bit is valid even when V=0. 

NOTE 
If a wri te enable bit is set and 
the corresponding read enable bit is 
not, the operation of the processor is 
UNDEFINED. 

31:16 Reserved for software. 

63:32 Page Frame Number (PFN) 
The PFN field always points to a page boundary. If V is set, the PFN is 
concatenated with the byte_within_page bits of the virtual address to obtain the 
physical address; see Section 3.7. If V is clear, this field may be used by software. 

3.5.1 Changes to Page Table Entries 

The operat ing system changes PTEs as pa r t of i ts memory managemen t functions. 
For example, the operat ing system may set or clear the valid bit, change the P F N 
field as pages a re moved to and from external storage media, or modify t he software 
bits . The processor ha rdware never changes PTEs . 
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Software m u s t gua ran tee t h a t each PTE is a lways consistent wi th in itself. Changing 
a PTE one field a t a t ime m a y give incorrect sys tem operation, e.g., se t t ing PTE<V> 
with one instruct ion before establ ishing PTE<PFN> with another. Execution of an 
in te r rup t service rout ine between the two instruct ions could use an address t h a t 
would m a p us ing the inconsistent PTE. Software can solve th is problem by building 
a complete new PTE in a regis ter and t hen moving the new PTE to the page table 
us ing a Store Quadword inst ruct ion (STQ). 

Multiprocessing makes t he problem more complicated. Another processor could be 
reading (or even changing) t he same PTE t h a t the first processor is changing. Such 
concurrent access m u s t produce consistent resul ts . Software m u s t use some form of 
software synchronization to modify PTEs t h a t a re a l ready valid. Once a processor 
ha s modified a valid PTE, it is possible t h a t o ther processors in a multiprocessor 
system may have old copies of t h a t PTE in the i r Translat ion Buffer. Software m u s t 
inform other processors of changes to PTEs . 

Software m a y wri te new values into invalid PTEs us ing quadword store instruct ions 
(i.e., STQ). H a r d w a r e m u s t ensure t h a t aligned quadword reads and wri tes a re 
atomic operat ions. The following procedure m u s t be used to change any of the PTE 
bi ts <15:0> of a shared valid PTE (PTE<0>=1) such t h a t an access t h a t was allowed 
before t he change is not allowed after the change. 

1. The PTE<0> is cleared wi thout changing any of t he PTE bits <63:32> and <15:1>. 

2. All processors do a TBIS for the VA mapped by the PTE t h a t changed. The VA 
used in the TBIS m u s t a s sume t h a t t he PTE Granula r i ty h in t bi ts a re zero. 

3. After all processors have done the TBIS, t he new PTE m a y be wr i t t en changing 
any or all fields. 

PROGRAMMING NOTE 
The procedure above allows the QUEUE instruct ions 
t h a t have probed to check t h a t all can complete, to 
service a TB miss . The Q U E U E instruct ion will use the 
PTE even though the V bi t is clear, if dur ing i ts init ial 
probe flow the V bi t was set. 

3.6 Memory Protection 

Memory protection is t he function of val idat ing whe the r a par t icular type of access 
is allowed to a specific page from a par t icu lar access mode. Access to each page is 
controlled by a protection code t h a t specifies, for each access mode, whe ther read or 
wri te references a re allowed. 

The processor uses t he following to de termine whe the r an in tended access is allowed: 

• The vi r tual address , which is used to index page tables . 

• The in tended access type (read da ta , wri te da ta , or instruct ion fetch). 

• The cur ren t access mode from the Processor S ta tus . 
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If t he access is allowed and the address can be mapped (the Page Table En t ry 
is valid), the resul t is t he physical address corresponding to the specified vi r tual 
address . 

For protection checks, t he in tended access is read for da t a loads and instruct ion 
fetch, and wri te for da t a stores. 

If an operand is an address operand, t hen no reference is made to memory. Hence, 
the page need not be accessible nor m a p to a physical page. 

3.6.1 Processor Access Modes 

There a re four processor modes: 

• Kernel 

• Executive 

• Supervisor 

• User 

The access mode of a runn ing process is stored in t he Cur ren t Mode bits of the 
Processor S t a tus (PS); see Section 6.2. 

3.6.2 Protection Code 

Every page in the vi r tual address space is protected according to i ts use. A program 
may be prevented from reading or wri t ing portions of i ts address space. Associated 
with each page is a protection code t h a t describes t he accessibility of the page for 
each processor mode. The code allows a choice of read or wri te protection for each 
processor mode. 

• Each mode's access can be read/wri te , read-only, or no-access. 

• Read and wri te accessibility a re specified independently. 

• The protection of each mode can be specified independently. 

The protection code is specified by 8 bi ts in the PTE; see Table 3-2 . 

The OpenVMS Alpha archi tecture allows a page to be designated as execute only by 
set t ing the read enable bit for the access mode and by set t ing the fault on read and 
wri te bi ts in the PTE. 

3.6.3 Access Violation Fault 

An Access Violation fault occurs if an illegal access is a t tempted , as determined by 
the current processor mode and the page's protection field. 

Address Translation 

The page tables can be accessed from physical memory, or (to reduce overhead) 
th rough a mapping to a l inear region of t he vi r tual address space. All 
implementat ions m u s t support t he vi r tual access method and are expected to use it 
as the pr imary access method to enhance performance. 
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The following sections describe both access methods . 

3.7.1 Physical Access for Page Table Entries 

Physical address t rans la t ion is performed by accessing entr ies in a three-level page 
table s t ruc ture . The Page Table Base Register (PTBR) contains the physical Page 
F r a m e N u m b e r of t he highest level (Level 1) page table. Bits <levell> of the vir tual 
address a re used to index into t he first level page table to obtain the physical page 
frame n u m b e r of the base of the second level (Level 2) page table. Bits <level2> of 
the v i r tua l address a re used to index into the second level page table to obtain the 
physical page frame n u m b e r of the base of t he th i rd level (Level 3) page table. Bits 
<level3> of the v i r tua l address a re used to index the th i rd level page table to obtain 
t he physical Page F r a m e Number (PFN) of t he page being referenced. The P F N is 
concatenated wi th v i r tua l address bi ts <byte_within_page> to obtain the physical 
address of t he location being accessed. 

If p a r t of any page table resides in I/O space, or in nonexis tent memory, t he operation 
of the processor is U N D E F I N E D . 

If the first-level or second-level PTE is valid, t he protection bi ts a re ignored; the 
protection code in t he third-level PTE is used to de te rmine accessibility. If a first-
level or second-level PTE is invalid, an Access Violation occurs if t he PTE<KRE> 
equals zero. An Access Violation on a first-level or second-level PTE implies t h a t all 
lower-level page tables mapped by t h a t PTE do not exist. 

PROGRAMMING NOTE 
This mapping scheme does not require mult iple 
contiguous physical pages. There a re no length 
registers . With a page size of 8K bytes, 3 pages (24K 
bytes) m a p 8M bytes of v i r tua l address space; 1026 
pages (approximately 8M bytes) m a p an 8-Gbyte address 
space; and 1,049,601 pages (approximately 8G bytes) 
m a p the ent i re 8T byte 2**43 byte address space. 

The algori thm to genera te a physical address from a v i r tua l address follows: 

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT(VA<VA_SIZE-1>} THEN 
{initiate Access Violation fault} 

1 Read Physical 

levell_pte «- ({PTBR * page_size} + {8 * VA<levell_number>> ) 

IF levell_pte<V> EQ 0 THEN 
IF levell_pte<KRE> EQ 0 THEN 

{initiate Access Violation fault} 
ELSE 

{initiate Translation Not Valid fault} 

1 Read Physical 

level2__pte <— 
({levell_pte<PFN> * page_size} + {8 * VA<level2_number>}) 
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IF level2_pte<V> EQ 0 THEN 
IF level2_pte<KRE> EQ 0 THEN 

{initiate Access Violation fault} 
ELSE 

{initiate Translation Not Valid fault} 

! Read Physical 

level3_pte <— 
({level2_pte<PFN> * page_size} + {8 * VA<level3_number>}) 

IF {{{level3_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR 
{{level3_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR 
{{level3_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR 
{{level3_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR 
{{level3_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR 
{{level3__pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR 
{{level3_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR 
{{level3_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ 0}}} 

THEN 
{initiate Access Violation fault} 

ELSE 
IF level3_pte<V> EQ 0 THEN 

{initiate Translation Not Valid fault} 

IF {level3_pte<FOW> EQ 1} AND { write access} THEN 
{initiate Fault On Write fault} 

IF {level3_pte<FOR> EQ 1} AND { read access} THEN 
{initiate Fault On Read fault} 

IF {level3_pte<FOE> EQ 1} AND { execute access} THEN 
{initiate Fault On Execute fault} 

Physical_Address <— 
{level3_pte<PFN> * page_size} OR VA<byte_within_page> 

3.7.2 Virtual Access for Page Table Entries 

To reduce the overhead associated with the address t rans la t ion in a three-level page 
table s t ructure , t he page tables a re mapped into a l inear region of the vi r tual address 
space. The vi r tual address of the base of the page table s t ruc ture is set on a system 
wide basis and is contained in the VPTB IPR. 

When a nat ive mode DTB or ITB Miss occurs, t he TBMISS flows a t t emp t to load 
the level th ree page table ent ry us ing a single v i r tua l mode load instruction. 

The algori thm involving the manipula t ion of the missing VA is: 

tmp <- left__shift(VA, {64 - {{lg(PageSize) *4} -9 }} ) 
tmp <— 

right_shift(tmp,{64 - {{lg(PageSize)*4} -9} + lg(PageSize) -3}) 
tmp <- VPTB OR tmp 
tmp<2:0> «- 0 

At th is point, t m p contains t he VA of the level 3 page table entry. A LDQ from t h a t 
VA will resul t in the acquistion of the PTE needed to satisfy the init ial TBMISS 
condition. 
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However, in the PALcode environment , if a TBMISS occurs dur ing an a t t empt 
to fetch t he level3 PTE, t hen it is necessary to use the longer sequence of th ree 
dependent loads described in Section 3.7. 

Chap te r 5 contains t he description of t h e VPTB IPR used to contain t he vi r tua l 
address of t he base of the page table s t ruc ture . 

The mapp ing of the page tables necessary for the correct function of the algori thm 
is done as follows: 

1. Select a 2
( 3

*
1
^

(
P

a
^

e
-

s i z e
/

8 ) ) + 3
) byte-aligned region (an address wi th 3*lg(page_size 

/8)+3 low order zeros) in t he v i r tua l address space. This value will be wr i t ten 
into the VPTB register. 

2. Crea te a levell PTE to m a p the page tables as follows: 

Levell_PTE «- 0 ! Init all fields to 0 
Level1_PTE<63:32> <- PFN of Levell Pagetable 

! Set PFN to PFN of levell pagetable 
Level 1_PTE<8> <- 1 I Kernel Read Enable (KRE) 
Level 1_PTE<0> <- 1 ! Valid bit 

3. Write t he created levell PTE into the Levell page table en t ry t h a t corresponds 
to t he VPTB value. 

4. Set all Level l and Level2 Valid P T E s to allow kerne l r ead access. 

5. Write t he VPTB register wi th t he selected base value. 

No validity checks 
in t he VPTB in a 
VPTB contains an 
U N D E F I N E D . 

NOTE 
need be made on 
r u n n i n g system, 
invalid address , 

t he value stored 
Therefore, if t h e 
the operation is 

3.8 Translation Buffer 

In order to save actual memory references when repeatedly referencing t he 
same pages, h a r d w a r e implementa t ions include a t rans la t ion buffer to remember 
successful v i r tua l address t rans la t ions and page s ta tes . 

When t he process context is changed, a new value is loaded into the Address 
Space N u m b e r (ASN) in te rna l processor regis ter wi th a Swap Privileged Context 
instruct ion (CALL.PAL SWPCTX); see Section 2.6 and Chap te r 4. This causes 
address t rans la t ions for pages wi th PTE<ASM> clear to be inval idated on a processor 
t h a t does not implement address space numbers . Additionally, when the software 
changes any pa r t (except for t he Software field) of a valid Page Table Entry, it m u s t 
also move a v i r tua l address wi th in t h e corresponding page to t he Transla t ion Buffer 
Inval idate Single (TBIS) in te rna l processor regis ter wi th the MTPR instruction; see 
Chapte r 5. 
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IMPLEMENTATION NOTE 
Some implementa t ions may inval idate the ent i re 
Translat ion Buffer on an MTPR to TBIS. In general , 
implementa t ions may inval idate more t h a n the required 
t rans la t ions in the TB. 

The ent i re Translat ion Buffer can be inval idated by doing a wri te to Translat ion 
Buffer Inval idate All register (CALL_PAL MTPR_TBIA), and all ASM=0 entr ies can 
be invalidated by doing a wri te to Translat ion Buffer Inval idate All Process register 
(CALL.PAL MTPR.TBIAP); see Chapte r 5. 

The Translat ion Buffer m u s t not store invalid PTEs . Therefore, t he software is not 
required to invalidate Translat ion Buffer ent r ies when mak ing changes for PTEs 
t h a t are already invalid. 

The TBCHK in terna l processor register is available for in terrogat ing the presence 
of a valid t rans la t ion in the Translat ion Buffer; see Chapte r 5. 

IMPLEMENTATION NOTE 
Hardware implementors should be aware t h a t a single, 
direct mapped TB has a potential problem when a load 
/store instruct ion and i ts da ta m a p to the same TB 
location. If TB misses a re handled in PALcode, there 
could be an endless loop unless the instruct ion is held 
in an instruct ion buffer or a t r ans la ted physical PC is 
main ta ined by the ha rdware . 

3.9 Address Space Numbers 

The Alpha archi tecture allows a processor to optionally implement address space 
numbers (process tags) to reduce the need for invalidation of cached address 
t rans la t ions for process specific addresses when a context switch occurs. The 
supported ASN range is O..MAX_ASN. 

NOTE 
If an ASN outside of the range O..MAX_ASN is 
assigned to a process, the operation of the processor is 
UNDEFINED. 

The address space number for the cur ren t process is loaded by software in the 
Address Space Number (ASN) in te rna l processor register wi th a Swap Privileged 
Context instruction. ASNs are processor specific and the ha rdware makes no a t t empt 
to ma in ta in coherency across mult iple processors. In a mult iprocessor system, 
software is responsible for ensur ing the consistency of TB entr ies for processes t h a t 
might be rescheduled on different processors. 

PROGRAMMING NOTE 
System software should not a s sume t h a t the number 
of ASNs is a power of two. This allows, for example, 
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ha rdware to use N TB t a g bi ts to encode (2**N)-3 ASN 
values, one value for ASM=1 PTEs , and one for invalid. 

There a re several possible ways of us ing ASNs. There 
a re several complications in a multiprocessor system. 
Consider t he case where a process t h a t executed on 
processor -1 is rescheduled on processor -2 . If a page 
is deleted or i ts protection is changed, the TB in 
processor -1 h a s s tale da ta . One solution would be to 
send an interprocessor in te r rup t to all t he processors on 
which th is process could have r u n and cause t h e m to 
inval idate t he changed PTE. This resul t s in significant 
overhead in a system wi th several processors. Another 
solution would be to have software inval idate all TB 
entr ies for a process on a new processor before it can 
begin execution, if t he process executed on ano ther 
processor dur ing i ts previous execution. This ensures 
t h e deletion of possibly s tale TB ent r ies on t h e new 
processor. A th i rd solution would assign a new ASN 
whenever a process is r u n on a processor t h a t is not the 
same as the las t processor on which it r an . 

3.10 Memory Management Faults 

Five types of faults a re associated wi th memory access and protection: 

• Access Control Violation (ACV) 

Taken when the protection field of t he third-level PTE t h a t maps t he da t a 
indicates t h a t t he in tended page reference would be illegal in the specified access 
mode. An Access Control Violation fault is also t aken if t he KRE bit is zero in 
a n invalid first or second level PTE. 

• Fau l t On Read (FOR) 

Occurs when a read is a t t empted wi th PTE<FOR> set. 

• Fau l t On Write (FOW) 

Occurs when a wri te is a t t empted wi th PTE<FOW> set. 

• Fau l t On Execute (FOE) 

Occurs when instruct ion execution is a t t empted wi th PTE<FOE> set. 

• Translat ion Not Valid (TNV) 

Taken when a read or wri te reference is a t t empted th rough an invalid PTE in a 
first-, second-, or third-level page table. 

See Chapte r 6 for a detailed description of these faults. 

Note t h a t these five faults have distinct vectors in t he System Control Block. The 
Access Violation (ACV) fault t akes precedence over t he faults TNV, FOR, FOW, and 
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FOE. The Translat ion Not Valid (TNV) fault t akes precedence over the faults FOR, 
FOW, and FOE. 

The faults FOR and FOW can occur s imultaneously in the CALL_PAL queue 
instruct ions, in which case the order t h a t t he exceptions a re t aken is 
UNPREDICTABLE; see Section 2 .1 . 
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Chapter 4 

OpenVMS Process Structure (II) 

4.1 Process Definition 

A process is the basic ent i ty t h a t is scheduled for execution by the processor. A 
process represen ts a single t h r e a d of execution a n d consists of a n address space and 
both h a r d w a r e and software context. 

The h a r d w a r e context of a process is defined by: 

• 31 Integer regis ters and 31 Floating-point regis ters 

• Processor S t a tu s (PS) 

• P rogram Counter (PC) 

• 4 s tack pointers 

• Asynchronous System Trap Enable and s u m m a r y regis ters (ASTEN, ASTSR) 

• Process Page Table Base Register (PTBR) 

• Address Space Number (ASN) 

• Float ing Enable Register (FEN) 

• Process Cycle counter (PCC) 

• Process Unique value 

• D a t a Alignment Trap (DAT) 

• Performance Monitoring Enable Register (PME) 

The software context of a process is defined by operat ing system software and is 
system dependent . 

A process m a y share the same address space wi th other processes or have an address 
space of i ts own. There is, however, no separa te address space for system software, 
and therefore, t h e operat ing system m u s t be mapped into t he address space of each 
process; see Chap te r 3. 

In order for a process to execute, i ts h a r d w a r e context m u s t be loaded into the integer 
registers , Floating-point regis ters , and in te rna l processor registers . While a process 
is executing, i ts h a r d w a r e context is continuously updated . When a process is not 
being executed, i ts h a r d w a r e context is stored in memory. 

Saving the ha rdware context of t he cu r ren t process in memory, followed by loading 
the ha rdware context for a new process, is t e rmed context switching. Context 
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switching occurs as one process after another is scheduled by the operat ing system 
for execution. 

4.2 Hardware Privileged Process Context 

The ha rdware context of a process is defined by a privileged pa r t which is context 
switched wi th the Swap Privileged Context instruct ion (SWPCTX) (see Section 2.6), 
and a non-privileged pa r t which is context switched by operat ing system software. 

When a process is not executing, i ts privileged context is stored in a 128 byte 
na tura l ly aligned memory s t ruc ture called the Ha rdware Privileged Context Block 
(HWPCB). 

Figure 4-1 : Hardware Privileged Context Block 
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PALcode Scratch Area of 6 Quadwords 

The Hardware Privileged Context Block (HWPCB) for the cur ren t process is specified 
by the Privileged Context Block Base register (PCBB); see Chapte r 5. 

The Swap Privileged Context instruct ion (SWPCTX) saves the privileged context of 
the cur ren t process into the HWPCB specified by PCBB, loads a new value into 
PCBB, and then loads the privileged context of the new process into the appropr ia te 
ha rdware registers . 

The new value loaded into PCBB, as well as the contents of the Privileged Context 
Block, m u s t satisfy certain constra ints or an U N D E F I N E D operation resul ts : 
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1. The physical address loaded into PCBB m u s t be 128 byte aligned and describes 
sixteen contiguous quadwords t h a t a re in a memory-like region; see Common 
Architecture, Chapter 5. 

2. The value of PTBR m u s t be the Page F r a m e Number of an existent page t h a t is 
in a memory-like region. 

I t is t he responsibili ty of the operat ing system to save and load the non-privileged 
pa r t of t he h a r d w a r e context. 

The SWPCTX instruct ion r e t u r n s ownership of the cur ren t HWPCB to operat ing 
system software and passes ownership of the new HWPCB from the operat ing system 
to the processor. Any a t t emp t to wri te a HWPCB while ownership resides wi th the 
processor h a s U N D E F I N E D resul ts . If t he HWPCB is read while ownership resides 
wi th t he processor, i t is UNPREDICTABLE whe the r t he original or an upda ted value 
of a field is read. The processor is free to upda te an HWPCB field a t any t ime. The 
decision as to whe the r or not a field is upda ted is made individually for each field. 

If ASNs are not implemented, t he ASN field is not read or wr i t t en by PALcode. 

The F E N bit reflects the se t t ing of t he F E N IPR. 

The DAT bit controls whe ther da t a a l ignment t r aps t h a t a re fixed up in PALcode 
are reported to t he operat ing system. If t he bit is clear, t he t r a p is reported. If the 
bit is set, after t he fixup, r e t u r n is to t he user. See Section 6.6. 

Set t ing the P M E bit a ler ts any performance h a r d w a r e or software in the system to 
monitor the performance of th is process. 

The Process Unique value is t h a t value used in support of mul t i th read 
implementa t ions . The value is stored in t he HWPCB when the process is not active. 
When the process is active, t he value m a y be cached in h a r d w a r e in te rna l storage 
or kept in the HWPCB only. 

4.3 Asynchronous System Traps (AST) 

Asynchronous System Traps (ASTs) a re a m e a n s of notifying a process of events t h a t 
a re not synchronized wi th i ts execution bu t which m u s t be deal t wi th in t he context 
of t he process wi th min imum delay. 

Asynchronous System Traps (ASTs) in te r rup t process execution and are controlled by 
the AST Enable (ÄSTEN) and AST S u m m a r y (ASTSR) in te rna l processor registers; 
see Chap te r 5. 

The AST Enable register (ÄSTEN) contains an enable bit for each of the four 
processor access modes. When the bit corresponding to an access mode is set, 
ASTs for t h a t mode are enabled. The AST enable bit for a n access mode may be 
changed by executing a Swap AST Enable instruct ion (SWASTEN; see Section 2.6), 
or by executing a Move To Processor Register instruct ion specifying ASTEN (MTPR 
ÄSTEN; see Chapte r 5). 
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The AST Summary Register (ASTSR) contains a pending bi t for each of the four 
processor access modes. When the bit corresponding to an access mode is set, an 
AST is pending for t h a t mode. 

Kernel mode software may reques t an AST for a par t icular access mode by executing 
a Move To Processor Register instruct ion specifying ASTSR (MTPR ASTSR); see 
Chapte r 5). 

Ha rdware or PALcode monitors the s ta te of ÄSTEN, ASTSR, PS<CM>, and 
PS<IPL>. If PS<IPL> is less t h a n 2, and there is an AST pending and enabled 
for an access mode t h a t is less t h a n or equal to PS<CM> (i.e. an equal or more 
privileged access mode), an AST is ini t ia ted a t IPL 2. 

ASTs t h a t a re pending and enabled for a less privileged access mode are not allowed 
to in te r rup t execution in a more privileged access mode. 

4.4 Process Context Switching 

Process context switching occurs as one process after another is scheduled for 
execution by operat ing system software. Context switching requires t he ha rdware 
context of one process to be saved in memory followed by the loading of the ha rdware 
context for another process into the ha rdware registers . 

The privileged ha rdware context is swapped wi th t he CALL_PAL Swap Privileged 
Context instruct ion (SWPCTX). Other ha rdware context m u s t be saved and restored 
by operat ing system software. 

The sequence in which process context is changed is impor tan t since the SWPCTX 
instruct ion changes the environment in which the context switching software itself 
is executing. Also, a l though not enforced by ha rdware , i t is advisable to execute 
the actual context switching software in an environment which cannot be context 
switched (i.e. a t an IPL high enough t h a t rescheduling cannot occur). 

The SWPCTX instruct ion is the only method provided for loading certain in te rna l 
processor registers . The SWPCTX instruct ion always saves the privileged context of 
the old process and loads the privileged context of a new process. Therefore, a valid 
HWPCB m u s t be available to save the privileged context of the old process as well 
as load the privileged context of the new process. 
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Chapter 5 

OpenVMS Internal Processor Registers (II) 

5.1 Internal Processor Registers 

This chapter describes the OpenVMS Alpha In te rna l Processor Registers (IPRs). 
These regis ters a re read and wr i t ten wi th Move From Processor Register (MFPR) 
and Move To Processor Register (MTPR) instruct ions; see Section 2.6. 

These instruct ions accept an inpu t operand in R16 and r e t u r n a resul t , if any, in 
RO. Registers R l , R16, and R17 a re UNPREDICTABLE after a CALL_PAL MxPR 
rout ines . If a CALL_PAL MxPR rout ine does not r e t u r n a resul t in RO, t hen RO is 
also UNPREDICTABLE on r e tu rn . 

Some IPRs (for example, ASTSR, ASTEN, IPL) m a y be both read and wr i t ten in a 
combined operation by performing an MTPR instruct ion. 

In te rna l Processor Registers may or m a y not be implemented as actual ha rdware 
regis ters . An implementa t ion m a y choose any combination of PALcode and ha rdware 
to produce t he archi tectural ly specified function. 

In te rna l Processor Registers a re only accessible from Kernel mode. 

5.2 Stack Pointer Internal Processor Registers 

The s tack pointers for User, Supervisor, and Executive s tacks a re accessible as IPRs 
th rough the CALL_PAL MTPR and MFPR instruct ions. An implementa t ion may 
re ta in some or all of these s tack pointers only in the HWPCB. In th i s case, MTPR and 
MFPR for these regis ters m u s t access t he corresponding PCB locations. However, 
implementa t ions t h a t have these s tack pointers in in te rna l h a r d w a r e regis ters a re 
not required to access t h e corresponding HWPCB locations for MTPR and MFPR. 
The HWPCB locations get upda ted when a SWPCTX instruct ion is executed. 

An implementa t ion may also choose to keep the Kernel Stack Pointer (KSP) in an 
in te rna l h a r d w a r e register (labelled IPR_KSP); however, th i s regis ter is not directly 
accessible th rough MTPR and M F P R instruct ions. Because access to t he KSP 
requires Kernel mode, t he actual KSP is the cur ren t mode stack pointer (R30); t h u s 
access to KSP is provided th rough R30 and no MTPR or MFPR access is required. 
PALcode rout ines can directly access IPR_KSP as needed. 

At system initialization, the value of t he K S P is t a k e n from the init ial HWPCB (see 
Chap te r 4). 
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5.3 IPR Summary 

Table 5-1 : Internal Processor Register (IPR) Summary 

Input Output Context 
Register Name MnemonicAccess

1 
R16 RO Switched 

Address Space Number ASN R — number Yes 

AST Enable ÄSTEN RAV* mask mask Yes 

AST Summary Register ASTSR RAV* mask mask Yes 

Data Align Trap Fixup DATFX W value — Yes 

Floating-point Enable FEN R/W value value Yes 

Interprocessor Int. Request IPIR W number — No 

Interrupt Priority Level IPL R/W* value value No 

Machine Check Error Summary MCES R/W value value No 

Performance Monitor PERFMON W* IMP IMP No 

Privileged Context Block Base PCBB R — address No 

Processor Base Register PRBR R/W value value No 

Page Table Base Register PTBR R — frame Yes 

System Control Block Base SCBB R/W frame frame No 

Software Int. Request Register SIRR W level — No 

Software Int. Summary Register SISR R — mask No 

TB Check TBCHK R number status No 

TB Invalid. All TBIA W — — No 

TB Invalid. All Process TBIAP W — — No 

TB Invalid. Single TBIS W address — No 

TB Invalid. Single Data TBISD W address — No 

TB Invalid. Single Instruct. TBISI W address — No 

Kernel Stack Pointer KSP None — — Yes 

Exec Stack Pointer ESP R/W address address Yes 

Supervisor Stack Pointer SSP R/W address address Yes 

User Stack Pointer USP RW address address Yes 

Virtual Page Table Base VPTB R/W address address No 

Who-Am-I WHAMI R — number No 

1
 Access symbols are defined in Table 5 -2 . 
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Table 5-2: Internal Processor Register (IPR) Access Summary 
Access 
Type Meaning 

R Access by MFPR only. 

W Access by MTPR only. 

RAV Access by MFPR or MTPR. 

W* Read and Write access accomplished by MTPR; see Section 5.1 for details. 

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR; see Section 5.1 for details. 

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed. 
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5.3.1 Address Space Number (ASN) 

Access: 

Read 

Operation: 

IF {ASN are implemented} THEN 
RO <- ZEXT(ASN) 

ELSE 
RO <- 0 

Value at System Initialization: 

Zero 

Format: 

Figure 5-1 : Address Space Number Register (ASN) 

63 0 

Address Space Number 

RO 

Description: 

Address Space Numbers (ASNs) are used to further qualify Translat ion Buffer 
references; see Chapte r 3. If ASNs are implemented, t he cur ren t ASN may be read 
by executing an MFPR instruct ion specifying ASN. 

As processes are scheduled for execution, t he ASN for the next process to execute 
is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see Chapters 2 
and 4. 

The ASN register is an implicit operand to the CALL_PAL M F P R J P R , TBCHK, 
and TBISx PALcode instruct ions, in which i t is used to qualify the vi r tual address 
supplied in R16. 

5-4 OpenVMS Alpha Software (II) 



5.3.2 AST Enable (ASTEN) 

Access: 

Read 

Write* 

Operation : 

RO «- ZEXT (ASTEN<3:0>) ! Read (MFPR) 
RO <- ZEXT(ASTEN<3:0>) ! Write* (MTPR) 
ASTEN<3:0> <- {{ASTEN<3:0> AND R16<3:0>> OR R16<7:4>> 
{check for pending ASTs} 

Value at System Initialization: 

Zero 

Format: 

Figure 5-2: AST Enable Register (ÄSTEN) 

63 8 7 6 5 4 3 2 1 0 

u S Ε Κ υ S Ε Κ 
IGN 0 0 0 0 C c C C 

Ν Ν Ν Ν L L L L 

Format of RO 

63 4 3 2 1 0 

υ S Ε Κ 
RAZ Ε Ε Ε Ε 

Ν Ν Ν Ν 

Description: 

The AST Enable Register records t he AST enable s ta te for each of the modes: 
Kernel (KEN), Executive (EEN), Supervisor (SEN) and User (UEN). By wri t ing R16 
appropriately and then executing an MTPR instruct ion specifying ÄSTEN, the value 
of ÄSTEN may be s imultaneously read and modified. R16 contains bi t masks used 
to de termine t he new value of ÄSTEN: 

• Bits R16<0> and R16<4> control t he new s ta te of Kernel enable. 

• Bits R16<1> and R16<5> control the new s ta te of Executive enable. 
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• Bits R16<2> and R16<6> control the new s ta te of Supervisor enable. 

• Bits R16<3> and R16<7> control the new s ta te of User enable. 

An MFPR to ÄSTEN reads the cur ren t value of t he ÄSTEN and r e tu rn s th is value 
in RO. 

An MTPR to ÄSTEN begins by reading the cur ren t value of ÄSTEN and re tu rn ing 
th is value in RO. The cur ren t value of ÄSTEN is t hen ANDed wi th bi ts R16<3:0>; 
these bi ts preserve (if set to T ) or clear (if equal to Ό') t he cur ren t s ta te of the i r 
corresponding enable modes. The value produced by th is operation is t hen ORed 
with bi ts R16<7:4>; these bi ts t u r n on (if set to 1') or do not affect (if equal to 
Ό') the i r corresponding enable modes. The resul t ing value is t hen wr i t ten to the 
ÄSTEN. 

NOTE 
All AST enables can be cleared by loading a zero into 
R16 and executing an MTPR instruct ion specifying 
ASTEN. To enable an AST for a given mode, load R16 
with a m a s k t h a t h a s bi ts <3:0> set and one of the bi ts 
<7:4> corresponding to t he AST mode to be set. Then 
execute an MTPR instruct ion specifying ÄSTEN. 

As processes are scheduled for execution, the s ta te of the AST enables for the 
next process to execute is loaded us ing the Swap Privileged Context (SWPCTX) 
instruction. The Swap AST Enable (SWASTEN) instruct ion can be used to change 
the enable s ta te for the cur ren t access mode; See Chapte rs 2 and 4. 
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5.3.3 AST Summary Register (ASTSR) 

Access: 

Read 

Write* 

Operation: 

RO <- ZEXT(ASTSR<3:0>) ! Read (MFPR) 
RO «- ZEXT(ASTSR<3:0>) 1 Write* (MTPR) 
ASTSR<3:0> <- {{ASTSR<3:0> AND R16<3:0>> OR R16<7:4>> 
{check for pending ASTs} 

Value at System Initialization: 

Zero 

Format: 

Figure 5-3: AST Summary Register (ASTSR) 

63 8 7 6 5 4 3 2 1 0 

U s Ε Κ υ s Ε Κ 
IGN 0 0 0 0 C c C C 

Ν Ν Ν Ν L L L L 

R16 

63 4 3 2 1 0 

υ s Ε Κ 
RAZ Ρ Ρ Ρ Ρ 

D D D D 

RO 

Description: 

The AST S u m m a r y Register records the AST pending s ta te for each of the modes: 
Kernel (KPD), Executive (EPD), Supervisor (SPD), and User (UPD). 
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By wri t ing R16 appropriately and t hen executing an MTPR instruct ion specifying 
ASTSR, the value of ASTSR may be s imultaneously read and modified. R16 contains 
bit masks used to determine t he new value of ASTSR: 

• Bits R16<0> and R16<4> control the new s ta te of Kernel pending. 

• Bits R16<1> and R16<5> control the new s ta te of Executive pending. 

• Bits R16<2> and R16<6> control the new s ta te of Supervisor pending. 

• Bits R16<3> and R16<7> control the new s ta te of User pending. 

An MFPR reads the cur ren t value of ASTSR and r e t u r n s th is value in RO. 

An MTPR to ASTSR begins by reading the cur ren t value of ASTSR and re tu rn ing 
th is value in RO. The cur ren t value of ASTSR is t hen ANDed wi th bi ts R16<3:0>; 
these bi ts preserve (if set to 1') or clear (if equal to Ό') t he cur ren t s ta te of the i r 
corresponding pending modes. The value produced by th is operation is t hen ORed 
with bi ts R16<7:4>; these bi ts t u r n on (if set to T ) or do not affect (if equal to 
Ό') the i r corresponding pending modes. The resul t ing value is t hen wr i t ten to the 
ASTSR. 

NOTE 
All AST reques ts can be cleared by loading a zero in R16 
and executing an MTPR instruct ion specifying ASTSR. 
To reques t an AST for a given mode, load R16 with a 
m a s k t h a t h a s bi ts <3:0> set and one of t he bi ts <7:4> 
corresponding to the AST mode to be set. Then execute 
an MTPR instruct ion specifying ASTSR. 

As processes a re scheduled for execution, t he pending AST s ta te for the next process 
to execute is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see 
Chapters 2 and 4. 

When the processor IPL is less t h a n 2, and proper enabl ing conditions a re present , 
an AST in te r rup t is ini t ia ted a t IPL 2 and the corresponding access mode bit in 
ASTSR is cleared; see Section 6.7.6. 
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5.3.4 Data Alignment Trap Fixup (DATFX) 

Access: 

Write 

Operation: 

DATFX <- R16<0> 
(HWPCB+56)<63> <- DATFX 

Value at System Initialization: 

Zero 

Format: 

Figure 5-4: Data Alignment Trap Fixup (DATFX) 

63 2 1 0 

D 
A 
Τ 

Description: 

D a t a Alignment t r aps a re fixed u p in PALcode and a re reported to the operat ing 
system unde r t he control of t he DAT bit. If t he bi t is zero, t he t r a p is reported. 
For t h e LDx_L and STx_C instruct ions, no fixup is possible and an illegal operand 
exception is generated. For the description of the d a t a a l ignment t r aps , see 
Section 6.6. 
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5.3.5 Floating Enable (FEN) 

Access: 

Read/Write 

Operation: 

RO «- ZEXT(FEN) 

FEN <- R16<0> 
(HWPCB+56)<0> <- FEN 

! Read 

! Write 
! Update PCB on Write 

Value at System Initialization: 

Zero 

Format: 

Figure 5-5: Floating Enable (FEN) Register 

Description: 

The Floating-point un i t can be disabled. If t he Float ing Enable Register (FEN) is 
zero, all instruct ions t h a t have floating regis ters as operands cause a Floating-point 
disabled fault; see Section 6.3.1.1. 
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5.3.6 Interprocessor Interrupt Request (IPIR) 

Access: 

Write 

Operation: 

IPIR <- R16 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-6: Interprocessor Interrupt Request Register (IPIR) 

63 0 

Processor Number 

R16 

Description: 

An interprocessor in t e r rup t can be reques ted on a specified processor by wri t ing 
t h a t processor's n u m b e r into t he IPIR regis ter th rough an MTPR instruction. The 
in te r rup t reques t is recorded on the t a rge t processor and is ini t ia ted when proper 
enabl ing conditions a re present . 

PROGRAMMING NOTE 
The in te r rup t need not be ini t ia ted before t he next 
instruct ion is executed on the reques t ing processor, even 
if t h e reques t ing processor is also t h e t a rge t processor 
for t he request . 

For addit ional information on interprocessor in te r rup ts , see Section 6.4.5.1. 
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5.3.7 Interrupt Priority Level (IPL) 

Access: 

Read/Write* 

Operation: 

RO <- ZEXT(PS<IPL>) ! Read 
RO <- ZEXT(PS<IPL>) ! Write* 
PS<IPL> «- R16<4:0> ! Write 
{check for pending ASTs or interrupts} 

Value at System Initialization: 

31 

Format: 

Figure 5-7: Interrupt Priority Level (IPL) 

Description: 

An MFPR IPL re tu rns the cur ren t in te r rup t priori ty level in RO. An MTPR IPL 
re tu rns the cur rent in te r rup t priority level in RO and sets t he in te r rup t priority 
level to the value in R16. If proper enabl ing conditions a re present , an in te r rup t or 
AST is ini t ia ted prior to issuing the next instruction; see Sections 6.4.1 and 6.7.6. 
R16<63:5> are defined as RAZ/SBZ. Therefore, t he presence of non-zero bits upon 
wri te in R16<63:5> may cause U N D E F I N E D resul ts . 
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5.3.8 Machine Check Error Summary Register (MCES) 

Access: 

Read/Write 

Operation: 

RO <- ZEXT(MCES) 

IF {R16<0> EQ 1} THEN 
IF {R16<1> EQ 1} THEN 
IF {R16<2> EQ 1} THEN 
MCES<3> <- R16<3> 
MCES<4> <- R16<4> 

! Read 

MCES<0> <- 0 ! Write 
MCES<1> <- 0 
MCES<2> <- 0 

Value at System Initialization: 

Zero 

Format: 

Figure 5-8: Machine Check Error Summary Register (MCES) 

63 32 31 5 4 3 2 1 0 

D D Ρ S M 
IMP Reserved S Ρ C C C 

C C Ε Ε Κ 

Description: 

The use of the MCES IPR is described in Section 6.5. 

MCES<0> is set by t he h a r d w a r e or PALcode when a processor or system machine 
check occurs. MCES<1> is set by t he h a r d w a r e or PALcode when a system 
correctable error occurs. MCES<2> is set by t he h a r d w a r e or PALcode when a 
processor correctable error occurs. Writ ing a 1 to any of these th ree bi ts clears t h a t 
bit. 

MCES<0> is cleared by the operat ing system machine check error handle r and 
used by the h a r d w a r e or PALcode to detect double machine checks. MCES<1> 
and MCES<2> are cleared by the operat ing system system or processor system 
correctable error handle rs ; these bi ts a re used to indicate t h a t the associated 
correctable error logout a rea may be reused by ha rdware or PALcode. In the event 
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of double correctable errors , PALcode does not overwrite the logout a rea and does 
not force the processor to en te r console I/O mode; see Section 6.5.1. 

MCES<4:3> are used to disable report ing of correctable errors . When set, t h e error is 
corrected, bu t no system correctable error in te r rup t or processor correctable machine 
check is generated. 

Implementa t ion dependent (IMP) bits may be used to report implementa t ion specific 
errors . 
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5.3.9 Performance Monitoring Register (PERFMON) 

Access: 

Write* 

Operation: 

! R<16> contains implementation specific input values 
! R<0> may return implementation specific values 
i Operations and actions taken are implementation specific 

Value at System Initialization: 

Implementa t ion Dependent 

Format: 

Figure 5-9: Performance Monitoring Register (PERFMON) 

63 0 

IMP 

Description: 

The a rgumen t s and actions of th i s performance monitor ing function a re platform 
and chip dependent . 

R<16> contains implementa t ion dependent inpu t values. Implementa t ion specific 
values m a y be re tu rned in R<0>. 
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5.3.10 Privileged Context Block Base (PCBB) 

Access: 

Read 

Operation: 

RO <- ZEXT(PCBB) 

Value at System Initialization: 

Address of processor's boots t rap HWPCB 

Format: 

Figure 5-10: Privileged Context Block Base Register (PCBB) 

RAZ Physical Address 

RO 

Description: 

The Privileged Context Block Base Register contains the physical address of the 
privileged context block for the cur rent process. I t may be read by executing an 
MFPR instruct ion specifying PCBB. 

PCBB is wr i t ten by the Swap Privileged Context (SWPCTX) instruction; see 
Chapters 2 and 4. 
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5.3.11 Processor Base Register (PRBR) 

Access: 

Read/Write 

Operation: 

RO <- PRBR ! Read 

PRBR <- R16 ! Write 

Value at System Initialization: 

UNPREDICTABLE 

Format: 

Figure 5-11 : Processor Base Register (PRBR) 

63 0 

Operating System-Dependent Value 

Description: 

In a mult iprocessor system, i t is desirable for the operat ing system to be able to 
locate a processor-specific d a t a s t ruc tu re in a simple and s t ra ightforward manner . 
The Processor Base Register provides a quadword of opera t ing system-dependent 
s ta te t h a t can be read and wr i t ten via MFPR and MTPR instruct ions t h a t specify 
PRBR. 
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5.3.12 Page Table Base Register (PTBR) 

Access: 

Read 

Operation: 

RO 4 - PTBR 

Value at System Initialization: 

Value in the boots t rap HWPCB 

Format: 

Figure 5-12: Page Table Base Register (PTBR) 

RAZ Page Frame Number 

RO 

Description: 

The Page Table Base Register contains the page frame n u m b e r of t he first-level page 
table for the cur ren t process. I t may be read by executing an MFPR instruct ion 
specifying PTBR; see Chapte r 3. 

As processes a re scheduled for execution, t he PTBR for the next process to execute 
is loaded us ing the Swap Privileged Context (SWPCTX) instruction; see Chapte rs 2 
and 4. 
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5.3.13 System Control Block Base (SCBB) 

Access: 

Read/Write 

Operation: 

RO <- ZEXT(SCBB) ! Read 

SCBB <- R16 ! Write 

Value at System Initialization: 

UNPREDICTABLE 

Format: 

Figure 5-13: System Control Block Base Register (SCBB) 

IGN/RAZ Page Frame Number 

Description: 

The System Control Block Base Register holds the Page F r a m e N u m b e r (PFN) of 
t he System Control Block, which is used to dispatch exceptions and in te r rup ts , and 
may be read and wr i t ten by executing MFPR and MTPR instruct ions t h a t specify 
SCBB; see Section 6.6. 

When SCBB is wri t ten , t he specified physical address m u s t be t he P F N of a page 
which is ne i ther in I/O space nor non-existent memory, or U N D E F I N E D operation 
will resul t . 
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5.3.14 Software Interrupt Request Register (SIRR) 

Access: 

Write 

Operation: 

IF R16<3:0> NE 0 THEN 
SISR<R16<3:0» <- 1 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-14: Software Interrupt Request Register (SIRR) 

IGN LVL 

R16 

Description: 

A software in te r rup t may be requested for a par t icular In t e r rup t Priori ty Level 
(IPL) by executing an MTPR instruct ion specifying SIRR. Software in te r rup t s m a y 
be requested a t levels 0 through 15 (requests a t level 0 are ignored). 

An MTPR SIRR sets t he bit corresponding to the specified in te r rup t level in the 
Software In te r rup t S u m m a r y Register (SISR). 

If proper enabling conditions a re present , a software in te r rup t is ini t ia ted prior to 
issuing the next instruction; see Sections 6.4.1 and 6.7.6. 
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5.3.15 Software Interrupt Summary Register (SISR) 

Access: 

Read 

Operation: 

RO <- ZEXT(SISR<15:0>) 

Value at System Initialization: 

Zero 

Format: 

Figure 5-15: Software Interrupt Summary Register (SISR) 

63 16 1 5 1 4 1 3 1 2 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I R 
RAZ R R R R R R R R R R R R R R R A 

F Ε D C Β A 9 8 7 6 5 4 3 2 1 Ζ 

RO 

Description: 

The Software In t e r rup t S u m m a r y Register records the in te r rup t pending s ta te for 
each of t he in te r rup t levels 1 th rough 15. The cur ren t in te r rup t pending s ta te may 
be read by executing an MFPR instruct ion specifying SISR. 

MTPR SIRR (see SIRR) reques ts an in te r rup t a t a par t icular in te r rup t level and 
sets t he corresponding pending bit in SISR. 

When the processor IPL falls below the level of a pending request , an in te r rup t is 
ini t ia ted and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6. 
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5.3.16 Translation Buffer Check (TBCHK) 

Access: 

Read 

Operation: 

RO <- 0 
IF {implemented} THEN 

R0<0> «- {entry in TB for VA in R16} 
ELSE 

R0<63> 1 

Value at System Initialization: 

Correct resul ts a re always re tu rned 

Format: 

Figure 5-16: Translation Buffer Check Register (TBCHK) 

63 0 

Virtual Address 

R16 
63 62 2 1 0 

I Ρ 
M RAZ R 
Ρ s 

RO 

Description: 

The Translat ion Buffer Check Register provides the capability to determine if 
a vi r tual address is present in the Translat ion Buffer by executing an MFPR 
instruct ion specifying TBCHK; see Chapte r 3. 

The vir tual address to be checked is specified in R16 and may be any address wi thin 
the desired page. If ASNs are implemented, only those Translat ion Buffer entr ies 
which are associated wi th the cur ren t value of the ASN IPR will be checked for the 
vir tual address . The value read contains an indication of whe ther the function is 
implemented and whether the vir tual address is present in the Translat ion Buffer. 

5-22 OpenVMS Alpha Software (II) 



If t he function is not implemented, a value is r e tu rned wi th bit <63> set and bit <0> 
clear. Otherwise, a value is r e tu rned wi th bit <63> clear, and wi th bit <0> indicating 
whe the r t he v i r tua l address is p resen t in (1) or absen t from (0) t he Translat ion 
Buffer. 

The TBCHK Register can be used by system software for working set management . 

OpenVMS Internal Processor Registers (II) 5-23 



5.3.17 Translation Buffer Invalidate All (TBIA) 
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Access: 

Write 

Operation: 

{Invalidate all TB entries} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-17: Translation Buffer Invalidate All Register (TBIA) 

63 0 

Unused 

R16 

Description: 

The Translat ion Buffer Inval idate All Register provides the capability to inval idate 
all entr ies in the Translat ion Buffer by executing an MTPR instruct ion specifying 
TBIA; see Chapte r 3. 



5.3.18 Translation Buffer Invalidate All Process (TBIAP) 
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Access: 

Write 

Operation: 

{Invalidate all TB entries with PTE<ASM> clear} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-18: Translation Buffer Invalidate All Process Register (TBIAP) 

63 0 

Unused 

R16 

Description: 

The Transla t ion Buffer Inval idate All Process Register provides t he capability to 
inval idate all ent r ies in t h e Transla t ion Buffer t h a t do not have t h e ASM bit set by 
executing an MTPR instruct ion specifying TBIAP; see Chap te r 3. 

Notes: 

More entr ies m a y be inval idated by th i s operation. For example, some 
implementa t ions may flush t he ent i re TB on a TBIAP. 



5.3.19 Translation Buffer Invalidate Single (TBISx) 

Access: 

Write 

Operation: 

TBIS: 
{Invalidate single Data TB entry using R16} 
{Invalidate single Instruction TB entry using R16} 

TBISD: 
{Invalidate single Data TB entry using R16> 

TBISI: 
{Invalidate single Instruction TB entry using R16} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-19: Translation Buffer Invalidate Single (TBIS) 

63 0 

Virtual Address 

R16 

Description: 

The Translat ion Buffer Inval idate Single Registers provide t he capability to 
inval idate a single en t ry in t he Instruct ion Transla t ion Buffer (TBISI), t he Da ta 
Translat ion Buffer (TBISD), or both t rans la t ion buffers (TBIS). The vi r tua l address 
to be invalidated is passed in R16 and may be any address wi thin the desired page. 

Notes: 

More t h a n the single ent ry may be invalidated by th is operation. For example 
some implementat ions may flush the ent i re TB on a TBIS. As a result , if t he 
specified address does not match any ent ry in the Translat ion Buffer, t hen i t is 
implementat ion-dependent whe ther t he s ta te of the Translat ion Buffer is affected 
by the operation. 

5-26 OpenVMS Alpha Software (II) 



5.3.20 Executive Stack Pointer (ESP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN I Read 
RO «- ESP 

ELSE 
RO <- (IPR_PCBB + HWPCB_ESP) 

IF {internal registers for stack pointers} THEN ! Write 
ESP <- R16 

ELSE 
(IPR_PCBB + HWPCB_ESP) <- R16 

Value at System Initialization: 

Value in the init ial HWPCB 

Format: 

Figure 5-20: Executive Stack Pointer (ESP) 

63 0 

Stack Address 

Description: 

This register allows t he s tack pointer for Executive mode (ESP) to be read and 
wr i t ten via MFPR and MTPR instruct ions t h a t specify ESP. 

The cur ren t s tack pointer m a y be read and wr i t ten directly by specifying scalar 
regis ter SP (R30). 

As processes a re scheduled for execution, t he stack pointers for t he next process to 
execute a re loaded us ing t h e Swap Privileged Context (SWPCTX) instruction; see 
Section 2.6 and Chap te r 4. 
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5.3.21 Supervisor Stack Pointer (SSP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN ! Read 
RO <- SSP 

ELSE 
RO <- (IPR_PCBB + HWPCB_SSP) 

IF {internal registers for stack pointers} THEN ! Write 
SSP <- R16 

ELSE 
(IPR_PCBB + HWPCB_SSP) <- R16 

Value at System Initialization: 

Value in the init ial HWPCB 

Format: 

Figure 5-21 : Supervisor Stack Pointer (SSP) 

63 0 

Stack Address 

Description: 

This register allows the stack pointer for Supervisor mode (SSP) to be read and 
wri t ten via MFPR and MTPR instruct ions t h a t specify SSP. 

The cur rent s tack pointer may be read and wr i t ten directly by specifying scalar 
register SP (R30). 

As processes are scheduled for execution, t he stack pointers for t he next process to 
execute are loaded us ing the Swap Privileged Context (SWPCTX) instruction; see 
Section 2.6 and Chapte r 4. 
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5.3.22 User Stack Pointer (USP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN I Read 
RO <- USP 

ELSE 
RO <- (IPR_PCBB + HWPCB_USP) 

IF {internal registers for stack pointers} THEN ! Write 
USP <- R16 

ELSE 
(IPR_PCBB + HWPCB_USP) <- R16 

Value at System Initialization: 

Value in t he init ial HWPCB 

Format: 

Figure 5-22: User Stack Pointer (USP) 

63 0 

Stack Address 

Description: 

This regis ter allows the s tack pointer for User mode (USP) to be read and wr i t ten 
via MFPR and MTPR instruct ions t h a t specify U S P 

The cur ren t s tack pointer m a y be read a n d wr i t t en directly by specifying scalar 
register S P (R30). 

As processes a re scheduled for execution, t he two stack pointers for t he next process 
to execute a re loaded us ing t he Swap Privileged Context (SWPCTX) instruction; see 
Section 2.6 and Chap te r 4. 
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5.3.23 Virtual Page Table Base (VPTB) 

Access: 

Read/Write 

Operation: 

RO <- VPTB ! Read 

VPTB <- R16 ! Write 

Value at System Initialization: 

Initialized by the console in t he boots t rap address space. 

Format: 

Figure 5-23: Virtual Page Table Base Register (VPTB) 

63 0 

VA of Page Table Structure 

RO 

Description: 

The Virtual Page Table Base Register contains t he vi r tua l address of t he base of 
the ent i re three-level Page table s t ruc ture . I t may be read by executing a n MFPR 
instruct ion specifying VPTB. I t is wr i t ten a t system init ialization us ing a n MTPR 
instruct ion specifying VPTB. See Section 3.7.2 for init ialization considerations. 
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5.3.24 Who-Am-I (WHAMI) 

Access: 

Read 

Operation: 

RO «- WHAMI 

Value at System Initialization: 

Processor number 

Format: 

Figure 5-24: Who-Am-I Register (WHAMI) 

631 0 

Processor Number 

RO 

Description: 

The Who-Am-I Register provides t he capability to read the cur ren t processor number 
by executing a n MFPR instruct ion specifying WHAMI. The processor number 
r e tu rned is in the range 0 to t he n u m b e r of processors minus one t h a t can be 
configured in the system. Processor n u m b e r F F F F F F F F F F F F F F F F 1 6 is reserved. 

The cur ren t processor n u m b e r is useful in a mult iprocessing system to index 
a r rays t h a t store per processor information. Such information is operat ing system 
dependent . 
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Chapter 6 

OpenVMS Exceptions, Interrupts, and Machine 
Checks (II) 

6.1 Introduction 

At cer ta in t imes dur ing the operat ion of a system, events wi th in t he system require 
t he execution of software outside t he explicit flow of control. When such an 
exceptional event occurs, an Alpha processor forces a change in control flow from 
t h a t indicated by the cur ren t instruct ion s t ream. The notification process for such 
events is of one of th ree types: 

• Exceptions 

These events a re re levant pr imari ly to t he current ly executing process and 
normally invoke software in t he context of t he cur ren t process. The th ree types 
of exceptions a re faults, a r i thmet ic t r aps , and synchronous t r aps . Exceptions are 
described in Section 6.3. 

• In t e r rup t s 

These events a re pr imari ly re levant to other processes, or to the system as a 
whole, and are typically serviced in a system-wide context. 

Some in te r rup t s a re of such urgency t h a t they require high-priority service, while 
o thers m u s t be synchronized wi th independent events . To mee t these needs, each 
processor h a s priority logic t h a t g r an t s in t e r rup t service to t he h ighes t priority 
event a t any point in t ime. In t e r rup t s a re described in Section 6.4. 

• Machine Checks 

These events a re generally t h e resu l t of serious h a r d w a r e failure. The registers 
and memory a re potentially in an inde te rmina te s ta te such t h a t t he instruct ion 
execution cannot necessarily be correctly res ta r ted , completed, s imulated, or 
undone. Machine checks a re described in Section 6.5. 

For all such events , t he change in flow of control involves changing the Program 
Counter (PC), possibly changing the execution mode (current mode) and/or in te r rup t 
priority level (IPL) in the Processor S t a tu s (PS), and saving the old values of the 
PC and PS . The old values a re saved on the t a rge t s tack as p a r t of a n Exception, 
In te r rup t , or Machine Check Stack F rame . Collectively, those e lements a re described 
in Section 6.2. 

The service rout ines t h a t hand le exceptions, in te r rup t s , and machine checks are 
specified by en t ry points in t he System Control Block (SCB), described in Section 6.6. 
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Return from an exception, in ter rupt , or machine check, is done via the CALL_PAL 
REI instruction. As pa r t of i ts work, CALL_PAL REI restores the saved values of 
PC and PS and pops t hem off the stack. 

6.1.1 Contrast Between Exceptions, Interrupts, and Machine Checks 

Generally, exceptions, in te r rup ts , and machine checks a re similar. However, the re 
are four impor tan t differences: 

1. An exception condition is caused by the execution of an instruction. An in te r rup t 
is caused by some activity in the system t h a t may be independent of any 
instruction. A machine check is associated wi th a ha rdware error condition. 

2. The IPL of the processor is not changed when the processor ini t ia tes an exception. 
The IPL is always raised when a n in te r rup t is ini t iated. The IPL is always 
raised when a machine check is ini t iated, and for all machine checks other t h a n 
system correctable, is ra ised to 31 (highest priority level). (For system correctable 
machine checks, t he IPL is ra ised to 20.) 

3. Exceptions a re always ini t iated immediately, no m a t t e r w h a t the processor IPL 
is. In te r rup t s a re deferred unt i l t he processor IPL drops below the IPL of the 
request ing source. Machine checks can be ini t ia ted immediately or deferred, 
depending on error conditions. 

4. Some exceptions can be selectively disabled by selecting instruct ions t h a t do 
not check for exception conditions. If an exception condition occurs in such an 
instruction, the condition is totally ignored and no s ta te is saved to signal t h a t 
condition a t a la ter t ime. 

If an in te r rup t reques t occurs while the processor IPL is equal to or grea ter t h a n 
t h a t of the in te r rup t ing source, the condition will eventual ly ini t ia te an in te r rup t 
if t he in te r rup t reques t is still p resent and the processor IPL is lowered below 
t h a t of the in te r rup t ing source. 

Machine checks cannot be disabled. Machine checks can be ini t iated immediately 
or deferred, depending on the error condition. Also, they can be deliberately 
generated by software. 

6.1.2 Exceptions, Interrupts, and Machine Checks Summary 

The table below summar izes the actions t aken on an exception, in ter rupt , or machine 
check. The remain ing sections in th is chapter describe these in grea ter detail . 

• The "SavedPC" column describes w h a t is saved in t he " P C field of the exception 
or in te r rup t or machine check stack frame. Here , 

1. "Current" indicates the PC of the instruct ion a t which the exception or 
in te r rup t or machine check was t aken , while 

2. "Next" indicates the PC of the successor instruction. 

• The "NewMode" column specifies t he mode and stack t h a t t he exception or 
in te r rup t or machine check rout ine will s t a r t with. For change mode t raps , 
"MostPrv" indicates the more privileged of the cur ren t and new modes. 
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• The "R2" column specifies t he value wi th which R2 is loaded, after i ts original 
value h a s been saved in the exception or in te r rup t or machine check stack frame. 
The SCB vector quadword, "SCBv", is loaded into R2 for all in te r rup t s and 
exceptions and machine checks. 

• The "R3" column specifies the value wi th which R3 is loaded, after i ts original 
value h a s been saved in t h e exception or i n t e r rup t or machine check stack frame. 
The SCB pa rame te r quadword, "SCBp", is loaded into R3 for all in te r rup t s and 
exceptions and machine checks. 

• The "R4" column specifies t he value wi th which R4 is loaded, after i ts original 
value h a s been saved in t he exception or in t e r rup t or machine check stack frame. 
If t he "R4" column is b lank the value in R4 is UNPREDICTABLE on en t ry to an 
in t e r rup t or exception. Here , 

1. "VA" indicates the exact v i r tua l address which tr iggered a memory 
m a n a g e m e n t fault or da t a a l ignment t r ap . 

2. "Mask" indicates t he Register Write Mask. 

3. "LAOff" indicates the offset from the base of t he logout a rea in the HWRPB; 
see Section 6.5.2. 

• The "R5" column specifies t he value wi th which R5 is loaded, after i ts original 
value h a s been saved in the exception or in te r rup t or machine check stack frame. 
If t he "R5" column is b lank the value in R5 is UNPREDICTABLE on en t ry to an 
in t e r rup t or exception or machine check. Here , 

1. "MMF" indicates the Memory Managemen t Flags. 

2. "Exc" indicates t he Exception S u m m a r y parameter . 

3. "RW" indicates Read/Load =0 Write/Store =1 for da t a align t r aps 

Table 6 -1 : Exceptions, Interrupts, and Machine Checks Summary 

SavedPC NewMode R2 R3 R4 R5 

Exceptions - Faults 

Floating Disabled Fault Current Kernel SCBv SCBp 

Memory Management Faults 

Access Control Violation Current Kernel SCBv SCBp VA MMF 

Translation Not Valid Current Kernel SCBv SCBp VA MMF 

Fault on Read Current Kernel SCBv SCBp VA MMF 

Fault on Write Current Kernel SCBv SCBp VA MMF 

Fault on Execute Current Kernel SCBv SCBp VA MMF 

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-3 



Table 6-1 (Co n t.): Exceptions, Interrupts, and Machine Checks Summary 
SavedPC NewMode R2 R3 R4 R5 

Except ions - Ar i thmet ic Traps 

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc 

Except ions - Synchronous Traps 

Breakpoint Trap Next Kernel SCBv SCBp 

Bugcheck Trap Next Kernel SCBv SCBp 

Change Mode to K/E/S/U Next MostPrv SCBv SCBp 

Illegal Instruction Next Kernel SCBv SCBp 

Illegal Operand Next Kernel SCBv SCBp 

Data Alignment Trap Next Kernel SCBv SCBp VA RW 

I n t e r r u p t s 

Asynch System Trap (4) Current Kernel SCBv SCBp 

Interval Clock Current Kernel SCBv SCBp 

Interprocessor Interrupt Current Kernel SCBv SCBp 

Software Interrupts Current Kernel SCBv SCBp 

Performance 
monitor 

Current Kernel SCBv SCBp IMP IMP 

Passive Release Current Kernel SCBv SCBp 

Powerfail Current Kernel SCBv SCBp 

I/O Device Current Kernel SCBv SCBp 

Machine Checks 

Processor Correctable Current Kernel SCBv SCBp LAOff 

System Correctable Current Kernel SCBv SCBp LAOff 

System Current Kernel SCBv SCBp LAOff 

Processor Current Kernel SCBv SCBp LAOff 
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6.2 Processor State and Exception/Interrupt/Machine Check Stack 
Frame 

Processor s ta te consists of a quadword of privileged information called the Processor 
S t a tus (PS) and a quadword containing the Program Counter (PC), which is the 
vi r tual address of the next instruct ion. 

When an exception, in te r rupt , or machine check is ini t iated, the cur ren t processor 
s ta te dur ing the exception, in te r rupt , or machine check m u s t be preserved. This is 
accomplished by automatical ly push ing the P S and the PC on t h e t a rge t stack. 

Subsequently, instruct ion execution can be continued a t t he point of the exception, 
in te r rupt , or machine check by executing a CALL_PAL REI instruction; see 
Chapte r 2. 

Process context such as memory mapping information is not saved or restored on 
each exception, in te r rupt , or machine check. Ins tead, it is saved and restored when 
process context switching is performed. Other processor s t a tu s is changed even less 
frequently; see Chapte r 4. 

6.2.1 Processor Status 

The P S can be explicitly read wi th the CALL.PAL RD_PS instruction. The PS<SW> 
field can be explicitly wr i t ten wi th the CALL_PAL WR_PS_SW instruction. See 
Section 2 .1 . 

The t e rms cur ren t P S and saved P S are used to dis t inguish between th is s t a tus 
information when it is stored in te rna l to the processor and when copies of i t a re 
mater ial ized in memory. 

Figure 6-1 : Current Processor Status (PS Register) 

63 13 12 8 7 6 5 4 3 2 1 0 

V M ι 
MBZ IPL M Β CM ι 

D 
sw 

M Ζ r 

Figure 6-2: Saved Processor Status (PS on Stack) 

63 62 56 55 13 12 8 7 6 5 4 3 2 1 0 

M V M 
B SP_ALIGN MBZ IPL M B CM I sw 
Ζ M Ζ Ρ 
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Table 6-2: Processor Status Register Summary 
Bits Descr ip t ion 

1:0 Reserved for Software (SW). These bits are reserved for software use and can be 
read and written at any time by the software, regardless of the current mode. The 
value of these bits is ignored by the hardware. The software field is set to zero at 
the initiation of either an exception or an interrupt. 

2 Interrupt pending (IP). Set when an interrupt (software or hardware but NOT AST) 
is initiated; indicates an interrupt is in progress. 

4:3 Current mode (CM). The access mode of the currently executing process as follows: 

0 - Kernel 

1 - Executive 

2 - Supervisor 

3 - User 

6:5 Reserved to Digital, MBZ. 

7 Virtual machine monitor (VMM) - When set, the processor is executing in a virtual 
machine monitor. When clear, the processor is running in either real or virtual 
machine mode. 

PROGRAMMING NOTE 
This bit is only meaningful when 
runn ing with PALcode t h a t implements 
vi r tual machine capabilities. 

12:8 Interrupt priority level (IPL) - The current processor priority, in the range 0 to 31. 

55:13 Reserved to Digital, MBZ. 

61:56 Stack alignment (SP_ALIGN) - The previous stack byte alignment within a 64 byte 
aligned area, in the range 0 to 63. This field is set in the saved PS during the act 
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to 
restore the previous stack byte alignment. 

63:62 Reserved to Digitial, MBZ. 

At bootstrap, the init ial value of P S is set to 1 F 0 0 1 6. Previous stack a l ignment is 
zero, IPL is 3 1 , VMM is clear, CM is Kernel , and the SW and IP fields are zero. 

6.2.2 Program Counter 

The PC is a 64-bit v i r tual address . All instruct ions a re aligned on longword 
boundaries and, therefore, ha rdware can assume zero for the two low-order PC bits . 

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All 
branching instruct ions also load a new value into the PC. 
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Figure 6-3: Program Counter (PC) 

6.2.3 Processor Interrupt Priority Level (IPL) 

Each processor h a s 32 in te r rup t priori ty levels (IPLs) divided into 16 software levels 
(numbered 0 to 15), and 16 h a r d w a r e levels (numbered 16 to 31). User applications 
and most operat ing system software r u n a t IPL 0, which may be thought of as process 
level. Higher numbered in te r rup t levels have higher priority; i.e., any request a t an 
in te r rup t level h igher t h a n the processor's cur ren t IPL will i n t e r rup t immediately, 
bu t reques ts a t lower or equal levels a re deferred. 

In t e r rup t levels 0 to 15 exist solely for use by software. No h a r d w a r e event can 
reques t an in te r rup t on these levels. Conversely, in t e r rup t levels 16 to 31 exist 
solely for use by ha rdware . Serious system failures, such as a machine check abort, 
however, ra ise t he IPL to t he h ighes t level (31), to minimize processor in ter rupt ion 
unt i l t he problem is corrected, and execute in Kernel mode on the Kernel stack. 

6.2.4 Protection Modes 

Each processor h a s four protection modes. The modes a re Kernel , Executive, 
Supervisor, and User. Per-page memory protection varies as a function of mode (for 
example, a page can be made read-only in User mode, bu t read-wri te in Supervisor, 
Executive, or Kernel mode). 

For each process, the re is a separa te s tack associated wi th each mode. Corruption 
of one s tack does not affect use of the other s tacks. 

Some instruct ions, t e rmed privileged instruct ions, may only be executed in Kernel 
mode. 

6.2.5 Processor Stacks 

Each processor h a s four s tacks. There a re four process-specific s tacks associated 
wi th the four modes of the cur ren t process. At any given t ime, only one of these 
s tacks is actively used as t he cur ren t stack. 

6.2.6 Stack Frames 

When an exception, in te r rupt , or machine check occurs, a s tack frame is pushed 
on t h e t a rge t stack. Regardless of t h e type of event notification, th i s s tack frame 
consists of a 64 byte-aligned s t ruc ture containing the saved contents of registers 
R2..R7, the Program Counter (PC), and the Processor S t a tu s (PS). Registers R2 and 
R3 are t hen loaded wi th vector and pa rame te r from the SCB for the exception, 
in te r rupt , or machine check. Registers R4 and R5 may be loaded with da ta 
per ta in ing to the exception, in te r rupt , or machine check. The specific da t a loaded is 
described below in conjunction wi th each exception, in te r rupt , or machine check; if 
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no specific da t a is specified, the contents of R4 and R5 are UNPREDICTABLE. After 
the stack is built , t he contents of registers R6 and R7 are UNPREDICTABLE. 

The Program Counter value saved is t h a t of the instruct ion encounter ing the 
exception in the case of faults, t h a t of the next instruct ion in the case of t r aps 
and in te r rupts , and, on a best-effort basis , and t h a t of the next instruct ion in the 
case of machine checks. Re tu rn from an exception, in te r rupt , or machine check is 
done via the CALL_PAL REI instruction, which restores the saved values of PC, PS , 
and R2..R7, t h u s re-executing the instruct ion in the case of faults, and proceeding 
to the next instruct ion in the case of t r aps , in te r rup ts , and machine checks. 

Figure 6-4: Stack Frame 

R2 :SP 

R3 :+08 

R4 :+16 

R5 :+24 

R6 :+32 

R7 :+40 

Program Counter (PC) :+48 

Processor Status (PS) :+56 

6.3 Exceptions 

Exception service rout ines execute in response to exception conditions caused by 
software. Most exception service rout ines execute in Kernel mode, on the Kernel 
stack; all exception service rout ines execute a t t he cur ren t processor IPL. Change 
Mode exception rout ines for CHMU/CHMS/CHME execute in t he more privileged 
of the cur ren t mode or the ta rge t mode (U/S/E), on the match ing stack. Exception 
service rout ines are usual ly coded to avoid exceptions; however, nes ted exceptions 
can occur. 

There are th ree types of exceptions: 

• A fault is an exception condition t h a t occurs dur ing an instruct ion and leaves 
the registers and memory in a consistent s ta te such t h a t el imination of the fault 
condition and subsequent re-execution of t he instruct ion will give correct resul t s . 
Fau l t s are not guaran teed to leave the machine in exactly the same s ta te it was 
in immediately prior to the fault, bu t r a t h e r in a s ta te such t h a t the instruct ion 
can be correctly executed if the fault condition is removed. The PC saved in the 
exception stack frame is the address of the fault ing instruction. A CALL_PAL 
REI instruct ion to th is PC will reexecute the faulting instruction. 
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• An ar i thmet ic t r a p is an exception condition t h a t occurs a t t he completion of 
the operation t h a t caused the exception. Since several instruct ions may be 
in various s tages of execution a t any point in t ime, i t is possible for mult iple 
ar i thmet ic t r aps to occur simultaneously. The PC t h a t is saved in the exception 
frame on t r aps is t h a t of t he next ins t ruct ion t h a t would have been issued if t he 
t r app ing condition(s) had not occurred. This is not necessari ly the address of the 
instruct ion immediately following the one(s) encounter ing the t r a p condition, and 
in tervening instruct ions m a y have changed operands or other s ta te used by the 
instruction(s) encounter ing the t r a p condition(s). A CALL_PAL REI instruct ion 
to th is PC will not reexecute the t r app ing instruction(s), nor will it reexecute 
any in tervening instruct ions; it will simply continue execution from the point a t 
which the t r a p was taken . 

In general , i t is difficult to fixup resul t s and continue program execution a t the 
point of an ar i thmet ic t r ap . Software can force a t r a p to be continued more easily 
wi thout the need for complicated fixup code. This is accomplished by following 
a set of code-generation restr ict ions in code t h a t could cause ar i thmet ic t r aps 
which a re to be completed by a software t r a p handle r (see Common Architecture, 
Chapter 4), including specifying the /S software completion modifier in each such 
instruct ion. 

The AND of all t he software completion modifiers for t r app ing instruct ions is 
provided to the ar i thmet ic t r a p hand le r in the exception s u m m a r y SWC bit. If 
SWC is set, a t r a p hand le r may find t he t r igger instruct ion by scanning backward 
from the t r a p PC unt i l each regis ter in the register wri te m a s k h a s been an 
instruct ion dest inat ion. The t r igger instruct ion is the first instruct ion in I-s t ream 
order to get a t r a p within a t r a p shadow (see Common Architecture, Chapter 4 
for definition of t r a p shadow). If t he SWC bit is clear, no fixup is possible (the 
t r igger instruct ion m a y have been followed by a t aken branch, so the t r a p PC 
cannot be used to find it). 

• A synchronous t r a p is an exception condition t h a t occurs a t t he completion of 
the operation t h a t caused the exception (or, if t he operation can only be part ial ly 
carried out, a t the completion of t h a t pa r t of the operation), and no subsequent 
instruct ion is issued before t he t r a p occurs. 

Synchronous t r aps a re divided into da t a a l ignment t r aps and all other 
synchronous t r aps . 

6.3.1 Faults 

The six types of faults signal t h a t an instruct ion or i ts operands a re in some way 
illegal. These faults a re all ini t ia ted in Kernel mode and push an exception stack 
frame onto the stack. Upon en t ry to the exception rout ine, the saved PC (in the 
exception stack frame) is the v i r tua l address of the fault ing instruct ion. 

The six faults include the Float ing Disable Fau l t described in the next subsection 
and five memory m a n a g e m e n t faults. 
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Memory managemen t faults occur when a v i r tual address t rans la t ion encounters an 
exception condition. This can occur as the resul t of instruct ion fetch or dur ing a load 
or store operation. 

Immediately following a memory managemen t fault, register R4 contains the exact 
vi r tual address encounter ing the fault condition. 

The register R5 contains the "MM Flag" quadword. 

"MM Flag" is set as follows: 

0000 0000 0000 OOOOie for a faulting da ta read 

0000 0000 0000 0001 iß for a fault ing I-fetch operation 

8000 0000 0000 ΟΟΟΟχβ for a faulting wri te operation 

The faulting instruct ion is the instruct ion whose fetch faulted, or the load, store, or 
PALcode instruction t h a t encountered the fault condition. 

Chapter 3 describes the memory managemen t archi tecture of Alpha in more detail . 

6.3.1.1 Floating Disabled Fault 

A Float ing Disabled Fau l t is an exception t h a t occurs when an a t t empt is made to 
execute a floating-point instruct ion and the floating enable (FEN) bit in the HWPCB 
is not set. 

6.3.1.2 Access Control Violation (ACV) Fault 

An ACV fault is a memory managemen t fault indicat ing t h a t an a t t empted access 
to a vi r tual address was not allowed in the cur ren t mode. 

ACV faults usual ly indicate program errors , bu t in some cases, such as automat ic 
stack expansion, can m e a n implicit operat ing system functions. 

ACV faults t ake precedence over Translat ion Not Valid, Fau l t on Read, Fau l t on 
Write, and Fau l t on Execute faults. 

ACV faults t ake precedence over Translat ion Not Valid faults so t h a t a malicious 
user could not degrade system performance by causing spurious page faults to pages 
for which no access is allowed. 

6.3.1.3 Translation Not Valid (TNV) 

A TNV fault is a memory managemen t fault t h a t indicates t h a t an a t t empted access 
was made to a vi r tual address whose Page Table En t ry (PTE) was not valid. 

Software may use TNV faults to implement v i r tual memory capabilities. 

6.3.1.4 Fault On Read (FOR) 

An FOR fault is a memory managemen t fault t h a t indicates t h a t a n a t t empted da t a 
read access was made to a v i r tual address whose Page Table En t ry (PTE) had the 
Fau l t on Read bit set. 

As a pa r t of ini t ia t ing the FOR fault, t he processor inval idates t he Translat ion Buffer 
ent ry t h a t caused the fault to be generated. 
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IMPLEMENTATION NOTE 
This allows an implementa t ion only to inval idate entr ies 
from the Da ta - s t r eam Transla t ion Buffer on Fau l t On 
Read faults. 

Note t h a t the Translat ion Buffer m a y reload and cache the old PTE value between 
the t ime when the FOR fault inval idates the old value from the Translat ion Buffer 
and the t ime when software upda tes the PTE in memory. Software t h a t depends on 
the processor-provided inval idate m u s t t h u s be prepared to t ake another FOR fault 
on a page after clearing the page's PTE<FOR> bit. The second fault will inval idate 
t he stale PTE from the Transla t ion Buffer, and the processor cannot load another 
s tale copy. Thus in the worst case, a multiprocessor system will t ake an init ial FOR 
fault and t h e n a n addit ional FOR fault on each processor. In practice, even a single 
repeti t ion is unlikely. 

Software may use FOR faults to implement watchpoints , to collect page usage 
stat ist ics, and to implement execute-only pages. 

6.3.1.5 Fault On Write (FOW) 

A FOW fault is a memory m a n a g e m e n t fault t h a t indicates t h a t an a t t empted da t a 
wri te access was made to a v i r tua l address whose Page Table E n t r y (PTE) had the 
Fau l t On Write bit set. 

As a pa r t of ini t ia t ing the FOW fault, t he processor inval idates the Translat ion 
Buffer en t ry t h a t caused the fault to be generated. 

IMPLEMENTATION NOTE 
This allows an implementa t ion only to inval idate ent r ies 
from the Da ta - s t ream Transla t ion Buffer on Fau l t On 
Write faults. 

Note t h a t the Translat ion Buffer m a y reload and cache the old PTE value between 
the t ime when the FOW fault inval idates the old value from the Translat ion Buffer 
and the t ime when software upda tes t he PTE in memory. Software t h a t depends on 
the processor-provided inval idate m u s t t h u s be prepared to t ake another FOW fault 
on a page after clearing the page's PTE<FOW> bit. The second fault will inval idate 
the stale PTE from the Translat ion Buffer, and the processor cannot load another 
s tale copy. T h u s in t he worst case, a mult iprocessor system will t ake an init ial FOW 
fault and then an addit ional FOW fault on each processor. In practice, even a single 
repet i t ion is unlikely. 

Software m a y use FOW faults to ma in t a in modified page information, to implement 
copy on wri te and watchpoint capabilit ies, and to collect page usage stat ist ics. 

6.3.1.6 Fault On Execute (FOE) 

An FOE fault is a memory m a n a g e m e n t fault indicat ing t h a t an a t tempted 
instruct ion s t r eam access was made to a v i r tua l address whose Page Table En t ry 
(PTE) had the Fau l t On Execute bit set. 
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As a pa r t of ini t ia t ing the FOE fault, t he processor inval idates the Translat ion Buffer 
ent ry t h a t caused the fault to be generated. 

IMPLEMENTATION NOTE 
This allows an implementat ion only to inval idate entr ies 
from the Ins t ruct ion-s t ream Translat ion Buffer on Fau l t 
On Execute faults. 

Note t h a t the Translat ion Buffer may reload and cache the old PTE value between 
the t ime when the FOE fault invalidates the old value from the Translat ion Buffer 
and the t ime when software upda tes the PTE in memory. Software t h a t depends on 
the processor-provided invalidate m u s t t h u s be prepared to t ake another FOE fault 
on a page after clearing the page's PTE<FOE> bit. The second fault will inval idate 
the stale PTE from the Translat ion Buffer, and the processor cannot load another 
stale copy. Thus in the worst case, a multiprocessor system will t ake an initial FOE 
fault and then an addit ional FOE fault on each processor. In practice, even a single 
repeti t ion is unlikely. 

Software may use FOE faults to implement access mode changes and protected ent ry 
to Kernel mode, to collect page usage stat ist ics, and to detect programming errors 
t h a t t ry to execute da ta . 

6.3.2 Arithmetic Traps 

An ar i thmet ic t r a p is an exception t h a t occurs as the resul t of performing an 
ar i thmetic or conversion operation. 

If integer register R31 or floating register F31 is specified as the dest inat ion of an 
operation t h a t can cause an ar i thmet ic t r ap , it is UNPREDICTABLE whether the 
t r a p will actually occur, even if t he operation would definitely produce an exceptional 
result . 

Ari thmetic t r aps are ini t iated in Kernel mode and push the exception stack frame 
on the Kernel stack. The Register Write Mask is saved in R4, and the Exception 
Summary pa ramete r is saved in R5. These a re described below. 

When an ar i thmet ic exception condition is detected, several instruct ions may be 
in various stages of execution. These instruct ions are allowed to complete before 
the ar i thmet ic t r a p can be init iated. Some of these instruct ions may themselves 
cause further ar i thmet ic t raps . Thus it is possible for several ar i thmet ic t r aps to be 
reported simultaneously. 

I t is also possible for the resul t of an instruct ion t h a t causes an ar i thmet ic t r a p to 
be used as an operand in a subsequent instruct ion before the t r a p is t aken . If th is 
would produce undesired behavior, software is responsible for inser t ing appropr ia te 
TRAPB instruct ions to cause the t r a p to be recognized before the resul t is used. 

Integer exceptional resul t s (integer overflow) can be forwarded to the address 
calculation for load and store instruct ions, to the address calculation for j u m p 
instruct ions, as the source da t a for a store instruction, or as the source da ta for a 
conditional branch instruction. This can resul t in the generat ion of an inappropr ia te 
address , t he storing of exceptional resul ts in memory, or an un in tended branch. 
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If th i s would produce undes i red behavior, software is responsible for inser t ing 
appropr ia te TRAPB instruct ions to cause t he t r a p to be recognized before the resul t 
is used. 

6.3.2.1 Exception Summary Parameter 

The Exception S u m m a r y pa rame te r records the various types of ar i thmet ic t r aps 
t h a t can occur together. These types of t r ap s a re described in subsections below. 

Figure 6-5: Exception Summary 

63 7 6 5 4 3 2 1 0 

Zero NlWl 

Table 6-3: Exception Summary 
Bit Description 

Software Completion (SWC) 
Is set when all of the other arithmetic exception bits were set by floating-operate 
instructions with the /S software completion trap modifier set. See Common 
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause 
an arithmetic trap, and Section 6.3 for rules about using the SWC bit in a trap handler. 

Invalid Operation (INV) 
An attempt was made to perform a floating arithmetic, conversion, or comparison 
operation, and one or more of the operand values were illegal. 

Division by Zero (DZE) 
An attempt was made to perform a floating divide operation with a divisor of zero. 

Overflow (OVF) 
A floating arithmetic or conversion operation overflowed the destination exponent. 

Underflow (UNF) 

A floating arithmetic or conversion operation underflowed the destination exponent. 

Inexact Result (INE) 
A floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 

Integer Overflow (IOV) 
An integer arithmetic operation or a conversion from floating to integer overflowed the 
destination precision. 
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6.3.2.2 Register Write Mask 

The Register Write Mask pa rame te r records all regis ters t h a t were ta rge ts of 
instruct ions t h a t set the bi ts in the exception summary register. There is a one-
to-one correspondence between bi ts in t he Register Write Mask quadword and the 
register numbers . The quadword records, s t a r t ing a t bit 0 and proceeding r ight 
to left, which of the regis ters RO through R31 , t h e n FO through F 3 1 , received an 
exceptional result . 

if the add overflows and the mult iply does not, t he OVF 
bit is set in the exception summary, and the F 3 bit is 
set in the register mask , even though the overflowed 
sum in F3 can be overwri t ten wi th an in-range product 
by the t ime the t r a p is t aken . (This code violates the 
dest inat ion reuse rule for software completion. See 
Common Architecture, Chapter 4 for the dest inat ion 
reuse rules.) 

The PC value saved in the exception stack frame is the vi r tual address of the next 
instruction. This is defined as the vi r tual address of the first instruct ion not executed 
after the t r a p condition was recognized. 

6.3.2.3 Invalid Operation (INV) Trap 

An INV t r a p is reported for most floating-point operate instruct ions with an input 
operand t h a t is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity, 
or IEEE denormal. 

Float ing INV t r aps are always enabled. If th is t r a p occurs, t he resul t register is 
wr i t ten with an UNPREDICTABLE value. 

6.3.2.4 Division by Zero (DZE) Trap 

A DZE t r a p is reported when a finite number is divided by zero. Float ing DZE 
t r aps are always enabled. If th is t r a p occurs, the resul t register is wr i t ten with an 
UNPREDICTABLE value. 

6.3.2.5 Overflow (OVF) Trap 

An OVF t r a p is reported when the destination's largest finite number is exceeded in 
magni tude by the rounded t rue result . Float ing OVF t r aps are always enabled. If 
th is t r a p occurs, the resul t register is wr i t ten wi th an UNPREDICTABLE value. 

NOTE 
For a sequence such as: 

ADDF 
MULF 

F1,F2,F3 
F4,F5,F3 
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6.3.2.6 Underflow (UNF) Trap 

A U N F t r a p is reported when t h e dest ination's smallest finite number exceeds in 
magni tude t he non-zero rounded t r u e resul t . Float ing U N F t r a p enable can be 
specified in each floating-point operate instruct ion. If underflow occurs, t he resul t 
register is wr i t t en wi th a t rue zero. 

6.3.2.7 Inexact Result (INE) Trap 

An INE t r a p is reported if t he rounded resul t of an IEEE operation is not exact. 
INE t r a p enable can be specified in each IEEE floating-point operate instruction. 
The unchanged resul t value is stored in all cases. 

6.3.2.8 Integer Overflow (IOV) Trap 

An IOV t r a p is reported for any integer operation whose t rue resul t exceeds the 
dest inat ion regis ter size. IOV t r a p enable can be specified in each ar i thmet ic integer 
operate instruct ion and each floating-point convert-to-integer instruct ion. If integer 
overflow occurs, t he resul t register is wr i t t en wi th the t runca ted t r u e resul t . 

6.3.3 Synchronous Traps 

A synchronous t r a p is an exception condition t h a t occurs a t t he completion of the 
operation t h a t caused the exception (or, if t he operat ion can only be part ial ly carried 
out, a t t he completion of t h a t pa r t of the operation), bu t no successor instruct ion is 
allowed to s tar t . All t r aps t h a t a re not ar i thmet ic t r aps a re synchronous t raps . 

Some synchronous t r aps a re caused by PALcode instruct ions: BPT, BUGCHK, 
CHMU, CHMS, CHME, and CHMK. For synchronous t r aps , t he PC saved in the 
exception s tack frame is the address of the instruct ion immediately following the one 
causing the t r a p condition. A CALL_PAL REI instruct ion to th is PC will continue 
wi thout reexecuting the t r app ing instruct ion. The following subsections describe the 
synchronous t r aps in detail . 

6.3.3.1 Data Alignment Trap 

All da t a m u s t be na tura l ly aligned or an a l ignment t r a p may be generated. Na tu r a l 
a l ignment m e a n s t h a t da t a bytes a re on byte boundar ies , da t a words a re on word 
boundar ies , d a t a longwords a re on longword boundar ies , and da t a quadwords a re 
on quadword boundar ies . 

A D a t a Alignment t r a p is genera ted by the ha rdware when an a t t emp t is made to 
load or store a longword or quadword to/from a regis ter us ing an address t h a t does 
not have the n a t u r a l a l ignment of t he par t icu lar da t a reference. 

Da ta a l ignment t r ap s a re fixed up by the PALcode and are optionally reported to the 
operat ing system unde r the control of the DAT bit. If t he bit is zero, the t r a p will 
be reported. If t he bit is set, after t h e a l ignment is corrected, control is r e tu rned to 
t he user. In e i ther case, if t he PALcode detects a LDx_L or STx__C instruction, no 
correction is possible and an illegal operand exception is generated. 

The system software is notified via the generat ion of a Kernel mode exception 
through the Unaligned_Access SCB vector (280 1 6) The vi r tual address of the 
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unal igned da ta being accessed is stored in R4. R5 indicates whe ther the operation 
was a read or a wri te ( 0 = read/load 1 = write/store). 

PALcode may wri te par t ia l resul t s to memory wi thout probing to make sure all 
wri tes will succeed when dealing wi th unal igned store operations. 

If a memory managemen t exception condition occurs while reading or wri t ing pa r t 
of the unal igned data , t he appropr ia te memory m a n a g e m e n t fault is generated. 

Software should avoid da t a misa l ignment whenever possible since the emulat ion 
performance penal ty may be as large as 100 to 1. 

The Da ta Alignment t r a p control bit is included in the HWPCB a t offset +56 bit 63. 
In order to change th is bit for the current ly executing process, t he DATFX IPR may 
be wr i t ten via a CALL_PAL MTPR_DATFX instruct ion. This operation will also 
upda te the value in the HWPCB. 

6.3.3.2 Other Synchronous Traps 

With the t r aps described in th is subsection, the SCB vector quadword is saved in 
R2 and the SCB pa rame te r quadword is saved in R3. The change mode t r aps a re 
ini t iated in the more privileged of the cur ren t mode and the t a rge t mode, while the 
other t r aps are ini t ia ted in Kernel mode. 

6.3.3.2.1 Breakpoint Trap 

A Breakpoint t r a p is an exception t h a t occurs when a CALL_PAL BPT instruct ion 
is executed; see Chapte r 2. Breakpoint t r aps are in tended for use by debuggers and 
can be used to place breakpoints in a program. 

Breakpoint t r aps are ini t ia ted in Kernel mode so t h a t system debuggers can capture 
breakpoint t r aps t h a t occur while the user is executing system code. 

6.3.3.2.2 Bugcheck Trap 

A Bugcheck t r a p is an exception t h a t occurs when a CALL_PAL BUGCHK 
instruction is executed; see Chapte r 2. Bugchecks a re used to log errors detected by 
software. 

6.3.3.2.3 Illegal Instruction Trap 

An Illegal instruct ion Trap is an exception t h a t occurs when an a t t empt is made 
to execute an instruct ion whose opcode is reserved to Digital, is a subset ted opcode 
t h a t requires emulat ion on the host implementat ion, or is a privileged instruct ion 
and the cur ren t mode is not Kernel. 

6.3.3.2.4 Illegal Operand Trap 

An Illegal Operand Trap occurs when an a t t empt is made to execute PALcode wi th 
operand values t h a t a re illegal or reserved for future use by Digital. 

Illegal operands include: 

• An invalid combination of bi ts in the P S restored by the CALL_PAL REI 
instruction. 
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• An unal igned operand passed to PALcode. 

6.3.3.2.5 Generate Software Trap 

A Genera te Software Trap is an exception t h a t occurs when a CALL_PAL GENTRAP 
instruct ion is executed; see Chap te r 2. The in tended use is for low-level compiler-
genera ted code t h a t detects conditions such as divide-by-zero, range errors , subscript 
bounds and negat ive s t r ing lengths . 

6.3.3.2.6 Change Mode to Kernel Trap 

A Change Mode to Kernel t r a p is an exception t h a t occurs when a CALL_PAL CHMK 
instruct ion is executed; see Chap te r 2. Change Mode to Kernel t r ap s a re ini t iated 
in Kernel mode and push the exception frame on the Kernel stack. 

6.3.3.2.7 Change Mode to Executive Trap 

A Change Mode to Executive t r a p is an exception t h a t occurs when a CALL_PAL 
CHME instruct ion is executed; see Chap te r 2. Change Mode to Executive t r aps a re 
ini t ia ted in t he more privileged of t he cur ren t mode and Executive mode, and push 
the exception frame on the t a rge t stack. 

6.3.3.2.8 Change Mode to Supervisor Trap 

A Change Mode to Supervisor t r a p is an exception t h a t occurs when a CALL_PAL 
CHMS instruct ion is executed; see Chap te r 2. Change Mode to Supervisor t r ap s are 
ini t ia ted in t he more privileged of the cur ren t mode and Supervisor mode, and push 
the exception frame on the t a rge t stack. 

6.3.3.2.9 Change Mode to User Trap 

A Change Mode to User t r a p is an exception t h a t occurs when a CALL_PAL CHMU 
instruct ion is executed; see Chap te r 2. Change Mode to User t r aps a re ini t iated 
in t he more privileged of the cur ren t mode and User mode, and push the exception 
frame on the t a rge t stack. 

6.4 Interrupts 

The processor a rb i t ra tes in t e r rup t reques t s according to priority. When the priority 
of an in t e r rup t reques t is h igher t h a n the cur ren t processor IPL, the processor will 
ra ise t he IPL and service the in t e r rup t request . The in te r rup t service rout ine is 
entered a t t he IPL of the in te r rup t ing source, in Kernel mode, and on the Kernel 
stack. In t e r rup t reques ts can come from I/O devices, memory controllers, other 
processors, or the processor itself. 

The priority level of one processor does not affect the priority level of other 
processors. Thus , in a mult iprocessor system, in t e r rup t levels alone cannot be used 
to synchronize access to shared resources. 

Synchronization wi th other processors in a mult iprocessor system involves a 
combination of ra is ing t he IPL and executing an interlocking instruct ion sequence. 
Raising the IPL prevents the synchronization sequence itself from being in te r rupted 
on a single processor while the interlock sequence gua ran tees m u t u a l exclusion 
with other processors. Alternately, one processor can issue explicit interprocessor 
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in te r rup ts (and wai t for acknowledgment) to pu t other processors in a known 
software s ta te , t h u s achieving m u t u a l exclusion. 

In some implementat ions , several instruct ions may be in various s tages of execution 
simultaneously. Before the processor can service an in te r rup t request , all active 
instruct ions m u s t be allowed to complete wi thout exception. Thus , when an 
exception occurs in a current ly active instruction, the exception is ini t ia ted and 
the exception stack frame buil t immediately before the in te r rup t is ini t ia ted and i ts 
stack frame built. 

The following events will cause an in ter rupt : 

• Software in te r rup t s — IPL 1 to 15 

• Asynchronous System Traps — IPL 2 

• Passive Release in te r rup t s — IPL 20 to 23 

• I/O Device in te r rup t s — IPL 20 to 23 

• Interval Clock in te r rup t — IPL 22 

• Interprocessor in te r rup t — IPL 22 

• Performance Monitor in te r rup t — IPL 29 

• Powerfail in te r rup t — IPL 30 

In te r rup t s are ini t ia ted in Kernel mode and push the in te r rup t s tack frame of eight 
quadwords onto the Kernel stack. The PC saved in the in te r rup t s tack frame is 
the vi r tual address of the first instruct ion not executed after the in te r rup t condition 
was recognized. A CALL_PAL REI instruct ion to the saved PC/PS will continue 
execution a t the point of in ter rupt . 

Each in te r rup t source h a s a separa te vector location (offset) wi thin the System 
Control Block (SCB); see Section 6.6. With the exception of I/O device in te r rup ts , 
each of the above events h a s a unique fixed vector. I/O device in te r rup t s occupy a 
range of vectors t h a t can be both statically and dynamically assigned. Upon ent ry to 
the in te r rup t service rout ine, R2 contains the SCB vector quadword and R3 contains 
the SCB pa ramete r quadword. For Corrected Er ro r in te r rup ts , R4 optionally locates 
additional information; see Section 6.5.2. 

In order to reduce in te r rup t overhead, no memory mapping information is changed 
when an in te r rup t occurs. Therefore, t he instruct ions, da ta , and the contents of the 
in te r rup t vector for the in te r rup t service rout ine m u s t be present in every process 
a t the same vi r tual address . 

In te r rup t service rout ines should follow the discipline of not lowering IPL below 
the i r init ial level. Lowering IPL in th is way could resul t in an in te r rup t a t an 
in termedia te level which would cause the stack nes t ing to be incorrect. 

Kernel mode software may need to ra ise and lower IPL dur ing certain instruct ion 
sequences t h a t m u s t synchronize wi th possible in te r rup t conditions (such as 
powerfail). This can be accomplished by specifying the desired IPL and executing 
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a CALL_PAL M T P R J P L instruct ion or by executing a CALL_PAL REI instruct ion 
t h a t res tores a P S t h a t contains t he desired IPL; see Chapte r 2. 

6.4.1 Software Interrupts — IPLs 1 to 15 
6.4.1.1 Software Interrupt Summary Register 

The archi tecture provides fifteen priority in te r rup t levels for use by software (level 
0 is also available for use by software bu t in te r rup t s can never occur a t th is level). 
The Software In te r rup t S u m m a r y Register (SISR) stores a m a s k of pending software 
in te r rup ts . Bit positions in th is m a s k which contain a 1 correspond to the levels on 
which software in te r rup t s a re pending. 

When the processor IPL drops below t h a t of the highest requested software in ter rupt , 
a software in te r rup t is ini t ia ted and the corresponding bit in t he SISR is cleared. 

The SISR is a read-only in te rna l processor register which may be read by Kernel 
mode software by executing a CALL_PAL MFPR_SISR instruction; see Section 5.3. 

6.4.1.2 Software Interrupt Request Register 

The Software In t e r rup t Request Register (SIRR) is a write-only in te rna l processor 
register used for mak ing software in t e r rup t reques ts . 

Kernel mode software may reques t a software in te r rup t a t a par t icular level by 
executing a CALL_PAL MTPR_SIRR instruct ion; see Section 5.3. 

If t he requested in te r rup t level is g rea te r t h a n the cur ren t IPL, the in te r rup t will 
occur before the execution of the next instruct ion. If, however, t he requested level is 
equal to or less t h a n the cur ren t processor IPL, the in te r rup t reques t will be recorded 
in the Software In t e r rup t S u m m a r y Register (SISR) and deferred unt i l t he processor 
IPL drops to the appropr ia te level. 

Note t h a t no indication is given if the re is a l ready a reques t a t t he specified level. 
Therefore, t he respective in te r rup t service rout ine m u s t not a s sume t h a t the re is a 
one-to-one correspondence between in te r rup t s requested and in te r rup t s generated. 
A valid protocol for genera t ing th i s correspondence is: 

1. The reques ter places information in a control block and t h e n inser ts the control 
block in a queue associated wi th the respective software in t e r rup t level. 

2. The reques ter uses CALL_PAL MTPR_SIRR to reques t an in te r rup t a t the 
appropr ia te level. 

3. When enabl ing conditions arise, processor HW clears the appropr ia te SISR bit 
as pa r t of ini t ia t ing the software in te r rupt . 

4. The in te r rup t service rout ine a t t empt s to remove a control block from the reques t 
queue. If t he re are no control blocks in t he queue, t he in te r rup t is dismissed wi th 
a CALL_PAL REI instruction. 

5. If a valid control block is removed from the queue, t he requested service is 
performed and Step 3 is repeated. 
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6.4.2 Asynchronous System Trap — IPL 2 

Asynchronous System Traps (ASTs) are a m e a n s of notifying a process of events t h a t 
are not synchronized wi th i ts execution, bu t which m u s t be deal t wi th in the context 
of the process. An AST is ini t iated in Kernel mode a t IPL 2 when the cur ren t mode 
is less privileged t h a n or equal to a mode for which an AST is pending and not 
disabled, with PS<IPL> less t h a n 2; see Sections 6.7.6 and 4.3. 

There are four separa te per-mode SCB vectors, one for each of Kernel, Executive, 
Supervisor, and User modes. 

On encounter ing an AST, the in te r rup t s tack frame is pushed on the Kernel stack; 
the value of the PC saved in th is s tack frame is the address of the next instruct ion 
to have been executed if t he in te r rup t had not occurred. The SCB vector quadword 
is saved in R2 and the SCB pa rame te r quadword in R3. 

6.4.3 Passive Release Interrupts — IPLs 20 to 23 

Passive releases occur when the source of an in te r rup t g ran ted by a processor cannot 
be determined. This can happen when the reques t ing I/O device de termines t h a t i t 
no longer requires an in te r rup t after reques t ing one, or when a previously requested 
in te r rup t ha s a l ready been serviced by ano ther processor in some multiprocessor 
configurations. The in te r rup t handle r for passive releases executes a t t he priority 
level of the in te r rup t request . 

6.4.4 I/O Device Interrupts — IPLs 20 to 23 

The archi tecture provides four priority levels for use by I/O devices. I/O device 
in te r rup t s are requested when the device encounters a completion, a t tent ion, or 
error condition and the respective in te r rup t is enabled. 

6.4.5 Interval Clock Interrupt — IPL 22 

The Interval Clock reques ts an in te r rup t periodically. 

At least 1000 interval clock in te r rup t s occur per second. An ent ry in the HWRPB 
contains the number of interval clock in te r rup t s per second t h a t occur in an actual 
Alpha implementat ion, scaled up by 4096, and rounded to a 64-bit integer. 

The accuracy of the interval clock m u s t be a t least 50 pa r t s per million (ppm). 

HARDWARE/SOFTWARE NOTE 
For example, an interval of 819.2 usee derived from a 10 
MHz E the rne t clock and a 13-bit counter is acceptable. 

To guaran tee software progress, t he interval clock 
in te r rup t should be no more frequent t h a n the t ime it 
t akes to do 500 ma in memory accesses. Over the life of 
the archi tecture, th is interval may well decrease much 
more slowly t h a n CPU cycle t ime decreases. 

Other constra ints may apply to Secure Kernel systems. 
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6.4.5.1 Interprocessor Interrupt — IPL 22 

Interprocessor in t e r rup t s a re provided to enable operat ing system software runn ing 
on one processor to in t e r rup t activity on another processor and cause operat ing 
system dependent actions to be performed. 

6.4.5.1.1 Interprocessor Interrupt Request Register 

The Interprocessor In t e r rup t Request Register (IPIR) is a write-only in ternal 
processor register used for mak ing a reques t to in te r rup t a specific processor. 

Kernel mode software may reques t to in te r rup t a par t icular processor by executing 
a CALL.PAL M T P R J P I R instruct ion; see Section 5.3. 

If t he specified processor is t he same as the cur ren t processor and the cur ren t IPL is 
less t h a n 22, t hen the in te r rup t may be delayed and not ini t ia ted before the execution 
of the next instruction. 

Note tha t , like software in te r rup t s , no indication is given as to whe the r the re is 
a l ready an interprocessor in t e r rup t pending when one is requested. Therefore, 
t he interprocessor in te r rup t service rout ine m u s t not a s sume the re is a one-to-one 
correspondence between in te r rup t s reques ted and in te r rup t s generated. A valid 
protocol s imilar to t he one for software in t e r rup t s for genera t ing th i s correspondence 
is: 

1. The reques te r places information in a control block and t hen inser ts the control 
block in a queue associated wi th the t a rge t processor. 

2. The reques ter uses CALL_PAL M T P R J P I R to reques t an interprocessor 
in t e r rup t on the t a rge t processor. 

3. The interprocessor in te r rup t service rout ine on the t a rge t processor a t t empt s to 
remove a control block from i ts reques t queue. If the re are no control blocks 
remaining, the in te r rup t is dismissed wi th a CALL_PAL REI instruct ion. 

4. If a valid control block is removed from the queue, t he specified action is 
performed and Step 3 is repeated. 

6.4.6 Performance Monitor Interrupts — IPL 29 

These in te r rup t s provide some of the suppor t for processor or system performance 
measu remen t s . The implementa t ion is processor or system specific. 

6.4.7 Powerfall Interrupt — IPL 30 

If t he system power supply backup option permi ts powerfail recovery, a Powerfail 
in te r rup t is genera ted to each processor when power is about to fail. 

In systems in which the backup option ma in ta ins only the contents of memory and 
keeps system t ime with the BB_WATCH, the power supply reques ts a powerfail 
i n t e r rup t to permi t volatile system s ta te to be saved. Prior to dispatching to the 
powerfail i n t e r rup t service rout ine, PALcode is responsible for saving all system 
s ta te which is not visible to system software. Such s ta te includes, bu t is not l imited 
to, processor in te rna l regis ters and PALcode temporary variables . 
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PALcode is also responsible for saving the contents of any wri teback caches 
or buffers, including the powerfail in te r rup t s tack frame. System software is 
responsible for saving all other system s ta te . Such s ta te includes, bu t is not l imited 
to, processor registers and wri teback cache contents . S ta te can be saved by forcing 
all wr i t ten da ta to a backed-up pa r t of the memory subsystem; software may use 
the CALL_PAL CFLUSH instruction. 

The Powerfail i n t e r rup t will not be ini t ia ted unt i l t he processor IPL drops below 
30. Thus , critical code sequences can block the power-down sequence by ra is ing the 
IPL to 31 . Software, however, m u s t t ake ext ra care not to lock out the power-down 
sequence for an extended period of t ime. 

Explicit s ta te is not provided by the archi tecture for software to directly determine 
whe ther there were outs tanding in te r rup t s when powerfail occurred. I t is t he 
responsibility of software to leave sufficient information in memory so t h a t i t may 
determine the proper action on power-up. 

6.5 Machine Checks 

A Machine Check, or mcheck, indicates t h a t a h a r d w a r e error condition was detected 
and may or may not be successfully corrected by ha rdware or PALcode. Such 
error conditions can occur e i ther synchronously or asynchronously wi th respect to 
instruct ion execution. There are four types: 

1. System Machine Check (IPL 31) 

These machine checks a re genera ted by error conditions which are detected 
asynchronously to processor execution bu t are not successfully corrected by 
ha rdware or PALcode. Examples of system machine check conditions include 
protocol errors on the processor-memory-interconnect and unrecoverable memory 
errors . 

System machine checks are always maskable and deferred unt i l processor IPL 
drops below IPL 31 . 

2. Processor Machine Check (IPL 31) 

These machine checks indicate t h a t a processor in te rna l error was detected 
and not successfully corrected by ha rdware or PALcode. Examples of processor 
machine check conditions include processor in te rna l cache errors , t rans la t ion 
buffer par i ty errors , or read access to a non-existent local I/O space location 
(NXM). 

Processor machine checks may be nonmaskable or maskable . If nonmaskable , 
they are ini t iated immediately, even if the processor IPL is 31 . If maskable , they 
are deferred unt i l processor IPL drops below IPL 31 . 

3. System Correctable Machine Check (IPL 20) 

These machine checks are genera ted by error conditions t h a t a re detected 
asynchronously to processor execution and are successfully corrected by 
ha rdware or PALcode. Examples of system correctable machine check conditions 
include single bit errors wi thin the memory subsystem. 
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System correctable machine checks a re always maskable and deferred unt i l 
processor IPL drops below IPL 20. 

4. Processor Correctable Machine Check (IPL 31) 

These machine checks indicate t h a t a processor in te rna l error was detected 
and successfully corrected by h a r d w a r e or PALcode. Examples of processor 
correctable machine check conditions include corrected processor in te rna l cache 
errors and corrected t rans la t ion buffer t a b errors . 

Processor correctable machine checks m a y be nonmaskable or maskable . If 
nonmaskable , they are ini t ia ted immediately, even if t he processor IPL is 31 . 
If maskable , they are deferred unt i l processor IPL drops below IPL 3 1 . 

Machine Checks a re ini t ia ted in Kernel mode, on the Kernel stack, and cannot be 
disabled. 

Correctable machine checks permi t t he pa t t e rn and frequency of cer ta in errors to be 
captured. The delivery of these machine checks to system software can be disabled 
by set t ing IPR MCES<4:3>, as described in Chapte r 5. Note t h a t se t t ing IPR 
MCES<4:3> does not disable the generat ion of the machine check or t he correction of 
the error, bu t r a t h e r suppresses t he repor t ing of t h a t correction to system software. 

The PC in t he machine check stack frame is t h a t of t he next instruct ion t h a t would 
have issued if t he machine check condition h a d not occurred. This is not necessarily 
the address of the instruct ion immediately following the one encounter ing the error, 
and in tervening instruct ions may have changed operands or o ther s ta te used by the 
instruct ion encounter ing t h e error condition. A CALL_PAL REI instruct ion to th is 
PC will simply continue execution from the point a t which the machine check was 
taken . 

NOTE 
On machine checks, a meaningful PC is delivered on a 
best-effort basis . The machine s ta te , processor registers , 
memory, and I/O devices may be inde terminate . 

Machine checks m a y be deliberately genera ted by software, such as by probing non-
existent-memory dur ing memory sizing or searching for local I/O devices. In such 
a case, t he DRAINA PALcode inst ruct ion can be called to force any outs tanding 
machine checks to be t a k e n before continuing. 

6.5.1 Software Response 

The reaction of system software to machine checks is specific to the characterist ics 
of the processor, platform, and system software. System software m u s t de termine if 
operation should be discontinued on a n implementation-specific basis . 

To assis t system software, PALcode provides a re t ry flag in the machine check logout 
frame (see Figure 6—6. If set, t he s ta te of t he processor and platform ha rdware has 
not been compromised; system software operation should be able to continue. 
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If t he re t ry flag is clear, the s ta te of the processor is e i ther unknown or is known to 
have been updated dur ing par t ia l execution of one or more instruct ions. System 
software operation can continue only after system software determines t h a t the 
ha rdware s ta te change permi ts and/or t akes corrective action. 

PALcode should t ake appropr ia te implementation-specific actions prior to set t ing 
the re t ry flag. PALcode should also a t t empt to ensure t h a t each encountered error 
condition genera tes only one machine check. 

IMPLEMENTATION NOTE 
An impor tan t example of us ing the re t ry flag is read 
NXM. 

Also, a read NXM should not genera te both a Processor 
Machine Check and a System Machine Check. 

PALcode sets an in ternal Machine-Check-In-Progress flag in the Machine Check 
Error Summary (MCES) register prior to ini t ia t ing a system or processor machine 
check. System software m u s t clear t h a t flag to dismiss the machine check If a second 
uncorrectable machine check ha rdware error condition is detected while the flag is 
set, or if PALcode cannot deliver the machine check, PALcode forces the processor to 
en ter console I/O mode, and subsequent actions, such as processor res ta r t , a re t a k e n 
by the console. The REASON FOR HALT code is "double error abort encountered". 

Similiarly, PALcode sets an in te rna l correctable Machine-Check-In-Progress flag in 
the Machine Check Er ro r S u m m a r y (MCES) regis ter prior to ini t ia t ing a system 
correctable error in te r rup t or processor correctable machine check. System software 
m u s t clear t h a t flag to dismiss the condition and permi t the reuse of the logout area . 
If a second correctable ha rdware error condition is detected while the flag is set, t he 
error is corrected, bu t not reported. PALcode does not overwrite the logout a rea and 
the processor r emains in program I/O mode. 

6.5.2 Logout Areas 

When a ha rdware error condition is encountered, PALcode optionally builds a logout 
frame prior to pass ing control to the machine check service rout ine. 

Figure 6-6: Corrected Error and Machine Check Logout Frame 

R S SBZ 
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:FRAME 
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Table 6-4: Corrected Error and Machine Check Logout Frame Fields 

Offset Descr ip t ion 

FRAME FRAME SIZE - Size in bytes of the logout frame including the FRAME SIZE 
longword. 

+04 FRAME FLAGS - Informational flags. 

Bit Descr ip t ion 

31 RETRY FLAG - Indicates whe the r execution can be resumed 
after dismissing th i s machine check. Set on Corrected Error 
in te r rup t s ; m a y be set on Machine Checks. 

30 SECOND ERROR FLAG - Indicates t h a t a second correctable 
error was encountered. Set on Corrected Er ro r in te r rup t s 
when a correctable error was encountered while the re levant 
correctable error bi t (PCE or SCE) is set in t he MCES register. 
Clear on Machine Checks. 

29 -0 SBZ. 

+08 CPU OFFSET - Offset in bytes from the base of the logout frame to the 
cpu-specific information. If 16 the frame contains no PALcode-specific 
information. If CPU OFFSET is equal to SYS OFFSET, the frame contains 
no cpu-specific information. 

+12 SYS OFFSET - Offset in bytes from the base of the logout frame to the 
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the 
frame contains no system-specific information. 

+16 PALCODE INFORMATION - PALcode-specific logout information. 

+CPU OFFSET CPU INFORMATION - Cpu-specific logout information. 

+SYS OFFSET SYS INFORMATION - System platform-specific logout information. 

The logout frame is optional; t he service rout ine uses R4 to locate the frame, if 
any. Upon en t ry to the service rout ine, R4 contains the byte offset of the logout 
frame from the base of t he logout area . If no frame was built , R4 contains - 1 
(FFFF F F F F F F F F F F F F 1 6) . 

6.6 System Control Block 

The System Control Block (SCB) specifies t he ent ry points for exception, in ter rupt , 
and machine check service rout ines . The block is from 8K to 32K bytes long, m u s t 
be page aligned, and m u s t be physically contiguous. The P F N is specified by the 
value of the System Control Block Base (SCBB) in te rna l register. 

The SCB consists of from 512 to 2048 entr ies , each 16 bytes long. The first 8 bytes 
of an entry, t he vector, specify the v i r tua l address of the service rout ine associated 
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with t h a t entry. The second 8 bytes, t he parameter , a re an a rb i t ra ry quadword value 
to be passed to the service routine. 

The S C B entr ies a re grouped into those for: 

1. Fau l t s 

2. Ari thmetic t r aps 

3. Asynchronous system t r aps 

4. Da ta a l ignment t r a p 

5. Other synchronous t r aps 

6. Processor software in te r rup t s 

7. Processor ha rdware in te r rup t s 

8. I/O device in te r rup t s 

9. Machine checks 

The first 512 entr ies (offsets 0000 th rough 1 F F 0 I 6) contain all archi tectural ly defined 
and any statically allocated entr ies . All remain ing S C B entr ies , if any, are used 
only for those I/O device in te r rup t vectors t h a t a re assigned dynamically by system 
software. I t is the responsibility of t h a t software to ensure the consistency of t he 
assigned vector and the S C B entry. 

6.6.1 SCB Entries for Faults 

The exception handle r for a fault executes wi th the IPL unchanged, in Kernel mode, 
on the Kernel stack. 

Table 6-5: SCB Entries for Faults 
Byte 
offset ig E n t r y n a m e 

000 Unused 

010 Floating disabled fault 

020-070 Unused 

080 Access Control Violation fault 

090 Translation Not Valid fault 

0A0 Fault on Read fault 

0B0 Fault on Write fault 

0C0 Fault on Execute fault 

0A0-0F0 Unused 
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6.6.2 SCB Entries for Arithmetic Traps 

The exception hand le r for an ar i thmet ic t r a p executes wi th t he IPL unchanged, in 
Kernel mode, on the Kernel stack. 

Table 6-6: SCB Entries for Arithmetic Traps 

Byte 

offset i6 Entry name 

200 Arithmetic Trap 

210-230 Unused 

6.6.3 SCB Entries for Asynchronous System Traps (ASTs) 

The in t e r rup t hand le r for an asynchronous system t r a p executes a t IPL 2, in Kernel 
mode, on t he Kernel stack. 

Table 6-7: SCB Entries for Asynchronous System Traps 

Byte 
offsetie Entry name 

240 Kernel Mode AST 

250 Executive Mode AST 

260 Supervisor Mode AST 

270 User Mode AST 

6.6.4 SCB Entries for Data Alignment Traps 

The exception handle r for a da t a a l ignment t r a p executes wi th the IPL unchanged 
in Kernel mode, on the Kernel Stack. 

Table 6-8: SCB Entries for Data Alignment Trap 

Byte 
offset ig Entry name 

280 Unaligned_Access 

290-3F0 Unused 

6.6.5 SCB Entries for Other Synchronous Traps 

The exception hand le r for a synchronous t r ap , o ther t h a n those described above, 
executes wi th t he IPL unchanged, in t he mode and on the stack indicated below. 
"MostPriv" indicates t h a t t he hand le r executes in e i ther the original mode or the 
new mode, whichever is the most privileged. 
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Table 6-9: SCB Entries for Other Synchronous Traps 

400 Breakpoint Trap 

410 Bug Check Trap 

420 Illegal Instruction Trap 

430 Illegal Operand Trap 

440 Generate Software Trap 

450 Unused 

460 Unused 

470 Unused 

480 Change Mode to Kernel 

490 Change Mode to Executive 

4A0 Change Mode to Supervisor 

4B0 Change Mode to User 

4C0-4F0 Reserved for Digital 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

MostPriv 

MostPriv 

Current 

6.6.6 SCB Entries for Processor Software Interrupts 

The exception handle r for a processor software in te r rup t executes a t t he ta rge t IPL, 
in Kernel mode, on the Kernel stack. 

Table 6-10: Entries for Processor Software Interrupts 
Byte 
Offset! 6 E n t r y Name Targe t I P L 10 

500 Unused 

510 Software interrupt level 1 1 

520 Software interrupt level 2 2 

530 Software interrupt level 3 3 

540 Software interrupt level 4 4 

550 Software interrupt level 5 5 

560 Software interrupt level 6 6 

570 Software interrupt level 7 7 

580 Software interrupt level 8 8 

590 Software interrupt level 9 9 

5A0 Software interrupt level 10 10 
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Table 6-10 (Cont.): Entries for Processor Software Interrupts 

Byte 
Offse t 6 E n t r y Name Targe t I P L 10 

5B0 Software interrupt level 11 11 

5C0 Software interrupt level 12 12 

5D0 Software interrupt level 13 13 

5E0 Software interrupt level 14 14 

5F0 Software interrupt level 15 15 

6.6.7 SCB Entries for Processor Hardware Interrupts 

The in te r rup t handle r for a processor h a r d w a r e in te r rup t executes a t t he ta rge t IPL, 
in Kernel mode, on the Kernel stack. 

Table 6-11 : SCB Entries for Processor Hardware Interrupts 

Byte 
Offse t β E n t r y n a m e Targe t IPLio 

600 Interval clock interrupt 22 

610 Interprocessor interrupt 22 

640 Powerfail interrupt 30 

650 Performance monitor 29 

680-6E0 Reserved — processor specific 

6F0 Passive Release 20-23 

Processor-specific SCB entr ies include those used by console devices (if any) or other 
per ipherals dedicated to system suppor t functions. 

6.6.8 SCB Entries for I/O Device Interrupts 

The in te r rup t handle r for an I/O device in t e r rup t executes a t t he ta rge t IPL, in 
Kernel mode, on t he Kernel stack. SCB entr ies for offsets of 8 0 0 i 6 th rough 7 F F 0 i 6 

a re reserved for I/O device in te r rup ts . 

6.6.9 SCB Entries for Machine Checks 

The hand le r for machine checks executes in Kernel mode, on the Kernel stack. The 
handle r for system correctable machine checks executes a t IPL 20; the handler for 
all other machine checks executes a t IPL 31 . 
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Table 6 - 1 2 : SCB Entries for Machine Checks 

Byte 
Offset^ E n t r y Name Target I P L i 0 

620 System correct, machine check 20 

630 Processor correct, machine check 31 

660 System machine check 31 

670 Processor machine check 31 
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6.7 PALcode Support 

6.7.1 Stack Writeability 

In response to various exceptions, in te r rup t s , and machine checks, PALcode pushes 
information on the Kernel stack. PALcode may wri te th is information without 
first probing to ensure t h a t all such wri tes to the Kernel s tack will succeed. If a 
memory m a n a g e m e n t exception occurs while pushing information, PALcode forces 
the processor to en te r console I/O mode, and subsequent actions, such as processor 
res ta r t , a re t a k e n by the console. The REASON FOR HALT code is "processor ha l ted 
due to kernel-stack-not-valid ,\ 

6.7.2 Stack Residency 

The User, Supervisor, and Executive s tacks for the cur ren t process do not need to be 
resident . Software runn ing in Kernel mode can br ing in or allocate s tack pages as 
TNV faults occur. However, since th is activity is t ak ing place in Kernel mode, the 
Kernel s tack m u s t be fully resident . 

The faults TNV, ACV, FOR, and FOW, occurring on Kernel mode references to the 
Kernel stack, a re considered serious system failures from which recovery is not 
possible. If any of these faults occur, PALcode forces the processor to en te r console I/O 
mode, and subsequent actions, such as processor res ta r t , a re t aken by the console. 
The REASON FOR HALT code is "processor ha l ted due to kernel-stack-not-valid". 

6.7.3 Stack Alignment 

Stacks m a y have a rb i t ra ry byte a l ignment , bu t performance may suffer if a t least 
octaword a l ignment is not ma in ta ined by software. 

PALcode creates stack frames in response to exceptions and in te r rup ts . Before doing 
so, t he t a rge t s tack is aligned to a 64-byte boundary by se t t ing t h e six low bi ts of the 
t a rge t S P to 000000 2. The previous value of these bi ts is stored in t he SP_ALIGN 
field of the saved P S in memory, for use by a CALL_PAL REI instruct ion. 

Software-constructed stack frames m u s t be 64 byte aligned and have SP_ALIGN 
properly set; otherwise, a CALL_PAL REI instruct ion will t ake an illegal operand 
t r ap . 

6.7.4 Initiate Exception or Interrupt or Machine Check 

Exceptions and in te r rup t s and machine checks a re ini t ia ted by PALcode with 
in te r rup t s disabled. When an exception, in te r rupt , or machine check, is init iated, 
the associated SCB vector is read to de termine the address of the service routine. 
PALcode t hen a t t empt s to push the PC, PS , and R2..R7 onto t he t a rge t stack. When 
an in te r rup t (software or h a r d w a r e bu t not AST) is ini t iated, PS<IP> is set to 1 to 
indicate an in t e r rup t is in progress. Additional pa r ame te r s may be passed in R4 
and R5 on exceptions and machine checks. 

Dur ing the a t t emp t to push th is information, the exceptions (faults) TNV, ACV, and 
FOW can occur: 
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• If any of those faults occur when the t a rge t s tack is User, Supervisor, or 
Executive, t hen the fault is t a k e n on the Kernel stack. 

• If any of those faults occur when the t a rge t s tack is t he Kernel stack, PALcode 
forces the processor to en ter console I/O mode, and subsequent actions, such as 
processor res ta r t , a re t aken by the console. The REASON FOR HALT code is 
"processor ha l ted due to kernel-stack-not-valid". 

6.7.5 Initiate Exception or Interrupt or Machine Check Model 
check_f or_exception__or__interrupt_or_mcheck : 

IF NOT {ready__to__initiate_exception OR 
ready__to__initiate_interrupt OR 
ready__to_initiate_mcheck} THEN 

BEGIN 
{fetch next instruction} 
{decode and execute instruction} 

END 
ELSE 

BEGIN 
{wait for instructions in progress to complete} 

! clear interrupt pending 
tmp <- 0 

IF {unmaskable mcheck pending} THEN 
BEGIN 

{back up implementation specific state if necessary} 
{attempt correction if appropriate} 
IF {uncorrectable AND MCES<0> = 1 } THEN 

{enter console} 
ELSE IF {uncorrectable} THEN 

new_mode <— Kernel 
new_ipl <— 31 

! set mcheck error flag 
MCES<0> <- 1 

ELSE IF {reporting enabled} THEN 
new_mode «— Kernel 
new_ji.pl <— 31 
MCES<2> <- 1 

END 
END 

ELSE IF {data alignment trap} THEN 
new_mode <— Kernel 

ELSE IF {synchronous trap} THEN 
CASE {opcode} OF 

{back up implementation specific state if necessary} 
CHME: new_mode <— min(PS<CM>,Executive) 
CHMS: new_mode <— min(PS<CM>,Supervisor) 
CHMU: new_mode <— min(PS<CM>,User) 
otherwise: new_mode +- Kernel 

ENDCASE 
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ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN 
BEGIN 

{back up implementation specific state if necessary} 
IF {MCES<0> = 1 } THEN 

{enter console} 
ELSE 

new__mode «— Kernel 
new__ipl <— 31 
MCES<0> «— 1 ! set mcheck error flag 

END 
END 

ELSE 
new_mode <— Kernel 

END 

IPR_SP[PS<CM>] <- SP 
new_sp <— IPR_JSP [ new__mode ] 

IF {exception pending} THEN 
BEGIN 

{back up implementation specific state if necessary} 
new_ipl *- PS<IPL> 

END 

ELSE IF {interrupt pending} THEN 
new_ipl «— {interrupt source IPL} 
tmp <— 1 ! set interrupt pending 

ELSE IF {maskable correctable mcheck pending AND 
reporting enabled} THEN 

new_ipl <— 20 
MCES<1> «- 1 

END 

save_align <— new__sp<5:0> 
new_sp<5:0> <- 0 

PUSH(PS OR LEFT_SHIFT(save_align,56), old__pc, new_mode) 
PUSH(R7f R6, newjnode) 
PUSH(R5f R4, new_mode) 
PUSH(R3, R2, new_mode) 

PS<SW> *- 0 
PS<CM> new__mode 
PS<IP> <- tmp 
PS<IPL> 4 - new_ipl 
SP <— new_sp 

IF {memory management fault} THEN 
R4 <- VA 
R5 «- MMF 

END 

IF {data alignment trap} THEN 
R4 <- VA 
R5 <— { 0 if read/load 1 if write/store } 

END 
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IF {mcheck or correctable error interrupt} THEN 
IF {logout frame built} 

R4 <— logout_area__of fset 
ELSE 

R4 «- -1 
END 

END 

IF {arithmetic Trap} THEN 
R4 «- register write mask 
R5 <— exception summary 

END 

IF {software interrupt} THEN 
SISR «- SISR AND NOT{ 2**{ PRIORITY_ENCODE(SISR) } } 

END 

vector <— {exception or interrupt or mcheck SCB offset} 

R2 4 - (SCBB + vector) 
R3 <- (SCBB + vector + 8) 
PC 4 - R2 

END 

GOTO check_for_exception_or_interrupt_or__mcheck 

PROCEDURE PUSH(first, last, mode) 
BEGIN 

IF ACCESS(new_sp - 16, mode) THEN 
BEGIN 

(new__sp - 8) <— first 
(new_sp - 16) <— last 
new_sp <— new__sp - 16 
RETURN 

END 
ELSE 

{initiate ACV, TNV, or FOW fault, or 
Kernel Stack Not Valid restart sequence} 

END 
END 

6.7.6 PALcode Interrupt Arbitration 

The following sections describe the logic for the in te r rup t conditions produced by the 
specified operation. 

6.7.6.1 Writing the AST Summary Register 

Writing the ASTSR in terna l processor register (see Section 5.3) reques ts an AST for 
any of the four processor modes. This may reques t an AST on a formerly inactive 
level and t h u s cause an AST in ter rupt . 

The logic required to check for th is condition is: 

ASTSR<3:0> <- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4> 
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 

{initiate AST interrupt at IPL 2} 

6-34 OpenVMS Alpha Software (II) 



6.7.6.2 Writing the AST Enable Register 

Writ ing t he ÄSTEN in te rna l processor regis ter (see Section 5.3) enables ASTs for 
any of the four processor modes. This m a y enable an AST on a formerly inactive 
level and t h u s cause an AST in te r rup t . 

The logic required to check for th is condition is: 

ASTEN<3:0> <- {ASTEN<3:0> AND R16<3:0>} OR R16<7:4> 
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 

{initiate AST interrupt at IPL 2} 

6.7.6.3 Writing the IPL Register 

Writing t he IPL in terna l processor regis ter (see Section 5.3) changes the current 
IPL. This may enable an AST or software in te r rup t on a formerly inactive level and 
t h u s cause an AST or software in te r rupt . 

The logic required to check for this condition is: 

PS<IPL> «- R16<4:0> 

! check for software interrupt at level 2..15 

IF {RIGHT_SHIFT({SISR AND FFFCig }, PS<IPL> + 1) NE 0} THEN 
{initiate software interrupt at IPL of high bit set in SISR) 

! check for AST 

IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 
{initiate AST interrupt at IPL 2} 

! check for software interrupt at level 1 

IF SISR<1> AND {PS<IPL> EQ 0} THEN 
{initiate software interrupt at IPL 1} 

6.7.6.4 Writing the Software Interrupt Request Register 

Writ ing the SIRR in terna l processor register (see Section 5.3) reques ts a software 
in te r rup t a t one of the fifteen software in te r rup t levels. This m a y cause a formerly 
inactive level to cause a software in te r rupt . 

The logic required to check for th i s condition is: 

SISR<level> «- 1 
IF level GT PS<IPL> THEN 

{initiate software interrupt at IPL level} 

6.7.6.5 Return from Exception or Interrupt 

The CALL_PAL REI instruct ion (see Chap te r 2) wri tes both the Cur ren t Mode and 
IPL fields of the PS ; see Section 6.2. This may enable a formerly disabled AST or 
software in te r rup t to occur. 

The logic required to check for this condition is: 

PS «- New PS 

I check for software interrupt at level 2..15 
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IF {RIGHT_SHIFT({SISR AND FFFCiß }, PS<IPL> + 1) NE 0} THEN 
{initiate software interrupt at IPL of high bit set in SISR} 

! check for AST 

tmp «- NOT LEFT_SHIFT(1110(bin), PS<CM>) 
IF {{tmp AND ÄSTEN AND ASTSR}<3:0> NE 0} AND {PS<IPL> LT 2} THEN 

{initiate AST interrupt at IPL 2} 

! check for software interrupt at level 1 

IF SISR<1> AND {PS<IPL> EQ 0} THEN 
{initiate software interrupt at IPL 1} 

6.7.6.6 Swap AST Enable 

Swapping the AST enable s ta te for the Cur ren t Mode resul t s in wri t ing the ÄSTEN 
internal processor register (see Section 5.3). This may enable a formerly disabled 
AST to cause an AST in ter rupt . 

The logic required to check for th is condition is: 

RO «- ZEXT(ASTEN<PS<CM») 
ASTEN<PS<CM» <- R16<0> 

IF ASTEN<PS<CM» AND ASTSR<PS<CM» AND {PS<IPL> LT 2} THEN 
{initiate AST interrupt at IPL 2} 

6.7.7 Processor State Transition Table 

Table 6-13 shows the operations t h a t can produce a s ta te t rans i t ion and the specific 
t ransi t ion produced. For example, if a processor's init ial s ta te is Supervisor mode, i t 
is not possible for the processor to t rans i t ion to a program ha l t condition. A processor 
can only t ransi t ion to program ha l t from Kernel mode. 

In Table 6 -13 : 

• REI increases mode or lowers IPL. 

• MTPR changes IPL, or is a CALL_PAL M T P R A S T S R 
or CALL_PAL MTPR_ASTEN instruct ion t h a t causes an in te r rup t request . 

• Exc is a s ta te change caused by an exception. 

• Int is a s ta te change caused by an in ter rupt . 

• Mcheck is a s ta te change caused by a machine check. 
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Table 6-13: Processor State Transitions 

Initial State: Final State: 

User Super. Exec. Kernel 
Program 
Halt 

User CHMU CHMS CHME CHMK Not 
REI Exc Possible 

Int 
Mcheck 
SWASTEN 

Supervisor REI CHMS CHME CHMK Not 
REI Exc Possible 

Int 
Mcheck 
SWASTEN 

Executive REI REI CHME CHMK Not Possible 
REI Exc 

Int 
Mcheck 
SWASTEN 

Kernel REI REI REI CHMK HALT 
REI 
Int 
Exc 
Mcheck 
MTPR 
SWASTEN 
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Part III DEC OSF/1 Alpha Software 

Thi s sect ion descr ibes how D E C OSF/1 o p e r a t i n g 
s y s t e m r e l a t e s to t h e A l p h a a r c h i t e c t u r e a n d 
inc ludes t h e following c h a p t e r s : 

1. I n t roduc t ion to D E C OSF/1 A l p h a 

2. OSF/1 PALcode I n s t r u c t i o n Descr ip t ions 

3 . OSF/1 M e m o r y M a n a g e m e n t 

4. OSF/1 Process S t r u c t u r e 

5. OSF/1 Excep t ions a n d I n t e r r u p t s 

α 



Chapter 1 

Introduction to DEC OSF/1 Alpha (III) 

The goals of th is design are to provide a ha rdware implementa t ion independent 
interface between the h a r d w a r e and DEC OSF/1 Alpha. The interface needs to 
provide t he needed abstract ions to minimize the impact of different ha rdware 
implementa t ions on the operat ing system. The interface also needs to be low in 
overhead to support high-performance systems. Last ly the interface needs to only 
support the features used by DEC OSF/1 Alpha. 

The register usage in th is interface is based on the cur ren t calling s t anda rd used by 
DEC OSF/1 Alpha. If t he calling s t anda rd changes, th is interface will be changed 
to reflect t ha t . The cur ren t calling s t anda rd register usage is shown in Table 1-1 . 

Table 1-1: DEC OSF/1 Alpha Register Usage 
Regis te r 
Name 

Software 
Name 

Use a n d 
l inkage 

rO vO Used for expression evaluations and to hold integer function 
results. 

r l . . r8 t0..t7 Temporary registers; not preserved across procedure calls. 

r9..rl4 s0..s5 Saved registers; their values must be preserved across 
procedure calls. 

r l 5 FP or s6 Frame pointer or a saved register. 

rl6..r21 a0..a5 Argument registers; used to pass the first 6 integer type 
arguments; their values are not preserved across procedure 
calls. 

r22..r25 t8. . t l l Temporary registers; not preserved across procedure calls. 

r26 ra Contains the return address; used for expression evaluation. 

r27 ρ ν or t l 2 Procedure value or a temporary register. 

r28 at Assembler temporary register; not preserved across procedure 
calls. 

r29 GP Global pointer. 

r30 SP Stack pointer. 

r31 zero Always has the value 0. 
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1.1 Programming Model 

The programming model of the machine is the combination of the s ta te visible e i ther 
directly via instruct ions, or indirectly via actions of the machine. The following four 
tables define constants , s ta te variables, t e rms , and subrout ines used in t he res t of 
the document. 

1.1.1 Code Flow Constants 

Table 1-2: Code Flow Constants 
Term Meaning a n d va lue 

IPL = 2:0 

maxCPU 

mode = 3 

pageSize 

vaSize 

The range 2:0 used in the PS to access the IPL field of the PS 
(PS<IPL>). 

The maximum number of processors in a given system. 

Used as a subscript in PS to select current mode (PS<mode>). 

Size of a page in an implementation in bytes. 

Size of virtual address in bits in a given implementation. 

1.1.2 Machine State Terms 

Table 1-3: Machine State Terms 
Term Mean ing 

ASN An implementation-dependent size register to hold the current 
address space number (ASN). The size and existence of ASN is an 
implementation choice. 

entArith<63:0> The arithmetic trap entry address register. The entArith is an 
internal processor register that holds the dispatch address on an 
arithmetic trap. There can be a hardware register for the entArith 
or the PALcode can use private scratch memory. 

entIF<63:0> The instruction fault entry address register. The entIF is an internal 
processor register that holds the dispatch address on an instruction 
fault. There can be a hardware register for the entIF or the PALcode 
can use private scratch memory. 

entlnt<63:0> The interrupt entry address register. The entlnt is an internal 
processor register that holds the dispatch address on an interrupt. 
There can be a hardware register for the entlnt or the PALcode can 
use private scratch memory. 

entMM<63:0> The memory-management fault entry address register. The entMM 
is an internal processor register that holds the dispatch address on 
a memory-management fault. There can be a hardware register for 
the entMM or the PALcode can use private scratch memory. 
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The system call entry address register. The entSys is an internal 
processor register that holds the dispatch address on an callsys 
instruction. There can be a hardware register for the entSys or the 
PALcode can use private scratch memory. 

The unaligned fault entry address register. The entUna is an internal 
processor register that holds the dispatch address on an unaligned 
fault. There can be a hardware register for the entUna or the PALcode 
can use private scratch memory. 

The floating-point enable register. The FEN is a one-bit register that 
is used to enable or disable floating-point instructions. If a floating-
point instruction is executed with FEN equal to zero, a FEN fault is 
initiated. 

The current instruction being executed. This is a fake register used 
in the flows to CASE on different instructions. 

A per-processor state bit. The intr_flag bit is cleared if that processor 
executes an rti or retsys instruction. 

The kernel global pointer. The KGP is an internal processor register 
that holds the kernel global pointer that is loaded into R15, the GP, 
when an exception is initiated. There can be a hardware register for 
the KGP or the PALcode can use private scratch memory. 

The kernel stack pointer. The KSP is an internal processor register 
that holds the kernel stack pointer while in user mode. There can be 
a hardware register for the KSP or the storage space in the PCB can 
be used. 

A one-bit register that is used by the load locked and store conditional 
instructions. 

The program counter. The PC is a pointer to the next instruction in 
the flows. The low-order two bits of the PC always read as zero and 
writes to them are ignored. 

The process control block. The PCB holds the state of the process. 

The process control block base address register. The PCBB holds the 
address of the PCB for the current process. 

The processor status. The PS is a four-bit register that stores the 
current mode in bit <3> and stores the three-bit IPL in bits <2:0>. 
The mode is 0 for kernel and 1 for user. 

The page table base register. The PTBR contains the physical page 
frame number (PFN) of the highest level (level 1) page table. 

Table 1-3 (Cont.): Machine State Terms 
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Term Mean ing 

entSys<63:0> 

entUna<63:0> 

FEN<0> 

ins t ruc t iona l :0> 

intr_flag 

KGP<63:0> 

KSP<63:0> 

lock_flag<0> 

PC<63:0> 

PCB 

PCBB<63:0> 

PS<3:0> 

PTBR<63:0> 



Table 1-3 (Cont.): Machine State Terms 

Term Mean ing 

SP<63:0> 

sysvalue<63:0> 

unique<63:0> 

USP<63:0> 

VPTPTR<63:0> 

whami<63:0> 

Another name for R30. The SP points to the top of the current stack. 
PALcode only accesses the kernel stack. The kernel stack must 
be quadword aligned whenever PALcode reads or writes it. If the 
PALcode accesses the kernel stack and the stack is not aligned, a 
kernel-stack-not-valid halt is initiated. Although PALcode does not 
access the user stack, that stack should also be at least quadword 
aligned for best performance. 

The system value register. The sysvalue holds the per-processor 
unique value. There can be a hardware register for the sysvalue 
register or the storage space in the PALcode scratch memory can be 
used. 
The sysvalue register can only be accessed by kernel mode code and 
there is one sysvalue register per CPU. 

The process unique value register. The unique register holds the 
per-process unique value. There can be a hardware register for the 
unique register or the storage space in the PCB can be used. 
The unique register can be accessed by both user and kernel code and 
there is one unique register per process. 

The user stack pointer. The USP is an internal processor register 
that holds the user stack pointer while in kernel mode. There can be 
a hardware register for the USP or the storage space in the PCB can 
be used. 

The virtual page table pointer. The VPTPTR holds the virtual address 
of the first level page table. 

The processor number of the current processor. This number is in the 
range 0..maxCPU-l. 

1.1.3 Code Flow Terms 

Table 1-4: Code Flow Terms 

Term Mean ing 

opDec An attempt was made to execute a reserved instruction or execute a 
privileged instruction in user mode. 
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Chapter 2 

OSF/1 PALcode Instruction Descriptions (III) 

2.1 Unprivileged PALcode Instructions 

Table 2 -1 l ists the OSF/1 PALcode unprivileged inst ruct ion mnemonics , names , and 
t h e envi ronment from which they can be called: 

Table 2 - 1 : Unprivileged OSF/1 PALcode Instructions 
Mnemonic Name Call ing env i ronmen t 

bpt Breakpoint trap Kernel and user modes 

bugchk Bugcheck trap Kernel and user modes 

callsys System call User mode 

gentrap Generate trap Kernel and user modes 

imb I-Stream memory barrier Kernel and user modes 
Described in Common Architecture, Chap-
ter 6 

rdunique Read unique Kernel and user modes 

wrunique Write unique Kernel and user modes 

OSF/1 PALcode Instruction Descriptions (III) 2-1 



2.1.1 Breakpoint Trap 

Format: 

bpt 

Operation: 

temp <— PS 
if (ps<mode> NE 0) then 

USP «- SP 
SP <- KSP 
PS <- 0 

endif 
SP <- SP - {6 * 8} 
(SP+00) + - temp 
(SP+08) <— PC 
(SP+16) < - GP 
(SP+24) «- aO 
(SP+32) <- al 
(SP+40) <- a2 
aO <- 0 
GP <- KGP 
PC <- entIF 

! PALcode format 

! Mode is user so switch to kernel 

Exceptions: 

Kernel s tack not valid 

Instruction mnemonics: 

bpt Breakpoint t r a p 

Description: 

The breakpoint t r a p (bpt) instruct ion switches mode to kernel , bui lds a stackframe 
on the kernel stack, loads the G P wi th the KGP, loads a value of 0 into aO, and 
dispatches to the breakpoint code pointed to by the en t IF register. The regis ters 
a l . . a2 a re UNPREDICTABLE on ent ry to the t r a p handler . The saved PC a t (SP+08) 
is t he address of the instruct ion following t he t r a p instruct ion t h a t caused the t r ap . 

Notes: 

• The opcode and function code for the bpt instruct ion a re t he same in t he 
OpenVMS and the OSF/1 PALcode. 
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2.1.2 Bugcheck Trap 

Format: 

bugchk ! PALcode format 

Operation: 

temp <— P S 
if (PS<mode> NE 0) then 

USP <— SP ! Mode is user so switch to kernel 
S P <- KSP 
PS <- 0 

endif 
SP «— SP - {6 * 8} 
(SP+00) <- temp 
(SP+08) <- PC 
(SP+16) «- GP 
(SP+24) <- aO 
(SP+32) <- al 
(SP+40) <- a2 
aO <- 1 
GP <- KGP 
PC <- entIF 

Exceptions: 

Kernel s tack not valid 

Instruction mnemonics: 

bugchk Bugcheck t r a p 

Description: 

The bugcheck t r a p (bugchk) instruct ion switches mode to kernel , builds a stackframe 
on the kernel stack, loads the G P wi th the KGP, loads a value of 1 into aO, and 
dispatches to the breakpoint code pointed to by the en t IF register. The registers 
a l . . a2 a re UNPREDICTABLE on en t ry to t he t r a p handler . The saved PC a t (SP+08) 
is the address of the instruct ion following the t r a p instruct ion t h a t caused the t r ap . 

Notes: 

• The opcode and function code for the bugchk instruct ion are the same in the 
OpenVMS and the OSF/1 PALcode. 
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2.1.3 System Call 

Format: 

callsys ! PALcode format 

Operation: 

if (PS<mode> EQ 0) then 
machineCheck 

endif 
USP <- SP 
SP <- KSP 
PS 4- 0 
SP <— SP - {6*8} 
(SP+00) «- 8 
(SP+08) <- PC 
(SP+08) <- GP 
GP «- KGP 
PC <— entSys 

Exceptions: 

Machine check—invalid kernel mode callsys 

Kernel s tack not valid 

Instruction mnemonics: 

callsys System call 

Description: 

The system call (callsys) instruct ion is supported only from user mode. (Issuing a 
callsys from kernel mode causes a machine check exception). 

The callsys instruct ion switches mode to kernel and builds a callsys s tack frame. 
The GP is loaded wi th the KGP. The exception t hen dispatches to t he system call 
code pointed to by the entsys register. On en t ry to the callsys code, the scratch 
registers t 8 . . t l l a re UNPREDICTABLE. 

! Mode=kernel 

! PS of mode=user, IPL=0 
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2.1.4 Generate Trap 

Format: 

gen t rap ! PALcode format 

Operation: 

temp <— PS 
if (PS<mode> NE 0) then 

USP «— SP ! Mode is user so switch to kernel 
SP <- KSP 
PS 0 

endif 
SP <- SP - {6 * 8} 
(SP+00) <- temp 
(SP+08) <- PC 
(SP+16) <- GP 
(SP+24) <- aO 
(SP+32) <- al 
(SP+40) <- a2 
aO <- 2 
GP <- KGP 
PC entIF 

Exceptions: 

Kernel s tack not valid 

Instruction mnemonics: 

gen t rap Genera te t r a p 

Description: 

The genera te t r a p (gentrap) instruct ion switches mode to kernel , builds a stackframe 
on the kernel stack, loads t h e G P wi th t he KGP, loads a value of 2 into aO, and 
dispatches to the breakpoint code pointed to by the en t IF register. The registers 
a l . . a2 a re UNPREDICTABLE on en t ry to t he t r a p handler . The saved PC a t (SP+08) 
is the address of the instruct ion following the t r a p instruct ion t h a t caused the t r ap . 

Notes: 

• The opcode and function code for t he gen t rap instruct ion are the same in the 
OpenVMS and the OSF/1 PALcode. 
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2.1.5 Read Unique Value 

Format: 

rdunique ! PALcode format 
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Operation: 

vO <— unique 

Exceptions: 

None 

Instruction mnemonics: 

rdunique Read unique value 

Description: 

The read unique value (rdunique) instruct ion r e tu rn s the process unique value in 
vO. The wri te unique value (wrunique) instruction, described in Section 2.1.6, sets 
the process unique value register. 

Notes: 

• The opcode and function code for the rdunique instruct ion are the same in the 
OpenVMS and the OSF/1 PALcode. 



2.1.6 Write Unique Value 

Format: 

wrunique ! PALcode format 
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Operation: 

unique <— aO 

Exceptions: 

None 

Instruction mnemonics: 

wrunique Write un ique value 

Description: 

The wri te un ique value (wrunique) inst ruct ion sets t he process unique register to 
the value passed in aO. The read unique value (rdunique) instruct ion, described in 
Section 2.1.5, r e t u r n s the process un ique value. 

Notes: 

• The opcode and function code for t he wrunique instruct ion a re the same in the 
OpenVMS and t h e OSF/1 PALcode. 



2.2 Privileged OSF/1 PALcode Instructions 

The Privileged OSF/1 PALcode instruct ions provide an abs t rac ted interface to control 
the privileged s ta te of the machine. 

Table 2 - 2 : Privileged OSF/1 PALcode Instructions 
Mnemonic Name 

halt Halt the processor 
Described in Common Architecture, Chapter 6 

rdps Read processor status 

rdusp Read user stack pointer 

rdval Read system value 

retsys Return from system call 

rti Return from trap, fault, or interrupt 

swpctx Swap process context 

swpipl Swap IPL 

tbi TB (translation buffer) invalidate 

whami Who am I 

wrent Write system entry address 

wrfen Write floating-point enable 

wrkgp Write kernal global pointer 

wrvptptr Write virtual page table pointer 
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2.2.1 Read Processor Status 

Format: 

rdps ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- PS 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdps Read processor s t a tus 

Description: 

The read processor s t a tus (rdps) ins t ruct ion r e t u r n s t he P S in vO. On r e tu rn from 
the rdps instruction, regis ters tO and t 8 . . t l l a re UNPREDICTABLE. 
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2.2.2 Read User Stack Pointer 

Format: 

rdusp ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- USP 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdusp Read user s tack pointer 

Description: 

The read user stack pointer (rdusp) instruct ion r e tu rn s t he user stack pointer 
in vO. The user stack pointer is wr i t ten by the wrusp instruction, described in 
Section 2.2.13. On r e t u r n from the rdusp instruction, regis ters tO and t 8 . . t l l a re 
UNPREDICTABLE. 
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2.2.3 Read System Value 

Format: 

rdval '.PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <— sysvalue 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdval Read system value 

Description: 

The read system value (rdval) instruct ion r e tu rn s t he sysvalue in vO, allowing access 
to a 64-bit per-processor value for use by the operat ing system. On r e t u r n from the 
rdval instruction, regis ters tO and t 8 . . t l l a re UNPREDICTABLE. 
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2.2.4 Return From System Call 

Format: 

retsys ! PALcode format 

Operation: 

if {PS<mode> EQ 1} then 
{Initiate opDec fault} 

endif 
tmp «- (SP+08) 
GP «- (SP+16) 
KSP <- SP + {6*8} 
SP <- USP 
intr_flag = 0 ! Clear the interrupt flag 
lock_flag = 0 ! Clear the load lock flag 
PS <— 8 ! Mode=user 
PC <— tmp 

Exceptions: 

Opcode reserved to Digital 

Kernel s tack not valid (halt) 

Instruction mnemonics: 

retsys Re tu rn from system call 

Description: 

The r e tu rn from system call (retsys) instruct ion pops t he r e tu rn address and the user 
mode global pointer from the kernel stack. I t t hen saves the kernel s tack pointer, 
sets t he mode to user, sets t he IPL to zero, and enters the user mode code a t the 
address popped off the stack. 
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2.2.5 Return From Trap, Fault or Interrupt 

Format: 

r t i ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
tempps «- (SP+0) 
temppc <- (SP+8) 
GP <- (SP+16) 
aO 4 - (SP+24) 
al <- (SP+32) 
a2 <- (SP+40) 
SP <- SP + {6 * 8} 
if { tempps<3> EQ 1} then 

PC «— temppc 

Exceptions: 

Opcode reserved to Digital 

Kernel s tack not valid (halt) 

Instruction mnemonics: 

r t i Re tu rn from t r ap , fault, or in te r rup t 

Description: 

The r e tu rn from fault, t r ap , or in t e r rup t (rti) ins t ruct ion pops regis ters (a0. .a3, and 
GP), t he PC, and the PS , from the kernel stack. If t he new mode is user, the kernel 
s tack is saved and the user s tack is restored. 

KSP <- SP 
SP <- USP 
tempps «— 8 

! New mode is user 

endif 
intr_flag = 0 
lock_flag = 0 
PS <- tempps<3:0> 

! Clear the interrupt flag 
! Clear the load lock flag 
! Set new PS 
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2.2.6 Swap Process Context 

Format: 

swpctx 

Operation: 

! PALcode format 

1 Save current state 

! Return old PCBB 
! Switch PCBB 
! Restore new state 

if (PS<mode> EQ 1) 
{Initiate opDec fault} 

endif 
(PCBB) <- SP 
(PCBB+8) <- USP 
tmp <- PCC 
tmpl «- tmp<31:0> + tmp<63:32> 
(PCBB+24)<31:0> <- tmpl<31:0> 
vO <- PCBB 
PCBB aO 
SP +- (PCBB) 
USP *- (PCBB+8) 
oldPTBR <- PTBR 
PTBR <- (PCBB+16) 
tmpl <- (PCBB+24) 
PCC<63:32> <- {tmpl - tmp}<31:0> 
FEN <- (PCBB+40) 
if {process unique register implemented} then 

(vO+32) «— unique 
unique «- (PCBB+32) 

endif 
if {ASN implemented} 

ASN +- tmpl<63:32> 
else 

if (oldPTBR NE PTBR) 
{Invalidate all TB entries with ASM=0} 

endif 
endif 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

swpctx Swap process context 
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Description: 

The swap process context (swpctx) instruct ion saves the cur ren t process da ta in 
the cur ren t PCB. Then swpctx switches to t he PCB passed in aO and loads the 
new process context. The old PCBB is r e tu rned in vO. On r e t u r n from the swpctx 
instruct ion, regis ters tO, t 8 . . t l l , and aO a re UNPREDICTABLE. 
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2.2.7 Swap IPL 

Format: 

swpipl ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- PS<IPL> 
PS<IPL> <- a0<2:0> 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

swpipl Swap IPL 

Description: 

The swap IPL (swpipl) instruct ion r e tu rns the cur rent value of the PS<IPL> bits in 
vO and sets the IPL to the value passed in aO. On r e tu rn from the spwipl instruction, 
registers tO, t 8 . . t l l , and aO are UNPREDICTABLE. 
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2.2.8 TB Invalidate 

Format: 

tbi ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
case aO begin 

1: I tbisi 
{Invalidate ITB entry for va=al} 
break; 

2: ! tbisd 
{Invalidate DTB entry for va=al} 
break; 

3: ! tbis 
{Invalidate both ITB and DTB entry for va=al} 
break; 

-1: l tbiap 
{Invalidate all TB entries with ASM=0} 
break; 

-2: ! tbia 
{Flush all TBs} 
break; 

otherwise: 
break; 

endcase 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

tbi TB ( t ransla t ion buffer) inval idate 

Description: 

The TB inval idate (tbi) ins t ruct ion removes specified entr ies from the I and D 
t rans la t ion buffers (TBs) when t he mapp ing changes. The tbi instruct ion removes 
specific en t ry types based on a CASE selection of the value passed in register 
aO. On r e t u r n from the tbi instruct ion, regis ters tO, t 8 . . t l l , aO, and a l are 
UNPREDICTABLE. 
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2.2.9 Who Am I 

Format: 

whami ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <— whami 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

whami Who a m I 

Description: 

The who am I (whami) instruct ion r e tu rn s the processor n u m b e r for the current 
processor in vO. The processor number is in t he range 0 to the number of processors 
minus one (0 . .maxCPU- l ) t h a t can be configued in t he system. On r e tu rn from the 
whami instruction, registers tO and t 8 . . t l l a re UNPREDICTABLE. 
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2.2.10 Write System Entry Address 

Format: 

wren t ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
case al begin 

0: ! Write the Entlnt: 
entlnt <— aO 
break; 

1: ! Write the EntArith: 
entArith «— aO 
break; 

2: ! Write the EntMM: 
entMM <- aO 
break; 

3: ! Write the EntIF: 
entIF <— aO 
break; 

4: ! Write the EntUna: 
entUna <— aO 
break; 

5: ! Write the EntSys: 
entSys <— aO 
break; 

otherwise: 
break; 

endcase; 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wren t Write system en t ry address 

Description: 

The wri te system ent ry address (wrent) instruct ion de termines the specific system 
entry point based on a CASE selection of t h e value passed in regis ter a l . The wrent 
instruct ion t hen sets t he v i r tua l address of t he specified system ent ry point to the 
value passed in aO. 
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For best performance all t he addresses should be kseg addresses . (See Chapte r 3 
for a definition of kseg addresses) . 

On r e tu rn from the wren t instruction, regis ters tO, t 8 . . t l l , aO, and a l are 
UNPREDICTABLE. 
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2.2.11 Write Floating-Point Enable 

Format: 

wrfen ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
FEN <- a0<0> 
(PCBB+40) «- aO AND 1 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrfen Write floating-point enable 

Description: 

The wri te floating-point enable (wrfen) instruct ion wri tes bit zero of t he value passed 
in aO to the floating-point enable register. The wrfen instruct ion also wri tes the value 
for F E N to the PCB a t offset (PCBB+40). On r e t u r n from the wrfen instruction, 
regis ters tO, t 8 . . t l l , and aO a re UNPREDICTABLE. 
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2.2.12 Write Kernel Global Pointer 

Format: 

wrkgp ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
KGP «- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrkgp Write kerna l global pointer 

Description: 

The wri te kernel global pointer (wrkgp) instruct ion wri tes the value passed in aO to 
the kernel global pointer (KGP) in ternal register. The KGP is used to load the G P 
on exceptions. On r e t u r n from the wrkgp instruction, regis ters tO, t 8 . . t l l , and aO 
are UNPREDICTABLE. 
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2.2.13 Write User Stack Pointer 

Format: 
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Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
USP aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrusp Write use r s tack pointer 

Description: 

The wri te use r s tack pointer (wrusp) instruct ion wri tes the value passed in aO to the 
user s tack pointer. On r e t u r n from the wrusp instruction, regis ters tO, t 8 . . t l l , and 
aO a re UNPREDICTABLE. 

wrusp ! PALcode format 



2.2.14 Write System Value 

Format: 

wrval ÎPALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
sysvalue <— aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrval Write system value 

Description: 

The wri te system value (wrval) instruct ion wri tes the value passed in aO to a 64-
bit system value register. The combination of wrval wi th the rdval instruction, 
described in Section 2.2.3, allows access by t he operat ing system to a 64-bit per-
processor value. On r e tu rn from the wrval instruction, regis ters tO, t 8 . . t l l , and aO 
are UNPREDICTABLE. 
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2.2.15 Write Virtual Page Table Pointer 

Format: 

wrvptp t r ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
VPTPTR «- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrvptp t r Write v i r tua l page table pointer 

Description: 

The wri te v i r tua l page table pointer (wrvptptr) instruct ion wri tes t he pointer passed 
in aO to t h e vi r tua l page table pointer regis ter (VPTPTR). The VPTPTR is described 
in Chapte r 3. On r e t u r n from the wrvp tp t r instruction, regis ters tO, t 8 . . t l l , and aO 
are UNPREDICTABLE. 
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Chapter 3 

OSF/1 Memory Management (III) 

3.1 Virtual Address Spaces 

A vir tual address is a 64-bit uns igned integer t h a t specifies a byte location within the 
v i r tua l address space. Implementa t ions subset the supported address space to one 
of four sizes (43, 47, 5 1 , or 55 bits) as a function of page size. The minimal supported 
v i r tua l address size is 43 bi ts . If an implementa t ion supports less t h a n 64-bit v i r tual 
addresses , i t m u s t check t h a t all t he VA<63:vaSize> bi ts a re equal to VA<vaSize- l>. 
This gives two disjoint r anges for valid v i r tua l addresses . For example, for a 
43-bit v i r tua l address space, valid v i r tua l address ranges a re 0 . . 3 F F F F F F F F F F 16 

and F F F F F C 0 0 0 0 0 0 0 0 0 0 i 6. . F F F F F F F F F F F F F F F F 1 6. Access to v i r tua l addresses 
outside of an implementat ion 's valid v i r tua l address r ange cause an access-violation 
fault. 

The v i r tua l address space is divided into 3 segments . The two bits 
v a < v a S i z e - l : v a S i z e - 2 > select a segment as shown in Table 3 - 1 . 

Table 3-1 : Virtual Address Space Segments 
VA<vaSize- l :vaSize -2> Name Mapp ing Access Contro l 

Ox segO Mapped via TB Programmed in PTE 

10 kseg PA +- sext(VA<vaSize-3:0>) Kernel Read/Write 

11 segl Mapped via TB Programmed in PTE 

For kseg, t he relocation, shar ing, and protection are fixed. For segO and seg l , t he 
vi r tual address space is broken into pages, which are the un i t s of relocation, shar ing, 
and protection. The page size ranges from 8 Kbytes to 64 Kbytes. Therefore, system 
software should allocate regions wi th differing protection on 64 Kbyte vi r tual address 
boundar ies to ensure image compatibility across all Alpha implementa t ions . 

Memory m a n a g e m e n t provides t he mechanism to m a p the active pa r t of the vir tual 
address space to the available physical address space. The operat ing system controls 
the virtual-to-physical address mapp ing tables and saves the inactive (but used) 
pa r t s of the v i r tua l address space on external s torage media. 

3.1.1 Segment SegO and Segl Virtual Address Format 

The processor genera tes a 64-bit v i r tua l address for each instruct ion and operand in 
memory. A segO or segl v i r tua l address consists of th ree level-number fields and a 
byte_within_page field, as shown in Figure 3 - 1 . 
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Figure 3-1 : Virtual Address Format 

SEXT (leveM <level size-3>) leveM Ievel2 Ievel3 byte_within_page 

Figure 3-2: Kseg Virtual Address Format 

Segment Select=102 Physical Address 

The byte_within_page field can be e i ther 13, 14, 15, or 16 bits depending on a 
par t icular implementat ion. Thus , the allowable page sizes a re 8 Kbytes, 16 Kbytes, 
32 Kbytes, and 64 Kbytes. Each level-number field is 0-n bi ts long, where , for 
example, η is 9 for an 8K page size. Level-number fields are the same size for a 
given implementat ion. 

The level-number fields are a function of the page size; all page table entr ies a t any 
given level do not exceed one page. The P F N field in the PTE is always 32 bits wide. 
Thus as the page size grows the v i r tua l and physical address size also grows. 

In Table 3-2 , the physical address column is the max imum physical address 
supported by the smaller of segO/segl or kseg, as indicated. 

Table 3 - 2 : Virtual Address Options 

Page Byte Level Virtual Physical Physical 
Size Offset Size Address Address Address 
(bytes) (bits) (bits) (bits) (bits) Limited by 

8K 13 10 43 41 kseg 

16K 14 11 47 45 kseg 

32K 15 12 51 47 segO/segl 

64K 16 13 55 48 segO/segl 

3.1.2 Kseg Virtual Address Format 

The processor genera tes a 64-bit v i r tual address for each instruct ion and operand 
in memory. A kseg vir tual address consists of segment select field with a value 
of 1 0 2 and a physical address field. The segment select field is the two bits 
va<vaS ize - l : vaS ize -2> . The physical address field is va<vaSize-3:0>. 
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3.2 Physical Address Space 

Physical addresses a re a t most vaS ize -2 bi ts . This allows all of physical memory 
to be accessed via kseg. A processor may choose to implement a smaller physical 
address space by not implement ing some number of high order bi ts . The two 
most significant implemented physical address bits select a caching policy or 
implementa t ion dependent type of address space. Implementa t ions will use these 
bi ts as appropr ia te for the i r systems. For example, in a workstat ion wi th a 30-bit 
physical address space, bit<29> might select between memory and non-memory like 
regions, and bit <28> could enable or disable caching; see Common Architecture, 
Chapter 5. 

3.3 Memory Management Control 

Memory m a n a g e m e n t is always enabled. Implementa t ions m u s t provide an 
environment for PALcode to service exceptions and to initialize and boot the 
processor. For example PALcode might r u n wi th I-s t ream mapping disabled. 

3.4 Page Table Entries 

The processor uses a quadword page table en t ry (PTE) to t r ans l a t e segO and segl 
v i r tual addresses to physical addresses . A PTE contains ha rdware and software 
control information and the physical page frame number (PFN). A PTE is a quadword 
with the following fields: 

Figure 3-3: Page Table Entry (PTE) 
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Table 3-3: Page Table Entry (PTE) Bit Summary 
Bits Name Mean ing 

63:32 PFN Page frame number 
The PFN field always points to a page boundary. If V is set, the PFN 
is concatenated with the byte_within_page bits of the virtual address to 
obtain the physical address. 

31:16 SW Reserved for software. 

15:14 RSVO Reserved for hardware; SBZ. 
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Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary 
Bits Name Meaning 

13 UWE User write enable. 
This bit enables writes from user mode. If this bit is 0 and a store is 
attempted while in user mode, an access-violation fault occurs. This bit 
is valid even when V=0. 

12 KWE Kernel write enable. 
This bit enables writes from kernel mode. If this bit is 0 and a store is 
attempted while in kernel mode, an access-violation fault occurs. This 
bit is valid even when V=0. 

11:10 RSV1 Reserved for hardware; SBZ. 

9 URE User read enable. 
This bit enables reads from user mode. If this bit is 0 and a load or 
instruction fetch is attempted while in user mode, an Access Violation 
occurs. This bit is valid even when V=0. 

8 KRE Kernel read enable. 
This bit enables reads from kernel mode. If this bit is 0 and a load or 
instruction fetch is attempted while in kernel mode, an access-violation 
fault occurs. This bit is valid even when V=0. 

7 RSV2 Reserved for hardware; SBZ. 

6:5 GH Granularity hint. 
Software may set these bits to a non-zero value to supply a hint to 
translation buffer implementations that a block of pages can be treated 
as a single larger page: 

1. A block is an aligned group of 8**N pages where Í is the value of 
PTE<6:5>, e.f. a group of 1, 8, 64, or 512 pages starting at a virtual 
address with page_size + 3*N low-order zeros. 

2. The block is a group of physically contiguous pages that are aligned 
both virtually and physically. Within the block, the low 3*N bits of 
the PFNs describe the identity mapping and the high 32-3*N PFN 
bits are all equal. 

3. Within the block, all PTEs have the same values for bits <15:0>. 
Hardware may use this hint to map the entire block with a single 
TB entry, instead of 8, 64, or 512 separare TB entries. 

ASM Address space match. 
When set, this PTE matches all address space numbers. For a given VA, 
ASM must he set consistently in all processes, otherwise the address 
mapping is UNPREDICTABLE. 

FOE Fault on execute. 
When set, a Fault on Execute exception occurs on an attempt to execute 

-> 4-U~ ~ any location in the page. 
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Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary 
Bits Name Mean ing 

2 FOW Fault on write. 
When set, a Fault on Write exception occurs on an attempt to write any 
location in the page. 

1 FOR Fault on read. 
When set, a Fault on Read exception occurs on an attempt to read any 
location in the page. 

0 V Valid. 
Indicates the validity of the PFN field. When V is set the PFN field is 
valid for use by hardware. When V is clear, the PFN field is reserved 
for use by software. The V bit does not affect the validity of PTE<15:1> 
bits. 

3.4.1 Changes to Page Table Entries 

The operat ing system changes P T E s as p a r t of i ts memory m a n a g e m e n t functions. 
For example, the operat ing system m a y set or clear the V bit, change the P F N field 
as pages a re moved to and from external s torage media, or modify t he software bits . 
The processor ha rdware never changes PTEs . 

Software m u s t gua ran tee t h a t each PTE is always consistent wi thin itself. 
Changing a PTE one field a t a t ime can cause incorrect system operation, such as 
set t ing PTE<V> wi th one instruct ion before establ ishing PTE<PFN> wi th another. 
Execution of an in te r rup t service rout ine between the two instruct ions could use an 
address t h a t would m a p us ing the inconsistent PTE. Software can solve th is problem 
by building a complete new PTE in a regis ter and then moving the new PTE to the 
page table by us ing a n STQ instruct ion. 

Multiprocessing makes the problem more complicated. Another processor could be 
reading (or even changing) the same PTE t h a t t he first processor is changing. Such 
concurrent access m u s t produce consistent resul ts . Software m u s t use some form 
of software synchronization to modify PTEs t h a t a re a l ready valid. Whenever a 
processor modifies a valid PTE, it is possible t h a t o ther processors in a multiprocessor 
system may have old copies of t h a t PTE in the i r t rans la t ion buffer. Software m u s t 
inform other processors of changes to PTEs . H a r d w a r e m u s t ensure t h a t aligned 
quadword reads and wri tes a re atomic operat ions. H a r d w a r e m u s t not cache invalid 
PTEs (PTEs wi th the V bit equal to 0) in t rans la t ion buffers. See Section 3.7 for 
more information. 

Memory protection is the function of val idat ing whe the r a par t icular type of access 
is allowed to a specific page from a par t icu lar access mode. Access to each page is 
controlled by a protection code t h a t specifies, for each access mode, whe the r read or 
wri te references a re allowed. The processor uses t he following to de termine whe ther 
an in tended access is allowed: 

3.5 Memory Protection 
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• The v i r tua l address , which is used to e i ther select kseg mapping or provide the 
index into the page tables . 

• The intended access type (read or write). 

• The cur rent access mode base on Processor Mode. 

For protection checks, the in tended access is read for da t a loads and instruct ion 
fetches, and wri te for da t a stores. 

3.5.1 Processor Access Modes 

There a re two processor modes, user and kernel . The access mode of a runn ing 
process is stored in t he processor s t a tu s mode bi t (PS<mode>). 

3.5.2 Protection Code 

Every page in the vi r tual address space is protected according to i ts use. A program 
may be prevented from reading or wri t ing portions of i ts address space. Associated 
wi th each page is a protection code t h a t describes t he accessibility of the page for 
each processor mode. 

For segO and seg l , t he code allows a choice of read or wri te protection for each 
processor mode. For each mode, access can be read/wri te , read-only, or no-
access. Read and wri te accessibility and the protection for each mode are specified 
independently. 

For kseg, the protection code is kernel read/wri te , user no-access. 

3.5.3 Access-Violation Faults 

An access-violation memory-management fault occurs if an illegal access is 
a t tempted, as determined by the cur ren t processor mode and the page's protection. 

3.6 Address Translation for SegO and Seg1 

The page tables can be accessed from physical memory, or (to reduce overhead) can 
be mapped to a l inear region of the vir tual address space. The following sections 
describe both access methods. 

3.6.1 Physical Access for SegO and Seg1 PTEs 

SegO and segl address t rans la t ion can be performed by accessing entr ies in a three-
level page table s t ruc ture . The page table base register (PTBR) contains the physical 
page frame number (PFN) of the highest level (level 1) page table. Bits <levell> of 
the vi r tual address are used to index into the first level page table to obtain t he 
physical P F N of the base of the second level (level 2) page table. Bits <level2> of 
the vi r tual address a re used to index into the second level page table to obtain the 
physical P F N of the base of the th i rd level (level 3) page table. Bits <level3> of the 
vi r tual address a re used to index the th i rd level page table to obtain the physical 
P F N of the page being referenced. The P F N is concatenated wi th v i r tua l address bits 
<byte_within_page> to obtain the physical address of the location being accessed. 
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If pa r t of any page table does not reside in a memory-like region, or does reside in 
nonexis tent memory, t he operat ion of t h e processor is U N D E F I N E D . 

If the first-level or second-level PTE is valid, t he protection bits a re ignored; the 
protection code in the third-level PTE is used to de termine accessibility. If a first 
level or second level PTE is invalid, a n access-violation fault occurs if t he PTE<KRE> 
equals zero. An access-violation fault on a first-level or second-level PTE implies t h a t 
all lower-level page tables mapped by t h a t PTE do not exist. 

The algori thm to genera te a physical address from a segO or segl v i r tua l address 
follows: 
IF {SEXT(VA<vaSize-l:0>) neq VA} THEN 

{ initiate access-violation fault} 

levell_PTE <— ({PTBR * page_size} + {8 * VA<levell>} ) ! Read physical 
IF levell_PTE<v> EQ 0 THEN 

IF level1_PTE<KRE> eq 0 THEN 
{ initiate access-violation fault} 

ELSE 
{ initiate translation-not-valid fault} 

level2_PTE <— ({level1_PTE<PFN> * page_size} + {8 * VA<level2>} ) I Read physical 
IF level2_PTE<v> EQ 0 THEN 

IF level2_PTE<KRE> eq 0 THEN 
{ initiate access-violation fault} 

ELSE 
{ initiate translation-not-valid fault} 

level3_PTE <— ( {level2_PTE<PFN> * page_size} + {8 * VA<level3>} ) ! Read physical 

IF {{{level3_PTE<UWE> eq 0} AND {write access} AND {ps<mode> EQ 1} } OR 
{{level3_PTE<URE> eq 0} AND {read access} AND {ps<mode> EQ 1} } OR 
{{level3_PTE<KWE> eq 0} AND {write access} AND {ps<mode> EQ 0} } OR 
{{level3_PTE<KRE> eq 0} AND {read access} AND {ps<mode> EQ 0} } } 

THEN 
{initiate memory-management fault} 

ELSE 
IF level3_PTE<v> EQ 0 THEN 

{initiate memory-management fault} 

IF { level3_PTE<FOW> eq 1} AND {write access} THEN 
{initiate memory-management fault} 

IF { level3_PTE<FOR> eq 1} AND {read access} THEN 
{initiate memory-management fault} 

IF { level3_PTE<FOE> eq 1} AND {execute access} THEN 

{initiate memory-management fault} 

Physical_address «— {level3_PTE<PFN> * page__size} OR VA<byte_within_page> 

3.6.2 Virtual Access for SegO or Segl PTEs 

The page tables can be mapped into a l inear region of t he vi r tual address space, 
reducing the overhead for segO and segl PTE accesses. The mapping is done as 
follows: 

1. Select a 2
{3
*

l
^P

a
9

eSize
/
8))+s byte-aligned region (an address wi th 3 *\g(pageSize/S) + 3 

low-order zeros) in the segO or segl address space. Set the v i r tua l page table 
pointer (VPTPTR) wi th a wri te v i r tua l page table pointer instruct ion (wrvptptr) 
to the selected value. 

2. Crea te a levell PTE to m a p t h e page tables as follows. 
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l e v e l l _ P T E = Ο 1 I n i t i a l i z e a l l f i e l d s t o 0 
l e v e l l _ P T E < 6 3 : 3 2 > = p f n _ o f _ L e v e l _ _ l _ p a g e t a b l e 

! S e t t h e PFN t o t h e PFN o f t h e l e v e l o n e p a g e t a b l e 
l e v e l 1_J?TE<8> = 1 ! S e t t h e k e r n e l r e a d e n a b l e b i t 
l e v e l l _ P T E < 0 > = 1 ! S e t t h e v a l i d b i t 

3. Set the levell page table ent ry t h a t corresponds to the VPTB to the created 
l eve l l .PTE . 

4. Set all levell and level 2 valid PTEs to allow kernel read access. With th is se tup 
in place the algori thm to fetch a segO or segl PTE is: 
tmp 4 - left_shift (va, {64 - {{lg(pageSize) *4> - 9}} ) 
tmp «— right_shift (tmp, {64 - {{lg(pageSize) *4} - 9} + lg(pageSize) - 3} ) 
tmp «— VPTB OR tmp 
tmp<2:0> <— 0 
level3_PTE «— (tmp) ! Load PTE using it's virtual address 

The vir tual access method is used by PALcode for most TB fills. 

3.7 Translation Buffer 

In order to save actual memory references when repeatedly referencing the 
same pages, ha rdware implementa t ions include a t rans la t ion buffer to remember 
successful v i r tual address t rans la t ions and page s ta tes . When the process context 
is changed, a new value is loaded into t he address space number (ASN) in te rna l 
processor register wi th a swap process context (swpctx) instruction. This causes 
address t rans la t ions for pages wi th PTE<ASM> clear to be inval idated on a processor 
t h a t does not implement address space numbers . 

Additionally, when the software changes any pa r t (except the software field) of a 
valid PTE, i t m u s t also execute a CALL_PAL tbi instruction. The ent i re t rans la t ion 
buffer can be inval idated by tbia, and all ASM=0 entr ies can be invalidated by tbiap. 
The t rans la t ion buffer m u s t not store invalid PTEs . Therefore, the software is not 
required to invalidate t rans la t ion buffer entr ies when mak ing changes for PTEs t h a t 
are already invalid. 

3.8 Address Space Numbers 

The Alpha archi tecture allows a processor to optionally implement address space 
numbers (process tags) to reduce the need for invalidation of cached address 
t rans la t ions for process specific addresses when a context switch occurs. 

The address space number for the cur ren t process is loaded by software in the 
address space number (ASN) with a swpctx instruction. ASNs are processor 
specific and the ha rdware makes no a t t empt to ma in ta in coherency across mult iple 
processors. In a multiprocessor system, software is responsible for ensur ing the 
consistency of TB entr ies for processes t h a t might be rescheduled on different 
processors. 
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PROGRAMMING NOTE 
System software should not a s sume t h a t the number 
of ASNs is a power of two. This allows, for example, 
ha rdware to use Ν TB t ag bits to encode (2**N)-3 ASN 
values, one value for ASM=1 PTEs , and one for invalid. 

There a re several possible ways of us ing ASNs. There 
a re several complications in a multiprocessor system. 
Consider t he case where a process t h a t executed on 
processor -1 is rescheduled on processor -2 . If a page 
is deleted or i ts protection is changed, the TB in 
processor -1 h a s s tale da ta . One solution would be to 
send an interprocessor in t e r rup t to all t he processors on 
which th i s process could have r u n and cause t hem to 
inval idate the changed PTE. This resul t s in significant 
overhead in a system with several processors. Another 
solution would be to have software inval idate all TB 
ent r ies for a process on a new processor before it can 
begin execution, if t he process executed on another 
processor dur ing i ts previous execution. This ensures 
the deletion of possibly stale TB entr ies on t he new 
processor. A th i rd solution would assign a new ASN 
whenever a process is r u n on a processor t h a t is not the 
same as the las t processor on which it ran . 

3.9 Memory-Management Faults 

On a memory-management fault, t he fault code (MMCSR) is passed in a l to specify 
the type of fault encountered, as shown in Table 3-4. 

Table 3 - 4 : Memory-Management Fault Type Codes 
Fau l t MMCSR va lue 

Translation not valid 0 

Access violation 1 

Fault on read 2 

Fault on execute 3 

Fault on write 4 

• A translat ion-not-valid fault is t a k e n when a read or wri te reference is a t tempted 
through an invalid PTE in a first, second, or third-level page table. 
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• An access-violation fault is t aken on a reference to a segO or segl address when 
the protection field of the third-level PTE t h a t maps the da t a indicates t h a t the 
intended page reference would be illegal in the specified access mode. An access-
violation fault is also t aken if the KRE bit is a zero in an invalid first or second 
level PTE. An access-violation fault is genera ted for any access to a kseg address 
when the mode is user (PS<mode> EQ 1). 

• A fault-on-read (FOR) fault occurs when a read is a t t empted wi th PTE<FOR> 
set. 

• A fault-on-execute (FOE) fault occurs when an instruct ion fetch is a t t empted 
with PTE<FOE> set. 

• A fault-on-write (FOW) fault occurs when a wri te is a t t empted wi th PTE<FOW> 
set. 
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Chapter 4 

OSF/1 Process Structure (III) 

4.1 Process Definition 

A process is a single t h read of execution. I t is t he basic ent i ty t h a t can be scheduled 
and is executed by the processor. A process consists of an address space and both 
software and ha rdware context. The h a r d w a r e context of a process is defined by the 
the following: 

• 30 integer registers (excluding R31 and SP) 

• 31 floating-point regis ters (excluding F31) 

• The program counter (PC) 

• The two per-process stack pointers (USP/KSP) 

• The processor s t a tus (PS) 

• The address space number (ASN) 

• The process cycle counter (PCC) 

• The page table base register (PTBR) 

• The process unique value (unique) 

This information m u s t be loaded if a process is to execute. 

While a process is executing, some of i ts h a r d w a r e context is being upda ted in the 
in te rna l registers . When a process is not being executed, i ts ha rdware context is 
stored in memory in a software s t ruc ture te rmed the process control block (PCB). 
Saving the process context in t he PCB and loading new values from another PCB for 
a new context is t e rmed context switching. Context switching occurs as one process 
after another is scheduled for execution. 

4.2 Process Control Block (PCB) 

As shown in Figure 4—1, the PCB holds t he s ta te of a process. 

The contents of the PCB are loaded and saved by the swpctx instruction. The PCB 
m u s t be quadword aligned and should be 64 byte aligned for bes t performance. 
Kernel mode code can read the PTBR, t he ASN, and the F E N for t he cur ren t process 
from the PCB. Kernel mode code m u s t use the rdusp/wrusp instruct ions to access 
the USP. The PCC m u s t be read wi th the rpcc instruction. The unique value can be 
accessed wi th the rdunique and wrunique instruct ions. 
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Figure 4-1 : Process Control Block (PCB) 
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Chapter 5 

OSF/1 Exceptions and Interrupts (III) 

5.1 Introduction 

At cer ta in t imes dur ing the operation of a system, events wi thin the system require 
the execution of software outside the explicit flow of control. When such an event 
occurs, an Alpha processor forces a change in control flow from t h a t indicated by the 
cur ren t instruct ion s t ream. The notification process for such an event is e i ther an 
exception or an in te r rupt . 

5.1.1 Exceptions 

Exceptions a re re levant pr imari ly to the current ly executing process. Exception 
service rout ines execute in response to exception conditions caused by software. All 
exception service rout ines execute in kernel mode on the kernel stack. Exception 
conditions consist of faults, a r i thmet ic t r aps , and synchronous t r aps : 

• A fault occurs dur ing an instruct ion and leaves the regis ters and memory in 
a consistent s ta te such t h a t el iminat ion of t he fault condition and subsequent 
réexécution of the instruct ion gives correct resul ts . Fau l t s a re not guaran teed to 
leave t he machine in exactly t h e same s ta te i t was in immediately prior to the 
fault, bu t r a t h e r in a s ta te such t h a t the instruct ion can be correctly executed if 
t he fault condition is removed. The PC saved in the exception stack frame is the 
address of the fault ing instruct ion. An r t i instruct ion to t h a t PC reexecutes the 
fault ing instruction. 

• An ar i thmet ic t r a p occurs a t t he completion of the operation t h a t caused the 
exception. Since several inst ruct ions may be in various s tages of execution a t any 
point in t ime, it is possible for mult iple ar i thmet ic t r aps to occur simultaneously. 

The PC t h a t is saved in the exception frame on t r aps is t h a t of the next 
instruct ion t h a t would have been issued if t he t r app ing conditions had not 
occurred. However, t h a t PC is not necessarily the address of the instruct ion 
immediately following the ins t ruct ions t h a t encountered t he t r a p condition. 
Fur ther , in tervening instruct ions m a y have changed operands or other s ta te used 
by the instruct ions encounter ing t h e t r a p conditions. 

An r t i instruct ion to t h a t PC does not reexecute t h e t r app ing instruct ions, nor 
does it reexecute any in tervening instruct ions; it simply continues execution from 
the point a t which t h e t r a p was t aken . 

In general , i t is difficult to fix u p resul t s and continue program execution a t the 
point of an ar i thmet ic t r ap . Software can force a t r a p to be continued more easily 
wi thout t he need for complicated fixup code. This is accomplished by following a 
set of code generat ion restr ict ions in the code t h a t could cause ar i thmet ic t r aps 

OSF/1 Exceptions and Interrupts (III) 5-1 



which are to be completed by a software t r a p handle r (see Common Architecture, 
Chapter 4), including specifying the /S software completion modifier in each such 
instruction. 

The AND of all t he software completion modifiers for t rapp ing instruct ions is 
provided to t he ar i thmet ic t r a p hand le r in t he exception s u m m a r y SWC bit. If 
the SWC is set, a t r a p handle r may find t he t r igger instruct ion by scanning 
backward from the t r a p PC unt i l each register in the register wri te mask has 
been an instruct ion dest ination. The tr igger instruct ion is the first instruct ion in 
the I-s tream order to get a t r a p within a t r a p shadow. (See Common Architecture, 
Chapter 4 for a definition of t r a p shadow.) If t he SWC bit is clear, no fixup is 
possible. 

• A synchronous t r a p occurs a t t he completion of the operation t h a t caused the 
exception. No instruct ions can be issued between the completion of the operation 
t h a t caused the exception and the t r ap . 

5.1.2 Interrupts 

The processor a rb i t ra tes in te r rup t reques ts . When the in te r rup t priority level (IPL) 
of an outs tanding in te r rup t is grea ter t h a n the cur ren t IPL, the processor ra ises IPL 
to the level of the in te r rup t and dispatches to en t ln t , t he in te r rup t ent ry to the OS. 
In te r rup t s are serviced in kernel mode on the kernel stack. In t e r rup t s can come 
from one of four sources: I/O devices, t he clock, performance counters , or machine 
checks. 

5.2 Processor Status 

The processor s t a tus (PS) is a four-bit register t h a t contains the cur ren t mode 
(PS<mode>) in bit <3> and a three-bi t in t e r rup t priority level (PS<IPL>) in bi ts 
<2..0>. The PS<mode> bit is zero for kernel mode and one for user mode. The 
PS<IPL> bits a re always zero if t he mode is user and can be 0 to 7 if t he mode is 
kernel . The PS is changed when an in te r rup t or exception is ini t ia ted and by the 
r t i , re tsys , and swpipl instruct ions. 

The uses of the P S values are shown in Table 5 - 1 . 

Table 5 -1 : Processor Status Summary 

PS<mode> PS<IPL> Mode Use 

1 0 User User software 

0 0 Kernel System software 

0 1 Kernel System software 

0 2 Kernel System software 

0 3 Kernel Low priority device interrupts 

0 4 Kernel High priority device interrupts 
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Table 5-1 (Cont.): Processor Status Summary 

PS<mode> PS<IPL> Mode Use 

0 5 Kernel Clock, and interprocessor interrupts 

0 6 Kernel Real time devices 

0 7 Kernel Machine checks 

5.3 Stack Frames 

There a re two types of system entr ies—those for t he callsys instruct ion and those for 
exceptions and in te r rup t s . Both types use t h e same s tack frame layout, a s shown in 
Figure 5 - 1 . The stack frame contains space for the PC, the PS , the saved GP, and 
the saved regis ters aO, a l , a2. On entry, t he SP points to the saved P S . 

The callsys en t ry saves the PC, t he PS , and the GP. The exception and in te r rup t 
entr ies save the PC, the PS , the GP, and also save the regis ters a0. .a2. 

Figure 5-1 : Stack Frame Layout 
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PS :00 

PC :08 

GP :16 

aO :24 

a1 :32 
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5.4 System Entry Addresses 

All system entr ies a re in kernel mode. The in te r rup t priority P S bi ts (PS<IPL>) are 
set as shown in t he following table . The system ent ry point address is set by the 
CALL_PAL wren t instruct ion, as described in Section 2.2.10. 

Table 5-2: Entry Point Address Registers 
Entry Point Value in aO Value in a l Value in a2 PS<IPL> 

entArith Exception Register mask UNPREDICT- Unchanged 
summary ABLE 

entIF Fault Type code UNPREDICT- UNPREDICT- Unchanged 
ABLE ABLE 
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Table 5-2 (Cont.): Entry Point Address Registers 
E n t r y Point Value in aO Value in a l Value in a2 PS<IPL> 

entlnt Interrupt type Vector UNPREDICT-
ABLE 

Priority of interrupt 

entMM VA MMCSR Cause Unchanged 

entSys pO pl p2 Unchanged 

en tUna VA Opcode Src/Dst Unchanged 

5.4.1 System Entry Arithmetic Trap (entArith) 

The ar i thmet ic t r a p entry, entAri th, is called when an ar i thmet ic t r a p occurs. On 
entry, aO contains the exception s u m m a r y register and a l contains the exception 
register wri te mask. Section 5.4.1.1 describes the exception s u m m a r y register and 
Section 5.4.1.2 describes the register wri te mask . 

5.4.1.1 Exception Summary Register 

The exception summary register, shown in Figure 5-2 and described in Table 5 - 3 , 
records the various types of ar i thmet ic exceptions t h a t can occur together. Those 
types of exceptions a re listed and described in Table 5 - 3 . 

Figure 5-2: Exception Summary Register 
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Table 5-3: Exception Summary Register Bit Definitions 
Bit Description 

0 Software completion (SWC) 
Is set when all of the other arithmetic exception bits were set by floating-operate 
instructions with the /S software completion trap modifier set. See Common 
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause 
an arithmetic trap, and Section 5.1.1 for rules about using the SWC bit in a trap 
handler. 
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Table 5-3 (Cont.): Exception Summary Register Bit Definitions 
Bit Descr ip t ion 

1 Invalid operation (INV) 
An attempt was made to perform a floating arithmetic, conversion, or comparison 
operation, and one or more of the operand values were illegal. 
An INV trap is reported for most floating-point operate instructions with an input 
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal. 
Floating invalid operation traps are always enabled. If this trap occurs, the result 
register is written with an UNPREDICTABLE value. 

2 Division by zero (DZE) 
An attempt was made to perform a floating divide operation with a divisor of zero. 
A DZE trap is reported when a finite number is divided by zero. Floating divide by 
zero traps are always enabled. If this trap occurs, the result register is written with 
an UNPREDICTABLE value. 

3 Overflow (OVF) 
A floating arithmetic or conversion operation overflowed the destination exponent. 
An OVF trap is reported when the destination's largest finite number is exceeded in 
magnitude by the rounded true result. Floating overflow traps are always enabled. If 
this trap occurs, the result register is written with an UNPREDICTABLE value. 

4 Underflow (UNF) 
A floating arithmetic or conversion operation underflowed the destination exponent. 
An UNF trap is reported when the destination's smallest finite number exceeds in 
magnitude the non-zero rounded true result. Floating underflow trap enable can be 
specified in each floating-point operate instruction. If underflow occurs, the result 
register is written with a true zero. 

5 Inexact result (INE) 
A floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 
An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact 
result trap enable can be specified in each IEEE floating-point operate instruction. The 
rounded result value is stored in all cases. 

6 Integer overflow (IOV) 
An integer arithmetic operation or a conversion from floating to integer overflowed the 
destination precision. 
An IOV trap is reported for any integer operation whose true result exceeds the 
destination register size. Integer overflow trap enable can be specified in each 
arithmetic integer operate instruction and each floating-point convert-to-integer 
instruction. If integer overflow occurs, the result register is written with the truncated 
true result. 
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5.4.1.2 Exception Register Write Mask 

The exception register wri te mask pa rame te r records all registers t h a t were ta rge ts 
of instructions t h a t set the bits in the exception s u m m a r y register. There is a one-
to-one correspondence between bits in the register wri te m a s k quadword and the 
register numbers . The quadword records, s ta r t ing a t bit 0 and proceeding r ight 
to left, which of the registers rO through r 3 1 , t hen fl) th rough £31, received an 
exceptional result . 

NOTE 
For a sequence such as: 

ADDF F 1 , F 2 , F 3 
MULF F 4 , F 5 , F 3 

if t he add overflows and the mult iply does not, t he OVF 
bit is set in the exception summary, and the F 3 bit is 
set in the register mask , even though the overflowed 
sum in F3 can be overwri t ten with an in-range product 
by the t ime the t r a p is t aken . (This code violates the 
dest inat ion reuse rule for software completion. See 
Common Architecture, Chapter 4 for the dest inat ion 
reuse rules.) 

The PC value saved in the exception stack frame is the v i r tua l address of the next 
instruction. This is defined as the vir tual address of the first instruct ion not executed 
after the t r a p condition was recognized. 

5.4.2 System Entry Instruction Fault (entIF) 

The instruction fault en t ry is called for bpt, bugchk, gent rap , opDec, and for a F E N 
fault (floating-point instruct ion when the floating-point un i t is disabled, F E N EQ 0). 
On entry, aO contains a 0 for a bpt, a 1 for bugchk, a 2 for gent rap , a 3 for F E N fault, 
and a 4 for opDec. No addit ional da ta is passed in a l . . a2 . The saved PC a t (SP+00) 
is the address of the instruct ion t h a t caused the fault for F E N faults. The saved 
PC a t (SP+00) is the address of the instruct ion after the instruct ion t h a t caused the 
fault bpt, bugchk, gent rap , and opDec faults. 

5.4.3 System Entry Hardware Interrupts (entlnt) 

The in te r rup t ent ry is called to service a ha rdware in te r rupt , or a machine check. 
Table 5-4 shows wha t is passed in a0..a2 and the PS<IPL> set t ing for various 
in te r rupts . 
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Table 5-4: System Entry Hardware Interrupts 

E n t r y Type Value in aO Value in a l Value in a2 PS<IPL> 

Interprocessor 
interrupt 

0 UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

5 

Clock 1 UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

5 

Machine check 2 Interrupt 
vector 

Pointer to 
Logout Area 

7 

I/O device 
interrupt 

3 Interrupt 
vector 

UNPREDICT-
ABLE 

Level of device 

Performance 
counter 

4 Interrupt 
vector 

UNPREDICT-
ABLE 

6 

On ent ry to the ha rdware in te r rup t rout ine, the IPL h a s been set to the level of the 
in ter rupt . For ha rdware in te r rup t s , regis ter a l contains a platform-specific in te r rup t 
vector. Tha t platform-specific in t e r rup t vector is typically the same value as the SCB 
offset value t h a t would be r e tu rned if t he platform was r u n n i n g OpenVMS PALcode. 

For a machine check, a2 contains kseg address of the logout area . The first 4 
longwords of the logout a rea a re implementat ion- independent . The res t of the logout 
a rea is system specific. The first longword of the logout a rea is a machine check in 
progress flag. If t he flag is non zero when a machine check is being init iated, a 
double machine check ha l t is ini t ia ted instead. The machine check hand le r needs to 
clear the machine check in progress flag when it can hand le a new machine check. 
Figure 5-3 describes the logout area . 

Figure 5-3: Logout Area 
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5.4.4 System Entry MM Fault (entMM) 

The memory-management fault en t ry is called when a memory managemen t 
exception occurs. On entry, aO contains the fault ing vi r tual address and a l contains 
the MMCSR (See Section 3.9). On entry, a2 is set to a minus one (-1) for an 
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instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction, 
or to a 0 for a fault caused by a load instruction. 

5.4.5 System Entry Call System (entSys) 

The system call en t ry is called when a callsys instruct ion is executed in user mode. 
On entry, only registers ( t8 . . t l l ) have been modified. The PC+4 of the callsys 
instruction, the user global pointer, and the cur ren t P S are saved on the kernel 
stack. Additional space for a0..a2 is allocated. After completion of the system service 
routine, the kernel code executes a CALL_PAL retsys instruction. 

5.4.6 System Entry Unaligned Access (entUna) 

The unal igned access ent ry is called when a load or store access is not aligned. On 
entry, aO contains the faulting vi r tual address , a l contains the zero extended six-bit 
opcode (bits <31:26>) of the faulting instruction, and a2 contains the zero extended 
da ta source or dest inat ion register number (bits<25:21> of the fault ing instruction) 

5.5 PALcode Support 

5.5.1 Stack Writeability and Alignment 

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel s tack 
t h a t would produce a memory-management fault will resu l t in a kernel-stack-not-
valid hal t . The stack pointer m u s t always point to a quadword-aligned address . If 
the kernel s tack is not quadword aligned on a PALcode access, a kernel-stack-not-
valid ha l t is init iated. 
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Appendix A 

Software Considerations 

A.1 Hardware-Software Compact 

The Alpha archi tecture, like all RISC archi tectures , depends on careful a t tent ion to 
da t a a l ignment and instruct ion scheduling to achieve high performance. 

Since the re will be various implementa t ions of t he Alpha archi tecture , i t is not 
obvious how compilers can genera te high-performance code for all implementat ions . 
This chapter gives some scheduling guidelines tha t , if followed by all compilers and 
respected by all implementat ions , will resul t in good performance. As such, th is 
section represents a good-faith compact between ha rdware designers and software 
wri ters . I t represents a set of common goals, not a set of archi tectural requi rements . 
Thus , an Appendix, not a Chapter . 

Many of the performance optimizations discussed below are advantageous only for 
frequently executed code. For rare ly executed code, they may produce a bigger 
program t h a t is not any faster. Some of the branching optimizations also depend on 
good prediction of which pa th from a conditional b ranch is more frequently executed. 
These optimizations a re bes t done by us ing a n execution profile, e i ther an es t imate 
genera ted by compiler heuris t ics , or a real profile of a previous run , such as t h a t 
ga thered by PC-sampling in PCA. 

Each computer archi tecture h a s a "na tura l word size." For the P D P - 1 1 , it is 16 bits; 
for VAX, 32 bits; and for Alpha, 64 bi ts . Other archi tectures also have a na tu r a l word 
size t h a t var ies between 16 and 64 bits . Except for very low-end implementat ions , 
ALU da t a pa ths , cache access pa ths , chip pin buses , and ma in memory da t a pa ths 
a re all usual ly the n a t u r a l word size. 

As an archi tecture becomes commercially successful, high-end implementat ions 
inevitably move to double-width da t a pa th s t h a t can t ransfer an aligned (at an even 
n a t u r a l word address) pa i r of n a t u r a l words in one cycle. For Alpha, th is means 
eventual 128-bit wide d a t a pa ths . I t is h a r d to get much speed advantage from paired 
t ransfers unless the code being executed h a s instruct ions and da t a appropriately 
aligned on aligned octaword boundar ies . Since th i s is h a r d to retrofit to old code, 
the following sections sometimes encourage "over-aligning" to octaword boundar ies 
in anticipation of high-speed Alpha implementa t ions . 

In some cases, the re a re performance advantages in aligning instruct ions or da ta 
to cache-block boundar ies , or pu t t ing d a t a whose use is correlated into t he same 
cache block, or t ry ing to avoid cache conflicts by not having da t a whose use is 
correlated placed a t addresses t h a t a re equal modulo the cache size. Since the 
Alpha archi tecture will have m a n y implementa t ions , an exact cache design cannot 
be outl ined here . Nonetheless , some expected bounds can be s ta ted. 
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1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB 

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes 

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to 
8 M B 

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes 

5. TB sizes will likely be in the range 16 to 1024 entr ies 

Thus , if two da ta i tems need to go in different cache blocks, it is desirable to 
make t hem a t least 128 bytes apa r t (modulo 2 KB). Doing t h a t creates a high 
probability of allowing both i tems to be in a small cache simultaneously, for all 
Alpha implementat ions . 

In each case below, t he performance implication is given by an order-of-magnitude 
number : 1, 3, 10, 30, or 100. A factor of 10 m e a n s t h a t t he performance difference 
being discussed will likely range from 3 to 30 across all Alpha implementat ions . 

A.2 Instruction-Stream Considerations 

The following sections describe considerations for the instruct ion s t ream. 

A.2.1 Instruction Alignment 

Code PSECTs should be octaword-aligned. Targets of frequently t aken branches 
should be a t least quadword-aligned, and octaword-aligned for very frequent loops. 
Compilers could use execution profiles to identify frequently t aken branches . 

Most Alpha implementat ions will fetch aligned quadwords of instruct ion s t ream (two 
instructions), and many will was te an instruction-issue cycle on a b ranch to an odd 
longword. High-end implementa t ions may eventual ly fetch aligned octawords, and 
was te up to 3 issue cycles on a b ranch to an odd longword. Some implementa t ions 
may only be able to fetch wide chunks of instruct ions every other CPU cycle. 
Fetching four instruct ions from an aligned octaword can get a t most one cache miss, 
while fetching t hem from an odd longword address can get 2 or even 3 cache misses. 

Quadword I-fetch implementors should give first priority to executing aligned 
quadwords quickly. Octaword-fetch implementors should give first priority to 
executing aligned octawords quickly, and second priority to executing aligned 
quadwords quickly. Dual-issue implementa t ions should give first priority to issuing 
both halves of an aligned quadword in one cycle, and second priority to buffering 
and issuing other combinations. 

A.2.2 Multiple Instruction Issue — Factor of 3 

Some Alpha implementat ions will issue mult iple instruct ions in a single cycle. To 
improve the odds of multiple-issue, compilers should choose pairs of instruct ions to 
pu t in aligned quadwords. Pick one from column A and one from column Β (but only 
a total of one load/store/branch per pair) . 
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Column A Column Β 

Integer Opera te 

Float ing Load/Store 

Float ing Branch 

Float ing Opera te 

Integer Load/Store 

Integer Branch 

BRVBSR/JSR 

Implementors of multiple-issue machines should give first priority to dual- issuing a t 
least t he above pairs , and second priority to multiple-issue of other combinations. 

In general , t he above rules will give a good hardware-software match , bu t compilers 
may w a n t to implement model-specific switches to genera te code tuned more exactly 
to a specific implementat ion. 

A.2.3 Branch Prediction and Minimizing Branch-Taken — Factor of 3 

In m a n y Alpha implementat ions , an unexpected change in I -s t ream address will 
resul t in about 10 lost instruct ion t imes . "Unexpected" may m e a n any branch- taken 
or may m e a n a mispredicted branch. In m a n y implementat ions , even a correctly 
predicted branch to a quadword t a rge t address will be slower t h a n straight-l ine 
code. 

Compilers should follow these rules to minimize unexpected branches : 

1. Implementa t ions will predict all forward conditional branches as not- taken, 
and all backward conditional b ranches as taken . Based on execution profiles, 
compilers should physically r ea r r ange code so t h a t i t h a s match ing behavior. 

2. Make basic blocks as big as possible. A good goal is 20 instruct ions on average 
between branch- taken. This m e a n s unrol l ing loops so t h a t they contain a t least 
20 instruct ions, and pu t t ing subrout ines of less t h a n 20 instruct ions directly in 
line. I t also m e a n s us ing execution profiles to r ea r r ange code so t h a t t he frequent 
case of a conditional b ranch falls through. For very high-performance loops, it 
will be profitable to move instruct ions across conditional branches to fill otherwise 
was ted instruct ion issue slots, even if t he instruct ions moved will not always do 
useful work. Note t h a t t he Conditional Move instruct ions can sometimes be used 
to avoid break ing up basic blocks. 

3. In an if-then-else construct whose execution profile is skewed even slightly away 
from 50%-50% (51-49 is enough), pu t t he infrequent case completely out of line, 
so t h a t t he frequent case encounters zero b ranch- takens , and the infrequent case 
encounters two b ranch- takens . If t he infrequent case is r a r e (5%), pu t it far 
enough away t h a t it never comes into the I-cache. If t he infrequent case is 
extremely r a r e (error message code), pu t it on a page of rare ly executed code and 
expect t h a t page never to be paged in. 
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4. There are two functionally identical branch-format opcodes, BSR and BR. 

31 26 25 21 20 0 

BSR Ra Displacement 

BR Ra Displacement 

Branch Format 

Branch Format 

5. 

Compilers should use the first one for subrout ine calls, and the second for GOTOs. 
Some implementat ions may push a stack of predicted r e t u r n addresses for BSR 
and not push the s tack for BR. Fai lure to compile t h e correct opcode will resul t 
in mispredicted r e tu rn addresses , and hence m a k e subrout ine r e tu rns slow. 

The memory-format J S R instruct ion h a s 16 unused bits . These should be used 
by the compilers to communicate a h in t about expected branch- target behavior 
(see Common Architecture, Chapter 4): 

31 16 15 0 

JSR Ra Rb Memory Format 

If the J S R is used for a computed GOTO or a CASE s ta tement , compile bi ts 
<15:14> as 00, and bits <13:0> such t h a t (updated PC+Instr<13:0>*4) <15:0> 
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so t h a t 
a normal PC+displacement*4 calculation will ma tch the low 16 bits of the most 
likely ta rge t longword address . ( Implementat ions will likely prefetch from the 
matching cache block.) 

If the J S R is used for a computed subrout ine call, compile bi ts <15:14> as 01 , 
and bits <13:0> as above. Some implementa t ions will prefetch the call t a rge t 
us ing the prediction and also push upda ted PC on a return-predict ion stack. 

If t he J S R is used as a subrout ine re tu rn , compile bi ts <15:14> as 10. Some 
implementat ions will pop an address off a return-predict ion stack. 

If t he J S R is used as a coroutine l inkage, compile bi ts <15:14> as 11. Some 
implementat ions will pop an address off a return-predict ion stack and also push 
updated PC on the return-predict ion stack. 

Implementors should give first priority to executing straight- l ine code wi th no 
branch- takens as quickly as possible, second priority to predicting conditional 
branches based on the sign of the displacement field (backward taken , forward not-
taken) , and th i rd priority to predicting subrout ine r e tu rn addresses by runn ing a 
small prediction stack. (VAX traces show a stack of 2 to 4 entr ies correctly predicts 
most branches.) 
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A.2.4 Improving l-Stream Density — Factor of 3 

Compilers should t ry to use profiles to m a k e sure almost 100 percent of the bytes 
brought into an I-cache are actually executed. This m e a n s al igning branch ta rge ts 
and pu t t ing rare ly executed code out of line. Doing so would consistently m a k e an 
I-cache appear about two t imes larger, compared to cur ren t VAX practice. 

The example below shows the bytes actually brought into a VAX cache (from pa r t of 
an address t race of a DLINPAC). The dots represen t bytes brought into the cache 
bu t never executed. They occupy about half of the cache. 

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC 
and a portion of OpenVMS 4.x a re shown. Uppercase I is t he first byte of an 
instruction, and lowercase i m a r k s subsequent bytes. Period ( . ) shows a byte 
brought into t he cache bu t never executed. 

I-fetch Byte 0 Byte 63 

0 0 0 2 6 8 C 0 Iiiiliiliiliiiiiiiiiliii 
0 0 0 2 6 9 0 0 Iiiiiliiiiiiiiii 
0 0 0 2 6 9 4 0 Iiliililiililililiiililiililiiiiiiiliiliii 
0 0 0 2 6 9 8 0 Iiiiliiliiliiiiiiiiiliii 
0 0 0 2 6 9 C 0 I Iiiiiliiliiiililiiiiliiillililiililiiililiii 
00026A00 Iiliiiiiiiiiiiiiliiliiiliii 
00026A40 Iiiiiiiiiiliiiiiiiililiiiliilii 
00026A80 Iiliiiilililiiililililiiiiiiiiliiliiiliii Iiiiii 
00026AC0 Iiiliii 

8 0 0 0 4 4 4 0 Iiiililiii 
8 0 0 0 4 6 8 0 Iiiiiiliii 
8 0 0 0 4 9 0 0 Iiiliiliiliiiililiiliiliiliiililiiiililiiiliiiil 
8 0 0 0 4 9 4 0 Iiiiiliiiliililiii Iiiiiliii 
80004A00 Iiiiiiliiliiiii 
80004A40 Iiliiliiiiliiiliiiliiiliii Iiiiiilliiiiiliiiiliiliiil 
80004A80 Iiiiiliiiliiliiliii....Iiiiiiliii 
8 0 0 0 4 F 4 0 Iiiiiiliiiiiiliiiliiiiiiliii 
8 0 0 0 4 F 8 0 Iiiiliiiiiiiliililiiiliiiiiiiiiiiiiiliiil 
80004FC0 Iliiiiiliiililiiiliii Iiiiililiii 
80008A40 Iiiiliii 
80008A80 Iliiliiiliililiiilililiiililiiliiiiiliiliiliiliiiiiiililiii 

A.2.5 Instruction Scheduling — Factor of 3 

The performance of Alpha programs will be sensitive to how carefully t he code is 
scheduled to minimize instruct ion-issue delays. 

"Result latency" is defined as t he n u m b e r of CPU cycles t h a t m u s t elapse between an 
instruct ion t h a t wri tes a resu l t regis ter and one t h a t uses t h a t register, if execution-
t ime stal ls a re to be avoided. Thus , a latency of zero m e a n s t h a t the instruct ion 
wri tes a resul t register and the instruct ion t h a t uses t h a t regis ter can be multiple-
issued in t he same cycle. A latency of 2 m e a n s t h a t if t he wri t ing instruct ion is issued 
a t cycle N, t he read ing instruct ion can issue no earl ier t h a n cycle N+2. Latency is 
implementation-specific. 

Most Alpha instruct ions have a non-zero resul t latency. Compilers should schedule 
code so t h a t a resul t is not used too soon, a t least in frequently executed code (inner 
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loops, as identified by execution profiles). In general , th is will require loop unroll ing 
and short procedure inlining. 

"Too soon" is current ly ill-defined, since no implementa t ions have been designed yet. 
For s ta r te rs , a ssume t h a t implementa t ions can dual-issue instruct ions. Assume 
t h a t Load and J S R instruct ions have a latency of 3, shifts and byte manipula t ion a 
latency of 2, integer mult iply a latency of 10, and other integer operates a latency of 
1. Assume floating mult iply h a s a latency of 5, floating divide a latency of 10, and 
other floating operates a latency of 4. Scheduling to these latencies will give a t least 
reasonable performance on current ly ant icipated implementat ions . 

Compilers should t ry to schedule code to ma tch the above latency rules and also to 
match the multiple-issue rules . If doing both is impractical for a par t icular sequence 
of code, the latency rules are more impor tan t (since they apply even in single-issue 
implementat ions) . 

Implementors should give first priority to minimizing the latency of back-to-back 
integer operations, of address calculations immediately followed by load/store, of load 
immediately followed by branch, and of compare immediately followed by branch. 
Second priority should be given to minimizing latencies in general . 

A.3 Data-Stream Considerations 

The following sections describe considerations for the da t a s t ream. 

A.3.1 Data Alignment — Factor of 10 

Data PSECTs should be a t least octaword-aligned, so t h a t aggregates (arrays, some 
records, subrout ine s tack frames) can be allocated on aligned octaword boundar ies 
to t ake advantage of any implementa t ions wi th aligned octaword da ta pa ths , and to 
decrease the number of cache fills in almost all implementat ions . 

Aggregates (arrays , records, common blocks, and so forth) should be allocated on 
a t least aligned octaword boundar ies whenever language rules allow this . In some 
implementat ions , a series of wri tes t h a t completely fill a cache block may be a factor 
of 10 faster t h a n a series of wri tes t h a t part ial ly fill a cache block, when t h a t cache 
block would give a read miss . This is t rue of wri teback caches t h a t read a part ial ly 
filled cache block from memory, bu t optimize away the read for completely filled 
blocks. 

For such implementat ions , long s tr ings of sequent ial wri tes will be faster if they 
s t a r t on a cache-block boundary (a mult iple of 128 bytes will do well for most, if not 
all, Alpha implementat ions) . This applies to a r ray resul ts t h a t sweep through large 
portions of memory, and also to register-save a reas for context switching, graphics 
frame buffer accesses, and other places where exactly 8 , 1 6 , 32, or more quadwords 
a re stored sequentially. Allocating the t a rge t s a t mult iples of 8, 16, 32, or more 
quadwords, respectively, and doing the wri tes in order of increasing address will 
maximize the wri te speed. 

I tems within aggregates t h a t a re forced to be unal igned (records, common blocks) 
should genera te compile-time warn ing messages and inline byte extract / insert code. 
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Users m u s t be educated t h a t t he warn ing message m e a n s t h a t they are t ak ing a 
factor of 30 performance hit . 

Compilers should consider supplying a switch t h a t allows the compiler to pad 
aggregates to avoid unal igned da ta . 

Compiled code for pa rame te r s should assume t h a t the pa rame te r s a re aligned. 
Unal igned actuals will therefore cause run t ime a l ignment t r ap s and very slow 
fixups. The fixup rout ine, if invoked, should genera te warn ing messages to the 
user, preferably giving the first few s t a t emen t numbers t h a t a re doing unal igned 
pa rame te r access, and a t the end of a r u n the total number of a l ignment t r aps (and 
pe rhaps a n es t imate of t h e performance improvement if t h e da t a were aligned). 
Again, users m u s t be educated t h a t t he t r a p rout ine warn ing message m e a n s they 
are t ak ing a factor of 30 performance hit . 

Frequent ly used scalars should reside in registers . Each scalar d a t u m allocated 
in memory should normally be allocated a n aligned quadword to itself, even if t he 
d a t u m is only a byte wide. This allows aligned quadword loads and stores and avoids 
par t ia l -quadword wri tes (which m a y be half as fast as full-quadword wri tes , due to 
such factors as read-modify-write a quadword to do quadword ECC calculation). 

Implementors should give first priority to fast reads of aligned octawords and second 
priority to fast wri tes of full cache blocks. Par t ia l -quadword wri tes need not have a 
fast repeti t ion ra te . 

A.3.2 Shared Data in Multiple Processors — Factor of 3 

Software locks a re aligned quadwords and should be allocated to large cache blocks 
t h a t e i ther contain no other da ta , or read-mostly da t a whose usage is correlated with 
t he lock. 

Whenever the re is high contention for a lock, one processor will have the lock and 
be us ing the guarded da ta , while o ther processors will be in a read-only spin loop on 
the lock bit. Unde r these circumstances, any wri te to the cache block containing the 
lock will likely cause excess bus traffic and cache fills, t h u s having a performance 
impact on all processors t h a t a re involved, and the buses between them. In some 
decomposed FORTRAN programs, refills of the cache blocks containing one or two 
frequently used locks can account for a th i rd of all t he bus bandwid th the program 
consumes. 

Whenever the re is a lmost no contention for a lock, one processor will have the lock 
and be us ing the guarded data . Unde r these circumstances, i t might be desirable to 
keep the guarded da t a in t he same cache block as t he lock. 

For the high shar ing case, compilers should assume t h a t almost all accesses to 
shared da t a resul t in cache misses all t he way back to ma in memory, for each distinct 
cache block used. Such accesses will likely be a factor of 30 slower t h a n cache hi ts . 
I t is helpful to pack correlated shared d a t a into a small n u m b e r of cache blocks. I t is 
helpful also to segregate blocks wr i t t en by one processor from blocks read by others. 

Therefore, accesses to shared da ta , including locks, should be minimized. For 
example, a 4-processor decomposition of some manipula t ion of a 1000-row ar ray 
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should avoid accessing lock variables every row, bu t ins tead might access a lock 
variable every 250 rows. 

Array manipula t ion should be part i t ioned across processors so t h a t cache blocks do 
not t h r a s h between processors. Having each of 4 processors work on every fourth 
a r ray element severely impairs performance on any implementat ion wi th a cache 
block of 4 e lements or larger. The processors all contend for copies of the same cache 
blocks and use only 1/4 of the da t a in each block. Writes in one processor severely 
impair cache performance on all processors. 

A be t te r decomposition is to give each processor the largest possible contiguous 
chunk of da ta to work on (N/4 consecutive rows for 4 processors and row-major 
a r ray storage; N/4 columns for column-major storage). With the possible exception 
of 3 cache blocks a t the par t i t ion boundaries , th is decomposition will resul t in each 
processor caching da ta t h a t is touched by no o ther processor. 

Operat ing-system scheduling algori thms should a t t empt to minimize process 
migrat ion from one processor to another. Any t ime migrat ion occurs, the re are likely 
to be a large number of cache misses on the new processor. 

Similarly, operat ing-system scheduling algori thms should a t t empt to enforce some 
affinity between a given device's in te r rup t s and the processor on which the in ter rupt-
handler runs . I/O control da t a s t ruc tures and locks for different devices should be 
disjoint. Doing both of these allows higher cache hi t r a t e s on the corresponding I/O 
control da ta s t ruc tures . 

Implementors should give first priority to an efficient (low-bandwidth) way of 
t ransferr ing isolated lock values and other isolated, shared wri te da ta between 
processors. 

Implementors should assume t h a t the amount of shared da t a will continue to 
increase, so over t ime the need for efficient shar ing implementa t ions will also 
increase. 

A.3.3 Avoiding Cache/TB Conflicts — Factor of 1 

Occasionally, programs t h a t r u n with a direct-mapped cache or TB will t h ra sh , 
t ak ing excessive cache or TB misses. With some work, t h r a sh ing can be minimized 
a t compile t ime. 

In a frequently executed loop, compilers could allocate the da t a i tems accessed from 
memory so tha t , on each loop i terat ion, all of the memory addresses accessed are 
ei ther in exactly the same aligned 64-byte block, or differ in bi ts VA<10:6>. For loops 
t h a t go through a r rays in a common direction wi th a common str ide, th is means 
allocating the a r rays , checking t h a t the first-iteration addresses differ, and if not, 
inser t ing up to 64 bytes of padding between the a r rays . This rule will avoid th ra sh ing 
in small direct-mapped da t a caches with block sizes up to 64 bytes and total sizes 
of 2K bytes or more. 
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Example: 

REAL*4 A(1000),B(1000) 
DO 60 i=l,1000 

60 A(i) = f(B(i)) 

BAD allocation (A and Β t h r a s h in 8 KB direct-mapped cache): 

16K 

BETTER allocation (A and Β offset by 64 mod 2 KB, so 16 e lements of A and 16 of 
Β can be in cache simultaneously): 

4K 8K+64 12K 16K 

BEST allocation (A and Β offset by 64 mod 2 KB, so 16 e lements of A and 16 of Β 
can be in cache simultaneously, and both a r rays fit entirely in 8 KB or bigger cache): 

 ̂ : :" - -Γ- ν ; τ -̂ :-Tyy^T{ ^ ^ ^ " ^ 7 -

A Β ^ 4 f e : ^ 
0 4K-64 8K 12K 16K 

In a frequently executed loop, compilers could allocate the d a t a i tems accessed from 
memory so tha t , on each loop i terat ion, all of the memory addresses accessed are 
e i ther in exactly the same 8 KB page, or differ in bi ts VA<17:13>. For loops t h a t go 
th rough a r rays in a common direction wi th a common str ide, th is m e a n s allocating 
the a r rays , checking t h a t the first-iteration addresses differ, and if not, inser t ing 
up to 8K bytes of padding between t he a r rays . This rule will avoid t h ra sh ing in 
direct-mapped TBs and in some large direct-mapped da t a caches, wi th total sizes of 
32 pages (256 KB) or more. 

Usually, th is padding will m e a n zero ex t ra bytes in the executable image, j u s t a skip 
in v i r tual address space to the next-higher page boundary. 

For large caches, the rule above should be applied to the I-s tream, in addition to 
all t he D-st ream references. Some implementa t ions will have combined I-stream 
/D-stream large caches. 

Both of the rules above can be satisfied simultaneously, t h u s often el iminating 
th ra sh ing in all ant icipated direct-mapped cache/TB implementat ions . 
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A.3.4 Sequential Read/Write — Factor of 1 

All other th ings being equal, sequences of consecutive reads or wri tes should use 
ascending ( ra ther t h a n descending) memory addresses . Where possible, t he memory 
address for a block of 2**Kbytes should be on a 2**K boundary, since th is minimizes 
the number of different cache blocks used and minimizes the number of part ial ly 
wr i t ten cache blocks. 

To avoid overrunning memory bandwidth , sequences of more t h a n eight quadword 
Loads or Stores should be broken up wi th in tervening instruct ions (if t he re is any 
useful work to be done). 

For consecutive reads , implementors should give first priority to prefetching 
ascending cache blocks, and second priority to absorbing up to eight consecutive 
quadword Loads (aligned on a 64-byte boundary) wi thout stalling. 

For consecutive wri tes , implementors should give first priority to avoiding read 
overhead for fully wr i t ten aligned cache blocks, and second priority to absorbing 
up to eight consecutive quadword Stores (aligned on a 64-byte boundary) without 
stalling. 

A.3.5 Prefetching — Factor of 3 

To use FETCH and FETCH_M effectively, software should follow this programming 
model: 

1. Assume t h a t a t most two FETCH instruct ions can be outs tanding a t once, 
and t h a t the re a re two prefetch address registers , P R E a and PREb, to hold 
prefetching s ta te . FETCH instruct ions a l t e rna te between loading P R E a and 
PREb. Each FETCH instruct ion overwrites any previous prefetching s ta te , t h u s 
t e rmina t ing any previous prefetch t h a t is still in progress in the register t h a t is 
loaded. The order of fetching within a block and the order between P R E a and 
PREb are UNPREDICTABLE. 

IMPLEMENTATION NOTE 
Implementa t ions a re encouraged to a l t e rna te a t 
convenient intervals between P R E a and PREb. 

2. Assume, for max imum efficiency, t h a t there should be about 64 unre la ted memory 
access instruct ions (load or store) between a F E T C H and the first actual da ta 
access to the prefetched data . 

3. Assume, for instruction-scheduling purposes in a multi level cache hierarchy, t h a t 
FETCH does not prefetch da t a to the innermost cache level, bu t r a t h e r one level 
out. Schedule loads to bury the las t level of misses. 

4. Assume t h a t FETCH is worthwhile if, on average, a t least half the da t a in a 
block will be accessed. Assume t h a t FETCH_M is worthwhile if, on average, a t 
least half the da t a in a block will be modified. 

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch 4 
operands, launch the first two prefetches, do about 128 memory references 
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worth of work, t hen launch the next two prefetches, do about 128 more memory 
references wor th of work, t hen s t a r t us ing the 4 sets of prefetched da ta . 

6. Treat F E T C H as hav ing the same effect on a cache as a series of 64 quadword 
loads. If t he loads would displace useful da ta , so will FETCH. If two sets of loads 
from specific addresses will t h r a s h in a direct-mapped cache, so will two FETCH 
instruct ions us ing the same pair of addresses . 

IMPLEMENTATION NOTE 
Hardware implementa t ions a re expected to provide 
e i ther no support for FETCHx or suppor t t h a t closely 
matches th i s model. 

A.4 Code Sequences 

The following section describes code sequences. 

A.4.1 Aligned Byte/Word Memory Accesses 

The instruct ion sequences given in Common Architecture, Chapter 4 for byte and 
word accesses a re worst-case code. In t he common case of accessing a byte or aligned 
word field a t a known offset from a pointer t h a t is expected to be a t least longword 
aligned, t he common-case code is much shorter. 

"Expected" m e a n s t h a t the code should r u n fast for a longword-aligned pointer and 
t r a p for unal igned. The t r a p hand le r m a y a t i ts option fix up the unal igned reference. 

For access a t a known offset D from a longword-aligned pointer Rx, let D.lw be D 
rounded down to a mult iple of 4 ((D div 4)*4), and let D.mod be D mod 4. 

In t he common case, t he in tended sequence for loading and zero-extending an aligned 
word is: 

LDL Rl,D.lw(Rx) ! Traps if unaligned 
EXTWL Rl,#D.mod,Rl ! Picks up word at byte 0 or byte 2 

In the common case, t he in tended sequence for loading and sign-extending an aligned 
word is: 

LDL Rl,D.lw(Rx) ! Traps if unaligned 
SLL Rl,#48-8*D.mod,Rl ! Aligns word at high end of Rl 
SRA R1,#48,R1 ! SEXT to low end of Rl 

NOTE 
The shifts often can be combined wi th shifts t h a t 
might sur round subsequent a r i thmet ic operat ions (for 
example, to produce word overflow from the high end of 
a register). 

In the common case, t he in tended sequence for loading and zero-extending a byte is: 

LDL Rl,D.lw(Rx) ! 
EXTBL Rl,#D.mod,Rl ! 
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In the common case, the in tended sequence for loading and sign-extending a byte is: 

LDL Rl,D.lw(Rx) ! 
SLL Rl,#56-8*D.mod,Rl ! 
SRA Rl,#56fRl ! 

In the common case, the in tended sequence for s toring an aligned word R5 is: 

LDL Rl,D.lw(Rx) ! 
INSWL R5,#D.mod,R3 ! 
MSKWL Rl,#D.mod,Rl ! 
BIS R3,R1,R1 ! 
STL Rl,D.lw(Rx) ! 

In the common case, the in tended sequence for storing a byte R5 is: 

LDL Rl,D.lw(Rx) ! 
INSBL R5,#D.mod,R3 ! 
MSKBL Rl,#D.mod,Rl ! 
BIS R3,R1,R1 ! 
STL Rl,D.lw(Rx) ! 

A.4.2 Division 

In all implementat ions , floating-point division is likely to have a substant ia l ly longer 
resul t latency t h a n floating-point multiply; in addition, in m a n y implementa t ions 
mult iplies will be pipelined and divides will not. 

Thus , any division by a constant power of two should be compiled as a mult iply 
by the exact reciprocal, if it is representable wi thout overflow or underflow. If 
language rules or sur rounding context allow, other divisions by constants can be 
closely approximated via multiplication by the reciprocal. 

Integer division does not exist as a ha rdware opcode. Division by a constant can 
always be done via UMULH of another appropr ia te constant , followed by a r ight 
shift. General quadword division by t rue variables can be done via a subrout ine. 
The subrout ine could tes t for small divisors (less t h a n about 1000 in absolute value) 
and for those, do a table lookup on the exact constant and shift count for an UMULH 
/shift sequence. For the remain ing cases, a table lookup on about a 1000-entry 
table and a mult iply can give a l inear approximation to 1/divisor t h a t is accurate to 
16 bits . Using th is approximation, a mult iply and a back-multiply and a subt rac t 
can genera te one 16-bit quotient "digit" plus a 48-bit new par t ia l dividend. Three 
more such steps can genera te the full quotient. Having prior knowledge of the 
possible sizes of the divisor and dividend, normalizing away leading bytes of zeros, 
and performing an early-out tes t can reduce the average number of mult ipl ies to 
about 5 (compared to a best case of 1 and a worst case of 9). 

A.4.3 Stylized Code Forms 

Using the same stylized code form for a common operation makes compiler ou tput 
a little more readable and makes it more likely t h a t an implementat ion will speed 
up the stylized form. 
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A.4.3.1 NOP 

The s t anda rd N O P forms are : 

NOP 
FNOP 

BIS 
CPYS 

R31,R31,R31 
F31,F31,F31 

These genera te no exceptions. In most implementat ions , they should encounter no 
operand issue delays, no dest inat ion issue delay, and no functional un i t issue delay. 
Implementa t ions a re free to optimize these into no action and zero execution cycles. 

A.4.3.2 Clear a Register 

The s t anda rd clear register forms are : 

These genera te no exceptions. In most implementat ions , they should encounter no 
operand issue delays, and no functional un i t issue delay. 

A.4.3.3 Load Literal 

The s t anda rd load integer l i teral (ZEXT 8-bit) form is: 

MOV #lit8,Ry == BIS R31, lit8, Ry 

The Alpha l i teral construct in Opera te ins t ruct ions creates a canonical longword 
constant for values 0..255. 

A longword constant stored in an Alpha 64-bit register is in canonical form when 
bi ts <63:32>=bit <31>. 

A canonical 32-bit l i teral can usual ly be genera ted wi th one or two instruct ions, bu t 
sometimes th ree instruct ions a re needed. Use the following procedure to determine 
t he offset fields of the instruct ions: 

val = <sign-extended, 32-bit value> 

low = val<15:0> 

tmpl = val - SEXT(low) ! Account for LDA instruction 

high = tmpl<31:16> 
tmp2 = tmpl - SHIFT_LEFT( SEXT(high,16) ) 
if tmp2 NE 0 then 

! original val was in range 7FFF8000i6..7FFFFFFFig 
extra = 4000i6 
tmpl = tmpl - 40000000ig 
high = tmpl<31:16> 

else 
extra = 0 

endif 

The general sequence is: 

LDA Rdst, low(R31) 
LDAH Rdst, extra(Rdst) ! Omit if extra=0 
LDAH Rdst, high(Rdst) ! Omit if high=0 

CLR 
FCLR 

BIS 
CPYS 

R31,R31,Rx 
F31,F31,Fx 
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A.4.3.4 Register-to-Register Move 

The s t andard register move forms are: 

MOV RXfRY == BIS RX,RX,RY 
FMOV FX,FY == CPYS FX,FX,FY 

These genera te no exceptions. In most implementat ions , these should encounter no 
functional un i t issue delay. 

A.4.3.5 Negate 

The s t andard register negate forms are: 

NEGz Rx,Ry == SUBz R31,Rx,Ry ! ζ = L or Q 
NEGz Fx,Fy == SUBz F31,Fx,Fy ! ζ = F G S or Τ 
FNEGz Fx,Fy == CPYSN Fx,Fx,Fy ! ζ = F G S or Τ 

The integer subtract genera tes no Integer Overflow t r a p if Rx contains the largest 
negative number (SUBz/V would t rap) . The floating subtrac t genera tes a floating-
point exception for a non-finite value in Fx. The CPYSN form genera tes no 
exceptions. 

A.4.3.6 NOT 

The s t andard integer register NOT form is: 

NOT Rx,Ry == ORNOT R31,Rx,Ry 

This generates no exceptions. In most implementat ions , th is should encounter no 
functional un i t issue delay. 

A.4.3.7 Booleans 

The s t andard a l ternat ive to BIS is: 

OR Rx,Ry,Rz == BIS Rx,Ry,Rz 

The s t andard a l ternat ive to BIC is: 

ANDNOT Rx,Ry,Rz == BIC Rx,Ry,Rz 

The s t andard a l ternat ive to EQV is: 
XORNOT Rx,Ry,Rz == EQV Rx,Ry,Rz 

A.4.4 Trap Barrier 

The TRAPB instruct ion guaran tees t h a t following instruct ions do not issue unt i l all 
possible preceding t r aps have been signaled. This does not m e a n t h a t all preceding 
instruct ions have necessarily r u n to completion (for example, a Load instruct ion may 
have passed all t he fault checks bu t not yet delivered da t a from a cache miss). 

A.4.5 Pseudo-Operations (Stylized Code Forms) 

This section summarizes the pseudo-operations for the Alpha archi tecture t h a t m a y 
be used by various software components in an Alpha system. Most of these forms 
are discussed in preceding sections. 

A-14 Appendixes 



In the context of th i s section, pseudo-operations all represen t a single under lying 
machine instruction. Each pseudo-operation represents a par t icular instruct ion 
wi th e i ther replicated fields (such as FMOV), or hard-coded zero fields. Since the 
pa t t e rn is distinct, these pseudo-operations can be decoded by instruct ion decode 
mechanisms. 

In Table A - 1 , the pseudo-operation codes can be viewed as macros wi th pa ramete r s . 
The formal form is listed in the left column, and the expansion in the code s t ream 
listed in the r ight column. 

Some instruct ion mnemonics have synonyms. These a re different from pseudo-
operat ions in t h a t each synonym represen ts the same under ly ing instruct ion wi th 
no special encoding of operand fields. As a result , synonyms cannot be dis t inquished 
from each other. They are not listed in the table t h a t follows. Examples of synonyms 
are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT. 

Table A-1 : Decodable Pseudo-Operations (Stylized Code Forms) 
Pseudo-Opera t ion in Lis t ing Actual In s t ruc t ion Encod ing 

No-exception generic floating absolute 
value: 
FABS Fx, Fy 

Branch to target (21-bit signed displace-
ment): 
BR target 

Clear integer register: 
CLR Rx 

Clear a floating-point register: 
FCLR Fx 

Floating-point move: 
FMOV Fx, Fy 

No-exception generic floating negation: 
FNEG Fx, Fy 

Floating-point no-op: 
FNOP 

Move Rx/8-bit zero-extended literal to 
Ry: 
MOV {Rx/Lit8}, Ry 

Move 16-bit sign-extended literal to 
Rx: 
MOV Lit, Rx 
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CPYS F31, Fx, Fy 

BR R31, target 

BIS R31, R31, Rx 

CPYS F31, F31, Fx 

CPYS Fx, Fx, Fy 

CPYSN Fx, Fx, Fy 

CPYS F31, F31, F31 

BIS R31, {Rx/Lit8}, Ry 

LDA Rx, lit(R31) 



Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms) 
Pseudo-Opera t ion in Lis t ing Actual Ins t ruc t ion Encod ing 

Move to FPCR: 
MT.FPCR Fx MT.FPCR Fx, Fx, Fx 

Move from FPCR: 
MFJFPCR Fx MF.FPCR Fx, Fx, Fx 

Negate F_floating: 
NEGF Fx, Fy 

Negate F_floating, semi-precise: 
NEGF/S Fx, Fy 

Negate G_floating: 
NEGG Fx, Fy 

Negate G_floating, semi-precise: 
NEGG/S Fx, Fy 

Negate longword: 
NEGL {Rx/Lit8}, Ry 

Negate longword with overflow detec-
tion: 
NEGL/V {Rx/Lit8}, Ry 

Negate quadword: 
NEGQ {Rx/Lit8}, Ry 

Negate quadword with overflow detec-
tion: 
NEGQ/V {Rx/Lit8}, Ry 

Negate S_floating: 
NEGS Fx, Fy 

Negate S_floating, software with un-
derflow detection: 
NEGS/SU Fx, Fy 

Negate S_floating, software with un-
derflow and inexact result detection: 
NEGS/SUI Fx, Fy 

Negate T_floating: 
NEGT Fx, Fy 

SUBF F31, Fx, Fy 

SUBF/S F31, Fx, Fy 

SUBG F31, Fx, Fy 

SUBG/S F31, Fx, Fy 

SUBL R31, {Rx/Lit}, Ry 

SUBL/V R31, {Rx/Lit}, Ry 

SUBQ R31, {Rx/Lit}, Ry 

SUBQ/V R31, {Rx/Lit}, Ry 

SUBS F31, Fx, Fy 

SUBS/SU F31, Fx, Fy 

SUBS/SUI F31,Fx, Fy 

SUBT F31, Fx, Fy 
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Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms) 

Negate T_floating, software with un-
derflow detection: 
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy 

Negate T_floating, software with un-
derflow and inexact result detection: 
NEGT/SUI SUBT/SUI F31, Fx, Fy 

Integer no-op: 
NOP BIS R31, R31, R31 

Logical NOT of Rx/8-bit zero-extended 
literal storing results in Ry: 
NOT {Rx/Lit8}, Ry ORNOT R31, {Rx/Lit}, Ry 

Longword sign-extension of Rx storing 
results in Ry: 
SEXTL {Rx/Lit8}, Ry ADDL R31, {Rx/Lit}, Ry 

A.5 Timing Considerations: Atomic Sequences 

A sufficiently long instruct ion sequence between LDx_L and STx_C will never 
complete, because periodic t imer in t e r rup t s will a lways occur before the sequence 
completes. The following rules describe sequences t h a t will eventual ly complete in 
all Alpha implementa t ions: 

1. At most 40 operate or conditional-branch (not taken) ins t ruct ions executed in t he 
sequence between LDx_L and STx_C. 

2. At most two I-s t ream TB-miss faults . Sequent ia l instruct ion execution 
gua ran tees th is . 

3. No other exceptions tr iggered dur ing the las t execution of t he sequence. 

IMPLEMENTATION NOTE 
On all expected implementa t ions , th is allows for about 
50 /isec of execution t ime, even wi th 100 percent cache 
misses . This should satisfy any requ i rement for a 1 msec 
t imer in t e r rup t r a te . 
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Appendix Β 

IEEE Floating-Point Conformance 

A subset of I E E E S tanda rd for Binary Floating-Point Ari thmetic (754-1985) is 
provided in t he Alpha floating-point instruct ions. This appendix describes how to 
construct a complete IEEE implementat ion. 

The order of presenta t ion paral lels the order of the IEEE specification. 

B.1 Alpha Choices for IEEE Options 

Alpha suppor ts IEEE single and double formats. Optional extended double is not 
supported. 

Alpha ha rdware supports normal and chopped IEEE rounding modes. IEEE plus 
infinity and minus infinity rounding modes can be implemented in ha rdware or 
software. 

Alpha h a r d w a r e does not suppor t optional IEEE software t r a p enable/disable modes; 
see the following discussion about software support . 

Alpha h a r d w a r e supports add, subtract , multiply, divide, convert between floating 
formats, convert between floating and integer formats, and compare. Software 
rout ines suppor t square root, remainder , round to integer in floating-point format, 
and convert b inary to/from decimal. 

In the Alpha archi tecture , copying wi thout change of format is not considered an 
operation. (LDx, CPYSx, and STx do not check for non-finite numbers ; an operation 
would.) Compilers may genera te ADDx F31,Fx,Fy to get t he opposite effect. 

Optional operat ions for differing formats a re not provided. 

The Alpha choice is t h a t the accuracy provided will meet or exceed IEEE s t andard 
requi rements . I t is implementa t ion-dependent whe ther the software binary/decimal 
conversions beyond 9 or 17 digits t r e a t any excess digits as zeros. 

Overflow and underflow, NaNs , and infinities encountered dur ing software binary to 
decimal conversion r e t u r n s t r ings t h a t specify the conditions. Such s t r ings can be 
t runca ted to the i r shor tes t unambiguous length. 

Alpha h a r d w a r e suppor ts comparisons of same-format numbers . Software supports 
comparisons of different-format numbers . 

In the Alpha archi tecture , resu l t s a re true-false in response to a predicate. 

Alpha ha rdware suppor ts the required six predicates and the optional unordered 
predicate. The other 19 optional predicates can be constructed from sequences of 
two comparisons and two branches . 

IEEE Floating-Point Conformance B-1 



Alpha ha rdware supports infinity ar i thmet ic only by t r app ing when an infinity 
operand is encountered and when an infinity is to be created from finite operands 
by overflow or division by zero. A software t r a p handle r (interposed between the 
ha rdware and the IEEE user) provides correct infinity ar i thmet ic . 

Alpha ha rdware supports NaNs only by t r app ing when a N a N operand is 
encountered and when a N a N is to be created. A software t r a p handle r (interposed 
between the ha rdware and the IEEE user) provides correct Signaling and Quiet N a N 
behavior. 

In the Alpha archi tecture, Quiet N a N s do not afford retrospective diagnostic 
information. 

In the Alpha archi tecture, copying a Signaling N a N without a change of format does 
not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite 
numbers) . Compilers may genera te ADDx F31,Fx,Fy to get the opposite effect. 

Alpha ha rdware fully supports negative zero operands, and follows the IEEE rules 
for creat ing negative zero resul ts . 

Alpha ha rdware does not supply IEEE exception t r a p behavior; t he ha rdware t r aps 
are a superset of the IEEE-required conditions. A software t r a p handle r (interposed 
between the ha rdware and the IEEE user) provides correct IEEE exception behavior. 

In the Alpha archi tecture, t in iness is detected by ha rdware after rounding, and loss 
of accuracy is detected by software as an inexact resul t . 

In the Alpha archi tecture, user t r a p hand le rs will be supported by compilers and 
a software t r a p handle r (interposed between the ha rdware and the IEEE user) , as 
described in the next section. 

B.2 Alpha Hardware Support of Software Exception Handlers 

In Alpha instruct ions, ha rdware t r a p behavior is de termined only a t compile t ime; 
short of recompiling, there are no dynamic facilities for changing ha rdware t r a p 
behavior. 

There is an essential dispari ty between the Alpha design goal of fast execution and 
the IEEE design goal of exact t r a p behavior. The Alpha ha rdware archi tecture 
provides means for users to choose various degrees of IEEE compliance, a t 
appropriate performance cost. 

Instruct ions compiled without the /Software modifier cannot produce IEEE-
compliant t r a p behavior, nor can they provide IEEE-compliant non-finite ar i thmetic . 
Trapping and stopping on non-finite operands or resul t s ( ra ther t h a n the IEEE 
default of continuing wi th NaNs propagated) is an Alpha value-added behavior t h a t 
some users prefer. 

Instruct ions compiled without the /Underflow ha rdware t r a p enable modifier cannot 
produce IEEE-compliant underflow t r a p behavior, nor can they provide IEEE-
compliant denormal resul ts . They are fast and provide t rue zero (not minus zero) 
resul ts whenever underflow occurs. This is an Alpha value-added behavior t h a t 
some users prefer. 
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Ins t ruct ions compiled wi thout t he /Inexact h a r d w a r e t r a p enable modifier cannot 
produce IEEE-compliant inexact t r a p behavior. Trapping on Inexact will be painfully 
slow; few users appear to prefer th is , bu t they can get i t if they really wan t it. 

IEEE floating-point instruct ions compiled wi th t he /Software modifier produce 
ha rdware t r aps and unpredictable values; a software t r a p hand le r may t hen produce 
all IEEE-required behavior. 

IEEE floating-point instruct ions compiled with the /Underflow enable modifier 
produce ha rdware t r aps and t rue zero values for underflow; a software t r a p handle r 
may t hen produce all IEEE-required behavior. 

I E E E floating-point instruct ions compiled wi th the /Inexact enable modifier produce 
ha rdware t r aps t h a t allow a software t r a p hand le r to produce all IEEE-required 
behavior. 

Thus , to get full IEEE compliance of all t he required features of the s tandard , users 
m u s t compile wi th all th ree options enabled. 

To get the optional full IEEE user t r a p hand le r behavior, a software t r a p handler 
m u s t be provided t h a t implements t he five exception flags, dynamic user t r a p handle r 
disabling, hand le r saving and restoring, default behavior for disabled user t r a p 
handle rs , and l inkages t h a t allow a use r hand le r to r e t u r n a subs t i tu te resul t . 

Also, users m u s t inser t a TRAPB in every basic block with a floating operation t h a t 
can potential ly t r ap , so t h a t a software hand le r h a s an opportuni ty to scale the t rue 
resul t by 2**192 or 2**1536, a s appropr ia te for enabled user t r a p handlers ; and to 
supply t he default + / - infinity, +/-MAX, +/-MIN, denormal , or zero as appropr ia te 
for disabled use r t r a p handlers . 

B.3 Mapping to IEEE Standard 

There a re five IEEE exceptions, each of which can be "IEEE software t rap-enabled" 
or disabled (the default condition). Implement ing the IEEE software t rap-enabled 
mode is optional in the IEEE s tandard . 

Our assumption, therefore, is t h a t t he only access to IEEE-specified software t rap-
enabled resul t s will be genera ted in assembly language code. The following design 
allows this , bu t only if such assembly language code h a s TRAPB instruct ions after 
each floating-point instruct ion, and genera tes t he IEEE-specified scaled resul t in a 
t r a p hand le r by emula t ing t he ins t ruct ion t h a t was t r apped by h a r d w a r e overflow 
/underflow detection, us ing the original operands. 

There is a set of detailed IEEE-specified resu l t values , both for operat ions t h a t are 
specified to ra ise IEEE t r aps and those t h a t do not. This behavior is created on 
Alpha by four layers of ha rdware , PALcode, t he operat ing-system t r a p handler, and 
the user I E E E t r a p handler , as shown in Figure B - l . 
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Figure B-1 : IEEE Trap Handling Behavior 

Hardware 

Traps to PALcode 

PALcode 

Traps to Operating System 

Optional System 

I Traps to User IEEE Trap Handler 
: (IEEE Standard) 

User Condition Handler 

The IEEE-specified t r a p behavior occurs only wi th respect to the user IEEE t r a p 
handler (the las t layer in Figure B-1) ; any trap-and-fixup behavior in the first th ree 
layers is outside the scope of the IEEE s tandard . 

The IEEE number system is divided into finite and non-finite numbers : 

• The finîtes are normal numbers : 

-MAX.. -MIN, - 0 , 0, +MIN..+MAX 

• The non-finites are: 

Denormals , + / - Infinity, Signaling NaN, Quiet N a N 

Alpha ha rdware m u s t t r e a t minus zero operands and resul t s as special cases, as 
required by the IEEE s tandard . 

Table B - 1 specifies, for the IEEE /Software modes, which layer does each piece of 
t r a p handl ing. See Common Architecture, Chapter 4 for more detail on the ha rdware 
instruct ion descriptions. 
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Table B-1 : IEEE Floating-Point Trap Handling 

Alpha Instructions Hardware PAL 

OS 
Trap 
Handler 

User 
Software 
Handler 

FBEQ FBNE FBLT FBLE FBGT 
FBGE 

Bits Only--No Exceptions 

LDS LDT Bits Only--No Exceptions 

STS STT Bits Only--No Exceptions 

CPYS CPYSN Bits Only--No Exceptions 

FCMOVx Bits Only--No Exceptions 

ADDx SUBx INPUT Exceptions 

Denormal operand Trap Trap Supply 
sum 

-

+/-Inf operand Trap Trap Supply 
sum 

-

QNaN operand Trap Trap Supply 
QNaN 

-

SNaN operand Trap Trap Supply 
QNaN 

[Invalid Op] 

+Inf+- Inf Trap Trap Supply 
QNaN 

[Invalid Op] 

ADDx SUBx OUTPUT Exceptions 

Exponent overflow Trap Trap Supply 
+/-Inf 
+/-MAX 

[Overflow] 
Scale by 
2**Alpha 

Exponent underflow 
and disabled 

Supply 
+0 

- - _1 

Exponent underflow 
and enabled 

Supply 
+0 and 
trap 

Trap Supply 
+/-MIN 
denorm 
+/-0 

[Underflow] 
Scale by 
2**Alpha 

Inexact and disabled 
in the instruction 

- - - -

Inexact and enabled 
in the instruction 

Trap Trap — [Inexact] 

1
An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all 
underflows. 
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling 

Alpha Instructions Hardware PAL 

OS 
Trap 
Handler 

User 
Software 
Handler 

MULx INPUT Exceptions 

Denormal operand Trap Trap Supply 
prod. 

-

+/-Inf operand Trap Trap Supply 
prod. 

-

QNaN operand Trap Trap Supply 
QNaN 

-

SNaN operand Trap Trap Supply 
QNaN 

[Invalid Op] 

0 * Inf Trap Trap Supply 
QNaN 

[Invalid Op] 

MULx OUTPUT Exceptions 

Exponent overflow Trap Trap Supply 
+/-Inf 
+/-MAX 

[Overflow] 
Scale by 
2**Alpha 

Exponent underflow 
and disabled 

Supply 
+0 

- - -

Exponent underflow 
and enabled 

Supply 
+0 and 
Trap 

Trap Supply 
+/-MIN 
denorm 
+/-0 

[Underflow] 
Scale by 
2**Alpha 

Inexact and disabled - - - -

Inexact and enabled Trap Trap - [Inexact] 

DIVx INPUT Exceptions 

Denormal operand Trap Trap Supply 
quot. 

-

+/-Inf operand Trap Trap Supply 
quot. 

-

QNaN operand Trap Trap Supply 
QNaN 

-

SNaN operand Trap Trap Supply 
QNaN 

[Invalid Op] 

0/0 or Infflnf Trap Trap Supply 
QNaN 

[Invalid Op] 
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling 

Alpha Instructions Hardware PAL 

OS 
Trap 
Handler 

User 
Software 
Handler 

DIVx INPUT Exceptions 

A/0 Trap Trap Supply 
+/-Inf 

[Div. Zero] 

DIVx OUTPUT Exceptions 

Exponent overflow Trap Trap Supply 
+/-Inf 
+/-MAX 

[Overflow] 
Scale by 
2**Alpha 

Exponent underflow 
and disabled 

Supply 
+0 

- - -

Exponent underflow 
and enabled 

Supply 
+0 and 
trap 

Trap Supply 
+/-MIN 
denorm 
+/-0 

[Underflow] 
Scale by 
2**Alpha 

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact] 

CMPTEQ CMPTUN INPUT Exceptions 

Denormal operand Trap Trap Supply 
(=) 

-

QNaN operand Trap Trap Supply 
False 
for EQ, True 
for UN 

— 

SNaN operand Trap Trap Supply 
False/ 
True 

[Invalid Op] 

CMPTLT CMPTLE INPUT Exceptions 

Denormal operand Trap Trap Supply 
(=) 

-

QNaN operand Trap Trap Supply 
False 

[Invalid Op] 

SNaN operand Trap Trap Supply 
False 

[Invalid Op] 
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling 

Alpha Instructions Hardware PAL 

OS 
Trap 
Handler 

User 
Software 
Handler 

CVTFi INPUT Exceptions 

Denormal operand Trap Trap Supply 
Cvt 

-

+/-Inf operand Trap Trap Supply 
Cvt 

[Invalid Op] 

QNaN operand Trap Trap Supply 
QNaN 

-

SNaN operand Trap Trap Supply 
QNaN 

[Invalid Op] 

CVTFi OUTPUT Exceptions 

Inexact and disabled - - - -

Inexact and enabled Trap Trap - [Inexact] 

Integer overflow Supply 
Trunc. 
result 
and trap 
if enabled 

Trap [Invalid Op]2 

CVTif OUTPUT Exceptions 

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact] 

CVTff INPUT Exceptions 

Denormal operand Trap Trap Supply 
Cvt 

-

+/-Inf operand Trap Trap Supply 
Cvt 

-

QNaN operand Trap Trap Supply 
QNaN 

-

SNaN operand Trap Trap Supply 
QNaN 

[Invalid Op] 

2
An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a 

truncated result on all overflows. 
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling 

Alpha Ins t ruc t ions H a r d w a r e PAL 

OS 
Trap 
H a n d l e r 

User 
Software 
H a n d l e r 

CVTff OUTPUT Except ions 

Exponent overflow Trap Trap Supply 
+/-Inf 
+/-MAX 

[Overflow] 
Scale by 
2**Alpha 

Exponent underflow 
and disabled 

Supply 
+0 

- - -

Exponent underflow 
and enabled 

Supply 
+0 and 
trap 

Trap Supply 
+/-MIN 
denorm 
+/-0 

[Underflow] 
Scale by 
2**Alpha 

Inexact and disabled - - - -
Inexact and enabled Trap Trap - [Inexact] 

Other I E E E operat ions (software subrout ines or sequences of instructions), a re listed 
here for completeness: 

Remainder 
SQRT 
Round float to integer-valued float 
Convert b inary to/from decimal 
Compare, o ther combinations t h a n t h e four above 
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Table B - 2 shows t h e I E E E s t anda rd char ts . 

Table B-2: IEEE Standard Charts 

Exception 

IEEE Software 
TRAP Disabled 
( IEEE Default) 

IEEE Software 
TRAP Enabled 
(Optional ) 

Invalid Operation 

(1) Input signaling NaN Quiet NaN 

(2) Mag. subtract Inf. Quiet NaN 

(3) 0 * Inf. Quiet NaN 

(4) 0/0 or Inf/Inf Quiet NaN 

(5) χ REM 0 or Inf REM y Quiet NaN 

(6) SQRT(negative non-zero) Quiet NaN 

(7) Cvt to int(ovfl, Inf, NaN) Quiet NaN 

(8) Compare unordered Quiet NaN 

Division by Zero 

χ/0, χ finite <>0 +/-Inf 

Overflow 

Round nearest +/-Inf. Res/2**192 or 1536 

Round to zero +/-MAX Res/2**192 or 1536 

Round to -Inf +MAX/-Inf Res/2**192 or 1536 

Round to +Inf +Inf/-MAX Res/2**192 or 1536 
Underflow 0/denorm/+ -MIN Res*2**192 or 1536 

Inexact Rounded/ovfl Res 

IEEE software t r a p handler requi rements a re as follows: 

Resul t is unpredictable unless supplied by t r a p handler . 
Determine which exceptions occurred. 
Determine the kind of operation. 
Determine the dest inat ion format. 
Overflow/underflow/inexact: the correctly rounded result , including pa r t s t h a t do 
not fit in the format. 
Invalid and divzero: the operand values. 
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Appendix C 

Instruction Encodings 

The encodings for t he Alpha inst ruct ion set a re given in the following sections. 
There is one section for each ins t ruct ion format, followed by a s u m m a r y of all t he 
instruct ion opcodes in a single table. 

C.1 Memory Format Instructions 

Table C - l l ists the hexadecimal values of the 6-bit opcode field for the Memory 
format instruct ions. 

Table C-1: Memory Format Instruction Opcodes 
Mnemonic Mnemonic Mnemonic 

LDA 08 LDAH 09 LDF 20 
LDG 21 LDL 28 LDL_L 2A 
LDQ 29 LDQ_L 2B LDQ_U OB 
LDS 22 LDT 23 STF 24 
STG 25 STL 2C STL C 2E 
STQ 2D STQ_C 2F STQ_U OF 
STS 26 STT 27 

Table C-2 l ists t he hexadecimal values of t h e 6-bit opcode field and the 16-bit 
displacement field for the Memory format instruct ions t h a t use t he displacement 
field as a function code. The notat ion used is oo.ffff, where oo is t he 6-bit opcode and 
the ffffis t he 16-bit displacement field. 

Table C-2: Memory Format Instructions with a Function Code 
Mnemonic Mnemonic Mnemonic 

FETCH 18.8000 FETCH M 18.A000 MB 18.4000 
RC 18.E000 RPCC 18.C000 RS 18.F000 
TRAPB 18.0000 

PROGRAMMING NOTE 
The code points 18.4400, 18.4800, and 18.4C00 m u s t 
operate as Memory Bar r ie r instruct ions (MB 18.4000). 
Software will current ly only use t he 18.4000 code point 
for MB. This allows a weaker memory bar r ie r to be 
added. 
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Table C-3 lists the hexadecimal values of the high-order two bits of the displacement 
field for the Memory format b ranch instruct ions. The notat ion used is oo.h, where 
oo is the 6-bit opcode and the h is t he high-order two bi ts of the displacement field. 

Table C-3: Memory Format Branch Instruction Opcodes 
Mnemonic Mnemonic Mnemonic 

JMP 1A.0 JSR 1A.1 JSR.COROUTINE 1 A.3 
RET 1A.2 

C.2 Branch Format Instructions 

Table C-4 lists the hexadecimal values of the 6-bit opcode field for the Branch format 
instruct ions. 

Table C-4: Branch Format instruction Opcodes 
Mnemonic Mnemonic Mnemonic 

BR 30 FBEQ 31 FBLT 32 
FBLE 33 BSR 34 FBNE 35 
FBGE 36 FBGT 37 BLBC 38 
BEQ 39 BLT 3A BLE 3B 
BLBS 3C BNE 3D BGE 3E 
BGT 3F 

C.3 Operate Format Instructions 

Table C-5 lists the hexadecimal values of the 6-bit opcode field and the 7-bit function 
code field for the Opera te format instruct ions. The notat ion used is oo.ff, where oo is 
the 6-bit opcode and the ff is t he 7-bit function code field. 

Table C-5: Operate Format Instruction Opcodes and Function Codes 
Mnemonic Mnemonic Mnemonic 

ADDL 10.00 ADDL/V 10.40 ADDQ 10.20 
ADDQ/V 10.60 CMPBGE 10.0F CMPEQ 10.2D 
CMPLE 10.6D CMPLT 10.4D CMPULE 10.3D 
CMPULT 10.1D SUBL 10.09 SUBL/V 10.49 
SUBQ 10.29 SUBQ/V 10.69 

S4ADDL 10.02 S4ADDQ 10.22 S4SUBL 10.0B 
S4SUBQ 10.2B S8ADDL 10.12 S8ADDQ 10.32 
S8SUBL 10.1B S8SUBQ 10.3B 

AND 11.00 BIC 11.08 BIS 11.20 
CMOVEQ 11.24 CMOVLBC 11.16 CMOVLBS 11.14 
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Table C-5 (Cont.): Operate Format Instruction Opcodes and Function Codes 

Mnemonic Mnemonic Mnemonic 

CMOVGE 11.46 CMOVGT 11.66 CMOVLE 11.64 
CMOVLT 11.44 CMOVNE 11.26 EQV 11.48 
ORNOT 11.28 XOR 11.40 

EXTBL 12.06 EXTLH 12.6A EXTLL 12.26 
EXTQH 12.7A EXTQL 12.36 EXTWH 12.5A 
EXTWL 12.16 INSBL 12.0B INSLH 12.67 
INSLL 12.2B INSQH 12.77 INSQL 12.3B 
INSWH 12.57 INSWL 12.1B MSKBL 12.02 
MSKLH 12.62 MSKLL 12.22 MSKQH 12.72 
MSKQL 12.32 MSKWH 12.52 MSKWL 12.12 
SLL 12.39 SRA 12.3C SRL 12.34 
ZAP 12.30 ZAPNOT 12.31 

MULL 13.00 MULL/V 13.40 MULQ 13.20 
MULQ/V 13.60 UMULH 13.30 

C.4 Floating-Point Operate Format 

Table C-6 lists t he hexadecimal values of the 11-bit function code field for the 
Floating-point Opera te format instruct ions t h a t a re da t a type independent . The 
6-bit opcode for these ins t ruct ions is 1 7 1 6. 

Table C-6: Function Codes for Floating Data Type Independent Operations 

Mnemonic Mnemonic Mnemonic 

CPYS 020 CPYSE 022 CPYSN 021 
CVTLQ 010 CVTQL 030 CVTQL/SV 530 
CVTQL/V 130 
FCMOVEQ 02A FCMOVGE 02D FCMOVGT 02F 
FCMOVLE 02E FCMOVLT 02C FCMOVNE 02B 
MF.FPCR 025 MT_FPCR 024 
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C.4.1 IEEE Floating-Point Instructions 

Table C-7 lists the hexadecimal value of the 11-bit function code field for the 
IEEE floating-point instruct ions, wi th and wi thout qualifiers. The opcode for these 
instruct ions is 1 6 i 6. 

Table C - 7 : IEEE Floating-Point Instruction Function Codes 

None /C /M /D /U /UC /UM /UD 

ADDS 080 000 040 oco 180 100 140 1C0 
ADDT 0A0 020 060 0E0 1A0 120 160 1E0 
CMPTEQ 0A5 
CMPTLT 0A6 
CMPTLE 0A7 
CMPTUN 0A4 
CVTQS OBC 03C 07C 0FC 
CVTQT OBE 03E 07E 0FE 
CVTTS OAC 02C 06C 0EC 1AC 12C 16C 1EC 
DIVS 083 003 043 0C3 183 103 143 1C3 
DIVT 0A3 023 063 0E3 1A3 123 163 1E3 
MULS 082 002 042 0C2 182 102 142 1C2 
MULT 0A2 022 062 0E2 1A2 122 162 1E2 
SUBS 081 001 041 0C1 181 101 141 ICI 
SUBT 0A1 021 061 0E1 1A1 121 161 1E1 

/SU /SUC /SUM /SUD /SUI /suie /SUIM /SUID 

ADDS 580 500 540 5C0 780 700 740 7C0 
ADDT 5A0 520 560 5E0 7A0 720 760 7E0 
CMPTEQ 5A5 
CMPTLT 5A6 
CMPTLE 5A7 
CMPTUN 5A4 
CVTQS 7BC 73C 77C 7FC 
CVTQT 7BE 73E 77E 7FE 
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC 
DIVS 583 503 543 5C3 783 703 743 7C3 
DIVT 5A3 523 563 5E3 7A3 723 763 7E3 
MULS 582 502 542 5C2 782 702 742 7C2 
MULT 5A2 522 562 5E2 7A2 722 762 7E2 
SUBS 581 501 541 5C1 781 701 741 7C1 
SUBT 5A1 521 561 5E1 7A1 721 761 7E1 

None IC /V /VC /sv /SVC /SVI /SVIC 

CVTTQ OAF 02F 1AF 12F 5AF 52F 7AF 72F 
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Table C-7 (Cont.): IEEE Floating-Point Instruction Function Codes 

D /VD /SVD /SVID /M /VM /SVM / S V M 

CVTTQ OEF 1EF 5EF 7EF 06F 16F 56F 76F 

PROGRAMMING NOTE 
Since underflow cannot occur for CMPTxx, there is no 
difference in function or performance between CMPTxx 
/S and CMPTxx/SU. I t is in tended t h a t software 
genera te CMPTxx/SU in place of CMPTxx/S. 

C.4.2 VAX Floating-Point Instructions 

Table C-8 lists t he hexadecimal value of the 11-bit function code field for the VAX 
floating-point instruct ions. The opcode for these instruct ions is 1 5 i 6. 

Table C-8: VAX Floating-Point Instruction Function Codes 

None /C /U /UC /S /SC /SU /SUC 

ADDF 080 000 180 100 480 400 580 500 
CVTDG 09E 01E 19E H E 49E 41E 59E 51E 
ADDG 0A0 020 1A0 120 4A0 420 5A0 520 
CMPGEQ 0A5 4A5 
CMPGLT 0A6 4A6 
CMPGLE 0A7 4A7 
CVTGF OAC 02C 1AC 12C 4AC 42C 5AC 52C 
CVTGD OAD 02D IAD 12D 4AD 42D 5AD 52D 
CVTQF OBC 03C 
CVTQG OBE 03E 
DIVF 083 003 183 103 483 403 583 503 
DIVG 0A3 023 1A3 123 4A3 423 5A3 523 
MULF 082 002 182 102 482 402 582 502 
MULG 0A2 022 1A2 122 4A2 422 5A2 522 
SUBF 081 001 181 101 481 401 581 501 
SUBG 0A1 021 1A1 121 4A1 421 5A1 521 

None /C IW /VC /S /SC /SV /SVC 

CVTGQ OAF 02F 1AF 12F 4AF 42F 5AF 52F 
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C.5 Opcode Summary 

Table C-9 lists all Alpha opcodes from 00 (CALL.PALL) th rough 3F (BGT). In the 
table, the column headings appear ing over the instruct ions have a g ranula r i ty of 
8 1 6. The rows benea th the leftmost column supply the individual hex number to 
resolve t h a t granulari ty. 

If an instruct ion column h a s a 0 in the right (low) hex digit, replace t h a t 0 wi th the 
number to the left of t he backslash in the leftmost column on the instruction's row. 
If an instruction column h a s an 8 in the right (low) hexadecimal digit, replace t h a t 
8 with the number to the right of t he backslash in the leftmost column. 

For example, the th i rd row (2/A) unde r the 1 0 i 6 column contains t he symbol INTS*, 
represent ing the all integer subtract instruct ions. The opcode for those instruct ions 
would then be 1 2 1 6 because the 0 in 10 is replaced by the 2 in the leftmost 
column. Likewise, the th i rd row under the 1 8 i 6 column contains the symbol JSR*, 
represent ing all j u m p instruct ions. The opcode for those instruct ions is 1A because 
the 8 in the heading is replaced by the number to the right of the backslash in the 
leftmost column. 

The instruction format is l isted under the instruct ion symbol. 

The symbols in Table C-9 are explained in Table C-10. 
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Table C-9: Opcode Summary 
00 08 10 18 20 28 30 38 

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC 
(pal) (mem) (op) (mem) (mem) (mem) (br) (br) 

1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ 
(mem) (op) (mem) (mem) (br) (br) 

2/A Res Res INTS* JSR* LDS LDL_L FBLT BLT 
(op) (mem) (mem) (mem) (br) (br) 

3/B Res LDQ_U INTM* \ P A L \ LDT LDQ_L FBLE BLE 
(mem) (op) (mem) (mem) (br) (br) 

4/C Res Res Res Res STF STL BSR BLBS 
(mem) (mem) (br) (br) 

5/D Res Res FLTV* \PAL\ STG STQ FBNE BNE 
(op) (mem) (mem) (br) (br) 

6/E Res Res FLTI* \ P A L \ STS STL_C FBGE BGE 
(op) (mem) (mem) (br) (br) 

7/F Res STQ_U FLTL* \ P A L \ STT STQ_C FBGT BGT 
(mem) (op) (mem) (mem) (br) (br) 

Table C-10: Key to Opcode Summary (Table C-9) 
Symbol Mean ing 

FLTI* IEEE floating-point instruction opcodes 

FLTL* Floating-point Operate instruction opcodes 

FLTV* VAX floating-point instruction opcodes 

INTA* Integer arithmetic instruction opcodes 

INTL* Integer logical instruction opcodes 

INTM* Integer multiply instruction opcodes 

INTS* Integer subtract instruction opcodes 

JSR* Jump instruction opcodes 

MISC* Miscellaneous instruction opcodes 

PAL* PALcode instruction (CALL_PAL) opcodes 

\PAL\ Reserved for PALcode 

Res Reserved for Digital 

Instruction Encodings C-7 



C.6 OpenVMS PALcode Format Instructions 

Sections C.6.1 and C.6.2 list t he OpenVMS Alpha unprivileged and privileged 
PALcode function codes. 

C.6.1 Unprivileged OpenVMS PALcode Function Codes 

Table C - l l lists t he hexadecimal values of the 26-bit function code field for the 
unprivileged OpenVMS PALcode format instruct ions. The 6-bit opcode for the 
PALcode instruct ions is zero. 

Table C-11: Unprivileged OpenVMS PALcode Function codes 

Mnemonic Mnemonic Mnemonic 

AMOVRM 00A1 AMOVRR 00A0 BPT 0080 

BUGCHK 0081 CHME 0082 CHMK 0083 

CHMS 0084 CHMU 0085 GENTRAP 00ΑΑ 

1MB 0086 INSQHIL 0087 INSQHILR 00A2 

INSQHIQ 0089 INSQHIQR 00A4 INSQTIL 0088 

INSQTILR 00A3 INSQTIQ 008A INSQTIQR 00A5 

INSQUEL 008B INSQUEL/D 008D INSQUEQ 008C 

INSQUEQ/D 008E PROBER 008F PROBEW 0090 

RD_PS 0091 READJJNQ 009E REI 0092 

REMQHIL 0093 REMQHILR 00A6 REMQHIQ 0095 

REMQHIQR 00A8 REMQTIL 0094 REMQTILR 00A7 

REMQTIQ 0096 REMQTIQR 00A9 REMQUEL 0097 

REMQUEL/D 0099 REMQUEQ 0098 REMQUEQ/D 009A 

RSCC 009D SWASTEN 009B WRITE.UNQ 009F 

WR_PS_SW 009C 

C.6.2 Privileged OpenVMS PALcode Function Codes 

Table C - l 2 l ists t he hexadecimal values of the 26-bit function code field for the 
privileged OpenVMS PALcode format instruct ions. The 6-bit opcode for the PALcode 
instruct ions is zero. 

Table C-12: Privileged OpenVMS PALcode Function Codes 

Mnemonic Mnemonic Mnemonic 

CFLUSH 0001 DRAINA 0002 HALT 0000 

LDQP 0003 

MFPR_ASN 0006 MFPR_ASTEN 0026 MFPR.ASTSR 0027 

MFPR_ESP 001E MFPRJFEN 000B MFPRJPL 000E 

MFPR.MCES 0010 MFPR_PCBB 0012 MFPR.PRBR 0013 

MFPR.PTBR 0015 MFPRJ3CBB 0016 MFPRJSISR 0019 

MFPR.SSP 0020 MFPR_TBCHK 001A MFPRJJSP 0022 

MFPR.VPTB 0029 MFPR_WHAMI 003F 
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Table C-12 (Cont.): Privileged OpenVMS PALcode Function Codes 

Mnemonic Mnemonic Mnemonic 

MTPR.ASTEN 0007 MTPR.ASTSR 0008 MTPR.DATFX 002E 

MTPR.ESP 001F MTPR.FEN OOOC MTPR.IPIR 000D 

MTPRJPL 000F MTPR.MCES 0011 MTPR.PERFMON 002B 

MTPR.PRBR 0014 MTPR.SCBB 0017 MTPR.SIRR 0018 

MTPR.SSP 0021 MTPR.TBIA 001B MTPR_TBIAP 001C 

MTPR_TBIS 001D MTPR.TBISD 0024 MTPR.TBISI 0025 

MTPR_USP 0023 MTPR_VPTB 002A 

STQP 0004 SWPCTX 0005 unused 0009 

unused 000A 

C.7 Unprivileged OSF/1 PALcode Function Codes 

Table C-13 lists l ists t he hexadecimal values of the 26-bit function code field for 
the unprivileged OSF/1 PALcode instruct ions. The 6-bit opcode for the PALcode 
instruct ions is zero. 

Table C-13: Unprivileged OSF/1 PALcode Function Codes 

Mnemonic Mnemonic Mnemonic 

bpt 0080 bugchk 0081 callsys 0083 
gentrap 00ΑΑ imb 0086 rdunique 009E 
wrunique 009F 

C.8 Privileged OSF/1 PALcode function codes 

Table C-14 lists l ists t he hexadecimal values of the 26-bit function code field for 
the unprivileged OSF/1 PALcode instruct ions. The 6-bit opcode for the PALcode 
instruct ions is zero. 

Table C-14: Privileged OSF/1 PALcode Function Codes 

Mnemonic Mnemonic Mnemonic 

halt 0000 rdps 0036 rdusp 003A 
rdval 0032 retsys 003D rti 003F 
swpctx 0030 swpipl 0035 tbi 0033 
whami 003C wrent 0034 wrfen 002B 
wrkgp 0037 wrusp 0038 wrval 0031 
wrvptptr 002D 
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C.9 Required PALcode Function Codes 

The opcodes listed in Table C - l 5 a re required for all Alpha implementat ions . The 
notat ion used is oo.ffif, where oo is t he hexadecimal 6-bit opcode and ffff is the 
hexadecimal 26-bit function code. 

Table C-15: Required PALcode Function Codes 

Mnemonic Type Function Code 

DRAINA Privileged 00.0002 

HALT Privileged 00.0000 

1MB Unprivileged 00.0086 

C.10 Opcodes Reserved to PALcode 

The opcodes listed in Table C - l 6 are reserved for use in implement ing PALcode. 

Table C-16: Opcodes Reserved for PALcode 

Mnemonic Mnemonic Mnemonic 

PALI 9 19 PALI Β IB PAL1D ID 
PALI Ε IE PALI F I F 

C.11 Opcodes Reserved to Digital 

The opcodes listed in Table C - l 7 a re reserved to Digital. 

Table C-17: Opcodes Reserved for Digital 

Mnemonic Mnemonic Mnemonic 

OPC01 01 OPC02 02 OPC03 03 
OPC04 04 OPC05 05 OPC06 06 
OPC07 07 OPC0A OA OPC0C OC 
OPC0D 0D OPC0E 0E OPC14 14 
OPC1C 1C 
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A 
Aborts, forcing, (I), 6-5 
Absolute longword queue, (II), 2-21 
Absolute quadword queue, (II), 2-25 
Access control violation (ACV) fault, (II), 6-10 

has precedence, (II), 3-13 
memory protection, (II), 3-8 
service routine entry point, (II), 6-26 

Access-violation fault, (III), 3-10 
ADDF instruction, (I), 4-88 
ADDG instruction, (I), 4-88 
Add instructions 

See also Floating-point operate 
add longword, (I), 4-23 
add quadword, (I), 4-25 
add scaled longword, (I), 4-24 
add scaled quadword, (I), 4-26 

ADDL instruction, (I), 4-23 
ADDQ instruction, (I), 4-25 
Address space match (ASM) 

bit in PTE, (II), 3-4; (III), 3-4 
TBIAP register uses, (II), 5-25 
virtual cache coherency, (I), 5—4 

Address space number (ASN) 
denned, (III), 1-2 
described, (III), 3-8 
in HWPCB, (II), 4-2 
privileged context, (II), 2-91 
range supported, (II), 3-12 
TBCHK register uses, (II), 5-22 
TBIS register uses, (II), 5-26 
translation buffer with, (II), 3-11 
virtual cache coherency, (I), 5—4 

Address space number (ASN) register, (II), 
5-4 

Address translation 
algorithm to perform, (II), 3-9 
page frame number (PFN), (II), 3-9 
page table structure, (II), 3-8 
performance enhancements, (II), 3-10 
translation buffer with, (II), 3-11 
virtual address segment fields, (II), 3-9 

ADDS instruction, (I), 4-89 
ADDT instruction, (I), 4-89 
Aligned byte/word memory accesses, A-11 

ALIGNED data objects, (I), 1-9 
Alignment 

atomic longword, (I), 5-2 
atomic quadword, (I), 5-2 
D_floating, (I), 2-7 
data alignment trap, (II), 6-16 
data considerations, A-6 
double-width data paths, A-1 
F_floating, (I), 2-5 
G_floating, (I), 2-6 
instruction, A-2 
longword, (I), 2-2 
longword integer, (I), 2-11 
memory accesses, A-11 
program counter (PC), (II), 6-6 
quadword, (I), 2-3 
quadword integer, (I), 2-11 
SJloating, (I), 2-8 
stack, (II), 6-31 
TJIoating, (I), 2-10 
when data is unaligned, (II), 6-27 

Alpha architecture 
See also Conventions 
addressing, (I), 2-1 
overview, (I), 1-1 
porting operating systems to, (I), 1-1 
programming implications, (I), 5-1 
registers, (I), 3-1 
security, (I), 1-7 

Alpha privileged architecture library 
See PALcode 

AMOVRM (PALcode) instruction, (II), 2-76 
AMOVRR (PALcode) instruction, (II), 2-76 
AND instruction, (I), 4-37 
Arithmetic exceptions 

See Arithmetic traps 
Arithmetic instructions, (I), 4-22 

See also specific arithmetic instructions 
Arithmetic left shift instruction, (I), 4-36 
Arithmetic trap entry (entArith) register, 

(III), 1-2, 5-3, 5-4 
Arithmetic traps 

defined, (II), 6-9; (III), 5-1 
described, (II), 6-12 
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Arithmetic traps (cont'd) 
division by zero, (I), 4-63; (II), 6-14; (III), 

5-5 
F31 as destination, (II), 6-12 
inexact result, (I), 4-64; (II), 6-15; (III), 

5-5 
integer overflow, (I), 4-64; (II), 6-15; 

(III), 5-5 
invalid operation, (I), 4-63; (ZD, 6-14; 

Γ/7/Λ 5-5 
overflow, (I), 4-63; f/JJ, 6-15; (III), 5-5 
program counter (PC) value, (II), 6-14 
programming implications for, (I), 5-21 
R31 as destination, (II), 6-12 
recorded for software, (II), 6-13 
REI instruction with, (II), 6-9 
service routine entry point, (II), 6-27 
system entry for, (III), 5-3, 5-4 
TRAPB instruction with, f/J, 4-120 
underflow, (I), 4-63; f/JJ, 6-15; (III), 5-5 
when registers affected by, (II), 6-13 

AST enable (ÄSTEN) register 
changing access modes in, (II), 4-3 
described, (II), 5-5 
in HWPCB, (II), 4-2 
interrupt arbitration, (II), 6-35 
operation (with ASTs), (II), 4-3 
privileged context, (II), 2-91 
SWASTEN instruction with, (II), 2-19 

AST summary (ASTSR) register 
described, (II), 5-7 
indicates pending ASTs, (II), 4-3 
in HWPCB, (II), 4-2 
interrupt arbitration, (II), 6-34 
privileged context, (II), 2-91 

Asynchronous system traps (AST) 
ASTEN/ASTSR registers with, (II), 4-3 
initiating, (II), 4-3 
interrupt, defined, (II), 6-20 
service routine entry point, (II), 6-27 
with PS register, (II), 4-3 

Atomic access, (I), 5-2 
Atomic move operations, (II), 2-76 
Atomic operations 

accessing longword datum, (I), 5-2 
accessing quadword datum, (I), 5-2 
modifying page table entry, (II), 3-7 
updating shared data structures, (I), 5-6 
using load locked and store conditional, (I), 

5-7 
Atomic sequences, A-17 

Β 
Barrier instructions 

shared data structures and, (I), 8-10 

Barrier instructions (cont'd) 
use in I/O space read/write ordering, (I), 

8-2, 8-8 
BEQ instruction, (I), 4-17 
Β field (mailbox), (I), 8-5 
BGE instruction, (I), 4-17 
BGT instruction, (I), 4-17 
BIC instruction, (I), 4-37 
BIS instruction, (I), 4-37 
BLBC instruction, (I), 4-17 
BLBS instruction, (I), 4-17 
BLE instruction, (I), 4-17 
BLT instruction, (I), 4-17 
BNE instruction, (I), 4-17 
Boolean instructions, (I), 4-36 

logical functions, (I), 4-37 
Boolean stylized code forms, A-14 
bpt (PALcode) instruction, (III), 2-2 

required recognition of, (I), 6-4 
BPT (PALcode) instruction, (II), 2-A 

required recognition of, (I), 6—4 
service routine entry point, (II), 6-28 
trap information, (II), 6-16 

Branch instruction format, (I), 3-10 
Branch instructions, (I), 4-16 

See also Control instructions 
backward conditional, (I), 4-17 
conditional branch, (I), 4-17 
displacement, (I), 4-17 
floating-point, summarized, (I), 4-77 
forward conditional, (I), 4-17 
opcodes for, C-2 
unconditional branch, (I), 4-19 

Branch prediction model, (I), 4-15 
Branch prediction stack, with BSR 

instruction, (I), 4-19 
Breakpoint exception, initiating, (II), 2—4 
Bridge 

defined, (I), 8-1 
MBPR DON bit with, (I), 8-6 
prefetch interrupts, (I), 8-12 
with I/O space granularity, (I), 8-7 

BR instruction, (I), 4-19 
BSR instruction, (I), 4-19 
Bugcheck exception, initiating, (II), 2-5 
bugchk (PALcode) instruction, (III), 2-3 

required recognition of, (I), 6-4 
BUGCHK (PALcode) instruction, (II), 2-5 

required recognition of, (I), 6-4 
service routine entry point, (II), 6-28 
trap information, (II), 6-16 

Byte_within_page field, (II), 3-2; (III), 3-2 
Byte data type, (I), 2-1 
Byte manipulation instructions, (I), 4—42 
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Byte manipulation instructions (cont'd) 
See also Extract instructions; Insert 

instructions; Mask instructions 

c 
Cache coherency 

barrier instructions for, (I), 5-20 
defined, (I), 5-1 
I/O space access, (I), 8-2 
in multiprocessor environment, (I), 5-5 
with DMA, (I), 8-10 

Caches 
design considerations, A-1 
flushing physical page from, (II), 2-84 
I-stream considerations, A-5 
MB and 1MB instructions with, (I), 5-20 
requirements for, (I), 5—4 
translation buffer conflicts, A-8 
with powerfail/recovery, (I), 5-4 

CALL_PAL (call privileged architecture 
library) instruction, (I), 4-114 

callsys (PALcode) instruction, (III), 2-4 
entSys with, (III), 5-8 
stack frames for, (III), 5-3 

Canonical form, (I), 4-64 
CFLUSH (PALcode) instruction, (II), 2-84 

with powerfail, (II), 6-22 
Changed datum, (I), 5-5 
CHME (PALcode) instruction, (II), 2-6 

service routine entry point, (II), 6-28 
trap initiation, (II), 6-17 

CHMK (PALcode) instruction, (II), 2-7 
service routine entry point, (II), 6-28 
trap initiation, (II), 6-17 

CHMS (PALcode) instruction, (II), 2-8 
service routine entry point, (II), 6-28 
trap initiation, (II), 6-17 

CHMU (PALcode) instruction, (II), 2-9 
service routine entry point, (II), 6-28 
trap initiation, (II), 6-17 

Clear a register, A-13 
CMD field (mailbox), (I), 8-5 
CMOVEQ instruction, (I), 4-38 
CMOVGE instruction, (I), 4-38 
CMOVGT instruction, (I), 4-38 
CMOVLBC instruction, (I), 4-38 
CMOVLBS instruction, (I), 4-38 
CMOVLE instruction, (I), 4-38 
CMOVLT instruction, (I), 4-38 
CMOVNE instruction, (I), 4-38 
CMPBGE instruction, (I), 4-44 
CMPEQ instruction, (I), 4-27 
CMPGEQ instruction, (I), 4-91 
CMPGLE instruction, (I), 4-91 

CMPGLT instruction, (I), 4-91 
CMPLE instruction, (I), 4-27 
CMPLT instruction, (I), 4-27 
CMPTEQ instruction, (I), 4-92 
CMPTLE instruction, (I), 4-92 
CMPTLT instruction, (I), 4-92 
CMPTUN instruction, (I), 4-92 
CMPULE instruction, (I), 4-28 
CMPULT instruction, (I), 4-28 
Code forms, stylized, A-12 

Boolean, A-14 
load literal, A-13 
negate, A-14 
NOP, A-13 
NOT, A-14 
register, clear, A-13 
register-to-register move, A-14 

Code sequences, A-11 
Coherency, cache, (I), 5-1 
Compare instructions 

See also Floating-point operate 
compare byte, (I), 4-44 
compare integer signed, (I), 4-27 
compare integer unsigned, (I), 4-28 

Conditional move instructions, (I), 4-38 
See also Floating-point operate 

Console, overview, (I), 7-1 
Context switching 

See also Hardware; Process 
defined, (II), 4-1 
hardware, (II), 4-2 
initiating, (II), 2-90 
raising IPL while, (II), 4-4 
software, (II), 4-2 

Control instructions, (I), 4-15 
Control stream DMA, (I), 8-11 
Conventions 

code examples, (I), 1-10 
extents, (I), 1-8 
figures, (I), 1-9 
instruction format, (I), 3-8 
notation, (I), 3-8 
numbering, (I), 1-7 
ranges, (I), 1-8 

/C opcode qualifier 
IEEE floating-point, (I), 4-60 
VAX floating-point, (I), 4-60 

Corrected error interrupts, logout area for, 
(II), 6-24 

CPSY instruction, (I), 4-83 
CPSYN instruction, (I), 4-83 
CPYSE instruction, (I), 4-83 
Current mode field, in PS register, (II), 6-6 
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Current PC, (II), 6-2 
CVTDG instruction, (I), 4-96 
CVTGD instruction, (I), 4-96 
CVTGF instruction, (I), 4-96 
CVTGQ instruction, (I), 4-94 
CVTLQ instruction, (I), 4-84 
CVTQF instruction, (I), 4-95 
CVTQG instruction, (I), 4-95 
CVTQL instruction, (I), 4-84 
CVTQS instruction, (I), 4-99 
CVTQT instruction, (I), 4-99 
CVTTQ instruction, (I), 4-98 
CVTTS instruction, (I), 4-100 

D 
D_floating data type, (I), 2-6 

alignment of, (I), 2-7 
mapping, (I), 2-6 
restricted, (I), 2-7 

Data alignment, A-6 
Data alignment trap, (II), 6-15 
Data alignment trap fixup (DAT) bit, in 

HWPCB, (II), 4-2 
Data alignment trap fixup (DATFX) register, 

(ID, 5-9 
Data alignment traps 

memory management, (II), 6-16 
registers used, (II), 6-16; (III), 5-4 
service routine entry point, (II), 6-27 
system entry for, (III), 5-8 

Data format, overview, (I), 1-3 
Data sharing (multiprocessor), A-7 

synchonization requirement, (I), 5-5 
Data stream considerations, A-6 
Data stream DMA, (I), 8-11 
Data structures, snared, (I), 5-5 
Data types 

byte, (I), 2-1 
IEEE floating-point, (I), 2-7 
longword, (I), 2-2 
longword integer, (I), 2-10 
quadword, (I), 2-2 
quadword integer, (I), 2-11 
unsupported in hardware, (I), 2-12 
VAX floating-point, (I), 2-3 
word, (I), 2-1 

Denormal, (I), 4-58 
Devices 

local, (I), 8-1 
remote, (I), 8-1 
shared data structures and, (I), 8-10 

Dirty zero, (I), 4-58 
DIVF instruction, (I), 4-102 

DIVG instruction, (I), 4-102 
Division 

integer, A-12 
performance impact of, A-12 

Division by zero trap, (II), 6-14; (III), 5-5 
DIVS instruction, (I), 4-104 
DIVT instruction, (I), 4-104 
DMA, (I), 8-10 

atomic, (I), 8-10 
control stream, (I), 8-11 
data stream, (I), 8-11 
defined, (I), 8-2 
interrupts with, (I), 8-12 

DON field (mailbox), (I), 8-6 
ZD opcode qualifier 

FPCR (floating-point control register), (I), 
4-64 

IEEE floating-point, (I), 4-60 
draina (PALcode) instruction, (I), 6-5 
DRAINA (PALcode) instruction, (I), 6-5 
Dual-issue instruction considerations, A-2 
DZE bit 

exception summary parameter, (II), 6-13 
exception summary register, (III), 5-5 

Ε 
entArith 

See Arithmetic trap entry 
entIF 

See Instruction fault entry 
entlnt 

See Interrupt entry 
entMM 

See Memory-management fault entry 
entSys 

See System call entry 
EQV instruction, (I), 4-37 
ERR field (mailbox), (I), 8-6 
Error checking, (I), 8-6 
Errors, processor 

corrected, (II), 6-23 
uncorrected, (II), 6-23 

Errors, system 
corrected, (II), 6-22 
uncorrected, (II), 6-22 

Exceptional events 
actions, summarized, (II), 6-2 
defined, (II), 6-1 

Exception handlers, B-2 
TRAPB instruction with, (I), 4-120 

Exception register write mask, (III), 5-6 
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Exceptions 
See also Arithmetic traps; Faults; 

Synchronous traps 
actions, summarized, (II), 6-2 
defined, (III), 5-1 
initiated before interrupts, (II), 6-18 
initiated by PALcode, (II), 6-31 
introduced, (II), 6-8 
processor state transitions, (II), 6-36 
stack frames, (II), 6-7 
stack frames for, (III), 5-3 

Exception service routines 
entry point, (II), 6-26 
introduced, (II), 6-8 

Exception summary parameter, (II), 6-13 
Exception summary register, (III), 5-2, 5-6 

format of, (III), 5-4 
Executive read enable (ERE), bit in PTE, (II), 

3-5 
Executive stack pointer (ESP) 

as internal processor register, (II), 5-1 
in HWPCB, (II), 4-2 

Executive stack pointer (ESP) register, (II), 
5-27 

Executive write enable (EWE), bit in PTE, 
(ID, 3-6 

EXTBL instruction, (I), 4-^6 
EXTLH instruction, (I), 4-46 
EXTLL instruction, (I), 4-46 
EXTQH instruction, (I), 4-46 
EXTQL instruction, (I), 4-46 
Extract instructions (list), (I), 4—46 
EXTWH instruction, (I), 4-46 
EXTWL instruction, (I), 4-46 

F 
F_floating data type, (I), 2-3 

alignment of, (I), 2-5 
compared to IEEE S_floating, (I), 2-8 
MAX/MIN, (I), 4-58 
operations, (I), 4-64 
when data is unaligned, (II), 6-27 

Fault on execute (FOE), (II), 6-12 
bit in PTE, (II), 3-4; (III), 3-4 
service routine entry point, (II), 6-26 
software usage of, (II), 6-12 

Fault-on-execute fault, (III), 3-10 
Fault on read (FOR), (II), 6-10 

bit in PTE, (II), 3-4; (III), 3-5 
service routine entry point, (II), 6-26 
software usage of, (II), 6-10 

Fault-on-read fault, (III), 3-10 
Fault on write (FOW), (II), 6-11 

bit in PTE, (II), 3-4; (III), 3-5 
service routine entry point, (II), 6-26 

Fault on write (FOW) (cont'd) 
software usage of, (II), 6-11 

Fault-on-write fault, (III), 3-10 
Faults 

access control violation, (II), 6-10 
defined, (II), 6-8; (III), 5-1 
fault on execute, (II), 6-12 
fault on read, (II), 6-10 
fault on write, (II), 6-11 
floating-point disabled, (II), 6-10 
memory management, (III), 3-9 
MM flag, (II), 6-10 
program counter (PC) value, (II), 6-8 
REI instruction with, (II), 6-8 
translation not valid, (II), 6-10 

FBEQ instruction, (I), 4-78 
FBGE instruction, (I), 4-78 
FBGT instruction, (I), 4-78 
FBLE instruction, (I), 4-78 
FBLT instruction, (I), 4-78 
FBNE instruction, (I), 4-78 
FCMOVEQ instruction, (I), 4-85 
FCMOVGE instruction, (I), 4-85 
FCMOVGT instruction, (I), 4-85 
FCMOVLE instruction, (I), 4-85 
FCMOVLT instruction, (I), 4-85 
FCMOVNE instruction, (I), 4-85 
FETCH (prefetch data) instruction, (I), 4-115 

performance optimization, A-10 
FETCH.M (prefetch data, modify intent) 

instruction, (I), 4-115 
performance optimization, A-10 

Finite number, Alpha, contrasted with VAX, 
(I), 4-57 

Floating-point branch instructions, (I), 4-77 
Floating-point control register (FPCR), (I), 

4-64 
accessing, (I), 4-66 
at processor initialization, (I), 4-67 
bit descriptions, (I), 4-65 
instructions to read/write, (I), 4-87 
operate instructions that use, (I), 4-80 
saving and restoring, (I), 4-67 

Floating-point convert instructions, (I), 3-12 
Floating-point disabled fault, (II), 6-10 

service routine entry point, (II), 6-26 
Floating-point division, performance impact 

of, A-12 
Floating-point enable (FEN) register 

defined, (III), 1-3 
described, (II), 5-10 
in HWPCB, (II), 4-2 
privileged context, (II), 2-91 
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Floating-point format, number representation 
(encodings), (I), 4-58 

Floating-point instructions 
branch (list), (I), 4-77 
faults, (Z), 4-56 
introduced, (I), 4-56 
memory format (list), (I), 4-68 
operate (list), (I), 4-80 
rounding modes, (I), 4-59 
terminology, (I), 4-57 
trapping modes, (I), 4-60 
traps, (I), 4-56 

Floating-point load instructions, (I), 4-68 
load F.floating, (I), 4-69 
load GJIoating, (I), 4-70 
load S.floating, (I), 4-71 
load TJIoating, (ZJ, 4-72 
with nonfinite values, (I), 4-68 

Floating-point operate instructions, (I), 4-80 
add (IEEE), (ZJ, 4-89 
add (VAX), (ZJ, 4-88 
compare (IEEE), (ZJ, 4-92 
compare (VAX), (I), 4-91 
conditional move, (ZJ, 4-85 
convert IEEE floating to IEEE floating, (ZJ, 

4-100 
convert IEEE floating to integer, (ZJ, 4-98 
convert integer to IEEE floating, (ZJ, 4-99 
convert integer to integer, (I), 4-84 
convert integer to VAX floating, (ZJ, 4-95 
convert VAX floating to integer, (ZJ, 4-94 
convert VAX floating to VAX floating, (ZJ, 

4-96 
copy sign, (ZJ, 4-83 
divide (IEEE), (ZJ, 4-104 
divide (VAX), (ZJ, 4-102 
format of, (ZJ, 3-11 
move from/to FPCR, (ZJ, 4-87 
multiply (IEEE), (ZJ, 4-107 
multiply (VAX), (ZJ, 4-106 
opcodes for, C-3 
subtract (IEEE), (ZJ, 4-111 
subtract (VAX), (ZJ, 4-109 

Floating-point registers, (ZJ, 3-2 
Floating-point rounding modes 

IEEE, (ZJ, 4-59 
VAX, ah 4-59 

Floating-point single-precision operations, (I), 
4-64 

Floating-point store instructions, (I), 4r-68 
store F.floating, (I), 4-73 
store G_floating, (I), 4-74 
store S_floating, (I), 4-75 
store T_floating, (I), 4-76 
with nonfinite values, (I), 4-68 

Floating-point support 
FPCR (floating-point control register), (I), 

4-64 
IEEE, ah 2-7 
IEEE standard 754-1985, ah 4-67 
instruction overview, a), 4-56 
longword integer, (7J, 2-10 
operate instructions, (7), 4-80 
optional with Alpha, (I), 4-2 
quadword integer, (I), 2-11 
rounding modes, 4-59 
single-precision operations, (X), 4-64 
trap modes, (7J, 4-60 
VAX, ah 2-3 

Floating-point trapping modes, (7J, 4-60 
See also Arithmetic traps 
imprecision from pipelining, (7), 4-62 

FOE 
See Fault on execute 

FOR 
See Fault on read 

FOW 
See Fault on write 

FPCR (floating-point control register) 
See Floating-point control register (FPCR) 

Frame pointer (FP), register linkage for, aW, 
1-1 

G 
G_floating data type, (7Λ 2-5 

alignment of, (I), 2-6 
mapping, ah 2-5 
MAX/MIN, ah 4-58 
when data is unaligned, (IÎ), 6-27 

gentrap (PALcode) instruction, (7//Λ 2-5 
required recognition of, a), 6-4 

GENTRAP (PALcode) instruction, ai), 2-10 
required recognition of, a), 6-4 
trap information, (Ii), 6-17 

Global pointer (GP), register linkage for, aW, 
1-1 

Granularity hint (GH) 
bits in PTE, ff/J, 3-5; (ZT/j, 3-4 

H 
halt (PALcode) instruction, (7Λ 6-6 
HALT (PALcode) instruction, ah 6-6 
Hardware context, (7Z7J, 4-1 
Hardware interrupts 

interprocessor, (77Λ 6-21 
interval clock, (7JJ, 6-20 
powerfail, (ZD, 6-22 
servicing, (ZZZJ, 5-6 
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Hardware nonprivileged context, (II), 4-3 
Hardware privileged context, (II), 4-2 

switching, (II), 4-2 
Hardware privileged context block (HWPCB) 

format, (II), 4-2 
original built by HWRPB, (II), 4-4 
PCBB register, (II), 5-16 
process unique value in, (II), 2-80 
specified by PCBB, (II), 4-2 
swapping ownership, (II), 2-90 
writing to, (II), 4-3 

Hardware restart parameter block (HWRPB) 
interval clock interrupt, (II), 6-20 
logout area, (II), 6-24 

Hose, (I), 8-1 
HOSE field (mailbox), (I), 8-5 
HWPCB 

See Hardware privileged context block 
HWRPB 

See Hardware restart parameter block 

ι 
I/O access granularity, (I), 8-2 
I/O bus, tightly coupled, (I), 8-1 
I/O device interrupts, (II), 6-20 
I/O devices, service routine entry points, (II), 

6-29 
I/O implementation dependencies, (I), 8-13 
I/O space, local, (I), 8-2 
I/O space, remote, (I), 8-2 
I/O space read/write ordering, (X), 8-2, 8-7 
I/O subsystem design, implementation 

considerations, (I), 8-13 
IEEE convert-to-integer trap mode, 

instruction notation for, (I), 4-61 
IEEE floating-point 

See also Floating-point instructions 
exception handlers, B-2 
format, (I), 2-7 
FPCR (floating-point control register), (I), 

4-64 
hardware support, B-1 
NaN, (I), 2-8 
options, B-1 
S.floating, (I), 2-8 
standard, mapping to, B-3 
standard charts, B-10 
T_floating, (I), 2-9 
trap handling, B-4 
trap modes, (I), 4-62 

IEEE floating-point instructions 
add instructions, (I), 4-89 
compare instructions, (I), 4-92 
convert from integer instructions, (I), 4-99 

IEEE floating-point instructions (cont'd) 
convert IEEE floating format instructions, 

(I), 4-100 
convert to integer instructions, (I), 4-98 
divide instructions, (I), 4-104 
multiply instructions, (I), 4-107 
opcodes for, C-4 
operate instructions, (I), 4-80 
qualifiers, summarized, C-4 
subtract instructions, (I), 4-111 

IEEE rounding modes, (I), 4-59 
IEEE standard 

conformance to, B-1 
mapping to, B-3 
support for, (I), 4-67 

IEEE trap modes, required instruction 
notation, (I), 4-61 

IGN (ignore), (I), 1-9 
Illegal instruction trap, (II), 6-16 

service routine entry point, (II), 6-28 
Illegal operand trap, service routine entry 

point, (II), 6-28 
Illegal PALcode operand trap, (II), 6-17 
imb (PALcode) instruction, (I), 6-7 
1MB (PALcode) instruction, (I), 5-17, 6-7 

virtual I-cache coherency, (I), 5-5 
IMP (implementation dependent), (I), 1-9 
INE bit 

exception summary parameter, (II), 6-13 
exception summary register, (III), 5-5 

Inexact result trap, (II), 6-15; (III), 5-5 
Infinity, (I), 4-57 
Input/output interrupts, (II), 6-22 
INSBL instruction, (I), 4-50 
Insert instructions (list), (I), 4-50 
Insert into queue PALcode instructions 

longword at head interlocked, (II), 2-31 
longword at head interlocked resident, (II), 

2-33, 2 ^ 8 
longword at tail interlocked, (II), 2-39 
longword at tail interlocked resident, (II), 

2-42, 2-50 
quadword at head interlocked, (II), 2-35 
quadword at head interlocked resident, 

(II), 2-37 
quadword at tail interlocked, (II), 2-44 
quadword at tail interlocked resident, (II), 

2-46 
INSLH instruction, (I), 4-50 
INSLL instruction, (I), 4-50 
INSQHIL (PALcode) instruction, (II), 2-31 
INSQHILR (PALcode) instruction, (II), 2-33 
INSQH instruction, (I), 4-50 
INSQHIQ (PALcode) instruction, (II), 2-35 

lndex-7 



INSQHIQR (PALcode) instruction, (II), 2-37 
INSQL instruction, (I), 4-50 
INSQTIL (PALcode) instruction, (II), 2-39 
INSQTILR (PALcode) instruction, (II), 2-42 
INSQTIQ (PALcode) instruction, (II), 2-44 
INSQTIQR (PALcode) instruction, (II), 2-A6 
INSQUEL (PALcode) instruction, (II), 2-48 
INSQUEL/D (PALcode) instruction, (II), 2-48 
INSQUEQ (PALcode) instruction, (II), 2-50 
INSQUEQ/D (PALcode) instruction, (II), 2-50 
Instruction encodings 

floating-point format, C-3 
summarized, C-l 

Instruction fault, system entry for, (III), 5-3 
Instruction fault entry (entIF) register, (III), 

1-2, 5-3, 5-6 
Instruction formats 

branch, (I), 3-10 
conventions, (I), 3-8 
floating-point convert, (I), 3-12 
floating-point operate, (I), 3-11 
illegal trap, (II), 6-16 
memory, (I), 3-9 
memory jump, (I), 3-10 
operands, (I), 3-8 
operand values, (I), 3-8 
operate, (I), 3-10 
operators, (I), 3-5 
overview, (I), 1-4 
PALcode, (I), 3-13 
registers, (I), 3-1 

Instructions, overview, (I), 1-5 
Instruction set 

See also Floating-point instructions; 
PALcode instructions 

access type field, (I), 3-4 
Boolean (list), (I), 4-36 
branch (list), (I), 4-16 
byte (list), (I), 4-42 
conditional move (integer), (I), 4-38 
data type field, (I), 3-5 
extract (list), (I), 4-42 
floating-point subsetting, (I), 4-2 
insert (list), (I), 4-42 
integer arithmetic (list), (I), 4-22 
introduced, (I), 1-6 
jump (list), (I), 4-16 
load memory integer (list), (I), 4-4 
mask (list), (I), 4^42 
miscellaneous (list), (I), 4-113 
name field, (I), 3-4 
opcode qualifiers, (I), 4-3 
operand notation, (I), 3-4 
overview, (I), 4-1 
shift, arithmetic, (I), 4-41 

Instruction set (cont'd) 
shift, logical, (I), 4r-4Q 

software emulation rules, (I), 4-2 
store memory integer (list), (I), 4-4 
VAX compatibility, (I), 4-121 

Instruction stream 
See I-stream 

INSWH instruction, (I), 4-50 
INSWL instruction, (I), 4-50 
Integer arithmetic instructions 

See Arithmetic instructions 
Integer division, A-12 
Integer overflow trap, (II), 6-15; (III), 5-5 
Integer registers 

defined, (I), 3-1 
R31 restrictions, (I), 3-1 
usage, (III), 1-1 

Internal processor registers (IPR) 
address space number (ASN), (II), 5-4 
AST enable (ASTEN), (II), 5-5 
AST summary (ASTSR), (II), 5-7 
CALLJPAL MFPR with, (II), 5-1 
CALL.PAL MTPR with, (II), 5-1 
data alignment trap fixup (DATFX), (II), 

5-9 
defined, (II), 1-1 
executive stack pointer (ESP), (II), 5-27 
floating-point enable (FEN), (II), 5-10 
interprocessor interrupt request (IPIR) 

register, (II), 5-11 
interrupt priority level (IPL), (II), 5-12 
kernel mode with, (II), 5-1 
machine check error summary (MCES), 

(II), 5-13 
MFPR instruction with, (II), 2-86 
MTPR instruction with, (II), 2-87 
page table base (PTBR), (II), 5-18 
performance monitoring (PERFMON), (II), 

5-15 
privileged context block base (PCBB), (II), 

5-16 
processor base (PRBR), (II), 5-17 
software interrupt request (SIRR), (II), 

5-20 
software interrupt summary (SISR), (II), 

5-21 
stack pointer, (II), 5-1 
summarized, (II), 5-2 
supervisor stack pointer (SSP), (II), 5-28 
system control block base (SCBB), (II), 

5-19 
translation buffer check (TBCHK), (II), 

5-22 
translation buffer invalidate all (TBIA), 

(ID, 5-24 
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Internal processor registers (IPR) (cont'd) 
translation buffer invalidate all process 

(TBIAP), (11), 5-25 
translation buffer invalidate single (TBIS), 

(11), 5-26 
user stack pointer (USP), (11), 5-29 
virtual page base (VPTB), (11), 5-30 
Who-Am-I (WHAMI), (II), 5-31 

Interprocessor interrupt, (II), 6-21 
protocol for, (II), 6-21 
service routine entry point, (II), 6-29 

Interprocessor interrupt request (IPIR) 
register 

described, (II), 5-11 
protocol for, (II), &-21 

Interrupt entry (entlnt) register, (III), 1-2, 
5-4, 5-6 

Interrupt priority level (IPL) 
See also Interrupt priority level (IPL) 

register 
events associated with, (II), 6-18 
field in PS register, (II), 6-6 
hardware levels, (II), 6-7 
kernel mode software with, (II), 6-18 
operation of, (II), 6-17 
PS with, (III), 5-2 
recording pending software (SISR register), 

(II), 5-21 
requesting software (SIRR register), (II), 

5-20 
service routine entry points, (II), 6-29 
software interrupts, (II), 6-19 
software levels, (II), 6-7 

Interrupt priority level (IPL) register 
See also Interrupt priority level (IPL) 
described, (II), 5-12 
interrupt arbitration, (II), 6-35 

Interrupts 
actions, summarized, (II), 6-2 
from I/O devices, (I), 8-12 
hardware arbitration, (II), 6-34 
I/O device, (II), 6-20 
initiated by PALcode, (II), 6-31 
initiation, (II), 6-18 
input/output, (II), 6-22 
instruction completion, (II), 6-17 
interprocessor, (II), 6-21 
introduced, (II), 6-17 
PALcode arbitration, (II), 6-34 
passive release, (II), 6-20 
powerfail, (II), 6-22 
processor state transitions, (II), 6-36 
program counter value, (II), 6-2 
software, (II), 6-19 
sources for, (III), 5-2 

Interrupts (cont'd) 
stack frames, (II), 6-7 
stack frames for, (III), 5-3 
system entry for, (III), 5-4 
vectors, (I), 8-12 

Interrupt service routines 
entry point, (II), 6-26 
in each process, (II), 6-18 
introduced, (II), 6-17 

Interval clock interrupt, (II), 6-20 
service routine entry point, (II), 6-29 

Invalid operation trap, (II), 6-14; (III), 5-5 
INV bit 

exception summary parameter, (II), 6-13 
exception summary register, (III), 5-5 

/I opcode qualifier, IEEE floating-point, (I), 
4-61 

IOV bit 
exception summary parameter, (II), 6-14 
exception summary register, (III), 5-5 

IPR 
See Internal processor registers (IPR) 

IPR_KSP (internal processor register kernel 
stack pointer), (II), 5-1 

I-stream 
coherency, (I), 6-7 
design considerations, A-2 
modifying physical, (I), 5-5 
modifying virtual, (I), 5-5 
PALcode with, (I), 6-2 
with caches, (I), 5-5 

J 
JMP instruction, (I), 4-20 
JSR.COROUTINE instruction, (I), 4-20 
JSR instruction, (I), 4-20 
Jump instructions, (I), 4-16, 4-20 

See also Control instructions 
branch prediction logic, (I), 4-21 
coroutine linkage, (I), 4-21 
return from subroutine, (I), 4-20 
unconditional long jump, (I), 4-21 

Κ 
Kernel global pointer (KGP), (III), 1-3 
Kernel mode, protection code with, (III), 3-6 
Kernel read enable (KRE) 

bit in PTE, (II), 3-5; (III), 3-4 
with access control violation (ACV) fault, 

(II), 3-13 
Kernel stack, PALcode access to, (II), 6-31 
Kernel stack pointer (KSP) 

defined, (III), 1-3 
in HWPCB, (II), 4-2 
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Kernel write enable (KWE) 
bit in PTE, (11), 3-6; (III), 3-4 

Kseg 
format of, (III), 3-2 
mapping of, (III), 3-1 
physical space with, (III), 3-3 

L 
LDAH instruction, (I), 4-5 
LDA instruction, (I), 4-5 
LDF instruction, (I), 4-69 

when data is unaligned, (II), 6-27 
LDG instruction, (I), 4-70 

when data is unaligned, (II), 6-27 
LDL_L instruction, (I), 4-8 

restrictions, (I), 4-9 
when data is unaligned, (II), 6-27 
with processor lock register/flag, (I), 4-8 
with STx_C instruction, (I), 4-8 

LDL instruction, (I), 4-6 
when data is unaligned, (II), 6-27 

LDQ_L instruction, (I), 4-8 
restrictions, (I), 4-9 
when data is unaligned, (II), 6-27 
with processor lock register/flag, (I), 4-8 
with STx_C instruction, (I), 4-8 

LDQ_U instruction, (I), 4-7 
LDQ instruction, (I), 4-6 

when data is unaligned, (II), 6-27 
LDQP (PALcode) instruction, (II), 2-85 
LDS instruction, (I), 4-71 

when data is unaligned, (II), 6-27 
LDT instruction, (I), 4-72 

when data is unaligned, (II), 6-27 
Literals, operand notation, (I), 3-4 
Load instructions 

See also Floating-point load instructions 
emulation of, (I), 4-2 
FETCH instruction, (I), 4-115 
load address, (I), 4-5 
load address high, (I), 4-5 
load quadword, (I), 4-6 
load quadword locked, (I), 4-8 
load sign-extended longword, (I), 4-6 
load sign-extended longword locked, (I), 

4-8 
load unaligned quadword, (I), 4-7 
multiprocessor environment, (I), 5-5 
serialization, (I), 4-117 
when data is unaligned, (II), 6-27 

Load literal, A-13 
Load memory integer instructions (list), (I), 

4-4 

Local devices, (I), 8-1 
Local I/O space, (I), 8-2 
Local side, (I), 8-1 
Location, (I), 5-10 
Location access order 

defined, (I), 5-11 
with processor issue order, (I), 5-11 

Lock flag, per-processor 
defined, (I), 3-2 
with load locked instructions, (I), 4-8 
with store conditional instructions, (I), 

4-11 
Lockout, (I), 8-3 
Lock registers, per-processor 

defined, (I), 3-2 
with load locked instructions, (I), 4-8 
with store conditional instructions, (I), 

4-11 
Lock_flag register, (III), 1-3 
Logical instructions 

See Boolean instructions 
Logout area, (II), 6-24; (III), 5-7 
Longword data type, (I), 2-2 

alignment of, (I), 2-11 
atomic access of, (I), 5-2 
integer floating-point format, (I), 2-10 

LSB (least significant bit), defined for 
floating-point, (I), 4-57 

M 
Machine check error summary (MCES) 

register 
described, (II), 5-13 
using, (II), 6-24 

Machine checks, (II), 6-22; (III), 5-6 
actions, summarized, (II), 6-2 
initiated by PALcode, (II), 6-31 
introduced, (II), 6-22 
logout area, (II), 6-24 
masking, (II), 6-23 
no disabling of, (II), 6-24 
one per error, (II), 6-24 
processor correctable, (II), 6-23 
program counter (PC) value, (II), 6-23 
REI instruction with, (II), 6-23 
retry flag, (II), 6-24 
service routine entry points, (II), 6-29 
stack frames, (II), 6-7 
system correctable, (II), 6-23 

Mailbox 
address alignment, (I), 8—4 
bus-specific implementations for, (I), 8-12 
CMD field checking, (I), 8-13 
error reporting, (I), 8-8 
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Mailbox (cont'd) 
field checking, (I), 8-12 
modification by host, (I), 8-6 
operational definition, (I), 8-2 
posting, (I), 8-2 
posting software with, (I), 8-6 
remote reads, (I), 8-6, 8-8 
remote writes, (I), 8-6, 8-9 
static, (I), 8-6 
structure, (I), 8-5 
use of STQ_C lockflag, (I), 8-3, 8-8 
WHO_ARE_YOU command, (I), 8-13 
with I/O space granularity, (I), 8-7 

Mailbox pointer (MBPR) register, (I), 8—4 
defined, (I), 8-2 
ordering, (I), 8-7 

MASK field (mailbox), (I), 8-5 
Masking, machine checks with, (II), 6-23 
Mask instructions (list), (I), 4-52 
MAX, defined for floating-point, (I), 4-59 
maxCPU, (III), 1-2 
MB (memory barrier) instruction, (I), 4-117 

See also 1MB 
multiprocessors only, (I), 4-117 
using, (I), 5-18 
with DMA I/O, (I), 5-17 
with multiprocessor D-stream, (I), 5-17 

MBPR 
See Mailbox pointer (MBPR) register 

MBZ (must be zero), (I), 1-9 
Memory, unrecoverable errors with, (II), 6-22 
Memory access 

aligned byte/word, A-11 
coherency of, (I), 5-1 
granularity of, (I), 5-2 
width of, (I), 5-2 

Memory access sequence, (I), 5-11 
Memory alignment, requirement for, (I), 5-2 
Memory format instructions 

function codes, summarized, C-l 
opcodes for, C-l 

Memory instruction format, (I), 3-9 
with function code, (I), 3-9 

Memory jump instruction format, (I), 3-10 
Memory-like behavior, (I), 5-3 
Memory management 

See also Address translation; Pages; 
Processor modes; Virtual address 
space 

address translation, (II), 3-8 
always enabled, (II), 3-3 
control of, (III), 3-3 
faults, (II), 3-13, 6-9; (III), 3-9 
introduced, (II), 3-1 
page frame number (PFN), (II), 3-6 

Memory management (cont'd) 
page table entry (PTE), (II), 3-3 
protection code, (II), 3-8 
protection of individual pages, (II), 3-7 
PTE modified by software, (II), 3-7 
support in PALcode, (I), 6-2 
translation buffer with, (II), 3-11 
unrecoverable error, (II), 6-22 
with interrupts, (II), 6-18 
with multiprocessors, (II), 3-7 
with process context, (II), 4-1 

Memory-management fault entry (entMM) 
register, (III), 1-2, 5-4, 5-7 

Memory management faults 
registers used, (II), 6-10 
system entry for, (III), 5—4 
types, (III), 3-9 
with unaligned data, (II), 6-16 

Memory prefetch registers, A-10 
defined, (I), 3-2 

Memory protection, (III), 3-5 
MF_FPCR instruction, (I), 4^87 
MFPR_IPR_name (PALcode) instruction, 

(II), 2-86 
MIN, defined for floating-point, (I), 4-58 
Miscellaneous instructions (list), (I), 4-113 
MMCSR, (III), 5-7 
MMCSR code, (III), 3-9 
/M opcode qualifier, IEEE floating-point, (I), 

4-60 
Move, register-to-register, A-14 
Move instructions (conditional) 

See Conditional move instructions 
MSKBL instruction, (I), 4-52 
MSKLH instruction, (I), 4-52 
MSKLL instruction, (I), 4-52 
MSKQL instruction, (I), 4-52 
MSKWH instruction, (I), 4-52 
MSKWL instruction, (I), 4-52 
MT_FPCR instruction, (I), 4-87 

synchronization requirement, (I), 4-66 
MTPRJPR.name (PALcode) instruction, 

(II), 2-87 
MULF instruction, (I), 4-106 
MULG instruction, (I), 4-106 
MULL instruction, (I), 4-29 

with MULQ, (I), 4-29 
MULQ instruction, (I), 4-30 

with MULL, (I), 4-29 
with UMULH, (I), 4-30 

MULS instruction, (I), 4-107 
MULT instruction, (I), 4-107 
Multiple instruction issue, A-2 
Multiply instructions 

See also Floating-point operate 
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Multiply instructions (cont'd) 
multiply longword, (I), 4-29 
multiply quadword, (I), 4-30 
multiply unsigned quadward high, (I), 4-31 

Multiprocessor environment 
See also Data sharing 
cache coherency in, (I), 5-5 
context switching, (I), 5-18 
interprocessor interrupt, (II), 6-21 
I-stream reliability, (I), 5-17 
MB instruction with, (I), 5-17 
memory faults, (II), 6-10 
memory management in, (II), 3-7 
move operations in, (II), 2-76 
no implied barriers, (I), 5-16 
read/write ordering, (I), 5-9 
serialization requirements in, (I), 4-117 
shared data, (I), 5-5, A-7 

Multiprocessors 
I/O with, (I), 8-3 
interrupts with, (I), 8-12 

Multithread implementation, (II), 2-80 

Ν 
NaN (Not-a-Number) 

defined, (I), 2-8 
Quiet, (I), 4-57 
Signaling, (I), 4-57 

NATURALLY ALIGNED data objects, (I), 1-9 
Negate stylized code form, A-14 
Next PC, (II), 6-2 

defined for arithmetic traps, (II), 6-14 
Nonmemory-like behavior, (I), 5-3 
NOP, A-13 
NOT instruction, ORNOT with zero, (I), 4-37 
NOT stylized code form, A-14 

ο 
Opcode qualifiers 

See also specific qualifiers 
default values, (I), 4-3 
notation (list), (I), 4-3 

Opcodes 
DEC OSF/1, C-9 
OpenVMS, C-8 
reserved, C-10 
summarized, C-6 

opDec, (III), 1-4 
OpenVMS PALcode instruction opcodes, C-8 
OpenVMS PALcode instructions (list), (II), 

2-2 
Operand expressions, (I), 3-3 
Operand notation 

defined, (I), 3-3 

Operand notation (cont'd) 
from VAX architecture standard, (I), 3-4 

Operand values, (I), 3-3 
Operate format instructions, opcodes for, C-2 
Operate instruction format, (I), 3-10 

floating-point, (I), 3-11 
floating-point convert, (I), 3-12 

Operators, instruction format, (I), 3-5 
Optimization 

See Performance optimizations 
ORNOT instruction, (I), 4-37 
OSF/1 PALcode instruction opcodes, C-9 
Overflow trap, (II), 6-15; (III), 5-5 
OVFbit 

exception summary parameter, (II), 6-13 
exception summary register, (III), 5-5 

ρ 
Page frame number (PFN) 

bits in PTE, (II), 3-6; (III), 3-3 
determining validitation, (II), 3-4 
finding for SCB, (II), 5-19 
PTBR register, (II), 5-18 
with address translation, (II), 3-9 
with hardware context switching, (II), 4-3 

Pages 
collecting statistics on, (II), 6-11 
individual protection of, (II), 3-7 
max address size from, (II), 3-3 
possible sizes for, (II), 3-2 
size range of, (III), 3-1 
virtual address space from, (II), 3-2 

pageSize, (III), 1-2 
Page sizes, (III), 3-2 
Page table base (PTBR) register, (II), 5-18 

defined, (III), 1-3 
in HWPCB, (II), 4-2 
privileged context, (II), 2-91 
with address translation, (II), 3-9 

Page table entry (PTE), (II), 3-3 
atomic modification of, (II), 3-7 
bits, summarized, (III), 3-3 
changing and managing, (III), 3-5 
format of, (III), 3-3 
modified by software, (II), 3-7 
page protection, (II), 3-8 
physical access of, (III), 3-6 
virtual access of, (III), 3-7 
with multiprocessors, (II), 3-7 

PALcode 
See also Queues, support for 
access to kernel stack, (II), 6-31 
barriers with, (I), 5-16 
CALL.PAL instruction, (I), 4-114 
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PALcode (cont'd) 
compared to hardware instructions, (I), 6-1 
defined for OpenVMS, (II), 2-1 
illegal operand trap, (II), 6-17 
implementation-specific, (I), 6-2 
instead of microcode, (I), 6-1 
instruction format, (I), 3-13 
memory management requirements, (II), 

3-3 
OSF/1 support for, (III), 5-8 
overview, (I), 6-1 
processor state transitions, (II), 6-36 
queue data type support, (II), 2-21 
recognized instructions, (I), 6-4 
replacing, (I), 6-3 
required function support, (I), 6-2 
required instructions, (I), 6-4 
running environment, (I), 6-2 
special functions, (I), 6-2 

PALcode instructions 
OpenVMS (list), (II), 2-2 
privileged OpenVMS (list), (II), 2-83 
privileged OSF/1 (list), (III), 2-8 
required, opcodes for, C-10 
reserved, opcodes for, C-10 
thread OpenVMS, (II), 2-80 
unprivileged general (list), (II), 2-3 
unprivileged OSF/1 (list), (III), 2-1 

PALcode instructions, privileged 
See also individual instructions 
cache flush, (II), 2-84 
drain aborts, (I), 6-5 
halt processor, (I), 6-6 
load quadword physical, (II), 2-85 
move from processor register, (II), 2-86 
move to processor register, (II), 2-87 
read processor status, (III), 2-9 
read system value, (III), 2-11 
read user stack pointer, (III), 2-10 
return from system call, (III), 2-12 
return from trap, fault, or interrupt, (III), 

2-13 
store quadword physical, (II), 2-88 
swap IPL, (III), 2-16 
swap privileged context, (II), 2-89 
swap process context, (III), 2-14 
TB (translation buffer) invalidate, (III), 

2-17 
who am I, (III), 2-18 
write floating-point enable, (III), 2-21 
write kernel global pointer, (III), 2-22 
write system entry address, (III), 2-19 
write system value, (III), 2-24 
write user stack pointer, (III), 2-23 
write virtual page table pointer, (III), 2-25 

PALcode instructions, thread, (II), 2-80 
read unique context, (II), 2-81 
write unique context, (II), 2-82 

PALcode instructions, unprivileged 
See also individual instructions 
breakpoint, (II), 2-4; (III), 2-2 
bugcheck, (II), 2-5; (III), 2-3 
change to executive mode, (II), 2-6 
change to kernel mode, (II), 2-7 
change to supervisor mode, (II), 2-8 
change to user mode, (II), 2-9 
generate software trap, (II), 2-10 
generate trap, (III), 2-5 
insert into queue (list), (II), 2-30 
I-stream memory barrier, (I), 6-7 
probe for read access, (II), 2-11 
probe for write access, (II), 2-11 
read processor status, (II), 2-13 
read system cycle counter, (II), 2-17 
read unique value, (III), 2-6 
remove from queue (list), (II), 2-30 
return from exception or interrupt, (II), 

2-14 
swap AST enable, (II), 2-19 
system call, (III), 2-4 
write PS software field, (II), 2-20 
write unique value, (III), 2-7 

PALcode instructions, unprivileged general 
(list), (II), 2-3 

PALRES0, (I), 6-2 
PALRES1, (I), 6-2 
PALRES2, (I), 6-2 
PALRES3, (I), 6-2 
PALRES4, (I), 6-2 
Passive release interrupt entry point, (II), 

6-29 
Passive release interrupts, (II), 6-20 
PC 

See program counter register 
PCC 

See Process cycle counter 
Performance monitoring register (PERF-

MON), (II), 5-15 
Performance monitor interrupt entry point, 

(II), 6-29 
Performance optimizations 

branch prediction, A-3 
code sequences, A-11 
data stream, A-6 
for frequently executed code, A-1 
for I-streams, A-2 
instruction alignment, A-2 
instruction scheduling, A-5 
I-stream density, A-5 
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Performance optimizations (cont'd) 
multiple instruction issue, A-2 
shared data, A-7 

PFN 
See Page frame number 

Physical address translation, (II), 3-9 
Physical space, (III), 3-3 
PME, bit in HWPCB, (II), 4-2 
PMI bus, (I), 8-1 

uncorrected protocol errors, (II), 6-22 
Powerfail, CFLUSH PALcode instruction 

with, (II), 6-22 
Powerfail interrupt, (II), 6-22 

service routine entry point, (II), 6-29 
Prefetch data (FETCH instruction), (I), 4-115 
Prefetch data registers, A-10 
Prefetching data, considerations, A-10 
Privileged Architecture Library 

See PALcode 
Privileged context, (II), 2-90 
Privileged context block base (PCBB) register, 

(II), 5-16 
Privileged PALcode instructions (list), (II), 

2-83; (III), 2-8 
PROBER (PALcode) instruction, (II), 2-11 
PROBEW (PALcode) instruction, (II), 2-11 
Process, (II), 4-1 

context switching the, (II), 4—4 
Process context, (III), 4—1 
Process control block (PCB), (III), 4-1 

structure, (III), 4-2 
Process control block base (PCBB) register, 

(III), 1-3 
Process cycle counter (PCC) 

in HWPCB, (II), 4-2 
privileged context, (II), 2-91 
RPCC instruction with, (I), 4-118 
system cycle counter with, (II), 2-17 

Processor base (PRBR) register, (II), 5-17 
Processor issue order 

defined, (I), 5-11 
with location access order, (I), 5-11 

Processor issue sequence, (I), 5-10 
Processor memory interconnect 

See PMI bus 
Processor modes 

AST pending state, (II), 5-7 
change to executive, (II), 2-6 
change to kernel, (II), 2-7 
change to supervisor, (II), 2-8 
change to user, (II), 2-9 
controlling memory access, (II), 3-8 
enabling executive mode reads, (II), 3-5 
enabling executive mode writes, (II), 3-6 

Processor modes (cont'd) 
enabling kernel mode reads, (II), 3-5 
enabling supervisor mode reads, (II), 3-6 
enabling supervisor mode writes, (II), 3-6 
enabling user mode reads, (II), 3-6 
enabling user mode writes, (II), 3-6 
page access with, (II), 3-1 
PALcode state transitions, (II), 6-36 

Processor number, reading, (II), 5-31 
Processor state, defined, (II), 6-5 
Processor state transitions, (II), 6-36 
Processor status (PS) register 

bit meanings for, (III), 5-2 
bootstrap values in, (II), 6-6 
current, (II), 6-5 
current mode field, (II), 6-6 
defined, (II), 1-1; (III), 1-3 
explicit reading of, (II), 6-5 
in processor state, (II), 6-5 
interrupt priority level (IPL) field, (II), 6-6 
saved on stack, (II), 6-5 
saved on stack frame, (II), 6-7 
software (SW) field, (II), 6-6 
stack alignment field, (II), 6-6 
virtual machine monitor bit, (II), 6-6 
WR_PS_SW instruction, (II), 2-20 

Process unique value (unique) register, (III), 
1-4 

Program counter (PC) register, (I), 3-1 
alignment, (II), 6-6 
current PC defined, (II), 6-2 
defined, (III), 1-3 
explicit reading of, (II), 6-6 
in processor state, (II), 6-5 
next PC defined, (II), 6-14 
saved on stack frame, (II), 6-7 
with arithmetic traps, (II), 6-14; (III), 5-1 
with faults, (II), 6-8 
with interrupts, (II), 6-2 
with machine checks, (II), 6-23 
with synchronous traps, (II), 6-15 

Protection code, (II), 3-8; (III), 3-6 
Protection modes, (II), 6-7 
PS<SP_ALIGN> field, (II), 2-13 
Pseudo-ops, A-14 
PTE 

See Page table entry 

ο 
Quadword data type, (I), 2-2 

alignment of, (I), 2-3, 2-11 
atomic access of, (I), 5-2 
integer floating-point format, (I), 2-11 
loading in physical memory, (II), 2-85 
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Quadword data type (cont'd) 
storing to physical memory, (II), 2-88 
TJIoating with, (I), 2-11 

Queues, support for 
absolute longword, (II), 2-21 
absolute quadword, (II), 2-25 
PALcode instructions (list), (II), 2-30 
self-relative longword, (II), 2-21 
self-relative quadword, (II), 2-26 

R 
R31 

restrictions, (I), 3-1 
with arithmetic traps, (II), 6-12 

RAZ (read as zero), (I), 1-9 
RBADR field (mailbox), (I), 8-5 
RC (read and clear) instruction, (I), 4-122 
RD_PS (PALcode) instruction, (II), 2-13 
RDATA field (mailbox), (I), 8-6 
rdps (PALcode) instruction, (III), 2-9 
rdunique (PALcode) instruction, (III), 2-6 

PCB with, (III), 4-1 
required recognition of, (I), 6-4 

RDUNIQUE (PALcode) instruction 
required recognition of, (I), 6—4 

rdusp (PALcode) instruction, (III), 2-10 
PCB with, (III), 4-1 

rdval (PALcode) instruction, (III), 2-11 
READJJNQ (PALcode) instruction, (II), 

2-81 
Read/write, sequential, A-10 
Read/write ordering (multiprocessor), (I), 5-9 

determining requirements, (I), 5-9 
memory location defined, (I), 5-10 

Registers, (I), 3-1 
See also specific registers 
floating-point, (I), 3-2 
integer, (I), 3-1 
lock, (I), 3-2 
memory prefetch, (I), 3-2 
optional, (I), 3-2 
program counter (PC), (I), 3-1 
value when unused, (I), 3-8 
VAX compatibility, (I), 3-2 
with IPRs, (II), 5-1 

Register-to-register move, A-14 
Register write mask, with arithmetic traps, 

(ID, 6-14 
REI (PALcode) instruction, (II), 2-14 

arithmetic traps, (II), 6-9 
faults, (II), 6-8 
interrupt arbitration, (II), 6-35 
interrupts, (II), 6-2 
machine checks, (II), 6-23 

REI (PALcode) instruction (cont'd) 
synchronous traps, (II), 6-15 

Remote devices 
defined, (I), 8-1 
interrupts with, (I), 8-12 
with DMA, (I), 8-10 

Remote I/O space, (I), 8-2 
accessing, (I), 8-2, 8-8 
flow control, (I), 8-3 
read/write ordering, (I), 8-9 

Remote writes (mailbox), (I), 8-5 
Remove from queue PALcode instructions 

longword, (II), 2-72 
longword at head interlocked, (II), 2-52 
longword at head interlocked resident, (II), 

2-55 
longword at tail interlocked, (II), 2-62 
longword at tail interlocked resident, (II), 

2-65 
quadword, (II), 2-74 
quadword at head interlocked, (II), 2-57 
quadword at head interlocked resident, 

(II), 2-60 
quadword at tail interlocked, (II), 2-67 
quadword at tail interlocked resident, (II), 

2-70 
REMQHIL (PALcode) instruction, (II), 2-52 
REMQHILR (PALcode) instruction, (II), 2-55 
REMQHIQ (PALcode) instruction, (II), 2-57 
REMQHIQR (PALcode) instruction, (II), 2-60 
REMQTIL (PALcode) instruction, (II), 2-62 
REMQTILR (PALcode) instruction, (II), 2-65 
REMQTIQ (PALcode) instruction, (II), 2-67 
REMQTIQR (PALcode) instruction, (II), 2-70 
REMQUEL (PALcode) instruction, (II), 2-72 
REMQUEL/D (PALcode) instruction, (II), 

2-72 
REMQUEQ (PALcode) instruction, (II), 2-74 
REMQUEQ/D (PALcode) instruction, (II), 

2-74 
Representative result, (I), 4-57 
Reserved instructions, opcodes for, C-10 
Reserved operand, (I), 4-58 
Result latency, A—5 
RET instruction, (I), 4-20 
retsys (PALcode) instruction, (III), 2-12 

PS with, (III), 5-2 
Rounding modes 

See Floating-point rounding modes 
RPCC (read process cycle counter) instruction, 

(I), 4-118 
RSCC instruction with, (II), 2-18 

RS (read and set) instruction, (I), 4-122 
RSCC (PALcode) instruction, (II), 2-17 

RPCC instruction with, (II), 2-18 
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rti (PALcode) instruction, (III), 2-13 
PS with, (III), 5-2 
with exceptions, (III), 5-1 

S 
S4ADDL instruction, (I), 4-24 
S4ADDQ instruction, (I), 4-26 
S4SUBL instruction, (I), 4-33 
S4SUBQ instruction, (I), 4-35 
S8ADDL instruction, (I), 4-24 
S8ADDQ instruction, (I), 4-26 
S8SUBL instruction, (I), 4-33 
S8SUBQ instruction, (I), 4-35 
S_floating data type 

alignment of, (I), 2-8 
compared to F_floating, (I), 2-8 
exceptions, (I), 2-8 
format, (I), 2-8 
mapping, (I), 2-8 
MAX/MIN, (7Λ 4-58 
operations, (I), 4-64 
when data is unaligned, (II), 6-27 

SBZ (should be zero), (I), 1-9 
SCC 

See System cycle counter 
Security holes, (I), 1-7 

with UNPREDICTABLE results, (I), 1-8 
SegO, mapping of, (III), 3-1 
Segl, mapping of, (III), 3-1 
Segment number fields, (II), 3-2 
Self-relative longword queue, (II), 2-21 
Self-relative quadword queue, (II), 2-26 
Sequential read/write, A-10 
Serialization, MB instruction with, (I), 4-117 
Shared data (multiprocessor), A-7 

changed vs. updated datum, (I), 5-5 
Shared data structures 

atomic update, (I), 5-6 
ordering considerations, (I), 5-7 
using memory barrier (MB) instruction, (I), 

5-8 
Shared memory 

accessing, (I), 5-10 
access sequence, (I), 5-10 
defined, (I), 5-9 
issue sequence, (I), 5-10 

Shift arithmetic instructions, (I), 4-41 
Shift logical instructions, (I), 4-40 
Single-precision floating-point, (I), 4-64 
SLL instruction, (I), 4-40 
Software (SW) field, in PS register, (II), 6-6 
Software completion bit, (II), 6-13 
Software considerations, A- l 

See also Performance optimizations 

Software interrupt request (SIRR) register 
described, (II), 5-20 
interrupt arbitration, (II), 6-35 
protocol for, (II), 6-19 
with interrupts, (II), 6-19 

Software interrupts, (II), 6-19 
asynchronous system traps (AST), (II), 

6-20 
protocol between summary and request, 

(II), 6-19 
recording pending state of, (II), 5-21 
request (SIRR) register, (II), 6-19 
requesting, (II), 5-20 
service routine entry points, (II), 6-28 
summary (SISR) register, (II), 6-19 
supported levels of, (II), 5-20 

Software interrupt summary (SISR) register 
described, (II), 5-21 
protocol for, (II), 6-19 
with interrupts, (II), 6-19 

Software traps, generating, (II), 2-10 
/S opcode qualifier 

IEEE floating-point, (I), 4-61 
VAX floating-point, (I), 4-61 

SP 
See Stack pointer 

SRA instruction, (I), 4-41 
SRL instruction, (I), 4-40 
Stack alignment, (II), 6-31 
Stack alignment (SP_ALIGN), field in saved 

PS, (II), 6-6 
Stack frames, (II), 6-7; (III), 5-3 
Stack pointer (SP) 

defined, (II), 1-1; (III), 1-4 
register linkage for, (III), 1-1 

Stack pointer internal processor registers, 
(ID, 5-1 

Starvation, (I), 8-4 
STATUS field (mailbox), (I), 8-6 
STF instruction, (I), 4-73 

when data is unaligned, (II), 6-27 
STG instruction, (I), 4-74 

when data is unaligned, (II), 6-27 
STL_C instruction, (I), 4-11 

when data is unaligned, (II), 6-27 
with LDx_L instruction, (I), 4-11 
with processor lock register/flag, (I), 4-11 

STL instruction, (I), 4-13 
when data is unaligned, (II), 6-27 

Store instructions 
See also Floating-point store instructions 
emulation of, (I), 4-2 
FETCH instruction, (I), 4-115 
multiprocessor environment, (I), 5-5 
serialization, (I), 4-117 
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Store instructions (cont'd) 
store longword, (I), 4-13 
store longword conditional, (I), 4-11 
store quadword, (I), 4-13 
store quadword conditional, (I), 4-11 
store unaligned quadword, (I), 4-14 
when data is unaligned, (II), 6-27 

Store memory integer instructions (list), (I), 
4-4 

STQ_C instruction, (I), 4-11 
use in accessing MBPR, (I), 8-3 
with LDx_L inst., (I), 4-11 
with processor lock register/flag, (I), 4-11 

STQ_L instruction 
when data is unaligned, (II), 6-27 

STQ_U instruction, (I), 4-14 
STQ instruction, (I), 4-13 

when data is unaligned, (II), 6-27 
STQP (PALcode) instruction, (II), 2-88 
STS instruction, (I), 4-75 

when data is unaligned, (II), 6-27 
STT instruction, (I), 4-76 

when data is unaligned, (II), 6-27 
SUBF instruction, (I), 4-109 
SUBG instruction, (I), 4-109 
SUBL instruction, (I), 4-32 
SUBQ instruction, (I), 4-34 
SUBS instruction, (I), 4-111 
SUBT instruction, (I), 4-111 
Subtract instructions 

See also Floating-point operate 
subtract longword, (I), 4-32 
subtract quadword, (I), 4-34 
subtract scaled longword, (I), 4-33 
subtract scaled quadword, (I), 4-35 

Supervisor read enable (SRE), bit in PTE, 
(ID, 3-6 

Supervisor stack pointer (SSP) 
as internal processor register, (II), 5-1 
in HWPCB, (II), 4-2 

Supervisor stack pointer (SSP) register, (II), 
5-28 

Supervisor write enable (SWE), bit in PTE, 
(ID, 3-6 

SWASTEN (PALcode) instruction, (II), 2-19 
interrupt arbitration, (II), 6-36 
with ÄSTEN register, (II), 5-6 

SWC bit 
exception summary parameter, (II), 6-13 
exception summary register, (III), 5-2, 5-4 

swpctx (PALcode) instruction, (III), 2-14 
PCB with, (III), 4-1 
with ASNs, (III), 3-8 

SWPCTX (PALcode) instruction, (II), 2-89 
with ASTSR register, (II), 5-8 

swpipl (PALcode) instruction, (III), 2-16 
PS with, (III), 5-2 

Synchronous traps, (III), 5-2 
data alignment, (II), 6-15 
denned, (II), 6-9 
program counter (PC) value, (II), 6-15 
REI instruction with, (II), 6-15 

System call entry (entSys) register, (III), 1-3, 
5-4, 5-8 

System control block (SCB) 
arithmetic trap entry points, (II), 6-27 
fault entry points, (II), 6-26 
finding PFN, (II), 5-19 
saved on stack frame, (II), 6-7 
structure of, (II), 6-25 
with memory management faults, (II), 

3-14 
System control block base (SCBB) register, 

(II), 5-19 
System cycle counter (SCC), reading, (II), 

2-17 
System entry addresses, (III), 5-3 
System value (sysvalue) register, (III), 1-4 

τ 
T_floating data type 

alignment of, (I), 2-10 
exceptions, (I), 2-10 
format, (I), 2-9 
MAX/MIN, (I), 4-59 
when data is unaligned, (II), 6-27 

TB 
See Translation buffer 

tbi (PALcode) instruction, (III), 2-17 
with TBs, (III), 3-8 

Tightly coupled I/O bus, (I), 8-1 
Timeout, (I), 8-4 
Timing considerations, atomic sequences, 

A-17 
Translation 

physical, (III), 3-6 
virtual, (III), 3-7 

Translation buffer (TB), (III), 3-8 
address space number with, (II), 3-11 
fault on execute, (II), 6-12 
fault on read, (II), 6-11 
fault on write, (II), 6-11 
granularity hint in PTE, (II), 3-5 
with invalid PTEs, (II), 3-12 

Translation buffer check (TBCHK) register 
described, (II), 5-22 
with translation buffer, (II), 3-12 
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Translation buffer invalidate all (TBIA) 
register 

described, (II), 5-24 
with translation buffer, (II), 3-12 

Translation buffer invalidate all process 
(TBIAP) register 

described, (II), 5-25 
with translation buffer, (II), 3-12 

Translation buffer invalidate single (TBIS) 
register, (II), 5-26 

Translation not valid fault, (II), 6-10 
service routine entry point, (II), 6-26 

Translation-not-valid fault, (III), 3-9 
TRAPB (trap barrier) instruction, A-14 

described, (I), 4-120 
with MT.FPCR, (I), 4-66 
with trap shadow, (I), 4-62 

Trap handler, with non-finite arithmetic 
operands, (I), 4-63 

Trap handling, IEEE floating-point, B-4 
Trap modes 

floating-point, (I), 4-60 
IEEE, (I), 4-61 
IEEE convert-to-integer, (I), 4-61 
VAX, (I), 4-60 
VAX convert-to-integer, (I), 4-61 

Traps 
See Arithmetic traps 

Trap shadow, (III), 5-2 
defined, (I), 4-62 
defined for floating-point, (I), 4-58 
trap handler requirement for, (I), 4-62 

Trigger instruction, (III), 5-2 
True result, (I), 4-57 
True zero, (I), 4-57 

u 
UMULH instruction, (I), 4-31 

with MULQ, (I), 4-30 
Unaligned access fault 

system entry for, (III), 5—4 
UNALIGNED data objects, (I), 1-9 
Unaligned fault entry (entUna) register, (III), 

1-3, 5-8 
Unconditional long jump, (I), 4-21 
UNDEFINED operations, (I), 1-7 
Underflow trap, (II), 6-15; (III), 5-5 
UNF bit 

exception summary parameter, (II), 6-13 
exception summary register, (III), 5—5 

UNORDERED memory references, (I), 5-9 
UNPREDICTABLE results, (I), 1-7 

Unprivileged PALcode instructions (list), (III), 
2-1 

Unprivileged PALcode instructions, VAX 
compatibility, (II), 2-75 

/U opcode qualifier 
IEEE floating-point, (I), 4-61 
VAX floating-point, (I), 4-61 

Updated datum, (I), 5-5 
User mode, protection code with, (III), 3-6 
User read enable (URE) 

bit in PTE, (II), 3-6; (III), 3-4 
User stack pointer (USP) 

defined, (III), 1-4 
in HWPCB, (II), 4-2 
internal processor register, (II), 5-1 

User stack pointer (USP) register, (II), 5-29 
User write enable (UWE) 

bit in PTE, (II), 3-6; (III), 3-4 

y 
Valid (V) 

bit in PTE, (II), 3-4; (III), 3-5 
vaSize, (III), 1-2 
VAX compatibility instructions, restrictions 

for, (I), 4-121 
VAX compatibility register, (I), 3-2 
VAX convert-to-integer trap mode, (I), 4-61 
VAX floating-point 

See also Floating-point instructions 
D.floating, (I), 2-6 
F.floating, (I), 2-3 
GJIoating, (I), 2-5 
trap modes, (I), 4-62 

VAX floating-point instructions 
add instructions, (I), 4-88 
compare instructions, (I), 4-91 
convert from integer instructions, (I), 4-95 
convert to integer instructions, (I), 4-94 
convert VAX floating format instructions, 

(I), 4-96 
divide instructions, (I), 4-102 
multiply instructions, (I), 4-106 
opcodes for, C-5 
operate instructions, (I), 4-80 
qualifiers, summarized, C-5 
subtract instructions, (I), 4-109 

VAX rounding modes, (I), 4-59 
VAX trap modes, required instruction 

notation, (I), 4-61 
Virtual address format, (II), 3-2 

segment number fields, (II), 3-2 
Virtual address space 

minimum and maximum, (II), 3-2 
page size with, (II), 3-1 
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Virtual address spaces, (III), 3-1 Zero byte instructions (list), (I), 4-55 
Virtual address translation, (II), 3-10 
Virtual D-cache, (I), 5-3 

maintaining coherency of, (I), 5-3 
Virtual format, (III), 3-1 
Virtual I-cache, (I), 5-3 

maintaining coherency of, (I), 5-5 
Virtual machine monitor (VMM), bit in PS 

register, (II), 6-6 
Virtual page base (VPTB) register, (II), 5-30 
Virtual page table pointer (VPTPTR), (III), 

1-4 
/V opcode qualifier 

IEEE floating-point, (I), 4-61 
VAX floating-point, (I), 4-61 

w 
Watchpoints 

with fault on read, (II), 6-11 
with fault on write, (II), 6-11 

WDATA field (mailbox), (I), 8-6 
W field (mailbox), (I), 8-5 
Whami, (III), 1-4 
whami (PALcode) instruction, (III), 2-18 
WHO_ARE_YOU command, (I), 8-13 
Who-Am-I (WHAMI) register, (II), 5-31 
Word data type, (I), 2-1 
WR_PS_SW (PALcode) instruction, (II), 

2-20 
wrent (PALcode) instruction, (III), 2-19 
wrfen (PALcode) instruction, (III), 2-21 
WRITE.UNQ (PALcode) instruction, (II), 

2-82 
Write-back caches, requirements for, (I), 5—4 
Write buffers, requirements for, (I), 5—4 
wrkgp (PALcode) instruction, (III), 2-22 
wrunique (PALcode) instruction, (III), 2-7 

PCB with, (III), 4-1 
required recognition of, (I), 6-4 

WRUNIQUE (PALcode) instruction 
required recognition of, (I), 6—4 

wrusp (PALcode) instruction, (III), 2-23 
PCB with, (III), 4-1 

wrval (PALcode) instruction, (III), 2-24 
wrvptptr (PALcode) instruction, (III), 2-25 

X 
XOR instruction, (I), 4-37 

Ζ 
ZAP instruction, (I), 4-55 
ZAPNOT instruction, (I), 4-55 
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